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Abstract 

In the last decades, in response to the high impact of buildings on global energy 

consumption and on the greenhouse gases emission, recent international directives 

have introduced the standard of "Nearly Zero Energy Building (NZEB)" to be realized 

from 2021. 

Despite the increasing attention to the development of strategies and innovative 

technology solutions for the energy efficiency of building components and HVAC sys-

tems, the human dimension, especially regarding the operating modes of the build-

ing-HVAC system by occupants, is often neglected. In most cases, this causes a 

significant discrepancy between the designed and the real total energy use in build-

ings. Indeed, monitoring studies for identical dwellings having the same type of instal-

lations have shown great variation in energy use.  

Occupants constitute one of the major source of microclimate alteration in built 

environment, both as "passive agents" (for sensible and latent energy emissions, and 
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emissions of pollutants), both as "active agents" as result of interaction with the 

buildings in order to achieve the desired comfort level (by acting on thermostats, by 

changing the state of opening or closing of windows and /or shading, by activating 

artificial lighting, etc.) 

Above all in the buildings characterized by higher levels of the insulation and air 

tightness, the occupants behavior may have a great influence on the energy con-

sumptions and on indoor environment conditions. If the occupants have the possibil-

ity to manipulate the set-points temperature, the ventilation rates etc., the perfor-

mance of the building will be affected by the behavior of the occupants. As conse-

quence, even the most efficient building, may give rise to waste in case of incorrect 

use by occupants. 

Nowadays the understanding of occupant behavior results inappropriate, overly 

simplified, leading to inaccurate expectations of building energy performance. A 

common approach to model occupant behavior consists of assumptions based on 

scientists’ thoughts or literature reviews. Typically human actions (operation of lights, 

blinds, and windows) are modeled based on predefined fixed schedules or prede-

fined rules. In contrast to the deterministic methods, stochastic and above all agent-

based models (ABM) are the most powerful and suitable methods for modeling a 

system as complex as the human behavior.  

Especially in residential buildings, where the interaction of the occupants on the 

building-HVAC system is significant and hence the occupant behaviors may affect 

highly on building performance, the integration of Building Energy Management Sys-

tems (BEMS) may provide significant energy savings, going not only to remedy an in-

correct or inadequate management by occupants, but also optimizing the activation 

timing and management methods.  

Strictly connected with the “resilience” concept, the object of this research is to 

design “adaptive” Building Energy Management Systems (BEMS), able to maintain 

energy performance at the desired level despite the diverse operating conditions by 

occupants, by optimizing building components.   
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In detail, several control logics for BEMS are analyzed in the residential buildings, 

by optimizing the thermal and visual comfort and by modeling the occupant behav-

iors by means of an agent based oriented approach. In this thesis the optimization 

goals are based on the adaptive thermal comfort according to EN 15251.  

The thesis is structured in five chapters.  

In the introduction chapter (chapter 1) the main factors influencing the building per-

formance towards the design of the NZEB are presented.  

Then, literature review regarding different studies that have analyzed the impact of 

occupant behaviors and the interaction with building-HVAC system (chapter 2) are 

reported.  

The results of a questionnaire survey conducted on occupant behaviors in residen-

tial buildings are described in the chapter 3. Large differences in the behavior patterns 

of occupants are found between dwellings. Indeed, for the oldest buildings, where the 

thermal discomfort conditions are the highest, the occupants usually turn on active 

system, by causing more energy waste. Furthermore, it is resulted that while in winter 

occupants act less on the building components to improve their thermal comfort con-

ditions, (indeed the main actions are wearing heavy clothes and turning on heating 

system), in summer season the occupants mostly interact with the building compo-

nents, by changing the window and shading status or by adjusting set-point thermo-

stat.  

Because the actions on window and blind status are impactful on building perfor-

mance, with the aim of reduce the thermal discomfort conditions and hence the vari-

ability tied to the occupant behaviors, control logics of natural ventilation and of the 

solar shading system for passive cooling are designed. Indeed by reducing the ther-

mal discomfort conditions, also the actions and the interactions of occupant with 

building components may be less.  

In detail, in an Italian dwelling with technological/typological features of sixties 

buildings, several studies are conducted with the aim to design BEMS for passive 

cooling that minimize the thermal discomfort situations, by means of Particle Swarm 

Optimization (PSO) method. The results of these studies are reported in the chapter 4. 
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In the second part of the work, in order to have BEMS adaptable to the actions and 

preferences of occupants, a further study is conducted (Chapter 5), where occupant 

behaviors are simulated in more detail, by means of an agent-based approach. In de-

tail, actions like opening/closing windows and shielding and cooling system activation 

are implemented in the energy software simulation (TRNSYS), using algorithms de-

duced by field investigations in real buildings.  

The same control logics of the BEMS (reported in the Chapter 4) are then revalued 

in this different occupant behavior modeling and the comparison between the models 

where the occupant behavior is assumed in deterministic way and then though a 

probabilistic and agent-based approach, allowed to assess the impact of human be-

havior and the designed BEMS on building performance.  

This work highlighted how the BEMS may ensure high levels of comfort and ener-

gy efficiency, through the dynamic control of some components based on external 

and internal environmental parameters and on the occupancy conditions. 

The implementation of different occupant behaviors into energy simulation soft-

ware, simulated by means of an ABM method and the coupling of optimization goal 

for BEMS represent an innovative contribution of the work. A co-simulation architec-

ture is created between TRNSYS (for building-HVAC model), TRNFLOW (for building 

air flow network), MATLAB (for PSO optimization) and DAYSIM (for visive analysis).  

 

 

Keywords 

Occupant behaviors; Agent-based model; Building Energy Management Systems 

(BEMS); Questionnaire survey; Passive cooling; Particle Swarm Optimization (PSO). 
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Abstract 

Negli ultimi decenni, in risposta all’elevato impatto degli edifici sui consumi ener-

getici globali e sull’emissione di gas serra, le recenti direttive internazionali hanno in-

trodotto lo standard di “edificio a energia quasi zero” da realizzarsi a partire dal 

2021. 

Nonostante la crescente attenzione rivolta allo sviluppo di strategie e soluzioni tec-

nologiche innovative per l’efficienza energetica dei componenti edili ed impiantistici, la 
“dimensione umana”, specialmente riguardante le modalità operative del sistema 

edificio-impianto da parte degli occupanti, è spesso trascurata. Nella maggior parte 

dei casi, questo determina una significativa differenza tra i consumi energetici preve-

dibili e quelli reali durante la fase di esercizio. Infatti, studi di monitoraggio su edifici 

identici, con le stesse caratteristiche costruttive e impiantistiche, hanno evidenziato 

notevoli differenze dei consumi energetici dovuti alle varie esigenze degli occupanti 

(riscaldamento, raffrescamento, illuminazione etc.).   

Gli occupanti costituiscono una delle principali cause dell’alterazione delle caratte-

ristiche microclimatiche negli ambienti costruiti, sia come “agenti passivi” (per 

l’emissione di calore sensibile e latente e di inquinanti), sia in veste di “agenti attivi”, 
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come risultato dell’interazione con gli edifici per il raggiungimento del livello di com-

fort desiderato (agendo sui termostati di attivazione degli impianti, cambiando lo stato 

di apertura o chiusura degli infissi e/o schermatura, attivando l’illuminazione artificiale 

etc.). 

Soprattutto negli edifici caratterizzati da alti livelli di isolamento termico e tenuta 

all’aria, il comportamento degli occupanti può avere una notevole influenza sui con-

sumi energetici e sulle condizioni ambientali interne. Se gli occupanti hanno la possi-

bilità di manipolare le temperature di set-point, I tassi di ventilazione etc., le perfor-

mance reali dell’edificio potranno variare in misura significativa rispetto alle previsioni 

teoriche. Di conseguenza, anche gli edifici più efficienti, potrebbero determinare spre-

chi ed emissioni climalteranti in caso di uso non corretto da parte degli occupanti.  

Attualmente, la valutazione dei comportamenti degli utenti risulta inappropriata e 

semplificata, determinando inaccurate previsioni delle performance edilizie previste in 

fase di progettazione. Infatti, un approccio comune nella modellazione dei comporta-

menti degli occupanti consiste nell’assunzione di determinate azioni basate su “litera-

ture reviews”. Tipicamente tali comportamenti sono modellati mediante predefinite e 

fisse “schedule”. In contrasto con i metodi deterministici, quelli stocastici e soprattut-

to  i modelli ad agenti sono i metodi più appropriati per la modellazione di sistemi 

complessi quali quelli relativi ai comportamenti umani.  

Solo studi recenti si sono focalizzati sull’analisi dei comportamenti umani 

all’interno degli edifici, con l’obiettivo di valutare il rapporto causa-effetto tra condizio-

ni ambientali e comportamento degli occupanti. Soprattutto nel contesto degli edifici 

residenziali, dove l’interazione degli occupanti con il sistema edificio-impianto è rile-

vante, tali comportamenti potrebbero determinare significativi impatti sulle performan-

ce edilizie. In tale contesto, l’integrazione di sistemi di gestione energetica degli edifici 

(BEMS) potrebbe determinare significativi risparmi energetici, andando non solo a 

porre rimedio ad una non corretta o inadeguata gestione, ma anche ottimizzando 

l’attivazione dei componenti edili e impiantistici.   
Connesso con il tema della “resilienza”, l’idea principale del lavoro di tesi ha ri-

guardato la progettazione di sistemi “adattivi” per la gestione energetica degli edi-
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fici (BEMS), in grado di mantenere le prestazione energetiche degli edifici al livello 

desiderato, nonostante le diverse condizioni operative degli occupanti, ottimizzan-

do il funzionamento dei componenti edili e impiantistici. 

In dettaglio, differenti logiche di controllo per BEMS sono state analizzate su un edi-

ficio residenziale, ottimizzando il comfort termico e visivo e modellando il comporta-

mento degli occupanti per mezzo di un approccio agent-based. Trattandosi di sistemi 

di controllo passivo del benessere,  l’ottimizzazione è stata applicata alle prestazioni di 

comfort valutate secondo la teoria del comfort termico adattivo in conformità alla EN 

15251. 

Il lavoro di tesi è articolato in cinque capitoli.  

Il capitolo introduttivo (Capitolo 1) descrive i fattori principali che influenzano le 

performance edilizie verso la progettazione di NZEB. 

Il capitolo 2 presenta diversi studi in letteratura che hanno analizzato l’impatto dei 

comportamenti degli occupanti e l’interazione col sistema edifico-impianto specie 

mediante analisi di monitoraggio. 

I risultati di un questionario condotto sui comportamenti degli occupanti in edifici 

residenziali, sono descritti nel capitolo 3. In particolare, differenze nei modelli compor-

tamentali si sono evidenziate in relazione al periodo di costruzione dell’edificio. In in-

verno, per migliorare le condizioni di comfort termico è risultato che gli utenti agisco-

no di meno sui componenti edili, ma soprattutto sullo stato di abbigliamento e 

sull’attivazione dell’impianto di riscaldamento. Nella stagione estiva, invece, gli utenti 

interagiscono maggiormente con l’ambiente costruito, cambiando lo stato di apertu-

ra/chiusura delle schermature e/o finestre o agendo sull’attivazione dell’impianto.  

Poiché tali azioni sono notevolmente impattanti sulle performance edilizie, con 

l’obiettivo di ridurre le condizioni di discomfort termico e conseguentemente la varia-

bilità legata al comportamento umano, un secondo studio (Capitolo 4) è stato condot-

to sull’analisi di differenti logiche di controllo della ventilazione naturale e delle scher-

mature solari per il raffrescamento passivo degli edifici. Con particolare riferimento ad 

un edificio residenziale degli anni 60’, simulando il comportamento degli occupanti in 
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maniera deterministica mediante schedule fisse, diverse logiche di controllo per 

BEMS sono state analizzate, mediante algoritmi di ottimizzazione (PSO).   

In seguito, con l’obiettivo di progettare BEMS, che si adattassero alle azioni e pre-

ferenze degli occupanti, un ulteriore studio è stato condotto (Capitolo 5) in cui i com-

portamenti degli utenti sono stati simulati con maggior dettaglio, per mezzo di un ap-

proccio agent-based. In dettaglio, azioni quali apertura/chiusura infissi e schermature 

ed attivazione impianto di raffrescamento sono stati implementati nel software di si-

mulazione (TRNSYS), utilizzando algoritmi presenti in letteratura che simulano i diver-

si comportamenti. Le logiche di controllo progettate sono state nuovamente valutate 

in questa diversa modellazione del comportamento degli occupanti e il confronto tra i 

metodi deterministici e quelli verso un approccio agent-based, hanno consentito di 

valutare gli impatti dell’utente e delle logiche di controllo progettate per BEMS sulle 

performance edilizie. 

Questa tesi ha evidenziato come le tecnologie BEMS possano assicurare alti livelli di 

comfort ed efficienza energetica, mediante un controllo dinamico dei componenti ba-

sato sulle condizioni ambientali interne ed esterne e sulle condizioni di occupazione. 

L’implementazione dei differenti comportamenti umani nei software di simulazione 

energetica, simulati per mezzo di un approccio ad agenti, uniti agli obiettivi di ottimiz-

zazione delle logiche BEMS rappresentano un contributo innovativo del lavoro. Una 

co-simulazione è stata creata tra TRNSYS (per la modellazione del sistema edificio-

impianto-occupante), TRNFLOW (per la modellazione delle reti di flusso), MATLAB 

(per l’ottimizzazione tramite PSO) e DAYSIM( per analisi di comfort visivo). 

 

Keywords 

Comportamento degli occupanti; Modelli Agent-based; Gestione energetica degli edi-

fici (BEMS); Raffrescamento passivo; Questionnaire survey; Particle Swarm Optimiza-

tion (PSO). 
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Chapter 1 

Introduction: Towards Nearly Zero Energy Buildings 

(NZEB) 

In the context of the European Union efforts to reduce the growing energy expendi-

ture, it is widely recognized that the building sector has an important role, accounting 

40% of the total energy consumption in the European Union and 36 % of the EU’s CO2 

emissions (BPIE, 2010).  

In this panorama the Directive on the Energy Performance of Building (EPBD) 

(EPBD, 2010) is lied with the objective of promoting "the improvement of the energy 

performance of buildings, taking into account the outdoor climatic and local condi-

tions, as well as the effectiveness of technological solution in terms of cost-

efficiency”. The goal is to obtain a rational use of energy, reducing the consumption 

of non-renewable resources and the environmental impact of energy systems in the 
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buildings. As ultimate goal, the standard of "nearly Zero Energy Building (NZEB) by 

2020 was introduced. 

The design of NZEB is strictly related to the climatic and local data, technologies 

and materials, building envelope and HVAC system, and occupant behavior. 

User behavior is one of the most important input parameters influencing the build-

ing performance. It has a much larger influence on the energy performance of a build-

ing than the thermal process within the building façade (Hoes, et al., 2009). In par-

ticular, human/behavioral influence seems to be a prerequisite for passive control 

systems, and also is important in decision-making for fully sealed, mechanically con-

trolled buildings (Hoes, et al., 2009), (Degelman, 1999). 

In energy simulation models of buildings, it is now clear how the application of us-

er behavior models with higher resolution and higher complexity improve the under-

standing of the relationship between building, user and building performance (Rijal, et 

al., 2007).  

The effort in increasing the prediction accuracy of building load is analogous to in-

creasing the accuracy of building energy simulation (henceforth, building simulation) 

capabilities.  

Among different strategies for constructing efficient buildings, this thesis focuses 

on occupant behavior impact so that energy-saving features can be implemented ac-

cordingly – e.g. optimally sized shading devices, ventilation strategy, etc.  

The work focuses on the impact of occupant behavior and behavioral feedback on 

bridging the gap between the simulated and actual energy consumption. 

This thesis tries to design Building Energy Management Systems adaptive to oc-

cupant behaviors, by implement an agent based model to incorporate occupant be-

havior into the simulation process. 
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1.1. On Energy Risk and Sustainable Development of the Building Sec-

tor 

National and regional authorities worldwide have passed legislation in order to mit-

igate climate change. For example, the “20-20-20” targets of the European Commis-

sion include a 20% improvement in energy efficiency by 2020 relative to 1990 levels. 

One pathway for this objective to be achieved is via improved operational and retrofit-

ting practices in existing buildings. Renovation of the existing building stock is there-

fore key to meeting long term energy and climate goals. 

Buildings are responsible for a relevant portion of total yearly energy consumptions 

and greenhouse gas emissions, ranging from 40% to 50% depending of the sources. 

Of those consumptions, nearly 40% is directly attributable to the heating, venting, and 

air conditioning of the premises, as shown in Fig. 1.1. 

The greatest energy saving potential is found in buildings, as stated by the Europe-

an Commission in the “Energy Efficiency Plan 2011”. A minimum energy savings in 

buildings could potentially generate a reduction of 60-80 Mtoe/year in final energy 

consumption, as stated by BPIE (Buildings Performance Institute Europe, 2011), 

making a considerable contribution to the reduction of GHG emission and to the 

achievement of prefixed goals. After the coming into force of the European Directive 

EPBD on energy performance of building (European Commission, 2010), low energy 

consumption of buildings has become an important target to achieve and nearly zero 

energy buildings (nZEB) as well as comfort conditions are becoming essential re-

quirements for the new generation buildings. 
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Fig. 1.1  Energy Usage by Sector (Perez-Lombard, et al., 2008) 

In an important step toward energy independence the EPBD recast introduces the 

concept of nearly zero energy buildings forcing all new buildings to adopt this stand-

ard by the end of 2020. To serve as an example, all new public buildings are required 

to be nearly zero energy starting from 2018. However the challenge of refurbishment 

of the existing building stock should also be addressed in order to reach the objective 

of reducing the greenhouse gas emissions in the building sector by 90% by 2050. 

The recast defines “nearly zero energy buildings” as “a building that has a very 

high energy performance, where the nearly zero or very low amount of energy re-

quired should be covered to a very significant extent by energy from renewable 

sources, including energy from renewable sources produced on-site or nearby”.  

To the EU member states is also required to prepare national plans in order to in-

crease the number of nearly zero energy buildings also considering possible differen-

tiations according to building categories. Each member state is also requested to in-

troduce a national definition of the “nearly Zero Energy Buildings” according to EU 
guidelines. By this date each state is also asked to detail information on policies, in-

centives and other measures adopted for the promotion of nearly Zero Energy Build-

ings, including details on the use of renewable sources in new buildings and existing 

buildings undergoing major renovation. 
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The revision of Directive 30/2010 as well as the actions planned on Ecodesign and 

Directive 27/2012 are targeted to radically rethink the role of energy efficiency for 

achieving the 2030 indicative objective (ENEA, 2016). The energy efficiency potential 

is huge: only a small proportion of buildings is subject to major renovation and it is 

expected that more than two-thirds of the total will still be in use in 2050. Thanks to 

the adoption of the so-called Minimum Requirements Decree (Interministerial Decree 

26 June 2015), Italy has focused more attention on the energy performance of build-

ings. Nevertheless, there are still barriers, many of which are outside the regulatory 

framework and as in other sectors, prevent the energy efficient potential to be fully 

exploited. 

The framework, knowledge, materials and systems to achieve high levels of ener-

gy efficiency in buildings and strongly reduce energy consumptions, ensuring at the 

same time high levels of health and comfort, are readily available and can make a 

positive impact but they need to be properly implemented from design to construction 

and operation of buildings. The high energy efficient buildings bring together a vast ar-

ray of practices, techniques, and skills to reduce and ultimately eliminate the impacts 

of buildings on the environment and human health. While the practices or technolo-

gies employed in high energy efficiency buildings are constantly evolving, fundamen-

tal principles persist: siting and structure design efficiency, indoor environmental 

quality enhancement, operations and maintenance optimization, etc. The essence of 

green building is an optimization of one or will more of these features.  
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1.2. Main factors influencing the building performance 

In order to reduce the energy consumptions in buildings, more and more energy 

efficient technologies for the building-HVAC system (e.g. phase change material-

PCM, solar cooling, mechanically controlled ventilation-VMC, etc.) have been devel-

oped in the last decades. 

In particular, the energy consumptions of buildings depend on a complex system 

of factors that cause significant differences on building performance. These factors 

are (Fig. 1.2): 

 the climate; 

 the building envelope characteristic; 

 the HVAC typologies; 

  the management of “building-HVAC” system; 

 the occupant behavior. 

 
Fig. 1.2. Factors influencing energy consumptions in buildings (Final report Annex 53, 2013). 
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Disproportionate amounts of attention have been directed towards system or tech-

nological efficiency improvements, while ignoring the human dimension. Indeed, most 

researchers have focused on the physical aspects of buildings, such as the building 

envelope and the management of Heating, Ventilation and Air Conditioning (HVAC) 

systems (Alaidroos & Krarti, 2015), (Shaikh, et al., 2013), (Palonen, et al., 2009). 

The cognition of influences of occupant behavior is quite insufficient both in building 

systems design and energy retrofit.  

The limited understanding of occupant behavior results inappropriate, overly sim-

plified, assumptions which lead to inaccurate expectations of building energy perfor-

mance and large discrepancies in building design optimization, energy diagnosis, and 

building energy simulations. This often causes a significant discrepancy between the 

designed and the real total energy use in buildings. Indeed, monitoring studies for 

identical dwellings having the same type of installations have shown great variation in 

energy use (Peng, et al., 2012), (Bourgeois, et al., 2006), (Juodis, et al., 2009).  

Between several reasons, the main cause of these differences derives from the 

common practice of not deepen in the same way: the common practice design ap-

proach is often focused only on the first three factors, defined by Schweiker  the 

"hardware building," while the remaining ones, named by Schweiker the "building 

software", they have been the subject only of recent global projects (IEA, 2013), (IEA 

& EBC, 2014). Hence, for the thesis purposes, it is interesting evaluating the influence 

of occupant behavior on building performance and design building automation system 

calibrated on the occupant preferences and behavior able to predict and reduce the 

variability of occupants. The goal is to predict the occupant behavior in order to adjust 

and optimize the building automation system. 
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1.3. The concept of “Active Building” and the Building Energy Man-

agement System (BEMS) 

The standard NZEB requires a more sophisticated dynamic control of the entire 

building-HVAC system. Also the building more efficient from the point of view of con-

struction and HVAC, it gives rise to wastage if handled incorrectly.  

Despite the increasing attention to the development of strategies and innovative 

technology solutions for the energy efficiency of building components and systems, 

not much has been analyzed on the optimal management of the building-HVAC sys-

tem. 

Towards this direction, the role of the Building Energy Management Systems 

(BEMS) is known and significant, since these systems can contribute to the energy 

management and therefore to the achievement of the possible energy and cost sav-

ings (Doukas, et al., 2007). The BEMS are generally applied to the control of active 

systems, i.e. heating, ventilation, and air-conditioning (HVAC) systems, while also de-

termining their operating times. In the above efforts, the performance of the BEMS is 

directly related to the amount of energy consumed in the buildings and the comfort of 

the buildings’ occupants.  

In recent years, Building Automation Systems (BASs) associated with control and 

optimization techniques have been widely used to reduce building energy consump-

tion and to improve indoor comfort (Kastner, et al., 2005). By means of BASs the ac-

tive building systems, such as Heating Ventilating and Air-Conditioning (HVAC) sys-

tems, lighting systems etc. can be monitored and controlled in order to manage their 

consumption by respecting the comfort for users. 

Many researches deal with the control of active systems, others both on active 

and passive systems, and only few researches focus on BASs for passive compo-

nents. For instance, in (Wang & Wang, 2013) an intelligent controller was designed to 

determine the optimal ventilation rate in active systems, by maintaining the indoor CO2 

concentration in the comfort zone and by reducing energy consumption. Moreover, 

due to the non-linearity of the proposed model, Particle Swarm Optimization (PSO) 

was adopted to obtain the optimal ventilation rate: the relationship between the venti-
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lation rate and the corresponding power consumption is described by fuzzy logic. The 

authors used for the control of the natural ventilation an energy management algo-

rithm implemented in the Energy Plus simulation. In particular, the algorithm consist-

ed of the following three components: rules on indoor air quality based on CO2 sen-

sors, rules on thermal comfort to prevent the overcooling, rules to reduce the risk of 

air draft. 

Castilla et al. (Castilla, et al., 2013) proposed a multivariable nonlinear model pre-

dictive control system to maintain thermal comfort and IAQ by means of Heating Ven-

tilation and Air Conditioning (HVAC) systems and natural ventilation. The main control 

objective was to maintain users’ thermal comfort and IAQ inside a comfort zone de-

fined by the Predicted Mean Vote (PMV) and the IAQ indices, respectively, minimiz-

ing, at the same time, the energy consumption necessary to achieve this comfort.  

In addition, Sun et al. (Sun, et al., 2013) proposed an integrated control of active 

and passive heating, cooling, lighting, shading and ventilating system with the aim of 

minimizing total energy costs. To solve the optimization problem with the coupling 

HVAC capacity constraints, Lagrangian relaxation was used to obtain a near-optimal 

solution.  

A number of modern techniques and methods have been proposed in literature for 

improving specific systems’ controls: techniques for HVAC control, optimal regulator 

and adaptive control for window and solar shading control, etc.  

More computerized methods, such as genetic algorithms and neural networks 

have been proposed for the control optimization of specific HVAC systems, too. Other 

methods for optimized building’s systems control have, also, been proposed includ-

ing empirical models, weighted linguistic fuzzy rules, simulation optimization and 

online adaptive control (Dias, et al., 2011), (Mendes, et al., 2001), (Le, et al., 2014). 

In addition, BEMS are currently being developed to be applied in buildings, namely 

the ‘‘intelligent buildings’’ and a number of studies (Wong, et al., 2005), (Kua & Lee, 

2002) have been presented for modern intelligent buildings and control systems, re-

vealing the ongoing interest of the scientific community on this topic. Indeed, one of 

the research areas on building automation, in rapid development, concerns the har-
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monization between the concept of intelligent building and of bioclimatic one. This 

comes from the integration of active features, automation systems that make the 

building able to adapt to internal and external changes, and passive design: these rep-

resent, essentially, building strategies that promote the ability to accumulate heat and 

reduce heat loss, in winter conditions, and to protect from overheating in summer, 

limiting the use of air conditioning systems. 

From this point of view, some studies (Ghiaus & Inard, 2004), (Brager & Dear, 

1998), (Rowe, 1996) have shown, for example, that it is possible to achieve a signifi-

cant reduction of energy consumption through the adoption of natural ventilation 

strategies as an alternative to air conditioning systems.  

Further researches have explored the contribution resulting from the combination 

of active and passive management strategies applied to building systems and sub-

systems. In a study (Ochoa & Capeluto, 2008) developed on a building located in 

Haifa, Israel, the energy savings related to the implementation of three different sce-

narios were compared, these are: 

 active features: use of reflective shielding for radiation and glare control, low-

emissivity glasses and night ventilation managed according to the tempera-

ture set-point; 

 intelligent passive design strategies, with overhangs shielding, lighting control, 

low-emissivity glasses and natural ventilation; 

 the combination of the two previous scenarios, modulating the operation of 

the passive strategies in relation to the orientation and the depth of the projec-

tion. 

Following the above studies, an integrated ‘‘decision support model’’ (see Fig. 

1.3) for the management of the daily energy operations of a typical building is neces-

sary, which can incorporate the following requirements in the best possible way: (a) 

the guarantee of the desirable levels of living quality in all building’s rooms and (b) the 

necessity for energy savings. In a broader sense, the capacity of building to manage, 

in an autonomous and adaptive way, its systems and sub-systems attracts potentiali-
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ties associated not only with an efficient management of the indoor environment but 

also with the surrounding urban context.  

Especially in existing residential buildings, the integration of building automation 

systems is not much present, but it reserves potential of great interest. Building au-

tomation can provide significant energy savings, going not only to remedy an incor-

rect or inadequate management systems, but also optimizing the activation timing and 

management methods. For example, only with a minimum expense, by the installation 

of mechanical arms controlled by electric motors and sensors it would be possible to 

automate the opening or closing of the windows/shielding.  

 
Fig. 1.3. The Decision Support Model 



 32 

In this context, this PhD thesis, more than on the concept of passive building, is 

focused on the active building concept, capable of adjusting, based on external and 

internal conditions, the overall comfort of the users with the best feasible energy effi-

ciency at that time. The concept of adaptive building becomes representative, there-

fore, of complex systems that change their behavior, and the relative performance, in 

response to environmental conditions or to the needs of users, contributing to the re-

duction of fuel consumption and emissions, thanks to the energy savings achievable 

through passive solutions. 
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1.4. The occupant behavior role 

A common knowledge towards lower buildings’ energy consumptions, is to use 

passive design strategies. Among others, it is recommended the use of super-

insulation, thermal mass, solar shading, natural ventilation, etc. However, despite the 

use of these sustainable technologies in the recent years, energy demand has not de-

creased in the expected way (Schweiker, 2010).  

One of the most significant barriers for achieving the desired reductions in building 

energy consumption is the lack of knowledge about the real functioning of a building 

once it is built, that cause persistent and significant discrepancy between the predict-

ed and the real total energy use in buildings. 

 As explained in the previous paragraph, the operation of the building systems by 

occupants is one of the major factors influencing the buildings’ actual energy perfor-

mances. In fact, a lot of passive design strategies are very dependent on occupants’ 

control, and the occupants often use it differently by how the designers have intended 

to employ it in the design phase (Schakib-Ekbatan, et al., 2015). Indeed, in reality oc-

cupants often act in order to maximize their comfort, adapting to the changing condi-

tion of the environment.  

Research shows that if occupants don’t act in a way that supports design intent, 

performance standards can be compromised. For modern dwellings with increased 

air tightness, the occupant behavior can have a larger effect on the air change rate 

and consequently the energy consumption of the dwelling.  

Other studies (Karjalainen, 2016), (Degelman, 1999), (Schweiker & Shukuya, 

2010) noted that occupant behavior has a much larger influence on the energy per-

formance of a building than the thermal process within the building facade. Occu-

pants may influence the indoor environment by his presence in the building, but 

above all by the actions that occupants take (or not). Degelman stated that building 

simulation is only capable of accurate predictions if the use of a building is predicta-

ble.  

Although occupants are critical to the success of a high-performing building, the 

understanding of occupant behavior results inappropriate and oversimplified, leading 
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to inaccurate expectations of building energy performance and large discrepancies in 

building design optimization, energy diagnosis, and building energy simulations. 

Rijal et al. (Rijal, et al., 2007) stated that the application of occupant behavior 

models with higher resolution and higher complexity will improve the understanding of 

the relation between building, occupant and building performance.  

Since realistic behavioral models are available, designers can handle occupant-

related matters, while maintaining the highest degree of user’s freedom. Indeed, with 
proper design solutions, the building would be able to maintain its energy perfor-

mance at the desired level despite the diverse operating conditions. This is the found-

ing principle of the concept of robustness (Palme, et al., 2006), which, applied to 

buildings, has been defined by Hoes et al. (Hoes, et al., 2009) as the sensitivity of 

identified performance indicators of a building design for errors in the design assump-

tions.Taking into account a more realistic behavioral models, the building would be 

able to maintain its energy performance at the desired level despite the diverse oper-

ating conditions.  

Strictly connected to the sustainable building and the NZEB standard is the resili-

ence concept, that is the adaptability capacity to the different operational conditions 

by occupants, climate and local conditions etc.  

Today traditional energy dynamic simulation tools are based on deterministic and 

predefined user’s behavior patterns and therefore they may be unsuitable for predict-

ing the actual behavior of occupants that is by nature subjective, variable and sto-

chastic.  

Current practices in modeling the presence and actions of people in buildings do 

not display the necessary level of sophistication to reflect the complexity of people’s 

passive and active impact on building performance. More reliable people action mod-

els require extensive observational data based on empirical studies of control oriented 

user behavior (as related to buildings’ environmental systems) in a representative 

number of buildings. Thereby, possible relationships between control actions and en-

vironmental conditions inside and outside buildings can provide the underlying basis 
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for predictive functions of user behavior for incorporation in building simulation appli-

cations. 

In order to uncover salient occupant behaviors in buildings, and thus their implica-

tions for energy performance or efficiency, it is important to focus on the occupants 

role in the pursuit of energy conservation, which is a departure from the commonly 

aimed efforts for system oriented optimization for energy efficiency and then analyses 

the relationship between occupant behavior and energy performance. Understanding 

the occupant behavior is a key issue for building design optimization, energy diagno-

sis, performance evaluation, and building energy simulation. In order to fulfill the high 

expectations for energy savings in buildings in the future, better understanding of how 

energy-related occupant behavior influences building energy consumption is required.  

Among the global project present in literature focusing on the occupant behavior 

interaction with the built environment, at first, Annex 53 project (IEA, 2013) and then 

the Annex 66 project (IEA & EBC, 2014) addresses these challenges by focusing on 

accurately capturing and/or quantifying the impacts occupant behavior has on build-

ing energy performance. The broader aim is to identify and eliminate current incon-

sistencies in building energy simulation. One top priority of this Annex is to foster in-

ternational collaboration to establish a robust, universal, research framework. This 

project focuses on four key areas: (1) experimental design and data collection, (2) 

model development and validation, (3) database of behavioral data, and (4) 

knowledge exchange and sharing.  

In this context, the effects of occupant behavior on energy use and the sensitivity 

to occupant behavior illustrate the importance of acquiring more knowledge on ener-

gy-related occupant behavior for understanding and realistically predicting the total 

energy use in present and future residential buildings and for adapting future building 

technology to occupant behavior. 
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1.5. Objective of this work and Thesis outline 

In this PhD thesis, occupant behavior is considered a key issue for building energy 

simulation, performance evaluation and building design optimization. Starting from 

the literature review, the cognition of influences of occupant behavior is quite insuffi-

cient both in building systems design and energy retrofit, leading to limited under-

standing and inappropriate over-simplification. Existing studies on occupant behavior 

lack in-depth quantitative analysis. 

Although there are many group worldwide studying occupant behavior individually, 

to date the behavior models created so far have often been inconsistent, with a lack of 

consensus in common language, in good experimental design and in modelling meth-

odologies (IEA & EBC, 2014). 

Occupants have many possibilities of interacting with the indoor environment: they 

can operate directly aiming at controlling the indoor environment (i.e. using thermo-

stat, operating on windows or shadings), they can affect it unintentionally, (i.e. by ap-

pliances and equipment usage), and finally they can adjust themselves to the existing 

environmental conditions. This process triggers a short-term effect on occupant be-

havior through psychological, physiological and economic factors and also some 

long-term factors, such as comfort, culture and economy situation. Without taking in-

to account the occupants’ impact on building performance, even the most well de-

signed building can fail to measure up to its high-performance potential.  

This thesis sets up a simulation methodology to model behavior in buildings, and 

understand the influence of behavior on building energy use and the indoor environ-

ment. In detail the objectives are to: 

 identify quantitative descriptions and classifications of occupant behavior, 

 develop calculation methodologies of occupant behavior, 

 implement occupant behavior models with building energy simulation tools, 

 value the effects of occupant behaviors to design suitable control logics for 

BEMS. 

Since during the buildings’ design phase the assumptions regarding occupants’ 

behavior are among the most erroneous, the main idea of this research is to design 
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an “adaptive building” able to maintain its energy performance at the desired level de-

spite the diverse operating conditions by occupants, taking into account a more real-

istic behavioral models. To achieve this control strategies and automation of building 

components and HVAC system for energy savings are defined, where the occupants 

are considered as a "dynamic part" for the design phase. 

In the thesis work  building automation systems for the energy management of the 

residential buildings are defined, by optimizing the thermal and visual comfort and 

modeling the occupant behaviors by means of an agent based oriented approach. 

In particular the thesis focuses on residential buildings, where the occupant general-

ly has more degrees of freedom in the management of the building-HVAC system, 

and consequently the occupants behavior can greatly affect the energy performance 

of the building. Unlike by the commercial/office context where the building-occupant 

interaction is less, in the residential buildings the logics of building automation sys-

tems with the aim of the reduction of energy needs and where the human dimension 

is neglected might not produce beneficial, since the human behaviors are usually not 

driven only by the energy needs. 

More in detail the main phases of the work are: 

1. identification of the main adaptive behaviors of occupants in relation to the  

building, from the results of the questionnaire (see chapter 4); 

2. defining the control logics of building automation system, and then define 

optimal threshold by optimization method (Particle Swarm Optimization - 

PSO); 

3. implementation of existing algorithms of occupant behaviors relative to 

opening/closing window and blind and turning on the air conditioning into en-

ergetic software simulation (TRNSYS); 

4. assessment of occupant behaviors impact and the building automation ef-

fects on  building performance for the energy management of building. 
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Chapter 2 

Occupant Behaviors in Buildings  

In the past decades a large number of studies have been conducted to understand 

how building occupants interact with buildings environmental control systems such 

as windows, blinds, and HVAC systems. Most of these studies have the common 

goal to find a link between user control actions and the indoor or outdoor environmen-

tal conditions. Nevertheless, some building designers oversimplify the human behav-

iors, assuming behavior  to be synonymous with presence (Hong, et al., 2016). 

2.1. The occupant’s behavior effects on energy consumption 

The development of codes for whole building simulation has previously focused on 

the physical aspects of energy use such as heat loss through the facade, solar gain 

through windows etc. The current standard of most codes are very efficient at pre-

dicting the energy consumption of a building with specified occupant behavior. 
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However, energy consumption in buildings is closely related to the characteristics 

of their operational and space utilization, and to the behaviors of their occupants 

(Hoes, et al., 2009). Significant variations in energy use among apartments of the 

same type with identical appliances were due to the differences in occupants’ behav-

iors.  

Bishop and Frey  (Bishop & Frey, 1985) compared the energy consumption of two 

passive solar townhouses in Pittsburgh and Pennsylvania with their design energy 

use. They found the measured energy consumption to be more than twice as high as 

the predicted consumption. This discrepancy was a result of differences in the real 

occupant behavior from the behavior used in the predictions.  

Peng (Peng, et al., 2012) gave a quantitative description of human behavior in res-

idential buildings, evaluating how the human behavior influences the energy use di-

rectly and indirectly by changing window openings, air-conditioner usage, lighting, 

etc. The method was then applied to describe a Beijing household with comparison to 

on-site observations of the resident’ s behavior and measurements of energy use to 

validate the method. 

Bourgeois (Bourgeois, et al., 2006), Lindelöf (Lindelöf & Morel, 2006) pointed that 

energy savings in excess of 40 % in buildings can result from changes in occupants’ 

behaviors. 

Sonderegger (Sonderegger, 1978) measured gas consumption for heating in 205 

town houses located in the same group of houses. He found that 54 % of the variance 

in gas consumption was due to design features of the houses (i.e. number of rooms, 

area of windows etc). By comparing changes in gas consumption for heating be-

tween two different occupant behavioral, they concluded that 71 % of the unexplained 

variance was due to occupant behaviors. 

Gartland (Gartland, et al., 1993) monitored energy consumption in four houses of 

identical layout in Washington. Data from the five heating seasons (1987-92) were 

analyzed to find correlations between energy usage and outdoor temperature for each 

house and heating season. This relationship was separated into two parts, the de-

pendence of energy usage on building envelope temperature difference, and the de-
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pendence of this temperature difference on the outdoor temperature. This separation 

allowed insight into each building’s thermal characteristics as well as into the behav-

ioral characteristics of each building’s occupants. They found that changes in heating 

set-point patterns accounted for as much as 27 % of the total energy used for heat-

ing, while variations in the door and window opening behavior accounted for up to 17 

%. In addition they noticed how a lower infiltration rate would conserve energy but in-

crease the impact of occupant behavior on the energy consumption. Indeed the pas-

sive buildings with a high level of thermal insulation and air tightness, are subjected to 

a more active role of occupant behavior (Hoes, et al., 2009). 

Andersen (Andersen, et al., 2011) found that the energy consumptions of 290 

Danish dwellings varied by up to a factor of 20 (from 10 to 200 kWh/m2). Measure-

ments of window opening and heating set-point behavior along with indoor and out-

door environmental variables were conducted in 15 dwellings in the vicinity of Copen-

hagen, Denmark, during the period from January to August. Measurements were car-

ried out in 10 rented apartments and 5 privately owned single family houses. Half of 

the apartments were naturally ventilated while the other half were equipped with con-

stantly running exhaust ventilation in the kitchen and bathroom. 

Maier (Maier, et al., 2009) analyzed energy consumption in 22 identical houses 

with 4 various ventilation systems in Germany over a two year period. The house with 

the lowest consumption of energy had the lowest average temperature implying that 

the occupants conserved energy by having a lower heating set-point in the heating 

season. 

Juodis (Juodis, et al., 2009) compared energy consumption for heating and do-

mestic hot water of 2280 similar apartments in Lithuania. Special attention was given 

to compare heat consumption in identical buildings. The comparison was made on a 

building level. The authors concluded that the observed differences originate from dif-

ferences in initial design and construction uncertainties and they did not discuss dif-

ferences in occupant behavior patterns. While the diversity of the apartments con-

struction may have effects on the different energy performances of the buildings, it 

seemed evident that the occupants’ different behaviors significantly affect the con-
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sumptions. As a consequence, it would be worth to take the occupants’ behaviors in-

to account in the analysis. 

While some scientists used energy consumption comparison to infer the effects of 

occupant behavior on energy consumptions, others have used questionnaire surveys 

to investigate the determinant for energy consumptions.  

Sardianou (Sardianou, 2008) investigated the determinants of households’ resi-

dential consumption for space heating in Greece employing cross-section data for 

2003. It resulted that demographic and economic variables such as age of the re-

spondent, family size and households’ annual income were suitable to explain differ-

ences towards oil consumption for space heating. In addition, the results suggested 

that dwelling’s size and rate of occupancy are positively associated with the amount 

of oil that Greek households consumed in order to achieve a significant level of heat 

comfort for their house. This indicated that the socioeconomic status had an impact 

on the behavior patterns of occupants.  

These studies showed that occupant behavior have a very large effect on the ener-

gy performance of buildings. Understanding the importance of occupants’ energy be-

haviors is crucial to bridge the gap between predicted and actual energy use in build-

ings.  
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2.2. The occupant actions in the built environment and their impact on 

building performance 

The occupant behaviors can influence the microclimate of individual spaces, 

which are all closely connected to the overall energy performance of the building.  

For the purposes of this thesis, the “behavior” term refers to any direct or indirect 

action that a building occupant takes to manage their surrounding environment. While 

this definition of occupant behavior pervades much of the existing literature, it is not-

ed that several previous studies consider behavior to be a matter of presence - i.e., an 

occupant behaves by simply existing in the space as an added internal heat gain. 

Thus, this section frames behavior as a phenomenon of adaptation, and not one of 

presence. Behavioral adaptations may relate to a wide range of environmental condi-

tions (i.e., temperature, air quality, light intensity, smell, sound, etc.), though existing 

studies tend to focus upon either temperature or lighting.  

Hoes et al. (Hoes, et al., 2009) conducted a study on the effects of occupant be-

havior on the simulated energy performance of buildings and concluded that the sim-

ple approach used nowadays for design assessments applying numerical tools are 

inadequate for buildings that have close interactions with the occupants.  

Recent studies (Bourgeois, et al., 2006), (Reinhart, 2004)of user-system interac-

tions are conducted for individual building systems (lighting, shading, etc.). In the 

challenge of reducing the environmental impact, it is important to understand the oc-

cupant interactions with the indoor environment in order to provide comfortable con-

ditions in the most efficient ways.  

Occupants have many possibilities of interacting with the indoor environment: they 

can operate directly aiming at controlling the indoor environment (i.e. using thermo-

stat, operating on windows or shadings), they can affect it unintentionally, (i.e. by ap-

pliances and equipment usage), and finally they can adjust themselves to the existing 

environmental conditions. This process triggers a short-term effect on occupant be-

havior through psychological, physiological and economic factors and also some 

long-term factors, such as comfort, culture and economy situation. 

The following lineup of adaptations is frequently surveyed in following works: 
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• opening/closing windows or doors; 

• adjusting blinds;  

• turning on/off or dimming lights; 

• changing thermostat settings; 

• turning on/off personal heaters and fans;  

• putting on/taking off clothing layers.  

Each of these adaptive actions has a direct effect on thermal comfort. 

In (Bourgeois, et al., 2006) by means of a self-contained simulation module called 

SHOCC (Sub-Hourly Occupancy Control), integrated in ESP-r application, it tried to 

bridge the gap between energy simulation and empirically-based information on oc-

cupant behavior. 

As regarding the user behaviors in reference to the illuminance conditions, in 

Hunt (Hunt, 1979) a function was developed to simulate the probability that the occu-

pants would switch on the lights upon their arrival in the office. According to this 

function, only illuminance levels less than 100 lx lead to a significant increase of the 

switching on probability. Similar functions were studied by Reinhart (Reinhart, 2004), 

Lindelof et al. (Lindelöf & Morel, 2006), where they noticed that the switching on ac-

tions were more common at lower than at higher illuminance values. Other studies 

(Eilers, et al., 1996) put in relationship the propensity of switching the lights off and 

the length of absence from the room, stating that people are more likely to switch off 

the light when leaving the office for longer periods.  

Other studies regarded the blind operation actions by users in different contexts. 

For blinds that are manually controlled, there are only a few manual window blind 

control models that have been published in journal articles.  

In Rubin at al. (Rubin, et al., 1978), Lindsay at al. (Lindsay & Littlefair, 1992) a 

strong correlation was found between the operation of Venetian blinds and the solar 

radiation intensity and the building orientation. Moreover, blinds were operated more 
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frequently on the south facade Rubin (Rubin, et al., 1978) deduced that occupants 

operated shades mainly to avoid direct sunlight and overheating.  

Newsham (Newsham, 1994) developed a blind operation model based on the 

thermal comfort model assumption that, if sunlight on window with intensity greater 

than 233 W/m2 fell on the occupants, the blinds would be closed. The value of 233 

W/m2 was chosen to reflect the 20% PPD thermal comfort criterion.  

Foster (Foster & Oreszczyn, 2001) chose the solar radiation threshold value of 300 

W/m2 to represent the threshold that occupants would start to use the window blinds.  

In Reinhart’s (Reinhart & Walkenhorst, 2001) a blind operation algorithm was de-

veloped that incorporates time of day, space occupancy and solar radiation as the 

major factors in blind opening or closing functions. However, the model also ignored 

any thermally driven mechanisms, which might further encourage the closing of 

blinds to avoid overheating during the summer or opening of blinds for increasing 

personal warmth during winter.  

In Reinhart (Reinhart, 2004) the relation between blind operation and incident illu-

mination on the facade was analyzed. In particular above a certain threshold of verti-

cal solar irradiance on a facade (50 W/m2) the level of shades was proportional to the 

solar penetration into a room. Once closed, shades seemed to remain deployed until 

the end of the working day or when visual conditions become intolerable. Reinhart 

developed LIGHTSWITCH 2002 using a dynamic stochastic algorithm. Based on an 

occupancy model and a dynamic daylight simulation application, predicted manual 

lighting and blind control actions provided the basis for the calculation of annual en-

ergy demand for electrical lighting.  

As regarding the window operation, the window control by the users is the most 

frequent interaction between the user and built environment is (Fabi, et al., 2012), 

(D'Oca & Hong, 2014).  

The probability of opening the window may be defined in function of temperature, 

occupant movement or CO2 concentration etc.  Indoor and outdoor temperatures are 

some of the most relevant parameters affecting window opening and closing behavior 

(Rijal, et al., 2007), (Haldi & Robinson, 2009). Opening a window produces a mixing 
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of indoor and outdoor air and (when outdoor temperature is low) a drop in indoor 

temperature. The length of time the window is open is therefore governed by how 

long it takes for the room to cool sufficiently for the occupants to feel cold discomfort. 

If the room is not cooled enough to cause discomfort the window is likely to remain 

open. Andersen et al. (Andersen, et al., 2011) also suggested that indoor stuffiness, 

monitored by the carbon dioxide (CO2) concentration levels, was an important driver 

for window opening behavior.  

In (Herkel, et al., 2008) in 21 south-facing single offices in Freiburg, Germany, pa-

rameters such as window status, occupancy, indoor and outdoor temperatures, as 

well as solar radiation were regularly recorded. It resulted a strong seasonal pattern 

behind the window operation: in summer, 60 to 80 % of the surface of windows were 

open, in contrast to 10 % in winter. A strong correlation was found between the per-

centage of open windows and the outdoor temperature. Above 20 C , 80% of the win-

dows were completely opened. The windows were opened and closed more frequent-

ly in the morning (9:00) and in the afternoon (15:00). Moreover, window operation 

occurred mostly when occupants arrived in or left their workplaces. At the end of the 

working day, most open windows were closed.  

In Nicol (Nicol & Humphreys, 2002) a stochastic simulation approach was used to 

examine correlations between outdoor temperature and the use of windows, heating, 

and blinds. The study suggested that the solar radiation intensity would be necessary 

to establish correlations pertaining to light and blind usage.  

In  Rijal (Rijal, et al., 2007) after a field survey on window opening behavior in nat-

urally ventilated buildings, the "adaptive algorithm" (Humphreys & Nicol, 1998) was 

implemented in ESP-r to quantify the effect of building design on window opening be-

havior, occupant comfort and building energy use. 

Machintosh and Steemers (Macintosh & Steemers, 2005) conducted a post-

occupancy evaluation case study in an urban housing scheme in London. The apart-

ments were equipped with operable windows and a mechanical ventilation system 

with heat recovery. Based on the results from the evaluation and observations of win-

dow opening behavior, they derived a linear relationship between the outdoor temper-
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ature and the proportion of open windows. The result was that the actual use of win-

dows and mechanical ventilation system bore no resemblance to the theoretical mod-

el. In fact, the actual energy consumption resulted in a CO2 emission of roughly 1.5 

times that of the theoretical model. In this case the designers simply assumed that the 

occupants would use the windows in an optimal way.  

The above studies and other similar ones have provided a number of valuable in-

sights into the circumstances and potential triggers of occupancy control actions in 

buildings. However, given the complexity of domain, additional long-term and moni-

toring studies are necessary to determine models of control-oriented user actions in 

buildings. 
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2.3. Understanding the occupant’s behavior: a complex process 

Human behavior can be expressed throughout the combination of many factors 

crossing different disciplines, from the social to natural sciences (Fabi, et al., 2012). 

Concerning the building science area, occupant behavior has traditionally been con-

nected above all to indoor and outdoor thermal conditions. In particular, the occupant 

behavior is related to observable actions or reactions in response to external or inter-

nal stimuli, or respectively actions or reactions to adapt to ambient environmental 

conditions, household and other activities. These actions and activities are driven by 

various factors (see Fig. 2.1.) 

 

 
Fig. 2.1. The relationship between occupant and buildings (IEA & EBC, 2014) 

 In particular, occupant behavior is influenced by quite a large number of causes 

as proposed by Schweiker (Schweiker, 2010):  

• external to the occupant itself (e.g., air temperature, wind speed, building 

properties);  

• internal or individual (e.g., personal background, attitudes, preferences).  
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According to the adaptive approach, if an individual is in a state of discomfort, then 

she/he will take actions that would restore its state of comfort. The Fig. 2.2 shows 

this decision making process by user. 

 

Fig. 2.2. The decision making process of occupants 

The adaptive approach is based on the notion that the occupants level of adapta-

tion and expectation is strongly related to outdoor climatic conditions. In general, re-

search has demonstrated that occupants are more comfortable when they have a 

high degree of control opportunities and a freedom of choice to adapt their conditions 

in a clear and intuitive way (Toftum, 2010). As consequence, the behavior of the oc-

cupants becomes increasingly important and the consideration of occupants behavior 

in the design process becomes a necessity. 
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2.3.1. Internal Driving Forces 

The internal driven forces (Polinder, et al., 2013) concern the biological, psycho-

logical and social factors as shown in the left side of the Fig. 2.3 These are being in-

vestigated in the domain of social sciences, economics, and biology. Strict differen-

tiation between these driving forces is difficult to handle.  

Examples of biological driving forces are age, gender, health condition, activity 

level, hunger, and thirst.  

Psychological driving forces regard the occupants necessity to satisfy their needs 

concerning thermal, visual, and acoustic comfort requirements.  

Furthermore, occupants may have certain expectations, e.g. the indoor environ-

mental quality (such as temperature). Other examples of psychological driving forces 

are awareness (e.g. financial and environmental concerns), cognitive resources (e.g. 

knowledge), habits, lifestyle, perceptions, emotions, and self-efficacy (e.g. environ-

mental control).  

Apart from autonomous biological processes, there is a variety of deliberate regu-

lation options:  

• clothing: relevant in hot as well as in cold climate conditions, adequate 

clothing fosters reducing convection;  

• thirst as the deliberate regulation of hydration;  

• use of external sources for convection;  

• looking for places which, which are more convenient, e.g. shade, areas with 

more or less natural convection;  

• sleep (siesta) as an option to reduce metabolic heat production;  

• acclimatization: the process by which an individual adjust the temperature of 

the environment. This is of importance regarding the degree by which the 

individual tolerates actual sensitized temperatures especially when it comes 

to extreme and unfamiliar climates.  
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Social driving forces refer to the interaction between humans. For example for 

residential buildings, this depends on household composition which is linked to the 

primary decision maker in the household, i.e. which household member determines 

the thermostat set point or the opening/closing of windows. 

 

2.3.2  External Driving Forces 

The external driving forces are shown at the right side of the Fig. 2.3. They regard 

the ‘building and HVAC system’ information and the physical environmental parame-

ters. 

Examples of building and building equipment properties are the insulation level of 

buildings, orientation of facades, heating system type, and thermostat type (e.g. 

manual or programmable). 

Examples of physical environment aspects that drive energy-related occupant be-

havior are temperature, humidity, air velocity, noise, illumination, and indoor air quali-

ty. 

 

 

Fig. 2.3. The driven forces 
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2.3.3  Behavior and Comfort 

As concerning the thermal comfort theory in buildings, in (Fanger, 1973) occupant 

behavior (e.g. changes in clothing level or the activity level) plays a key role for the  

Predicted Mean Vote (PMV).  

The calculation of PMV consists of several variables relative tol :  

• clothing level;  

• metabolic rate;  

• air temperature;  

• mean radiant temperature;  

• air velocity;  

• relative humidity;  

• water vapor pressure.  

As examined in (Langevin, 2014), (Schiavon & Lee, 2013) some of these parame-

ters are directly linked to the adaptive behaviors (clothing level and metabolic rate). In 

the most studies these inputs are assumed to be fixed, with metabolic rate constant 

across the year and clothing levels taking one typical value for each of the winter and 

summer seasons. The other parameters reflect the effects of behavior (as when, for 

example, opening a window increases air velocity in the space). 

However, these potential effects are typically oversimplified during the design pro-

cess of buildings. Indeed, by fixing the behavioral factors, a focus is often placed on 

optimizing interior temperature and humidity. Indeed, field studies of thermal comfort 

for not air-conditioned buildings have demonstrated the inadequacy of the PMV model 

in predicting human thermal comfort, particularly in the case of warmer climates. As 

underlined by Brager and de Dear (Brager & Dear, 1998), the PMV underestimates the 

range of optimal temperatures considered by the occupants of the buildings. Further-

more, the inaccuracies result from the failure to include behavioral adjustments in the 

PMV calculation. 
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De Dear asserts that: 

 “Fanger equation is basically valid, except that, in its application, the occupants 
ability to adjust to his/her thermal surroundings is ignored. In fact, occupants of a 

real buildings...often have considerable flexibility to change both the personal and 

environmental variables of Fanger equation in order to improve their comfort. Such 

adjustments enable occupants to maintain thermal comfort in environments outside 

the range that would predicted as comfortable by Fanger equations, if the ability of 

occupants to make adjustments is ignored”.  

Specifically, an occupant in function of the surrounding thermal environment mod-

erates his or her tolerance for a given range of thermal sensations (Langevin, et al., 

2015), (Langevin, et al., 2013), (Leaman & Bordass, 2007), (Brager, et al., 2004). 

Several surveys in different case studies (McCartney & Nicol, 2002) showed that us-

ers have natural tendency to adapt to the mutable conditions of the their external envi-

ronment. The theoretical basis of the previous analysis is the so called ‘adaptive ap-

proach’, which states that ‘if a change occurs such as to produce discomfort, people 
react in ways which tend to restore their comfort’ (Nicol & Humphreys, 2002). 

McCartney and Nicol developed an adaptive control algorithm (ACA) as an alternative 

to fixed temperature set-point controls within buildings. The results showed that use 

of the ACA had potential for energy savings in the climate-control services of a build-

ing with no reduction in the perceived thermal comfort levels of that building occu-

pants. 
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2.4. Modeling of Occupant’s Behavior 

The occupant behavior modeling methodologies can be categorized into three areas 

(Polinder, et al., 2013) based on their research goals:  

 schedules or deterministic profiles; 

 stochastic models; 

 agent based models. 

2.4.1  Deterministic Models 

A common approach to model occupant behavior consists of assumptions based 

on scientists’ thoughts or literature reviews. Typically human actions (operation of 

lights, blinds, and windows) are modeled based on predefined fixed schedules or 

predefined rules (e.g. the window is always open if the indoor temperature exceeds a 

certain limit). These tools often reproduce building dynamics using numerical approx-

imations of equations modeling only deterministic behaviors. In such a way, an “oc-

cupant behavior simulation” could refer to a computer simulation generating “fixed 

occupant schedules”, representing a fictional behavior of a building occupant over the 

course of a single day (Glicksman & Taub, 1997). Often, the occupant behavior is not 

specifically addressed in the simulation programs, but only modeled by means of its 

effect e.g. the ventilation rate may be modeled as a fixed value that does not vary over 

time, with the assumption that occupants will manipulate windows in order to reach 

this ventilation rate. Moreover, in a design stage some “design conditions” are simu-

lated, meaning that when the building is realized, the occupants’ interactions with the 

indoor environment will exactly coincide with the design values during the entire oper-

ational time. 

Deterministic models offer a simple way to represent the building occupant and they 

agrees well with currently energy simulation tools (Langevin, 2014). Use of the de-

terministic approach can provide quick, rough estimates of the possible effects that 

the building occupant can have on key simulated outcomes. Nevertheless, these es-

timates are subject to large uncertainties due to the fact that they rely on single point 
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estimates to describe the full range of behavioral influences, and these estimates are 

often quite conjectural. Moreover, behavioral variation is addressed at the group level 

and does not reflect the behavioral differences between individual occupants. 

2.4.2  Probabilistic Models 

One recent alternative to using pre-defined point estimates of behavior is to con-

sider behavior as a stochastic phenomenon that has a certain probability of occurring 

given a certain set of conditions. Here, statistical tools are used to identify the envi-

ronmental, situational, or personal variables that are the strongest predictors of be-

havior in field data and functions are developed to describe the probability of a behav-

ioral outcome in terms of those key variables. This approach has been used to model 

both occupancy and the direct adaptive behaviors of occupants.  

In this way, the evaluation of the occupant behavior will be not only based on fixed 

action typologies, but also on coupling these repeatable interactions with the building 

control systems, with a probability of performing an action. 

In order to overcome these barriers, different suitable user behavioral patterns 

(models) were defined by means of statistical analysis (logistic regression, Markov 

chains, etc.) and can now be implemented in many of the actual simulation tools 

(such as Esp-r, IDA Ice). 

The procedure to simulate realistically the human behavior is based on a probabil-

istic approach for the evaluation of both input and output parameters. This probabilis-

tic approach is related to variability and unpredictability during whole building opera-

tion in many of the actual simulation tools. 

A study by Haldi and Robinson (Haldi & Robinson, 2010) was one of the earlier 

examples of using the statistical method. That research asked all the volunteer partic-

ipants to complete an electronic survey with several questions about their activity lev-

el, thermal sensation, and adaptive opportunities exercised. At the same time, indoor 

and outdoor temperatures were recorded by sensors or from the local department 

(Swiss Federal Office of the Environment). Logistic regression was then applied to 

analyze the influence of thermal stimuli on occupants’ behavior to open/close win-
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dows, blinds, fans, and doors. Also personal behavior like consuming drinks and ad-

aptations on clothing was also included in the study. The authors found that internal 

temperature played a more important role than the external temperature on predicting 

the probability of occupant behaviors, with different impacts for each action. 

Only concerning the window opening behavior, Lee et al. (Lee, et al., 2014)  col-

lected ambient data of six factors including indoor/outdoor temperature, in-

door/outdoor humidity, indoor CO2 concentration and outdoor wind speed. In this re-

search, they used multi-factor variance analysis to find the statistical significance of 

the six factors to window opening activity. The study concluded that outdoor tempera-

ture is the most influencing factor. Base on the results, a logistic regression, was per-

formed to obtain the mathematical relationship between the probability of window 

opening and outdoor temperature. A second comparative method namely Monte Carlo 

simulation was also performed to get the probability distribution of window opening 

activity. 

Dong et al (Dong, et al., 2010) developed a statistical model that could accurately 

estimate the true number of occupants in a Pittsburgh office zone about 73% of the 

time based on real-time wireless sensor measurements of CO2 and acoustics. The 

model assumed that occupant presence follows a stochastic Markov process, 

whereby the probability of future states of occupancy were only dependent on the 

current occupancy state and held independence from past states. The occupancy 

number was assigned as a hidden model parameter that could be determined from in-

formation about observed parameters (in this case, the environmental sensor meas-

urements). The predictive capabilities of this “Hidden Markov” model were shown to 

be comparatively better on a daily and weekly basis than alternative Support Vector 

Machine and Artificial Neural Network methods tested.  

The primary benefit of stochastic behavior models is their ability to generate de-

tailed distributions of group-level behavioral outcomes using only a few easily meas-

ured inputs such as outdoor or indoor temperature. These distributions can then be 

included as inputs to energy models, which when run repeatedly can provide de-
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signers with empirically derived, quantitative estimates of the variation in key simula-

tion outputs due to behavioral variations for each thermal zone of the building.  

However, the wider applicability of these stochastic behavior models is generally 

limited by the quality and scope of the data that the models are derived from. In most 

cases, model data is constrained to one climate type and/or conditioning strategy; 

accordingly, the validity of regression coefficient estimates is limited to that particular 

situation. The same goes for personal characteristics, such as gender/age, thermal 

preferences, and beliefs; since the stochastic models yield a group-level or “average” 

behavior outcome, they do not directly account for inter-individual variability in behav-

ior, potentially reducing their accuracy and generality. 

 

2.4.3  Agent Based Models 

Agent-based Modeling (ABM) is a computational model for simulation of occupant 

interaction with each other and the external environment.  

In an agent-based model, individual building occupants and their interactions can 

be flexibly modeled in as great detail and heterogeneity as is necessary to fully repre-

sent the internal and social structures that are most relevant to the description of hu-

man behavior. In contrast to the deterministic and stochastic methods, agent-based 

methods describe larger behavioral trends as the aggregate results of bottom-up pro-

cesses, capturing emergent and unexpected phenomena as the whole of the system 

becomes greater than just the sum of its constituent parts. 

Though currently under-developed in the occupant behavior literature, agent-based 

models offer the most powerful and appropriate method for modeling a system as 

complex as the behavior of human building inhabitants.  

The ABM approach requires a database that should include information concerning 

the driving forces of energy-related occupant behavior including social, psychological 

and biological driving forces, as well as driving forces related to the physical envi-

ronment, building/installation properties, and time. This data could be gathered with 
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questionnaires to be filled in by occupants and could possibly be obtained by means 

of measurements. 

An agent can be defined as a system that acts and thinks like a human, which 

‘operates under autonomous control, perceive its environment, adapts to changes, 

and is capable of taking on specific goals’ (Lee & Malkawi, 2014). This autonomous 

control can simply be a reactive ‘if-then’ rule, an ability to learn and change its behav-

iors in response to its experiences (Macal & North, 2010). In particular the agent has 

certain characteristics (Fig. 2.4): 

 an agent is a discrete individual with a set of characteristics and rules 

governing its behaviors and decision-making capability; 

 agents are self-directed, it can function independently in its environment 

and in its dealings with other agents. 

 an agent is situated, living in an environment with which it interacts along 

with other agents. Agents have protocols for interaction with other 

agents, such as for communication, and the capability to respond to the 

environment;  

 an agent may be goal-directed, having goals to achieve with respect to 

its behaviors; 

 an agent is flexible, having the ability to learn and adapt its behaviors 

based on experience. This requires some form of memory; 

 an agent may have rules that modify its rules of behavior. 
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Fig. 2.4. Agent characteristics (Macal &North, 2014) 

The general steps in building an agent model are as follows (Macal & North, 2010): 

1. Agents: Identify the agent types and other objects (classes) along with 

their attributes. 

2. Environment: Define the environment the agents will live in and interact 

with. 

3. Agent Methods: Specify the methods by which agent attributes are up-

dated in response to either agent-to-agent interactions or agent interac-

tions with the environment. 

4. Agent Interactions: Add the methods that control which agents interact, 

when they interact, and how they interact during the simulation.  

5. Implementation: Implement the agent model in computational software. 

As noted in Macal and North, an agent is any independent, self-directed entity that 

operates based on a given set of personal attributes, behavioral rules, 
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memory/resources, decision-making sophistication, and rules to modify behavioral 

rules. Building inhabitants may accordingly be conceived as autonomous agents that 

actively interact with other agents and their environment in a manner ranging from 

purely reactive (automatic response to stimuli) to intelligently adaptive (based on goal 

setting and learning). As in the case of stochastic behavioral models, agent-based 

models have been used to simulate both building occupancy and occupant environ-

mental adaptations.  

Lee and Malkawi (Lee & Malkawi, 2014) presented a simulation method using an 

ABM approach that tried to mimic occupant behaviors in commercial buildings. The 

agent-based model tried to identify six common behaviors that are related to thermal 

comfort, and then adopted Fanger' s PMV model to identify behavior triggers. The de-

cision making process was based on “observe, orient, decide ,act (OODA)” (see Fig. 

2.5). The outside simulator provided environmental parameters and calculate the PMV 

comfort level, and then cost function was used to figure out the ranking of behaviors 

(orient and decide). Impact of actions was send back to outside simulators; in the 

process, the agent learned by upgrading the behavioral belief. Simulation coupling 

was also included. ABM was programmed in MATLAB and linked with Energy Plus 

with the help of Building Controls Virtual Test Bed (BCVTB) architecture, to exchange 

parameters in a whole loop. The results explored how different behaviors affect build-

ing energy use and occupant comfort level by adjusting relevant parameters to get dif-

ferent kinds of results. 

 



 61 

 

Fig. 2.5. The Decision Making Process (Lee & Malkawi, 2014) 

Alfakara and Croxford (Alfakara & Croxford, 2014) used agent-based modeling to 

explore the interaction between occupants in residential houses and room systems 

for turning HVAC on/off as well as opening/closing windows. They built the ABM by 

dividing the objects into two classes: person and room. At the simulation stage, itera-

tions were conducted combining the model and temperature input. Two cases were 

considered: a baseline and improved case, in which the improved case increased the 

temperature threshold of occupants. The results showed a reduction in HVAC used 

hours and an increase in window opening rate. Also, the cooling load was reduced by 

30%. 

Langevin et al. (Langevin, 2014) presented a detailed ABM using thermal comfort and 

behavior data from a field study in an office building. This model assigned building 

occupant agents dynamics for clothing, metabolic rate, thermal acceptability and be-
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havior choice hierarchy. The rules of agent behavior conformed to Perceptual Control 

Theory to maintain thermal sensation. The performance of prediction was compared 

to other modeling options for validation. Although the study was limited to an office 

building, this approach provided a platform for more flexible simulations based on the 

interactions between occupants and surrounding built environments.  

There are some drawbacks to agent-based modeling. In specifying behavioral at-

tributes at an individual level, agent-based models are susceptible over-

parameterization and high degrees of freedom, which can potentially diminish the ro-

bustness of simulated results. Moreover, model robustness must be determined by 

executing multiple runs while varying input parameters, which, when running through 

very large and intricate systems may become very computationally intensive. While 

advances in computational power have reduced this problem, care must be taken to 

specify only the most descriptive of agent attributes to ensure more efficient simula-

tion runs. On the whole, however, the potential benefits of modeling building occupant 

behavior as an agent-based system far outweigh these concerns about model per-

formance. 
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Chapter 3 

Extracting Influencing Factors of Occupant Behavior by 

Means of a Questionnaire Survey 

Due to the complexity and uncertainty of occupant behaviors, influenced by physi-

cal, physiological, psychological and other factors, is difficult to simulate and evaluate 

its impact on energy consumptions (Yan, et al., 2015).  

Currently the modeling of occupant behavior in building simulation is often simpli-

fied and it is not still sophisticated enough to quantify occupants’ impact on building 

performance and vice versa. 

To measure and to value occupant behavior, new approaches are developed in or-

der to integrate into design stage building simulations the models of users behavior. 

The researchers commonly follow the technical approach illustrated in the Fig. 3.1. In 

detail, data about occupant behaviors and environmental conditions are collected and 

then used for quantitative analysis to obtain correlations between indoor and outdoor 

environmental conditions and/or events and behaviors within a set of contextual fac-
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tors. Finally, the behavior models are implemented and integrated within simulation 

tools for designers and researchers to use. 

 

 

Fig. 3.1. The methodology for occupant behavior integration. 

In this chapter, at first, the main methods present in literature to study the occu-

pant behavior and its relationship with the built environment are described. 

In the second section focuses on a questionnaire survey (cross sectional study) in 

order to extract the influencing factors of occupant behaviors in residential buildings 

conducted in the project ECOURB (Borri, 2011).  

3.1. Behavior Data Collection  

This section describes the main data collection approaches to study the human 

behavior, divided in three main categories:  

• cross sectional studies;  

• longitudinal studies;  

• observational studies.  
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3.1.1  The Cross Sectional Studies 

Cross sectional survey is a type of observational study that involves the analysis 

of data collected from a population, or a representative subset, at one specific point in 

time. 

The survey records certain variables of interest for the respondent sample, and can 

be used to infer associations between these variables and identify prevalent popula-

tion characteristics. This means that researchers record information about their sub-

jects without manipulating the study environment.  

The cross sectional survey can consist in a number of ways including telephone 

interviews, face-to-face interviews, and mail or online questionnaires. 

The benefit of a cross-sectional study design is that it allows researchers to com-

pare many different variables at the same time. We could, for example, look at age, 

gender, income and educational level in relation to typical occupant behaviors into 

buildings. In addition, cross sectional surveys are relatively quick and inexpensive to 

implement; by result, they tend to engage the larger number of subjects necessary to 

avoid problems with sampling bias.  

With respect to occupant behavior research, however, the short time period in 

which these surveys are conducted limits the amount of environmental variation and 

related behaviors that can be observed amongst subjects. Moreover, findings may be 

subject to cohort effects: for example, it may be observed that those with higher per-

ceived control satisfaction report higher thermal comfort scores, suggesting a possi-

ble relationship between comfort and this psychological variable. More generally, 

while cross sectional surveys may identify associations between variables, they can-

not establish which variable is causing the other, as no information is collected on the 

time order of effects. This is because such studies offer a snapshot of a single mo-

ment in time; they do not consider what happens before or after the snapshot is tak-

en. 

Within the context of occupant behavior research, the ASHRAE Research Project 

884 (Dear, et al., 1997) combined a large database of field observations on comfort 

and environmental conditions. About 21000 sets of raw thermal comfort data were 
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collected from research group around the world. In particular, part of the survey in-

cluded a section on personal control over the thermal environment, which gaged oc-

cupant satisfaction with perceived control as well as the general frequency with which 

occupants engaged in a series of thermal adaptations (windows; doors; thermostats; 

blinds; heaters; fans). Clothing and metabolic activity levels were also recorded 

through the survey, and simultaneous measurements of room temperature, globe 

temperature (accounting for radiant transfer), air velocity, and relative humidity were 

made at three heights. The database has been put in public domain and has had nu-

merous application extending well beyond the initial scope of adaptive thermal com-

fort modeling, including empirical thermal index development and field validation of 

laboratory-based comfort models and standards.  

In Rijal et al. (Rijal, et al., 2007) a cross sectional study was conducted on thermal 

comfort and control of 890 office occupants in 15 office buildings in the UK (10 air-

conditioned, 5 naturally ventilated) between March 1996 and September 1997, by 

taking environmental measurements including measurements of outdoor air and in-

door globe temperature. The surveys were administered verbally to each participant 

on 1 day per month, and included questions about thermal comfort at the time of visit, 

as well as current clothing and activity levels and use of controls. The survey record-

ed information about the subjects and their attitudes towards experience of the build-

ing, and also included a question about how frequently the subject uses available op-

erable windows, which the authors used to distinguish between active and passive 

occupants. 

3.1.2  The Longitudinal Studies 

A longitudinal study is a correlational research study, where repeated observa-

tions of the same variables over long periods of time are conducted. The benefit of a 

longitudinal study is that researchers are able to better understanding of the causal re-

lationships between response variables. 

Longitudinal studies are often used to study developmental trends and human be-

havior pattern. The reason for this is that unlike cross-sectional studies, in which dif-



 67 

ferent individuals with the same characteristics are compared, longitudinal studies 

track the same people and so the differences observed in those people are less likely 

to be the result of cultural differences across generations. Indeed, usually researchers 

might start with a cross-sectional study to first establish whether there are links or 

associations between certain variables and then set up a longitudinal study to study 

cause and effect. 

The frequency of survey follow ups can vary from once every few hours to once 

every several years, and the total number of survey administrations may similarly vary 

from as few as one to as many as hundreds of measurements collected.  

Some of the disadvantages of longitudinal study include the fact that they take a lot 

of time and are very expensive.  

Rijal (Rijal, et al., 2007) administered longitudinal surveys on window opening be-

havior in naturally ventilated buildings in the UK between March of 1996 and Septem-

ber of 1997. Occupants were asked to briefly record their thermal satisfaction, cloth-

ing and activity levels, and use of building controls four times a day (early morning; 

late morning; early afternoon; late afternoon). The authors found that a multiple lo-

gistic regression on the longitudinal data explained a greater proportion of the vari-

ance in proportion of windows open than did a regression on the cross sectional data, 

and adopted the equation from the longitudinal survey for their Humphreys algorithm 

for window opening, citing the much larger sample size and wider range of data 

points.  

Newsham and Tiller (Newsham & Tiller, 1997) developed a computer survey soft-

ware called ScreenSurvey and used it to collect thermal comfort data from 55 em-

ployees of 4 different office buildings (all air-conditioned) over the course of 10 

weeks between October 1994 and January of 1995. Survey questions were adminis-

tered twice a day for the full study period. The repeated surveys consisted of 5 ques-

tions on thermal sensation and preference, clothing levels, clothing change over the 

past hour, and position of window blinds. Concurrent data on mean outdoor air tem-

perature, relative humidity, and solar radiation were collected from a nearby weather 
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station for the study duration, and indoor air temperature and relative humidity was al-

so measured concurrently at a location close to each participant.  

Other studies, e.g. Haldi and Robinson (Haldi & Robinson, 2009), used similar 

types of computer surveys to collect longitudinal data more efficiently 

3.1.3  Field Monitoring Studies 

In observational studies and laboratory studies (Schweiker & Wagner, 2016), 

(Schweiker, et al., 2016) the occupants’ behavior and presence and indoor environ-

mental variables are passively monitored.  

Several sensors, i.e. thermometers, anemometers, globe thermostats, CO2 sen-

sors, lux meters etc, are used to measure parameters like outdoor temperature, rela-

tive humidity, wind speed, solar radiation etc.  

Data collection techniques include motion detectors (e.g., passive infrared and ul-

trasonic), carbon dioxide sensors, video cameras with computer vision, wearable 

sensors, security-based systems. Motion detectors are adopted as occupancy sen-

sors (Lam, et al., 2009), but they are unable to detect nearly motionless occupants.  

A few researchers (Hailemariam, et al., 2011) demonstrated that coupling motion 

detectors and carbon dioxide could improve occupancy detection accuracy, though 

there is a significant delay between occupancy and CO2 increase. Cameras have been 

used by researchers to attempt to both identify occupancy and count the number of 

occupants. In particular the number of occupant is important because it influence the 

building performance (Haldi & Robinson, 2010).  

Several recent reviews explored the potential to use wearable sensors, mobile de-

vices, and security systems to detect occupancy, identify occupants (Atallah, et al., 

2007).  

Major behaviors of interest include light-switching, window blind-adjusting, win-

dow-opening, thermostat-adjusting, clothing level-choice and adjustment and fan use.  

Window opening and closing behaviors were monitored by similar photographic 

approaches as for window blinds, using contact sensors, and by survey (Haldi & 

Robinson, 2009). The majority of the literature focused on window openings as a bi-
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nary state; thus there is less knowledge on how occupants adjust partially open or 

close windows. This is likely because researchers have predominantly used contact 

sensors which cannot distinguish position when a window is open (Herkel, et al., 

2008). 

Monitoring partial opening/closing blinds is critical because daylight adequacy in 

not linearly related to blind position (e.g., a blind that is just partly open may still pro-

vide ample daylight). The dominant monitored daylight-related quantity to predict light 

and blind use is workplane illuminance (O’Brien, et al., 2013). Measurement of day-

light with interior sensors is highly preferable because this greatly reduces the exten-

sibility of results by reducing the effect of window geometry and type. Numerous day-

light glare metrics have been developed based on laboratory experiments. Measure-

ment of glare using a high dynamic range (HDR) camera has been focused on short-

term studies (Konis, 2013) and further research is needed to demonstrate whether 

this method would be worth the additional cost, effort, and complexity.  

Thermostat adjustments are best measured directly through integrated sensors or 

set-point logs (Gunay, et al., 2014), as air temperature alone is influenced by many 

factors (e.g., solar gains and window openings). The majority of research on thermo-

stat is survey based.  

Fan use is a dominant method for cooling in many buildings, particularly those 

which are warm but where air conditioning is a luxury. It has been studied by several 

researchers using surveys (Haldi & Robinson, 2008).  

Clothing level does not directly impact energy use, but affects occupant comfort, 

which in turn influences occupants’ other adaptive behaviors. 

As regarding the environmental conditions, the weather data is typically an input 

for most models dealing with occupant interaction with facades and clothing.  

The literature indicates that data sources include local weather stations, weather 

stations on the subject building, and even using spot measurements or descriptors. 

Furthermore, if solar radiation on the facade is desirable, it should be measured using 

a pyrometer mounted on the facade. Rain and wind speed/direction, which also vary 

spatially, are ideally measured on-site if they are to be used as model inputs. Indoor 



 70 

temperature and relative humidity (RH) are important parameters for predicting win-

dow and door opening, thermostat adjustments, and clothing levels. These quantities 

can be measured using deployed sensors; but care must be taken to place them 

away from heat, moisture, and contaminant sources (equipment, people, and solar 

radiation) so that their readings are representative. 
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3.2. Case Study: Questionnaire Survey 

3.2.1  Materials and Methodology 

The case study is based on data of an online questionnaire conducted between 

2012 and 2015 by the “Department of Architecture and Urban Planning” of the 

Politecnico di Bari (Italy) inside the Strategic Plan (PS_047) "ECOURB: Analysis and 

Models of Air Pollution and Thermal Systems for Urban Ecolabelling" financed by 

Apulia Region, coordinator Prof. D. Borri (Borri, et al., 2013), (Borri, 2011), (Iannone, 

et al., 2012). In detail, this project was aimed at building up hybrid scenarios for the 

management of urban microclimates in the area of Bari, Italy, trying to work out how 

users with different roles and behaviors could affect urban microclimate while per-

forming their single and/or collective activities. 

The data derive from an Internet-based investigations, announced by electronic 

mail to the students of the teaching course of  “Building services design” of  Politec-

nico di Bari since 2012 to 2015. The compilers were 495, but only 450 completed the 

whole questionnaire. The questions to the participants were made only once and the 

answers of the participants were written once into a database and the incomplete an-

swers were partly used for the analysis. Each participant followed an online guide that 

was designed to engage the respondents for 22 questions in discussions about key 

comfort, behavior, and energy use issues. It should be stated that users' answers 

were not personal but referred to the common attitudes and behaviors of the whole 

family. 

 

The survey recorded certain variables of interest (information on buildings, on fam-

ily behavior and attitudes, fuel consumptions) for the respondent sample, and they are 

used to infer associations between these variables. 

In particular, part of the survey included a section on personal control over the 

thermal environment, which gaged occupant satisfaction with perceived control as 

well as the general frequency with which occupants engaged in a series of thermal 

adaptations (windows, blind, thermostats, etc).  
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Among the several data present in the whole questionnaire, only building-HVAC 

system and occupants data affecting the energy consumptions and thermal comfort 

are extrapolated by the questionnaire and used for the statistical analysis.  

All buildings are located in the Mediterranean climatic context of south Italy (Puglia 

region), characterized by heating degree days (h.d.d.) between 901 and 2100. 

The survey included different areas of questioning with supporting prompts (see 

Tab. 3.1): 

- Background Information of Buildings: included questions about what type 

of building the resident lived, which were the characteristics of the building 

(e.g. window, heat source, area). In particular, the “construction year” vari-

able enclosed all characteristics and technological solutions of the “building-

HVAC” system, typical of that certain period.  

- Family General Information: included general questions regarding the oc-

cupants. 

- Behaviors & Preferences: included questions about when they used heat-

ing and cooling system in the house, what meant residents use to adapt in-

terior conditions to their own preferences.  

- Fuel Consumptions: included questions about the total fuel consumption for 

domestic hot water, heating and cooking. The total fuel consumptions (m3) 

of the buildings was normalized, by dividing for the dwelling size, in order to 

have an index (m3/m2) approximatively independent from the building size 

and the number of family member. 

Hence, the questionnaire combined the building-HVAC system and the occupants: 

data regarding the building (i.e. building typology, construction period, glazing typolo-

gy, etc.) and HVAC system (i.e. heat source kind, management of active system, etc) 

compared with the data of the attitudes, preferences and the daily common behaviors. 
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 In order to value and to identify the main characteristics of the examined buildings 

and the main attitudes and behaviors of the users, statistical analysis are conducted 

by the R software (Team, 2012). First, frequency and density estimation analyses are 

performed. In the second section, multivariate linear regressions are conducted taking 

into account the effects of all variables on the responses of interest. In this way it is 

possible to understand the relationships between variables and their relevance to the 

actual dependent variable (DV) under investigation. As DV the fuel consumptions and 

the set-point temperature for heating system adopted by the user are analyzed.  

The Tab. 3.1 reports the questions above described used for this work. 

3.2.2. Multivariate Regression Analysis 

Multiple regression analysis are performed in order to determine the function that 

best expresses the relationship between the independent variables Xଵ, Xଶ, … X୩ and 

the dependent variable Y. ܻ = ܾ଴ + ܾଵ ଵܺ + ܾଶܺଶ + ⋯ + ܾ௞ܺ௞                                                       (3.1) 

where: 

- Y is the dependent variable; 

- b଴ is the intercept; 

- bଵ, bଶ, b୩ are the regression coefficient; 

- Xଵ, Xଶ, X୩ are the independent variables. 
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BUILDING-HVAC SYSTEM 

Background Information 

1. Construction year of the building. 

2. Building typology:  

 multifamily building      

 detached house 

 terraced house 

3. Apartment size (m2). 

4. Heat source type: 

 biomass boiler 

 condensing boiler 

 high efficiency boiler 

 traditional boiler 

5. Cooling system presence: 

 yes 

 not 

6. Window glazing type: 

 double glazed (low e-coating) 

 double glazed (no low e-coating) 

 single glazed 

7. Heating (cooling) system management: 

 on/off 

 climatic thermoregulation 

 chronotermostat 

8. Refurbishment actions on building-HVAC system: 

 yes 

 not 

Fuel consumptions 

9. Annual fuel consumption (m3/ m2) 

 

OCCUPANT 

Family General Information 

10. Number of family members.  

11. Number of occupants in the dwelling: 

- from 8 a.m. to 1 p.m. 

- from 1 p.m. to 3 p.m. 

- from 3 p.m. to 8 p.m. 

- from 8 p.m. to 11 p.m. 

- from 11 p.m. to 8 a.m. 

12. Family monthly income (€). 

Behaviors & Attitudes 

13. Daily hours of heating (cooling) system activation: 

 less than 2 hours 

 from 2 to 4 hours 

 from 4 to 8 hours 

 more than 8 hours 

14. Daily time slot of heating system activation: 

 from 6 p.m. to 12 a.m. 

 from 6 a.m. to 9 a.m. and from 6 p.m. to 12 a.m. 

 from 12 a.m. to 9 a.m. 

 from 12 a.m. to 6 a.m. and from 8 p.m. to 12 a.m. 

 whole day 

15. Set point temperature for heating (cooling) system. 

16. User behaviors during situations of thermal discomfort in 
winter: 

 drinking hot drink 

 reducing opening windows 

 wearing heavy clothes 

 closing shielding system nighttime 

 turning on heating system 

17. User behaviors during situations of thermal discomfort in 
summer: 

 drinking cold drink 

 opening windows 

 wearing light clothes 

 closing shielding systems 

 turning on cooling system 

18. User preferences:  

I prefer coming into a too-heated (cooled) room when outside 

it’s cold (hot): 

 agree 

 indifferent 

 not agree 

Tab. 3.1. Questionnaire Structure 
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The sign and the values of the regression coefficient represent the partial effect of 

each variable ሺe. g.  Xଵሻ on the variable Y,  keeping constant the other variables  ሺXଶ, … X୩ሻ. That is if the sign of the independent variable is positive, it leads to an in-

crease of the dependent variable.  

For the models analyzed, the coefficient of linear regression, the p-value, the ad-

justed R2, and the β standardized values are calculated.  

Regarding the p-value it is possible to determine if an independent variable has a 

statistically significant effect on the dependent variable. For this study, the signifi-

cance level was set to 0.05, as conventionally defined in statistical analysis. In case 

the p-value is lower than this limit, the variable is significant and it can’t be excluded. 

In order to analyze, which variables affected the dependent variable most, the com-

parison between the regression coefficient is only possible when they have the same 

measurement units. In order to realize this, partial regression coefficients are exploit-

ed, which are pure numbers and were obtained from a multiple regression equation in 

terms of standardized variables (β values). 

3.2.3. Results 

3.2.3.1. Frequency and Density estimation 

Background Information 

As mentioned previously, the data regarded 495 residential buildings located in the 

Mediterranean climatic context of southern Italy (Puglia).  

With respect to the building typology and applying typical Italian typologies, the 

residential buildings are categorized as: 

- multi-family building; 

- detached house; 

- terraced house. 

Fig. 3.2 and Fig. 3.3 show the density of the building typology in function of the 

size of the dwelling and of the construction period of the building. Multi-family build-
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ings are the most widespread typology in the data followed by detached houses and 

then terraced houses.  

Regarding the building size, which is also related to the number of family mem-

bers, the dwelling area ranged between 50 m2 and 200 m2, with a peak around 100 

m2 for all building typologies. This corresponds to a 4-5 member family, obtained by 

combining data regarding the apartment size and the number of family members. 

 Furthermore, the examined buildings were built after the 60s and most of them 

were constructed between 1980 and 2005 (Fig. 2). This range of construction peri-

ods represents only a limited slice of the entire Italian building heritage. This result 

can be explained by the fact that the questionnaire was subjected to university stu-

dents, whereby most of the families are young and they do not live in the most an-

cient buildings. 

 

Fig. 3.2. Density of building size of the several building typology. 
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Fig. 3.3. Building typology in function of the construction period. 

Fig. 3.4 and Fig. 3.5 show the variation of window glazing type and type of heat 

source as a function of the building construction year. As expected, both the variation 

of the glazing type and heat source follow the Italian regulations, which implied ever 

more restrictions for energy efficiency during the years (law n.373/1976, law 

n.10/1990 and legislative decree n.192/2005).  

Regarding the glazing type, single glazed windows are typical of the most ancient 

buildings until 90s. Subsequently, since the late 90s the single glazed windows have 

been substituted by double glazed and then by more efficient glazing types such as 

the double glazing with low-e coating. Also the type of heat source changed from tra-

ditional boilers, typical of 80s and 90s, to high efficiency boilers and then to condens-

ing boilers. In most of the cases (almost 85%) the heat generation systems are inde-

pendent and not centralized. 

Regardless of the heating and cooling source of the system, as concerning the 

management system, in 93% of cases the occupants controlled the activation of the 

heating and cooling system through ON/OFF systems and by setting the set-point 

temperature desired; in other cases a climatic thermoregulation was used for indoor  
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Fig. 3.4. Window glazing type in function of the construction year. 

 

Fig. 3.5. Heat source type in relation to the construction year. 
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climate control. These results underline that in the residential context, the occu-

pants generally have more degrees of freedom with respect to the building-system 

management. Unlike in commercial or offices buildings where either the user interac-

tion with the building is lower and the building automation systems (BAS) are more 

widespread, in the residential sector the “occupant” can greatly affect the energy per-

formance of the building and the possible activation logics of BAS. 

User Preferences 

Fig. 3.6 shows the daily occupation schedule in the dwellings, in relation to the 

occupancy ratio for each family. In order to homogenize the data and to obtain the 

occupation ratio, the number of occupants present in the dwelling during daytime are 

divided by the total number of family members. The occupancy ratio is the highest 

during nighttime and during early morning (from 11 p.m. to 8 a.m.) that correspond to 

the hours of sleeping. At dinner (from 8 p.m. to 11 p.m.) the number of occupant of 

each family present in the apartment is higher than at lunch time (from 1 p.m. to 3 

p.m.). In the morning the occupancy ratio is minimal, due to the fact that almost all 

the members of the family are at work or school. 

 
Fig. 3.6. Daily occupation schedule 
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Fig. 3.7 shows the daily hours of heating system activation in relation to the con-

struction year of the building. In most cases it results that the daily total hours of 

heating system activation are between 4 hours and 8 hours. Furthermore, it is evident 

that the most ancient buildings (before 1985) require longer periods of heating sys-

tem activation (more than 8 hours), while recent buildings (after 2005) require only 

few activation hours (less than 4 hours). Hence, the best thermal comfort conditions 

of the recent buildings, justified by the high insulation levels of the envelope, the high 

efficiency of HVAC systems and a sustainable design, influence also the occupant 

behavior related to the length of heating system activation. Improving the thermal in-

door environment allows the occupant to activate the active systems less.  

 

Fig. 3.7. Daily hours of heating system utilization in relation to the construction year. 

Regarding the time slots of heating system activation indicated by the occupants, 

as shown in Fig. 3.8 the participants usually turn on heating system from 6 p.m. to 12 

a.m. (40 %) Only a minimum percentage left the plant on during the whole day. By 

adding the frequency of the most common time slots, it is possible to define a wide-

spread daily heating activation from 6 p.m. to 12 a.m.  
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Fig. 3.8. Frequency of time slots of daily heating system activation 

In accordance with above said, also the set-point temperature of heating system 

depends on the construction year of the buildings (Fig. 3.9). The occupants adopt 

lower set-point temperatures (< 20°C) in the most recent buildings (after the 2005). 

In contrast, in order to realize thermally comfortable conditions, the occupants in an-

cient buildings use higher set-point temperatures (> 20°C). This can be explained 

with notably higher heat losses due to the poor energy efficiency of the building enve-

lope. This underlines that considering a fixed set-point temperature of 20°C, which is 

the common practice when estimating the energy consumptions for heating in energy 

simulations, may cause differences between simulated and real consumptions due to 

a more efficient occupant behaviors. At the same time, it could lead to an underesti-

mation of the real energy consumptions for the most ancient buildings. 
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Fig. 3.9. Set-point temperature of heating system in relation to the construction year 

Adaptive Behaviors in Winter and Summer 

During winter, in order to reduce thermally discomfortable situations, occupants 

can usually choose one of the following adaptive behaviors: 

- turning on heating system; 

- drinking hot drink; 

- wearing heavy clothes; 

- reducing opening windows; 

- closing shielding system nighttime. 

As shown in Fig. 3.10 the most frequent action during thermal discomfort situa-

tions is wearing heavy clothes. The closing of shielding system is not performed by 

the respondents, considering that in winter season this action could reduce the in-

coming solar radiation. 
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Comparing the occupants’ answers with the construction year of the buildings, it 

results that in the ancient buildings, the occupants usually turned on the heating sys-

tem to satisfy their thermal comfort requirements. Hence in the dwellings with low en-

ergy efficiency, severe thermally discomfortable situations could be reduced only by 

adopting active systems. For this reason, in these buildings the energy consumptions 

may be consequently higher.  

On the contrary, in recent buildings, the adaptive behaviors are the first actions that 

the users performed in order to reduce thermal discomfort. Actions like wearing heavy 

clothes, drinking hot drink or reducing the opening windows, reduce the usage of the 

active system and hence the energy consumptions for heating.  

 

Fig. 3.10. Frequency of occupant behaviors for thermal discomfort in winter in function of the con-

struction year. 
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During summer, in order to reduce thermally discomfortable situations, occupants 

can usually choose one of the following adaptive behaviors: 

- turning on cooling system; 

- drinking cold drink; 

- wearing light clothes; 

- opening windows; 

- closing shielding system. 

 

Fig. 3.11. Frequency of occupant behaviors for thermal discomfort in summer in function of the con-

struction year. 
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As shown in the Fig. 3.11 the most frequent action is opening windows. Setting 

these answers in relation to the construction year of the buildings, it results that in the 

ancient buildings, the occupants turn on the cooling system to satisfy own thermal 

comfort more often. Hence in these dwellings with low energy efficiency, thermally 

discomfortable situations could be reduced only by adopting active systems.  

On the contrary, in the recent buildings, the adaptive behaviors first adopted were 

wearing light clothes, drinking cold drink or increasing opening windows. These ac-

tion reduced the usage of the active system and hence the energy consumptions for 

cooling.  

In summary, it is important to consider the tie between the type of occupant behav-

ior and the construction year (Fig. 3.10, Fig. 3.11),  in order to reduce the usage of 

active components. 

Occupant Behavior Impact on Fuel Consumption 

As outlined on the introduction, several studies have shown that the occupants, 

and in particular their attitudes, their preferences, and their interactions with the build-

ing-HVAC system, has a significant impact on energy performance of buildings.  

The following figures show the relationship between the fuel consumption and: 

- the construction year of the building; 

- the total daily hours of heating system utilization by the family; 

- the set-point temperature of heating system; 

- the adaptive behaviors during thermal discomfort situation in winter. 

Fig. 3.12 shows that the fuel consumption almost linearly depended on the con-

struction year of the building. (R2 = 0.85). The most recent buildings have the lowest 

fuel consumption (< 5m3/m2), while the most ancient buildings have a much higher 

fuel consumption (> 20 m3/m2). This result is justified because the construction year 

is an inclusive index of the characteristics of the building envelope and of the plant 

system in a certain period of construction, and hence the most ancient buildings are 
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more energivorous than the recent ones. Indeed, in order to reach thermal comfort 

situation, the users use the heating system for more hours (more than 8 hours) in the 

most ancient buildings as presented above. As a consequence, the fuel consumptions 

increase. 

 

Fig. 3.12. Fuel consumption in relation to the construction year and the daily total hours of heating sys-

tem utilization. 

In the Fig. 3.13, as expected it is possible to notice that also the set-point tempera-

ture of the heating system adopted by the occupant influenced the fuel consumption. 

High values of the set-point temperature (22°C, 23°C) are necessary to offset the lo-

cal discomfort conditions due to cold air flow on floor, higher air layering and infiltra-

tions of cold air flow.  

In addition, in the most ancient building the users usually use the heating system 

for more hours and with higher set-point temperature values. Hence, in the building 

with the lowest levels of energy efficiency, the user is brought to use for more hours 

and with higher set-point temperature the heating system, causing significant energy 

consumptions. 
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Fig. 3.13. Fuel consumption in relation to the set-point temperature and the daily total hours of heating 

system utilization. 

Fig. 3.14 shows the main adaptive behaviors in relation to the construction year 

and the fuel consumption. Especially the action of turning on the heating system dur-

ing thermally discomfortable situations is typical for the most ancient buildings, while 

in the recent buildings actions like wearing heavy clothes or closing windows are 

more frequent. As a consequence, the occupants satisfy their thermal comfort re-

quirements with the use of active systems and thereby increased the fuel consump-

tions. 
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Fig. 3.14. Fuel consumption in relation to the construction year and the adaptive behavior of users. 

3.2.3.2. Multivariate Regression Analysis 

As shown above, the variables investigated are showing close links and a complex 

network of relationships. Therefore, the application of multiple regression analysis is 

meaningful in order to analyze the effect of individual variables on a dependent varia-

ble.  

Results of multivariate regression analysis related to the fuel consumption  

At first, multivariate linear regression is conducted to determine the most signifi-

cant variables for the fuel consumption (Yሻ. As independent variables ሺXଵ, Xଶ, … X୩ሻ , 

the following variables included in the questionnaire are selected based on introducto-

ry literature review and the findings presented in the previous section: 

- the construction period of the building; 

- the set-point temperature of heating system; 
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- the family monthly income; 

- the total daily total hours of heating system utilization; 

- the user behavior in thermal discomfort situations. 

The main results of the linear regression are reported in the Tab. 3.2.  

The first column reports the independent variables, the second the estimated val-

ues of regression coefficient, the third the p-values and the last column the signifi-

cance of the independent variables on the dependent variable.  

As can be deduced from Tab. 3.2, the main variables affecting the fuel consump-

tion were the set-point temperature, the total daily hours of heating system utilization, 

the family monthly income and the construction period of the building. In particular: 

- by increasing the set-point temperature and the total hours of heating sys-

tem utilization, the fuel consumption increases. This is justified by the fact 

that the occupants that adopt higher values of set-point temperature or for 

more hours, cause more energy consumptions for heating in consequence 

of the high thermal load requested; 

- as regarding the family monthly income, the wealthier families usually have 

higher energy consumption, as a consequence of a minor tendency to adapt 

to the environmental conditions but to use active conditioning system. 

- as regarding the construction period of the building, the buildings built after 

the 2000s have a negative coefficient and hence the most recent buildings 

have minor consumptions; 

- among the adaptive behaviors, only turning on the heating system is signifi-

cant for the fuel consumption and lead to an increase of the consumptions. 
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 Estimate Pr (>|t|) Signif.code 

Set-point temperature 

19°C 0.832 0.033 * 

20°C 2.013 1.01 e-7 *** 

21°C 3.738 1.59 e-15 *** 

22°C 4.831 < 2 e-16 *** 

23°C 5.489 < 2 e-16 *** 

Family monthly income 

less than 1000 € -1.163 0.001 ** 

from 1500 € to 2000 € 1.189 2.04 e-5 *** 

from 2000 € to 2500 € 2.053 2.38 e-8 *** 

more than 2500 € 3.233 7.29 e-11 *** 

Hours of heating system      
utilization 

from 2 to 4 hours 0.993 0.008 * 

from 4 to 8 hours 2.682 1.26 e-10 *** 

more than 8 hours 5.779 < 2 e-16 *** 

Construction period 

from 1970 to 1980 -1.190 0.260  

from 1980 to 1990 -2.216 0.035 * 

from 1990 to 2000 -5.184 2.91 e-6 *** 

from 2000 to 2010 -7.085 6.35 e-10 *** 

from 2010 to 2015 -7.940 3.09 e-10 *** 

Adaptive behaviour 

reducing opening windows 0.192 0.582  

turning on heating system 0.668 0.004 * 

wearing heavy clothes -0.087 0.796  

closing shielding system 0.063 0.905  

Adjusted R2 0.948   

Tab. 3.2. Multivariate analysis results on the fuel consumption. 

By analyzing the model, the determination coefficient Adjusted R2 for the good-

ness of the model is equal to 0.948: almost the 95% of the data is explained by the 

considered variables. 

In order to compare the influence of the independent variables on the fuel con-

sumption, the β standardized values are compared. This shows that the explicative 

variables mostly influencing the fuel consumption are the construction period of the 
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building, the set-point temperature adopted by the occupants and the total hours of 

heating system utilization (see Fig. 3.15). This proves that the occupant behavior sig-

nificantly affects the building performance and so the energy consumption. For these 

reasons it is important to investigate further the factors influencing the user behavior. 

 
Fig. 3.15. The β standardized values of the fuel consumption. 

Results of multivariate regression analysis related to the set-point temperature 

The second multivariate linear regression analysis is conducted in order to deter-

mine the most significant variables influencing the set-point temperature of the heat-

ing system (Yሻ.  
The following data points provided by the questionnaire are considered as inde-

pendent variables ሺXଵ, Xଶ, … X୩ሻ: 

- the construction period of the building; 

- the monthly family income; 
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- the daily total hours of heating system utilization; 

- the adaptive behavior in thermally discomfortable situations. 

The main results of the linear regression are reported in Tab. 3.3. They show that 

the main variables affecting the set-point temperature are the monthly family income 

and the construction period of the building. In particular: 

- by increasing the total hours of heating system utilization, the set-point tem-

perature increases. This is justified by the fact that the users that adopt the 

heating system for more hours also use higher set-point temperatures as a 

consequence of the low energy efficiency of the buildings (see also previous 

section).  

Furthermore, considering the regression coefficients of the construction pe-

riods of the building, the buildings built after the 2000s have a negative coef-

ficient, i.e. the set-point temperature is lower, and hence the most recent 

buildings have minor consumptions due to being more efficient and their 

occupants being free to use less heating with a lower set-point while still be-

ing comfortable; 

- the wealthier families usually adopt higher set-point temperature as a con-

sequence of the tendency to use less adaptive behaviors and to prefer using 

active conditioning systems; 

- between the adaptive behaviors, only turning on the heating system had a 

significant influence on the set-point temperature. In particular it can be seen 

that the occupants who first used the action turning on the heating system, 

also adopted high set-point temperatures.  

As explained in relation to Fig. 3.9 these behaviors are most likely within the 

oldest buildings, where the main action for thermal discomfort situations is 

turning on the active system and using high values of set-point temperature. 
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 Estimate Pr (>|t|) Signif.code 

Family monthly income 

less than 1000 € -0.117 0.519  

from 1500 € to 2000 € 0.218 0.015 * 

from 2000 € to 2500 € 0.456 0.239  

more than 2500 € 1.00 2.35 e-5 *** 

Hours of heating system     
utilization 

from 2 to 4 hours -0.467 0.065  

from 4 to 8 hours -0.196 0.321  

more than 8 hours 0.009 0.956  

Construction period 

from 1970 to 1980 -0.025 0.962  

from 1980 to 1990 -0.044 0.931  

from 1990 to 2000 -0.207 0.695  

from 2000 to 2010 -0.607 0.249  

from 2010 to 2015 -1.554 0.008 ** 

Adaptive behaviour 

reducing opening windows 0.042 0.860  

turning on heating system 0.579 0.024 * 

wearing heavy clothes -0.185 0.412  

drinking hot drink 0.022 0.929  

Adjusted R2 0.684   

Tab. 3.3. Multivariate analysis results on the set-point temperature. 

The determination coefficient Adjusted R2 of the model is equal to 0.684: more 

than 68% of the data was explained by the considered variables. 

Comparing the β standardized values, it results that the explicative variables most-

ly influencing the set-point temperature were the construction period of the building 

and the family monthly income (see Fig. 3.16 ). It proves how the user behavior can 

significantly affect the building performance and so the energy consumptions. 
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Fig. 3.16 The β standardized values of the set-point temperature. 

 

3.2.4. Discussion 

While most of the studies, that have investigated the influence of occupant behav-

ior on the energy performance of  buildings, have compared energy consumptions of 

identical buildings (Socolow, 1978), (Sonderegger, 1978), (Seligman, et al., 1978), 

(Gartland, et al., 1993), (Juodis, et al., 2009), this work has tried to define the tie be-

tween different residential buildings and occupant actions by means of questionnaire 

survey.  

In particular an overall view of both the performance of buildings and the subjective 

indication given by occupants were compared. 

In detail the key findings from this work can be compared to existing literature as 

follows: 
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- the relationship between occupant behavior and building environment re-

flects the difficulty of adapting to discomfortable conditions especially in the 

most ancient building with worst conditions;  

- with respect to the order of adaptive behaviors, Langevin (Langevin, et al., 

2013) found that clothing adjustment was the first action both in winter and 

summer. In this work only in winter season, clothing is adjusted first, fol-

lowed by other adjustments. Clothing is not as frequently adjusted when 

people are feeling warm because people dress in as few layers as possible 

in summer in expectation of warm conditions;  

- as already shown in Langevin (Langevin, et al., 2013), this study supports 

the findings that the socioeconomic status (family size, monthly income) 

has an impact on the behavioral patterns of occupants; 

- in contrast to Langevin’s results, where windows were not used in the heat 
of the summer because they could make conditions worse, in this study in 

summer during discomfort conditions the first action performed by the oc-

cupant was opening windows. The difference between these results may be 

explained by the difference in outdoor climatic conditions between the two 

questionnaire studies.   

In addition, this study allows a more precise quantification of important trends, 

such as the tie between the building performance and the occupant behaviors, the re-

lationship between the effectiveness of adaptive actions and the hierarchy of adaptive 

actions.  

Differently by (Andersen, et al., 2009) where field monitoring campaign and repeat-

ed surveys of occupant control of the indoor environment were carried out, this cross 

sectional survey may identify associations between variables but they cannot estab-

lish the cause-and-effect relationships. This is because such studies offer a snapshot 

of a single moment in time; they do not consider what happens before or after the 

snapshot is taken. 
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Another limitation of this work is identified in the limited slice of the entire building 

heritage having been analyzed as result of the young families that had been subject to 

this questionnaire. In particular most of buildings analyzed were constructed after the 

1980. To be able to represent more the relationship between the building-HVAC sys-

tem and the occupants, more data on the most ancient buildings should be added.  

Furthermore, it is worth noting that in order to have a more accurate prediction of 

the fuel consumption for heating, the fuel consumption for domestic hot water (DHW) 

and for cooking have to be curtailed through a more accurate evaluation. Indeed while 

the consumptions for heating depend by the building-HVAC characteristics and occu-

pant behavior, the consumptions for DHW and cooking depend above all by the num-

ber of the family members and they don’t reflect the building performance and the oc-

cupant behaviors. 
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Chapter 4 

Building Energy Management Systems (BEMS) for 

passive cooling  

Starting from the results of the questionnaire survey, general control-related be-

havioral trends and patterns for groups of building occupants were extracted by the 

cross sectional study described in the chapter 3.  

In detail, based on questionnaire results, the interaction between occupant and 

building-HVAC system was maximum during the cooling season and hence the im-

pacts of occupant behavior are higher than in winter season. Indeed, it resulted that  

in summer season to improve thermal comfort conditions, the occupants might 

change the window or shading status, or turn on the cooling plant. These actions 

have great influence on energy consumptions and building performance. Instead, in 

winter season, occupants acted mainly by changing the clothes status, wearing heavy 

clothes and less on the building components to improve their thermal comfort condi-

tions 
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Known that the actions on window and blind status are mostly impactful on build-

ing performance, with the goal to design optimal BEMS as retrofit solutions for the 

energy renovation, this second study focused on the analysis of different control 

logics of natural ventilation and of the solar shading system for passive cooling.  

On the other hand, passive techniques such as natural ventilation and solar shad-

ing may be introduced to satisfy the indoor comfort while minimizing the use of elec-

trical systems in buildings (Sarker, et al., 2014), (Yang, et al., 2011). The adoption of 

passive solutions enhances the emerging trend of nearly Zero-Energy Buildings, that 

are buildings with a very high energy performance, according to the 31/2010 Europe-

an directive on energy performance of buildings (EPBD, 2010). Natural ventilation 

could significantly reduce building energy consumption for cooling and improve ther-

mal comfort with the indoor environment (Borgeson & Brager, 2011).  

In residential buildings the ventilation is generally manual and not always aimed at 

cooling needs. Building automation systems and suitable control logics based on the 

building profiles of use and on the comfort performance are required. 

Hence, with particular reference to the summer season, the aim of the work is to 

design BEMS for comfort and energy savings in  residential buildings, by defining op-

timal control logics of natural ventilation (by means of windows opening/closing) 

and of the solar shading system. 

In this chapter several studies are conducted with the aim to define control logics 

of building automation systems for passive cooling minimizing energy consumptions 

and thermal comfort, by simulating the occupant behavior in deterministic way 

through defined schedules.  

Part of the research shows the results of investigations carried out within the pro-

ject RES NOVAE - Reti, Edifici, Strade, Nuovi Obiettivi Virtuosi per l’Ambiente e 

l’Energia, financed by the Ministry of Education, MIUR (National Operational Program 

Research and Competitiveness 2007-2013 for the development of Smart City) the in-

volved partners (Enel Distribution, IBM, General Electric Transportation Systems, 

Elettronika Group, Asperience, Polytechnic University of Bari, University of Calabria, 

CNR, ENEA) aim to research, model and test, on a demonstration scale, an advanced 
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management system of energy flows at the municipal level, based on the integration 

of technologies for monitoring, control and optimized management of energy flows 

toward the buildings and the implementation of "active demand" strategies. 

In particular, in an Italian dwelling with technological/typological features of ‘60s,  

different partialization strategies of existing shading systems and natural ventilation 

control strategies are simulated.in relation to the orientation, to the external climatic 

conditions, to the occupation and to the minimum illuminance levels required for the  

rooms.  

Regarding thermal comfort optimization, most researchers refer exclusively to the 

Fanger’s model (Fanger, 1973) that assesses thermal comfort conditions by means 

of two correlated indices: the Predicted mean vote (PMV) and the Predicted percent-

age of dissatisfied (PPD). In this thesis the optimization goals are based on the adap-

tive thermal comfort (EN15251, 2007). Thermal comfort analysis, according to the 

adaptive thermal comfort theory and the energy analysis in dynamic regime are con-

ducted in order to evaluate the benefits of such control logics. 

A co-simulation architecture is created between TRNSYS (building-HVAC model), 

TRNFLOW (building air flow network) and MATLAB (PSO optimization).  

The several studies described in this chapter were object of different publications 

whose details are reported in the (Dell’Osso, et al., 2015), (Rinaldi & Iannone, 2016), 

(Fanti, et al., 2016), (Rinaldi, et al., 2016).  
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4.1. Building description 

The case study is representative of building typology of south Italy built on the 

postwar period, characterized by poor building performance. In addition the dwelling 

presents also a bad orientation regarding the sun control. For these buildings, the PhD 

thesis is focused on analyze how the BEMS may contribute to the energy efficiency 

with low cost investments and with not invasive interventions on building compo-

nents.  

In detail the case study is a four-floor residential building of the ’60s located in the 

South Italy (Bari - Italy, 41° 07’31" N, 16° 52’00" E, 5 m asl). The considered apart-

ment is situated at the intermediate floor and has a net floor area of about 100 m2. It 

is characterized by (see Fig. 4.1):  

 windowed sides faced to North-West and South-East with two overhangs 

as shown in the Fig. 4.2;  

 compactness index (ratio between enveloping surface and heated volume) 

equal to 0.65, as result of the building type;  

 bedroom1, kitchen and bathroom faces to North-West and living room, 

bedroom2 and study room faces to South-East.  

As regarding the building envelope, the following building technologies are present, 

typical of a residential building of ’60s:  

 external wall: double-brick mansonry (12-12 cm) with interposed uninsu-

lated air cavity of 6 cm;  

 partition wall: brick mansonry (25 cm);  

 ceiling- floor: concrete-brick flat (30 cm) and cement floor screed with 

flooring (10 cm);  

 windows: wood frame (7 cm) and single glass of 6 mm of tilt-turn type.  
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In the Tab. 4.1 the main parameters of the modeled envelope (transmittance,  in-

ternal heat capacity and the solar factor) are reported. 

Tab. 4.1. Thermal characteristics of building envelope. 

Items 
U-value 

(W/m2 K) 

Internal heat 
capacity 

(kJ/m2K) 

g-value 

External wall 1,10 56.2 - 

Partition  wall 1,54 59.4 - 

Ceiling-floor 0,83 88.2 - 

Window 5,6 - 0.8 

 
Fig. 4.1. Apartment plant 
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Fig. 4.2. The 3d model of the apartment. South-East and North-West view 

In reference to this specific case study, the energy hourly variations for occupan-

cy, lighting and domestic appliances are implemented using typical fixed schedules. 

The Tab. 4.2 shows the scheduled daily occupancy of each room., that is differentiat-

ed for each rooms, evaluating the occupancy ratio in relation to the number of present 

occupants. 

Tab. 4.2. Scheduled daily occupancy for each room. 

Room Occupancy daily time slots  

Bedroom2  6 p.m. - 8 a.m. 

Kitchen  7 a.m. - 9 a.m.; 12 p.m. - 2 p.m.; 8 p.m. - 10 p.m. 

Bedroom1 10 p.m. - 8 a.m. 

Office 9 a.m. - 12 p.m.; 3 p.m. - 7 p.m. 

Living room 8 a.m. - 9 a.m.; 4 p.m. - 12 a.m. 

 

 

The type of windows is tilt-turn window, with possible automated bottom-hinged 

opening (corresponding to the 50% of the opening for windows with two shutters). In 

detail, because of the automation of window regard only the “hopper windows open-

ing”, the opening factor of window has to be multiplied for a factor (Ck) depending on 

the maximum window tilt according to the EN 15242 – 2008 (see Tab. 4.3). 
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Tab. 4.3. Opening window parameters. 

Item Maximum window tilt Opening Coefficient Ck 

Window_(h=2,2 mt) 13° 0,22 

Window_(h=1,2 mt) 25° 0,39 

 

The air permeability characteristics, used in the various simulations that describe a 

low air tightness of the building envelope, are shown in the Tab. 4.4. 

Tab. 4.4. Air permeability characteristic of building envelope 

Item Air Mass Flow Coefficient Cs    
(Kg/sPa) crack               

(Kg/s m Pa) large opening 

Air Flow Exponent 
n 

Discharge Coef-
ficient Cd 

Crack _External Wall 0,00002 0,85 - 

Large Opening _Window 0,0003 0,6 0,6 

Large Opening _Door 0,0015 0,6 0,6 

 

The weather data (.epw file format) for the city of Bari are extrapolated by “Gianni 

De Giorgio database” and the wind speed profile is modified by terrain roughness pa-

rameters for suburbs area. 

To ensure conditions of Indoor Air Quality (IAQ), a schedule opening-windows is 

assumed at certain hours (8 a.m. - 10 a.m.; 1 p.m.- 2 p.m.; 8 p.m. - 9 p.m.). These 

periods correspond to the activities of preparing and cooking foods and of household 

cleaning. During these hours a bottom hinged opening is hypothesized. The window 

opening for IAQ during these hours is the same in all the cases simulated, managed 

directly by the user and independent by automation systems. During the others hours, 

the control logics open the windows on the basis of the strategies (4.1) and (4.2) in 

order to reduce discomfort conditions and hence energy consumptions. 
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4.2. The Co-Simulation Architecture 

In this section the co-simulation architecture is presented to combine the building-

HVAC system simulation and optimization goal for control logic of BEMS. The co-

simulation architecture is shown in Fig. 4.3. 

In particular, the building thermal behavior is performed by TRNSYS software 

v.17. (TRNSYS, 2009). It recognizes a system description language in which the user 

specifies the components that constitute the system and the manner in which they 

are connected. Moreover, the thermal building module of TRNSYS (Type 56) is inte-

grated with TRNFLOW that models the air flows between airnodes (coupling), from 

outside into the building (infiltration) and from the ventilation system (ventilation). In 

the analyzed case studies present in this chapter the occupant is simulated in deter-

ministic way with fixed schedules inserted in Type 56, without taking into account his 

behaviors in buildings. 

The optimization algorithms to solve the objective functions described in the fol-

lowing paragraphs for the minimization of thermal discomfort hours for overheating 

and undercooling, are implemented in MATLAB and then coupled with the TRNSYS 

energy simulator. More precisely, in the MATLAB program is implemented the Particle 

Swarm Optimization (PSO) algorithm, described in the following paragraph 4.2.2.  

Iteratively, the PSO algorithm values of variables to be optimized in order to mini-

mize the thermal discomfort, and exchanges these values with TRNSYS through the 

BEMS calculator to command the building automation system. 

 

4.2.1. TRNSYS and TRNFLOW 

The building thermal behavior is modeled by TRNSYS v.17 software, a complete 

and extensible simulation environment for the transient simulation of systems, includ-

ing multi-zone buildings.  
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Fig. 4.3. The co-simulation architecture  with occupant behavior modeling in deterministic way 

One of the key factors in TRNSYS is its modular and flexible architecture based on 

Dynamic-Link Library (DLL) concept, which facilitates the addition to the program of 

new component models, not included in the standard TRNSYS library.  

In particular, TRNSYS is made up of two parts. The first part is an engine (the ker-

nel) that reads and processes the input file, iteratively solves the system, determines 
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convergence, and plots system variables. The kernel also provides utilities that de-

termine thermophysical properties, invert matrices, perform linear regressions, and 

interpolate external data files. The second part of TRNSYS is an extensive library of 

components, each of which models the performance of one part of the system. The 

TRNSYS library includes many of the components commonly found in thermal and 

electrical energy systems, as well as component routines to handle input of weather 

data or other time-dependent forcing functions and output of simulation results.  

 
Fig. 4.4. Building-HVAC model in Simulation Studio 

The interface platform is Simulation Studio, where the total model is visible, ob-

tained by assembling the building envelope and HVAC components, linked through 

logical-mathematical correlation.  Fig. 4.4 shows an example of a system model built 

by TRNSYS and Simulation Studio.  
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Moreover, in this study the thermal building module (Type 56) is integrated by 

TRNFLOW software that models the air flows between outdoor and indoor air nodes. 

In particular, this multizone airflow model schematizes the building as a network of 

nodes and airflow links. The nodes represent the rooms and the building surrounding 

and the links depict openings, doors, cracks, window joints and shafts, as well as 

ventilation components like air inlets, outlets, ducts and fans (see Fig. 4.5). The 

boundary conditions are the wind pressures on the facade and the indoor and outdoor 

air temperatures. 

 

Fig. 4.5. Air-flow network in TRNFLOW 
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4.2.2. The Particle Swarm Optimization (PSO) in MATLAB 

In this work, Particle Swarm Optimization (PSO) algorithm is used for its strength 

and effectiveness in converge towards the global minimum of the 

utility function.  

PSO (Kennedy & Eberhart, 1995) is a computational method that a problem by iter-

atively trying to improve a candidate solution with regard to a given measure of quali-

ty. It is a stochastic optimization algorithm developed by computer scientists to solve 

difficult problems, i.e. problems that cannot be easily solved by simpler optimization 

algorithms like Newton's Method, simplex methods, gradient descent, and/or Least 

Mean Squares (Becker, 2013). 

PSO is a minimization algorithm meaning that it searches for solutions that mini-

mize an objective function. It solves a problem by having a population of candidate 

solutions, here dubbed particles, and moving these particles around in the search-

space according to simple mathematical formulae over the particle's position and ve-

locity (Fig. 4.6.). Each particle's movement is influenced by its local best known posi-

tion, but is also guided toward the best known positions in the search-space, which 

are updated as better positions are found by other particles. This is expected to move 

the swarm toward the best solutions. 

In particular, each particle of the swarm is composed of three D-dimensional vec-

tors, where D is the dimension of the search space: the current position ݔ�, the previ-

ous its best position ݌�, and the velocity ݒ�. The movements of the particles are guid-

ed by their own best known position in the search-space as well as the entire 

swarm's best known position. When improved positions are being discovered these 

will then come to guide the movements of the swarm. The process is repeated and by 

doing so it is hoped, but not guaranteed, that a satisfactory solution will eventually be 

discovered. 

https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29#Concepts_and_notation
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_%28vector%29
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Velocity
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Fig. 4.6. Conceptual diagram of PSO (Becker, 2013)  

An important aspect of the algorithm is the fact that all particles keep track of their 

positions and fitness values throughout the optimization process. The swarm of parti-

cles is randomly initialized and the algorithm searches for optimal by updating parti-

cles at each generation. The particles are placed in the search space of some prob-

lem or function, and each of them evaluates the objective function at its current loca-

tion. Each particle then determines its movement through the search space by com-

bining some aspect of the history of its own current and best (best-fitness) locations 

with those of one or more members of the swarm, with some random perturbations. 

The next iteration takes place after all particles have been moved (Poli, et al., 2007). 

In detail, the current position ݔ� can be considered as a set of coordinates describing 

a point in the space and is evaluated as a possible problem solution. If such position 

results to be better than the previous ones, then its coordinates are stored in the vec-

tor ݌�. The value of the resulted best function is stored in a variable called previous 

best ݐݏ�ܾ݌�, for comparison on the later iterations. The objective of each particle is to 

find better positions and update ݌�  and ݐݏ�ܾ݌� vectors. For this reason, the algorithm 

iteratively updates the velocity vector ݒ� of each particle and calculates new positions ݔ�, also considering the best location of all particles (gbest), in accordance with the 

following two-update equations: 
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ሺ݇�ݒ + ͳሻ = ݓ  ∙ ሺ݇ሻ�ݒ + ܿଵ ∙ ଵሺ௞ሻݎ ∙ ሺ݇ሻ�ݐݏ�ܾ݌] −  + [ሺ݇ሻ�ݔ

                                     … + ܿଶ ∙ ଶሺ௞ሻݎ ∙ ሺ݇ሻݐݏ�ܾ�] − ሺ݇�ݔ                           ሺ݇ሻ]                           (4.9)�ݔ + ͳሻ = ሺ݇ሻ�ݔ  + ሺ݇�ݒ + ͳሻ                                    (4.10) 

 

where 

 w is the inertia weight; 

 k is the iteration number; 

 cଵ.and cଶ are respectively the cognitive and social weight; 

 rଵ and rଶ are vectors of random numbers sampled from a uniform distri-

bution in the range [0,1]. 

Since the aim is minimize the objective function the current position x୧ሺkሻ is a 

vector of the values that variables to be optimized assume at the iteration k.  

In addition, the parameters w, cଵ, cଶ and the particle numbers have to be fixed 

equal to (Poli, et al., 2007): 

  w = Ͳ.͹ʹͻͺ; 

  cଵ = cଶ = ͳ.Ͷͻ͸ͳͺ ; 
 size of the population equal to 10 particles. 

Finally, the optimization process is completed if the best location gbest does not 

change for a fixed number M of consecutive iterations. The corresponding value F୭ୠ୨ 
is the optimal value of the objective function determined by the PSO. More in detail 

the Fobj implemented in the simulations and the variables to optimize are described in 

the paragraph 4.3.2. 
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4.3. Building Energy Management System for Ventilative Cooling 

Known that the natural ventilation control by window opening/closing is one of the 

main actions performed by occupants (as resulted by the chapter 3) and that it may 

influence the building performance especially in summer season, several studies are 

conducted, focusing on the potential of BEMS for the control of ventilation and solar 

shading for passive cooling as retrofit solutions to improve thermal comfort in exist-

ing residential building located in a suburban zone of the Bari’s city (Italy). 

In detail the several studies conducted for BEMS focused on: 

 natural ventilation control strategies with if/then rule based on indoor and 

outdoor temperature and R.H.; 

 optimization of the above control logics for natural ventilation with objec-

tive function for the minimization of thermal discomfort conditions; 

 sensitive analysis in different climate conditions and orientations and opti-

mization of the natural ventilation control logics; 

 coupling of natural ventilation strategies with solar shading systems for 

passive cooling. 

Adaptive thermal comfort simulations are performed in order to value the effec-

tiveness of window opening control logic in the different contexts. According to the 

European standard UNI EN 15251, three comfort categories limited by three tempera-

tures ranges are defined. Thermal comfort is evaluated on the difference between the 

optimal operative temperature and the simulated operative temperatures. The opera-

tive temperatures outputs during the occupation hours are compared with the Upper 

Temperature limit and Lower Temperature limit.  

 

4.3.1. Natural ventilation control strategies and automation systems 

In a first study (Dell’Osso, et al., 2015), several control strategies of natural venti-

lation are analyzed to reduce energy consumptions for cooling and ensure adequate 

levels of indoor comfort. Energy efficiency solutions involve the installation of a net-
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work of sensors (wireless low-power) and actuators for the implementation of natural 

ventilation strategies. Opening actuators can be applied to existing windows, con-

trolled by temperatures and humidity sensors 

Six cases are simulated: the Case 0 (the base case) is without natural ventilation 

control strategies and with opening windows only for IAQ and no cooling system; the 

Case 5 is the base case with active cooling, and in the other four cases, in order to 

keep a comfortable temperature and humidity, different control strategies of natural 

ventilation are simulated. In detail, during the hours not included for IAQ, the windows 

in each room are opened if: 

1) Case 1 (actuators operated by temperature sensors) 

- T indoor > T optimal (valuated according UNI EN 15251); 

- T indoor – 3°C < T outdoor < T indoor (in order to avoid undercooling 

discomfort). 

2) Case 2 (actuators operated by temperature or humidity sensors) 

- T indoor > T optimal; 

- T indoor – 3°C < T outdoor < T indoor. 

Or if: 

- R.H. indoor (relative indoor humidity) > 70%; 

- absolute indoor humidity > absolute outdoor humidity. 

3) Case 3 (actuators operated by temperature and humidity sensors) 

- T indoor > T optimal; 

- T indoor – 3°C < T outdoor < T indoor. 

Or if: 

- R.H. indoor (relative indoor humidity) > 70%; 

- absolute indoor humidity > absolute outdoor humidity. 

- T indoor > T optimal; 

4) Case 4 (hybrid system with cooling system) 

- T indoor > 26°C; 
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- T indoor – 3°C < T outdoor < 26°C. 

 

The operation of air to air heat pump for cooling, during the hours of oc-

cupation, if: 

- T indoor > 26°C; 

- T outdoor > 26°C. 

The T optimal (and not the overheating temperature) is chosen as the threshold for 

the window opening in order to exploit mostly the benefits of natural ventilation before 

indoor temperature increases.  

After setting up the building’s thermal model and the multi-zone airflow network 

model within the TRNFLOW–TRNSYS software, different ventilation strategies are 

compared through: 

- thermal comfort analysis, according to the standard (EN15251, 2007), as-

suming the category n. II (relative to new construction and existing buildings 

subject to refurbishment)  

- energetic analysis in dynamic regime. 

Simulations are performed during the cooling season (1 June – 30 September) to 

analyze the passive behavior of the building. In particular, relatively to the occupation 

hours, the discomfort due to overheating and undercooling has been calculated, in 

reference to the upper and lower temperature limit. 

In relation to internal and external temperature and humidity (relative and absolute), 

four design solutions have been simulated in order to choose the optimal control of 

ventilation. Four cases are performed without any active cooling system (Case 0, 

Case 1, Case 2, Case 3). In a case (Case 4) the combination of a natural ventilation 

system with an air to air heat pump has been simulated to evaluate the reduction of 

cooling energy consumptions. 
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Results 

The four cases without active cooling are compared in terms of adaptive thermal 

comfort and relative humidity conditions. The percentage discomfort is evaluated by 

adding the total discomfort hours during the occupation hours and then dividing for 

the summer simulation period. 

Simulation results show the efficacy of the proposed ventilative cooling strategies. 

A natural ventilation system, calibrated on a variable set-point based on the optimal 

temperatures (according to the theory of adaptive comfort) determines a significant 

reduction of overheating during the occupation hours. 

The Bedroom2 presents the more situations of discomfort for overheating. The  

orientation non-optimal and the absence of any shielding system, the night- ventila-

tion lack and the high internal gains are the main causes. The Tab. 4.5 reports the 

thermal discomfort percentages for overheating (OH) and undercooling (UC) for each 

room.  

Tab. 4.5. Thermal discomfort results. 

Room 
CASE 0 CASE 1 CASE 2 CASE 3 

(OH) (UC) (OH) (UC) (OH) (UC) (OH) (UC) 

Bedroom1 2,3 % 3,7% 0,0 % 3,9% 0.0 % 9,3% 0,0 % 4,4% 

Bedroom2 10,7% 0,9% 2,5% 0,9% 4,7% 5,4% 2,3% 1,6% 

Study room 9,7% 1,6% 3,5% 1,6% 5,4% 5,1% 3,4% 2,0% 

Living room 10,7% 1,2% 2,9% 1,3% 5,0% 4,7% 2,9% 1,8% 

 

Furthermore the simulations show high levels of relative humidity (>70%) in the 

bedrooms.  

In order to reduce the high level of relative indoor humidity (>70 %), a natural ven-

tilation strategy controlled by humidity sensor is necessary. In fact as showed in the 

Tab. 4.6, in the Case 2, when the control of relative humidity is independent by indoor 

temperature, the discomfort situations for high levels of relative humidity have halved, 
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although some undercooling occurs due to the opening of the windows when the 

control on the temperature is set off. In the other cases relative humidity discomfort 

percentages are almost the same.  

Activation system controlled by humidity and temperatures sensors with logics 

above described (Case 3) allow significant overheating discomfort reductions. The  

Fig. 4.7 shows the indoor temperature of the Bedroom2 in the Case 0 and Case 3 in 

relation to optimal, overheating and undercooling temperatures. 

Tab. 4.6. Relative Humidity discomfort percentages (R.H.>70%) 

Room Case 0 Case 1 Case 2 Case 3 

Bedroom1 50,3 % 51,3% 23,3% 50,4% 

Bedroom2 37,1% 38,6% 17,2% 37,9% 

Study room 10,0% 11,7% 4,6% 10,7% 

Living room 15,6 18,9% 3,8% 17,7% 

 

 

Fig. 4.7. Thermal comfort simulation results – Bedroom2 (Case 0 – Case 3) 
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The other two cases (Case 4 and Case 5) energy needs for cooling are evaluated. 

The simulation results show that the control strategies of ventilation for passive cool-

ing enable a 50% reduction of energy consumption, from 905 kWh to 445 kWh, in 

similar comfort conditions. 

This first study have underlined that ventilation strategies for passive cooling, can 

contribute even more effectively to the improvement of the behavior of the building 

envelope, integrating or replacing the conventional efficiency strategies, if properly in-

tegrated with adequate control systems.  

With low investment costs the natural ventilation could reduce the high energy 

consumptions of cooling systems  

 

4.3.2. Optimizing natural ventilation control strategies by minimizing thermal dis-

comfort  

Starting from the results presented in (Dell’Osso, et al., 2015), a second study is 

conducted in (Fanti, et al., 2016) where an optimized control strategy of window 

opening is developed to minimize thermal discomfort conditions. In particular, the 

control of ventilation is calibrated on dynamic set-point based on optimal tempera-

tures according to the adaptive thermal comfort theory (EN15251, 2007).  

The objective of this second study is to optimize the thresholds to open and close 

the windows in order to realize the natural ventilation flows for indoor thermal com-

fort, by means of a BEMS. To this aim, the prediction of the natural ventilation effects 

is evaluated by a co-simulation strategy where TRNSYS and TRNFLOW software are 

used to simulate thermal building behavior and ventilation dynamics, respectively. 

Moreover, the PSO is adopted to choose the optimal set point temperature for window 

opening, by minimizing the thermal discomfort.  

The designed energy efficiency solutions consist in an on-off control strategy of 

natural ventilation, by opening and closing windows at suitable time intervals. 

The control of ventilation is calibrated on the basis of a dynamic set-point figure, 

denoted by ௢ܶ௣௧�௠௔௟ሺݐሻ and determined on the basis of running mean outdoor tem-

perature. Note that  ݐ ∈ � is a natural number denoting the actuating time interval and 
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� is a time period of the year. Moreover, ௢ܶ௣௧�௠௔௟ሺݐሻ is calculated according to the 

standard EN 15251, assuming the category n. II (relative to new construction and ex-

isting buildings subject to refurbishment). In particular, the optimal comfort range is [ ௢ܶ௣௧�௠௔௟ሺݐሻ − ,ܥ°͵  ௢ܶ௣௧�௠௔௟ሺݐሻ +  .[ܥ°͵
 Moreover, denoting respectively by T୧୬ୢ୭୭rሺtሻ and T୭୳୲ୢ୭୭rሺtሻ with t ∈ � the 

apartment and external temperature, the ventilation control logic is applied by defining 

an on-off control condition. Let yሺtሻ ∈ {Ͳ,ͳ}  be the control variable where yሺtሻ = ͳ 

( yሺtሻ = Ͳ) means that the windows are opened (closed) at time t ∈ �.  

More precisely, the control logics is defined as follows: 

 yሺtሻ = ͳ               if  T୧୬ୢ୭୭rሺtሻ >  T୭୮୲୧୫ୟ୪ሺtሻ + ∆ͳ                              (4.1) 

                and 

                  if T୧୬ୢ୭୭rሺtሻ + ∆ʹ < T୭୳୲ୢ୭୭rሺtሻ < T୧୬ୢ୭୭rሺtሻ                 (4.2) yሺtሻ = Ͳ     otherwise 

with ∆ͳ ∈ ℝ and ∆ͳ ∈[-6°C, 6°C]    ∆ʹ ∈ ℝ  and ∆ʹ ∈[-6°C, 0°C].     
 

Equations (4.1) and (4.2) allow the windows opening when the outdoor tempera-

ture is favorable to the reduction of overheating thermal discomfort. In addition, in 

equation (4.2) ∆2 is introduced to close the windows if the outdoor temperature is 

too low in comparison with the indoor temperature in order to limit the undercooling 

discomfort conditions. 

The values of ∆1 and ∆2 are determined through the PSO optimization strategy 

with the aim of minimizing the thermal discomfort, i.e., the total discomfort hours Nሺ∆ͳ, ∆ʹሻ for overheating ሺN୦ୣୟ୲ሻ and undercooling ሺNୡ୭୭୪ሻ, just counting the 

number of hours, or the percentage of hours, when indoor conditions exceed a given 

fixed set-point temperature: 
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         F୭ୠ୨ =  minΔଵ,Δଶ[N୦ୣୟ୲ሺ∆ͳ, ∆ʹሻ  + Nୡ୭୭୪ሺ∆ͳ, ∆ʹሻ]                            (4.3)                       

 

Hence the thermal discomfort is obtained calculating the number of occupied 

hours when uncomfortable conditions are recorded. The numbers of discomfort hours 

for overheating and undercooling are determined according to the adaptive thermal 

comfort theory EN 15251 as follows:  

 Nୡ୭୭୪ is the number of hours in which T୧୬ୢ୭୭rሺtሻ < T୭୮୲୧୫ୟ୪ሺtሻ − ͵°C 

 N୦ୣୟ୲ is the number of hours in which T୧୬ୢ୭୭rሺtሻ > T୭୮୲୧୫ୟ୪ሺtሻ + ͵°C. 

Results 

Considering the same case study, in this section the analysis focuses on the Bed-

room 2, that as reported in the previous study, it resulted the most uncomfortable 

room.  

The simulations are performed considering a period of 62 days (July-August) and 

two operative cases: 

 Case 1: the control rules (4.1) and (4.2) are applied with ∆ͳ = Ͳ°C,  ∆ʹ=3°C; 

 Case 2: the control rules (4.1) and (4.2) are applied with ∆ͳ  and  ∆ʹ de-

termined by the PSO. 

More precisely, Case 1 uses the values of ∆ͳ  and  ∆ʹ of the simulation per-

formed in (Dell’Osso, et al., 2015), that resulted the best solution of natural ventilation 

activation to reduce the thermal discomfort.  

Furthermore, regarding the simulation period, a restricted period is considered re-

spect to the studies described in the paragraph 4.3.1, both because for the analyzed 

climate context, the analysis only on July-August (the warmest months) does not 

modify the methodological approach and the results, and both to reduce computa-

tional times. Case 2 uses the optimal values obtained by the proposed co-simulation 

and optimization strategy obtained with the minimal objective function N = ʹͲͻ with ∆ͳ = −͵.ͺ °C  and ∆ʹ = −ͷ.Ͳ°C, i.e.: 
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 yሺtሻ = ͳ               if  T୧୬ୢ୭୭rሺtሻ >  T୭୮୲୧୫ୟ୪ሺtሻ − ͵.ͺ°C                             (4.4) 

                and 

                  if T୧୬ୢ୭୭rሺtሻ − ͷ.Ͳ °C < T୭୳୲ୢ୭୭rሺtሻ < T୧୬ୢ୭୭rሺtሻ                 (4.5) yሺtሻ = Ͳ     otherwise 

Comparing Case 1 and Case 2, it is apparent that there is a significant reduction of 

the total discomfort hours. In particular, the discomfort hours for the overheating be-

tween the two cases decrease by 31.8%, while those for undercooling are almost the 

same (see Tab. 4.7). Taking into account only the hours with users presence in Bed-

room 2 (6 p.m. to 8 a.m.), the percentage of thermal discomfort reduction between 

the two cases is lower. In particular, there is a reduction by 20% of discomfort hours 

for overheating, while thermal discomfort hours for undercooling are almost the 

same. In detail the percentage of time when the windows is opening in the Case 2 is 

higher than 35% than in the Case 1. 

Tab. 4.7. Thermal Discomfort Results 

Case 

Thermal discomfort 
(without considering user presence) 

For overheating For undercooling Total 

Hours % Hours % Hours % 

Case1 606 40.6 % 48 3.2 654 43.8 

Case2 159 8.8 % 50 3.3 209 14.0 

Case 

Thermal discomfort 
(considering user presence) 

For overheating For undercooling Total 

Hours % Hours % Hours % 

Case1 378 25.5 26 1.7 414 27.2 

Case2 82 5.5 38 2.5 120 8.0 
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It can be noted how the discomfort percentage of the Case 1 are higher than those 

of the same case view in the previous study. This difference is due to the different pe-

riod of simulation taken into account: indeed, in the previous study the considered pe-

riod of simulation (1 June - 30 September), i.e. 2928 hours, is longer than in this 

study (July-August), i.e. 1488 hours. Hence because of the thermal discomfort hours 

are mainly in July and August, in the previous study, where the discomfort hours are 

divided for the whole summer period, the discomfort percentages are lower. 

Moreover, Fig. 4.8 shows the internal temperature profiles obtained in the two op-

erative cases and the lower and upper temperatures according to EN 15251. It results 

that the control logic of optimized ventilation activation of Case 2 determines an inter-

nal temperature lower than the Case 1. More in detail, the temperature profile of the 

optimized case is almost contained in the optimal range of temperature defined by the 

adaptive thermal comfort theory, justifying the reduction of overheating discomfort. 

 

 

Fig. 4.8. Indoor and optimal range temperature 
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In this second study a control strategy is defined, based on: i) the thermal comfort 

analysis according to the adaptive thermal comfort theory (EN15251, 2007); ii) an 

on-off control strategy for natural ventilation to determine a significant reduction of 

overheating discomfort. The optimization strategy, determining the optimal ranges of 

time to close and open the windows, showed how the integration of suitable control 

logics increases the potentialities of natural ventilation strategies to the improvement 

of energy and thermal performance of buildings. 

 

4.3.3. Sensitivity of the natural ventilation control strategies to different weather 

conditions 

In a third study (Rinaldi & Iannone, 2016), the optimized control strategy of win-

dows opening described previously have involved different scenarios. In particular, 

according to different climate conditions and orientations of the case study, the ob-

jective of the study is to value how the optimized thresholds to open and close the 

windows vary to realize a natural ventilation flows for indoor thermal comfort.  

The case-study building is located in four Italian cities (Bolzano, Gioia del Colle, 

Bari and Palermo), characterized by different summer conditions and cooling degree 

days (c.d.d.). The c.d.d. are calculated only by adding the positive differences be-

tween the hourly outdoor temperature and the conventional indoor temperature of 

26°C during the period of July and August: Bolzano (BZ) (c.d.d.=765), Gioia del Colle 

(GDC) (c.d.d.=982), Bari (BA) (c.d.d.=1180), and Palermo (PA) (c.d.d.=1497). For 

each case, two orientations of the building were considered, i.e. windowed sides fac-

ing to North-West and South-East and then to North-East and South-West. In detail, in 

the first sets of simulations the windowed sided facing to N-W and S-E, as shown in 

the Fig. 4.1, then it is hypothesized to turn the building of 90° clockwise, with the 

windowed sides facing to N-E and S-W. 

For these eight cases, the designed energy efficiency solutions consist in an on-off 

control strategy of natural ventilation, by opening and closing windows at suitable 

time intervals according to (4.1) and (4.2) where the values of ∆1 and ∆2 are deter-
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mined through the PSO optimization strategy with the aim of minimizing the thermal 

discomfort according to (4.3). 

Results 

Adaptive thermal comfort simulations are performed in order to value the effective-

ness of window opening control logic in the different contexts.  

In particular, the analysis are referred to the Bedroom2, that as reported in the pre-

vious studies, is resulted the most uncomfortable room in every case. For this reason 

the indoor temperature of Bedroom2 is considered in (4.1) and (4.2) to control the 

window openings of all the windows of the dwelling. Furthermore, the adaptive ther-

mal comfort results refer to this room.  

In this study, differently by the previous study, the variation ranges of ∆ͳ and  ∆ʹ 

are increased in order to exploit more the benefits for summer cooling of entrance of 

cooler air flow from outdoor: 

 ∆ͳ ∈ ℝ and ∆ͳ ∈[-6°C, 6°C]    

 ∆ʹ ∈ ℝ  and ∆ʹ ∈[-10°C, 0°C]. 

The period taken into account for the simulation is July-August (62 days). It should be 

stated that in the thermal comfort simulations, only the hours with users presence in 

Bedroom2 (6 p.m. to 8 a.m.) are taken into account, i.e. 868 total occupation hours.  

For the eight cases (four different locations and two orientations of the building), 

two control strategies (named Case1 and Case2) are compared, for a total of 16 sim-

ulations: 

 Case 1: the control rules (4.1) and (4.2) are applied with ∆ͳ = Ͳ°C,  ∆ʹ=-3°C (the strategy adopted in (Fanti, et al., 2016); 

 Case 2: the control rules (4.1) and (4.2) are applied with ∆ͳ  and  ∆ʹ de-

termined by the PSO, after M = ͳͲ consecutive iterations exhibiting the 

same values of the objective function or however at the end of optimization 

running iterations. 
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The Tab. 4.8 reports the thermal discomfort results for the different cities and the 

different exposure of the Bedroom2.  

In this work, the thermal discomfort percentage are evaluated in relation to the oc-

cupation hours of the Bedroom2 during the July-August period (868 hours). 

Comparing Case 1 and Case 2 of the eight cases, it is apparent that there is a sig-

nificant reduction of the total discomfort hours. In particular, in function of cooling 

degree days, the window opening control logics allow even more improvement of 

thermal comfort conditions.  

In the building located in Palermo, regardless the windows sides orientation, there 

is the maximum reduction of thermal discomfort hours for overheating (about 68%). 

In the case study located in Bolzano, Gioia del Colle and Bari the maximum reduction 

percentages of thermal discomfort for overheating are respectively 29% and 65% and 

66%. It demonstrates how in the warmest climate the passive cooling strategy can 

significantly improve the indoor thermal conditions and consequently reduces the en-

ergy consumptions for cooling.  

In each simulations, the optimization logics of Case2 don’t determine variations of 

thermal discomfort for undercooling. As expected, the building located in Bolzano, the 

coldest climate between the examined cases, presents the most discomfort condi-

tions for undercooling. 

As regarding the windowed sides orientation of the Bedroom2, because the occu-

pation hours of this room starts from afternoon to early morning (6 p.m. to 8 a.m.) 

and the orientation without solar shading is not optimal, in all the cases facing to S-W 

it results an increase of thermal discomfort conditions for overheating compared to S-

E exposure. Because of the exposure S-W, regardless the location variations, by in-

creasing the indoor temperatures, the gap between the values of indoor temperature 

lower than optimal temperature decreases.  

Hence, the control logic of (4.1) can start with lower values (in absolute values) of 

∆1 as resulted in the Tab. 4.8. On the contrary, ever more high ∆2 values in (4.2) are 

necessary to reduce the thermal discomfort hours.  
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Tab. 4.8. Thermal discomfort results for different cities and orientations 

City Exposure Case ∆૚ ∆૛ 

Overheating 

(Nh) 

Undercooling 

(Nc) 

Total  

(N) 

Hours % Hours % Hours % 

BZ 

S-E 
Case1 0.00 -3.00 98 11.2 87 10.0 185 21.3 

Case2 -2.55 -5.20 43 3.8 89 10.1 132 15.1 

S-W 
Case1 0.00 -3.00 127 14.6 75 8.6 202 23.3 

Case2 -1.70 -5.50 88 10.1 77 8.8 165 19.0 

GDC 

S-E 
Case1 0.00 -3.00 402 46.3 43 4.9 445 51.2 

Case2 -1.42 -5.50 101 11.6 65 7.4 166 19.1 

S-W 
Case1 0.00 -3.00 424 48.8 37 4.2 461 53.1 

Case2 -1.35 -6.15 99 11.4 60 6.9 159 18.3 

BA 

S-E 
Case1 0.00 -3.00 378 43.5 26 2.9 404 46.5 

Case2 -1.65 -7.50 132 15.2 28 3.2 160 18.4 

S-W 
Case1 0.00 -3.00 401 46.2 18 2.0 419 48.2 

Case2 -1.59 -7.93 111 12. 7 31 3.5 142 16.4 

PA 

S-E 
Case1 0.00 -3.00 658 75.8 16 1.8 674 77.6 

Case2 -0.93 -8.50 275 31.6 16 1.8 291 33.5 

S-W 
Case1 0.00 -3.00 673 77.5 14 1.6 687 79.1 

Case2 -0.58 -8.91 186 21.4 35 4.0 221 25.4 

 

The Fig. 4.9 and Fig. 4.10 put in relations the optimal values of ∆1 and ∆2 with the 

cooling degree days of the four climate conditions, respectively for S-E orientation 

and the S-W orientation. In particular, regardless of orientation, in function of c.d.d. 

there is almost a linear increase (R2=0.91 for the S-E orientation; R2=0.94 for the S-

W orientation ) of ∆2 values and a linear reduction (R2=0.79 for the S-E orientation; 

R2=0.74 for the S-W orientation) of ∆1 values.   
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Fig. 4.9. Relation between ∆1 and ∆2 values and the cooling degree days for the S-E orientation. 

 

Fig. 4.10. Relation between ∆1 and ∆2 values and the cooling degree days for the S-W orientation. 
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More in detail, to justify this trend, by analyzing the indoor, outdoor and optimal 

temperatures for the coldest and warmest climate conditions corresponding to Bolza-

no and Palermo (Fig. 4.11) it results how: 

 except the first two weeks of July, the indoor temperature of Case1 is high-

er than the optimal temperature (blue line). Hence the condition (4.1) for 

window opening is usually verified and ∆1 values different from zero are 

necessary only to reduce the thermal discomfort conditions for the first 

weeks of July. It justifies how, for the case studies located in Palermo, the 

∆1 values of the Case2 (Tab. 4.8) are the lowest between the four cases 

(<1°C) because the optimal temperature is higher than indoor temperature 

at most of 1°C. 

 the outdoor temperature is usually lower than the indoor temperature (red 

line). In particular, this difference is maximum (in absolute value) for Bol-

zano. But since the difference Tind-Topt (blue line) is minimum for Bolza-

no, for the control logic (4.2) high values of ∆2 are not allowed to not in-

crease the discomfort conditions for undercooling. Instead for Palermo, 

where the difference Tind-Topt (blue line) is higher, the undercooling risk is 

minimum and hence higher values of ∆2 are allowed.  

This work shows the benefits of the optimized natural ventilation control logics for 

the improvement of thermal performance of buildings, especially in the warmest cli-

mate.  

The designed control logics, adaptive to different climate conditions, allow the re-

duction of thermal discomfort hours for overheating of about 60 %, by changing the 

set-point temperatures for the control logics of window opening in relation to the 

c.d.d. values. In particular for the warmest climate, in order to improve the thermal 

comfort conditions, it is necessary allowing the window opening more frequently (i.e. 

with higher values of ∆1 and ∆2) in order to exploit the positive effect of natural venti-

lation for passive cooling. 
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Fig. 4.11. Indoor, outdoor and optimal temperatures for Bolzano and Palermo (Case1, S-E orientation). 
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4.3.4. Implementing solar shading system and optimizing the natural ventilation 

control strategies for passive cooling 

While in the previous studies none solar shading system are considered, in Rinaldi 

et al. (Rinaldi, et al., 2016) solar shading system are introduced to evaluate the im-

pact on the proposed BA strategy for natural ventilation. 

 In particular, rolling window shutters are considered and ruled on the basis of the 

shading factor (s.f.) that represents the percentage of opaque area due to the shading 

respect to the glazing surface of the window. Regarding the shading system, the roll-

ing window shutters are typical of local buildings especially for the construction 

postwar period of the examined case study. Then, the airflow opening areas are modi-

fied according to the specified shading percentages.   

In detail, two operative conditions that consider the presence or absence of users 

are studied: 

 s.f. = 0.25 (presence of users) 

 s.f. = 0.75 (absence of users). 

This assumption simulates in deterministic way the occupant behaviors, who close 

rolling window shutters by obtaining a shading percentage of the windows equal to 

75 % (s.f.= 0.75) in unoccupied rooms, and a shading percentage equal to 25 % 

(s.f.= 0.25) to avoid dark rooms when users are present. Then, the airflow opening 

areas are modified according to the specified percentages.   

In this new configuration the control logics of window opening are optimized to 

minimize the thermal discomfort. Moreover, an active cooling system is introduced to 

assess the effects of the proposed control logics on the energy consumption.  

Results 

As in the previous works, the adaptive thermal comfort simulations and results re-

fer to Bedroom2, the most uncomfortable room. Then, the indoor temperature T୧୬ୢ୭୭r 

of Bedroom2 is considered to control the openings of all the dwelling windows.  
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The considered period for the simulations is July-August hence the simulation runs 

are of � =1488 hours with hourly time step t. The simulation results take into ac-

count only the hours with users presence in Bedroom2 for a total of �o= 868 hours.  

The simulations are executed considering three cases: 

 Case 0: natural ventilation only for IAQ at fixed hours;  

 Case 1: ventilative cooling under control rules (4.1) and (4.2) with ∆1= 

0°C, ∆2= -3°C; 

 Case 2: ventilative cooling under control rules (4.1) and (4.2) with optimal 

values of ∆1 and ∆2.  

More precisely, in Case 0 the windows are opened only at certain hours (8 a.m. - 

10 a.m.; 1 p.m.- 2 p.m.; 8 p.m. - 9 p.m.) during the activities of preparing and cook-

ing foods and of household cleaning. 

Moreover, in Case 1, in addition to the natural ventilation for IAQ of the Case 0, dur-

ing the other daily hours ventilative cooling is granted under control rules (4.1) and 

(4.2), where the values of ∆1 and ∆2, as previously specified, are fixed a priori on the 
basis of the what-if analysis results obtained in the first study (Dell’Osso, et al., 

2015).  

Furthermore, Case 2 uses the optimal values obtained by the proposed co-

simulation and optimization strategy: the optimal objective function values are ob-

tained with ∆1= -1.07 °C and ∆2= -7.51°C corresponding to the 16th PSO iteration 

(as it is highlighted in Fig. 4.12 and Fig. 4.13).  

In particular, Fig. 4.12 shows the optimization running: the iterative optimization 

procedure starts assigning random values to ∆1 and ∆2. According to the values of 

∆1 and ∆2, the set-point temperature for the window opening activation in (4.1) and 

(4.2) varies.  

In Fig. 4.13 it is possible to notice how the discomfort conditions vary from a max-

imum of about 700 hours to a minimum of about 80 hours.  
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Fig. 4.12. The optimization running 

 

Fig. 4.13. The total number N of discomfort hours in function of ∆1 and ∆2. 

Furthermore, Fig. 4.12 and Fig. 4.13 highlight how function Nሺ∆ͳ, ∆ʹሻ is more 

sensitive to the variations of ∆2 with respect to the variations of ∆1. This result is due 
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to the effects of ∆2 in (4.2): increasing the absolute value of ∆2 allows ventilation al-

so in the case of lower outdoor temperatures and consequently it enhances passive 

cooling. 

The results of the simulations are compared by computing the following perfor-

mance indices: 

 N୦ୣୟ୲, number of discomfort hours for overheating in �o 

 Nୡ୭୭୪ , number of discomfort hours for undercooling in �o 

 N, total number of discomfort hours in �o 

 N୦ୣୟ୲/ �o∙100, percentage of discomfort hours for overheating 

 Nୡ୭୭୪ /�o ∙100, percentage of discomfort hours for undercooling 

 N / �o∙100, percentage of discomfort hours. 

The computed performance indices are reported in Tab. 4.9.  

Comparing Case 1 and Case 2 with respect to Case 0, Fig. 4.14 and Tab. 4.9.  

show that the natural ventilation control logics allow significant reductions of the total 

thermal discomfort hours. The total thermal discomfort percentage moves from 32.9 

% (Case 0) to 13.3 % (Case 1) and to 8.7 % (Case 2). 

In particular the reduction of total discomfort hours depends from the overheating 

discomfort conditions that decreases about 65 % in Case 1 and about 81 % in Case 2 

with respect to Case 0. On the other hand, the natural ventilation control logics do not 

determine variations of thermal discomfort for undercooling.  

In order to value the effectiveness of window opening control logic on the energy 

consumptions, the three cases previously examined are performed by adding an ac-

tive cooling system. The cooling system is switched-on in each room when �ܶ௡ௗ௢௢�ሺݐሻ>26° according to the scheduled occupancy shown in Tab. 4.2. Hence, 

the energy E needed for cooling referred to Bedroom2 is reported in Tab. 4.9 and Fig. 

4.14 for the three cases.  
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Tab. 4.9. Thermal comfort and energy needs for cooling results. 

Case 

Thermal discomfort (no active system) Energy needs for cool-
ing        

(with active system on) Overheating Undercooling Total ����� % ����� % ���� % E (kWh) ∆% 

Case 0 262 30.2 24 2.7 286 32.9 178 - 

Case 1 91 10.4 25 2.8 116 13.3 134 -24.5 

Case 2 49 5.6 27 3.1 76 8.7 121 -32.1 

 

 

 

Fig. 4.14. Adaptive thermal comfort and energy results. 

The results show how the proposed passive strategy for window opening allows 

reducing of the energy needs, that in Case 1 are reduced of 24.5% and in Case 2 of 

32.1 % respect to Case 0. 

Regarding the set-point temperature for activation of cooling system, a fix 26°C is 

chosen as the standard approach in literature. However in the following the chapter, in 

order to better taking into account the occupant behavior, the threshold of cooling ac-

tivation is set according to adaptive thermal comfort theory. 
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Chapter 5 

Optimizing BEMS for passive cooling, modeling the 

occupant behaviors towards an agent-based oriented 

approach  

The examined case studies of the Chapter 4, simulating the occupant behavior in 

deterministic way through defined schedules, showed the benefits in terms of thermal 

comfort and energy needs reduction of the designed control logics of window open-

ing.  

In addition, while in the previous chapter the thermal comfort analysis and the en-

ergy needs for cooling are referred to the most discomfortable room, in this chapter in 

order to value the thermal comfort situations and the energy needs for cooling for the 

whole apartment, the optimization adopts the Long-term percentage of dissatisfied ሺLPDሻ index. This long-term thermal discomfort index quantifies predicted thermal 

discomfort over a calculation period, by a weighted average of discomfort over the 

thermal zones of a given building and over the time in a given calculation period. 
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Furthermore, with the aim of designing BEMS, adaptable to occupant’s actions 

and satisfaction, the occupant behaviors is modeled with more detail. In this manner 

there are two positive aspects: there is an improvement of building performance and, 

by limiting the thermal discomfort situations, there is a reduction of the impact of oc-

cupant behavior, because the occupants actions will be less.  

In this work the indoor temperature is one of the main parameter both to control 

the BEMS and both to simulate the occupant behaviors. In detail the designed BEMS 

to control window opening and solar shading aims to reduce the indoor temperature 

in order to reduce the usage of active system by occupant. Indeed, in accordance to 

the results of the questionnaire survey described in the Chapter 3 (see Fig. 3.11), in 

summer in the most ancient buildings, where the indoor temperature values are high 

due to low energy efficiency of buildings, the energy consumptions are higher be-

cause occupants more often turn on the cooling system to satisfy own thermal com-

fort. 

In this chapter, referring on the same Italian dwelling with technological/typological 

features of sixties buildings, and whose methods and control logics are defined in the 

previous chapter, several studies are presented, where the occupant interactions with 

the building system (in particular regarding the window and solar shading open-

ing/closing, turning on the air conditioner) are modeled in a probabilistic and multi-

agent approach.  

The comparison between the models where the occupant behavior is assumed in 

deterministic way and in a probabilistic and multi-agent approach, it allowed to as-

sess the impact of human behavior on building performance. Then, the optimization 

of BEMS for window opening and shading closing enabled to minimize the thermal 

discomfort situations and the energy needs for cooling.  

The ABM of occupant behaviors is implemented in the energy software simulation 

(TRNSYS), based on algorithms deduced by field investigations in real buildings. A 

co-simulation architecture is created between TRNSYS (building-HVAC model), TRN-
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FLOW (building air flow network), MATLAB (PSO optimization) and DAYSIM (visive 

analysis).  

 

5.1. Modeling the Occupant Behaviors by means of stochastic and to-

wards an Agent-Based Oriented Approach 

In this section in order to design BEMS that respond to occupant’s actions and 

preferences, a more realistic occupant behavior is simulated. In particular the thesis 

focused on the adaptive behaviors of residential occupants during the warm season.  

Indeed, several studies in literature (Nicol, 2001), (Nicol & Humphreys, 2004), (Rijal, 

et al., 2007) found that occupants have a natural ability to adapt to the environmental 

climatic conditions by changing the clothes, by increasing the ventilation, by activat-

ing shading system, etc. In particular, after field monitoring studies, they defined  

probabilistic models for actions where the occupant controls depended on the out-

door and indoor temperature.  

In this thesis, towards a multi agent-based model, the modeling of occupant be-

haviors is considered in a simplified agent-based approach. In particular, assuming 

only the thermal stimuli as driven forces for occupant actions, one autonomous agent 

(i.e. one occupant) is only considered and hence there is not interaction with other 

occupants but only with the built environments. The agent is in a specific state at a 

specific time during the simulation according to fixed schedule of daily occupation. 

Concerning the daily occupation, it is assumed a “fixed schedule” and different for 

each room in function of plausible occupations by users. 

Fig. 5.1 shows the decision making process of occupant. The OODA (observe, ori-

ent, decide, and act) loop is used to explain the concept of the ABM decision making 

process. In detail, the agent (i.e. the occupant) make several actions:  

1. observe: the agent understands its surrounding, e.g. climatic conditions and 

given space. 



 136 

2. orient: then agent evaluates its agent parameters and evaluates behavior op-

tions. 

3. decide: based on its level of thermal comfort, the agent makes behavior deci-

sions to address comfort dissatisfaction. 

4. act: the agent communicates with an external simulator to calculate the be-

havior impact on energy use and comfort level. 

In detail, with object of minimize thermal discomfort hours according to EN15251 

(EN15251, 2007), in reference to occupied hours, in each room the internal tempera-

ture  is calculated and compared with the adaptive comfort temperature to value 

thermal discomfort conditions. If the  T୧୬ୢ୭୭r >  Tୡ୭୫୤୭r୲ + ͵K then the state is 

‘‘hot’’, if   T୧୬ୢ୭୭r <  Tୡ୭୫୤୭r୲ − ͵K then the state is ‘‘cold’’. In the other cases there 

are thermal comfort conditions. In order to reach thermal comfort situations, the agent 

may make several adaptive actions (see Tab. 5.1), that in this thesis are restricted to: 

- window opening/closing; 

- shading system closing; 

- air conditioning (AC)activation. 
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Fig. 5.1. Decision Making Process by occupants. 

Tab. 5.1. Adaptive behavior action. 

Condition Status 

�ܶ௡ௗ௢௢� >  ௖ܶ௢௠௙௢�௧ +  ܭ͵

Adaptive probability to open window 

Adaptive probability to close blinds 

Adaptive probability to turn on AC 

�ܶ௡ௗ௢௢� <  ௖ܶ௢௠௙௢�௧ −  ܭ͵

Adaptive probability to close window 

Adaptive probability to open blinds 

Adaptive probability to turn off AC 

௖ܶ௢௠௙௢�௧ − ܭ͵ < �ܶ௡ௗ௢௢� <  ௖ܶ௢௠௙௢�௧ +  No action ܭ͵
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Furthermore, based on stochastic algorithms in literature, the probability of make 

the several considered adaptive actions is calculated (see following paragraphs). 

There is not a hierarchy of actions, but it depends on stochastic algorithm described 

in the following paragraphs for the several occupant behaviors. To decide whether an 

action will occur, the calculated probability of opening windows, closing blinds and 

turn on AC, are compared to a random number (݌�௔௡ௗ௢௠) between 0 and 1 to repre-

sent a single throw binomial function.  

In particular if the indoor temperature is “hot” (see Tab. 5.1): 

- the window will be open if the random number is less than the probabil-

ity of the window being open; 

- the blind will be closed if the random number is less than the probability 

of the blind being closed; 

- the AC will be on if the random number is less than the probability of the 

AC being on; 

- no action will be taken if the window is just open, the blind is closed and 

the AC is on. 

If the indoor temperature is “cold”: 

- the window will be closed if the random number is greater than the 

probability of the window being open; 

- the blind will be open if the random number is greater than the probabil-

ity of the blind being closed; 

- the AC will be off if the random number is greater than the probability of 

the AC being on; 

- no action will be taken if the window is just closed, the blind is open and 

the AC is off. 

When the occupant is ‘‘comfortable’’ (neither ‘‘hot’’ nor ‘‘cold’’), then no action is 

taken. 

The stochastic algorithm and the condition reported in the Tab. 5.2 are implement-

ed in TRNSYS to allow control of windows, blind and AC. Daily values for running 
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mean outdoor temperature and the comfort temperature are calculated as the stand-

ard EN15251 (Olesen, 2007).  

In detail the control system manages the window opening factor (o.f.), the shading 

factor (s.f.) and AC activation which, in the model, have been set respectively to 0 or 

1 with the hypothesis of a fully closed/open window, to 0 or 0.7 for a fully 

open/partial closed shading, and to 0 or 1 for regarding the off/on AC activation. In 

particular, regarding the shading system, when the conditions for the closing of the 

blind are satisfied (s.f. =0.7), the visual comfort in each room is verified by checking 

that the average illuminance in the center of the room is greater than 200 lux, by 

TRNSYS-DAYSIM co-simulation. Otherwise the blind are fully open (s.f.=0). 

Furthermore, while opening window and closing blind is a possible action of the 

occupant in function of the control rules above cited, if there is the activation  of the 

air conditioning system, it is hypothesized that the occupant closes the window to 

avoid the warm air inlet. 

 

Tab. 5.2. Adaptive behavior by occupant. 

Condition Action 

�ܶ௡ௗ௢௢� >  ௖ܶ௢௠௙௢�௧ +  ܭ͵

�௡ௗ௢��݌ >  ௔௡ௗ௢௠�݌ 
open window 

(opening factor changes from 0 to 1) ݌௕௟�௡ௗ >  ௔௡ௗ௢௠�݌ 
Close blind 

(shading factor changes from 0 to 0.7) ݌�� >  ௔௡ௗ௢௠�݌ 
Turn on AC 

(activation changes from 0 to 1) 

�ܶ௡ௗ௢௢� <  ௖ܶ௢௠௙௢�௧ −  ܭ͵

�௡ௗ௢��݌ <  ௔௡ௗ௢௠�݌ 
close window 

(opening factor changes from 1 to 0) ݌௕௟�௡ௗ <  ௔௡ௗ௢௠�݌ 
Open blind 

(shading factor changes from 0.7 to 0) ݌�� <  ௔௡ௗ௢௠�݌ 
Turn off AC 

(activation changes from 1 to 0) 
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5.1.1. Opening the window  

In this study, the occupant action of window control (opening and closing the win-

dow in the apartment) is simulated based on Rijal model (Rijal, et al., 2007), where 

the prediction of the probability of opening or closing is described as a function of in-

door and outdoor temperature.  

Although in literature other studies (Andersen, et al., 2011), (Hong, et al., 2016) 

have suggested that indoor stuffiness, monitored by the carbon dioxide (CO2) concen-

tration levels, or wind speed and direction, relative humidity and rainfall (Haldi & 

Robinson, 2009) are important driver for window opening behavior, due to limitations 

for running simulations, only these parameters (indoor and outdoor temperature) are 

considered, reserving for future developments the use of more detailed algorithms. 

 It is assumed that the window opening behavior was largely governed by the 

quest for comfort. The behavioral actions include: opening the window when the oc-

cupant feels hot or closing the window when feeling cold. 

In particular, in Rijal (Rijal, et al., 2007) the data about window opening are based 

on a logistic regression governed by the logit relationship: 

 

ሻ݌ሺݐ��݋݈                                     = log  ሺ ௣ଵ−௣ ሻ = ܾܶ + ܿ                                 (5.1) 

whence 

 

ሺܶሻ݌                                                   =  ௘ሺ್೅+೎ሻଵ+௘ሺ್೅+೎ሻ                                             (5.2) 

 

 p is the probability that the window is open; 

 T the temperature (indoor or outdoor); 

 b the regression coefficient for T and c is the constant in the regression 

equation.  

According to Rijal investigation results, the probability of the window being open p 

is calculated from the operative temperature (T୭୮ሻ and the outdoor temperature ሺT୭୳୲  ሻ using the logit function derived from the survey data (5.3).  
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ሻ݌ሺݐ��݋݈                        = Ͳ.ͳ͹ͳ × ௢ܶ௣  +  Ͳ.ͳ͸͸ × ௢ܶ௨௧  − ͸.Ͷ (5.3)               ܭ 

 

In this work the operative temperature (T୭୮) is substituted by the indoor tempera-

ture ሺT୧୬ୢ୭୭r ሻ.  

 

5.1.2. Closing the blind  

Regarding the closing of the blinds by occupants, this thesis focuses only on the 

influence of thermal stimuli, i.e. both internal and external temperature, as driven 

force for the occupant action. In particular, the visual comfort is not considered as 

"driven force" for the occupant behaviors, because in the residential buildings the risk 

of glare and illuminance issues may be less significant than in the offices. Indeed, in 

the housings the occupants do not have a “fixed place” in each room where they 

spend most of the day, as instead happens in the offices where the occupant usually 

stayed in a fixed place, i.e. the workplane. Hence the visual comfort issue in the offic-

es (especially evaluated at the workplane where the employees work) is more signifi-

cant than the residential building where the visual comfort is usually evaluated 

through the average illuminance of each room. In this work, however a check of the 

average illuminance of each rooms is calculated in order to verify the minimum re-

quired limits of illuminance.  

Hence, in order to simulate the closing blind action by occupant due to overheating 

discomfort, the probability function obtained in Haldi (Haldi & Robinson, 2008) is 

used, where a multiple logistic regression was used to obtain probability distributions 

depending jointly on indoor and outdoor temperature derived from the survey data: 

 

ሺ ݌                              �ܶ௡, ௢ܶ௨௧ሻ = ௘ሺೌ�೙೅�೙  + ೌ೚ೠ೟ ೅೚ೠ೟  + ್ሻଵ+௘ሺೌ�೙೅�೙  + ೌ೚ೠ೟ ೅೚ೠ೟  + ್ሻ                                (5.4) 

          where: 

 ݌ is the probability that the blind is closed; 

 �ܶ௡, ௢ܶ௨௧ are the indoor and outdoor temperature; 
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 ܽ�௡, ܽ௢௨௧ are the regression coefficients for �ܶ௡, ௢ܶ௨௧ and b is the constant 

in the regression equation.  

In detail, according to Haldi (Haldi & Robinson, 2008), from the multiple logistic 

regression, it resulted that the regression coefficient and the constant of the regres-

sion are equal to: 

 ܽ�௡ = Ͳ.ͶͲ͹; 

 ܽ௢௨௧ = Ͳ.ͲͳͲ; 

 ܾ =  −ͳͳ.ͳͷ. 

 

5.1.3. Turn on the air conditioner  

Concerning the occupant action of turning on the air conditioner (AC) when feel-

ing hot, a stochastic model was used to describe the probability of turning on AC as a 

function of indoor air temperature. In detail, this thesis implement the stochastic func-

tion obtained in Ren (Ren, et al., 2014) and Hong (Hong, et al., 2015) where by 

means of data from field study, a probabilistic model was found to set up the AC us-

age for residential buildings. The stochastic model was an action-based model that 

included multiple factors with the ability to explain the effect of different behavioral 

patterns. In particular the probability of turning the AC on when occupied increasing 

as the indoor temperature increases. In detail by means of a Weibull distribution, Ren 

found that: 

ሺ ݌                            �ܶ௡ሻ = {ͳ −  �−ቀ ೅�೙−ೆ� ቁ� ∆௧, �ܶ௡ > ܷͲ                                 �ܶ௡ < ܷ                                (5.5) 

          where: 

 ݌ ሺT୧୬ሻ  is the probability to turn on the AC by occupant; 

 T୧୬ is the indoor temperature; 

 U is the threshold minimum temperature; 
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  k is a constant representing the slope of the probability curve; 

 ∆ݐ is the time interval; 

 ܮ  represents the difference between the maximum and minimum comfort 

range. 

In particular, the coefficients have been determined by Ren, and respectively: 

 U has been assumed equal to the overheating temperature according to 

EN15251, i.e. Tୡ୭୫୤୭r୲ + ͵K; 

 k equal to 8; 

 ∆ݐ equal to 60 minutes; 

 ܮ equal to 6, obtained considering the comfort range according adaptive 

thermal comfort theory, i.e. Tୡ୭୫୤୭r୲ − ͵K < T୧୬ୢ୭୭r < Tୡ୭୫୤୭r୲ + ͵K. 
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5.2. Optimizing natural ventilation and solar shading control strategies 

by minimizing thermal discomfort  

In this section, in order to value the thermal comfort situations and the energy 

needs for cooling for the whole apartment (and not more only limited to the most dis-

comfortable room), the optimization adopts the Long-term percentage of dissatisfied ሺLPDሻ index defined in Carlucci (Carlucci, 2013), (Carlucci, et al., 2015). This long-

term thermal discomfort index quantifies predicted thermal discomfort over a calcula-

tion period, by a weighted average of discomfort over the thermal zones of a given 

building and over the time in a given calculation period: 

 

                             LPD =  ∑ ∑ ሺ୮z,t Zz=భTt=భ × LDz,tሻ∑ ∑ ሺ୮z,t Zz=భTt=భ ሻ                                          (5.6) 

 

where 

 ݐ is the counter for the time step of the calculation period; 

 ܶ is the last progressive time step of the calculation period; 

 � is the counter for the zones of a building; 

 ܼ is the total number of the zones; 

 ݌�,௧ is the zone occupation rate at a certain time step; 

 ܦܮ�,௧ is the Likelihood of dissatisfied inside a certain zone at a certain time 

step (one hour). 

 

The Likelihood of dissatisfied (LD) is an analytical function that estimates “the se-

verity of the deviations from a theoretical thermal comfort objective, given certain 

outdoor and indoor conditions at specified time and space location” (Carlucci, 

2013). Since the theoretical thermal comfort objective depends on the reference com-

fort model, the formulations of LD for the ASHRAE adaptive thermal comfort model 

developed by Carlucci: 
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                                  LD =  ୣబ.బబ8 ×  ∆θ౥౦మ +బ.రబల × ∆θ౥౦ − య.బఱబଵ+ୣబ.బబ8 ×  ∆θ౥౦మ +బ.రబల × ∆θ౥౦ − య.బఱబ                               (5.7) 

 

where ∆θ୭୮ is the absolute value of the difference between the indoor operative 

temperature and the optimal comfort temperature calculated accordingly to the 

ASHRAE adaptive model.  

Now the objective of the research is to optimize the thresholds to open and close 

the windows and the blinds in order to minimize the ሺLPDሻ. Moreover, assuming the 

same control logics (5.1), (5.2), the PSO was adopted to choose the optimal thresh-

old temperature for window opening and closing blinds, by minimizing the thermal 

discomfort.  

 Moreover, denoting respectively by T୧୬ୢ୭୭rሺtሻ and T୭୳୲ୢ୭୭rሺtሻ with t ∈ � the 

room and external temperature, the designed control logic is applied by defining an 

on-off control condition, by opening and closing windows and blinds at suitable time 

intervals (Tab. 5.3). More precisely, the control logics is defined as follows: 

Tab. 5.3. Control logics of window and blind by BEMS. 

Status Condition 

window 

Opening factor = 0.22 or 0.39 

 T୧୬ୢ୭୭rሺtሻ >  T୭୮୲୧୫ୟ୪ሺtሻ + ∆ͳ  T୧୬ୢ୭୭rሺtሻ + ∆ʹ < T୭୳୲ୢ୭୭rሺtሻ < T୧୬ୢ୭୭rሺtሻ 

Opening factor = 0 

Opening factor = 0 otherwise 

blind 
shading factor = β 

 T୧୬ୢ୭୭rሺtሻ >  T୭୮୲୧୫ୟ୪ሺtሻ + ∆ͳ  T୧୬ୢ୭୭rሺtሻ + ∆ʹ < T୭୳୲ୢ୭୭rሺtሻ < T୧୬ୢ୭୭rሺtሻ 

Shading factor =0 

shading factor = 0.0 otherwise 
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with: 

 ∆ͳ ∈ ℝ and ∆ͳ ∈[-10°C, 10°C];    

 ∆ʹ ∈ ℝ  and ∆ʹ ∈[-10°C, 0°C]; 

 β   ∈ ℝ  and β ∈[0, 1]. 

The goal of the designed control logic of BEMS is to have automation systems that 

by adapting to the occupant preferences and not by obstructing the free action and in-

teraction of the occupation on the built environment, they may improve the thermal 

comfort conditions and prevent the occupant actions. Indeed, differently by the occu-

pant behavior logics (see Tab. 5.2 Tab. 5.2) where the occupant action is possible only 

when there are discomfort conditions for overheating, i.e. T୧୬ୢ୭୭r <  Tୡ୭୫୤୭r୲ − ͵K, 

or undercooling, i.e. T୧୬ୢ୭୭r <  Tୡ୭୫୤୭r୲ − ͵K, the BEMS control logics are active 

first, i.e.  T୧୬ୢ୭୭rሺtሻ >  T୭୮୲୧୫ୟ୪ሺtሻ + ∆ͳ, before the indoor temperature reaches the 

thermal discomfort situations (Tab. 5.3.)  

Furthermore, the control logics of opening window and closing blind are active on-

ly when there is none action of the occupant, i.e. when the opening factor due to the 

actions of occupant is equal to 0 (window closed) or the shading factor is 0 (shading 

open). 

The values of ∆1, ∆2 and β are determined through the PSO optimization strategy 

with the aim of minimizing the thermal discomfort ሺLPDሻ during the occupation hours 

of each room:                                           F୭ୠ୨ =  minΔଵ,Δଶ,β[LPD]                                          (5.8)                             

Regarding the β values, in order to avoid an excessive partialization of the shading 

and to reduce the computational timing, five optimal shading configurations are con-

sidered for BEMS: β =0 (no shading); 0.25; 0.5; 0.75; 1 (total shading).  

The optimization running determined the optimal value of shading system (β) in 

order to reduce the thermal discomfort situations for overheating. Moreover, for each 

shading configuration the illuminance values have been calculated through the DAY-

SIM software in order to verify that these values are greater than 200 lux. Otherwise 

the shading status is reduced of 0.25. 
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5.3. The Co-Simulation Architecture 

In this section the co-simulation architecture is presented to combine the human 

behaviors simulation with building-HVAC system simulation and optimization goal for 

control logic of BEMS. 

In particular, in addition to what stated in the paragraph 4.2. regarding the descrip-

tion of TRNSYS software and PSO method, here the ABM for occupant behavior is 

implemented in TRNSYS software v.17. While in the studies reported in the previous 

chapter the occupant is simulated in deterministic way with fixed schedules, in this 

section the implementation of the occupant behaviors logics, described in the previ-

ous paragraphs, is obtained in TRNSYS by a calculator where the several equations 

(5.3), (5.4), (5.5), regarding the window opening, the blind closing and the turning on 

the AC, and the logics of occupant behaviors of are inserted (see Fig. 5.2.). The ex-

changed data as input/output between the several types in TRNSYS, according to the 

several equations subject to Tab. 5.3, are the: 

 opening factor (o.f.); 

 shading factor (s.f.); 

 AC status; 

 indoor temperature (tind); 

 outdoor temperature (tout). 

The DAYSIM software is used to perform daylight simulations in order to check 

that the shading factor (s.f.) obtained by TRNSYS calculator does not cause illumi-

nance values less than 200 lux. 

The optimization algorithms to solve (5.8) for the minimization of the long-term 

thermal discomfort index ሺLPDሻ are implemented in MATLAB and then coupled with 

the TRNSYS energy simulator. In this section MATLAB, implementing the PSO algo-

rithm, exchanges iteratively with TRNSYS the values of ∆ͳ, ∆ʹ and β to minimize 

(5.8). Such values are transmitted to TRNSYS-BEMS calculator (Fig. 5.2.) that im-

plements the control strategy of Tab. 5.3 to command the window opening and the 
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blind closing. Iteratively, the PSO algorithm evaluates the optimal values of the three 

decision variables ∆ͳ,  ∆ʹ and β in order to minimize the long-term thermal discom-

fort index ሺLPDሻ.  
5.3.1. RADIANCE and DAYSIM 

RADIANCE (G. Ward, 1989) is a software developed by Greg Ward at Lawrence 

Berkeley National Laboratory. It is able to predict internal illuminance and luminance 

distributions in complex buildings under arbitrary sky conditions.  

Radiance uses the back ray tracing approach that consist in following the light 

path (specular reflected, transmitted and refracted) from the reception point (eyes or 

sensors) into the scene to the light source. The latter “blends deterministic and sto-

chastic ray-tracing techniques” to reduce the number of traced rays. To further re-

duce the raytracing effort, the program incorporates interpolation and extrapolation 

schemes which allow to estimate the luminances at point of interest from the lumi-

nances of nearby points. In the practice it is considered the best and more flexible 

software for lighting simulation; in fact is used as calculation engine in the most light-

ing design software available. 

DAYSIM (DAYSIM, 2010) is a simulation tool that efficiently calculates annual il-

luminance/luminance profiles. DAYSIM is a RADIANCE-based daylighting analysis 

tool that has been developed at the National Research Council Canada and the Fraun-

hofer Institute for Solar Energy Systems in Germany. While RADIANCE has been pri-

marily developed to simulate luminances and illuminances under selected sky condi-

tions, DAYSIM uses the RADIANCE simulation algorithms to efficiently calculate illu-

minance distributions under all appearing sky conditions in a year. In order to calcu-

late annual illuminance profiles, one could in principle also use the standard Radiance 

programs and start thousands of individual raytracing runs for all sky conditions of 

the year. This approach is not practical as a Radiance simulation for a single sky 

condition can take hours so that an hourly annual simulation would literally require 

years of calculation time. To keep simulation times short, Daysim uses the Radiance 

algorithm coupled with a daylight coefficient approach. 
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Fig. 5.2. The co-simulation architecture with occupant behaviors modeling and daylight simulations. 
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5.4. Occupant behavior impact on building performance, comparing 

the deterministic and stochastic-ABM approach  

In order to value both the impact of the adaptive occupant behaviors on the ther-

mal comfort and on the energy consumptions for cooling, and the benefits of BEMS 

for natural ventilation control and solar shading, four cases are simulated (Tab. 5.4.). 

The period taken into account for the simulation is July-August (62 days).  

In particular, in the four cases it is hypothesized a free running mode for the cool-

ing system and hence the case studies are compared in terms of the long term per-

centage of dissatisfied index ሺLPDሻ. Then, in the same cases, the active cooling is in-

troduced and the several cases are compared in relation to the energy consumptions 

for cooling. In detail, in the Case 1.0 and Case 1.1. the occupant behaviors, referring 

to the window opening and blind closing, are considered in deterministic way, with 

fixed schedules. In the other two cases (Case 2.0 and Case 2.1) the occupant actions 

are simulated by means of a stochastic and agent-based model as described in the 

paragraph 5.1. Regarding the BEMS to control the window and shading status, while 

in the Case 1.0 and Case 1.2 there are not automation systems, in the other two cas-

es optimized control logics are found with optimal values of  ∆ͳ, ∆ʹ (for the Case 

1.1) and ∆ͳ, ∆ʹ and β (for the Case 2.1) with the objective function (5.8) of minimize 

the long term percentage of dissatisfied index ሺLPDሻ.   
Tab. 5.4. Simulated cases. 

Case 
Occupant behaviors 

BEMS control logics 
Approach Window status Shading status 

Case 
1.0 

Deter-
ministic 

Opening 

only for IAQ 

- s.f. = 0.25 
(presence of users) 

- s.f. = 0.75 
(absence of users). 

Not present 

Case 
1.1 

ventilative cooling under control 
rules (4.1) and (4.2) with opti-

mal values of ∆1 and  ∆2 

Case 
2.0 Stochas-

tic-ABM 
ABM according to Tab. 5.2 

Not present 

Case 
2.1 

BEMS according to Tab. 5.3 



 151 

Results 

Comparing Case 1.0 and Case 2.0 (Tab. 5.5), where the occupant is simulated re-

spectively with deterministic and ABM approach, there is a significant increasing of 

the total discomfort conditions evaluated with the LPD index.  

In particular, the evaluation of the occupant behaviors by means of a stochastic-

ABM approach has a significant impact on building performance, leading to in-

crease by 35 % of the discomfort situations for the overheating between the two cas-

es. This is due to the occupant behaviors modeling assumed in the Case 2.0, regard-

ing the window and shading status. 

Tab. 5.5. Thermal discomfort and energy needs for cooling. 

Case 

Long term percentage of dissatisfied 
index ሺ���ሻ 

(no active system) 

Energy needs for cooling 

(with active system) 

% E (kWh/m2) 

Case 1.0 36 90 

Case 2.0 52 110 

Case 1.1 22 61 

Case 2.1 32 77 

 

In detail, in the Case 2.0, the probability of window opening by occupant is in rela-

tion to the outdoor and indoor temperature according to (5.3) (see Fig. 5.3.), by as-

suming that the occupant has a natural tendency to open the windows with higher 

values of both outdoor and indoor temperature in order to exploit the positive effects 

of the natural ventilation. However, the entrance of warm air by outside may cause 

worsening conditions of thermal discomfort situation for overheating and hence the 

LPD index is increased.  
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Fig. 5.3. Cumulative distribuction probability of window opening in relation to outdoor and indoor tem-

perature. 
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Regarding the probability of blind closing by occupants (taken in the Case 2.0), 

subject to (5.4) discussed in the paragraph 5.1.2, the indoor temperature is the main 

factor that influences the action by occupant (Fig. 5.4). In particular, this probability 

increases with the increasing of the indoor temperatures, i.e. the occupant tends to 

close the shading during thermal discomfort situation for overheating in order to limit 

the entrance of external solar radiations, while there is no correlation between the 

probability of blind closing and the outdoor temperature. This action, if on the one 

hand it leads to a reduction of solar radiation, on the other hand may lead to limit the 

effect of natural ventilation due to opening window. 

Furthermore, regarding the BEMS to control the window and shading status, the 

control logic of optimized ventilation activation of Case 1.1 and of Case 2.1 deter-

mines significant reduction of LPD index. More in detail, the temperature profile of the 

optimized case is almost contained in the optimal range of temperature defined by the 

adaptive thermal comfort theory, justifying the reduction of overheating discomfort. In 

detail the optimal objective function values for the Case 1.1 and the Case 2.1. are ob-

tained with: 

 ∆1= -1.25 °C and ∆2= -6.70°C corresponding to the 27th PSO iteration 

(for the Case 1.1.); 

 ∆1= -1.15 °C and ∆2= -7.30°C, β = 0.5 corresponding to the 25th PSO 

iteration (for the Case 2.1.). 

In particular, Fig. 5.5 shows the optimization running. According to the PSO meth-

od, several values of ∆1, ∆2 and β are determined to control the window opening and 

the closing blind (according to Tab. 5.5). In function of these values, the long term 

percentage of dissatisfied index ሺLPDሻ  of the Case 1.1. varies from a maximum of 

about 75 % to a minimum of about 22%, the LPD of the Case 2.1. from a maximum 

of 85% to a minimum of 32%. 
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Fig. 5.4. Cumulative distribuction probability of blind closing in relation to outdoor and indoor tempera-

ture. 
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Fig. 5.5. Optimization running for Case 1.1 and Case 2.1 

In order to value the impact of occupant behaviors on building performance and the 

benefits of the designed BEMS control logics on the energy consumptions, the four 

cases previously examined are performed by adding an active cooling system. 

 In detail, in the cases where the occupant behaviors are considered in determinis-

tic way (i.e. Case 1.0, Case 1.1.), the cooling system is switched on in each room 

when T୧୬ୢ୭୭rሺtሻ>26° according to the scheduled occupancy shown in Tab. 4.2. In 

the other cases, where the occupant behaviors are considered in stochastic-ABM ap-

proach (i.e. Case 2.0, Case 2.1.), the cooling system is switched-on in each room 

according to Tab. 5.2 when there is occupancy.  

In particular the probability of turning on the AC by occupant, assumed in the 

Case 2.0 and case 2.1, is in relation to the indoor temperature (Fig. 5.6). This proba-

bility increases for higher values of the indoor temperature. Differently by the occu-

pant behaviors (i.e. window opening and blind closing), where the probability to make 

these actions started for indoor temperature threshold higher than 20°C, the probabil-

ity of turning on the AC starts for indoor temperature by 26°C. These assumptions are 
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in accordance to the results of the questionnaire survey described in the Chapter 3 

(see Fig. 3.11), where in the most ancient buildings, with supposedly high indoor 

temperature values in summer due to low energy efficiency of buildings, the occu-

pants more often turn on the cooling system to satisfy own thermal comfort with 

consequently higher energy consumptions.  

The energy E needed for cooling referred to whole dwelling is reported in Tab. 5.5 

for the four cases.  

In accordance to thermal comfort analysis, the assumptions of the ABM approach 

to simulate occupant behaviors cause an increasing of energy needs for cooling, 

while the designed BEMS control logics allow a significant decreasing of the energy 

needs for cooling, especially when the discomfort conditions are higher (Case 2.0).  

In detail: 

 comparing Case 1.0 (deterministic occupant behavior) and Case 2.0 (ABM 

approach), also the energy consumptions for cooling increases in the 

Case 2.0.  

Hence the different assumptions of occupant behavior has a negative 

impact on building performance, causing an increase of 22 % of energy 

needs. This is a consequence of the worsening of thermal discomfort con-

ditions; 

 the proposed passive strategy for window opening and solar shading 

(Case 1.1 - with deterministic occupant behavior and BEMS, and Case 2.1 

- with ABM approach and BEMS), allows reducing of the energy needs, 

that are reduced of 30% and of 34 % respect respectively to Case 1.0 and 

Case 2.0.  
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Fig. 5.6. Cumulative distribuction probability of turning on the AC in relation to indoor temperature. 
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5.5. Occupant behavior influence in high performing building and 

BEMS adaptive to occupant actions 

In order to reach the NZEB target, the impact of occupant behaviors on building 

performance have to be investigated also during the operation phase, because as dis-

cussed in the Chapter 1, design building as NZEB does not meant that it will be NZEB 

in practice.  

Understanding the occupant behavior is a key issue for building design optimiza-

tion, energy diagnosis, performance evaluation, and building energy simulation.  

In particular, strictly connected to resilience concept of buildings, that in this study 

is limited to the adaptability capacity to the different operational conditions by occu-

pants, in this section different profiles of occupant behavior and the BEMS response 

to the different occupant behaviors are analyzed in high performing building. 

The case study regards the same reference building (typology, orientation, area) 

described in the paragraph 4.1, but with high performance of the building envelope. In 

the Tab. 5.6 and the Tab. 5.7 the main parameters of the modeled envelope (transmit-

tance, internal heat capacity and the solar factor) are reported. 

Tab. 5.6. Thermal characteristics of building opaque envelope 

 
U-values 
(W/m2 K) 

Surface 
Mass 

(kg/m2) 

Decrement 
Factor 

(-) 

Thermal 
Lag 
(hr) 

Periodic 
Therm. 
Transm. 
(W/ m2K) 

Areic Heat 
Capacity 
(KJ/m 2K) 

Ceiling-floor 0,47 382 0,1 12 0,033 368 

External Wall 0,31 296 0,08 16 0,026 263 

Partition wall 0,51 311 0,1 13 0,034 221 

Tab. 5.7. Thermal and optical properties of windows. 

Glass Type 
U-value 

(W/ m2K) 
SHGC 

(-) 
VT 
(%) 

WIN  
 (insul.glass low -Ar) 

1,7 0,62 0,75 
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In particular, in order to evaluate the impacts of “extreme cases” related to occu-

pants behaviors, that an occupant may perform differently by the stochastic logics, 

three different occupant profiles are analyzed, by assuming different stochastic algo-

rithms for the three occupant behaviors (window opening, closing blind and turning 

on the AC) described in the previous sections.  

In detail the three occupant profiles (i.e. the extreme cases) are introduced to 

simulate an active, standard and passive occupant. 

The active occupant uses the air conditioning more frequently than the others, and 

less frequently changes the window and shading status. In order to consider this dif-

ferent sensitivity of the occupant, the probability of window opening (5.3) and of blind 

closing (5.4) are reduced by a factor assumed equal to 0.7, while the probability of 

turning on the AC is increased, multiplying (5.5) for a factor equal to 1.3.   

Instead, the passive occupant interacts more frequently by opening the window 

and closing blind, by reducing the a.c. usage. In these cases, the probability (5.3) and 

(5.4) are increased by 1.3, while the probability (5.5) is decreased by 0.7. 

 It shall be noted that these numeric factors and these cases are artificial, and the 

goal is only simulate the extreme cases of occupant actions, by assuming occupant 

purely active or passive, without taking into account the several possible cases of oc-

cupant behavior that e.g. may be active both for cooling system and window opening 

etc. 

In detail six cases are analyzed, by assuming the three different occupant profiles 

and with or without the BEMS control logics (see Tab. 5.8.). In particular, regarding 

the BEMS to control the window and shading status, while in the Case 1 there are not 

automation systems, in the other three cases optimized control logics are found with 

optimal values of  ∆ͳ, ∆ʹ and β (for the Case 2) with the objective function (5.8) of 

minimize the long term percentage of dissatisfied index ሺLPDሻ.   
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Tab. 5.8. Simulated cases for different occupant profiles. 

Case 

Occupant behaviors 
BEMS control 

logics Occupant 
type 

Window status Shading status AC status 

Case 
1 

Passive  ABM according to Tab. 5.2 

- Standard  ABM according to Tab. 5.2 

Active  ABM according to Tab. 5.2 

Case 
2 

Passive ABM according to Tab. 5.2 

BEMS according 
to Tab. 5.3 

Standard ABM according to Tab. 5.2 

Active ABM according to Tab. 5.2 

 

The energy E needed for cooling are calculated for the different occupant profiles 

and BEMS activation. In detail the optimal objective function values for the Case 2 for 

different occupant type are obtained with: 

 ∆1= -1.75 °C and ∆2= -4.30°C, β = 0.5 (for passive occupant.); 

 ∆1= -1.95 °C and ∆2= -3.55°C, β = 0.5 (for standard occupant); 

 ∆1= -1.97 °C and ∆2= -3.20°C, β = 0.5 (for active occupant). 

In particular, the different values obtained may be justified by the fact that by in-

creasing the indoor temperatures (due to the negative impact of occupant action es-

pecially for the passive occupant described in the previous paragraph), the gap be-

tween the values of indoor temperature lower than optimal temperature decreases. 

Hence, the control logic of (4.1) can start with lower values (in absolute values) of 

∆1. On the contrary, ever more high ∆2 values in (4.2) are necessary to reduce the 

thermal discomfort hours. This underlines the necessity to design BEMS adaptable to 

the occupant behaviors in order to satisfy its thermal comfort. 

The energy needs for cooling due to the impact of occupant behaviors are reported in 

Fig. 5.7. It results that: 
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 comparing the cases without BEMS activation (Case 1.0) for the three oc-

cupant type, the energy consumptions for cooling increases with a maxi-

mum variation between passive and active type about 41 %. Hence the 

occupant behavior has a significant impact on building performance; 

 comparing the cases with BEMS activation (Case 2.0) for the three occu-

pant type, it is possible to notice how the control logics of window opening 

and solar shading have the maximum benefits for the case with worsening 

thermal discomfort conditions, i.e. for the case with passive occupant, al-

lowing a reduction of energy needs about 32 %. In this manner an opti-

mized BEMS may reduce the negative effects of incorrect occupant behav-

iors, by reducing the thermal discomfort situations and hence the energy 

needs for cooling. 

 

 

Fig. 5.7. Energy needs for cooling for different occupant profile and BEMS activation. 
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General Discussion and Conclusions 
 

Towards the design of NZEB, with low energy consumptions during the operating 

phase, the dissertation underscored the importance of occupant behaviors and of the 

design of Building Energy Management Systems (BEMS), able to maintain its ener-

gy performance despite the diverse operating conditions by occupants. Particular at-

tention was devoted to management of building components, by designing control 

logics based on the adaptive thermal comfort theory (EN15251, 2007). 

In detail, the PhD thesis focused on the development of BEMS in the residential 

buildings, by optimizing thermal and visual comfort and by modeling the occupant 

behaviors by means of an agent based oriented approach. 

Indeed, because current simulation capabilities do not account for realistic occu-

pant behaviors, by underestimating the actual energy consumption observed in build-

ings, a secondary effort of the thesis was to define a new methodology to increase 

the accuracy of building energy simulation results. 
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At first, a questionnaire survey (Chapter 3) was conducted to quantify the rela-

tionships between environmental physical and occupant behavior in dwellings and to 

investigate driving forces for the behavior of the occupants.  

Differently by other studies present in literature where the occupant impact on en-

ergy consumption was analyzed for identical buildings (Socolow, 1978), 

(Sonderegger, 1978), (Seligman, et al., 1978), (Gartland, et al., 1993), (Juodis, et al., 

2009), the questionnaire tried to define the tie between different residential buildings 

and occupant actions by means of questionnaire survey.  

In detail large differences in the behavior patterns of occupants were found be-

tween dwellings. In particular, the relationship between occupant behavior and build-

ing environment reflected the difficulty of adapting to discomfortable conditions espe-

cially in the most ancient building with worst conditions. 

In addition, this study allowed a more precise quantification of important trends, 

such as the tie between the building performance and the occupant behaviors, the re-

lationship between the effectiveness of adaptive actions and the hierarchy of adaptive 

actions.  

Based on questionnaire survey, while in winter it resulted that the occupants act 

less on the building components to improve their thermal comfort conditions, (indeed 

the main actions were wearing heavy clothes and turning on heating system), in 

summer season the occupants mostly interacted with the building components, by 

changing the window and shading status or by adjusting set-point thermostat.  

Furthermore, known that the actions on window and blind status have significant 

impact on building performance, with the final goal of simulating more in detail these 

occupant actions, by means of ABM approach, and to design optimal BEMS as retro-

fit solutions for the energy renovation, the second part of study (Chapter 4) focused 

on the analysis of different control logics of natural ventilation and of the solar 

shading system for passive cooling.  

In this section, optimization goals were direct towards objective function for the 

minimization of thermal discomfort conditions, by simulating the occupant behavior in 

deterministic way through defined schedules. 
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Many researches dealt with the control of active systems, others both on active 

and passive systems, and only few researches focused on BASs for passive compo-

nents.  

Concerning the related literature, it is apparent that the contributions focusing on 

passive systems base the choices on heuristic approaches, while optimization strate-

gies are mainly used for active system operations.  

Furthermore, while in Wang (Wang & Wang, 2013), Castilla (Castilla, et al., 2013) 

and Sun (Sun, et al., 2013) an integrated control of active and passive system were 

analyzed with the aim of minimizing total energy costs, in this study the effects of 

passive strategies were studied with the goal to reduce thermal discomfort conditions 

according to adaptive thermal comfort theory (EN15251, 2007). 

With this purpose, simulation studies on the effects of BEMS control logics for win-

dows and shading system on thermal comfort and energy demands were conducted 

in a typical Italian dwelling of 60s. 

 A control strategy was defined, based on: i) the thermal comfort analysis according 

to the adaptive thermal comfort theory (EN15251, 2007); ii) an on-off control strategy 

for natural ventilation to determine a significant reduction of overheating discomfort.  

The optimization strategy, determining the optimal ranges of time to close and 

open the windows, showed how the integration of suitable control logics increased 

the potentialities of natural ventilation strategies to the improvement of energy and 

thermal performance of buildings.  

The designed control logics, adaptive to different climate conditions, allowed sig-

nificant reduction of thermal discomfort hours for overheating. In particular for the 

warmest climate, in order to improve the thermal comfort conditions, it was neces-

sary allowing the window opening more frequently in order to exploit the positive ef-

fect of natural ventilation for passive cooling. 

The ventilation strategies for passive cooling, could contribute even more effective-

ly to the improvement of the behavior of the building envelope, integrating or replacing 

the conventional efficiency strategies, if properly integrated with adequate control sys-
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tems. With low investment costs the natural ventilation could reduce the high energy 

consumptions of cooling systems.  

 

Then, in the last study (Chapter 5) with the aim of designing BEMS, adaptable to 

occupant’s actions and satisfaction, the occupant behaviors were modeled with 

more detail, by means of an ABM approach.  

In mostly studies present in literature, in the design of BEMS the occupant behav-

iors and preferences are seldom taken into account. Almost always the logics of 

BEMS aims to minimize the energy needs and they are less adaptive to occupant be-

havior. 

Furthermore, even though the occupants’ control of the various systems in the 

building has a significant impact on the energy consumption and the indoor environ-

ment, only recent studies have focused on the behavior of their occupant by simulat-

ing the actions by means of an ABM approach.  

Indeed most studies present in literature (Andersen, et al., 2011), (Rijal, et al., 

2007), (Haldi & Robinson, 2009) have analyzed only an individual occupant behavior 

by means of statistical analysis, by analyzing data of longitudinal studies, cross sec-

tional studies and monitoring campaign for several years.  

In  recent studies (Langevin, 2014), (Lee & Malkawi, 2014) the modeling of occu-

pant behaviors are performed in a more realistic way, by means of an agent-based 

approach, where the occupant actions are ruled by PMV analysis. 

In this thesis, the occupant interactions with the building system (in particular re-

garding the window and solar shading opening/closing, set-point adjustment for the 

air conditioner) were implemented in the energy software simulation, based on algo-

rithms deduced by field investigations in real buildings.  

The comparison between the models where the occupant behavior was assumed 

in deterministic way and in a probabilistic and multi-agent approach, it allowed to as-

sess the significant impact of human behavior on building performance. In detail, 

comparing the cases, where the occupant was simulated with deterministic and ABM 
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approach, there was a significant increasing of the total discomfort conditions in the 

second case. 

In accordance to thermal comfort analysis, the assumptions of the ABM approach 

to simulate occupant behaviors caused an increasing of energy needs for cooling,  

Then, the optimization of BEMS for window opening and shading closing enabled 

to minimize the thermal discomfort situations and the energy needs for cooling. It was 

possible to notice how the control logics of window opening and solar shading had 

the maximum benefits for the case with worsening thermal discomfort conditions. 

Finally, similar to the study reported in Fabi (Fabi, et al., 2013), three different oc-

cupant profiles in a high performing building were analyzed. It resulted how for the 

“active” occupant, there was significant increase of energy needs for cooling, As re-

ported. 

In conclusions, this work highlighted how the designed BEMS may ensure high 

levels of comfort and energy efficiency, through the dynamic control of some compo-

nents based on external and internal environmental parameters and on the occupancy 

conditions. 

Especially in existing residential buildings, where the interaction of occupant be-

havior on building-HVAC system is maximum, the integration of Building Energy Man-

agement Systems (BEMS) may provide significant energy savings, going not only to 

remedy an incorrect or inadequate management systems, but also optimizing the ac-

tivation timing and management methods.  

An intelligent decision support model, that could control how the building opera-

tional data deviates from the settings as well as carry out diagnosis of internal condi-

tions and optimize building’s energy operation, is the goal for the future BEMS. In-

deed, latest trends in the design of BEMS integrate “human-machine” interface that 

may store user preferences and adapt accordingly control strategy. 

The implementation of different occupant behaviors into energy simulation software, 

simulated by means of an ABM method and the coupling of optimization goal for 

BEMS is an innovative approach. 
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Next phase may regard the modeling of several occupant behaviors, by means of  

more complex agent-based oriented approach, by assuming different stimuli as driven 

forces for occupant actions (not only the thermal stimuli), more autonomous agents 

and by considering the interaction with other occupants. Furthermore, different algo-

rithms will be implemented in order to simulate the occupant actions,  based on litera-

ture studies or deduced by field monitoring.  

As further development, these information regarding the occupants behaviors patterns 

may be implemented in Building Information Modeling (BIM) platform. In this man-

ner, BIM as well as involving the generation and management of digital representa-

tions of the physical characteristics of buildings (envelope, technologies, HVAC sys-

tem etc.) may contain all the data regarding the occupant, whose actions may affect 

the building performance during the life cycle of building. These data may allow and 

support information exchange and networking among different stakeholders who plan, 

design, construct, operate and maintain buildings. 
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