
Department of Electrical and Information Engineering

Electrical and Information Engineering

Ph.D. Program
SSD: ING-INF/05-INFORMATION PROCESSING SYSTEMS

Final Dissertation

Knowledge-Enabled Recommender
Systems in the Linked Data Era

by

Vito Walter Anelli

Supervisors:

Prof. Eng. Tommaso Di Noia

Prof. Eng. Eugenio Di Sciascio

Coordinator of Ph.D. Program:
Prof. Eng. Alfredo Grieco

Course n◦32, 01/11/2016-31/10/2019

Department of Electrical and Information Engineering

Electrical and Information Engineering

Ph.D. Program
SSD: ING-INF/05-INFORMATION PROCESSING SYSTEMS

Final Dissertation

Knowledge-Enabled Recommender
Systems in the Linked Data Era

by

Vito Walter Anelli

Referees: Supervisors:

Prof. Alejandro Bellogı́n Prof. Eng. Tommaso Di Noia

Prof. Mathieu D’Aquin

Prof. Eng. Eugenio Di Sciascio

Coordinator of Ph.D. Program:
Prof. Eng. Alfredo Grieco

Course n◦32, 01/11/2016-31/10/2019

If your daily life

seems poor,

do not blame it.

Blame yourself,

tell yourself that

you are not poet enough

to call forth its riches.

R. M. R.

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 2

1.2 Research Questions . 3

1.3 Structure of the work . 9

I Background 11

2 Knowledge Representation 13
2.1 Semantic Web . 14

2.1.1 Resource Description Framework 15

2.1.2 RDF Schema . 17

2.1.3 Linked Data . 18

2.1.4 SPARQL . 19

2.2 Preference representation . 20

2.2.1 CP-theories . 22

3 Recommender Systems 33
3.1 Introduction . 33

3.1.1 The recommendation problem 33

3.1.2 From Rating Prediction to Ranking 37

3.2 Collaborative-Filtering Recommender Systems 38

i

ii CONTENTS

3.2.1 Neighborhood-Based Models 39

3.2.2 Matrix Factorization - SVD & SVD++ 42

3.2.3 Advances in Matrix factorization 48

3.2.4 Matrix Factorization - Funk MF 49

3.2.5 Matrix Factorization for positive-only feedback 50

3.3 Optimization techniques . 51

3.3.1 ALS - Alternating Least Squares 51

3.3.2 BPR - Bayesian Personalized Ranking Criterion 53

3.4 Content-Based Recommender Systems 54

3.4.1 Vector Space Model . 58

3.4.2 From Vector space Model to Knowledge-aware Recommender

Systems . 60

3.5 Hybrid Recommenders . 62

3.6 Recommender Systems Evaluation 65

3.6.1 Protocols . 66

3.6.2 Accuracy . 67

3.6.3 Diversity . 69

3.6.4 Novelty . 72

II Feeding RSs with explicit knowledge 75

4 Introduction 77

5 From semantic graphs to matrices 81
5.1 Introduction . 81

5.2 Related Work . 84

5.3 Approach . 89

5.3.1 Motivation . 89

5.3.2 Data Model . 89

5.3.3 Problem Formulation . 90

5.3.4 Pure FF . 92

5.3.5 Jaccard-fsr . 94

CONTENTS iii

5.3.6 Content Based- and Hybrid-fsr 95

5.3.7 frsCBF . 97

5.4 Experimental Evaluation . 98

5.4.1 Experiments for Pure FF 98

5.4.2 Experimental Evaluation for FF extensions 101

5.5 Conclusion . 116

6 Metadata to address Cold-start problem 119
6.1 Introduction . 119

6.2 Related work . 122

6.2.1 Cross-domain recommender systems 122

6.2.2 Matrix factorization-based cross-domain recommender sys-

tems . 125

6.3 Matrix factorization models for cross-domain recommendation . . . 129

6.3.1 Regularization through similarity prediction 130

6.3.2 Regularization based on item neighborhoods 132

6.3.3 Regularization based on item centroids 135

6.4 Experiments . 138

6.4.1 Dataset . 138

6.4.2 Evaluation methodology and metrics 142

6.4.3 Evaluated methods . 146

6.4.4 Results . 150

6.4.5 Inter-domain item semantic similarity 150

6.4.6 Item ranking accuracy . 151

6.4.7 Recommendation diversity 157

6.5 Conclusions and future work . 160

7 Interpretability of Factorization Machines 165
7.1 Introduction . 165

7.2 Related Work . 169

7.3 Approach . 172

7.3.1 Knowledge Graphs and Linked Data 173

iv CONTENTS

7.3.2 Formal Model . 174

7.3.3 Optimization . 178

7.3.4 Personalized Recommendation 180

7.3.5 Semantic Accuracy . 181

7.3.6 Robustness . 181

7.4 Experimental Evaluation . 182

7.4.1 Experimental Setup . 182

7.4.2 Features extraction . 185

7.4.3 Accuracy, Diversity and Novelty with kaHFM 187

7.4.4 Semantic Accuracy . 190

7.4.5 Generative Robustness . 191

7.5 Conclusion . 192

8 Reasoning about Preferences 195
8.1 Introduction . 195

8.2 Related work . 198

8.3 Motivating scenario . 203

8.4 CP-theories and Linked Open Data 205

8.4.1 The special case of CP-nets 214

8.4.2 Ordering SPARQL results via CP-theories 215

8.5 Query formulation algorithm for CP-theories 217

8.6 Ordering Query for the Book Example 220

8.6.1 Instantiation of the framework 226

8.7 Application . 229

8.8 Experiments . 233

8.8.1 Test on Real Users . 234

8.8.2 Test on Simulated Users 235

8.9 Conclusion and future work . 236

9 Hybrid Relevance: How to enhance traditional relevance weighting schemes243
9.1 Introduction . 243

9.2 CRel-FM: Collaborative-aware relevance for recommendation . . . 245

CONTENTS v

9.3 Experimental Evaluation . 249

9.3.1 Results . 252

9.3.2 Discussion . 254

9.4 Related Work . 256

9.5 Conclusions and Future Work . 259

III Modeling and evaluating without an explicit knowledge
representation 261

10 Introduction 263

11 A re-ranking algorithm exploiting Time and Diversity 267
11.1 Introduction . 267

11.2 Related Work . 269

11.3 Intent-aware diversification for recommendations 270

11.4 Intent modeling with Temporal Dynamics 271

11.4.1 Time-Based Intent Modeling 271

11.4.2 Session-Based Intent Modeling 272

11.5 Experimental setting . 273

11.6 Conclusions and future work . 276

12 A study over the dimensions of Time, and Popularity 279
12.1 Introduction . 279

12.2 Time-aware Local Popularity . 281

12.3 Experimental Evaluation . 285

12.4 Conclusion . 287

13 Beyond similarities: Dissimilarity and Asymmetric Similarities 289
13.1 Introduction . 289

13.2 Dissimilarity in Recommendation 291

13.2.1 Motivation . 291

13.2.2 Metrics . 294

vi CONTENTS

13.3 Experimental Evaluation . 296

13.4 Conclusion and Future Work . 302

14 An investigation over hyperparameters tuning: A Discriminative Power
perspective 305
14.1 Introduction . 305

14.2 Experimental Settings . 308

14.3 Discriminative Power of metrics on Hyperparameters 310

14.4 Metrics Confidence . 313

14.5 Dominant Hyperparameter . 314

14.6 Conclusions and Future Work . 316

15 Generalized Cross-Entropy for Fairness Evaluation 317
15.1 Introduction . 317

15.2 Background and Prior Art . 323

15.2.1 Fairness notions . 323

15.2.2 Fairness and accuracy trade-off 324

15.2.3 From reciprocal recommendation to multiple stakeholders . 326

15.2.4 Evaluating fairness in recommender systems 328

15.3 A probabilistic framework to evaluate fairness 330

15.3.1 Using Generalized Cross Entropy to measure user and item

fairness . 330

15.3.2 Toy example . 335

15.4 Experimental settings . 337

15.4.1 Datasets . 337

15.4.2 Evaluation Protocol and Temporal Splitting 338

15.4.3 Attribute selection and discretization 339

15.4.4 Baseline recommenders 342

15.4.5 Evaluation metrics . 347

15.5 Results . 350

15.5.1 Analysis of item fairness results 350

15.5.2 Analysis of user fairness results 353

CONTENTS vii

15.5.3 Discussion . 354

15.6 Conclusions and future work . 356

IV Conclusion and Future Work 365

Bibliography 369

Acknowledgements 435

Abstract

Recommender Systems are unfamiliar to ordinary people. However, they are almost

everywhere. In a world that overwhelms us with relevant and irrelevant information,

they make the difference. They process catalogs from thousands to millions of items

to return us only the relevant and personalized information. Otherwise, we would

be as castaways in the ocean of information that try to drink it all. On the other

side, they are constantly whispering in our ear, suggesting to enjoy news, movies,

songs. If they are Jiminy or Lamp-Wick, it is our responsibility. At the same time,

the Web is evolving, providing us rich and semantic information. The so-called

Semantic Web lets us feed Recommender Systems with high-quality knowledge.

This knowledge lets Recommender Systems understand the domain, provide ex-

planations, improve the quality of recommendations. In this research journey, we

have faced different aspects of the recommendation and the multiple ways seman-

tic knowledge can be beneficial. We have first focused on Matrix Factorization, a

recommendation technique, and we have proposed several ways to exploit knowl-

edge. Feature Factorization, Graph Spreading Relevance, and interpretable Factor-

ization Machines are a few examples. We have developed a recommender that takes

into account conditional pair-wise preferences to lower the human-machine barrier.

We have also faced the semi-structured knowledge, proposing models that consider

temporal diversification, personalized popularity, and dissimilarity. Finally, we have

focused on Recommender Systems evaluation, proposing new techniques for tuning

hyperparameters, and a new notion of fairness.

We hope you will enjoy the journey.

Chapter 1

Introduction

In the last decades, we have observed a quick growth of the Web. In the beginning,

it was often used only by insiders. Now, it has become a powerful tool used by

everyone. Concurrently with its spread, also the role of users has changed. Before,

they were only consumers of the available information. Nowadays, they also pro-

duce a large amount of information available on the Web. This evolution, named

”Web 2.0” consisted of a mass injection of documents and websites on the Web.

When we type a single keyword on a search engine, it could even return millions

of documents. Our parents and grandparents have left us many different senses for

the term Freedom, the possibility of choosing among alternatives. However, when

we have a million alternatives, a human is not able to process them. In practical

terms, having one million alternatives is like having no one. This effect takes the

name of ”misery-inducing tyranny”.

To avoid this problem, a new need has emerged of processing, annotating, and

indexing these documents to make their search easier. The development of these

techniques has led to the search engines era. These agents can process a consid-

erable amount of data to return a relevance value for each item. All the issues

related to the search have given birth to a new research field: Information Retrieval.

However, only a small fraction of search engines consider some degrees of person-

alization of search results. With the explicit aim of personalization, a new class of

agents has emerged: Recommender systems. The rationale of these tools is filter-

1

ing out irrelevant information on a per user basis. They are designed to analyze

big collections of objects, products, or services and extract personalized relevant

shortlists.

To make a Recommender Systems work properly, the system must understand

the domain knowledge. Frequently, the problem is worked around by the design-

ers encoding the domain knowledge in the Recommender Systems implementation.

However, it is reasonable that all the needed knowledge is already available on the

Web. This claim leads directly to the second problem. Until now, we have dis-

cussed information and documents on the Web irrespective of their nature. If we

consider the Web as a collection of documents, we are claiming that some of these

documents contain the desired knowledge. Here, a problem arises. Usually, the in-

terpretation of a non-structured document (i.e., plain text) is a typically human task.

Unfortunately, since we have observed that the number of documents on the Web is

overwhelming, we obtain a new overloading problem.

This is basically due to the documental nature of the Web, in which documents

enclose non-structured information. However, even though each document con-

tained only one structured fact, human interpretation would be unfeasible. These

considerations lead to two new needs. The first is these facts should be machine-

readable. If we had these kinds of data, a software agent could automatically ana-

lyze them. The second is the meaning of data should be explicitly defined. If the

semantics comes with data, the software agent can understand it. This new Web is

named ”Semantic Web”.

1.1 Motivation

The emerging of the new knowledge bases based on Semantic Web technologies

enabled the creation of a new class of Recommender Systems. The exploitation of

this kind of knowledge can improve Recommender Systems under many different

aspects and alleviate some known issues. For instance, some traditional Recom-

mender Systems approaches suffer the Cold-Start and the over-specialization prob-

lem. Cold-Start is a problem that a designer has to face when a new item or a new

2

user enters the platform. If the suggestions provided to the user are produced based

on the platform’s past transactions, a new item will not ever be recommended. In

this case, we are talking about the Cold-Start item problem. Analogously, if the

suggestions are produced based on the user’s past transactions, we can not provide

any recommendations to the new user. Instead, the over-specialization problem is

the tendency of some Recommender Systems to suggest always items that are very

similar to the user’s history.

These problems indicate that there are many different dimensions to consider

to evaluate Recommender Systems. Beyond the classic accuracy dimension, nowa-

days, we usually also evaluate Coverage, Novelty, Diversity, and Serendipity of

results. This research work was born with the idea of exploiting the knowledge en-

closed in Linked Open Data datasets to alleviate the Recommender Systems prob-

lems.

Almost immediately, we have faced many other problems to inject this knowl-

edge into Recommender Systems. From the choice of the preferred knowledge

source to the evaluation of the knowledge source quality, this research work has be-

come a journey through the grey areas of the Semantic Web and the Recommender

Systems.

Despite the newborn research field, we have not been alone during this travel.

Other researches have perceived the importance of leveraging Linked Data knowl-

edge in Recommender Systems and Information Retrieval. Several technical tracks

on Knowledge-based Recommender Systems have begun appearing in top-notch

conferences. Although each researcher mainly focuses on a few specific topics, a

community has begun to take shape.

1.2 Research Questions

In this dissertation, we have focused on some specific aspects of knowledge-aware

Recommender Systems. We have explored if the exploitation of semantics in these

aspects could be beneficial. In detail, we have focused on two different kinds of

side information: structured and semi-structured information.

3

Regarding the exploitation of structured information, we have explored the pos-

sibility of using this information to deal with sparse matrices. Our idea has been to

exploit the graph-based nature of Linked Data to compensate for the lack of connec-

tions in the original users-items matrix. These matrices frequently have a density

of less than 0.1%. If the representation of user preferences moved from items to se-

mantic features, we could exploit the information delivered by a knowledge graph.

Another common problem generated by the lack of data is the Cold-Start problem.

Again, we have found interesting exploring if structured and semi-structured meta-

data can help to produce meaningful recommendations even in extreme scenarios

like Cross-Domain recommendations. Another common problem we have wanted

to face is the interpretability of the recommendations. The most effective models

exploit latent factors that can not be associated with any explicit features. For this

reason, interpret a particular recommendation list is not possible. Eventually, this

leads to a gradual decrease in trust. We have tried to adapt Latent Factors models to

work with Linked Data knowledge. We have substituted latent factors with explicit

knowledge to make these models interpretable. This has been a particularly exciting

research line. The most challenging aspect has been measuring if the system was

preserving the original semantics.

Based on these considerations, we have formulated the following research ques-

tions:

• RQ1 – Can the injection of Linked Data alleviate the sparsity problem in

Collaborative-Filtering Recommender systems?

• RQ2 – Can we exploit Linked Data to face the Cold-Start Problem?

• RQ3 – Is semantic knowledge a way to make Recommender Systems inter-

pretable?

• RQ4 – Can we define a recommendation approach based on pair-wise prefer-

ences elicitation?

• RQ5 – Can an Information Retrieval weighting scheme also consider collab-

orative information?

4

Regarding the semi-structured information, we have focused on different as-

pects. The first aspect is related to the exploitation of the temporal dimension. The

platform transactions usually contain information about the time items are enjoyed

by users. Unfortunately, Recommender Systems often ignore that information. It

happens because there are multiple ways to consider Time, and the choice is highly

dependant on the specific scenario. On the other hand, Knowledge Representation

research has widely explored the Time dimension. We have taken advantage of this

privileged point of view to enclose Time in Recommender Systems.

In particular, we have been interested in the diversification process and the no-

tion of Popularity. In literature, several works proposed methods to increase the

diversification of the recommendation lists. However, even in this context, the tem-

poral dimension is usually ignored. We have found interesting considering the tem-

poral aspect to enhance the diversification. Since a possible representation of data

over time is considering temporal snapshots, we have considered the idea of re-

defining the notion of Popularity over time. Moreover, if Popularity can change

over time, maybe it could also change from one person to another.

From these considerations, we have formulated a slightly more complex notion

of Popularity, proposing a time-aware personalized variant. To exploit this new

notion, we have taken advantage of neighborhood models, with a specialized simi-

larity. However, similarities are only a drop in the ocean of relatedness and vectors’

closeness. We have found that the current definitions of Similarity were quite lim-

iting. Keeping in mind the semantic relatedness measures, we have proposed to

consider also a dissimilarity signal in the classic formulations. Moreover, when we

deal with relatedness between resources in a knowledge graph, it is straightforward

that relatedness may be different in the two ways. For this reason, we have gener-

alized the formulation of asymmetric similarity. The experiments have shown an

interesting misalignment regarding the behavior of the metrics during evaluation.

Hence, we have decided to explore more the importance of the choice of the metric

to tune and evaluate our recommender systems. Our idea has been measuring the

degree of significance and robustness of the metrics during the tuning of hyperpa-

rameters. We have found some interesting findings that can drive and improve the

5

tuning process. Finally, the formulation of the metrics has piqued our interest. In-

spired by the exploitation of metadata in Diversity evaluation, we have proposed a

generalized formulation to measure the fairness of the proposed recommendation

lists.

Based on these observations, we defined the following research questions:

• RQ6 – Can we formulate a diversification scheme that takes into account

temporal aspects?

• RQ7 – Is that possible to formulate a personalized notion of the Popularity of

items that also considers Time?

• RQ8 – What happens in Recommender Systems’ performance if we exploit a

more complex notion of similarity that also considers dissimilarity and asym-

metric similarity?

• RQ9 – Are the evaluation metrics equally valid for tuning Recommender Sys-

tems hyperparameters? Dually, do the different parameters have the same

degree of importance?

• RQ10 – Is that possible measuring a generalized notion of fairness exploiting

semi-structured information?

Almost all the ideas proposed in this research work have passed a peer-review,

and they are published in Specialistic Journals or International Conferences Pro-

ceedings. To provide a more holistic overview, we have reported the contributions

connecting them to the related research questions:

• RQ1 – Can the injection of Linked Data alleviate the sparsity problem in

Collaborative-Filtering Recommender systems?

– Feature Factorization for Top-N Recommendation: From Item Rat-
ing to Features Relevance, [27] RecSysKTL @RecSys 2017

– Feature Augmentation in Top-n Recommendation Scenarios via Linked
Data, TKDE 2020 (submitted)

6

• RQ2 – Can we exploit Linked Data to face the Cold-Start Problem?

– Addressing the user cold start with cross-domain collaborative fil-
tering: exploiting item metadata in matrix factorization, [144] User

Modeling and User-Adapted Interaction Journal 2019

• RQ3 – Is semantic knowledge a way to make Recommender Systems inter-

pretable?

– How to make latent factors interpretable by feeding Factorization
machines with knowledge graphs, [30] ISWC 2019. This work has
been awarded as Best Student Research Paper.

– Semantic Interpretation of Top-N Recommendations, TKDE 2019

(Major Revision)

• RQ4 – Can we define a recommendation approach based on pair-wise prefer-

ences elicitation?

– Combining RDF and SPARQL with CP-theories to reason about
preferences, [386] Semantic Web Journal 2019

• RQ5 – Can an Information Retrieval weighting scheme also consider collab-

orative information?

– A Principled Approach to Hybrid Relevance in Top-N Recommen-
dation. SIGIR 2020 (submitted)

• RQ6 – Can we formulate a diversification scheme that takes into account

temporal aspects?

– An Analysis on Time- and Session-aware Diversification in Recom-
mender Systems. [23] UMAP 2017

• RQ7 – Is that possible to formulate a personalized notion of the Popularity of

items that also considers Time?

7

– Time-aware Personalized Popularity in top-N Recommendation, [29]

ComplexRec @RecSys 2018

– Local Popularity and Time in top-N Recommendation, 41st Euro-
pean Conference on Information Retrieval, [32] ECIR 2019

• RQ8 – What happens in Recommender Systems performance if we exploit a

more complex notion of similarity that also considers dissimilarity and asym-

metric similarity?

– The Importance of being Dissimilar in Recommendation, [31] 34rd

ACM/SIGAPP Symposium On Applied Computing, SAC 2019

• RQ9 – Are the evaluation metrics equally valid for tuning Recommender Sys-

tems hyperparameters? Dually, do the different parameters have the same

degree of importance?

– On the discriminative power of Hyperparameters in Cross-Validation
and how to choose them, [28] RecSys 2019

• RQ10 – Is that possible measuring a generalized notion of fairness exploiting

semi-structured information?

– A Flexible Framework for Evaluating User and Item Fairness in
Recommender Systems, UMUAI 2019 (Major Revision)

As a careful reader can imagine, this research work also covers some other top-

ics like Semantic Knowledge extraction and Semantic Data management. For the

sake of space, and to avoid dispersive storytelling, we have excluded them from this

research summary. To provide a reader with a more comprehensive overview, we

report below the reference to these works:

• Semantic Knowledge extraction

– LOSM: a SPARQL endpoint to query Open Street Map, [275] 14th

International Semantic Web Conference, ISWC 2015

8

– Exposing Open Street Map in the Linked Data cloud, [24] IEA/AIE

2016: The 29th International Conference on Industrial, Engineering &

Other Applications of Applied Intelligent Systems, 2016

– Querying deep web data sources as linked data. [22] WIMS 2017

• Semantic knowledge management

– Etytree: A Graphical and Interactive Etymology Dictionary based
on Wiktionary. [294] WWW (Companion Volume) 2017

Additionally, we have organized two workshops in top-notch conferences, to

connect researchers with the same research interests:

• Knowledge-aware and Conversational Recommender Systems Workshop, [21,

26] RecSys 2018

• Second Knowledge-aware and Conversational Recommender Systems Work-

shop, CIKM 2019 [25]

1.3 Structure of the work

The remainder of this dissertation is structured as follows. Part I is devoted to

providing a general overview of the necessary technologies useful to understand the

more advanced approaches presented in the following parts. We have first given an

idea of what Semantic Web is. We start from a historical viewpoint to motivate the

necessary advent of Semantic Web. Then, we briefly describe the technologies we

widely use in this work. After these sections, we provide a brief introduction of

preference representation.

The following chapter focuses on Recommender Systems. An introduction to

the research field opens the chapter. Next, we describe some of the most known

approaches for the recommendation. Sections devoted to optimization techniques

and evaluation metrics close the chapter.

The following two parts focus on the main research lines of this work. Part II

focuses on the exploitation of explicitly formalized knowledge. This part covers

9

different research lines from the leveraging of semantic features in matrix factor-

ization to model interpretability, to the generation of recommendations based on

pair-wise preferences. Part III focuses on different kinds of knowledge represen-

tation, in which data semantics is not fully structured. We focus on the notions of

Time, Popularity, and Similarity, proposing approaches in line with our background.

Part III continues with an analysis of evaluation metrics to assess their discrimina-

tive power when tuning a Recommender System. A proposal of a new framework

to measure fairness in recommendation lists closes the part.

Part IV is devoted to drawing some conclusions about this research work.

10

Part I

Background

11

Chapter 2

Knowledge Representation

This section is devoted to a brief overview of the basic concepts regarding knowl-

edge representation. In detail, the chapter describes the birth and development of

the Semantic Web and the Linked Open Data initiative. In particular, the aim is to

provide the crucial ideas and technologies that stand behind the broad term of the

Semantic Web.

We introduce to the staple language, Resource Description Framework (RDF).

Then we briefly describe the query language SPARQL. The following chapter fo-

cuses on the representation of Preferences. We motivate its importance in this work,

and we provide a brief overview of the ”ceteris paribus” theories.

This section covers only the most basic concepts about them. A more exhaus-

tive literature review about advanced theories and applications is realized on a per

research line basis in the following sections. This choice was made necessary be-

cause the corresponding literature reviews could seem a bit confusing if the reader

is not already involved in the specific research field. We hope this choice lets the

reader appreciate these fascinating concepts properly.

13

2.1 Semantic Web

The extensive and pervasive growth of the Web has produced the most voluminous

information archive ever. The amount of available information is so large that there

is no chance that a single person would be able to analyze and index it. The reason

for it is also due to the nature itself of the Web, which is document-based and frag-

mented. Most of the available information is unstructured. It misses the optional

additional data necessary to analyze it before accessing the document itself. More-

over, entire sections of the Web are, de facto, inaccessible due to linguistic barriers.

These are only some examples of the necessity of a total rebuilding (and rethink-

ing) of the Web. It was needed to move the focus of the Web from documents to

the data. The single facts, the assertions, the data should be the heart element of

the Web instead of documents. It is straightforward that these data should have a

unique interpretation. These data should not be ambiguous as the natural language

usually is. Even though we would have built this so-called Web of Data, a single

person still would not be able to analyze the whole Web. This consideration has

two consequences. The first one is the awareness that the Web can be analyzed only

through an automatic process that excludes the necessity of human interpretation

of data. Hence, data should be machine-interpretable. The second consequence

is that the automatic interpretation is only possible if data comes with an explicit

semantics attached to it. This new Web, composed of interpretable data, is called

Semantic Web. The birth of the Semantic Web is commonly associated with the

publication of an article by Tim Berners-Lee on Scientific American in 2001 [60].

The article is focused on what the Web could become, and in particular, a sentence

could serve as an ”Ante-literam” definition: ”The Semantic Web is not a separate

Web but an extension of the current one, in which information is given well-defined

meaning, better enabling computers and people to work in cooperation”. Hence,

the Semantic Web is an information network that lets machines understand the con-

tained information. Human users can thus prepare complex queries that machines

can understand and process. The underlying needed comprehension tacitly imposes

to exploit a well-formalized knowledge representation. The knowledge represen-

tation would have been just the first step in the process of development of the Se-

14

mantic Web. Although, since the organization of knowledge and its interpretability

is crucial, it has quickly become the keystone of the development of the Semantic

Web. This branch of the Semantic Web, specifically devoted to the representation

and organization of knowledge archives (datasets), has obtained a specific name,

Linked Data. In 2006, Berners-Lee published a new article [338] partially rethink-

ing the idea of the Semantic Web under a Linked Data perspective. The community

has spent a big effort to define and refine the languages and technologies involved.

Nowadays, these technologies are exploited to expose data on the Web and connect

data. This has resulted in a brief but summarizing assertion: ”Linked Data is the

Semantic Web did well”.

2.1.1 Resource Description Framework

Resource Description Framework (RDF) is a framework designed to represent knowl-

edge. It is one of the pillars of Semantic Web, proposed by the World Wide Web

Consortium (W3C) in 1998. The knowledge encoded in RDF can be easily be rep-

resented in the form of a graph, queried, and processed by automatic reasoning

techniques. Along with the framework, different serialization formats have been

proposed, that avoid redundancy and allow wide interoperability. RDF is a general

model useful to describe the resources on the Web. The skeleton of the RDF syntax,

its Data model, is a set of triples. Each of them is composed of a subject, a predi-

cate, and an object. An RDF triple could express an assertion, a logic expression,

or a generic statement. An example of an RDF triple is:

<http://example.org/#spiderman>

<http://www.perceive.net/schemas/relationship/enemyOf>

<http://example.org/#green-goblin>.

A set of RDF triples is named RDF graph. An RDF graph is a directed graph,

in which each triple is a connection Vertex-Arc-Vertex. Formally, an RDF graph is

the conjunctive set of its triples. A triple is composed of three distinct elements:

the subject expressed as Internationalized Resource Identifier (IRI) or as a Blank

Node; the predicate expressed as IRI; the object expressed as IRI, as a Literal, or

15

as a Blank Node. Different triples can share the same IRI. IRIs, Literals, and Blank

Nodes since they compose RDF triples are called RDF terms.

IRIs [133] are a generalization of Uniform Resource Identifiers (URIs) [59] that

enable the usage of a more wide range of Unicode characters. This means that all

URIs can be considered IRIs, but the vice-versa is not necessarily true. The defi-

nition and the meaning of IRIs are apart from RDF. On the one hand, this implies

absolute freedom in the IRIs creation process. On the other hand, the same IRIs can

be used by third-party organizations in their knowledge bases.

Literals are used to express values like strings, numbers, and dates. Moreover, in

the case of strings of type

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString , it

is allowed to add a language tag. Literals are composed of three optional elements:

value, type, and language. For this reason, two Literals are considered equals only

if the three elements are equals. Datatypes are used with Literals to represent the

different kinds of data. The adopted abstraction in RDF is XML Schema compati-

ble. Thus, it is possible to introduce new custom data types and use them in RDF. A

data type is composed of: lexical space, a value space, and a lexical-to-value map-

ping. The lexical space is a set of unicode strings. The lexical-to-value mapping

represents a function which has as domain the lexical space and as range the value

space.

Blank Nodes are local identifiers that denote a generic RDF term that is present

within the considered collection, with a local scope. They usually used if we are

not interested in the values of the variable associated with the Blank Node.

Resources, or entities, can be defined using IRIs or strings. Resources can indicate

everything: physical objects, documents, concepts, numbers, strings. An example

of the description of the ”Pulp Fiction” RDF resource is:

<http://dbpedia.org/resource/Pulp_Fiction>

<http://www.w3.org/2000/01/rdf-schema#label>

"Pulp Fiction"@en

<http://dbpedia.org/resource/Pulp_Fiction>

<http://dbpedia.org/ontology/director>

16

<http://dbpedia.org/resource/Quentin_Tarantino>

which states that the resource has an English name, ”Pulp Fiction”, and the resource

has been directed by Quentin Tarantino.

RDF vocabulary is a collection of IRIs that can be used in an RDF graph. RDF

schema, for instance, is an RDF vocabulary. Moreover, RDF vocabularies can be

further used to define other vocabularies. If the initial part of the path of the IRIs is

common among more IRIs, this substring is usually defined as a namespace. These

namespaces can also be associated with a shorter and intuitive string named prefix.

Some RDF serialization formats exploit prefixes to reduce the verbosity of IRIs.

RDF Dataset is a collection of RDF graphs. RDF Datasets have some specific fea-

tures: i) one RDF graph has to be defined as default graph; ii) they contain zero or

more named graph. A named graph is a pair composed of an IRI or a Blank Node,

and an RDF graph. To conclude this brief overview of RDF, we mention rdf:type
predicate

(http://www.w3.org/1999/02/22-rdf-syntax-ns#type). This pred-

icate is particularly important under an ontological perspective since it states the

belonging of the subject to a certain object class.

2.1.2 RDF Schema

RDF model is a flexible graph-based model that can be easily used for knowledge

representation. Nevertheless, it contains only a few raw tools to define the semantics

of the resources. For this reason, RDF Schema (RDFS), has been proposed. RDFS

provides essential tools to define ontologies. Ontologies, or RDF vocabularies, are

a useful tool to structure domain knowledge. RDFS eases the definition of classes

and their properties. It provides ways to define which properties should be used with

instances of specific classes. RDFS is completely compatible with RDF. Thus an

RDFS vocabulary still is a valid RDF graph. In particular, RDFS is formalized as an

RDF vocabulary with the namespace www.w3.org/2000/01/rdf-schema#

(with the common prefix rdfs:). To define the kind of resource, RDFS provides

the term Class. Classes are described by the RDFS resources rdfs:Class and

17

rdfs:Resource, rdfs:subClassOf, and through the well-known RDF IRI

rdf:type. As the reader could imagine, these entities let create a hierarchical

organization of the entities described in the RDF graph. A single entity can still be

defined as belonging to more than one class. The predicate rdfs:domain and

rdfs:range are intended to describe other properties. In detail, rdfs:domain

denotes that the subject of the triple that makes use of the target property should

belong to the class indicated in the object. rdfs:range denotes that the object

of the triple that makes use of the target property should belong to the class in-

dicated in the object. rdfs:subClassOf is a particular predicate with domain

and range entities of the type rdfs:Class. Furthermore, the properties can be hi-

erarchically organized, making use of rdfs:subPropertyOf. Finally, RDFS

provides rdfs:comment and rdfs:label that lets insert comments and labels in natural

language.

2.1.3 Linked Data

One of the core points of the documental Web was to connect different documents

through specific links, hyperlinks. Similarly, in the Semantic Web, the connections

between data are fundamental. The datasets that provide links with other datasets

and the technologies involved are consequently named Linked Data. To enable

modern applications to work with these knowledge bases, data should be exposed

using standard formats, should provide an endpoint to query the knowledge base.

When a dataset also provides connections with other datasets, we can define it as a

Linked Dataset. Two common examples of Linked Datasets are DBpedia and Wiki-

Data, which basically expose the content of Wikipedia pages following the Linked

Data best practices. Since DBpedia has been used extensively during this thesis, I

have chosen it as an example in the following paragraphs. I hope this will make the

reader more familiar with this dataset, enabling her to understand the remainder of

the thesis better. To better explain the importance of inter-datasets links, let us con-

sider an example. DBpedia provides, for instance, links to the Geonames dataset.

Providing this information, expressed as triples, enables the creation of new ap-

plications that can access the information about a resource, retrieve the Geonames

18

link, access Geonames, and retrieve additional information. It is important to un-

derline that all the additional information that is present in Geonames is not present

in DBpedia. These connections let developers build applications that can integrate

different data sources easily. The Linking Data Initiative started in 2007 intending

to extend the actual Web using the standards proposed in the Semantic Web. In

this while, a huge number of datasets have been created and connected together,

composing the so-called Linked Open Data (LOD) cloud. The LOD cloud clearly

shows that this new Web is not substituting the documental Web, but it is enriching

it.

2.1.4 SPARQL

SPARQL (Simple Protocol and RDF Query Language) is the de-facto standard

query language for RDF data. The language was formalized by Data Access Work-

ing Group of W3C (World Wide Web Consortium) in 2008. A newer formalization,

SPARQL 1.1, was released in 2013. SPARQL 1.1 shares most of the RDF specifics,

but it is stricter in some cases. An example is the identification of an RDF graph

that, in SPARQL 1.1, does not allow the usage of Blank Nodes. SPARQL is a

key element of the Semantic Web and it lets extract information from remote RDF

knowledge bases. The fundamental role of SPARQL is really simple: it processes

the RDF graph finding one or more specific subgraphs that correspond to the in-

formative need expressed by the query. The SPARQL processing is made possible

by providing two graphs: the data graph (usually already loaded in a remote RDF

store) and the query graph (even here described through triples). SPARQL adopts

the Turtle syntax, an intuitive and non-verbose RDF serialization format.

Assertions are expressed employing subject-predicate-object sequences, and they

are terminated by a full stop. PREFIX introduces prefixes and namespaces, whereas

URIs are enclosed within angle brackets and Literals within quotation marks. With

only these elements we can already provide an example:

@prefix cd: <http://example.org/cd/>

@prefix: <http://example.org/esempio/>

19

:Permutation cd:autore "Amon Tobin".

:Bricolage cd:autore "Amon Tobin".

:Amber cd:autore "Autechre".

:Amber cd:anno 1994.

The results of the SPARQL query can be returned in more or less machine-

understandable formats: XML, JSON, RDF, HTML.

The query language reflects the graph-based nature of the data model. Indeed,

the query-answering mechanism is done via pattern-matching over the knowledge

graph (graph-matching). Usually, a SPARQL query is composed of at least one

graph pattern. A graph pattern is a set of triples, also called triple-pattern. These

patterns are similar to RDF, thus they consist of a subject-predicate-object sequence.

The main difference is that each of these components could be a variable. The query

is solved by looking for the subgraphs that correspond to the pattern. In particular,

the search for the subgraphs aims to find all the possible instantiations of RDF terms

with variables that correspond to existing triples in the knowledge graph. The basic

syntax is inspired by SQL. For instance, SPARQL uses the SELECT clause to define

the variables that will appear in the results, whereas the WHERE clause encloses

the graph pattern. As ane example, a graph pattern can be: ?title cd:author ?author .

where the two variables are denoted by the question mark. Similarly to SQL, we can

exploit the GROUP BY clause to aggregate results or FILTER to filter results based

on some conditions. Instead of SELECT, we can also use other clauses as ASK,

which returns a boolean value, DESCRIBE, which returns the complete description

of a resource, and CONSTRUCT, which returns graphs.

2.2 Preference representation

Dealing with user preferences is an important aspect of every application designed

to provide personalized information to the end-user. The original interest in prefer-

ences can be found in decision theory, as a way to support complex, multifactorial

decision processes [147], and nowadays every personalized system needs a prefe-

rence model to capture what the user likes or dislikes. Once the user model has been

20

represented, it is then exploited to filter information coming from a data source, e.g.,

a database, in order to provide a ranked list of results matching the order encoded

in the preferences of the user.

Query languages usually let us specify the information that we want to be re-

turned (hard constraints), where the result set contains elements with no specific

order with reference to user preferences. It contains all those resources that exactly

match the constraints represented by the query. As a matter of fact, if just one of the

requirements representing the query is not fulfilled, the result set can be empty. At

the same time, returning huge and unordered sets of answers could be useless and

even counter-productive. A possible way to bypass these issues is to allow the lan-

guage to represent both hard constraints—used to return only relevant results—and

soft ones, i.e., preferences—to rank the results by fulfilling a user’s tastes. Ap-

proaches to preference representation can be either quantitative or qualitative [123].

The formers are based on a total ordering of the outcomes, given by a scoring func-

tion, while the latters enable the representation of partial orders since preferences

are treated as independent dimensions. From a user perspective, a qualitative ap-

proach is more natural than the quantitative one [284]. Indeed, in the first case, the

user has just to provide pairwise qualitative comparisons, while in the second case,

she has to assign a value to many alternatives, which very often are represented in

a multi-attribute setting. Regarding the Linked (Open) Data world, the notion of

qualitative preferences in SPARQL queries was introduced in [347], by Siberski et

al., whose preference-based querying language extends SPARQL through the intro-

duction of solution modifiers (the PREFERRING clause). Their query formulation

retrieves only items that are the most preferred ones, or equivalently undominated.

The work [162] builds on the earlier approach of [347], but adds preferences at

the level of filters, rather than as a solution modifier. The PrefSPARQL syntax of

[162] needs no additional solution modifier to express qualitative preferences, as it

leverages the expressive power of SPARQL 1.1. However, the approaches proposed

in [347] and [162] both have an important limitation: they are not able to provide

an order of all the available outcomes that reflects user preferences. That is, they

return only the undominated (a.k.a. Pareto-optimal) results, i.e., those outcomes

21

best satisfying user preferences. Unfortunately, the size of the resulting answer set

could be too small to be of practical use. This fosters moving beyond the Pareto-

optimal set identification to a top-k scenario [284], where firstly available outcomes

are ordered, even if with the ties implied by a qualitative approach, from best (most

preferred) to worst (less preferred) according to a given user’s preferences, and then

the first k results are returned.

2.2.1 CP-theories

Utility functions can be considered as the ideal tool for representing and reasoning

with preferences, but the total order that they allow representing does not always re-

flect the actual user model. Partial orders among preferences are a more natural way

to represent a user’s tastes. Qualitative statements, e.g., “given u, I prefer xi over

x′i”, permit a system to encode partial orders among user preferences, thus grant-

ing the representation of a more realistic user model. Let us consider the following

example. The previous example is a typical conditional statement where the core

notion of a CP-statement is explicitly represented. We have that when a particular

condition u is true, a user prefers to enjoy items where also xi is true, rather than

items where x′i is true, given that xi and x′i cannot be true at the same time.

Example 1 (Books)

“Giorgio has just finished his exams and wants to relax with a book. Giorgio can

read both English and French, but he would like to improve his French to enrich

his curriculum and so he prefers to read French books. Giorgio prefers reading

crime books over autobiographical ones for French books since he believes that

crime plots are more captivating and, therefore, more useful while learning a foreign

language. The reverse order holds for English books. Giorgio is a good reader

and, therefore, given an English book, he prefers those being part of a saga. The

literary genre and the presence of a subsequent work not have the same importance

to Giorgio: in case of English books, he considers the choice on the genre more

important than the one dependant on sequels, while the opposite happens for French

books. Finally, for books characterized by a sequel, Giorgio regards the presence of

22

a cinematographic version positively”. �

By looking at Example 1, we find it quite hard (even impossible) to directly

represent Giorgio’s preferences by means of a score assigned to his preferential

statements. In fact, Giorgio’s preferences can be better expressed as qualitative

(pairwise) comparisons.

Relevant frameworks to represent and reason with qualitative preferences are

built according to the ceteris paribus semantics [166] and specifically consist of

conditional preference networks (or CP-nets) [71] and a formalism along similar

lines to CP-nets, but with a richer language of preference statements, namely, con-

ditional preference theories (or CP-theories) [395].

Syntax. Formally, given a set of variables V , a CP-theory Γ is a set of preference

statements ϕ of the general form:

uϕ : xϕ > x
′
ϕ [Wϕ],

where uϕ is an assignment to a set of variables Uϕ ⊂ V , xϕ and x
′
ϕ are different

assignments to some variable Xϕ /∈Uϕ , and Wϕ is some subset of V −Uϕ −{Xϕ}.

Semantics. The interpretation of ϕ is that, given uϕ , xϕ is strictly preferred to

x
′
ϕ , all else being equal, but irrespective of the values of variables in Wϕ .

That is, ϕ compactly states that for all assignments w, w
′
to Wϕ and assignments

t to Tϕ =V −Uϕ −{Xϕ}−Wϕ , tuϕxϕw is preferred to tuϕx
′
ϕw

′
.

In what follows, we will use the word outcome to indicate a complete assign-

ment to all the variables in V and denote the set of all outcomes as O . For the

statement ϕ , we denote by ϕ∗ the set of pairs of outcomes (tuϕxϕw, tuϕx
′
ϕw

′
),

where t is an assignment to Tϕ , and w, w
′

are assignments to Wϕ . Further defin-

ing Γ∗ = ∪ϕ∈Γϕ∗, it is then natural to define for the CP-theory Γ a strict partial

order >Γ, induced by Γ on the set of outcomes O , as the transitive closure of Γ∗.

The CP-theory formalism allows to express the usual CP-net ceteris paribus state-

ments by simply considering Wϕ = /0 and identifying Uϕ with Pa(X), the parents of

23

ϕ1 > : CF >CUK[/0]

ϕ2 CUK : LGA > LGC[SW]

ϕ3 CF : SWNo > SWYes[LG]

ϕ4 CUK : SWYes > SWNo[/0]

ϕ5 CF : LGC > LGA[/0]

ϕ6 SWYes : FYes > FNo[/0]

ϕ7 SWNo : FNo > FYes[/0]

Table 2.1: The CP-theory ΓC−LG−SW−F.

a variable X , that is, variables which the preferences on X depend on. However, as

anticipated in Section 8.1, under the stricter CP-net formalism, for each variable X ,

a parent set Pa(X) must be defined and instantiated when the preference order over

values of X is established. This is not required in CP-theories, where you can find

more statements related to the same variable X , but with different sets U . In ad-

dition, CP-theories allow stronger conditional preference statements than CP-nets,

which are natural for users to express. For example, they represent a formalism

even more general than TCP-nets [72], an enhancement of CP-nets where (condi-

tional) relative importance between variables can be expressed. TCP-nets can be

represented through statements with W containing at most one variable. Moreover,

there are statements, such as I prefer xi over x
′
i irrespective of the values of all other

variables, that cannot be expressed in CP-nets or TCP-nets, but correspond in the

new formalism of CP-theories to > : x > x
′
[V −{X}], where > is the assignment to

an empty set of variables.

Example 2 (Books cont’d)

The overall profile of Giorgio may be modelled by means of the CP-theory

ΓC−LG−SW−F, that is, the set of statements given in Table 2.1. There, a set of binary

variables V = {Country, LiteraryGenre, Sub- sequentWork, FilmVersion} (abbre-

viated as C, LG, SW, and F, respectively) is considered. Their domains are given

by:

24

• dom(Country) = {CF , CUK} (for France and United Kingdom),

• dom(LiteraryGenre) = {LGC,LGA} (for

Cri- me f iction and Autobiographical novel),

• dom(SubsequentWork) = {SWYes, SWNo} (indicating if a book has a sequel

or not),

• dom(FilmVersion) = {FYes, FNo} (indicating whether there is a cinemato-

graphic version of the book or not). �

For a CP-theory Γ, the preference ranking over outcomes >Γ introduced above,

can be equivalently induced under the worsening swap semantics. Hereafter, we use

the notation o(Xi) = xi to indicate that the variable Xi is assigned the value xi in o,

and analogously o({X j, . . . ,X j+k}) = {x j, . . . ,x j+k} to state that X j = x j, . . . ,X j+k =

x j+k in o.

Given two outcomes o and o
′

of O , there is a worsening swap from o to o
′
, if

there exist a variable

Xi ∈V −{X j, . . . ,X j+k}−W,xi,x′i ∈ dom(Xi)

and an assignment x j, . . . ,x j+k to the variables set {X j, . . . ,X j+k} such that:

(i) o(Xi) = xi and o′(Xi) = x′i,

(ii) o({X j, . . . ,X j+k}) = o′({X j, . . . ,X j+k}) = {x j, . . . ,x j+k},

(iii) o(V −{Xi}−{X j, . . . ,X j+k}−W) = o′(V −{Xi}−{X j, . . . ,X j+k}−W), and

(iv) x j . . .x j+k : xi > x′i[W] ∈ Γ.

The preference relation >Γ over O is therefore the transitive closure of worsening

swaps.

A CP-theory Γ is consistent, if it has a model, i.e., if there exists a strict total

order > that satisfies Γ, which is equivalent to >⊇ Γ∗, that is, > extends >Γ. In

[394], it is proved that the irreflexivity of >Γ (or equivalently the acyclicity of Γ∗)

is a necessary and sufficient condition for consistency.

25

The consistency of a CP-theory implies that there are no cycles generated by >Γ.

Avoiding cycles is of paramount importance, as they introduce conflicting informa-

tion while ordering the outcomes in O . Let us consider the ordering represented in

Figure 2.1, where an edge from oi to o j represents oi >Γ o j. As we cannot establish

what is the correct ordering of the outcomes due to the cycle created by o2 and o3,

we could even have situations where we cannot compute the most preferred (un-

dominated) outcome. For example, suppose in Figure 2.1, we do not have o1. What

would then be the best solution for the user in this case?

Figure 2.1: An example of cycle among outcomes.

A necessary condition for consistency is local consistency. Consider a CP-

theory Γ, a variable X ∈ V , and an assignment a to a set of variables A ⊆ V . An

ordered pair (x,x
′
) of X values is validated by a, if there exists a statement ϕ of the

form u : x > x
′
[W] in Γ, such that a extends u, that is, a projected to Uϕ gives u.

The local ordering �X
a (Γ) (abbreviated as �X

a) on X values is defined as the

transitive closure of the set of pairs (x,x
′
) validated by a. Γ is locally consistent,

if �X
α is irreflexive for all variables X and outcomes α . Local consistency is a

necessary condition for consistency, since if Γ is not locally consistent, then there

exist an outcome α , a variable X , and a sequence x1, . . . , xk of values of X with

associated statements ui : xi > xi+1[Wi] ∈ Γ such that α extends ui and α(X) = x1 =

xk.

This gives a worsening swapping sequence from α to α (only involving chang-

ing variable X), thus implying that >Γ is not irreflexive, or equivalently that Γ is

26

not consistent. In general, deciding whether a CP-theory is locally consistent is

coNP-complete, but it can be shown that if the size of the parent sets and the size of

the domain sets are bounded by a constant, then deciding local consistency is poly-

nomial [395]. Moreover, for CP-nets and TCP-nets, local consistency is always

guaranteed [395].

Given a CP-theory Γ, there are several kinds of directed graphs that can be

defined on the set of variables V . For S,T ⊂ V , we indicate with S→ T the set of

edges {(X ,Y) : X ∈ S,Y ∈ T}, omitting the set brackets, if S or T is a singleton set,

e.g., abbreviating S→{Y} with S→ Y .

The dependency graph H(Γ) consists of edges Uϕ → Xϕ for all ϕ in Γ, that is,

all the pairs of the form (Y,Xϕ), with ϕ ∈ Γ and Y ∈Uϕ . That is, the edge (Y,X)

belongs to H(Γ) iff there is some conditional preference statement ϕ ∈ Γ that makes

the preferences for X conditional on Y . Relative importance is not encoded in H(Γ).

On the other side, we define G(Γ) to contain Uϕ → Xϕ and Xϕ →Wϕ for all

ϕ in Γ, i.e., G(Γ) = H(Γ)∪{Xϕ →Wϕ | ϕ ∈ Γ}. G(Γ) contains both dependency

and relative importance information: it is H(Γ) with the addition of edges (X ,Z), if

there is any statements ϕ representing a preference on values of X irrespective of

the value of Z (then, X is more important than Z, with importance meant as in the

TCP-net formalism [72]).

A CP-theory Γ is fully acyclic, if G(Γ) is acyclic. For fully acyclic CP-theories,

consistency and local consistency are equivalent [395].

For a CP-theory Γ and assignment a to a set of variables A ⊆ V , we can define

another directed graph Ja(Γ) on V made of the set of edges Uϕ →{Xϕ}∪Wϕ for all

ϕ ∈ Γ and also the set {Xϕ}→Wϕ for all ϕ ∈ Γ such that Uϕ ⊂ A and a extends uϕ .

A CP-theory Γ is context-uniformly conditionally acyclic (or cuc-acyclic), if

it is locally consistent, and for each outcome o ∈ O , Jo(Γ) is acyclic. It can be

proved that a cuc-acyclic CP-theory is always consistent [394]. The condition of

cuc-acyclicity is weaker than the full acyclic one, and it requires only H(Γ) to be

acyclic [395] instead of G(Γ).

Cuc-acyclicity implies a less expressive power in terms of preferences that the

user may express, but, as we will see in the following, it grants a nicer computa-

27

tional complexity when ranking a set of outcomes (along with guaranteeing always

consistency, while deciding the consistency of general CP-nets and CP-theories is

PSPACE-complete [158]).

Example 3
To better clarify the expressive limits of cuc-acyclic CP-theories, we consider the

following CP-theory Γ̂ whose H(Γ̂) is shown in Figure 2.2.

(1) Crime Fiction : Agatha Christie > Andrea Camilleri [/0]

(2) Isaac Asimov : Science Fiction > Crime Fiction [/0]

Figure 2.2: The graph H(Γ̂) representing preferences in Example 3.

Due to the interrelation between the two preferences, H(Γ̂) is cyclic, and so Γ̂ can-

not be cuc-acyclic.

Although there might be cases where cuc-acyclicity is a strong limitation in the

representation of user preferences, it represents a limited subset of all possible CP-

theories that can be used to model a user profile. �

In what follows, we show two results, both proved in [395], which determine a

strict partial order extending >Γ. The approaches proposed to compare outcomes

are strongly related to the ordering queries defined in [71] and already discussed in

[320] for CP-nets, and can be seen as a generalization of Corollary 4 and Theorem

28

5 of [71]. The first result is applicable for a fully acyclic CP-theory Γ. It pro-

poses to compare two outcomes by looking (using the appropriate local ordering)

at their value on each of the most important variables on which they differ, where

importance is defined according to the graph G(Γ).

In Theorem 1, we denote with ∆(α,β) the set of variables of V on which out-

comes α and β differ, i.e., ∆(α,β) = {Y ∈ V |α(Y) 6= β (Y)}. If α 6= β , we build

Θ(α,β) as the set of G
′
-maximal elements of ∆(α,β), being G

′
the transitive clo-

sure of G(Γ). Θ(α,β) is therefore the set of variables Y ∈ ∆(α,β) such that there

exists no Z ∈ ∆(α,β) with (Z,Y) ∈ G
′
.

Theorem 1
Let Γ be a locally consistent and fully acyclic CP-theory, and let the binary relation

�p(Γ) on O be defined as follows, for any pair of outcomes α and β : α �p(Γ) β

iff α 6= β and α(Y) �Y
α β (Y) for all Y ∈ Θ(α,β). Then, �p(Γ) is a strict partial

order extending >Γ, and the comparison between any pair of outcomes requires

polynomial time.

The second result deals with cuc-acyclic CP-theories [395]. In Theorem 2,

∆(α,β) is still used to denote the set of different variables in outcomes α and β . If

α 6= β , Θ
′
(α,β) is defined as the set of .α -undominated elements of ∆(α,β), be-

ing .α the transitive closure of Jα(Γ): Y ∈Θ
′
(α,β) iff there exists no Z in Θ

′
(α,β)

with (Z,Y) ∈ .α .

Theorem 2
Let Γ be a cuc-acyclic CP-theory, and let the binary relation�Γ on O be defined as

follows, for any pair of outcomes α and β : α �Γ β iff α 6= β and α(Y) �Y
α β (Y)

for all Y ∈ Θ
′
(α,β). Then, �Γ is a strict partial order extending >Γ, and the

comparison between any pair of outcomes requires polynomial time.

Theorem 2 proposes a more general approach to generate a strict partial order

on O , which although requiring a pretty strong condition on the CP-theory, i.e.,

cuc-acyclicity, does not need full acyclicity. In particular, if Γ is fully acyclic, and α

and β are two outcomes to compare, then Jα(Γ)⊆G(Γ) and so .α ⊆G
′
. Therefore,

29

Θ
′
(α,β) ⊇ Θ(α,β). This implies that if α �Γ β then α �p(Γ) β , so that�Γ is a

closer approximation of >Γ than �p(Γ).

Section 8.4.2 will ground on this more general Theorem 2 to formulate a SPARQL

query able to rank outcomes according to user preferences encoded in a CP-theory

model.

Example 4 (Books cont’d)

Relative to the CP-theory ΓC−LG−SW−F with Giorgio’s preferences (see Table 2.1),

the use of Theorem 2 produces the following sound ranking solution:

〈
CFLGCSWNoFNo,(
CFLGCSWNoFYes,CFLGASWNoFNo

)
,

CFLGASWNoFYes,CFLGCSWYesFYes,(
CFLGCSWYesFNo,CFLGASWYesFYes

)
,

CFLGASWYesFNo,CUKLGASWYesFYes,

CUKLGASWYesFNo,CUKLGASWNoFNo,

CUKLGASWNoFYes,CUKLGCSWYesFYes,

CUKLGCSWYesFNo,CUKLGCSWNoFNo,

CUKLGCSWNoFYes
〉
,

where outcomes within round parentheses are not comparable.

As an example, we may consider the outcome CFLGCSWNoFNowhich is favoured

in the comparisons made according to the order�Γ over every other outcome. In

fact, the set

Θ
′
(CFLGCSWNoFNo,CFLGCSWNoFYes)

coincides with the set of distinct variables in the compared outcomes, namely,

∆(CFLGCSWNoFNo,CFLGCSWNoFYes),

being both equal to {F}, and the preference ϕ7 can be used to locally order the first

outcome over the second one. Analogously,

Θ
′
(CFLGCSWNoFNo,CFLGASWNoFNo)

30

is equal to

∆(CFLGCSWNoFNo,CFLGASWNoFNo)

= {LG},

and the preference ϕ5 can be exploited. The set

Θ
′
(CFLGCSWNoFNo,CFLGASWNoFYes)

coincides with

∆(CFLGCSWNoFNo,CFLGASWNoFYes

= {LG,F},

and the preferences ϕ5 and ϕ7 can be exploited for the variables LG and F , respec-

tively. While

∆(CFLGCSWNoFNo,CFLGCSWYesFYes)

= {SW,F},

it holds that

Θ
′
(CFLGCSWNoFNo,CFLGCSWYesFYes)

is composed of the only variable SW , and the preference ϕ3 can be used for this

comparison. The preference ϕ3 can also be used when dealing with

Θ
′
(CFLGCSWNoFNo,CFLGCSWYesFNo),

which coincides with the set

∆(CFLGCSWNoFNo,CFLGCSWYesFNo)

= {SW}.

As for Giorgio, SubsequentWork takes priority over LiteraryGenre for French books,

according to ϕ3, and takes priority over FilmVersion, because of the preference ϕ6

(or ϕ7), it follows that the set of distinct variables

∆(CFLGCSWNoFNo,CFLGASWYesFYes)

31

has three elements {LG,SW, F}, while

Θ
′
(CFLGCSWNoFNo,CFLGASWYesFYes)

= {SW},

and the preference ϕ3 can be used in this case. For the last comparison involving

France, the preference ϕ3 is still determinant, as

∆(CFLGCSWNoFNo,CFLGASWYesFNo)

= {LG,SW},

but Θ
′
(CFLGCSWNo FNo, CFLGA SWYesFNo) = {SW}. When comparing the out-

come CFLGCSWNo FNo with any outcome o′ in which CUK appears, Θ
′

contains

only the undominated variable Country, and the preference ϕ1 can be used to ad-

vantage CFLGCSWNoFNo over o′. �

32

Chapter 3

Recommender Systems

3.1 Introduction

In this section, we provide an overview of the different Recommender Systems ap-

proaches. We present the most prominent families of Recommender Systems to

draw the necessary background to face the remainder of the dissertation. As a rep-

resentative of Collaborative Filtering techniques, we focus first on Neighborhood-

based and Matrix Factorization models. Then, Vector Space Model is detailed as a

representative of Content-based models. The section is closed by an overview of the

main Recommender Systems evaluation methodologies with particular emphasis on

evaluation protocols and metrics.

3.1.1 The recommendation problem

Recommender Systems are software tools and techniques devoted to providing sug-

gestions to users. The idea is to provide the user with a personalized shortlist of

items or services she could appreciate. The most common recommendation strate-

33

gies rely on the content (Content-Based Recommender Systems) or collaborative

information (Collaborative-Filtering Recommender Systems). Beyond these fami-

lies, there is still a wide range of other approaches. Graph-based, context-aware,

Semantic-aware, and more recently Deep Neural Network Recommender Systems

are only some examples. Taxonomies of Recommender Systems are often defined

considering the source data or the recommendation technique. First, we focus on

Collaborative-Filtering algorithms (CFs). On the one hand, CFs have shown the

highest accuracy performance. On the other hand, we do not need to introduce any

other data source. Indeed, most of them are entirely based on the transactions (or

ratings) matrix. The rating matrix, usually denoted by a capital R, is a matrix that

contains all the transactions that happened on the recommendation platform. These

transactions could be ratings, purchases, clicks, or other feedback provided explic-

itly or implicitly by the users. The core idea of CFs is to exploit this information

to recommend items similar users like or items that usually are consumed along

with the already experienced ones. Content-Based (CBF) Recommender Systems

usually do not use collaborative information. CBFs take advantage of a certain rep-

resentation of items to compute similarities among them or building the user profile

or both. Recommender systems, in their simplest form, can, therefore, be defined

as tools that provide ranked lists of items of a specific category, based on explicit or

implicit information that relies on user tastes and by exploiting additional informa-

tion on items, other users, context and/or the past history of the user to whom we

want to provide a recommendation list.

Up to the Netflix prize [52], the research community defined the recommenda-

tion problem as a rating prediction task. In a few words, the problem was to predict

a likeness value for an unexperienced item based on the user’s history. However,

in real recommender systems applications, only a small subset of relevant items

is provided to users [178]. Indeed, several studies pointed out that rating predic-

tion optimization was not able to produce the optimal top-N recommendation lists

[256]. The recommendation problem was hence re-defined as a top-N recommen-

dation task [108], in which the optimization goal shifted to items ranking. In gen-

eral, a good formalization of the recommendation problem comes from [334]: Let

34

U = {u1,u2, ...,um} be the set of all users, and let I = {i1, i2, ..., in} be the set of all

possible items that can be recommended. Each user ui has a list of items Iu, which

the user has expressed her opinions about (explicitly as a rating score or implicitly

derived from purchase records). Hence, we define an utility function of item i for

user u, as f : U × I → R, where R is a completely ordered set. The recommenda-

tion problem corresponds to finding the item imax,u ∈ I that maximizes the utility

function f for each user u ∈U . Formally:

∀u ∈U, imax,u = arg maxi∈I f (u, i)

The fundamental problem is that the utility value is not known for each item

i ∈ I. We only know the utility values for the items the user has already rated in his

history. Thus, the recommender system goal is predicting the utility function value

on unknown data. Once we learn the utility function parameters, it is possible to

realize a system that deems items’ scores that are not yet been rated by the user.

It is straightforward that RSs need different kinds of data to produce their recom-

mendations. In particular, three fundamental elements underpin any RS: users,

items, and ratings. These components are usually represented using a rating ma-

trix R : Users× Items where each row corresponds to a user, whereas each column

denotes an item. It is straightforward to infer that each matrix element is a rating

given by a specific user to a specific item. In most of the cases, these matrices are

very sparse because each user experienced only a small portion of the platform’s

items. Figure 3.1 shows a typical User-Item matrix in which question marks repre-

sent the lack of a rating. Let us draw, in detail, the three kinds of data:

• Items are an abstract representation of the objects or services proposed by

the platform. In [264], the authors proposed an interesting taxonomy to cat-

egorize them. Atomic items can be considered as low complexity items. A

few examples are news, webpages, books, songs, and movies. On the other

side, some items are more complex since they can be a composition of other

entities. Moreover, the complexity of an item can also vary because of the

recommendation technique. In a common CF-RS, items are usually defined

using only a numeric ID. Instead, in a CBF-RS, items can be extensively de-

scribed by exploiting a language devoted to Knowledge Representation.

35

Figure 3.1: Example of a rating matrix

• Users are the entities that receive recommendations and consume them. Each

recommendation technique has to face at least two important problems re-

garding users. The first is how to deduce the behavior of users. On some plat-

forms, where users provide an explicit rating to the items, the answer could

seem obvious. In other scenarios, the behavior of users is deduced by clicks,

listenings, plays, or other implicit feedback. The second problem is how to

represent the user. This representation is dependant on the recommendation

technique. For instance, a Neighborhood-based RS represents a user exploit-

ing her rating vector. More, a matrix factorization algorithm uses a vector of

latent factors. Finally, a CBF-RS usually represents a user with a weighted

features vector.

• Ratings, or in general transactions, represent the relation between users and

items. As mentioned, this relation can be established exploiting explicit feed-

back or implicit signals. A user can express explicit feedback in multiple

ways. One example is the binary like/dislike rating. In this case, the user

expresses her likeness of the item in a very strong and polarized way. An-

other example is the exploitation of a scale of values (e.g., from 1 to 5) in

which the relation between the user and the item is weighted by a likeness de-

gree. Finally, in the videos or music domain, explicit feedback is the number

of playings of the video or the song. Explicit feedback comes with the ad-

36

vantage of avoiding misinterpretations of user behavior [296]. Indeed, with

implicit feedback, this could occur at any moments, since the transformation

of feedback in likeness is on the system designer. However, explicit feedback

comes with an important drawback. Users are less prone to spend their time

rating an item. Thus, only a small fraction of consumed items are effectively

rated [199]. On the other hand, implicit feedback usually can catch only pos-

itive feedback (purchases, plays, listenings), without any information about

what user dislikes. For this reason, this kind of ratings is usually also called

’unary’ ratings. To sum up, explicit feedback can be considered more robust,

even though they usually show inconsistencies due to users’ behavior. Fi-

nally, in some cases, explicit and implicit information are combined for more

accurate results [221].

3.1.2 From Rating Prediction to Ranking

As mentioned above, the recommendation task can be defined typically in two dif-

ferent ways. In rating prediction task, the aim is estimating the items rating for a

user. Instead, Learning to Rank is the problem of recommending to users a shortlist

[108] of Top-N recommendations [356]. These differences lead to different opti-

mization goals. The former goal is modeled as a maximization of the prediction

accuracy, whereas the latter is focused on generating the best list to provide to the

user. Top-N recommendation task is also called Item recommendation task [312]

since the optimization focus shifts from ratings to items. Learning to Rank [88]

algorithms can be further categorized in Point-wise [225], Pair-wise [312, 247] and

List-wise [344, 343]. It is important to underline that ratings are crucial in both

tasks. However, one main difference is that, in a Rating Prediction task, the value

associated with the user-item pair is an estimation of the rating. On the other side,

in a Top-N task, the same value is used only to sort the recommendation list. We

could say that the value is an estimation of a value associated with the position of

the item, with no direct relation with the corresponding rating.

37

3.2 Collaborative-Filtering Recommender Systems

We have stressed that Recommender Systems techniques are usually classified into

two main categories based on the kind of data they use to compute recommenda-

tions: Collaborative-Filtering and Content-Based. Beyond these classical models,

a more exhaustive dissertation on recommendation techniques is provided in [317].

Since many of the proposed approaches are hybrid, Burke’s classification [81] of

hybrid Recommender Systems closes the section.

The basic idea behind a Collaborative-Filtering Recommender System is to take

advantage of the transactions similarities among users or items [336]. Since the

popularity of items among similar users is a very strong signal, this class of rec-

ommendation algorithms has become one of the most influential and successful.

In general, these algorithms only need the user-item matrix with the correspond-

ing feedback information. The underlying assumption is that similar users show

similar preferences. Since the algorithms take advantage of users transactions, the

performance of all the Collaborative-Filtering techniques is heavily affected by the

number of users. The rationale behind this class of algorithms is to replicate a clas-

sic human behavior: asking similar people for reliable suggestions. Collaborative-

Filtering algorithms can be further categorized in Memory-Based, and Model-Based

Recommender Systems [73]. Memory-Based Recommender Systems directly ex-

ploit the user-item transactions to compute recommendations. The most extensively

used approach for Memory-Based Recommender Systems is the K Nearest Neigh-

bors (k-NN). In particular, they compute a similarity matrix to identify the more

similar entities (users or items). The choice of the entities for which the similarity

is computed defines the ’schema’ of the k-NN algorithm. Instead, in Model-Based

Recommender Systems, the algorithm trains a model exploiting the stored transac-

tions. Usually, this model contains a latent representation of items and users. This

representation is then used to produce recommendation lists.

38

3.2.1 Neighborhood-Based Models

User-Based k - Nearest Neighbors

This technique has been proposed by GroupLens Usenet article recommender [316]

and resumed later by Ringo music recommender [342] and BellCore video rec-

ommender [181]. It computes the similarity between two customers and uses the

preferences of the most similar users to estimate ratings to be assigned to items. In

order to determine which user are “similar”, similarity functions need to be defined.

They will be detailed in Section 3.2.1. There are several ways for computing rating

predictions in user-based approaches. A popular one is shown in the equation below

where ru,i ∈ {1, ...,5} is the known (five stars) rating of user u for the item i and r̂u,i

is the system prediction of the rating of u for i:

r̂u,i = r̄u +
∑u j∈Ni(u)(ru j,i− r̄u) ·wu,u j

∑u j∈Ni(u) |wu,u j |

Here r̄u denotes the average rating of user u, Ni(u) is the set of neighbors who rated

item i and wu,u j is the similarity of the user u and u j. The user to user similarity

can be computed using different approaches. A popular one is the Pearson correla-

tion [316]:

wu,u j =
∑i(ru,i− r̄u) · (ru j,i− r̄u j)√

∑i=1(ru,i− r̄u)2 ·
√

∑i=1(ru j,i− r̄u j)
2

Item-Based k - Nearest Neighbors

As the number of users increases, user-based kNN suffers from scalability problem.

To overcome to this drawback, item to item kNN was introduced by Sarwar et al. in

[334] and [209]. Thus, when the number of users exceeds the number of items, as

is it most often the case, item-based recommendation approaches require much less

memory and time to compute the similarity weights than user-based ones, making

them more scalable. They are based on the similarity computation between items

instead of users but the metrics used to compute similarity are the same used in user-

user case. If two items shares same ratings, positive and negative ones, by the same

users than they can be considered similar and hence can be assumed that a users

39

rates in a similar way similar items. It should be noticed that, when a new rating is

inserted in the platform, it impacts only peripherally on item-item similarity while

in a user-based approach, users that may not have been similar since now, could

become a few moments later since ratings are constantly entered in the platform.

Moreover, the increasing number of users will not affect real time operations since

the system will use the item-item similarity matrix to make estimations.

Similarity measures

Various similarities have been suggested, namely the Euclidean Distance, the Co-

sine Distance and the Jaccard similarity, among others. Which one works best in

Collaborative Filtering recommender systems is openly argued, having some au-

thors claim that the Pearson Correlation is the best suited algorithm for User based

approaches [73, 177], and others identifying the Cosine Distance on item based ap-

proaches as the best one [197]. The similarity weights have two main tasks in kNN

approaches: they allow to select the best and trusted neighbors and they are used

to weight the candidate items from these neighbors in a different way. Among all

the similarity functions, two of them are particularly important for this dissertation:

Cosine similarity and Jaccard similarity. The first is computed as:

wu,u j =
∑i∈Iu,u j

ru,iru j,i√
∑i∈Iu r2

u,i ∑i∈Iu j
r2

u j,i

where wu,u j represents the similarity of users u and u j, across all items commonly

rated. The second is:

wu,u j =
∑

n
i bi,ubi,u j

∑
n
i bi,u−∑

n
i bi,u j +∑

n
i bi,ubi,u j

where bi,u is a binary value that is 1 when item i has been rated by the user u and n

is the number of items in the overall platform.

The two previous formulas refer to a user-based case, but it is straightforward to

derive the item based counterpart.

Advantages

Advantages of these methods should be highlighted:

40

• Simplicity: Neighborhood-based methods are intuitive and relatively sim-

ple to implement. In their simplest form, only one parameter(the number of

neighbors) has to be chosen.

• Efficiency: Compared to other recommender systems that need to be re-

trained entirely, memory-based kNN may give an immediate feedback to

users. In fact, in these systems not only similarity can be precomputed but

also the K-neighbors for each item. In such a way the search operation and

the prediction can be estimated in a rapid manner.

Drawbacks

However the neighborhood approaches have several flaws too:

• Limited coverage because of sparsity: The similarities between two users

are computed by comparing their ratings for the same items. This can lead to

an information loss. For example if user’s u neighbors never rated item i this

item will be never recommended to u despite her preferences.

• Overfitting: When no real neighbors can be computed, the recommender

system will find them anyway leading to wrong prediction.

• For some set of neighbors the notion of rating notation in the referring space

could be a mistaken assumption and the presence of neighbors could lead to

erroneous estimations.

• No relationships between neighbors are considered. For example, movie’s

sequels will be considered and computed independently giving more weight

to that kind of movie.

• Cold Start: at the heart of the kNN algorithm the user rating lays. Without

ratings, no recommendation can take place for any user of the system. This

problem named cold start, describes the inability of a recommender system to

start offering recommendations when new users or items newly added to the

system may have no ratings at all.

41

Neighborhood models summary

Building a kNN recommender system have three main steps: normalization of

data, neighbors selection and interpolation weight definition. For each of these

components, several different alternatives are available. It has to be noticed that the

best approach may differ from one recommendation problem to another.

The normalization of data is important for each CF approach. Each user has per-

sonal interpretation of the rating scale. While one rater might tend to give high

marks to films he likes, another rater might keep the highest grades for exceptional

movies. There are two widely used systems to compensate for variations in the rat-

ing approach by different users, one is called mean-centering and the other is called

Z-score.

The neighbors definition has a key role for recommendations as it emphasizes the

relations between users and items. For this task, it is of paramount importance the

similarity function choice. Last component is the interpolation weights definition
because it affects how to consider item or user neighbors.

3.2.2 Matrix Factorization - SVD & SVD++

From memory-based to model-based Recommenders

Model Based algorithms received a significant push in the research community after

the million dollar prize competition opened by Netflix in October 2006. During the

three years that took the competition to be won, more and more contenders adopted

Model Based approaches as part of their strategy. For the first time in history, the

research community gained access to 100 milions movie ratings imparting a boost

in new recommender systems approaches partly thanks to the nature of the com-

petition. In fact, 1 milion dollars were offered to anyone who could improve over

Netflix existent system in term of accuracy. During this competition model-based

CF have proven to be more accurate than memory-based one [221]. These models

create an offline model and apply it online to compute recommendations, which

usually leads to greater accuracy and stability in recommendations. Although a

great variety of models belong to this group, such as graph-based approaches and

42

probabilistic recommendation approaches, the most popular are the matrix factor-

ization ones, also called latent factor models. These models analyze the user-item

matrix in order to find latent factors, which can be described as latent features that

characterize the user-item relationships. Since latent factors are computed in a non-

supervised way, their interpretation is not trivial, and in some cases it is not possible

at all (this is the reason why they are called latent). The computation of latent fac-

tors is performed through matrix factorization techniques: the user-item matrix is

decomposed into two smaller matrices, the product of which is an approximation of

the original matrix. Items are then recommended to users if they are close in the la-

tent factor space and ratings are computed through element-wise products between

user and item vectors. The first approaches used the Singular Value Decomposition

(SVD) to decompose the user-item matrix. On the one hand, the obvious drawback

of the Model Based method is that the model, not only takes substantially longer to

be computed but needs to be computed anew if the matrix of data changes, which

happens every time a new user enters a rating. Generally, small changes are left

unprocessed, but when they become substantial, the model needs to be retrained.

On the other hand these techniques tries to overcome to two major problems: spar-

sity of matrix and cold start. The first one is the sparsity of matrix caused by the

insufficient number of the transactions and feedback data. The user-item matrix is

usually almost entirely empty because only a small part of items, w.r.t. the entire

item dataset, are rated by each user. The second one concerns the personalized

recommendations for users with no or few past history(new users). Providing rec-

ommendations to these users becomes a difficult problem because their learning and

predictive ability is limited. Multiple research have been conducted in this direction

using hybrid models. These models use auxiliary information(side information) to

overcome the cold start problem. The dual problem also occurs when a new item

is introduced. Since no user have previously rated this item, it will not be recom-

mended to anyone.

43

Baseline predictors

Since typical CF data exhibit large user and item biases, these need to be encap-

sulated within the Baseline predictors that depends only on user and item without

involving interactions between them. For instance, some users have systematic ten-

dencies to give very high/low ratings w.r.t. to others and some items to receive very

high/low ratings. It is really important to model these biases meticulously because it

helps to isolate exactly interactions between users and items to compare with other

users’ ones. We denote the baseline of a user u on an item i as bui. The simplest

baseline that can be computed is the overall average rating: bui = µ . The previous

formula can be improved by computing the average of the specific user or towards

that specific item. By also considering the observed deviation of user u and of item

i from the average, the baseline could be improved. In general a baseline predictor

for an unknown rating rui is computed as in the equation below:

bui = µ +bu +bi

where bu and bi are the aforementioned deviations for user u and i respectively.

These can be estimated by solving a least squares problem but an easier way to

compute them is by decoupling the calculation of the bi’s from the calculation of

the bu’s; it should be noticed that this can lead to less accurate results. They can be

computed as follows:

bu =
1
|Iu| ∑i∈Iu

(ru,i−µ)

bi =
1
|Ui| ∑

u∈Ui

(ru,i−bu−µ)

A regularized version of the baseline can be obtained by using the regularization

parameters βu e β i:

bu =
1

|Iu|+βu ∑
i∈Iu

(ru,i−µ)

bi =
1

|Ui|+β i ∑
u∈Ui

(ru,i−bu−µ)

Considering the temporal dynamics in baseline predictors could be a successful

approach. So just to finalize, these baseline predictors may catch the real user bias,

44

useful to obtain a new user-item matrix containing only the effective interactions

between users and items.

Matrix Factorization Models

The most successful latent factor models are based on matrix factorization(MF)[224].

In its basic form MF characterizes both items and users by vectors of factors in-

ferred from items rating patterns. These methods have recently become popular by

combining good scalability with predictive accuracy. They offer much flexibility

for modeling various real-life applications. The classic SVD model, widely used

in Information Retrieval[118], is not well suited for CF domain. In fact, applying

SVD to explicit ratings shows critical issues related to the high portion of missing

values. One possible way to overcome to this problem is to fill the matrix with

some estimations but this can lead to an inaccurate system[215, 332]. For such a

reason, systems that directly model only the observed ratings have been deployed

and regularization has been introduced to prevent overfitting.

SVD - Singular Value Decomposition

Matrix factorization models map both users and items to a joint latent factor space of

dimensionality f , such that user-item interactions are modeled as inner products in

that space. The latent space tries to explain ratings by characterizing both products

and users on factors automatically inferred from user feedback[317]. These factors

could represent both existing properties such has the genre of a movie or as is cus-

tomary, completely unknown and that may not be interpreted by a human being. As

a consequence, each item i is represented with a vector qi ∈ R f while each user with

a vector pu ∈ R f . Therefore, each item i will have a measure that characterizes it in

each f dimensions. Same for user u in the same f dimensional space. In particular,

for the user, the latent feature will represent her interest towards that property while

for the item it will measure how much that property belongs to the item. The dot

product qT
i pu will capture the user’s estimated interest in the item. The Figure 3.4

45

represents the basic form of matrix factorization. Finally, the estimated rating can

be computed by combining it with the baseline predictor previously defined:

r̂ui = µ +bi +bu +qT
i pu

Our cost function to minimize will be the regularized squared error in the equation

below:

min
b∗,q∗,p∗

= ∑
(u,i)∈K

(µ +bi +bu +qT
i pu)

2 +λ4(b2
i +b2

u +‖qi‖2 +‖pu‖2)

The regularization constant λ4 is usually computed by cross validation while for

the learning parameters bu,bi, pu,qi stochastic gradient descent or alternating least

squares is performed. It is important to notice that alternating least square tech-

niques fixes pu to minimize qi or viceversa. In this way the resulting cost function

is convex and can be optimally solved[46, 45].

SVD++

Prediction accuracy could be improved through implicit feedback, useful to exploit

additional information about user interest especially when few explicit ratings are

provided. Moreover, in the event that no implicit feedback is available, it can be

captured by considering items that user rated without considering the rating value.

This lead to the development of several techniques [221, 298, 327]. Here we focus

on the SVD++ method that modifies the previous equation of the estimated rating

as follows:

r̂ui = µ +bi +bu +qT
i

(
pu + |R(u)|−

1
2 ∑

j∈R(u)
y j

)
where y j is a generic factor vector related to the item i based on implicit feedback.

Moreover the user component has been modified in pu + |R(u)|−
1
2 ∑ j∈R(u) y j. The

sum of factor vectors y j is normalized by |R(u)|− 1
2 in order to bring the variance

across the range of observed values of |R(u)|. The cost function can now be min-

imized as mentioned in the SVD case. Several kind of implicit feedback may be

considered and they will be automatically weighted during the minimization step.

46

Figure 3.2: Basic representation of matrix factorization

47

3.2.3 Advances in Matrix factorization

Matrix Factorization (MF) models are among the most popular approaches to col-

laborative filtering, and have been actively investigated since they were introduced

in the context of the Netflix prize competition [44]. As opposed to classic user- and

item-based collaborative filtering heuristics [175, 239], MF methods train a statisti-

cal model from the available data using machine learning techniques. Specifically,

they perform a dimensionality reduction of the highly sparse rating matrix into a

subspace of latent factors, which aim to capture implicit properties of users and

items. In order for MF to be effective, the dimension k of the latent subspace is

assumed to be much smaller than the number of users and items, k�min(|U |, |I|),
essentially acting as a bottleneck that compresses the sparse input while retaining

enough information to explain the observed user-item interactions.

Matrix factorization models for rating prediction

Recommendation models based on MF have their roots on the Latent Semantic

Analysis (LSA) technique [118], widely used in Natural Language Processing and

Information Retrieval. LSA attempts to automatically infer concepts implicit in text

documents by approximating the term-document matrix with a truncated Singular

Value Decomposition (SVD) of lower rank. The first MF approaches for recom-

mendation borrowed the same idea, and applied it to the user-item matrix in the

rating prediction task [332]. In contrast to LSA, the SVD is not well defined for

sparse matrices as those commonly found in recommender systems, and hence the

above approaches relied on imputation techniques to fill the missing matrix entries

before applying SVD.

Rather than filling the rating matrix, which may introduce inaccurate informa-

tion, subsequent approaches aimed to only factorize observed ratings instead of the

whole matrix. One of the first and most popular methods in this line is the model

proposed by [151], in which each user u is assigned a vector ~pu ∈ Rk of latent fea-

tures automatically inferred from the data, and similarly each item i is assigned a

vector~qi ∈Rk in the same subspace. Intuitively, latent features aim to capture prop-

erties implicit in the data —such as the amount of comedy or action in the case of

48

movies—, but does not need to be interpretable at all, as this is not enforced in the

model [223]. Ratings are then estimated as the dot product of latent feature vectors:

r̂(u, i) = 〈~pu,~qi〉 (3.1)

Equivalently, the rating matrix R is factorized as R≈ PQ>, where P is a |U |×k

matrix with the user vectors ~pu as rows, and respectively Q is |I| × k contains the

~qi as rows. The values of these matrices are automatically estimated from the data,

by minimizing the Mean Squared Error of the ratings predicted against the ratings

observed in a training set. That is, P and Q are chosen to minimize to following

loss function:

L (P,Q) = ∑
(u,i)∈R

(rui−〈~pu,~qi〉)2 +λ

(
‖~pu‖2 +‖~qi‖2

)
(3.2)

where R is the set of observed ratings, i.e. the set of non-zero entries of the rating

matrix R, and λ > 0 is a regularization hyper-parameter used to prevent overfitting.

3.2.4 Matrix Factorization - Funk MF

In [151] this function is minimized using Stochastic Gradient Descent, a widely

used optimization technique that iteratively updates the parameters in the opposite

direction of the gradient. When applied to 3.2, this technique yields the following

update rules for the parameters ~pu and~qi for each rating rui in the training set:

~pu← ~pu−η (eui~qi +λ~pu) (3.3)

~qi← ~qi−η (eui~pu +λ~qi) (3.4)

The learning rate η is a hyper-parameter that controls the extent to which the model

parameters are updated in each iteration, and is carefully chosen; too large values

may make the algorithm fail to converge, while too small values may make its

convergence very slow. eui is the prediction error, and is defined as eui, rui− r̂(u, i).

In addition to Stochastic Gradient Descent, other optimization techniques have

been explored in the literature, such as Alternating Least Squares [45], which is the

standard technique followed in MF models for positive-only feedback (3.2.5).

49

The basic SVD model by [151] is easily extensible, and has served as a building

block for more complex matrix factorization models. For instance, [221] proposed

the SVD++ model, which includes additional parameters to account for implicit

feedback in rating predictions. Further extensions of SVD introduce temporal vari-

ables to capture the evolution of user preferences through time [223].

3.2.5 Matrix Factorization for positive-only feedback

The core ideas behind the standard Matrix Factorization model for collaborative fil-

tering have also been applied to the item ranking task when positive-only feedback

is available instead of numeric ratings. Recommendation models designed for this

type of data must take into account its particular characteristics, most notably the

absence of negative feedback, but also the possible uncertainty in the positive feed-

back, as an observed user-item interaction may not necessarily indicate a preference

of the user towards the item.

In one of the most representative works in this direction, [184] proposed an

adaptation of the rating-based MF model described previously to deal with positive-

only feedback. As opposed to the rating-based SVD, which only considers the ob-

served ratings, Hu et al.’s method models the full set of |U | · |I| interactions. Since

negative feedback is not available in this scenario, the authors argue that the algo-

rithm has also to model the missing information as an indirect source of negative

user preferences. For such purpose, they introduce a parameter cui for each possi-

ble user-item pair that measures the confidence on the corresponding interaction,

whether observed or not:

cui = 1+αkui (3.5)

where kui is the count of implicitly collected interactions between user u and item

i –such as number of clicks on a product web page on an e-commerce site, and

the number of listening records of a given song in an online music provider–, and

α > 0 is a scaling parameter. When no interaction is observed, kui = 0 and the model

assigns minimum confidence to the user-item pair, as it is unknown whether the lack

of interaction is because the user really does not like the item, or just because the

user does not know the item. Likewise, the more interactions are collected and the

50

greater kui, the larger is the confidence on that observation. Moreover, focusing

on the item ranking task, Hu et al.’s approach only aims to predict if the user will

interact with the item, rather than the actual number of observations kui. Hence, a

new set of variables is introduced so that xui = 1 if kui > 0, and xui = 0 otherwise.

Similarly to the SVD model for ratings, the recommendation score of item i for

user u is estimated as the dot product of their corresponding latent feature vectors:

s(u, i) = 〈~pu,~qi〉 (3.6)

The model parameters ~pu and~qi are again automatically learned by minimizing the

mean squared error for the score predictions, but now accounting for the different

confidence levels and the full set of possible user-item pairs:

L (P,Q) = ∑
u

∑
i

cui (xui−〈~pu,~qi〉)2 +λ

(
‖P‖2 +‖Q‖2

)
(3.7)

3.3 Optimization techniques

3.3.1 ALS - Alternating Least Squares

The loss function can be minimized with different numerical optimization tech-

niques such as Stochastic Gradient Descent, but in [184] the authors propose an

Alternating Least Squares (ALS) procedure that efficiently handles the greater cost

of accounting for the missing values. Clearly, the loss function in 3.7 involves many

more terms than that of 3.2, as the number of observed entries in the user-item ma-

trix is usually very small due to the data sparsity.

The key observation behind ALS is that when one set of parameters is fixed, the

optimization problem in 3.7 is convex and analytically solvable using ordinary least-

squares estimation. In particular, fixing the ~qi parameters and setting the gradient

with respect to ~pu to zero yields the solution

~pu =
(

Q>CuQ+λ I
)−1

Q>Cu~xu . (3.8)

where I is the k×k identity matrix, Cu is a |I|× |I| diagonal matrix with the cui val-

ues, and~xu is a column vector of length |I| with the xui values. The same procedure

51

procedure ALS-TRAIN

Initialize P,Q at random repeat
P step

Fix Q and optimize all ~pu in parallel using 3.8

Q step
Fix P and optimize all~qi in parallel using 3.9

until convergence;
Algorithm 1: Alternating Least Squares training algorithm.

can be applied by fixing the user factors, and optimizing the item factors, leading to

the solution

~qi =
(

P>CiP+λ I
)−1

P>Ci~xi . (3.9)

Similarly, Ci is a |U |× |U | diagonal matrix with the cui confidence values, and~xi is

a column vector of length |U | containing the binary values of xui.

As pointed out by the authors, the products Q>CuQ and P>CiP require time

O(k2|U |) and O(k2|I|) for each user and item, respectively, and represent a com-

putational bottleneck during the training phase. However, these terms can be com-

puted more efficiently noting that Q>CuQ = Q>Q+Q>(Cu− I)Q, where Q>Q
is independent of the user and thus can be precomputed, and Cu− I only has non-

zero entries in the diagonal for the |I(u)| items with kui > 0, which is much smaller

than |I|. Considering the computation of the matrix inverse, the total complexity

of 3.8 for a single user is O(k2|I(u)|+ k3). Likewise, the complexity for 3.9 is

O(k2|U(i)|+ k3).

The main advantage of ALS is that the optimal factors for each user in Equation

(3.8) can be computed in parallel once the item factors are fixed (P step). Symmet-

rically, once the user factors are obtained and fixed, the item factors in 3.9 can be

found for each item in parallel (Q step). This observation leads to the alternating

nature of ALS, respectively fixing one set of parameters and optimizing the other

until convergence is reached or for a given number of iterations, as illustrated in 1.

The ALS-based method by [184] became the standard baseline for matrix factor-

ization models with positive-only feedback, and has been extended and improved in

52

subsequent works since it was first proposed. One notable paper by [304] presents

a new training procedure to boost the time complexity of the P step of each user

to O(k2 + k|I(u)|), and analogously the Q step. In order to achieve this signifi-

cant improvement, the authors propose an approximate solution to the least-squares

problem in each step. Rather than directly finding the k-dimensional solution as in

Equations (3.8) and (3.9), which involves the costly computation of a matrix inverse,

their approach iteratively solves k one-dimensional least squares problems, one for

each latent dimension, much less expensive to solve. As reported in the paper, the

loss of accuracy due to the approximate algorithm is small compared to the saved

time for training. In subsequent work, [365] extended ALS to a ranking-based MF

approach that learns to predict the relative ordering of items instead of individual

point-wise scores. More recently, [295] proposed a graph-based Bayesian model

that is able to capture the meaning of missing values, distinguishing between a user

disliking an item or being unaware of it.

3.3.2 BPR - Bayesian Personalized Ranking Criterion

Matrix Factorization models can be easily trained to reduce the prediction error via

gradient descent methods, alternating least-squares (ALS) and MCMC. However,

in a top-N recommendation task, MF models can be trained using a learning to rank

approach like Bayesian Personalized Ranking Criterion (BPR) [312]. The BPR

criterion is optimized using a stochastic gradient descent algorithm on a set DS of

triples (u, i, j), with i ∈ Iu and j 6∈ Iu, where Iu is the set of items for the user u.

Each triple is selected through a random sampling from a uniform distribution. The

BPR optimization criterion can thus be formulated as:

BPR-OPT = ∑
(u,i, j)∈Ds

lnσ(x̂ui j)−λΘ‖Θ‖2

= ∑
(u,i, j)∈Ds

lnσ(ŷ(xui)− ŷ(xuj))−λΘ‖Θ‖2 (3.10)

where x̂ui j is the estimated rating difference, and ŷ(xui) is the prediction the user-

item pair u− i. In this formulation, σ(·) is a sigmoid function, and the update step

53

is defined as:

Θ←Θ+α

(
e−x̂ui j

1+ e−x̂ui j
· ∂

∂Θ
x̂ui j +λΘ

)
(3.11)

where α is the chosen learning rate. In an implicit feedback setting, we may assume

that there is only an instance for the pair user-item. Hence, in the model we can

derive x̂ui j as:

x̂ui j = ŷ(xui)− ŷ(xuj) = wi−w j +

+ ∑
f∈F

v(u)v(i)− v(u)v(j) (3.12)

where wi is the bias for the given item i, and v(u) is the vector of latent factors for

the user u. This computation can be performed in an efficient way computing the

partial derivatives (to update the factorized parameters) for the only active entities

involved in the transactions, wi, wi, vu, vi, and v j:

∂

∂Θ
x̂ui j =



1, if θ = wi,

−1, if θ = w j,

v(u), if θ = v(i),

−v(u), if θ = v(j),

(v(i)− v(j)), if θ = v(u),

0, otherwise

(3.13)

Using Equation (3.13) in Equation (3.11) the model parameters can be itera-

tively updated to maximize the BPR-OPT criterion. The algorithm updates sequen-

tially each sampled triple and continues the training until it reaches the provided

number of iterations.

3.4 Content-Based Recommender Systems

Content-based filtering Recommender Systems exploit item content to provide rec-

ommendations based on what the users rated in the past. The recommendation pro-

54

cess starts with the definition of a user profile. While items often have a technical

description in terms of features, the challenging task is to extract significant features

that can drive the recommendation process. In content-based methods, feedback of

users is combined with the content information available in the items. In most cases,

the items’ attributes are simple keywords that are extracted from their description.

Semantic indexing techniques are also used to represent the item and user profiles

using concepts instead of keywords. The recommendation process basically con-

sists of matching up the attributes of the user profile against the attributes of a new

item. The result is a relevance estimation that represents the user’s level of interest

in that object. If a profile accurately reflects user preferences, the effectiveness of

a content-based approach is considerably improved. The most common technique

to define a user profile from the descriptions of the items she liked is to extract a

list of words that describes such items. In this case, the main issue is the definition

of the criteria to apply for selecting the most important words. Therefore, thanks

to the availability of several open knowledge sources such as DBpedia1 and to the

increasing interest in semantic technologies, lot of research works moved from the

classic keyword-based approach to a concept-based one.

The architecture of a content-based recommender system is composed of three main

components: Content Analyzer, Profile Learner, and Filtering Component. Fig-

ure 3.3 shows the high-level architecture of a content-based recommender system.

The Content Analyzer is a component devoted to extracting the relevant features

of an item. It exploits feature extraction techniques to build a new item representa-

tion that could be processed in the simplest way by a recommender system.

However, this item could be of any kind and this is the reason why this task

could lead to a very difficult issue to solve. For example, analyzing a document or a

web page may be a simple task while in the case of a movie or an image it might not

be that easy. In the first case, for instance, an approach that takes into account most

relevant words could be adopted by using some metrics that define the significance

of a word in that document or web page. It is straightforward that the choice of

1http://wiki.dbpedia.org/

55

Figure 3.3: High level architecture of a content-based recommender [317]

approach affects the performance of the entire recommender system.

For movies or images, the analysis becomes more complex. Besides visual

features extraction, the problem can be alleviated if some description of those items

is available in a knowledge base. Then, we can exploit this structured information

to feed the recommender system. However, once a description is retrieved, it is still

important to state what information should be considered.

The new representation of the item becomes the input of the Profile Learner and

Filtering Component

The Profile Learner exploits the descriptions to match with the abstract user model.

Its goal consists in inferring user preferences and interests to build a user model.

Usually, Machine learning techniques are employed to train the user model. Finally,

the Filtering Component is responsible for estimating a score for a generic item

exploiting the user profile representation. This is the component that produces the

list of recommendations.

56

Conclusion

The adoption of the content-based recommendation paradigm has several advan-

tages:

• Content-based recommenders are based only on ratings provided by the his-

tory of the target user and on their ability to learn a user profile representa-

tion that approximates user preferences as well as possible. This means that

no collaborative information is needed to feed the recommender. Instead,

a Collaborative-Filtering method needs ratings from other users to provide

recommendations. Consequently, Content-based recommenders do not suffer

the so-called Cold-start items problem.

• They can provide an understandable and immediate explanation of the recom-

mended items thanks to the nature of the recommendation process. Indeed,

Explanations can be provided, in their simplest form, by explicitly listing

content features.

Content-based methods do have several shortcomings as well:

• Even though content-based methods are effective at providing recommenda-

tions for new items, they are not effective at providing recommendations for

new users. The reason is the dependency of the user profile from the history

of her ratings. In general, a large number of ratings implies a robust represen-

tation of the user profile and hence robust predictions.

• As mentioned before, content-based recommender systems are based on the

past of the user to suggest new items that are consistent with it. This approach

will tend to produce always the same kind of recommendations over time.

As an example, a person that has not experienced romantic movies would

never receive a recommendation for a romantic movie. This behavior is called

over-specialization problem or lack of Serendipity. These terms highlight the

tendency of the content-based systems to not produce recommendations with

unexpected items.

57

• Best Content-based techniques require something more than factual informa-

tion, they require domain knowledge. As an example, the description of a

movie can distinguish among actors and the director, and this can lead to ac-

curacy improvements. Typically, the elected tool to let a recommender under-

stand structured information is providing domain ontologies. Unfortunately,

domain ontologies are not always available. Consequently, feeding the rec-

ommender with only factual information can lead to losing some important

information for the recommendation task.

• The vast size of the item set is a problem that content-based methods have

to face. Since we need to find items that correlate the most with the user’s

interests, we are forced to examine all the items. Moreover, we must examine

the content of every item to estimate a score, whereas collaborative filtering

systems only need to examine users ratings. Therefore, since the number of

items rises very quickly, a content-based suffers scalability issues. As a result,

the solution is simplifying the item representation. Commonly, this leads to a

performance decrease.

3.4.1 Vector Space Model

Many content-based recommender systems represent documents using a simple spa-

tial representation. Probably the most know representation is the Vector Space

Model (VSM). In a VSM, each user or item (document) is represented in an n-

dimensional space, where n is the cardinality of the considered features (or key-

words). In practical terms, users and items are represented through Boolean or

weighted vectors. Their respective positions and the distance, or better the prox-

imity, between them, provides a measure of how these two entities are related or

similar. The choice of features may substantially differ depending on their avail-

ability and application scenario: crowd-sourced tags, categorical, ontological, or

textual knowledge are just some of the most exploited ones. All in all, in a CB

approach we need:

1. to get reliable items descriptions;

58

2. a way to measure the strength of each feature for each item;

3. to represent users;

4. to measure similarities.

Item descriptions The set of available features is usually generated processing

the textual description of items. Some of the most common operations in this sense

are: tokenization, stopwords removal, and stemming, or even more advanced Natu-

ral Language Processing methods [35].

Feature strength The different terms within a document usually deserve vari-

ous degrees of importance for categorizing the document. What we do need is a

weighting procedure, a scheme, that lets us assign the correct weight to different

terms. Some of the most adopted schemes are TF-IDF and BM25. TF-IDF, in par-

ticular, can be derived from the probabilistic distribution of terms, and it reflects

some common observations [328]. First of all, rare terms should not be considered

less relevant than frequent terms. Second, if a term is frequent in a document it is

not less relevant than occurring once. Last, the contribution of each document in

the weighting should be independent of the length of the description.

TF-IDF Given a set of items I = {i1, i2, . . . , iN} in a catalog and their associ-

ated features fi in a Collection C we may build the set of all possible features as

F = { f | fi ∈ C with i ∈ I}. In the following, we use f to denote a feature in F

irrespectively of the item. Let us denote with f req(f , i) the frequency of the feature

f in the document i. Consequently, maxz f req(z, i) denotes the maximum frequency

considering all the features of item i. Let us I(f) represents the subset of I which

considers only those items that contain f . Each item can be then represented as a

vector of weights ωi = [ω(i,1), . . . ,ω(i, f), . . . ,ω(i,|F |)] where ω(i, f) is computed as the

normalized TF-IDF value for f :

59

ω(i, f) =

f req(i, f)
maxz f req(z,i)√

∑
k∈F

(
f req(i,k)

maxz f req(z,i) · log |I|
|I(k)|

)2

︸ ︷︷ ︸
T F

· log
|I|
|I(f)|︸ ︷︷ ︸

IDF

User Representation Analogously, when we have a set U of users, we may rep-

resent them using the features describing the items they enjoyed in the past. Given

a user u, if we denote with Iu the set of the items enjoyed by u. Let us denote

with Iu(f) the set of items experienced by u which contain f . Hence, we have

ωu = [ω(u,1), . . . ,ω(u, f) . . . ,ω(u,|F |)] with

ω(u, f) =

∑
i∈Iu

ω(i, f)

|Iu(f)|

Similarity As mentioned, a similarity measure is required to measure the close-

ness between users and items in the features space. The proximity of two vectors

can be computed in multiple ways. However, a very common strategy to evaluate

similarities between the vectors i and j is evaluating the cosine vector similarity

(CSV) of their corresponding vectors in F:

CSV (i, j) =
ωi ·ω j

‖ ωi ‖ · ‖ ω j ‖

3.4.2 From Vector space Model to Knowledge-aware Recommender
Systems

Regarding the descriptions of items, nowadays we can easily retrieve them from the

Web. In particular, thanks to the Linked Open Data initiative a lot of semantically

structured knowledge is publicly available in the form of Linked Data datasets. In

[279], the authors originally proposed to encode a Linked Data knowledge graph

in a vector space model to develop a CB recommender system. Let us recall that,

in a Linked Data dataset, a resource is described using triples in the shape subject-

predicate-object, where the subject is the resource itself. Accordingly to the graph

60

Figure 3.4: Basic example of item semantic description

nature of data, the underlying problem is building the vectors ωi, and ωu which rep-

resent, respectively the item and the user vectors. This difference requires to rede-

fine the features representation. Given a set of items I = {i1, i2, . . . , iN} in a catalog

and their associated triples 〈i,ρ,ω〉 in a knowledge graph K G we may build the set

of all possible features as F = {〈ρ,ω〉 | 〈i,ρ,ω〉 ∈K G with i ∈ I}. In the follow-

ing, when no confusion arises, we use f to denote a feature 〈ρ,ω〉 in F . Each item

can be then represented as a vector of weights i = [v(i,1), . . . ,v(i,〈ρ,ω〉), . . . ,v(i,|F |)]

where v(i,〈ρ,ω〉) is computed as the normalized TF-IDF value for 〈ρ,ω〉:

v(i,〈ρ,ω〉) =
|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈K G }|√

∑
f∈F
|{ f | 〈i, f 〉 ∈K G }|2︸ ︷︷ ︸

T FK G

· log
|I|

|{ j | 〈 j,ρ,ω〉 ∈K G and j ∈ I}|︸ ︷︷ ︸
IDFK G

Analogously, when we have a set U of users, we may represent them using the

features describing the items they enjoyed in the past. Given a user u, if we denote

61

with Iu the set of such items and we have u = [v(u,1), . . . ,v(u, f) . . . ,v(u,|F |)] with

v(u, f) =
∑

i∈Iu
v(i, f)

|{i | i ∈ Iu and v(i, f) 6= 0}|

Once we have generated the new item and user representation, the computa-

tion of the user-item similarity (and hence the generation of recommendations) can

proceed as aforementioned.

3.5 Hybrid Recommenders

Hybrid Filtering is a combination of different Filtering approaches [287]. The ra-

tionale is proposing a filtering method able to go beyond the limitations of tradi-

tional approaches. Some of these limitations are the Cold-Start problem, the over-

specialization of Content-Based approaches and the sparsity of the Users-Items ma-

trix. Moreover, some hybrids recommenders aim directly to increase the accuracy

of recommendations and performance of the whole system. The goal of exploiting

a hybrid recommender is to compensate for the limitations of an approach using

the advantages of another. There exist multiple ways to implement this kind of

recommender [17]:

• Implementing the two approaches separately and then use an aggregation

function to merge the results;

• Injecting some Content-Based approach characteristics into a Collaborative-

Filtering approach;

• Injecting some Collaborative-Filtering approach characteristics into a Content-

Based approach;

• Building a single system that exploits at the same time collaborative and con-

tent information.

Typical examples of hybrid recommenders are streaming platforms like Netflix

or Amazon Prime. On one side, they provide recommendations based on collabo-

rative information. On the other side, they also exploit movie features to propose

62

Figure 3.5: Hybrid system that implements the two approaches separately and ag-

gregates the results

Figure 3.6: Hybrid system that injects some Content-Based approach characteristics

into a Collaborative-Filtering approach

more accurate recommendations. In detail, in 2006 Netflix released an anonymized

dataset regarding one million users challenging researchers to overcome their rec-

ommendation algorithm. Among the best approaches, most of them were simple

hybrids that had taken advantage of ensembles of different methods.

It is straightforward that the choice of the integration scheme affects the re-

sulting architecture. Figure 3.5 shows that the two recommenders are completely

distinct and the integration takes place only during the generation of the recommen-

dations. Figures 3.6 and 3.8 show that we can make one of the recommenders com-

pletely dependant on the other, which usually becomes the new knowledge source.

Figure 3.7 depicts a single system that is fed by two different information. In this

classification scheme, there are no constraints about the exploitation of that infor-

mation.

Another interesting classification for hybrid models has been proposed by Burke

[80]:

63

Figure 3.7: Hybrid system that exploits at the same time collaborative and content

information

Figure 3.8: Hybrid system that injects some Collaborative-Filtering approach char-

acteristics into a Content-Based approach

• Weighted: The ratings returned by the different approaches are then aggre-

gated through a weighting function;

• Switching: The system evaluates the context and based on that it selects the

best algorithm to propose recommendations;

• Mixed: The different algorithms generate different recommendation lists.

These lists are then merge using an arbitrary mechanism like the mean or

a combination of parts of the lists;

• Feature combination: The weights of the features obtained after the training

are used as the new knowledge source. Another recommender receives this

input and proposes the recommendations;

• Cascade: The recommendation process is considered as a sequential process

in which the output of a recommender feeds another;

64

• Feature augmentation: The output of a recommender is used to enrich items

and users’ descriptions of another recommender;

• Meta-level: The overall system exploits one recommendation algorithm to

generate the model and this model is used as input for another recommender.

3.6 Recommender Systems Evaluation

In the last decades, we observed a flourishing of Recommender Systems algorithms.

Most of them are very specialized approaches, designed to perfectly fit a specific

scenario. The same recommender fed with different data would probably perform

poorly. This happens because identifying what makes Recommender Systems be-

have differently is a hard task. For instance, it could be due to operating in different

settings. However, even the degree of sparsity of the Users-Items matrix can affect

the performance of the system. Moreover, even though two systems operate in the

same scenario, with the same data, identifying the causes of the different behaviors

would be hard. Indeed, there is no total convergence on which is the most important

dimension of evaluation, neither of which is the best metric to measure [178].

Evaluating a recommender can be hard for many reasons. As an example, given

the same set of data, an algorithm can show oscillating performance based on the

evaluation target. Moreover, different evaluation settings can affect the evaluation

result. Finally, even if we consider the recommendation accuracy, measuring the

rating prediction error is a completely different task from evaluating the ranking of

recommended items.

In [256], the authors have pointed out that accuracy is not the only aspect to

consider during evaluation. Others consider the online evaluation as the only effec-

tive evaluation. However, online evaluation with real users means bearing the costs

of the platform and involving users. Even not considering the necessary evalua-

tion time, it is clear that this kind of evaluation is not affordable for every research

group. For these reasons, we focus on offline evaluation. This section is devoted to

providing a brief overview of the evaluation protocol, metrics, and methods [178].

65

3.6.1 Protocols

How to assess the quality of a recommendation list, even though we are limiting our

analysis to offline evaluation, is not an easy task. It could be argued that the main

aspect to consider is the accuracy of the recommendations. However, the definition

of accuracy is not unique. For instance, if we change the recommendation task from

rating prediction to items’ recommendation, also the notion of accuracy should be

re-formulated. Before going into the different definitions, we need to give some

Recommenders Evaluation background. Bellogin [227] has shown that there are

many aspects in common between the Recommender Systems and Information Re-

trieval evaluation. This is reasonable since the research field was born as a branch of

Information Retrieval. Moreover, if we focus on a Top-N recommendation task, the

similarities are more evident. Consequently, most of the evaluation techniques and

metrics we use were originally designed for Information Retrieval tasks. However,

between the two evaluation paradigms, there are important differences. First of all,

in Information Retrieval domain experts can objectively evaluate the relevance of a

document. This is not possible in a recommendation scenario.

The relevance of a recommended item can be established only on a per-user

basis. This has dramatic effects on the evaluation. In theory, we should evaluate

a Recommender System only online, proposing recommendations and waiting for

the feedback. However, this means that a study conducted by a small/medium-

sized laboratory can rely only on a few users. Moreover, the number of items that

are effectively rated is usually very small. How a researcher should deal with the

remaining unrated items is an open problem. Indeed, the choice of ignoring them

or considering them as negative examples affects either the training phase and the

evaluation procedure. Moreover, the splitting of data in a training set and a test set

can be realized in multiple ways. Here too, the choice has significant effects on

the evaluation results [356]. The authors underline that, even though the test set

contains only a small number of items, the ranking affects the entire collection. For

this reason, they propose two different evaluation protocols: all unrated items, and

rated test-items.

The all unrated items protocol imposes to use as candidate items all the items

66

that have never been rated by the user. A candidate item is an item that can be

potentially recommended. Consequently, the items that are present in the test set

and the recommendation list are considered as relevant [48][325].. The rationale is

that in a real case scenario the recommender analyzes all the items in the collection.

Instead, in the rated test-items protocol, the candidate items correspond to test

items. The difference among algorithms is measured by ranking ability or prediction

errors.

3.6.2 Accuracy

As mentioned, the accuracy metrics are broadly categorized in error metrics, and

ranking metrics. According to the historical development of metrics, first we focus

on error metrics.

Rating prediction metrics

In the past, the metrics based on prediction error have been the most widely used.

Among them, the most known ones are the Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). The goal of a rating prediction task is to

estimate the rating for an item by a given user. Once the recommender is trained,

we use its prediction function to estimate the rating value r̂ui, for the test set (T S)

item. For this user-item pair (u, i), the actual value of rating is known but hidden to

the recommender.

MAE =
1
|T S| ∑

(u,i)∈T S
| ˆrui− rui| (3.14)

RMSE =

√
1
|T S| ∑

(u,i)∈T S
(ˆrui− rui)2 (3.15)

Ranking Metrics

Since the research community has moved toward the Top-N recommendation task,

the previous metrics have fallen out of use. The reason is that a low rating error does

67

not imply a correct ranking for Top-N recommendations. Indeed, these metrics eval-

uate errors of all relevant items without considering any sort order. Consequently,

the error of the last relevant item is equally important to the error on the most rel-

evant one. To sum up, rating prediction metrics may estimate the same error for

top-N items and bottom-N items, without taking into account that an error in top-N

items should be more relevant compared to an error for lower ranked items.

The new evaluation need has pushed researchers to propose new metrics. Among

them, we there are Precision, Recall, and Normalized Discounted Cumulative
Gain. Since these metrics check the presence of items in the first N recommen-

dations, the metric value is coupled with a number which denotes the list length.

Common values are: 1, 5, 10, 25, 50, 100. Precision and Recall require binary

values. In practical terms, they assign 1 to relevant items and 0 otherwise.

Given a user u, Precision (Pu@n) is computed as the ratio of the number of

relevant items in the recommendation list over N. Recall (Ru@N) is computed as

the ratio of the number of relevant items in the recommendation list over the number

of relevant items in the Test Set.

Precision is defined as the proportion of retrieved items that are relevant to the

user.

Pu@N =
|Lu(N)∩T S+u |

n
(3.16)

where Lu(N) is the recommendation list up to the N-th element and T S+u is the set

of relevant test items for u. Precision measures the system’s ability to reject any

non-relevant documents in the retrieved set. Recall is defined as the proportion of

relevant items that are retrieved.

Recall@N =
|Lu(N)∩T S+u |

T S+u
Recall measures the system’s ability to find all the relevant documents.

where T S+u is the set of relevant items in the Test Set for user u and Lu(N) is the

recommendation list truncated at N. Precision is heavily affected by the evaluation

protocol. On the other side, Recall is affected by the threshold chosen to identify

a test item as relevant. The items with an actual rating lower than the threshold

are considered non-relevant. For this reason, this threshold is usually called the

68

relevance threshold. When a relevance threshold is used to compute a metric, it is

adopted the threshold-based relevant items condition [83]

Precision and recall can be combined with each other in the F1 measure com-

puted as the harmonic mean between precision and recall.

F1@N = 2 · Precision@N ·Recall@N
Precision@N +Recall@N

In information retrieval, Discounted cumulative gain (DCG) is a metric of rank-

ing quality that measures the usefulness of a document based on its position in the

result list. Recommended results may vary in length depending on the user, there-

fore is not possibile to compare performance among different users, so the cumu-

lative gain at each position should be normalized across users. Let us define ruk as

the rating assigned by the user u to the item at the position k of the recommendation

list. Hence, normalized discounted cumulative gain, or nDCG, is computed as:

nDCGu@N =
1

IDCG@N

N

∑
k=1

2ruk−1
log2(1+ k)

(3.17)

where k is the position of an item in the recommendation list and IDCG@N indi-

cates the score obtained by an ideal ranking of the recommendation list Lu(N) that

contains only relevant items. IDCG@N is used as a normalization factor. How-

ever, for all unrated items, there is no rating for the majority of items. A

common adopted solution [356] is defining a single fix value instead.

3.6.3 Diversity

Accuracy metrics are needed to measure performance of a top-N recommender.

Nevertheless, recommendation quality also depends on other factors that could im-

prove the user experience, such as Novelty and Diversity.

Diversity, as an alternative dimension of the performance of recommender sys-

tems, can be measured through common measures as item coverage, catalog cover-

age, Gini index, and Shannon entropy.

Some recommenders could be designed to produce recommendations only for

some users or recommend only a small number of items. This problem is known as

69

the long tail or heavy tail problem. Nevertheless, if recommendations include very

popular items, the accuracy of recommendations can still be high. On the other

side, the interest of users toward only very popular items could be limited. These

considerations have pushed researchers to define new metrics that take into account

these problems. They have proposed two metrics: User Coverage, and Item (or

Catalog) Coverage.

Coverage

Catalog Coverage computes the number of items that are effectively inserted in

recommendation lists. It denotes the propensity of a system to recommend always

the same items. An example of measuring this quantity is aggregate diversity.

This metric, defined as diversity-in-top-n in [14], measures the overall number of

distinct items recommended in all recommendation lists.

ADiv@N is computed as:

ADiv@N =
|
⋃

u Lu(N)|
|I|

It is worth to note that in this formula it is present a normalization for the length

of the catalog.

Moreover, this metric provides some information about the personalization of

recommendation. A high value of Item Coverage implies that most of the users

received completely different lists. Dually, a low value of Item Coverage suggests

that the recommendation lists are not diversified.

Similarly, the User Coverage [163] denotes the overall number of different

users the recommender is able to produce a recommendation for. It denotes the

ability of a system to produce recommendation for all the users.

Distributional inequality

Another measure of diversity is sales diversity [148], which measures how the

items are unequally distributed in the recommendation lists. The Gini index (Gini)

and Shannon entropy (SE) are two different metrics used to measure the distribu-

70

tional inequality [91]. Distributional inequality measures how unequally different

items are chosen by users when a particular recommender system is used. Consider-

ing LI the list of items in the collection ordered in increasing order of the probability

to be put in a recommendation list p(i), the Gini index is defined as:

Gini =
1

n−1

n

∑
j=1

(2 j−n−1)p(i j)

where i1, ...in is the list of items sorted by increasing p(i).

The index goes to 0 when all items are equally chosen. On the other side, it goes

to 1 when the recommender always selects the same item. According to the eval-

uation target, it is possible to adopt another formulation that considers the number

of times an item is recommended. Usually, the Gini index is represented through a

reversed scale, obtained as 1 - Index. This choice makes the index more readable

because, with this formulation, higher is better. In this case, low values correspond

to a scenario in which items are not equally chosen.

Shannon entropy (SE), on the other hand, takes the same probability and com-

putes a different value:

SE =−
n

∑
i=1

p(i) logp(i)

Entropy goes to 0 when a single item is recommended. When a recommender

recommends n items, the entropy value reaches log(n).

Intra-List Diversity

Another interesting characteristic is Intra-List diversity. In general, we could say

that a recommendation list is diversified if the items it contains are different. Usu-

ally, a recommender does not care about the similarity or dissimilarity of recom-

mended items. However, let us suppose to design a recommender for a travel

agency. If the different alternatives are similar, the recommender is not suggest-

ing anything interesting to users. To improve user experience [352], we should

provide a varied recommendation list. In this scenario, to measure diversity, we

have to measure a degree of diversity between items in the same list [377].

71

Since diversity is an opposite signal to similarity, we can choose a similarity

metric for this task. In literature, several strategies have been proposed: means,

summations, minimum and maximum distances. An example is Intra-List

Diversity (ILD) [429].

Expected Intra-List Diversity is a diversity metric which measure how much is

diversificate the recommendation.

ILDu@N =
1
2 ∑

xi∈Lu(n)
∑

x j∈Lu(n)
1− sim(xi,x j) (3.18)

ILD@N =
1
|U | ∑u∈U

ILDu@N (3.19)

Finally, the diversification can also be computed considering the different intents

of the user. In order to evaluate the diversification power in this case we could

measure ERR-IA[95].

ERR− IA =
n

∑
r=1

1
r ∑

t
P(t|q)

r−1

∏
i=1

(1−Rt
i)R

t
r

where r is the position of an item i, t is the topic, P(t|q) is the conditional probability

of the topic given the query (user profiles in recommendation scenario), Ri is the

probability of the relevance of the item and Rr is the probability of the relevance

of the list of items from 1 to r. With this metric, the contribution of each item

in the recommendation list is based on the relevance of documents ranked above

it. The discount function then also depends on the relevance of previously ranked

documents.

3.6.4 Novelty

The novelty of recommendations [377] could be defined as the presence in the rec-

ommendation list of completely unknown items for the user [220]. There is not a

unified definition of novelty. Indeed recommender systems use different definitions

of novelty. However, in general, it is considered as a measure of how many new

items are recommended. A common approach is measuring the number of recom-

mended items that come from the long tail. It is a signal of the ability of a system of

72

recommending items that never the user could have discovered. Hence, measuring

novelty is crucial for a successful recommender.

A metric that measures the ability of the system of proposing long-tail items is

Entropy-Based Novelty (EBN) [47]. Let us define again the recommenda-

tion list as Lu(N). Entropy-Based Novelty can be computed as:

EBNu@N =− ∑
i∈Lu

pi · log2 pi

in cui:

pi =
|{u ∈U | i è rilevante per l’utente u}|

|U |
With this EBN formulation, when EBNu@N decreases the novelty increases.

A metric that measures the ability of the system of proposing long-tail items

is Entropy-Based Novelty (EBN) [47]. Let us define again the recommen-

dation list as Lu(N). Entropy-Based Novelty can be computed as: Another

novelty metric is Expected Popularity Complement which corresponds

to the expected number of relevant items that come from the long-tail. In this case,

the binary relevance formulation of EPC [91] can be computed as:

EPC =C ∑
ik∈R

disc(k)p(rel|ik,u)(1− p(seen|ik)) (3.20)

where disc(k) is a discount function, p(rel|ik,u) is the relevancy of the item in

the recommendation list and (1− p(seen|ik) reflects a factor of item novelty. C is

a normalizing constant, which stabilize the metric against unwanted biases. Two

approaches are used in information retrieval to define 1
C . The former defines 1

C as

the maximum metric value obtainable by an ideal recommendation ranking as in

nDCG or a-nDCG. The latter defines it as the expected browsing depth.

EFD, on the other hand, is a measure of the expected inverse collection fre-

quency of relevant and seen items:

EFDu@N =− 1
|RecN

u |
∑

i∈RecN
u

log2 p(i|seen)

The aforementioned metrics provide a measure of the ability of a system to

recommend relevant long-tail items.

73

74

Part II

Feeding RSs with explicit knowledge

75

Chapter 4

Introduction

This chapter is focused on the exploitation of a formal representation of knowl-

edge to feed Recommender Systems. We have already provided a broad overview

of Semantic Web technologies and Recommender Systems techniques. Hidden in

the overview, a careful reader may have read some hints on the approaches we are

proposing. External knowledge can help propose more accurate recommendations.

However, a fine representation of knowledge can highlight other similarities. This

usually leads to improvements in terms of other dimensions like diversity and nov-

elty. Moreover, the collaborative filtering algorithms usually deal with very sparse

matrices. This lack of data can be compensated by external knowledge.

In the last decade, collaborative filtering approaches have shown their effective-

ness in computing accurate recommendations starting from the user-item matrix.

Unfortunately, due to their inner nature, collaborative algorithms show their limits

when they deal with sparse matrices and, in these cases, encoding user preferences

only through past ratings may lead to unsatisfactory recommendations. Hybrid ap-

proaches have been proposed to cope with this issue by exploiting side informa-

tion about the items within the catalog. In the first line of research, we propose to

77

inject knowledge from semantic graphs to matrices. In practical terms, we pro-

pose to exploit past user ratings, and Linked Open Data to evaluate the relevance

of every single feature within each user profile thus moving from a user-item to a

user-feature matrix. Here, each value is a pair representing both the popularity of

the feature in the user profile and its estimated rating. We then propose two com-

putationally efficient content-based approaches and two hybrids, that make use of

matrix factorization techniques to compute recommendations. The evaluation has

been performed on three datasets referring to different domains (movies, music, and

books) and experimental results show that the proposed methods outperform state

of the art approaches in terms of accuracy, novelty, and diversity of results.

Providing relevant personalized recommendations for new users is one of the

major challenges in recommender systems. This problem, known as the user cold

start has been approached from different perspectives. In particular, cross-domain

recommendation methods exploit data from source domains to address the lack of

user preferences in a target domain. Most of the cross-domain approaches pro-

posed so far follow the paradigm of collaborative filtering and avoid analyzing the

contents of the items, which are usually highly heterogeneous in the cross-domain

setting. Content-based filtering, however, has been successfully applied in domains

where item content and metadata play a key role. Such domains are not limited to

scenarios where items do have text contents (e.g., books, news articles, scientific

papers, and web pages), and where text mining and information retrieval techniques

are often used. Potential application domains include those where items have as-

sociated metadata, e.g., genres, directors and actors for movies, and music styles,

composers and themes for songs. With the advent of the Semantic Web and its ref-

erence implementation Linked Data, a plethora of structured, interlinked metadata

is available on the Web. These metadata represent a potential source of information

to be exploited by content-based and hybrid filtering approaches. Motivated by the

use of Linked Data for recommendation purposes, in the second line of research we

present and evaluate a number of matrix factorization models for cross-domain
collaborative filtering that leverage metadata as a bridge between items liked by

users in different domains. We show that in case the underlying knowledge graph

78

connects items from different domains and then in situations that benefit from cross-

domain information, our models can provide better recommendations to new users

while keeping a good trade-off between recommendation accuracy and diversity.

Model-based approaches to recommendation can recommend items with a very

high level of accuracy. Unfortunately, even when the model embeds content-based

information, if we move to a latent space we miss references to the actual semantics

of recommended items. Consequently, this makes non-trivial the interpretation of a

recommendation process. In the third line of research, we show how to initialize
latent factors in Factorization Machines by using semantic features coming
from a knowledge graph in order to train an interpretable model. With our

model, semantic features are injected into the learning process to retain the original

informativeness of the items available in the dataset. The accuracy and effectiveness

of the trained model have been tested using two well-known recommender systems

datasets. By relying on the information encoded in the original knowledge graph,

we have also evaluated the semantic accuracy and robustness for the knowledge-

aware interpretability of the final model.

Preference representation and reasoning play a central role in supporting users

with complex and multi-factorial decision processes. In fact, user tastes can be used

to filter information and data in a personalized way, thus maximizing their expected

utility. Over the years, many frameworks and languages have been proposed to deal

with user preferences. Among them, one of the most prominent formalism to rep-

resent and reason with (qualitative) conditional preferences (CPs) are conditional

preference theories (CP-theories). In the fourth line of research, we show how
to combine CP-theories with Semantic Web technologies in order to encode in
a standard SPARQL 1.1 query the semantics of a set of CP statements repre-
senting user preferences by means of RDF triples that refer to a “preference” OWL

ontology. In particular, here we focus on context-uniform conditional (cuc) acyclic

CP-theories [395]. The framework that we propose allows a standard SPARQL

client to query Linked Data datasets, and to order the results of such queries relative

to a set of user preferences.

In Recommender Systems and, more broadly, in Information Retrieval scenarios,

79

the notion of relevance for the attributes of an item (or a document) plays a crucial

role. As an example, all the items belonging to a recommended list are supposed to

be of interest to the user because there is a similarity between the relevance of their

attributes and those belonging to the items already enjoyed by the user in the past.

Relevance measures such as TF-IDF or BM25 are a representation of the informa-

tiveness of attributes in item description and are based exclusively on content-based

information. In this investigation, we propose to enhance pure content-based rele-

vance values for item attributes by exploiting collaborative information. The idea is
that of representing a vector of attributes whose weights encode both content-
based and collaborative knowledge in a principled way. To show the effective-

ness of our proposal, we have tested it on three different datasets with respect to

state-of-the-art algorithms in Recommender Systems.

80

Chapter 5

From semantic graphs to matrices

5.1 Introduction

Recent years have seen the flourishing of many and diverse recommendation tech-

niques based on collaborative information encoded in the user-rating matrix. Fac-

torization techniques have proven their effectiveness in improving the performance

of recommendation engines and are implemented in many industrial and commer-

cial systems [203, 44]. More recently, deep learning arrived as a new player in

the field to develop powerful collaborative and hybrid approaches [103]. The core

idea of collaborative filtering is to exploit the user-user connections through items

and ratings to estimate user tastes and then predicting a list of items the user may

be interested in. State-of-the-art algorithms can capture complex non-linear or la-

tent factors-based relationships between users and items thus resulting more effec-

tive in all those scenarios where several users partially overlap their ratings or, in

other words, the user-rating matrix is less sparse. To overcome the limits of pure

collaborative approaches, hybrid ones [80] have been proposed that also encode

side information, typically content-based, about the items. Indeed, whenever avail-

81

able, descriptions of the items can be used as a valuable source of information to

augment the knowledge injected in and exploited by the system to compute a rec-

ommendation list of items. In this direction, an interesting class of recommender

systems is the so called semantics-aware [116] where the information describing

items goes beyond text and keywords and is represented by categorical/ontological

data. Semantics-aware (SA) approaches have been widely adopted to integrate do-

main knowledge in a recommender system. SA approaches make use of ontologies

or encyclopedic sources to encode and exploit such knowledge and in the last years

many approaches have been proposed [260, 65, 230]. In fact, the domain-specific

knowledge eases the process of interpreting documents and extracting relevant in-

formation from them. More recently, thanks to the Linking Open Data initiative,

many structured data have become freely available to represent the content of items

in different knowledge domains and they have been used to feed recommendation

engines [279].

As a general remark, we can say that most of the recommendation algorithms

available in the literature focus on computing the relevance of a set of items with

reference to the user profile. Recommendation algorithms are designed around the

computation of a relevance score for an item by evaluating its similarity with ref-

erence to other items. Features composing the description of an item, whatever the

source, are not considered per se in the recommendation process but are usually

exploited to evaluate the similarity between items or users. We believe that more

attention might be paid to modeling the recommendation problem with a focus on

recommending features rather than items. Expanding an item in its features give us

a new set of explicit connections between items to be exploited with collaborative

filtering algorithms. Finally, recommending items via feature recommendation may

lead to an easier generation of explanation for the recommended list of items.

Unfortunately, moving from items to features is not that straight as in a forest

of many features, most of them may result not relevant to a user. Moreover, once

we design an algorithm able to compute a recommendation list of features, we have

to go back to the items space, as the ultimate goal of a recommender systems is to

suggest items to a user.

82

In this research line we present FF (for Feature Factorization), a top-N

recommendation algorithm relying on user’s feature preferences and collaborative

filtering information in the features space. The main goal of FF is to compute an

ordered list of features preferred by the user and, starting from such list, to reassem-

ble the relevance values of each returned feature to produce a top-N list of items

to recommend. All the side information adopted by FF is retrieved from DBpe-

dia, the cornerstone dataset of the Linked Data cloud. For each item in the user

profile we retrieve its features by querying DBpedia thus having them as a set of

entities. This avoids all problems related to synonymy and polysemy which usually

occur when dealing with keyword-based features. By combining the popularity of

a feature in the user profile and the ratings assigned to the items it is part of, for

each user we compute a pair containing the relevance of the feature and its inferred

rating. The resulting matrix in the user-feature space can be then manipulated via

factorization techniques to compute, for each user, a ranked list of features which is

in turn post-processed to produce the final list of recommendations.

Experimental evaluations of FF on two datasets related to the domains of books

and music show its effectiveness in terms of accuracy, diversity and novelty of re-

sults in very sparse settings.

Please note that, although our approach shares some points with multi-criteria

recommender systems [15], Feature Factorization differs from them be-

cause of the following main reasons:

• In FF, we do not assume any explicit rating to a specific feature of an item

but we rather try to infer it starting from the global rating of the item;

• We target a top-N recommendation task and not a rating prediction one;

First, we formalize an initial version of FF, purely based on feature factorization. It

is straightforward this version deserves its own experimental evaluation to assess if

it is a feasible research direction. Then, starting from the initial version of FF we

have worked on the following research questions:

RQ1 Are all the retrieved features needed to get results comparable with state-of-

the-art algorithms?

83

RQ2 How much does FF performance depend on the number of items we are able

to find a mapping for?

RQ3 Is it possible to reduce the computational effort of FF and keep at least the

same results in terms of accuracy?

RQ4 What is the influence of the quality for Linked Data information on the rec-

ommendation results?

RQ5 How does FF perform with reference to diversity and novelty of recommen-

dations?

The remainder of the chapter is structured as follows. In the next section we

report some related work on LOD-based and feature-based approaches to recom-

mendation. We continue in Section 5.3 by introducing and describing FF and its

extensions. Experimental evaluations are presented in Section 5.4 while in Sections

5.4.1 and 5.4.2 we present and discuss the corresponding results. Conclusions and

future work close the chapter.

5.2 Related Work

Several works have tried to build recommender systems by exploiting Linked Open

Data (LOD) as side information for representing users or items, in addition to the

user preferences usually collected through their ratings. Such approaches usually

rely on DBpedia, a dataset which acts as a hub for most of the knowledge in the so-

called LOD cloud. In the following, we review the recent literature on LOD-based

recommender systems and, besides, since we propose an approach that leverages the

relevance of single features in the user profile, we present related work in feature-

based recommender systems.

LOD-based RS. Recommender Systems can exploit the knowledge coming

from the LOD cloud for different tasks and in several ways. A detailed review of

the literature, up to 2015, on Recommender Systems leveraging Linked Open

Data is presented in [116]. Properties gathered from DBpedia may be used, e.g.,

84

to produce cross-domain recommendations [145], to build a multirelational graph

for a graph-based recommender [282], or to generate effective natural-language

recommendation explanations [269]. In [144] the authors propose three matrix fac-

torization models for cross-domain recommendation. LOD are exploited to compute

inter-domain item similarities, addressing the lack of data in the cold-start scenario.

In [386] a web tool is provided, to encode the semantics of Conditional preferences

theories [395]. Users preferences are expressed as RDF triples using a specific

OWL ontology. These preferences are then used to produce meaningful recommen-

dation lists via SPARQL queries. ExpLOD [269] is a novel tool able to generate

natural language explanations exploiting information encoded in Linked Open

Data encyclopedic datasets. In [266, 267] an extensive evaluation is performed,

to establish whether LOD features are beneficial or not in using a graph-based rec-

ommender system, specifically a PageRank with Priors [168] algorithm. Linked

Data Semantic Distance (LDSD) measure has been proposed by [302] to compute

a new distance metric to feed LOD-enabled recommender systems. In [280] authors

summarize the main adopted techniques to feed a recommender system with LOD,

explaining all the crucial steps to extract this kind of knowledge and to exploit it. In

[268] popularity, collaborative, and content-based information is exploited with and

without Linked Data to evaluate the impact on the usage of LOD features to produce

recommendations.

When working with a Linked Data dataset, e.g., DBpedia, its properties may

be used in very different ways:

1. to define semantic similarity measures for providing more accurate recom-

mendations [297, 270, 259, 302, 281];

2. to deal with classical problems of recommender systems, as the limited con-

tent analysis or cold-start, e.g., by introducing new relevant features to im-

prove item representations [68, 337], or to cope with the increasing data spar-

sity [266];

3. to improve the overall accuracy of a recommender system [288, 265], or to

provide a good balance between different recommendation objectives, such

85

as accuracy and diversity [212, 266, 286].

Feature-based RS. The most widely adopted recommendation algorithms rely

on the assumption that there are sufficient historical data for measuring similarity

between items or users. Unfortunately, this assumption does not hold in several do-

mains, where new items often lack ratings or comments, and where products that are

less often purchased have fewer records of ratings. Several works attempt to analyze

the user purchasing behavior based on item features and, consequently, user prefer-

ences towards specific features of items are then analyzed and exploited to provide

potential accurate recommendations. In [393], products are represented using vec-

tors of features, and a customer profile module computes the level of interest of the

customer in product features as the ratio of features among the products purchased,

and the product quantity purchased by that customer. Euclidean distance is then

used to calculate the similarity between the customer and product profiles to recom-

mend the top-N products. Similarly, in [165] a feature-based recommender system

is presented for domains without enough historical data to effectively measure user

or item similarities. The authors build the system based on the idea that users who

bought items with specific features also buy items with the same or similar features.

A similar approach is proposed in [274], in which effective strategies to incorpo-

rate item features for top-N recommender systems are developed. In graph-based

recommender systems, an interesting work was proposed in [170], where recom-

mendations are produced inferring user preferences, evaluating item-preferences

and attribute-preferences. The paper points out the importance of the feature eval-

uation and a method is proposed which exploits explicit feature ratings named at-

tributes. Another approach called Feature Preferences Matrix Factorization (FPMF)

has been proposed in [272]. FPMF incorporates user feature preferences in a matrix

factorization to predict user likes. Preferences on features are interpreted as user’s

attributes, which are taken into account when computing predictions on items by

introducing additional latent factor vectors corresponding to attributes. It is worth

noticing that none of the previous mentioned approaches exploits features coming

from the Linked Open Data cloud.

Yet, approaches on feature-based RS need suitable datasets containing the ex-

86

plicit opinions of users on features of items, i.e., the ground truth for the preferences

of users on items’ features, in order to evaluate user models in terms of matching

between estimated and true preferences on features. In [373], a Synthetic Data

Generator is presented able to produce user-item and user/item-attribute datasets,

while in [271], the authors used crowdsourcing to collect a dataset in the movie do-

main containing the explicit preferences of users on both items and their attributes.

In [420] authors face the problem of splitting sparse data in time dimension. In-

stead of using pre-assumed distributions, they exploit item features extracted from

textual reviews to realize a feature-level user model. In another interesting work,

User-specific Feature-based item-Similarity Models (UFSM) [136] are proposed, in

which multiple global item similarity functions are computed, together with user-

specific weights for each function. The personalized weighted function is then used

to produce recommendation lists. In [403] authors propose ReMF, a matrix fac-

torization algorithm able to deal with hierarchically structured features. They also

propose a new regularization method, named recursive regularization. Collabo-

rative Knowledge Base Embedding framework (CKE) is proposed in [414]. The

framework is designed to collaboratively learn latent representation starting from

visual, textual, and structured knowledge. Knowledge base embedding is performed

using three source-specific embedding techniques: TransR, SDAE, and SCAE re-

spectively for structured, textual, and visual sources. The three representation are

then combined in a single pair-wise ranking optimization function, to learn users

and items collaborative representations. In [179] parallel Recurrent Neural Net-

work (p-RNN) architecture is used to model sessions based on features extracted

from pictures and text descriptions. Another interesting work is [374], in which 3-

dimensional convolutional neural networks are used to produce recommendations.

Authors chose this architecture to cope with item factual and categorical features

within a single session. In details, this architecture is exploited to catch spatiotem-

poral patterns. In Boosted Factorization Machines (BoostFM) [406] a re-weighting

scheme is proposed to inject boosting technique into a Factorization-Machine-based

recommender system. Authors also propose two methods for pair-wise and list-wise

learning to rank optimization. In [206] explicit items and features pair-wise pref-

87

erences are mapped to item comparisons in order to provide more accurate recom-

mendations. DeepLIFT [346] technique is proposed to highlight the most important

features in a neural network model. A different perspective is proposed by [114],

in which the collaborative information is extracted and encoded in the form of new

features to feed a content-based recommender system. Discrete Factorization Ma-

chines (DFMs) [240] are a recent proposal in which the high computational cost

of feature-based and factorization machines algorithms is dramatically reduced by

exploiting binarization of real-valued parameters. In order to avoid the quantization

loss, the authors propose a different updating rule. The implicit short-term inter-

ests of the user are modeled through attentive neural networks in [322] with the

aim of maximizing the time spent by users on the platform. Instead of polyphonic

timbres of the song or topics, authors make use of embeddings of tags for the item

occurred before the song to be predicted. In [318] a new graph embedding tech-

nique, RDF2Vec, is introduced, that make use of Weisfeiler-Lehman Subtree RDF

Graph Kernels and graph walks to generate latent representations. More recently

a Multi-Task Feature Learning approach (MKR) for Knowledge Graph Enhanced

Recommendation [388] has been proposed that learn high-order interactions be-

tween items and entities in the knowledge graph. This approach takes advantage

of knowledge graph embeddings and associates each item in a catalog to one or

more entities in the knowledge graph. Other researchers build their approaches by

leveraging user-defined features, such as tags, in order to produce better recom-

mendations. We will not survey this line of research since, although tags seem to

convey preferences over features, tagging an item does not necessarily mean that

the user liked the attribute denoted by that tag. Finally, in our opinion feature-based

Rs research line may have an overlap with multi-criteria RSs [15], that studies in-

novative approaches in collaborative recommendation by attempting to capture and

model user preferences in a more comprehensive and nuanced manner by engaging

multi-criteria ratings, in order to represent users’ subjective preferences for various

components of individual items.

88

5.3 Approach

5.3.1 Motivation

This line of research aims at investigating the role of feature rating and relevance in

the item rating process. The main intuition behind FF is that items can be consid-

ered as a collection of features. Hence, when users rate an item, they are actually

expressing their preference over the whole collection. In the evaluation of a movie,

the user implicitly evaluates the director, the actors, the producer, the country in

which the movie is set. Each feature has its own rating and a relevance degree,

hence a Recommender System should consider these factors. The item rating ac-

tion can be then interpreted as an attempt to choose an overall rate for the entire

set of features. Our assumption is that if we want to discover the contribution of

each single feature in the evaluation, first of all, we need to unpack each item in its

composing features. Then, by combining the overall popularity of each feature in

the user profile (feature relevance) and the rating assigned to items containing that

feature we may estimate the implicit rating the user is giving to that specific feature.

In our model the user profile is not just a set of 〈item,rating〉 pairs but it con-

tains information about the relevance (popularity) of each feature composing the

rated items and its estimated rating. It is then represented as a set of triples

〈 f eature,relevance,rating〉. In the following, we see principled methods to esti-

mate both the user-feature rating and the user-feature relevance, and then we move

to the recommendation problem using the features that compose the user profile.

5.3.2 Data Model

For a better understanding of the data we use to reshape the user profile in terms of

knowledge-aware features, we first introduce the multidimensional graph we have

used to build them. As we can see from Fig. 5.1 the user profile is built by consider-

ing information coming from both the Users-Items matrix and from DBpedia

as external knowledge source modeled as Linked Data. Now we see how the

graph-based nature of this latter is exploited to identify features used to represent

89

items. Linked Data are represented as RDF labeled oriented graphs and their data

model is based on the notion of triple 〈sub ject, predicate,ob ject〉 where predicate

represents the relation connecting the two entities sub ject and ob ject. With ref-

erence to Figure 5.1, we have that an item i in the catalog of a recommendation

engine may represent the subject of a triple 〈i, p,e〉 ∈ DBpedia. As an exam-

ple, in the movie domain we have triples like 〈Matrix,starring,Keanu Reeves〉,
〈Matrix,director,The Wachowskis〉. It is noteworthy that the same pair predicate,

ob ject may occur for different items as for 〈Point Break,starring,Keanu Reeves〉
and, at the same time, the same entity may appear as object in diverse triples as in the

case of 〈V for Vendetta,producer,The Wachowskis〉 where the entity The -

Wachowskis is connected to the subject via producer instead of director

as for the previous triple. In order to catch the different knowledge encoded in the

use of the same entity as object in triples with diverse predicates, in our model, we

consider the chain p ◦ e as a feature associated to the item i which in turn repre-

sents the subject of the corresponding triple. In the model we propose, each item

in the user profile is associated with a relevance function denoted with ρui(·). Its

value represents an estimation of how important is a particular item to the user u.

Analogously, we have a value associated to each feature in the profile computed

via the function ρu f (·) that for each feature represented by the chain p ◦ e returns

a value representing the relevance of that feature in the user profile. As we have

pointed out in Section 5.3.1, we assume there is a relation between the two rele-

vance values which should be reflected in the mathematical formulation of the two

functions ρui(·) and ρu f (·). Actually, each feature is also associated with a rating

ru f (·) which is inferred by considering the rating of all the items containing the

specific feature.

5.3.3 Problem Formulation

By considering the data associated to the user profile we can move from a rating

matrix connecting user and items to a user-feature matrix where each value is repre-

sented by the pair 〈ρu f (·),ru f (·)〉. In other words, we may consider two user-feature

matrices: the one P containing relevance values ρu f (·), the other R the inferred

90

Figure 5.1: A graph-based representation of the data behind the computation of the

user profile.

ratings ru f (·). Given I representing the catalog of items and Iu containing the items

experienced by the user u, for the sake of compactness, in the formulation of the

problem we now introduce the following sets:

F i = {p◦ e | 〈i, p,e〉 ∈ DBpedia∧ i ∈ I}

Fu = {p◦ e | 〈i, p,e〉 ∈ DBpedia∧ i ∈ Iu}

F =
⋃
i∈I

F i

Iu f (p◦ e) = {i | i ∈ Iu∧ p◦ e ∈ F i}

In FF, the relevance of a feature p◦e is computed as its probability of belonging

to Iu. More formally we have:

ρ
u f (p◦ e) =

|Iu f (p◦ e)|
|Iu|

91

The idea behind this computation is quite straight: the more a feature is con-

nected to the items in the user profile (i.e., the more a feature is popular), the higher

is its relevance for the user. Once we have computed the relevance of all the features

in the user profile, we can move to the computation of the relevance for the items

i ∈ Iu. It can be computed as the normalized summation of the relevance for all the

features it is composed by. In formulas, we have:

ρ
ui(i) =

∑p◦e∈F i ρu f (p◦ e)
|F i|

Please note that ρui(i) is not defined for i 6∈ Iu. As discussed before, we see that the

relevance of an item is influenced by the relevance of the features it is composed

by. In terms of the final user-feature matrices we want to compute, the relevance

of an item is used to estimate the rating associated to the features occurring in the

items already rated by the user. Given a feature p◦ e, the computation of ru f (p◦ e)

exploits both the rating and the relevance of each item i ∈ Iu containing p◦ e.

ru f (p◦ e) =
∑i∈Iu f (p◦e) rui ·ρui(i)

∑i∈Iu f (p◦e)ρui(i)

To completely move from a user-item space to a user-feature one, we combine

P and R by introducing a new matrix S obtained by element-wise multiplication

of P and R. Each element of S is then computed as:

su f (p◦ e) = ρ
u f (p◦ e) · ru f (p◦ e)

Because of the spreading mechanism exploited by the method, we name su f (·)
feature spreading relevance (fsr). Our intuition is that features with the higher

values of fsr are the most representative for the users and are those influencing

their ratings. To test our intuition, we have defined different similarity measures

based on su f (·) and we then have tested them in a recommendation scenario.

5.3.4 Pure FF

The profiles we have built contain only the features the user has met before, but usu-

ally the number of those features is dramatically smaller than the overall number of

92

features and this results in P and R being very sparse. To complete the informa-

tion they contain, we compute, via Biased Matrix Factorization, the missing values

ρ̂u f (p ◦ e) for P and r̂u f (p ◦ e) for R. We run matrix factorization independently

on P and R. Biased Matrix Factorization is a Matrix Factorization model that

minimizes RMSE using stochastic gradient descent [224]. It computes user’s and

item’s biases to improve the estimation of the predicted value. Biased Matrix Fac-

torization represents a state-of-the-art algorithm in rating prediction task. ρ̂u f (p◦e)

and r̂u f (p◦e) represent the predicted relevance and the predicted rating for all those

features not belonging to any of the items in Iu. As the resulting matrices contain

both content-based and collaborative information (due to the Matrix Factorization),

we refer to them as hybrid profiles.

With the hybrid profile we can estimate a ranked list for all the remaining items

within the collection. In fact, the ranking of an item in the list is computed by

considering the rating of the features belonging to the item and their relevance.

r̂ui(i) = ∑
(〈i,p,e〉∈DBpedia)∧(i∈Iu)

ρ
u f (p◦ e) · ru f (p◦ e)+

+ ∑
(〈i,p,e〉∈DBpedia)∧(i 6∈Iu)

ρ̂
u f (p◦ e) · r̂u f (p◦ e)

(5.1)

It is important to point out that these estimations do not correspond to an actual

rating. Instead, the goal is trying to preserve a correct item ranking.

Post-filtering

To improve the results of the final recommendation process, we propose a post-

filtering step for reducing the number of features considered while computing the

final rank. The proposed filtering springs from the following observations:

• Not all the features items are relevant in the computation of the ranking for an

item. All those features whose rating results low just introduce noise in the

final values we compute.

• Feature ranking and relevance values evaluated via pure content-based ap-

proaches, i.e., before the Matrix Factorization, have a different influence if

93

compared with the collaborative ones representing latent factors computed

after the Matrix Factorization.

To lower the number of features involved in the computation, and produce recom-

mendations based only on the best ratings of the estimated features, we propose a

filter that operates on directly estimated features (content-based), and estimated fea-

tures coming from collaborative computation. Then, we introduce two thresholds α

and β that act as filters on the feature rating values respectively in the content-based

and the collaborative cases. Hence, Equation (5.1) is slightly modified:

r̂ui(i) = ∑
(〈i,p,e〉∈DBpedia)∧(i∈Iu)∧ru f (p◦e)>α

ρ
u f (p◦ e) · ru f (p◦ e)+

+ ∑
(〈i,p,e〉∈DBpedia)∧(i 6∈Iu)∧r̂u f (p◦e)>β

ρ̂
u f (p◦ e) · r̂u f (p◦ e)

(5.2)

5.3.5 Jaccard-fsr

One of the simplest way to compute the similarity between two objects (items or

users) is by Jaccard similarity. It is computed by taking into account the common

elements between the two objects. In our case, if we consider a pure content-based

setting, we may compute the similarity between a user and an item by looking at

the common features available within the user profile u and the item description

i. Actually, as the features with a higher value of fsr should be more relevant

for u, then we may select only those having the highest value of su f (·) for u and

check only these latter against i instead of the whole user profile. To identify these

valuable features, we have first computed µ(u) representing the average value of

su f (·) for u and we eventually select only those features with a value of fsr higher

than µ(u). More formally, based on the following definitions:

µ(u) =
∑

p◦e∈Fu
su f (p◦ e)

|Fu|
(5.3)

Relu+ = {p◦ e | p◦ e ∈ Fu∧ su f (p◦ e)> µ(u)}

Then, we define a Jaccard-fsr similarity value between u and i 6∈ Iu as:

J-fsr(u, i) =
|Relu+∩F i|
|Relu+∪F i|

(5.4)

94

5.3.6 Content Based- and Hybrid-fsr

Given the values of su f (·), we may compute a score associated to an item i not

belonging to the original user profile by summing the values of relevant fsr in

Relu+ for those features belonging to the description of i. As we are adopting a pure

content based approach we refer to this measure as Content-based feature spreading

relevance (CB-fsr).

CB-fsr(u, i) = ∑
p◦e∈Relu+∩F i

su f (p◦ e) (5.5)

In the previous equation, as well as in Equation (5.4), we see that we consider only

the relevant features in the users profile, or, in other words, the features they like.

In fact, this model makes use only of positive feedback. Even though this is

fine-tuned feature-specific feedback, it still is positive feedback.

Instead, many other approaches take advantage of both positive and negative feed-

back. Some of them can rely on explicit negative feedback provided by users. Oth-

ers adopt the missing not at random principle to set as negative all the unseen items.

In this scenario, the situation is dramatically different, because the estimated rating

is related to a feature, instead of an item.

To evaluate negative feedback for specific features, our idea is to exploit a Ma-

trix Factorization (MF) model. These kinds of algorithms are often designed as

iterative algorithms, with the aim of minimizing the rating prediction error. In a

Matrix Factorization model, entities (users, and items) are represented by means of

a bias and a vector of latent factors of predefined size D. In our scenario, we want to

substitute items with features. For each user u∈U , and each feature f ∈ F we build

a binary vector ruf(p ◦ e) ∈ R1×|F |, representing the estimated interaction between

u and f . In this modeling, ruf(p◦ e) contains only two 1 values corresponding to u

and f if f ∈ Fu, while all the other values are set to 0. The prediction formula can

be defined for each u f pair as:

ru f
H (p◦ e) = w0 +wu +w f +

D

∑
k=1

v(u,k) · v(f ,k) (5.6)

where the parameters to learn are: w0 representing the global bias; wu and w f repre-

95

senting the individual biases for u, and f ; the pair v(u,k) and v(f ,k) in ∑
D
k=1 v(u,k) ·v(f ,k)

measuring the strength of the interaction between each pair u and f . The number

of latent factors is represented by D. This value is usually selected at design time

when implementing the MF algorithm.

Matrix Factorization can be easily trained in order to minimize the rating pre-

diction error via gradient descent methods, alternating least-squares (ALS) and

MCMC. Usually, when MF is optimized via gradient descent methods, the pre-

diction formula can be defined as:

δ
u f = w0 +wu +w f +

D

∑
k=1

v(u,k) · v(f ,k) (5.7)

r̂u f
H = rmin +

1
1+ e−δ u f · range (5.8)

where rmin is the minimum rating of all the considered transactions, whereas range

is the rating range size. The rating prediction problem is bound to the (0,1) range

of the sigmoid function. The consequent cost function is:

J(θ) = ∑
u∈U

∑
f∈Fu

(
ru f − r̂u f

)
+λΘ · ‖Θ‖2 (5.9)

where ru f
H is the feature rating estimated by our method, whereas r̂u f

H is the rating

estimated by the matrix factorization model. We can introduce σ(·) as a sigmoid

function, and the update step can be defined as:

Θ ← Θ+α · ((ru f − r̂u f) ·σ(δ u f) · (1−σ(δ u f)) ·

·range · ∂

∂Θ
r̂u f +λ ·Θ) (5.10)

To update the factorized parameters, partial derivatives can be computed as:

∂

∂Θ
r̂u f =



1, if θ = w f ,

v(u,k), if θ = v(f ,k),

v(f ,k), if θ = v(u,k),

0, otherwise

(5.11)

96

Using Equation (5.11) in Equation (5.10) the model parameters can be iteratively

updated to minimize the rating prediction error.

As the resulting matrix contains both content-based and collaborative informa-

tion (due to the Matrix Factorization), we refer to it as hybrid profile. To exploit it,

we set the lowest K features (Relu−) as negative examples with a value b̂u f :

b̂u f (p◦ e) =−1+ ŝu f (p◦ e) {p◦ e ∈ Relu−} (5.12)

where ŝu f is the estimated feature f value for user u with the Matrix Factorization

model. With both content-based, and collaborative filtering information we may

compute a score associated to item i. We refer to this measure as Hybrid-fsr:

Hybrid-fsr(u, i) = ∑
p◦e∈Relu+∩F i

su f (p◦ e)

+ ∑
p◦e∈Relu−∩F i

b̂u f (p◦ e) (5.13)

5.3.7 frsCBF

Values in S represent an indicator on the importance of a feature for a specific

user. Based on this information we may compute recommendation lists for items

i 6∈ Iu by exploiting su f (p ◦ e) values. We may compare features in Fu with those

in F i in different ways. The most intuitive way is that of computing a score for

i is by summing of the values associated to the features it is composed by with a

normalization factor.

r̂u(i) =
∑p◦e∈Fu∩F i su f (p◦ e)√
∑p◦e∈Fu∩F i(su f (p◦ e))2

(5.14)

We can see that the value computed by Equation (5.14) corresponds to the cosine

similarity between the user profile vector containing su f (p ◦ e) if p ◦ e ∈ Fu and 0

vice versa, and the corresponding binary vector for i containing 1 if p◦ e ∈ F i and

0 vice versa.

97

5.4 Experimental Evaluation

5.4.1 Experiments for Pure FF

In this section the experimental evaluation settings and the metrics used to evaluate

the proposed algorithm are presented. We have evaluated the algorithms in terms

of ranking accuracy for top-N recommendations. The evaluation has been carried

out on two datasets, LibraryThing and Last.fm belonging respectively to the

domains of books and music.

Datasets description and Pre-Processing

To alleviate the popularity bias from the evaluation results we have removed the

1% most popular items [108]. Moreover, we have removed users with a number of

ratings smaller than five as we want to evaluate the algorithms in a non cold-start

setting. The LibraryThing dataset contains 7,564 users, 39,515 items, and

797,299 ratings. The minimum, mean and maximum number of ratings for user in

the dataset are 20, 63, 3,018, respectively. Last.fm contains 1,892 users, 17,632

items and 92,834 ratings. In LibraryThing, ratings are distributed over a 1−10

scale. In Last.fm the rating is the number of times a song has been played, hence

that number has been rescaled for each user in a 1−10 scale. Table 5.1 shows some

statistics of the datasets subsets considering only the items mapped to DBpedia

(using publicly available mappings [288]) after the pre-processing step. In case

a mapping does not exist, a simple placeholder feature is used, that inherits the

corresponding item values in terms of rating and relevance.

Table 5.1 also reports the sparsity values both for users-items and users-features

matrices.

Evaluation protocol and experiment setting

To evaluate Pure FF we use the all unrated items [356] evaluation protocol, in

which the ability to choose the correct set of items to propose to the users is fa-

vorite despite of the local ranking ability (rated test-items evaluation protocol). In

98

LibraryThing # users # items # ratings sparsity (%)

user-item space 6,909 12,656 248,589 99.7157

users # features # ratings sparsity (%)

user-feature space 6,909 141,531 8,680,619 99.11226

Last.fm # users # items # ratings sparsity (%)

user-item space 1,866 8,502 39,557 99.75066

users # features # ratings sparsity (%)

user-feature space 1,866 274,523 4,989,281 99.02603

Table 5.1: Datasets Statistics.

all unrated items the recommendation list is produced using as candidate list the

Cartesian product between users and item minus the items the user experimented in

the training set. Evaluation has been conducted using a hold-out 80− 20 splitting,

in which 20% of the ratings are retained as test set. We have evaluated the accu-

racy of our approach by computing Precision (P@N), Recall (R@N), and nDCG

(nDCG@N).

Baselines. In the experimental evaluation we have compared FF with the popu-

larity baseline (PopRank) and, as we rely on Matrix Factorization, the well-known

matrix factorization algorithm BPRMF [312] both in its pure collaborative version

and in the hybrid one considering side information BPRMF+SI. We have also in-

cluded PopRank as it is acknowledged that popularity ranking can show good per-

formance and it is an important baseline to compare against [108]. To produce

recommendation lists from these well-known algorithms we have used the MyMedi-

aLite1 implementation [154]. As for the selection of α and β parameters needed

in Equation (5.2), in these experiments we have kept a conservative approach and

we have set respectively α to the mean µ of the rated items, and β to the mean µ

plus the standard deviation σ . Clearly, these values are not the optimal ones and the

performance could be improved by a cross-validation setting of these parameters.

1http://www.mymedialite.net/

99

Experimental Results

Tables 5.2 and 5.3 show the performance of FF compared with the competing algo-

rithms described in Section 5.4.1. In bold we mark the best result for each metric.

All the evaluations have been performed by using the same protocols as imple-

mented in RankSys2 library [91].

In Table 5.2 we show the evaluation results on LibraryThing dataset with

a threshold set to 7/10 in a Top− 10 recommendation list. The ranking accuracy

performance, measured through nDCG, Precision and Recall shows that Feature

Factorization performs better than the competing algorithms. In details, Pure

FF performs 4 to 6 times better than BPRMF, the second best accurate algorithm.

Alg P@N R@N nDCG@N

Pure FF 0.03251 0.06576 0.06129
BPRMF 0.00837 0.01280 0.01020

BPRMF+SI 0.00777 0.01325 0.01007

PopRank 0.00023 0.00095 0.00044

Table 5.2: Comparative results on LibraryThing dataset, Top-10 recommenda-

tion list and relevance threshold of 7/10.

As the rescaling operation in Last.fm affects the values of the items in the

test set, we have decided to evaluate considering all the items in test set as relevant

(i.e., setting the relevance threshold to 0). Table 5.3 shows ranking accuracy evalu-

ation results on Last.fm dataset with a threshold of 0/10 for a Top−10 recom-

mendation list. For precision metric the best performing algorithm is Pure FF that

performs 4 times better than BPRMF. For nDCG, Feature Factorization

performs at least 5 times better than the competing algorithms. The differences

about accuracy metrics between Pure FF and the other algorithms are statistically

significant according to the Student’s paired t-test with p < 0.001 for every cases.

2https://github.com/RankSys/RankSys

100

Alg P@N R@N nDCG@N

Pure FF 0.01543 0.02701 0.02330
BPRMF 0.00348 0.00902 0.00495

BPRMF+SI 0.00032 0.00073 0.00028

PopRank 0.00027 0.00089 0.00021

Table 5.3: Comparative results on Last.fm dataset, Top-10 recommendation list

and no relevance threshold.

5.4.2 Experimental Evaluation for FF extensions

The evaluation has been carried out on three well-known datasets, Library-

Thing, MovieLens, and Last.fm belonging respectively to the domains of

books, movies, and music.

Datasets description and Pre-Processing

Again, to alleviate the popularity bias from the evaluation results, we have removed

the 1% most popular items [108]. Moreover, we have removed users with a number

of ratings smaller than five as we want to evaluate the algorithms in a non-cold-

start setting. The MovieLens dataset contains 1,000,209 ratings over of approxi-

mately 3,900 movies made by 6,040users on the Movielens platform. Each rating

is expressed on a 1− 5 scale. The LibraryThing dataset contains 7,564 users,

39,515 items and 797,299 ratings. The minimum, mean and maximum number of

ratings per user in the dataset are 20, 63 and 3,018, respectively. Last.fm con-

tains 1,892 users, 17,632 items and 92,834 ratings. In LibraryThing, ratings

are distributed over a 1−10 scale. In Last.fm the rating is the number of times a

song has been played, hence that number has been rescaled for each user on a 1−10

scale. Table 5.4 shows some statistics of the datasets subsets considering only the

items mapped to DBpedia (using publicly available mappings [288]) after the pre-

processing step. Table 5.4 also reports the sparsity values both for Users-Items

and Users-Features matrices.

101

LibraryThing # users # items # ratings sparsity (%)

user-item space 6,909 12,656 248,589 99.7157

users # features # ratings sparsity (%)

user-feature space 6,909 141,531 8,680,619 99.11226

Last.fm # users # items # ratings sparsity (%)

user-item space 1,866 8,502 39,557 99.75066

users # features # ratings sparsity (%)

user-feature space 1,866 274,523 4,989,281 99.02603

MovieLens # users # items # ratings sparsity (%)

user-item space 6,040 3,171 689,867 96.3981

users # features # ratings sparsity (%)

user-feature space 6,040 100,845 56,732,878 90.68584

Table 5.4: Datasets Statistics.

Evaluation protocol and experiment setting

To evaluate FF, even here, we adopt the all unrated items [356] evaluation protocol.

In all unrated items the recommendation list is produced using as candidates list the

Cartesian product between users and item minus the items the user experimented

in the training set. The evaluation has been conducted using a hold-out 80− 20

splitting, in which 20% of the ratings are retained as the test set.

We chose to evaluate the approaches through accuracy, novelty and aggregate

diversity metrics. The top-N recommendation accuracy metrics we used are Preci-

sion (P@N), Recall(R@N) and nDCG (nDCG@N). As for novelty, in the last years,

several metrics have been proposed, which measure the ability of a system to rec-

ommend items that are not very popular within the catalog and that usually belong

to the long tail [220]. In this investigation, EPC (Expected Popularity Complement)

is used for novelty evaluation. EPC measures how much a system is capable to pro-

pose long tail items to the users. In this case, the binary relevance formulation of

EPC has been adopted [91]. Diversity has been measured through catalog coverage

(aggregate diversity in top-N list), Gini index and Shannon entropy. The catalog

coverage, also called aggregate diversity or the diversity-in-top-N (ADiv@N), for-

mulated in [14], denotes the overall number of different items recommended within

102

all recommendation lists. It denotes the propensity of a system to recommend al-

ways the same items. Gini index (Gini) and Shannon entropy (SE) are two different

metrics used to measure the distributional inequality [91]. The evaluation has been

performed considering Top− 5 and Top− 10 recommendations for MovieLens,

Last.fm and LibraryThing datasets and two different thresholds for deeming

items as relevant: 7 and 9. Accuracy and novelty metrics have been computed on a

per-user basis and the results have been averaged.

Baselines

In the experimental evaluation, we have compared FF with the popularity base-

line and three well-known Matrix Factorization algorithms. These latter have been

tested both in their pure-collaborative variant and in their hybrid ones by also con-

sidering side information coming with the dataset (Tag), i.e., tags associated to the

items, or considering Linked Data side information extracted from DBpedia

(LOD). Hybrid variants of matrix factorization algorithms have been realized feed-

ing them with new transactions corresponding to items-features associations, as sug-

gested in [274]. The competing algorithms we selected are then:

• PopRank, a non-personalized algorithm that produces the same recommen-

dation list for all the users. This list is computed measuring the items’ popu-

larity and ordering them in descending order. It is acknowledged that popu-

larity ranking can show good performance and it is an important baseline to

compare against [108].

• Bayesian personalized ranking - Matrix Factorization

(BPRMF), a matrix factorization algorithm that exploits the Bayesian Person-

alized Ranking criterion[312] to minimize the ranking errors.

• Soft Margin Ranking - Matrix Factorization (SMRMF), a

matrix factorization model that uses stochastic gradient descent to optimize a

soft margin [392].

103

• Weighted Matrix Factorization (WRMF) a weighted matrix fac-

torization model that makes use of alternate least squares [184] for optimiza-

tion.

To produce recommendation lists from these well-known algorithms we have used

the MyMediaLite3 implementation [154]. The experimental setting is designed to

evaluate the performance of the proposed approach against different matrix factor-

ization algorithms, varying datasets, and side-information fed to the recommender,

keeping fixed the models’ hyperparameters. For this reason, the parameters are set

considering the values suggested by the authors in their original papers.

Experimental Results

Tables 5.5 to 5.18 show the performance of FF4 compared with the competing al-

gorithms described in Section 5.4.2. In bold we mark the best result for each metric

while we underline the second best result. The differences about accuracy metrics

between FF and the other algorithms are statistically significant according to the

Student’s paired t-test [351] with p� 0.001.

Ranking accuracy evaluation The first three metrics in Tables 5.5 to 5.18 are

devoted to accuracy evaluation of FF with respect to competing baselines. As it

could be appreciated in each experiment at least one variant of FF outperforms the

baselines. However, it should be noticed that, with respect to results from the liter-

ature, the removal of the 1% heavily affects the collaborative algorithms. For this

reason, it is important to underline that Hybrid-fsr also suffers from this removal.

It is worth to notice that this performance drop is alleviated by its hybrid nature.

Despite this consideration, collaborative algorithms in MovieLens experiments

still show high performance, with BPRMF as the winner among the competitors.

Nevertheless, LibraryThing and Last.fm showed that the algorithm that best

3http://www.mymedialite.net/
4Implementation available at: https://github.com/sisinflab/

Features-Factorization

104

deals with increasing sparsity is WRMF. Among the proposed variants the discus-

sion is more complex because from experiments it is clear that they behave as they

were completely different algorithms. In details, there could be noticed two dif-

ferent dimensions for the results analysis: quality of meta-data, and statistics of

datasets. The latter seems to impose the magnitude of the metrics value, which is

comparable to competing algorithms. The former heavily affects the results and we

consider it so important to be detailed in the next subsection to explain the details

of the measured differences.

RQ1: Are all the retrieved features needed to get results comparable with state-
of-the-art algorithms?

This question is motivated by a rich literature in feature selection research field. In

our previous experiment (regarding Pure FF), we have decided to take advantage of

all available features. However, since it was a collaborative filtering algorithm, we

have found really hard to understand if all the features have been effectively bene-

ficial. There have been too many parameters that could affect the results, and too

many assumptions to be made. To establish whether they have been beneficial or

not, we have decided to define a simple a clear content-based variant of FF based

on cosine similarity and compare it against a Jaccard-based variant. In this vari-

ant, a threshold been defined to consider only relevant features. The choice of the

threshold could be unfair, thus we have decided to adopt the mean of features val-

ues as a reasonable threshold (see Equation (5.3)). The experiments clearly show

that the performance of the two variants depends on the specific dataset and items’

descriptions. In MovieLens we can observe rich descriptions for almost all the

considered items, it is therefore not surprising that the winner is CB-fsr, in which

all features are involved. LibraryThing shows that the winner is Jaccard-fsr

Tag. This leads to two considerations: 1) item descriptions in KB are not as effec-

tive (for recommendation task) as dataset tags are; 2) Among the considered tags,

performing a feature selection is beneficial. Even in Last.fm, LOD features are

worse than tags, and it could be noticed that items descriptions may vary from very

rich ones to items with less than 5 features.

105

RQ2: How much does FF performance depend on the number of items we are
able to find a mapping for?

This is a very common question that is usually posed when considering the injection

of Linked Open Data in a recommendation scenario. Despite the obvious fact

that collecting high-quality users-based tags using crowdsourcing may result in a

difficult task, we have decided to perform a series of specific experiments to answer

the question. To test how much the lack of some items affects the overall recommen-

dation results, we have dropped half of the Hybrid-fsr items repeatedly until we

have reached one eight of the original number of items. It is possible to appreciate

the number of considered items in the first column of each table, near each Hybrid-

fsr experiment (e.g., Hybrid-fsr 3,171, 1,586, 793, 396 for MovieLens). For

each case, the items have been dropped with uniform distribution, and the model

has been completely retrained. In MovieLens, the performance of Hybrid-fsr

with one-half items shows results that are still comparable against the competing

collaborative filtering algorithms. Moreover, the results of one-eight items exper-

iments show that the decrease w.r.t. original performance is only of two-thirds of

the original value. In LibraryThing, the decrease is more evident, but its hy-

brid nature makes Hybrid-fsr still comparable with other algorithms even though

the number of considered items is reduced to one eight of the original number. In

Last.fm, the decrease in performance is even stronger. However, this may be

due to the specific dataset, because the same behavior can be observed on all the

baselines, but WRMF.

RQ3: Is it possible to reduce the computational effort of FF and keep at least
the same results in terms of accuracy?

The adoption of a model that takes into account matrix factorization in a much

bigger matrix (Users-Features matrix) could be considered a questionable option

in very big datasets. For this reason, we have decided to create the pure content-

based variants of FF. Since we have created two different content-based variants

for the aforementioned reasons, we consider useful to discuss the results of all the

three variants together. Moreover, since Hybrid-fsr has been designed to work

106

mainly with LOD side-information, we consider the LOD versions of the variants. In

MovieLens we may notice rich descriptions and highly collaboratively-connected

users and items, thus it is reasonable that the winner is CB-fsr, followed by

Hybrid-fsr. In LibraryThing and Last.fm, the ranking order is different,

and Hybrid-fsr is the winner in these cases. These behaviors are reasonably de-

rived from the quality of descriptions: with worse descriptions, CB-fsr is the last

of the ranked list. However, it is noteworthy that with less-described items, Hybrid-

fsr is able to exploit collaborative information and it performs better than the

others.

RQ4: What is the influence of the quality of Linked Data information on the
recommendation results?

We have mentioned the differences in terms of performance in previous discus-

sions, however, this is another common question related to the adoption of Linked

Open Data. In order to answer it, we have decided to feed all the available algo-

rithms with both: LOD, and Tag side-information. In MovieLens all the FF vari-

ants work better with LOD information than tags. For the competing approaches,

WRMF seems to be the only one in which performance with LOD is better than its

other variants. In LibraryThing, we can observe the opposite behavior, with

Jaccard-fsr Tag as a winner, and this means that tags are better than LOD for item

recommendation. However, we can observe that the winning of Jaccard variant

means that almost half of these features have limited importance for the recom-

mendation task. The consideration we have made before about not homogeneous

Last.fm LOD description is confirmed by the performance of Tag versions against

LOD ones.

RQ5: How does FF performs with reference to diversity and novelty of recom-
mendations?

Even though accuracy is really important to establish the quality of a recommender

system, when different variants are proposed, an evaluation of the impact on novelty

and diversity of recommendation is mandatory. Novelty and diversity metrics have

107

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.06328 0.02982 0.05783 0.05970 804 0.03454 6.82679

CB-fsr LOD 0.08563 0.03593 0.07435 0.07903 552 0.01935 5.98567

Jaccard-fsr Tag 0.02238 0.00939 0.01578 0.02016 591 0.03404 7.06170

CB-fsr Tag 0.02377 0.00790 0.01563 0.02127 599 0.05414 7.79185

Hybrid-fsr 3171 0.06411 0.02965 0.05831 0.06061 823 0.03519 6.84044

Hybrid-fsr 1586 0.05593 0.01997 0.04292 0.04913 718 0.03970 7.08804

Hybrid-fsr 793 0.05066 0.01547 0.03817 0.04651 527 0.03629 7.13862

Hybrid-fsr 396 0.02321 0.00466 0.01759 0.02641 298 0.02500 6.66303

BPRMF 0.05808 0.02494 0.04548 0.04934 1109 0.09286 8.54816
BPRMF Tag 0.05801 0.02564 0.04669 0.04944 1069 0.08744 8.43765

BPRMF LOD 0.04394 0.00972 0.03588 0.04050 772 0.03234 6.70888

SMRMF 0.03828 0.01635 0.02838 0.03375 612 0.03670 7.22453

SMRMF Tag 0.04152 0.01830 0.03222 0.03802 621 0.04212 7.41911

SMRMF LOD 0.02454 0.00877 0.01852 0.02270 481 0.02262 6.49055

WRMF 0.02950 0.02250 0.02786 0.02344 535 0.04192 7.47313

WRMF Tag 0.03411 0.02447 0.03119 0.02727 532 0.04000 7.39674

WRMF LOD 0.03404 0.02473 0.03139 0.02695 513 0.03841 7.34936

MostPopular 0.00970 0.00431 0.00764 0.00683 51 0.00240 3.47028

Table 5.5: Comparative results on MovieLens dataset, Top-5 recommendation list

and relevance threshold of 4/5.

been measured for all the considered experiments, and we suddenly may notice that

recommendation lists of Hybrid-fsr show to be more diversified w.r.t. CB-fsr.

This may due to the nature of the proposed hybrid algorithm, that makes use of novel

features to perform recommendations. Moreover, it could be noticed that about

CB-fsr the decrease in diversity seems to be related to the increase in accuracy

metrics. If we look at the literature, this is probably due to the overspecialization

issue that affects content-based algorithms. In this evaluation, these considerations

are coherent to results on LibraryThing, and Last.fm datasets. For the sake

of completeness, it is important to underline that the absolute winner in terms of

aggregate diversity and distributional inequality on MovieLens, and Last.fm is

BPRMF. However, its low performance in terms of accuracy makes us not consider

it in this discussion. Finally, Novelty results behave in a coherent way along with

accuracy metrics, and this denotes that performance registered for popular items are

confirmed on the long tail.

108

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.05801 0.04868 0.06291 0.05509 1065 0.04348 7.25795

CB-fsr LOD 0.07363 0.05875 0.07810 0.07044 736 0.02571 6.47117

Jaccard-fsr Tag 0.02071 0.01725 0.01820 0.01936 853 0.04949 7.61902

CB-fsr Tag 0.02174 0.01510 0.01774 0.02016 845 0.07750 8.32482

Hybrid-fsr 3171 0.05838 0.04882 0.06334 0.05568 1093 0.04457 7.28407

Hybrid-fsr 1586 0.05240 0.03500 0.04681 0.04723 890 0.05024 7.53621

Hybrid-fsr 793 0.04627 0.02575 0.03969 0.04368 620 0.04512 7.53465

Hybrid-fsr 396 0.01732 0.00684 0.01511 0.02088 339 0.03069 7.02743

BPRMF 0.05356 0.04640 0.05169 0.04698 1387 0.11563 8.88650
BPRMF Tag 0.05430 0.04829 0.05347 0.04733 1358 0.10926 8.78973

BPRMF LOD 0.03672 0.01830 0.03413 0.03511 1113 0.04512 7.30863

SMRMF 0.03619 0.02958 0.03269 0.03238 905 0.05203 7.72057

SMRMF Tag 0.03854 0.03349 0.03678 0.03568 857 0.05725 7.88452

SMRMF LOD 0.02169 0.01487 0.01952 0.02067 731 0.03263 7.00065

WRMF 0.03015 0.04300 0.03639 0.02416 663 0.05506 7.88662

WRMF Tag 0.03276 0.04592 0.03937 0.02684 670 0.05327 7.82256

WRMF LOD 0.03369 0.04630 0.04015 0.02719 635 0.05073 7.76383

MostPopular 0.01235 0.01399 0.01189 0.00838 83 0.00475 4.35932

Table 5.6: Comparative results on MovieLens dataset, Top-10 recommendation

list and relevance threshold of 4/5.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.07430 0.02487 0.06133 0.06975 804 0.03454 6.82679

CB-fsr LOD 0.10020 0.02993 0.07913 0.09172 552 0.01935 5.98567

Jaccard-fsr Tag 0.03513 0.00958 0.01897 0.03140 591 0.03404 7.06170

CB-fsr Tag 0.03225 0.00753 0.01821 0.02873 599 0.05414 7.79185

Hybrid-fsr 3171 0.07560 0.02487 0.06194 0.07099 823 0.03519 6.84044

Hybrid-fsr 1586 0.06868 0.01753 0.04700 0.06030 718 0.03970 7.08804

Hybrid-fsr 793 0.06497 0.01379 0.04296 0.05964 527 0.03629 7.13862

Hybrid-fsr 396 0.03341 0.00441 0.02093 0.03728 298 0.02500 6.66303

BPRMF 0.07295 0.02167 0.05050 0.06216 1109 0.09286 8.54816
BPRMF Tag 0.07215 0.02233 0.05126 0.06176 1069 0.08744 8.43765

BPRMF LOD 0.05384 0.00857 0.03938 0.04944 772 0.03234 6.70888

SMRMF 0.05179 0.01512 0.03253 0.04582 612 0.03670 7.22453

SMRMF Tag 0.05632 0.01767 0.03703 0.05182 621 0.04212 7.41911

SMRMF LOD 0.03152 0.00773 0.02082 0.02906 481 0.02262 6.49055

WRMF 0.03675 0.01998 0.02977 0.02926 535 0.04192 7.47313

WRMF Tag 0.04185 0.02130 0.03328 0.03323 532 0.04000 7.39674

WRMF LOD 0.04152 0.02194 0.03351 0.03284 513 0.03841 7.34936

MostPopular 0.01179 0.00355 0.00814 0.00825 51 0.00240 3.47028

Table 5.7: Comparative results on MovieLens dataset, Top-5 recommendation list

and relevance threshold of 3/5.

109

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.06980 0.04184 0.06590 0.06554 1065 0.04348 7.25795

CB-fsr LOD 0.08791 0.04943 0.08197 0.08312 736 0.02571 6.47117

Jaccard-fsr Tag 0.03180 0.01664 0.02117 0.02980 853 0.04949 7.61902

CB-fsr Tag 0.02957 0.01426 0.02016 0.02736 845 0.07750 8.32482

Hybrid-fsr 3171 0.07020 0.04179 0.06630 0.06621 1093 0.04457 7.28407

Hybrid-fsr 1586 0.06573 0.03091 0.05061 0.05891 890 0.05024 7.53621

Hybrid-fsr 793 0.06078 0.02312 0.04415 0.05695 620 0.04512 7.53465

Hybrid-fsr 396 0.02533 0.00654 0.01787 0.02986 339 0.03069 7.02743

BPRMF 0.06770 0.04054 0.05604 0.05944 1387 0.11563 8.88650
BPRMF Tag 0.06950 0.04302 0.05773 0.06031 1358 0.10926 8.78973

BPRMF LOD 0.04551 0.01605 0.03723 0.04325 1113 0.04512 7.30863

SMRMF 0.04940 0.02766 0.03659 0.04426 905 0.05203 7.72057

SMRMF Tag 0.05224 0.03213 0.04122 0.04859 857 0.05725 7.88452

SMRMF LOD 0.02803 0.01341 0.02167 0.02659 731 0.03263 7.00065

WRMF 0.03795 0.03892 0.03812 0.03040 663 0.05506 7.88662

WRMF Tag 0.04066 0.04082 0.04118 0.03306 670 0.05327 7.82256

WRMF LOD 0.04190 0.04124 0.04201 0.03365 635 0.05073 7.76383

MostPopular 0.01581 0.01206 0.01247 0.01058 83 0.00475 4.35932

Table 5.8: Comparative results on MovieLens dataset, Top-10 recommendation

list and relevance threshold of 3/5.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.02822 0.04786 0.04560 0.03203 4043 0.09912 10.47816

CB-fsr LOD 0.02921 0.04786 0.04908 0.03478 3825 0.07815 9.88738

Jaccard-fsr Tag 0.04009 0.07187 0.07124 0.04863 2989 0.05186 9.30556

CB-fsr Tag 0.03763 0.06848 0.06936 0.04570 1519 0.01962 7.92150

Hybrid-fsr 13073 0.02866 0.04836 0.04593 0.03237 4098 0.10247 10.53733
Hybrid-fsr 6851 0.01719 0.02409 0.02720 0.02072 3127 0.06968 9.87870

Hybrid-fsr 3425 0.00978 0.01306 0.01623 0.01255 2017 0.04219 8.99890

Hybrid-fsr 1712 0.00423 0.00487 0.00687 0.00557 1156 0.02221 8.17881

BPRMF 0.00481 0.00686 0.00643 0.00490 1604 0.03418 9.11855

BPRMF Tag 0.00417 0.00680 0.00607 0.00430 2317 0.04500 9.35826

BPRMF LOD 0.00090 0.00102 0.00132 0.00103 1310 0.01386 7.14172

SMRMF 0.00347 0.00506 0.00468 0.00369 1202 0.01937 8.08369

SMRMF Tag 0.00249 0.00345 0.00313 0.00253 1089 0.01164 7.10852

SMRMF LOD 0.00127 0.00153 0.00185 0.00146 1261 0.01503 7.36249

WRMF 0.00625 0.01163 0.01001 0.00643 370 0.00771 7.06538

WRMF Tag 0.00454 0.00837 0.00686 0.00451 619 0.00864 7.11308

WRMF LOD 0.00321 0.00626 0.00485 0.00314 359 0.00482 6.38107

MostPopular 0.00012 0.00025 0.00011 0.00008 12 0.00033 2.46979

Table 5.9: Comparative results on LibraryThing dataset, Top-5 recommenda-

tion list and relevance threshold of 9/10.

110

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.01966 0.06244 0.05009 0.02468 5213 0.11331 10.69759

CB-fsr LOD 0.01944 0.06220 0.05273 0.02598 5192 0.09369 10.18603

Jaccard-fsr Tag 0.02723 0.09652 0.07852 0.03661 4038 0.05882 9.51908

CB-fsr Tag 0.02435 0.08563 0.07396 0.03352 2011 0.02213 8.20660

Hybrid-fsr 13073 0.01987 0.06265 0.05035 0.02491 5274 0.11708 10.75585
Hybrid-fsr 6851 0.01087 0.02992 0.02781 0.01504 3907 0.07767 10.09293

Hybrid-fsr 3425 0.00575 0.01512 0.01573 0.00875 2357 0.04635 9.24221

Hybrid-fsr 1712 0.00265 0.00587 0.00660 0.00399 1337 0.02543 8.50527

BPRMF 0.00408 0.01163 0.00802 0.00435 2187 0.04422 9.50059

BPRMF Tag 0.00389 0.01247 0.00822 0.00405 3263 0.05861 9.76858

BPRMF LOD 0.00069 0.00184 0.00152 0.00084 1878 0.01721 7.46591

SMRMF 0.00310 0.00937 0.00622 0.00333 1809 0.02768 8.65574

SMRMF Tag 0.00285 0.00837 0.00512 0.00276 1686 0.01784 7.79521

SMRMF LOD 0.00096 0.00248 0.00210 0.00117 1942 0.02260 8.04500

WRMF 0.00576 0.02056 0.01351 0.00599 514 0.01181 7.67982

WRMF Tag 0.00434 0.01583 0.00977 0.00437 935 0.01274 7.69802

WRMF LOD 0.00358 0.01295 0.00754 0.00340 584 0.00753 7.02718

MostPopular 0.00019 0.00101 0.00040 0.00014 20 0.00075 3.57568

Table 5.10: Comparative results on LibraryThing dataset, Top-10 recommen-

dation list and relevance threshold of 9/10.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.05853 0.06017 0.06312 0.06646 4043 0.09912 10.47816

CB-fsr LOD 0.05182 0.05403 0.06314 0.06052 3825 0.07815 9.88738

Jaccard-fsr Tag 0.07735 0.08662 0.09597 0.09279 2989 0.05186 9.30556

CB-fsr Tag 0.06195 0.06839 0.08517 0.07385 1519 0.01962 7.92150

Hybrid-fsr 13073 0.05931 0.06053 0.06332 0.06722 4098 0.10247 10.53733
Hybrid-fsr 6851 0.03671 0.02982 0.03702 0.04334 3127 0.06968 9.87870

Hybrid-fsr 3425 0.02009 0.01583 0.02194 0.02549 2017 0.04219 8.99890

Hybrid-fsr 1712 0.00932 0.00579 0.00937 0.01198 1156 0.02221 8.17881

BPRMF 0.00926 0.00702 0.00814 0.00938 1604 0.03418 9.11855

BPRMF Tag 0.00857 0.00723 0.00760 0.00849 2317 0.04500 9.35826

BPRMF LOD 0.00165 0.00104 0.00158 0.00175 1310 0.01386 7.14172

SMRMF 0.00674 0.00455 0.00569 0.00713 1202 0.01937 8.08369

SMRMF Tag 0.00524 0.00374 0.00440 0.00559 1089 0.01164 7.10852

SMRMF LOD 0.00240 0.00198 0.00259 0.00267 1261 0.01503 7.36249

WRMF 0.01366 0.01679 0.01515 0.01421 370 0.00771 7.06538

WRMF Tag 0.00964 0.01116 0.00958 0.00963 619 0.00864 7.11308

WRMF LOD 0.00701 0.00846 0.00726 0.00686 359 0.00482 6.38107

MostPopular 0.00012 0.00016 0.00011 0.00008 12 0.00033 2.46979

Table 5.11: Comparative results on LibraryThing dataset, Top-5 recommenda-

tion list and relevance threshold of 7/10.

111

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.04183 0.07904 0.06855 0.05195 5213 0.11331 10.69759

CB-fsr LOD 0.03484 0.06922 0.06678 0.04559 5192 0.09369 10.18603

Jaccard-fsr Tag 0.05303 0.11633 0.10434 0.07030 4038 0.05882 9.51908

CB-fsr Tag 0.04148 0.08711 0.08966 0.05526 2011 0.02213 8.20660

Hybrid-fsr 13073 0.04247 0.07893 0.06871 0.05262 5274 0.11708 10.75585
Hybrid-fsr 6851 0.02390 0.03677 0.03742 0.03204 3907 0.07767 10.09293

Hybrid-fsr 3425 0.01236 0.01851 0.02105 0.01818 2357 0.04635 9.24221

Hybrid-fsr 1712 0.00592 0.00710 0.00883 0.00867 1337 0.02543 8.50527

BPRMF 0.00837 0.01280 0.01020 0.00869 2187 0.04422 9.50059

BPRMF Tag 0.00777 0.01325 0.01007 0.00793 3263 0.05861 9.76858

BPRMF LOD 0.00127 0.00166 0.00172 0.00145 1878 0.01721 7.46591

SMRMF 0.00592 0.00836 0.00718 0.00638 1809 0.02768 8.65574

SMRMF Tag 0.00556 0.00835 0.00653 0.00568 1686 0.01784 7.79521

SMRMF LOD 0.00191 0.00315 0.00287 0.00223 1942 0.02260 8.04500

WRMF 0.01253 0.02829 0.01982 0.01315 514 0.01181 7.67982

WRMF Tag 0.00909 0.02006 0.01333 0.00921 935 0.01274 7.69802

WRMF LOD 0.00763 0.01679 0.01080 0.00729 584 0.00753 7.02718

MostPopular 0.00023 0.00095 0.00044 0.00017 20 0.00075 3.57568

Table 5.12: Comparative results on LibraryThing dataset, Top-10 recommen-

dation list and relevance threshold of 7/10.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.00482 0.01943 0.01561 0.00568 899 0.02222 7.88347

CB-fsr LOD 0.00397 0.01679 0.01185 0.00451 772 0.01347 6.77499

Jaccard-fsr Tag 0.00547 0.02206 0.01705 0.00653 1058 0.03078 8.45781

CB-fsr Tag 0.00740 0.03135 0.02356 0.00851 1008 0.02621 8.07217

Hybrid-fsr 10004 0.00514 0.02041 0.01612 0.00602 946 0.02401 8.01508

Hybrid-fsr 5002 0.00311 0.01215 0.00841 0.00341 1028 0.03232 8.57696
Hybrid-fsr 2051 0.00118 0.00482 0.00320 0.00143 907 0.02905 8.44240

Hybrid-fsr 1250 0.00032 0.00134 0.00101 0.00034 656 0.02387 8.22125

BPRMF 0.00032 0.00080 0.00047 0.00025 253 0.00599 6.28848

BPRMF Tag 0.00000 0.00000 0.00000 0.00000 151 0.00099 3.43110

BPRMF LOD 0.00000 0.00000 0.00000 0.00000 1112 0.02934 8.14561

SMRMF 0.00011 0.00054 0.00034 0.00011 364 0.00647 6.24558

SMRMF Tag 0.00011 0.00018 0.00000 0.00007 411 0.00648 5.99848

SMRMF LOD 0.00000 0.00000 0.00000 0.00000 777 0.01832 7.51538

WRMF 0.00236 0.00857 0.00491 0.00208 186 0.00839 6.79522

WRMF Tag 0.00171 0.00589 0.00393 0.00160 300 0.00820 6.71812

WRMF LOD 0.00171 0.00679 0.00351 0.00170 334 0.00829 6.75719

MostPopular 0.00000 0.00000 0.00000 0.00000 9 0.00043 2.50907

Table 5.13: Comparative results on Last.fm dataset, Top-5 recommendation list

and relevance threshold of 9/10.

112

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.00311 0.02479 0.01750 0.00417 1254 0.02848 8.24498

CB-fsr LOD 0.00284 0.02291 0.01440 0.00354 1196 0.01932 7.34914

Jaccard-fsr Tag 0.00402 0.03224 0.02012 0.00512 1544 0.03931 8.80789

CB-fsr Tag 0.00456 0.03760 0.02570 0.00613 1519 0.03539 8.52017

Hybrid-fsr 10004 0.00327 0.02568 0.01803 0.00440 1325 0.03072 8.38414

Hybrid-fsr 5002 0.00193 0.01563 0.00955 0.00246 1421 0.03900 8.85578
Hybrid-fsr 2051 0.00086 0.00674 0.00384 0.00112 1191 0.03486 8.71436

Hybrid-fsr 1250 0.00048 0.00402 0.00190 0.00045 807 0.02910 8.54335

BPRMF 0.00027 0.00134 0.00061 0.00023 334 0.00768 6.66212

BPRMF Tag 0.00000 0.00000 0.00000 0.00000 242 0.00226 4.75911

BPRMF LOD 0.00000 0.00000 0.00000 0.00000 1591 0.03678 8.45905

SMRMF 0.00016 0.00161 0.00069 0.00015 554 0.00952 6.75383

SMRMF Tag 0.00016 0.00098 0.00021 0.00012 652 0.01040 6.72105

SMRMF LOD 0.00000 0.00000 0.00000 0.00000 1234 0.02770 8.17090

WRMF 0.00188 0.01358 0.00654 0.00183 257 0.01195 7.28991

WRMF Tag 0.00150 0.01063 0.00567 0.00149 452 0.01346 7.45752

WRMF LOD 0.00150 0.01179 0.00529 0.00155 552 0.01376 7.48693

MostPopular 0.00005 0.00018 0.00000 0.00004 14 0.00097 3.48598

Table 5.14: Comparative results on Last.fm dataset, Top-10 recommendation list

and relevance threshold of 9/10.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.00675 0.02364 0.01996 0.00792 899 0.02222 7.88347

CB-fsr LOD 0.00547 0.02108 0.01464 0.00603 772 0.01347 6.77499

Jaccard-fsr Tag 0.00868 0.03131 0.02330 0.00971 1058 0.03078 8.45781

CB-fsr Tag 0.01115 0.04118 0.03115 0.01257 1008 0.02621 8.07217

Hybrid-fsr 10004 0.00707 0.02449 0.02057 0.00829 946 0.02401 8.01508

Hybrid-fsr 5002 0.00482 0.01657 0.01258 0.00571 1028 0.03232 8.57696
Hybrid-fsr 2051 0.00161 0.00634 0.00427 0.00195 907 0.02905 8.44240

Hybrid-fsr 1250 0.00075 0.00259 0.00181 0.00082 656 0.02387 8.22125

BPRMF 0.00054 0.00143 0.00081 0.00045 253 0.00599 6.28848

BPRMF Tag 0.00000 0.00000 0.00000 0.00000 151 0.00099 3.43110

BPRMF LOD 0.00011 0.00018 0.00004 0.00008 1112 0.02934 8.14561

SMRMF 0.00032 0.00161 0.00078 0.00025 364 0.00647 6.24558

SMRMF Tag 0.00011 0.00013 0.00000 0.00007 411 0.00648 5.99848

SMRMF LOD 0.00011 0.00018 0.00004 0.00009 777 0.01832 7.51538

WRMF 0.00397 0.01456 0.00920 0.00385 186 0.00839 6.79522

WRMF Tag 0.00279 0.00987 0.00627 0.00259 300 0.00820 6.71812

WRMF LOD 0.00236 0.00831 0.00493 0.00230 334 0.00829 6.75719

MostPopular 0.00000 0.00000 0.00000 0.00000 9 0.00043 2.50907

Table 5.15: Comparative results on Last.fm dataset, Top-5 recommendation list

and relevance threshold of 7/10.

113

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.00477 0.03391 0.02333 0.00610 1254 0.02848 8.24498

CB-fsr LOD 0.00391 0.02873 0.01786 0.00476 1196 0.01932 7.34914

Jaccard-fsr Tag 0.00665 0.04586 0.02774 0.00791 1544 0.03931 8.80789

CB-fsr Tag 0.00734 0.05332 0.03524 0.00943 1519 0.03539 8.52017

Hybrid-fsr 10004 0.00482 0.03356 0.02361 0.00629 1325 0.03072 8.38414

Hybrid-fsr 5002 0.00327 0.02282 0.01465 0.00430 1421 0.03900 8.85578
Hybrid-fsr 2051 0.00123 0.00984 0.00543 0.00158 1191 0.03486 8.71436

Hybrid-fsr 1250 0.00070 0.00482 0.00270 0.00076 807 0.02910 8.54335

BPRMF 0.00043 0.00214 0.00095 0.00040 334 0.00768 6.66212

BPRMF Tag 0.00000 0.00000 0.00000 0.00000 242 0.00226 4.75911

BPRMF LOD 0.00011 0.00045 0.00012 0.00008 1591 0.03678 8.45905

SMRMF 0.00027 0.00268 0.00112 0.00024 554 0.00952 6.75383

SMRMF Tag 0.00021 0.00112 0.00022 0.00015 652 0.01040 6.72105

SMRMF LOD 0.00011 0.00071 0.00022 0.00010 1234 0.02770 8.17090

WRMF 0.00295 0.02086 0.01151 0.00316 257 0.01195 7.28991

WRMF Tag 0.00252 0.01791 0.00898 0.00246 452 0.01346 7.45752

WRMF LOD 0.00209 0.01518 0.00721 0.00212 552 0.01376 7.48693

MostPopular 0.00005 0.00018 0.00000 0.00004 14 0.00097 3.48598

Table 5.16: Comparative results on Last.fm dataset, Top-10 recommendation list

and relevance threshold of 7/10.

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.03355 0.03254 0.04071 0.03832 899 0.02222 7.88347

CB-fsr LOD 0.02304 0.02246 0.02695 0.02458 772 0.01347 6.77499

Jaccard-fsr Tag 0.04812 0.04328 0.04865 0.05145 1058 0.03078 8.45781

CB-fsr Tag 0.04930 0.04582 0.06167 0.05507 1008 0.02621 8.07217

Hybrid-fsr 10004 0.03376 0.03236 0.04133 0.03912 946 0.02401 8.01508

Hybrid-fsr 5002 0.02583 0.02294 0.02731 0.02841 1028 0.03232 8.57696
Hybrid-fsr 2051 0.00911 0.00762 0.00796 0.01011 907 0.02905 8.44240

Hybrid-fsr 1250 0.00493 0.00384 0.00470 0.00568 656 0.02387 8.22125

BPRMF 0.00407 0.00553 0.00372 0.00370 253 0.00599 6.28848

BPRMF Tag 0.00000 0.00000 0.00000 0.00000 151 0.00099 3.43110

BPRMF LOD 0.00107 0.00091 0.00057 0.00091 1112 0.02934 8.14561

SMRMF 0.00482 0.00403 0.00351 0.00512 364 0.00647 6.24558

SMRMF Tag 0.00182 0.00155 0.00074 0.00136 411 0.00648 5.99848

SMRMF LOD 0.00086 0.00085 0.00035 0.00064 777 0.01832 7.51538

WRMF 0.01983 0.02150 0.02291 0.01936 186 0.00839 6.79522

WRMF Tag 0.01426 0.01281 0.01567 0.01406 300 0.00820 6.71812

WRMF LOD 0.01050 0.01013 0.00997 0.00917 334 0.00829 6.75719

MostPopular 0.00011 0.00013 0.00002 0.00007 9 0.00043 2.50907

Table 5.17: Comparative results on Last.fm dataset, Top-5 recommendation list

and no relevance threshold.

114

Alg P@N R@N nDCG@N EPC ADiv@N Gini SE

Jaccard-fsr LOD 0.02556 0.04863 0.04784 0.03099 1254 0.02848 8.24498

CB-fsr LOD 0.01929 0.03838 0.03477 0.02138 1196 0.01932 7.34914

Jaccard-fsr Tag 0.03735 0.06844 0.05942 0.04263 1544 0.03931 8.80789

CB-fsr Tag 0.03794 0.07064 0.07165 0.04510 1519 0.03539 8.52017

Hybrid-fsr 10004 0.02653 0.05034 0.04874 0.03214 1325 0.03072 8.38414

Hybrid-fsr 5002 0.01902 0.03343 0.03220 0.02273 1421 0.03900 8.85578
Hybrid-fsr 2051 0.00702 0.01214 0.01071 0.00832 1191 0.03486 8.71436

Hybrid-fsr 1250 0.00370 0.00617 0.00600 0.00457 807 0.02910 8.54335

BPRMF 0.00348 0.00902 0.00495 0.00338 334 0.00768 6.66212

BPRMF Tag 0.00032 0.00073 0.00028 0.00021 242 0.00226 4.75911

BPRMF LOD 0.00096 0.00188 0.00084 0.00088 1591 0.03678 8.45905

SMRMF 0.00407 0.00723 0.00471 0.00447 554 0.00952 6.75383

SMRMF Tag 0.00225 0.00402 0.00155 0.00181 652 0.01040 6.72105

SMRMF LOD 0.00080 0.00156 0.00058 0.00067 1234 0.02770 8.17090

WRMF 0.01656 0.03566 0.02847 0.01711 257 0.01195 7.28991

WRMF Tag 0.01372 0.02467 0.02217 0.01369 452 0.01346 7.45752

WRMF LOD 0.01099 0.02072 0.01522 0.00991 552 0.01376 7.48693

MostPopular 0.00027 0.00089 0.00021 0.00019 14 0.00097 3.48598

Table 5.18: Comparative results on Last.fm dataset, Top-10 recommendation list

and no relevance threshold.

Results Discussion

FF shows interesting performance in terms of accuracy, diversity, and novelty on all

the experimental settings and it results as a highly competitive approach compared

to other pure-collaborative and hybrid variants of state-of-the-art algorithms. In par-

ticular, we see that on the MovieLens,LibraryThing, and Last.fm datasets,

at least a variant of FF gets the best results for the evaluated accuracy metrics. On

the other hand, our Feature Factorization is not the absolute champion

when compared on the MovieLens, and Last.fm datasets considering diversity

metrics. However, if we consider the trade-off between accuracy, novelty, and di-

versity, we see that FF is the best performing algorithm. The differences between

the different behaviors on the three datasets have been detailed in the previous dis-

cussion, and summing up they can be explained by looking at different dimensions

of the datasets (LOD, Tag side information; quality of descriptions, sparsity of the

datasets, and popularity bias). In Last.fm, we have rescaled the users’ feedback

represented as the number of times they played a song and normalized it on a 1-10

115

scale. This could have affected the final results especially in terms of accuracy for

all the algorithms. If we consider the feature-augmented dataset, by looking at the

data represented in Table 5.4 the first observation we make is that the number of fea-

tures in Last.fm is two orders of magnitude higher than the number of items while

in LibraryThing it is just one. Then, the decrease in performance of FF may be

also attributed to the curse of dimensionality problem. Moreover, a deeper investi-

gation of the quality of the adopted LOD dataset is needed. A few papers have been

published on this topic [411, 89], however, still there is not a community-endorsed

metric to evaluate the quality of the knowledge encoded in a Linked Data dataset

for recommendation tasks.

5.5 Conclusion

In this line of research, we have introduced FF, a novel algorithm that bases on

feature recommendation as an intermediate step for computing top-N items recom-

mendation lists. The main idea behind FF is that feature relevance in a user profile

plays a key role in the selection and rating of an item in a collection. Based on

this observation we have developed an algorithm that shifts the recommendation

problem from a user-item space to a user-feature one. In this new space, we have

introduced the notion of feature relevance and feature rating. We have combined

them with well-known factorization techniques computing rating and relevance for

each feature unknown to the user. Then, by combining the values associated with

the features composing an item we have predicted a top-N recommendation list

of items. We have compared FF with well-known factorization techniques (both

pure collaborative and hybrid variants with side information) on three datasets in

the domains of movie, books, and music. In all the datasets FF results as the best

algorithm in terms of a trade-off between accuracy, diversity, and novelty of results.

This can be considered as a strong clue to confirm our intuition that recommending

items via feature ranking is a feasible way to develop content-aware recommenda-

tion engines. As future work, we are investigating the behavior of FF with different

factorization techniques in the item-feature space. Moreover, since we have col-

116

lected content-based data from Linked Open Data datasets, an analysis of the influ-

ence of such datasets on the recommendation results is also in progress. Another

aspect we are willing to deepen is related to results explanation. Indeed, very inter-

estingly, item recommendation via feature ranking paves the way to new proposals

for explanation services.

117

118

Chapter 6

Metadata to address Cold-start
problem

6.1 Introduction

Cross-domain recommendation has recently emerged as a potential solution to the

cold start problem in recommender systems [86], aiming to mitigate the lack of data

by exploiting user preferences and item attributes in domains distinct but related to

the target domain. In this line, most of the cross-domain approaches proposed so

far are based on collaborative filtering [110], exploiting user preferences as a bridge

to relate source and target domains, and ignoring the content of the items. Hence,

they benefit from the fact that they do not need to perform any kind of analysis

of item contents, which are in general highly heterogeneous across domains, and

whose inter-domain relationships may be difficult to be establish.

These difficulties, however, can be addressed nowadays thanks to the Seman-

tic Web initiative [338], and more specifically to its reference implementation the

Linked Open Data (LOD) project [64], which has originated a large number of

119

inter-linked knowledge repositories publicly available in the Web, following the Se-

mantic Web standards for data representation and access. Hence, in the current Web

there is a wide array of structured data sources with information of items belonging

to a variety of domains, such as history, arts, science, industry, media and sports, to

name a few. This information not only consists of particular multimedia contents

and associated metadata, but also explicit, semantic relations between items and

metadata.

Motivated by the availability of large amounts of item metadata and seman-

tic relations in the Linked Data cloud, we aim to address the cross-domain rec-

ommendation problem not only focusing on user preferences and item attributes,

but also exploiting content-based relations between items from different domains.

More specifically, we propose to use the set of LOD semantic features and relations

as inter-domain links for supporting knowledge transfer across domains, enabling

cross-domain item similarities, and providing recommendations for cold start users

in the target domain.

Previous work has proposed graph-based algorithms to address the recommen-

dation problem in heterogeneous datasets [405, 282], analyzing the topology of

semantic networks to jointly exploit user preferences and item metadata. These

approaches have been shown to be effective for recommendation, but suffer from

computational issues caused by the size of the semantic networks, which are in gen-

eral very large. Differently, we avoid these issues by working in two steps. First, we

exploit the semantic networks to compute inter-domain similarities that link items

from different domains. Then, we leverage the computed similarities in hybrid Ma-

trix Factorization (MF) models for recommendation, which no longer need to deal

with the whole networks.

Therefore, this research line has led to the development of novel, effective hy-

brid matrix factorization models that jointly exploit user preferences and item meta-

data for cross-domain recommendation. Moreover, we adapt a fast learning algo-

rithm by [304] for efficiently building our models, and evaluate them in cold start

scenarios on several domains, in terms of both precision and diversity.

We evaluate the performance of the proposed models using a dataset of Face-

120

book1 likes about books, movies and music. In order to obtain semantic metadata

for the different items, we first mapped the items in our dataset to entities in LOD

by means of SPARQL queries, and then extracted their attributes and relations to

enhance the item profiles.

In a first experiment, we compared several state-of-the-art semantic similarity

metrics for content-based recommendation, aiming to understand which is more

suitable for later injecting in our cross-domain MF models, and achieved the best

results using the link-based approach by [262]. Second, we evaluated the ranking

precision and diversity of the recommendations computed by the proposed models.

We show that, depending on the involved source and target domains, our models

generate more accurate suggestions than the baselines in severe cold start situations.

Moreover, the proposed approaches provide a better trade-off between accuracy and

diversity, which are in general difficult to balance.

We point out that the presented approaches can be effectively used if the under-

lying LOD knowledge graph encodes direct or indirect connections between items

in different domains. In fact, we need to compute semantic similarity values be-

tween items not belonging to the same domain. These connections are quite com-

mon for knowledge domains with some degree of information overlapping such as

in the case of music, movies, and books but, in case they are missing or rare, this

may result as a limitation for the performances of the approaches we introduce here.

The reminder of the chapter is structured as follows. In 6.2, we revise related

work on cross-domain recommender systems, focusing on those approaches that are

based on Matrix Factorization. In 6.3, we present the developed cross-domain hy-

brid matrix factorization models. Next, in 6.4, we report and analyze the empirical

results achieved in the experiments conducted to analyze user cold start situations.

Finally, in 6.5 we end with some conclusions and future research lines.

1Facebook online social networking, https://www.facebook.com

121

6.2 Related work

In this section, we survey the state of the art on cross-domain recommender systems.

First, in 6.2.1 we describe the cross-domain recommendation problem and present a

categorization of the approaches, giving representative examples of each category.

Next, in 6.2.2 we focus on those cross-domain recommendation approaches that use

the matrix factorization technique to bridge the source and target domains.

6.2.1 Cross-domain recommender systems

Nowadays, the majority of recommender systems offer recommendations for items

belonging to a single domain. For instance, Netflix2 recommends movies and TV

shows, Spotify3 recommends songs and music albums, and Barnes & Noble4 rec-

ommends books. These domain-specific systems have been successfully deployed

by numerous web platforms, and the single-domain recommendation functionality

is not perceived as a limitation, but rather pitched as a focus on a certain market.

Nonetheless, in large e-commerce sites such as Amazon.com5 and eBay6 users

often provide feedback for items from multiple domains, and in social networks

like Facebook7 and Twitter8 users express their tastes and interests for a variety of

topics. It may, therefore, be beneficial to leverage all the available user data pro-

vided in various systems and domains, in order to generate more encompassing user

models and better recommendations. Instead of treating each domain (e.g., movies,

music and books) independently, knowledge acquired in a source domain could be

transferred to and exploited in another target domain. The research challenge of

transferring knowledge, and the business potential of delivering recommendations

spanning across multiple domains, have triggered an increasing interest in cross-

domain recommendations.
2Netflix streaming media and video provider, https://www.netflix.com
3Spotify digital music service, https://www.spotify.com
4Barnes & Noble online bookseller, http://www.barnesandnoble.com
5Amazon electronic commerce site, https://www.amazon.com
6eBay consumer-to-consumer and business-to-consumer sales, http://www.ebay.com
7Facebook social network, https://www.facebook.com
8Twitter online news and social networking service, https://twitter.com

122

The cross-domain recommendation problem has been addressed from various

perspectives in different research areas. It has been handled by means of user pre-

ference aggregation and mediation strategies for cross-system personalization in

User Modeling [12, 58, 341], as a potential solution to mitigate the cold start and

sparsity problems in Recommender Systems [110, 345, 369], and as a practical ap-

plication of knowledge transfer in Machine Learning [155, 232, 292]. Focusing

on how knowledge is exploited by cross-domain recommender systems, in [86] we

categorized existing works according a two-level taxonomy.

• Aggregating knowledge. Knowledge from various source domains is aggre-

gated to perform recommendations in a target domain. Depending on the

stage in the recommendation process where the aggregation is performed

we can further distinguish three cases. First, we find approaches that merge

user preferences e.g., ratings, tags, transaction logs, and click-through data.

The aggregation can be done by means of a multi-domain rating matrix [57,

323], using a common representation for user preferences such as social tags

[361, 12, 143] or semantic concepts [207], linking the preferences via a multi-

domain graph [110, 369], or mapping user preferences to domain-independent

features such as personality traits [85] or user-item interaction features [250].

In the second case, user modeling data from various recommender systems

is mediated to improve target recommendations. For instance, [57, 370, 341]

import user neighborhoods and user-user similarities computed in the source

domain into the target. Finally, some approaches directly combine single-

domain recommendations, e.g., rating estimations [57, 156] and rating prob-

ability distributions [428].

• Linking and transferring knowledge. Knowledge linkage or transfer between

domains is established to support recommendations. In this case, we find

methods that (i) link domains by a common knowledge such as item attributes

[101], association rules [85], semantic networks [142, 207], and inter-domain

correlations [417, 345, 324]; methods that (ii) share latent features between

source and target domains factor models, either by using same model param-

eters [291, 182, 172] in both factorizations, or by introducing new parameters

123

that extend the factorizations [137, 141]; and methods that (iii) transfer rat-

ing patterns extracted by co-clustering the source domain rating matrix and

exploit them in the target domain [233, 155, 109]. After defining the prob-

lem, in [290] three different knowledge transfer strategies for collaborative

recommendation with auxiliary data (TL-CRAD) are introduced: (i) adap-

tive knowledge transfer, (ii) collective knowledge transfer and (iii) integrative

knowledge transfer. Then, for each of them the author surveys related work

with reference to different knowledge strategies with an emphasis on: transfer

via prediction rule, transfer via regularization and transfer via constraint.

In terms of the goals addressed by cross-domain recommenders, we find great

diversity among the reviewed approaches. Most proposals focus on improving ac-

curacy by reducing data sparsity [232, 345, 87, 417, 292, 369, 250, 426]. In many

domains, the average number of ratings per user and item is low, which may nega-

tively affect the quality of the recommendations. Data collected outside the target

domain can increase the rating density, and thus may upgrade the recommenda-

tion quality. Others seek to enhance user models, which may have personalization-

oriented benefits such as (i) discovering new user preferences for the target domain

[357, 362], (ii) enhancing similarities between users and items [11, 58], and (iii)

measuring vulnerability in social networks [157, 190]. Cross-domain methods have

also been applied to bootstrap recommender systems by importing preferences from

another source outside the target domain [341], and have been proposed to improve

the diversity of recommendations by providing better coverage of the range of user

preferences [396]. Finally, a few approaches have dealt with the new user problem

[182, 323, 370, 137]. When a user starts using a recommender system, this has no

knowledge of the user’s tastes and interests, and cannot produce personalized rec-

ommendations. This may be solved by exploiting the user’s preferences collected

in a different source domain.

We observe that addressing the cold-start has been barely investigated as in

[242] where the authors present a neighborhood-based algorithm for the dual cold-

start problem. The generalization of of items and users into a cluster level to obtain

high-quality relations also in cold start scenario is the focus of [263]. They first

124

employ biased matrix factorization to map rating matrix int lower-dimension latent

spaces. After this step they apply the K-means clustering algorithm to categorize

users and items. Cold start is also the main topic of [398] where the authors pro-

pose a novel approach to cross-system personalization based on two assumptions:

the existence of a user model that could be shared among platforms and that a spe-

cific system can maintain (and provide) the user models built by its system.

As we shall present in 6.3, we aim to deal with the cold-start problem by means

of novel matrix factorization models that jointly exploit user ratings and item meta-

data. Before, in 6.2.2, we revise state of the art cross-domain recommender systems

based on matrix factorization.

6.2.2 Matrix factorization-based cross-domain recommender sys-
tems

Although matrix factorization models can be applied in cross-domain approaches

based on knowledge aggregation –essentially as a standard recommendation prob-

lem once the user preferences from both domains are combined– they have been

mostly used in knowledge linkage or transfer approaches. In these settings, latent

factors from source and target domains are either shared or related in order to es-

tablish the bridge between the domains.

One way of linking domains explored in previous works exploits inter-domain

similarities by integrating them into the probabilistic matrix factorization method

[327]. Specifically, such similarities are imposed as constraints over user or item

latent factors when jointly factorizing rating matrices. For instance, [87] proposed

an approach in which inter-domain similarities are implicitly learned from data, as

model parameters in a non-parametric Bayesian framework. Since user feedback

is used to estimate the similarities, user overlap between the domains is required.

Addressing the sparsity problem, [417] adapted the probabilistic matrix factoriza-

tion method to include a probability distribution of user latent factors that encodes

inter-domain correlations. One strength of this approach is that user latent factors

shared across domains are not needed, allowing more flexibility in capturing the

125

heterogeneity of domains. Instead of automatically learning implicit correlations

in the data, [345] argued that explicit common information is more effective, and

relied on shared social tags to compute cross-domain user-to-user and item-to-item

similarities. Similarly to previous approaches, rating matrices from the source and

target domains are jointly factorized; but in this case user and item latent factors

from each domain are restricted, so that their product is consistent with the tag-

based similarities.

Latent factors shared between domains can be exploited to support cross-domain

recommendations. In this context, two types of approaches have been studied to

perform the actual transfer of knowledge; namely, adaptive and collective models.

In the former, latent factors are learned in the source domain, and are integrated

into a recommendation model in the target domain, while in the latter, latent fac-

tors are learned simultaneously optimizing an objective function that involves both

domains. [292] addressed the sparsity problem in the target domain following the

adaptive approach, proposing to exploit user and item information from auxiliary

domains where user feedback may be represented differently. In particular, they

studied the case in which users express binary like/dislike preferences in the source

domain, and utilize 1-5 ratings in the target domain. Their approach performs sin-

gular value decomposition (SVD) in each auxiliary domain, in order to separately

compute user and item latent factors, which are then shared with the target domain.

Specifically, transferred factors are integrated into the factorization of the rating

matrix in the target domain and added as regularization terms so that specific char-

acteristics of the target domain can be captured. Latent factors can also be shared in

a collective way, as studied by [291]. In this case, instead of learning latent features

from the source domains and transferring them to the target domain, the authors

proposed to learn the latent features simultaneously in all the domains. Both user

and item factors are assumed to generate the observed ratings in every domain,

and, thus, their corresponding random variables are shared between the probabilis-

tic factorization models of each rating matrix. Moreover, the factorization method

is further extended by incorporating another set of factors that capture domain-

dependent information, resulting in a tri-factorization scheme. A limitation of the

126

proposed approach is that the users and items from the source and target domains

have to be identical. Instead of focusing on sharing latent factors, [137], and [141]

studied the influence of social tags on rating prediction, as a knowledge transfer

approach for cross-domain recommendations. The authors presented a number of

models based on the SVD++ algorithm [221] to incorporate the effect of tag assign-

ments into rating estimation. The underlying hypothesis is that information about

item annotation in a source domain can be exploited to improve rating prediction in

a target domain, as long as a set of common tags between the domains exists. In the

proposed models, tag factors are added to the latent item vectors, and are combined

with user latent features to compute rating estimations. The difference between

these models is in the set of tags considered for rating prediction. In all the mod-

els knowledge transfer is performed through the shared tag factors in a collective

way, since these are computed jointly for the source and the target domains. [182]

presented a more complex approach that takes domain factors into account. There,

the authors argue that user-item dyadic data cannot fully capture the heterogeneity

of items, and that modeling domain-specific information is essential to make ac-

curate predictions in a setting where users typically express their preferences in a

single domain. They referred to this problem as the unacquainted world, and pro-

posed a tensor factorization algorithm to exploit the triadic user-item-domain data.

In that method, rating matrices from several domains are simultaneously decom-

posed into shared user, item, and domain latent factors, and a genetic algorithm

automatically estimates optimal weights of the domains. In a recent work, [426],

the authors propose a two-step approach where the latent factors learned via MF

for both the source and target domains are linked by training a deep neural net-

work (DNN) representing their connections. Interestingly, the training process of

the DNN is driven by the sparsity degrees of individual users and items in the source

and target domains. Contextual and content-based information is exploited in [366]

to cluster users in the source domain prior to a tensor factorization. The proposed

Cross Domain- Multi Dimensional Tensor Factorization (CD-MDTF) mitigates the

sparsity and cold-start problem by transferring the aggregated knowledge from the

source domain to target domain. An approach based on linking and transferring

127

knowledge is proposed in [421] where the main assumption is that correspondences

among entities is different domains are unknown but can be computed with a cost.

Starting from this assumption, the authors propose a unified framework aimed at

actively mapping entities in different domain and then transferring knowledge via

collaborative filtering. This latter step leverages partial mappings among entities

for knowledge transfer. The authors also show how to integrate in their framework

various extended matrix factorization techniques in a transfer learning manner. An

emphasis on the meaningfulness of the knowledge extracted from the source do-

main to the target domain is the main topic if [415]. A clustering step among users

and items is performed both in the source and target before a matrix factorization.

Then, by comparing the resulting matrices, it is possible to evaluate the consistency

of the information transfer.

Rather than sharing user or item latent factors for knowledge transfer, a different

set of approaches analyzes the structure of rating data at the community level. These

methods are based on the hypothesis that even when their users and items are dif-

ferent, close domains are likely to have user preferences sampled with the same

population. Therefore, latent correlations may exist between preferences of groups

of users for groups of items, which are referred to as rating patterns. In this context,

rating patterns can act as a bridge that relates the domains, such that knowledge

transfer can be performed in either adaptive or collective manners. In the adap-

tive setting, rating patterns are extracted from a dense source domain [232, 155].

In the collective setting, data from all the domains are pulled together and jointly

exploited, even though users and items do not overlap across domains [233]. In

[172], the authors propose to alleviate the data sparsity problem in a target do-

main by transferring rating patterns from multiple incomplete source domains. The

proposed approach extracts rating patterns from a sparse source domain that are

eventually combined with collaborative filtering to approximate the target domain

and predict missing values. In particular, they take into account the effects related

to negative transfer to obtain a more robust recommendation.

128

6.3 Matrix factorization models for cross-domain rec-

ommendation

In this section we refer to state-of-art models and optimization techniques explained

in Sections: 3.2.3, 3.2.3, 3.2.5, 3.2.4, 3.3.1. In contrast to previous works that rely

on graph-based methods for exploiting semantic metadata, the proposed approach

first computes inter-domain content-based similarities between the items, and then

exploits these similarities to regularize the joint learning of matrix factorizations

in the source and target domains. In particular, we present three alternative hybrid

models that make different assumptions about the relationships between source and

target domain item latent factors, simultaneously exploiting user preferences and

item metadata.

Moreover, in the chapter we detail our adaptations of the fast alternating least

squares training algorithm for matrix factorization proposed by [304], in order to

deal with the increased complexity of our models, which not only learn the auxil-

iary source domain user preferences, but also the item metadata used to bridge the

domains.

Items from different domains tend to have very diverse attributes that are not

straightforward related. For instance, a book may be characterized by its author or

by its book genres, and a movie can be described using its cast, director or movie

genres. In fact, content-based features are often different between domains, and

even when they refer to related concepts, such as book genres and movie genres, the

features may not be directly aligned, e.g., funny movies vs. comedy books.

In order to overcome the heterogeneity of features of items from different do-

mains, we propose to exploit Linked Data for linking entities from multiple and di-

verse domains. Specifically, we map the items in our datasets to entities in DBpedia,

a multi-domain repository that provides a semantic-based, structured representation

of knowledge in Wikipedia. In 6.4.1 we shall describe the process of mapping items

to semantic entities from DBpedia. Once the items are mapped to their correspond-

ing entities, we use the DBpedia graph to compute semantic similarities between

such entities, mining both the attributes and the structure of the graph with seman-

129

tic relations. More specifically, we exploit the information in DBpedia to compute a

semantic similarity matrix S ∈R|IS|×|IT | between the source domain items IS and

the target domain items IT :

si j = sim(i, j), i ∈IS, j ∈IT (6.1)

In 6.4.4 we shall report recommendation performance results by using several se-

mantic similarity metrics from the state of the art.

The computed inter-domain item similarities are then used to link the domains

for cross-domain recommendation. In the cold start, when a user has rated a few (if

any) items in the target domain, a recommender system could suggest the user with

items in the target domain that are semantically similar to those the user liked in

the source domain. Hence, the system could be effective only if there is an overlap

of users between the domains. Moreover, even cold start users in the target domain

should have some preferences in the source domain.

In the next subsections we present our three recommendation models based on

the exploitation of semantic similarities to regularize item factors in MF, so that

similar items from different domains tend to have similar parameters. In this way,

even if the user’s preferences in the target domain are unknown, a recommender

system could suggest the user with target items that are most similar to those she

preferred in the source.

6.3.1 Regularization through similarity prediction

The first semantic-based matrix factorization cross-domain model we propose is

based on the assumption that latent vectors of related items should explain the items

semantic similarities, in addition to the users’ preferences. That is, we not only

seek to predict the preferences rui ≈ 〈~pu,~qi〉, but also the inter-domain similarities

si j ≈ 〈~qi,~q j〉, where i ∈IS and j ∈IT .

Hence, our model jointly factorizes the rating and inter-domain item similarity

matrices that link the source and target domains. Let U = US∪UT be the set of all

users, which we assume overlaps between the domains, and let I =IS∪IT be the

set of all items, which we assume do not overlap. Our model learns a latent vector

130

~pu ∈Rk for each user u ∈U , but separately models source and target domain items

~qi and~q j, with i ∈IS and j ∈IT , as follows:

L (P,QS,QT) = ∑
u∈U

∑
a∈I

cua (rua−〈~pu,~qa〉)2

+λC ∑
i∈IS

∑
j∈IT

(
si j−〈~qi,~q j〉

)2
+λ

(
‖P‖2 +‖QS‖2 +‖QT‖2

)
(6.2)

where QS and QT are matrices containing the item latent vectors as rows from the

source and target domains, respectively. We note that the summation in the first term

iterates over all items a ∈I from both domains, as we want to factorize the source

and target user-item preference matrices simultaneously. The cross-domain regu-

larization parameter λC > 0 controls the contribution of the inter-domain semantic

similarities; large values of the parameter will force items to have too similar latent

vectors, whereas low values will result in limited transfer of knowledge between

domains.

As in standard matrix factorization, we train our model using Alternating Least

Squares. First, we fix QS and QT , and solve analytically for each ~pu by setting the

gradient to zero. Since the user factors do not appear in the additional cross-domain

regularization term, we obtain the same solution as for the baseline MF model (see

3.8):

~pu =
(

Q>CuQ+λ I
)−1

Q>Cu~ru (6.3)

In order to simplify the notation, we have defined the matrix Q as the row-wise

concatenation of QS and QT . The matrix Cu is a diagonal matrix with the confidence

values cua for all a ∈I , and the vector~ru contains the preferences of user u, again

for all items a ∈I .

Next, we fix the user factors P and the target domain item factors QT , and

compute the optimal values for the source domain item factors. Again, by setting

the corresponding gradient to zero and solving analytically we obtain:

~qi =
(

P>CiP+λCQ>T QT +λ I
)−1(

P>Ci~ri +λCQ>T~si

)
(6.4)

As previously, the vector~ri contains the preferences assigned to item i, and~si is the

i-th row of the inter-domain semantic similarity matrix S. Finally, we proceed as

131

before fixing P and QS to compute the optimal solution for the target domain item

latent vectors:

~q j =
(

P>C jP+λCQ>S QS +λ I
)−1(

P>C j~r j +λCQ>S~s j

)
(6.5)

The computation of the optimal factors can be parallelized within each step, but

the larger number of items to consider and the extra step required for the source

domain greatly increase the training time with respect to the MF baseline. In order

to address this issue, we adapt the fast RR1 training algorithm for ALS proposed

by [304]. Since the computation of the user factors is the same as in the original

MF model, the procedure remains the same for the P-step. For the source domain

Q-step, by inspecting 6.2 and 6.4, we note that the additional terms that arise from

the inter-domain similarities can be treated just like user preferences as follows. For

each source item i:

1. Generate examples for each rating rui as for baseline MF (see [304])

2. For each target item j ∈IT :

• Generate an input example~x j :=~q j.

• Use the similarity as the dependent variable, y j := si j.

• Use a constant confidence value c j := λC.

• The parameter to optimize is ~w :=~q j.

The above procedure will produce the similarity terms of 6.4, which can be defined

by means of the confidence matrix C̃i = λCI. The procedure for the target domain

Q-step is completely analogous.

6.3.2 Regularization based on item neighborhoods

Our second semantic-based matrix factorization cross-domain model exploits the

item semantic similarities in a different fashion. Instead of forcing pairwise item

interactions to reproduce the observed similarity values, the approach we present

here leverages S to regularize the item latent vectors, so that feature vectors of

132

similar items are pushed together in the latent space. Intuitively, items that are

semantically similar should also have similar latent parameters.

As previously, let U = US∪UT and I = IS∪IT be the sets of all users and

items, respectively. Our approach jointly factorizes the source and target domain

rating matrices, and regularizes similar item factors proportionally to the items sim-

ilarity. However, instead of considering all the potentially similar source domain

items, we limit the regularization of a target domain item j ∈ IT to its neighbor-

hood, i.e., to the set N(j)⊆IS of the top-n most similar source domain items:

L (P,QS,QT) = ∑
u∈U

∑
a∈I

cua (rua−〈~pu,~qa〉)2

+λC ∑
j∈IT

∑
i∈N(j)

si j
∥∥~q j−~qi

∥∥2
+λ

(
∑

u∈U
‖~pu‖2 + ∑

a∈I
‖~qa‖2

)
(6.6)

We note that items with greater similarity values are more heavily regularized,

whereas items with values of si j ≈ 0 in their neighborhoods are barely affected.

However, it may still be convenient to regularize such items so that they benefit

from cross-domain information, and thus may be eligible for recommendation to

cold start users. Therefore, we also experiment normalizing the similarity scores

in the item neighborhoods so that ∑i∈N(j) si j = 1. In this way all target items are

equally regularized, but each is affected by its source domain neighbors proportion-

ally to their similarity scores.

By assigning latent vectors to target domain items close to those of similar

source domain items, our model is able to generate recommendations in cold start

settings. Specifically, let ~q j be the latent vector learned for target item j ∈IT , and

let ~qi be the latent vector of source item i ∈ IS, which we assume is semantically

similar to j. Our model will regularize both factors so that their distance
∥∥~q j−~qi

∥∥
is small, or equivalently, ~q j ≈ ~qi. Consider now a cold start user u who only pro-

vided preferences in the source domain, so that her corresponding latent vector ~pu

is therefore only adjusted using source domain preferences. In standard MF, it is

not guaranteed that ~pu will extrapolate to the target domain, and will provide an

accurate prediction for ~q j. In contrast, our model ensures that 〈~pu,~q j〉 ≈ 〈~pu,~qi〉,
i.e., target domain items yield relevance prediction scores close to that of similar

133

source domain items. Hence, u will be recommended with a target domain item j

if the user liked the source domain item i, or if i would be recommended to u in the

source domain.

Once more, we train our neighborhood-based matrix factorization model using

Alternating Least Squares. As in the previous model, the user factors are not af-

fected by the extra regularization, and can be computed again using 6.3, leaving the

P-step unchanged. For the target domain item factors~q j we proceed as usual, fixing

the user and source item factors, and finding the values such that ∂L
∂~q j

= 0, which

yields the solution:

~q j =

[
P>C jP+

(
λ +λC ∑

i∈N(j)
si j

)
I

]−1(
P>C j~r j +λC ∑

i∈N(j)
si j~qi

)
(6.7)

Repeating the same procedure for the source item factors~qi we obtain:

~qi =

P>CiP+

λ +λC ∑
j∈N−1(i)

si j

I

−1P>Ci~ri +λC ∑
j∈N−1(j)

si j~q j

 (6.8)

where N−1(i) is the inverse neighborhood of item i, i.e., the set of target domain

items that have i among their neighbors: N−1(i) = { j ∈IT |i ∈ N(j)}.
Unlike the model presented in the previous section, we cannot apply RR1 di-

rectly by treating the new similarity terms as additional user preferences. Instead,

we derive again the update rules for each component of the source and target do-

main item parameters. As mentioned before, user parameters remain unchanged.

Let j ∈ IT be a target item, and consider the optimization of the α-th component

q jα of its corresponding latent vector~q j. We can rewrite the loss in 6.6 as a function

only of q jα as follows:

Lα(q jα) = ∑
u∈U

cu j
(
eu j− puαq jα

)2
+λq2

jα

+λC ∑
i∈N(j)

si j
(
q jα −qiα

)2
+ constant (6.9)

where eu j , ru j−∑β 6=α puβ q jβ , and the constant includes terms that do not depend

134

on q jα . If we set the derivative dLα

dq jα
= 0, we obtain:

q jα =
∑u∈U cu jeu j puα +λC ∑i∈N(j) si jqiα

∑u∈U cu j p2
uα +λ +λC ∑i∈N(j) si j

(6.10)

Using the optimizations described in [304], the computational cost of the above

formula for all items is O(k2|U |+ k|R|+n|IT |), since all the neighborhoods are

formed using the top n most similar items, |N(j)| ≤ n. Applying the same procedure

to the source domain item factor~qi we obtain:

qiα =
∑u∈U cuieui puα +λC ∑ j∈N−1(i) si jq jα

∑u∈U cui p2
uα +λ +λC ∑ j∈N−1(i) si j

(6.11)

The main difference with respect to 6.10 is that the sets N−1(i) are not bounded, as

a source item can potentially be the neighbor of an arbitrary number of target items,

so that |N−1(i)| ≤ |IT |, resulting in a theoretical worst-case cost of O(k2|U |+
k|R|+ |IS||IT |). We observe, however, that in practice most of the source items

appear only in a few neighborhoods and that the algorithm is still very efficient.

6.3.3 Regularization based on item centroids

When neighbor source domain items are mutually diverse, the neighborhood-based

model presented in the previous section may struggle to regularize a target domain

item that has to be simultaneously close to all its neighbors. The model we pro-

pose in this section works like the neighborhood-based model, but, instead of using

the neighbor source domain items individually in the regularization, it uses their

centroid (average) latent vector:

L (P,QS,QT) = ∑
u∈U

∑
a∈I

cua (rua−〈~pu,~qa〉)2

+λC ∑
j∈IT

∥∥∥∥∥~q j− ∑
i∈N(j)

si j~qi

∥∥∥∥∥
2

+λ

(
∑

u∈U
‖~pu‖2 + ∑

a∈I
‖~qa‖2

)
(6.12)

The same considerations regarding the neighborhood N(j) and the normalization

of the similarity scores also apply to this model. However, the effect on the item

relevance predictions for cold start users is different. Let~q j be an item in the target

135

domain, and let N(j) be its neighborhood of most similar source domain items.

The regularization scheme in our centroid-based approach aims to minimize the

distance
∥∥~q j−∑i∈N(j) si j~qi

∥∥, so that the latent vector of item j is close, on average,

to those of the source items in N(j), i.e.,~q j ≈∑i∈N(j) si j~qi. Let u be a cold start user

in the target domain that has some preferences in the source domain. Again, her

feature vector ~pu is only learned using the user’s source preferences, and may not

be reliable for computing relevance predictions for target domain items in standard

MF. Our model, however, ensures that

〈~pu,~q j〉 ≈

〈
~pu, ∑

i∈N(j)
si j~qi

〉
= ∑

i∈N(j)
si j〈~pu,~qi〉

That is, the predicted relevance score is roughly the average of the relevance scores

for the neighbor source domain items, weighted by their corresponding semantic

similarity.

As in the previous models, the user parameters are not affected by the item

regularization terms, and can be computed in the standard fashion using 6.3. For

the target domain item factors ~q j, j ∈ IT , we set the gradient of 6.12 to zero to

obtain:

~q j =
[
P>C jP+(λ +λC)I

]−1
(

P>C j~r j +λC ∑
i∈N(j)

si j~qi

)
(6.13)

Comparing the above to 6.7 we observe that both are equivalent when ∑i∈N(j) si j =

1, i.e., normalizing the similarity values has the same effect of than centroid-based

regularization on the target domain item factors. The solution for source item factors

~qi, in contrast, has a different form:

~qi =

P>CiP+

λ +λC ∑
j∈N−1(i)

s2
i j

I

−1

·

P>Ci~ri +λC ∑
j∈N−1(j)

si j
(
~q j−~z j\i

) (6.14)

where we have defined~z j\i = ∑l∈N−1(i),l 6=i sl j~ql to simplify the notation. We note

that, differently to the previous models, the computation of the source domain latent

136

vectors cannot be parallelized, as the value of ~qi, i ∈ IS depends on the values of

other ~ql, l ∈IS through the parameter~z j\i. As a result, the training process can be

slow when the set of source domain items is large. In our experiments, however,

we observed that the time penalty of computing the source factors sequentially is

usually compensated by the faster RR1 algorithm, although we do not provide any

quantitative analysis as it falls out of the scope of this work.

In order to apply RR1 to our centroid-based approach, we derive again the so-

lutions for each α-th coordinate separately. Once more, the solution for the user

factors remains the same as it is not affected by the regularization terms. For the

target domain item factors~q j, we consider the loss in 6.12 as a function only of the

α-th component q jα :

Lα(q jα) = ∑
u∈U

cu j
(
eu j− puαq jα

)2
+λq2

jα

+λC

(
q jα − ∑

i∈N(j)
si jqiα

)2

+ constant (6.15)

As previously, the constant includes terms that do not depend on q jα , and eu j is

defined as in 6.9. Setting the derivative dLα

dq jα
= 0 yields:

q jα =
∑u∈U cu jeu j puα +λC ∑i∈N(j) si jqiα

∑u∈U cu j p2
uα +λ +λC

(6.16)

We note, once again, the similar form of the above solution with respect to the

previous model in 6.10. If we apply the same procedure to the source domain item

factors, we obtain:

qiα =
∑u∈U cuieui puα +λC ∑ j∈N−1(i) si j(q jα −~z(j\i)α)

∑u∈U cui p2
uα +λ +λC ∑ j∈N−1(i) s2

i j
(6.17)

The computational complexity for the target domain factors is equivalent to

the model from the previous section, whereas for the source domain factors it is

O(k2|U |+k|R|+n|IS||IT |) in the worst case, which is similar to the neighborhood-

based model since the size of the neighborhoods n is in general small.

137

6.4 Experiments

In a first experiment, we compared several state-of-the-art semantic similarity met-

rics for content-based recommendation, aiming to understand which is more suit-

able for later injecting in our cross-domain MF models, and achieved the best re-

sults using the link-based approach by [262]. Second, we evaluated the ranking

precision and diversity of the recommendations computed by the proposed models.

We show that, depending on the involved source and target domains, our models

generate more accurate suggestions than the baselines in severe cold start situations.

Moreover, the proposed approaches provide a better trade-off between accuracy and

diversity, which are in general difficult to balance.

6.4.1 Dataset

Our dataset initially consisted of a large set of likes assigned by users to items in

Facebook. Using the Facebook Graph API, a user’s like is retrieved in the form of

a 4-tuple with the following information: the identifier, name and category of the

liked item, and the timestamp of the like creation, e.g., {id: "35481394342",

name: "The Godfather", category: "Movie", created time:

"2015-05-14T12:35:08+0000"}. The name of an item is given by the user

who created the Facebook page of such item. In this context, distinct names may

exist for a particular item, e.g., The Godfather, The Godfather: The Movie, The

Godfather - Film series, etc. Users thus may express likes for different Facebook

pages which actually refer to the same item. Aiming to unify and consolidate the

items extracted from Facebook likes, we developed a method that automatically

maps the items names with the unique URIs of the corresponding DBpedia entities,

e.g., http://dbpedia.org/resource/The_Godfather for the identi-

fied names of The Godfather movie.

Linking items to DBpedia entities Given a particular item, we first identified

DBpedia entities that are labeled with the name of the item. For such purpose, we

138

launched a SPARQL query targeted on the subjects of triples that have rdfs:label9

as property and the item title as object. The next query is an example for The Matrix

2 title:

SELECT DISTINCT ? i t em WHERE {
{

? i t em r d f : t y p e dbo : Fi lm .

? i t em r d f s : l a b e l ?name .

FILTER r e g e x (? name , ” t h e .∗ m a t r i x . ∗ 2 ” , ” i ”) .

}
UNION

{
? i t em r d f : t y p e dbo : Fi lm .

? tmp dbo : w i k i P a g e R e d i r e c t s ? i t em .

? tmp r d f s : l a b e l ?name .

FILTER r e g e x (? name , ” t h e .∗ m a t r i x . ∗ 2 ” , ” i ”) .

}
}

To resolve ambiguities in those names that correspond to multiple items be-

longing to different domains, we specify the type of the item we wanted to re-

trieve in each case. Specifically, the previous query includes a triple clause with

rdf:type10 (or dbo:type11) as property. Hence, in the given example, the

subject The Matrix 2 refers to the “movie” type, which is associated to the

dbo:Film class in DBpedia. The item types were set from the item categories

provided in Facebook, and their associated DBpedia and YAGO12 classes13 were

identified by manual inspection of the rdf:type values of several entities. 6.1

shows the list of item types and DBpedia/YAGO classes we considered for the three

domains of our dataset.
9Namespace for rdfs, http://www.w3.org/2000/01/rdf-schema

10Namespace for rdf, http://www.w3.org/1999/02/22-rdf-syntax-ns\#
11Namespace for dbo, http://dbpedia.org/ontology
12The YAGO knowledge base, http://www.mpi-inf.mpg.de/yago-naga/yago
13Namespace for yago, http://dbpedia.org/class/yago

139

Table 6.1: Considered item types and their DBpedia and YAGO classes for the three

domains of the dataset.

Item type DBpedia/YAGO classes

B
oo

ks

Book dbo:Book, yago:Book102870092,

yago:Book102870526

Genre yago:LiteraryGenres

Writer dbo:Writer, yago:Writer110794014

Fictional

character

dbo:FictionalCharacter,

yago:FictionalCharacter109587565

M
ov

ie
s

Movie dbo:Film, yago:Movie106613686

Genre dbo:MovieGenre, yago:FilmGenres

Director yago:FilmDirector110088200,

yago:Director110014939

Actor dbo:Actor, yago:Actor109765278

Fictional

character

dbo:FictionalCharacter,

yago:FictionalCharacter109587565

M
us

ic

Composition dbo:Song, dbo:MusicalWork, dbo:Single,

dbo:ClassicalMusicComposition, dbo:Opera

Genre dbo:MusicGenre, yago:MusicGenres,

yago:MusicGenre107071942

Album dbo:Album, yago:Album106591815

Musician dbo:MusicalArtist,

yago:Musician110339966,

yago:Musician110340312,

yago:Composer109947232

Band dbo:Band,

yago:MusicalOrganization108246613

140

Moreover, running the previous query template we observed that a number

of items were not linked to DBpedia entities because the labels corresponded to

Wikipedia redirection webpages. In these cases, to reach the appropriate entities

the query makes use of the dbo:wikiPageRedirects property. The result of

the previous query for The Matrix 2 is http://dbpedia.org/resource/

The_Matrix_Reloaded, which actually is the DBpedia entity of the second

movie in The Matrix saga. Here, it is important to note that thanks to the Wikipedia

page redirect component we were able to link items whose names do not have a

direct syntactic match with the label of its DBpedia entity, but with the label of a

redirected entity, e.g., the Matrix 2 title matches the The Matrix Reloaded

entity.

Final semantically annotated dataset For every linked entity, we finally ac-

cessed DBpedia to retrieve the metadata that afterward will be used as input for

the recommendation models. In this case, we launched a SPARQL query asking

for all the properties and objects of the triples that have the target entity as subject.

Following the example given before, such a query would be:

SELECT ? p ? o WHERE {
dbr : T h e M a t r i x R e l o a d e d ? p ? o .

}

This query returns all the DBpedia property-value pairs of the

dbr:The Matrix Reloaded14 entity. However, since our ultimate goal is item

recommendation, we should only exploit metadata that may be relevant to relate

common preferences of different users. Thus, we filtered the query results by con-

sidering certain properties in each domain. Specifically, 6.2 shows the list of DB-

pedia properties selected for each of the three domains of our dataset. Hence, for

example, for the movie items, we would have as metadata the movies genres, direc-

tors, and actors, among others.

The items and relations shown in the table thus represent a semantic network

that is automatically obtained from DBpedia for each particular domain. 6.3 shows
14Namespace for dbr, http://dbpedia.org/resource

141

statistics of the dataset for the three domains of interest, namely books, movies, and

music. Additionally, users may express preferences in more than one domain. 6.4

shows the number of users shared between each pair of domains.

Semantically enriched item profiles Fixing books, movies, musicians and bands

as the target items to be recommended, we can distinguish the following three types

of item metadata obtained:

• attributes, which correspond to item-attribute entities associated to the con-

sidered item types of 6.2, and are distinct to the entities of target items, e.g.,

the genre(s), director(s) and actors of a particular movie.

• related items, which correspond to the item-item properties in 6.2 that derive

related entities, e.g., the novel a movie is based on (dbo:basedOn prop-

erty), the prequel/sequel of a movie

(dbo:previousWork / dbo:subsequentWork properties), or the mu-

sicians belonging to a band (dbo:bandMember property).

• extended attributes, which correspond to attribute-attribute properties that

generate extended item attributes, originally not appearing as metadata, e.g.,

the subgenres of a particular music genre (dbo:musicSubgenre prop-

erty).

The above three types of item metadata constitute the semantically enriched

item profiles that we propose to use in our recommendation models. We note that

they differ from the commonly used content-based item profiles composed of plain

attributes. We also note that in the conducted experiments, the results achieved by

exploiting the enriched profiles were better than those achieved by only using item

attributes.

6.4.2 Evaluation methodology and metrics

The evaluation of the proposed models was conducted utilizing a modified user-

based 5-fold cross-validation strategy, based on the methodology by [217] for cold

142

Table 6.2: DBpedia properties considered as item metadata; item can be book,

movie and composition, musician and band.

Relation DBpedia properties

item – genre dct:subject, dbo:genre

book – genre dbo:literaryGenre

music genre – music

genre

dbo:musicSubgenre,

dbo:musicFusionGenre,

dbo:movement, dbo:derivative,

dbo:stylisticOrigin

item – author dbo:author, dbo:creator

book – writer dbo:writer

movie – actor, character,

director

dbo:starring, dbo:cinematograpy,

dbo:director

composition – musician dbo:artist, dbo:composer,

dbo:musicComposer,

dbo:musicalArtist,

dbo:associatedMusicalArtist

music item – album dbo:album

band – musician dbo:bandMember,

dbo:formerBandMember,

dbo:musicalBand,

dbo:associatedBand

item – item, character dbo:series

item – character dbo:portrayer

item – item dbo:basedOn, dbo:previousWork,

dbo:subsequentWork,

dbo:notableWork

143

Table 6.3: Statistics of the extracted dataset enriched with metadata.

Books Movies Music

Users 1876 26943 49369

Items 3557 3901 5748

Likes 42869 876501 2084462

Sparsity (%) 99.4 99.2 99.3

Avg. items/user 22.85 32.53 42.22

Avg. users/item 12.05 224.69 362.64

Table 6.4: User overlap between domains. Right to each target, the ratio of shared

users relative to the source domain.

Target

Source Books % Movies % Music %

Books 1876 100.0 1495 79.7 1519 81.0

Movies 1495 5.5 26943 100.0 21720 80.6

Music 1519 3.1 21720 44.0 49369 100.0

144

Figure 6.1: Overview of the cold start evaluation setting in a given cross-validation

fold. The box indicates the test users in the current fold, whose profiles are split into

training, validation, and testing sets. Different cold start profle sizes are simulated

by sequentially adding likes to their training sets —four in the figure.

start evaluation. Our goal is to understand how the different approaches perform as

the number of observed likes in the target domain increases. First, we divide the set

of users into five subsets of roughly equal size. In each cross-validation stage, we

keep all the data from four of the groups in the training set. Then, for each user u

in the fifth group –the test users– we randomly split her likes into three subsets, as

depicted in 6.1:

1. Training data, initially filled with u’s likes and iteratively downsampled dis-

carding one by one to simulate different cold start profile sizes,

2. Validation data containing the set of likes used for tuning hyperparameters,

and

3. Testing data used to compute the performance metrics.

The above procedure was modified for the cross-domain scenario by extending

the training set with the full set of likes from the auxiliary domain, in order to obtain

the actual training data for the predictive models. For each cold start profile size,

we built the recommendation models using the data in the final training set. Then,

for each test user, we generated a ranked list of the top 10 suggested items from

145

the set of target domain items in the training set that are not yet known to the user.

The performance is estimated from the output of each model and the test set using

rank-based metrics. We note that in our evaluation, any item ranked after position

10 by the model is considered not relevant when computing the metrics, as we are

interested in the more realistic setting where the user only examines a limited subset

of the recommendations.

Regarding the metrics, we used the Mean Reciprocal Rank (MRR) to evaluate

the ranking accuracy of the recommendations, which computes the average recip-

rocal rank of the first relevant item in the recommendation list. Binomial Diversity

Framework (BinomDiv) [376] was used to evaluate the individual diversity, namely

the degree of diversity in the recommendation lists based on item genres extracted

from DBpedia.

6.4.3 Evaluated methods

We compared the performance of our proposed methods against the following base-

line algorithms:

• POP. Non personalized baseline that always recommends the most popular

items not yet liked by the user. Popularity is measured as the number of users

in the dataset that liked the item.

• UNN. User-based nearest neighbors with Jaccard similarity. The size of the

neighborhood is tuned for each dataset using a validation set.

• INN. Item-based nearest neighbors with Jaccard similarity and indefinite neigh-

borhood size.

• iMF. Matrix factorization method for positive-only feedback [184] trained

using the fast ALS technique by [304].

• BPR. Bayesian personalized ranking from implicit feedback [312]. We used

for our experiments the implementation available in LibRec [164].

146

• FISM. Factored item similarity model by [205]. We used the implementation

of the FISMauc variant optimized for the item ranking problem available in

LibRec [164].

• HeteRec. Graph-based recommender system proposed in [405], based on a

diffusion method of user preferences following different meta-paths.

• SPRank. Originally proposed in [282], it implements a hybrid approach to

compute recommendations with LOD datasets. We used a publicly available

implementation of SPRank15.

With the exception of POP (which only uses target domain data) and SPRank, we

considered the application of all the baselines to both single- and cross-domain sce-

narios. We were not able to compute meaningful results for SPRank by using DB-

pedia properties shown in Table 6.2 due to the structure of the connections between

domains in the underlying knowledge graph. All the paths calculated by SPRank

to link items in different domains resulted in being not very relevant thus bringing

to shallow performances of the algorithm. Moreover, given the datasets adopted for

the experimental evaluation, we were not able to generate all the meta-path needed

to compute recommendations. We used machines with up to 3 TB of disk space but

it was not sufficient.

Hereafter we use the prefix CD- to indicate that the algorithm is operating in

cross-domain mode using the union of the rating matrices from the source and tar-

get domains. We did not consider for our evaluation the SemanticSVD++ method

by [321], as it is designed for rating prediction rather than item ranking. More-

over, preliminary tests showed that its performance was much lower than the other

methods, and that its training time was about one order of magnitude larger.

We evaluated the three methods presented in this study:

• SimMF. Our matrix factorization model regularized with similarity predic-

tion described in 6.3.1.

15https://github.com/sisinflab/lodreclib

147

• NeighborMF. Our proposed matrix factorization model with neighborhood-

based regularization from 6.3.2.

• CentroidMF. Our matrix factorization model from 6.3.3 that uses the neigh-

bor’s centroid to regularize the target domain item factors.

We tuned the hyperparameters of the considered recommendation models using

a held-out validation set of likes, as we explain in the next section. For UNN, we

only had to select the size of the user neighborhoods. For the matrix factorization

models, in contrast, the number of hyperparameters is larger, namely, the dimen-

sionality of the latent factor space k, the amount of regularization λ , and the confi-

dence parameter for positive-only feedback α . Moreover, the models proposed also

include the cross-domain regularization rate λC, which controls the contribution of

the inter-domain item similarities. Finally, for NeighborMF and CentroidMF, we

tuned the size n of the item neighborhoods N(j), and the possibility to normalize

the neighbors’ similarities so that the sum to 1, as explained in 6.3.2.

The high number of parameters to tune rules out the possibility of performing a

grid search for the best values. Hence, we used Bayesian Optimization techniques

[353] that train Machine Learning models to predict candidate values that are likely

to maximize a given function while simultaneously reducing the uncertainty of over

unknown parameter values.

We tuned the parameters of the single-domain methods only on the target do-

main, and used the same values for their cross-domain variants. For UNN, the opti-

mal number of neighbors was n = 50 for books, and n = 100 for movies and music.

For iMF we obtained the optimal parameters k = (10,29,21),λ = (10−5,0.823,1),

and α = (6,7,10) for books, movies, and music, respectively. For BPR we used

λ = 0.01 for regularization and η = 0.01 as learning rate. In the case of FISM, we

used λ = 0.001 and η = 10−5. The optimal values for our proposed cross-domain

models are reported in 6.5.

148

Table 6.5: Optimal hyperparameters for SimMF, NeighborMF, and CentroidMF.

The last column indicates whether the similarities in the neighborhood are normal-

ized or not.

Source Method k λ α λC n Norm.

B
oo

ks

Movies

SimMF 112 0 1 10−8

NeighborMF 134 1 1 9.125 49 X

CentroidMF 153 0.999 1 8.778 100 X

Music

SimMF 10 1 16 10−8

NeighborMF 10 0 18 10 100 X

CentroidMF 10 0 14 0.109 100

M
ov

ie
s

Books

SimMF 12 1 1 0.002

NeighborMF 12 1 1 10 81 X

CentroidMF 14 0.100 1 0.200 1 X

Music

SimMF 35 0 1 1.6×10−6

NeighborMF 51 1 1 10 100

CentroidMF 29 1 1 9.494 99 X

M
us

ic

Books

SimMF 10 1 1 0.039

NeighborMF 10 0.995 1 3.014 100 X

CentroidMF 10 0.724 1 1.673 14

Movies

SimMF 11 0.571 4 0.641

NeighborMF 10 0.978 2 0.699 46

CentroidMF 10 0.562 2 10 3 X

149

6.4.4 Results

In this section we present the results of the conducted experiments to evaluate the

proposed matrix factorization models. First, we analyze several semantic related-

ness metrics to compute the inter-domain item similarities. Next, we report the

ranking accuracy and diversity of the evaluated recommendation approaches, and

study how the size and diversity of the source domain user profile impacts on the

target recommendations.

6.4.5 Inter-domain item semantic similarity

The goal of our first experiment is to analyze the performance of several semantic

relatedness metrics to compute the inter-domain similarities that we later exploit in

our matrix factorization models. We considered the following strategies:

• TF-IDF. We use the semantically-enriched item profiles (see 6.4.1 to build

TF-IDF vector profiles based on the metadata of each item. The similarity

score between a source domain item and a target domain item is computed as

the cosine of their corresponding TF-IDF vectors.

• ESA. The Explicit Semantic Analysis technique proposed by [153]. Instead

of using the semantic metadata, we map each item to its corresponding Wikipedia

article. Then, based on the text of the article, ESA extracts a set of other re-

lated Wikipedia articles, which represent semantic concepts, and builds a TF-

IDF profile from the extracted concepts. Finally, the similarity score between

two items is computed as the cosine of their corresponding concept-based

vectors.

• M&W. The approach proposed by [262] computes the semantic relatedness

between two items using the overlap of their sets of inlinks and outlinks in

the Wikipedia hyperlink graph.

• Katz. Based on Katz’s centrality measure, the relatedness between two items

is computed as the accumulated probability of the top shortest paths between

their corresponding entities in the semantic network [185].

150

Table 6.6: MRR of the evaluated semantic relatedness metrics.

Source Target TF-IDF ESA M&W Katz

Books
Movies 0.058 0.030 0.123 0.092

Music 0.028 0.015 0.042 0.022

Movies
Books 0.054 0.011 0.031 0.013

Music 0.030 0.011 0.028 0.009

Music
Books 0.010 0.006 0.052 0.020

Movies 0.013 0.018 0.088 0.006

We evaluated the previous semantic relatedness metrics indirectly by comparing

their performance in the item recommendation task. For such purpose, we chose a

content-based recommendation model with no parameters, so that we can fairly

measure the effect of each similarity on the item ranking quality. According to

this simple model, the relevance score of an item is computed as the accumulated

similarity with the items in the user’s profile:

s(u, i) = ∑
j∈I(u)

si j (6.18)

where si j is computed any of the methods described above.

The results of our experiment are shown in 6.6. For easier comparison according

the methodology from 6.4.2, we averaged the MRR scores for all the cold start sizes

in each source-target domain combination. We conclude from the table that M&W

is the best performing metric, beating all the other approaches except when consid-

ering the movie domain as source, in which case it is still competitive. Hence, in the

following experiments we evaluate our proposed matrix factorization models using

M&W as the backing semantic similarity. Finally, we note that the low values for

MRR are due to the simple recommendation algorithm chosen for this experiment.

6.4.6 Item ranking accuracy

In our second experiment we analyze the accuracy of the item rankings generated by

the evaluated recommendation approaches. We aim to understand if cross-domain

151

variants are in general more effective than single-domain ones, and whether the

proposed matrix factorization models are able to outperform the other methods in

cold start settings.

6.7 shows the ranking accuracy for book recommendations in terms of MRR. We

report the average results for cold start user profiles from sizes 6–10, as we observed

that in those cases the trends are stable and, in general, single-domain baselines start

to be effective. We remark that, according the evaluation methodology described in

6.4.2, the number of test users remains constant regardless of the profile size, which

we control by iteratively downsampling the training portion of their profile (see 6.1).

We notice from the table that, in general, approaches exploiting cross-domain

movies or music preferences provide better recommendations than their single-

domain counterparts. In case auxiliary movie preferences are available, we observe

that the proposed NeighborMF and CentroidMF models achieve the best perfor-

mance when only 1–3 book likes are observed. Moreover, in that case, our cross-

domain matrix factorization models perform much better than the single-domain

baselines. However, once 4 likes are available, CD-INN and single-domain Het-

eRec are more effective approaches. When the auxiliary preferences consist of mu-

sic likes, we see that CD-INN is the overall best method, although it is only useful

for profiles of size 1. For larger profiles, it is better to use single-domain base-

lines than any cross-domain method that uses music preferences. In summary, we

conclude that music preferences are not useful for book recommendations, whereas

movie likes could be used to improve the performance, specially with NeighborMF

and CentroidMF for 1–3 book likes. We observe the bad performance of SPRank in

cold start situations compared to the other baselines.

In 6.8 we show the results for movie recommendations. We observe that most of

the cross-domain approaches are able to provide recommendations better than the

most popular items for completely new movie users, and that CD-HeteRec is clearly

the best performing approach. If the auxiliary cross-domain data consists of book

preferences, we notice that the proposed matrix factorization models outperform the

best single-domain baselines. However, in this situation CD-INN is even a better

method, clearly providing more accurate recommendations than any other approach

152

Table 6.7: Accuracy (MRR) for cold start users in the target books domain. The

three groups of rows correspond to single-domain, cross-domain with movies as

source, and cross-domain with music as source, respectively. Best values for each

single- and cross-domain configuration are shown in bold.

Number of book likes

Method 0 1 2 3 4 5 6–10

POP 0.242 0.244 0.246 0.248 0.251 0.252 0.260

UNN 0.222 0.265 0.286 0.289 0.290 0.322

INN 0.145 0.177 0.216 0.241 0.262 0.316

iMF 0.171 0.194 0.235 0.255 0.271 0.301

BPR 0.110 0.116 0.136 0.154 0.157 0.193

FISM 0.228 0.230 0.234 0.234 0.238 0.245

HeteRec 0.218 0.244 0.279 0.297 0.316 0.351
SPRank 0.048 0.055 0.070 0.065 0.062 0.059

M
ov

ie
s

CD-UNN 0.186 0.148 0.170 0.175 0.189 0.190 0.212

CD-INN 0.262 0.265 0.275 0.291 0.301 0.307 0.339
CD-iMF 0.261 0.262 0.268 0.272 0.275 0.274 0.287

CD-BPR 0.217 0.200 0.218 0.237 0.235 0.238 0.251

CD-FISM 0.235 0.228 0.225 0.231 0.236 0.235 0.245

CD-HeteRec 0.264 0.248 0.261 0.268 0.278 0.277 0.298

SimMF 0.253 0.268 0.274 0.284 0.289 0.290 0.296

NeighborMF 0.253 0.272 0.282 0.294 0.293 0.293 0.301

CentroidMF 0.252 0.271 0.283 0.289 0.293 0.295 0.301

M
us

ic

CD-UNN 0.136 0.103 0.115 0.120 0.138 0.140 0.157

CD-INN 0.259 0.260 0.266 0.278 0.296 0.302 0.329
CD-iMF 0.259 0.261 0.262 0.264 0.266 0.270 0.282

CD-BPR 0.218 0.199 0.199 0.216 0.228 0.228 0.250

CD-FISM 0.230 0.228 0.227 0.229 0.236 0.233 0.245

CD-HeteRec 0.266 0.249 0.251 0.259 0.270 0.267 0.281

SimMF 0.255 0.259 0.258 0.264 0.268 0.273 0.281

NeighborMF 0.253 0.258 0.258 0.263 0.267 0.273 0.280

CentroidMF 0.255 0.259 0.260 0.264 0.267 0.273 0.281

153

Table 6.8: Accuracy (MRR) for cold start users in the target movies domain. The

three groups of rows correspond to single-domain, cross-domain with books as

source, and cross-domain with music as source, respectively. Best values for each

single- and cross-domain configuration are shown in bold.

Number of movie likes

Method 0 1 2 3 4 5 6–10

POP 0.285 0.287 0.289 0.292 0.294 0.297 0.305

UNN 0.332 0.320 0.318 0.330 0.348 0.405

INN 0.233 0.300 0.336 0.359 0.377 0.413
iMF 0.256 0.291 0.314 0.334 0.348 0.388

BPR 0.225 0.256 0.276 0.299 0.315 0.350

FISM 0.257 0.265 0.263 0.266 0.267 0.270

HeteRec 0.315 0.346 0.357 0.366 0.374 0.395

SPRank 0.107 0.131 0.139 0.142 0.140 0.150

B
oo

ks

CD-UNN 0.219 0.169 0.185 0.219 0.256 0.292 0.385

CD-INN 0.344 0.347 0.371 0.386 0.398 0.410 0.435
CD-iMF 0.267 0.298 0.325 0.347 0.365 0.377 0.413

CD-BPR 0.018 0.189 0.237 0.254 0.278 0.298 0.326

CD-FISM 0.338 0.267 0.263 0.283 0.273 0.287 0.282

CD-HeteRec 0.479 0.320 0.349 0.359 0.367 0.375 0.396

SimMF 0.328 0.334 0.348 0.361 0.371 0.382 0.409

NeighborMF 0.330 0.335 0.348 0.361 0.371 0.383 0.409

CentroidMF 0.329 0.332 0.346 0.359 0.371 0.378 0.408

M
us

ic

CD-UNN 0.387 0.282 0.305 0.320 0.334 0.348 0.383

CD-INN 0.342 0.347 0.353 0.359 0.365 0.371 0.390

CD-iMF 0.301 0.326 0.344 0.362 0.374 0.385 0.418

CD-BPR 0.352 0.305 0.316 0.332 0.332 0.343 0.361

CD-FISM 0.105 0.089 0.093 0.089 0.091 0.091 0.093

CD-HeteRec 0.367 0.336 0.344 0.350 0.355 0.360 0.374

SimMF 0.339 0.351 0.361 0.374 0.384 0.396 0.419

NeighborMF 0.353 0.364 0.374 0.385 0.394 0.404 0.427
CentroidMF 0.345 0.355 0.367 0.377 0.385 0.395 0.418

154

from profile sizes 1–10. This is due to the high degree of overlap between the users

of books and movies domains (79.7%, see 6.4), which allows CD-INN to compute

very accurate item similarities based on the patterns of likes. Instead, when the

source domain contains music preferences, we see that NeighborMF, CentroidMF,

and SimMF, in that order, are consistently the best performing approaches for sizes

1–10. By regularizing item factors independently, NeighborMF is able to transfer

source domain knowledge more effectively, which we also note is due to the greater

contribution of cross-domain information (larger values of λC in 6.5). In summary,

both book and music preferences are helpful for cold start movie recommendations,

while our models are more effective when exploiting auxiliary music likes. On

a side note, we observe the better performance of UNN over POP on the single

domain setting when only 1 like is available. Looking at the results, we found that

this is caused by the Jaccard-based similarity, which favors neighbors with small

profiles that have rated similar items with high probability. A discussion of this

phenomenon is outside of the line of research, and we refer the reader to [50] for

a detailed explanation. HeteRec, on the other hand, exploits additional information

from item metadata to compute more accurate recommendations than POP while

SPRank confirms its bad behavior in cold start scenarios.

Finally, the results for music recommendations are shown in 6.9. As previously,

CD-HeteRec is a very good performing approach to provide recommendations for

completely new users, in both cross-domain configurations. Once 2 music likes are

available, CD-INN is clearly the most competitive approach, independently of the

used source domain. Again, we argue that this is due to the high number of music

users who also have book and movie preferences, which allows CD-INN to compute

very accurate rating-based similarities for items (see last column of 6.4). However,

when the source domain consists of book preferences, we see that the proposed

NeighborMF and CentroidMF models are slightly better than other cross-domain

approaches if only 1 music like is provided. Anyway, even better performance can

be achieved in this case simply using the single-domain UNN baseline, which does

not need any extra information. Hence, single-domain baselines are compelling

approaches for cold start music recommendations, and even though the proposed

155

Table 6.9: Accuracy (MRR) for cold start users in the target music domain. The

three groups of rows correspond to single-domain, cross-domain with books as

source, and cross-domain with movies as source, respectively. Best values for each

single- and cross-domain configuration are shown in bold.

Number of music likes

Method 0 1 2 3 4 5 6–10

POP 0.335 0.337 0.340 0.342 0.345 0.347 0.354

UNN 0.422 0.389 0.389 0.419 0.448 0.517
INN 0.320 0.391 0.426 0.455 0.474 0.517
iMF 0.347 0.396 0.427 0.451 0.471 0.517
BPR 0.330 0.377 0.409 0.432 0.450 0.488

FISM 0.096 0.100 0.100 0.100 0.101 0.100

HeteRec 0.358 0.395 0.421 0.442 0.463 0.510

SPRank N/A N/A N/A N/A N/A N/A

B
oo

ks

CD-UNN 0.290 0.244 0.266 0.300 0.344 0.387 0.487

CD-INN 0.310 0.368 0.416 0.442 0.465 0.482 0.522
CD-iMF 0.200 0.330 0.391 0.423 0.451 0.471 0.518

CD-BPR 0.004 0.267 0.323 0.362 0.380 0.404 0.433

CD-FISM 0.153 0.124 0.105 0.126 0.116 0.118 0.113

CD-HeteRec 0.514 0.367 0.407 0.432 0.453 0.474 0.516

SimMF 0.310 0.368 0.401 0.424 0.446 0.461 0.496

NeighborMF 0.328 0.372 0.402 0.425 0.445 0.461 0.496

CentroidMF 0.325 0.370 0.402 0.425 0.444 0.461 0.496

M
ov

ie
s

CD-UNN 0.435 0.274 0.306 0.336 0.369 0.400 0.484

CD-INN 0.412 0.431 0.451 0.467 0.478 0.490 0.522
CD-iMF 0.293 0.356 0.398 0.428 0.454 0.474 0.516

CD-BPR 0.431 0.313 0.351 0.391 0.402 0.413 0.448

CD-FISM 0.093 0.061 0.069 0.067 0.070 0.071 0.064

CD-HeteRec 0.515 0.406 0.426 0.442 0.451 0.464 0.495

SimMF 0.361 0.393 0.420 0.438 0.455 0.467 0.500

NeighborMF 0.353 0.385 0.409 0.429 0.445 0.458 0.494

CentroidMF 0.354 0.386 0.413 0.431 0.447 0.460 0.495

156

models are able to improve the quality of the item rankings by exploiting cross-

domain item metadata, CD-INN, which is purely based on patterns of likes, is the

best performing approach.

6.4.7 Recommendation diversity

In this subsection we analyze the diversity of the recommendation lists generated

by the methods, as an alternative dimension of ranking quality.

6.10 shows the diversity of book recommendations in terms of the Binomial

Diversity metric at cutoff 10 (BinomDiv@10). We observe that, in general, cross-

domain approaches provide more diverse recommendations than their single-domain

counterparts. However, we note several differences with respect to the accuracy

results reported in 6.7. First, CD-UNN is consistently the superior algorithm in

terms of diversity, whereas its accuracy results were the poorest among single- and

cross-domain approaches. Second, when the source domain consists of movie likes,

our proposed models achieve slightly worse diversity than other cross-domain ap-

proaches, specially for book profile sizes between 1–3 likes. This is in contrast

with the results obtained in 6.7, where our methods performed best precisely in

that range. We conclude that there is a clear trade-off between recommendation

accuracy and diversity, and that the metric of interest depends on the particular ap-

plication domain. We argue, however, that in cold start situations providing relevant

suggestions may be more useful than recommending diverse, but not relevant items,

if the ultimate goal of a system is to keep new users engaged.

The diversity results for movie recommendations are summarized in 6.11. We

see that CD-FISM, CD-BPR, and CD-UNN provide the most diverse yet not rel-

evant recommendations. Comparing the sources of auxiliary user preferences, we

note that the diversity of the cross-domain baselines is roughly the same as their

single-domain versions (comparing, e.g., HeteRec and CD-HeteRec) when consid-

ering book likes. In contrast, if the source domain contains music likes their diver-

sity is significantly hurt. By comparing these results with 6.8 we observe once again

the accuracy-diversity trade-off. Most methods’ MRR greatly benefits from addi-

tional music likes at the expense of worse diversity. The exception is CD-FISM,

157

Table 6.10: Diversity (BinomDiv@10) for cold start users in the books domain.

The three groups of rows correspond to single-domain, cross-domain with movies

as source, and cross-domain with music as source, respectively. Best values for

each single- and cross-domain configuration are shown in bold.

Number of book likes

Method 0 1 2 3 4 5 6–10

POP 0.739 0.674 0.690 0.702 0.703 0.710 0.736
UNN 0.733 0.706 0.716 0.709 0.729 0.715

INN 0.655 0.674 0.654 0.665 0.672 0.669

iMF 0.583 0.606 0.630 0.645 0.657 0.664

BPR 0.696 0.700 0.715 0.690 0.698 0.696

FISM 0.513 0.692 0.708 0.686 0.706 0.719

HeteRec 0.609 0.623 0.653 0.672 0.680 0.693

SPRank 0.121 0.129 0.145 0.157 0.157 0.150

M
ov

ie
s

CD-UNN 0.792 0.833 0.816 0.791 0.778 0.784 0.746
CD-INN 0.740 0.676 0.683 0.684 0.680 0.692 0.695

CD-iMF 0.724 0.660 0.674 0.689 0.686 0.686 0.702

CD-BPR 0.514 0.458 0.484 0.425 0.454 0.465 0.471

CD-FISM 0.453 0.464 0.479 0.488 0.495 0.499 0.533

CD-HeteRec 0.747 0.673 0.672 0.680 0.690 0.704 0.709

SimMF 0.702 0.649 0.671 0.676 0.682 0.690 0.706

NeighborMF 0.690 0.652 0.660 0.671 0.680 0.682 0.702

CentroidMF 0.699 0.647 0.659 0.668 0.684 0.686 0.702

M
us

ic

CD-UNN 0.744 0.811 0.797 0.771 0.746 0.734 0.731
CD-INN 0.746 0.676 0.683 0.684 0.674 0.689 0.691

CD-iMF 0.720 0.657 0.664 0.674 0.690 0.692 0.696

CD-BPR 0.303 0.333 0.374 0.384 0.358 0.374 0.380

CD-FISM 0.345 0.362 0.382 0.405 0.406 0.424 0.466

CD-HeteRec 0.744 0.668 0.655 0.665 0.676 0.687 0.693

SimMF 0.724 0.656 0.675 0.684 0.692 0.692 0.708

NeighborMF 0.721 0.657 0.674 0.684 0.690 0.693 0.709

CentroidMF 0.721 0.655 0.673 0.681 0.692 0.690 0.705

158

Table 6.11: Diversity (BinomDiv@10) for cold start users in the movies domain.

The three groups of rows correspond to single-domain, cross-domain with books as

source, and cross-domain with music as source, respectively. Best values for each

single- and cross-domain configuration are shown in bold.

Number of movie likes

Method 0 1 2 3 4 5 6–10

POP 0.401 0.304 0.336 0.354 0.368 0.378 0.399

UNN 0.360 0.385 0.404 0.392 0.396 0.394

INN 0.289 0.308 0.315 0.321 0.323 0.332

iMF 0.299 0.320 0.335 0.344 0.347 0.362

BPR 0.590 0.608 0.628 0.644 0.650 0.653
FISM 0.561 0.614 0.594 0.689 0.636 0.644

HeteRec 0.311 0.328 0.334 0.337 0.341 0.348

SPRank 0.218 0.242 0.260 0.262 0.254 0.269

B
oo

ks

CD-UNN 0.467 0.509 0.479 0.446 0.425 0.414 0.397

CD-INN 0.327 0.291 0.314 0.323 0.329 0.331 0.339

CD-iMF 0.341 0.294 0.317 0.327 0.333 0.338 0.350

CD-BPR 0.646 0.677 0.645 0.668 0.624 0.643 0.666
CD-FISM 0.548 0.549 0.671 0.574 0.609 0.625 0.664

CD-HeteRec 0.316 0.310 0.328 0.335 0.337 0.341 0.348

SimMF 0.308 0.265 0.297 0.307 0.320 0.325 0.339

NeighborMF 0.315 0.266 0.298 0.306 0.321 0.325 0.338

CentroidMF 0.313 0.273 0.302 0.315 0.326 0.334 0.348

M
us

ic

CD-UNN 0.368 0.404 0.386 0.376 0.373 0.372 0.376

CD-INN 0.309 0.240 0.268 0.283 0.297 0.304 0.321

CD-iMF 0.270 0.231 0.270 0.289 0.302 0.315 0.332

CD-BPR 0.372 0.439 0.411 0.438 0.446 0.445 0.476

CD-FISM 0.653 0.720 0.705 0.499 0.645 0.732 0.688
CD-HeteRec 0.333 0.271 0.298 0.314 0.324 0.333 0.349

SimMF 0.311 0.254 0.288 0.303 0.317 0.324 0.340

NeighborMF 0.311 0.259 0.290 0.308 0.320 0.329 0.344

CentroidMF 0.302 0.246 0.279 0.297 0.310 0.319 0.338

159

which follows the opposite trend: source music likes lead to significantly worse ac-

curacy but improved diversity. We leave for future work an analysis of CD-FISM

to understand which of its characteristics causes this behavior. Finally, we remark

the good performance of the NeighborMF method when source music likes are ex-

ploited, as it is able to provide a good trade-off of decent diversity and the most

accurate recommendations (see 6.8).

Last, we report the diversity results for music recommendations in 6.12. Once

again, CD-FISM, which achieved the poorest accuracy in 6.9, provides the most

diverse recommendations for all music profile sizes in the 1–10 range. However,

for completely new users, we highlight the very good performance of CD-HeteRec,

which not only is able to generate diverse recommendations, but also achieved the

best accuracy results in terms of MRR. The remaining cross-domain approaches are

in general worse than single-domain UNN, independently of the exploited source

domain. It is also worth noting the contrasting results for CD-INN. While it pro-

vides the best performance in terms of accuracy (see 6.9), its diversity is the worst

for books and only average for movies.

In summary, we observe a clear trade-off between accurate and diverse recom-

mendations. In general, when approaches perform well in terms of MRR they tend

to suffer in terms of diversity, and vice versa.

6.5 Conclusions and future work

Collaborative filtering approaches have become the most investigated and popular

solutions to the cross-domain recommendation problem, as they only mine patterns

of user-item preferences (i.e., ratings), and do not require any information about

the content of the items to bridge the domains of interest. Some other approaches,

however, have shown that content-based relations (e.g., based on social tags) can be

exploited to bridge the domains more effectively. In this context, recent initiatives

such as the Linked Open Data project provide large interconnected repositories of

structured knowledge than can be exploited to relate multiple types of data. Such

heterogeneous networks allow establishing content-based links between different

160

Table 6.12: Diversity (BinomDiv@10) for cold start users in the music domain.

The three groups of rows correspond to single-domain, cross-domain with books as

source, and cross-domain with movies as source, respectively. Best values for each

single- and cross-domain configuration are shown in bold.

Number of music likes

Method 0 1 2 3 4 5 6–10

POP 0.324 0.228 0.262 0.282 0.295 0.305 0.326

UNN 0.296 0.332 0.348 0.347 0.330 0.306

INN 0.200 0.213 0.219 0.223 0.229 0.236

iMF 0.196 0.217 0.232 0.241 0.249 0.259

BPR 0.539 0.577 0.589 0.590 0.594 0.619

FISM 0.683 0.766 0.709 0.731 0.737 0.676
HeteRec 0.227 0.264 0.280 0.288 0.296 0.304

SPRank N/A N/A N/A N/A N/A N/A

B
oo

ks

CD-UNN 0.325 0.429 0.414 0.393 0.366 0.346 0.314

CD-INN 0.269 0.215 0.227 0.232 0.235 0.240 0.244

CD-iMF 0.270 0.214 0.233 0.240 0.249 0.252 0.258

CD-BPR 0.570 0.585 0.578 0.602 0.592 0.603 0.609

CD-FISM 0.607 0.597 0.677 0.648 0.774 0.726 0.674
CD-HeteRec 0.295 0.233 0.271 0.286 0.294 0.302 0.309

SimMF 0.274 0.220 0.240 0.249 0.257 0.264 0.275

NeighborMF 0.254 0.220 0.241 0.251 0.259 0.265 0.275

CentroidMF 0.253 0.218 0.238 0.249 0.257 0.263 0.273

M
ov

ie
s

CD-UNN 0.296 0.411 0.380 0.358 0.347 0.329 0.312

CD-INN 0.277 0.231 0.255 0.264 0.270 0.272 0.275

CD-iMF 0.248 0.229 0.254 0.264 0.271 0.272 0.277

CD-BPR 0.476 0.515 0.526 0.504 0.526 0.529 0.545

CD-FISM 0.601 0.664 0.541 0.757 0.578 0.771 0.669
CD-HeteRec 0.372 0.271 0.314 0.331 0.342 0.349 0.360

SimMF 0.225 0.207 0.239 0.250 0.259 0.264 0.278

NeighborMF 0.252 0.226 0.251 0.265 0.269 0.274 0.283

CentroidMF 0.264 0.233 0.257 0.270 0.274 0.279 0.286

161

types of items, and thus providing a new mechanism to bridge domains for cross-

domain recommendation.

In this study, we have exploited Linked Open Data to extract metadata about

items in three recommendation domains. Using this additional information, we

were able to find relations between items in different domains, and ultimately com-

pute inter-domain item similarities. This could be a limit of the presented ap-

proaches whenever the underlying LOD knowledge graph does not expose semantic

links between items in different domains, e.g., when the source and target domains

do not share information, i.e., there is no direct or indirect link between items in

different domains or it is not possible to link an item in the catalog to the corre-

sponding entity in the knowledge graph. In fact, in these cases, it is not possible to

compute pairwise semantic similarity values between items belonging to different

domains.

We then proposed three novel matrix factorization models for cross-domain

recommendation that exploit the computed similarities to link knowledge across

domains. Experiments in cold start scenarios showed that depending on the in-

volved source and target domains, cross-domain recommendations exploiting item

metadata can be more accurate for users with few preferences in the target domain.

However, the improved accuracy comes at the cost of less diversity among the rec-

ommendations, and approaches thriving in diversity tend to be less accurate. We

argue, nonetheless, that in cold start the priority of a system may be keeping the

user engaged by delivering relevant recommendations rather than diverse, non rele-

vant ones.

Regarding the categorization presented in 6.2.1, the models proposed in this

study belong to the category of knowledge linkage cross-domain recommendation

approaches. We applied our approaches to the linked-domain exploitation task

with the goal of addressing the user cold start problem. In addition to the re-

sults reported here, we conjecture that item metadata may be prove more useful in

cross-domain scenarios with low user overlap. In these cases, approaches purely

based on collaborative filtering are likely to struggle to compute accurate item-item

similarities. Moreover, in our work we relied on advanced Bayesian Optimization

162

techniques to find the optimal hyperparameters of the models, and in particular

the values of the cross-domain regularization λC and the item neighborhood size

n parameters. It would be interesting, however, to analyze the performance of the

models in terms of these parameters to better understand the importance of auxil-

iary information. We did not report these results due to the high number of possible

combinations of different parameter values, source-target domain configurations,

cold start profile sizes, and cross-validation folds, which may make it very difficult

to extract conclusions that consistently hold trough all the possible scenarios.

163

164

Chapter 7

Interpretability of Factorization
Machines

7.1 Introduction

Research on transparency, and interpretability of predictive models is gaining mo-

mentum since it has been recognized as a key element in the next generation of rec-

ommendation algorithms. Providing explanations may increase the user awareness

in the decision-making process leading to fast (efficiency), conscious and right (ef-

fectiveness) decisions. When equipped with interpretablity of recommendation re-

sults, a system ceases to be just a black-box (transparency) [349, 368, 410] and users

are more willing to extensively exploit the predictions [367, 176]. Transparency in-

creases their trust [139] (also exploiting specific semantic structures [132]), and

satisfaction in using the system. For a recommender system, the user’s trust is be-

coming more and more important since it leads to better performance [235]. Most

of the proposed approaches to interpret recommendation results seek to show how

they are related to users’ preferences. In a nutshell, we may say that interpreta-

165

tions for recommendation results can be item-based, user-based or feature-based.

Item-based interpretations make use of the shared set of items among users [7];

User-based explanations rely on sets of most similar users, like in [176]; Feature-

based explanations exploit features of recommended items as director, genre, and

cast [367]. Among interpretable models, we may distinguish between those based

on Content-based (CB) approaches and those based on Collaborative filtering (CF)

ones. CB algorithms provide recommendations by exploiting the available content

and matching it with a user profile [300, 106]. The use of content features makes

the model interpretable even though attention has to be paid since a CB approach

“lacks serendipity and requires extensive manual efforts to match the user interests

to content profiles” [418]. It is worth noticing that these features can be dramatically

different depending on the considered scenario: a movie recommendation could be

based on the director, actors, the producer, the genre whereas a book recommenda-

tion may be explained by the author, the book formats or the saga. Sometimes, this

prevents the straight adoption of a model independently of the addressed knowledge

domain.

When content is missing, the recommender may rely only on the relationships

between users and the rates they provide to items in a collaborative fashion. Based

on the different collaborative approaches, these relationships may focus on items or

users. Interpretation of CF results will then inevitably reflect the approach adopted

by the algorithm. For instance, an item-based and a user-based recommendation

could be explained, respectively, as ”other users who have experienced A have

experienced B” or ”similar users have experienced B”. Concerning collaborative

approaches to recommendation, when we use a kNN approach, either item-based

or user-based, we explicitly refer to users and items in the system. Unfortunately,

things change when we adopt more powerful and accurate Deep Learning [92], or

model-based algorithms and techniques for the computation of a recommendation

list. Such approaches project items and users in a new vector space of latent features

[224] thus making the final result not directly interpretable. Indeed, it is possible

to compute items and users similarities via latent factor exploitation, but we lose

entirely any reference to the original user-item interaction and then to an explicit

166

justification for the computed recommendations.

In the last years, many approaches have been proposed that take advantage of

side information to enhance the performance of latent factor models. Side informa-

tion can refer to items as well as users [390] and can be either structured [358] or

semi-structured [419, 40, 97]. Interestingly, in [418] the authors argue about a new

generation of knowledge-aware recommendation engines able to exploit informa-

tion encoded in knowledge graph (KG) to produce meaningful recommendations:

“For example, with knowledge graph about movies, actors, and directors, the sys-

tem can explain to the user a movie is recommended because he has watched many

movies starred by an actor”.

In this work, we propose a knwowledge-aware Hybrid Factoriza-

tion Machine (kaHFM) to train interpretable models in recommendation sce-

narios. kaHFM relies on Factorization Machines [310] and it extends them in dif-

ferent key aspects making use of the semantic information encoded in a knowledge

graph.

Interpretability without accuracy of results is not sufficient when designing a

recommendation engine since it is unlikely that an inaccurate model will be adopted.

It would be highly beneficial for users to develop recommender systems that are

accurate, and, at the same time, that are built upon an interpretable technique, so

that the learned model can be, in case, exploited to generate explanations. In this

direction, we show how kaHFM may exploit data coming from knowledge graphs

as side information to build a recommender system whose final results are accurate

and, at the same time, semantically interpretable. With kaHFM we build a model

in which the meaning of each latent factor is bound to an explicit content-based

feature extracted from a knowledge graph. Doing this, after the model has been

trained, we still have an explicit reference to the original semantics of the features

describing the items, thus making possible the interpretation of the final results.

Interestingly, we will see that the explicit mapping of latent features to content-

based ones makes possible to exploit characteristics of these latter to implement a

more effective initialization technique.

We evaluated kaHFM on six different publicly available datasets by getting

167

content-based explicit features from data encoded in the DBpedia1 knowledge

graph. We analyzed the performance of the approach in terms of accuracy, diver-

sity, and novelty of results by exploiting categorical, ontological and factual features

(see Section 7.3.1). For each of them, we used public mappings to DBpedia. Fi-

nally, we tested the robustness of kaHFM with respect to its interpretability showing

that it ranks meaningful features higher and is able to regenerate them in case they

are removed from the original dataset.

With kaHFM we address the following research questions:

RQ1 Can we develop a model-based recommendation engine whose results are

very accurate and, at the same time, can be interpreted with respect to an

explicitly stated semantics coming from a knowledge graph?

RQ2 Can we evaluate that the original semantics of items features is preserved

after the model has been trained?

RQ3 How to measure with an offline evaluation that the proposed model is really

able to identify meaningful features by exploiting their explicit semantics?

This investigation can be then summarized as:

• presentation of kaHFM: a framework that exploits data available in knowledge

graphs to build semantically interpretable models for recommendation tasks;

• an experimental evaluation based on six different datasets to assess the per-

formance of kaHFM in terms of accuracy, diversity, and novelty of computed

results;

• introduction of two metrics, Semantic Accuracy (SA@K) and Robustness (n-

Rob@K), to measure the interpretability of a knowledge-aware recommenda-

tion engine.

The remainder of the chapter is structured as follows: in the next section, we

introduce the background technologies behind kaHFM and then we detail the over-

all approach in Section 7.3. The following section is devoted to the introduction of
1http://dbpedia.org

168

the two metrics we propose to assess the quality of kaHFM results in terms of in-

terpretability. In Section 7.4 we describe the experimental setting while in Section

7.2 we report on related work. Conclusions and future lines of research close the

chapter.

7.2 Related Work

In recent years, several explainable recommendation models that exploit matrix fac-

torization have been proposed. It is well-known that one of the main issues of ma-

trix factorization methods is that they are not easily explainable (since latent factors

meaning is basically unknown). One of the first attempts to overcome this problem

was proposed in [416, 419]. In this work, the authors propose Explicit Factor Model

(EFM). Products’ features and users’ opinions are extracted with phrase-level sen-

timent analysis from users’ reviews to feed a matrix factorization framework. Each

latent factor is thus mapped with a particular explicit feature. After that, a few

improvements to EFM have been proposed to deal with temporal dynamics [420]

and to use tensor factorization [97]. In particular, in the latter the aim is to predict

both user preferences on features (extracted from textual reviews) and items. This

is achieved by exploiting the Bayesian Personalized Ranking (BPR) criterion [312].

Eventually, these preferences are combined to produce recommendation lists. We

considered this work interesting because they also adopt a pair-wise learning to rank

algorithm, but this is really different from ours since we exploited BPR to explicitly

train the feature vectors to rank items. Further advances in MF-based explainable

recommendation models have been proposed with Explainable Matrix Factorization

(EMF) [6] in which the generated explanations are based on a neighborhood model.

We differ from EMF as they do not take advantage of any external data source,

other than they use a completely different model. Moreover, they introduced an ad-

ditional regularizer into the factorization model to constrain users’ vectors training.

Similarly, in [7] an explainable Restricted Boltzmann Machine model has been pro-

posed. It learns a network model (with an additional visible layer) that takes into

account a degree of explainability. To measure it, they defined an ad-hoc Explain-

169

ability Score. Finally, an interesting work took advantage of sentiment analysis of

users’ reviews. Authors incorporate the sentiments and ratings into a matrix fac-

torization model. The overall approach, named Sentiment Utility Logistic Model

(SULM) [40], generates a novel kind of explanations composed by both items and

features. In [309] recommendations are computed by generating and ranking per-

sonalized explanations in the form of explanation chains. OCuLaR [384] provides

interpretable recommendations from positive examples based on the detection of co-

clusters between users (clients) and items (products). The recommendation comes

with the corresponding user-item co-clusters, which provide much more detailed

information than usual collaborative-based explanations. In [183] authors propose

a Multi Level Attraction Model (MLAM) in which they build two attraction models,

for cast and story. Moreover, the story model is built upon two attraction models: for

story level and for sentence level. The interpretability of the model is then provided

in terms of attractiveness of Sentence level, Word level, and Cast member. In [301]

the authors train a matrix factorisation model to complete the U × I matrix. They

then use the complete (approximated) ratings matrix to compute a set of association

rules that explain the obtained recommendations. In [120] the authors prove that,

given the conversion probabilities for all actions of customer features, it is possible

to transform the original historical data to a new space in order to compute a set of

interpretable recommendation rules.

The design of a new explainable model is useless if it does not match with any

existing explanations generation technique. For this reason we deepened the dif-

ferent ways of generating feature-based explanations in order to provide a flexible

but accurate model. Probably the most used style of explanations of this kind are

the content-based ones [360]. In their most simple form, authors consider similar-

ities between items by taking into account both item properties and user ratings.

Among the works that exploit content information to produce explainable recom-

mendations, Tagsplanations [383] is worth to mention. It is fed by community tags

and it exploits a relevance measure to weight tags w.r.t. items and user prefer-

ences. Furthermore, also demographic-based recommendations explanations have

been inspected [422], in order to recommend items for particular types (age, loca-

170

tion, gender) of users. The core of our model is a general Factorization Machines

(FM) model [310]. Nowadays FMs are the most widely used factorization models

because they offer a number of advantages w.r.t. other latent factors models such as

SVD++ [221], PITF [315], FPMC [313]. First of all, FMs are designed for a generic

prediction task while the others can be exploited only for specific tasks. Moreover it

is a linear model and parameters can be estimated accurately even in high data spar-

sity scenarios. Nevertheless, several improvements have been proposed for FMs.

For instance Neural Factorization Machines [174] have been developed to fix the

inability of classical FMs to capture non linear structure of real-world data. This

goal is achieved by exploiting the non linearity of neural networks. Furthermore,

Attentional Factorization Machines [401] have been proposed that use an attention

network to learn the importance of feature interactions. Finally, FMs have been

specialized to better work as Context-Aware recommender systems [314]. Usu-

ally only top recommended items are provided to the user as suggestions as it is

not feasible that a user analyze hundreds of recommended items. For this reason,

ranking has become a much more important task than rating prediction [256]. This

came with the development of a new class of learning algorithms (in which sorting

correctly the recommendation list becomes the key task). These Learning to Rank

[88] algorithms can be further categorized in Point-wise [225], Pair-wise [312, 247]

and List-wise [344, 343]. In particular, Pair-wise approaches are usually considered

as a good trade-off between ordering performances and computational complexity.

Among this class of algorithms, Bayesian Personalized Ranking (BPR) [312] is one

of the most widely adopted. It is based on a simple stochastic gradient descent

algorithm to learn the relative order between positive items (items that a user has

experienced in his past history) and negative items (items never rated by the user).

BPR can be easily applied to Matrix Factorization and Factorization Machines (as

in our work and in [41]).

171

7.3 Approach

For the sake of completeness, in this section we briefly recap the main technolo-

gies we adopted to develop kaHFM. We introduce Vector Space Models for recom-

mender systems and then we give a quick overview on knowledge graphs and their

Linked (Open) Data implementation.

Content-based recommender systems rely on the assumption that it is possible to

predict the future behavior of users based on their personalized profile. User profiles

can be built by exploiting the characteristics of the items they liked in the past or

some other available side information. Several approaches have been proposed, that

take advantage of side information in different ways: some of them consider tags

[383], demographic data [422] or they extract information from collective knowl-

edge bases [278]. Many of the most popular and adopted CB approaches make

use of a Vector Space Model (VSM). In VSM users and items are represented by

means of Boolean or weighted vectors in the same space. Their respective positions

and the distance, or better the proximity, between them, provides a measure of how

these two entities are related or similar. The space containing users and items vec-

tors is composed by dimensions that may refer to characteristics of the users (e.g.,

the propensity to watch movies in the morning) or of the items as well as to their

combination.

The choice of item features may substantially differ depending on their avail-

ability and application scenario: crowd-sourced tags, categorical, ontological, or

textual knowledge are just some of the most exploited ones.

To sum up, in a CB approach we need (i) to get reliable items descriptions, (ii)

a way to measure the strength of each feature for each item, (iii) to represent users

and finally (iv) to measure similarities. Regarding the first point, nowadays we can

easily get descriptions related to an item from the Web. In particular, thanks to the

Linked Open Data initiative a lot of semantically structured knowledge is publicly

available in the form of Linked Data datasets.

172

7.3.1 Knowledge Graphs and Linked Data

In 2012, Google announced its Knowledge Graph2 (KG) as a new tool to improve

the identification and retrieval of entities in return to a search query. Most of

the knowledge encoded in Google Knowledge Graph actually came from Freebase

which was a crowdsourced effort to create a base of facts in all possible knowl-

edge domains. Alongside with the development of the above mentioned initiatives,

following the original idea of a Semantic Web [60], new technologies have been

developed and released with the aim of embedding structured knowledge with un-

ambiguous semantics into Web pages in order to allow software agents to consume

and elaborate information in an automated way. The original idea has been mod-

ified over the years thus making possible the creation of a full stack of semantic

technologies and, more remarkably, gave birth to the Linking Open Data initiative3

where a community of researchers and practitioners devoted an enormous effort

to build publicly available knowledge bases of machine-understandable data. A

knowledge base exploiting Semantic Web technologies is then represented through

a graph (knowledge graph) in which entities are linked to each other by binary rela-

tions. In order to manage this knowledge model, several technologies and languages

have been developed and among them the basic one is Resource Descrip-

tion Framework (RDF). It provides a simple graph-based data model to encode

knowledge in a structured way by means of a triple 〈σ ,ρ,ω〉. In a knowledge graph,

each triple represents the connection σ
ρ−→ω between two nodes, named subject (σ)

and object (ω), through the relation (predicate) ρ . In an RDF knowledge graph, we

usually find different types of encoded information.

• Factual. This refers to statements such has The Matrix was directed by the

Wachowskis or Melbourne is located in Australia that describe attributes of

an entity;

• Categorical. It is mainly used to state something about the subject of an

2https://googleblog.blogspot.it/2012/05/

introducing-knowledge-graph-things-not.html
3http://linkeddata.org

173

entity. In this direction, the categories of Wikipedia pages are an excellent

example. Categories can be used to cluster entities and are often organized

hierarchically thus making possible to define them in a more generic or spe-

cific way;

• Ontological. This is a more restrictive and formal way to classify entities via

a hierarchical structure of classes. Differently from categories, sub-classes

and super-classes are connected through IS-A (transitive) relations.

If we take a look at the following RDF triples4 from the DBpedia knowledge graph

dbr:The_Matrix dbo:director dbr:The_Wachowski_Brothers.

dbr:The_Matrix dct:subject dbc:Dystopian_films.

dbr:The_Matrix rdf:type dbo:Film.

we may see that each of them represents one of the above mentioned types of

data. In the first triple we state a fact about the movie The Matrix (represented

by the corresponding URI dbr:The_Matrix) saying that is has been directed

(dbo:director) by the Wachowski Brothers (dbr:The_Wachowski_Brothers).

The second triple encodes categorical information through the predicate dct:subject

about the same movie. In particular, here we say that it belongs to the category of

dystopian films (dbc:Dystopian_films). Finally, with the last triple, we clas-

sify The Matrix as a Film (dbo:Film) thanks to the predicate rdf:type.

7.3.2 Formal Model

Factorization models have been proven to be among of the best performing ap-

proaches as collaborative filtering methods to build a recommender system [311].

This is due to the high prediction accuracy and the subtle modeling of user-item

interactions which let these models operate efficiently even in very sparse settings

(compared to other classical collaborative predictive models). Among all the dif-

ferent factorization models, factorization machines propose a unified general model

4For the sake of conciseness we will use the CURIE syntax in which URIs are abbreviated using

their namespaces. In this study we refer to namespaces as available at http://prefix.cc.

174

to represent most of them. Here we report the definition and results related to a fac-

torization model of order 2 for a recommendation problem involving only implicit

ratings. Nevertheless, everything can be easily extended to a more expressive rep-

resentation by taking into account, e.g., demographic and social information [18],

multi-criteria [15], and even relations between contexts [424]. For each user u ∈U

and each item i ∈ I we build a binary vector xui ∈ R1×n, with n = |U |+ |I|, repre-

senting the interaction between u and i in the original user-item rating matrix. In

this modeling, xui contains only two 1 values corresponding to u and i while all the

other values are set to 0 (see Fig. 7.1). We then denote with X ∈ Rn×m the matrix

containing as rows all possible xui we can build starting from the original user-item

rating matrix as shown in Fig. 7.1.

Figure 7.1: A visual representation of X for sparse real valued vectors xui.

The factorization machine (FM) for each vector x can be defined as:

ŷ(xui) = w0 +
n

∑
j=1

w j · x j +
n

∑
j=1

n

∑
j′= j+1

x j · x j′ ·
k

∑
f=1

v(j, f) · v(j′, f) (7.1)

where the parameters to be learned are: w0 representing the global bias; w j giving

the importance to every single x j; the pair v(j, f) and v(j′, f) in ∑
k
f=1 v(j, f) · v(j′, f)

measuring the strength of the interaction between each pair of variables x j and x j′ .

The number of latent factors is represented by k. This value is usually selected at

design time when implementing the FM.

In order to make the recommendation results computed by kaHFM semantically

interpretable, we want to inject the knowledge encoded within a knowledge-graph

175

in a Factorization Machine. Given a set of features retrieved from a KG [277] we

first bind them to the latent factors and then, since we address a Top-N recommenda-

tion problem, we train the model by using a Bayesian Personalized Ranking (BPR)

criterion that takes into account entities within the original knowledge graph.

In [279], the authors originally proposed to encode a Linked Data knowledge

graph in a vector space model to develop a CB recommender system. Given a

set of items I = {i1, i2, . . . , iN} in a catalog and their associated triples 〈i,ρ,ω〉
in a knowledge graph K G we may build the set of all possible features as F =

{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈K G with i ∈ I}. Each item can be then represented as a vec-

tor of weights i = [v(i,1), . . . ,v(i,〈ρ,ω〉), . . . ,v(i,|F |)] where v(i,〈ρ,ω〉) is computed as the

normalized TF-IDF value for 〈ρ,ω〉:

v(i,〈ρ,ω〉) =
|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈K G }|√
∑

〈ρ,ω〉∈F
|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈K G }|2︸ ︷︷ ︸

T FK G

·

· log
|I|

|{ j | 〈 j,ρ,ω〉 ∈K G and j ∈ I}|︸ ︷︷ ︸
IDFK G

(7.2)

Analogously, when we have a set U of users, we may represent them using the

features describing the items they enjoyed in the past. In the following, when no

confusion arises, we use f to denote a feature 〈ρ,ω〉 inF . Given a user u, if we de-

note with Iu the set of the items enjoyed by u and we have u= [v(u,1), . . . ,v(u, f) . . . ,v(u,|F |)]

with

v(u, f) =
∑

i∈Iu
v(i, f)

|{i | i ∈ Iu and v(i, f) 6= 0}|

Given the vectors u j, with j ∈ [1 . . . |U |], and i j′ , with j′ ∈ [1 . . . |I|], we build the

matrix V∈Rn×|F | (see Fig. 7.2) where the first |U | rows have a one to one mapping

with u j while the last ones correspond to i j′ . If we go back to Equation (7.1) we may

see that, for each x, the term ∑
n
j=1 ∑

n
j′= j+1 x j ·x j′ ·∑k

f=1 v(j, f) ·v(j′, f) is not zero only

once, i.e., when both x j and x j′ are equal to 1. In the matrix depicted in Fig. 7.1,

this happens when there is an interaction between a user and an item. Moreover,

the summation ∑
k
f=1 v(j, f) ·v(j′, f) represents the dot product between two vectors v j

176

Figure 7.2: Example of real valued feature vectors for different items v j.

and v j′ with a size equal to k. Hence, v j represents a latent representation of a user,

v j′ that of an item within the same latent space, and their interaction is evaluated

through their dot product.

In order to inject the knowledge coming from K G into kaHFM, first of all, we

keep Equation (7.1) and we set k = |F |. In other words, we impose a number of

latent factors equal to the number of features describing all the items in our catalog.

We want to stress here that our aim is not representing each feature through a latent

vector, but to associate each factor to an explicit feature, obtaining latent vectors that

are composed by explicit semantic features. Hence, we initialize the parameters v j

and v j′ with their corresponding rows from V which in turn represent respectively

u j and i j′ . In this way, we try to identify each latent factor with a corresponding

explicit feature. The intuition is that after the training phase, the resulting matrix

V̂ still refers to the original features but contains better values for v(j, f) and v(j′, f)

that also take into account the latent interactions between users, items and features.

It is noteworthy that after the training phase u j and i j′ (corresponding to v(j, f) and

v(j′, f) in V) contain non-zero values also for features that are not originally in the

description of the user u or of the item i.

In Table 7.1 and Table 7.2 we show examples for values after the training (in the

177

column kaHFM) together with the original TF-IDF ones computed for two movies

from the Yahoo! Movies5 dataset.

kaHFM TF-IDF Predicate Object
1.3669 0.2584 dct:subject dbc:Space adventure films

1.1252 0.2730 dct:subject dbc:Films set in the future

0.9133 0.2355 dct:subject dbc:American science fiction action films

0.8485 0.3190 dct:subject dbc:1980s science fiction films

0.6529 0.1549 dct:subject dbc:Paramount Pictures films

0.5989 0.3468 dct:subject dbc:Midlife crisis films

0.5940 0.1797 dct:subject dbc:American sequel films

0.5862 0.2661 dct:subject dbc:Film scores by James Horner

0.5634 0.2502 dct:subject dbc:Films shot in San Francisco

0.5583 0.1999 dct:subject dbc:1980s action thriller films

Table 7.1: Top-10 features computed by kaHFM for the movie "Star Trek II

- The Wrath of Khan".

kaHFM TF-IDF Predicate Object
1.2434 0.2858 dct:subject dbc:Space adventure films

1.0355 0.3020 dct:subject dbc:Films set in the future

0.8956 0.2605 dct:subject dbc:American science fiction action films

0.8951 0.3451 dct:subject dbc:Android (robot) films

0.7338 0.3105 dct:subject dbc:Time travel films

0.6665 0.2701 dct:subject dbc:Film scores by Jerry Goldsmith

0.6581 0.2205 dct:subject dbc:1990s action films

0.6561 0.2279 dct:subject dbc:1990s science fiction films

0.6118 0.1988 dct:subject dbc:American sequel films

0.5649 0.1713 dct:subject dbc:Paramount Pictures films

Table 7.2: Top-10 features computed by kaHFM for the movie "Star Trek -

First Contact".

7.3.3 Optimization

Factorization machines can be easily trained to reduce the prediction error via gra-

dient descent methods, alternating least-squares (ALS) and MCMC. Since we for-

mulated our problem as a top-N recommendation task, kaHFM can be trained using

a learning to rank approach like Bayesian Personalized Ranking Criterion (BPR)

5http://research.yahoo.com/Academic_Relations

178

[312]. The BPR criterion is optimized using a stochastic gradient descent algorithm

on a set DS of triples (u, i, j), with i ∈ Iu and j 6∈ Iu, selected through a random

sampling from a uniform distribution. The BPR optimization criterion can thus be

formulated as:

BPR-OPT = ∑
(u,i, j)∈Ds

lnσ(x̂ui j)−λΘ‖Θ‖2

= ∑
(u,i, j)∈Ds

lnσ(ŷ(xui)− ŷ(xuj))−λΘ‖Θ‖2 (7.3)

In this formulation, σ(·) is a sigmoid function, and the update step is defined as:

Θ←Θ+α

(
e−x̂ui j

1+ e−x̂ui j
· ∂

∂Θ
x̂ui j +λΘ

)
(7.4)

where α is the chosen learning rate. Since we are in an implicit feedback setting,

we may assume that there is only an instance for the pair user-item. Hence, in our

model we can derive x̂ui j as:

x̂ui j = ŷ(xui)− ŷ(xuj) = wixi−w jx j +

+ ∑
f∈F

xuxiv(u, f)v(i, f)− xux jv(u, f)v(j, f) (7.5)

For kaHFM, this computation can be performed in an efficient way computing

the partial derivatives (to update the factorized parameters) for the only active enti-

ties involved in the transactions, wi, wi, vu, vi, and v j:

∂

∂Θ
x̂ui j =



1, if θ = wi,

−1, if θ = w j,

v(u, f), if θ = v(i, f),

−v(u, f), if θ = v(j, f),

(v(i, f)− v(j, f)), if θ = v(u, f),

0, otherwise

(7.6)

179

Using Equation (7.6) in Equation (7.4) the model parameters can be iteratively

updated to maximize the BPR-OPT criterion. The algorithm updates sequentially

each sampled triple and continues the training until it reaches the provided number

of iterations.

7.3.4 Personalized Recommendation

Once the training phase returns the optimal model parameters, the item recommen-

dation step can take place. We extract the items vectors v j from the matrix V, with

the associated optimal values and we use them to implement an Item-kNN recom-

mendation approach. We measure similarities between each pair of items i and j by

evaluating the cosine similarity of their corresponding vectors in V:

cs(i, j) =
vi ·v j

‖ vi ‖ · ‖ v j ‖

Given a set of neighbors for the item i, denoted as Ni, such that i 6∈ Iu and a user

u we may predict the score assigned by u to i as

score(u, i) =

∑
j∈Ni∩Iu

cs(i, j)

∑
j∈Ni

cs(i, j)
(7.7)

The proposed approach let us keep the explicit meaning of the “latent” factors

computed via a factorization machine thus making possible an interpretation of the

recommended results. In the following we propose an automated offline procedure

able to assess that the semantics of the features represented in V is preserved after

the training phase. We refer to the values computed by the proposed procedure as

Semantic Accuracy. A different but related aspect is that of evaluating if kaHFM

really assigns a higher value to meaningful features. We refer to this behavior as

Robustness. Interestingly, both Semantic Accuracy and Robustness can be evaluated

in an offline setting.

180

7.3.5 Semantic Accuracy

The main idea behind Semantic Accuracy is to evaluate, given an item i, how well

kaHFM is able to return its original features available in the returned top-K list vi.

In other words, given the set of features of i represented by F i = { f i
1, . . . , f i

m, . . . f i
M},

with F i ⊆ F , we check if the values in vi corresponding to fm,i ∈ F i are higher than

those corresponding to f 6∈ F i. For the set of M features initially describing i we

see how many of them appear in the set top(vi,M) representing the top-M features

in vi. We then normalize this number by the size of F i and average on all the items

within the catalog I.

Semantic Accuracy (SA@M)=

∑
i∈I

|top(vi,M)∩F i|
|F i|

|I|
In many practical scenarios we may have |F | � M. Hence, we might also be

interested in measuring the accuracy for different sizes of the top list. Since items

could be described with a different number of features, the size of the top list could

be a function of the original size of the item description. Thus, we measured SA@nM

with n ∈ {1,2,3,4,5, . . .} and evaluate the number of features in F i available in the

top-n ·M elements of vi.

SA@nM =

∑
i∈I

|top(vi,n·M)∩F i|
|F i|

|I|

7.3.6 Robustness

Although SA@nM may result very useful to understand if kaHFM assigns weights

according to the original description of item i, we still do not know if a high value

in vi really means that the corresponding feature is important to define i. In other

words, are we sure that kaHFM promotes meaningful features for i?

In order to provide a way to measure such “meaningfulness” for a given feature,

we suppose, for a moment, that a particular feature 〈ρ,ω〉 is useful to describe

an item i but the corresponding triple 〈i,ρ,ω〉 is not represented in the knowledge

graph. In case kaHFM was robust in generating weights for unknown features, it

181

should discover the importance of that feature and modify its value to make it enter

the Top-K features in vi.

Starting from this observation, the idea to measure robustness is then to “forget”

a triple involving i and check if kaHFM can generate it.

In order to implement such process we may proceed by following these steps:

• we train kaHFM thus obtaining optimal values vi for all the features in F i;

• the feature f i
MAX ∈ F i with the highest value in vi is identified;

• we train the model again initializing f i
MAX = 0 and we compute v′i.

After the above steps, if f i
MAX ∈ top(v′i,M) then we can say that kaHFM shows a

high robustness in identifying important features.

Given a catalog I, we may then define the Robustness for 1 removed feature @M

(1-Rob@M) as the number of items for which f i
MAX ∈ top(v′i,M) divided by the

size of I.

1-Rob@M=

∑
i∈I
|{i | f i

MAX ∈ top(v′i,M)}|

|I|
Similarly to SA@nM, we may define 1-Rob@nM.

7.4 Experimental Evaluation

7.4.1 Experimental Setup

Datasets. In order to provide an answer to RQ1, we evaluated the performance of

our method on six datasets belonging to three different domains (Music, Books and

Movies). The Last.fm dataset [84] corresponds to user-artist plays on Last.fm

online music system released during HETRec 20116 Workshop. It contains social

networking, tagging, and music artists listening information from a set of 2K users.

LibraryThing represents books’ ratings collected in the LibraryThing website7

6http://ir.ii.uam.es/hetrec2011/
7https://www.librarything.com/

182

community. It contains social networking, tagging and rating information on a

[1..10] scale. Yahoo!Movies (Yahoo! Webscope dataset ydata-ymovies-user-

movie-ratings-content-v1 0)8 contains movies ratings generated on Yahoo! Movies

up to November 2003. It provides content, demographic and ratings information

on a [1..5] scale, and mappings to MovieLens and EachMovie datasets. Face-

book Movies, Facebook Music and Facebook Books datasets have been

released for the Linked Open Data challenge co-located with ESWC 20159, and

they refer to movies, music and books domains respectively. Only implicit feedback

is available for these datasets, but for each item a link to DBpedia is provided. In

order to map items in Last.fm and LibraryThing to DBpedia resources, we

exploited a freely available mapping10. For the remaining one (Yahoo!Movies),

we extracted all the updated items-features mappings (Yahoo!Movies, Library-

Thing, Last.fm, Facebook Movies, Facebook Music and Facebook

Books) which are publicly available11.

Datasets statistics are shown in Table 7.3.

Dataset #Users #Items #Transactions #Features Sparsity

Yahoo! Movies 4000 2,626 69,846 988,734 99.34%

LibraryThing 7223 11,695 410,210 183,182 99.51%

Last FM 1375 8,289 60,701 434,817 99.47%

Facebook Music 52068 5,749 1,374,994 345,452 99.54%

Facebook Movies 32143 3,901 689,561 180,573 99.45%

Facebook Books 1398 2,933 18,978 111,401 99.53%

Table 7.3: Datasets statistics.

Evaluation Protocol and Experimental Setting. ”All Unrated Items” [356] pro-

tocol has been chosen to compare different algorithms. In All Unrated Items, for

each user, all the items that have not yet been rated by the user all over the catalog

are considered. We split the dataset using Hold-Out 80-20 retaining for every user

the 80% of their ratings in the training set and the remaining 20% in the test set.

8http://research.yahoo.com/Academic Relations
9https://2015.eswc-conferences.org/program/semwebeval.html

10https://github.com/sisinflab/LODrecsys-datasets
11https://github.com/sisinflab/LinkedDatasets/

183

Moreover, a temporal split has been performed [163] whenever timestamps asso-

ciated to every transaction is available. We tested our approach against the most

related content-based and collaborative algorithms in terms of Accuracy, Diversity

and Novelty [23]. We compared kaHFM12 w.r.t. a canonical 2 degree Factorization

Machine (users and items are intended as features of the original formulation) by op-

timizing the recommendation list ranking via BPR (BPR-FM). In order to preserve

the fairness of the comparison, we used the same parameters adopted for kaHFM

and the same number of hidden factors (see the ”Selected” column in Table 7.5).

Moreover, since we use items similarity in the last step of our approach (see Equa-

tion (7.7)), we compared kaHFM against an Attribute Based Item-kNN (ABItem-

kNN) algorithm, where each item is represented as a vector of weights, computed

through a TF-IDF model. In this model, the attributes are computed via Equation

(7.2). For the sake of completeness we also compared kaHFM against a pure Item-

kNN, that is an item-based implementation of the k-nearest neighbors algorithm. It

finds the k-nearest item neighbors based on Cosine Similarity. Items in the neigh-

borhood are then used to predict a score for each user-item pair. Regarding BPR

parameters, learning rate, bias regularization, user regularization, positive item

regularization, and negative item regularization have been set respectively to 0.05,

0, 0.0025, 0.0025 and 0.00025 while a sampler ”without replacement” has been

adopted in order to sample the triples as suggested by authors[312]. For the sake of

reproducibility, the BPR parameters are chosen from mymedialite implementa-

tion. Moreover, the same parameters are used in all the algorithms that make use

of BPR to avoid affecting the results, and to guarantee a fair comparison. We also

compared kaHFM against the corresponding User-based nearest neighbor scheme,

and Most-Popular, a simple baseline that shows high performance in specific sce-

narios [108]. In our context, we considered mandatory to also compare against a

pure knowledge-graph content-based baseline based on Vector Space Model (V SM)

[279].

12Implementation available at https://github.com/sisinflab/

HybridFactorizationMachines/

184

7.4.2 Features extraction

The feature extraction is one of the most sensitive steps in our approach. A wrong

feature selection may result in noisy data, or in the lack of some important features.

This preprocessing was basically divided in three steps: (i) ”Extraction”, in which

we retrieve data from the DBpedia knowledge graph, (ii) ”Selection” where only

features involved in the specific experiment are selected, and (iii) ”Filtering” in

which uninformative features are removed [277].

Extraction. Thanks to the publicly available mappings, all the items from the

datasets represented in Table 7.3 come with a DBpedia link. Exploiting this ref-

erence, we retrieved all the 〈ρ,ω〉 pairs. Some noisy features (based on the fol-

lowing predicates) have been excluded already in this early extraction. In particu-

lar we removed: owl:sameAs, dbo:thumbnail, prov:wasDerivedFrom,

foaf:depiction, foaf:isPrimaryTopicOf. Behind this choice, the main

reason is that they give us only information about the nature of the entity in the spe-

cific knowledge base (e.g., the links between DBpedia and WikiPedia pages)

or are linked to multimedia data or even external datasets. After this cleaning step,

all the features have been indexed, saved separately and associated to the id of the

item.

Selection. We performed our experiments with three different settings to ana-

lyze the impact of the different kind of features in the recommendation accuracy

and diversity. The features have been chosen as they are present in all the different

domains and because of their factual, categorical or ontological meaning:

• Categorical Setting (CS): We selected only the features containing the prop-

erty dcterms:subject.

• Ontological Setting (OS): In this case the only features we considered are:

rdf:type, dbo:genre, dcterms:subject.

• Factual Setting (FS): We considered all the features but those involving the

properties selected in OS.

185

Dataset Threshold
Yahoo! Movies 99.62

LibraryThing 99.91

Last FM 99.88

Facebook Music 99.83

Facebook Movies 99.74

Facebook Books 99.66

Table 7.4: Threshold values adopted to filter out irrelevant properties for each

dataset.

Filtering. This last step corresponds to the removal of irrelevant features, that

bring little value to the recommendation task, but, at the same time, pose scalability

issues. The pre-processing phase has been done following [277], and [299] with a

unique threshold. The corresponding thresholds (tm [277], and p [299] for missing

values) for each dataset are represented in Table 7.4.

We discarded features for which we had more than tm (or, equivalentely p) miss-

ing values. For a fair comparison the features used for the baseline Attribute-based

Item kNN (ABItem-kNN) are the same used in our approach and the number of

latent factors for FMs has been set equal to the number of features involved in the

specific setting. The characteristics of each datasets (varying the setting) in terms

of considered features are reported in Table 7.5.

Categorical Setting Ontological Setting Factual Setting
Datasets Total Selected Total Selected Total Selected

Yahoo!Movies 26155 747 38699 1240 950035 3186

LibraryThing 9443 1169 14585 1934 168597 5826

Last.fm 16422 1315 30734 3032 404083 9413

Facebook Music 15016 1057 27988 2531 317464 7881

Facebook Movies 8843 1103 13828 1848 166745 5427

Facebook Books 6231 263 9881 592 101520 1315

Table 7.5: Considered features in the different settings

186

7.4.3 Accuracy, Diversity and Novelty with kaHFM

In order to evaluate our approach, we measured accuracy, novelty and aggregate di-

versity metrics. Accuracy metrics were measured through Precision@N (Prec@N)

and Normalized Discounted Cumulative Gain (nDCG@N). This latter measures

the usefulness of an item based on its position in the recommendation list. Hence,

it has been computed only for datasets that have explicit ratings (i.e., Library-

Thing and Yahoo!Movies). Since the recommended results may vary in length

depending on the user, cumulative gain at each position is normalized across users.

EPC (Expected Popularity Complement) is used to measure novelty, or more pre-

cisely the ability of the algorithm to select items that belong to the long tail. Finally,

diversity has been measured through Catalog Coverage (aggregate diversity in top-

N list), Gini Index and Shannon entropy. In particular, Catalog Coverage denotes

the ability of a system in selecting as many elements as possible from the whole

catalog while Gini index (Gini) and Shannon entropy are used to measure the dis-

tributional inequality with different approaches. Both accuracy and novelty metrics

have been computed by averaging their values per-user. To compute those metrics

we used the implementation provided by RankSys13 framework. The evaluation

has been performed considering Top-10 ([88, 108, 344]) recommendations for all

the datasets. When a rating score was available, a Threshold-based relevant items

condition [83] was adopted in order to take into account only relevant items. In

particular, a relevance threshold of 4/5 and 8/10 has been set for Yahoo!Movies

and LibraryThing respectively.

Tables 7.6, and 7.7 show the results of our experiments regarding accuracy and

diversity.

In all the tables we highlight in bold the best result while we underline the second

one. Statistically significant results are denoted with a ∗ mark. We used a Student’s

paired t-test with a 0.05 level.

LibraryThing experiments show that our approach outperforms the competing

algorithm for all the considered metrics. It is worth to notice that the nDCG@N

13http://ranksys.org/

187

Facebook Movies Facebook Music Facebook Books

Categorical Setting (CS) P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0173∗ 0.0196∗ 3566 0.2217 9.5537 0.0200∗ 0.0195∗ 4961 0.1800 10.2039 0.0060∗ 0.0056∗ 1343 0.1498 9.0882

BPR-FM 0.0158∗ 0.0149∗ 179 0.0043 4.5639 0.0138∗ 0.0107∗ 544 0.0061 5.4518 0.0036∗ 0.0034∗ 78 0.0062 4.6815

MostPopular 0.0118∗ 0.0099∗ 27 0.0029 3.8543 0.0146∗ 0.0089∗ 30 0.0020 3.8628 0.0032∗ 0.0030∗ 17 0.0034 3.6193

ItemKnn 0.0262∗ 0.0270∗ 2554 0.0963 8.7266 0.0279∗ 0.0269∗ 3916 0.0960 9.2819 0.0041∗ 0.0042∗ 1437 0.1759 9.2526

UserKnn 0.0168∗ 0.0157∗ 466 0.0104 5.7206 0.0130∗ 0.0109∗ 961 0.0157 6.7938 0.0101∗ 0.0095∗ 269 0.0150 5.8499

VSM 0.0185∗ 0.0205∗ 3326 0.1769 9.5856 0.0289∗ 0.0325∗ 4582 0.1395 9.6626 0.0104∗ 0.0112∗ 1833 0.2631 9.8735

kaHFM 0.0296 0.0324 3560 0.2493 10.1243 0.0338 0.0353 4373 0.1166 9.5861 0.0129 0.0136 1905 0.3128 10.1855

Ontological Setting (OS) P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0172 0.0188 3646 0.2589 9.9645 0.0295 0.0314 5152 0.2021 10.2691 0.0109∗ 0.0113∗ 2004 0.2954 10.0712

BPR-FM 0.0155∗ 0.0128∗ 144 0.0040 4.4288 0.0083 0.0065 207 0.0036 4.8614 0.0037∗ 0.0034∗ 85 0.0062 4.6887

MostPopular 0.0118∗ 0.0099∗ 27 0.0029 3.8543 0.0146 0.0089 30 0.0020 3.8628 0.0032∗ 0.0030∗ 17 0.0034 3.6193

ItemKnn 0.0263∗ 0.0271∗ 2557 0.0963 8.7270 0.0280 0.0270 3919 0.0960 9.2813 0.0041∗ 0.0042∗ 1437 0.1759 9.2526

UserKnn 0.0168∗ 0.0157∗ 466 0.0104 5.7207 0.0130 0.0109 961 0.0157 6.7938 0.0101∗ 0.0095∗ 269 0.0150 5.8493

VSM 0.0181∗ 0.0198∗ 3255 0.1765 9.5424 0.0257 0.0274 4231 0.1180 9.3889 0.0072∗ 0.0085∗ 1582 0.1691 9.1551

kaHFM 0.0273 0.0300 3631 0.2500 10.1188 0.0276 0.0288 5391 0.2537 10.5843 0.0148 0.0162 2099 0.3183 10.1984

Factual Setting (FS) P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0234 0.0275 3605 0.2003 9.5874 0.0246 0.0258 5232 0.2336 10.4700 0.0147∗ 0.0163∗ 2098 0.3105 10.1480

BPR-FM 0.0157 0.0133 110 0.0039 4.3774 0.0119 0.0091 357 0.0049 5.2379 0.0041∗ 0.0037∗ 90 0.0067 4.7874

MostPopular 0.0123 0.0102 26 0.0029 3.8531 0.0114 0.0070 31 0.0020 3.8674 0.0033∗ 0.0031∗ 17 0.0034 3.6195

ItemKnn 0.0273 0.0283 2617 0.0983 8.7616 0.0289 0.0278 3993 0.0982 9.3085 0.0041∗ 0.0040∗ 1656 0.2117 9.4983

UserKnn 0.0176 0.0165 470 0.0106 5.7393 0.0136 0.0114 987 0.0159 6.8209 0.0109∗ 0.0101∗ 271 0.0157 5.9059

VSM 0.0219 0.0245 2812 0.0909 8.5810 0.0348 0.0366 3846 0.0925 9.1179 0.0126∗ 0.0140∗ 1862 0.2641 9.9322

kaHFM 0.0240 0.0268 3619 0.2434 10.1562 0.0313 0.0336 5350 0.2491 10.4870 0.0179 0.0189 2211 0.3523 10.3441

Table 7.6: Accuracy, Diversity and Novelty results for Facebook Movies,

Facebook Music and Facebook Books

LibraryThing Yahoo!Movies Last.fm

Categorical Set. P@10 nDCG@10 EPC AD@10 Gini SE P@10 nDCG@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0408∗ 0.0460∗ 0.0424∗ 6335 0.1607 11.1013 0.0421∗ 0.1174∗ 0.0528∗ 2447 0.3640 10.0302 0.0223 0.0210 3642 0.1823 10.6194

BPR-FM 0.0151∗ 0.0162∗ 0.0138∗ 527 0.0029 5.2783 0.0189∗ 0.0344∗ 0.0184∗ 123 0.0056 4.3270 0.0314 0.0327 158 0.0022 4.6219

MostPopular 0.0056∗ 0.0058∗ 0.0051∗ 34 0.0009 3.8302 0.0154∗ 0.0271∗ 0.0149∗ 48 0.0043 3.9046 0.0252 0.0233 35 0.0012 3.7101

ItemKnn 0.0425∗ 0.0590∗ 0.0477∗ 5939 0.1396 10.8123 0.0203∗ 0.0427∗ 0.0193∗ 1442 0.1486 8.9548 0.0449 0.0405 2318 0.0947 9.8270

UserKnn 0.0213∗ 0.0346∗ 0.0226∗ 1330 0.0103 6.7102 0.0231∗ 0.0474∗ 0.0232∗ 729 0.0336 6.6712 0.0394 0.0443 1127 0.0248 7.6857

VSM 0.0367∗ 0.0472∗ 0.0393∗ 7431 0.2106 11.4202 0.0385∗ 0.1129∗ 0.0496∗ 2320 0.2893 9.7604 0.0025 0.0023 4582 0.0967 9.6626

kaHFM 0.0639 0.0913 0.0726 9367 0.3139 12.1071 0.0524 0.1399 0.0613 2433 0.3406 9.9831 0.0354 0.0364 4732 0.2976 11.5368

Ontological Set. P@10 nDCG@10 EPC AD@10 Gini SE P@10 nDCG@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0446∗ 0.0539∗ 0.0485∗ 7669 0.2139 11.4349 0.0427∗ 0.1223∗ 0.0545∗ 2461 0.3634 10.0776 0.0297 0.0308 4278 0.2507 11.1528

BPR-FM 0.0121∗ 0.0126∗ 0.0108∗ 396 0.0023 5.0055 0.0199∗ 0.0356∗ 0.0195∗ 111 0.0053 4.2386 0.0287 0.0304 155 0.0022 4.5842

MostPopular 0.0056∗ 0.0058∗ 0.0051∗ 34 0.0009 3.8302 0.0154∗ 0.0271∗ 0.0149∗ 48 0.0043 3.9046 0.0252 0.0233 35 0.0012 3.7101

ItemKnn 0.0425∗ 0.0591∗ 0.0477∗ 5939 0.1396 10.8125 0.0203∗ 0.0427∗ 0.0193∗ 1442 0.1486 8.9548 0.0449 0.0405 2318 0.0947 9.8270

UserKnn 0.0213∗ 0.0346∗ 0.0226∗ 1330 0.0103 6.7102 0.0232∗ 0.0474∗ 0.0232∗ 729 0.0336 6.6711 0.0526 0.0577 823 0.0163 7.2512

VSM 0.0367∗ 0.0472∗ 0.0393∗ 7431 0.2106 11.4202 0.0349∗ 0.1083∗ 0.0450∗ 2216 0.2706 9.7345 0.0025 0.0026 4231 0.0819 9.3889

kaHFM 0.0635 0.0912 0.0728 9083 0.3081 12.0563 0.0521 0.1380 0.0608 2444 0.3442 10.0086 0.0371 0.0381 4853 0.3200 11.6318

Factual Set. P@10 nDCG@10 EPC AD@10 Gini SE P@10 nDCG@10 EPC AD@10 Gini SE P@10 EPC AD@10 Gini SE

ABItem-kNN 0.0488∗ 0.0596∗ 0.0513∗ 7419 0.1968 11.2464 0.0619 0.1764 0.0777 2433 0.3177 9.7847 0.0376 0.0362 4179 0.2379 11.0850

BPR-FM 0.0087∗ 0.0087∗ 0.0080∗ 184 0.0015 4.5400 0.0177 0.0305 0.0171 116 0.0054 4.2903 0.0233 0.0253 1815 0.0347 6.4129

MostPopular 0.0056∗ 0.0058∗ 0.0051∗ 34 0.0009 3.8301 0.0154 0.0271 0.0149 48 0.0043 3.9046 0.0252 0.0233 35 0.0012 3.7103

ItemKnn 0.0436∗ 0.0615∗ 0.0491∗ 6162 0.1471 10.9008 0.0203 0.0427 0.0193 1442 0.1486 8.9548 0.0426 0.0372 2351 0.0955 9.8092

UserKnn 0.0217∗ 0.0349∗ 0.0228∗ 1399 0.0108 6.7459 0.0232 0.0474 0.0232 729 0.0336 6.6711 0.0403 0.0451 1163 0.0256 7.7004

VSM 0.0456∗ 0.0575∗ 0.0496∗ 6860 0.1928 11.3774 0.0627 0.1725 0.0752 2203 0.2251 9.1183 0.0430 0.0419 3325 0.1590 10.4706

kaHFM 0.0627 0.0906 0.0713 9089 0.3134 12.0663 0.0564 0.1434 0.0639 2394 0.3511 10.1138 0.0339 0.0352 4788 0.3139 11.6257

Table 7.7: Accuracy, Diversity and Novelty results for LibraryThing, Ya-

hoo!Movies and Last.fm

188

is almost doubled when using kaHFM. The worst results are achieved by Most-

Popular, followed by BPR-FM and this happens in almost all the experiments. This

is probably due to the high number of latent factors that does not make the method

perform efficiently. Yahoo!Movies experiments show that in Categorical and

Ontological settings our method is the most accurate, while the diversity perfor-

mance of kaHFM w.r.t. ABItem-kNN are quite similar. In the Yahoo!Movies

mapping a strong popularity bias is present and it is interesting to notice that this

affects only the Factual setting leading our approach to be less precise than ABItem-

kNN while our method proposes a bit more personalized recommendations as we

can see through Gini index and Shannon entropy values. In Last.fm, Categori-

cal and Ontological settings show that our method outperforms the others whereas

in Factual setting the results are almost identical. In terms of catalog coverage

and distributional inequality our approach achieves good results. In Facebook

Movies we see very a good improvement in terms of accuracy as it almost dou-

bles up the ABItem-kNN algorithm values. Diversity results show no relevant dif-

ferences between kaHFM and ABItem-kNN. In Facebook Music the accuracy

improvements are clear in Categorical and Factual settings while the Ontological

setting seems to be the least descriptive setting because accuracy results come re-

duced w.r.t. the other settings, and they are quite similar to ABItem-kNN. Finally, in

Facebook Books, kaHFM shows the best results for all the considered metrics.

Let us discuss the baselines more related to our approach. We compared kaHFM

against ABItem-kNN to check if the collaborative trained features may lead to bet-

ter similarity values. This hypothesis seems to be confirmed since in former ex-

periments kaHFM beats ABItem-kNN 16 times over 18. This suggests that col-

laborative trained features achieve better accuracy results. Moreover, we want to

check if a knowledge-graph-based initialization of latent factors may improve the

performance of Factorization Machines. kaHFM beats BPR-FM 18 times over 18,

and in our opinion, this happens since the random initialization takes a while to

drive the Factorization machine to reach good performance. Finally, we want to

check if collaborative trained features lead to better accuracy results than a purely

informativeness-based Vector Space Model even though it is in its knowledge-

189

graph-aware version. This seems to be confirmed in our experiments, since kaHFM

beats V SM 15 times over 18.

In order to strengthen the results we got, we computed recommendations with

0,1,5,10,15,30 iterations. For the sake of brevity we report here only the plots re-

lated to Categorical setting shown in Figure 7.3. Results of the full experiments are

available online14.

It is worth to notice that in every case we considered, we show the best perfor-

mance in one of this iterations. Moreover, the positive influence of the initialization

of the feature vectors is particularly evident in all the datasets, with performances

being very similar to the ones depicted in [312]. Given the obtained results we may

say that the answer to RQ1 is positive when adopting kaHFM.

7.4.4 Semantic Accuracy

The previous experiments showed the effectiveness of our approach in terms of ac-

curacy, diversity and novelty. In practical terms, we proved that: (i) content initial-

ization generally lead to better performance with our method, (ii) the obtained items

vectors are fine-tuned better than the original ones for a top-N item recommenda-

tion task, (iii) results may depend on the features we extract from the Knowledge

Graph. However, we still do not know if the original semantics of the features

is preserved in the new space computed after the training of kaHFM (as we want

to assess by posing RQ2). In Section 7.3.5 we introduced Semantics Accu-

racy (SA@nM) as a metric to automatically check if the importance computed

by kaHFM and associated to each feature reflects the actual meaning of that feature.

Thus, we measured SA@nM with n ∈ {1,2,3,4,5} and M = 10, and evaluated

the number of ground features available in the top-nM elements of vi for each of the

six datasets.

Table 7.8 shows the results for all the different datasets computed in the Cate-

gorical setting. In general, the results we obtain are noteworthy. We now examine

the worst one to better understand the actual meaning of the values we get. In Ya-

14https://github.com/sisinflab/papers-results/tree/master/

kahfm-results/

190

Semantics Accuracy @M @2M @3M @4M @5M F.A.

Yahoo!Movies 0.847 0.863 0.865 0.868 0.873 12.143

LibraryThing 0.960 0.996 0.998 0.999 0.999 3.820

Last.fm 0.960 0.987 0.991 0.994 0.995 6.615

Facebook Music 0.892 0.948 0.962 0.970 0.974 7.113

Facebook Movies 0.864 0.883 0.889 0.894 0.899 12.856

Facebook Books 0.995 1 1 1 1 3.133

Table 7.8: Semantics Accuracy results for different values of M. F.A. denotes the

Feature Average number per item.

hoo!Movies Categorical setting, 747 different features compose each item vec-

tor (see Table 7.5). After the training phase, on average, more than 10 (equal to

0.847×12.143) over 12 features (last column in Table 7.8) are equal to the original

features list. This means that kaHFM was able to compute almost the same fea-

tures starting from hundreds of them. Even then, given the obtained results we may

provide a positive answer to RQ2.

7.4.5 Generative Robustness

The previous experiment showed that the features computed by kaHFM keep their

original semantics if already present in the item description. In section 7.3.6, we

introduced a procedure to measure the capability of kaHFM to compute meaningful

features. Here, we computed 1-Rob@nM for the six adopted datasets. Results are

represented in Table 7.9.

1-Robustness @M @2M @3M @4M @5M F.A.

Yahoo!Movies 0.487 0.645 0.713 0.756 0.793 12.143

LibraryThing 0.275 0.481 0.554 0.597 0.632 3.820

Last.fm 0.125 0.281 0.346 0.394 0.430 6.615

Facebook Music 0.714 0.893 0.935 0.955 0.966 7.113

Facebook Movies 0.821 0.945 0.970 0.980 0.984 12.856

Facebook Books 0.315 0.516 0.605 0.682 0.745 3.133

Table 7.9: 1-Robustness for different values of M. Column F.A. denotes the Feature

Average number per item.

Even here, we focus on the CS setting. For a better understanding of the ob-

191

tained results, we start by focusing on Yahoo!Movies which apparently has a

bad behavior. As we said before, Table 7.8 shows that kaHFM was able to guess

10 on 12 different features for Yahoo!Movies. In this experiment, we remove

a feature thus making kaHFM to guess an average of 9 over 12 features. What we

measure now is if kaHFM is able to guess the removed feature in the remaining

3 “slots”. Results in Table 7.9 show that our method is able to put the removed

feature in one of the three slots the 48.7% of the times over 747 overall features.

This example should help the reader to appreciate even more Facebook Music

and Facebook Movies results. For the remaining datasets the situation is even

much harder because there were no free slots (see Table 7.8). Thus, our method has

only one missing slot to fill with the right feature. Let us take Facebook Books

as an example: there are 263 different features in the item vector (see Table 7.5)

and a very low average number of features per item (3.133). kaHFM is able to fill

the missing slot with the right feature 31% of the times. The obtained results shows

that kaHFM is able to propose meaningful features as we asked with RQ3.

7.5 Conclusion

In this work, we have proposed an explainable method, kaHFM, in which we bind

the meaning of latent factors for a Factorization machine to data coming from a

knowledge graph. We evaluated kaHFM on six different publicly available datasets

and compared it against state-of-the-art algorithms showing that our approach out-

performs the other approaches with respect to accuracy, diversity, and novelty on

different sets of semantics-aware features. In particular, we considered Ontologi-

cal, Categorical and Factual information coming from a freely available knowledge

graph. We have shown that the generated recommendation lists are more precise and

personalized, and they select more items from the long tail. Summing up, performed

experiments show that: (RQ1) the learned model shows very good performance in

terms of accuracy, novelty and diversity and, at the same time, is effectively explain-

able; (RQ2) the computed features are semantically meaningful; (RQ3) the model

is robust regarding computed features.

192

In the future we want to test the kaHFM performance in different scenarios,

other than recommender systems. Moreover, the model can be improved in many

different ways. First of all, a stopping condition based on a validation set could

be introduced to avoid wasteful training steps. Different relevance metrics could

be beneficial in different scenarios, as the method itself is agnostic to the specific

adopted measure. This work focused on the items’ vector; however, an interesting

key point would be analyzing the learned users’ vectors to extract more accurate

profiles. Furthermore, it would be useful to exploit kaHFM in order to provide sug-

gestions to knowledge graphs maintainers while adding relevant missing features to

the knowledge base. In this direction, we would like to evaluate our approach in

knowledge graph completion tasks.

193

(a) Precision on LibraryThing (b) Precision on Yahoo!Movies

(c) Precision on Last.fm (d) Precision on Facebook Movies

(e) Precision on Facebook Music (f) Precision on Facebook Books

(g) legend

Figure 7.3: Precision@10 varying # iterations 0, 1, 5 , 10 , 15, 30

194

Chapter 8

Reasoning about Preferences

8.1 Introduction

In this line of research, the focus is on model-based preference reasoning, which re-

lies on specific assumptions about the structure of the preference relation [152]. The

simplest assumption that can be made is that the target ranking of a set of resources,

described in terms of multiple attributes, can be represented as a lexicographical

order [124]. Lexicographical preference models define orders of importance on the

attributes that describe the objects of a domain. As an example, consider the choice

of a movie. Typically, the most important attribute that one considers is the genre of

the movie (e.g., drama, superhero, etc.). Then, among the movies of the preferred

genre, the choice can rely on the movie’s actor (e.g., Tom Hanks, Christian Bale,

etc.). The assumption of a lexicographical order restricts significantly the hypothe-

sis space, but induces a bias rarely justified in practical applications. In fact, pref-

erences on individual attributes are generally not independent of each other. With

reference to the movie domain, Tom Hanks may be preferred to Christian Bale, if

the movie genre is drama, while Christian Bale may be preferred in case of a su-

195

perhero film. CP-nets [71] offer a language to express preferences on the values of

single attributes, and, at the same time, allow to model dependencies of this type. A

CP-net is a qualitative graphical representation that reflects conditional dependence

and independence of preferences under a ceteris paribus (all else being equal) in-

terpretation. It is a compact representation of a complex preference relation (partial

order), where each node refers to a single attribute and is associated with a function

that assigns a preference relation on the values of that attribute to each combination

of the values of the parent attributes. More precisely, CP-nets require that the user

specifies (i) for any attribute A of interest, which other attributes can impact her

preferences for values of A (the parents of A), and (ii) for each instantiation of the

parent attributes, the preference ordering over values of A. Points (i) and (ii) could

make CP-nets a rather rigid formalism, compared to the expressive needs of a user.

Furthermore, some statements that are very natural for the user to assess cannot be

represented within a CP-net. Conditional preference theories (or CP-theories) [395]

are a more general and flexible formalism for qualitative preferences that allows to

go beyond the expressiveness limitations of CP-nets.

In our previous work [320], we focused on the well-known CP-net graphical lan-

guage and have addressed the problem of preference representation and reasoning

with Linked Data from different perspectives. We have proposed a vocabulary to

represent statements formulated according to the ceteris paribus semantics and have

shown how to encode a CP-net by means of this vocabulary. Inspired by [162], we

have also explained how to embed such a compact preference model into a SPARQL

1.1 query in order to access semantic data in a personalized way. The current inves-

tigation extends the leading motivation and the approach of a previous work [320],

but embraces the more general and flexible formalism of CP-theories. We point out

that the approach proposed here only deals with context-uniform conditional (cuc)

acyclic CP-theories [395], which are a special type of CP-theories exposing nice

polynomial computational properties while comparing outcomes.

This study heavily extends the approach presented in [320] in many points. First

of all, here we deal with the much more expressive CP-theories instead of CP-

nets. A new extended vocabulary as well as a completely new algorithm to encode

196

CP-theories in SPARQL is also proposed. Moreover, an implementation of the

overall framework is presented together with experimental evaluations targeted at

assessing the users’ experience in representing their preferences as CP-theories and

the performance of the tool. The main contributions of this work can be summarized

as follows:

• presentation of RDF vocabularies to represent qualitative preference state-

ments over Linked Data, built on top of the vocabulary proposed in [320],

but adjusted for more general preference statements;

• an encoding into RDF triples of the qualitative preferential information rep-

resented by a CP-theory and the exploitation of theoretical results of [394] to

compute a partial order over items for cuc-acyclic cases;

• a procedure to translate conditional preference statements into a SPARQL 1.1

query able to retrieve a ranked list of resources whose order reflects the user

preferences;

• an application framework that meets a user’s needs while representing her

preferences as a CP-theory encoded in RDF and that eventually allows a

SPARQL-enabled software agent to retrieve a ranked list of resources accord-

ing to the users’s tastes;

• An experimental evaluation to verify the effectiveness of the proposed ap-

proach.

The rest of the chapter is structured as follows. Section 8.3 presents the motivat-

ing scenario that fostered the overall approach. The semantics of CP-theories and a

recap on some relevant results and theorems has been provided in background, Sec-

tion 2.2.1. In Section 8.4, we propose an RDF vocabulary to represent a CP-theory

with the preferential statements of a user, and then we show how to embed the RDF

version of the CP-theory into a SPARQL query able to retrieve a ranked list of results

ordered according to user’s preferences. Section 8.7 describes the tool that supports

the user both in the formulation of her preferences under the CP-theories semantics

197

and in retrieving the resources of interest ordered according to her preferences. The

results on a user study are reported in Section 8.8, where we also measure the per-

formance of the implemented system on a synthetic dataset. Section 8.2 provides an

overview of related work about preference reasoning and enabling query languages

with preferences. Conclusions close the chapter.

8.2 Related work

The ability to infer, model, and reason with user preferences has been recognized as

a prominent research direction in many fields, especially artificial intelligence (AI)

[131, 303]. Preferences are generally classified as quantitative, if they make use

of a scoring function to assess an order over the available resources, resulting in a

total order, or qualitative, if they are treated independently, resulting in incompara-

ble resources and a partial preference order. Much work has focused on qualitative

approaches, since these are closer to how people express their preferences; among

the earliest logic-based approaches is von Wright’s [385]. Following the overview

over qualitative multi-attribute preference reasoning approaches provided by [284],

in AI, there are, in particular, (i) methods adopting graphical structures to represent

and reason about preferences, e.g., CP-nets [71] and TCP-nets [72]; (ii) methods

that extend constraints satisfaction problems and incorporate soft constraints, as in

the approximation of CP-nets with soft constraints described in [128, 127]; and

(iii) methods that use specific logic-based languages to represent qualitative pref-

erences and derive utility functions, exploiting, e.g., machine learning techniques,

such as support vector machines [126, 125].

Conceptually close in spirit to our investigation is in particular [276], where on-

tological knowledge expressed via existential rules in Datalog± is combined with

CP-theories to represent qualitative conditional preferences along with domain knowl-

edge, and to perform preference-based answering of conjunctive queries. Another

related work [102] combines Datalog with CP-theories, but only considers atomic

queries. Our work, in contrast, focuses on SPARQL queries in a more restricted on-

tological context and conditional preferences specified via cuc-acyclic CP-theories.

198

There is also a large body of work on handling preferences in logic programming,

e.g., asprin [75], which is a framework for handling preferences among the stable

models of a logic program. Similarly, the qualitative choice logic [74] is a propo-

sitional logic for representing a preference relation among models, which allows

to specify alternative, ranked options for problem solutions. The above two and

similar works on handling preferences in logic programming are fundamentally dif-

ferent from our approach, as they are about preferences for ordering models of a

logic program, rather than preferences for ordering the answers to a query subject

to all models of a knowledge base.

Databases are another research area where preferences have been investigated.

In a relational database management system, for example, the top-k (or ranking)

queries represent a quantitative approach, since they return the k best matches ac-

cording to a numerical score. In [234], a formalism supporting ranking queries for a

relational database is presented. With reference to the qualitative approach instead,

skyline queries [67] extend the notion of best matching to contexts, where multiple

independent scores have to be taken into account. The result of a skyline query is

a set of objects that are no worse than any other across all dimensions of a set of

independent Boolean or numerical preferences [67]. Within the database commu-

nity, both Chomicki [98, 99] and independently Kießling and colleagues [213, 214]

formalized the first examples of preference-based querying languages, that is, ex-

tensions of SQL that support the specification of quantitative and qualitative queries.

The notion of preference is of primary importance also in the Linked Open Data

context. The provision of means to enable users to look for data sources (e.g.,

SPARQL endpoints) and data content that is tailored to their individual preferences

is one of the target of the original project by Tim Berners-Lee et al. Even the

motivating example proposed in the introductory article about the Semantic Web

[60] can be interpreted as a preference-based search, as extensively discussed in

[347]. Based on this insight, in [347], the authors add preference-based querying

capabilities to the most known Semantic Web query language, SPARQL. However,

when the paper was published, it was not possible to specify multiple (independent)

preference dimensions in SPARQL, and consequently the authors had to introduce

199

the PREFERRING solution modifier. For example, the following query provides a

preference-enabled SPARQL query for a user who is searching for an appointment,

preferring excellent therapist, appointments out of the rush hour and later appoint-

ments over earlier ones, if both are equal with respect to the rush hour constraint.

1 SELECT ?appointment WHERE {

2 ?terapist :rated ?rating;

3 :offers ?appointment.

4 ?appointment :starts ?start;

5 :ends ?end.

6 PREFERRING (?rating = excellent AND

7 ?end < 1600 || ?start > 1800

8 CASCADE HIGHEST(?start))

9 }

At line 6, the PREFERRING clause behaves as a solution modifier, and the AND

keyword separates independent preference dimensions. The CASCADE keyword at

line 8 allows to give higher priority to the left-hand preference over the right-hand

one. In their paper, the authors state that within the same SPARQL query, the use of

a LIMIT k statement in combination with PREFERRING ones could inform the

query evaluator to go deeper in the retrieval of skyline solutions, thus allowing the

system to return a set of results ordered by user preferences.

A mapping operation between an OWL ontology, called OWLPref, and the

SPARQL Preference syntax of [347] has been proposed by [231]. OWLPref allows

for representing in a declarative, domain-independent and machine-interpretable

way several kinds of preferences, namely, SimplePreference, CompositePreference

(which makes compositions of the former), and ConditionalPreference (which mod-

els preferences that vary according to the context, thanks to a property OnCondi-

tion). However, considering the unavailability of conditional preferences in the

SPARQL Preference syntax of [347], the use of ConditionalPreference in OWLPref

seems of marginal utility.

The PrefSPARQL syntax of [162] keeps the goal of identifying the Pareto-

optimal set, but introduces preferences at the level of filters. It still uses the AND to

separate independent dimensions and to build what the authors call Multidimesion-

alPref. Each “dimension” is either a conditional preference (IF-THEN-ELSE) or

200

an atomic preference, which in turn can be a simple expression or can involve more

complex constructs [162]. Besides the support for conditional preferences and the

substitution of CASCADE with PRIOR TO, the main innovative point of [162] with

respect to [347] is perhaps that the proposed preference-enabled query can be com-

pletely rewritten using SPARQL 1.1 characteristics. In particular, [162] uses the

FILTER NOT EXISTS. The translation of the previous query according to the

PrefSPARQL query rewriting is given below.

1 SELECT ?appointmentA WHERE {

2 ?terapistA :rated ?ratingA;

3 :offers ?appointmentA.

4 ?appointmentA :starts ?startA;

5 :ends ?endA.

6 BIND ((?ratingA = :excellent) AS ?Pref1A)

7 BIND ((?endA < 16 || ?startA > 18:00) AS ?Pref2A)

8 BIND ((?startA) AS ?Pref3A)

9 FILTER NOT EXISTS {

10 ?terapistB :rated ?ratingB;

11 :offers ?appointmentB.

12 ?appointmentB :starts ?startB;

13 :ends ?endB.

14 BIND ((?ratingB = :excellent) AS ?Pref1B)

15 BIND ((?endB < 1600 || ?startB > 1800) AS ?Pref2B)

16 BIND ((?startB) AS ?Pref3B)

17 FILTER (

18 ((?Pref1B > ?Pref1A) &&

19 !((?Pref2B < ?Pref2A) ||

20 (?Pref3B < ?Pref3A && ?Pref2B = ?Pref2A)))

21 ||

22 (!(?Pref1B < ?Pref1A) &&

23 ((?Pref2B > ?Pref2A) ||

24 (?Pref3B > ?Pref3A && ?Pref2B = ?Pref2A))))}

25 }

The query looks for appointments ?appointmentA satisfying a certain pattern

expressed in lines 2–5. The research is carried out checking that there is no ?ap-

pointmentB that verifies the same pattern (lines 10–13) and dominates ?ap-

pointmentA in any preference dimension. The example refers to only two inde-

pendent preference dimensions and the situations when ?appointmentB domi-

nates ?appointmentA are represented in the branches of || symbol at line 21,

that is, lines 18–20 and lines 22–24. For the sake of completeness, ?appoint-

201

mentB would dominate ?appointmentA if it was better in one dimension (line

18 or line 23–24) and no worse in the other one (line 19–20 or line 22). The PRIOR

TO preference relation is encoded in lines 19–20 and 23–24 through the || operator.

Although PrefSPARQL allows the user to encode conditional preferences in a

SPARQL 1.1 query, it differs from the approach that we presented here in at least

three main aspects: (i) in PrefSPARQL, the focus is on computing the most preferred

solution (undominated outcome), given a set of conditional preferences, while we

provide a list of results ordered by user preferences; (ii) they deal with conditional

preferences in the form uϕ : xϕ > x
′
ϕ , while our approach is able to manage CP-

statements in the form uϕ : xϕ > x
′
ϕ [Wϕ], which result to be much more expressive

for finite and discrete domains even in their cuc-acyclic version that we consider

here; (iii) we provide an ontological vocabulary and a procedure to automatically

encode preferences in a SPARQL query. However, thanks to its more agile structure,

differently from our approach, PrefSPARQL allows the user to express preferences

on variables with continuous domains as well as the usage of comparison operators.

In [371], the authors present SPREFQL, an extension of the SPARQL language

that allows for appending a “PREFER” clause, which expresses soft preferences

over the query results obtained by the main body of the query. The main ideas be-

hind the approach are to associate relations of tuples with preference formulas, and

to select the relations’ most preferred tuples via a so-called winnow operator. Con-

sequently, the approach does not allow for expressing conditional ceteris paribus

preferences as in CP-theories.

As a general remark, previous SPARQL-related works on preference reasoning

have been mainly devoted to preference representation and the retrieval of undom-

inated outcomes. In principle, one may encode each of them in a procedural ap-

proach able to compute the first level of undominated solutions, then the second

one and so one. At each iteration step, the procedure should be able to filter out the

results coming from the “higher levels” of results computed in the previous steps.

Less closely related are approaches to preference-based query answering over

graph databases. In particular, [149] presents regular languages for graph queries,

where answers are partially ordered via a partial order on the strings of the lan-

202

guages. In the same vein, [159] introduces preferential regular path queries for en-

hanced querying of semi-structured databases. Query symbols are annotated with

preference weights for scaling up or down the importance of matching a symbol

against a database edge label. The paper studies (progressive) query answering,

(certain) query answering in LAV data-integration systems, and query containment

and equivalence. A similar approach in [146] introduces a graph query language

that enables to declaratively express preferences. None of the above approaches

to preference-based query answering over graph databases (which are intuitively

based on (potentially recursive) pattern-recognition-style regular expressions), how-

ever, allows for expressing conditional ceteris paribus preferences as in CP-theories.

Less closely related are also information retrieval systems based on manipulating

fuzzy truth values (which may also be interpreted as quantitative preferences), such

as the fuzzy multimedia retrieval system in [138].

8.3 Motivating scenario

The leading scenario behind the framework that we propose here is that of a dis-

tributed system where a user may pose a query to a SPARQL endpoint and have the

returned results ordered with respect to a set of personal preferences on a specific

knowledge domain. For instance, a user might be willing to get a list of books to

read by querying DBpedia and then have it ranked according to a set of prefer-

ences hosted on their own Web page. A possible implementation of the approach

that we propose is depicted in Fig. 8.1,1 where the main building blocks required to

implement the whole framework are shown:

• a reference model to encode and reason with preferences (CP-theory in our

case);

• an ontological vocabulary to represent preferences by adopting Web languages;

1For ease of presentation, we use DBpedia as the main dataset to query. The approach can be

adapted to any Linked Data dataset.

203

Figure 8.1: A graphical representation of the proposed approach. The Deploy and

Interact steps only rely on the adoption of standard technologies and languages.

• a tool able to handle and manage preferences as well as to encode them in a

set of SPARQL queries.

In order to implement the whole framework, we propose the following deploy-

ment and interaction steps.

Deploy.

• Model user preferences. We adopt CP-theories [394] as reference model

to represent user preferences. As we will see in Section 2.2.1, they are a

formalism to represent and reason with sets of qualitative preferences.2

• Encode preferences in RDF by means of a preference ontology. We de-

veloped an OWL ontology to represent CP-theory statements encoding

user preferences (see Section 8.4).

2The interest here is not whether such preferences are automatically learned from data or manu-

ally modeled and set by a human agent.

204

• Publish user preferences publicly on the Web. The aim is to foster a prin-

cipled adoption of user preferences by systems interested in providing

a personalized access to data available in the Linked Data cloud. User

preferences can be encoded and published in an RDF file.

Interact.

• Use SPARQL to get user preferences. A preference handler loads3 the

preference model of the user encoded in RDF by means of a general

purpose SPARQL query engine.

• The preference handler formulates SPARQL 1.1 queries able to retrieve

and order resources by taking into account user preferences. Standard

SPARQL queries are formulated in order to rank the result set with ref-

erence to the preferences expressed by the user.

A strong requirement that we had in mind while developing our solution was to

use only standard Web technologies and languages to implement the overall frame-

work. Indeed, we selected RDF to model user preferences and the power of SPARQL

1.1 to perform preference-based reasoning in order to rank the results of a query.

In fact, as we will see in Section 8.4.2, advanced features of the last version of the

SPARQL query language can be employed to perform preference reasoning over a

model based on CP-theories. In Section 8.3, all the details needed to implement the

Deploy and Interact steps in a pure Linked Data setting will be provided.

8.4 CP-theories and Linked Open Data

As we stated in Section 8.1, the target of this work is twofold. On the one hand, we

want to supply the user with a vocabulary to represent qualitative statements formu-

lated in terms of ceteris paribus semantics. On the other hand, we aim to provide

an encoding of user preferences that can be used in a top-k query answering sce-

nario. In this section, we start by proposing a first ontology that allows a system to
3See SPARQL 1.1 Update specification at https://www.w3.org/TR/

sparql11-update/\#load.

205

represent preferential statements according to CP-theories in a very straightforward

way and an extended version to manage the directed graph Jo(Γ) on V introduced

in Section 2.2.1 and exploited in Theorem 2. Note that RDF triples encoding the di-

rected graph can be automatically derived from the original preferential statements.

In Section 8.7, we provide a description of an implemented tool to infer the RDF

version of the directed graph, starting from a set of conditional preferences. We deal

with the complementary target in Section 8.4.2, where we show how to employ a

user profile represented as an instantiation of the extended ontology to encode the

corresponding preferences in a standard SPARQL query able to retrieve and rank

resources in a personalized way.

Figure 8.2 shows the ontology that we modeled to express user profiles in terms

of CP-theory statements4. The main idea behind the modeling of the ontology is

that we may express preferences on properties of items that the user is looking for,

e.g., dbo:literaryGenre, dbo:country, dbo: subsequentWork, or

potentially dbo:filmVer-sion. Hereafter, the ontology in Figure 8.2 will be

referred to as the lite ontology. The aim of the lite ontology is that of creating an

ontological vocabulary providing all the elements to syntactically represent condi-

tional preference statements in a theory Γ. By means of this ontology, it is possible

to encode whatever preference ϕ in its general form uϕ : xϕ > x
′
ϕ [Wϕ].

The ontology is composed by four main classes and nine properties. The class

Value represents possible values of a variable. If we look at the book GoodKnyght!

in Example 5, we see that the “actual values” for which the user expresses a pre-

ference are composed by both a property (e.g., dbo:country) and its related

object (e.g., db:United Kingdom). This is the reason why the class Value

is the domain of the two properties attribute and value. The former map-

ping the property, the latter mapping the object. Condition is used to express

the conditional part uϕ of a preference statement uϕ : xϕ > x
′
ϕ [Wϕ], which is also

the condition for the relative importance [72] of the variable Xϕ over variables in

Wϕ in case Wϕ 6= /0. It is the domain of the property contains, whose range

4The corresponding OWL file is available at http://sisinflab.poliba.it/

semanticweb/lod/ontologies/cpt_light.owl

206

Figure 8.2: A graphical representation of the lite version of the ontology proposed

to represent conditional statements.

is Value. The class Preference represents the whole conditional statement ϕ .

The properties having Preference as domain reflect the structure of the preferen-

tial statement “given a Condition, I prefer a Value over another Value,

optionally irrespectiveOf some other variables”. The class Variable is

used to model the variables of a CP-theory, and it is domain of variableDo-

main, whose range is Value. Finally, we have the bound property needed to

explicitly state if the value associated to an attribute is an actual value (as for

dbo:country and dbo:literaryGenre) or if it represents the situation that

we (do not) have a triple involving the attribute, as for dbo:subsequent-

Work or dbo:filmVersion. Here, we adopted the modeling choice of rep-

resenting directly the conditions generated by the combination for the values of

variables in Uϕ instead of relating the variables themselves. As an example, in case

we have “Given an English book that is part of a saga, I prefer. . . ”, with reference

to the previous example, the corresponding encoding will be5

cpl:combined-cond a cpl:Condition ;

cpl:contains cpl:c1 ;

cpl:contains cpl:s1 .

5Here, we use the prefix cpl to denote <http://sisinflab.poliba.it/

semanticweb/lod/ontologies/cpt_light.owl\#>

207

Here, cpl:combined-cond represents uϕ as a whole, while cpl:c1 and cpl:s1

represent the values x1 and x2 composing uϕ = x1x2.

We will see how this modeling choice will be useful when embedding the CP-theory

into a SPARQL query.

Notice that such classes and predicates are sufficient for the user to express the

CP-theory with her preferential statements, and to facilitate the user experience even

further, we built a user-friendly tool, where preferences related to a specific domain

(e.g., books or movies) can be added. The aforementioned tool will be extensively

described in Section 8.7.

Example 5 (Books cont’d)

With respect to Giorgio’s preference “given an English book, he prefers those be-

ing part of a saga”, if we look in DBpedia, we may find, for instance, the book

GoodKnyght!. Indeed, we have:

@prefix db: <http://dbpedia.org/resource/>

@prefix dbo: <http://dbpedia.org/ontology/>

db:GoodKnyght! a dbo:Book ;

dbo:country db:United_Kingdom ;

dbo:subsequentWork db:Whizzard! .

From the previous RDF statements, we see that Giorgio’s preference refers to val-

ues of objects in a triple with reference to a specific predicate. Indeed, given a

set of resources of type dbo:Book such that the value for dbo:country is

db:United Kingdom, he prefers those with an associated triple whose predicate

is dbo:subsequentWork. In order to be fully compliant with the Linked Data

technological stack, we need a vocabulary/ontology that allows users to represent

their preferences on different attributes of resources that they might be interested

in. Hence, with reference to the ontology in Fig. 8.2, we have the following RDF

triples modeling the preference introduced at the beginning of this example.

@prefix cpl: <http://sisinflab.poliba.it/

semanticweb/lod/ontologies/cpt_light.owl#>

@prefix db: <http://dbpedia.org/resource/>

208

@prefix dbo: <http://dbpedia.org/ontology/>

Variables

cpl:country a cpl:Variable;

cpl:bound true;

cpl:variableDomain cpl:c1,cpl:c2.

cpl:subsequentWork a cpl:Variable;

cpl:bound false;

cpl:variableDomain cpl:s1, cpl:s2.

Values allowed for each variable

cpl:c1 a cpl:Value;

cpl:attribute dbo:country;

cpl:value db:United_Kingdom.

cpl:c2 a cpl:Value;

cpl:attribute dbo:country;

cpl:value db:France.

cpl:s1 a cpl:Value;

cpl:attribute dbo:subsequentWork;

cpl:value cpl:subsequentWorkYes.

cpl:s2 a cpl:Value;

cpl:attribute dbo:subsequentWork;

cpl:value cpl:subsequentWorkNo.

Condition

cpl:cond a cpl:Condition;

cpl:contains cpl:c1.

Preference

cpl:pref a cpl:Preference;

cpl:given cpl:cond;

cpl:prefer cpl:s1;

cpl:over cpl:s2.

209

�

Once we have defined and modeled Γ in RDF, in order to compare two outcomes

α and β as in Theorem 2, we may build the RDF version of the directed graph .α

on V (see Section 2.2.1).

To this aim, the lite ontology is extended as shown in Figure 8.36 to what we

call the full ontology. Hence, starting from a set of preferences represented via the

lite ontology, we derive its full version such that, once instantiated with an outcome

α , it represents .α . The derivation step is performed by adding new statements via

the following relations:

moreImportantThan has Variable both as domain and as range, and it is

used to model the transitive closure of dependency and (unconditional) rel-

ative importance information, i.e., for the transitive closure of edges Uϕ →
{Xϕ}∪Wϕ , and, if Uϕ = /0, for {Xϕ}→Wϕ , for any ϕ .

conditionallyMoreImportantThan takes into account conditional rela-

tive importance information. Its range is an instance of the new class

InstanceOfRelativeImportance, which is used to represent a pair

(uϕ , Z), Z ∈Wϕ , for a statement ϕ with Uϕ 6= /0.

In fact, the class InstanceOfRelativeImportance is the domain of

the property hasCondition, whose range is the Condition instance rep-

resenting uϕ , and of the hasLessImportantVariable property, whose

range is the Variable instance for Z. In the following, we say “X is con-

ditionallyMoreImportantThan Y under the Condition C” when

X is linked via conditionallyMoreImportantThan to an instance of

the class InstanceOfRelative-Importance, which, in turn, is linked

by has-Condition to a ConditionC and by has - LessImportant-

Variable to a Variable Y .

6The corresponding OWL file is available at http://sisinflab.poliba.it/

semanticweb/lod/ontologies/cpt_full.owl

210

Figure 8.3: A graphical representation of the full ontology proposed to represent

conditional statements.

Both properties must act as transitive relations. Therefore, we add more state-

ments to the original preferences by means of the following rules involving the

transitive closure of property moreImportantThan and then, for pairs of vari-

ables (Y,Z) not linked by it, the transitive closure of property conditionally-

MoreImportantThan.

• if variable Y is moreImportantThan a variable X and at the same time

variable X is conditionallyMoreImportantThan a variable Z, under

a condition C not involving values of Y , then we add the RDF statements

representing that “Y is conditionallyMoreImpor-tantThan Z under

the condition C”;

• if Y is conditionallyMoreImportantThan a variable X under a condi-

tion C, X is at the same time moreImportantThan a variable Z, and the

condition C does not involve any value of Z, then the additional fact we add is

“Y is conditionallyMoreImportantThan Z under the condition C”;

• if Y is conditionallyMoreImportantThan a variable X under a con-

dition C, and X is conditionallyMoreImportantThan a variable Z

under a condition C′, then the additional fact added to the knowledge base

is “Y is conditionallyMoreImportantThan Z under the condition

211

C′′”, where C′′ = C∧C′ is the condition joining C and C′, but only if C∧C′

does not contains values of Y , Z or two different values of any other variable.

According to the properties just introduced, given a pair of outcomes (α , β), if

there exist no variable X
′ ∈ ∆(α,β) that is moreImportantThan X and no vari-

able X
′′∈ ∆(α,β) that is conditionallyMore-ImportantThan (u, X), with

α extending u, then a variable X is in Θ
′
(α,β).

Example 6 (Books cont’d)

The full encoding corresponding to ΓC−LG−SW−F for Giorgio’s preferences in Table

2.1, is represented in Listing 8.17. �

@prefix cpt: <http://sisinflab.poliba.it/semanticweb/

lod/ontologies/cpt_full.owl#>

@prefix db: <http://dbpedia.org/resource/>

@prefix dbo: <http://dbpedia.org/ontology/>

cpt:country1 a cpt:Value;

cpt:attribute dbo:country;

cpt:value db:United_Kingdom.

cpt:country2 a cpt:Value;

cpt:attribute dbo:country;

cpt:value db:France.

cpt:genre1 a cpt:Value;

cpt:attribute dbo:literaryGenre ;

cpt:value db:Crime_fiction.

cpt:genre2 a cpt:Value;

cpt:attribute dbo:literaryGenre ;

cpt:value db:Autobiographical_novel.

cpt:sw1 a cpt:Value;

cpt:attribute dbo:subsequentWork;

cpt:value cpt:subsequentWorkYes.

cpt:sw2 a cpt:Value;

cpt:attribute dbo:subsequentWork;

cpt:value cpt:subsequentWorkNo.

cpt:film1 a cpt:Value;

cpt:attribute dbo:filmVersion;

cpt:value cpt:filmVersionYes.

cpt:film2 a cpt:Value;

cpt:attribute dbo:filmVersion;

cpt:value cpt:filmVersionNo.

cpt:conditionC1 a cpt:Condition;

cpt:contains cpt:country1.

cpt:conditionC2 a cpt:Condition;

cpt:contains cpt:country2.

cpt:conditionSW1 a cpt:Condition;

cpt:contains cpt:sw1.

cpt:conditionSW2 a cpt:Condition;

7For conciseness, the prefix cpt is always assumed in the following for <http:

//sisinflab.poliba.it/semanticweb/lod/ontologies/cpt_full.

owl\#>.

212

cpt:contains cpt:sw2.

cpt:country a cpt:Variable;

cpt:bound true;

cpt:variableDomain cpt:country1,cpt:country2;

cpt:moreImportantThan cpt:literaryGenre;

cpt:moreImportantThan cpt:subsequentWork;

cpt:moreImportantThan cpt:filmVersion.

cpt:literaryGenre a cpt:Variable;

cpt:bound true;

cpt:variableDomain cpt:genre1,cpt:genre2;

cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance1;

cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance3.

cpt:subsequentWork a cpt:Variable;

cpt:bound false;

cpt:variableDomain cpt:sw1, cpt:sw2;

cpt:moreImportantThan cpt:filmVersion;

cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance2.

cpt:filmVersion a cpt:Variable;

cpt:bound false;

cpt:variableDomain cpt:film1, cpt:film2.

cpt:instanceOfRelativeImportance1

a cpt:instanceOfRelativeImportance;

cpt:hasCondition cpt:conditionC1;

cpt:hasLessImportantVariable cpt:subsequentWork.

cpt:instanceOfRelativeImportance2

a cpt:instanceOfRelativeImportance;

cpt:hasCondition cpt:conditionC2;

cpt:hasLessImportantVariable cpt:literaryGenre.

cpt:instanceOfRelativeImportance3

a cpt:instanceOfRelativeImportance;

cpt:hasCondition cpt:conditionC1;

cpt:hasLessImportantVariable cpt:filmVersion.

cpt:preference1 a cpt:Preference;

cpt:prefer cpt:country2;

cpt:over cpt:country1.

cpt:preference2 a cpt:Preference;

cpt:given cpt:conditionC1;

cpt:prefer cpt:genre2;

cpt:over cpt:genre1;

cpt:irrespectiveOf cpt:subsequentWork.

cpt:preference3 a cpt:Preference;

cpt:given cpt:conditionC2;

cpt:prefer cpt:sw2;

cpt:over cpt:sw1;

cpt:irrespectiveOf cpt:literaryGenre.

cpt:preference4 a cpt:Preference;

cpt:given cpt:conditionC1;

cpt:prefer cpt:sw1;

cpt:over cpt:sw2.

cpt:preference5 a cpt:Preference;

cpt:given cpt:conditionC2;

cpt:prefer cpt:genre1;

cpt:over cpt:genre2.

cpt:preference6 a cpt:Preference;

cpt:given cpt:conditionSW1;

cpt:prefer cpt:film1;

cpt:over cpt:film2.

cpt:preference7 a cpt:Preference;

213

cpt:given cpt:conditionSW2;

cpt:prefer cpt:film2;

cpt:over cpt:film1.

Listing 8.1: The RDF version of the CP-theory ΓC−LG−SW−F in Table 2.1, according to

the full ontology.

In Section 8.4.2, we will see how to pose a SPARQL query against the full ver-

sion of Γ in order to compute�Γ, thus retrieving a ranked list of semantic resources

ordered according to a user’s preferences.

8.4.1 The special case of CP-nets

Before moving to the description of how to encode a CP-theory in a SPARQL query

for personalized results ranking, we point out that the ontological model just de-

scribed subsumes the vocabulary introduced in [320] to represent CP-nets models.

There, we proposed how to model the information encoded in a CP-net through an

ontology and how to formulate the query able to order outcomes accordingly in a

consistent way. On the other hand, we know that CP-nets are a special and simple

case of CP-theories and, therefore, we want to show how the new ontology in Figure

8.3 can deal with a CP-net.

The theoretical result exploited in [320] (namely Corollary 4 of [71]) orders

an outcome o over another one o′, consistently with a CP-net N , if there exists a

variable X such that o and o′ assign the same values to all ancestors of X in N

and given the assignment provided by o (and o′) to the parents of X , i.e., Pa(X),

o assigns a more preferred value to X than that assigned by o′ (according to the

conditional preference table of X). The sufficient condition of Corollary 4 of [71]

may be reformulated asking for a variable X such that there does not exist any vari-

able moreImportantThan X different in o and o′, and, given the assignment

provided by o (and o′) to Pa(X), o assigns a more preferred value to X than that

assigned by o′. The predicate moreImportantThan, in fact, covers dependency

information and, when applied to a CP-net, allows to define a set of variables coin-

cident with the ancestor set. Moreover, for a CP-net, the predicate given for any

instance of Preference ordering the values of a variable may be used to define

214

the parent set of that variable. The ontological model proposed in [320] for CP-nets

is hence subsumed by the full ontology of Figure 8.3. On the other hand, if one

wants to represent a CP-net according to the full ontology, one has to consider that

the dependency information is the only kind of information required for CP-nets,

because there is no relative importance encoded. This implies that the RDF version

of the CP-net, in terms of the full ontology, would not contain any predicate con-

ditionallyMoreImportantThan and irrespectiveOf or any instance

of the class InstanceOfRelativeImportance.

8.4.2 Ordering SPARQL results via CP-theories

In the following, we assume that users are looking for the best k items satisfying

some requirements and that the choice for the best ones is led by their preferences,

formulated according to a CP-theory Γ, on a set of variables V = {X1,...,Xn}. Hence,

we aim at solving a top-k query answering problem, where the ordering criterion

is encoded in Γ. In the presented approach, we concentrate on cuc-acyclic CP-

theories, to preserve the nice computational properties introduced in Section 2.2.1

and exploit the algorithmic approach suggested by Theorem 2.

The ultimate goal of our proposal can be summarized by the following query

formulated in a meta-language on top of SPARQL:

SELECT ?item

WHERE {

?item satisfies user requirements

}

ORDER BY Γ

LIMIT k

Here, user requirements are represented by a SPARQL graph pattern where at least

one triple has ?item as subject. In the following, we use the notation R(?item)

to denote the user requirements associated with the variable ?item.

215

Example 7 (Books cont’d)

“Giorgio really wants to relax, and so he is looking only for books with more than

300 pages”. In this case, Giorgio’s requirements R(?item) are represented by:

?item a dbo:Book.

?item dbo:numberOfPages ?page.

FILTER(?page>300). �

The computation of an answer to the previous query, goes through the exploita-

tion of the full version of Γ. The overall approach is composed of two main steps.

Step 1. Here, we compute a representation of α and β , starting from each ϕ ∈
Γ and, by exploiting Theorem 2, an ordering based on �Γ for all possible

outcomes is eventually returned. The representation of α and β as URIs

goes through a string concatenation (we use the GROUP_CONCAT aggregate

function of SPARQL).

Step 2. This step deals with ranking the items matching R(?item) according to

�Γ as computed in the previous step.

Both steps are detailed in the following.

Ordering the Outcomes (Step 1). From Theorem 2 in Section 2.2.1, we know

how to build a strict partial order on a set of outcomes O extending >Γ by compar-

ing outcomes via �Γ. By means of the same meta-language that we used before,

the ordering of outcomes can be done via the following query. There, we see the

outcomes are ordered according to a counter representing the number of outcomes

that they are able to�Γ-dominate.

SELECT ?outcome-Dominating

(COUNT(?outcome-dominated) AS ?counter)

WHERE {

FILTER { ?outcome-Dominating� ?outcome-dominated }

}

216

GROUP BY ?outcome-Dominating

ORDER BY DESC(?counter)

In order to compute values for the two variables ?outcome-Dominating and

?counter, the previous query should act on one pair (α , β) per time by checking

if α �Γ β .

The preference-based reasoning is performed exclusively by means of the SPARQL

1.1 query OrderingQuery whose generation is detailed in Algorithm 2 of Appendix

8.5.

8.5 Query formulation algorithm for CP-theories

Algorithm 2 has the user’s preferences graph Guser as input, that is, the RDF version

of the user’s CP-theory Γ in terms of the full ontology and returns the SPARQL

query able to order outcomes according to�Γ, a strict partial order extending >Γ

(see Theorem 2). Line 3 computes, for each outcome o, the values (of variables in

V) that it is composed of, through the string Outcome D values built with the for

cycle that ends on line 2. The string Outcome D values contains just the names

of variables in V with a suffix D. Line 3 also computes the number of outcomes

o′ that o dominates according to �Γ, referred to as ?counter. The counting is

made possible by the combination of the COUNT in line 3 and the GROUP BY in

line 18. The ?counter variable is then used by the ORDER BY in line 19 to rank

the result set. It is worth to notice that line 3 asks for URI(?outcome D) and not

just for ?outcome D, since this entity will be employed as the subject of triples

at the beginning of Step 2 described in Section 8.4.2. Given a pair of outcomes (o,

o′), lines to 16 are used to identify the set of variables Θ
′
(o,o′) and among them the

set of variables {X ∈ Θ
′
(o,o′): o(X)�X

o o′(X)}. The first nested subquery (lines 5

to 13) considers one pair of outcomes at a time, ?outcome D and ?outcome -

d, where D and d stand respectively for Dominating and dominated. The for loop

of lines until 9 allows to consider first ?outcome D and then ?outcome d. For

each of them, the nested loop of lines to 6 introduces the values corresponding to

217

the variables in V . For each variable Xi ∈ V , Algorithm 2 looks for values ?Xi -

y filtering only elements of the set {value(xi1), value(xi2)} in the binary case, or

{value(xi1), . . . , value(xin)} elsewhere, through the VALUES assignment at line 6.

The algorithm requires that a list W of variables is defined from the set of variables

V of Γ: the variables that refer to each instance of Condition must appear in the

same order in W , optionally allowing some recurrence. At lines 7-9, the outcome

is explicitly built by concatenating, according to the order imposed by W, the val-

ues extracted for various ?Xi y together with attribute(Xi), for all members of W .

Line 10 is added to verify that the pair of outcomes to compare is made of distinct

elements.

At line 11, the patterns and the FILTER are used to identify the variables ?V

with different values ?value1 and ?value2 in the outcomes ?out-come D and

?outcome d, namely the variables in the set ∆(?outcome D,?outcome d).

As imposed by the couple of FILTER NOT EXISTS of lines 12 and 13, these

variables ?V are such that:

• there does not exist any variable ?V2 in the set ∆(?outcome D,?outcome d)

that is more-ImportantThan ?V;

• there does not exist any variable ?V3 in the set ∆(?outcome D,?outcome d)

that is condi-tionallyMoreImportantThan ?V under a Condition

extended by ?outcome D.

In particular, the nested subquery appearing within the FILTER NOT EXISTS

of line 13 extracts only the instances of Condition extended by ?outcome D,

building the representative strings of the conditional values, concatenating them in

?Concatenated and checking the inclusion of the string ?Concatenated in

?outcome D through FILTER and CONTAINS. The pair of FILTER NOT EX-

ISTS of lines 12 and 13 allows therefore to identify the set of variables Θ
′
(?outcome -

D, ?outcome d).

The UNION of Query 1 and Query 2 is added at line 14. It returns a set

of quadruples of the general form 〈?V, ?ConcatenatedParent, ?Prefer,

?Over〉, able to order an outcome over another one, locally with respect to ?V. For

218

each variable ?V within the set Θ
′
(?outcome D, ?outcome d), the IF of line

15 verifies if one of the quadruples on variable ?V can be used to order ?out-

come D over ?outcome d locally with respect to ?V. In particular, for quadru-

ples with a missing value for ?ConcatenatedParent, it is sufficient to verify if

?outcome D contains the better value of a preference, i.e., ?Prefer, and ?out-

come d contains the relative worse value ?Over. Instead, for quadruples with a

bound value for ?ConcatenatedParent, it must happens that ?outcome D

contains the value of ?ConcatenatedParent, as well as ?Prefer and ?out-

come d contain the value of ?Over. If one of the || (or) conditions happens, the

BIND instantiate the value of ?counterBind to 1, otherwise to 0. The ?coun-

terBind value is summed up across all instantiation of ?V in Θ
′
(?outcome D,

?outcome d), and it resolves into ?counterV at line 4. The same line also

computes the cardinality of Θ
′
(?outcome D, ?outcome d), namely, the value

?counterVundominated. The FILTER at line 17 verifies if the pair of val-

ues ?counterVundomi-nated and ?counterV coincides, that is, if ?out-

come D(X)�X
?outcome D ?outcome d(X) for all variables X in Θ

′
(?outcome -

D, ?outcome d). In conclusion, if the FILTER of line 17 returns true then

?outcome D dominates ?outcome d with respect to �Γ, and its ?counter

value is incremented of a unit. Only distinct dominated outcomes are counted,

through the solution modifier DISTINCT at line 3.

If we consider the query in Appendix 8.6 resulting from the running example on

Giorgio’s preferences, we see that the variables involved in CP-statements as well

as the corresponding values are encoded in the initial part of the query (line 9-50)

and in the GROUP BY statement (line 130). The remaining of the query is quite

standard and does not depend on the underlying CP-theory Γ. As for the initial part

of the query, it contains a number of 2 · |V | VALUES statements, where we assign

all the allowed values to variables in V and a BIND statement used to compose the

strings representing all possible outcomes. We emphasize that the whole query is

automatically generated by Algorithm 2, starting from the full version of Γ, and

then the process is completely transparent to the user.

219

8.6 Ordering Query for the Book Example

prefix cpt:<http://sisinflab.poliba.it/semanticweb/lod/ontologies/cpt full.owl#>1

prefix dbpedia-owl:<http://dbpedia.org/ontology/>2

prefix dbpedia:<http://dbpedia.org/resource/>3

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>4

SELECT (URI(?outcome_D) AS ?URIOutcome) ?genre_D ?country_D ?subwork_D5

?filmVersion_D (COUNT(DISTINCT ?outcome_d) AS ?counter)6

WHERE7

{8

{ SELECT DISTINCT ?outcome_D ?outcome_d ?genre_D ?country_D ?subwork_D9

?filmVersion_D (COUNT(DISTINCT ?V) AS ?counterVundominated)10

(SUM((?counterBind))AS ?counterV)11

WHERE12

{13

{SELECT DISTINCT ?outcome_D ?outcome_d ?V ?genre_D ?country_D ?subwork_D14

?filmVersion_D15

WHERE16

{17

VALUES (?genre_D) {18

(dbpedia:Crime_fiction) (dbpedia:Autobiographical_novel)19

}20

VALUES (?country_D) {21

(dbpedia:France) (dbpedia:United_Kingdom)22

}23

VALUES (?subwork_D) {24

(cpt:subsequentWorkYes) (cpt:subsequentWorkNo)25

}26

VALUES (?filmVersion_D) {27

(cpt:filmVersionYes) (cpt:filmVersionNo)28

}29

BIND (CONCAT(STR(dbpedia-owl:country),STR(?country_D),30

STR(dbpedia-owl:literaryGenre),STR(?genre_D),31

STR(dbpedia-owl:subsequentWork),STR(?subwork_D),32

STR(dbpedia-owl:filmVersion),STR(?filmVersion_D)) AS ?outcome_D).33

VALUES (?genre_d) {34

(dbpedia:Crime_fiction) (dbpedia:Autobiographical_novel)35

}36

VALUES (?country_d) {37

(dbpedia:France) (dbpedia:United_Kingdom)38

}39

VALUES (?subwork_d) {40

(cpt:subsequentWorkYes) (cpt:subsequentWorkNo)41

}42

VALUES (?filmVersion_d) {43

(cpt:filmVersionYes) (cpt:filmVersionNo)44

}45

220

BIND (CONCAT(STR(dbpedia-owl:country),STR(?country_d),46

STR(dbpedia-owl::literaryGenre),STR(?genre_d),47

STR(dbpedia-owl:subsequentWork),STR(?subwork_d),48

STR(dbpedia-owl:filmVersion),STR(?filmVersion_d)) AS ?outcome_d).49

FILTER(?outcome_D!=?outcome_d).50

51

?V a cpt:Variable.52

?V cpt:variableDomain ?variable1. ?variable1 cpt:value ?value1.53

?V cpt:variableDomain ?variable2. ?variable2 cpt:value ?value2.54

FILTER (!(?value1=?value2)&& CONTAINS(?outcome_D,STR(?value1))55

&& CONTAINS(?outcome_d,STR(?value2))).56

FILTER NOT EXISTS{57

?V2 cpt:moreImportantThan ?V.58

?V2 cpt:variableDomain ?vd1. ?vd1 cpt:value ?v1.59

?V2 cpt:variableDomain ?vd2. ?vd2 cpt:value ?v2.60

FILTER((!(?v1=?v2))&& CONTAINS(?outcome_D,STR(?v1)) &&61

CONTAINS(?outcome_d,STR(?v2))).62

}63

FILTER NOT EXISTS{64

?V3 cpt:conditionallyMoreImportantThan ?instanceOfRelativeImportance.65

?instanceOfRelativeImportance cpt:hasCondition ?C.66

?instanceOfRelativeImportance cpt:hasLessImportantVariable ?V.67

?V3 cpt:variableDomain ?vd13. ?vd13 cpt:value ?v13.68

?V3 cpt:variableDomain ?vd23. ?vd23 cpt:value ?v23.69

{ SELECT DISTINCT ?C70

(GROUP_CONCAT(CONCAT(STR(?attr),STR(?value));separator ="")71

AS ?Concatenated) WHERE{72

?C cpt:contains ?c.73

?c cpt:attribute ?attr; cpt:value ?value.74

}75

GROUP BY ?C76

}77

FILTER(CONTAINS(?outcome_D,?Concatenated)).78

FILTER(!(?v13=?v23)&& CONTAINS(?outcome_D,STR(?v13)) &&79

CONTAINS(?outcome_d,STR(?v23))).80

}81

}82

}83

{ SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over {84

{ SELECT ?V85

(CONCAT(STR(?attrPrefer),STR(?valuePrefer)) AS ?Prefer)86

(CONCAT(STR(?attrPrefer),STR(?valueOver)) AS ?Over) WHERE87

{?preference cpt:prefer ?p;88

cpt:over ?o.89

FILTER NOT EXISTS{?preference cpt:given ?condition.}90

?V cpt:variableDomain ?p.91

?p cpt:attribute ?attrPrefer;92

221

cpt:value ?valuePrefer.93

?o cpt:value ?valueOver.94

}95

}96

UNION97

{ SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over WHERE98

{99

SELECT DISTINCT ?condition ?V100

(CONCAT(STR(?attrPrefer),STR(?valuePrefer)) AS ?Prefer)101

(CONCAT(STR(?attrPrefer),STR(?valueOver)) AS ?Over)102

(GROUP_CONCAT(CONCAT(STR(?attr),STR(?value));separator ="")103

AS ?ConcatenatedParent) WHERE104

{ ?preference cpt:given ?condition.105

?preference cpt:prefer ?p;106

cpt:over ?o.107

?V cpt:variableDomain ?p.108

?p cpt:attribute ?attrPrefer;109

cpt:value ?valuePrefer.110

?o cpt:value ?valueOver.111

?condition cpt:contains ?c.112

?c cpt:attribute ?attr;113

cpt:value ?value.114

}115

GROUP BY ?condition ?V ?attrPrefer ?valuePrefer ?valueOver116

}117

}118

}119

}120

BIND(IF(((!BOUND(?ConcatenatedParent) &&121

CONTAINS(?outcome_D,?Prefer)&&122

CONTAINS(?outcome_d,?Over))123

||124

(BOUND(?ConcatenatedParent) && ?ConcatenatedParent!="" &&125

CONTAINS(?outcome_D,?ConcatenatedParent) &&126

CONTAINS(?outcome_D,?Prefer) &&127

CONTAINS(?outcome_d,?Over))) ,1,0) AS ?counterBind)128

}129

GROUP BY ?outcome_D ?genre_D ?country_D ?subwork_D ?filmVersion_D ?outcome_d130

}131

FILTER(?counterV=?counterVundominated)132

}133

GROUP BY ?outcome_D ?genre_D ?country_D ?subwork_D ?filmVersion_D134

ORDER BY DESC (?counter)135

The algorithm takes as input the full version of Γ and computes a query able to

return a list of outcomes ordered according to ?counter. In particular, the query

222

returns for each outcome, a numerical score representing its position in the ranking

imposed by�Γ.

For a better clarification, the reasoning procedure under the comparison between

the pair (α,β) is summarized in the following:

1. The query computes the set Θ
′
(α,β) by considering the variables X in the set

∆(α,β) for which there do not exist: (i) a variable X
′ ∈ ∆(α,β) linked to X

by property cpt:moreImportant-Than and (ii) a variable X
′′ ∈ ∆(α,β)

which is cpt:conditionallyMoreImportant-Than than X under a

condition extended by α .

2. It then counts the number of variables X from the set Θ
′
(α,β) that let to state

α(X)�X
α β (X) and compares it to the cardinality of Θ

′
(α,β);

3. If the numerical values coincide, which means that for each variable X in

Θ
′
(α,β), α(X)�X

α β (X) holds, then the query concludes that α �Γ β .

In order to get all the information needed to check α(X)�X
α β (X) from the full

version of Γ, OrderingQuery embeds Query 1 and Query 2 reported in the follow-

ing. They return a set of quadruples 〈?V, ?ConcatenatedParent, ?Prefer,

?Over〉, with ?ConcatenatedParent optionally not instantiated, able to lo-

cally order α over β with respect to variable ?V.

Given a variable Xi ∈ V with dom(Xi) = {xi1,xi2, ...,xin}, we use the following

notation relative to the corresponding instances cpt :xi1, cpt :xi2,..., cpt :xin of

the class cpt :Value:

• value(xi j) is the object of the triple cpt :xij cpt :value object;

• attribute(xi j) denotes the object of the triple cpt :xij cpt :attribute object;

• we call representative string of xi j the concatenation of the two strings rep-

resented by attribute(xi j) and value(xi j) respectively. The combination of

attribute(xi j) and value(xi j) is used to represent xi j, as they uniquely identify

a value in the domain of a variable. Indeed, in case we used only value(xi j),

ambiguous situations could arise when it is used in combination with different

attributes.

223

Finally, for an instance cpt :c of the class cp:Condi-tion, we call conditional

values of cpt :c all the objects of the triples cpt :c cpt :contains object.

Query 1

SELECT ?V1
(concat(str(?attrPrefer),str(?valuePrefer)) as ?Prefer)2
(concat(str(?attrPrefer),str(?valueOver)) as ?Over)3
WHERE4
{5
?preference cpt:prefer ?p;6
cpt:over ?o.7
FILTER NOT EXISTS {?preference cpt:given ?condition.}8
?V cpt:variableDomain ?p.9
?p cpt:attribute ?attrPrefer;10
cpt:value ?valuePrefer.11
?o cpt:value ?valueOver.12
}13

Query 1 processes elements ϕ of Γ with uϕ = >. Within the query, they are rep-

resented by the variable ?preference. The selection is made possible by the

FILTER NOT EXISTS on the pattern {?preference cpt:given ?con-

dition.}
(line 8). Considering that the objects of properties cpt:prefer and cpt:over

must be distinct values of the same variable, the query firstly extracts the variable

that the preference acts on, i.e., ?V (line 1 and line 9). Then, it computes the rep-

resentative strings, ?Prefer and ?Over (lines 2–3) for the objects ?p and ?o of

the two triples involving cpt:prefer and cpt:over (lines 10–12).

Query 2

SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over WHERE{1
SELECT ?condition ?V2
(GROUP CONCAT(concat(str(?attr),str(?value)); separator="")3
as ?ConcatenatedParent)4
(concat(str(?attrPrefer),str(?valuePrefer)) as ?Prefer)5
(concat(str(?attrPrefer),str(?valueOver)) as ?Over)6
WHERE7
{8
?preference cpt:given ?condition;9
cpt:prefer ?p;10
cpt:over ?o.11
?V cpt:variableDomain ?p.12
?p cpt:attribute ?attrPrefer;13
cpt:value ?valuePrefer.14
?o cpt:value ?valueOver.15
?condition cpt:contains ?c.16

224

?c cpt:attribute ?attr;17
cpt:value ?value.18
}19
GROUP BY ?condition ?V ?attrPrefer ?valuePrefer ?valueOver20
}21

Differently from the previous query, Query 2 is used to process statements ϕ be-

longing to Γ with uϕ 6= >. The selection is made via the pattern {?preference
cpt:given ?condition.} (line 9). Let us consider first the nested subquery

in lines 2–20. For each instance of class Preference, such query extracts the

variable ?V that the preference is about (lines 2 and 12) and considers the cpt:given

condition ?condition (line 9), extracting its corresponding conditional values

(line 16). The representative strings of such conditional values are then computed

(lines 17–18) and concatenated at lines 3–4 in ?ConcatenatedParent, group-

ing by condition. The variables ?Prefer and ?Over are defined similarly to

Query 1. The external query is just used to restrict the result set to variables ?V,

?ConcatenatedParent, ?Prefer, ?Over.

Ordering the Items (Step 2). Given the information on outcomes returned by the

OrderingQuery at the previous step, on both values of variables and position in the

ranking, an external RDF dataset, e.g., DBpedia, may be queried, asking for items

satisfying the hard constraints (R(?item)) imposed by the user and such that, when

limiting the attention on variables in V , they match the description of an outcome.

Items are then ordered according to the ranking over corresponding outcomes.

We are well aware that the one we propose is just a possible rewriting of a CP-

theory in a SPARQL query and other encodings are possible, ever more efficient

from a computational perspective. Moreover, we may see that the performance of

the overall approach decreases when the size of variable domains grows and, in

its current version, the approach is not able to handle continuous domains as for

distance and time. Nevertheless, we believe that the proposed approach is a good

starting point to reason with preferences in a pure Linked Data environment, as it is

a straight implementation of theoretical results coming form previous works [395].

225

8.6.1 Instantiation of the framework

The procedure to retrieve items ordered according to user’s preferences is made up

of four phases:

• the loading of user’s preferences;

• an insert to add information about outcomes;

• the execution of a federated query;

• the (optional) dropping of user’s preferences.

First of all, the user’s preferences file representing the full version of Γ is loaded

in the SPARQL server through a LOAD operation and becomes the user’s graph of

preferences Guser.

Example 8 (Book cont’d)

If the path to the RDF file encoding Giorgio’s preferences (see Listing 8.1) is gen-

erally denoted as path to ttl file, the load operation is executed as follows:

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

LOAD path to ttl file INTO GRAPH g:Giorgio preferences

�

The OrderingQuery able to order the outcomes according to �Γ is then ex-

ecuted. The information returned by the OrderingQuery is used to integrate the

graph of user preferences Guser with additional triples on outcomes. Specifically,

we add information about the score of an outcome and its description. Hence, the

following triples are defined for each outcome:

• a triple satisfying the pattern

?URIOutcome cpt:hasScore ?score

226

• a set of triples instantiating the pattern

?URIOutcome cpt:hasValueForX

?ValueForX

for every variable X of Γ.

Such information are added to Guser through an INSERT query.

Example 9 (Book cont’d)

For the CP-theory ΓC−LG−SW−F with Giorgio’s preferences, the INSERT operation

would behave as follows:

prefix cpt:<http://sisinflab.poliba.it/semanticweb/

lod/ontologies/cpt full.owl#>

prefix dbo:<http://dbpedia.org/ontology/>

prefix db:<http://dbpedia.org/resource/>

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

INSERT { GRAPH g:Giorgio preferences

{?URIOutcome cpt:hasScore ?counter .

?URIOutcome cpt:hasValueForCountry ?country_D;

cpt:hasValueForLiteraryGenre ?genre_D;

cpt:hasValueForSubsequentWork ?subwork_D;

cpt:hasValueForFilmVersion ?filmVersion_D.

}
}
where { GRAPH g:Giorgio preferences {

OrderingQuery

}
}

Here, OrderingQuery denotes the ordering query over outcomes returned by Algo-

rithm 2 in 8.5. The output of Algorithm 2 applied to Listing 8.1 is available in 8.6.

�

The next step is the execution of a federated query, composed by two sub-

queries. The first subquery retrieves the items satisfying the requirements imposed

by the user, i.e., R(?item), and for each item it looks for the values of variables in

Γ. The retrieval of values grounds on the VALUES construct for variables that are

cpt:bound true and on the combination of BIND, IF and EXISTS otherwise.

227

The second subquery on the user’s preferences graph Guser, retrieving for each out-

come its score and the variables values. A matching between items and outcomes

is hence performed through such values and the items are finally ordered according

to the position in the ranking of the relative outcome.

The main reason behind the federation of two (or more) endpoints is that: while

the graph containing the RDF version of the user’s preferences is encoded in the

corresponding document (available at Preference URI in Fig. 8.1), all the infor-

mation about the items that we want to retrieve and rank is encoded in a separate

dataset, e.g., DBpedia. The main assumption here is that the user’s preferences

are expressed with respect to a reference dataset/vocabulary, which can queried via

a SPARQL endpoint.

Example 10 (Book cont’d)

Suppose that Giorgio is interested in the top-5 list of books matching his hard con-

straints (see Example 7), ordered according to his preferences encoded in the CP-

theory ΓC−LG−SW−F of Table 2.1. The federated query to carry out the searching

task would be as follows:

prefix cpt:<http://sisinflab.poliba.it/semanticweb/

lod/ontologies/cpt full.owl#>

prefix dbo:<http://dbpedia.org/ontology/>

prefix db:<http://dbpedia.org/resource/>

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

SELECT ?item_D ?score WHERE {
{SERVICE <http://dbpedia.org/sparql> {
SELECT DISTINCT ?item_D ?genre_D ?country_D

?subwork_D?filmVersion_D WHERE{
?item_D a dbo:Book;

dbo:numberOfPages ?page_D.

FILTER(?page_D>300).

?item_D dbo:literaryGenre ?genre_D;

dbo:country ?country_D.

VALUES (?genre_D) {
(db:Crime_fiction)

(db:Autobiographical_novel)

}
VALUES (?country_D) {
(db:France)

(db:United_Kingdom)

}
BIND(IF(EXISTS{?item_D dbo:subsequentWork ?object},
cpt:subsequentWorkYes, cpt:subsequentWorkNo

AS ?subwork_D).

BIND(IF(EXISTS{?item_D dbo:filmVersion ?object},
cpt:filmVersionYes,cpt:filmVersionNo)

AS ?filmVersion_D).

228

}
}
}
{graph g:Giorgio preferences {
SELECT ?score ?genre_D ?country_D ?subwork_D

?filmVersion_D WHERE{
?s cpt:hasScore ?score;

cpt:hasValueForCountry ?country_D;

cpt:hasValueForLiteraryGenre ?genre_D;

cpt:hasValueForSubsequentWork ?subwork_D;

cpt:hasValueForFilmVersion ?filmVersion_D.

}
}
}
}
ORDER BY DESC(?score)

LIMIT 5

�

Finally, the graph with the user’s preferences Guser can be optionally eliminated

with a DROP operation.

Please note that all SPARQL queries are executed in a simple entailment be-

tween RDF graphs on the full version of Γ as well as on the external dataset for

the federated query. Hence, all the queries are executed under the RDF Entailment

Regime of SPARQL.

Example 11 (Book cont’d)

The graph related to Giorgio’s preferences may be dropped as follows:

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

DROP GRAPH g:Giorgio preferences

�

8.7 Application

We now describe a tool8 implementing the framework described in previous sec-

tions and aimed at supporting the end-user in retrieving a list of semantic resources
8The tool is available at http://cptheorysparql.cloudapp.net:10002/

229

Figure 8.4: Preferences Insertion.

ordered according to her preferences formulated under the CP-theory formalism.

The tool just asks for preferential statements formulated under the CP-theory for-

malism, i.e., “given uϕ , xϕ is strictly preferred to x′ϕ , all else being equal, but

irrespective of the values of variables in Wϕ”. With reference to the ontologies

introduced in Section 8.4, this means that for this preliminary step of preference

definition, the interested user only has to deal with classes and properties of the lite

ontology of Figure 8.2. In particular, after the selection of the domain of interest,

the user inserts her preferences as depicted in Figure 8.4. The interface manages

both instances of variables cpt:bound true and cpt:bound false, as in-

troduced in Section 8.4. In the former case, the variable which the preference is

“about” and the couple of values separated by the word “over” must be introduced;

in the latter case, the user has to specify whether the presence or the absence of

a variable is preferred. Optionally, she can insert a “Condition” under which the

above order holds and make explicit, in the “Irrespective” section, the set of vari-

ables for the (conditional) relative importance. She can insert as much preferences

as she wants with the “add Another Preference” button or complete the insertion

procedure with the “Insert Preferences” button.

When this second button is pressed, the tool takes care that the user has defined

the transitive closure of those preferential statements related to multiple values of a

variable. More specifically, if ϕ1 = uϕ1 : x > x̂ [Wϕ1] and ϕ2 = uϕ2 : x̂ > x̄ [Wϕ2] have

been inserted, with x, x̂, x̄ ∈ dom(X), and uϕ1 and uϕ2 do not contain two different

values of the same variable, then the rule ϕ3 = uϕ3 : x > x̄ [Wϕ3] is added, if missing

230

(where uϕ3 is the condition joining uϕ1 and uϕ2 , and Wϕ3 is the intersection of sets

Wϕ1 and Wϕ2). As an example in the movie domain, one may state that (ϕ1) the actor

Hugh Grant is preferred over Colin Firth for comedy films irrespective of the coun-

try of production and that (ϕ2) Colin Firth is preferred over Joaquin Phoenix for

movies directed by Woody Allen. In this case, the additional fact to add would be

that (ϕ3) Hugh Grant is preferred over Joaquin Phoenix for comedy movies directed

by Woody Allen ceteris paribus and with no relative importance specification, since

the intersection of sets Wϕ1 and Wϕ2 is empty. The tool then exploits the lite version

of Γ to generate its full version by managing the transitive closure of moreIm-

portantThan and conditionallyMoreImportantThan, as described in

Section 8.4 9.

The tool also helps the user to understand if her CP-theory is cuc-acyclic or not.

It returns an error message to the user if the CP-theory is not locally consistent or

the directed graph Juϕ
(Γ) on V , for any uϕ introduced by the user in her preferential

statements, is cyclic. Otherwise, it returns the encoding that can be used to query

the DBpedia dataset.

As an alternative to the manual insertion of preferences, the user can decide to

upload a file of preferences written according to the lite ontology, using the specific

top right button. The transitivity and cuc-acyclicity checking and the introduction

of the additional class and properties of the full ontology is performed in this case

as well.

At this point, a file with the full version of Γ is available and can be visualized

by pushing the button in Figure 8.5 (a) or exploited directly to formulate a query

against DBpedia through the button in Figure 8.5 (b).

More specifically, when the button of Figure 8.5 (b) is pressed, an interface as

the one depicted in Figure 8.6 appears. The interface mimics the query presented at

the beginning of Section 8.4.2. There, the users may insert their own requirements

R(?item) and specify the number k of results to use in the LIMIT modifier, which

9The rules that allow the system to manage the definition and the transitive closure of

both properties moreImportantThan and conditionallyMoreImportantThan have

been implemented in Prolog and are available at http://sisinflab.poliba.it/

semanticweb/lod/ontologies/rules.pl.

231

(a) (b)

Figure 8.5: The buttons to display the Full RDF File (a) or to formulate a preference-

based query (b).

Figure 8.6: The interface to build the query.

by default is set to 10. The URL displayed after the ORDER BY clause represents

the location of the RDF file containing the full version of Γ.

The query returns the top-k list of items belonging to the domain of interest

(e.g., books as in Figure 8.6), satisfying R(?item) and ordered according to user’s

preferences.

Example 12 (Book cont’d)

Introducing Giorgio’s preferences, contained in the CP-theory of Table 2.1, in the

proposed tool would produce the top-5 list of results shown in Table 8.1. The results

refer to the release of DBpedia 2015-0410 (also known as: 2015 A).

By looking in DBpedia, one can observe an exact matching with the expected

order shown in Example 4, according to the following triples:

@prefix db: <http://dbpedia.org/resource/>

@prefix dbo: <http://dbpedia.org/ontology/>

db:An_Uncertain_Place dbo:country db:France ;

dbo:literayGenre db:Crime_fiction .

db:Requiem_for_a_Fish dbo:country db:France ;

10http://wiki.dbpedia.org/dbpedia-data-set-2015-04

232

dbo:literayGenre db:Crime_fiction .

db:Blood_Red_Rivers dbo:country db:France ;

dbo:literayGenre db:Crime_fiction .

db:Tropic_of_Capricorn_(novel) dbo:country db:France ;

dbo:literayGenre

db:Autobiographical_novel .

db:Have_Mercy_on_Us_All dbo:country db:France ;

dbo:literayGenre db:Crime_fiction ;

dbo:subsequentWork

db:Wash_This_Blood_Clean_from_My_Hand.

�

8.8 Experiments

In order to asses the effectiveness of the presented approach and the implemented

tool, we set up two different experiments.

The first experiment consisted of 20 real users using the tool to express their

preferences. After the test, users were asked to fill up a questionnaire (reported in

Table 8.4). The dataset adopted consisted of a subset of DBpedia 2015-04 related

to the four popular domains of: Movies, Food, Music and Books. The statistics of

the dataset used for experiments are detailed in Table 8.2.

It is worth noticing that CP-statements can also be automatically extracted from

users data [244, 249, 226, 243]. Nevertheless, we set up the previous experiment

to have a hint on the average number of CP-statements ϕ needed to model a user

profile as well as on what is, from a user perspective, the most tricky version of ϕ

to represent among:

• > : xϕ > x̂ϕ [/0],

• uϕ : xϕ > x̂ϕ [/0],

• uϕ : xϕ > x̂ϕ [Wϕ].

The second experiment consisted of simulating 168 users using the platform

and expressing an overall number of 6720 preferences and 6720 queries to retrieve

the resources ranked by taking into their preferences. The aim of this experiment

was that of evaluating the response time of the overall system in retrieving a list of

resources based on a set of user preferences.

233

8.8.1 Test on Real Users

In order to test the capability of a user to exploit the platform and even to test if

human users unaware of CP-theories were able to express their preferences, we se-

lected 20 users that did not know anything about CP-theories and, after a 5 minutes

tutorial, we asked them to express their preferences by using our tool. We asked

them to insert as many preferences as they wanted for each domain on the platform,

and we then asked them to fill up a post-experience questionnaire in order to acquire

some feedback about the experience. The motivation of this experiment is twofold:

the first information that we wanted to collect was the number of preferences that

a user is prone to explicitely express. The result for this evaluation is shown in

Table 8.3. The users provided an overall number of 322 preferences. The average

numbers per user are quite similar among the different domains (between 4 and 6)

with a little higher propensity to express preferences over books w.r.t. songs. The

similar average values, and the similar standard deviations, suggest that there exists

a commonality in the number of expressed preferences over a specific domain.

The second relevant information that we wanted to collect is how much the

CP-theories expressiveness may fit a “natural” way of expressing preferences by a

human being. To this aim, we submitted a small questionnaire with 10 questions

whose relative answers in aggregate form are shown in Table 8.4 and Fig. 8.7. All

the questions but Q.2 needed to express a value in a 5-star rating scale, with 1 being

the worst answer and 5 the best one.

Users felt that representing preferences was not a trivial operation (3.2 corre-

sponds to the lowest value of the overall questionnaire), but this perceived difficulty

is clearly dependent on the type of preference (it is worth to notice that for every

specific kind of preference, the score is higher than the overall score).

Thanks to the survey, we can list in an increasing order of difficulty the different

kinds of preferences:

• “About a property, I prefer a Value over another Value” corresponding to

> : xϕ > x̂ϕ [/0].

• “Given a condition, I prefer a Value over another Value” corresponding to

234

uϕ : xϕ > x̂ϕ [/0].

• “About a property, I prefer a Value over another Value irrespectively to a

property” corresponding to uϕ : xϕ > x̂ϕ [Wϕ].

Moreover, if we look at the pie chart in Fig. 8.7, it emerges that the most difficult

part of the process was to detect the properties (variables V) on which the prefer-

ences should be expressed. Another information that we wanted to collect was if the

possible difficulty in expressing preferences is stable or it progressively vanishes as

the number of expressed preferences increases. Questions 7, 8 and 9 show that the

first preference was quite hard to express, but, as the experience goes on, it becomes

much easier reaching an average value of 4.1.

The last relevant information that we wanted to collect is how much the ex-

pressiveness of CP-theories can correspond to a perceived “natural” way to express

preferences. Even here, the result is interesting, because CP-theories are perceived

as a quite good way of expressing preferences with a high value of 3.8.

Figure 8.7: Pie chart depicting the results of the second question of the survey.

8.8.2 Test on Simulated Users

In order to closely simulate the behavior of a real user, we designed a tool able to

perform the classical operations of expressing a preference and asking the system

235

for an ordered list of relevant resources. For each domain of interest, the simulated

users randomly extract (with a uniform distribution) a property that they might be

interested in, and then randomly select the other components of the preference (e.g.,

in case of a simple preference,> : x> x̂[/0], they select either the more liked resource

x and the less liked one x̂). The composed preference is then sent to the server to

be processed and stored. The system checks if the preference produced a cycle,

eventually warning the user (in case of a cycle, a new preference is produced).

Once the preference is correctly inserted, the simulated user performs a query to the

system to retrieve an ordered list of the 100 most relevant resources. The system

continues, inserting a new preference for the same domain, and asking the system

for a new list. The process ends when 10 preferences are inserted for each domain

and the 10 related queries accomplished. Based on the previous experiment, we

considered 10 as a representative number of preferences per user. Fig. 8.8 shows

the average execution time for an increasing number of preferences related to the

simulated users.11 The SPARQL engine adopted for the experimental evaluation is

Jena Fuseki v. 2.3.1 running on a Linux server (kernel v. 4.4.0-28-generic) with an

Intel Xeon @ 2.30GHz CPU and 8 GB RAM, while the local version of DBpedia

had been loaded in a Virtuoso Server (v. 07.20.3212), running on a Linux server

(kernel v. 4.2.0-23-generic) with an Intel Xeon @ 2.40 GHz CPU and 56 GB RAM.

The results show that queries based on a number of preferences lower than six

take approximately less than one second to return results to the user. This is even

more interesting if we consider results of the previous experiments, where we saw

that users tend to express an average number of preferences between 4 and 6.

8.9 Conclusion and future work

In this study, we have investigated how user preferences can be taken into account

while querying Linked Open Data datasets. Having realized that the Pareto-

11For those interested in a more fine-grained view of the data, a report of the execution times

is publicly available at https://github.com/sisinflab/CP-theories-SPARQL/

blob/master/evaluation/evaluationResults.tsv

236

Figure 8.8: Average execution time for increasing number of preferences (1 to 10)

in the four domains of: Song, Book, Film and Food.

optimal set identification is not enough, we moved beyond it, proposing an approach

to retrieve a ranked list of semantic resources, ordered according to a user’s soft

constraints. We focused on qualitative preferences, which are closer to how a user

makes decisions, especially in a multi-attribute context, and integrated the partial

order implied by a qualitative approach into a top-k scenario, that is, returning to

the user, who is formulating qualitative preferential statements, a ranked list of re-

sources, optionally limited in its size, ordered according to her preferences. Among

qualitative approaches to preference reasoning, we relied on CP-theories, a general

and well-known formalism based on the ceteris paribus semantics. We proposed

an ontological vocabulary to model CP-theories by means of RDF statements under

the ceteris paribus semantics. Then, we presented an algorithm able to build a stan-

dard SPARQL 1.1 query encoding the CP-theory and able to retrieve a ranked set of

resources satisfying the corresponding preferential constraints. To our knowledge,

this is the first attempt to encode the semantics of a CP-theory into a SPARQL query

and, along with [320], the first approach that lets SPARQL to retrieve a ranked list

of resources ordered according to a user’s preferences.

We intend the proposed approach as a starting point for many future directions

to reason with preferences in a pure Linked Data setting. More efficient encodings

237

for the proposed queries could be investigated, able to mitigate some performance

problems, related, for example, to the increase in the size of variables domains.

Moreover, in its current version, the algorithm first computes the complete partial

order of the outcomes, and then it matches them with items satisfying the users’

hard requirements. As the computation of the partial order is computationally ex-

pensive, an improvement could surely be to compute and order only those outcomes

matching the users’ requirements, thus reducing the number of comparisons needed

to return query results to the user. As a future direction of our research, we are

also working on approaches proposed for automated CP-nets and CP-theories elici-

tation [121, 161]. Another interesting topic for future research is to explore how our

present work can be extended by integrating approaches to preference-based query

answering over graph databases, such as the ones in [149, 159, 146], as well as how

to deal with variables having continuous domains.

238

1: procedure GENERATEORDERINGQUERYFORCP-THEORIES(Guser)

2: forall Xi ∈V do
Outcome D values+=?Xi D

end
3: OrderingQuery = SELECT (URI(?outcome D) AS ?URIOutcome)

Outcome D values (COUNT(DISTINCT ?outcome d) AS ?counter)

WHERE{ ;

4: OrderingQuery += {SELECT DISTINCT ?outcome D ?outcome d

Outcome D values (count(DISTINCT ?V) AS ?counterVundominated)

(sum((?counterBind)) AS ?counterV) WHERE{ ;

5: OrderingQuery += {SELECT DISTINCT ?outcome D ?outcome d ?V

Outcome D values WHERE{ ;

for y ∈ {D, d} do
forall Xi ∈V do

6: OrderingQuery += VALUES(?Xi y) {(value(xi1)) (value(xi2))} ;
end

7: OrderingQuery += BIND(CONCAT(STR(; for i = 1, . . . , |W |−1 do
8: OrderingQuery += attribute(Xi)), STR(?Xi y), ;

end
9: OrderingQuery += STR(attribute(X|W |)), STR(?X|W | y)) AS

?outcome y). ;
end

10: OrderingQuery += FILTER(?outcome D!=?outcome d). ;

11: OrderingQuery += ?V a cpt:Variable.

?V cpt:variableDomain ?variable1.

?variable1 cpt:value ?value1.

?V cpt:variableDomain ?variable2.

?variable2 cpt:value ?value2.

FILTER (!(?value1=?value2)&&

contains(?outcome D,str(?value1))&&

contains(?outcome d,str(?value2))). ;

12: OrderingQuery += FILTER NOT EXISTS{ ?V2 cpt:moreImportantThan

?V.

?V2 cpt:variableDomain ?vd1.

?vd1 cpt:value ?v1.

?V2 cpt:variableDomain ?vd2.

?vd2 cpt:value ?v2.

FILTER((!(?v1=?v2))&& contains(?outcome D,str(?v1)) &&

contains(?outcome d,str(?v2))). } ;
Algorithm 2: Algorithm

239

13: OrderingQuery += FILTER NOT EXISTS{ ?V3
cpt:conditionallyMoreImportantThan

?instanceOfRelativeImportance.

?instanceOfRelativeImportance cpt:hasCondition ?C.

?instanceOfRelativeImportance cpt:hasLessImportantVariable

?V.

?V3 cpt:variableDomain ?vd13. ?vd13 cpt:value ?v13.

?V3 cpt:variableDomain ?vd23. ?vd23 cpt:value ?v23.

{Select distinct ?C

(GROUP CONCAT(CONCAT(str(?attr),str(?value)); separator ="") as

?Concatenated)

where{ ?C cpt:contains ?c.

?c cpt:attribute ?attr; cpt:value ?value. }
GROUP BY ?C }

FILTER(CONTAINS(?outcome D,?Concatenated)).

FILTER(!(?v13=?v23)&& contains(?outcome D,str(?v13)) &&

contains(?outcome d,str(?v23))). } }} ;

14: OrderingQuery += {SELECT DISTINCT ?V ?ConcatenatedParent

?Prefer ?Over WHERE{ {Query 1} UNION {Query 2} }} ;

15: OrderingQuery += BIND(IF(((!BOUND(?ConcatenatedParent) &&

contains(?outcome D,?Prefer)&& contains(?outcome d,?Over))

|| (BOUND(?ConcatenatedParent) && ?ConcatenatedParent!=""

&& contains(?outcome D,?ConcatenatedParent) &&

contains(?outcome D,?Prefer) && contains(?outcome d,?Over)))

,1,0) as ?counterBind) ;

16: OrderingQuery += } GROUP BY ?outcome D Outcome D values

?outcome d } ;

17: OrderingQuery += FILTER(?counterV=?counterVundominated)} ;

18: OrderingQuery += GROUP BY ?outcome D Outcome D values ;

19: OrderingQuery += ORDER BY DESC (?counter) ;

20: return OrderingQuery

240

?item D ?score

db:An Uncertain Place 15

db:Requiem for a Fish 15

db:Blood Red Rivers 15

db:Tropic of Capricorn (novel) 13

db:Have Mercy on Us All 9

Table 8.1: The top-5 list of items retrieved for preferences in the CP-theory of Table

2.1.

Classes Instances Properties 1 hop resources
dbo:Book 31172 36 12964

dbo:Film 90063 31 82922

dbo:Food 6003 21 2367

dbo:Song 7195 27 2220

Total 134433 115 100473

Table 8.2: Dataset Statistics

Total Min Max Mean Std Dev
dbo:Book 109 1 11 5.7368 2.1562

dbo:Film 78 1 17 4.5882 3.8900

dbo:Food 75 1 12 4.1667 2.6844

dbo:Song 60 1 12 3.5294 2.6485

Table 8.3: User Experiments Statistics

241

Q.N. Questions Min Max Mean St Dev
Q.1 How easy has been to represent your preferences? 1 5 3.1667 1.1100

Q.2 Which among these did you consider the hardest? See Fig. 8.7

Q.3 How easy is to represent a preference like

“About a property I prefer a Value over another Value”?

1 5 4.1667 1.3048

Q.4 How easy is to represent a preference like

“I prefer a resource that has a certain property”?

2 5 3.5556 1.0966

Q.5 How easy is to represent a preference like

“Given a condition I prefer a Value over another Value”?

2 5 3.8889 0.9852

Q.6 How easy is to represent a preference like

“About a property I prefer a Value over another Value irrespectively to a property”?

2 5 3.6111 1.2005

Q.7 How easy was to represent the first preference? 1 5 3.2222 1.3492

Q.8 After the first preference how easy was to represent the next two ones? 2 5 3.9444 0.9852

Q.9 After the first three preferences how easy was to represent the next ones? 1 5 4.1111 1.2783

Q.10 How much this way of expressing preferences is similar to your own? 1 5 3.7778 1.1448

Table 8.4: User Survey Statistics

242

Chapter 9

Hybrid Relevance: How to enhance
traditional relevance weighting
schemes

9.1 Introduction

In the last years, many recommendation approaches have been proposed that take

advantage of side information to enhance the performance of latent factor mod-

els. Side information can refer to items as well as users [390] and can either be

structured [358] or semi-structured [419, 40, 97]. Interestingly, in [418] the authors

argue about a new generation of knowledge-aware recommendation engines able

to exploit information encoded in knowledge graphs (KG) to produce meaningful

recommendations: “For example, with knowledge graph about movies, actors, and

directors, the system can explain to the user a movie is recommended because he

has watched many movies starred by an actor”. Hence, the use of side information

could not only be used to improve the recommendations but also the whole user

243

experience, by providing explanations or some kind of reasoning from the system.

Nonetheless, in recommendation scenarios where user interactions with the sys-

tem is of key importance, we cannot deal only on content/context-aware data, but

we do need to take into account also collaborative one. The point here is: how to

enhance, in a principled way, knowledge about the relevance of each attribute by

also encoding collaborative information?

In this research line, we tackle this problem by drawing conceptual and method-

ological techniques from Information Retrieval (IR) and Recommender Systems

(RS) in our collaborative-aware relevance framework CRel-FM. We start from a

generic relevance measure in IR (such as TF-IDF [35] or BM25 [201, 202, 319])

to formally represent the importance or informativeness of the attributes extracted

from user and item descriptions [35]. Then, we make use of Bayesian Personal-

ized Ranking (BPR) optimization procedure [312] to combine the relevance mea-

surements obtained before with the collaborative patterns extracted from the user-

item interactions. This augmented representation of items (or users) attributes can

be eventually used to compute better item-item (or user-user) similarity values ex-

ploited in recommendation engines where the main goal is to present the best possi-

ble (most interesting) items to the user as a top-N ranking (as opposed to other

works where the task is to predict the rating of a user towards an item). We believe

that a better understanding of this hybrid representation of attributes relevance will

not only improve the quality of recommendations returned to the user, but it will

also open up many other possibilities, such as generating better explanations for

users or building better suited item and user (latent) representations, by integrating

more complex relevance measures or even other optimization techniques tailored to

particular recommendation tasks.

More specifically, we address the following main research question: (RQ1) In

personalized scenarios, whenever we have content-based and collaborative informa-

tion, how should we exploit them together in a principled way to measure the rele-

vance of an attribute? If a positive answer is found, we then analyze the following:

(RQ2) May collaborative information improve the quality of attributes’ relevance

in terms of accuracy, diversity, and novelty of results in a recommendation setting?

244

The main contributions thus include:

• A principled approach to integrate content and collaborative information by

exploiting the relevance of an attribute.

• Extensive experiments on three real-world datasets using state-of-the-art rec-

ommendation algorithms.

• Positive results in terms of accuracy, diversity, and novelty for our approach

based on hybrid relevance in a majority of the tested scenarios, evidencing its

generalization capabilities and potential to capture user and item preferences

in different domains.

The reminder of this chapter is structured as follows: in the next section we in-

troduce the proposed framework CRel-FM for collaborative-aware computation of

attributes relevance. Then, in Section 9.3 we describe the experimental setting to

prove the effectiveness of CRel-FM and discuss the obtained results. We continue

with a description of the main related works in Section 9.4. Conclusion and future

work close the chapter.

9.2 CRel-FM: Collaborative-aware relevance for rec-

ommendation

We present here CRel-FM, a collaborative-aware relevance framework particularly

well-suited for recommendation scenarios. It mainly bases on Factorization Ma-

chines (FM) and exploits content-based relevance measures that can be plugged-in

the overall framework.

In the following, we will consider a typical recommendation setting where we

have two separate sets of users u ∈U and items i ∈ I such that U ∩ I = /0 and the

corresponding user-item interaction matrix containing all the implicit ratings (i.e.,

interactions) users have given to items. In case we have access to some form of

items description, such as keywords, tags, attributes, etc., as well as users’ one, for

recommendation purposes, we usually exploit them to compute similarity values

245

through a relevance measure ρ . For instance, in case items are endowed with a

textual representation we may use ρ = T F-IDF and associate a relevance value ω

to each keyword in the text. Each item i has then a vector-based representation

iT F-IDF = (ωT F-IDF
0 , . . . ,ωT F-IDF

|A|)

with A (for attributes) being the set of all possible keywords. In an analogous way,

for the computation of uT F-IDF we may consider all the items enjoyed by u and,

even here, compute the ω values associated to each keyword.

This can be further generalized. Indeed, given a relevance measure ρ and a set

of attributes A, we can always represent an item as

iρ = (ω
ρ

0 , . . . ,ω
ρ

|A|)

The same can be done with uρ . In case we want to compute an attribute-based

similarity value between items or users, both uρ and iρ are then the perfect candi-

dates.

In recommendation scenarios, the adoption of factorization models has shown

its effectiveness since its initial introduction [310]. In fact, thanks to their sub-

tle modeling of user-item interactions, such models are very precise and effective

even in very sparse settings. FM have been proposed as a unifying framework to

represent all the different factorization models in a general and theoretically sound

framework. Without loss of generality, in the following we describe our proposal

of CRel-FM by looking at FM of order 2 for a recommendation problem involving

only implicit ratings. The model can be easily extended to a more expressive rep-

resentation by taking into account, e.g., demographic and social information [18],

multi-criteria [15], and even relations between contexts [424].

For each pair of user u and item i we build the binary vector xui ∈{0,1}1×(|U |+|I|)

representing the interaction between u and i in the original user-item rating matrix.

In this modeling, xui contains only two 1 values corresponding to u and i while all

the other values are set to 0. Based on all possible vectors xui we then build the

matrix X ∈ {0,1}(|U |×|I|)×(|U |+|I|) containing as rows all possible xui we can build

starting from the original U-I matrix as shown in Fig. 9.1.

246

Figure 9.1: A visual representation of the interaction matrix X.

ŷ(xui) = w0 +
|U |+|I|

∑
j=1

w j · x j +
|U |+|I|

∑
j=1

|U |+|I|

∑
p= j+1

x j · xp ·
k

∑
f=1

v(j, f) · v(p, f) (9.1)

The FM score ŷ(xui) for each vector xui is defined as in Equation (9.1), where

the parameters to be learned are, respectively: w0 representing the global bias; w j

giving the importance to every single x j; and the pair v(j, f) and v(p, f) in ∑
k
f=1 v(j, f) ·

v(p, f) measuring the strength of the interaction between each pair of variables: x j

and xp. The summation ∑
k
f=1 v(j, f) · v(p, f) represents the dot product between two

vectors: v j and vp with a size equal to k. Hence, v j represents a latent representation

of a user, vp that of an item within the same latent space, and their interaction is eval-

uated through their dot product1. The number of latent factors is represented by the

hyper-parameter k whose value is usually selected at design time. In order to com-

pactly represent all the vectors v j and vp we introduce the matrix V ∈ R(|U |+|I|)×k

having v j in the first |U | rows and vp in the last |I| ones. For training purposes, V

moves from an initial value V0 to the final V̂ where the values in V0 can be initialized

following different strategies [180]. After the training, the first |U | rows of V̂ repre-

sent a latent representation of each user u with respect to the k latent features while

the last |I| ones are the latent representation of all the items i in the catalog. Such

vectors can be eventually used to compute the similarity between items or users

which is usually exploited in recommendation algorithms. We may say that each

value in V̂ represents a collaborative-based relevance value of the corresponding la-

tent attributes of u (first |U | rows) or i (last |I| rows). If we look at the mathematical
1In our case, we have v(j, f) ·v(p, f) 6= 0 only when x j = 1 and xp = 1 at the same time. Hence, the

final value represents the strength in the interaction between the corresponding u and i.

247

formulation of FM, we see it is able to encode only collaborative information thus

being completely agnostic to the nature of catalog items the user interacts with. As

a consequence, the same holds for the final similarity values between users or items.

The main idea behind CRel-FM is to combine the attribute-based relevance rep-

resentation of uρ and iρ with the collaborative one computed by FM in a principled

and effective way. As a first step, given a relevance measure ρ and a set of attributes

A, for each i ∈ I and u ∈U we compute the corresponding vectors iρ and uρ . Then,

we build the matrix W ∈R(|U |+|I|)×|A| where the first |U | rows correspond to uρ vec-

tors and the last |I| rows to iρ vectors. Eventually, we set k = |W | in Equation (9.1)

and initialize the corresponding matrix V with V0 =W . In other words, we impose

the number of latent factors equal to the number of all the attributes A and we then

inject the relevance values ω for both u and i within the factorization model. As a

consequence, at the end of model training we have the matrix V̂ ∈R(|U |+|I|)×|A| con-

taining a representation of the original content-based values of uρ and iρ enhanced

with collaborative information coming from the FM modeling.

Our intuition is that these collaborative-aware relevance values are by far more

representative of users and items with respect to the pure collaborative latent rapre-

sentation in the original formulation of FM or the pure content-based representation

contained in uρ and iρ . As an example, in Table 9.1 we refer to some attributes

extracted from the knowledge graph DBpedia2 and show an example of values

obtained after the training (in the column CRel-FM) together with the original T F-

IDF ones [27, ?] computed for a movie from the Yahoo!Movies3 dataset. The

attributes considered here are the categories associated to a movie coming from the

corresponding Wikipedia ones. It is interesting to compare the attributes ranking

coming from the values of T F-IDF and the one coming from CRel-FM and to see

how this latter looks more meaningful than former one.

2http://dbpedia.org
3http://research.yahoo.com/Academic_Relations

248

CRel-FM TF-IDF Attribute

1.3669 0.2584 Space adventure films

1.1252 0.2730 Films set in the future

0.9133 0.2355 American science fiction action films

0.8485 0.3190 1980s science fiction films

0.6529 0.1549 Paramount Pictures films

0.5989 0.3468 Midlife crisis films

0.5940 0.1797 American sequel films

0.5862 0.2661 Film scores by James Horner

0.5634 0.2502 Films shot in San Francisco

0.5583 0.1999 1980s action thriller films

CRel-FM TF-IDF Attribute

1.2434 0.2858 Space adventure films

1.0355 0.3020 Films set in the future

0.8956 0.2605 American science fiction action films

0.8951 0.3451 Android (robot) films

0.7338 0.3105 Time travel films

0.6665 0.2701 Film scores by Jerry Goldsmith

0.6581 0.2205 1990s action films

0.6561 0.2279 1990s science fiction films

0.6118 0.1988 American sequel films

0.5649 0.1713 Paramount Pictures films

Table 9.1: Top-10 features computed by CRel-FM for the movies "Star Trek

II - The Wrath of Khan" and "Star Trek - First Contact".

9.3 Experimental Evaluation

In this section, we aim at assessing if there is empirical evidence on the usefulness

of adopting a hybrid relevance measure to feed recommender systems.

Datasets. To provide an answer to research questions posed in Section 9.1, we

have evaluated the performance of our method on three well-known datasets for

recommender systems belonging to different domains. The Last.fm dataset [84]

corresponds to user-artist plays on Last.fm online music system released during

HETRec 20114 Workshop. It contains social networking, tagging, and music artists

listening information from a set of 2K users. LibraryThing represents books’

ratings collected in the LibraryThing website5 community. It contains social

networking, tagging and rating information on a [1..10] scale. Yahoo!Movies

(Yahoo! Webscope dataset ydata-ymovies-user-movie-ratings-content-v1 0)6 con-

tains movies ratings generated on Yahoo! Movies up to November 2003. It

provides content, demographic and ratings information on a [1..5] scale, and map-

pings to MovieLens and EachMovie datasets. Feature Selection. In order to

get attributes related to items in the datasets we exploited the freely available map-

ping7 that links each item to an entity in the DBpedia knowledge graph. Our

4http://ir.ii.uam.es/hetrec2011/
5https://www.librarything.com/
6http://research.yahoo.com/Academic_Relations
7https://github.com/sisinflab/LinkedDatasets

249

assumption is that the usage of such well-curated features does not introduce any

informative bias (both positive or negative) in the values computed by CRel-FM

and the eventual recommendations. Following [277], and [299] we filtered out some

irrelevant features with a unique threshold for missing values (corresponding to tm

[277], and p [299]). Datasets statistics are shown in Table 9.2.

Dataset Threshold #Users #Items #Transactions #Features Sparsity

Last FM 99.86 1,375 7,312 46,982 1,315 99.53%

LibraryThing 99.91 7,221 10,605 313,069 1,169 99.59%

Yahoo! Movies 99.60 4,000 2,528 55,711 747 99.45%

Table 9.2: Datasets statistics.

Experimental Setting. ”All Unrated Items” [356, 49] protocol has been adopted

to compare different algorithms. We have split the dataset using Hold-Out 80-20

retaining for every user the 80% of their ratings in the training set and the remaining

20% in the test set. Moreover, a temporal split has been performed [163] whenever

timestamps associated to every transaction is available.

As expressed in our research questions, we want to check if the adoption of our

hybrid relevance measure CRel-FM is beneficial or not in a recommendation sce-

nario. For this reason each algorithm has been fed using: i) the original information

contained in R; ii) the relevance values as computed adopting a relevance measure;

iii) the new relevance information as defined in Section 9.2. As for point ii) we

have used T F-IDF since we wanted to start with the simplest relevance measure

possible.

Algorithms. We evaluate three different families of algorithms that could be

fed with relevance information: two Neighborhood-based algorithms (ItemKNN

[333, 334] and UserKNN [73]), Factorization Machines as a representative of latent

factors models (BPR-FM [312, 310]), and Vector Space Model as a representative of

content-based recommender systems (VSM [279]). Additionally, we have compared

against two non-personalized baselines, i.e., Random and MostPopular. As for

this latter, it is acknowledged that popularity ranking typically shows very good

performance because of statistical biases in the data [49] and it is an important

baseline to compare against [108].

250

Table 9.3: Results for Yahoo!Movies.

Recommender Source P R nDCG EPC Gini SE IC UC

Random R 0.001 0.004 0.003 0.001 †0.826 †11.3 †2,528 4,000

MostPopular R 0.015 0.037 0.027 0.015 0.004 3.9 48 4,000

ItemkNN

R 0.040 0.169 0.109 0.042 0.172 9.2 1,808 3,998

V0 0.043 0.151 0.119 0.054 0.353 10.0 2,456 4,000

V̂ †0.055 0.197 †0.151 †0.067 0.300 9.7 2,405 4,000

UserkNN

R 0.031 0.134 0.086 0.033 0.041 6.8 736 3,998

V0 0.030 0.140 0.092 0.033 0.055 7.4 809 4,000

V̂ 0.037 0.149 0.098 0.041 0.083 7.9 1,062 4,000

FM

R 0.027 0.076 0.050 0.026 0.008 4.7 276 4,000

V0 0.039 0.140 0.113 0.050 0.289 9.8 2,320 4,000

V̂ 0.041 0.142 0.088 0.040 0.021 5.6 594 4,000

VSM
V0 0.039 0.140 0.113 0.050 0.289 9.8 2,320 4,000

V̂ 0.052 †0.198 0.149 0.063 0.297 9.8 2,357 4,000

For all the considered recommendation engines we have performed a grid search

to tune the hyperparameters. We considered the range of values as suggested by the

original authors or by varying the parameters values around the ones showed in the

original papers as the best performing ones.

Metrics. In order to evaluate the algorithms, we have measured accuracy through

Precision@N (P@N), Recall@N (R@N) and normalized Discounted Cumulative

Gain (nDCG@N). EPC (Expected Popularity Complement) [91] is used to mea-

sure novelty, or more precisely the ability of a system to recommend relevant long-

tail items. Finally, diversity has been measured through Item Coverage (aggre-

gate diversity in top-N list, IC@N), Gini Index (Gini@N) and Shannon entropy

(SE@N). To measure the ability of producing recommendation lists for each user,

User Coverage (UC) is also computed. The evaluation has been performed consid-

ering Top-10 [108] recommendations for all the datasets. A Threshold-based rel-

evant items condition [83] of 4/5 has been set for Yahoo!Movies and 8/10 for

LibraryThing, and Last.fm respectively in order to take into account only

relevant items.
251

Table 9.4: Results for Last.fm.

Recommender Source P R nDCG EPC Gini SE IC UC

Random R 0.001 0.002 0.001 0.001 †0.547 †12.4 †6,395 1,375

MostPopular R 0.025 0.064 0.035 0.023 0.001 3.7 35 1,375

ItemkNN

R 0.031 0.069 0.042 0.032 0.154 10.5 3,235 1,375

V0 0.022 0.039 0.029 0.022 0.265 11.3 4,487 1,373

V̂ 0.037 0.070 0.051 0.041 0.216 11.0 4,044 1,370

UserkNN

R 0.052 0.122 0.084 0.057 0.016 7.2 831 1,375

V0 0.054 0.130 0.086 0.059 0.012 7.0 420 1,375

V̂ 0.060 0.136 0.093 0.066 0.015 7.4 517 1,375

FM

R 0.042 0.091 0.065 0.046 0.004 5.0 313 1,375

V0 0.031 0.055 0.038 0.032 0.188 10.8 3,660 1,375

V̂ †0.064 †0.138 †0.099 †0.070 0.020 7.2 897 1,375

VSM
V0 0.031 0.055 0.038 0.032 0.188 10.8 3,660 1,375

V̂ 0.050 0.087 0.062 0.053 0.187 10.7 3,691 1,375

9.3.1 Results

Results in Tables 9.3-9.5 show the performance of the different recommender sys-

tems fed with different sources. We have marked with bold and † the best and

the second-best algorithm. The tables correspond respectively to the experiments

conducted on Yahoo!Movies, Last.fm, and LibraryThing datasets. To an-

swer RQ2, we analyzed the behavior of the recommender systems on a per dataset

basis, focusing on accuracy, diversity, and novelty. While this section is devoted to

highlighting the more interesting results, Section 9.3.2 is devoted to drawing some

considerations based on the findings depicted here.

Yahoo!Movies. As expected, the Random recommender shows the highest dataset

values in terms of Gini index, Shannon entropy, and Item Coverage. It is worth

noticing that Item-kNN almost reaches the same performance. Item-kNN also shows

the best results, at a dataset level, considering Precision and nDCG. In this case, the

behavior of the recommender varying its knowledge source is very clear. Feeding it

with V0, and then V̂ , we note progressive increases of Precision, Recall, nDCG, and

EPC. Interestingly, from V0 to V̂ the diversity decreases, whereas the novelty keeps

increasing. This is a signal that when we use R there is still room for improving all

252

Table 9.5: Results for LibraryThing.

Recommender Source P R nDCG EPC Gini SE IC UC

Random R 0.001 0.001 0.001 0.001 †0.774 †13.4 †11,560 7,223

MostPopular R 0.006 0.006 0.006 0.005 0.001 3.8 34 7,223

ItemkNN

R †0.080 †0.146 †0.124 †0.093 0.147 10.9 6,378 7,221

V0 0.047 0.077 0.059 0.051 0.217 11.4 8,009 7,221

V̂ 0.076 0.134 0.112 0.089 0.245 11.7 8,258 7,221

UserkNN

R 0.033 0.070 0.059 0.038 0.022 7.8 1,994 7,221

V0 0.035 0.076 0.061 0.039 0.040 8.8 2,489 7,221

V̂ 0.035 0.071 0.056 0.038 0.044 9.0 2,603 7,221

FM

R 0.024 0.038 0.031 0.023 0.007 6.2 1,122 7,221

V0 0.037 0.065 0.047 0.039 0.211 11.4 7,437 7,221

V̂ 0.044 0.077 0.065 0.047 0.033 8.0 2,687 7,221

VSM
V0 0.037 0.065 0.047 0.039 0.211 11.4 7,434 7,221

V̂ 0.052 0.086 0.072 0.060 0.265 11.9 8,012 7,221

the metrics. Instead, when we use V̂ , we increase accuracy exploiting more items

that come from the long tail. Regarding accuracy, the behavior of User-kNN is sim-

ilar, with the same progressive increases. On the other side, the different mechanics

of the user-based schema are reflected on an increase in diversity when using V̂ . FM

shows different behavior. Precision and Recall progressively increase changing the

knowledge source. nDCG, novelty, and diversity show an increase using V0, but

they decrease when V̂ is exploited. A possible reason for that is the low number

of mapped items. These items are hence described by a low number of features.

After the training, these features are over-trained and they affect the performance.

This behavior is not present in k-NNs algorithms and VSM. The k-NNs approaches

exploit the Neighborhood to alleviate this effect. On the other hand, VSM alleviates

it by estimating scores based on vector similarity. Since vector are composed of all

the features, this effect is absent.

Last.fm. It is a completely different dataset, that contains a lesser number of

users, and a higher number of items. Moreover, the average number of features that

describe an item is 6.6, against the 12.1 of Yahoo!Movies. These characteris-

tics affect the behavior of the recommenders. Random recommender still shows the

253

highest values for diversity. Differently from the previous experiment, only Item-

kNN and VSM show a good accuracy-diversity trade-off. In User-kNN we may

notice that are still present the progressive increases for all the accuracy and nov-

elty metrics, but with a vary small margin. Item-kNN and FM show an interesting

commonality. For both recommenders, the exploitation of V0 produces the nega-

tive effect of decreasing accuracy. This may be due to two reasons. First, we have

noticed the limited number of features that describe items. Second, maybe those

features are not sized for a recommandation task. Nevertheless, after the training,

both recommenders show important improvements. Finally, varying the knowledge

source in VSM leads to remarkable improvements.

LibraryThing. This dataset shows a different behavior. In LibraryThing,

we curiously note that the best recommender is Item-kNN fed with R matrix. This

is definitely due to the small number of features per item: 3.8. However, let us

focus on what happens when feeding it with V̂ . We may notice that accuracy de-

creases a bit, but the diversity values become much more interesting. Regarding

accuracy, FM and VSM show the same improvements depicted before, with some

differences concerning diversity. In VSM the item coverage keeps increasing, while

FM sacrifices diversity in favor of accuracy. The only recommender which shows a

confusing behavior is User-kNN, in which we may notice an increase of Precision

and diversity but a decrease of Recall and nDCG.

9.3.2 Discussion

Once we have detailed the results of the experiments, we can focus on the gen-

eral findings. If we analyze the behavior of the recommender over the different

datasets, we may notice that the exploitation of T F-IDF relevance is useful for

Yahoo!Movies and LibraryThing. In those datasets, the extra-knowledge

leads to better-tuned recommenders. However, this effect is absent in Last.fm,

where the T F-IDF is not able to overpass the R-based models. Since it happens

only in this dataset, in our opinion the reasons for the behavior have to be found in

the characteristics of the dataset and a poor description of items. On the other side,

254

IC

nDCG

EPC

(a) ItemkNN

IC

nDCG

EPC

(b) UserkNN

IC

nDCG

EPC

(c) FM

IC

nDCG

EPC

(d) VSM

Figure 9.2: Graphical representation of Accuracy, Diversity, and Novelty results for

Yahoo!Movies. The different knowledge sources, R, V , and V̂ are represented

respectively through dotted red line, dashed blue line, and solid green line.

the proposed hybrid measure for relevance in almost all cases leads to improvements

in accuracy, novelty, and diversity. The training of the features effectively modify

the original relevance weights also taking into account a signal of the popularity of

the features. Moreover, another trend deserves attention. Item-kNN and FM show

higher values for Item Coverage with V0. This value typically decreases with V̂ ,

while accuracy increases. Irrespectively to possible accuracy increases, we observe

that T F-IDF introduces a noise we consider responsible for those values. After the

training phase, we observe a reduction of the recommended items because the noise

is partially removed. Some other considerations concern the comparison with [30].

The authors have also considered Yahoo!Movies dataset in their analysis, thus

we consider mandatory to compare our findings against it. In particular, among

the settings they consider, the most similar is Categorical Setting. Their

kaHFM corresponds in our experiments to Item-kNN with V̂ , while Attribute-based

255

Item-kNN corresponds to Item-kNN with V0. In both experiments, we note that Item-

kNN with V̂ is the best performing one, while Item-kNN, Item-kNN with V0 and VSM

show good performance. Since their work is limited to Precision and nDCG, we can

not compare the other dimensions of the analysis. Moreover, since we have consid-

ered many different applications of hybrid relevance, further comparison would be

difficult. However, the results for Yahoo!Movies can be analyzed considering a

trade-off perspective. In Fig. 9.2, we may see the four considered models repre-

sented on three axes. The idea here is to observe the different trade-offs in terms of

accuracy (nDCG), diversity (Item Coverage), and novelty (EPC). The models fed

with V̂ are denoted by a solid green line. The V0 models are represented with a

dashed blue line and R models with a dotted red line. It is clear that for Item-kNN,

User-kNN, and VSM there is no trade-off. The V̂ model overpasses the other along

each dimension. Only FM shows different behavior, with V̂ shape which is contain-

ing R shape, but it is contained by the V0 model. However, here it is clear that the V̂

accuracy values are similar to V0, while the Item Coverage is particularly low.

9.4 Related Work

In recent years, some works have proposed to measure relevance exploiting jointly

the content information and the collaborative information. In [237], the authors

face some known issues of Collaborative-Filtering approaches like sparsity and

Cold-Start. They propose a Bayesian generative model called Collaborative Varia-

tional AutoEncoder (CVAE). CVAE learns implicit relationships between items and

users from both content and rating information. In their experiments, they show

that CVAE outperforms the Collaborative Topic Regression model (CTR), the Col-

laborative Deep Learning model (CDL), and the Deep Music neural model. They

point out that the generative nature of the method eases to capture the key points

of items and users. In a subsequent work [171], the authors propose another Deep

Neural Network architecture to consider jointly side information and rating infor-

mation. In detail, they propose CAVAE, a Collaborative Additional Variational

AutoEncoder, in which content (tag information) feeds an additional variational

256

autoencoder. They show that their Bayesian probabilistic model outperforms the

CTR model, the CDL model, and CVAE. In entity2rec [289], the authors consider a

knowledge graph that models user− item and item− item relations. They exploit

it to learn property-specific latent representations. From these representations, the

authors compute user− item relatedness features to feed two Learning to Rank algo-

rithms (Adarank and LambdaMart). In [130] the authors combine a bag-of-words

(BOW) representation with a Convolutional Neural Network (CNN) to create an

overall model to retrieve semantically similar questions. Since each original ques-

tion is a transaction, the collaborative information is naturally injected during the

training phase.

An interesting work is [70], in which the authors summarize the contributions of

the Social Information Retrieval community. Their work is particularly interesting

for us because they explicitly exploit collaborative information to improve Informa-

tion Retrieval techniques. The main difference is that they exploit the user− user

connections in a social graph which are a completely different signal from user−
item transactions. In a different scenario, the social tagging task, a specific research

line focuses on exploiting personal tagging preferences. Even then, relevance in-

formation is affected by user behavior. Relevant work is [335] where the authors

compute local interaction networks among users exploiting comments. Instead, in

[236], the tagging preferences are represented through tag statistics. More recently,

in [241], the authors learn a user-specific embedding space. Collaborative informa-

tion is also exploited in [329], where the authors propose a framework that takes

into account user affinities. Interestingly, in [308], the goal is discovering latent

associations between users, images, and tags. Another work that focuses on mod-

ifying tag relevance using user information is [238], in which two simple methods

are proposed to update relevance: Borda Count and UniformTagger. The latter, pro-

posed by the authors, exploits a neighbor voting algorithm to combine multiple tag

relevance estimations.

Another relevant research line is Relevance Feedback Environment, in which

feedback information is exploited to correct relevance values. This line of inves-

tigation is not closely related to ours. Nevertheless, we have decided to mention

257

it because, even here, the content information is combined with user transactions.

Relevance feedback is a well-established technique for improving Interactive In-

formation Retrieval. We can find a specific reference to feature relevance since

1994, in [77], where authors have proposed a modified Rocchio’s relevance feed-

back approach to improve accuracy. This idea is then reflected in [397], in which

the authors propose an idealized relevance feedback (IRF) framework. To further

improve the previous work, they perform a term normalization and selection based

on the ranking position.

CRel-FM is also related to the exploitation of explicit features in Matrix Factor-

ization. One of the first models of this kind is Explicit Factor Model (EFM) [419].

In this model, products’ features and users’ opinions are extracted with phrase-level

sentiment analysis from users’ reviews to feed a matrix factorization framework.

Since then, a few improvements to EFM have been proposed to deal with temporal

dynamics [420] and to use tensor factorization [97]. In particular, in the latter the

aim is to predict both user preferences on features (extracted from textual reviews)

and items. This is achieved by exploiting the Bayesian Personalized Ranking (BPR)

criterion [312].

In CRel-FM, we exploit the Factorization Machines (FM) data model [310].

FMs are the most widely used factorization models because they offer a number

of advantages compared against other latent factors models such as SVD++ [221],

PITF [315], FPMC [313]. The main advantage is that FMs are designed for a

generic prediction task. On the other side, other mentioned techniques are task-

specific. Moreover, FM is a linear model where parameters can be estimated accu-

rately even in a high data sparsity scenario. Nevertheless, many researchers have

proposed variants of FMs. In [174], the authors propose Neural Factorization Ma-

chines to increase the expressiveness of FM. In particular, they enable FMs to cap-

ture the non-linear structure of real-world data exploiting the non-linearity of neural

networks. Furthermore, Attentional Factorization Machines [401] use an attention

network to learn the relevance of feature interactions. Finally, in [314], the authors

propose a specialized Context-Aware variant of FMs.

In a top-N recommendation task, recommenders provide users a shortlist of rec-

258

ommendations. For this reason, correctly sorting recommendations has gradually

replaced the rating prediction task [256]. These Learning to Rank [88] algorithms

can be further categorized in Point-wise [225], Pair-wise [312, 247] and List-wise

[344, 343]. In particular, Pair-wise approaches are usually considered as a good

trade-off between ordering performance and computational complexity. Among

this class of algorithms, Bayesian Personalized Ranking (BPR) [312] is one of the

most widely adopted. It is based on a simple stochastic gradient descent algorithm

to learn the relative order between positive items (items that a user has experienced

in his past history) and negative items (items never rated by the user). BPR can be

easily applied to Matrix Factorization and Factorization Machines (as in CRel-FM

and in [41]).

9.5 Conclusions and Future Work

In this chapter, we propose and test CRel-FM, a principled method to compute the

relevance of item attributes. Its crucial insight is that of exploiting collaborative

information in a recommendation scenario to fine-tune the relevance of users/items

attributes. The overall approach goes through the exploitation of Factorization Ma-

chines to map latent factors to actual attributes and the training of the model adopt-

ing a Learning to Rank optimization criterion to inject collaborative information.

Through an extensive experimental evaluation, we have found that the proposed no-

tion of hybrid relevance provides significant improvements to Recommender Sys-

tems even when we adopt the very simple T F-IDF relevance measure combined

with collaborative information via CRel-FM. Furthermore, the exploitation of dif-

ferent signals has led to more accurate and diverse recommendations proving that

this could be a solution to the classical accuracy-diversity trade-off [377]. In this

work, we have shown the effectiveness of the approach by relying only on one tradi-

tional relevance measure (T F-IDF). As for our future work, we plan to investigate

the behavior of CRel-FMwith Entropy-based [389], BM25 [201, 202], and BM25F

[201, 202, 319] weighting schemes. Another investigation direction would be that

of replacing the BPR optimization with other pair-wise and list-wise Learning to

259

Rank optimization algorithms like AdaRank [402] and LambdaMart [400]. More-

over, we plan to evaluate the method in a more general Information Retrieval setting

and to enable explanation services.

260

Part III

Modeling and evaluating without an
explicit knowledge representation

261

Chapter 10

Introduction

This chapter is devoted to all the approaches that make use of non-completely struc-

tured knowledge in recommender systems. Here we study some dimensions like

the Popularity of items and Time that are present in real case scenarios that are

encoded differently. Popularity is usually a derived quantity exploited by some

non-personalized recommenders. On the other side, Time is a piece of optional in-

formation that can be exploited for improving recommendations. Since when they

are available they are represented in the same way, we decided to face these di-

mensions in this research. Our study has led to face other classic problems, like

the definition of similarity, the tuning of parameters, and the consequent evaluation.

However, the evaluation itself is nowadays under observation, because it should

monitor ”unfair” recommendations. For this reason, a study on fairness evaluation

closes the chapter.

In modern recommender systems, diversity has been widely acknowledged as

an important factor to improve user experience and, more recently, intent-aware

approaches to diversification have been proposed to provide the user with a list of

recommendations covering different aspects of her behavior. In this line of research,

263

we propose and analyze the performances of two diversification methods tak-
ing into account temporal aspects of the user profile: in the first one we adopt

a temporal decay function to emphasize the importance of more recent items in

the user profile while in the second one we perform an evaluation based on the

identification and analysis of temporal sessions. The two proposed methods have

been implemented as temporal variants of the well-known xQuAD framework. In

both cases, experimental results on Netflix 100M show an improvement in terms of

accuracy-diversity balance .

Items popularity is a strong signal in recommendation algorithms. It strongly

affects collaborative filtering approaches and it has been proven to be a very good

baseline in terms of results accuracy. Even though we miss an actual personaliza-

tion, global popularity can be effectively used to recommend items to users. In

this second line of research, we introduce the idea of time-aware personalized
popularity in recommender systems by considering both items’ popularity among

neighbors and how it changes over time. An experimental evaluation shows a highly

competitive behavior of the proposed approach, compared to state of the art model-

based collaborative approaches, in terms of results accuracy.

In recommendation scenarios, similarity measures play a fundamental role in

memory-based nearest neighbor approaches. They recommend items to a user based

on the similarity of either items or users in a neighborhood. In this line of research,

we argue that similarity between users or items, although it keeps leading impor-

tance in computing recommendations, should be paired with a value of dissimi-
larity (computed not just like the complement of the similarity one). We formally

modeled and injected this notion in some of the most used similarity measures and

evaluated our approach in a recommendation scenario showing its effectiveness for

accuracy and diversity results on three different datasets.

Hyperparameters tuning is a crucial task to make a model perform at its best.

However, despite the well-established methodologies, some aspects of the tuning

remain unexplored. As an example, it may affect not just accuracy but also Novelty

as well as it may depend on the adopted dataset. Moreover, sometimes it could

be sufficient to concentrate on a single parameter only (or a few of them) instead

264

of their overall set. In this line of research, we report on our investigation on
hyperparameters tuning by performing an extensive 10-Folds Cross-Validation on

MovieLens and Amazon Movies for three well-known baselines: User-kNN, Item-

kNN, BPR-MF. We adopted a grid search strategy considering approximately 15

values for each parameter, and we then evaluated each combination of parameters

in terms of accuracy and novelty. We investigated the discriminative power of
nDCG, Precision, Recall, MRR, EFD, EPC, and, finally, we analyzed the role of

parameters on model evaluation for Cross-Validation.

One common characteristic of research works focused on fairness evaluation (in

machine learning) is that they call for some form of parity (equality) either in treat-

ment – meaning they ignore the information about users’ memberships in protected

classes during training – or in impact – by enforcing proportional beneficial out-

comes to users in different protected classes. In the recommender systems commu-

nity, fairness has been studied for both users’ and items’ memberships in protected

classes defined by some sensitive attributes (e.g., gender or race for users, revenue

in a multi-stakeholder setting for items).

The fairness has been commonly interpreted as some form of equality. This im-

plies to measure if the system is meeting the information needs of all its users in an

equal sense. In this line of research, we propose a probabilistic framework based
on Generalized Cross-Entropy (GCE) to measure the fairness of a given recom-

mendation model. The framework comes with a suite of advantages: first, it allows

the system designer to define and measure fairness for both users and items and can

be applied to any classification task; second, it can incorporate various notions of

fairness as it does not rely on specific and pre-defined probability distributions but

they can be defined at design time.

In its design, it uses a gain factor, which can be flexibly defined to contem-

plate different accuracy-related metrics to measure fairness upon such as decision-

support metrics (e.g., precision, recall) or rank-based measures (e.g., NDCG, MAP).

Results on three real-world datasets show the nuances capture by our metric regard-

ing fairness on different user and item attributes, where nearest-neighbor recom-

menders tend to obtain good results under equality constraints.

265

266

Chapter 11

A re-ranking algorithm exploiting
Time and Diversity

11.1 Introduction

Recommender systems are designed to meet the users’ needs suggesting relevant

items in a personalized fashion. As recommendations are usually presented in form

of list or group, the user experience strongly depends on the overall quality of such

recommendations and, the diversity among them has been identified as one of the

most important quality factor [256, 91]. Generally, accuracy and diversity are con-

sidered as contrasting properties, due to the demonstrated trade-off between them in

offline evaluation [91]. In spite of that, a recent user’s behaviour study proved that

diversity in recommendations has an important positive impact on user satisfaction

[134]. Moreover, in [283] the authors show that by taking into account the users

propensity towards diversity, it is possible to foster the recommendation diversity

without affecting accuracy or even slightly improve it. The diversity issue has been

originally addressed in the Information Retrieval field. As user queries are often am-

267

biguous and their intent is not clear, proposing a set of answers covering different

intents may increase the probability that users find at least one relevant document

[330, 94]. The concept of intent-aware diversification has then been applied to the

Recommender Systems field [379] and extensively studied thus producing new al-

gorithms and evaluation metrics [378, 376, 391]. Here, user intents as defined in

Information Retrieval have been mapped to user interests with reference to item

characteristics.

Very often, in the design of the model behind a recommendation engine, the

user profile is considered as a static snapshot without taking into proper account

its temporal dimension. Actually, the importance of analyzing temporal aspect for

user modeling has been proved to affect the final recommendation results [218, 222,

200].

Based on the above observations, we investigate the effect on the trade-off be-

tween accuracy and diversity of a recommendation list when dealing with temporal

aspects of the user profile. The intuition behind our idea is that temporal dynamics

might allow to better understand the user interests with respect to the items charac-

teristics and then provide a more accurate intent-aware diversification. Therefore,

this work presents two intent-based modeling methods that exploit the time dimen-

sion in a user profile. The first one analyzes the frequency of interaction between the

users and the items features using a temporal decay function in order to emphasize

persistence and recency of an intent. The other method is based of a new session

analysis technique of user ratings for intent modeling. Considering that a session is

usually defined as a set of consecutive ratings with a very small gap of time among

them (e.g., less than one hour in music [218]), we provided a wide definition of ses-

sion tailored for movie ratings. In particular, such method is designed to highlight

importance, persistence and recency of an intent among user sessions. We exper-

imentally evaluated such methods with the large scale movie dataset published in

the context of Netflix Prize Context [52]. The experimental results demonstrated

that the analysis of temporal aspects in the user profile leads to better accuracy-

diversity balance and intent-aware diversity compared to the original xQuAD. As an

additional benefit, the aggregate diversity results improved too thus demonstrating

268

to produce more personalized recommendations.

To the best of our knowledge, this is the first attempt in the investigation of how

temporal dynamics affect diversity in recommendations.

11.2 Related Work

A list of recommendations can be diversified in an implicit or explicit manner [42].

While the implicit diversification is used to increase the average distance between

pairs of items in the recommendation list, the explicit method diversifies the rec-

ommendations trying to cover the user interests represented via categories or other

descriptive information of the items. Therefore, the explicit diversification is known

as Intent-Aware since it considers the likeness of user intents in information retrieval

and user interests in recommender systems [379]. Explicit Query Aspect Diversifi-

cation (xQuAD) is one of the most well-known intent-aware framework originally

proposed for query results diversification [330] and then adapted to the recommen-

dation [378] field. In a nutshell, xQuAD aims at maximizing the coverage of the

inferred interests while minimizing their redundancy in a recommendation list.

The importance of taking into account the temporal dynamics in recommender

systems has been recently pointed out in different works for diverse recommenda-

tion domains. A method to model user sessions in music domain was proposed in

[218]. It considers as session each set of consecutive ratings without an extended

time gap between them. Considering that there are various psychological phenom-

ena that lead to a set of ratings to be grouped into a single session, such method

captures these effects by means of user session biases. [222] presented a collab-

orative filtering algorithm able to model time drifting of user preferences and the

results on the Netflix dataset indicated the importance of unveiling temporal ef-

fects in order to produce more accurate recommendations. A more recent method

proposed to take advantage of temporal information in user behavior is called Time-

based Markov Embedding [200], used to find the best next-song recommendation

via Latent Markov Embedding.

In this work we aim at exploring the exploitation of temporal dynamics in user

269

intents to provide a better intent-aware diversification.

11.3 Intent-aware diversification for recommendations

Typically, a recommender system produces a list of personalized recommendations

for each user. According to [14], a re-ranking of such list can be applied to improve

its diversity, without modifying the recommendation process. However, finding the

most diverse results is a NP-hard problem and hence several heuristics have been

proposed [228]. Most previous diversification approaches are based on a greedy se-

lection strategy [90, 330, 33]. Such strategy selects the next most relevant item only

if that item is diverse with respect to the items already selected [228]. Algorithm

Data: The original list R, N ≤ n

Result: The re-ranked list S
S = 〈〉;
while |S |< N do

i∗= argmax
i∈R\S

fob j(i,S,u);

S = S◦ i∗;

R = R\{i∗}
end
return S.

Algorithm 3: The greedy strategy.

3 describes the working scheme of a greedy selection method. For the purpose of

this work, we consider xQuAD, one of the most well-known intent-aware greedy

heuristics. It maximizes the coverage of the inferred interests while minimizing

their redundancy. xQuAD was proposed for search diversification in information

retrieval by Santos et al. [330], as a probabilistic framework to explicitly model

an ambiguous query as a set of sub-queries that are supposed to cover the potential

aspects of the initial query. More recently, it has been adapted for recommendation

diversification by Vargas and Castells [378], replacing query and relative aspects

270

with user and items features, respectively. The expression of the xQuAD objective

function is

fob j(i,S,u) = λ · r∗(u, i)+(1−λ) ·div(i,S,u) (11.1)

with S representing the set of the items belonging to R not already in S and div(i,S,u)
defined as

div(i,S,u) = ∑
f

p(i| f ,u) · p(f |u) ·∏
j∈S

(1− p(j| f ,u)) (11.2)

In Equation (11.2) p(i| f ,u) represents the likelihood of item i being chosen given

the feature f and is computed as a binary function that returns 1 if the item con-

tains f , 0 otherwise; p(f |u) represents the interest of user u in the feature f and

is usually computed as the relative frequency of the feature f on the items rated

by user u. In other words, xQuAD fosters the idea of promoting items that are si-

multaneously highly related to at least one of the features of interest for the user

and slightly related to the features of the items already recommended. In particu-

lar, this work focuses on the intent modeling in the xQuAD framework, namely the

aforementioned p(f |u) component in Equation (11.2).

11.4 Intent modeling with Temporal Dynamics

In this section, we propose two methods to exploit temporal analysis for intent mod-

eling in diversification that we call session-based and time-based intent modeling.

Both relies on the intuition that user intent can change during the interaction with

the system and the simple computation of features frequency in the user profile may

not represent the current user interests.

11.4.1 Time-Based Intent Modeling

In order to valorize persistence and recency of an intent, we propose to analyze the

frequency of interaction between the user u and the feature f and to weight each

interaction by a temporal decay function. More formally, the following formula

computes the interest of the user u with respect to the feature f :

271

p(f |u) =
∑i∈R(u) cov(f , i)disc(u, i)

∑i∈R(u) disc(u, i)
(11.3)

where R(u) indicates the set of rating provided by the user u; cov(f , i) is a bi-

nary function returning 1 if the item i is associated with the feature f , 0 otherwise;

disc(i,u) is a temporal decay function returning lower values for older ratings, and

higher values for the most recent ones. Inspired by [222], as decay function we

adopted the following exponential function

disc(u, i) = e−β ·|tu,last−tu,i| (11.4)

where tu,last indicates the timestamp of the last rating of the user u and tu,i the times-

tamp when user u rated i; β > 0 controls the decay rate.

In our experimental setting we adopted the Netflix dataset which contains ratings

from October 1998 until October 2005. This information affects the choose of β

because a too big value of beta could make the initial ratings not valuable at all. We

decided to consider all the ratings valuable with a very smooth curve and a mini-

mum value of 10−6. Hence β value was set to 1/200 obtaining 2,831∗10−6 for the

farest rating over time.

11.4.2 Session-Based Intent Modeling

User sessions definition. Session analysis is quite common in music domain, since

users are used to listen to many songs in sequence. There a session is represented

by a set of consecutive ratings with a small gap of time between them [218]. Con-

versely, sessions are not easy to find in movie domain, since users typically watch

a small number of movies in brief timeslots and the temporal gap among visions or

ratings could be large (sometimes several days or even months). In our setting, in

order to identify user sessions we propose an EM clustering used to train two uni-

variate Gaussian Mixture Models (with equivariance and variable variance). The

number of clusters has been evaluated based on the Bayesian Information Criterion

considering the fitted models with a number of clusters from 1 up to 300. In order to

remove outliers from each session s, for each computed cluster we do not consider

272

ratings falling outside the interval [µs−σs,µs +σs], with µs and σs being respec-

tively the mean and the standard deviation of ratings distribution for the session

s.

Intent modeling. Once user sessions are determined, they can be used to ana-

lyze the user activities taking into account the temporal dynamics. In this work

we present an approach to model the users intents over time, by considering three

key properties: importance, persistence and recency of an intent among the user

sessions. The first property indicates the importance of an intent in each session

computed as the percentage of items covering that intent. The second property

considers how many sessions the intent is important for, therefore it sums the im-

portance of the intent for each sessions. Finally, the third property focuses on the

intent freshness, penalizing old sessions with a temporal decay function.

More formally, the following formula computes the interest of the user u with

respect to the feature f :

p(f |u) =
∑s∈S(u)

∑i∈I(s) cov(f ,i)
|F(s)| disc(s,u)

∑s∈S(u) disc(s,u)
(11.5)

where S(u) indicates sessions computed for the user u; I(s) is the set of items in s;

cov(f , i) is a binary function returning 1 if the item i is associated with the feature

f, 0 otherwise; F(s) represents the set of features associated with all the items in s;

disc(s) is the temporal decay function adapted to handle the sessions instead of the

items, considering a session as an item in Equation (11.4) where the session date is

that of the last rated item in such session. As for the previous case, β value was set

to 1/200.

11.5 Experimental setting

Dataset. In order to verify our research questions and evaluate our proposal, we

used the popular movie datasets derived from the Netflix Prize Context [52]. Netflix

dataset contains over 100 million ratings provided by ˜480,000 users on ˜17,000

movies. Such ratings were collected between 1998 and 2005 and associated with

273

the relative date. However, such dataset contains noise added on purpose for reasons

of privacy, as explained in the Netflix Prize Rules1: ”some of the rating data for

some customers in the training and qualifying sets have been deliberately perturbed

in one or more of the following ways: deleting ratings; inserting alternative ratings

and dates; and modifying rating dates”. Indeed, we found that some users rated an

exaggerated number of movies in some days: 30% of all the users have rated at least

61 movies in the most prolific day. Therefore, in order to train the session-based

user model on a clean subset of the dataset, we selected a sample of users removing

the outliers by means of the following steps: (i) we discarded the users with less

than 20 ratings as at this stage of our study we are not interested in evaluating the

cold users behavior; (ii) we ordered the users in decreasing order of the maximum

number of daily interactions and discarded the top 30%; (iii) we ordered the users in

decreasing order of the average number of daily interactions and discarded the top

30%. The dataset used for training the models contains 233,452 users, 18,104,476

rating and 17,763 movies. We built training and test sets by employing a 80%-20%

holdout temporal split for each user.

Recommendation algorithms. We evaluated our approaches w.r.t. the xQuAD

baseline via a re-ranking of the BPRMF [312] and BPRSLIM [273] algorithms re-

sulting recommendations. We trained both models using the MyMediaLite2 imple-

mentation upon the dataset described in Section 11.5 to produce for each user a Top-

300 recommendations list (R in Algorithm 3, used to compute r∗(u, i) in Equation

(11.1)), and then we re-ranked those lists using xQuAD. The resulting recommen-

dations lists are the baselines we compare against. xQuAD uses side information to

lead to diversified recommendations. In this work the diversification is based on the

movie genre feature. In Netflix dataset this information is not explicitly provided.

In order to extract the genre information, we mapped each movie with the corre-

sponding Freebase resource by means of its title and year of release and we then

selected the corresponding genres. Overall, the number of distinct genres extracted

is 266.

1http://netflixprize.com/rules.html
2http://www.mymedialite.net

274

(a) Results for BPRMF

(b) Results for BPRSLIM

Figure 11.1: Curves obtained by varying λ from 0.1 to 0.9 (step 0.1), using BPRMF

and BPRSLIM as recommendation algorithm. From left to right we plot the values

of nDCG, ERR-IA, Catalog Coverage and EPC. The blue line represents values for

the base xQuAD evaluation while the black and yellow lines represent respectively

values for the time-based and session-based version of xQuAD

In our evaluation, the time-based and session-based intent modelings proposed

in Section 11.4 are used as alternatives to the pure frequency based intent modeling

in the original xQuAD. These two variations of xQuAD, are denoted as: TB xQuAD,

SB xQuAD, where TB stands for time-based and SB for session-based. The resulting

evaluated algorithms are then:

• BPRMF + xQuAD (baseline)

• BPRMF + Time-based xQuAD variant (TB xQuAD)

• BPRMF + Session-based xQuAD variant (SB xQuAD)

• BPRSLIM + xQuAD (baseline)

• BPRSLIM + Time-based xQuAD variant (TB xQuAD)

275

• BPRSLIM + Session-based xQuAD variant (SB xQuAD)

Metrics. In order to evaluate accuracy, we measured nDCG. As for individual di-

versity, namely the degree of dissimilarity among all items in the list provided to a

user, was measured by ERR-IA as it has been shown [377] to be the metric targeted

by xQuAD, while for aggregate diversity we computed the Catalog Coverage (per-

centage of items recommended at least to one user). An evaluation on the novelty of

computed results has been done through EPC (Expected Popularity Complement)

[377]. For all the aforementioned metrics we used the implementation provided by

RankSys framework3 on the Top-10 recommendation list.

Results Discussion. Charts in Figure 11.1a and Figure 11.1b show the curves

for nDCG, ERR-IA, Catalog Coverage and EPC, for both BPRMF and BPRSLIM

variants. Very interestingly both the time- and session-based version of xQuAD

improves results in terms of accuracy, aggregate diversity as well as of novelty in-

dependently of the recommendation algorithm adopted. Generally, the time-based

variant of xQuAD performs better than the session-based one but for Catalog Cov-

erage where we have better results for the session-based implementation of xQuAD.

It is worth noticing that the base version of xQuAD outperforms its time-based vari-

ants up to a certain value of λ for both BPRMF and BPRSLIM. For the former this

value lies between 0.8 and 0.9 while for the latter between 0.7 and 0.8. Hence,

in case we are interested in higher values of diversity, time may play an important

role. This observation is also strengthen by the higher values we obtain in terms of

precision, catalog coverage and novelty. In Table 11.1 we see that with λ = 0.8 we

obtain the best result in terms of trade-off among the various metrics we measured

in our experiments.

11.6 Conclusions and future work

This line of research has been devoted to investigate the role of temporal informa-

tion while modeling a user profile in computing diversified recommendations. We

propose two different time-dependent user modelings which take into account also
3https://github.com/RankSys/RankSys

276

Algorithm Ndcg@10 ERR IA@10 Coverage@10 EPC@10

BPRMF+XQUAD 0.029264 0.01789 0.27540 0.02549

BPRMF SB XQuAD 0.03340 0.01510 0.30417 0.02737

BPRMF TB XQuAD 0.03433 0.01724 0.29820 0.02843
BPRSLIM+XQUAD 0.03072 0.01870 0.35799 0.02686

BPRSLIM SB XQuAD 0.03943 0.01736 0.40021 0.03240

BPRSLIM TB XQuAD 0.04026 0.01942 0.39183 0.03339

Table 11.1: Comparative results in terms of accuracy, individual diversity and ag-

gregate diversity with λ = 0.8

the user rating history. One of the two proposed methods bases on a new session

analysis technique by considering those periods where the user interacted in a more

constant way with the system. Experimental results demonstrated that consider-

ing temporal dynamics leads to better accuracy-diversity balance and better intent-

aware diversification. The results we obtained in this preliminary investigation are

quite promising and we are currently extending our experimental evaluation to dif-

ferent datasets in diverse domains as well as to other metrics in order to measure

the quality of the recommendations not just in terms of accuracy when time is taken

into account.

277

278

Chapter 12

A study over the dimensions of Time,
and Popularity

12.1 Introduction

Collaborative-Filtering (CF) [310] algorithms, more than others, have gained a key-

role among recommendation approaches and have been effectively implemented in

commercial systems to help users in dealing with the information overload problem.

Some of them also use additional information (hybrid approaches) to build a more

precise user profile in order to serve a much more personalized list of items [27,

140].

However, it is well known [193] that all the algorithms based on a CF approach

are affected by the so called “popularity bias” meaning that popular items tend to

be recommended more frequently than those in the long tail. Initially considered as

a shortcoming of collaborative filtering algorithms and then not useful to produce

good recommendations [191], in some works items popularity has been intention-

ally penalized [285]. Very interestingly, a recommendation algorithm purely based

279

on most popular items, has been proven to be a strong baseline [108] although it

does not exploit any actual personalization. More recently, popularity has also been

considered as a natural aspect of recommendation that, by measuring the user ten-

dency to diversification, can be exploited to balance the recommender optimization

goals [204]. The study of popularity in user tendencies is not completely new in

the recommender systems field. Some interesting works explored these criteria for

re-ranking purposes [204, 285], and multiple goals optimization [191].

In the approach we present here, we introduce a more fine-grained personal-

ized version of popularity by assuming that it is conditioned by the items that a

user u already experienced in the past. To this extent, we look at a specific class

of neighbors, that we name Precursors, defined as the users who already rated the

same items of u in the past. This led us to the introduction of a time-aware analysis

while computing a recommendation list for u. As time is considered a contextual

feature, most of the works dealing with temporal aspects are considered as a sub-

class of Context-Aware RS (CARS) [18]: Time-Aware RS (TARS) [430, 16, 222].

In TARS, the freshness of different ratings is often considered as a discriminative

factor between candidate items. Usually, a time window [229] is adopted to filter

out all the ratings that stand before (and/or after) a certain time relative to the user

or the item. Recently, an interesting work that makes use of time windows has been

proposed in [51] where the authors focus on the last common interaction between

the target user and her neighbors to populate the candidate items list. In [38] social

information and time are integrated dealing with the interests of the users as a series

of temporal matrices. Probabilistic matrix factorization technique are adopted to

learn latent factors. Regarding sequences and recommendation it is worth to men-

tion [399], in which the authors combine an LSTM network with a low-rank matrix

factorization algorithm to produce recommendation lists. A pioneer work was pro-

posed more than a decade ago in [122] which used an exponential decay function

e−λ t to penalize old ratings. An exponential decay function [222] was then used

to integrate time in a latent factors model. In the last years, several Item-kNN

[246, 122] with a temporal decay function have been deployed. Another interesting

work was proposed in [2] where three different kinds of time decay were adopted:

280

exploiting concave, convex and linear functions.

This research line has led to the development of TimePop, an algorithm that

combines the notion of personalized popularity conditioned to the behavior of users’

neighbors while taking into account the temporal dimension. It is worth noticing

that TimePop works with implicit feedback to compute recommendations. Dif-

ferently from some of the approaches previously described, in TimePop we avoid

both the use of a time window and the selection of a fixed number of candidate

items. Indeed, while on the one hand, a time window may severely restrict the se-

lection of candidates, on the other hand, a fixed number of candidate items may

heavily affect the algorithm results.

12.2 Time-aware Local Popularity

The leading intuition behind TimePop is that the popularity of an item has not

to be considered as a global property but it can be personalized if we consider the

popularity in a neighborhood of users. We started from this observation to formulate

a form of personalized popularity, and then we added the temporal dimension to

strengthen this idea.

In TimePop, given a user u the first step is then the identification of user’s

neighbors who rated the same items as u but before u. We name these users Pre-

cursors. In our intuition, Precursors represent a community of users u relies on to

choose the items to enjoy. In a neighborhood of u, the same item is enjoyed by users

in different time frames. This leads us to the second ingredient behind TimePop:

personalized popularity is a function of time. The more the ratings about an item

are recent, the more its popularity is relevant for the specific user. Hence, in order

to exploit the temporal aspect of these ratings, the contributions of Precursors can

be weighted depending on their freshness.

We now introduce some basic notation that will be used in the following. We

use u ∈U and i ∈ I to denote users and items respectively. Since we are not just

interested in the items a user rated but also at when the rating happened, we have

that for a user u the corresponding user profile is Pu = {(i1, tui1), . . . ,(in, tuin)} with

281

Pu ⊆ I×ℜ, being tui a timestamp representing when u rated i.

Definition 1 (Candidate Precursor and Precursor)

Given (i, tui) ∈ Pu and (i, tu′i) ∈ Pu′ , we say that u′ is a Candidate Precursor of u if

tu′i < tui. We use the set P̂u to denote the set of Candidate Precursors of u. Given

two users u′ and u such that u′ is a Candidate Precursor of u and a value τu ∈ℜ we

say that u′ is a Precursor of u if the following condition holds.

|{i | (i, tui) ∈ Pu∧ (i, tu′i) ∈ Pu′ ∧ tu′i < tui)}| ≥ τu

We use Pu to denote the set of Precursors of u.

A user u′ is a Candidate Precursor of u if u′ rated at least one common item i

before u. Although this definition catches the intuition behind the idea of Precur-

sors, it is a bit weak as it also considers users u′ who have only a few or even just

one item in common with u and rated them before she did. Hence, we introduced

a threshold taking somehow into account the number of common items in order to

enforce the notion of Precursors. The threshold parameter τu in Definition 1 can

also be computed automatically as:

τu =
∑u′∈P̂u|{i | (i, tui) ∈ Pu∧ (i, tu′i) ∈ Pu′ ∧ tu′i < tui)}|

|P̂u|
(12.1)

To give an intuition on the computation of Precursors and of τu let us describe the

simple example shown in Figure 12.1.

Here, for the sake of simplicity, we suppose that there are only four users and six

items and u is the user we want to provide recommendations to. Items that users

share with u are highlighted in blue and items with a dashed red square are the ones

that have been rated before u. We see that P̂u = {u2,u4}. Indeed, although u3 rated

some of the items also rated by u they have been rated after. By Equation (12.1)

we have τu =
3
2 = 1.5. Then, only u2 results to be in Pu because she has 2 > 1.5

shared items rated before those of u. As for u3, it is more likely that u is a Precursor

of u3 and not vice versa.

Temporal decay. As the definition of Precursor goes through a temporal analysis

of user behaviors, we may look at the timestamp of the last rating provided by

282

Figure 12.1: Example of Precursors computation.

a Precursor in order to identify how active she is in the system. Intuitively, the

contribution to popularity for users who have not contributed recently with a rating

is lower than “active” users. On the other side, given an item in the profile of a

Precursor we are interested in the freshness of its rating. As a matter of fact, old

ratings should affect the popularity of an item less than newer ratings. Summing up,

we may classify the two temporal dimensions as old/recent user and old/recent
item. In order to quantify these two dimensions for Precursors we introduce the

following timestamps: t0 this is the reference timestamp. It represents the “now” in

our system; tu′i is the time when u′ rated i; tu′l represents the timestamp associated

to the last item l rated by the user u′. Different temporal variables are typically

used [122, 222], and they mainly focus on old/recent items. ∆T may refer to the

timestamp of the items with reference to the last rating of u′ [122] with ∆T = tu′l−
tu′i or to the reference timestamp [222] with ∆T = t0− tu′i. As we stated before, our

approach captures the temporal behavior of both old/recent users and old/recent
items at the same time. We may analyze the desired ideal behavior of ∆T depending

on the three timestamps previously introduced as represented in Table 12.1.

Let us focus on each case. In the upper-left case we want ∆T to be as small as

possible because both u′ and the rating for i are “recent” and then highly represen-

tative for a popularity dimension. In the upper-right case, the rating is recent but

the user is old. The last item has been rated very close to i but a large value of ∆T

should remain because the age of u′ penalizes the contribution. The lower-left case

denotes a user that is active on the system but rated i a long time ago. In this case

283

recent user
(t0 ≈ tu′l)

old user
(t0 � tu′l)

recent item
(tu′l ≈ tu′i)

≈ 0 t0− tu′l

old item
(tu′l � tu′i)

tu′l− tu′i t0− tu′l

Table 12.1: Ideal values of ∆T w.r.t. the Precursor characteristics

the contribution of this item is almost equal to the age of its rating. The lower-right

case is related to a scenario in which both the rating and u′ are old. In this scenario,

the differences between the reference timestamp minus the last interaction and the

reference timestamp minus the rating of i are comparable: (t0− tu′l) ≈ (t0− tu′i).

In this case, we wish the contribution of ∆T to consider the elapsed time from the

last interaction (or the rating) until the reference timestamp. All the above obser-

vations lead us to define ∆T = |t0− 2tu′l + tu′i|. In order to avoid different decay

coefficients, in our experimental evaluation, all ∆T s are transformed in days (from

milliseconds) as a common practice.

The Recommendation Algorithm. We modeled our algorithm TimePop to solve

a top-N recommendation problem. Given a user u, TimePop computes the recom-

mendation list by executing the following steps:

1. Compute Pu;

2. For each item i such that there exists u′ ∈Pu with (i, tu′i) ∈ Pu′ compute a score

for i by summing the number of times it appears in Pu′ multiplied by the correspond-

ing decay function;

3. Sort the list in decreasing order with respect to the score of each i.

For sake of completeness, in case there were no precursors for a certain user, a rec-

ommendation list based on global popularity is returned to u. Moreover, if Time-

Pop is able to compute only m scores, with m<N, the remaining items are returned

based on their value of global popularity.

284

12.3 Experimental Evaluation

In order to evaluate TimePop we tested our approach considering datasets related

to different domains. Two of them related to the movie domain —the well-known

Movielens1M dataset and Amazon1 Movies — and a dataset referring to toys and

games —Amazon Toys and Games, with 2M ratings and a sparsity of 99.99949%.

“All Unrated Items” [356] protocol has been chosen to compare different algorithms

where, for each user, all the items that have not yet been rated by the user all over the

platform are considered. In order to evaluate time-aware recommender systems in

an offline experimental setting, a typical k-folds or hold-out splitting would be inef-

fective and unrealistic. To be as close as possible to an online real scenario we used

the fixed-timestamp splitting method [83, 163], also used in [51] but with a dataset

centered base set. The basic idea is choosing a single timestamp that represents

the moment in which test users are on the platform waiting for recommendations.

Their past corresponds to the training set, and the performance is evaluated with

data coming from their future. In this work, we select the splitting timestamp that

maximizes the number of users involved in the evaluation by setting two constraints:

the training set must keep at least 15 ratings, and the test set must contain at least

5 ratings. Training set and test set for the three datasets are publicly available2

along with the splitting code for research purposes. In order to evaluate the algo-

rithms we measured normalized Discount Cumulative Gain@N (nDCG@N) using

Time-independent rating order condition [83]. The metric was computed per user

and then the overall mean was returned using the RankSys framework and adopting

Threshold-based relevant items condition [83]. The threshold used to consider a

test item as relevant has been set to the value of 4 w.r.t. a 1-5 scale for all the three

datasets.

Baselines. We evaluated our approach w.r.t CF and time-aware techniques. Most-
Popular was included as TimePop is a time-aware variant of “Most Popular”.

From model-based collaborative filtering approaches we selected some of the best

1http://jmcauley.ucsd.edu/data/amazon/
2https://github.com/sisinflab/DatasetsSplits

285

(a) AmazonMovies (b) Movielens1M (c) AmazonToys

Figure 12.2: nDCG @N varying N in 2..10

performing matrix factorization algorithms WRMF trained with a regularization

parameter set to 0.015, α set to 1 and 15 iterations, and FM3[310], computed with

an ad-hoc implementation of a 2 degree factorization machine considering users

and items as features, trained using Bayesian Personalized Ranking Criterion[312].

Moreover, we compared our approach against the most popular memory-based kNN

algorithms, Item-kNN3 and User-kNN3 [333], together with their time-aware vari-

ants (Item-kNN-TD3, User-kNN-TD3)[122]. We included TimeSVD++3 [222] in

our comparison even though this latter has been explicitly designed for the rating

prediction task. All model-based algorithms were trained using 10, 50, 100, and 200

factors; only best models are reported in the evaluation: for Movielens1M WRMF

10, FM 10; for Amazon Movies WRMF 100, FM 200; for Amazon Toys and Games

WRMF 100, FM 50. Finally BFwCF [51] is an algorithm that takes into account

interaction sequences between users and it uses the last common interaction to pop-

ulate the candidate items list. In this evaluation we included the BFwCF variant

that takes advantage of similarity weights per user and two time windows, left-sided

and right-sided (Backward-Forward). BFwCF was trained using parameters from

[51]: 100 neighbors, indexBackWards and indexForwards set to 5, normalization

and combination realized respectively via DummyNormalizer and SumCombiner.

Recommendations were computed with the implementation publicly provided by

authors. In order to guarantee a fair evaluation, for all the time-based variants the β

3https://github.com/sisinflab/recommenders

286

coefficient was set to 1
200 [222]. TimeSVD++ was trained using parameters used in

[222].

Results Discussion. Results of experimental evaluation are shown in Figure 12.2

which illustrate nDCG (12.2a, 12.2b, 12.2c) curves for increasing number of top

ranked items returned to the user. Significance tests have been performed for accu-

racy metrics using Student’s t-test and p-values and they result consistently lower

than 0.05. By looking at Figure 12.2a we see that TimePop outperforms compar-

ing algorithms in terms of accuracy on AmazonMovies dataset. We also see that

algorithms exploiting a Temporal decay function perform well w.r.t. their time-

unaware variants (User-kNN and Item-kNN) while matrix factorization algorithms

(WRMF ,TimeSVD++ and FM) perform quite bad. The low performance of MF

algorithms is very likely due to the temporal splitting that makes them unable to

exploit collaborative information. We may assume that the good performance of

TimePop w.r.t. kNN algorithms are due to the adopted threshold, that emphasizes

the popular items, and hence increases accuracy metrics values. Results for Ama-

zon Toys and Games dataset are analogous to those computed for Amazon Movies.

Results for Movielens additionally show that the high number of very popular items

make neighborhood-based approaches perform similarly.

12.4 Conclusion

In this investigation we have presented TimePop, a framework that exploits local

popularity of items combined with temporal information to compute top-N rec-

ommendations. The approach relies on the computation of a set of time-aware

neighbors named Precursors that are considered the referring population for a user

we want to serve recommendations. We compared TimePop against state-of-art

algorithms showing its effectiveness in terms of accuracy despite its lower compu-

tational cost in computing personalized recommendations.

287

288

Chapter 13

Beyond similarities: Dissimilarity
and Asymmetric Similarities

13.1 Introduction

Neighborhood-based approaches have been the first family of algorithms devel-

oped for collaborative filtering recommender systems. They identify similar users

or items, and they provide users with a list of items they could be interested in

by exploiting the degree of similarity. Though there have been around for many

years, it has been shown that neighborhood-based approaches may perform bet-

ter than latent model-based methods to solve the top-N recommendation problem

[19, 119, 205, 273]. In the top-N recommendation task, the focus is on providing

an accurate ranked list rather than minimizing the rating prediction error. Among

neighborhood-based methods the best-known are user-kNN, item-kNN and Sparse

LInear Methods (SLIM) [273]. User-based and item-based schemes have proven

to be effective in different settings although they use the same logic behind the

scenes. In details item-kNN and SLIM (which uses an item-based scheme) have

289

shown to outperform user-kNN to solve the top-N recommendation problem [100]

and several algorithms have been proposed in the literature to enhance neighbors

models like GLSLIM [100] and Weighted kNN-GRU4REC [195], taking advan-

tage of personalized models and recurrent neural networks. Moreover, we also have

approaches focusing on the injection of time in neighborhood models [51] and mod-

eling similarities by directly optimizing the pair-wise preferences error [312]. All in

all, under the hood, what makes neighborhood-based methods work is a similarity

measure.

Several similarity measures have been proposed and used extensively such as

Jaccard [129][307] and Tanimoto [113] coefficients, Cosine Vector similarity [36,

63, 13], Pearson Correlation [177], Constrained Pearson correlation [342], Ad-

justed Cosine similarity [334], Mean Squared Difference similarity [342], Spear-

man Rank Correlation [211], Frequency-Weighted Pearson Correlation [73], Target

item weighted Pearson Correlation [37]. In the vast majority of cases, all these

similarity measures are based on two assumptions:

1. the correlation between i and j is the same correlation between j and i (sym-

metry of similarity);

2. the correlation between two entities only captures how much they are similar

to each other without taking into account their degree of dissimilarity.

To the best of our knowledge, a few works have been proposed in the past years

related to asymmetric similarity, and they are mainly designed for a user-based

scheme. Dissimilarity was first suggested in 1999 [381, 380] when Varian described

the value of introducing diversity into search results. An Asymmetric User Similar-

ity has been proposed in [261] where the authors underline that a similarity measure

should distinguish between a user with a rich profile and a cold user. Thus, given

two users u and v, they slightly modify the Jaccard index in order to consider ex-

clusively the number of ratings of the current user (instead of the overall number of

both users). In HYBRTyco [210] the similarity proposed by Millan [261] is com-

bined with the Sørensen index [354]. HYBRTyco [210] is a hybrid recommender

system which combines matrix factorization with an asymmetric similarity model

290

to realize a typicality-based collaborative filtering recommender system. The same

approach is exploited in another asymmetric user similarity model [306] to feed a

user-user similarity matrix that is then completed using a matrix factorization al-

gorithm. Additionally, both of them provide an extension for the latter similarity

measure based on explicit numerical feedbacks (ratings). Despite previous works

are focused on the user-based scheme, we already underlined that item-kNN shows

excellent performance in top-N recommendation task. Moreover, when the number

of users exceeds the number of items, as in most of the cases, item-based recom-

mendation approaches require much less memory and time to compute the similar-

ity weights than user-based ones, making them more scalable. Due to these reasons,

both approaches have been considered in this work.

In this study, we investigate the effect on recommendation accuracy when we

go beyond the above two assumptions and define (and include) the concepts of dis-

similarity and asymmetry in similarity measures. In our proposal, we start from a

probabilistic interpretation of similarity to define symmetric and asymmetric dis-

similarities. The dissimilarity measures are then combined with traditional similar-

ity values using additive and multiplicative strategies. The experimental evaluation

shows that our approach outperforms the non-dissimilarity-aware counterparts im-

proving the accuracy of results or diversity or both.

The rest of the chapter is organized as follows: Section 13.2 presents the mo-

tivation behind our work and the proposed approach. Section 13.3 presents the

evaluation protocol, metrics, datasets and performance of the method. Finally, in

Section 13.4 concluding considerations are provided.

13.2 Dissimilarity in Recommendation

13.2.1 Motivation

The main idea behind our proposal is that symmetric similarity may not be suffi-

cient to capture subtle interactions between items. We assume that representing the

similarity through traditional measures can lead to imperfect results as important

291

information might not be properly considered. Let us consider some examples in an

item-kNN scenario. Suppose we are dealing with a dataset containing rating data

from the book domain on the following books:

Title Short name Author # Votes

A Game of Thrones GoT G. R. R. Martin 100

A Dance with Dragons DwD G. R. R. Martin 10

Shroud of Eternity SoE T. Goodkind 120

By looking at the previous data, we see that both A Game of Thrones and A

Dance with Dragons belong to the same saga A song of ice and fire and they are,

respectively, the first and the fifth volume. Shroud of Eternity is the second volume

of Nicci Chronicles’ saga. We may assume that all the users who rated DwD also

rated GoT, i.e., UDwD ⊆UGoT . Analogously, since the topic of the book is mostly

the same, we may assume that a number of readers of SoE also voted GoT, USoE ∩
UGoT 6= /0. Suppose now that we have USoE ∩UGoT = 20 and UDwD∩UGoT = 10. If

we compute the Jaccard similarity between the pairs SoE, GoT and DwD, GoT we

have

JS(DwD,GoT) =
|UDwD∩UGoT |
|UDwD∪UGoT |

= 0.1

JS(SoE,GoT) =
|USoE ∩UGoT |
|USoE ∪UGoT |

= 0.1

In our opinion, much relevant information has been lost in this simple example.

The scenario is shown graphically in Figure 13.1.

It is clear that UDwD is a proper subset of UGoT and, on the contrary, there are

many users in USoE that have not experienced GoT. This information is mostly lost

in the computation of the similarity values even though a piece of this information

is retained in the denominator of the Jaccard coefficient through the overall value of

UGoT ∪UDwD and UGoT ∪USoE .

In order to clarify the reason why we do not consider this remaining information

sufficient, let us consider a more formal description of the scenario. Many similarity

measures (like Jaccard in the previous example) mainly rely on a value that denotes

the similarity between two items normalized by their overall weight. This can be

292

(a) UDwD

is entirely

contained in

UGoT

(b) UGoT , is partially

overlapped with USoE

Figure 13.1: Representation of the motivation example

represented as a probability. Let I (u) = {〈i,rui〉 | u rated i with rui} be the user

profile containing the pairs item-rating and U (i) = {〈u,rui〉 | 〈i,rui〉 ∈I (u)} be the

set of users that experienced i. If we consider Jaccard similarity we see it represents

the following probability:

pJS(i, j) = p(〈u,rui〉 ∈U (i)∧〈u,ru j〉 ∈U (j)) (13.1)

which can be read as the probability that u experienced both i and j. Under a proba-

bilistic lens, we may define dissimilarity measures with two different probabilities:

• the probability that a generic user u experienced the item i but never experi-

enced the item j

• the probability that a generic user u experienced the item j but never experi-

enced the item i

Since we are introducing an asymmetric behavior in computing the similarity be-

tween i and i as well as between j and i, we see that the two probabilities have a

different role while computing a similarity measure.

In a classical memory-based Item-kNN, sim(i, j) is used to compare i to dif-

ferent j to find out which js are the most similar to i. In practical terms, we are

interested in how much j is similar to i. If we focus on Figure 13.1a, we realize that

DwD is more similar to GoT than the opposite situation. The reason behind this

behavior is not directly related to the size of the involved sets but it depends on the

probability that a user who experienced GoT did not experience DwD.

293

Though some interesting asymmetric similarities have been proposed in the last

years [306, 210], to our knowledge, no one focused on this probability that repre-

sents a negative asymmetric dissimilarity.

13.2.2 Metrics

In this work, we propose a general asymmetric similarity model in which items i, j

similarities are computed by taking into account the probability that users that ex-

perienced j never experienced i. The idea behind our work is preserving the core

meaning of a specific similarity, applying a corrective factor encoding the dissimi-

larity we mentioned before.

We introduced this correction into two binary symmetric similarities: Jaccard

and Sørensen index, and in the asymmetric variant to the Jaccard coefficient pro-

posed in [261]. We tested this correction both as an additive and as a multiplicative

factor.

For the sake of completeness, we reintroduce Jaccard coefficient similarity (JS)

that, for a memory-based item-kNN model can be expressed as:

JS(i, j) =
|U (i)∩U (j)|
|U (i)∪U (j)|

(13.2)

The probability that users who experienced j never experienced i can be mod-

eled as the complementary probability of Equation (13.1) w.r.t. U (i) over |U (i)∪
U (j)|. This probability, we name Jaccard Asymmetric Dissimilarity(JAD) can be

formulated as follows:

JAD(i, j) =
|U (j)|− |U (i)∩U (j)|
|U (i)∪U (j)|

(13.3)

Again, Equation (13.3) can be seen in terms of probability as

pJAD(i, j) = p(〈u,ru j〉 ∈U (j))− pJS(i, j)

We now propose to modify the original similarity by injecting the former neg-

ative correction weighted with a parameter λ that can be easily customized. The

overall similarity, Additive Adjusted Jaccard (AAJ), is then formulated as:

AAJ(i, j) = JS(i, j)−λ · JAD(i, j) (13.4)

294

where λ is a parameter that could depend on many factors such as the number

of users and items in the dataset and the intensity of interactions between them.

Recalling that the overall formula should represent a degree of similarity be-

tween the two different items we defined the Multiplicative Adjusted Jaccard as the

product of Jaccard similarity with the inverse of Jaccard Asymmetric Dissimilarity

(IJAD). In other words, we use 1
pJAD(i, j) as a corrective factor for pJS(i, j). We then

define the Multiplicative Adjusted Jaccard (MAJ) as:

MAJ(i, j) =
JS(i, j)

JAD(i, j)
= JS(i, j) · IJAD(i, j) (13.5)

In the multiplicative variant, in order to avoid division by zero the minimum

value for JAD is set to 1
|U (i)∪U (j)| . As mentioned in Section 13.2.1 a symmetric

variant of Jaccard coefficient (named Jaccard Symmetric Dissimilarity (JSD)) can

be used composing Equation (13.3) with the probability that a user u experienced

the item i but never experienced the item j:

JSD(i, j) =
(|U (j)|− |U (i)∩U (j)|)+(|U (i)|− |U (i)∩U (j)|)

|U (i)∪U (j)|

=
|U (i)|+ |U (j)|−2 · |U (i)∩U (j)|

|U (i)∪U (j)|
leading to the corresponding probability

pJSD(i, j) = pJAD(i, j)+ pJAD(j, i)

Thus the Symmetric Additive Adjusted Jaccard (S-AAJ) and Symmetric Multi-

plicative Adjusted Jaccard (S-MAJ) can be defined as follows:

S-AAJ(i, j) = JS(i, j)−λ · JSD(i, j)

S-MAJ(i,j) =
JS(i, j)

JSD(i, j)
In order to test our idea, we applied all the variants previously introduced for Jac-

card similarity to two popular similarity measures: Asymmetric Jaccard Similarity

(AJS) and Sørensen coefficient (SOR). All the derived variants are represented, re-

spectively, in Table 13.1 and Table 13.2.

All the above metrics have been introduced having in mind an item-kNN ap-

proach but, without loss of generality, they can be applied to user-kNN model as

well.

295

Table 13.1: Asymmetric Jaccard considered variants.

Short name Extended Formula

AJS(i,j) Asymm. Jaccard |U (i)∩U (j)|
|U (i)|Similarity

AJD(i,j) Asymm. Jaccard |U (j)|−|U (i)∩U (j)|
|U (i)|Dissimilarity

AAAJ(i,j) Additive Adjusted
AJS(i, j)−λ ·AJD(i, j)

Asymm. Jaccard

MAAJ(i,j) Multiplicative Adjus.
AJS(i, j) · IJAD(i, j)

Asymm. Jaccard

S-AAAJ(i,j) Symmetric AAAJ
AJS(i, j)−λ · |U (i)|+|U (j)|−2·|U (i)∩U (j)|

|U (i)|

S-MAAJ(i,j) Symmetric MAAJ AJS(i, j) · IJSD(i, j)

13.3 Experimental Evaluation

The experimental evaluation has been carried out on three publicly available datasets

and with different values of k and λ .

Datasets. We evaluated the effectiveness of our approach on the three datasets

shown in Table 13.3 belonging to different domains (Music, Books, and Movies).

The Last.fm dataset [84] corresponds to transactions with Last.fm online music

system released in HetRec 20111. It contains social networking, tagging, and mu-

sic artist listening information from a set of 2K users. LibraryThing represents

books ratings collected in the LibraryThing community website. It contains social

networking, tagging, and rating information on a [1..10] scale. Yahoo!Movies

(Yahoo! Webscope dataset ydata-ymovies-user-movie-ratings-content-v1 0)2 con-

tains movies ratings generated by Yahoo! Movies up to November 2003. It pro-

vides content, demographic, rating information, and mappings to MovieLens and

EachMovie datasets.

1http://ir.ii.uam.es/hetrec2011/
2http://research.yahoo.com/Academic Relations

296

Table 13.2: Sørensen similarity considered variants.

Short name Extended Formula

SOR(i,j) Sørensen Similarity |U (i)∩U (j)|
|U (i)|+|U (j)|

ASD(i,j) Asymm. Sørensen |U (j)|−|U (i)∩U (j)|
|U (i)|+|U (j)|Dissimilarity

AAS(i,j) Additive Adjusted
SOR(i, j)−λASD(i, j)

Assym Sørensen

MAS(i,j) Multiplicative Adjusted
SOR(i, j) · IJAD(i, j)

Asymm Sørensen

S-AAS(i,j) Symmetric AAS
SOR(i, j)−λ

|U (i)|+|U (j)|−2·|U (i)∩U (j)|
|U (i)|+|U (j)|

S-MAS(i,j) Symmetric MAS SOR(i, j) · IJSD(i, j)

Table 13.3: Datasets statistics.

Dataset #Users #Items #Transactions Sparsity

Yahoo! Movies 7642 11,916 221,367 99.76%

LibraryThing 7279 37,232 2,056,487 99.24%

Last FM 1850 11,247 59,071 99.72%

Columns corresponding to #Users, #Items and #Transactions show the number of users, number of items and number of

transactions, respectively, in each dataset. The last column shows the sparsity of the dataset.

Evaluation Protocol and Experimental Setting with Parameters tuning. The

evaluation protocol we adopted in our experiments is all unrated items [356]. With

this protocol, the recommendation list is computed from a candidate list given by

the cartesian product between users and items minus the items each user experi-

mented in the training set. We performed a temporal 64-16-20 hold-out split (when

temporal information is available) retaining the last 20% of ratings as test set and

16% as validation set. We measured the performance by computing Precision@N

(Prec@N) for top-N recommendation lists as accuracy metric. Precision has been

computed on a per-user basis, and the returned results have been averaged. As

297

Precision needs relevant items to be computed, we set the relevance threshold to 8

over 10 for LibraryThing and Yahoo!Movies, and to 0 for Last.fm since

in this latter no ratings are provided but the number of user-item transactions. We

measured Diversity through catalog coverage (aggregate diversity in top-N list).

The catalog coverage, also called diversity-in-top-N (D@N) [14], is measured by

computing the overall number of different items recommended within the complete

recommendation list. It represents the propensity of a system to recommend always

the same items.

Baselines. We compared our approaches in both User-kNN and Item-kNN set-

tings. The former finds the k-nearest user neighbors based on a similarity func-

tion and then exploits them to predict a score for each user-item pair. The latter is

the item-based version of the k-nearest neighbors algorithm that uses the k-nearest

items to compute the predictions. For both schemes we used the validation set

to find the optimal hyperparameters. However, we are not interested in the algo-

rithm itself but on the similarity measures that are used to compute neighbors and

predictions. As baseline to compare with, we used both symmetric and asymmetric

measures, namely, Jaccard (JS) and Sorensen (SOR) (for symmetric measures) and

asymmetric Jaccard (AJS) and asymmetric Jaccard weighted with the Sorensen
Index (ASOR) [210] (for asymmetric measures). For all the similarities that make

use of λ we evaluated them varying λ in {0.2,0.4,0.6,0.8} whereas we considered

a number of Neighbors varying in {10,20,30,40,50,60,70,80,90,100}. We ran

the algorithms with all possible combinations, and we selected the best performing

ones with respect to Precision@N. The best parameters for user-based and item-

based schemes are represented, respectively in Table 13.4 and 13.5.

Table 13.4: Best parameters for User-kNN scheme

Precision - P@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets k λ k k λ k k k k λ k k λ k k k λ k k λ k P@10
LibraryThing 50 0.2 100 50 0.2 30 100 90 50 0.2 50 50 0.2 30 100 20 0.2 100 40 0.2 50 20

Yahoo 90 0.4 100 40 0.2 100 90 100 90 0.2 40 40 0.2 100 90 10 0.6 80 30 0.2 100 70

Last FM 90 0.2 100 100 0.2 50 90 90 100 0.2 100 100 0.2 50 90 30 0.2 100 100 0.2 50 20

Performance of the proposed methods. Results in Table 13.6 show the per-

298

Table 13.5: Best parameters for Item-kNN scheme

Precision - P@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets k λ k k λ k k k k λ k k λ k k k λ k k λ k P@10
LibraryThing 10 0.2 20 20 0.4 10 20 70 10 0.2 20 20 0.4 10 20 60 0.2 10 10 0.2 10 60

Yahoo 10 0.2 20 10 0.2 10 10 10 10 0.2 10 10 0.2 10 10 20 0.2 20 10 0.2 10 10

Last FM 10 0.2 20 30 0.2 20 10 10 10 0.2 30 30 0.2 20 10 10 0.2 40 20 0.2 70 10

Table 13.6: Comparison in terms of Precision and Aggregate Diversity for User-

kNN scheme with best parameters

Precision - P@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 0.03025 0.04005 0.04675 0.00416 0.03102 0.03565 0.03031 0.04687 0.04687 0.00416 0.03088 0.03768 0.03871 0.04670 0.00429 0.03796

Yahoo 0.04165 0.05196 0.06284 0.03892 0.04149 0.04261 0.04151 0.06354 0.06354 0.03917 0.04170 0.05465 0.04234 0.06176 0.03705 0.05207

Last FM 0.02704 0.02163 0.02532 0.00601 0.02773 0.02927 0.02747 0.02532 0.02532 0.00609 0.02695 0.02901 0.02120 0.03039 0.00592 0.03107

Aggregate Diversity - D@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 2735 7330 3093 3341 1953 2687 2660 2999 2999 3337 1879 2519 7443 3037 3337 2834

Yahoo 698 2087 1126 2181 796 882 662 1074 1074 2179 732 974 1903 1147 2177 580

Last FM 1136 1665 1485 1156 1203 1283 1097 1446 1446 1154 1145 764 1748 889 1163 1025

Table 13.7: Comparison in terms of Precision and Aggregate Diversity for Item-

kNN scheme with best parameters

Precision - P@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 0.08180 0.07449 0.03189 0.06482 0.08048 0.07835 0.07949 0.02462 0.02462 0.06111 0.07894 0.04556 0.08748 0.02256 0.06293 0.06097

Yahoo 0.05105 0.04976 0.00272 0.04966 0.05187 0.05013 0.05043 0.00196 0.00196 0.04915 0.05141 0.01598 0.05031 0.00175 0.04842 0.02437

Last FM 0.02146 0.02549 0.00326 0.02489 0.02120 0.02052 0.02069 0.00275 0.00275 0.02403 0.02077 0.00876 0.02910 0.00240 0.02506 0.01373

Aggregate Diversity - D@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 11945 12338 22097 11654 11551 10521 11774 21365 21365 11447 11450 18604 12899 13042 13604 16018

Yahoo 3262 5159 4644 3466 3091 3539 3340 4742 4742 4351 3725 6864 3946 3645 4514 5565

Last FM 2867 4394 3884 2920 2763 3389 2917 3648 3654 3446 3341 5150 3680 3078 3429 4447

formance of all algorithms with a user-based scheme. Concerning accuracy, it

is clear that both asymmetric and symmetric multiplicative variants are the best-

performing ones. MAJ and S-MAJ achieve good performance, outperforming JS.

The same trend is shown between MAAJ, S-MAAJ, and AJS. The same behav-

ior can be observed in the Sorensen algorithms block, in which MAS outperforms

SOR in LibraryThing and Yahoo!Movies datasets with the only exception

of Last.fm datasets. Concerning Diversity the proposed variants constantly out-

perform the base variants. It is worth to note that AAJ and AAAJ algorithms that

can recommend much more items with a little loss of Precision. Table 13.7 shows

299

the results for the item-based scheme. Performance is much different here, and we

can note that the multiplicative asymmetric variants have a worse behavior. How-

ever, the Last.fm results show that the additive variants outperform the base ones.

We can observe the same behavior also in the whole asymmetric Jaccard similarity

block for all the three datasets. The Jaccard similarity and the Sørensen block, for

LibraryThing and Yahoo!Movies show no clear champion concerning the

performance of JS/SOR and S-MAJ/S-MAS that result very similar. This behavior

may be due to the tuning results that are very close to each other, and this probably

prevented us from selecting the best parameters.

Experimental Setting with a fixed number of neighbors. In tables 13.4 and 13.5

we see that best values of λ and k are different depending on the adopted approach.

Hence, we also tested the different algorithms with a fixed number of neighbors. In

other words, we checked: How would the different algorithms perform if, i.e., we

fix the number of neighbors? Once again we employed the all unrated items eval-

uation protocol to evaluate the methods. We performed a temporal 80-20 hold-out

split retaining the last 20% of ratings as test set using temporal information when

available.

Baselines. Even in this experiment, we compared our approaches with both User-

kNN and Item-kNN settings considering, for all the algorithms, the number of

neighbors fixed and set to k = 80. For all the similarities that make use of λ we

evaluated them varying λ in 0.2,0.4,0.6,0.8. In Tables 13.8 and 13.9 we show the

best results we obtained3. The best values regarding Precision and Aggregate Di-

versity are highlighted in bold. We computed significance tests for precision results,

and we found they are statistically significant at the 0.05 level w.r.t. their respective

baselines.

Performance of the proposed methods. Results in Table 13.8 show that our

approach always outperforms baseline variants in the User-kNN scheme. In de-

tails additive asymmetric similarity and multiplicative asymmetric similarity sig-

nificantly perform better than JS, SOR and ASOR for all three dataset. Among

3The complete results are publicly available at https://github.com/sisinflab/The-importance-
of-being-dissimilar-in-Recommendation.

300

Table 13.8: Comparison in terms of Precision and Aggregate Diversity for User-

kNN scheme

Precision - P@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets P@10 λ P@10 P@10 λ P@10 P@10 P@10 P@10 λ P@10 P@10 λ P@10 P@10 P@10 λ P@10 P@10 λ P@10 P@10
LibraryThing 0.0363 0.2 0.0582 0.0627 0.4 0.0364 0.0010 0.0394 0.0363 0.2 0.0586 0.0629 0.2 0.0405 0.0364 0.0364 0.2 0.0558 0.0603 0.2 0.0057 0.0375

Yahoo 0.0437 0.4 0.0561 0.0676 0.2 0.0403 0.0433 0.0442 0.0438 0.4 0.0573 0.0687 0.2 0.0568 0.0435 0.0607 0.6 0.0529 0.0664 0.2 0.0378 0.0529

Last FM 0.0164 0.4 0.0242 0.0257 0.2 0.0037 0.0160 0.0215 0.0166 0.4 0.0241 0.0253 0.2 0.0275 0.0164 0.0248 0.2 0.0228 0.0323 0.2 0.0037 0.0242

Aggregate Diversity - D@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets D@10 λ D@10 D@10 λ D@10 D@10 D@10 D@10 λ D@10 D@10 λ D@10 D@10 D@10 λ D@10 D@10 λ D@10 D@10
LibraryThing 2136 0.2 7367 2406 0.4 2246 873 2819 2083 0.2 7330 2292 0.2 5528 2171 1299 0.2 7501 2060 0.2 3331 1486

Yahoo 734 0.4 2070 835 0.2 2187 825 936 695 0.4 2048 786 0.2 1114 784 451 0.6 1773 717 0.2 2175 587

Last FM 1449 0.4 1345 1654 0.2 1203 1460 1433 1324 0.4 1324 1625 0.2 1410 1420 774 0.2 1665 1077 0.2 1207 941

Table 13.9: Comparison in terms of Precision and Aggregate Diversity for Item-

kNN scheme

Precision - P@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets P@10 λ P@10 P@10 λ P@10 P@10 P@10 P@10 λ P@10 P@10 λ P@10 P@10 P@10 λ P@10 P@10 λ P@10 P@10
LibraryThing 0.0869 0.2 0.0949 0.0451 0.4 0.0822 0.0944 0.1019 0.0815 0.2 0.0914 0.0374 0.4 0.0826 0.0901 0.0598 0.2 0.1011 0.0303 0.4 0.0830 0.0792

Yahoo 0.0331 0.2 0.0510 0.0016 0.2 0.0535 0.0373 0.0447 0.0297 0.2 0.0504 0.0014 0.2 0.0531 0.0352 0.0046 0.4 0.0509 0.0012 0.2 0.0527 0.0083

Last FM 0.0141 0.2 0.0248 0.0036 0.2 0.0230 0.0158 0.0127 0.0124 0.4 0.0195 0.0031 0.2 0.0230 0.0155 0.0036 0.2 0.0237 0.0032 0.2 0.0229 0.0068

Aggregate Diversity - D@10
JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ

Datasets D@10 λ D@10 D@10 λ D@10 D@10 D@10 D@10 λ D@10 D@10 λ D@10 D@10 D@10 λ D@10 D@10 λ D@10 D@10
LibraryThing 9745 0.2 12004 17510 0.4 12304 10249 10399 9556 0.2 11727 16557 0.4 13306 9998 17361 0.2 11221 11132 0.4 12315 14819

Yahoo 3103 0.2 3718 3463 0.2 4315 2541 3346 3184 0.2 3935 3397 0.2 3541 2475 2948 0.4 4092 2334 0.2 3756 2295

Last FM 3508 0.2 3538 3486 0.2 3462 2911 3779 3265 0.4 305 3175 0.2 3509 2887 2992 0.2 3935 2644 0.2 3692 3457

these two variants of similarity, the multiplicative variant is the best-performing

one. Quite interestingly, modifying AJS, which is asymmetric in its inner nature

with our asymmetric dissimilarity factor leads to an improvement irrespective of the

considered dataset. It is worth noticing that, other than the accuracy improvements,

aggregate diversity also increases due to the dissimilarity injection. In details, the

asymmetric additive variant achieves the best results and triples catalog coverage

values for LibraryThing and Yahoo!Movies.

Table 13.9 shows Precision and Catalog Coverage results for an item-based

scheme. Obtained results are quite interesting for many reasons. First of all, it

is clear that the same similarities can lead to very different results depending on the

adopted scheme. In particular, asymmetric Jaccard (AJS) performs very badly for

the item-kNN algorithm. Under the dissimilarities perspective, we have the same

behavior, and the multiplicative approach performs badly. Quite surprisingly, the

301

additive version can always outperform the base variants. This suggests that adopt-

ing an additive strategy for item-kNN may lead to better results. This may be due

to the wide number of items pairs without any common user. Focusing on additive

symmetric and asymmetric similarities we can note that aggregate diversity results

reflect the same improvements observed in accuracy values. The only case that ap-

pears to behave differently is AAAJ that registered a catalog coverage lower than

AJS. This happens as we considered the best performing λ for precision. In case of

λ ∈ {0.4,0.6} we obtain aggregate diversity values of 16,205 and 18,071, respec-

tively, with precision results constantly higher than AJS (0.09374 and 0.08820). We

may observe another interesting pattern on the Yahoo!Movies row: the symmet-

ric version outperforms the asymmetric one. This could be due to some datasetś

characteristic. By looking at the data in Table 13.3 we see that the ratio of the

number of items to the number of users is much higher in LibraryThing and

Last.fm (≈ 5 and ≈ 6) with respect to Yahoo!Movies (≈ 1.5). This suggests

that the more the ratio is, the more is convenient to adopt an asymmetric scheme.

However, this consideration needs to be further investigated.

13.4 Conclusion and Future Work

In this work, we propose a method to improve the performance of neighborhood-

based models, by capturing subtle interactions between users and items, which can-

not be appreciated using a traditional similarity measure. We defined a dissimilarity

measure, that can be used combined with traditional user-based and item-based

schemes. The proposed approach takes into account the single asymmetric com-

ponents, leading to an improvement in both precision and aggregate diversity re-

sults. We performed a comparative experimental evaluation using three well-known

datasets, varying the tuning parameter λ and k. Experiments show that our approach

outperforms competing algorithms, denoting the usefulness of incorporating sym-

metric and asymmetric dissimilarity in neighborhood-based models. We are cur-

rently working on an extension of our idea that also takes into account user ratings

and not just set-based measures. As a further extension, we are also interested in

302

making the approach even more personalized by weighting dissimilarity with user-

centered values of λ .

303

304

Chapter 14

An investigation over
hyperparameters tuning: A
Discriminative Power perspective

14.1 Introduction

Recommenders Systems now play an important role in the lives of users. These

systems avoid massive data overwhelm users and help them in finding a path to rel-

evant information [317]. To enhance the expressiveness of the models or to improve

the learning phase, these models can be equipped with a special class of parame-

ters, named hyperparameters. Since many recommender systems come with one or

more hyperparameters, the goodness of the system depends on how these parame-

ters are selected. Although several strategies are available [61, 93, 350, 252, 188],

the choice of the metric to evaluate them is not manifest. Are there particular mea-

sures that are well-suited for hyperparameters tuning? Are the changes in the met-

ric’s values significant or they are fundamentally originated by chance?

305

Up to the Netflix prize [52], the research community widely considered the

recommendation problem as a rating prediction task [425, 363]. Consequently, the

optimization goal was the minimization of the prediction error [178, 339]. However,

in real recommender systems applications, only a small subset of relevant items are

provided to users [178]. Indeed, several studies acknowledged that rating prediction

optimization was not able to produce the optimal top-N recommendation lists [256].

Recommendation problem was hence re-defined as a top-N recommendation task

[108], in which the optimization goal shifted to items ranking.

From this new perspective, many Information Retrieval metrics came to play

to evaluate recommender systems. After decades, accuracy is still broadly consid-

ered as the key element in evaluation. Nonetheless, new dimensions as novelty and

diversity of recommendation [91, 377, 186] became progressively important. In

compliance with the purpose of the system, accuracy, novelty, and diversity metrics

are used both to evaluate the recommender and tune the hyperparameters. Although

recommender systems are evaluated using an online or offline setting, hyperparam-

eters are usually tuned in an offline setting [339]. In this setting, to evaluate the

competing models (or hyperparameters candidate values), past users interactions are

split adopting distinct strategies like Hold-Out [245, 107, 364] and k-Folds Cross-

Validation (CV) [111, 219, 189]. In the former, the training set is split into two

further sets: training, and validation set. In the latter, data is divided into k sets,

retaining in rotation one of them as the validation set and the remaining ones as the

training set.

The choice of hyperparameters values to test has also been deeply investigated.

Among all the most adopted techniques are Random [53, 305, 54], Bayesian opti-

mization [353, 76], and Grid Search [150, 55, 187]. Nevertheless, even though a

recommender system’s hyperparameter tuning is wisely designed to achieve more

robust results, some aspects need further investigation. For instance, the behaviour

of different metrics when varying the folds is still an almost unexplored field. As an

example, if the metric is not able to capture significant differences when different

values of parameters are set, that metric is not the ideal one to tune hyperparameters.

A recent study [375] depicted a new interesting methodology to establish whether

306

a metric is discriminative, robust and the authors also performed a metric-to-metric

comparison. Even though the authors designed it to measure the robustness of

metrics to changes in the cut-off (previously explored in Information Retrieval in

[251]), the overall procedure, along with the Discriminative Power and Robustness

definition inspired us to propose a new procedure to evaluate metrics and study the

metric-hyperparameter combined behaviour.

Our experiments on two well-known datasets show that Precision and nor-

malised Discounted Cumulative Gain are the most discriminative accuracy metrics

to use in model selection. We additionally show that also considering the standard

deviation variations over the folds these metrics still behave better than Recall and

Mean Reciprocal Rank. We show that Expected Free Discovery and Expected Pop-

ularity Complement metrics are discriminative and are significantly influenced by

changes in hyperparameters values. Finally, if more than one hyperparameters have

to be set, it is possible to investigate how changes in the specific parameters affect

the considered metric.

In this research line we have focused on:

1. a study on the discriminative power of accuracy and novelty metrics for the

k-Folds Cross-Validation hyperparameter tuning for three well-known collab-

orative models;

2. a procedure for models with more than one parameter to check if variations in

one of the parameters were particularly relevant for accuracy of recommen-

dation;

3. a study on the impact of ”Number of latent factors”, ”Number of iterations”,

and ”learning rate” on accuracy of recommendation for BPR-MF.

The remainder of the chapter is structured as follows: Section 14.2 introduces the

setting of our experiments describing the adopted methodologies; then we focus on

the discriminative power of metrics and their variations across folds; in Section 14.5

we study separately the hyperparameters of BPR-MF. Conclusions are drawn at the

end of the chapter.

307

14.2 Experimental Settings

Discriminative Power (DP) is a metric proposed by [375] to measure the discrim-

inative power of an evaluation metric over a set of competing algorithms. The

procedure was originally presented by [326] in 2006. Given a metric, a dataset, and

a set of recommender systems, the authors perform a statistical test considering all

the possible system pairs. The obtained p-values can be sorted by decreasing value

and plotted. The resulting curve is the p-values curve of the considered metric.

Analogously, the corresponding p-values curve can be obtained for each considered

metric. Since lower values of p-values denote statistical differences between system

pairs, the metric with the lower area under the curve can be considered as the most

discriminative. DP consists of the summation of all the p-values for a given metric,

and it can be considered as an approximation of the area under the curve for that

metric. Interestingly, in [375], the authors extend the idea of competing algorithms

to a set composed of instances of the same algorithm considering different cut-off

values. However, this idea can be further extended to consider a set of instances of

the same algorithm considering different hyper-parameter values. This idea is the

starting point of our work.

Dataset Users Items Ratings Sparsity
MovieLens-1M 6040 3706 1000209 95.53%

Amazon Movies 16141 111537 858314 99.95%

Table 14.1: Datasets statistics

Datasets. To conduct our study we exploited two different datasets in the Movies

domain: Amazon Movies1 and MovieLens-1M. Both datasets contain explicit rat-

ings on a 1-5 scale. For Amazon Movies dataset we removed users with less 20 in-

teractions and items with less than 25 votes. Then we sampled the resulting dataset

to generate a subset that preserves the original distribution of data [253, 254]. Ex-

periments were conducted on a dedicated server equipped with an Intel Xenon with

32 cores, and 256GB RAM memory. The sampling step was necessary to perform

1https://snap.stanford.edu/data/web-Movies.html

308

experiments in a reasonable time. The characteristics of datasets are reported in

Table 14.1.

Over the years, several splitting methodologies have been proposed [32, 51,

339]. We decided to split our data in training and test set using a temporal Hold-

Out splitting [339]. For each user, the first 80% of the interactions are considered

as the training set, whereas the remaining 20% is used as the test set. The training

set is further divided using a 10-Folds Cross-Validation.

Evaluation protocol. Offline evaluation in recommender systems is a well-studied

field. To evaluate the approaches we decided to use ”All Unrated Items” protocol

[356], in which the set of candidate items for user u is composed of all items i not

rated in u’s training set. Many metrics make use of binary relevance. Since we use

datasets with explicit ratings, a relevance threshold τ [83] should be set to establish

whether the items in each user’s test set are relevant or not. We set τ to 4 for both

datasets: only items with a rate above τ are considered as relevant during evalua-

tion.

Algorithms. To study the hyperparameters influence on the discriminative power of

metrics we decided to consider two distinct families of algorithms: Neighborhood

models, and Matrix Factorization models. For the former, we considered both the

User-based and Item-based scheme [333, 31]. For the latter, BPR-MF [312] was

considered. In BPR-MF the classic MF model is optimized adopting the Bayesian

Personalized Ranking Criterion, a well-known pairwise ”learning to rank” algo-

rithm.

Metrics. We decided to study the discriminative power of some widely used met-

rics along two dimensions: Accuracy and Novelty. In order to evaluate the ac-

curacy of the algorithms, we measured normalised Discount Cumulative Gain@N

(nDCG@N) [198], Precision (Prec@N), Recall (Rec@N), and Mean Reciprocal

Rank (MRR@N). To evaluate Novelty, we decided to measure Expected Free Dis-

covery (EFD@N) [377], and Expected Popularity Complement (EPC@N) [91].

These metrics were computed per user to perform the Student’s t statistical test.

The metrics values and the overall mean was computed using the RankSys frame-

work [91].

309

Grid Search. To study the DP of the metrics for the different algorithms, we con-

ducted a grid search exploration. This procedure is very common for hyperparam-

eters tuning. However, based on how much exhaustive this search is, the operation

can be time and space consuming. For this reason, we needed to determine the

boundaries of this grid. The number of hyperparameters we decided to explore was

1 for Neighborhood models (the number of Neighbors), and 3 for Matrix Factoriza-

tion (latent factors, iterations, learning rate). For Matrix Factorization we assumed

user and item regularization to be dependent on learning rate, with a scale factor

of respectively 1/20 and 1/200. We computed the values of the grid exploiting an

exponential function with base 2 [56, 117]. To determine the evolution of latent fac-

tors, we used as an exponent for our function values within the range [3.321,10.821]

with a step of 0.5. The same procedure and the same step have been used to define

all the hyperparameters values. The difference basically consists of the considered

range, chosen coherently with literature. For the number of iterations, we consid-

ered a range of [0,7] as the exponent. Finally, for the learning rate the exponent

is in the range [-2.3219,-16.3219]. This choice led to learning values in the range

[0.00001220726897, 0,2000038948] considering 5 orders of magnitude. Summing

up, for Matrix Factorization we had a grid of dimensions 15× 15× 14. This grid

generates 3150 different configurations of hyperparameters for each fold. Since the

exploration on Amazon would have required several months we extracted a sub grid

(5× 3× 3) with the best value for each hyper-parameter (considering nDCG@10)

± 2 neighbors in the grid. The overall hyperparameters values are depicted in Table

14.2.

14.3 Discriminative Power of metrics on Hyperparam-

eters

The discriminative power (DP) of each metric using hyper parameters depicted in

Table 14.2 can be studied exploiting the same strategy proposed in [375]. We com-

pute the p-value across all folds in our k-fold cross-validation setting. For each

algorithm, we generate all possible combinations of pairs of hyperparameters and

310

Latent factors Iterations Learning rate Nearest neighbors
10 1 0.20000389 10

14 2 0.10000195 14

20 3 0.05000097 20

28 4 0.02500049 28

40 6 0.01250024 40

57 8 0.00625012 57

80 11 0.00312506 80

113 16 0.00156253 113

160 23 0.00078127 160

226 32 0.00039063 226

320 45 0.00019532 320

452 64 0.00009766 452

640 91 0.00004883 640

905 128 0.00002441 905

1809 0.00001221 1809

Table 14.2: Hyperparameters grid

we randomly take 25 combinations. Thus, for these pairs, we compute the p-values

for each fold. The p-values of the paired statistical tests are sorted by decreasing

value and the corresponding values are averaged over the folds. For memory-based

algorithms, the pairs correspond to pairs of systems with a different number of near-

est neighbors. Even for BPR-MF, these pairs are pairs of systems. However, each

MovieLens EFD@N EPC@N MRR@N nDCG@N Prec@N Rec@N

Item-kNN 1.884 1.840 1.766 1.710 1.855 2.385

User-kNN 1.688 1.576 2.196 1.665 1.869 1.993

BPR-MF 0.875 0.776 0.803 0.594 0.585 1.314

Amazon EFD@N EPC@N MRR@N nDCG@N Prec@N Rec@N

Item-kNN 0.188 0.188 0.188 0.213 0.161 0.281

User-kNN 4.738 5.717 6.646 6.310 5.474 6.281

BPR-MF 3.771 3.841 4.518 3.989 3.289 4.434

Table 14.3: Metrics Discriminative Power.

system is defined by a triple: Latent Factors, Iterations, Learning Rate. The sorted

and averaged values can be plotted and they correspond to the averaged p-values

curve. For each Accuracy and Novelty metrics, these plots are depicted in Fig-

311

ure 14.1. For each metric, the corresponding curve gives us an intuition on how

that metric is discriminative with respect to the evolution of hyperparameters. Ta-

ble 14.3 summarises the DP values of the metrics respectively on Movielens and

Amazon. We used bold to highlight the best-performing metric and underline to

highlight the worst one. On Movielens the trends of accuracy metrics seem to be

clear: nDCG@N always performs better than the others while MRR@N and Rec@N

seem to be the worst metrics. It is interesting to notice that Novelty metrics achieve

good DP values. This could be a signal that changes in parameters values lead to

significant differences in terms of Novelty. On Amazon, the Best Accuracy met-

ric is definitely Prec@N, while, even here, for User-kNN and BPR-MF the worst

metric is MRR@N. In [375], it is suggested that this kind of behaviour can be due

to the complexity of the metric. We agree with the authors and we reckon that this

could also be due to some characteristics of the dataset, like the average number

of rating per user (lower than Movielens’s), the sparsity of the dataset (higher than

Movielens’s), and the low average number of ratings per item.

(a) MovieLens: Item-KNN (b) MovieLens: User-KNN (c) MovieLens: BPR-MF

(d) Amazon: Item-KNN (e) Amazon: User-KNN (f) Amazon: BPR-MF

Figure 14.1: Discriminative Power of Accuracy and Novelty metrics

312

14.4 Metrics Confidence

In the previous section, we compared the Discriminative Power of different metrics

and we found that nDCG@N and Prec@N are two good choices to select the best

hyperparameters value for Neighborhood-based models and BPR-MF. In details, we

consider the best hyperparameters value as the value which ensures the best perfor-

mance with respect to the most discriminative metric. However, since we computed

the averaged p-values curves across 10 Folds, and hence the averaged DP, it is still

possible that these metrics could be much less discriminative on some folds. If this

is true, the choice of an elected metric to conduct hyperparameters learning could

be argued. For this reason, now we study the variations across different folds of the

metrics p-values. Given the sorted p-values for each fold, we computed the standard

deviation for each ordered pair across folds. These values can be exploited to define

two additional p-values curves, which represent reasonable boundaries of p-values

for each metric. Moreover, it is possible to compute the corresponding DP values,

for each metric ± the standard deviation. This could give us an intuition of the

metric’s DP robustness across folds. Table 14.4 shows the results for respectively

Amazon and Movielens dataset. On Amazon, we may notice the good performance

of Prec@N with Item-kNN model. Although Amazon is a very sparse dataset with

a large number of items, Prec@N is able to capture significant differences between

similar models with a different number of neighbours. Moreover, if we observe the

DP value considering the standard deviation, this extreme value is still very close to

the DP of the worst metric. This behaviour is also present on Movielens, for both

Item-kNN and BPR-MF. We considered the worst scenario in which we added the

standard deviation value to each pair in comparison.

However, it seems clear that the metrics chosen with the previous procedure

show good performance across the different folds.

313

MovieLens Best metric Worst metric Best avg Best + Std Dev Worst avg

Item-kNN nDCG@N Recall@N 1.710 2.940 2.385

User-kNN nDCG@N MRR@N 1.665 2.958 1.704

BPR-MF Prec@N Recall@N 0.585 1.126 1.314

Amazon Best metric Worst metric Best avg Best + Std Dev Worst avg

Item-kNN Prec@N Recall@N 0.161 0.287 0.281

User-kNN Prec@N MRR@N 5.474 7.410 6.646

BPR-MF Prec@N MRR@N 3.289 4.689 4.518

Table 14.4: Metrics Discriminative Power deviation.

MovieLens Amazon
Latent factors 10 14 20 28 40 56 80 113 160 226 320 452 640 905 1809 113 160 226 320 452

DP 0.703 0.664 0.602 0.512 0.592 0.707 0.575 0.535 0.635 0.639 0.572 0.499 0.303 0.565 0.290 2.775 2.681 2.348 2.127 2.542

Iterations 1 2 3 4 6 8 11 16 23 32 45 64 91 128 64 92 128

DP 1.633 0.796 0.707 0.939 0.978 0.781 1.037 1.338 1.045 1.210 1.222 1.196 1.008 0.939 4.106 3.299 2.357

Learning rate 0.20000 0.10000 0.05000 0.02500 0.01250 0.00625 0.00312 0.00156 0.00078 0.00039 0.00019 0.00009 0.00004 0.00002 0.00001 0.20000 0.10000 0.05000

DP 0.765 0.702 1.918 2.667 2.131 2.429 2.811 1.552 1.044 0.803 1.083 1.225 0.950 2.335 3.548 3.941 3.423 4.803

Table 14.5: DP w.r.t. hyperparameters evolution

14.5 Dominant Hyperparameter

In the previous section, we mainly focused on the Discriminative Power of the met-

rics to find out the best metric for hyper-parameter tuning taking into account the

recommendation model and the considered dataset. In this section, we fix the metric

to study the specific hyperparameters. Differently from nearest neighbors models,

in BPR-MF we decided to explore three different hyperparameters: number of la-

tent factors, number of iterations, learning rate. Usually, during the tuning phase,

these dimensions are handled in the same way. Indeed, irrespective of the adopted

search strategy, all the hyperparameters are equally important and should be ex-

plored. However, it is straightforward that one or more hyperparameters changes

could influence more the accuracy of the provided recommendation list. This led us

to pose two additional research questions:

• Is there one or more hyperparameters that affect more the accuracy of recommen-

dations?

• Could be established a procedure to check if different values for a specific hyper-

parameter can lead to significant differences?

314

To answer these research questions, we decided to analyze the three hyperparame-

ters of BPR-MF separately. In details, for a certain parameter, we want to define a

procedure to check if different values of that hyperparameter lead to systems which

show significant differences in accuracy of recommendation. Let us suppose we fix

the metric and the number of latent factors: we still have two other parameters that

can vary. Similarly to the procedure defined in the previous sections, we computed

all the possible combinations of the remaining hyperparameters. From the set of

combinations, we randomly chose 25 pairs of combinations. We recall that a pair

of combinations corresponds to a pair of systems that share the number of latent

factors, and differ in the number of iterations and learning rate. Now we compute

the p-values of all these pairs and we order them by decreasing value. These values

correspond to a p-values curve which is peculiar for the considered metric and num-

ber of latent factors. Consequently, for the curve, the corresponding Discriminative

Power can be computed. This procedure can be repeated to analyze the discrimina-

tive power of various values of latent factors parameter. Thus, the whole procedure

can be repeated to analyze the remaining hyperparameters. The results of this study

is depicted in Tables 14.5. We used bold to highlight the best DP value for each

hyperparameter analysis. As suggested in [375], the results between the two tables

are not comparable. However, for both datasets, the number of latent factors seems

to be the dimension on which variations in hyperparameter value lead to significant

differences in recommendation accuracy. Moreover, for Movielens dataset, the DP

value is much lower than the best values for ”Number of iterations” and ”Learn-

ing rate” hyper-parameter analysis. This clearly suggests that ”Number of latent

factors” is dominant with respect to the other hyperparameters. ”Learning rate”

dimension shows a different behaviour on the two datasets: on Movielens it shows

big variations in terms of DP values, while on Amazon it shows oscillating perfor-

mance. Finally, the DP values denote that the choice to conduct the study on the

sub-grid was a reasonable choice.

315

14.6 Conclusions and Future Work

In this work, we explored the behavior of accuracy and novelty metrics in response

to changes in hyperparameters values (we focused on the k-Folds Cross-Validation

hyperparameter tuning). We found that nDCG@N and Precision@N represent a

good choice for hyperparameters tuning for Neighborhood-based models and BPR-

MF. Novelty metrics also show good DP values suggesting that these metrics are

very sensitive to changes in hyperparameters values. We proposed a general pro-

cedure for models with more than one parameter to check if variations in one of

the parameters were particularly relevant for accuracy of recommendation. We ex-

plored separately the BPR-MF hyperparameters and we found that the number of

latent factors is dominant with respect to the learning rate and the number of it-

erations. Following this research direction, we want to explore other well-known

algorithms and datasets to check if our findings can be further generalized.

316

Chapter 15

Generalized Cross-Entropy for
Fairness Evaluation

15.1 Introduction

The use of recommender systems (RS) has exploded over the last decade, mostly

due to their huge business value. According to the statistics revealed by Netflix,

75% of the downloads and rentals come from their recommendation service. This

is a clear mark of the strategic importance of such a service in several compa-

nies [3, 196]. The success of RS is commonly measured by how well they are

capable of making accurate predictions, i.e., items that users will likely interact

with, purchase, or consume. Hence, the main effort of the research community over

the last decade has been devoted to improve the utility of recommendations often

measured in terms of effectiveness as well as to address beyond-accuracy aspects

(e.g., novelty or diversity).

Models based on collaborative filtering (CF) (e.g., pureSVD, SVD++, WRMF,

MMMF, SLIM, NeuralCF) lie at the core of most real-world recommendation en-

317

gines due to their state-of-the-art recommendation quality. In addition, a growing

number of research works have leveraged different types of contextua information

or external knowledge sources, such as knowledge bases/graphs, multimedia, user-

generated tags and reviews among others, as additional information beyond the

user-item interaction matrix to further enhance the final utility/quality of recom-

mendation.

While recommendation models have reached a remarkable level of maturity in

terms of effectiveness/performance in many application scenarios, at the same time,

concerns have been recently raised on fairness of the recommendation models. As a

matter of fact, recommendation algorithms, like other machine learning algorithms,

are prone to imperfections due to algorithmic biases or biases in data. As stated

by Barocas et al. [39] “data can imperfect the algorithms in ways that allow these

algorithms to inherit the prejudices of prior decision makers”. Since RS assist users

in many decision-making and mission-critical tasks such as medical, financial, or

job-related ones [382, 355], unfair recommendation could have far-reaching con-

sequences, impacting peoples lives and putting minority groups at a major disad-

vantage. This is particularly relevant for recommender systems as they are machine

learning applications that directly interact with users, which are not necessarily ex-

perts in the field, and provide their outcome to them.

In the past, the notion of unfair recommendation was often associated with

a non-uniform distribution of the benefits among different groups of users and

items. Interestingly, many works in the last years have gone beyond this view and,

nowadays, fairness and, analogously, unfairness can be defined adopting more fine-

grained and non-uniform perspectives. As a consequence, measuring fairness is

becoming more complex especially if one wants to quantify it.

Furthermore, according to [408, 409], we can classify the most popular notions

of unfairness used in the literature as disparate treatment and disparate impact.

Their common characteristic is that they both call for some type of parity (equal-

ity), either by ignoring user’s membership in protected classes (parity in treatment)

or enforcing parity in fraction of users belonging to different protected classes, re-

ceiving beneficial outcomes (parity in impact). Under an operational lens, we may

318

say that parity in treatment refers to the training phase of a model while parity in

impact to its usage. Although they look tightly connected, actually, we know that a

parity in treatment does not necessarily imply a parity in impact.

From a recommender systems perspective, where users are first class citizens,

there are multiple stakeholders and then fairness issues can be studied for more

than one group of participants [78]. Previous work on fairness evaluation in RS has

mostly interpreted fairness as some form of equality across multiple groups (e.g.,

gender, race). For example, Ekstrand et al. [135] studied whether RS produce equal

utility for users of different demographic groups. In addition, Yao and Huang [404]

studied various types of unfairness that can occur in collaborative filtering models

where, to produce fair recommendations, the authors proposed to penalize algo-

rithms producing disparate distributions of prediction error. Nonetheless, although

less common, there are a few works where fairness has been defined beyond unifor-

mity [62, 348, 412]. For instance, Biega et al. [62] concentrates on discovering the

relation between relevance and attention in search (information retrieval). During

a search session, searchers are subject to a high degree of positional bias due to

paying much more attention to the top-ranked items than lower-ranked items. As

a consequence, despite having a proper ranking based on relevance, lower-ranked

items receive disproportionately less attention than they deserve. Their proposed

approach promotes the notion that ranked subjects should receive attention that is

proportional to their worthiness in a given search scenario and achieve fairness of

attention by making exposure proportional to relevance. These research works how-

ever have focused on fairness from different perspectives and for different purposes.

In the present work, we argue that fairness does not necessarily imply equality

between groups, but instead proper distribution of utility (benefits) based on mer-

its and needs. Starting from this idea, we mainly focus on quantifying unfairness

in recommendation systems, and we propose a probabilistic framework based on

Generalized Cross Entropy (GCE) to measure fairness (or unfairness) of a given

recommendation model that can be applicable to diverse recommendation scenar-

ios. This is a general approach that can be easily adapted to any classification task.

Our framework allows the designer to define and measure fairness for groups of

319

users (samples in a generic classification task) and for groups of items (target in a

classification task). Moreover, the proposed framework is particularly flexible in

the definition of different notions of fairness as it does not rely on specific and pre-

defined probability distributions but they can be defined at design time. This lets

the designer consider equality- and non-equality-based fairness notions adopting a

single and unified perspective. The main characteristics of the proposed framework

can be summarized as:

• One important characteristic of good evaluation metrics is their interpretabil-

ity and explainability power. Generalized cross entropy is designed based on

theoretical foundations, which makes it easy to understand and interpret.

• A large portion of previous work defines fairness as some form of equality
across multiple groups (e.g., gender, race) [135]. However, as pointed out by

some researchers [167, 404], fairness is not necessarily equivalent to equality.

The proposed framework is sufficiently flexible to allow designers in the def-

inition of fairness based on any arbitrary probabilistic distribution (in which

uniform distribution is equivalent to equality in fairness).

• As a general remark, the proposed fairness-evaluation metric comes with a

suite of other advantages compared to prior art:

1. It incorporates a gain factor in its design, which can be flexibly defined

to contemplate different accuracy-related metrics to measure fairness

upon. Examples of such measures are recommendation count (focused

on global count of recommendations), decision-support metrics (e.g.,

precision, recall) or rank-based metrics (e.g., nDCG, MAP). Prior art

usually focuses on one of these aspects (see Section 15.2.4 for more

details), which makes our approach more encompassing and general (cf.

Section 15.3.1).

This choice derives from the assumption that the user satisfaction can

be defined in many different ways. Based on the specific scenario, a

certain metric could be more useful than others and, as a consequence,

320

the considered gain factor should differ. Additionally, the generaliza-

tion of the gain factor allows the designer also adopting ranking-based

gains like nDCG. This opens up new interesting perspectives. Let us

suppose we are measuring fairness for different groups of items adopt-

ing nDCG as a gain factor. If the adopted probability distribution is not

equal among groups, the GCE value will be related to the average po-

sition of the items of specific groups in the recommendation lists. The

GCE will then measure if a RS is promoting relevant items from specific

groups to users.

2. Unlike most previous work that solely focused on either user fairness or

item fairness, the proposed framework integrates user-related and item-

related gain factors. Also, we choose to evaluate fairness considering

the various item and user attributes, showing how the different RSs be-

have in this respect. This brings our work closer to multiple stakeholder

settings where benefits of multiple parties involved in the recommenda-

tion process should be considered (see Sections 15.2.3 and 15.3.1 for

more details).

We have developed our investigation around the following research questions:

RQ1: How to define a fairness evaluation metric that considers different no-
tions of fairness (not only equality)? We propose a probabilistic framework

for evaluating RS fairness based on attributes of any nature (e.g., sensitive or

insensitive) for both items or users. We show that the proposed framework

is flexible enough to measure fairness in RS by considering it as equality or

non-equality among groups, as specified by the system designer or any other

parties involved in multi-stakeholder settings.

RQ2: How do classical recommendation models behave in terms of such an
evaluation metric, especially under non-equality definitions of fairness?
Some studies have been developed under different definitions of fairness,

however in this study we shall focus on comparing the effect that equality

321

vs non-equality notions of fairness may have on classical families of recom-

mendation algorithms.

RQ3: Which user and item attributes are more sensitive to different notions of
fairness? Which ones impact more on different families of recommenda-
tion algorithms? Since fairness can be defined according to different user or

item attributes, we aim to study the sensitivity of recommendation algorithms

with respect to these parameters under the proposed probabilistic framework.

We answered the research questions performing extensive experiments on three

well-known datasets: Amazon Toys & Games, Amazon Video Games, and

Amazon Electronics. We tuned seven well-known baseline recommenders

(ItemKNN, UserKNN, SVD++, BPR-MF, BPR-Slim, MostPopular, Random) and

we evaluated them exploiting the proposed framework to measure fairness. To ad-

dress the second research question, we considered uniform and non-uniform distri-

butions among groups. This gave us a clear idea about how these classic recom-

menders behave. The third research question was addressed considering an ade-

quate number of items and users attributes. We considered two attributes for items

(Price and Popularity), and three attributes for users (Happiness, Helpfulness, and

Interactions). While Popularity, Happiness, and Interactions are derived from the

original user-item matrix, Price and Helpfulness are two attributes that are, at the

same time, dataset-specific, and sensitive attributes. This research question imposed

to re-evaluate all the baseline five times. However, this effort is paid back by results.

On the one hand, they show that some recommenders make large use of popularity

and they show a non-uniform behavior. On the other hand, some interesting sim-

ilarities between different attributes emerged, resulting in recommenders that are

more or less prone to produce better recommendations for groups of users or items,

according to these attributes.

322

15.2 Background and Prior Art

In this section, we briefly review different notions of fairness and the trade-off be-

tween fairness and accuracy-oriented metrics explored in the literature.

15.2.1 Fairness notions

Machine learning (ML) is now involved in life-affecting decision points such as

criminal risk prediction, credit risk assessments, housing allocation, loan qualifica-

tion prediction, or hiring decision making [355, 382]. As ML is increasingly being

employed to ease or automate decision making for human, some concerns have been

recently raised on fairness of such models. Over the last decade, a growing num-

ber of research articles in the ML community have focused on defining appropriate

notions of fairness and then developing models to ensure fairness in automated de-

cision making (DM). Awareness on fairness and ethics in information retrieval has

been raised by Belkin and Robertson already in 1976 [43]. By and large, the current

notions of fairness are mainly influenced by the concept of discrimination in social

sciences, law and economy [105]. For instance, back in the 90’s there was interest to

measure the distribution of personal characteristics such as income or wealth for a

given population. As a result, the concept of unfairness (or discrimination) referred

to disproportionate distribution of these resources.1

We are concerned with fairness in algorithmic DM. One common characteristic

of the fairness notion in the ML literature is that they all call for some form of parity

(i.e., equality), either in treatment or in impact or both [408, 409]. Here we review

these two popular notions of fairness used in the ML literature:

1. Treatment parity: Parity in treatment means the DM system does not use the

information about user’s membership in protected classes (e.g., gender, race),

which are protected by anti-discrimination laws [1, 39]. The use of group-

conditional DM systems is often prohibited to avoid this kind of disparity.

1The terms “poverty”, “welfare” or “inequality” were used interchangeably in the economy lit-

erature [104, 105] when referring to discrimination or unfairness.

323

As a result, a DM system whose outcome varies based on a change in the

protected feature value is called to suffer from disparate treatment.

2. Impact parity: Parity in impact means the DM system needs to ensure par-

ity in the fraction of users belonging to different protected groups (e.g., men,

women) receiving beneficial outcomes. As a result, a DM system, which

grants disproportionately large beneficial outcomes (or positive classification)

favoring certain sensitive feature groups is called to suffer from impact dis-

parity.

It is possible to extend the concept for one of the parity notions above to accom-

modate other classification outcomes. For example, a DM system whose error rate

changes for different protected classes is called to suffer from disparity mistreat-

ment [408].

Although the above notions proposed in prior studies provide an attractive view-

point, they often lack flexibility with respect to one or more of the following aspects:

1. They are specifically designed for classification problems and define fairness

based on the results of confusion matrix.

2. Fairness is measured with respect to instances of the training data.

15.2.2 Fairness and accuracy trade-off

Recommender systems help users in many decision-making and mission-critical

tasks such as entertainment, medical, financial, or job-related applications. One of

the key success indicators of RS is linked with the fact that they can alleviate the

information overload pressure on information seekers by offering suggestions that

match their tastes or preferences. It is common to measure the quality of a person-

alized recommendation algorithm in terms of relevance (e.g., personalized ranking)

metrics. In domains such as news, books, movies and music where the individ-

ual preference is paramount, providing personalized recommendations can increase

users’ trust in and engagement with the system. These are important factors to mo-

tivate users to stay in and keep receiving recommendations, resulting in loyalty in

324

the long term and offering benefits to different parties involved in a recommendation

setting such as consumers, suppliers, the system designer and other related services.

Even in sensitive domains such as job recommendation, where fair opportunities to

job seekers is desired, personalization can be relevant, e.g., a job-seeker might be

willing to compensate salary with the distance factor or other benefits.

Nonetheless, blindly optimizing for accuracy-oriented metrics (or consumer rel-

evance) may have adverse or unfavorable impacts on the fairness aspect of recom-

mendations [258], e.g., in the employment recommendation context, certain genders

or users from certain areas might be more likely to be recommended a job due to

their behavioral differences. For example, male users or users from certain regions

with high-speed Internet connection may produce more clicks compared to the oth-

ers. A system optimizing for consumer relevance, might be unfair to less active

users such as female or people from areas with less Internet activity thereby plac-

ing these groups at an unfair disadvantage. On the other hand, exposing all users

equally might have detrimental impact on relevance and eventual consumer satis-

faction. This inadvertently leads to a trade-off between relevance/personalization

and fairness.

Zafar et al. [407] propose a framework for modeling the trade-off between fair-

ness and accuracy in a classifier that suffers from disparate mistreatment-based fair-

ness. The proposed model treats the under-researched variables (fairness and ac-

curacy) in a joint fashion, e.g., by casting them in a convex-concave optimization

constraint. This results in a fair classification in which disparate mistreatment on

false positive and false negative rates are eliminated and can be tailored to measure,

e.g., false discovery and false omission rates depending on a specific application.

The framework provides the advantage to measure unfairness in situations where

sensitive attributes of protected classes might not be accessible for reasons such

as privacy or disparate treatment laws [39] prohibiting their use. In another study,

Grgic-Hlaca et al. [160] propose a fairness-aware decision making system that un-

like previous work focuses on fairness of outcomes (of a ML system), and results in

a new dimension of fairness named fairness in decision-making (aka process fair-

ness). The work introduces different measures to model individual users’ moral

325

sense in deciding whether it is fair to use various input features in the decision

making process. The authors show that it is possible to find a reasonable trade-off

between process fairness and accuracy of a classifier over the set of features and

provide the empirical evidence.

Studying fairness in information retrieval and recommendation is not limited to

the aforementioned works. Relevance-fairness trade-off has been also studied from

other angles by Abebe et al. [10] that propose an approach based on fair division of

resources, by Mehrotra et al. [257] that focus on auditing search engine performance

for fairness, and by Biega et al. [62] as well as Singh and Joachims [348] that study

fairness in ranking.

Majority of the above works focused on fairness from the perspective of users

(or user fairness). On the research works that focus on other fairness recipient we

can name of [258], which exclusively focuses on supplier fairness in marketplaces.

15.2.3 From reciprocal recommendation to multiple stakehold-
ers

Reciprocal recommendation views RS as systems fulfilling dual goals; the first goal

is associated with satisfying customers’ preference (user-centered utility) and the

other goal is quite often associated with the value of recommendations to the ven-

dors (vendor-centered utility aka profitability) [20]. Reciprocal recommendation

regards the recommendation in most scenarios similar to a transaction and states

that in generating recommendation bilateral considerations should be made mean-

ing that the recommendation list must be acceptable to both parties involved in a

transaction. On the domains, which use reciprocal recommendation we can name

of on-line dating, on-line advertising, scientific collaboration and so on [78]. Main-

taining a balance between the user and the vendor-centered utilities is the main at-

tention focus of RS acknowledging this viewpoint to recommendation. In [20] the

authors propose ValuePick, a framework which integrates the proximity to a target

user and the global value of a network to recommend relevant nodes within a net-

work. Several approaches have been proposed to combine the aforementioned util-

326

ities to either optimize profitability or to generate a win-win situation for providers

and consumers [192] – according to which recommended items are ranked, see,

e.g., [192, 96, 293]. Various approaches based on heuristic scoring model [96],

mathematical optimization model [20, 34, 115], reinforcement learning [340, 216]

and more complex models are proposed and used for this purpose. Some approaches

have attempted to place into a mathematical optimization problem additional con-

straints such as consumer budget and other decision factors, for example, customer

satisfaction levels [387].

When recommendations must account for the needs of more than just the two

transacting parties, we move beyond reciprocal recommendation setting to a multi-

stakeholder recommendation setting. Systems designed to meet the requirements

of multiple stakeholders are referred to as Multi-stakeholder Recommender Sys-

tems (MRS). For instance, Etsy [5] is an e-commerce website focused on hand-

made products and craft supplies. The recommender system platform in Etsy pro-

vide recommendation from small-scale artisans to consumers (shoppers). Hence,

the recommender system on such a website needs to deal with the needs of both

consumers and sellers [248]. According to [79], one can classify multiple stake-

holders involved in a MRS into three main groups: consumers, providers and the

platform (the system). The concept of MRS has been reintroduced in the context

of fairness to highlight the fact that fairness is a multisided concept in which the

impact of recommendation on multiple groups of individuals must be considered.

In this context, [79] proposes to study the fairness issues relative to each one of

these groups: (i) consumers (C-fairness), (ii) providers (P-fairness), and (iii) both

(CP-fairness) [79]. The authors propose a balanced neighborhood as a mechanism

to balance personalization vs. fairness of recommendation outcomes.

Several works have been proposed for evaluating recommendations in MRS.

In [9, 82, 423] they suggest a utility-based framework for representing multiple

stakeholders. As an example, in [423] the authors suggest a utility-based framework

for MRS for personalized learning. Specifically, a recommender system is built for

suggesting course projects to students by accounting both the student preferences

and the instructors expectations in the model. The model aims to address the chal-

327

lenge of over-expectations (by instructors) and under-expectations (by students) in

the utility-based MRS. [359] approaches the MRS issue differently by relying on a

constraint-based integer programming (IP) optimization model, where different sets

of constraints can be used to characterize the objectives of different stakeholders.

Finally, [8] provides a good frame of reference for the origins of multi-stakeholder

recommendation, and the landscape of system designs.

15.2.4 Evaluating fairness in recommender systems

Even though research on fairness has been a very active topic in ML in general, and

in RS in particular, there are not too many works —to the best of our knowledge—

where authors address the goal we aim to achieve here: propose an evaluation met-

ric that is capable of measuring fairness in RS. The closest work is [372], where the

authors define a metric to capture the relative change of biases between the recom-

mendations produced by an algorithm and those biases inherently found in the data.

For this, the authors need to categorize both users and items, hence, it is not possi-

ble to measure only user or item fairness as allowed by our framework. Moreover,

the most important disadvantage of the proposed metric is that the authors do not

provide a single value for a given recommender, but a table (similar to a confusion

matrix or contingency table) with all the possible combinations for pairs of user and

item categories.

Nonetheless, even though we have not found other investigations specifically

tackling the problem of defining a fairness evaluation metric, works that propose

algorithms tailored for fairness need to be evaluated somehow, and these metrics,

although usually based on heuristics, can also be considered to evaluate fairness. We

start by describing the purely theoretical survey presented in [382], where the au-

thors collect many definitions from the literature about the concept of fairness. The

following three could be easily applied in a recommendation context: group fair-

ness (equal probability of being assigned to the positive predicted class), predictive

parity (correct positive predictions should be the same for both classes), and over-

all accuracy equality (groups have equal prediction accuracy). The last two could

be computed by measuring the precision or the error in each class and somehow

328

comparing those values across all the groups. This is exactly the idea behind MAD

(absolute difference between the mean ratings of different groups) used in [427].

Here, the authors also use in their experiments the Kolmogorov-Smirnov statistics

of two distributions (predicted ratings for groups) as a comparison. The main prob-

lem with these two approaches and with some of the definitions in [382] is that they

are only valid for 2 groups and are focused on ratings —and, consequently, only

valid for the rating prediction task, which has been displaced by the community be-

cause it does not correlate with the user satisfaction [163, 256]—, mostly because

fairness is addressed as a classification problem in ML. We find the same situation

in [404] where the authors define several unfairness quantities (non-parity, value,

absolute, underestimation, overestimation, and balance unfairness) that can only be

applied to 2 groups of users and based on prediction errors.

Finally, we found other types of metrics not directly based on prediction errors.

On the one hand, in [248] the authors define a metric tailored for P-fairness (fairness

from the perspective of the providers in a multi-stakeholder setting) based on the

provider coverage, that is, the number of providers covered by a recommendation

algorithm. On the other hand, in [331] the authors use the Matthews correlation

coefficient, since it allows to quantify the performance of an algorithm at a threshold

while, at the same time, it penalizes the classifier for classifying all samples as the

target class. In the paper, as some of the metrics presented above, the coefficient is

defined only for the binary case where the attribute has two possible values, however

it is possible to compute a multiclass version. In any case, as proposed by the

authors, it can only be applied to user attributes.

Summing up, several metrics have been used to evaluate recommender systems

under different notions of fairness. All of them assume equality as fairness and,

usually, they are limited to user attributes with only two values (such as gender

or other binary attributes). Therefore, we believe the framework we present could

open up several possibilities in the field, since it overcomes all the above-mentioned

limitations.

329

15.3 A probabilistic framework to evaluate fairness

We now present a probabilistic framework for evaluating RS fairness based on at-

tributes of any nature (e.g., sensitive or insensitive) for both items or users and show

that the proposed framework is flexible enough to measure fairness in RS by consid-

ering fairness as equality or non-equality among groups, as specified by the system

designer or any other parties involved in multi-stakeholder setting.

15.3.1 Using Generalized Cross Entropy to measure user and
item fairness

In this section, we propose a framework based on generalized cross entropy for

evaluating fairness in recommender systems. Let U and I denote a set of users and

items, respectively and A be a set of sensitive attributes in which fairness is desired.

Each attribute can be defined for either users, e.g., gender and race, or items, e.g.,

item provider (or stakeholder). Given a set M (for models) of recommendation

systems, we define the unfairness measure as the function

ω : M×A→ R+

The goal is to find a function ω that produces a non-negative real number for a rec-

ommender system that represents and measures its (un)fairness. A recommender

system m ∈ M is considered less unfair (i.e., more fair) than m′ ∈ M with respect

to the attribute a ∈ A if and only if ω(m,a) < ω(m′,a). Previous works have used

inequality measures to evaluate algorithmic unfairness, however, we argue that fair-

ness does not always imply equality. For instance, let us assume that there are

two types of users in the system – regular (free registration) and premium (paid)

– and the goal is to compute fairness with respect to the users’ subscription type.

In this example, it might be more fair to produce better recommendations for paid

users, therefore, equality is not always equivalent to fairness – note that, in any case,

the goal is to ensure that premium users receive good (or better) recommendations

without affecting the experience of regular users.

330

We define fairness of a recommender system with respect to an attribute a using

the Csiszar generalized measure of divergence as follows [112]:

ω(m,a) =
∫

pm(a) ·ϕ
(

p f (a)
pm(a)

)
da (15.1)

where pm and p f respectively denote the probability distribution of the model m’s

performance and the fair probability distribution, both with respect to the attribute

a [69]. A distinguishing property of this measure is that conceptually there are no

differences for the case in which pm and p f are discrete densities, in such a case the

integral is simply replaced by the sum. Csiszars family of measures subsumes all of

the information-theoretic measures used in practice (see [208, 169]). We restrict our

attention to the case when ϕ(x) = xα−x
α·(α−1) and α 6= 0,1 for some parameter α; then,

the family of divergences indexed by α boils down to Generalized Cross Entropy:

f (m,a) = GCE(m,a) =
1

α · (1−α)

[∫
pα

f (a) · p
(1−α)
m (a) da−1

]
(15.2)

The unfairness measure I is minimized with respect to attribute a when pm =

p f , meaning that the performance of the system is equal to the performance of a

fair system. In the next sections, we discuss how to obtain or estimate these two

probability distributions.

Note that the defined unfairness measure indexed by α includes the Hellinger

distance for α = 1/2, the Pearson’s χ2 discrepancy measure for α = 2, Neymann’s

χ2 measure for α = −1, the Kullback-Leibler divergence in the limit as α → 1,

and the Burg CE distance as α → 0. Figure 15.1 illustrates simulation of how GCE

changes across different α values.

If the attribute a is discrete or categorical (as typical attributes, such as gender

or race), then the unfairness measure is defined as:

GCE(m,a) =
1

α · (1−α)

[
∑
a j

pα
f (a j) · p(1−α)

m (a j)−1

]
(15.3)

The role of α in the definition of GCE is critical, as we show in Figure 15.1. We

observe, for instance, that at extreme values of pm, GCE obtains larger values for

331

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Performance Distribution P
M

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

G
C

E

(a) α =−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Performance Distribution P
M

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

G
C

E

(b) α = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Performance Distribution P
M

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

G
C

E

(c) α = 2

Figure 15.1: Simulations of values obtained using GCE fairness evaluation metric

for different fair distribution types p f and performance distributions pm and dif-

ferent α values. For example, when x-axis is 0.3 then p = [0.3,0.7]. The blue curve

represents p f = [0.5,0.5] while the red represents p f = [0.3,0.7]. It can be noted

when fairness means equality the representative blue curve is used which is maxi-

mized at 0.5; this is while when fairness means non-equality the representative red
curve should be used which is maximized at a point non-equal to 0.5 (here 0.3).

lower values of α . Besides, according to [69], Pearson’s χ2 measure (which corre-

sponds to α = 2) is more robust to outliers than other typical divergence measures

such as Kullback-Leibler divergence; hence, in the rest of the dissertation, unless

stated otherwise, we shall use this value for parameter α .

Defining the fair distribution p f

The definition of a fair distribution p f is problem-specific and should be determined

based on the problem or target scenario in hand. For example, one may want to

ensure that premium users, who pay for their subscription, would receive more

relevant recommendations, because running complex recommendation algorithms

might be costly and not feasible for all users2. In this case, p f should be non-

uniform across the user classes (premium versus free users). In other scenarios, a

uniform definition of p f might be desired. Generally, when fairness is equivalent to

equality, then p f should be uniform and in that case, the generalized cross entropy

2These scenarios are becoming more and more realistic especially in edge computing settings

where computational resources are often quite limited.

332

would be the same as generalized entropy (see [355] for more information).

Note that p f can be seen as a more general utility distribution, and the goal is to

observe such distribution in the output of the recommender system. In this chapter,

since we focus on recommendation fairness, we refer to p f as the fair distribution.

Finding the fair distribution p f is challenging. It is task-specific and a fair dis-

tribution in one domain is not necessarily a fair distribution in another. However,

generalized cross entropy is a general framework that allows researchers and prac-

titioners in different domains to define the fairness definition based on their needs.

We leave discussions on various definition of p f in different domains for future.

Estimating the model distribution pm

The model distribution pm should be estimated based on the output of the recom-

mender system on a test set. In the following, we explain how we can compute this

distribution for item attributes. We define the recommendation gain (rgi) for each

item i ∈ I as follows:

rgi = ∑
u∈U

φ(i, RecK
u) ·g(u, i,r) (15.4)

where RecK
u is the set of top-K items recommended by the system to the user u ∈U .

φ(i, RecK
u) = 1 if item i is present in RecK

u ; otherwise φ(i, Reck
u) = 0. The func-

tion g(u, i,r) is the gain of recommending item i to user u with the rank r. Such

gain function can be defined in different ways. In its simplest form, if always

g(u, i,r) = 1, the recommendation gain in Eq. (15.4) would boil down to recom-

mendation count (i.e., rgi = rci).

A binary gain in which g(u, i,r) = 1 when item i recommended to user u is

relevant and g(u, i,r) = 0 otherwise, is another simple form of the gain function

based on relevance. The gain function g can be also defined based on ranking

information, i.e., recommending relevant items to users in higher ranks is given a

higher gain. In such case, we propose to use the discounted cumulative gain (DCG)

function that is widely used in the definition of nDCG [?], given by 2rel(u,i)−1

log2(r+1) where

rel(u, i) denotes the relevance label for the user-item pair u and i. We can further

normalize the above formula based on the ideal DCG for user u to compute the gain

333

function g.

As we can see in the definition of the gain function for items, it is possible to

flexibly specify the constraint under which fairness needs to be satisfied (e.g., based

on recommendation count, relevance, ranking, or a combination thereof). As such,

our approach extends considerably the previous approaches, e.g., [62, 348, 412]

which focused on a single aspect of fairness, e.g., either based on error or ranking.

Then, the model probability distribution pI
m is computed proportionally to the

recommendation gain for the items associated to an item attribute value a j. For-

mally, the probability pI
m(a j) used in Eq. (15.3) is defined as:

pI
m(a j) =

∑i∈a j rgi

Z
(15.5)

where Z is a normalization factor set equal to Z =∑i rgi to make sure that ∑ pI
m(a j)=

1.

Under an analogous formulation, we could define a variation of fairness for

users u ∈U based on Eq. (15.4):

rgu = ∑
i∈I

φ(i, RecK
u) ·g(u, i,r) (15.6)

where in this case, the gain function cannot be reduced to 1, otherwise, all users

would receive the same recommendation gain rgu. Then, to compute pU
m(a j), we

normalize these gains in a similar way as shown in Eq. (15.5).

It should be noted that, to avoid zero probabilities, we smoothed the previous

computations by using the Jelinek-Mercer method [413] as follows, where pe
m cor-

responds to either pI
m or pU

m depending if rgi or rgu are used:

p̃e
m(a j) =

∑i∈a j rge

Z
p̂e

m(a j) = λ · p̃e
m(a j)+(1−λ) · pC

Ẑ = ∑
j

p̂e
m(a j)

pe
m(a j) =

p̂e
m(a j)

Ẑ

334

Here, smoothing is applied in the second equation, where we use a background

probability pC. In the experiments, we used λ = 0.95 and pC = 0.0001. Addition-

ally, to obtain more robust values of the probabilities estimated using the recom-

mendation gains, a slightly more complicated version of these formulations could be

used where the probabilities consider the average of gains rge in a user-basis instead

of such gains directly, since this is how typical evaluation metrics are computed in

the recommender systems literature. For the sake of space we avoid including such

formulation here.

15.3.2 Toy example

For the illustration of the proposed concept, in Table 15.1 we provide a toy example

on how our approach for fairness evaluation framework could be applied in a real

recommendation setting. A set of six users belonging to two groups (each group is

associated with an attribute value a1 (red) or a2 (green)) who are interacting with a

set of items are shown in Table 15.1. Let us assume the red group represents users

with a regular (free registration) subscription type on an e-commerce website while

the green group represents users with a premium (paid) subscription type. A set of

recommendations produced by different systems (Rec0, Rec1, and Rec2) are shown

in the last columns. The goal is to compute fairness using the proposed fairness

evaluation metric based on GCE given by Eqs. (15.3) and (15.6). The results of

evaluation using three different evaluation metrics are shown in Table 15.2. The

metrics used for the evaluation of fairness and accuracy of the system include: (i)

GCE, (ii) Precision, and (iii) Recall, all at cutoff 3. Note that GCE = 0 means

the system is completely fair, and the closer the value is to zero, the more fair the

respective system is.

By looking at the recommendation results from Rec0, one can note that if fair-

ness is defined as equality between two groups, defined through fair distribution p f

= [1
2 ,

1
2], then Rec0 is not a completely fair system, since GCE = −0.09 6= 0. In

contrast, if fairness is defined as providing recommendation of higher utility (use-

fulness) to green users who are users with paid premium membership type, (e.g., by

setting p f2 = [1
3 ,

2
3]) then, since GCE is smaller, we can say that recommendations

335

Table 15.1: A set of 6 users belonging to groups g1 and g2 and 10 items along with

their true labels marked by 3and recommended items by recommenders Rec 0, Rec

1, Rec 2. Rec 0 produces 3 and 6 relevant items for free and premium users (in

total) respectively; Rec 1 generates 1 relevant item for each user; Rec 2 produces

recommended items that are all relevant for all users.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 Rec 0 Rec 1 Rec 2
a1 user 1 3 3 3 {i1, i6, i8 } {i1, i5, i9 } {i1, i3, i7 }
a1 user 2 3 3 {i2, i5, i9 } {i2, i5, i7 } {i1, i5, i8 }
a1 user 3 3 3 {i1, i6, i7} {i2, i5, i9 } {i2, i7, i9 }
a2 user 4 3 3 3 {i3, i4, i9} {i4, i5, i6 } {i3, i4, i9 }
a2 user 5 3 3 3 {i1, i5, i7} {i1, i2, i10 } {i5, i7, i10 }
a2 user 6 3 3 3 3 {i2, i6, i9} {i1, i5, i8 } {i3, i6, i9 }

produced by Rec0 are more fair for this type of users and also with respect to the

other recommenders. Both of the above conclusions are drawn with respect to at-

tribute “subscription type” (with categories free/paid premium membership). This

is an interesting insight which shows the evaluation framework is flexible enough

to capture fairness based on the interest of system designer by defining what she

considers as fair recommendation through the definition of p f . While in many ap-

plication scenarios we may define fairness as equality among different classes (e.g.,

gender, race), in some scenarios (such as those where the target attribute is not sen-

sitive, e.g., regular v.s. premium users) fairness may not be equivalent to equality.

Furthermore, by comparing the performance results of Rec1 and Rec2, we ob-

serve that, even though precision and recall improve for Rec2 and becomes the most

accurate recommendation list, it fails to keep a decent amount of fairness with re-

spect to any parameter settings of GCE, as in all the cases it is outperformed by the

other methods. Moreover, GCE only reaches the optimal value for Rec1 and p f0 ,

since that recommender produces the same number of relevant items (one) for every

user, independently of the user group; in the other cases, since there are more rele-

vant items on green than red users, the results reflect the amount of inherent biases

in the data due to the unequal distribution of resources among classes.

336

Table 15.2: Fairness of different recommenders in the toy example presented in

Table 15.1 according to proposed GCE and individual-level accuracy metrics. Note

that p f0 = [1
2 ,

1
2], p f1 = [2

3 , 1
3], and p f2 = [1

3 , 2
3] characterize the fair distribution as

uniform or non-uniform distribution (of resources) among two groups.

GCE (p f , pm, α = 2)
P@3 R@3

p f0 p f1 p f2

Rec 0 -0.0952 -0.3201 -0.0026 1
2

1
6 .

19
6 = 0.530

Rec 1 0 -0.0556 -0.0556 1
3

1
6 .

9
4 = 0.375

Rec 2 -0.0079 -0.1067 -0.0220 1 1
6 .

23
4 = 0.958

This evidences that optimizing an algorithm to produce relevant recommenda-

tions does not necessarily result in more fair recommendation rather, conversely, a

trade-off between the two evaluation properties can be noticed.

15.4 Experimental settings

15.4.1 Datasets

To address the research questions presented before, we use datasets from different

domains with more or less sensitive attributes. This allows us to evaluate several

notions of fairness under user and item dimensions. More specifically, we have used

multiple product categories of the Amazon Review dataset [173, 4]. This dataset is a

collection of product reviews aggregated at the category level, which also includes

metadata from Amazon; in total it contains 142.8 million reviews spanning from

May 1996 to July 2014. Beyond ratings, these datasets include reviews (which

consist of ratings, text, timestamp, and votes from other users to determine how

helpful a review is), product metadata (descriptions, category information, price,

brand, and image features [255]), and links (graphs with information about also

viewed/also bought items).

Overall the Amazon Dataset contains 24 different category-level datasets.

Based on the number of users, items, and transactions we have selected the fol-

337

lowing three datasets to conduct our study. The smallest one is Amazon Video

Games, with more than 1 million ratings, devoted to videogames sold on the Ama-

zon Store. The second dataset is Amazon Toys & Games, with more than 2

million transactions of toys and tangible games. The last and largest dataset is

Amazon Electronics, with almost 8 million overall ratings.

15.4.2 Evaluation Protocol and Temporal Splitting

The experimental evaluation is conducted adopting the so-called “All Items” evalu-

ation protocol [49] in which, for each user, all the items that are not rated yet by the

user are considered as candidates when building the recommendation list.

To simulate an online real scenario as realistically as possible, we use the fixed-

timestamp splitting method [32, 29], initially suggested in [83, 163]. The core idea

is choosing a single timestamp that represents the moment in which test users are

on the platform waiting for recommendations. Their past will correspond to the

training set, whereas the performance is evaluated exploiting data which occurs

after that moment. In this work, we select the splitting timestamp that maximizes

the number of users involved in the evaluation by setting two reasonable constraints:

the training set of each user should keep at least 15 ratings, while the test set should

contain at least 5 ratings. Training set and test set for the three datasets are made

publicly available for research purposes, along with the splitting code3.

Finally, the statistics of the training and test datasets used in the experiments are

depicted in Table 15.3, where the difference in the number of transactions between

the original datasets (see previous section) and the ones used in the experiments is

due to the constraints imposed in the splitting process. It is important to note that, in

any case, the processed datasets keep very small density values – between 0.054%

and 0.48% – as it is standard in the literature.

3https://github.com/sisinflab/DatasetsSplits/

338

Table 15.3: Statistics about the datasets used in the experiments.

Training Set

Dataset #Users #Items #Transactions Sparsity From To

Amazon Electronics 5,351 56,727 164,375 99.94584 07/14/1999 05/14/2013

Amazon Toys & Games 1,108 24,158 38,317 99.85685 07/22/2000 08/30/2013

Amazon Videogames 479 8,892 20,369 99.52177 11/18/1999 10/28/2011

Test Set

Dataset #Users #Items #Transactions Sparsity From To

Amazon Electronics 5,351 28,792 74,090 99.95191 05/15/2013 07/23/2014

Amazon Toys & Games 1,108 9,192 15,169 99.85106 08/31/2013 07/22/2014

Amazon Videogames 479 4,171 8,114 99.59387 10/29/2011 07/21/2014

15.4.3 Attribute selection and discretization

In this work, we follow an attribute-based analysis of fairness in RS. In particular,

we assume that users and items are associated with some attributes. Each attribute

partitions the users/items into a number of groups (classes) where users/items in

each group have the same attribute value (e.g., male or female for users) or (e.g.,

low-priced or high-priced items). One of the main objectives in the attribute-based

study of fairness is to avoid discrimination against protected groups; as such these

attributes are quite often chosen as nontrivial or (in some cases) sensitive attributes.

Therefore, in this section we describe which user and item attributes were selected

and how they were discretized in a limited number of groups or classes.

We start by selecting some attributes that we feel they are common enough to

be found in almost any recommender system, in this way, the presented analysis

could be relevant for both researchers that use domains not addressed in this work

and industry practitioners with different data. For items, we focus on their popular-

ity, which corresponds to the amount of interactions received by the items. Since

the popularity of items is a signal of the common ratings (or clicks, views, etc.)

between users, we aim to explore whether the most common collaborative filtering

339

algorithms are more prone to suggest popular items. Similarly, for users we focus on

the amount of interactions registered by the system from each user, that is, the level

of user activity. In this way, we aim to analyze the behavior of algorithms with re-

spect to cold (few interactions) or warm (many interactions) users, as they typically

refer to in the literature. Additionally, we interpret the average rating provided by

the users as a signal of the level of satisfaction with respect to the system, we name

this user feature as happiness. In our experiments we aim to investigate whether the

recommenders behave fairly for satisfied (happy) and unsatisfied (unhappy) users.

Now, we select two attributes that are more specific to Amazon datasets and

that are, to some extent, sensitive for both users and system developers: item price

and user helpfulness. The price of an item is indeed an interesting and sensitive

attribute, since many users may decide to select or buy a product just because of its

price, even when they know that another product might be more beneficial or suit-

able for them. Hence, by including this attribute we aim to study whether classical

recommendation approaches are more (or less) prone to recommend expensive or

cheap products – without including such information into the recommendation al-

gorithm – which might be perceived as not fair from the user perspective. The user

helpfulness, on the other hand, is a piece of information that is not widely avail-

able, but it is becoming a frequent signal in review-based systems, since it allows

users to vote on other users’ reviews, increasing the confidence on the system. In

this way, we aim to analyze if the most helpful users are provided with the best

recommendations or not.

Once different user and item attributes are selected, we present how we dis-

cretized their values into a small number of classes or clusters. This step is not

mandatory since our proposed metric could work with any number of categories or

attribute values, however, to make the presentation and discussion of results less

cumbersome and confusing, we prefer to limit the number of categories to a maxi-

mum of 4 in every case. In general, we decided to create clusters based on quartiles,

which are particularly intuitive and allow to be generalizable to datasets of different

nature, since the intrinsic distribution of the attributes is taken into account. More

specifically, item price, user helpfulness, and user interaction were directly clus-

340

tered into 4 quartiles according to their original distributions. However, the rest of

the attributes presented some problems which made it impossible to apply a stan-

dard clustering technique based on the quartiles. First, the item popularity showed

so many ties for the least popular items that it was not possible to define bound-

aries for the quartiles. To address this issue, we increased the number of considered

quantiles until we obtained 4 distinct clusters; this number corresponds to 30 for

Amazon Toys & Games, and 10 for Amazon Video Games and Amazon

Electronics. Regarding the last attribute, user happiness, we faced a different

problem, where most of the average user ratings are very close to 4, hence, the

clustering based on quartiles would have lost meaning. For this reason, we decided

to set a reasonable threshold equal to 4 (common to the three datasets) to create

only two categories: users whose average rating is smaller than 4, and the rest, to

separate users according to a predefined level of satisfaction or happiness. Tables

15.4-15.6 present statistics about the resulting clusterings, respectively for Amazon

Toys & Games, Amazon Video Games, and Amazon Electronics.

Finally, we note an issue we had to address regarding the computation of quan-

tiles with respect to the availability of side information. First, not all items had

associated metadata, whereas this is true for users, information for items is incom-

plete. Second, items in the training set only correspond to a small fraction of the

items in the whole collection; hence, they might not be representative of the entire

collection. Because of this, we computed the quartiles (for the item price attribute,

which is the only one obtained through the metadata) according to two strategies:

either based on the overall metadata information, or based only on the items with

metadata that appear in the training set. This information is included in Tables 15.4-

15.6 in columns Price (TS) for the case where the clustering is computed based on

the training set, and in Price (M) when the whole metadata is used. Additionally, in

Figure 15.2 we present the histograms of the 3 datasets comparing the two strategies

to compute the quartiles. In the tables we observe that the resulting item distribution

in clusters when using all the metadata is no longer uniform; similarly, in the his-

tograms we see that the distribution is dominated by those very cheap items when

using all metadata information, whereas other price values become visible when

341

only the training items are represented. Hence, because of these issues, we shall

work from now on with the strategy based on building the clusters using informa-

tion from the training set.

15.4.4 Baseline recommenders

We evaluate several families of Collaborative Filtering recommendation models.

Beyond Nearest Neighbors memory-based models, we include latent factors models

considering two different kinds of optimization: the minimization of the prediction

error, and a pairwise learning-to-rank approach. More specifically, we include:

• Random, a non-personalized algorithm that produces a random recommen-

dation list for each user. The items are chosen according to a uniform distri-

bution.

• MostPopular, a non-personalized algorithm that produces the same rec-

ommendation list for all the users. This list is computed by measuring the

items’ popularity and ordering the items according to that value in descend-

ing order. It is acknowledged that popularity ranking typically show very

good performance because of statistical biases in the data [49] and it is an

important baseline to compare against [108].

• ItemKNN [333, 334], an item-based implementation of the K-nearest neigh-

bors algorithm. It finds the K-nearest item neighbors based on a specific

similarity function. Usually, as similarity functions, Binarized and standard

Cosine Vector Similarity [36, 63, 13], Jaccard Coefficient [129, 307], and

Pearson Correlation [177] are considered. The items in neighborhood are

then used to predict a score for each user-item pair.

• UserKNN [73], a user-based implementation of the K-nearest neighbors al-

gorithm. It finds the K-nearest user neighbors based on a similarity function

(usually the same functions as described before for ItemKNN). The computed

neighbors are then used to predict a score for each user-item pair.

342

(a) Amazon Electronics: training set (b) Amazon Electronics: metadata

(c) Amazon Toys & Games: training set (d) Amazon Toys & Games: metadata

(e) Amazon Video Games: training set (f) Amazon Video Games: metadata

Figure 15.2: Histograms of the item price attribute (considering 100 bins) compar-

ing two strategies to extract the values from (that will be used later to compute the

attribute categories): based on items from the training set or based on all the items

with associated metadata. 343

Table 15.4: Statistics about the user and item clustering methods for Amazon

Toys & Games, where TS means Training Set, M stands for Metadata, Pop Pop-

ularity, Hlpf Helpfulness, Int Interactions, and Hpns Happiness. The rows 25%,

50% and 75% indicate the values of each attribute at that point of the distribution,

which correspond to the boundaries between the first and second, second and third,

and third and fourth quartiles. Note that, ideally, the number of items (#Items) and

users (#Users) in each cluster is expected to be as uniform as possible.

Items Clusterings Users Clusterings

Statistics Price (TS) Price (M) Pop Hpns Hlpf Int

count 19,543 19,543 24,158 1,108 1,108 1,108

mean 33.82 30.91 1.59 4.28 0.36 34.58

std 57.30 56.42 2.31 0.44 0.17 40.67

min 0.01 0 1 1.71 0 15

25% 9.69 7.99 1 4 0.24 18

50% 18.12 15.85 1 4.31 0.34 23

75% 35 30.99 1 4.61 0.46 35

max 999.99 999.99 50 5 1.00 525

Clusters #Items #Items #Items #Users #Users #Users

0 4,893 3,870 22,234 264 277 326

1 4,880 4,808 729 844 277 246

2 4,911 5,213 461 277 262

3 4,859 5,652 734 277 274

344

Table 15.5: Statistics about the user and item clustering methods for Amazon

Video Games, notation as in Table 15.4.

Items Clusterings Users Clusterings

Statistics Price (TS) Price (M) Pop Hpns Hlpf Int

count 8,297 8,297 8,892 479 479 479

mean 56.28 40.89 2.29 3.93 0.51 42.52

std 85.66 67.98 2.92 0.57 0.18 65.67

min 0.01 0 1 1.67 0.04 15

25% 14.99 9.99 1 3.62 0.38 19

50% 28.99 19.99 1 4.01 0.51 25

75% 59.99 39.99 2 4.3 0.63 43

max 999.99 999.99 45 5 0.98 785

Clusters #Items #Items #Items #Users #Users #Users

0 2,075 1,411 6,812 231 120 146

1 2,076 2,182 736 248 120 99

2 2,143 1,829 684 119 116

3 2,003 2,875 660 120 118

345

Table 15.6: Statistics about the user and item clustering methods for Amazon

Electronics, notation as in Table 15.4.

Items Clusterings Users Clusterings

Statistics Price (TS) Price (M) Pop Hpns Hlpf Int

count 47,660 47,660 56,727 5,351 5,351 5,351

mean 71.92 61.20 2.90 4.21 0.40 30.72

std 124.10 118.68 6.36 0.46 0.16 25.57

min 0.01 0.01 1 1.53 0 15

25% 10.06 9.95 1 3.96 0.28 18

50% 24.99 19.99 1 4.27 0.39 23

75% 71 51.91 2 4.54 0.51 34

max 999.99 999.99 275 5 1.00 500

Clusters #Items #Items #Items #Users #Users #Users

0 11,915 11,058 43,674 1,434 1,338 1,607

1 11,940 10,042 3,743 3,917 1,338 1,230

2 11,893 11,562 4,345 1,337 1,245

3 11,912 14,998 4,965 1,338 1,269

346

Table 15.7: Tuned hyperparameters for each of the tested recommendation methods.

Number of Neighbors Similarity Function

ItemKNN [50,60,70,90,100] [Jaccard Coefficient,Binary Cosine, Cosine, Pearson Correlation]

UserKNN [50,60,70,90,100] [Jaccard Coefficient,Binary Cosine, Cosine, Pearson Correlation]

Number of Latent Factors Learning Rate Iterations

SVD++ [10,20,30,50,100,150] [0.0005,0.005,0.05] [30]

BPRMF [10,20,30,50,100,150] [0.005,0.05,0.5] [30]

BPRSlim [0.0005, 0.005, 0.05, 0.5] [5,10,20,30]

• SVD++ [221, 224], an algorithm that takes advantage of a simple latent factors

model (trained through the stochastic gradient descent method) and it models

and compute user and item biases. SVD++ also considers implicit feedback

to improve learning.

• BPRMF (Bayesian personalized ranking - Matrix Factorization) [312, 224], a

matrix factorization algorithm that exploits the Bayesian Personalized Rank-

ing criterion [312] to minimize the ranking errors.

• BPRSlim (Bayesian personalized ranking - SLIM) [273], an algorithm that

produces recommendations using a sparse aggregation coefficient matrix trained

with a Sparse Linear method (SLIM), trained maximizing the BPR criterion.

For all these recommenders we have performed a grid search to tune the param-

eters. We consider the range of values as suggested by the authors or by varying

the parameters values around the ones showed in the original papers as the best

performing ones; a summary of the considered values is shown in Table 15.7. The

optimal values are reported in Table 15.8, and correspond to those that maximize

the nDCG metric at cutoff 10.

15.4.5 Evaluation metrics

In our experiments, we compute accuracy metrics as it is standard in the litera-

ture [163]. The top-N recommendation accuracy metrics we have used are Precision

347

Table 15.8: Optimal hyperparameters according to nDCG@10.

ItemKNN Amazon Toys & Games Amazon Videogames Amazon Electronics
Number of Neighbors 50 50 50

Similarity Function Jaccard Coefficient Jaccard Coefficient Jaccard Coefficient

UserKNN Amazon Toys & Games Amazon Videogames Amazon Electronics
Number of Neighbors 90 50 100

Similarity Function Cosine Jaccard Coefficient Jaccard Coefficient

SVD++ Amazon Toys & Games Amazon Videogames Amazon Electronics
Number of Latent Factors 150 100 100

Learning Rate 0.0005 0.005 0.0005

Iterations 30 30 30

BPRMF Amazon Toys & Games Amazon Videogames Amazon Electronics
Number of Latent Factors 10 10 150

Learning Rate 0.5 0.5 0.5

Iterations 30 30 30

BPRSlim Amazon Toys & Games Amazon Videogames Amazon Electronics
Learning Rate 5 0.05 0.05

Iterations 30 30 30

348

(P@N), Recall (R@N), and nDCG (nDCG@N), all at a cutoff N, which means that

we only consider top-N items within each recommendation list.

Precision is defined as the proportion of recommended items that are relevant to

the user:

Precisionu@N =
|RecN

u ∩T S+u |
N

where RecN
u is the recommendation list up to the N-th element and T S+u is the set

of relevant test items for user u. Precision measures the system’s ability to reject

any non-relevant documents in the recommended set. Recall, on the other hand, is

defined as the proportion of relevant items that are actually recommended:

Recallu@N =
|RecN

u ∩T S+u |
|T S+u |

Hence, recall measures the system’s ability to find all the relevant documents.

Since these two metrics do not pay attention to whether a relevant item was recom-

mended near the top or closer to the cutoff, in Information Retrieval metrics that

explicitly assign a gain to each ranking position are usually considered. The dis-

counted cumulative gain (DCG) is a metric of ranking quality that measures the

usefulness of a document based on its position in the result list. Since recommen-

dation results may vary in length depending on the user, it is not possible to com-

pare performance among different users, so the cumulative gain at each position

should be normalized across users. Hence, normalized discounted cumulative gain,

or nDCG, is defined as:

nDCGu@N =
1

IDCG@N

N

∑
k=1

2ruk−1
log2(1+ k)

where k is the position of an item in the recommendation list and IDCG@N indi-

cates the score obtained by an ideal ranking of the recommendation list RecN
u that

contains only relevant items.

For comparison with the proposed GCE metric, we include two complemen-

tary baseline metrics based on the absolute deviation between the mean ratings of

different groups as defined in [427]:

MAD(R(i), R(j)) =

∣∣∣∣∣∑R(i)∣∣R(i)
∣∣ − ∑R(j)∣∣R(j)

∣∣
∣∣∣∣∣ (15.7)

349

where R(i) denotes the predicted ratings for all user-item combinations in group i

and
∣∣∣R(i)

∣∣∣ is its size. Larger values for MAD mean larger differences between the

groups, interpreted as unfairness. Given that our proposed GCE in user-fairness

evaluation is based on nDCG, we adapt this definition to also compare between

average nDCG for each group. We refer to these two baselines as MAD-rating

(or MADr) and MAD-ranking (or MADR). Finally, the reported MAD corresponds

to the average MAD between all the pairwise combinations within the groups in-

volved, i.e.,

MAD = avgi, j(MAD(R(i),R(j))) (15.8)

When possible, the metrics are computed on a per-user basis and the reported re-

sults are the average of these individual values. We have used the RankSys4 frame-

work and adopted the threshold-based relevant items condition [83]. The evaluation

has been performed considering Top-5, Top-10, and Top-20 recommendations for

all datasets and a threshold of 3 with respect to a 1-5 scale for deeming items as

relevant for all the three datasets.

15.5 Results

In this section, we discuss the results obtained in our experiments.

15.5.1 Analysis of item fairness results

We show in Table 15.9 a comparison of the item-based GCE using popularity as

the item feature for the three tested datasets. Due to space constraints, we only

show results for cutoff 10 and the nDCG performance metric, since performance at

other cutoffs or based on Precision and Recall were similar. Additionally, we note

that larger values of nDCG and GCE (i.e., closer to 0, since it is always negative)

correspond to the most accurate or fair systems (under a desired fair distribution

p fi); on the other hand, as explained in Section 15.4.5, recommenders with lower

values of MAD are assessed by that metric as more fair.

4http://ranksys.org/

350

We observe that accuracy (defined through nDCG) and fairness (either defined

as our proposed GCE metric, or using the MAD metric as reference) do not usually

match each other, in the sense that the best recommenders for one dimension are

different to those for a different dimension; for instance, Random is usually the best

recommender based on MADR and MADr, whereas BPRMF and UserKNN are the

best in terms of nDCG.

Under equality – i.e., p f0 – UserKNN is the recommender system with highest

values of GCE (the most fair) in Amazon Toys & Games and Amazon Video

Games, whereas Random and BPRSlim are the most fair ones in Amazon Elec-

tronics. As a validation of the proposed metric, the MostPopular recommender

always obtains higher (better) values of GCE under p f4 , which is the situation where

recommending more popular items is deemed (more) fair by the system designer

(they have a larger weight in the probability distribution).

If we now focus on the two extreme non-uniform situations (either very long

tail or very popular items, i.e., p f1 or p f4 , respectively), Amazon Electronics

and Amazon Video Games show similar results, since BPRSlim has the largest

values for popular items and Random for long tail items; on the Amazon Toys

& Games dataset, on the other hand, BPRSlim is the most fair regarding long tail

items and ItemKNN for popular items, even though BPRSlim also shows good val-

ues for popular items, consistent with the results found for the other datasets.

Hence, we conclude that ItemKNN, BPRSlim, and UserKNN are prone to sug-

gest more items from the head of the distribution, although this does not mean they

do not recommend tail items, since the values obtained when less popular items are

promoted through the fair distribution are not too small either – as it is the case of

the MostPopular algorithm, which only recommends items from the fourth category

of items, and thus the final GCE value gets distorted by the near-zero probability of

the other categories –; SVD++, on the other hand, and BPRMF to a lesser extent

(since this depends on the dataset), seems to be tailored to promote mostly popular

items, producing similar values as those obtained by the MostPopular algorithm.

These results agree with previous observations on the biases evidenced by different

algorithms in several datasets [49, 194, 66]. Moreover, if we look at the results

351

through the lens of which models promote recommendation of long tail items, we

can see that BPRSlim and Random are the most capable methods.

For the sake of space, from now on we focus our attention to the analysis of

the Amazon Toys & Games dataset, the rest are shown in Appendix 15.5.3.

Hence, Table 15.10 shows the item-based GCE values obtained using price as the

item feature. In this case, and in contrast to the scenario where popularity is used as

the item feature, the MostPopular recommender does not show an obvious pattern,

since it obtains higher values for p f2 and p f4; this is probably due to the inherent

biases in the data, indicating that popular items tend to appear in the low-to-medium

and high price clusters. These patterns in the data are also evident when checking

the results for Random, where the same two clusters (p f2 and p f4) produce the

highest GCE values.

As with the popularity feature, UserKNN is the best method under equality con-

straints on the same dataset, however, the situation changes drastically when other

fair distributions are considered, since the nature of the item features is very dif-

ferent. For instance, now the method that produces more fair recommendations for

more expensive items (p f4) is BPRMF, followed by ItemKNN. Regarding the least

expensive items, UserKNN performs the best, followed by BPRSlim, which also

obtains good performance values in the two intermediate clusters. These results

provide interesting insights into the performance of these models. We can observe

that nDCG produces results for most recommendation models that are too close -

without providing any transparent/distinguishable difference; under the proposed

GCE metric, we obtain more transparent/detailed understanding of how these mod-

els behave with respect to promotion of more expensive items against cheap items.

This capability might be important for the system designer in order to know which

models to choose on different e-commerce settings.

Based on this, we conclude that there are some recommendation techniques

more prone to recommend expensive or cheap products, even when this infor-

mation is not included in the training data of the algorithms. Thus, we observe

that ItemKNN, UserKNN, and BPRMF tend to include more expensive items in

their recommendations (also considering the results for the other domains as pre-

352

sented in Table 15.13). However, as discussed before, some of these results might

be attributed to the inherent biases of some algorithms to produce more popular

items. This effect is, indeed, not negligible, although it depends strongly on the

domain: the MostPopular algorithm obtains very good values of ItemGCE in Ama-

zon Electronics for all distributions except when the most expensive items

are promoted, a similar situation is found in Amazon Video Games, although

the obtained values are larger, whereas the optimal cases in Amazon Toys &

Games are found for p f2 and p f4 .

15.5.2 Analysis of user fairness results

In this section, we analyze the user variation of the GCE metric. For this, in Ta-

ble 15.11 we show the results of the three tested user features (happiness, helpful-

ness, and interactions) on the Amazon Toys & Games dataset; results for the

other datasets are included in the appendix.

The first thing we notice when considering equality as fairness is that the values

are much smaller than in the case of item features, even reaching an optimal of 0,

for BPRMF in the happiness feature, although the other optimal recommenders in

the other datasets for this scenario also obtain values very close to the optimal one.

Let us now analyze the other scenarios, where fairness is not equivalent to equal-

ity. In this case, there is no recommender that obtains a perfect value, although again

happiness seems to be the easiest feature where something similar to perfect fair-

ness might be achieved, since BPRSlim shows a−0.02 value for p f2 . ItemKNN and

BPRSlim tend to obtain good performance values for the three features, in particu-

lar ItemKNN is the best recommender for the users with more interactions, together

with those users with least helpful reviews; BPRSlim on the other hand is the best

one for the users with least interactions and for the happiest users.

In summary, we conclude that ItemKNN is inherently tailored to users with

many interactions and less helpful users, whereas BPRSlim seems to provide better

and fair recommendations for happy and cold (few interactions) users. Interestingly,

although both of these models leverage item-item similarities based on user inter-

actions, we can observe that, under GCE, we find contrasting results with respect to

353

their performance in the study of item and user fairness.

15.5.3 Discussion

When analyzing the presented approach and reported results from a global point

of view, we can finally answer the three research questions posed at the beginning

of the chapter. First, regarding (RQ1) How to define a fairness evaluation metric

that considers different notions of fairness (not only equality)?, we have presented

a novel metric that seamlessly work with either user or item features while, at the

same time, it is sensitive to different notions of fairness (through the definition of a

specific fair distribution): either based on equality (by using a uniform distribution)

or favoring some of the attribute values (such as most expensive items or less happy

users). This is a critical difference with respect to other metrics proposed in the lit-

erature to measure fairness, which should be tailored to either users or items or that

implicitly assume equality as fairness (see Section 15.2). In our experiments, this

becomes obvious when comparing the results found for the proposed GCE against

those found for MAD-based metrics, since the optimal recommender in the latter

case is usually Random, mostly because this type of algorithm is unbiased by defini-

tion. However, the proposed GCE metric allows to capture other concepts typically

considered when evaluating recommender systems such as relevance and ranking.

Second, as an answer to (RQ2) How do classical recommendation models be-

have in terms of such an evaluation metric, especially under non-equality definitions

of fairness?, we summarize the results obtained as follows. Recommendation algo-

rithms based on neighbors performs well in general: whereas UserKNN performs

well under equality for item attributes, ItemKNN (together with BPRMF) perform

well either under equality or non-equality constraints. Additionally, BPRSlim pro-

duces fair results under extreme scenarios of fairness (i.e., p f1 or p f4), again for item

attributes. These conclusions also apply, to some extent, to the results not discussed

so far which are shown in the appendix. It should be considered that the presented

results correspond to the values obtained when optimizing for accuracy (the rec-

ommenders were selected according to their nDCG@5 values), hence, a slightly

different behavior could have been obtained if each metric was optimized indepen-

354

dently. We do not include these results because we are more interested in analyzing

how state-of-the-art algorithms (typically selected and assessed with respect to ac-

curacy metrics) behave with respect to fairness oriented metrics.

Finally, to answer (RQ3) Which user and item attributes are more sensitive to

different notions of fairness? Which ones impact more on different families of rec-

ommendation algorithms?, we first need to define what we mean by sensitivity to

(notions of) fairness. Thus, we assume this can be understood as those cases where

results for equality differ too much from results for non-equality. To properly ana-

lyze this issue, we compare the rankings obtained for all the tested recommenders

(not only the 7 presented which correspond to those with optimal parameters, but

the 95 combinations for all parameters) and compute Spearman correlation between

the results using the distribution under equality constraints and the other cases (see

Table 15.12). We observe that the item popularity is more or less stable, whereas

the item price depends heavily on the dataset; on the other hand, the user attributes

(helpfulness, interactions, and especially happiness) are the least stable, since their

correlations are the lowest ones. This evidences that user attributes are more sensi-

tive to different notions of fairness, since the performance of recommenders change

more drastically when equality and non-equality distributions are used.

Full results

In this section we present the results for all the datasets and item and user attributes

that were not included in the previous sections for the sake of readability. First, we

show in Table 15.13 the item GCE based on the price attribute for the three datasets

(instead of only limited to toys, as in Section 15.5.1).

Second, our results on user attributes – that is, interactions, helpfulness, happi-

ness – is presented for the three datasets: Amazon Toys & Games is described

in Sections 15.5.1 and 15.5.2, Amazon Electronics in Table 15.14, and Ama-

zon Video Games in Table 15.15.

355

15.6 Conclusions and future work

In this study, we proposed a flexible, probabilistic framework for evaluating user

and item fairness in recommender systems. We conducted extensive experiments

on real-world datasets and demonstrate the flexibility of the proposed solution in

various settings. In summary, our framework can evaluate fairness beyond equality,

can evaluate both user fairness and item fairness, and is designed based on theoret-

ically sound foundations which makes it interpretable. Analyzing the results from

the conducted experiments, we observe that an evaluation based on the item fairness

as defined in the RecSys Challenge —that is according to the types of users (regular

vs. premium)— captures additional nuances about the different submissions.5 For

instance, the proposed winner system produces balanced recommendations across

the two membership classes. This is in contrast to our expectation that premium

users should be provided better recommendations. Therefore, even though the win-

ning submission could produce more precise recommendation, it does not meet with

our expectation of a fair recommendation for this attribute, which is to recommend

better recommendations to premium users.

On the other hand, when exploiting user attributes in a classical recommenda-

tion task to evaluate user fairness, we observe interesting insights related to the

different recommendation algorithms. So far, we have studied the case where users

are clustered according to their activity in the system, but we aim to analyze other

scenarios for the final submission. In this case, we have found that algorithms with

very similar performance values obtain very different values of user fairness, mostly

because the recommendation methods behave strikingly different at each user clus-

ter. Additionally, we compare our proposed metric against baseline metrics defined

in the literature (such as MAD [427]), which are extended to be also suitable for

ranking scenarios; it becomes evident that these metrics, cannot incorporate other

definitions of fairness in its computation, hence their flexibility is very limited.

In the future, we intend to simultaneously incorporate user and item fairness

into the generalized cross-entropy computation, in order to evaluate both multiple

5In this challenge, the users correspond to the items being recommended.

356

objectives in a single framework. In addition, conducting user studies to understand

the correlation between user satisfactions and fairness computed using GCE is an

interesting future direction that we would like to pursue.

357

Table 15.9: ItemGCE using popularity as feature on the three tested datasets. The

fair probability distributions are defined as p fi so that p fi(j) = 0.1 when j 6= i and

0.7 otherwise – except for p f0 that denotes the uniform distribution – and each

column denotes the value obtained by GCE when such probability distribution is

used as p f in Equation 15.3. In bold, highlighted the best values for each metric.

(a) Amazon Electronics

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −7.97 −32.39 −32.39 −1.14 −2.51 0.002 0.000
MostPopular 0.008 −688.97 −1,874.78 −1,874.78 −1,874.78 −110.06 0.029 0.751

ItemKNN 0.004 −445.87 −82.79 −1,778.92 −1,778.92 −71.16 0.021 0.000

UserKNN 0.014 −520.00 −4,074.78 −85.48 −85.24 −83.08 0.043 0.001

SVD++ 0.012 −1,082.10 −2,944.10 −2,944.10 −2,944.10 −172.96 0.045 0.029

BPRMF 0.018 −1,299.14 −3,534.45 −3,534.45 −3,534.45 −207.68 0.012 0.011

BPRSlim 0.007 −9.05 −38.61 −22.80 −14.74 −1.28 0.005 0.003

(b) Amazon Toys & Games

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −15.98 −2.38 −44.25 −44.25 −44.25 0.000 0.000
MostPopular 0.001 −126.91 −345.97 −345.97 −345.97 −20.13 0.008 0.045

ItemKNN 0.002 −0.08 −1.52 −0.42 −0.52 −0.33 0.055 0.001

UserKNN 0.004 −0.01 −0.81 −0.38 −0.54 −0.53 0.028 0.001

SVD++ 0.003 −305.36 −831.35 −831.35 −831.35 −48.68 0.006 0.004

BPRMF 0.002 −146.48 −24.61 −586.48 −586.48 −23.30 0.010 0.008

BPRSlim 0.003 −0.12 −0.12 −1.40 −1.04 −0.62 0.011 0.036

(c) Amazon Video Games

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −11.85 −1.87 −48.40 −2.11 −48.40 0.001 0.001
MostPopular 0.004 −490.77 −1,335.68 −1,335.68 −1,335.68 −78.34 0.017 0.116

ItemKNN 0.013 −1.25 −3.68 −1.03 −7.72 −0.11 0.100 0.002

UserKNN 0.019 −1.23 −10.09 −0.95 −1.13 −0.18 0.084 0.002

SVD++ 0.005 −499.25 −1,358.75 −1,358.75 −1,358.75 −79.70 0.023 0.017

BPRMF 0.008 −3.08 −2.18 −17.12 −8.14 −0.36 0.024 0.032

BPRSlim 0.011 −1.45 −3.18 −8.48 −2.45 −0.11 0.034 0.019

358

Table 15.10: ItemGCE using price as feature on Amazon Toys & Games. No-

tation as in Table ??.

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −11.95 −48.74 −1.84 −48.74 −2.29 0.001 0.000

MostPopular 0.001 −84.80 −339.23 −15.84 −339.23 −13.41 0.028 0.149

ItemKNN 0.002 −0.15 −1.88 −0.60 −0.80 −0.14 0.009 0.000
UserKNN 0.004 −0.07 −0.43 −1.17 −0.92 −0.22 0.025 0.002

SVD++ 0.003 −203.82 −33.81 −815.83 −815.83 −32.47 0.022 0.017

BPRMF 0.002 −0.79 −2.67 −4.47 −1.52 −0.03 0.017 0.014

BPRSlim 0.003 −0.29 −0.57 −0.34 −0.32 −3.37 0.016 0.053

359

Table 15.11: UserGCE for Amazon Toys & Games dataset using the three user

features considered. Notation as in Table ??, except for the Happiness attribute,

where p fi(j) = 0.1 when j 6= i and 0.9 otherwise when used as p f in Equation ??.

(a) Happiness

Rec nDCG p f0 p f1 p f2 MADR MADr

Random 0.000 −4.05 −13.83 −0.09 0.000 0.000
MostPopular 0.001 −0.01 −0.44 −0.23 0.000 0.121

ItemKNN 0.002 −0.25 −1.44 −0.04 0.002 0.008

UserKNN 0.004 −0.20 −1.23 −0.05 0.003 0.049

SVD++ 0.003 −0.01 −0.43 −0.23 0.001 0.018

BPRMF 0.002 0.00 −0.33 −0.31 0.000 0.104

BPRSlim 0.003 −2.01 −7.20 −0.02 0.003 0.939

(b) Helpfulness

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −6.24 −0.96 −25.93 −1.25 −25.93 0.000 0.000
MostPopular 0.001 −0.26 −2.27 −0.14 −1.57 −0.36 0.001 0.118

ItemKNN 0.002 −0.01 −0.45 −0.54 −0.44 −0.84 0.001 0.013

UserKNN 0.004 −0.10 −0.91 −0.14 −0.60 −1.32 0.003 0.031

SVD++ 0.003 −0.08 −1.24 −0.23 −0.94 −0.39 0.002 0.002

BPRMF 0.002 −0.28 −0.94 −0.22 −3.01 −0.33 0.002 0.081

BPRSlim 0.003 −0.02 −0.72 −0.44 −0.78 −0.36 0.001 3.145

(c) Interactions

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −9.54 −26.73 −26.73 −26.73 −1.35 0.000 0.000
MostPopular 0.001 −19.60 −154.54 −4.09 −3.32 −3.28 0.001 0.186

ItemKNN 0.002 −0.05 −0.58 −0.70 −1.03 −0.22 0.001 0.025

UserKNN 0.004 −0.02 −0.84 −0.55 −0.63 −0.31 0.001 0.038

SVD++ 0.003 −0.03 −0.70 −0.72 −0.71 −0.25 0.001 0.003

BPRMF 0.002 −0.02 −0.58 −0.46 −0.36 −0.94 0.001 0.208

BPRSlim 0.003 −0.04 −0.49 −0.64 −0.28 −1.07 0.001 9.001

360

Table 15.12: Spearman correlation value between recommenders ranked based on

GCE values for p f0 and the indicated fair distribution p f for all the datasets and user

and item attributes.

Attribute p f Amazon Electronics Amazon Toys & Games Amazon Video Games

Price p f1 0.10 0.85 0.85

p f2 0.28 0.70 0.74

p f3 0.17 0.78 0.52

p f4 0.73 0.63 0.83

Popularity p f1 0.77 0.84 0.91

p f2 0.95 0.93 0.78

p f3 0.93 0.93 0.84

p f4 0.99 0.92 0.94

Happiness p f1 1.00 0.63 0.59

p f2 −1.00 −0.29 −0.22

Helpfulness p f1 0.10 0.74 0.50

p f2 0.25 0.35 0.11

p f3 0.36 0.64 0.77

p f4 0.58 0.43 0.52

Interactions p f1 0.66 0.88 0.41

p f2 0.55 0.73 0.39

p f3 0.46 0.68 0.37

p f4 −0.21 0.29 0.21

361

Table 15.13: ItemGCE using price as feature on the three tested datasets. Notation

as in Table 15.9.

(a) Amazon Electronics

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −0.09 −0.29 −1.15 −0.28 −1.14 0.000 0.000
MostPopular 0.008 −0.12 −0.42 −0.25 −0.62 −1.82 0.056 1.330

ItemKNN 0.004 −0.03 −0.96 −0.29 −0.57 −0.57 0.004 0.000

UserKNN 0.014 −0.02 −0.52 −0.43 −0.42 −0.98 0.015 0.000

SVD++ 0.012 −361.26 −58.07 −57.78 −62.81 −2,829.16 0.076 0.047

BPRMF 0.018 −1.47 −1.01 −0.66 −0.30 −12.42 0.019 0.020

BPRSlim 0.007 −0.09 −0.50 −0.36 −0.39 −1.62 0.001 0.000

(b) Amazon Toys & Games

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −11.95 −48.74 −1.84 −48.74 −2.29 0.001 0.000

MostPopular 0.001 −84.80 −339.23 −15.84 −339.23 −13.41 0.028 0.149

ItemKNN 0.002 −0.15 −1.88 −0.60 −0.80 −0.14 0.009 0.000
UserKNN 0.004 −0.07 −0.43 −1.17 −0.92 −0.22 0.025 0.002

SVD++ 0.003 −203.82 −33.81 −815.83 −815.83 −32.47 0.022 0.017

BPRMF 0.002 −0.79 −2.67 −4.47 −1.52 −0.03 0.017 0.014

BPRSlim 0.003 −0.29 −0.57 −0.34 −0.32 −3.37 0.016 0.053

(c) Amazon Video Games

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −10.57 −43.16 −2.21 −1.60 −43.16 0.002 0.001

MostPopular 0.004 −164.68 −28.64 −27.11 −26.27 −1,290.25 0.023 0.152

ItemKNN 0.013 −0.17 −2.30 −0.52 −0.22 −0.56 0.004 0.000
UserKNN 0.019 −0.12 −1.80 −0.75 −0.33 −0.28 0.063 0.004

SVD++ 0.005 −0.70 −3.22 −1.07 −0.04 −3.70 0.034 0.025

BPRMF 0.008 −0.26 −1.22 −0.71 −0.07 −2.32 0.028 0.030

BPRSlim 0.011 −0.05 −1.11 −0.39 −0.28 −0.83 0.010 0.005

362

Table 15.14: UserGCE for Amazon Electronics dataset using the three user

features considered. Notation as in Table 15.11.

(a) Happiness

Rec nDCG p f0 p f1 p f2 MADR MADr

Random 0.000 −1.68 −6.13 −0.01 0.000 0.000
MostPopular 0.008 −0.02 −0.51 −0.19 0.003 0.271

ItemKNN 0.004 −0.04 −0.61 −0.15 0.002 0.004

UserKNN 0.014 −0.04 −0.63 −0.15 0.007 0.003

SVD++ 0.012 −0.04 −0.61 −0.16 0.006 0.017

BPRMF 0.018 −0.05 −0.69 −0.13 0.010 0.004

BPRSlim 0.007 −0.06 −0.73 −0.12 0.004 0.158

(b) Helpfulness

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −2.53 −11.04 −11.04 −0.35 −0.81 0.000 0.000
MostPopular 0.008 −0.01 −0.42 −0.44 −0.71 −0.67 0.002 0.759

ItemKNN 0.004 −0.01 −0.44 −0.46 −0.69 −0.63 0.001 0.009

UserKNN 0.014 −0.06 −0.25 −0.42 −0.86 −1.08 0.007 0.012

SVD++ 0.012 −0.03 −0.28 −0.52 −0.82 −0.75 0.004 0.003

BPRMF 0.018 −0.04 −0.25 −0.46 −0.80 −1.02 0.008 0.010

BPRSlim 0.007 −0.04 −0.23 −0.52 −0.94 −0.84 0.003 0.444

(c) Interactions

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −2.45 −0.74 −10.74 −10.74 −0.35 0.000 0.000
MostPopular 0.008 −0.01 −0.67 −0.59 −0.57 −0.39 0.001 1.805

ItemKNN 0.004 −0.16 −1.24 −1.67 −0.41 −0.15 0.003 0.027

UserKNN 0.014 −0.01 −0.73 −0.53 −0.55 −0.41 0.002 0.023

SVD++ 0.012 0.00 −0.60 −0.57 −0.62 −0.41 0.002 0.000

BPRMF 0.018 0.00 −0.54 −0.61 −0.58 −0.45 0.002 0.013

BPRSlim 0.007 −0.05 −1.11 −0.74 −0.48 −0.25 0.003 1.302

363

Table 15.15: UserGCE for Amazon Video Games dataset using the three user

features considered. Notation as in Table 15.11.

(a) Happiness

Rec nDCG p f0 p f1 p f2 MADR MADr

Random 0.000 −7.22 −24.10 −0.22 0.000 0.000
MostPopular 0.004 −0.05 −0.66 −0.14 0.002 0.373

ItemKNN 0.013 0.00 −0.37 −0.27 0.002 0.006

UserKNN 0.019 −0.01 −0.42 −0.24 0.004 0.010

SVD++ 0.005 −0.48 −2.22 −0.01 0.006 0.618

BPRMF 0.008 −0.12 −0.97 −0.08 0.007 0.038

BPRSlim 0.011 0.00 −0.26 −0.39 0.002 0.099

(b) Helpfulness

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −7.58 −31.08 −1.95 −1.10 −31.08 0.000 0.000
MostPopular 0.004 −0.01 −0.43 −0.65 −0.45 −0.67 0.001 0.201

ItemKNN 0.013 −0.05 −0.32 −0.44 −1.30 −0.56 0.005 0.015

UserKNN 0.019 −0.10 −0.16 −0.50 −1.21 −1.08 0.012 0.006

SVD++ 0.005 −0.44 −0.42 −0.56 −4.51 −0.29 0.003 0.103

BPRMF 0.008 −0.29 −0.23 −0.28 −2.92 −1.14 0.006 0.103

BPRSlim 0.011 −0.10 −0.25 −0.33 −1.47 −0.93 0.006 0.346

(c) Interactions

Rec nDCG p f0 p f1 p f2 p f3 p f4 MADR MADr

Random 0.000 −6.46 −0.94 −26.69 −26.69 −1.60 0.000 0.000
MostPopular 0.004 −0.13 −1.00 −1.68 −0.30 −0.25 0.003 0.356

ItemKNN 0.013 −0.05 −1.02 −0.22 −0.71 −0.60 0.006 0.046

UserKNN 0.019 −0.04 −1.13 −0.41 −0.51 −0.40 0.006 0.014

SVD++ 0.005 −0.11 −1.73 −0.59 −0.60 −0.19 0.003 0.047

BPRMF 0.008 −0.04 −0.44 −0.43 −0.44 −1.14 0.002 0.327

BPRSlim 0.011 −0.08 −0.59 −0.45 −1.51 −0.27 0.005 1.260

364

Part IV

Conclusion and Future Work

365

Before continuing, some warnings are required. This short final chapter has a

quite different tone. Most of this research thesis is written in the first plural per-

son. I have chosen this way because I know that all my achievements are not only

mines. My supervisors and all the researchers I have a collaboration with have

contributed. Without their effort, my ideas, my experiments, would still be rough.

However, this chapter is devoted to my overall conclusions of this research work.

For this reason, if you are looking for the results of the research lines, I am sad

to say that you are in the wrong place. I have written each specific research line

section to be self-conclusive. These lines will be devoted to a broader vision of this

research work. In these years, we have analyzed the impact of semantic knowledge

on Recommender Systems. We have analyzed the different ways to inject semantic

knowledge in the best recommenders. We have proposed several new factorization

techniques to factorize user-feature matrices, to fix the meaning of the latent factors,

to compute the best and the worst factors. We have written SPARQL queries able

to exploit preference theories to produce recommendations. We have proposed new

high-performance interpretable models. Then, we also have explored the world of

semi-structured knowledge. In this sense, we have analyzed the role of Time, and

the Popularity of items. We have exploited Time to build a new diversification algo-

rithm and to define a new personalized popularity algorithm. We have investigated

the notion of similarity and we have proposed a new family of similarities. We have

explored the evaluation of Recommender Systems proposing a new generalized

fairness metric and a technique to analyze the discriminative power of evaluation

metrics during the training phase. All the results of the above approaches are com-

petitive or better than the state-of-art. All our findings have been peer-reviewed and

some extensions are still under-review. There is still room for improvement for each

of these techniques. I have indicated some of these possible extensions at the end

of each research line. However, some of the most important research pieces of this

research path are not in this work. Failed experiments, wrong settings, and imagina-

tive theories have marked this research path. Without those failures, achievements

would not be there. This research path, intended as defeats and victories, has deeply

changed me. My point of view is changed. In the beginning, the idea of obtaining

367

bad results terrified me. Now I am proud of my failures because I have learned to

analyze them with the wish of understanding them. I have learned to be very rigor-

ous preparing experiments and formalizing a new theory. When I see the results, I

have learned to look further ahead. More important, I have learned that I have a lot

of limits. Comparing against research giants forces you to analyze yourself. As for

the proposals you have read, also for me there is room for improvement. Writing

style, abstracting at a very high level, connecting theoretical points are only some

of the aspects I will work on it. In my humble opinion, my research work is only

a small rock of a mountain that could be built exploiting knowledge representation

and machine learning together. Interpretability of black-boxes, evaluation of fair-

ness, automatic completion of knowledge bases are only some of the topics these

technologies can face. On the other side, the knowledge representation background

has been crucial also for dealing with semi-structured knowledge, proposing new

time-aware and dissimilarity-based algorithms.

There is still much to discover, and failures to understand.

368

Bibliography

[1] Title vii of the civil rights act of 1964. https://www.eeoc.gov/

laws/statutes/titlevii.cfm. Accessed: 2019-07-31.

[2] Dynamic item-based recommendation algorithm with time decay. In Sixth In-

ternational Conference on Natural Computation, ICNC 2010, Yantai, Shan-

dong, China, 10-12 August 2010, pages 242–247. IEEE, 2010. Withdrawn.

[3] Netflix TechBlog, 2012 (accessed June 5, 2019).

http://techblog.netflix.com/2012/04/

netflix-recommendations-beyond-5-stars.html.

[4] Amazon product data, 2014 (accessed July 31, 2019). http://

jmcauley.ucsd.edu/data/amazon/.

[5] Etsy.com-Shop for anything from creative people everywhere, 2019 (accessed

August 12, 2019). https://www.etsy.com.

[6] B. Abdollahi and O. Nasraoui. Explainable matrix factorization for collab-

orative filtering. In J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks, and

B. Y. Zhao, editors, Proceedings of the 25th International Conference on

World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Com-

panion Volume, pages 5–6. ACM, 2016.

[7] B. Abdollahi and O. Nasraoui. Explainable restricted boltzmann machines

for collaborative filtering. CoRR, abs/1606.07129, 2016.

369

[8] H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach,

T. Kamishima, J. Krasnodebski, and L. A. Pizzato. Beyond personal-

ization: Research directions in multistakeholder recommendation. CoRR,

abs/1905.01986, 2019.

[9] H. Abdollahpouri, R. Burke, and B. Mobasher. Recommender systems as

multistakeholder environments. In Proceedings of the 25th Conference on

User Modeling, Adaptation and Personalization, UMAP 2017, Bratislava,

Slovakia, July 09 - 12, 2017, pages 347–348, 2017.

[10] R. Abebe, J. M. Kleinberg, and D. C. Parkes. Fair division via social compar-

ison. In K. Larson, M. Winikoff, S. Das, and E. H. Durfee, editors, Proceed-

ings of the 16th Conference on Autonomous Agents and MultiAgent Systems,

AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages 281–289. ACM,

2017.

[11] F. Abel, S. Araújo, Q. Gao, and G. Houben. Analyzing cross-system user

modeling on the social web. In S. Auer, O. Dı́az, and G. A. Papadopoulos,

editors, Web Engineering - 11th International Conference, ICWE 2011, Pa-

phos, Cyprus, June 20-24, 2011, volume 6757 of Lecture Notes in Computer

Science, pages 28–43. Springer, 2011.

[12] F. Abel, E. Herder, G. Houben, N. Henze, and D. Krause. Cross-system user

modeling and personalization on the social web. User Model. User-Adapt.

Interact., 23(2-3):169–209, 2013.

[13] S. Abiteboul, P. Buneman, D. Suciu, J. Allan, R. Papka, V. Lavrenko,

A. Blum, T. Mitchell, A. Bonifati, S. Ceri, et al. News weeder: Learning

to filter netnews. In Proceedings of the 12th International Conference of

Machine Learning (ICML95), 1995.

[14] G. Adomavicius and Y. Kwon. Improving aggregate recommendation di-

versity using ranking-based techniques. IEEE Trans. Knowl. Data Eng.,

24(5):896–911, 2012.

370

[15] G. Adomavicius and Y. Kwon. Multi-criteria recommender systems. In

F. Ricci, L. Rokach, and B. Shapira, editors, Recommender Systems Hand-

book, pages 847–880. Springer, 2015.

[16] G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems:

A data warehousing approach. In L. Fiege, G. Mühl, and U. G. Wilhelm,

editors, Electronic Commerce, Second International Workshop, WELCOM

2001 Heidelberg, Germany, November 16-17, 2001, Proceedings, volume

2232 of Lecture Notes in Computer Science, pages 180–192. Springer, 2001.

[17] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions.

IEEE Trans. Knowl. Data Eng., 17(6):734–749, 2005.

[18] G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. In

F. Ricci, L. Rokach, and B. Shapira, editors, Recommender Systems Hand-

book, pages 191–226. Springer, 2015.

[19] F. Aiolli. A preliminary study on a recommender system for the million

songs dataset challenge. In R. Basili, F. Sebastiani, and G. Semeraro, editors,

Proceedings of the 4th Italian Information Retrieval Workshop, Pisa, Italy,

January 16-17, 2013, volume 964 of CEUR Workshop Proceedings, pages

73–83. CEUR-WS.org, 2013.

[20] L. Akoglu and C. Faloutsos. Valuepick: Towards a value-oriented dual-goal

recommender system. In W. Fan, W. Hsu, G. I. Webb, B. Liu, C. Zhang,

D. Gunopulos, and X. Wu, editors, ICDMW 2010, The 10th IEEE Interna-

tional Conference on Data Mining Workshops, Sydney, Australia, 13 Decem-

ber 2010, pages 1151–1158. IEEE Computer Society, 2010.

[21] V. W. Anelli, P. Basile, D. G. Bridge, T. D. Noia, P. Lops, C. Musto, F. Nar-

ducci, and M. Zanker. Knowledge-aware and conversational recommender

systems. In S. Pera, M. D. Ekstrand, X. Amatriain, and J. O’Donovan, ed-

itors, Proceedings of the 12th ACM Conference on Recommender Systems,

371

RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pages 521–522.

ACM, 2018.

[22] V. W. Anelli, V. Bellini, A. Calı̀, G. D. Santis, T. D. Noia, and E. D. Sciascio.

Querying deep web data sources as linked data. In R. Akerkar, A. Cuz-

zocrea, J. Cao, and M. Hacid, editors, Proceedings of the 7th International

Conference on Web Intelligence, Mining and Semantics, WIMS 2017, Aman-

tea, Italy, June 19-22, 2017, pages 32:1–32:7. ACM, 2017.

[23] V. W. Anelli, V. Bellini, T. D. Noia, W. L. Bruna, P. Tomeo, and E. D. Scias-

cio. An analysis on time- and session-aware diversification in recommender

systems. In M. Bieliková, E. Herder, F. Cena, and M. C. Desmarais, editors,

Proceedings of the 25th Conference on User Modeling, Adaptation and Per-

sonalization, UMAP 2017, Bratislava, Slovakia, July 09 - 12, 2017, pages

270–274. ACM, 2017.

[24] V. W. Anelli, A. Calı̀, T. D. Noia, M. Palmonari, and A. Ragone. Exposing

open street map in the linked data cloud. In H. Fujita, M. Ali, A. Selamat,

J. Sasaki, and M. Kurematsu, editors, Trends in Applied Knowledge-Based

Systems and Data Science - 29th International Conference on Industrial En-

gineering and Other Applications of Applied Intelligent Systems, IEA/AIE

2016, Morioka, Japan, August 2-4, 2016, Proceedings, volume 9799 of Lec-

ture Notes in Computer Science, pages 344–355. Springer, 2016.

[25] V. W. Anelli and T. D. Noia. 2nd workshop on knowledge-aware and conver-

sational recommender systems - kars. In W. Zhu, D. Tao, X. Cheng, P. Cui,

E. A. Rundensteiner, D. Carmel, Q. He, and J. X. Yu, editors, Proceed-

ings of the 28th ACM International Conference on Information and Knowl-

edge Management, CIKM 2019, Beijing, China, November 3-7, 2019., pages

3001–3002. ACM, 2019.

[26] V. W. Anelli, T. D. Noia, P. Lops, C. Musto, M. Zanker, P. Basile,

D. G. Bridge, and F. Narducci, editors. Proceedings of the Work-

shop on Knowledge-aware and Conversational Recommender Systems

372

2018 co-located with 12th ACM Conference on Recommender Systems,

KaRS@RecSys 2018, Vancouver, Canada, October 7, 2018, volume 2290

of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[27] V. W. Anelli, T. D. Noia, P. Lops, and E. D. Sciascio. Feature factoriza-

tion for top-n recommendation: From item rating to features relevance. In

Y. Zheng, W. Pan, S. S. Sahebi, and I. Fernández, editors, Proceedings of the

1st Workshop on Intelligent Recommender Systems by Knowledge Transfer &

Learning co-located with ACM Conference on Recommender Systems (Rec-

Sys 2017), Como, Italy, August 27, 2017., volume 1887 of CEUR Workshop

Proceedings, pages 16–21. CEUR-WS.org, 2017.

[28] V. W. Anelli, T. D. Noia, E. D. Sciascio, C. Pomo, and A. Ragone. On

the discriminative power of hyper-parameters in cross-validation and how to

choose them. In T. Bogers, A. Said, P. Brusilovsky, and D. Tikk, editors,

Proceedings of the 13th ACM Conference on Recommender Systems, Rec-

Sys 2017, Copenhagen, Denmark, September 16-20, 2019., pages 447–451.

ACM, 2019.

[29] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta. Time-

aware personalized popularity in top-n recommendation. In Workshop on

Recommendation in Complex Scenarios co-located with 12th ACM Confer-

ence on Recommender Systems (RecSys 2018), Vancouver, BC, Canada, Oc-

tober 2-7, 2018, 2018.

[30] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta. How

to make latent factors interpretable by feeding factorization machines with

knowledge graphs. In C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek,

I. F. Cruz, A. Hogan, J. Song, M. Lefrançois, and F. Gandon, editors, The

Semantic Web - ISWC 2019 - 18th International Semantic Web Conference,

Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I, volume

11778 of Lecture Notes in Computer Science, pages 38–56. Springer, 2019.

373

[31] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta. The

importance of being dissimilar in recommendation. In C. Hung and G. A.

Papadopoulos, editors, Proceedings of the 34th ACM/SIGAPP Symposium

on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, pages

816–821. ACM, 2019.

[32] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta. Local

popularity and time in top-n recommendation. In L. Azzopardi, B. Stein,

N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra, editors, Advances in Infor-

mation Retrieval - 41st European Conference on IR Research, ECIR 2019,

Cologne, Germany, April 14-18, 2019, Proceedings, Part I, volume 11437 of

Lecture Notes in Computer Science, pages 861–868. Springer, 2019.

[33] A. Ashkan, B. Kveton, S. Berkovsky, and Z. Wen. Optimal greedy diver-

sity for recommendation. In Q. Yang and M. J. Wooldridge, editors, Pro-

ceedings of the Twenty-Fourth International Joint Conference on Artificial

Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages

1742–1748. AAAI Press, 2015.

[34] A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and I. Netanely.

Movie recommender system for profit maximization. In Q. Yang, I. King,

Q. Li, P. Pu, and G. Karypis, editors, Seventh ACM Conference on Recom-

mender Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013, pages

121–128. ACM, 2013.

[35] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval.

ACM Press / Addison-Wesley, 1999.

[36] M. Balabanovic and Y. Shoham. Content-based, collaborative recommenda-

tion. Commun. ACM, 40(3):66–72, 1997.

[37] L. Baltrunas and F. Ricci. Item weighting techniques for collaborative

filtering. In B. Berendt, D. Mladenic, M. de Gemmis, G. Semeraro,

M. Spiliopoulou, G. Stumme, V. Svátek, and F. Zelezný, editors, Knowledge

374

Discovery Enhanced with Semantic and Social Information, volume 220 of

Studies in Computational Intelligence, pages 109–126. 2009.

[38] H. Bao, Q. Li, S. S. Liao, S. Song, and H. Gao. A new temporal and social

pmf-based method to predict users’ interests in micro-blogging. Decision

Support Systems, 55(3):698–709, 2013.

[39] S. Barocas and A. D. Selbst. Big data’s disparate impact. Cal. L. Rev.,

104:671, 2016.

[40] K. Bauman, B. Liu, and A. Tuzhilin. Aspect based recommendations: Rec-

ommending items with the most valuable aspects based on user reviews. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,

2017, pages 717–725. ACM, 2017.

[41] I. Bayer. fastfm: A library for factorization machines. J. Mach. Learn. Res.,

17:184:1–184:5, 2016.

[42] F. Belém, R. L. T. Santos, J. M. Almeida, and M. A. Gonçalves. Topic diver-

sity in tag recommendation. In Q. Yang, I. King, Q. Li, P. Pu, and G. Karypis,

editors, Seventh ACM Conference on Recommender Systems, RecSys ’13,

Hong Kong, China, October 12-16, 2013, pages 141–148. ACM, 2013.

[43] N. J. Belkin and S. E. Robertson. Some ethical and political implications of

theoretical research in information science. In Proceedings of the Association

for Information Science, ASIS ’76, pages 597–605, 1976.

[44] R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD

Explorations, 9(2):75–79, 2007.

[45] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In Proceedings of the 7th IEEE Inter-

national Conference on Data Mining (ICDM 2007), October 28-31, 2007,

Omaha, Nebraska, USA, pages 43–52. IEEE Computer Society, 2007.

375

[46] R. M. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple

scales to improve accuracy of large recommender systems. In P. Berkhin,

R. Caruana, and X. Wu, editors, Proceedings of the 13th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, San Jose,

California, USA, August 12-15, 2007, pages 95–104. ACM, 2007.

[47] A. Bellogı́n, I. Cantador, and P. Castells. A study of heterogeneity in rec-

ommendations for a social music service. In Proceedings of the 1st Interna-

tional Workshop on Information Heterogeneity and Fusion in Recommender

Systems, HetRec ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[48] A. Bellogı́n, P. Castells, and I. Cantador. Precision-oriented evaluation of

recommender systems: an algorithmic comparison. In B. Mobasher, R. D.

Burke, D. Jannach, and G. Adomavicius, editors, Proceedings of the 2011

ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA,

October 23-27, 2011, pages 333–336. ACM, 2011.

[49] A. Bellogı́n, P. Castells, and I. Cantador. Statistical biases in information

retrieval metrics for recommender systems. Inf. Retr. Journal, 20(6):606–

634, 2017.

[50] A. Bellogı́n, I. Fernández-Tobı́as, I. Cantador, and P. Tomeo. Neighbor se-

lection for cold users in collaborative filtering with positive-only feedback.

In F. Herrera, S. Damas, R. Montes, S. Alonso, O. Cordón, A. González, and

A. Troncoso, editors, Advances in Artificial Intelligence - 18th Conference of

the Spanish Association for Artificial Intelligence, CAEPIA 2018, Granada,

Spain, October 23-26, 2018, Proceedings, volume 11160 of Lecture Notes in

Computer Science, pages 3–12. Springer, 2018.

[51] A. Bellogı́n and P. Sánchez. Revisiting neighbourhood-based recommenders

for temporal scenarios. In M. Bieliková, V. Bogina, T. Kuflik, and R. Sasson,

editors, Proceedings of the 1st Workshop on Temporal Reasoning in Recom-

mender Systems co-located with 11th International Conference on Recom-

376

mender Systems (RecSys 2017), Como, Italy, August 27-31, 2017., volume

1922 of CEUR Workshop Proceedings, pages 40–44. CEUR-WS.org, 2017.

[52] J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In In KDD Cup and

Workshop in conjunction with KDD, 2007.

[53] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-

parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,

F. C. N. Pereira, and K. Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 24: 25th Annual Conference on Neural Information

Processing Systems 2011. Proceedings of a meeting held 12-14 December

2011, Granada, Spain., pages 2546–2554, 2011.

[54] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.

J. Mach. Learn. Res., 13:281–305, 2012.

[55] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox. Hyperopt: a

python library for model selection and hyperparameter optimization. Com-

putational Science & Discovery, 8(1):014008, 2015.

[56] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms. In Proc. of

the 12th Python in science conf., pages 13–20. Citeseer, 2013.

[57] S. Berkovsky, T. Kuflik, and F. Ricci. Distributed collaborative filtering with

domain specialization. In J. A. Konstan, J. Riedl, and B. Smyth, editors,

Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys

2007, Minneapolis, MN, USA, October 19-20, 2007, pages 33–40. ACM,

2007.

[58] S. Berkovsky, T. Kuflik, and F. Ricci. Mediation of user models for enhanced

personalization in recommender systems. User Model. User-Adapt. Interact.,

18(3):245–286, 2008.

[59] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform resource identifiers

(URI): generic syntax. RFC, 2396:1–40, 1998.

377

[60] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001.

[61] A. Beutel, E. H. Chi, Z. Cheng, H. Pham, and J. R. Anderson. Beyond glob-

ally optimal: Focused learning for improved recommendations. In R. Barrett,

R. Cummings, E. Agichtein, and E. Gabrilovich, editors, Proceedings of the

26th International Conference on World Wide Web, WWW 2017, Perth, Aus-

tralia, April 3-7, 2017, pages 203–212. ACM, 2017.

[62] A. J. Biega, K. P. Gummadi, and G. Weikum. Equity of attention: Amortizing

individual fairness in rankings. In K. Collins-Thompson, Q. Mei, B. D. Davi-

son, Y. Liu, and E. Yilmaz, editors, The 41st International ACM SIGIR Con-

ference on Research & Development in Information Retrieval, SIGIR 2018,

Ann Arbor, MI, USA, July 08-12, 2018, pages 405–414. ACM, 2018.

[63] D. Billsus and M. J. Pazzani. User modeling for adaptive news access. User

Model. User-Adapt. Interact., 10(2-3):147–180, 2000.

[64] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.

Semantic Web Inf. Syst., 5(3):1–22, 2009.

[65] Y. Blanco-Fernández, J. J. Pazos-Arias, A. Gil-Solla, M. R. Cabrer, and M. L.

Nores. Providing entertainment by content-based filtering and semantic rea-

soning in intelligent recommender systems. IEEE Trans. Consumer Elec-

tronics, 54(2):727–735, 2008.

[66] L. Boratto, G. Fenu, and M. Marras. The effect of algorithmic bias on recom-

mender systems for massive open online courses. In L. Azzopardi, B. Stein,

N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra, editors, Advances in Infor-

mation Retrieval - 41st European Conference on IR Research, ECIR 2019,

Cologne, Germany, April 14-18, 2019, Proceedings, Part I, volume 11437 of

Lecture Notes in Computer Science, pages 457–472. Springer, 2019.

[67] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In

D. Georgakopoulos and A. Buchmann, editors, Proceedings of the 17th In-

378

ternational Conference on Data Engineering, April 2-6, 2001, Heidelberg,

Germany, pages 421–430. IEEE Computer Society, 2001.

[68] S. Bostandjiev, J. O’Donovan, and T. Höllerer. Tasteweights: a visual interac-

tive hybrid recommender system. In P. Cunningham, N. J. Hurley, I. Guy, and

S. S. Anand, editors, Sixth ACM Conference on Recommender Systems, Rec-

Sys ’12, Dublin, Ireland, September 9-13, 2012, pages 35–42. ACM, 2012.

[69] Z. I. Botev and D. P. Kroese. The generalized cross entropy method, with

applications to probability density estimation. Methodology and Computing

in Applied Probability, 13(1):1–27, 2011.

[70] M. R. Bouadjenek, H. Hacid, and M. Bouzeghoub. Social networks and

information retrieval, how are they converging? A survey, a taxonomy and

an analysis of social information retrieval approaches and platforms. Inf.

Syst., 56:1–18, 2016.

[71] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Cp-

nets: A tool for representing and reasoning with conditional ceteris paribus

preference statements. J. Artif. Intell. Res., 21:135–191, 2004.

[72] R. I. Brafman and C. Domshlak. Introducing variable importance tradeoffs

into cp-nets. In A. Darwiche and N. Friedman, editors, UAI ’02, Proceedings

of the 18th Conference in Uncertainty in Artificial Intelligence, University of

Alberta, Edmonton, Alberta, Canada, August 1-4, 2002, pages 69–76. Mor-

gan Kaufmann, 2002.

[73] J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of pre-

dictive algorithms for collaborative filtering. In G. F. Cooper and S. Moral,

editors, UAI ’98: Proceedings of the Fourteenth Conference on Uncertainty

in Artificial Intelligence, University of Wisconsin Business School, Madison,

Wisconsin, USA, July 24-26, 1998, pages 43–52. Morgan Kaufmann, 1998.

[74] G. Brewka, S. Benferhat, and D. L. Berre. Qualitative choice logic. Artif.

Intell., 157(1-2):203–237, 2004.

379

[75] G. Brewka, J. P. Delgrande, J. Romero, and T. Schaub. asprin: Customiz-

ing answer set preferences without a headache. In B. Bonet and S. Koenig,

editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-

ligence, January 25-30, 2015, Austin, Texas, USA., pages 1467–1474. AAAI

Press, 2015.

[76] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization

of expensive cost functions, with application to active user modeling and

hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.

[77] C. Buckley, G. Salton, and J. Allan. The effect of adding relevance informa-

tion in a relevance feedback environment. In W. B. Croft and C. J. van Ri-

jsbergen, editors, Proceedings of the 17th Annual International ACM-SIGIR

Conference on Research and Development in Information Retrieval. Dublin,

Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), pages 292–300.

ACM/Springer, 1994.

[78] R. Burke. Multisided fairness for recommendation. CoRR, abs/1707.00093,

2017.

[79] R. Burke, N. Sonboli, and A. Ordonez-Gauger. Balanced neighborhoods for

multi-sided fairness in recommendation. In S. A. Friedler and C. Wilson, ed-

itors, Conference on Fairness, Accountability and Transparency, FAT 2018,

23-24 February 2018, New York, NY, USA, volume 81 of Proceedings of Ma-

chine Learning Research, pages 202–214. PMLR, 2018.

[80] R. D. Burke. Hybrid recommender systems: Survey and experiments. User

Model. User-Adapt. Interact., 12(4):331–370, 2002.

[81] R. D. Burke. Hybrid web recommender systems. In P. Brusilovsky, A. Kobsa,

and W. Nejdl, editors, The Adaptive Web, Methods and Strategies of Web

Personalization, volume 4321 of Lecture Notes in Computer Science, pages

377–408. Springer, 2007.

380

[82] R. D. Burke, H. Abdollahpouri, B. Mobasher, and T. Gupta. Towards multi-

stakeholder utility evaluation of recommender systems. In F. Cena, M. C.

Desmarais, and D. Dicheva, editors, Late-breaking Results, Posters, Demos,

Doctoral Consortium and Workshops Proceedings of the 24th ACM Con-

ference on User Modeling, Adaptation and Personalisation (UMAP 2016),

Halifax, Canada, July 13-16, 2016., volume 1618 of CEUR Workshop Pro-

ceedings. CEUR-WS.org, 2016.

[83] P. G. Campos, F. Dı́ez, and I. Cantador. Time-aware recommender systems:

a comprehensive survey and analysis of existing evaluation protocols. User

Model. User-Adapt. Interact., 24(1-2):67–119, 2014.

[84] I. Cantador, P. Brusilovsky, and T. Kuflik. Second workshop on informa-

tion heterogeneity and fusion in recommender systems (hetrec2011). In

B. Mobasher, R. D. Burke, D. Jannach, and G. Adomavicius, editors, Pro-

ceedings of the 2011 ACM Conference on Recommender Systems, RecSys

2011, Chicago, IL, USA, October 23-27, 2011, pages 387–388. ACM, 2011.

[85] I. Cantador, I. Fernández-Tobı́as, and A. Bellogı́n. Relating personality types

with user preferences in multiple entertainment domains. In S. Berkovsky,

E. Herder, P. Lops, and O. C. Santos, editors, Late-Breaking Results, Project

Papers and Workshop Proceedings of the 21st Conference on User Modeling,

Adaptation, and Personalization., Rome, Italy, June 10-14, 2013, volume 997

of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[86] I. Cantador, I. Fernández-Tobı́as, S. Berkovsky, and P. Cremonesi. Cross-

domain recommender systems. In F. Ricci, L. Rokach, and B. Shapira, edi-

tors, Recommender Systems Handbook, pages 919–959. Springer, 2015.

[87] B. Cao, N. N. Liu, and Q. Yang. Transfer learning for collective link pre-

diction in multiple heterogenous domains. In J. Fürnkranz and T. Joachims,

editors, Proceedings of the 27th International Conference on Machine Learn-

ing (ICML-10), June 21-24, 2010, Haifa, Israel, pages 159–166. Omnipress,

2010.

381

[88] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise

approach to listwise approach. In Z. Ghahramani, editor, Machine Learning,

Proceedings of the Twenty-Fourth International Conference (ICML 2007),

Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM Interna-

tional Conference Proceeding Series, pages 129–136. ACM, 2007.

[89] C. Cappiello, T. D. Noia, B. A. Marcu, and M. Matera. A quality model

for linked data exploration. In A. Bozzon, P. Cudré-Mauroux, and C. Pau-

tasso, editors, Web Engineering - 16th International Conference, ICWE 2016,

Lugano, Switzerland, June 6-9, 2016. Proceedings, volume 9671 of Lecture

Notes in Computer Science, pages 397–404. Springer, 2016.

[90] J. G. Carbonell and J. Goldstein. The use of mmr, diversity-based rerank-

ing for reordering documents and producing summaries. In W. B. Croft,

A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, SIGIR

’98: Proceedings of the 21st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, August 24-28 1998,

Melbourne, Australia, pages 335–336. ACM, 1998.

[91] P. Castells, N. J. Hurley, and S. Vargas. Novelty and diversity in recom-

mender systems. In F. Ricci, L. Rokach, and B. Shapira, editors, Recom-

mender Systems Handbook, pages 881–918. Springer, 2015.

[92] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot,

F. Cerutti, M. B. Srivastava, A. D. Preece, S. Julier, R. M. Rao, T. D. Kel-

ley, D. Braines, M. Sensoy, C. J. Willis, and P. Gurram. Interpretability of

deep learning models: A survey of results. In 2017 IEEE SmartWorld, Ubiq-

uitous Intelligence & Computing, Advanced & Trusted Computed, Scalable

Computing & Communications, Cloud & Big Data Computing, Internet of

People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBD-

Com/IOP/SCI 2017, San Francisco, CA, USA, August 4-8, 2017, pages 1–6.

IEEE, 2017.

382

[93] S. Chan, P. C. Treleaven, and L. Capra. Continuous hyperparameter opti-

mization for large-scale recommender systems. In X. Hu, T. Y. Lin, V. V.

Raghavan, B. W. Wah, R. A. Baeza-Yates, G. C. Fox, C. Shahabi, M. Smith,

Q. Yang, R. Ghani, W. Fan, R. Lempel, and R. Nambiar, editors, Proceedings

of the 2013 IEEE International Conference on Big Data, 6-9 October 2013,

Santa Clara, CA, USA, pages 350–358. IEEE Computer Society, 2013.

[94] O. Chapelle, S. Ji, C. Liao, E. Velipasaoglu, L. Lai, and S. Wu. Intent-

based diversification of web search results: metrics and algorithms. Inf. Retr.,

14(6):572–592, 2011.

[95] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal

rank for graded relevance. In D. W. Cheung, I. Song, W. W. Chu, X. Hu, and

J. J. Lin, editors, Proceedings of the 18th ACM Conference on Information

and Knowledge Management, CIKM 2009, Hong Kong, China, November

2-6, 2009, pages 621–630. ACM, 2009.

[96] L. Chen, F. Hsu, M. Chen, and Y. Hsu. Developing recommender sys-

tems with the consideration of product profitability for sellers. Inf. Sci.,

178(4):1032–1048, 2008.

[97] X. Chen, Z. Qin, Y. Zhang, and T. Xu. Learning to rank features for recom-

mendation over multiple categories. In R. Perego, F. Sebastiani, J. A. Aslam,

I. Ruthven, and J. Zobel, editors, Proceedings of the 39th International ACM

SIGIR conference on Research and Development in Information Retrieval,

SIGIR 2016, Pisa, Italy, July 17-21, 2016, pages 305–314. ACM, 2016.

[98] J. Chomicki. Preference formulas in relational queries. ACM Trans.

Database Syst., 28(4):427–466, 2003.

[99] J. Chomicki. Logical foundations of preference queries. IEEE Data Eng.

Bull., 34(2):3–10, 2011.

[100] E. Christakopoulou and G. Karypis. Local item-item models for top-n rec-

ommendation. In S. Sen, W. Geyer, J. Freyne, and P. Castells, editors, Pro-

383

ceedings of the 10th ACM Conference on Recommender Systems, Boston,

MA, USA, September 15-19, 2016, pages 67–74. ACM, 2016.

[101] R. Chung, D. Sundaram, and A. Srinivasan. Integrated personal recom-

mender systems. In M. L. Gini, R. J. Kauffman, D. Sarppo, C. Dellarocas,

and F. Dignum, editors, Proceedings of the 9th International Conference on

Electronic Commerce: The Wireless World of Electronic Commerce, 2007,

University of Minnesota, Minneapolis, MN, USA, August 19-22, 2007, vol-

ume 258 of ACM International Conference Proceeding Series, pages 65–74.

ACM, 2007.

[102] C. Cornelio, A. Loreggia, and V. A. Saraswat. Logical conditional preference

theories. CoRR, abs/1504.06374, 2015.

[103] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube

recommendations. In S. Sen, W. Geyer, J. Freyne, and P. Castells, editors,

Proceedings of the 10th ACM Conference on Recommender Systems, Boston,

MA, USA, September 15-19, 2016, pages 191–198. ACM, 2016.

[104] F. A. Cowell. Measurement of inequality. Handbook of income distribution,

1:87–166, 2000.

[105] F. A. Cowell and K. Kuga. Inequality measurement: an axiomatic approach.

European Economic Review, 15(3):287–305, 1981.

[106] H. S. M. Cramer, V. Evers, S. Ramlal, M. van Someren, L. Rutledge,

N. Stash, L. Aroyo, and B. J. Wielinga. The effects of transparency on trust

in and acceptance of a content-based art recommender. User Model. User-

Adapt. Interact., 18(5):455–496, 2008.

[107] P. Cremonesi, F. Garzotto, S. Negro, A. V. Papadopoulos, and R. Turrin.

Looking for ”good” recommendations: A comparative evaluation of recom-

mender systems. In P. F. Campos, T. C. N. Graham, J. A. Jorge, N. J. Nunes,

P. A. Palanque, and M. Winckler, editors, Human-Computer Interaction -

384

INTERACT 2011 - 13th IFIP TC 13 International Conference, Lisbon, Por-

tugal, September 5-9, 2011, Proceedings, Part III, volume 6948 of Lecture

Notes in Computer Science, pages 152–168. Springer, 2011.

[108] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender al-

gorithms on top-n recommendation tasks. In X. Amatriain, M. Torrens,

P. Resnick, and M. Zanker, editors, Proceedings of the 2010 ACM Confer-

ence on Recommender Systems, RecSys 2010, Barcelona, Spain, September

26-30, 2010, pages 39–46. ACM, 2010.

[109] P. Cremonesi and M. Quadrana. Cross-domain recommendations without

overlapping data: myth or reality? In A. Kobsa, M. X. Zhou, M. Ester,

and Y. Koren, editors, Eighth ACM Conference on Recommender Systems,

RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014,

pages 297–300. ACM, 2014.

[110] P. Cremonesi, A. Tripodi, and R. Turrin. Cross-domain recommender sys-

tems. In M. Spiliopoulou, H. Wang, D. J. Cook, J. Pei, W. Wang, O. R.

Zaı̈ane, and X. Wu, editors, Data Mining Workshops (ICDMW), 2011 IEEE

11th International Conference on, Vancouver, BC, Canada, December 11,

2011, pages 496–503. IEEE Computer Society, 2011.

[111] P. Cremonesi, R. Turrin, E. Lentini, and M. Matteucci. An evaluation

methodology for collaborative recommender systems. In 2008 Int. Conf. on

Automated Solutions for Cross Media Content and Multi-Channel Distribu-

tion, pages 224–231. IEEE, 2008.

[112] I. Csiszár. A class of measures of informativity of observation channels.

Periodica Mathematica Hungarica, 2(1-4):191–213, 1972.

[113] E. Q. da Silva, C. G. Camilo-Junior, L. M. L. Pascoal, and T. C. Rosa. An

evolutionary approach for combining results of recommender systems tech-

niques based on collaborative filtering. Expert Syst. Appl., 53:204–218, 2016.

385

[114] M. F. Dacrema, A. Gasparin, and P. Cremonesi. Deriving item features rel-

evance from collaborative domain knowledge. In V. W. Anelli, T. D. Noia,

P. Lops, C. Musto, M. Zanker, P. Basile, D. G. Bridge, and F. Narducci, edi-

tors, Proceedings of the Workshop on Knowledge-aware and Conversational

Recommender Systems 2018 co-located with 12th ACM Conference on Rec-

ommender Systems, KaRS@RecSys 2018, Vancouver, Canada, October 7,

2018., volume 2290 of CEUR Workshop Proceedings, pages 1–4. CEUR-

WS.org, 2018.

[115] A. Das, C. Mathieu, and D. Ricketts. Maximizing profit using recommender

systems. CoRR, abs/0908.3633, 2009.

[116] M. de Gemmis, P. Lops, C. Musto, F. Narducci, and G. Semeraro. Semantics-

aware content-based recommender systems. In F. Ricci, L. Rokach, and

B. Shapira, editors, Recommender Systems Handbook, pages 119–159.

Springer, 2015.

[117] B. F. de Souza, A. C. P. de Leon Ferreira de Carvalho, R. Calvo, and R. P.

Ishii. Multiclass SVM model selection using particle swarm optimization. In

N. Kasabov, M. Köppen, A. König, A. Abraham, and Q. Song, editors, 6th

International Conference on Hybrid Intelligent Systems (HIS 2006), 13-15

December 2006, Auckland, New Zealand, page 31. IEEE Computer Society,

2006.

[118] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407,

1990.

[119] M. Deshpande and G. Karypis. Item-based top-N recommendation algo-

rithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

[120] A. Dhurandhar, S. Oh, and M. Petrik. Building an interpretable recommender

via loss-preserving transformation. CoRR, abs/1606.05819, 2016.

386

[121] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus preference

elicitation with predictive guarantees. In C. Boutilier, editor, IJCAI 2009,

Proceedings of the 21st International Joint Conference on Artificial Intel-

ligence, Pasadena, California, USA, July 11-17, 2009, pages 1890–1895,

2009.

[122] Y. Ding and X. Li. Time weight collaborative filtering. In O. Herzog,

H. Schek, N. Fuhr, A. Chowdhury, and W. Teiken, editors, Proceedings of

the 2005 ACM CIKM International Conference on Information and Knowl-

edge Management, Bremen, Germany, October 31 - November 5, 2005, pages

485–492. ACM, 2005.

[123] C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Preferences in AI: an

overview. Artif. Intell., 175(7-8):1037–1052, 2011.

[124] C. Domshlak, E. Hüllermeier, S. Kaci, H. Prade, F. Yaman, T. J. Walsh,

M. L. Littman, and M. desJardins. Representing, processing, and learning

preferences: Theoretical and practical challenges democratic approximation

of lexicographic preference models. Artif. Intell., 175(7):1290–1307, 2011.

doi:10.1016/j.artint.2010.11.012.

[125] C. Domshlak and T. Joachims. Unstructuring user preferences: Efficient non-

parametric utility revelation. In UAI ’05, Proceedings of the 21st Conference

in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-29,

2005, pages 169–177. AUAI Press, 2005.

[126] C. Domshlak and T. Joachims. Efficient and non-parametric reasoning over

user preferences. User Model. User-Adapt. Interact., 17(1-2):41–69, 2007.

[127] C. Domshlak, S. D. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Hard

and soft constraints for reasoning about qualitative conditional preferences.

J. Heuristics, 12(4-5):263–285, 2006.

[128] C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning about soft

constraints and conditional preferences: complexity results and approxima-

387

tion techniques. In G. Gottlob and T. Walsh, editors, IJCAI-03, Proceedings

of the Eighteenth International Joint Conference on Artificial Intelligence,

Acapulco, Mexico, August 9-15, 2003, pages 215–220. Morgan Kaufmann,

2003.

[129] W. Dong, M. Charikar, and K. Li. Efficient k-nearest neighbor graph con-

struction for generic similarity measures. In S. Srinivasan, K. Ramamritham,

A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, editors, Proceedings of

the 20th International Conference on World Wide Web, WWW 2011, Hyder-

abad, India, March 28 - April 1, 2011, pages 577–586. ACM, 2011.

[130] C. N. dos Santos, L. Barbosa, D. Bogdanova, and B. Zadrozny. Learning

hybrid representations to retrieve semantically equivalent questions. In Pro-

ceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language

Processing of the Asian Federation of Natural Language Processing, ACL

2015, July 26-31, 2015, Beijing, China, Volume 2: Short Papers, pages 694–

699. The Association for Computer Linguistics, 2015.

[131] J. Doyle. Prospects for preferences. Computational Intelligence, 20(2):111–

136, 2004.

[132] N. Drawel, H. Qu, J. Bentahar, and E. Shakshuki. Specification and au-

tomatic verification of trust-based multi-agent systems. Future Generation

Computer Systems, 2018.

[133] M. J. Dürst and M. Suignard. Internationalized resource identifiers (iris).

RFC, 3987:1–46, 2005.

[134] M. D. Ekstrand, F. M. Harper, M. C. Willemsen, and J. A. Konstan. User

perception of differences in recommender algorithms. In A. Kobsa, M. X.

Zhou, M. Ester, and Y. Koren, editors, Eighth ACM Conference on Recom-

mender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October

06 - 10, 2014, pages 161–168. ACM, 2014.

388

[135] M. D. Ekstrand, M. Tian, I. M. Azpiazu, J. D. Ekstrand, O. Anuyah, D. Mc-

Neill, and M. S. Pera. All the cool kids, how do they fit in?: Popularity

and demographic biases in recommender evaluation and effectiveness. In

S. A. Friedler and C. Wilson, editors, Conference on Fairness, Accountabil-

ity and Transparency, FAT 2018, 23-24 February 2018, New York, NY, USA,

volume 81 of Proceedings of Machine Learning Research, pages 172–186.

PMLR, 2018.

[136] A. Elbadrawy and G. Karypis. User-specific feature-based similarity models

for top-n recommendation of new items. ACM TIST, 6(3):33:1–33:20, 2015.

[137] M. Enrich, M. Braunhofer, and F. Ricci. Cold-start management with cross-

domain collaborative filtering and tags. In C. Huemer and P. Lops, editors, E-

Commerce and Web Technologies - 14th International Conference, EC-Web

2013, Prague, Czech Republic, August 27-28, 2013. Proceedings, volume

152 of Lecture Notes in Business Information Processing, pages 101–112.

Springer, 2013.

[138] R. Fagin. Combining fuzzy information from multiple systems. J. Comput.

Syst. Sci., 58(1):83–99, 1999.

[139] R. Falcone, A. Sapienza, and C. Castelfranchi. The relevance of categories

for trusting information sources. ACM Trans. Internet Techn., 15(4):13:1–

13:21, 2015.

[140] I. Fernández-Tobı́as, M. Braunhofer, M. Elahi, F. Ricci, and I. Cantador. Al-

leviating the new user problem in collaborative filtering by exploiting per-

sonality information. User Model. User-Adapt. Interact., 26(2-3):221–255,

2016.

[141] I. Fernández-Tobı́as and I. Cantador. Exploiting social tags in matrix fac-

torization models for cross-domain collaborative filtering. In T. Bogers,

M. Koolen, and I. Cantador, editors, Proceedings of the 1st Workshop on

New Trends in Content-based Recommender Systems co-located with the 8th

389

ACM Conference on Recommender Systems, CBRecSys@RecSys 2014, Fos-

ter City, Silicon Valley, California, USA, October 6, 2014., volume 1245 of

CEUR Workshop Proceedings, pages 34–41. CEUR-WS.org, 2014.

[142] I. Fernández-Tobı́as, I. Cantador, M. Kaminskas, and F. Ricci. A generic

semantic-based framework for cross-domain recommendation. In Proceed-

ings of the 2Nd International Workshop on Information Heterogeneity and

Fusion in Recommender Systems, HetRec ’11, pages 25–32, New York, NY,

USA, 2011. ACM.

[143] I. Fernández-Tobı́as, I. Cantador, and L. Plaza. An emotion dimensional

model based on social tags: Crossing folksonomies and enhancing recom-

mendations. In C. Huemer and P. Lops, editors, E-Commerce and Web Tech-

nologies - 14th International Conference, EC-Web 2013, Prague, Czech Re-

public, August 27-28, 2013. Proceedings, volume 152 of Lecture Notes in

Business Information Processing, pages 88–100. Springer, 2013.

[144] I. Fernández-Tobı́as, I. Cantador, P. Tomeo, V. W. Anelli, and T. D. Noia. Ad-

dressing the user cold start with cross-domain collaborative filtering: exploit-

ing item metadata in matrix factorization. User Model. User-Adapt. Interact.,

29(2):443–486, 2019.

[145] I. Fernández-Tobı́as, P. Tomeo, I. Cantador, T. D. Noia, and E. D. Sciascio.

Accuracy and diversity in cross-domain recommendations for cold-start users

with positive-only feedback. In S. Sen, W. Geyer, J. Freyne, and P. Castells,

editors, Proceedings of the 10th ACM Conference on Recommender Systems,

Boston, MA, USA, September 15-19, 2016, pages 119–122. ACM, 2016.

[146] V. Fionda and G. Pirrò. Querying graphs with preferences. In Q. He, A. Iyen-

gar, W. Nejdl, J. Pei, and R. Rastogi, editors, 22nd ACM International Con-

ference on Information and Knowledge Management, CIKM’13, San Fran-

cisco, CA, USA, October 27 - November 1, 2013, pages 929–938. ACM,

2013.

390

[147] P. C. Fishburn. Utility theory for decision making. Publications in operations

research. J. Wiley, 1970.

[148] D. M. Fleder and K. Hosanagar. Recommender systems and their impact on

sales diversity. In J. K. MacKie-Mason, D. C. Parkes, and P. Resnick, editors,

Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San

Diego, California, USA, June 11-15, 2007, pages 192–199. ACM, 2007.

[149] S. Flesca and S. Greco. Partially ordered regular languages for graph queries.

J. Comput. Syst. Sci., 70(1):1–25, 2005.

[150] F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters.

Neurocomputing, 64:107–117, 2005.

[151] S. Funk. Netflix update: Try this at home, 2006.

[152] J. Fürnkranz and E. Hüllermeier, editors. Preference Learning. Springer,

2010.

[153] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In M. M. Veloso, editor, IJCAI

2007, Proceedings of the 20th International Joint Conference on Artificial

Intelligence, Hyderabad, India, January 6-12, 2007, pages 1606–1611, 2007.

[154] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Mymedi-

alite: a free recommender system library. In B. Mobasher, R. D. Burke,

D. Jannach, and G. Adomavicius, editors, Proceedings of the 2011 ACM

Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, Oc-

tober 23-27, 2011, pages 305–308. ACM, 2011.

[155] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo. Cross-domain rec-

ommendation via cluster-level latent factor model. In H. Blockeel, K. Ker-

sting, S. Nijssen, and F. Zelezný, editors, Machine Learning and Knowl-

edge Discovery in Databases - European Conference, ECML PKDD 2013,

391

Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II, vol-

ume 8189 of Lecture Notes in Computer Science, pages 161–176. Springer,

2013.

[156] S. Givon and V. Lavrenko. Predicting social-tags for cold start book recom-

mendations. In L. D. Bergman, A. Tuzhilin, R. D. Burke, A. Felfernig, and

L. Schmidt-Thieme, editors, Proceedings of the 2009 ACM Conference on

Recommender Systems, RecSys 2009, New York, NY, USA, October 23-25,

2009, pages 333–336. ACM, 2009.

[157] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and

R. Teixeira. Exploiting innocuous activity for correlating users across sites.

In D. Schwabe, V. A. F. Almeida, H. Glaser, R. A. Baeza-Yates, and S. B.

Moon, editors, 22nd International World Wide Web Conference, WWW ’13,

Rio de Janeiro, Brazil, May 13-17, 2013, pages 447–458. International World

Wide Web Conferences Steering Committee / ACM, 2013.

[158] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. The computational

complexity of dominance and consistency in cp-nets. J. Artif. Intell. Res.,

33:403–432, 2008.

[159] G. Grahne, A. Thomo, and W. W. Wadge. Preferential regular path queries.

Fundam. Inform., 89(2-3):259–288, 2008.

[160] N. Grgic-Hlaca, M. B. Zafar, K. P. Gummadi, and A. Weller. Beyond dis-

tributive fairness in algorithmic decision making: Feature selection for pro-

cedurally fair learning. In S. A. McIlraith and K. Q. Weinberger, editors,

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-

18), and the 8th AAAI Symposium on Educational Advances in Artificial In-

telligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,

pages 51–60. AAAI Press, 2018.

[161] J. T. Guerin, T. E. Allen, and J. Goldsmith. Learning cp-net preferences

online from user queries. In P. Perny, M. Pirlot, and A. Tsoukiàs, editors,

392

Algorithmic Decision Theory - Third International Conference, ADT 2013,

Bruxelles, Belgium, November 12-14, 2013, Proceedings, volume 8176 of

Lecture Notes in Computer Science, pages 208–220. Springer, 2013.

[162] M. Gueroussova, A. Polleres, and S. A. McIlraith. SPARQL with qualita-

tive and quantitative preferences. In I. Celino, E. D. Valle, M. Krötzsch,

and S. Schlobach, editors, Proceedings of the 2nd International Workshop

on Ordering and Reasoning, OrdRing 2013, Co-located with the 12th Inter-

national Semantic Web Conference (ISWC 2013), Sydney, Australia, Octo-

ber 22nd, 2013, volume 1059 of CEUR Workshop Proceedings, pages 2–8.

CEUR-WS.org, 2013.

[163] A. Gunawardana and G. Shani. Evaluating recommender systems. In

F. Ricci, L. Rokach, and B. Shapira, editors, Recommender Systems Hand-

book, pages 265–308. Springer, 2015.

[164] G. Guo, J. Zhang, Z. Sun, and N. Yorke-Smith. Librec: A java library for

recommender systems. In A. I. Cristea, J. Masthoff, A. Said, and N. Tintarev,

editors, Posters, Demos, Late-breaking Results and Workshop Proceedings

of the 23rd Conference on User Modeling, Adaptation, and Personalization

(UMAP 2015), Dublin, Ireland, June 29 - July 3, 2015., volume 1388 of

CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[165] E. Han and G. Karypis. Feature-based recommendation system. In O. Her-

zog, H. Schek, N. Fuhr, A. Chowdhury, and W. Teiken, editors, Proceed-

ings of the 2005 ACM CIKM International Conference on Information and

Knowledge Management, Bremen, Germany, October 31 - November 5,

2005, pages 446–452. ACM, 2005.

[166] S. O. Hansson. What is ceteris paribus preference? J. Philosophical Logic,

25(3):307–332, 1996.

[167] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised

learning. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 29: Annual

393

Conference on Neural Information Processing Systems 2016, December 5-

10, 2016, Barcelona, Spain, pages 3315–3323, 2016.

[168] T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking al-

gorithm for web search. IEEE Trans. Knowl. Data Eng., 15(4):784–796,

2003.

[169] J. Havrda and F. Charvát. Quantification method of classification processes.

concept of structural a-entropy. Kybernetika, 3(1):30–35, 1967.

[170] L. He, N. N. Liu, and Q. Yang. Active dual collaborative filtering with both

item and attribute feedback. In W. Burgard and D. Roth, editors, Proceedings

of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011,

San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

[171] M. He, Q. Meng, and S. Zhang. Collaborative additional variational autoen-

coder for top-n recommender systems. IEEE Access, 7:5707–5713, 2019.

[172] M. He, J. Zhang, P. Yang, and K. Yao. Robust transfer learning for cross-

domain collaborative filtering using multiple rating patterns approximation.

In Y. Chang, C. Zhai, Y. Liu, and Y. Maarek, editors, Proceedings of the

Eleventh ACM International Conference on Web Search and Data Mining,

WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018, pages 225–

233. ACM, 2018.

[173] R. He and J. J. McAuley. Ups and downs: Modeling the visual evolu-

tion of fashion trends with one-class collaborative filtering. In J. Bourdeau,

J. Hendler, R. Nkambou, I. Horrocks, and B. Y. Zhao, editors, Proceedings

of the 25th International Conference on World Wide Web, WWW 2016, Mon-

treal, Canada, April 11 - 15, 2016, pages 507–517. ACM, 2016.

[174] X. He and T. Chua. Neural factorization machines for sparse predictive ana-

lytics. In N. Kando, T. Sakai, H. Joho, H. Li, A. P. de Vries, and R. W. White,

editors, Proceedings of the 40th International ACM SIGIR Conference on Re-

394

search and Development in Information Retrieval, Shinjuku, Tokyo, Japan,

August 7-11, 2017, pages 355–364. ACM, 2017.

[175] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic

framework for performing collaborative filtering. In F. C. Gey, M. A. Hearst,

and R. M. Tong, editors, SIGIR ’99: Proceedings of the 22nd Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages 230–237. ACM,

1999.

[176] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining collaborative filtering

recommendations. In W. A. Kellogg and S. Whittaker, editors, CSCW 2000,

Proceeding on the ACM 2000 Conference on Computer Supported Cooper-

ative Work, Philadelphia, PA, USA, December 2-6, 2000, pages 241–250.

ACM, 2000.

[177] J. L. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms. Inf. Retr.,

5(4):287–310, 2002.

[178] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl. Evaluating col-

laborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53,

2004.

[179] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk. Parallel recurrent neu-

ral network architectures for feature-rich session-based recommendations. In

S. Sen, W. Geyer, J. Freyne, and P. Castells, editors, Proceedings of the 10th

ACM Conference on Recommender Systems, Boston, MA, USA, September

15-19, 2016, pages 241–248. ACM, 2016.

[180] B. Hidasi and D. Tikk. Initializing matrix factorization methods on implicit

feedback databases. J. UCS, 19(12):1834–1853, 2013.

[181] W. C. Hill, L. Stead, M. Rosenstein, and G. W. Furnas. Recommending

and evaluating choices in a virtual community of use. In I. R. Katz, R. L.

395

Mack, L. Marks, M. B. Rosson, and J. Nielsen, editors, Human Factors in

Computing Systems, CHI ’95 Conference Proceedings, Denver, Colorado,

USA, May 7-11, 1995., pages 194–201. ACM/Addison-Wesley, 1995.

[182] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommenda-

tion via cross-domain triadic factorization. In D. Schwabe, V. A. F. Almeida,

H. Glaser, R. A. Baeza-Yates, and S. B. Moon, editors, 22nd International

World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,

2013, pages 595–606. International World Wide Web Conferences Steering

Committee / ACM, 2013.

[183] L. Hu, S. Jian, L. Cao, and Q. Chen. Interpretable recommendation via at-

traction modeling: Learning multilevel attractiveness over multimodal movie

contents. In J. Lang, editor, Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,

Stockholm, Sweden., pages 3400–3406. ijcai.org, 2018.

[184] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feed-

back datasets. In Proceedings of the 8th IEEE International Conference on

Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pages 263–

272. IEEE Computer Society, 2008.

[185] I. Hulpus, N. Prangnawarat, and C. Hayes. Path-based semantic relatedness

on linked data and its use to word and entity disambiguation. In M. Are-

nas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T.

Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and S. Staab, editors, The

Semantic Web - ISWC 2015 - 14th International Semantic Web Conference,

Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I, volume 9366

of Lecture Notes in Computer Science, pages 442–457. Springer, 2015.

[186] N. Hurley and M. Zhang. Novelty and diversity in top-n recommendation

- analysis and evaluation. ACM Trans. Internet Techn., 10(4):14:1–14:30,

2011.

396

[187] F. Hutter, H. H. Hoos, and K. Leyton-Brown. An efficient approach for as-

sessing hyperparameter importance. In Proceedings of the 31th International

Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June

2014, volume 32 of JMLR Workshop and Conference Proceedings, pages

754–762. JMLR.org, 2014.

[188] F. Hutter, J. Lücke, and L. Schmidt-Thieme. Beyond manual tuning of hy-

perparameters. KI, 29(4):329–337, 2015.

[189] M. Jahrer, A. Töscher, and R. A. Legenstein. Combining predictions for

accurate recommender systems. In B. Rao, B. Krishnapuram, A. Tomkins,

and Q. Yang, editors, Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Washington, DC,

USA, July 25-28, 2010, pages 693–702. ACM, 2010.

[190] P. Jain, P. Kumaraguru, and A. Joshi. @i seek ’fb.me’: identifying users

across multiple online social networks. In L. Carr, A. H. F. Laender, B. F.

Lóscio, I. King, M. Fontoura, D. Vrandecic, L. Aroyo, J. P. M. de Oliveira,

F. Lima, and E. Wilde, editors, 22nd International World Wide Web Confer-

ence, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Vol-

ume, pages 1259–1268. International World Wide Web Conferences Steering

Committee / ACM, 2013.

[191] T. Jambor and J. Wang. Optimizing multiple objectives in collaborative fil-

tering. In X. Amatriain, M. Torrens, P. Resnick, and M. Zanker, editors,

Proceedings of the 2010 ACM Conference on Recommender Systems, Rec-

Sys 2010, Barcelona, Spain, September 26-30, 2010, pages 55–62. ACM,

2010.

[192] D. Jannach and G. Adomavicius. Price and profit awareness in recommender

systems. CoRR, abs/1707.08029, 2017.

[193] D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin. What recommenders rec-

ommend - an analysis of accuracy, popularity, and sales diversity effects.

397

In S. Carberry, S. Weibelzahl, A. Micarelli, and G. Semeraro, editors, User

Modeling, Adaptation, and Personalization - 21th International Conference,

UMAP 2013, Rome, Italy, June 10-14, 2013, Proceedings, volume 7899 of

Lecture Notes in Computer Science, pages 25–37. Springer, 2013.

[194] D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac. What recommenders

recommend: an analysis of recommendation biases and possible countermea-

sures. User Model. User-Adapt. Interact., 25(5):427–491, 2015.

[195] D. Jannach and M. Ludewig. When recurrent neural networks meet the

neighborhood for session-based recommendation. In P. Cremonesi, F. Ricci,

S. Berkovsky, and A. Tuzhilin, editors, Proceedings of the Eleventh ACM

Conference on Recommender Systems, RecSys 2017, Como, Italy, August

27-31, 2017, pages 306–310. ACM, 2017.

[196] D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker. Recommender systems

- : beyond matrix completion. Commun. ACM, 59(11):94–102, 2016.

[197] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender Sys-

tems - An Introduction. Cambridge University Press, 2010.

[198] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR tech-

niques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[199] G. Jawaheer, M. Szomszor, and P. Kostkova. Comparison of implicit and

explicit feedback from an online music recommendation service. In Pro-

ceedings of the 1st International Workshop on Information Heterogeneity and

Fusion in Recommender Systems, HetRec ’10, pages 47–51, New York, NY,

USA, 2010. ACM.

[200] K. Ji, R. Sun, W. Shu, and X. Li. Next-song recommendation with temporal

dynamics. Knowl.-Based Syst., 88:134–143, 2015.

[201] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of in-

formation retrieval: development and comparative experiments - part 1. Inf.

Process. Manage., 36(6):779–808, 2000.

398

[202] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of in-

formation retrieval: development and comparative experiments - part 2. Inf.

Process. Manage., 36(6):809–840, 2000.

[203] Y. Juan, Y. Zhuang, W. Chin, and C. Lin. Field-aware factorization machines

for CTR prediction. In S. Sen, W. Geyer, J. Freyne, and P. Castells, editors,

Proceedings of the 10th ACM Conference on Recommender Systems, Boston,

MA, USA, September 15-19, 2016, pages 43–50. ACM, 2016.

[204] M. Jugovac, D. Jannach, and L. Lerche. Efficient optimization of multiple

recommendation quality factors according to individual user tendencies. Ex-

pert Syst. Appl., 81:321–331, 2017.

[205] S. Kabbur, X. Ning, and G. Karypis. FISM: factored item similarity models

for top-n recommender systems. In I. S. Dhillon, Y. Koren, R. Ghani, T. E.

Senator, P. Bradley, R. Parekh, J. He, R. L. Grossman, and R. Uthurusamy,

editors, The 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14,

2013, pages 659–667. ACM, 2013.

[206] S. Kalloori and F. Ricci. Improving cold start recommendation by mapping

feature-based preferences to item comparisons. In M. Bieliková, E. Herder,

F. Cena, and M. C. Desmarais, editors, Proceedings of the 25th Conference

on User Modeling, Adaptation and Personalization, UMAP 2017, Bratislava,

Slovakia, July 09 - 12, 2017, pages 289–293. ACM, 2017.

[207] M. Kaminskas, I. Fernández-Tobı́as, I. Cantador, and F. Ricci. Ontology-

based identification of music for places. In L. Cantoni and Z. P. Xiang, ed-

itors, Information and Communication Technologies in Tourism 2013, EN-

TER 3013, Proceedings of the International Conference in Innsbruck, Aus-

tria, January 22-25, 2013., pages 436–447. Springer, 2013.

[208] J. N. Kapur and H. K. Kesavan. The generalized maximum entropy principle

(with applications). Sandford Educational Press Waterloo, Ontario, 1987.

399

[209] G. Karypis. Evaluation of item-based top-n recommendation algorithms. In

Proceedings of the 2001 ACM CIKM International Conference on Informa-

tion and Knowledge Management, Atlanta, Georgia, USA, November 5-10,

2001, pages 247–254. ACM, 2001.

[210] R. Katarya and O. P. Verma. Effectivecollaborative movie recommender sys-

tem using asymmetric user similarity and matrix factorization. In Computing,

Communication and Automation (ICCCA), 2016 International Conference

on, pages 71–75. IEEE, 2016.

[211] M. Kendall and J. Gibbons. Rank correlation methods, trans. JD Gibbons

(5th edn ed.). Edward Arnold: London, 1990.

[212] H. Khrouf and R. Troncy. Hybrid event recommendation using linked data

and user diversity. In Q. Yang, I. King, Q. Li, P. Pu, and G. Karypis, edi-

tors, Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong

Kong, China, October 12-16, 2013, pages 185–192. ACM, 2013.

[213] W. Kießling. Foundations of preferences in database systems. In Proceedings

of 28th International Conference on Very Large Data Bases, VLDB 2002,

Hong Kong, August 20-23, 2002, pages 311–322. Morgan Kaufmann, 2002.

[214] W. Kießling, M. Endres, and F. Wenzel. The preference SQL system - an

overview. IEEE Data Eng. Bull., 34(2):11–18, 2011.

[215] D. Kim and B. Yum. Collaborative filtering based on iterative principal com-

ponent analysis. Expert Syst. Appl., 28(4):823–830, 2005.

[216] Y. Kim, K. Stratos, and R. Sarikaya. Frustratingly easy neural domain adap-

tation. In N. Calzolari, Y. Matsumoto, and R. Prasad, editors, COLING 2016,

26th International Conference on Computational Linguistics, Proceedings of

the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan,

pages 387–396. ACL, 2016.

[217] D. Kluver and J. A. Konstan. Evaluating recommender behavior for new

users. In A. Kobsa, M. X. Zhou, M. Ester, and Y. Koren, editors, Eighth

400

ACM Conference on Recommender Systems, RecSys ’14, Foster City, Silicon

Valley, CA, USA - October 06 - 10, 2014, pages 121–128. ACM, 2014.

[218] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations:

modeling music ratings with temporal dynamics and item taxonomy. In

B. Mobasher, R. D. Burke, D. Jannach, and G. Adomavicius, editors, Pro-

ceedings of the 2011 ACM Conference on Recommender Systems, RecSys

2011, Chicago, IL, USA, October 23-27, 2011, pages 165–172. ACM, 2011.

[219] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada,

August 20-25 1995, 2 Volumes, pages 1137–1145. Morgan Kaufmann, 1995.

[220] J. A. Konstan, S. M. McNee, C. Ziegler, R. Torres, N. Kapoor, and J. Riedl.

Lessons on applying automated recommender systems to information-

seeking tasks. In Proceedings, The Twenty-First National Conference on

Artificial Intelligence and the Eighteenth Innovative Applications of Artifi-

cial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA,

pages 1630–1633. AAAI Press, 2006.

[221] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the

14th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages 426–434.

ACM, 2008.

[222] Y. Koren. Collaborative filtering with temporal dynamics. In J. F. E. IV,

F. Fogelman-Soulié, P. A. Flach, and M. J. Zaki, editors, Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Paris, France, June 28 - July 1, 2009, pages 447–456. ACM,

2009.

401

[223] Y. Koren and R. M. Bell. Advances in collaborative filtering. In F. Ricci,

L. Rokach, and B. Shapira, editors, Recommender Systems Handbook, pages

77–118. Springer, 2015.

[224] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. IEEE Computer, 42(8):30–37, 2009.

[225] Y. Koren and J. Sill. Ordrec: an ordinal model for predicting personalized

item rating distributions. In B. Mobasher, R. D. Burke, D. Jannach, and

G. Adomavicius, editors, Proceedings of the 2011 ACM Conference on Rec-

ommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011,

pages 117–124. ACM, 2011.

[226] F. Koriche and B. Zanuttini. Learning conditional preference networks. Artif.

Intell., 174(11):685–703, 2010.

[227] A. B. Kouki. Performance prediction and evaluation in recommender

systems: An information retrieval perspective. PhD thesis, Universidad

Autónoma de Madrid, 2012.

[228] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Diversifying citation

recommendations. ACM TIST, 5(4):55:1–55:21, 2014.

[229] N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering with

adaptive neighbourhoods. In J. Allan, J. A. Aslam, M. Sanderson, C. Zhai,

and J. Zobel, editors, Proceedings of the 32nd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages 796–797. ACM,

2009.

[230] J. Lees-Miller, F. Anderson, B. Hoehn, and R. Greiner. Does wikipedia infor-

mation help netflix predictions? In M. A. Wani, X. Chen, D. Casasent, L. A.

Kurgan, T. Hu, and K. Hafeez, editors, Seventh International Conference on

Machine Learning and Applications, ICMLA 2008, San Diego, California,

USA, 11-13 December 2008, pages 337–343. IEEE Computer Society, 2008.

402

[231] A. Leonardo and F. Vasco. OWLPref: Uma representação declarativa de

preferências para web semântica. Anais do XXVII Congresso da SBC, pages

1411–1420, 2007.

[232] B. Li, Q. Yang, and X. Xue. Can movies and books collaborate? cross-

domain collaborative filtering for sparsity reduction. In C. Boutilier, edi-

tor, IJCAI 2009, Proceedings of the 21st International Joint Conference on

Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages

2052–2057, 2009.

[233] B. Li, Q. Yang, and X. Xue. Transfer learning for collaborative filtering via

a rating-matrix generative model. In A. P. Danyluk, L. Bottou, and M. L.

Littman, editors, Proceedings of the 26th Annual International Conference

on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-

18, 2009, volume 382 of ACM International Conference Proceeding Series,

pages 617–624. ACM, 2009.

[234] C. Li, M. A. Soliman, K. C. Chang, and I. F. Ilyas. Ranksql: Supporting

ranking queries in relational database management systems. In K. Böhm,

C. S. Jensen, L. M. Haas, M. L. Kersten, P. Larson, and B. C. Ooi, edi-

tors, Proceedings of the 31st International Conference on Very Large Data

Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 1342–

1345. ACM, 2005.

[235] X. Li, H. Fang, Q. Yang, and J. Zhang. Who is your best friend?: Rank-

ing social network friends according to trust relationship. In T. Mitrovic,

J. Zhang, L. Chen, and D. Chin, editors, Proceedings of the 26th Conference

on User Modeling, Adaptation and Personalization, UMAP 2018, Singapore,

July 08-11, 2018, pages 301–309. ACM, 2018.

[236] X. Li, E. Gavves, C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Per-

sonalizing automated image annotation using cross-entropy. In K. S. Candan,

S. Panchanathan, B. Prabhakaran, H. Sundaram, W. Feng, and N. Sebe, edi-

tors, Proceedings of the 19th International Conference on Multimedia 2011,

403

Scottsdale, AZ, USA, November 28 - December 1, 2011, pages 233–242.

ACM, 2011.

[237] X. Li and J. She. Collaborative variational autoencoder for recommender

systems. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13

- 17, 2017, pages 305–314. ACM, 2017.

[238] X. Li, C. G. M. Snoek, and M. Worring. Unsupervised multi-feature tag rel-

evance learning for social image retrieval. In S. Li, X. Gao, and N. Sebe,

editors, Proceedings of the 9th ACM International Conference on Image and

Video Retrieval, CIVR 2010, Xi’an, China, July 5-7, 2010, pages 10–17.

ACM, 2010.

[239] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-

item collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[240] H. Liu, X. He, F. Feng, L. Nie, R. Liu, and H. Zhang. Discrete factoriza-

tion machines for fast feature-based recommendation. In J. Lang, editor,

Proceedings of the Twenty-Seventh International Joint Conference on Artifi-

cial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages

3449–3455. ijcai.org, 2018.

[241] J. Liu, Z. Li, J. Tang, Y. Jiang, and H. Lu. Personalized geo-specific tag

recommendation for photos on social websites. IEEE Trans. Multimedia,

16(3):588–600, 2014.

[242] J. Liu, J. Shi, W. Cai, B. Liu, W. Pan, Q. Yang, and Z. Ming. Transfer learning

from APP domain to news domain for dual cold-start recommendation. In

Y. Zheng, W. Pan, S. S. Sahebi, and I. Fernández, editors, Proceedings of the

1st Workshop on Intelligent Recommender Systems by Knowledge Transfer &

Learning co-located with ACM Conference on Recommender Systems (Rec-

Sys 2017), Como, Italy, August 27, 2017., volume 1887 of CEUR Workshop

Proceedings, pages 38–41. CEUR-WS.org, 2017.

404

[243] J. Liu, Y. Xiong, C. Wu, Z. Yao, and W. Liu. Learning conditional prefe-

rence networks from inconsistent examples. IEEE Trans. Knowl. Data Eng.,

26(2):376–390, 2014.

[244] J. Liu, Z. Yao, Y. Xiong, W. Liu, and C. Wu. Learning conditional preference

network from noisy samples using hypothesis testing. Knowl.-Based Syst.,

40:7–16, 2013.

[245] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to collab-

orative filtering. In S. Myaeng, D. W. Oard, F. Sebastiani, T. Chua, and

M. Leong, editors, Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR

2008, Singapore, July 20-24, 2008, pages 83–90. ACM, 2008.

[246] N. N. Liu, M. Zhao, E. W. Xiang, and Q. Yang. Online evolutionary collab-

orative filtering. In X. Amatriain, M. Torrens, P. Resnick, and M. Zanker,

editors, Proceedings of the 2010 ACM Conference on Recommender Sys-

tems, RecSys 2010, Barcelona, Spain, September 26-30, 2010, pages 95–102.

ACM, 2010.

[247] N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for

collaborative filtering. In D. W. Cheung, I. Song, W. W. Chu, X. Hu, and J. J.

Lin, editors, Proceedings of the 18th ACM Conference on Information and

Knowledge Management, CIKM 2009, Hong Kong, China, November 2-6,

2009, pages 759–766. ACM, 2009.

[248] W. Liu and R. Burke. Personalizing fairness-aware re-ranking. CoRR,

abs/1809.02921, 2018.

[249] W. Liu, C. Wu, B. Feng, and J. Liu. Conditional preference in recommender

systems. Expert Syst. Appl., 42(2):774–788, 2015.

[250] B. Loni, Y. Shi, M. Larson, and A. Hanjalic. Cross-domain collaborative fil-

tering with factorization machines. In M. de Rijke, T. Kenter, A. P. de Vries,

405

C. Zhai, F. de Jong, K. Radinsky, and K. Hofmann, editors, Advances in In-

formation Retrieval - 36th European Conference on IR Research, ECIR 2014,

Amsterdam, The Netherlands, April 13-16, 2014. Proceedings, volume 8416

of Lecture Notes in Computer Science, pages 656–661. Springer, 2014.

[251] X. Lu, A. Moffat, and J. S. Culpepper. The effect of pooling and evaluation

depth on IR metrics. Inf. Retr. Journal, 19(4):416–445, 2016.

[252] X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, and Q. Zhu. A nonnegative la-

tent factor model for large-scale sparse matrices in recommender systems

via alternating direction method. IEEE Trans. Neural Netw. Learning Syst.,

27(3):579–592, 2016.

[253] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling tech-

niques for space efficient online computation of order statistics of large

datasets. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIG-

MOD 1999, Proceedings ACM SIGMOD International Conference on Man-

agement of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages

251–262. ACM Press, 1999.

[254] J. J. McAuley and J. Leskovec. From amateurs to connoisseurs: modeling the

evolution of user expertise through online reviews. In D. Schwabe, V. A. F.

Almeida, H. Glaser, R. A. Baeza-Yates, and S. B. Moon, editors, 22nd In-

ternational World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,

May 13-17, 2013, pages 897–908. International World Wide Web Confer-

ences Steering Committee / ACM, 2013.

[255] J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based rec-

ommendations on styles and substitutes. In R. A. Baeza-Yates, M. Lalmas,

A. Moffat, and B. A. Ribeiro-Neto, editors, Proceedings of the 38th Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, Santiago, Chile, August 9-13, 2015, pages 43–52. ACM, 2015.

[256] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough:

how accuracy metrics have hurt recommender systems. In G. M. Olson and

406

R. Jeffries, editors, Extended Abstracts Proceedings of the 2006 Conference

on Human Factors in Computing Systems, CHI 2006, Montréal, Québec,

Canada, April 22-27, 2006, pages 1097–1101. ACM, 2006.

[257] R. Mehrotra, A. Anderson, F. Diaz, A. Sharma, H. M. Wallach, and E. Yil-

maz. Auditing search engines for differential satisfaction across demograph-

ics. In R. Barrett, R. Cummings, E. Agichtein, and E. Gabrilovich, editors,

Proceedings of the 26th International Conference on World Wide Web Com-

panion, Perth, Australia, April 3-7, 2017, pages 626–633. ACM, 2017.

[258] R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, and F. Diaz. Towards

a fair marketplace: Counterfactual evaluation of the trade-off between rele-

vance, fairness & satisfaction in recommendation systems. In A. Cuzzocrea,

J. Allan, N. W. Paton, D. Srivastava, R. Agrawal, A. Z. Broder, M. J. Zaki,

K. S. Candan, A. Labrinidis, A. Schuster, and H. Wang, editors, Proceedings

of the 27th ACM International Conference on Information and Knowledge

Management, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 2243–

2251. ACM, 2018.

[259] R. Meymandpour and J. G. Davis. Enhancing recommender systems us-

ing linked open data-based semantic analysis of items. In J. G. Davis and

A. Bozzon, editors, 3rd Australasian Web Conference, AWC 2015, Sydney,

Australia, January 2015, volume 166 of CRPIT, pages 11–17. Australian

Computer Society, 2015.

[260] S. E. Middleton, N. Shadbolt, and D. D. Roure. Ontological user profiling in

recommender systems. ACM Trans. Inf. Syst., 22(1):54–88, 2004.

[261] M. Millán, M. F. Trujillo, and E. Ortiz. A collaborative recommender sys-

tem based on asymmetric user similarity. In H. Yin, P. Tiño, E. Corchado,

W. Byrne, and X. Yao, editors, Intelligent Data Engineering and Automated

Learning - IDEAL 2007, 8th International Conference, Birmingham, UK,

December 16-19, 2007, Proceedings, volume 4881 of Lecture Notes in Com-

puter Science, pages 663–672. Springer, 2007.

407

[262] D. Milne and I. H. Witten. An effective, low-cost measure of semantic re-

latedness obtained from wikipedia links. In Proceedings of AAAI Workshop

on Wikipedia and Artificial Intelligence: an Evolving Synergy, pages 25–30.

AAAI Press, 2008.

[263] N. Mirbakhsh and C. X. Ling. Improving top-n recommendation for cold-

start users via cross-domain information. TKDD, 9(4):33:1–33:19, 2015.

[264] M. Montaner, B. López, and J. L. de la Rosa. A taxonomy of recommender

agents on the internet. Artif. Intell. Rev., 19(4):285–330, 2003.

[265] C. Musto, P. Basile, P. Lops, M. de Gemmis, and G. Semeraro. Linked open

data-enabled strategies for top-n recommendations. In T. Bogers, M. Koolen,

and I. Cantador, editors, Proceedings of the 1st Workshop on New Trends in

Content-based Recommender Systems co-located with the 8th ACM Confer-

ence on Recommender Systems, CBRecSys@RecSys 2014, Foster City, Sili-

con Valley, California, USA, October 6, 2014., volume 1245 of CEUR Work-

shop Proceedings, pages 49–56. CEUR-WS.org, 2014.

[266] C. Musto, P. Basile, P. Lops, M. de Gemmis, and G. Semeraro. Introducing

linked open data in graph-based recommender systems. Inf. Process. Man-

age., 53(2):405–435, 2017.

[267] C. Musto, P. Lops, P. Basile, M. de Gemmis, and G. Semeraro. Semantics-

aware graph-based recommender systems exploiting linked open data. In

J. Vassileva, J. Blustein, L. Aroyo, and S. K. D’Mello, editors, Proceedings

of the 2016 Conference on User Modeling Adaptation and Personalization,

UMAP 2016, Halifax, NS, Canada, July 13 - 17, 2016, pages 229–237. ACM,

2016.

[268] C. Musto, P. Lops, M. de Gemmis, and G. Semeraro. Semantics-aware rec-

ommender systems exploiting linked open data and graph-based features. In

P. Champin, F. L. Gandon, M. Lalmas, and P. G. Ipeirotis, editors, Compan-

ion of the The Web Conference 2018 on The Web Conference 2018, WWW

2018, Lyon , France, April 23-27, 2018, pages 457–460. ACM, 2018.

408

[269] C. Musto, F. Narducci, P. Lops, M. de Gemmis, and G. Semeraro. Explod:

A framework for explaining recommendations based on the linked open data

cloud. In S. Sen, W. Geyer, J. Freyne, and P. Castells, editors, Proceedings

of the 10th ACM Conference on Recommender Systems, Boston, MA, USA,

September 15-19, 2016, pages 151–154. ACM, 2016.

[270] C. Musto, G. Semeraro, P. Lops, M. de Gemmis, and F. Narducci. Leveraging

social media sources to generate personalized music playlists. In C. Huemer

and P. Lops, editors, E-Commerce and Web Technologies - 13th International

Conference, EC-Web 2012, Vienna, Austria, September 4-5, 2012. Proceed-

ings, volume 123 of Lecture Notes in Business Information Processing, pages

112–123. Springer, 2012.

[271] M. Naseri, M. Elahi, and P. Cremonesi. Investigating the decision making

process of users based on the polimovie dataset. In M. Ge and F. Ricci,

editors, Proceedings of the 2nd International Workshop on Decision Making

and Recommender Systems, Bolzano, Italy, October 22-23, 2015., volume

1533 of CEUR Workshop Proceedings, pages 41–44. CEUR-WS.org, 2015.

[272] M. Nasery, M. Braunhofer, and F. Ricci. Recommendations with optimal

combination of feature-based and item-based preferences. In J. Vassileva,

J. Blustein, L. Aroyo, and S. K. D’Mello, editors, Proceedings of the 2016

Conference on User Modeling Adaptation and Personalization, UMAP 2016,

Halifax, NS, Canada, July 13 - 17, 2016, pages 269–273. ACM, 2016.

[273] X. Ning and G. Karypis. SLIM: sparse linear methods for top-n recom-

mender systems. In D. J. Cook, J. Pei, W. Wang, O. R. Zaı̈ane, and X. Wu,

editors, 11th IEEE International Conference on Data Mining, ICDM 2011,

Vancouver, BC, Canada, December 11-14, 2011, pages 497–506. IEEE Com-

puter Society, 2011.

[274] X. Ning and G. Karypis. Sparse linear methods with side information for

top-n recommendations. In P. Cunningham, N. J. Hurley, I. Guy, and S. S.

409

Anand, editors, Sixth ACM Conference on Recommender Systems, RecSys

’12, Dublin, Ireland, September 9-13, 2012, pages 155–162. ACM, 2012.

[275] T. D. Noia. LOSM: a SPARQL endpoint to query open street map. In

S. Villata, J. Z. Pan, and M. Dragoni, editors, Proceedings of the ISWC

2015 Posters & Demonstrations Track co-located with the 14th International

Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, October 11,

2015., volume 1486 of CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[276] T. D. Noia, T. Lukasiewicz, M. V. Martı́nez, G. I. Simari, and O. Tifrea-

Marciuska. Combining existential rules with the power of cp-theories. In

Q. Yang and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos

Aires, Argentina, July 25-31, 2015, pages 2918–2925. AAAI Press, 2015.

[277] T. D. Noia, C. Magarelli, A. Maurino, M. Palmonari, and A. Rula. Us-

ing ontology-based data summarization to develop semantics-aware recom-

mender systems. In A. Gangemi, R. Navigli, M. Vidal, P. Hitzler, R. Troncy,

L. Hollink, A. Tordai, and M. Alam, editors, The Semantic Web - 15th Inter-

national Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,

Proceedings, volume 10843 of Lecture Notes in Computer Science, pages

128–144. Springer, 2018.

[278] T. D. Noia, R. Mirizzi, V. C. Ostuni, and D. Romito. Exploiting the web of

data in model-based recommender systems. In P. Cunningham, N. J. Hurley,

I. Guy, and S. S. Anand, editors, Sixth ACM Conference on Recommender

Systems, RecSys ’12, Dublin, Ireland, September 9-13, 2012, pages 253–256.

ACM, 2012.

[279] T. D. Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker. Linked

open data to support content-based recommender systems. In V. Presutti and

H. S. Pinto, editors, I-SEMANTICS 2012 - 8th International Conference on

Semantic Systems, I-SEMANTICS ’12, Graz, Austria, September 5-7, 2012,

pages 1–8. ACM, 2012.

410

[280] T. D. Noia and V. C. Ostuni. Recommender systems and linked open data.

In W. Faber and A. Paschke, editors, Reasoning Web. Web Logic Rules - 11th

International Summer School 2015, Berlin, Germany, July 31 - August 4,

2015, Tutorial Lectures, volume 9203 of Lecture Notes in Computer Science,

pages 88–113. Springer, 2015.

[281] T. D. Noia, V. C. Ostuni, J. Rosati, P. Tomeo, E. D. Sciascio, R. Mirizzi, and

C. Bartolini. Building a relatedness graph from linked open data: A case

study in the IT domain. Expert Syst. Appl., 44:354–366, 2016.

[282] T. D. Noia, V. C. Ostuni, P. Tomeo, and E. D. Sciascio. Sprank: Semantic

path-based ranking for top-N recommendations using linked open data. ACM

TIST, 8(1):9:1–9:34, 2016.

[283] T. D. Noia, J. Rosati, P. Tomeo, and E. D. Sciascio. Adaptive multi-attribute

diversity for recommender systems. Inf. Sci., 382-383:234–253, 2017.

[284] I. Nunes, S. Miles, M. Luck, and C. J. P. de Lucena. An introduction to rea-

soning over qualitative multi-attribute preferences. Knowledge Eng. Review,

30(3):342–372, 2015.

[285] J. Oh, S. Park, H. Yu, M. Song, and S. Park. Novel recommendation based on

personal popularity tendency. In D. J. Cook, J. Pei, W. Wang, O. R. Zaı̈ane,

and X. Wu, editors, 11th IEEE International Conference on Data Mining,

ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, pages 507–

516. IEEE Computer Society, 2011.

[286] S. Oramas, V. C. Ostuni, T. D. Noia, X. Serra, and E. D. Sciascio. Sound

and music recommendation with knowledge graphs. ACM TIST, 8(2):21:1–

21:21, 2017.

[287] F. Ortega, J. L. Sánchez, J. Bobadilla, and A. Gutiérrez. Improving collabo-

rative filtering-based recommender systems results using pareto dominance.

Inf. Sci., 239:50–61, 2013.

411

[288] V. C. Ostuni, T. D. Noia, E. D. Sciascio, and R. Mirizzi. Top-n recommenda-

tions from implicit feedback leveraging linked open data. In Q. Yang, I. King,

Q. Li, P. Pu, and G. Karypis, editors, Seventh ACM Conference on Recom-

mender Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013, pages

85–92. ACM, 2013.

[289] E. Palumbo, G. Rizzo, and R. Troncy. entity2rec: Learning user-item relat-

edness from knowledge graphs for top-n item recommendation. In P. Cre-

monesi, F. Ricci, S. Berkovsky, and A. Tuzhilin, editors, Proceedings of the

Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como,

Italy, August 27-31, 2017, pages 32–36. ACM, 2017.

[290] W. Pan. A survey of transfer learning for collaborative recommendation with

auxiliary data. Neurocomputing, 177:447–453, 2016.

[291] W. Pan, N. N. Liu, E. W. Xiang, and Q. Yang. Transfer learning to predict

missing ratings via heterogeneous user feedbacks. In T. Walsh, editor, IJCAI

2011, Proceedings of the 22nd International Joint Conference on Artificial

Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2318–

2323. IJCAI/AAAI, 2011.

[292] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang. Transfer learning in collabora-

tive filtering for sparsity reduction. In M. Fox and D. Poole, editors, Proceed-

ings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI

2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

[293] U. Panniello, M. Gorgoglione, S. Hill, and K. Hosanagar. Incorporating profit

margins into recommender systems: A randomized field experiment of pur-

chasing behavior and consumer trust. 2014.

[294] E. Pantaleo, V. W. Anelli, T. D. Noia, and G. Sérasset. Etytree: A graphi-

cal and interactive etymology dictionary based on wiktionary. In R. Barrett,

R. Cummings, E. Agichtein, and E. Gabrilovich, editors, Proceedings of the

26th International Conference on World Wide Web Companion, Perth, Aus-

tralia, April 3-7, 2017, pages 1635–1640. ACM, 2017.

412

[295] U. Paquet and N. Koenigstein. One-class collaborative filtering with random

graphs. In D. Schwabe, V. A. F. Almeida, H. Glaser, R. A. Baeza-Yates, and

S. B. Moon, editors, 22nd International World Wide Web Conference, WWW

’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages 999–1008. International

World Wide Web Conferences Steering Committee / ACM, 2013.

[296] D. Parra and X. Amatriain. Walk the talk - analyzing the relation between

implicit and explicit feedback for preference elicitation. In J. A. Kon-

stan, R. Conejo, J. Marzo, and N. Oliver, editors, User Modeling, Adaption

and Personalization - 19th International Conference, UMAP 2011, Girona,

Spain, July 11-15, 2011. Proceedings, volume 6787 of Lecture Notes in Com-

puter Science, pages 255–268. Springer, 2011.

[297] A. Passant. dbrec - music recommendations using dbpedia. In P. F. Patel-

Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks,

and B. Glimm, editors, The Semantic Web - ISWC 2010 - 9th International

Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11,

2010, Revised Selected Papers, Part II, volume 6497 of Lecture Notes in

Computer Science, pages 209–224. Springer, 2010.

[298] A. Paterek. Improving regularized singular value decomposition for collab-

orative filtering. In Proceedings of KDD cup and workshop, volume 2007,

pages 5–8, 2007.

[299] H. Paulheim and J. Fürnkranz. Unsupervised generation of data mining fea-

tures from linked open data. In D. D. Burdescu, R. Akerkar, and C. Badica,

editors, 2nd International Conference on Web Intelligence, Mining and Se-

mantics, WIMS ’12, Craiova, Romania, June 6-8, 2012, pages 31:1–31:12.

ACM, 2012.

[300] M. J. Pazzani and D. Billsus. Content-based recommendation systems. In

P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web, Meth-

ods and Strategies of Web Personalization, volume 4321 of Lecture Notes in

Computer Science, pages 325–341. Springer, 2007.

413

[301] G. Peake and J. Wang. Explanation mining: Post hoc interpretability of la-

tent factor models for recommendation systems. In Y. Guo and F. Farooq,

editors, Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-

23, 2018, pages 2060–2069. ACM, 2018.

[302] G. Piao and J. G. Breslin. Measuring semantic distance for linked open data-

enabled recommender systems. In S. Ossowski, editor, Proceedings of the

31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8,

2016, pages 315–320. ACM, 2016.

[303] G. Pigozzi, A. Tsoukiàs, and P. Viappiani. Preferences in artificial intelli-

gence. Ann. Math. Artif. Intell., 77(3-4):361–401, 2016.

[304] I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization

for explicit and implicit feedback datasets. In X. Amatriain, M. Torrens,

P. Resnick, and M. Zanker, editors, Proceedings of the 2010 ACM Conference

on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30,

2010, pages 71–78. ACM, 2010.

[305] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput

screening approach to discovering good forms of biologically inspired visual

representation. PLoS Computational Biology, 5(11), 2009.

[306] P. Pirasteh, D. Hwang, and J. J. Jung. Exploiting matrix factorization to

asymmetric user similarities in recommendation systems. Knowl.-Based

Syst., 83:51–57, 2015.

[307] A. M. Qamar, É. Gaussier, J. Chevallet, and J. Lim. Similarity learning for

nearest neighbor classification. In Proceedings of the 8th IEEE International

Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,

Italy, pages 983–988. IEEE Computer Society, 2008.

414

[308] Z. Qian, P. Zhong, and R. Wang. Tag refinement for user-contributed im-

ages via graph learning and nonnegative tensor factorization. IEEE Signal

Process. Lett., 22(9):1302–1305, 2015.

[309] A. Rana and D. Bridge. Explanation chains: Recommendations by expla-

nation. In D. Tikk and P. Pu, editors, Proceedings of the Poster Track of the

11th ACM Conference on Recommender Systems (RecSys 2017), Como, Italy,

August 28, 2017., volume 1905 of CEUR Workshop Proceedings. CEUR-

WS.org, 2017.

[310] S. Rendle. Factorization machines. In G. I. Webb, B. Liu, C. Zhang,

D. Gunopulos, and X. Wu, editors, ICDM 2010, The 10th IEEE International

Conference on Data Mining, Sydney, Australia, 14-17 December 2010, pages

995–1000. IEEE Computer Society, 2010.

[311] S. Rendle. Context-Aware Ranking with Factorization Models, volume 330

of Studies in Computational Intelligence. Springer, 2011.

[312] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR:

bayesian personalized ranking from implicit feedback. In J. A. Bilmes and

A. Y. Ng, editors, UAI 2009, Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21,

2009, pages 452–461. AUAI Press, 2009.

[313] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personal-

ized markov chains for next-basket recommendation. In M. Rappa, P. Jones,

J. Freire, and S. Chakrabarti, editors, Proceedings of the 19th International

Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA,

April 26-30, 2010, pages 811–820. ACM, 2010.

[314] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast

context-aware recommendations with factorization machines. In W. Ma,

J. Nie, R. A. Baeza-Yates, T. Chua, and W. B. Croft, editors, Proceeding

415

of the 34th International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011,

pages 635–644. ACM, 2011.

[315] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization

for personalized tag recommendation. In B. D. Davison, T. Suel, N. Craswell,

and B. Liu, editors, Proceedings of the Third International Conference on

Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, Febru-

ary 4-6, 2010, pages 81–90. ACM, 2010.

[316] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:

An open architecture for collaborative filtering of netnews. In Proceedings

of the 1994 ACM Conference on Computer Supported Cooperative Work,

CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[317] F. Ricci, L. Rokach, and B. Shapira, editors. Recommender Systems Hand-

book. Springer, 2015.

[318] P. Ristoski, J. Rosati, T. D. Noia, R. D. Leone, and H. Paulheim. Rdf2vec:

RDF graph embeddings and their applications. Semantic Web, 10(4):721–

752, 2019.

[319] S. E. Robertson and H. Zaragoza. The probabilistic relevance framework:

BM25 and beyond. Foundations and Trends in Information Retrieval,

3(4):333–389, 2009.

[320] J. Rosati, T. D. Noia, T. Lukasiewicz, R. D. Leone, and A. Maurino. Prefe-

rence queries with ceteris paribus semantics for linked data. In C. Debruyne,

H. Panetto, R. Meersman, T. S. Dillon, G. Weichhart, Y. An, and C. A.

Ardagna, editors, On the Move to Meaningful Internet Systems: OTM 2015

Conferences - Confederated International Conferences: CoopIS, ODBASE,

and C&TC 2015, Rhodes, Greece, October 26-30, 2015, Proceedings, vol-

ume 9415 of Lecture Notes in Computer Science, pages 423–442. Springer,

2015.

416

[321] M. Rowe. Semanticsvd++: Incorporating semantic taste evolution for pre-

dicting ratings. In 2014 IEEE/WIC/ACM International Joint Conferences

on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw,

Poland, August 11-14, 2014 - Volume II, pages 213–220. IEEE Computer

Society, 2014.

[322] N. Sachdeva, K. Gupta, and V. Pudi. Attentive neural architecture incorpo-

rating song features for music recommendation. In S. Pera, M. D. Ekstrand,

X. Amatriain, and J. O’Donovan, editors, Proceedings of the 12th ACM Con-

ference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada,

October 2-7, 2018, pages 417–421. ACM, 2018.

[323] S. Sahebi and P. Brusilovsky. Cross-domain collaborative recommendation

in a cold-start context: The impact of user profile size on the quality of rec-

ommendation. In S. Carberry, S. Weibelzahl, A. Micarelli, and G. Semeraro,

editors, User Modeling, Adaptation, and Personalization - 21th International

Conference, UMAP 2013, Rome, Italy, June 10-14, 2013, Proceedings, vol-

ume 7899 of Lecture Notes in Computer Science, pages 289–295. Springer,

2013.

[324] S. Sahebi, P. Brusilovsky, and V. Bobrokov. Cross-domain recommendation

for large-scale data. In Y. Zheng, W. Pan, S. S. Sahebi, and I. Fernández,

editors, Proceedings of the 1st Workshop on Intelligent Recommender Sys-

tems by Knowledge Transfer & Learning co-located with ACM Conference

on Recommender Systems (RecSys 2017), Como, Italy, August 27, 2017.,

volume 1887 of CEUR Workshop Proceedings, pages 9–15. CEUR-WS.org,

2017.

[325] A. Said and A. Bellogı́n. Comparative recommender system evaluation:

benchmarking recommendation frameworks. In A. Kobsa, M. X. Zhou,

M. Ester, and Y. Koren, editors, Eighth ACM Conference on Recommender

Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10,

2014, pages 129–136. ACM, 2014.

417

[326] T. Sakai. Evaluating evaluation metrics based on the bootstrap. In E. N.

Efthimiadis, S. T. Dumais, D. Hawking, and K. Järvelin, editors, SIGIR 2006:

Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Seattle, Washington,

USA, August 6-11, 2006, pages 525–532. ACM, 2006.

[327] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. C.

Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural

Information Processing Systems 20, Proceedings of the Twenty-First Annual

Conference on Neural Information Processing Systems, Vancouver, British

Columbia, Canada, December 3-6, 2007, pages 1257–1264. Curran Asso-

ciates, Inc., 2007.

[328] G. Salton. Automatic Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer. Addison-Wesley, 1989.

[329] J. Sang, C. Xu, and J. Liu. User-aware image tag refinement via ternary

semantic analysis. IEEE Trans. Multimedia, 14(3-2):883–895, 2012.

[330] R. L. T. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations

for web search result diversification. In M. Rappa, P. Jones, J. Freire, and

S. Chakrabarti, editors, Proceedings of the 19th International Conference on

World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30,

2010, pages 881–890. ACM, 2010.

[331] P. Sapiezynski, V. Kassarnig, and C. Wilson. Academic performance pre-

diction in a gender-imbalanced environment. In 1st FATREC Workshop on

Responsible Recommendation, 2017.

[332] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensional-

ity reduction in recommender system - a case study. In ACM WebKDD 2000

Workshop. ACM SIGKDD, 2000.

[333] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Analysis of recom-

mendation algorithms for e-commerce. In EC, pages 158–167, 2000.

418

[334] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collabo-

rative filtering recommendation algorithms. In V. Y. Shen, N. Saito, M. R.

Lyu, and M. E. Zurko, editors, Proceedings of the Tenth International World

Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages

285–295. ACM, 2001.

[335] N. Sawant, R. Datta, J. Li, and J. Z. Wang. Quest for relevant tags using

local interaction networks and visual content. In J. Z. Wang, N. Bouje-

maa, N. O. Ramirez, and A. Natsev, editors, Proceedings of the 11th ACM

SIGMM International Conference on Multimedia Information Retrieval, MIR

2010, Philadelphia, Pennsylvania, USA, March 29-31, 2010, pages 231–240.

ACM, 2010.

[336] J. B. Schafer, D. Frankowski, J. L. Herlocker, and S. Sen. Collaborative

filtering recommender systems. In P. Brusilovsky, A. Kobsa, and W. Ne-

jdl, editors, The Adaptive Web, Methods and Strategies of Web Personaliza-

tion, volume 4321 of Lecture Notes in Computer Science, pages 291–324.

Springer, 2007.

[337] M. Schmachtenberg, T. Strufe, and H. Paulheim. Enhancing a location-based

recommendation system by enrichment with structured data from the web. In

R. Akerkar, N. Bassiliades, J. Davies, and V. Ermolayev, editors, 4th Inter-

national Conference on Web Intelligence, Mining and Semantics (WIMS 14),

WIMS ’14, Thessaloniki, Greece, June 2-4, 2014, pages 17:1–17:12. ACM,

2014.

[338] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited. IEEE

Intelligent Systems, 21(3):96–101, 2006.

[339] G. Shani and A. Gunawardana. Evaluating recommendation systems. In

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender

Systems Handbook, pages 257–297. Springer, 2011.

[340] G. Shani, D. Heckerman, and R. I. Brafman. An mdp-based recommender

system. J. Mach. Learn. Res., 6:1265–1295, 2005.

419

[341] B. Shapira, L. Rokach, and S. Freilikhman. Facebook single and cross do-

main data for recommendation systems. User Model. User-Adapt. Interact.,

23(2-3):211–247, 2013.

[342] U. Shardanand and P. Maes. Social information filtering: Algorithms for

automating ”word of mouth”. In I. R. Katz, R. L. Mack, L. Marks, M. B.

Rosson, and J. Nielsen, editors, Human Factors in Computing Systems, CHI

’95 Conference Proceedings, Denver, Colorado, USA, May 7-11, 1995.,

pages 210–217. ACM/Addison-Wesley, 1995.

[343] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and A. Hanjalic. xclimf: op-

timizing expected reciprocal rank for data with multiple levels of relevance.

In Q. Yang, I. King, Q. Li, P. Pu, and G. Karypis, editors, Seventh ACM Con-

ference on Recommender Systems, RecSys ’13, Hong Kong, China, October

12-16, 2013, pages 431–434. ACM, 2013.

[344] Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with ma-

trix factorization for collaborative filtering. In X. Amatriain, M. Torrens,

P. Resnick, and M. Zanker, editors, Proceedings of the 2010 ACM Confer-

ence on Recommender Systems, RecSys 2010, Barcelona, Spain, September

26-30, 2010, pages 269–272. ACM, 2010.

[345] Y. Shi, M. Larson, and A. Hanjalic. Tags as bridges between domains: Im-

proving recommendation with tag-induced cross-domain collaborative filter-

ing. In J. A. Konstan, R. Conejo, J. Marzo, and N. Oliver, editors, User Mod-

eling, Adaption and Personalization - 19th International Conference, UMAP

2011, Girona, Spain, July 11-15, 2011. Proceedings, volume 6787 of Lecture

Notes in Computer Science, pages 305–316. Springer, 2011.

[346] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features

through propagating activation differences. In D. Precup and Y. W. Teh, edi-

tors, Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Pro-

ceedings of Machine Learning Research, pages 3145–3153. PMLR, 2017.

420

[347] W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic web with

preferences. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe,

P. Mika, M. Uschold, and L. Aroyo, editors, The Semantic Web - ISWC 2006,

5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA,

November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes in Com-

puter Science, pages 612–624. Springer, 2006.

[348] A. Singh and T. Joachims. Fairness of exposure in rankings. In Y. Guo

and F. Farooq, editors, Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, KDD 2018, London,

UK, August 19-23, 2018, pages 2219–2228. ACM, 2018.

[349] R. R. Sinha and K. Swearingen. The role of transparency in recommender

systems. In L. G. Terveen and D. R. Wixon, editors, Extended abstracts of

the 2002 Conference on Human Factors in Computing Systems, CHI 2002,

Minneapolis, Minnesota, USA, April 20-25, 2002, pages 830–831. ACM,

2002.

[350] M. R. Smith, L. Mitchell, C. G. Giraud-Carrier, and T. R. Martinez. Recom-

mending learning algorithms and their associated hyperparameters. In J. Van-

schoren, P. Brazdil, C. Soares, and L. Kotthoff, editors, Proceedings of the In-

ternational Workshop on Meta-learning and Algorithm Selection co-located

with 21st European Conference on Artificial Intelligence, MetaSel@ECAI

2014, Prague, Czech Republic, August 19, 2014., volume 1201 of CEUR

Workshop Proceedings, pages 39–40. CEUR-WS.org, 2014.

[351] M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical sig-

nificance tests for information retrieval evaluation. In M. J. Silva, A. H. F.

Laender, R. A. Baeza-Yates, D. L. McGuinness, B. Olstad, Ø. H. Olsen,

and A. O. Falcão, editors, Proceedings of the Sixteenth ACM Conference

on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal,

November 6-10, 2007, pages 623–632. ACM, 2007.

421

[352] E. Smyth. Would the Internet widen public participation? PhD thesis, Uni-

versity of Leeds, United Kingdom, 2012.

[353] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization

of machine learning algorithms. In P. L. Bartlett, F. C. N. Pereira, C. J. C.

Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems 25: 26th Annual Conference on Neural Informa-

tion Processing Systems 2012. Proceedings of a meeting held December 3-6,

2012, Lake Tahoe, Nevada, United States., pages 2960–2968, 2012.

[354] T. Sørensen. A method of establishing groups of equal amplitude in plant

sociology based on similarity of species and its application to analyses of the

vegetation on Danish commons. Biol. Skr., 5:1–34, 1948.

[355] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla,

A. Weller, and M. B. Zafar. A unified approach to quantifying algorithmic

unfairness: Measuring individual &group unfairness via inequality indices.

In Y. Guo and F. Farooq, editors, Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD

2018, London, UK, August 19-23, 2018, pages 2239–2248. ACM, 2018.

[356] H. Steck. Evaluation of recommendations: rating-prediction and ranking. In

Q. Yang, I. King, Q. Li, P. Pu, and G. Karypis, editors, Seventh ACM Con-

ference on Recommender Systems, RecSys ’13, Hong Kong, China, October

12-16, 2013, pages 213–220. ACM, 2013.

[357] A. Stewart, E. Diaz-Aviles, W. Nejdl, L. B. Marinho, A. Nanopoulos, and

L. Schmidt-Thieme. Cross-tagging for personalized open social networking.

In C. Cattuto, G. Ruffo, and F. Menczer, editors, HYPERTEXT 2009, Pro-

ceedings of the 20th ACM Conference on Hypertext and Hypermedia, Torino,

Italy, June 29 - July 1, 2009, pages 271–278. ACM, 2009.

[358] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L. Huang, and C. Xu. Recurrent

knowledge graph embedding for effective recommendation. In S. Pera, M. D.

422

Ekstrand, X. Amatriain, and J. O’Donovan, editors, Proceedings of the 12th

ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC,

Canada, October 2-7, 2018, pages 297–305. ACM, 2018.

[359] Ö. Sürer, R. Burke, and E. C. Malthouse. Multistakeholder recommendation

with provider constraints. In Proceedings of the 12th ACM Conference on

Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7,

2018, pages 54–62, 2018.

[360] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Justified recommen-

dations based on content and rating data. In WebKDD Workshop on Web

Mining and Web Usage Analysis, 2008.

[361] M. Szomszor, H. Alani, I. Cantador, K. O’Hara, and N. Shadbolt. Se-

mantic modelling of user interests based on cross-folksonomy analysis. In

A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and

K. Thirunarayan, editors, The Semantic Web - ISWC 2008, 7th International

Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-

30, 2008. Proceedings, volume 5318 of Lecture Notes in Computer Science,

pages 632–648. Springer, 2008.

[362] M. Szomszor, I. Cantador, and H. Alani. Correlating user profiles from mul-

tiple folksonomies. In P. Brusilovsky and H. C. Davis, editors, HYPERTEXT

2008, Proceedings of the 19th ACM Conference on Hypertext and Hyperme-

dia, Pittsburgh, PA, USA, June 19-21, 2008, pages 33–42. ACM, 2008.

[363] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Matrix factorization and

neighbor based algorithms for the netflix prize problem. In P. Pu, D. G.

Bridge, B. Mobasher, and F. Ricci, editors, Proceedings of the 2008 ACM

Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland,

October 23-25, 2008, pages 267–274. ACM, 2008.

[364] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering

approaches for large recommender systems. J. Mach. Learn. Res., 10:623–

656, 2009.

423

[365] G. Takács and D. Tikk. Alternating least squares for personalized ranking.

In P. Cunningham, N. J. Hurley, I. Guy, and S. S. Anand, editors, Sixth ACM

Conference on Recommender Systems, RecSys ’12, Dublin, Ireland, Septem-

ber 9-13, 2012, pages 83–90. ACM, 2012.

[366] A. Taneja and A. Arora. Cross domain recommendation using multidimen-

sional tensor factorization. Expert Syst. Appl., 92:304–316, 2018.

[367] N. Tintarev and J. Masthoff. A survey of explanations in recommender sys-

tems. In Proceedings of the 23rd International Conference on Data Engi-

neering Workshops, ICDE 2007, 15-20 April 2007, Istanbul, Turkey, pages

801–810. IEEE Computer Society, 2007.

[368] N. Tintarev and J. Masthoff. Designing and evaluating explanations for rec-

ommender systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,

editors, Recommender Systems Handbook, pages 479–510. Springer, 2011.

[369] A. Tiroshi, S. Berkovsky, M. A. Kâafar, T. Chen, and T. Kuflik. Cross social

networks interests predictions based ongraph features. In Q. Yang, I. King,

Q. Li, P. Pu, and G. Karypis, editors, Seventh ACM Conference on Recom-

mender Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013, pages

319–322. ACM, 2013.

[370] A. Tiroshi and T. Kuflik. Domain ranking for cross domain collaborative

filtering. In J. Masthoff, B. Mobasher, M. C. Desmarais, and R. Nkambou,

editors, User Modeling, Adaptation, and Personalization - 20th International

Conference, UMAP 2012, Montreal, Canada, July 16-20, 2012. Proceed-

ings, volume 7379 of Lecture Notes in Computer Science, pages 328–333.

Springer, 2012.

[371] A. Troumpoukis, S. Konstantopoulos, and A. Charalambidis. An exten-

sion of SPARQL for expressing qualitative preferences. In C. d’Amato,

M. Fernández, V. A. M. Tamma, F. Lécué, P. Cudré-Mauroux, J. F. Sequeda,

C. Lange, and J. Heflin, editors, The Semantic Web - ISWC 2017 - 16th Inter-

national Semantic Web Conference, Vienna, Austria, October 21-25, 2017,

424

Proceedings, Part I, volume 10587 of Lecture Notes in Computer Science,

pages 711–727. Springer, 2017.

[372] V. Tsintzou, E. Pitoura, and P. Tsaparas. Bias disparity in recommendation

systems. CoRR, abs/1811.01461, 2018.

[373] K. H. L. Tso and L. Schmidt-Thieme. Evaluation of attribute-aware recom-

mender system algorithms on data with varying characteristics. In W. K.

Ng, M. Kitsuregawa, J. Li, and K. Chang, editors, Advances in Knowledge

Discovery and Data Mining, 10th Pacific-Asia Conference, PAKDD 2006,

Singapore, April 9-12, 2006, Proceedings, volume 3918 of Lecture Notes in

Computer Science, pages 831–840. Springer, 2006.

[374] T. X. Tuan and T. M. Phuong. 3d convolutional networks for session-

based recommendation with content features. In P. Cremonesi, F. Ricci,

S. Berkovsky, and A. Tuzhilin, editors, Proceedings of the Eleventh ACM

Conference on Recommender Systems, RecSys 2017, Como, Italy, August

27-31, 2017, pages 138–146. ACM, 2017.

[375] D. Valcarce, A. Bellogı́n, J. Parapar, and P. Castells. On the robustness and

discriminative power of information retrieval metrics for top-n recommenda-

tion. In S. Pera, M. D. Ekstrand, X. Amatriain, and J. O’Donovan, editors,

Proceedings of the 12th ACM Conference on Recommender Systems, RecSys

2018, Vancouver, BC, Canada, October 2-7, 2018, pages 260–268. ACM,

2018.

[376] S. Vargas, L. Baltrunas, A. Karatzoglou, and P. Castells. Coverage, redun-

dancy and size-awareness in genre diversity for recommender systems. In

A. Kobsa, M. X. Zhou, M. Ester, and Y. Koren, editors, Eighth ACM Confer-

ence on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA,

USA - October 06 - 10, 2014, pages 209–216. ACM, 2014.

[377] S. Vargas and P. Castells. Rank and relevance in novelty and diversity met-

rics for recommender systems. In B. Mobasher, R. D. Burke, D. Jannach, and

425

G. Adomavicius, editors, Proceedings of the 2011 ACM Conference on Rec-

ommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011,

pages 109–116. ACM, 2011.

[378] S. Vargas and P. Castells. Exploiting the diversity of user preferences for

recommendation. In J. Ferreira, J. Magalhães, and P. Calado, editors, Open

research Areas in Information Retrieval, OAIR ’13, Lisbon, Portugal, May

15-17, 2013, pages 129–136. ACM, 2013.

[379] S. Vargas, P. Castells, and D. Vallet. Intent-oriented diversity in recommender

systems. In W. Ma, J. Nie, R. A. Baeza-Yates, T. Chua, and W. B. Croft,

editors, Proceeding of the 34th International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR 2011, Beijing,

China, July 25-29, 2011, pages 1211–1212. ACM, 2011.

[380] H. R. Varian. Economics and search. SIGIR Forum, 33(1):1–5, 1999.

[381] H. R. Varian. The economics of search. In F. C. Gey, M. A. Hearst, and

R. M. Tong, editors, SIGIR ’99: Proceedings of the 22nd Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, August 15-19, 1999, Berkeley, CA, USA, page 1. ACM, 1999.

[382] S. Verma and J. Rubin. Fairness definitions explained. In Y. Brun, B. John-

son, and A. Meliou, editors, Proceedings of the International Workshop on

Software Fairness, FairWare@ICSE 2018, Gothenburg, Sweden, May 29,

2018, pages 1–7. ACM, 2018.

[383] J. Vig, S. Sen, and J. Riedl. Tagsplanations: explaining recommendations

using tags. In C. Conati, M. Bauer, N. Oliver, and D. S. Weld, editors, Pro-

ceedings of the 14th International Conference on Intelligent User Interfaces,

IUI 2009, Sanibel Island, Florida, USA, February 8-11, 2009, pages 47–56.

ACM, 2009.

[384] M. Vlachos, C. Dünner, R. Heckel, V. G. Vassiliadis, T. P. Parnell, and

K. Atasu. Addressing interpretability and cold-start in matrix factorization

426

for recommender systems. IEEE Trans. Knowl. Data Eng., 31(7):1253–1266,

2019.

[385] G. H. Von Wright. The Logic of Preference. Edinburgh University Press,

1963.

[386] V. Walter Anelli, R. De Leone, T. Di Noia, T. Lukasiewicz, and J. Rosati.

Combining rdf and sparql with cp-theories to reason about preferences in a

linked data setting. Semantic Web, pages 1–29, 12 2018.

[387] H. Wang and C. Wu. A mathematical model for product selection strategies

in a recommender system. Expert Syst. Appl., 36(3):7299–7308, 2009.

[388] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo. Multi-task fea-

ture learning for knowledge graph enhanced recommendation. In L. Liu,

R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. S. Baeza-Yates,

and L. Zia, editors, The World Wide Web Conference, WWW 2019, San Fran-

cisco, CA, USA, May 13-17, 2019, pages 2000–2010. ACM, 2019.

[389] T. Wang, Y. Cai, H. Leung, Z. Cai, and H. Min. Entropy-based term weight-

ing schemes for text categorization in VSM. In 27th IEEE International

Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare,

Italy, November 9-11, 2015, pages 325–332. IEEE Computer Society, 2015.

[390] X. Wang, X. He, F. Feng, L. Nie, and T. Chua. TEM: tree-enhanced embed-

ding model for explainable recommendation. In P. Champin, F. L. Gandon,

M. Lalmas, and P. G. Ipeirotis, editors, Proceedings of the 2018 World Wide

Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27,

2018, pages 1543–1552. ACM, 2018.

[391] J. Wasilewski and N. Hurley. Intent-aware diversification using a constrained

PLSA. In S. Sen, W. Geyer, J. Freyne, and P. Castells, editors, Proceedings

of the 10th ACM Conference on Recommender Systems, Boston, MA, USA,

September 15-19, 2016, pages 39–42. ACM, 2016.

427

[392] M. Weimer, A. Karatzoglou, and A. J. Smola. Improving maximum margin

matrix factorization. Machine Learning, 72(3):263–276, 2008.

[393] S. Weng and M. Liu. Feature-based recommendations for one-to-one mar-

keting. Expert Syst. Appl., 26(4):493–508, 2004.

[394] N. Wilson. Extending cp-nets with stronger conditional preference state-

ments. In D. L. McGuinness and G. Ferguson, editors, Proceedings of the

Nineteenth National Conference on Artificial Intelligence, Sixteenth Confer-

ence on Innovative Applications of Artificial Intelligence, July 25-29, 2004,

San Jose, California, USA, pages 735–741. AAAI Press / The MIT Press,

2004.

[395] N. Wilson. Computational techniques for a simple theory of conditional pref-

erences. Artif. Intell., 175(7-8):1053–1091, 2011.

[396] P. Winoto and T. Y. Tang. If you like the devil wears prada the book, will

you also enjoy the devil wears prada the movie? A study of cross-domain

recommendations. New Generation Comput., 26(3):209–225, 2008.

[397] W. S. Wong, R. W. P. Luk, H. V. Leong, L. K. Ho, and D. L. Lee. Re-

examining the effects of adding relevance information in a relevance feed-

back environment. Inf. Process. Manage., 44(3):1086–1116, 2008.

[398] C. Wongchokprasitti, J. Peltonen, T. Ruotsalo, P. Bandyopadhyay, G. Jacucci,

and P. Brusilovsky. User model in a box: Cross-system user model transfer

for resolving cold start problems. In F. Ricci, K. Bontcheva, O. Conlan,

and S. Lawless, editors, User Modeling, Adaptation and Personalization -

23rd International Conference, UMAP 2015, Dublin, Ireland, June 29 - July

3, 2015. Proceedings, volume 9146 of Lecture Notes in Computer Science,

pages 289–301. Springer, 2015.

[399] C. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent recom-

mender networks. In M. de Rijke, M. Shokouhi, A. Tomkins, and M. Zhang,

editors, Proceedings of the Tenth ACM International Conference on Web

428

Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, Febru-

ary 6-10, 2017, pages 495–503. ACM, 2017.

[400] Q. Wu, C. J. C. Burges, K. M. Svore, and J. Gao. Adapting boosting for

information retrieval measures. Inf. Retr., 13(3):254–270, 2010.

[401] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T. Chua. Attentional factor-

ization machines: Learning the weight of feature interactions via attention

networks. In C. Sierra, editor, Proceedings of the Twenty-Sixth Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,

Australia, August 19-25, 2017, pages 3119–3125. ijcai.org, 2017.

[402] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In

W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando, editors,

SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, Amsterdam,

The Netherlands, July 23-27, 2007, pages 391–398. ACM, 2007.

[403] J. Yang, Z. Sun, A. Bozzon, and J. Zhang. Learning hierarchical feature in-

fluence for recommendation by recursive regularization. In S. Sen, W. Geyer,

J. Freyne, and P. Castells, editors, Proceedings of the 10th ACM Conference

on Recommender Systems, Boston, MA, USA, September 15-19, 2016, pages

51–58. ACM, 2016.

[404] S. Yao and B. Huang. Beyond parity: Fairness objectives for collaborative

filtering. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,

S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages

2921–2930, 2017.

[405] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han.

Personalized entity recommendation: a heterogeneous information network

approach. In B. Carterette, F. Diaz, C. Castillo, and D. Metzler, editors,

429

Seventh ACM International Conference on Web Search and Data Mining,

WSDM 2014, New York, NY, USA, February 24-28, 2014, pages 283–292.

ACM, 2014.

[406] F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang. Boostfm:

Boosted factorization machines for top-n feature-based recommendation. In

G. A. Papadopoulos, T. Kuflik, F. Chen, C. Duarte, and W. Fu, editors, Pro-

ceedings of the 22nd International Conference on Intelligent User Interfaces,

IUI 2017, Limassol, Cyprus, March 13-16, 2017, pages 45–54. ACM, 2017.

[407] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness

beyond disparate treatment & disparate impact: Learning classification with-

out disparate mistreatment. In R. Barrett, R. Cummings, E. Agichtein, and

E. Gabrilovich, editors, Proceedings of the 26th International Conference

on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, pages

1171–1180. ACM, 2017.

[408] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness

constraints: A flexible approach for fair classification. J. Mach. Learn. Res.,

20:75:1–75:42, 2019.

[409] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, K. P. Gummadi, and A. Weller.

From parity to preference-based notions of fairness in classification. In

I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.

Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 229–239,

2017.

[410] M. Zanker. The influence of knowledgeable explanations on users’ percep-

tion of a recommender system. In P. Cunningham, N. J. Hurley, I. Guy,

and S. S. Anand, editors, Sixth ACM Conference on Recommender Systems,

RecSys ’12, Dublin, Ireland, September 9-13, 2012, pages 269–272. ACM,

2012.

430

[411] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer.

Quality assessment for linked data: A survey. Semantic Web, 7(1):63–93,

2016.

[412] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. A. Baeza-

Yates. Fa*ir: A fair top-k ranking algorithm. In E. Lim, M. Winslett,

M. Sanderson, A. W. Fu, J. Sun, J. S. Culpepper, E. Lo, J. C. Ho, D. Do-

nato, R. Agrawal, Y. Zheng, C. Castillo, A. Sun, V. S. Tseng, and C. Li,

editors, Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017,

pages 1569–1578. ACM, 2017.

[413] C. Zhai and J. D. Lafferty. A study of smoothing methods for language

models applied to ad hoc information retrieval. In W. B. Croft, D. J. Harper,

D. H. Kraft, and J. Zobel, editors, SIGIR 2001: Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana,

USA, pages 334–342. ACM, 2001.

[414] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. Collaborative knowledge

base embedding for recommender systems. In B. Krishnapuram, M. Shah,

A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, editors, Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages

353–362. ACM, 2016.

[415] Q. Zhang, D. Wu, J. Lu, F. Liu, and G. Zhang. A cross-domain recom-

mender system with consistent information transfer. Decision Support Sys-

tems, 104:49–63, 2017.

[416] Y. Zhang. Explainable recommendation: Theory and applications. CoRR,

abs/1708.06409, 2017.

[417] Y. Zhang, B. Cao, and D. Yeung. Multi-domain collaborative filtering. In

P. Grünwald and P. Spirtes, editors, UAI 2010, Proceedings of the Twenty-

431

Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island,

CA, USA, July 8-11, 2010, pages 725–732. AUAI Press, 2010.

[418] Y. Zhang and X. Chen. Explainable recommendation: A survey and new

perspectives. CoRR, abs/1804.11192, 2018.

[419] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. Explicit fac-

tor models for explainable recommendation based on phrase-level sentiment

analysis. In The 37th Int. Conf. on Research and Development in Information

Retrieval, SIGIR ’14, Gold Coast , QLD, Australia, pages 83–92, 2014.

[420] Y. Zhang, M. Zhang, Y. Zhang, G. Lai, Y. Liu, H. Zhang, and S. Ma. Daily-

aware personalized recommendation based on feature-level time series anal-

ysis. In A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceedings

of the 24th International Conference on World Wide Web, WWW 2015, Flo-

rence, Italy, May 18-22, 2015, pages 1373–1383. ACM, 2015.

[421] L. Zhao, S. J. Pan, and Q. Yang. A unified framework of active transfer

learning for cross-system recommendation. Artif. Intell., 245:38–55, 2017.

[422] W. X. Zhao, S. Li, Y. He, L. Wang, J. Wen, and X. Li. Exploring demographic

information in social media for product recommendation. Knowl. Inf. Syst.,

49(1):61–89, 2016.

[423] Y. Zheng, N. Ghane, and M. Sabouri. Personalized educational learning

with multi-stakeholder optimizations. In G. A. Papadopoulos, G. Samaras,

S. Weibelzahl, D. Jannach, and O. C. Santos, editors, Adjunct Publication

of the 27th Conference on User Modeling, Adaptation and Personalization,

UMAP 2019, Larnaca, Cyprus, June 09-12, 2019, pages 283–289. ACM,

2019.

[424] Y. Zheng, B. Mobasher, and R. D. Burke. Incorporating context corre-

lation into context-aware matrix factorization. In D. Jannach, J. Mengin,

B. Mobasher, A. Passerini, and P. Viappiani, editors, Proceedings of the IJ-

CAI 2015 Joint Workshop on Constraints and Preferences for Configuration

432

and Recommendation and Intelligent Techniques for Web Personalization

co-located with the 24th International Joint Conference on Artificial Intel-

ligence (IJCAI 2015), Buenos Aires, Argentina, July 27, 2015., volume 1440

of CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[425] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel

collaborative filtering for the netflix prize. In R. Fleischer and J. Xu, editors,

Algorithmic Aspects in Information and Management, 4th International Con-

ference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, vol-

ume 5034 of Lecture Notes in Computer Science, pages 337–348. Springer,

2008.

[426] F. Zhu, Y. Wang, C. Chen, G. Liu, M. A. Orgun, and J. Wu. A deep frame-

work for cross-domain and cross-system recommendations. In J. Lang, ed-

itor, Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,

pages 3711–3717. ijcai.org, 2018.

[427] Z. Zhu, X. Hu, and J. Caverlee. Fairness-aware tensor-based recommenda-

tion. In A. Cuzzocrea, J. Allan, N. W. Paton, D. Srivastava, R. Agrawal, A. Z.

Broder, M. J. Zaki, K. S. Candan, A. Labrinidis, A. Schuster, and H. Wang,

editors, Proceedings of the 27th ACM International Conference on Informa-

tion and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26,

2018, pages 1153–1162. ACM, 2018.

[428] F. Zhuang, P. Luo, H. Xiong, Y. Xiong, Q. He, and Z. Shi. Cross-domain

learning from multiple sources: A consensus regularization perspective.

IEEE Trans. Knowl. Data Eng., 22(12):1664–1678, 2010.

[429] C. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recom-

mendation lists through topic diversification. In A. Ellis and T. Hagino, ed-

itors, Proceedings of the 14th international conference on World Wide Web,

WWW 2005, Chiba, Japan, May 10-14, 2005, pages 22–32. ACM, 2005.

433

[430] A. Zimdars, D. M. Chickering, and C. Meek. Using temporal data for making

recommendations. In J. S. Breese and D. Koller, editors, UAI ’01: Proceed-

ings of the 17th Conference in Uncertainty in Artificial Intelligence, Uni-

versity of Washington, Seattle, Washington, USA, August 2-5, 2001, pages

580–588. Morgan Kaufmann, 2001.

434

Arrivati a questo punto, sento che qualcosa dovrei scriverla. Non perché debba,

ma perché tante di queste cose sono rimaste chiuse in me per tanto tempo.

Voglio ringraziare la mia famiglia. Sinceramente e totalmente. Innanzi tutto,

voglio ringraziare Filippo e Flora. Ammettiamolo, non hanno mai capito veramente

cosa stessi facendo. Ciononostante, mi hanno supportato in ogni modo, imparando

ad esserci senza essere invadenti. Sono consapevole di quanto sia stato difficile per

loro. Sono sempre stati un faro per me, e sempre lo saranno. Li amo profondamente,

come amo i miei fratelli. Sami ed Ale, cosı́ diversi eppure cosı́ simili, fragili e

fortissimi allo stesso tempo, tentano ogni giorno di essere la migliore versione di se

stessi. Sono profondamente orgoglioso di loro, e mi piacerebbe essere il loro scudo

nei confronti delle preoccupazioni della vita.

Vorrei ringraziare Tommaso. E’ difficile trovare le parole giuste. Proviamo-

ci. Delle profonde trasformazioni a cui ti obbliga il dottorato, lui ne é il principale

artefice (o colpevole, questione di punti di vista). Non potrei mai ringraziarlo ab-

bastanza per tutte le cose che ho imparato, e questo é il meno in un dottorato. Mi

ha mostrato nuovi livelli di sacrificio, eppure mi ha anche spinto a guardare le cose

nella giusta prospettiva, privando di valore ed importanza le cose inutili. Ha avu-

to la pazienza dell’acqua nello scavare la roccia, dove la roccia é il mio ripetere

ostinatamente gli stessi errori ed inventarne di nuovi. Grazie di tutto.

Vorrei ringraziare Eugenio. E’ stata una costante nel mio percorso, ed in ogni

passaggio importante c’é sempre stata la sua mano. Osserva, analizza, valuta, deci-

de. Mi ha lasciato commettere i miei errori e costruire il mio percorso, senza mai

lodare i primi approssimativi tentativi. E’ esigente con chi gli sta vicino come lo é

con se stesso. Gli sono immensamente grato per questo. Mi ha insegnato anche che

c’é un momento per le cose futili ed un momento per parlare delle cose importanti.

Quando parla delle seconde, le parole sono poche ed hanno la densitá di una stella

di neutroni.

Vorrei ringraziare Francesca. E’ la bellissima costante della mia vita. Ancora

non si rende conto di quanto sia importante il suo sostegno e la sua presenza nella

mia vita. Sono sempre stato convinto che in una coppia entrambi debbano essere

delle persone compiute ed interessanti e lo credo ancora. Tuttavia sono sicuro che

435

senza di lei la mia vita sarebbe piú spenta e grigia. Penso di aver scoperto nuovi

colori e nuovi suoni con lei, e spero di scoprirne tanti altri.

Vorrei ringraziare i miei quattro nonni. A chiunque vi abbia conosciuti é evi-

dente che io sia specchio, nel bene e nel male, dei vostri caratteri.

Vorrei ringraziare Nicola e Grazia. Ci siete stati sempre e la vostra presenza e le

vostre parole sono sempre state una guida per me.

Vorrei ringraziare Mike, un amico fraterno che tenta sempre di esserci e di capire

cosa ti turba. Spero che la vita gli restituisca in soddisfazioni almeno una parte di

ció che lui dona agli altri.

Vorrei ringraziare Stefano, Fabia, Marco, Rossana e Giorgio. Sono da sempre

una parte di me, e spero che lo siano sempre.

Vorrei ringraziare Anna Lucia. Lei e Claudia sono state per me ció che di piú

simile ci possa essere a delle figlie o a delle sorelline. Mi auguro di avervi donato

almeno un po’ della mia forza e della mia ostinazione nell’affrontare il mondo a

testa alta. E spero che siate felici, anche se vi lamenterete sempre.

Vorrei ringraziare Domenico, l’ho visto crescere e soffrire, sbagliare e correg-

gersi. Nonostante il percorso sia ancora lungo, spero di poter essere un buon fratello

maggiore.

Deseo agradecer a Alejandro, Ivan y Pablo, que me recibieron en su laboratorio

como si fuera parte de su familia. Espero devolverles su hospitalidad. Alejandro

fue un buen compañero de investigación y me enseñó mucho. Gracias!

Vorrei ringraziare Fabio, Stefano, Pasquale, Pierpaolo, Alessandro. Se penso a

svagarmi, a staccare da tutto, uscire e divertirmi penso a loro. Spero di riuscire in

futuro a restituire loro il bene che mi vogliono.

Vorrei ringraziare Irene. Sei una buona amica e mi fai sorridere sempre, spe-

ro di riuscire a farti capire la differenza tra una carta d’identitá ed una patente di

guida. Vorrei ringraziare Margherita ed Emanuele, Mario e Roberta. Mi avete sem-

pre coinvolto e fatto sentire bene. Vi apprezzo tantissimo sia individualmente che

insieme.

Vorrei ringraziare Barbara, per me sei come una sorellina acquisita.

Vorrei ringraziare Michele, Andrea, Dimitri, Manuel, Mona, Alberto, Totó, Gae-

436

tano, Martina, Carmine, El mudo, Francesco, Nika, Marta, Eva e tutti gli amici di

Madrid. Essere a Madrid con voi stata un’esperienza mistico-musicale-culinaria.

Vi penso ogni giorno e spero di rivedervi presto.

Vorrei ringraziare Eliana, un’amica vittima del fuoco incrociato. E di solito il

fuoco é il suo. Spero che tu possa tornare il prima possibile nelle nostre vite.

Vorrei ringraziare i ragazzi del laboratorio. Yes! Voglio ringraziare Vito, Clau-

dio, Antonio, Felice, GianMaria, Yashar, Lucio, Carmelo, Gaetano, Daniele, Giu-

lia e Giulio. Il mondo della ricerca vi chiede molto ogni giorno e voi rispondete

pleasantly, tra un problema con pip all’abbondanza di dati. Resistete stoicamente

a labirinti di discussion, interazioni, iterazioni ed esperimenti, subendo call e toss

a coin. In attesa della mattina dell’eleganza, vi potete consolare con qualche dolce

croccante ed un po’ di pulled pork, o con pasta ed insalata per gli amanti del brivido.

Vorrei ringraziare tutti gli amici di Villa Edda, ed in primis Michele e Alessan-

dro, siete dei fratelli. Michele é una parte fondamentale di me stesso. Parlare con

lui é come parlare guardandosi allo specchio. Mi riuscirebbe impossibile immagi-

nare una versione alternativa della mia vita in cui lui non c’é. Sarei, semplicemente,

un’altra persona. Marco, Daniele, Gabriele, Bucci, Marcolino, Ciccarelli, Mat-

teo, Davide, Flavio, Giorgio, Massimo, Mimmi, Nicola, Paolo, Pierpaolo, Stefano,

Giuseppe, Carlo, Adriano, Campanale, Pellecchia. Siete tantissimi e sarebbe dura

elencarvi tutti, ma non si puó fare un ordinamento, voglio bene a tutti voi.

Vorrei ringraziare gli amici di Tins ed in primis Dario, Pasquale, Gianluca,

Mauro e Mariano. Siete tutti sempre nel mio cuore anche se siamo lontani.

437

