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Abstract

In the last years, medical technologies have acquired a fundamental
role in the clinical practice. Indeed, they are employed in all the
stages of patients’ treatment, ranging from diagnosis to rehabilita-
tion.

Medical imaging is an umbrella term covering several medical
technologies for diagnosis. Images and volumes are useful in the
analysis of tissues and anatomical structures, enabling an accurate
understanding of the phenomena and a quantitative dynamic anal-
ysis associated with longitudinal studies.

In addition, Information and Communication Technologies (ICT)
are a concrete answer to many needs in the healthcare framework
since they enable remote support for patients, thus fostering conti-
nuity of care and personalized rehabilitation plans.

The aim of the present work is the development and use of med-
ical technologies that take into account the global patient’s medical
journey. In particular, the focus is on both diagnosis and rehabili-
tation, as indeed they are strictly connected procedures.

The two research themes are disclosed in parallel. After the tech-
nical disclosure, their deployment into real scenarios is described, by
referring to particular diseases.

The integration of medical technologies for diagnosis and reha-
bilitation is straightforward, and thus a general pipeline combining
them is proposed as future development of the present work.
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Chapter 1

Introduction

In the biomedical context, diagnosis and rehabilitation are strictly
connected procedures. Indeed, the purpose of diagnosis is the ac-
quisition of sufficient information to understand the cause of the
presenting problem and drive subsequent interventions [1], included
the rehabilitation process. In addition, the earlier a disease is diag-
nosed, the more effective are cures and remedies for its treatment.

A widely used technique for diagnosis is medical imaging. Among
the most important diagnostic imaging modalities one can mention
radiography, X-ray Computed Tomography (CT), Magnetic Reso-
nance Imaging (MRI), and Ultrasound Imaging (US) [2]. All of
them have shown great potential for the early diagnosis of a wide
spectrum of pathologies. At the same time, the recent development
of novel data analysis and multidimensional visualization techniques
improves the information available to the physicians during the di-
agnostic and follow-up process. Images and volumes are useful in
the analysis of tissues and anatomical structures, enabling an accu-
rate understanding of the phenomena and a quantitative dynamic
analysis associated with longitudinal studies.

Once a disease is diagnosed, it is necessary to put into practice
some medical therapy which, in several cases ranging from cognitive
to motor diseases, includes rehabilitation. The clinical staff must
consider that pathologies may rapidly evolve and that different pa-
tients may exhibit different manifestation of the disease. This means
that the rehabilitation process must be personalized to each person,
in order to cater their specific needs. In addition, the continuity of
care is a crucial point for the treatment to be effective. In such a
framework, the technological innovation makes it possible to meet
the aforementioned requirements. Indeed, Information and Commu-
nication Technologies (ICT) and Internet of Things (IoT) solutions
are becoming a concrete answer to many needs in the healthcare
framework since they enable remote support for patients, thus fos-
tering continuity of care and personalized rehabilitation plans.



2 Introduction

The research project underlying the present thesis concerns a
translational approach integrating studies and experiences of the
Polytechnic and Medicine Schools. The goal is to improve patient
management and support from the diagnosis to the rehabilitation
phases.

Unfortunately, the spread of the Covid-19 pandemic, which im-
pacted on about 2/3 of the whole PhD period, made difficult the ac-
cess to medical facilities and data. As a results, it did not allow for
focusing on a single disease from the diagnosis to the rehabilitation
treatment. Conversely, several pathologies have been investigated,
in order to exploit the two research themes in parallel and enabling
the study of the full medical process as a future development.

The aims of the present work are:

• the development of novel techniques for signal and image pro-
cessing, with particular focus on segmentation of Magnetic Res-
onance (MR) images and volumes;

• the application of such novel techniques to different pathologies,
disclosing them in real-world scenarios;

• the employment of the telerehabilitation system ReMoVES [3]
for treating a wide spectrum of diseases;

• the study of rehabilitation data via State of the Art (SoA)
methods for data analysis;

• the definition of a general pipeline for the medical practice
based on the proposed techniques.

In Chapter 2, the SoA revision is presented, with respect to both
the two research themes. In particular, a brief introduction to di-
agnostic imaging, mainly focused on MRI, is disclosed, along with
the image processing techniques that are currently used and the
issues that need to be faced. Then, the context of ICT solutions
in healthcare is introduced, focusing on rehabilitation and assistive
technologies. To conclude, the diseases matter of application of the
thesis are presented, also from a clinical point of view.

Chapters 3 and 4 describe in depth the methods and materials de-
veloped and involved in the PhD course, i.e., the main contributions
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of the present work, in diagnostic imaging and telerehabilitation re-
spectively. Their application to real-world scenarios is disclosed in
Chapters 5 and 6 respectively, focusing on the diseases introduced
in Chapter 2.

To conclude, Chapter 7 provides a glimpse into future develop-
ments of the present study.



Chapter 2

State of the art

2.1 An introduction to diagnostic imaging

As the Norwegian playwright and theater director Henrik Ibsen first
said, "A thousand words leave not the same deep impression as does
a single deed". Such a quote was then paraphrased into the famous
saying "A picture is worth a thousand words", which is valid in
several fields, including the context of medicine.

For centuries, clinicians have been hindered the application of the
most efficient human sense, i.e., vision, for diagnostic purposes on
internal structure of the human body. However, the importance of
images in the biomedical context is unquestionable. Images convey
visual information about some property of the human body and are
produced by different types of a scanner utilizing different physical
phenomenon. For instance, CT utilizes the absorption abilities of
x-rays of tissues, US utilizes the reflections of sound waves in the
anatomical structures, MRI utilizes magnetic relaxation properties
of hydrogen particles.

In general, a common scheme for producing medical images can
be defined, consisting of six steps:

1. define the property to be imaged, based on the medical need.

2. Select a physical phenomenon to track and measure the afore-
mentioned property.

3. Develop a mathematical model for quantifying the mentioned
property.

4. Develop an algorithm for reconstructing the image based on
the mapped property.

5. Build the imaging device.

6. Apply some signal and image processing for extracting infor-
mation from the obtained data.
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As for the present thesis, the focus is set on the last operational
step. The type of image under analysis consistently affect the pro-
cessing to be performed, hence, the fundamentals of the imaging
techniques need to be disclosed. The several imaging modalities
existing present different peculiarities and applications, thus pro-
viding clinicians with a variety of options to perform efficient and
reliable examinations. In the next Sections, the main medical imag-
ing modalities are introduced, with particular emphasis on MR.

Medical imaging techniques

When speaking of diagnostic imaging, some "major" modalities can
be identified, i.e., the most used ones. X-rays and CT are classical
examples. Here, the underlining procedure consists of irradiating
the body with an x-ray beam. Different tissues interact differently
with the x-ray photons. This phenomenon is due to differences in
the electron density of each tissue type. Therefore, some radiation is
absorbed or attenuated by the body itself, and some of the radiation
passes through. A map of the attenuation can be obtained by placing
a receiver behind the body, resulting in a two-dimensional image of
the inner structure of the scanned body.

Another very important imaging modality is US, which takes its
origin from the military arena. US is the most cost-effective medical
imaging modality available today. The information content which is
delivered by US is versatile as it enables measurements in 1D, 2D,
3D, and also 4D (space and time). The physical phenomena which
US is based on is mechanical waves.

Among the other imaging techniques, it is worth mentioning
Positron Emission Tomography (PET), Electrical Impedance To-
mography (EIT), and Optical Coherence Tomography (OCT).

In the present discussion, MRI was left apart. Of course this
is not a lapse of memory, but rather, such an imaging modality
deserves a whole Section due to its central role in the underlining
research project.



6 State of the art

Magnetic Resonance Imagery

MRI is probably the most interdisciplinary imaging modality as it
combines physics, mathematics, engineering, computer science, and
last but not least, medicine. It is non-invasive and extremely ver-
satile with numerous methods of distinguishing tissues with deep
details. However, it is still rather expensive, the examination are
rather time-demanding, and some issue in terms of of patient han-
dling and accessibility may arise. For such reasons, the field of MRI
is continuously growing and improving. A brief description of the
fundamentals on MR follows.

The basic principle for MRI is the Nuclear Magnetic Resonance
(NMR) phenomenon [4], wherein the nuclei of some atoms exhibit
the capacity to absorb and re-emit radiofrequency energy when put
in a magnetic field. Usually, the nuclei of hydrogen are considered,
as they are widely spread in biological material and present good
MR sensitivity. Such nuclei present a fundamental property which
is called spin. Spin is an angular momentum, which, in standard
conditions, is randomly directed. In MR, an external magnetic field,
usually referred to as B0, is applied, so that the direction of nuclei
involved is aligned either to B0 or �B0. It hence possible to consider
a net magnetization vector M , resulting from the difference between
the parallel and anti-parallel aligned nuclei. The aim of MRI is to
measure the modulus of M , in order to measure the concentration
of nuclei in a region.

Spins deliver informative signals if the direction of the magnetiza-
tion vector is altered. To this aim, a second magnetic field, usually
called B1 and perpendicular to B0, is applied to excite the nuclei
possessing spin. As a result, the net magnetization rotates of 90
degrees and spins around B0. This can be detected as it induces
an Alternating Current (AC) in the receiver coil specifically placed
around the patient.

The excitation phase is then concluded and spins return to the
equilibrium state. This causes the magnetization to decay over time,
i.e., a decrease of the magnitude of M , thus leading to a decrease
of the detected signal. The time required for the signal to return
to equilibrium state is called relaxation time. Two particular relax-
ation types must be noted. The former, referred to as longitudinal
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relaxation, regards the process of realignment to B0. Such a process
is characterized by the so-called T1 relaxation time, i.e., the time
needed by the system to recover 63% of its equilibrium value after
the excitation, and has specific values for different types of anatomi-
cal structures. The latter relaxation type is the transverse relaxation
and regards the spins precessing around the magnetization vector.
Spin-spin interactions yield small random local magnetic inhomo-
geneities, resulting in different ways of dephasing. The time for this
process is called T2 relaxation time and corresponds to the time
needed by the dephasing to lead the signal to 37% of its original
value. As T1, T2 depends on tissues, but is shorter in general.

Aimed at generating an image, spatial location of signal must be
taken into account. For such purpose, a magnetic gradient is added
along the main magnetic field, in the cranial-caudal direction. In
this fashion, it is possible to select thin slices of spins through the
body, and change slice by operating on the excitation phase. Then,
frequency and phase encoding enable the identification of specific
points in slices, i.e., pixels. Phase encoding consists of a small change
applied in the field, influencing the frequency of precessing and re-
sulting in a shift in the precessing phase. Then, frequency encoding
is performed by applying a gradient during the readout phase of the
signal, yielding to a specific shift of the resonance frequency and
allowing the identification of pixels inside a specific phase encoding.
Phase and frequency combinations identify specific pixels, which are
placed on a grid, called K-space. To conclude, data are mapped into
the intensity values of pixels via a Fast Fourier Transform (FFT).

MRI sequences: T1-weighted and STIR

The final appearance of MR images can be adjusted to specific clin-
ical needs by applying gradients with different criteria. In particu-
lar, one can speak of MRI sequences as sets of gradients resulting
in a set of images with a particular appearance. As the multitude
of sequences available on modern scanners is large, in the research
activity described in the present thesis only two have been consid-
ered, i.e., T1-weighted and Short Tau Inversion Recovery (STIR)
[5]. The former produces images that are the closest approximation
of the macroscopic appearance of anatomical structures, and are in-
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cluded in almost all MRI protocols. They are characterized by low
signal intensity for fluid, mild signal intensity for muscle, an high
signal intensity for fat. In the present thesis, T1-weighted MR im-
ages are used for segmentation purposes and refer to the anatomical
district of the wrist. The latter sequence is aimed at suppressing
the bright signal from fat. This is performed for instance after the
administration of a contrast medium, to enhance the visibility of de-
tails otherwise not appreciable. In the present thesis, STIR images
are considered for detection purposes related to an inflammatory
rheumatic disease.

Image segmentation and ROIs detection

The analysis and interpretation of digital images is consistently
aided by their partition into homogeneous areas, possibly corre-
sponding to meaningful Regions of Interest (ROIs) in the scene.
Such a partition process is called image segmentation. In particu-
lar, according to its classical definition [6], the segmentation result
is the partition of an image into disjoint, non-empty, and connected
subregions, for which some predicate of homogeneity is satisfied. In
addition, the same predicate of homogeneity must not be valid for
the union of any such subregions. As a natural development of such
a definition, the purpose of segmentation can often be oriented to the
detection of image regions that are meaningful within a particular
application domain.

In the medical field, this fundamental activity is often performed
manually [7], resulting in time consuming endeavors. Indeed, also
enforced by the recent growth in data availability, automatic im-
age segmentation techniques have gained a fundamental role in the
image processing domain [8].

SoA segmentation techniques can be divided into deformable and
parametric models. The methods in both categories have many ad-
vantages in terms of usability, as they can be completely unsuper-
vised or they may not require huge amount of data.

Deformable models take origin from [9] and [10], and are defined
by curves or surfaces that can move under the influence of internal
forces coming within the model itself and external forces computed
from the image data. Later, an ensemble of their geometrical fea-
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tures gave birth to models such as [11], [12], and [13]. They are still
commonly used in multiple domains, as for example in the biomed-
ical field [14], [15], and in remote sensing [16], [17].

Conversely, when dealing with parametric models, the segmenta-
tion problem is often formulated in terms of a Bayesian probabilistic
graphical model [18]. The Bayesian statistical framework allows ex-
ploiting data and prior distributions [19], aimed at linking image
segmentation with ROI detection [20]. In addition, it also fosters
weakly supervised approaches [21], which take origin from saliency
detection models [22].

In the present thesis, a method combining such a parametric
framework with a graph-based formulation is presented. Indeed,
graph-based approaches have been widely used in the signal pro-
cessing context [23]. For instance, images (and volumes) can be
associated with weighted graphs via the one-to-one correspondence
between the pixels (or voxels) and the nodes of the graphs. Rela-
tions and similarity distances between pixels are generally expressed
in terms of minimum-length path between nodes. As an example,
the method described in [24], starts from a set of points, called seeds,
and it looks for maximally connected paths and assigns a cost to each
pixel, related to each seed. Such a procedure is equivalent to the
fuzzy connectivity computation proposed in [25], which integrates
intensity similarity with topological connectedness. In [24], a graph
cut is performed after the cost-computation phase, in order to ob-
tain the segmentation. One might prove that such a method can
be formally described in terms of the Image-Foresting Transform
(IFT) approach [26]. In [27], the IFT has been shown to be equiv-
alent to the Minimum-Spanning Forest (MSF) cuts constrained by
seeds, hence, some analogies between the graph-cut in [24] and other
methods e.g., the threshold in the watershed hierarchy in [28], might
be investigated.

A graph-based approach was also proposed in [29], where the
IFT transform was extended to support superpixel [30] computation.
However, according to the work in [31], the generation of superpixels
is the result of an over-segmentation of the input image. As a con-
sequence, the predicate of homogeneity is satisfied also by the union
of subregions, thus being in contrast with the image segmentation
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definition. Indeed, the detection of meaningful image parts requires
a further merging step.

Besides the aforementioned techniques, the availability of wide
image datasets and the recent development in the deep learning
(DL) literature [32] have yielded effective results for semantic seg-
mentation, which is actually different with respect to classic image
segmentation, because it aims at partitioning the image to obtain a
class labeling and with the use of a training set. The main draw-
back of deep learning solutions is their need for very large labeled
datasets. As a consequence, the concept of transfer learning (TL)
has been developed [33]. In case smaller datasets are available it is
possible to reuse and refine popular pre-trained networks, such as
the one reported in [34], [35], [36], and [37].

Tackling human bias in automatic medical image analysis

Medical image analysis is a major interest in biomedical research
[38]. Among the several topics tackled, one can mention segmen-
tation, visualization, quantification, object tracking, and detection
[39], which are strictly linked with the application for medical image
diagnosis, therapy planning, and other quantitative studies.

Evaluation and validation of new methods for medical image anal-
ysis have been based on the authors’ personal data sets for a long
time, so that unbiased and reliable comparisons of the solution were
hard to be performed [40].

Nowadays, international challenges have become the standard for
validation of medical image analysis methods. However, the lack
of quality control on such challenges may have substantial conse-
quences in terms of reproducibility and interpretation of the results
[41]. Also, the large variability in challenge design may affect the
reliability of the validation. Indeed, several issues have been proved
[41], such as:

• minor changes in metrics may make the last the first.

• Different data aggregation methods produce different winners.

• Different annotators produce different winners.

• Removing one test case can change the winner.
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In such a context, the need for finding better ways to collect,
annotate, and reuse medical imaging data is clear. The first key
point for such a problem is that the classification label of each image
data must be as accurate and reproducible as possible [42].

Building a robust dataset is much more difficult in the medi-
cal domain than in other more generic applications. Indeed, when
referring to tasks such as detecting transports or traffic lights in
photographic images, a large group of people can provide reliable
annotations, as neither specific education nor particular experience
is required. Therefore, also using some web-based tool, the pool of
annotators is much larger and thus widespread annotations can be
done.

Conversely, in the medical domain, supervised ground-truth im-
ages are provided by medical experts and present several issues, in
terms of time for the procedure, raters reliability, and bias due to
experts’ knowledge.

Aimed at overcoming these problems and at fostering reliable
medical image analysis, some operations are suggested, which may
be useful either for standardizing the reference data or for mak-
ing the evaluation process objective and independent on the raters.
They are introduced with regards to a specific application, which
will be disclosed in the corresponding section.

2.2 Technologies in rehabilitation

The ongoing digital transformation in our society has significant
impact on several technological aspects, so that the term Fourth
Industrial Revolution has been used for a few years. As another
revolution [43], IoT solutions are becoming increasingly relevant,
and their use is consistently growing in several application domains.
Regarding healthcare, the IoT market size was valued at USD 147.1
billion in 2018 [44], and is expected to reach USD 534.3 billion by
2025, expanding at a compound annual growth rate (CAGR) of
19.9% over the forecast period [45], and resulting in an estimated
USD 63 billion of savings due to the deployment of medical IoT by
2022 [46]. All this is due to growing investments in digital technology
implementation at healthcare institutions that address the need for
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the care of a growing geriatric population [47] coupled with the ris-
ing prevalence of chronic conditions [48]. In addition, the recent
outbreak of Covid-19 has had strong impact on the health system,
which had to adapt itself to various needs such as guaranteeing ac-
cess to care for patients in forced quarantine or in solitary confine-
ment, and meeting the needs for social distancing and reduction in
access to healthcare facilities. Medical IoT solutions are an essen-
tial tool for responding to patient care needs under safe conditions.
Hence, applications such as telemedicine, remote patient monitor-
ing, and interactive medicine have a precise and crucial position in
the fight against the coronavirus, such that several nations officially
recommended their use [49].

The key benefit of the IoT in the medical domain is connected
technology. Devices are used for assessing patients’ conditions, and
monitoring and supporting rehabilitation, so that a personalized
plan of care can be defined and kept updated. This also fosters
continuity of care, enabling a patient to be supervised by a multi-
disciplinary team even after dehospitalization. The most ubiquitous
of such devices are wearable or robotic devices, for instance, smart
bands for data collection related to some physical activity [50] or
other wearables for motion analysis, which can be devoted to specific
body-part rehabilitation (e.g., shoulders [51] and knees [52]). Even
though a deep interest in such devices is manifested in the healthcare
context, wearables, robotic devices, and devices based on smart-
phone interaction are not very suitable for the elderly population
or for dehospitalized and disabled patients. Indeed, to fully exploit
the potential of an IoT solution, patients should be able to deal with
it autonomously; however, the presence of wearable devices or con-
trollers means that some external support may be needed for such
activities.

Among the several implications of using IoT/ICT solutions in
the healthcare domain, one can mention clinical and practical con-
sequences. Indeed, traditionally, a great portion of physical therapy,
rehabilitation, and assessment was based on a clinician’s observa-
tions and judgment. Nowadays, sensors and computing technologies
can be used for motion capture, performance assessment, and range-
of-movement (ROM) measurements. From a clinical point of view,
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patients benefit from the use of such technologies in terms of help
for dehospitalization, continuity of care, the personalization of plans
of care, and engagement in activities. In addition, from an operative
point of view, telerehabilitation helps clinical staff to also follow sev-
eral patients when they cannot physically attend to them. This is
very important in the time of the pandemic emergency, as it, for in-
stance, allows for reducing time for moving from one patient’s house
to the next. As a practical example, the Liguria region has relevant
problems in terms of urban traffic; hence, home-based rehabilitation
often causes therapists to lose time in traffic, augmenting work stress
and eventually affecting the quality of the imparted treatment.

To conclude, healthcare technology is also contextualized in the
framework of user-generated content (UGC) analysis. Therefore,
it finds applications in research on the use of data science (DS)
in digital marketing (DM). In 2020, nine topics for future research
on DS in the DM ecosystem were defined [53]. Among them, four
will be addressed in the present work, i.e., medical-data eHealth;
people: movement, organization, and personalization; the IoT; and
new machine-learning model development.

Exergame in rehabilitation

In the field of assistive technologies, exergames have recently gained
great popularity and demonstrated scientific reliability, thus surpass-
ing their original goal of mere entertainment. The term exergame
refers to video games that impart physical exercise / support re-
habilitation practice (in the context of their clinical application) in
which the repetitive and task-oriented components of rehabilitation
activities are reformulated in video-playful terms. There are vari-
ous examples in the literature, e.g., of efficacy in maintenance and
in improvement of cognitive functions in the elderly population [54]
and in post-stroke rehabilitation [55]. The exergames can also be
considered as a virtual reality (VR) tool, which can be a safe tool
to access activities otherwise not accessible to the person with cog-
nitive and motor disabilities in everyday life contexts. Furthermore,
the gamification [56] determines a motivating and engaging environ-
ment in order to keep the patient busy without inducing boredom or
fatigue, with consequent frustration and abandonment of therapy.
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By combining this type of activity with a system capable of ac-
quiring data and information during the exergame, it is possible
to provide the therapist with a tool for an objective evaluation of
performance, as well as to monitor and evaluate specific motor /
cognitive tasks even in the absence of staff. clinical. The collec-
tion of data during the exercises is the necessary feature to give the
therapist the opportunity to understand the patient’s behavior, as-
sess fatigue and possibly correct erroneous attitudes. In this way,
the clinical staff maintain control over the patient’s activity, follow
progress and improvements and obtain the necessary foundation to
prescribe a personalized care plan.

Data analytics and exergame

The spread of connected technologies delivering exergames fosters
the access and collection of data. As a result, it enables the devel-
opment of data analysis and artificial intelligence (AI) techniques,
also for supporting clinical practice.

In such a context, a first application of DS regards gesture recog-
nition. In [57] a yoga teacher performed a set of exercises which
are recorded to construct a gestures training set. Based on that,
students can practice such exercises in front of a Microsoft Kinect,
and a trained algorithm automatically discerns correct and incorrect
movements. In addition, a clinical application is reported in [58].

Among the machine learning (ML) techniques applied to rehabil-
itation evaluation, one can mention Dynamic Time Warping (DTW)
[59]. It is a technique for comparing two-time series that can vary
in speed and measure the similarity between them, in terms of mini-
mum Euclidean distance. Its main application is for speech recogni-
tion but it can be employed also in gesture analysis, by expanding it
from temporal to spatial domain. Comparisons between exergame
data can be obtained also by using Hidden Markov Model (HMM)
[60]. This is a stochastic approach that compute the probability
that a sequence of observations (i.e., gestures and movements) are
generated by the same process. Both these techniques are employed
in [61].

Another approach for classifying gestures is support vector ma-
chine (SVM) [62]. Such a model can be used either for binary and



2.3 Application domains 15

multi-class classification, by switching to the one-to-one or one-to-
rest formulation [63]. Some examples of work proposing such an
approach are [64, 65, 66].

To conclude, it is worth noting that rehabilitation data are char-
acterized by a repetitive and sequential nature. Hence, approaches
such as long-short term memory (LSTM) [67] recurrent neural net-
work (RNN) are straightforward to be used [68].

2.3 Application domains

In this section, a brief description of the diseases taken into account
for the experimental phase is provided. They refer to different areas,
including musculoskeletal and rheumatic diseases, cognitive diseases,
and degenerative diseases.

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a long-term autoimmune disorder mainly
affecting joints and bones [7]. Bone erosions are referred to as the
central feature of RA [69]. Erosions are marginal and localized at the
“bare area”, i.e., the bone surface within the synovial space, which
is not protected by cartilage [70], and are typically cause by the
chronic inflammation. RA is consistently spread in the world, and
about 0.5� 1% of a population suffers from such a disease [71]. Of
course, it has also several economic implications, as it is estimated
that over 1.5 million people in the USA suffer from RA, resulting in
a cost of about 80 billion dollars for treatments per year [71]. RA
manifests itself between ages 30 and 60 for women, later for men.
Wrist joints are location mostly affected by RA [72].

According to the most recent recommendations, MRI is used to
asses RA in terms of synovitis, bone edema, and bone erosions [71].
In particular, an MRI-based scoring system - Rheumatoid Arthritis
Magnetic Resonance Imaging Studies (RAMRIS) - was developed,
which is widely used by rheumatologists [73].

Of course, an early diagnosis of RA is essential for effective treat-
ment of the disease. To this purpose, image processing techniques,
such as segmentation, applied to MR images result very useful for
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diagnostic purposes in such a context, as they can make easier doc-
tor’s visualizations and enable details enhancement.

Spondyloarthitis

Axial spondyloarthritis (axSpA) is an inflammatory rheumatic dis-
ease, involving primarily an axial skeleton and progressively leading
to the sacroiliac, intervertebral and facet joint immobilization [74].
Active sacroiliitis are identified on the basis of the Assessment in
SpondyloArthritis international Society (ASAS) criteria [75], which
aims at searching for bone marrow edema, that is visible for in-
stance in STIR images [76]. Lesions are located periarticularly in
a subchondral bone, and must be visible either on two consecutive
slices of MRI examination, or on only one slice if at least two lesions
are noticeable [77]. It is hence clear that the assessment of active
sacroiliitis in MRI is not simple, and becomes even harder as lesions
are small. As a result, inter-rater agreement based on ASAS criteria
is still unsatisfactory [78].

Systemic sclerosis

Systemic Sclerosis (SSc) is a rare autoimmune rheumatic disease
characterized by vascular injury, immune dysfunction, and an exces-
sive production and accumulation of collagen, called fibrosis, that
can affect the skin and internal organs including lungs, gastroin-
testinal tract and cardiovascular system [79] [80]. One of the ma-
jor impairments, caused by skin induration and joint and muscle
involvement, is the gradual loss of mobility which substantially af-
fects the quality of life [81]. In particular, hand disabilities in SSc
are frequent and contribute to the manifestation of diseases such as
inflammatory arthritis, tendon friction rubs, tendonitis/tendinosis,
puffy hands, skin sclerosis, calcinosis, acro-osteolysis, Raynaud’s
phenomenon and digital ulcers [82]. Furthermore, finger flexion and
extension are the most impaired aspects of hand mobility in SSc
patients [83]. Indeed, severe skin thickness in the hands can cause
deformity in the flexion of the fingers, leading to the loss of flexion
at the metacarpophalangeal (MCP) joints, the loss of extension of
the proximal interphalangeal (PIP) joints, and the loss of thumb
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abduction. Moreover, the distal interphalangeal (DIP) joint may
also become fixed in mid-range flexion. These impairments cause
a claw-type deformity of MCP extension, PIP flexion, and thumb
adduction.

As for skin ulcerations, they generally occur over joint contrac-
tures due to increased skin pressure in areas of bony prominences
and reduced blood flow to the skin from scleroderma vasculopathy
[82]. Focusing on the hands, small joint contractures yield dissat-
isfaction with appearance, social embarrassment and difficulties in
carrying out work activities, thus resulting in a significant drawback
for SSc patients [82] [83].

These various manifestations of hand impairment can result in
reduced mobility, dexterity, and grip strength, recognize them is es-
sential, although there is no definitive medical treatment options yet
[82]. In patients with SSc, hand rehabilitation aims at improving
hand mobility, functionality and strength as well as increasing in-
volvement in daily living activities [81]. The role of rehabilitation
treatment is crucial and involves a multidisciplinary team consisting
of physicians, physiotherapists, and occupational therapists. Even
though most therapists recognize the importance of rehabilitation
for SSc, there is currently minimal awareness and SSc rehabilitation
therapy is not widespread [83].

Unilateral spatial neglect

Unilateral spatial neglect (USN) is a term which denotes the failure
to detect, respond or orient toward stimuli located in the hemibody
and or hemispace contralateral to the lesioned hemisphere [84]. It is
a common and severely disabling neurobehavioral disorder induced
by discrete cerebral lesions such as stroke, tumors, trauma, and de-
generative diseases. It is most frequently associated with damage
involving the right parietal and occipital lobes, the basal ganglia
and the thalamus [85]. Patients suffering from USN show slow func-
tional progress during rehabilitation and need long hospitalization
times, and are less likely to be able to live independently with de-
terioration of the quality of life. Three bedside tests can be used to
detect the presence of USN: line bisection, target cancellation, and
drawing. In line bisection, the patient is asked to mark the middle
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of twelve lines presented on a paper. The longer are the lines, the
easier is to reveal neglect. With target cancellation, the patient is
asked to mark out or cancel the targets (i.e., bells, stars or apples)
among a variety of distractors. In particular, Apples cancellation
test is aimed at differentiating between allocentric (object-centered)
and egocentric (stimuli-centered) form of neglect [86]. Some other
cancellation tasks, instead, have only target items (Albert’s task)
[87]. In drawing, the patient is required to copy a figure, or to draw
it from memory.

Several rehabilitation strategies for USN (e.g., optokinetic stimu-
lation, somatosensory electrostimulation, mirror therapy) have been
reported [88]. Their efficacy, however, is still a matter of debate. A
meta-analysis by Pollock et al. [89] states that there is only a lim-
ited number of high-quality studies suggesting the efficacy of USN
interventions in improving functional outcomes and reducing dis-
ability. Azouvi et al. [90], in a recent review, concluded that there
still is only a low level of evidence for the different rehabilitation
methods and emphasized the need for longer validation trials using
innovative techniques such as non-invasive brain stimulation (NIBS).
NIBS techniques have recently emerged in restorative neurology due
to their hypothetical advantage in enhancing the efficacy of tradi-
tional therapeutic intervention. In this view, the re-discovery of the
application of a direct-current flow of low intensity (1 - 2µA) has
raised much interest. This technique is known as transcranial direct-
current stimulation (tDCS). It acts by a tonic modulation of the rest-
ing membrane potential of the cortical neurons, which occurs in an
opposite direction, depending on the polarity (anodal vs cathodal)
of the electrodes, placed on the chosen areas. It is commonly stated
that cathodal stimulation (C-tDCS) decreases cortical excitability
due to neural hyperpolarization, while anodal stimulation (A-tDCS)
reaches the opposite effect by a subthreshold depolarization [91].
The use of tDCS has been shown to be a promising approach in
order to improve post-stroke neglect. A-tDCS and bilateral tDCS
appears to be more effective than C-tDCS [92]. A cognitive therapy
is usually associated to the tDCS approach, which consists of per-
forming tasks with the aim of improving the patient’s capability of
investigating the ignored hemispace. This complementary activity
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can be provided by digital solutions as in [93, 94, 95, 96, 97].

Post stroke

Prior the spread of the Covid-19 pandemic, stroke was usually re-
ferred to as the 21st Century epidemic by the medical community.
Stroke is indeed the second leading cause of death worldwide, and
also the second most common cause of disability-adjusted life years
(DALYs) [98]. Many people experiencing a stroke are left perma-
nently disabled, placing a burden on family and society. It is then
clear that stroke is an important sanitary emergency and, therefore,
also the need for rehabilitation has become a very crucial issue.

In such a context, cerebellar stroke accounts for approximately
2% to 3% of all strokes. Acute cerebellar manifests itself with
axial and or limb ataxia, nystagmus, vertigo, action tremor and
dysarthria. The cerebellum works as a motor feedback control sys-
tem: it compares the motor command elaborated in premotor areas
with sensory-motor inputs, and then produces an error signal. A
cerebellar damage can impair its ability to sufficiently integrate sen-
sory input in order to monitor and correct movements. It is there-
fore possible to observe abnormalities in movement characterized by
increased variability and poor accuracy. These disorders result in
unsteady gait, increased postural sway, abnormal eye movements,
uncoordinated limb movements, difficulties in speech.

Ataxia causes a general in-coordination of movement, in particu-
lar in dynamic ataxia there is a lack of control of distal segments of
the body. For instance, equilibrium and walk are largely involved in
studies as [99], [100], [101]. The study in [102] reported that cere-
bellar damage might cause an inertial mismatch between an internal
representation of body dynamics and the actual body dynamics. Ac-
cording to these results, there are hypometric and hypermetric pa-
tients which respectively underestimate or overestimate their limb’s
inertia. This work also showed that altering the apparent inertia
of the limb to correct the mismatch via robot could improve simple
single-joint elbow movements for both types of patients. It follows
that for single-joint movements, hypometric patients should theo-
retically improve with the addition of mass to the limb because it
would reduce the discrepancy between the internal model and the
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actual limb dynamics. The research in [103] has already shown in-
terest towards this peculiar strategy. Some immediate benefits of
weighting on single-jointed elbow movements were highlighted, but
no benefits on multi-jointed reaching movements were evident.

Frailty

Frailty in the elderly corresponds to a broad clinical issue that con-
cerns the physical, cognitive, and social aspects of the patient, par-
ticularly for people over the age of 75 [104]. The study by Fried
et al. [105] defined a phenotype and thereby some characteristic
traits of frailty in the elderly. Specifically, frailty is considered if
at least three of the following symptoms are present: unintentional
weight loss, fatigue, reduction in muscle strength, slower walking
speed, and decreased physical activity. In cases where fewer than 3
of the symptoms are detected, one can speak of prefrailty. Frailty,
therefore, differs from disability because it is characterized by a de-
cline in several physiological aspects. Thus, in this sense, disability
manifests itself more as a consequence of frailty itself.

Due to age and related cognitive impairments, weakness is a ma-
jor limiting factor related to daily life activities. For instance, the re-
duction in torque generation is reported at the level of the elbow,
shoulder, fingers, and thumb, which worsens due to prolonged phys-
ical inactivity. Furthermore, simple activities, such as standing up,
may be affected, causing falling risk and insecure gait. In addition
to cases of psychiatric and neurological diseases, cognitive abilities
inevitably decline in a healthy elderly population, thus leading to
severe social and economic impact.

In this context, strength training associated with task-oriented
training can intensify rehabilitation and reinforcement [106]. Th
study of Erickson et al. [107] suggested that physical exercise can
produce cognitive improvements (associated with an increase in hip-
pocampal volume) in accordance to [108] about increased levels of
brain-derived neurotrophic factor (BDNF) in response to exercise.
By design, exergames are appropriate for this aim as they require
the patient to produce physical movements in order to complete a
task-oriented exercise in response to visual cues [109]. They are si-
multaneously able to improve patient engagement and train multiple
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cognitive processes [110].

Multiple sclerosis

Multiple Sclerosis (MS) is a chronic, inflammatory and demyelinat-
ing disorder of the central nervous system (CNS). It is character-
ized by a deficit of neurological functions, including motor, sen-
sory, and cognition, which can be relapsing and/or progressive in
nature [111]. Cognitive impairment (CI) can affect up to 70% of the
MS population. Persons with MS can experience difficulties in sev-
eral cognitive domains, including processing speed, sustained and
selective attention, learning and episodic memory, with executive
functions compromised in more advanced, progressive stages [112].
Other cognitive deficits such as visuospatial problems and difficul-
ties with social functioning can also be present [113]. While more
severe cognitive impairment is more likely in persons with secondary
progressive MS, signs of cognitive involvement can be present early
in the disease process. Within the first year of diagnosis, about half
of persons with MS report having either minimal or mild cognitive
difficulties, with greater complaints over the first decade. Although
uncommon, some persons with MS present with cognitive impair-
ment as their primary symptom. In addition, cognitive issues may
be present preclinically [114]. These impairments correlate closely
with brain pathology and can have major consequences for every-
day life. Further, CI is the leading predictor of occupational disabil-
ity in these patients. Treatment options remain extremely limited,
however, despite an increase in available interventions. In princi-
ple, disease-modifying therapies might improve cognition in people
with MS as these agents are primarily designed to arrest the disease
and prevent relapses, but whether they directly improve cognition
remains speculative [115].

Cognitive and behavioral rehabilitation strategies are designed
to enhance an individual’s capacity to process and interpret infor-
mation and to function in all aspects of family and community life.
Although the focus on designing and testing effective cognitive re-
habilitation programs for people with MS is a relatively recent phe-
nomenon, the growth in research studies addressing this need has
been substantial over the past decade. As a result, the Italian Na-
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tional MS Society has recommended remedial interventions and ac-
commodations that can be made to manage cognitive impairment
and improve everyday functioning in both adult and pediatric MS
populations. Such recommendations include more comprehensive
assessment for anyone who tests positive for cognitive impairment
on cognitive screening or demonstrates substantial cognitive decline,
as well as neuropsychological evaluation for any unexplained change
in academic performance or behavioral functioning in school-aged
children with MS. Evidence suggests that cognitive rehabilitation
has a long-term impact well beyond the treatment period and might
enhance cognition in the face of future brain changes [116]. Such
sustained effects have been documented in the literature on aging,
in which cognitive rehabilitation not only improved everyday life ac-
tivities, but also resulted in a 29% reduction in dementia risk ten
years after treatment [116].

Balance

Balance is one of the most important ability for humans, as it is
the principal responsible for postural control, and thus it affects the
possibility of fulfilling or not countless activities, ranging from the
most basic to harder ones [117]. The equation is simple, the more
balance, the more postural control and thus less falls, risks of in-
jury and more independence on activities of daily life. Despite this
naive motivation on why balance is crucial, a myriad of factors con-
tribute on the preservation of a sufficient balance in persons. Even
though some of them may depend on external causes, several ones
regard the health conditions of people. Indeed, one can find plenty
of works in the recent literature studying balance and its relation
with other diseases, with particular emphasis on the role of tech-
nology for favoring rehabilitation and ability preservation. Stroke
is a classic case of event impairing balance, for instance for those
patients who manifest hemi-paresis which then results in minor pos-
tural control [118]. It is worth noting that more than half people
surviving a stroke experience motor deficits due to reduced balance
[119]. Another disease that typically impairs balance is Parkinson’s.
Here, patients manifest slowness of movement, rigidity of muscles,
and postural instability [120], and such symptoms are destined to
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worsen due the progressive nature of the disease. As a result, pa-
tients experience loss of balance, leading to frequent falls and to
low independence on activities of daily living [121, 122]. In general,
several clinical conditions affecting balance are strictly linked to the
age, thus frail elders result in a population which typically presents
balance impairment. It is worth mentioning that falls are the leading
cause of fatal and non-fatal injuries among seniors [123].

The study of balance impairment is therefore raising great in-
terest also from a technological point of view, in order to provide
therapists with much information. Several researches are focused on
assessing balance properties for driving and forecasting the rehabili-
tation activities [124, 125, 126, 127, 128, 129]. In addition, from the
point of view of the rehabilitation process itself, robotic devices and
wearables based solutions are proposed [130, 131, 132, 133].

The most ubiquitous of technology for balance study consists
on the development of platforms delivering activities, coupled with
some sensor or controller for user interaction and data collection.
The most used devices include Microsoft Kinect [134], Nintendo Wii
balance board [135], and robotic systems [136], and are involved
in studies for a wide spectrum of diseases, including stroke [118],
Parkinson’s [137], and frail elders [138].



Chapter 3

Image processing techniques for medical

diagnosis

In the present chapter, the theoretic fundamentals for the developed
methods are introduced. In particular, details on graphs and statis-
tical techniques are revised. Then, the methods used in the study
related to raters-agreement problem are briefly described. In the
end, a brief recap of the classical image processing techniques used
for the unsupervised evaluation of segmentation results concludes
the chapter.

3.1 Graph notation

A graph is a pair G = (I, E) where I = v1, . . . , vn is the set of
vertices1 and E ✓ {(vi, vj) 2 I ⇥ I | vi 6= vj} is the set of edges.

A graph is said weighted when either the vertices or the edges
are labeled with weights. In the former case, the graph is called
a vertex-weighted graph; in the latter case, the graph is called an
edge-weighted graph. The weights can be either positive or negative
and can be assigned by different functions and with different criteria.

Two vertices vi and vj are adjacent or neighbors if an edge eij =
(vi, vj) connecting vi with vj exists. A graph G is indirect (or not
oriented) if the pairs of the edges are not ordered, i.e., eij = eji.
The set of points which are neighbors of a vertex v (that is, the
neighborhood of v) is denoted by Gv. A subset C ✓ I is a clique if
every pair of distinct vertices in C are neighbors.

Let ⇡(vi, vj) = hv1, . . . , vki be an ordered sequence of vertices.
Then ⇡ is a path from vi to vj if for any i 2 [2, . . . , k], vi is adjacent
to vi�1. If the extremities of the path coincide, ⇡ is a cycle. The
graph G is said connected if any two vertices of G are linked via a
path.

1in Section 5.1, vertices are indicated as letters without ordering subscript for ease of
notation. Conversely, here the subscript enables a better readability and thus it is used.
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Let G = (I, E) and G0 = (I 0, E 0) be two graphs; if I 0 ✓ I and
E 0 ✓ E, then G0 is a subgraph of G, and is noted G0 ✓ G. If a
subgraph G0 is a connected graph without cycle, then G0 is a tree.
A spanning tree is a tree containing all vertices of the graph. A
Minimum Spanning Tree (MST) is a spanning tree for which the
sum of the edges is minimal, i.e.,

c(T ) = min
X

l2path

wl, (3.1)

where T is the tree, c(T ) is the cost associated to T , i.e., the sum of
the weights along T , and l can be either weighted edges or vertices,
wl represents the weight assigned to l.

A Shortest Path Tree (SPT) rooted at a vertex r defines a tree
composed by the union of the paths between r and each of the other
vertices in G such that

c(r, v) = min cG(r, v), (3.2)

where cG(r, v) is the cost of the path, i.e., the sum of the weights of
the edges belonging to the path.

3.2 Markov random fields

A brief introduction to Markov random field (MRF) is here provided,
following the dissertation in [139].

Image labeling is a general framework in image processing, con-
sisting of associating each pixel in the image with a label from a
finite set. The meaning of such label depends on the problem under
analysis, and could either be semantic, as in classification tasks, or
numerical, as in segmentation tasks, where it represents the belong-
ing region.

There are several methods for choosing the label. A widely used
one consists of building a probabilistic image model and select the
most likely labeling. In a probabilistic framework, pixels similarities
are expressed by Markov random field. A random field is a general-
ization of a random process, where a collection of random variables
is defined in a multi-dimensional domain. Hence, a label map can
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just be thought as a realization of a random field of discrete random
variables.

Before tackling into details the Markovian modeling theory, it
is worth spending some words on the definition of the maximum
a posteriori (MAP) estimate, both in the case of independent and
dependent pixels of the image.

Let ⇤ = {�1,�2, . . . ,�M} be the set of feasible labels. By eval-
uating each element of the image in an independent way, the MAP
classifier assigns to a pixel x⇤ the label �⇤

i
that verifies the condition:

�⇤
i
= argmax

�i2⇤
p(�i|xi = x⇤). (3.3)

By means of the Bayes theorem, the posterior probability can be
written as:

p(�i|xi = x⇤) =
pxi|�i(x

⇤)p(�i)

pxi(x
⇤)

(3.4)

where pxi|�i(x) is the so-called likelihood function and p(�i) is the
prior probability of the label �i.

In the case that labels are equiprobable, the MAP estimate results
in being the maximum-likelihood estimate (notice that the term
pxi(x

⇤) does not depend on the label).
In this situation, the label is uniquely dependent on pixel inten-

sity, while, for instance, its spatial position is neglected. Of course,
ignoring this kind of information may lead to errors.

In a more general case, let X⇤ 2 RN be the vector of all the
N observations and let L 2 ⇤N the random vector of the N labels
composing the output map. The MAP criterion is applied to find
the best configuration of labels L⇤ that maximizes the posterior
probability function p(L|X = X⇤), i.e.:

L⇤ = argmax
L2�N

p(L|X = X⇤). (3.5)

The major drawback of the present approach is the total number
of different configurations that should be taken into account, making
it computationally demanding. By adopting a Markovian model, it
is possible to marginalize the posterior probability function p(L|X)
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in such a way that the maximization problem is dramatically sim-
plified.

A common way to define MRFs related to image models is to refer
to a graph G = (I, E) where I = v1, . . . , vn is the set of vertices and
E ✓ {(vi, vj) 2 I ⇥ I | vi 6= vj} is the set of edges.

Each vertex of the graph is assigned a label � from a finite set of
labels ⇤. Such an assignment is called a configuration, is denoted !,
and has some probability p(!) and belonging to the set of all possible
configurations ⌦. The restriction to a subset T ✓ I is denoted by
!T and !v 2 ⇤ denotes the label given to the vertex v.

Then, X is a Markov random field with respect to G if

• p(X = !) > 0 8 ! 2 ⌦;

• p(Xv = !v|Xr = !r, v 6= r) = p(Xv = !v|Xr = !r, r 2
Gv) 8 v 2 I and 8 ! 2 ⌦.

Such condition implies that, for the choice of the optimal label,
the totality of the elements carries as much information as the subset
of elements in the neighborhood of the considered node.

In addition, modeling the spatial-contextual correlation by means
of a MRF allows for moving from the global joint maximization of
the posterior function to a neighbor-local formulation of the prob-
lem. This is a consequence of the Hammersley-Clifford theorem
[139]. In particular, such a theorem states that there exists an equiv-
alency between p(!|X) and a Gibbs distribution, i.e.,

p(!|X) =
1

Z
exp

⇣
� U(!|X)

⌘
, (3.6)

where Z is a normalization term and U represents the energy asso-
ciated to a given configuration.

In particular, U(!) is expressed as:

U(!) =
X

S

VS(!), (3.7)

with S being one of all possible subsets of elements of the domain.
The term VS(!) is a potential function that, given a configuration
!, assigns a value to each subset S.
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The MAP criterion can be reformulated as:
!⇤ = argmax

!2⌦
p(!|X)

= argmin
!2⌦

U(!|X)

= argmin
!2⌦

X

S

VS(!|X).

(3.8)

In this way, it is possible to explicit the contribution of the de-
pendency among neighbor elements in the choice of the optimal
configuration !⇤. In addition, reasoning in terms of potential func-
tions is usually much easier than in terms of local characteristics
and spatial correlation of the discrete random variables [139].

The energy function can be separated into two components, i.e.,
a unary term and a pairwise term, taking into account pixel-wise
and spatial-contextual information respectively:

U(!|X) =
X

S�unary

VS(!|X) +
X

S�pairwise

VS(!|X) (3.9)

Depending on the chosen potential function, different kinds of
pixels correlation can be modeled. One of the most used potential
functions is the Potts model. By integrating the Potts model inside
the energy function U(!|X), the pairwise term is simply related
to the number of labels in the neighborhood of the image pixels.
Therefore, the energy becomes:

U(!|X) =
X

i

� ln p̂(xi|�i) + �
X

j⇠i

⇣
1� �(�i,�j)

⌘
(3.10)

with �(�i,�j) being the Kronecker function.
The minimization of the energy function can be addressed via

multiple strategies, ranging from deterministic methods like the it-
erated conditional mode (ICM) [140] strategy, to stochastic methods
like simulated annealing (SA) [139]. The former are generally faster
but less accurate, while the latter are generally more effective, but
they do require long computational times. In the last decade, the
minimization strategy based on graph cuts has gained lot of atten-
tion because it is able to combine effectiveness and computational
efficiency.
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In the present case, the minimization of the energy function is a
complex task, but it can be proved that the presented energy func-
tion is graph-representable [141], i.e., its minimization coincides with
the identification the max-flow / minimum-cut of a graph. However,
the computation of the minimum-cut for a multi-label MRF model
is computationally demanding problem. Hence, for enabling a com-
putationally feasible solution, iterative procedures of sub-optimal
cuts have been designed. One of the most used ones is the ↵ � �
swap algorithm [142], which is the one that will be employed in the
experimental phase.

3.3 Parameter estimation

This section is aimed at presenting the different model estimation
strategies adopted in the method developed for the present research.
The estimation strategies are here described considering a generic
random variable Z and a set Z = {zi}qi=1 of independent and iden-
tically distributed (i.i.d.) samples drawn from Z.

Different parametric models may be embodied in the technique
based on prior information on the characteristic of the considered
image data. In general, any parametric model, for which a corre-
sponding parameter estimation approach is available, can be inte-
grated in the proposed approach. Among the available possibilities,
two specific models can be considered, which encompass a significant
number of image processing applications.

First, when aiming at isolating homogeneous and low-granularity
regions, the case of a Gaussian model can be taken into consider-
ation. Such a model is known to be well suited for modeling, for
example, images collected by passive cameras – for which the addi-
tive Gaussian noise is usually an appropriate model – as well as MRI
instruments [143, 144]. In this case, the estimation of the underlying
parameters is addressed, in a maximum-likelihood fashion, via the
sample mean and the sample variance.

Second, the case of images affected by a multiplicative noise-like
component is addressed. A variety of parametric models have been
introduced in the literature, including Gamma, Weibull, log-normal,
K, symmetric ↵-stable, G0, generalized Gaussian-Rayleigh, Fisher,
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and generalized Gamma distributions [145, 146, 147, 148, 149].
It is worth noting that the models characterized by more than

two parameters (e.g., Fisher, K, generalized Gamma, etc.) have
been mostly designed for modeling non-homogeneous regions, where
texture or granularity phenomena are highly visible. Indeed, lever-
aging once more on the homogeneity and low-granularity of the re-
gions identified by the novel proposed methodology 5.1, the Gamma
distribution has been considered here. Such a distribution is a well-
known model for the statistics of homogeneous non-textured regions
of image data affected by multiplicative speckle, as for example in
radar imagery [150], sonar systems [151], and ultrasound imagery
[152], and whose PDF is positive-valued (z 2 R+):

pZ(z) =
1

�(L)

✓
L

u

◆L

zL�1 exp

✓
�Lz

u

◆
, (3.11)

where u is the mean of the distribution and L is its shape parameter
(L, u > 0).

In this case, parameter estimation can be performed via the
Method of Logarithmic Cumulants (MoLC) [153]. MoLC estima-
tion follows a principle similar to the well-known Method of Mo-
ments (MoM), which makes use of the Laplace transform (in terms
of moment generating function) to define relations between the mo-
ments and the parameters of the underlying distribution. In the
case of MoLC, the Mellin transform is used to relate the parameters
of the distribution to its logarithmic cumulants. In the applica-
tion to several of the aforementioned distributions, MoLC has led
to advantages over MoM in terms of lower estimation variance and
over maximum likelihood in terms of easier analytical or numerical
solution [154].

In particular, if Z is a positive-valued random variable,the first-
and second-order log-cumulants 1 and 2 can be proven equivalent
to the logarithmic mean and variance of the distribution of Z:

1 = E{lnZ},
2 = E{[lnZ � 1]

2}.
(3.12)

Leveraging on the use of the Mellin transform and on the defini-
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tion of the Gamma distribution (see Eq. 3.11), these logarithmic
cumulants can be related to its parameters [u, L] through the fol-
lowing MoLC equations [153]:

(
1 =  (0, L)� ln u� lnL,

2 =  (1, L),
(3.13)

where  (0, L) is the digamma function (i.e., the logarithmic deriva-
tive of the Gamma function) and  (1, ·) is the first order polygamma
function (i.e., the derivative of  (0, L)) [155].

Given the i.i.d. samples in Z, the sample estimates of 1 and 2

can be obtained as:

̂1 =
1

q

qX

i=1

ln zi,

̂2 =
1

q

qX

i=1

[ln zi � ̂1]
2.

(3.14)

Then, substituting the sample estimates into Eq. 3.13, it is
possible to write the MoLC equations for the Gamma distribution
relating the MoLC estimated parameters û and L̂ to ̂1 and ̂2:

(
̂1 =  (0, L̂)� ln û� ln L̂,

̂2 =  (1, L̂),
(3.15)

L̂ is first obtained by numerically solving the second equation
via the Newton-Raphson method [156], and then û is retrieved from
the first equation by substituting L̂. The former solution step is
numerically simple thanks to the strict monotonicity of  (1, ·).

3.4 Superpixels

A group of pixels sharing some characteristics is commonly defined
Superpixel. Their use in the contexts of Image Processing and Com-
puter Vision is growing, as they enable a comprehensive understand-
ing of local properties of the image, without basing on punctual
information.
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Among the methods for superpixels segmentation, two have been
considered in the present work. They are described with regards to
their choice for being the supporting algorithm in the annotation
process. Details on their technical specifications are referred to the
corresponding papers.

Linear spectral clustering: the linear spectral clustering (LSC)
algorithm [157] is a superpixel segmentation method granting high
boundary adherence and visual compactness. The key point for its
selection is that it preserves global image structures through effi-
cient local operations. Also, form the implementation point of view,
it possesses linear computational complexity and high memory ef-
ficiency, thus not demanding too much computational efforts for a
pre-processing phase.

Real-time coarse-to-fine topologically preserving segmen-
tation: the algorithm real-time coarse-to-fine topologically preserv-
ing segmentation (TPS) [158] presents as major feature speed and
accuracy. The superpixel segmentation problem is formulated in
terms of boundary and topology preserving Markov random field
(MRF). Analogously to the linear computational complexity and
high memory efficiency for LSC method, the processing speed is a
feature which makes TPS algorithm a good solution to be deployed
in the data preparation phase.

3.5 Mathematical morphology

With regards to the pipeline for unsupervised evaluation of segmen-
tation results, some operation referring to mathematical morphology
are here introduced. In particular, this Section is about both binary
and gray-levels dilation and erosion. As these techniques are well-
known and widely covered in the literature [159], their description
will be brief and minimal.

In the original paper about mathematical morphology it is stated
"the language of mathematical morphology is that of set theory. Sets
in mathematical morphology represent the shapes which are man-
ifested on binary or gray tone images" [160]. Starting from this
assumption, dilation and erosion can be defined as morphological
transformations combining two sets using respectively vector addi-
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tion and subtraction of set elements, i.e., the image and the struc-
turing element. The structuring element is a binary window driving
the processing. During the operational phase it is centered in each
point of the image. In particular, let B be a structuring element and
x be a point of the image, then the structuring element centered in
x is called Bx.

The binary dilation of image A with structuring element B is
defined as:

A� B =
[

x2A

Bx. (3.16)

From the operational point of view, such an operator adds new
pixels to the object boundaries. The dilation procedure in practice
is the following:

• the central point ⇤ of the structuring element is overlapped over
each true element of the image;

• if the central point is true the whole structuring element is
OR-ed (true wins) with the image;

• if the central point is false the central point is zero-ed and the
other points are OR-ed.

Similarly, the binary erosion of image A with structuring element
B is defined as:

A B =
[

x2A

Bx. (3.17)

From the operational point of view, such an operator removes new
pixels to the object boundaries. The erosion procedure in practice
is the following:

• all the pixels in the image must be processed. The central point
of the structuring element is applied over all the pixels of the
image, from left to right, top to bottom;

• if all the true values of the structuring element matches the
image pixels, a true is set where the central point is;
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• otherwise a false is set, eventually overwriting an existing true
(erosion).

When considering gray-levels dilation and erosion, the output
pixel is computed as the maximum or the minimum gray level re-
spectively, among all the pixels in the neighborhood of the point
where the structuring element is centered. Therefore, such opera-
tions result in the extension of the respectively bright and dark areas
of the image.



Chapter 4

ReMoVES and data analysis techniques

This chapter is devoted to the description to the technologies de-
ployed for tele-rehabilitation support, including both the technical
solution and the analytic technologies involved.

4.1 An IoT solution for assessment and monitor-

ing

The present section goes over the description of the Remote Moni-
toring Validation Engineering System (ReMoVES) system, following
the dissertation in [138].

ReMoVES was developed by the Department of Electrical, Elec-
tronics, and Telecommunication Engineering and Naval Architecture
(DITEN) of Università degli Studi di Genova [161]. The proposed
IoT system provides a personalized rehabilitation program that can
be performed at home by the patient, while the therapist can track
training performance and effectiveness from any Internet-connected
device. By developing game-based rehabilitation tools that are tai-
lored to the therapy goals of different patient categories, multidi-
mensional rehabilitation teams can be provided with more mean-
ingful performance data. Among others, the monitoring of eventual
compensation movements allows for the evaluation of whether an
exercise is correctly performed.

Several IoT architectures for telemedicine systems and e-health
were proposed in the literature [162, 163, 164], but the most com-
pliant with ReMoVES is the one composed of four layers shown in
Figure 4.1.

These levels work closely together, and ensure the archiving, pro-
cessing, monitoring, and proper evaluation of patients’ rehabilita-
tion performance. The four-layer architecture divides the connection
part from the server/cloud part. It is important to define the cor-
rect role of the latter because the physical server used in ReMoVES
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plays a fundamental role in the correct processing and management
of the entire IoT system.

A detailed description of the four layers follows referring to the used
technologies and devices.

Figure 4.1: Architecture of ReMoVES . Each layer is depicted in the correspond-
ing position.

Sensor Layer

The bottom layer is the sensor or perception layer and consists of
the patient client. It deals with the management of so-called “things”
(i.e., sensors connected to the system). ReMoVES employs off-the-
shelf devices, i.e., Microsoft Kinect V2, Leap Motion, and a touch-
screen, resulting in a low-cost solution for telerehabilitation. These
devices are installed and connected to a computer, and through sim-
ple body gestures or touches (in the case of touchscreen), the patient
interacts with the game shown on the screen. Patient movements are
recorded without requiring the intrusive use of video cameras, which
require specialized methods for tracking the user’s body, and are
heavy and error-prone. After the patient finishes the game session,
raw information is generated from tracked data and sent to the up-
per level. A brief description of the included sensors in the platform
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is provided. The real-scenario application here refers to full-body ac-
tivity; so, exergames delivered via the Kinect sensors are described,
furnishing particular details about the game used for the perfor-
mance assessment of frail elderly people.

Microsoft Kinect V2: A motion-sensing input device based on a
time-of-flight camera to build a depth map of the environment. It
can simultaneously track in 3D up to 25 fundamental joints (Figure
4.2) of the framed human body. It offers a wide field of view (70� ⇥
60�) and recognition up to 4.5 m from the device [165]. Data from
the tracked user’s body are recorded at a frequency of 10 Hz. Several
studies demonstrated that the Microsoft Kinect V2 can validly ob-
tain spatiotemporal parameters [166, 167]. Microsoft Kinect is also
a satisfactory tool for rehabilitation due to its low cost and adequate
spatial accuracy (with an order of magnitude of centimeters) [168].

Exergames based on Microsoft Kinect have a significant field of
application in assistive technologies for the elderly, such as in reduc-
ing fall risk, improving physical performance, and reversing the de-
terioration process in frail and prefrail elderly persons [169].

Leap Motion: Explicitly aimed at the recognition of hand ges-
tures, it calculates the position of the fingertips and the orientation
of the hand. Its deployment in ReMoVES is devoted to hand-district
rehabilitation exergames.

Touchscreen: Required for interacting with the subset of ex-
ergames for cognitive assessment. The monitor is positioned on a
table with an angle to the plane of a few degrees. Cognitive ex-
ergames in the ReMoVES platform are a digital reinterpretation of
some gold-standard tests administered on paper to patients. In-
teraction through a touchscreen monitor allows for complete data
collection, also helping the administrator avoid taking notes during
patient activity. Examples of collected auxiliary data are interac-
tion speed and methods or strategies used by the patient to complete
the test.

Exergames: The digital games were developed from scratch for
this research. They encourage the patient to autonomously carry
out functional exercises along with traditional motion rehabilita-
tion. The creation of these activities involved different processes,
technologies, and specialists. It is necessary to pay particular atten-
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Figure 4.2: Skeleton-joint locations and names as captured by Microsoft Kinect
sensor. Skeleton composed of 3D coordinates for each of its 25 joints.

tion to the specifications provided by physiotherapists and physi-
atrists, who share their skills to define the requirements and pa-
rameters of the game. The present exergames are considered to
be assessment and rehabilitation activities, delivering task-oriented
training by requiring the patients to fulfill consecutive and repetitive
tasks. They foster mild-intensity activity, which promotes active ag-
ing for frail elderly individuals, and allows for the preservation or re-
acquisition of functional skills that are involved in real-life activities.
To design an enjoyable and safe gaming experience for elderly users,
several age-related requirements needed to be considered [170]: (i)
The target audience’s lack of previous gaming experience: devices
such as Microsoft Kinect enable users to control and naturally inter-
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act with exergames without the need to physically touch a game con-
troller or object of any kind. Microsoft Kinect achieves this through
a natural user interface by tracking the user’s body movements. (ii)
Exergames should focus on a simple interaction mechanism, while
complex and decorative graphics should be kept to a minimum. (iii)
Exergames should avoid frustration and foster an enjoyable player
experience: when the motor skills of the user are reduced, a preven-
tive calibration phase allows for the patient to complete the game
task even with a limited ROM.

The system currently includes six different exergames for the Kinect
sensor, five exergames for the Leap Motion sensor, and three tests
for the touchscreen. The exergames can be modified on the basis
of level parameters, duration, range of motion, speed, or others.
These activities automatically adapt to the patient capabilities due
to a calibration phase. The thumbnails of Kinect, Leap Motion,
and touchscreen exergames are shown in Figures 4.3, 4.4, and 4.5
respectively.

For the sake of completeness, a brief description of the exergames fol-
lows.

• Equilibrium Paint: this game is an interactive version of
the sit-to-stand exercise. The user repeatedly stands up and
sits down within a predefined amount of time (30 s). The scene
shows a horizontal wooden beam on which paint cans are placed.
The inclination of the beam directly depends on the angle of
the patient’s shoulders during the STS, traced by Microsoft
Kinect. When the patient does not symmetrically stand up,
the paint cans fall down, causing a score penalty in the game.

• Owl Nest: the patient is encouraged to reach an on-screen
target with an arm motion (reaching task) in order to achieve
a high in-game score. Many colorful owls randomly appear in
a position in the screen, and the user carries them to the nest
to gain points. Then, other ones appear on the screen.

• Shelf Cans: introduces the patient to a virtual environment
that is similar to a kitchen. With an arm movement, the patient
grabs one of the colorful drink cans appearing in the middle of
the screen and drags it to the corresponding shelf. This game
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Thumbnails of Kinect exergames in current ReMoVES catalog. (a)
Equilibrium Paint; (b) Owl Nest; (c) Shelf Cans; (d) Hot Air; (e)
Push Box; (f) Flappy Cloud.

is appealing because it requires the user to be attentive to drop
off the drink can on the correct shelf according to its color.

• Hot Air: this is an activity to train the patient’s body balance.
The user can control the direction of a hot-air balloon floating
in the sky with the balance shift: in-game scores are collected
when it is led towards the bonus targets.

• Push Box: assesses balance, where the patient must stretch
forward with their arms parallel to the ground. It takes inspi-
ration from a phase of the Berg balance test. The purpose of
this exercise is to push a box into a hole a few meters in front
of the box.

• Flappy Cloud: this is a functional exercise for the lower limbs.
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(a) (b) (c)

(d) (e)

Figure 4.4: Thumbnails of Leap Motion exergames in current ReMoVES cata-
log. (a) Floating Trap; (b) Endless Zig; (c) Wine Bottle; (d) Finger
Tap; (e) City Car.

The leg abduction-adduction movement reflects the position of
a cloud object in the game screen: the patient makes it move
forward without hitting some obstacles.

• Floating Trap: the patient is led to open the hand and make
a fist alternatively. This exercise requires a good level of con-
centration: in fact, the user moves a floating raft on the left or
on the right according to the finger Flexion–Extension in order
to avoid some objects in the scene.

• Endless Zig: the patient drives a marble along a zigzag path
appearing on the screen. Going out of the boundaries causes
score loss; similarly, some bonus gems appear on the path. The
patient controls the marble movement with Radial–Ulnar devi-
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(a) (b)

(c) (d)

Figure 4.5: Thumbnails of touchscreen exergames in current ReMoVES catalog.
(a) Albert test; (b) Bisection Test; (c) Apple Test; (d) Lantern.

ation.

• Wine Bottle: this exercise mimics a real-world scenario, i.e.,
pouring liquids from a bottle. With the Pronation–Supination
movement of the hand, patients should control the rotation of
a bottle of wine appearing on the screen. They must fill a glass
over and over again to collect as many points as possible.

• Finger Tap: the patients perform the finger opposition exer-
cise, namely they are required to touch with the thumb other
fingers, one finger at a time. The scene of the game represents
a neck of a four-string guitar, where patients pretend to play
the instrument. Some colored marbles sequentially fall off the
strings. The color sequence is green, yellow, red, and blue,
corresponding to fingers from left to right. The exergame self
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adapts to both left and right hands, by defining the correct
correspondence finger opposition - color.

• City Car: the patient drives a car along a randomly-generated
road. The user should steer in the presence of curves and cross-
roads with the movement of Flexion–Extension of the wrist.
Penalties are introduced when the user goes off-track.

• Albert Test, Bisection Test, Apple Test: these are a com-
puterized version of the well- known paper-and-pencil test for
USN [171, 86].

• Lantern: in this exergame, Chinese lanterns appear from the
lower side of the screen and rise towards the sky (upper part
of the screen). The player must act as quickly as possible and
touch them using on the screen. This activity is for the as-
sessment of mental alertness and awareness. Moreover, it can
have applications for the neglect assessment by comparing the
performances relative to the targets shown on the right or left
of the screen.

Network Layer

The role of the network layer is to establish communication be-
tween data tracked by the sensors and stored in a local PC and
the remote server or cloud. In ReMoVES , data-log files in JavaScript
Object Notation (JSON) format are temporarily stored in the local
unit or PC installed in the patient’s home or at hospital. These
data are sent to the central server as soon as an Internet connection
is available via Ethernet or Wi-Fi. This functionality was added in
order to combat any possible connection trouble and to facilitate
domestic use where a reliable Internet connection may not be avail-
able.

Server Layer

The server layer provides data elaboration and analysis via cloud
or server storage. Software running on the physical ReMoVES
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server can manage content-independent data flow to be compli-
ant with software reuse logic. Server software consists of a tra-
ditional Linux-Apache-MySQL-PHP (LAMP) stack, and provides
data-storage solutions, data-processing methods, and a web appli-
cation for clinicians to view information through dedicated graphic
interfaces. The ReMoVES server has only three types of applica-
tion programming interfaces (APIs) for the management of client or
server data synchronization. Data communication is in secure mode
based on hypertext transfer protocol secure (HTTPS). In HTTPS,
the communication protocol is encrypted using transport layer se-
curity (TLS). Certificates are issued by the Let’s Encrypt authority.
To process acquired information, a complete post-movement recon-
struction of in-game events is allowed. Additionally, this component
runs the data-processing algorithms and provides the interface for
displaying the results.

Database: This subsection describes the MySQL relational database
used by ReMoVES . The dataset consists of a structured collection
of JSON files, each of them containing an array of temporal events.
In each element of the array, there are key-value pairs that pro-
vide data. Some keys are common to all exergames, such as time of
recording in milliseconds (ms), in-game score, and Kinect joint posi-
tion (see Figure 4.2). In addition, other keys are provided depending
on the game.

Application Layer

This layer consist of the therapist client, which provides therapists,
physiotherapists, and doctors with direct access to data. Specifi-
cally, the built-in algorithms provide a clear and concise report to
the therapist in order to facilitate the interpretation of therapy evo-
lution. The web interface provides a user-friendly means for the clin-
ical staff to consult information, also displaying patient performance
in graphic mode, and to assign rehabilitation therapies. The layout
dynamically adapts to the size and type of device; this allows for
connection even from a smartphone in the case that the therapist
does not have an available computer.

Figures 4.6 and 4.7 show pictures of hardware and software ar-
chitectures, respectively. The patient client is composed of a local



4.1 An IoT solution for assessment and monitoring 45

unit with the following hardware requirements:

• processor, seventh generation Intel® Core™i5 CPU (quad-core
2.4 GHz or faster);

• memory, 4 GB RAM;

• storage, 20 GB;

• video card, DirectX11-capable from NVIDIA, AMD, or Intel
with at least 1 GB VRAM; and

• dedicated USB3 port.

Microsoft Kinect or Leap Motion sensors are connected to the com-
puter on the basis of the therapist’s recovery plan; thereby, ex-
ergames are assigned to the patient. A touchscreen monitor is added
instead in the case of assessment through cognitive tests. As afore-
mentioned, an Internet connection is not mandatory for the user
identification phase and to locally start the exergames, but it is nec-
essary for data synchronization with the server. The central unit is
composed of the ReMoVES server, which performs the data syn-
chronization with the patient or client units, and stores and pro-
cesses data in the MySQL database. Therapists can access from
any device the web application supplied by WEB server functions.
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Figure 4.6: Hardware architecture of ReMoVES .
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Figure 4.7: Software architecture of ReMoVES .
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4.2 The project STORMS

In addition to the standard version of ReMoVES , an ad-hoc version
was developed in the context of the Project Solution Towards Oc-
cupational Rehabilitation in Multiple Sclerosis (STORMS). Here,
such a specific version is introduced. It includes some exergames
from the standard version (i.e., Hot Air and Shelf Cans), whose de-
scription was provided in the previous Section. In addition, three
new exergames was developed, with different levels corresponding to
different degree of difficulty. In the end, the exergame Owl Nest was
extended, so that here it includes four levels. Such novel activities
are disclosed in the present Section.

The new set of exergames is mainly focused on cognitive recov-
ery rather than motor rehabilitation. The main cognitive functions
involved in games include attention, memory and executive func-
tions. Among the sub-categories of such abilities, the games will
address working memory, inhibition control, selective attention, task
switching and cognitive shifting, multitasking, sustained attention,
top-down attention task [113].

A brief description of the exergames and their levels follows.

• Owl Nest (STORMS): as in the standard version, the goal is
to grab the owls that randomly appear on the screen with the
flexion-extension of the arm and bring them into a nest placed
in the middle of the screen.
First level: no more than three owls can appear simultaneously,
with no distracting elements. When the user brings an owl into
the nest, another owl appears at a different point and the in-
game score increases.
Second level: some eagles appear on the screen as distracting
elements. No more than five owls and three eagles can appear
simultaneously. The time between the appearance of two con-
secutive eagles randomly ranges from 0 to 5 seconds. After
10 seconds the eagle disappears. Catching an eagle makes the
game score decrease.
Third level: the player is required to catch only the pink owls
and do it as quickly as possible, since after 15 seconds the owls
will disappear. Every time an owl disappears, another reap-
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pears in a different location until a maximum of seven owls are
simultaneously on the game scene. The score decreases either
when grabbing a blue owl or when a pink owl disappears.
Fourth level: it is a combination of all the goals of the previous
levels. No more than four owls and three eagles appear simul-
taneously. The user must bring the pink owls into the nest and
avoid both eagles and blue owls. Eagles disappear after ten
seconds, while owls disappear after 8 seconds.
Figure 4.8 shows some game levels

(a) Level 1 - level 3. (b) Level 2 - level 4.

Figure 4.8: Screenshots of some levels of Owl Nest exergame.

• Supermarket: this exergame is set into a supermarket where
the player is instructed to buy some objects. A list of items to
pick up will be displayed at the start of the game. The user
has between 8 and 25 seconds to memorize this list. When the
game starts the patient, with the movement of the arm, will
have to take the correct objects. An audio feedback is pro-
vided, with a positive or negative sound occurring in case of
correct or incorrect action, respectively. In the first, third and
fourth levels, once the list has been completed and the patient
collected all the objects, these ones will reappear on the screen
changed position. The user will then be able to collect the
stored objects again.
First level: a temporary list of three food names must be mem-
orized in eight seconds. Then, the player has to collect the rel-
ative objects, located on two lateral shelves, into the shopping
bag, in the middle of the screen. Some non-food distractors ap-
pear on the shelves. The semantic property (food or non-food)
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of the objects is the crucial correctness factor of the activity.
The game score decreases if wrong objects are put into the bag.
A visual feedback (health bar initially shading to yellow and red
as mistakes are made up) is provided as well.
Second level: the player has to memorize in order four objects
in ten seconds. These objects must be collected among other
distracting items sliding on the conveyor belt. The game score
decreases if the distractor object is taken or if the order is
wrong.
Third level: the player must memorize (in twenty seconds) and
follow four sequenced instructions. The sequence of the instruc-
tions must be respected. Each instruction refers to a different
semantic characteristic (shape, color, or material) of the ob-
jects to be collected. Collected items will disappear, only to
reappear again with the start of a new round.
Fourth level: it is like the third level, but it differs for the
higher number of the objects in the scene and the number of
instructions (five instead of four). In addition, the objects will
reappear on the screen once collected.
In Figure 4.9 the screenshots of the four levels are provided.

(a) List of items in the Level 2. (b) Level 1.

(c) Level 2. (d) Level 3.

Figure 4.9: Some screenshots of the levels of Supermarket exergame.
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• Numbers: the patient has to pop some numbered balloons
(from 0 to 99), according to temporary instructions. Four in-
structions alternate according to the level difficulty: i) pop the
balloons in ascending order; ii) pop the balloons in descending
order; iii) pop the balloons with even numbers; iv) pop the
balloons with odd numbers. The number of balloons varies de-
pending on the difficulty level, they also have different colors
and sizes to make the game more dynamic and visually more
appealing. If the user takes a wrong balloon, a red mark ap-
pears at the bottom of the screen, otherwise if he catches all the
correct balloons a green mark appears. In both cases, all the
balloons still on the screen will be destroyed and a new round
will begin with new balloons.
First level: four balloons appear on screen. They must be
popped in either ascending or descending order.
Second level: it is as the first level, except that the patient is
also required to pop either the even or the odd balloons and
there are five balloons in the game scene. Two visuo-verbal
stimuli are added. When the text relating to the assignment
"take the odd numbers" shows, a red bird will appear for a few
seconds flying from one side of the scene to the other. Con-
versely, a plane will appear on the screen for a few seconds
when the text relating to the task "take the even numbers"
appears.
Third level: six balloons are simultaneously displayed. Once
more, all the tasks can be performed, but this time the patient
must remember the stimuli association previously described,
because in the cases of "take the odd numbers" and "take the
even numbers" no writing appears on the screen.
Fourth level: it is structured like the third level, but also the
writings "pop in ascending/descending order" will disappear
after a couple of seconds.
Fifth level: the player user has to quickly pop as many correct
balloons as possible before they disappear. In fact, all the four
balloons will fly off and disappear from the screen. Only the
tasks about the odd and the even numbers with their relative
visuo-stimuli, will be displayed.
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Figure 4.10 depicts the screenshots of some levels.

(a) Level 1. (b) Level 3.

Figure 4.10: Screenshots of the level one and level three of Numbers exergame.

• Business By Car: the patient drives a car along a randomly
generated road. In particular, the car turns either left or right
as the player moves the trunk laterally to the left or to the right
respectively. The speed of the car increases progressively and
returns to the initial condition as soon as the player goes out of
the carriageway, introducing a penalty in the score. In this last
case the car will be re-positioned on the path. At the beginning
of the game, a list of places to visit appears. The patient will
have to memorize this list in a time that varies between ten
and twenty seconds, based on the selected level. Then, the
game starts and the patient has to drive the car along the path
and select the correct street at the crossroads to pass by the
required places. In the end, a series of multiple choice questions
will appear on the screen, either related to the list and places
or about details present in the game scenes or in the buildings
visited. To answer the questions the patient has to raise his
arm and guide the hand that appears on the screen towards
the answer button. In detail, the three levels will be described
which differ according to the number of places to remember or
the difficulty of the final questions.
First level: in the easiest level, the patient must remember only
four places to visit. The buildings to see are simply written on
the list, with no further writings, to make the goal clear. At
a crossroads, the navigator at the bottom-right will indicate
the correct route to take. If the patient were to take the wrong
path, a message will appear, reminding him of the correct place
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to visit and to pay more attention to the next crossroads. In
the question scene, there will be two questions.
Second level: in this level the patient must visit five places.
This time a real list of errands to be carried out will appear at
the beginning of the game. The navigator does not indicate the
correct path to take and only a warning message will appear
on screen if the player goes on the wrong direction. The final
questions are three. Third level: in the last level the player
must keep in mind six places. No warning message will appear
if he takes the wrong way. In the final scene, the patient should
answer to four questions.
Figure 4.11 shows some screenshots of the exergame.

(a) List of errands to do. (b) The crossroad with the directions given by
the navigator.

(c) The building to visit.

Figure 4.11: Screenshots of the Business By Car exergame.

4.3 Support vector machine

A detailed dissertation to SVM can be found in [172]. Here, a very
short introduction is provided.

A support vector machine is a supervised learning technique from
the field of machine learning applicable to both classification and
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regression. It is mainly used for binary classification, consisting on
a non-probabilistic binary linear classifier.

The key idea of SVM is to create a plane (or hyperplane) separat-
ing the two classes considered. More specifically, the hyperplane to
be defined is the one maximizing the separation between the classes.
It is hence clear that SVM results in an optimization problem, in
particular, in a constrained minimization problem [172].

Let C1 (�) and C2 (⇤) be the two classes of points to be sepa-
rated. Assume they are linearly separable and let them be marked
with symbolic labels y = +1 and y = �1 through a linear separator
⇡ as in Figure 4.12.

Figure 4.12: Points in C1 and C2 and separation region for a given w.

Among the several planes dividing such classes, the aim of SVM
is to find the one maximizing the distance d between two support
planes ⇡a and ⇡b. Let y = wtx + b be a generic plane function,
where w is a vector perpendicular to the plane and b indicates the
translation of the plane in respect to the origin. The two support
planes ⇡a and ⇡b are defined with the equations:

(
⇡a : wtx+ + b = +1 (x+ 2 C1)

⇡b : wtx� + b = �1 (x� 2 C2)
.
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Considering then y+ = +1 the label of (�) and y� = �1 the label
of (⇤): (

wtx+ + b � 1

wtx� + b  �1
. (4.1)

Assuming that the domains of points is of the form
Dn = {(x1, y1), . . . , (xn, yn)}, a general expression for the constraint
is

yi(wtxi + b) � 1 8i 2 {1 . . . n}

Recall that the distance between ⇡a and ⇡b is 2
kwk ; hence, the goal

is to find the parameters w and b such that this distance is maximal.
This is the constrained optimization problem, which leads to solve
the equation

w =
nX

i=1

↵iyixi, (4.2)

where the ↵’s are obtained by maximizing

nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjxt

i
xj (4.3)

subject to ↵i � 0 and
nX

i=1

↵iyi = 0.

This is a quadratic programming problem, thus a global maxi-
mum can always be found.

To conclude, b can be determined by the equation

b = yk �
nX

i=1

↵iyihxi,xki. (4.4)

Therefore, new classification tasks can be performed, via the
scheme:

x �! wtx + b �!
(
� 1 x 2 C1

 �1 x 2 C2
.
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In a more general situation, classes are not separable by a hy-
perplane. However, linear classifier can still be used by considering
some data points like errors due to noise.

Figure 4.13: The orange crosses are wrong points that violate the constraints.

Here, some violation of constraints should be allowed. This can
be done by introducing the slack variables ⇠i.

In the present case the problem of minimization becomes:

min
w,b,⇠

1

2
kwk2 + C

nX

i=1

⇠i

(
yi(wtxi + b)� 1 + ⇠i � 0

⇠i � 0
(4.5)

with C prefixed > 0.
Without going into details the solution of this minimization prob-

lem is similar to the previous case, with the difference that the pa-
rameter b depends on both ↵ and ⇠.

A further way to deal with data which are not linearly separable is
to perform the classification via a non-linear function. This implies
passing from a space L of vectors xi to a space H in which points
are linearly separable L 3 x 7! �(x) 2 H.

Then a linear separation can be done with points �(xi). In gen-
eral, the H space has greater dimension than L space. An example
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of such a situation is provided in Figure 4.14, where
where:

x =


x1

x2

�
;

| {z }
L=R2

�(x) =

2

4
z1 = x2

1

z2 =
p
2x1x2

z3 = x2
2

3

5

| {z }
H=R3

Figure 4.14: Example of space mapping for enabling linearity.

Considering the dot product xt

i
xj, the application the non-linear

function increases the computational cost. However, data points are
involved in the minimization problem only for dot product. Hence,
to avoid computational issues one can leverage on the the so-called
Kernel Trick, i.e., use a kernel function K so that:

K(xi,xj) = �(xi)
t�(xj). (4.6)

The most commonly used kernel functions are:

• Polynomials:

K(xi,xj) = (hxi,xji+ 1)d d = 1, . . . .

• Radial Basis Functions (RBF):

K(xi,xj) = exp

✓
�kxi � xjk2

2�2

◆
“Gaussian”.
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4.4 Long short term memory recurrent neural

network

The large dimensionality of data is one of the most significant chal-
lenges in pattern recognition. Indeed, as the number of extracted
features in the input increases, so does the number of training sam-
ples required for the training system. That is, as the number of
features increases, the system prediction performance may decrease.
Such a problem is known as the curse of dimensionality, and led
to the approach typically used for pattern recognition, i.e., divid-
ing the system into two modules: a feature extraction to reduce
dimensionality, followed by the classifier.

As major drawback of such an approach, accuracy and precision
of the predictions are strongly influenced by the ability of the person
who creates the feature extraction module, which also requires a
considerable knowledge of the application domain.

In such a context deep learning techniques allow for overcoming
this problem through methods and algorithms of data representation
working in a hierarchical manner on several levels of abstraction.
The feature representation is learned directly from data, through a
series of non-linear transformation. This allows for avoiding manual
implementation, which is the key aspect of deep learning approaches.

Deep learning techniques deal with neural network (NN), which,
in general, are divided into convolutional neural networks and re-
current neural networks. As for the former, convolutional neural
networks typically deal with image-data and perform convolution-
ary operations. They extract both general and particular features
in images, depending on their depth, thus are used in image recog-
nition and segmentation, style transfer, etc. Conversely, recurrent
neural networks perform the same task for each sequence element,
with the output depending on the previous calculations. They can
use information in arbitrarily long sequences, but in practice they
are typically limited to looking back only a few steps.

A particular RNN architecture is introduced in this section. Usu-
ally, in neural networks each input and output is assumed to be inde-
pendent from the others. Nevertheless, such hypothesis is sometimes
not suitable for many types of issues, for instance in the application
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of speech recognition where knowing the preceding word is undoubt-
edly essential. The name recurrent indeed is suggesting the nature
of the computations RNNs perform.

In such a framework, a widely used network is the long-short term
memory network [67].

LSTM networks were introduced as a solution to the vanish-
ing/exploding gradient problem. In RNNs, the calculation and back-
propagation of gradients may lead to issues, as they tend to either
increase or decrease at each time instant and therefore, after a cer-
tain number of iterations, they diverge to infinity or they converge
to zero.

Figure 4.15: Scheme of RNN

In Figure 4.15, showing a general RNN scheme, xt is the network
input at the instant t and ht is the state vector, which can be con-
sidered a sort of memory of the system as it contains information
of all the previous elements of the input sequence. The vector ht is
calculated starting from the current input and from the state vector
in the previous instant, through the matrices U and V as follow:

ht = f(Uxt + V ht�1), (4.7)

where the function f is a non-linear function. Finally, ot is the output
of the network at the instant t, calculated by the parameter W.

The LSTM networks, instead, are equipped with special hidden
units, called memory cells, whose task is to remember the previ-
ous inputs for a long time and preserve the error that can be back
propagated through layers.
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Figure 4.16: Scheme of LSTM.

A common architecture of LSTM [173, 174], showed in figure
4.16, is composed of a cell state and three structures called gates
which remove or add information to the cell state itself. The gates
are composed out of a sigmoid neural net layer (�) and a point-wise
multiplication operation. The sigmoid layer outputs numbers be-
tween zero and one, describing how much of each component should
be let through.

First, a sigmoid layer called the forget gate layer, decide what
information should be thrown away or kept from the cell state. In-
formation from the previous hidden state ht�1 and information from
the current input xt is passed through the sigmoid function. Values
come out between 0 and 1. Getting closer to 0 means forget, and
getting closer to 1 means keep. The output of this first step is

ft = �(Wf [ht�1, xt]) + bf . (4.8)

Then, a input gate layer update the cell state. First, the previous
hidden state and current input are passed into this sigmoid function.
Next, a hyperbolic tangent layer creates a vector of new candidate
values, C̃t, that could be added to the state. The function tanh helps
to squish values between -1 and 1 to regulate the network. Then, the
output is multiplied with the sigmoid output it. The latter decides
which information is important to keep from the tanh output.

it = �(Wi[ht�1, xt]) + bi. (4.9)
C̃t = tanh(WC [ht�1, xt]) + bC . (4.10)
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Now, the new cell state can be calculated. The old cell state gets
point-wise multiplied by the forget vector ft, then the output from
the input gate gets point-wise added. This step updates the cell
state to new values that the neural network finds relevant:

Ct = ft ⇤ Ct�1 + it ⇤ C̃t. (4.11)

In the end, the output gate decides what the next hidden state
should be. The previous hidden state and the current input are
passed into a sigmoid function. The newly modified cell state is
passed to the tanh function and then multiplied by the output of
the sigmoid gate ot. The output is the new hidden state ht. The
new cell state and the new hidden state are carried over to the next
time step.

ot = �(Wo[ht�1, xt]) + bo. (4.12)

ht = ot ⇤ tanh(Ct). (4.13)

In all these formulas, W are the weight matrices and b are the bias
vectors.

4.5 K-Fold cross validation

The K-fold cross validation is a technique to test the model ability to
predict new data, aimed at preventing problems such as overfitting.
The final goal is to reduce the dependence of the model on the data,
which manifests itself by low error on the training set but a large
error on data excluded from the training.

The letter K indicates the number of subgroups in which data are
split. Typically, K = 5 or K = 10 as these values have been shown
empirically to yield test error rate estimates that suffer neither from
excessively high bias nor from very high variance. Figure 4.17 shows
a graphical example of data splitting.

Data in the training set are labeled as the belonging class and are
used to train the model; instead, data in the test set are considered
as new data and are used to test the trained model.

The algorithm of k-fold cross validation in pseudo-code is:

1. divide the dataset into K groups.
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Training setTest set

Data set

Training setTest set

Figure 4.17: In the 5-fold cross validation the dataset is divided in five groups,
four for the training set and one for the test set.

2. For each group:

(a) train the model using K � 1 groups as training set.
(b) Test the model using the remaining group.
(c) Compute the accuracy and store it in an accuracy list.
(d) Repeat the process until every K-fold served as the test

set.

3. The final accuracy is the average accuracy, and is obtained as

Accuracy =

X

Acc2LA

Acc

K
,

where LA is the accuracy list. Figure 4.18 depicts the scheme
of K-fold Cross Validation.

Figure 4.18: Scheme of K-fold Cross Validation.



Chapter 5

Application of diagnostic imaging

techniques

This chapter discloses the studies in the context of image process-
ing. First, a goal-driven image segmentation method is introduced,
with an application regarding the segmentation of carpal bone in
MR images of patients with RA. Then, the issues related to raters’
agreement is addressed. An annotation tool for supporting the anno-
tation process is introduced, along with a very first study on experts’
concordance. Finally, a pipeline for an unsupervised evaluation of
segmentation results is presented.

5.1 Unsupervised segmentation of wrist bones

The goal-driven approach to segmentation

The present Section is devoted to the definition of the goal-driven
formulation of image segmentation here proposed. Let I ⇢ Z2 the
pixel lattice, X = {xi}i2I the collection of the observed pixel intensi-
ties, and let the image be formally represented as X = I ⇥X . With
this formalization, each individual pixel is conveniently associated
with the pair (i, xi) so that both the spatial location i 2 I within
the imaged area and the intensity xi are specified.

According to the classical definition [6], the region segmentation
of an image X into disjoint non-empty subregions X1, . . . , XM has
to satisfy the following requirements:

i)
M[

j=1

Xj = X;

ii) Xj is connected for each j = 1, . . . ,M ;

iii) P(Xj) = true for each j = 1, . . . ,M ;

iv) P(Xj [Xk) = false for each j 6= k,
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where P is a predicate of homogeneity. In order to focus this classical
definition with particular emphasis on the goal to be achieved, one
can consider a goal-driven definition of image segmentation, which
is aimed at extracting some ROIs which are interesting for the ap-
plication itself. Here, instead of searching for an image partition,
the goal is to split the image X into a finite collection of disjoint
ROIs X1, . . . , XM and a background (also denoted as reject-region)

B =

 
M[

j=1

Xj

!c

, where (·)c denotes the complementary set. There-

fore, each ROI has to satisfy the following requirements:

i)
M[

j=1

Xj = X \B;

ii) Xj is connected for each j = 1, . . . ,M ;

iii) P(Xj) = true for each j = 1, . . . ,M ;

iv) P(Xj [Xk) = false for each j 6= k;

v) P(B) = false,

where P is a goal-driven predicate of homogeneity, while the back-
ground B does not satisfy the homogeneity predicate (when B is not
connected, all the partitions do not satisfy the predicate). Here, the
goal-driven predicate P encompasses the information related to the
topological, morphological, and statistical properties of data, and
depends on the user-defined goal to be achieved.

The predicate is defined by the user and reflects their expertise
(e.g., a medical doctor, a photo-interpreter, an ultrasound techni-
cian, etc.). Indeed, as in the actual practice and with particular
emphasis on the medical domain, it is important to define what is
the aim of the proposed procedure. The presented method aims
at emulating such an approach by including some prior-knowledge
expressed in terms of goal to be achieved. Such a goal is formally
expressed in mathematical terms, and is deployed by coding the
corresponding control functions.

Within the goal-driven definition of image segmentation, the func-
tion P literally drives the following processing. In particular, the
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goal is defined as a collection of properties that are desired for the
ROIs and not for the background. These properties are determined
by the application for which the segmentation task is addressed.
Among the possible options, in this paper, two properties are al-
ways deployed. They refer to the intensity and the distribution of
the pixels within each ROI. Indeed, the former is related to some vi-
sual features of the regions to detect (e.g., bright structures in MR),
while the latter is aimed at properly modeling the distribution of
the data within the regions taking into account the type of data un-
der analysis (e.g., modeling the type of noise affecting the available
acquisition). In addition, other properties such as some positional,
topological, or geometric ones, can be integrated in the proposed
framework.In the formulation of the hypotheses, the image intensity
X is modeled as a realization of a two-dimensional stochastic pro-
cess, i.e., the intensity xi of the i-th pixel (i 2 I) is modeled as a
random variable.

To formally define the aforementioned goal, let hg and hs be the
two hypotheses, i.e., the pixel-intensity property and the statistical
property, respectively. The former is defined with respect to a set
A ✓ X as:

hg(A) = true ()
(

E{xi} 2 Jm,

Var{xi} 2 Jv
8(i, xi) 2 A, (5.1)

where Jm and Jv are two intervals that specify which values of the
sample-mean and the sample-variance are deemed feasible.

Then the latter hypothesis addresses the statistical properties
of the ROIs. Indeed, the set A ✓ X is said to satisfy hypothesis
hs if the samples of pixel intensities xi, when conditioned to their
membership to the same region, are independent and identically dis-
tributed (i.i.d.) and their probability density function (pdf) belongs
to a given parametric pdf family f (e.g., Gaussian, Gamma), i.e.:

hs(A) = true () xi ⇠ f i.i.d. 8(i, xi) 2 A, (5.2)

In addition, other properties that may be considered can be sim-
ilarly defined. For instance, a positional property can be considered
if the application requires that the target regions are located roughly
in a certain area of the image (e.g., in the center of the image). Such
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property, defined hp, is considered in the application to MR images,
which requires seeds to be in the center of the image, thus avoiding
searching for bones close to the image borders, and is defined as:

hp(A) = true () (i, xi) 2 XF , 8(i, xi) 2 A, (5.3)

with XF being the central area of the image X (i.e., without the
border of size F ).

Now, let H be the collection of properties to be satisfied:

H = {hg, hs, hother} , (5.4)

with hother collectively indicating possible optional properties that
can be specified by the user via appropriate mathematical expres-
sions. Then, let P be a function from the power set of the image X
to the Boolean set:

P : 2X ! Bool so that P (A) =
^

h2H

h(A) (5.5)

The predicate and its components are used to guide the behavior
of the presented segmentation method, but it does not ensure that
the outputs satisfy all the conditions. Nevertheless, P drives the
computation, i.e., it is used to encode the goal within the processing
steps and it is applied for specific operational needs. In particular,
due to the seed-growing nature of the proposed approach, the pred-
icate will be conveniently applied to either the seed points or the
ROI samples.

Overview of the proposed approach

The proposed segmentation method is aimed at extracting, in an
unsupervised fashion, elements of interest from 2-D images, taking
into consideration the user-defined goal and the application domain
to which it is applied.

The resulting output would be a label image L = {li}, i 2 I,
defined over the same (pixel) lattice, whose pixels are associated
with labels identifying a particular element, i.e. li 2 ⇤, with ⇤ =
{0, 1, 2, . . . ,M} and M being the number of different elements, i.e.,
of the different ROIs, and the label li = 0 standing for a background
pixel.
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The rationale of the method is to combine weighted graphs, para-
metric density modeling, and Markov random fields to benefit from
both the topological and the statistical properties of the input image
in the generation of an output map made of the regions of interest
to the application. The regions to be considered in the final par-
tition are obtained from an initial finite set of seeds S0, placed in
the image according to a random grid. Nevertheless, based on the
definition of the goal, a subset of S0 is selected, and such remaining
seeds are used to identify the candidate ROIs.

Here, the proposed method acts driven by the predicate P defined
in the previous Section, even though it does not need to be verified on
the final segmentation obtained. With this in mind, the hypotheses
hg and hp are applied with regards to the seeds.

In particular, first of all hg is applied to X̃s, with s being a
candidate seed point, X̃s a small region around s identified via a
windowing operator. The window prevents the selection of an iso-
lated noisy pixel as one of the seed points. For the experiments of
this paper, it is set equal to 5⇥ 5.

The goal-driven formulation of the proposed method is indeed
guided by the predicate, which is used as a filtering operator on
the initial set of seeds in the random grid. It drives the subsequent
collection of ROI samples, as disclosed in the following.

Then, the predicate hs is applied to the set of samples Xn ⇢
X that are extracted via the graph-based computation (the formal
definition will follow). Differently from the selection of the seeds,
the choice of the pdf does not directly imply the elimination of
some candidate ROIs in the proposed method. Nevertheless, the
samples that poorly fit the chosen model will provide a negligible
contribution to the energy function of the Markovian formulation of
the problem, thus favoring that the candidate ROI is removed from
the final map.

Finally, in case the predicate hp is required, e.g., in the applica-
tion to MR images, the argument of such a function is Xn ⇢ X,
thus requiring the ROIs to be placed in the specific portion of the
image.

The preliminary stage of the proposed approach ends once the
goal, and so the P function, are defined. Then, the three phases of
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the proposed method start, whose flowchart is shown in Figure 5.1.

Figure 5.1: Method flow chart

Following the goal-driven philosophy of the method, the seeds
in the initial set S0 are filtered according to the aforementioned
predicate. Specifically, the properties of H referring to the seed-
selection phase are verified for each seed s 2 S0, and s is retained
if and only if they are true. In the following, the subset S ⇢ S0 of
the original set of seeds that are selected according to P is denoted
as S = {sn}, n = 1, 2, . . . , N .

Then, the propagation algorithm in [175] is used to compute a
set of cost functions F = {Fn}, with n identifying each one of the
seeds sn 2 S. Each cost function is defined over the whole image
such that Fn : I ! R (Phase 1). Differently from the graph-based
method mentioned in the introduction [24, 26, 27, 28, 29], no graph-
cut is actually performed at this level. Hence, no segmentation is
obtained in the first phase.

On the contrary, a set of samples Xn ⇢ X, defining a region
associated with the particular seed sn, is extracted from the im-
age based on each cost function Fn, n = 1, 2, . . . , N . They can be
considered as fuzzy syntactic primitives whose properties depend on
the application domain, and that influence the homogeneity pred-
icate. The complementary region (i.e. the set of image pixels not
assigned to any set of samples Xn) is defined as the initial back-
ground B0 = X\{[N

n=1Xn}. Moreover, according to the graph-based
processing, it is not forbidden for the same pixel to be assigned to
multiple sets (e.g., when it occurs that two random seeds are close
and inside the same region). Nevertheless, the Markovian frame-
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work characterizing the further processing steps is aimed at taking
care of such a situation.

Finally, a set of parametric models, each one associated with each
seed sn 2 S, is estimated using the samples collected in the regions
Xn (Phase 2), as described in detail in Section 5.1.

The segmentation problem is then formulated in a Bayesian prob-
abilistic graphical framework by defining a Markov random field
model. Accordingly, MAP decision rule is formulated as the min-
imization of a suitable energy function [176]. The energy function
is composed of two terms, a unary term Di(·) and a pairwise term
V (·) (see Equation 5.6). The unary pixel-wise contribution is re-
lated to: i) the parametric model associated with the set of samples
corresponding to each seed; ii) a background-specific potential as-
sociated with the set of samples in the initial background B0; and
iii) a spatial feature related to the distance, in the image lattice,
between the location of a given pixel and the location of each seed.
Conversely, the pairwise contribution brings about local-contextual
information. Indeed, the energy function is defined as:

U(L|X) =
X

i2I

Di(xi|li) + �
X

i⇠j

V (li, lj), (5.6)

where i ⇠ j denotes pixels i and j being neighbors according to a
first-order neighborhood system, i, j 2 I (Phase 3).

Because of the Bayesian formulation of the problem, it is pos-
sible that the final label map L does not contain all the labels
from the seeds list. It is worth recalling that each seed is asso-
ciated with a particular label from the preliminary set of labels
⇤0 = {0, 1, 2, ..., N}. Indeed, this filtering behavior is actually sought
for, as it allows the proposed method to autonomously remove, in
the output result, the contributions of spurious seeds (i.e. those
seeds that do not correspond to well-defined regions). Additionally,
such a Bayesian formulation also solves possible conflicts, as for ex-
ample the cases where multiple seeds are placed inside the same
region. The minimization process assigns a unique label to such a
region. In other words, it allows the method to automatically de-
termine the number of most relevant regions, whereas N plays the
role of an upper bound on such number.
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To conclude, according to the novel definition of goal-driven seg-
mentation, the resulting final map L is composed by the extracted
ROIs Xj (j = 1, 2, . . . ,M) and the background B.

The method

Graph-based Cost Computation The graph-based approach
proposed here is an extension of the method described in [175] and
is based on the computation of the set of cost functions F = {Fn},
each one associated with a specific seed sn 2 S.

For the sake of simplicity and ease of notation, this section de-
scribes the cost computation process focusing on a specific seed, pro-
vided that the extension to the case of multiple seeds is straightfor-
ward and only requires to replicate the process for each seed. We will
therefore report just the index n without specifying n = 1, 2, . . . , N .
In addition, the input image is assumed to be scalar valued, while
the extension to vector valued images is straightforward and only
requires some minor mathematical adjustment.

A grid is defined over the pixel lattice and each vertex of the grid
is randomly shifted in the vertical and horizontal directions, accord-
ing to a uniform distribution. The resulting vertices correspond to
the chosen seeds. The spacing of the grid can be considered as hy-
perparameter depending on the size of the object of interest. On
the one hand, a small spacing ensures that a seed is placed in each
object, but yields to many computations. On the other hands, large
spacing may lead to neglecting some objects of regions. Since the
seed selection process deletes redundant seeds, small spacing is in
general preferable than large spacing. In the experimental phase,
based on the size of the ROIs, such a hyperparameter was assumed
to be the 10% of the image width. Small changes of the spacing did
not change the final output from the visual point of view.

Let the image X be mapped into a non-empty, fully-connected,
undirected and vertex-weighted graph G = (I, E) where I is the set
of vertices1 representing the pixels in the image and E ✓ {(i, j) 2
I ⇥ I | i 6= j} is the set of edges. The goal of this section is thus to
describe the computation of Fn(i), 8i 2 I, given the seed sn 2 S.

1for ease of notation, here vertices are indicated as letters without ordering subscript,
differently from Section 3.1.
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For each couple of nodes i and j, let w be a difference function
such that:

w : I ⇥ I ! R, w(i, j) = |xi � xj|, (5.7)

where xi is the intensity of pixel i 2 I, and A and B are the mini-
mum and maximum admissible differences. An example is given by
[0, 255] in the case of 8-bit gray level images. The function in Eq.5.7
represents the difference between each pair of vertices i and j. The
higher the value of w(i, j), the more different the two nodes are in
terms of gray level.

By fixing a specific node sn in the graph (i.e., the seed), each point
in the image, and thus each node in the graph, can be associated
with a value representing its dissimilarity with respect to sn. Indeed,
it is possible to compute the difference function with respect to
the seed according to wn(i) = w(i, sn) 8i 2 I. The proposed cost
computation process is based on the computation of wn(i) for each
node in the graph and according to a flooding scheme [24].

At the beginning, all of the nodes are in the unvisited status
except for the seed, whose cost is zero. A set T , initially containing
only the seed node, is defined to keep track of all the visited nodes.
Then, the flooding process is started from the seed and toward the
connected neighbors (a 4-connected neighborhood model is chosen).
Among the neighboring nodes, the one providing the minimum value
of wn is chosen and added to T . Consequently, the value of the cost
function associated with the considered node is computed. Then the
flooding process is iterated until the set T of visited nodes coincides
with the whole set of nodes I (see Figure5.2.)

Concerning the computation of the cost function, at each iter-
ation two nodes are taken into consideration: i) the node i being
considered; and ii) its father node i�, which is the node that, ac-
cording to the flooding scheme, led to i. In particular, if the weight
wn(i) of i with respect to the seed is larger than the cost of i�, then
the cost associated with i is set equal to wn(i), otherwise the cost
value of wn(i�) is inherited (see Equation 5.8). In this way, the cost
function is never decreasing with the flooding scheme:

Fn(i) =

(
wn(i) if wn(i) > Fn(i�),

Fn(i�) if wn(i)  Fn(i�).
(5.8)
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Figure 5.2: Schematic representation of the flooding process starting from the
seed node (blue circle) and using a 4-connected neighborhood model.

Leveraging on such propagation algorithm, a cost value is as-
signed to all nodes and the process defines an optimal path from the
seed to each vertex. To better understand the process, Figure5.3
shows the assignment of such cost values to all the nodes of the
graph built on top of a magnetic resonance image. Looking at the
images from left to right and from top to bottom it is possible to
appreciate the assignment of cost values starting from low values
and moving to high values. The nodes assigned with a cost value
are painted black, and the figures are subsampled (i.e., for the sake
of brevity, not all the steps are reported). It is interesting to visu-
ally verify that, moving away from the seed, the values are always
increasing. Such a procedure yields to the set of region samples
Xn associated with the n-th seed. In particular, the cost function is
thresholded according to the method in [175]. The set of pixels asso-
ciated with costs lower than such a threshold are assigned to the set
Xn. The resulting region is not disjoint due to the non-decreasing
formulation of the cost function Fn.

As mentioned at the beginning of this Section, repeating the pro-
cess for each seed sn yields to the set of region samples {Xn}, n 2
{1, 2, . . . , N}. Indeed, due to the definition of the graph and the
cost function in Equation 5.8, such regions are characterized by
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Figure 5.3: Assignment of the cost values to the nodes in the graph. The figures
from left to right and from top to bottom show the assignment of
such costs from lower to higher values. The nodes assigned with a
cost value are painted black, and the figures are subsampled (i.e.,
not all the steps are reported). The reader may notice that, moving
away from the seed, the values are always increasing.

homogeneity and low granularity. The set of regions {Xn}, n 2
{1, 2, . . . , N} obtained from the present phase of the method gen-
erally does not cover the whole image, i.e., it leaves out the initial
background defined as B0.

Parametric Model Estimation
The cost computation phase is followed by the parametric model

estimation, which can be deployed by means of the methods pre-
sented in Section 3.3. The observations in each set of samples
Xn, n 2 {1, 2, . . . , N} are considered, focusing on the radiometric
information contained in X , and not on the whole image X conve-
niently defined as observations and pixel locations.

Energy Minimization through Graph Cut In the proposed
method, the energy function in Equation 5.6 is composed of a unary
term and a pairwise term. The unary pixelwise term Di(xi|li) is
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defined differently in case it refers to the seed-specific labels (i.e.,
li = 1, . . . , N) or to the background B0 (i.e., li = 0). In the former
case it is related to the seed-specific parametric models and to a
term measuring the distance between the considered pixel xi and
the seeds. Conversely, in the latter case, it is related to a piecewise
constant background-specific potential. The pairwise potential is
defined as the Potts model [176]. Indeed, the two terms are as
follows:

Di(x|n) =

8
><

>:

di(x|n) n = 1, 2, . . . , N

c1 n = 0, i 2 B0

c2 n = 0, i 2 I � B0

V (n,m) = 1� �(n,m),

(5.9)

where �(v, w) represents the Kronecker delta, whose value is 1 if and
only if v equals w, and zero otherwise, di(x|n) is the seed-specific
potential, and c1 and c2 are the values of the piecewise constant
background-specific potential.

Concerning the seed-specific potential, let p̂(·|n) be the PDF es-
timate obtained as described in the previous section from the set of
samples Xn, n 2 {1, 2, . . . , N} and according to either a Gaussian or
a Gamma model. Then, the potential can be written as:

di(x|n) = � ln p̂(x|n)� � [� (i, sn)]
�1 , (5.10)

where �(a, b) is the Euclidean distance between pixel locations a
and b in the image plane (a, b 2 I), and � is a positive coefficient
balancing the two contributions.

Concerning the piecewise-constant background potential, the two
values c1 and c2 are automatically chosen according to the p-th and
(1�p)-th percentiles of the distribution of the seed-specific potentials
di(x|n). The rationale is to balance the background-specific and the
seed-specific potentials so as to favor the goal-driven result while
also not censoring any possible outcome in the output label map Y .
Both the parameters � (Equation 5.10) and � (Equation 5.6) are
determined via a trial-and-error procedure.

In particular, the term �(i, sli) represents the spatial distance
between the location of the pixel i 2 I in the image lattice and
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the location of the seed sli that corresponds to its label li. While
the first component of the unary potential is traditionally related
to the likelihood of the data, the integration of the second contri-
bution in the unary term is inherited from a family of segmentation
methods that explicitly integrate a spatial feature in the formula-
tion of the unary term [177]. This is also responsible for linking the
intermediate statistical procedure with the initial topological cost
computation, and the final cut yielding the results.

The minimization of a Markovian energy function, like the one
defined in Equation 5.6, has been dealt with using several tech-
niques in the last few decades. Here the graph cut approach [142] is
used, which is based on the reformulation of the energy minimiza-
tion problem as a max-flow/min-cut problem over a suitable graph.
In the case of binary labeling, graph cut approaches are also proven
to converge, in polynomial time, to the global minimum. In the case
of more than two labels, ad-hoc techniques have been formulated.
Here, the chosen technique is the alpha-beta swap technique, which
reformulates the problem as a sequence of binary sub-problems and,
for each sub-problem, a global energy minimum is reached through
the max-flow/min-cut formulation. Convergence to a local minimum
with strong optimality properties is guaranteed in this case [142].

Experimental results

The proposed method was tested on ten MR T1-weighted images
from the database in [7]. They are images of the wrist district de-
picting seven carpal bones (i.e. capitate, hamate, lunate, scaphoid,
trapezium, trapezoid, and triquetrum), in the coronal plane. The
acquisition was performed via the 0.2 Tesla Artoscan (Esaote Spa,
Genova, Italy). The dimension of each image is 80 ⇥ 100 pixels,
the maximum gray-level is 255, and the ground truth segmentation
was performed by medical operators with extensive experience in
RA evaluation. The goal to be achieved is the detection of bright
regions corresponding to the trabecular part of the wrist bones.
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Specifically:

hg(A) = true ()
(

E{xi} 2 (mMR,MMR),

Var{xi} 2 (0, vMR)
8(i, xi) 2 X̃sn ,

(5.11)
with mMR, MMR, and vMR being thresholds that can be set either
directly by the user (e.g., the expert selecting those values based
on prior knowledge) or automatically, e.g., in a supervised fashion.
Here, the former strategy has been adopted;

hs(Xn) = true () xi ⇠ G i.i.d. 8(i, xi) 2 Xn, (5.12)

with G being the Gaussian distribution;

hp(Xn) = true () (i, xi) 2 XF , 8(i, xi) 2 Xn, (5.13)

where F was chosen as the 10% of the smallest image size.
Figure 5.4 shows one of the original images, the corresponding

ground truth, and the segmentation maps obtained by the proposed
method and by other four state-of-the-art techniques.

Based on the ground truth in [7], the results are compared with
those obtained by the active-contours method in [179], the graph-
based method in [175], the iterative spanning forest (ISF) [29], and
with a classical MRF model (i.e., without the term [�(i, sli)]

�1 in
Equation 5.9), taking into account the dice score as performance
indicator [178].

As aforementioned in Section 5.1, the method in [175] is the
baseline for the current work. Both the graph-based approach and
the propagation mechanism are in common, but no Bayesian for-
mulation is included. As a consequence, each ROI is extracted one
at time, or an optimal criterion for the seeds placement has to be
defined. In particular, the segmented bones are smaller then the
ones obtained via the proposed method: the false positive pixels are
reduced through the developed approach.

The other starting point for the proposed method is an MRF
model in its classical formulation, i.e., without the distance term
which is present in Equation 5.9. Here, not only the carpal bones
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(a) Original

(b) Ground truth (c) Proposed method

(d) Graph-based method [175] (e) Classic MRF [176]

(f) Active contours [179] (g) ISF [29]

Figure 5.4: Carpal bones in MR: 5.9a original data; 5.4b ground truth [7]; 5.4c
results obtained by the proposed method; 5.4d results obtained by
the baseline graph-based method in [175] (comparison 1); 5.4e re-
sults obtained by the classical formulation of MRF models (compar-
ison 2); 5.4f results obtained by the method in [179] (comparison 3);
5.4g results obtained by the method in [29] (comparison 4).
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are extracted, but also other regions. Furthermore, one can notice
how the distance term in Equation 5.9 allows for labeling each bone
with a different label, meaning that each ROI is represented by a
different seed.

Then, the method in [179] is an example of a deformable model.
It consists of a flexible active contours model which makes use of
thresholding or gradient-based methods. Even though it is widely
used in the medical field, in this case the shapes of the segmented
ROIs result to be less regular and compact than the ones obtained by
the proposed method. Moreover, the method in [179] also provides a
significant amount of false positive pixels, resulting in a set of small
and spurious ROIs.

Finally, the method presented in [29] is designed for superpixel
computation, and hence it results in an over-segmentation of the
image. Indeed, in many cases, the bones were over-segmented. Thus,
in order to enable the comparison with the proposed method, the
output superpixels have been manually merged. In some cases, the
method in [29] was not able to detect some of the carpal bones, thus
affecting the final mean scores. As for the quantitative comparison,
the accuracy measured by using such method does not mirror its
actual capability. Indeed, the performances are positively biased by
the manual merging operations that have been performed on the
output segmentation to allow the comparison.

The performance measures reported in Table 5.1, together with
the qualitative results reported in Figure5.4, denotes the capability
of the proposed method to provide a segmentation result character-
ized by regular shape, achieving effective performances which are
also consistent across the different bones, and avoiding spurious and
noisy ROIs in the output map. The regularization of the MR arti-
facts and noise is guaranteed by the MRF model, that allows seg-
menting all of the bones, which are present in the considered image,
as connected components that can be easily extracted and identi-
fied. The values in bold were statistically tested to significantly
outperform their rivals the (t-test, p < 0.01).
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Table 5.1: DICE score comparison.

Proposed Method Graph-based method [175] Classic MRF [176]

Capitate 0.903 ± 0.032 0.826 0.877 ± 0.036
Hamate 0.875 ± 0.037 0.785 0.843 ± 0.078
Lunate 0.850 ± 0.050 0.765 0.819 ± 0.039

Scaphoid 0.877 ± 0.027 0.789 0.842 ± 0.034
Trapezium 0.880 ± 0.037 0.832 0.735 ± 0.174
Trapezoid 0.799 ± 0.086 0.813 0.740 ± 0.067

Triquetrum 0.911 ± 0.031 0.695 0.864 ± 0.031
Total 0.871 0.786 0.817

Proposed Method Active contours [179] ISF [29]

Capitate 0.903 ± 0.032 0.878 ± 0.045 0.830 ± 0.078
Hamate 0.875 ± 0.037 0.874 ± 0.046 0.850 ± 0.049
Lunate 0.850 ± 0.050 0.826 ± 0.057 0.737 ± 0.117

Scaphoid 0.877 ± 0.027 0.857 ± 0.034 0.805 ± 0.084
Trapezium 0.880 ± 0.037 0.854 ± 0.068 0.482 ± 0.289
Trapezoid 0.799 ± 0.086 0.792 ± 0.062 0.614 ± 0.295

Triquetrum 0.911 ± 0.031 0.900 ± 0.037 0.665 ± 0.296
Total 0.871 0.854 0.712

5.2 Annotation tool

The development of a tool facilitating the annotation allows to widen
the pool of annotators, enabling the creation of datasets with more
different labels and therefore more robust and reliable. Also, a
web service providing such a tool would enhance the accessibility
by raters, thus granting a large number of annotations.

For such reasons, aimed at defining a numerical-segmentation-
driven procedure for annotating medical figures, a pre-processing
phase based on superpixels segmentation is proposed. The medi-
cal experts are required to select the superpixels of interest in an
interactive fashion, and then to manually correct the annotation.

Figure 5.5 depicts the phases of such operation.
The original data is over-segmented via a superpixel algorithm,

producing a grid to be superimposed on the data. An underlining
labels image is produced, to enable superpixels annotations. The
final output consists of the binary annotation by the expert.

Such a procedure is supposed to reduce intra- and inter-rater
variability and the dependence on the skill of the annotators, thus
enabling more robust classifiers, trained on such labeled data. In
addition, a preliminary evaluation on the possibility that the pre-
sented pipeline can reduce time needed for manual annotation was
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Figure 5.5: Workflow of superpixels-driven annotation.

conducted. Five raters with different levels of experience annotated
some images both with and without the use of the annotation tool.
The time required for the annotation reduced with the support of
the pre-processing. While this is still a conjecture rather than a
result, future study will be able to confirm such statement.

5.3 Raters agreement

A preliminary phase in evaluating raters agreement in annotations is
here disclosed. It is aimed at studying the possibility to reduce inter-
rater variability and the dependence on the skill of the annotators
in the labeling phase. Hence, five annotators were asked to mark
every region suspicious of the presence of bone marrow edema re-
gardless of its nature (inflammatory, degenerative, traumatic), into
five STIR images of the sacroiliac joints, as in [76, 180]. Bone mar-
row edema is a hyperintense areas within the bone marrow on STIR
sequence. In general, lesions manifest themselves as regions of STIR
images which are brighter then the signal within the reference re-
gion, i.e., the region where it is unlikely that inflammations occur.
Even though this is a precise definition, it is rarely rigorously applied



5.3 Raters agreement 81

in practice. In fact, medical doctors are likely to consider lesion a
region which is brighter than the neighboring ones. As a result, the
manual segmentation of lesions is very subjective.

In the present experiment, raters annotated the images via two
procedures, i.e., manually, and interactively by using the annota-
tion tool described in Section 5.2. The latter delivered the pre-
segmentation results based on the superpixel methods described in
Section 3.4, i.e., LSC and TPS. The agreement among raters is eval-
uated in terms of DICE coefficient [178] and Intersection over Union
(IoU) coefficient [181]. Such indices are computed by coupling raters
and the average values are reported in Table 5.2. Also, the global
agreement is computed as average indices over the five considered
cases.

Table 5.2: Raters agreement.

DICE coefficient IoU coefficient
Manual LSC TPS Manual LSC TPS

Case 1 0.89 0.98 0.99 0.80 0.95 0.98
Case 2 0.86 0.97 0.96 0.75 0.95 0.92
Case 3 0.74 0.98 0.98 0.60 0.96 0.95
Case 4 0.88 0.97 0.97 0.80 0.94 0.94
Case 5 0.78 0.96 0.98 0.64 0.92 0.95
Average 0.83 0.97 0.97 0.72 0.94 0.95

In addition, Figure 5.6 depicts an example of raters agreement
visualization, based on the label map. It represents a concordance
heat-map where warm colors represent higher agreement among the
five raters (i.e., in descending order red, yellow, green, light blue, and
blue). It appears that the major issues arise close to the borders of
regions, and are highlighted as they are less defined. It is note-
worthy that in all the cases, the raters agreement increased when
considering the superpixel-based pre-annotation. Indeed, the pre-
processing phase enable an enhanced visualization of borders thus
yielding lower variability of annotation, acting as a standardizing
procedure.

By leveraging on robust annotations, supervised classifiers are
supposed to benefit in terms of performance and both classification
and predictive ability. The proposed procedure could thus address
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Figure 5.6: Example of raters agreement visualization.

a significant problem of supervised method, tackling the problem of
poor ground truth data. Of course, any unsupervised method could
be deployed in the pre-processing phase; the choice depends on the
application domain.

The proposed pipeline is, in fact, a solution bridging unsuper-
vised and supervised approaches, aimed at better fulfilling the final
semantic task, and can be applied not only in the biomedical con-
text, but also in any framework where raters agreement may affect
the quality of the results.

5.4 Unsupervised segmentation evaluation

In the present section, a method for unsupervised evaluation of im-
age segmentation results is presented. The description follows the
dissertation in [182].

The main objective of the proposed work is to evaluate the good-
ness of a segmentation result in an unsupervised fashion, namely,
based on local contrast information related to the interface between
the internal and external voxels of a ROI. In particular, the aim is
to evaluate the goodness of a segmentation result with regards to
a specific application, which here is the adherence of the segmen-
tation to the cortical-trabecular interface of bones, thus fostering
subsequent analysis such as the detection of relevant landmarks. It
is then clear how a reliable gradient measure is the basis of the
whole processing chain. Intuitively, the proposed gradient measure
evaluates the variation of the gray levels across the interfaces, thus
defining an approximation of the gray levels gradient on the border
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of the segmented object. Since the best location of the interface
between the inner and outer voxels of a ROI is associated with the
local maximum contrast, the comparison between two different seg-
mentations is based on the statistical analysis of the local gradient
values. Given a bone segmentation result, the boundary voxels are
extracted to analyze gray levels information in a small local neigh-
borhood. Instead of directly applying the original MRI gray level
values, some pre-processing is proposed. Morphological dilation and
erosion operations are independently performed on the raw volume,
in order to spatially expand bright and dark areas, respectively.
These two volumes are used separately as input to the gradient cal-
culation phase. The difference between the gray levels in the two
processed volumes is mapped onto the voxels on the border, repre-
senting the volume boundary, hence the interface between cortical
and trabecular bone. The resulting volume boundary texture is the
difference after dilation and erosion; the higher the value of the re-
sulting texture, the more different are the tissues inside and outside
the volume. For the comparison of segmentation results, a fuzzy
criterion based on local statistics is defined.

Figure 5.7: Flow chart of the proposed approach.

The method

Segmentation The starting point of the proposed method is vol-
ume segmentation. In particular, here both manual and numerical
segmentation are considered. As for the manual segmentation, it
was performed by medical experts in MR volumes evaluation, by
using the tool RheumaSCORE (Softeco Sismat S.r.l.). On the other
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hand, the automatic approach refers to the method in [24], which is
a graph-based, unsupervised, and adaptive method, which therefore
does not require any a-priori knowledge.

Boundary voxel extraction From the segmented binary vol-
umes, the voxels on the border are extracted in a classical fashion,
by leveraging on binary morphological operations. In particular, two
sets of boundary voxels are defined. More specifically, let V be the
binary segmented volume and let s be a cubic structuring element
of dimension 3 ⇥ 3 ⇥ 3, and whose entries are equal to 1. The sets
of boundary voxels are obtained via the equations:

border1 = V � (V  s); border2 = (V � s)� V, (5.14)

where  and � are the binary erosion and dilation operators respec-
tively [160].

Note that border1 puts more emphasis on the gray levels just
inside the volume, while border2 refers to the gray levels just out-
side the volume. It is worth mentioning that no surface mesh has
been considered. Indeed, the nodes of the mesh are an approxima-
tion of the volume surface, which yields to the loss of some infor-
mation content. Therefore, even though mesh results are better for
the visualization since they lead to smoother shapes, in this con-
text it is crucial to access all the information content, thus avoiding
approximations as much as possible.

Gray level morphological operations One of the most rele-
vant aspects of the proposed approach is the emphasis on objective
evaluation. The influence of human factors in segmenting can be re-
duced also via pre-processing operations applied to the original MRI
volume. This procedure is of fundamental importance when dealing
with low-intensity field tomography, where it may be difficult to have
accurate ground-truth. The proposed pre-processing operations are
gray-levels morphological dilation and erosion. These techniques are
well-known and widely described in the literature [183], therefore,
details on their use are provided as dealing with the effects on the
present segmentation evaluation process. Since, according to the
structuring element, dilation and erosion take into account the in-
formation related to a voxel neighborhood, their application turns
in reducing small differences between segmentation results when in-
cluding or excluding a limited set of points. As a result, the esti-
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Figure 5.8: Example of the extracted boundary from the available segmentation.

mated gradient measure benefits of a better adaptation to the ac-
tual separation between cortical and trabecular bones, i.e., between
bright and dark regions.

(a) Original (b) Estimated gradi-
ent

(c) Dilation (d) Erosion

Figure 5.9: Original slice (a) and gradient estimation (b) as the difference be-
tween dilation (c) and erosion (d).

Boundary gradient estimation The integration between bor-
der and volume information is performed during the boundary gra-
dient estimation phase. The estimated gradient in each boundary
voxel results in the difference between the corresponding dilated
and eroded gray levels. Such an operation is performed for both
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border1 and border2.
Fuzzy criterion For defining the comparing procedure, let

I = [a, b] be the interval of feasible gradient values and, without
loss of generality, let such an interval be of the form J = [0,m] via
the mapping I 3 x 7! x� a 2 J (thus m = b� a). Then, let gi 2 J
be the gradient value corresponding to the ith voxel and let µ be the
linear fuzzy membership function defining the punctual goodness of
segmentation, namely how large is the gradient value in each voxel,
with respect to the maximum: µ(i) = gi/m 2 [0, 1]. The better
the segmentation in the ith voxel, the closer to 1 is µ(i). When
comparing two segmentation results, the relation between them is
based on order statistics. In particular, the minimum, median and
maximum values of µ are considered; then, a voting procedure is
defined. The rationale is that the segmentation that better fits the
cortical-trabecular interface is the one with at least two highest val-
ues between the minima, medians, and maxima of µ.

Experimental results

The validation phase was conducted on a set of 98 3D T1-weighted
low-field MR volumes of the hand-wrist district, which have been
acquired by a 0.2 Tesla Artoscan (Esaote S.p.A., Italy), from the
database in [7]. The size of each slice in the coronal plane is 256⇥256,
while moving in the longitudinal direction, slices are between 90 and
120. Boundary voxels were obtained from both the segmentation of
medical operators, and via the numerical method in [24], following
the aforementioned procedure.

Statistical reasoning A globally good result should be charac-
terized by large gradient values along with small occurrences of low
gradient values. A possible local segmentation error is associated
with low gradient values, which indeed represent minor variation
between inner and outer gray levels. In order to test whether a
segmentation result has local errors, it is mandatory to analyze its
smallest histogram percentiles. As a consequence, such an analysis,
as well as the comparison between two segmentation results, can-
not be based on global statistical measures but must rely on local
statistics. At the same time, the debate about central tendency
measures is still open when dealing with their ability in catching
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useful and reliable information. Furthermore, the smallest gradient
values interval cannot be uniquely defined since it depends on the
ROI, on the specific tomographic device used, and is not normalized
in MRI acquisitions. Indeed, the comparison of segmentation results
is conducted via the analysis on the cumulative gradient histogram
(CGH), which maps the various percentile values. More specifically,
the comparison between two segmentation results is based on the low
percentiles of the CGH. The best fitting to the cortical-trabecular
interface is related to the CGH whose low percentiles correspond to
higher values, meaning that few small gradient boundary points are
present. Gradient values corresponding to CGH percentiles (10th
and 25th) are summarized in Table5.3.

Table 5.3: Average results.

Inner Numerical Inner Manual
10thpercentile 516.35± 155.82 723.72± 120.46
25thpercentile 792.21± 101.35 978.04± 59.92

Outer Numerical Outer Manual
10thpercentile 350.91± 31.94 340.02± 36.73
25thpercentile 507.77± 96.69 481.67± 145.70

The boundary border1 yields to focus on the interior voxels, thus
balancing the estimation error performed by the human user. On
the contrary, the correct position of numerical segmentation moves
the gradient evaluation inside the trabecular bone, thus yielding
lower gradient values. Conversely, the boundary border2 delivers
the highest ratio between the gradient from the unsupervised seg-
mentation and the gradient from the manual one. Such values mean
that many voxels on the border have low gradient in the manual ap-
proach, thus confirming the assumption that the medical operators
included not only bright voxels, but also dark ones, as a consequence
of their knowledge/expertise. On the other hand, the high border
gradient for the unsupervised approach shows that such a method
better fits the cortical-trabecular interface, thus clearly separating
bright and dark voxels.

Case study The comparison between the proposed approach
and the literature was performed on six volumes from the available
database, which refer to three patients who have been evaluated
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twice by the doctors (time T0 and time T1, after 12 months). In
particular, cases 1 and 2 refer to the first patient, 3 and 4 to the
second one, and 5 and 6 to the third one.

In general, according to the fuzzy criterion here described, when
considering the boundary BORDER1, the best fitting to the cortical-
trabecular interface is delivered by the manual segmentation. Con-
versely, in the case of boundary BORDER2, the numerical segmen-
tation is declared to be the best to fit the interface and highlighting
the local sensitivity of the proposed criterion. Tables 5.4 and 5.5
show the segmentation with majority of voting for each bone and
for each case, with respect to BORDER1 and BORDER2 respec-
tively.

Table 5.4: Best fitting with respect to BORDER1.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Capitate Manual Manual Manual Manual Manual Manual
Hamate Manual Manual Manual Manual Manual Manual
Lunate Manual Manual Manual Manual Manual Manual

Scaphoid Manual Manual Manual Manual Manual Manual
Trapezium Manual Manual Manual Manual Manual Manual
Trapezoid Manual Manual Manual Manual Numerical Manual

Triquetrum Manual Manual Manual Manual Manual Manual
Pisiform Manual Numerical Manual Manual Manual Numerical

Table 5.5: Best fitting with respect to BORDER2.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Capitate Numerical Numerical Manual Numerical Numerical Numerical
Hamate Numerical Numerical Numerical Manual Numerical Numerical
Lunate Manual Numerical Numerical Numerical Manual Numerical

Scaphoid Numerical Numerical Numerical Numerical Numerical Numerical
Trapezium Numerical Numerical Numerical Numerical Numerical Numerical
Trapezoid Numerical Numerical Numerical Numerical Numerical Numerical

Triquetrum Numerical Numerical Numerical Numerical Numerical Numerical
Pisiform Numerical Numerical Numerical Numerical Numerical Numerical

The reader may notice that when considering BORDER1 the
manual annotation in inaccurate for three cases, in particular twice
for the Pisiform and once for the Trapezoid. This may be due to the
small size of such bones which make the manual annotation hard to
perform. Conversely, when considering BORDER2 the Numerical
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annotation is less accurate in four cases, once for the Capitate and
the Hamate, twice for the Lunate. Such bones are the biggest ones
and also the most regular thus also the manual annotation is easier
to be performed. It is worth noting that the manual annotations
performed on the same patient but at different times may be so
dissimilar that in some cases, the fuzzy criterion here described did
not agree on the same bone at different times (BORDER1: Case
1-2 Pisiform, Case 5-6, Trapezoid and Pisiform; BORDER2: Case
1-2 Lunate, Case 3-4 Capitate and Hamate, Case 5-6 Lunate).

Table 5.6: Entropy differences between numerical and manual segmentations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Capitate <10-4 <10-4 <10-4 <10-3 <10-5 <10-5

Hamate <10-4 <10-5 <10-3 <10-4 <10-4 <10-3

Lunate <10-3 <10-4 <10-4 <10-4 <10-3 <10-4

Scaphoid <10-5 <10-4 <10-3 <10-4 <10-4 <10-5

Trapezium <10-4 <10-3 <10-4 <10-4 <10-4 <10-4

Trapezoid <10-4 <10-4 <10-5 <10-4 <10-4 <10-4

Triquetrum <10-5 <10-4 <10-4 <10-4 <10-4 <10-4

Pisiform <10-3 <10-4 <10-4 <10-3 <10-5 <10-4

When applying the entropy-based evaluation method [184], the
differences between the two approaches for the segmentation are not
visible.

In order to apply the method in [184], let R be a segmented region
of cardinality |R|, f a feature, and R(f) the set of all possible values
associated with feature f in region R. Then, let m be a feasible value
for the feature f and LR(m) the number of voxels in region R that
have a value m for feature f (i.e., LR is the histogram of the feature
f). The entropy for region R is defined as

E = �
X

m2R(f)

LR(m)

|R| log
LR(m)

|R| . (5.15)

The entropy measures the uniformity of the segmented region,
based on a particular feature which, here, is the gray level of each
voxel. The smaller the entropy, the more uniform the region, thus,
the better the segmentation. However, when computing both the
entropy of the numerical Enum and manual Emanual segmentation,



90 Application of diagnostic imaging techniques

one can notice that they are not very different, in particular |Enum�
Emanual|  10�4.

In addition, one can compute the expected region entropy when
referring to the whole district, thus evaluating the inner uniformity
of each segmented bone. In particular, let K be the number of
segmented regions, Rk be the kth region of cardinality |Rk|, k =
1, . . . , K, and E(Rk) its entropy. The expected region entropy is
defined as

Ē =
KX

k=1

|Rk|
|Rtot|

E(Rk), (5.16)

where |Rtot| is the total number of voxels considered. However, even
in this case |Ēnum � Ēmanual|  10�4, thus denoting that such an
evaluation method does not recognize any difference between the
numerical and manual approaches.



Chapter 6

Application of telerehabilitation techniques

The present chapter is devoted to the presentation of the results
from studies involving the ReMoVES system. First of all, a feasi-
bility study referring to the work in [66] is described. Then, the
applications to SSc, USN, and post-stroke and frailty rehabilitation
are presented, referring to [68], [94, 95, 93], and [138, 185] respec-
tively. To conclude, the first phase referring to an ongoing study on
balance assessment is disclosed.

The translational approach of the work underlying the present
thesis, which combines the background of both the Polytechnic and
Medicine Schools, is particularly evident in the present chapter, and
represents its innovative contribution. Indeed, the previously intro-
duced technology of the ReMoVES system, is deployed into real-
world cases,and by leveraging on the application of data and signals
analysis techniques, it results in a support to the clinical staff.

6.1 SVM-based feasibility study

A feasibility study for the deployment of a method for the automated
evaluation of performance in exergames for motor rehabilitation is
here presented. The considered data come from different patients as
such a study was perform to test the applicability of ReMoVES for
remote monitoring, aimed at using it for disease-specific treatment.

The proposed method is based on an SVM classifier, as classifi-
cation should be based on the feedback and experience of the ther-
apist. Indeed, the training phase of such model was performed on
data labeled by the therapist as Good or Other, while the patients
are performing their activity. SVMs are commonly used for motion
analysis and are designed for two-class classification problems such
as the one discussed here.

The workflow described in the following Sections should be ap-
plied separately to each exergame, with appropriate adjustment due
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to the differences among them. Here, the exergames Shelf Cans is
considered.

Aimed at increasing the granularity of data, each session was
split into segments, which are the actual input to be fed to the
model (Figure 6.1). The segment duration ranges between 2.0 and
20.0 seconds with 0.1 steps. As a result, up to 60 samples can be
obtained from each session.

Entire session

Sliced session

t [s]

Good OtherLabel classification by therapist or expert :

Figure 6.1: Sessions are divided into segments of duration t, keeping the corre-
sponding label.

The SVM classifier with RBF kernel has been trained through
an iterative process for each t. Hence, in the proposed workflow
(Figure 6.2), t is an hyperparameter that must be tuned according
to the result of a grid-search process.

In order to analyze each segment, the following indicators are
considered as feature vector for the Shelf Cans exergame.

• Game score.

• Hand trajectory, i.e., the average distance between the position
of the hand and the shortest line passing through the items
origin and targets.

• Range of motion of the elbow, i.e., the difference between the
maximum and minimum angle calculated with the Wrist, El-
bow and Shoulder coordinates in 3D space.

• Lateral flexion of the trunk.
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Figure 6.2: General flowchart of the SVM-based method.

• Trunk rotation on the transverse plane.

In the experimental phase, 30 full sessions of 120 seconds each
were considered, resulting in hundreds of segments of duration t.
The grid-search for the hyperparameter t is performed by training
the corresponding models and evaluating their performance by iter-
ating the 5-fold cross-validation for t between 2.0 and 20.0 seconds
with 0.1 steps. The resulting accuracy for every t is taken into ac-
count. Non-linear least squares was used to fit the accuracy data and
understand whether it presented a global maximum. As depicted in
Figure 6.3, the fitted curve has a maximum in t = 8.3 seconds, thus
being the chosen value for the hyperparameter t.

Then, the model was trained with samples generated by the du-
ration segment t = 8.3, resulting in 389 samples in the dataset (200
for Good class and 189 for Other class) and the resulting overall ac-
curacy of the model based on 5-fold cross-validation is 0.80 ± 0.16.
The confusion matrix is provided in Tab. 6.1.
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Figure 6.3: Plot of accuracy for each iteration of the grid-search procedure. The
red curve fitting the data has the global maximum in t = 8.3.

Table 6.1: The final result of SVM performance expressed as a confusion matrix.

Predicted
Good Other Total

Actual Good 128 72 200
Other 7 182 189
Total 135 254 389

6.2 Application 1: Systemic sclerosis

The aim of the study1 here presented is to assess the conditions
of SSc patients, based on the activities delivered by ReMoVES .
For such a purpose, it is necessary to verify that game sessions by
patients and healthy subject are different. Therefore, the considered

1The study on SSc was conducted in collaboration with Struttura Complessa di Reuma-
tologia - ASL3. In addition to the paper [68], it was also presented to the medical congresses
ACR Convergence 2020 and 57° Congresso Nazionale SIR.
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population was composed by both patients and healthy subjects
(i.e., the clinical staff of the hosting facility).

The admission of patients to each game session was determined
by the judgment of the clinical staff, who evaluated the willingness
to participate and the general conditions of the patient at that par-
ticular time.

The treatment plan was divided on the basis of finger and wrist
movements, in particular it consisted of:

• one session for stimulating thumb opposition (Finger Tap ex-
ergame);

• one session for stimulating finger flexion-extension (Floating
Trap exergame);

• one session for stimulating radial-ulnar deviation (Endless Zig
exergame);

• one session for stimulating wrist flexion-extension (City Car
exergame).

All the games were performed with the dominant hand.
Patients feedback related to ReMoVES was extremely positive

and all of them were willing to repeat the activities.
Table 6.2 summarizes the involved population with regard to each

exergame.

Exergame Group

Finger Tap Patients: 19
Control: 16

Floating Trap Patients: 19
Control: 16

Endless Zig Patients: 18
Control: 15

City Car Patients: 18
Control: 14

Table 6.2: Number of sessions for each exergame.

In order to compare the sessions performed by patients and con-
trol group, the Kruskal-Wallis test was used. Such a test focused
only on one feature for each exergames, which follows.
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• Finger Tap: number of correctly stopped marbles.

• Floating Trap: opening ROM, i.e., the difference between the
maximum and minimum of Sphere field, which is the length
of the radius of a virtual sphere contained in the hand palm
(measuring the finger extension).

• Endless Zig: yaw ROM, i.e., the difference between the maxi-
mum and the minimum angle of the line joining the Wrist and
the Palm positions on the coronal plane (measuring the radial-
ulnar deviation).

• City Car: pitch ROM, i.e., the difference between the maxi-
mum and the minimum angle of the line joining the Wrist and
the Palm positions on the sagittal plane (measuring the wrist
flexion-extension).

The resulting p-values reported in Table 6.3 prove that the con-
sidered features are significantly different in the two groups.

Exergame p-value
Finger Tap 0.0001

Floating Trap 0.0019
Endless Zig 0.0028
City Car 0.0001

Table 6.3: p-values from the Kruskall-Wallis tests.

In addition to the aforementioned analysis, an LSTM RNN was
developed and tested, in order to provide an automatic evaluation
of game sessions. Such an approach was applied only to Finger Tap,
because of the nature of the movement involved. Indeed, thumb
opposition is a small movement and hence, one can consider short
sub-sessions which still depict appropriately the hand gesture.

Each Finger Tap session was divided into 5 segments. To avoid
errors due to incorrect hand positioning either at the beginning or
end, such starting and final frames were removed (1.5 sec at the
beginning and 1.5 sec at the end). As a result, for each patient and
subject, 5 segments collecting 114 extracted features each were fed
in the network. Training, validation, and test sets were defined by
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splitting the data with percentage of 80%, 10%, and 10% respec-
tively, hence enabling 10-fold cross-validation, in order to control
for over-fitting. The network was trained from scratch. To account
for randomness, cross-validation was performed on 15 permutations
and the average overall accuracy was 86.31%.

6.3 Application 2: Unilateral spatial neglect

The ReMoVES activities used for assessing USN2 disabilities are the
digital versions of Albert’s test, Line Bisection test, and Apple test.
They are commonly applied in mapping visuo-spatial neglect in clin-
ical practice. The system performs all the required data analysis to
provide a scoring report to the medical expert. Additional infor-
mation with respect to paper-and-pencil version is provided to offer
a complete diagnosis. The feasibility of the method is based on a
comparative analysis in which the parameters normally extracted by
the therapist observing the test are compared with the parameters
automatically derived from the digital version. The implemented
test version is defined in the following, along with the data and key
indicators that enable monitoring of the actual performance of pa-
tients. Then, an real-world application is disclosed with regards to
two case-studies.

The digital version of the Albert’s test can provide more granular
information about the patient’s exploration capability. Recall that
in this test, patients are required use a pencil to cross out forty 2.5
cm lines which are positioned in pseudo-random orientations on a
piece of paper. The actual disposition of these lines is standardized,
allowing for a systematic analysis of subjects’ performance on the
left, on the right, and in the middle of the page. More specifically, in
the Albert’s test, the paper is divided in seven sections by column,
which are hereinafter numbered from left to right. Scoring is based
on the number and location of lines left uncrossed, in particular USN

2The studies on USN were conducted in collaboration with Department of Neurosciences,
Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI)
- Università degli Studi di Genova, Clinica di neuroriabilitazione - IRCCS Ospedale San Mar-
tino, and Struttura Complessa Recupero e Rieducazione Funzionale - ASL3. In addition to
the papers [94, 95, 93], some results were also presented to the medical congress XX Congresso
Nazionale SIRN.
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is indicated when these lines are on the same side of the page as the
patient motor deficit is located. This can be done by calculating the
covered area index and the .

A first explanatory index that can be defined is the covered area
index :

Covered Area Index =
Aexplored

Amax

, (6.1)

where Aexplored is the area of the smallest rectangle containing
the crossed lines, and Amax is the area of the smallest rectangle
containing all the lines.

Figure 6.4: Red area represents the area explored. The total area containing all
the lines is in blue color.

Another index is the center of gravity (CoG), which is a point
whose coordinates are the mean value of x and y coordinates of the
crossed out lines.

Three other indicators described in the following, can be collected
from the assessment and the analysis of digital version of the test.
The execution order is the order in which the patient has crossed out
the lines; the distance between two crossed out consecutive targets;
the time that elapses between the consecutive cancellation of two
targets.

Then, the Line Bisection test is assessed by calculating the per-
cent deviation (PD) of the bisection from the center of the line using
the following formula [186]:
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PD =
(MeasuredLeftHalf � TrueHalf)

TrueHalf
⇥ 100. (6.2)

Recall that here, the patient must place a pencil mark at the
center of a series of horizontal lines. Therefore, the resulting score is
lower as the pencil mark is far from the center of the line. Therefore,
the main indicator for Line Bisection test is the offset, i.e. the mean
of the measured deviations during the whole session.

Finally, the activity Apple Test is the digital version of the Italian
standardization of the Apples Cancellation Test [86]. Apple test
is a cancellation task in which outline drawings of 150 apples are
shown scattered over a sheet. Several apples are presented in an
upright position. One-third of the apples are full (targets), and two-
thirds are open on either the left or on the right side (distracting
elements). In order to balance the probability that omissions will
show left versus right or upper versus lower space neglect, the sheet
is virtually divided into a grid with two rows and five columns to
ensure an equal distribution of the apples across the page. Each
cell of the grid contains 15 apples: three large ones (one with no
opening, one with an opening on the left and one with an opening
on the right) and 12 small apples (four without openings, four with
openings on the left and four with openings on the right). The large
apples are 50% bigger than the small ones. In the digital version,
each participant is asked to touch on the screen all the full apples
and to ignore all the ones with holes.

ReMoVES automatically calculates the score indices, namely to-
tal number of crossed-out targets, asymmetry score for egocentric
neglect, and asymmetry score for allocentric neglect. The maximum
value of the first index is fifty, that is the total number of full ap-
ples. The asymmetry score for egocentric neglect is the difference
between the number of targets on the right side and the number of
targets on the left side of the page, excluding the apples contained
in the upper and the lower cells of the middle column. The maxi-
mum score is twenty. The asymmetry score for allocentric neglect is
the difference between the number of targets crossed out with a left
opening and the number of targets crossed out with a right open-
ing. In both egocentric and allocentric neglect, negative asymmetry
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scores denote right neglect and positive asymmetry scores denote
left neglect.

In a preliminary study twelve patients suffering from USN were
involved, aimed at comparing the standard and digital version of the
Albert’s test. Ten of them presented right lesions, thus a left-sided
neglect and two of them have left lesions, thus corresponding to a
right-sided neglect. For a further comparison, a control group of six
healthy subjects is also considered.

Data was collected during the first session, and all patients per-
formed the paper-and-pencil test first and then the digital test. It
is worthy to claim that the intervention using the ReMoVES ex-
ergames platform is not intended to replace the classic practice, but
it is an integrative tool of usual treatment.

First of all, the correlation between standard and digital version
of the Albert’s test is computed. For each patient and for each
version, the percentage of crossed out targets in each column is
collected into a 1 ⇥ 7 vector, called pt and pd for the traditional
and digital version respectively. Then, the correlation coefficient
(Pearson’s coefficient) between pt and pd is calculated. The resulting
average correlation coefficient is corr = 0.82, thus denoting a good
concurrent validity of the digital version with respect to the standard
one. Figure 6.5 depicts the crossed out target percentages in both
the traditional (blue) and digital (red) version of the test. In general,
blue and red crosses are very close for each patient, thus confirming
the assumption of good correspondence between the traditional and
digital versions. Taking a deeper look to the graph one can notice
that patient 5 erases more targets in the digital test, while patient
6 performs better in the paper test. This is probably due to the
difficulty in holding a pen and in using the touchscreen they have
respectively.

In order to investigate the sessions based on the ignored hemis-
pace, in Table 6.4 only the ten patients with left neglect are consid-
ered. The average percentages of crossed target are lower in the first
sections, and larger in the last ones, thus confirming the left-sided
neglect. Furthermore, one can also notice the similarities between
the percentages of the two versions of the test.

In order to assess the homogeneity of the available population, an



6.3 Application 2: Unilateral spatial neglect 101

0 1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

100

patients

p
e
r
c
e
n
t
a
g
e

Figure 6.5: Crossed out target percentages, blue is for the standard version of
the test, red is for the digital one.

Traditional test Digital test

Section 1 42% 58%
Section 2 62% 65%
Section 3 68% 70%
Section 4 72% 82%
Section 5 78% 92%
Section 6 90% 92%
Section 7 98% 96%

Table 6.4: Average percentages of targets erased in the seven sections, in both
traditional and digital version of Albert’s test.

Analysis of Variance (ANOVA) test is performed on erased targets.
The result of the ANOVA is the rejection of the null hypothesis and
this denotes inhomogeneity in the population for both the results of
the digital and traditional tests. Actually, it is an expected result
because the population is composed by patients with both severe
and minor injuries. For this reason, the population is split in two
different groups according to the criteria suggested in [187]. In the
contralesional part, a rate of more than 40% of omission was consid-
ered an index of severe neglect. Conversely, a rate of less than 40%
of omission was taken as an index of mild/moderate form of USN.
Respectively, the first group A consists of three patients and the
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others belong to group B. As a counterproof, two ANOVA tests are
performed for each group formed and the results are the acceptance
of null hypothesis (with ↵ = 0.05), meaning that the two groups
are homogeneous, based on the results of the digital and traditional
tests.

To sum-up, both the correlation study and the outcomes from
the ANOVA tests prove that traditional and digital versions are
interchangeable for the population under analysis.

In addition to the crossed out targets-related information, that
can also be obtained from the paper version of the test, other au-
tomatic indicators that are computed by ReMoVES are here pre-
sented.

The trajectories followed by two patients are compared with the
one followed by a healthy subject. In Figures 6.6, 6.7, and 6.8, three
types of point are highlighted: the blue ones indicate the start; the
red ones indicate the final point; and the green points indicate the
CoG. It is worth mentioning that the CoG position is in agreement
with the left- or right- sided neglect diagnosis, for each patient.
Furthermore, the plots provide a feedback of the different strategies
adopted to crossed out the targets. In general, healthy subjects per-
formed regular paths, i.e. from left to right or from top to bottom.
Figure 6.7 represents the trajectory performed by a patient belong-
ing to group B, that denotes a more regular path compared to the
path tracked by a patient of group A (Figure 6.6. Moreover, both
patients have a left-sided neglect, in fact, the right side of the game
area is the one from which patients started the test and that have
explored more in depth.

From the digital version one can also acquire information related
to the times between two target cancellations and the distance be-
tween two consecutive crossed out targets. For what concerns the
average time, it is 3.63 sec for patients in group A, 2.00 sec for group
B, and 0.51 sec for healthy subjects. As one could suppose, the av-
erage time directly depends on the disease severity, thus it can be
an informative indicator for the USN assessment. Similarly, the av-
erage distance between two crossed targets is 3.09 cm for patients in
group A, 2.81 cm for group B, and 2.33 cm for healthy subjects. The
trajectory, and hence the cancellation strategy adopted by patients
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Figure 6.6: Trajectory followed by a subject in group A. The blue point is the
starting point, the red point is the final one, and the green point is
the CoG.

Figure 6.7: Trajectory followed by a subject in group B. The blue point is the
starting point, the red point is the final one, and the green point is
the CoG.

in group A seems pretty random, and that is reflected on the average
distance extracted from their sessions. Conversely, group B follows
a more regular path, which is denoted by the smaller distance be-
tween consecutive targets, and so by the average time value which is
close to the one by the healthy subjects. Recall that high values of
distances or times can also mean that patients have explored some
part of the ignored area, where indeed they had difficulty in finding
targets.

As anticipate in Section 2.3, ReMoVES exergames can be de-
ployed as complementary cognitive therapy associated to the tDCS
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Figure 6.8: Trajectory followed by a healthy subject. The blue point is the
starting point, the red point is the final one, and the green point is
the CoG.

approach. In such a context, a real-world application is disclosed
with regards to two case-studies. Both patients underwent ten A-
tDCS consecutive sessions (five days per week over a two weeks
period) coupled with simultaneous digital treatment (ReMoVES ).
During the training task A-tDCS (current of 1.5 mA) was deliv-
ered for twenty minutes. Patients tolerated the application of tDCS
without any adverse side-effects.

Patient A is a 70 years-old right-handed woman, who started
complaining with vague difficulty in reading, writing on the com-
puter, driving and parking her car. She also experienced problems
in finding objects on the left (e.g., in the kitchen while cooking).
Entering the car from her left side (as a passenger) was almost im-
possible, while the same problem did not happen when getting in the
car as a driver (right side). The patient was first seen by an ophthal-
mologist and then by a neurologist. Apart from a minimal bilateral
myopia, the physical examination was normal. Optical Coherence
Tomography (OCT), fluorescein angiography, visual evoked poten-
tials and lectroretinogram were unremarkable. Automatic perimetry
did not show hemianopia or other visual field defects. The neu-
ropsychological examination showed the following findings: signs of
simultanagnosia, writing and reading disturbances, and left neglect.
The Mini Mental State Examination (MMSE) was 25/30 (cut-off
� 24). the patient showed severe impairment when reading, writ-
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Figure 6.9: Patient A: cerebral PET showing a significant hypometabolism in
the posterior temporal and occipital cortex and in the bilateral pari-
etal cortex.

ing and copying (intersecting pentagons), while the verbal memory,
the phonemic and semantic fluencies were intact. Cerebral MRI re-
vealed an atrophy in posterior temporal and occipital cortex and in
bilateral parietal cortex (right worse than left), and the PET showed
a significant hypometabolism in the same areas (Figure 6.9).

A diagnosis of Posterior cortical atrophy (PCA) was made. PCA
is a neurodegenerative condition characterized by an insidious on-
set, gradual progression and prominent early disturbance of visual
functions, in the absence of ophthalmologic causes [188]. The most
frequently neuropsychological deficits are: alexia and features of
Balint’s syndrome (simultanagnosia, oculomotor apraxia, optic ataxia,
environmental agnosia) and Gerstmann’s syndrome (acalculia, agraphia,
finger agnosia, left/right disorientation) and neglect [189].

After the tDCS treatment, Patient A showed a clear improvement
in the line bisection test (Mann-Whitney U test, p < 0.003), a less
pronounced amelioration in the cancellation tests, while the drawing
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test was still impaired.
The improvement of the exploration capability of Patient A is

monitored via the covered area index. Figure 6.10 shows the covered
area index variation along the sessions.
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Figure 6.10: Patient A: covered area index variation along the sessions. No reg-
ular behaviour can be noticed, thus proving the absence of learning
effect on the task.

The path followed by the patient to cancel the targets provides
a feedback on the strategy adopted to fulfill the task. Figures 6.11
and 6.12 depict the trajectories at time T0 and T1. The more reg-
ular path at time T1 shows a clear improvement in the patient’s
conditions, thus denoting a rehabilitative success.

The adopted strategy can also be evaluated by calculating the
distance between two consecutive canceled targets: the smaller the
distance, the more efficient the strategy. Figures 6.13 and 6.14 show
the histogram of approximate distances between consecutive can-
celed targets at time T0 and T1 respectively. The number of occur-
rences on the bars on the left is larger at time T1 than the one at time
T0, thus showing a better strategy adopted after the rehabilitation
treatment, coherently with what can be inferred from the trajectory
analysis. The average distance at time T0 is 3.71 ± 1.86 cm, the
average distance along the rehabilitation process is 3.17± 1.83 cm,
and the average distance at time T1 is 3.02± 1.82 cm (the average
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Figure 6.11: Patient A: trajectory reproducing the order of targets cancellation
at time T0.

Figure 6.12: Patient A: trajectory reproducing the order of targets cancellation
at time T1.

distance of a healthy subject 2.38± 1.26 cm).
To conclude, ReMoVES platform provides also the waiting time

between two consecutive cancellations. A small time between tar-
gets cancellations denotes that a good strategy has been adopted.
Conversely, a large waiting time means that the patient is exploring
a new region of the game area, thus requiring more time to detect
a new target. Figure 6.15 and 6.16 show the variation of waiting
time between two consecutive cancellation at time T0 and T1. The
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Figure 6.13: Patient A: histograms of approximate distances between a canceled
out target and the following one at time T0.
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Figure 6.14: Patient A: histograms of approximate distances between a canceled
out target and the following one at time T1.

waiting time increases at the end of the session, until the patient
states that non more targets are present. The average waiting time
at time T0 is 49.11± 29.15 sec, the average waiting time during the
rehabilitation process is 34.70± 27.43 sec, and the average waiting
time at time T1 is 27.50± 21.78 sec (the average waiting time of a
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healthy subject is 5.95± 1.64 sec).
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Figure 6.15: Patient A: curves depicting the variation of waiting time between
a cancellation and the following one at time T0.
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Figure 6.16: Patient A: curves depicting the variation of waiting time between
a cancellation and the following one at time T1.

Patient B is a 68 years-old man who was referred to the Neu-
rological Rehabilitation Unit of Ospedale Policlinico San Martino
IRCCS of Genoa with sequelae of a right cerebral hemorrhage. CT



110 Application of telerehabilitation techniques

revealed wide right nucleoscapular intraparenchymal hematoma in
the homolateral temporal-frontal parietal area (Figure 6.17).

Figure 6.17: Patient B: cerebral CT shows a large right intraparenchimal hem-
orrhage with surrounding edema involving the fronto-temporo-
parietal areas. Recall that in the CT scans, the right hemisphere
is shown on the left.

The physical examination showed left hemiparesis, normally flu-
ent speech, impairment of superficial tactile sensitivity and propri-
oception on the left. In a sitting position, tendency to retroplusion
and lateropulsion of the trunk towards the left. The neuropsycho-
logical examination showed left neglect while the other cognitive
functions (i.e., orientation, memory, and language) were intact. Af-
ter the tDCS treatment, the patient improved up to normal perfor-
mance in the line bisection test, in the line cancellation test, and
in the Apples test (Mann-Whitney U test, p < 0.02, p < 0.01, and
p < 0.05 respectively). The drawing test was substantially normal
but for an omitted detail on the left side.

Here, the game area is divided into ten sub-regions, accordingly to
[86]. The average difference between both correctly and erroneously
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canceled targets in digital and paper versions is used as similarity
metrics at time T0 and T1. In particular, at time T0 the average
difference between correctly canceled targets is 1.6 globally, 0.75
in the four left sub-regions, and 1.75 in the four right sub-regions.
Furthermore, at time T1 it is 1.1 globally, 2 in the four left sub-
regions, and 0.25 in the four right sub-regions. As for the average
difference between the number of canceled distractors, at time T0
it is 0.9 globally, 0.25 in the four left sub-regions, and 0.5 in the
four right sub-regions, while, at time T1 it is 0.6 globally, 0.75 in
the four left sub-regions, and 0.25 in the four right sub-regions. The
average difference between the number of canceled targets in the two
versions is smaller than 2, thus denoting a good similarity between
digital and paper versions.

The ReMoVES platform provides the automatic calculation of
the score indices suggested in [86], namely total number of crossed-
out targets, asymmetry score for egocentric neglect, and asymmetry
score for allocentric neglect. At time T0 they are respectively 25,
13, and 17, while at time T1 they are respectively 29, 8, and 5.
The positive values of the asymmetry score for both egocentric and
allocentric neglect at time T0 are coherent with the diagnosis of left
neglect. Furthermore, the increase in the total number of crossed out
targets and the decrease of the asymmetry score for both egocentric
and allocentric neglect at time T1 denote an improvement of the
patient’s condition, and thus a rehabilitative success.

Likewise the Albert’s test, the waiting time between two con-
secutive cancellations is provided. Figure 6.18 and 6.19 show the
variation of waiting time between two consecutive cancellations at
time T0 and T1. The average waiting time at time T0 is 56.56 ±
54.77 sec, the average waiting time during the rehabilitation pro-
cess is 46.47 ± 44.40 sec, and the average waiting time at time T1
is 40.67 ± 32.59 sec (the average waiting time of a healthy subject
is 8.29± 6.64 sec).
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Figure 6.18: Patient B: curves depicting the variation of waiting time between
the cancellation of a correct target and the following one at time
T0.
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Figure 6.19: Patient B: curves depicting the variation of waiting time between
the cancellation of a correct target and the following one at time
T1.
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6.4 Application 3: Post stroke

The application of ReMoVES for post stroke treatment3 refers to the
practice of the Shelf Cans exergame for stimulating the upper-limb
movement.

The involved features enable clear visualizations, allowing clini-
cians to easily picture patients’ performance, even without directly
attending them. The experimental phase is conducted on two case-
studies with regards to the evaluation of upper-limbs mobility in
patients with ataxia. The adoption of the strategy of weighting the
limb when performing the movement, i.e., placing some weight on
the limb being involved in the movement, is discussed (see Section
2.3). The indicators computed in both sessions with and without
strategy are compared, also referring to the practice of some healthy
subjects. The current study presents a starting point for several pos-
sible applications: i) a support for a quantitative evaluation of ther-
apy; ii) an easy way to remote control of training; iii) the definition
of criteria for evaluating therapeutic strategy.

Patient A was a 49-year-old man, who suddenly experienced
unsteadiness of gait, incoordinate movements of the right limbs,
blurred vision and diplopia. The neurological examination showed a
severe right ataxia and a bilateral gaze evoked horizontal nystagmus.
Standing and gait were ataxic and broad-based. Brain MRI revealed
a right cerebellar infarction. Two weeks later, the cerebellar signs
improved moderately.

Patient B was a 59-year-old man who presented with sudden
headache, nausea, speech disturbances and unsteadiness of standing
and walking. The neurological examination revealed a moderate ax-
ial and right limb ataxia, together with slurry speech. Brain MRI
showed a right cerebellar hemorrhage. After ten days, a slight im-
provement of the cerebellar signs and symptoms was observed.

After the acute phase of the disease, both patients were admitted
3The studies on stroke consequences were conducted in collaboration with Department of

Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sci-
ences (DINOGMI) - Università degli Studi di Genova, Clinica di neuroriabilitazione - IRCCS
Ospedale San Martino, Centro di riabilitazione srl and Struttura Complessa Recupero e Ried-
ucazione Funzionale - ASL3. In addition to the paper [138], some results were also presented
to the medical congresses XVIII, XIX, and XXI Congresso Nazionale della Società Italiana
per lo Studio dello Stroke.
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to the Neurological Rehabilitation Unit of Ospedale Policlinico San
Martino IRCCS of Genoa. The Scale for the Assessment and Rating
of Ataxia (SARA) [190] was utilized to evaluate the severity of the
cerebellar disorder. SARA values range from 0/40 (no ataxia) to
40/40 (most severe ataxia). Patient A scored 24/40 and Patient
B scored 13/40. The Activity-Specific Balance Confidence (ABC)
Scale [191] was also employed to assess the subjective confidence of
balance (0% not safe at all, 100% completely safe). Patient A had
60%, while Patient B reported 74,3%. In conclusion, it is worth
underlining that the two patients were similar in height and weight.

Patients data have been analyzed via a direct and an indirect ap-
proach. Direct analysis employs 3D coordinates of joints provided
by Kinect sensor. According to the biomechanical model, the human
body can be considered as a system of rigid bodies, i.e., a set of body
segments connecting the joints. Each pair of adjacent segments is
considered as a kinematic and rotational pair. Consequently, sig-
nificant features can be extracted to describe patient’s movements.
Referring to the present exergame, the analysis is focused on the
upper-limb movement. The patient is required to extend the elbow
and move the shoulder in order to store the can, without tilting the
trunk to compensate the lack of reserve movement.

The computed indicators are the range of motion of the shoulder
and elbow in the coronal plane, and the range of motion of the trunk
in the sagittal plane. In particular, let us consider a fixed time, and
define the shoulder and elbow angles in the coronal plane, and the
trunk angle in the sagittal plane as

✓shoulder = arctan
z8 � z5
x8 � x5

, (6.3)

✓elbow = ✓shoulder � arctan
z8 � z16
x8 � x16

, (6.4)

✓trunk = arctan
z4 � z7
y4 � y7

, (6.5)

respectively. Notice that shoulder ad elbow angles have been de-
fined with respect to the right arm; the definition for the left arm
is straightforward. Hence, the range of motion of the shoulder and
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elbow in the coronal plane, and the range of motion of the trunk in
the sagittal plane are defined as

ROM(✓shoulder) = max ✓shoulder �min ✓shoulder, (6.6)

ROM(✓elbow) = max ✓elbow �min ✓elbow, (6.7)

ROM(✓trunk) = max ✓trunk �min ✓trunk, (6.8)

respectively. The coordinates involved in Equations 6.3, 6.4, and
6.5 refer to the spatial coordinates of joints in Figure 4.2, where x,
y, and z represent the mediolateral, anteroposterior, and vertical
directions, respectively.

For what concerns the indirect analysis, it was performed through
2D data obtained by the videogame. The three specific tasks of
Shelf Cans, referring to the differently colored cans, are split. Then,
the straight line connecting starting position and targets is com-
puted, and will be hereinafter referred to as the optimal trajectory.
In addition, the so-called approximate trajectory performed by the
patient during the game session is computed as the regression line of
hand-game positions during the considered task. The lower the an-
gle between the two lines, the better and controlled movement was
done by the patient. Indeed, small angles shows that the approx-
imate fitted path is similar to the optimal one. Conversely, large
angles are typical of trajectories which are far from the optimal one.
The linearity of scope-oriented movement is usually valued during
physical therapy for patients affected by pathologies of motor learn-
ing such as cerebellar stroke. The importance of such an indirect
analysis relies on the fact that it allows for quantifying the degree
of improvement of the pathology which has caused the deficit of
movement, and also to quantify the motor learning.

For each patient, two sessions of Shelf Cans exergame were con-
sidered, namely with and without weighting the involved upper-
limb. Indeed, according to Bhanpuri et al. [102] a cerebellar damage
likely causes an inertial mismatch between an internal representation
of body dynamics and the actual body dynamics. On this base, a
hypometric and a hypermetric cerebellar patient would respectively
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underestimate or overestimate their limb’s inertia. Adding mass
to the affected limbs can have beneficial effect on such a mismatch.
Some other authors, however, failed to replicate the beneficial effects
of such a strategy, especially for multi-jointed reaching movements
[103]. The patient played the exergame while sitting, in order to
reduce trunk and arms oscillation in the standing position, which
could negatively affect the collected data.

Here, the effect of weighting the limb is quantified in order to pro-
vide the clinical staff with such objective data. The weight amounts
of one kilo, and was placed on the wrist of the used limb. The Mi-
crosoft Kinect sensor was place in front of the players, at a distance
of three meters. The duration of the game session is 90 seconds. In
order to avoid the influence of the order in using or not the weight
for the activities, two hours time distanced the first and second ses-
sion, so that they can be considered independent. In addition, some
training session had been performed the days before these trials, for
familiarizing with the system.

Values of the indicators extracted from both the sessions with and
without the strategy are summarized in Tables 6.5 and 6.6, and the
graphs referring to the indirect analysis can be visualized in Figures
6.20, 6.21. In Figure 6.23 values of the ROM are depicted.

Table 6.5: Angles between the approximate and optimal trajectories.

Red can Orange can Green can
Pat. A no weight 7.18 63.77 13.96
Pat. A weight 6.25 5.28 2.32
Pat. B no weight 4.70 49.37 11.49
Pat. B weight 5.82 1.89 12.80

Table 6.6: ROMs of shoulder, elbow and trunk.

Shoulder ROM Elbow ROM Trunk ROM
Pat. A no weight 14.66 54.86 17.01
Pat. A weight 149.47 108.25 7.72
Pat. B no weight 128.56 24.54 5.47
Pat. B weight 132.03 3.76 3.39

The weighting strategy yielded a more precise movement in the
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performance of Patient A, which is denoted by the decreased angle
between the estimated and optimal trajectories, and also by the
increased range of motion of both shoulder and elbow. In addition,
the reader can notice that the range of motion of the trunk decreases
when patient A has a weight on the limb. This is probably due to a
major control on its arm that is enabled by the strategy.

The same strategy resulted less efficient for Patient B, where,
apart from the angle between the estimated and optimal trajecto-
ries when handling the orange can, no other significant better per-
formance could be detected. In general, indicators values are better
for patient B, and his better general condition is likely the reason
for a less visible effect of the strategy on the performance.

Aimed at favoring comparisons with healthy subjects, a control
group of six persons was considered and took part to the same treat-
ment as patients. The values of the indicators extracted from both
the sessions with and without the weight are summarized in Tables
6.7 and 6.8. Also, an example of graph about the indirect analysis
is depicted in Figure 6.22. In general, it is worth noting how the
adoption of the weight strategy did not yield to relevant difference
for healthy subjects.

Table 6.7: Angles between the approximate and optimal trajectories in the con-
trol group.

Red can Orange can Green can
Sub. 1 no weight 6.29 1.75 4.55

Sub. 1 weight 5.02 2.02 5.69
Sub. 2 no weight 4.25 19.11 3.13

Sub. 2 weight 5.85 15.65 1.48
Sub. 3 no weight 4.21 28.26 1.15

Sub. 3 weight 6.57 13.29 2.69
Sub. 4 no weight 7.52 0.54 2.98

Sub. 4 weight 2.60 2.87 0.16
Sub. 5 no weight 0.42 0.35 0.92

Sub. 5 weight 1.24 1.03 0.60
Sub. 6 no weight 5.20 9.23 2.22

Sub. 6 weight 6.01 3.33 5.01
Avg. healthy no weight 4.65 9.87 2.49

Avg. healthy weight 4.55 6.37 2.61
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Table 6.8: ROMs of shoulder, elbow and trunk in the control group.

Shoulder ROM Elbow ROM Trunk ROM
Sub. 1 no weight 179.71 97.76 3.68

Sub. 1 weight 179.21 140.48 4.89
Sub. 2 no weight 179.58 168.21 10.64

Sub. 2 weight 178.72 139.03 12.73
Sub. 3 no weight 179.22 72.48 5.54

Sub. 3 weight 179.74 92.56 5.23
Sub. 4 no weight 179.43 68.34 3.71

Sub. 4 weight 179.95 36.12 3.18
Sub. 5 no weight 179.49 46.30 3.75

Sub. 5 weight 178.45 45.65 3.22
Sub. 6 no weight 179.80 79.77 16.33

Sub. 6 weight 178.77 74.65 12.70
Avg. healthy no weight 179.54 88.81 7.28

Avg. healthy weight 179.14 88.08 6.99

In general, this analysis is conducted to be delivered to the clinical
staff, in order to help them in defining a personalized plan of care,
and also to support patients in acquiring or reacquiring faculties to
employ in daily life activities.
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(a) Red can - no strategy (b) Red can - strategy

(c) Orange can - no strategy (d) Orange can -
strategy

(e) Green can - no strategy (f) Green can - strategy

Figure 6.20: Patient A, approximate (light blue) and optimal (black) trajecto-
ries, and hand positions, based on the can color (dots).
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(a) Red can - no strategy (b) Red can - strategy

(c) Orange can - no strategy (d) Orange can -
strategy

(e) Green can - no strategy (f) Green can - strategy

Figure 6.21: Patient B, approximate (light blue) and optimal (black) trajecto-
ries, and hand positions, based on the can color (dots).
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(a) Red can - no strategy (b) Red can - strategy

(c) Orange can - no
strategy

(d) Orange can -
strategy

(e) Green can - no strategy (f) Green can - strategy

Figure 6.22: Subject 1, approximate (light blue) and optimal (black) trajecto-
ries, and hand positions, based on the can color (dots).
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(a) Shoulder ROM (b) Elbow ROM

(c) Trunk ROM

Figure 6.23: Patients A and B shoulder, elbow, and trunk ROMs visualizations.
Red marks refer to Patient A, blue marks refer to Patient B. Empty
circles are for sessions without adopting the weighting strategy, full
circles are for sessions where the weighting strategy was adopted.
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6.5 Application 4: Frailty

The application of ReMoVES in the context of frailty4 is disclosed
with regards to the exergame Equilibrium Paint.

Some peculiar features are defined and extracted from the pa-
tients’ game sessions in order to provide a picture of the general
conditions of the considered population. The definition of the con-
sidered features was inspired by works in the literature such as [192,
193]. Similarly to the Section 6.4, they were computed from the spa-
tial coordinates of joints in Figure 4.2.

The main indicator is the number of sit-up occurrences (NSU)
during the 30 s duration of the test. This is computed by analyzing
the trajectory of the spine middle joint (joint 7 in Figure 4.2) along
the vertical axis. Each peak of such a trajectory represents a sit-up.
For the population under analysis, the average NSU is ¯NSU = 4.5.

Peak detection also allows for separating the ascending and de-
scending phases during activities. They are identified as the parts of
the trajectory between a local minimum of the spine middle height
and the following peak, and between a peak and the following local
minimum of the spine middle height, respectively. In this fashion, it
is possible to in-depth analyze both phases by computing ad hoc in-
dicators.

The first feature that is introduced is the upper-body flexion
angle (UBFA), which represents the angle of flexion of the trunk
and is computed as

UBFA = arctan
z2 � z7
y2 � y7

. (6.9)

The UBFA is maximal when the player is in a standing position,
and reaches values of approximately 90� when sitting. In addition,
other values are present that represent the intermediate phase from
a sitting to a standing position and vice versa. For standing up,

4The studies on frailty were conducted in collaboration with Department of Neurosciences,
Rehabilitation, Ophthalmology, Genetics, and Maternal and Children’s Sciences (DINOGMI)
- Università degli Studi di Genova, Clinica di neuroriabilitazione - IRCCS Ospedale San Mar-
tino, Centro di riabilitazione srl and Struttura Complessa Recupero e Rieducazione Funzionale
- ASL3. In addition to the paper [138], some results were also presented to the medical con-
gresses XVIII, XIX, and XXI Congresso Nazionale della Società Italiana per lo Studio dello
Stroke.
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the player should move forward, which results in a decrease in sit-
ting UBFA.

Similarly to the UBFA, the indicator of the lower-limb flexion
angle (LLFA) represents the knee angle, and can be computed for
both the left and the right limb. It is defined as

LLFA = 180 + ✓femur � ✓tibia. (6.10)

where ✓femur = arctan
z20 � z19
y20 � y19

, ✓tibia = arctan
z22 � z20
y22 � y20

for the left
limb and
✓femur = arctan

z21 � z17
y21 � y17

, ✓tibia = arctan
z24 � z21
y24 � y21

for the right limb.
Variation in this angle for both the left and the right limb is similar
to the trajectory of the spine middle joint (see Section ??).

During this activity, patients may adopt erroneous behavior such
as moving the shoulders or hips. Hence, it is important that ther-
apists supervising the rehabilitation are informed about these com-
pensatory movements. Regarding shoulder movement, the upper-
body twist angle (UBTA) depicts the angle of the line joining the shoul-
ders (joints 3–5 in Figure 4.2) on the axial plane:

UBTA = arctan
y5 � y3
x5 � x3

. (6.11)

Hip displacement is calculated on the basis of the anteroposte-
rior and mediolateral displacement of the Center of Mass (COM).
The COM is defined as the middle point between the right and left
hips (joints 17 and 19 in Figure 4.2, respectively) and spine middle
(joint 7 in Figure 4.2):

COM = (x̄, ȳ, z̄) =

✓
x17 + x19 + x7

3
,
y17 + y19 + y7

3
,
z17 + z19 + z7

3

◆
.

(6.12)

Hence, indicators COM anteroposterior (A-P) movement and
COM mediolateral (M-L) movement depict COM positions on the ax-
ial plane.

To conclude, upper-frame velocity (UfV) is the velocity of motion
in either the ascending or descending phase. For one ascending
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phase, it is computed as

UfVup =
zpeak � zlocalmin

timepeak � timelocalmin

. (6.13)

Similarly, in the descending phase, it is

UfVdown = � zlocalmin � zpeak
timelocalmin � timepeak

. (6.14)

More generally, all aforementioned features are separately com-
puted in the ascending and descending phases in order to provide a
fragmented and specific analysis of the patients’ sessions.

A real-world case study involved 13 frail elderly people (6 females
and 7 males) with an average age of 82.3±6.2 who participated sev-
eral times to the rehabilitation sessions via ReMoVES . This was
a preliminary feasibility study to evaluate the possible use of Re-
MoVES in a real-world scenario. Feedback from the present work
drives further applications involving more patients. Participants re-
ported that they felt safe while playing the game, and there were no
adverse events while playing. Most of the patients stated that they
enjoyed this extra activity, asking the clinical staff to participate
more frequently. An interesting social interaction developed among
the participants, who enjoyed watching others carry out the activi-
ties.

The implicit analysis of the activity performed by the involved
patients is presented. Mean values of the proposed indicators were
collected, and their coherence with already published results was
statistically tested. In addition, aimed at enabling deeper analysis
of each game session, a graphic visualization of the indicators along
the time dimension is shown. Such graphs are provided to therapists
via the application layer, so that clinical staff analyze both summary
statistical indicators and patient performance during the whole ses-
sion. In this fashion, even some erroneous movements or loss of en-
ergy, which may be limited to a short period of time, can be noted
by the medical specialists, leading to a complete and deep clinical
picture of the patients.

The average features of the available population are summarized
in Table 6.9. Negative values for the UBTA indicate that the left
shoulder was put forward while practicing the activity.
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Table 6.9: Mean feature values. NSU, number of sit-up occurrences; UBFA,
upper-body flexion angle; LLFA, lower-limb flexion angle; COM, cen-
ter of mass; A-P, anteroposterior; M-L, mediolateral.

Feature Mean Value

NSU 4.5± 1.5
Stand UBFA range (deg) 79.92± 6.71

Sit UBFA range (deg) 79.35± 8.15
Stand LLFA (deg) 131.16± 17.28

Sit LLFA (deg) 134.31± 16.94
Stand UBTA (deg) �0.67± 1.91

Sit UBTA (deg) �0.59± 1.91
COM stand A-P (cm) 0.36± 0.09

COM sit A-P (cm) 0.52± 0.61
COM stand M-L (cm) 0.08± 0.02

COM sit M-L (cm) 0.07± 0.03
UfVup (m/s) 0.12± 0.06

UfVdown (m/s) 0.07± 0.02

To address the coherence of the derived data with respect to
the literature, the results of [192, 193] were considered for the dis-
cussion. In [192], the indicators standing and sitting COM A-P,
standing and sitting COM M-L, UfVup, and UfVdown were calcu-
lated with respect to a population of healthy elderly individuals
(mean values were 0.01, 0.03, 0.03, and 0.04 cm, and 0.78 and 0.71
m/s, respectively). Hence, a statistical test was performed to verify
the assumption that the indicator values in [192] depicted a better
general health condition than the ones deduced for the population
under analysis. A one-tailed t-test was used, and the assumption
was confirmed with p value < 0.01.

In addition, the authors in [193] showed mean values for the range
of UBFA in both the ascending and descending phases in a popula-
tion of frail elderly persons. Via a two-tailed t-test, the assumption
that the mean ranges of UBFA in [193] and in the present work were
equal was verified with p value < 0.01.

Therapists were also provided with graphs depicting all game ses-
sions, delivering more comprehensive informative content than that
in the mean or range indicators. An example of the graphic repre-
sentation available on the therapist client is shown in Figure 6.24.
In particular, Figure 6.24a depicts the trajectory of the COM and
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peaks; hence, corresponding standing positions were visible. In par-
ticular, parts with a light-gray background are for the ascending
phase, and parts with a dark-gray background represent the de-
scending phase. Figure 6.24b shows UBFA values during the ses-
sion. Figure 6.24c shows LLFA values for both the right and the
left limb during the session. The trend of this chart is very similar
to that of the COM. A standing position also requires limbs to be
fully extended, corresponding to the peaks of the LLFA indicators.
Figure 6.24d presents the shoulder twist on the axial plane during
the session. Lastly, COM A-P and COM M-L displacements are
depicted in Figure 6.25 on the transverse plane. Reduced lateral
displacement in the second graph with respect to the first suggests
that the patient stabilized themselves while playing.
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Figure 6.24: Graphs from Equilibrium Paint exergame. These graphic repre-
sentations are available for clinical staff, so that deeper analysis
is enabled throughout the whole session. (a) COM; (b) UBFA;
(c) LLFA; (d) UBTA.
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Figure 6.25: Representations of A-P and M-L movements of COM in two con-
secutive ascending and descending phases. Blue lines, ascending
phases; red lines, descending phases.

The COM trajectory in Figure 6.24a shows that the patient per-
formed a smooth movement with no particular pauses. The resulting
regular path means that the patient did not experience particular
fatigue and managed to control their motion. So, by only consid-
ering such a graph, a therapist would say that the patient’s perfor-
mance was fairly good. However, Figures 6.24 b,c, for UBFA and
LLFA, respectively, depict incomplete movement. Indeed, the pa-
tient is supposed to reach maximal extension while standing, namely,
the maximal values of UBFA and LLFA (corresponding to COM
peaks) should reach approximately 180�. While LLFA satisfies such
a requirement, meaning correct leg extension, the maximal values of
UBFA were around 130�, denoting that the patient remained bent
forward when standing. Figure 6.24d for UBTA depicts that shoul-
der rotations were very small, denoting correct movement (the pa-
tient is required to preserve shoulders in the frontal plane, i.e., with-
out trunk rotations). To conclude, graphs in Figure 6.25 depicting
A-P and M-L movements show that the patient was not laterally sig-
nificantly displaced (about 2 cm), confirming the correct execution
of the exercise apart from the vertical trunk extension.

This shows how multidimensional data can provide the clinical
staff with precise information. This is very important for reliable
remote monitoring, by which small or partially erroneous behaviors
can also be detected and corrected.
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6.6 Application 5: Balance assessment

The exergames involved in the present study are Equilibrium Paint,
Push Box, and Hot Air, i.e., the ones for training standing, medio-
lateral, and antero-posterior balance.

For each game the appropriate joints are traced in 3D to observe
the movement patterns. In this way, a number of discrete signals are
obtained, from which it is possible to extract in a synchronized way
with respect to the execution of the exercise the most significant
features regarding the amplitude of the movement, the angles, etc.

Once the signals are acquired, a series of operations are applied
to process them and extract the information provided. The type
of noise that primarily affects the signal is impulsive. So a non-
linear filtering operation is required. However, the classic median
filter does not work properly in the current situation, due to the
large peak density. As a result, adaptive filtering, consisting of a
combination of outlier detection and median filtering, is designed
to guide the de-noising operation based on the statistical properties
of the signal. In particular, once the outliers are detected, they are
replaced by the median value in a window of dimension five, in order
to remove the noise while preserving the original signal as much as
possible.

Then, to proceed with a reliable analysis, a signal segmentation
step is necessary, aimed at focusing the subsequent extraction of
the characteristics on stationary signal portions. The result is the
decomposition of the complex movement into primitive ones. There-
fore, the segmentation process is specific to each exergame, as it is
based on the required movement and the related joints of interest.

Filtering

The initial and final fifteen samples have been removed as they cor-
respond to the transient part of the signals. Second, impulsive be-
haviors were observed in the three dimensions of signals, possibly
due to the temporary loss of Kinect joint tracking. Since large or
high-frequency calibration errors can significantly alter the move-
ment of signals and lead to errors in the measurement of clinical
indicators, filtering techniques had to be applied prior to their cal-
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culation. The way to deal with outliers was to remove values whose
distance from the mean of the signal was greater than three times its
standard deviation. This condition arose from the idea of thinking
of impulsive noise as a sample that exceeds the 0.9 percentile in the
signal’s probability density function.

Since the signal statistical model is not perfectly known, the more
conservative Chebyshev inequality approach [194] is applied to ob-
tain the threshold value:

P (|x� µ|  ��) � 1� 1/�2 (6.15)

with 1 � 1/�2 = 0.9, x being the random variable associated to a
generic signal sample, described by µ and �2, which are respectively
its mean and variance. In such a case, outlier values are the ones
differing more than three times the standard deviation from the
mean value.

An outlier value detected is replaced with the corresponding value
by the median filter applied to the non-abnormal samples.

An example of filtering operation is provided in the following
(Figure 6.29) with regards to a member of the impaired population.

Motion segmentation

The extracted features have been obtained by considering blocks of
data of the sessions, which will be hereinafter referred to as cycles
or segments. Such a motion segmentation is performed to enable
a deep analysis of the activity, and it depends on the exergame,
namely it is driven by the movement pattern required by the game
task.

Concerning Equilibrium Paint, the local maxima and minima of
the body center of mass are identified to discern ascending and de-
scending phases. Indeed, features are computed separately with
respect to ascending and descending phases, in order to highlight
also in which of these cases the patient may have issues.

As for Push Box, cycles are defined based on the forward elonga-
tion. The beginning of the elongation phase is identified when the
ordinate of the fingers exceeds the threshold ordinate, calculated as
the midpoint between spine base and spine mid joints. Then, the
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maximum point reached by the fingers along the frontal axis is set
to identify its end.

Finally, in Hot Air, the cycles are defined on the basis of the
center of gravity corresponding to the initial standing position. The
signal portions correspond to movements to the right or left with
respect to the initial situation. Numerically, the neutral reference
value is the barycentric mean on the lateral axis, thus being an
adaptive threshold value obtained on the basis of each session.

In Figure 6.26 the cycles for each exergame are depicted.

(a) Cycle in EP and
Features 1, 2.

(b) Cycle in PB and
Feature 3.

(c) Features 4, 5, from
PB and HA respec-
tively.

(d) Cycle in HA and
Feature 6.

Figure 6.26: Representation of cycles and features in each exergame.

Also, Figure 6.27 shows an example of the result of the signal
segmentation, with regards to the Hot Air exergame. Light gray
areas are for the left displacement, while dark gray ones are for
right displacement.

Figure 6.27: Example of movement segmentation in Hot Air exergame.

It has been shown that the features considered here significantly
describe the control population, since they become homogeneous
when referred to a homogeneous population. The results demon-
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strate good repeatability, reproducibility, and reliability in observing
the characteristics of interest. The list of such features follows.

• Feature 1 and Feature 2 - Equilibrium Paint (ascending and
descending phase respectively): the average angle between the
segment joining the shoulders and the horizontal line in the
coronal plane. Figure 6.26a depicts such features.

• Feature 3 - Push Box: the elongation, i.e., the difference be-
tween the maximum and the minimum of the fingers coordinate
in the anteroposterior axis. In Figure 6.26b a representation of
such feature is provided.

• Feature 4 - Push Box: the range of the anteroposterior inclina-
tion of the trunk. Figure 6.26c shows the presented feature.

• Feature 5 - Hot Air: the range of the anteroposterior inclination
of the trunk. The present feature is the same as Feature 4, but
in a different exergame. It is shown in Figure 6.26c.

• Feature 6 - Hot Air: the difference between the maximum and
the minimum angles between ankle, the middle point between
the ankles, and the top of the spine. Figure 6.26d represents
Feature 6.

An example of feature visualization in time is provided in Figure
6.30, with respect to an impaired subject.

Three types of subjects have been involved in the present study.
A control group of twenty-four healthy subjects was considered.
They are clinical specialists from La Colletta Hospital (ASL3 Sis-
tema Sanitario Regione Liguria, Italy). Their sessions are used to
define the benchmark values for further comparisons, based on the
most significant indicators. Then, a group of twenty-five patients
was included in the study. They are frail elders presenting several
clinical pictures, with different pathologies and different levels of
disease. In general, most of them are post-stroke patients, show-
ing hemiparesis as a consequence. In addition, some of them pre-
sented fractures and orthopedic diseases affecting the lower limbs.
The game sessions by each of them is compared with the control
group and significant differences are found. However, their condi-
tions were too spread to define a single group of impaired subjects
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and define the benchmark values for patients. Such a goal will be
accomplished with further studies. Finally, a patient affected by a
neuro-degenerative disease was taken into account. He practiced the
activities both in the hospital and remotely at home, thus a set of
sessions was collected, enabling some longitudinal reasoning about
his treatment and suggesting a possible usage of the ReMoVES sys-
tem.

Each participant had some preliminary training with the system,
aimed at familiarizing with it. Then, the considered sessions were
performed and collected.

The homogeneity of the available population was accounted via
an ANOVA test. The test was performed separately with respect to
each feature previously presented.

In fact, the first ANOVA tests have been performed on the control
group, aimed at proving the homogeneity of such a sample with
regards to the involved features. In this fashion, the population of
healthy subject can be considered a good sample.

Then, the impaired population was considered. Here, the ANOVA
tests were used to prove that the homogeneity of the control group
fails whenever a patient is added to the healthy population. This
proves the significant difference between patients and control group.

Finally, the tests were performed taking into account the lon-
gitudinal sessions by a patients, following a remote rehabilitation
process, aimed at assessing his activity based on the control group
sessions.

In all the case, the significance levels of the ANOVA tests were
set ↵ = 0.05.

With regards to the control group, the ANOVA tests yielded to
accept the null hypothesis for all the features 1 � 6, proving the
homogeneity of the considered population. The average values of
such indicators are summarized in Table 6.10.

Given that the control group have proven homogeneity, such a
population can be considered a benchmark denoting reliability, ro-
bustness, and reproducibility of the ReMoVES system.

A visualization of a feature involved is depicted in Figure 6.28.
Here, the values of Feature 6 for each subject are shown, with the red
dots representing the mean value for the person and the horizontal
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Table 6.10: Average values of the considered features for the control group.

Feature Average

Feature 1 - EP 1 deg
Feature 2 - EP 2 deg
Feature 3 - PB 34 cm
Feature 4 - PB 63 deg
Feature 5 - HA 3 deg
Feature 6 - HA 36 deg

line showing the mean value of the whole population.

Figure 6.28: Scatter plot Feature 6 - control group.

Patients involved presented different conditions, and indeed the
homogeneity of the considered population was not proven. As this is
not surprising, the goal of the present experiment was to show that
each patients session is significantly different from the benchmark
control group, based on the considered features.

Each patient was added to the healthy population (one at time)
and the ANOVA test yielded to reject the null hypothesis of ho-
mogeneity. This proves that the homogeneity of the control group
fails as long as a patient is added to the population, meaning that
patients are significantly different from the healthy subject.

The most important aspect of such results is that, based on the
benchmark population, it is possible to monitor the activity of pa-
tients, evaluating whether a person is correctly performing - as a
healthy subject - or not. Such a possible application is disclosed
in the following experiment with respect to a patient affected by a
neuro-degenerative disease following a home-based treatment.

In addition, the effect of the filtering operation are here shown.
Taking into account an example of signal traced by the Kinect sen-
sor, Figure 6.29 depicts how signal quality is enhanced by the pro-
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posed filtering approach, with also a focus on a detailed frame of
the signal.
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Figure 6.29: Signal filtering action, HA exergame - full signal and frame detail.

Finally, a visualization, of a derived signal, i.e., a feature, is pro-
vided in Figure 6.30.

As a second application of the defined benchmark data, a pa-
tient affected by a neuro-degenerative disease was considered. He
had been following a home-based rehabilitation treatment which in-
cluded Equilibrium Paint and Hot Air exergames, and lasted twenty-



136 Application of telerehabilitation techniques

�5

0

5

[deg]

Figure 6.30: Feature 6 visualization for a patient.

four days. Push Box activity was not practiced as the clinical staff
believed it was not safe, based on patients conditions.

Similarly to the procedure followed for assessing the impaired
population, each of the twenty-four sessions performed by the pa-
tient was added to the healthy population one at time. In this
fashion, the clinical staff could evaluate whether the patient was ei-
ther well- or poorly performing, even though they were not directly
assisting the rehabilitation session.

Similarly to the procedure followed for assessing the impaired
population, each of the twenty-four sessions performed by the pa-
tient was added to the healthy population one at time. In this
fashion, the clinical staff could evaluate whether the patient was ei-
ther well- or poorly performing, even though they were not directly
assisting the rehabilitation session.

The ANOVA test yielded to accept the hypothesis of homogeneity
when referring to the movement required by the exergame Hot Air.
Conversely, the activity for Equilibrium Paint exergame resulted
impaired.

A discussion on the outcomes of such an analysis is provided in
the following.

The characterization of the healthy population allows for extract-
ing some information related to how they perform the activity. In
particular, the fact that the homogeneity of the sample was granted
for the features previously described leads to focus on such move-
ments also for the analysis of sessions by patients. Indeed, the ho-
mogeneity of the healthy population was a prior assumption as they
all have similar characteristics such as age, strength, height, weight,
and also the share the same professional occupation. As a result,
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one can infer that the features supporting the homogeneity of the
population are the ones that are mostly significant for describing
the activity.

Starting from Equilibrium Paint, the features granting homogene-
ity is the one describing the shoulder displacement in the coronal
plane. In particular, also taking into account the result in Table
6.10, the line joining shoulder can be considered horizontal in both
the ascending and descending phases. This denotes a good control
of the standing and sitting movements, which are performed without
any compensation. It worth noting that the numbers of sit-ups is
not a significant feature for the control group. This may also be due
to the small sample size considered, but, in general, one can con-
clude that the number of sit-ups is too variable to be a very good
index. Instead, the posture when practicing such an activity results
in being the very representative feature for the sit-to-stand activity.

Concerning the exergame Push Box, it emerged that the most
significant features are elongation and anteroposterior trunk incli-
nation. Of course, as long as the movement is correctly performed,
such indices are strictly linked, since large elongation can be reached
by bending the trunk. In general, the healthy subjects share a simi-
lar extension ability, which is granted by similar balance ability and
equilibrium. Furthermore, control subjects are not much afraid of
falling, as their conditions are likely to enable them to recover from
a loss of balance. Also, it is worth noting that the aim of the game is
to make the maximum possible stretch, keeping the lower limbs still
by tilting only the trunk. For this reason, the inclination feature is
particularly important, so that in general, the larger the angle, the
more correct the movement. In fact, smaller angles could mean that
the movement was accomplished by tilting the lower limbs instead
of the trunk, which significantly increases the risk of falling.

Finally, in Hot Air exergame, two are the most significant fea-
tures. The former one is the anteroposterior trunk inclination, as in
the Push Box exergame. It is noteworthy that, even though such
a property is strictly linked to the balance, it may seem surprising
in this context as the present exergame requires a lateral displace-
ment. However, healthy subjects are all able to avoid anteroposte-
rior motions (Feature 5 in Table 6.10), and this results in being a
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discriminatory ability.
The latter is a more expectable feature, as it describes the lateral

displacement of the patients which is the required movement in Hot
Air exergame. The reader may notice that an easy compensation
which allows for keeping playing it to displace hips, without training
the mediolateral balance. However, since the present features take
into account an angle referred to ankle, hips, and top of the spine
joints, it considers the correct and un-compensated movement.

All of these features highlighting good balance ability for the
control group are likely to fail when considering patients.

Indeed, in Equilibrium Paint exergame, patients showed signifi-
cant differences in shoulders alignment in both the ascending and
descending phases. It is mainly due to two reasons. The former
is that patients considered presented asymmetric impairments due
to either post stroke outcomes or orthopedic impairments on the
lower limbs. As a result, both standing and sitting movements were
impaired and asymmetric, as they weighted more on the dominant
limb and hemi-body, yielding to a shoulders displacement in the
coronal plane. The latter is due to a common strategy used by
hemiparetic patients for fulfilling the sit-to-stand task. It consists
on placing the unaffected foot slightly further ahead of the other,
aimed at pushing more on that. On the one hand, this positioning
allows a better standing motion; on the other hands, it enhances the
asymmetry of the movements, affecting also the shoulders alignment
which, in summary, was significantly different from the one in the
control group.

Then, in Push Box exergame, the considered features address the
ability of forward bending. Patients present poor balance ability due
to their conditions, which affect the possibility to elongate without
the risk of falling or, at least, fearing to fall. As a results, all the
patients were keen on performing a small elongation, aimed at keep-
ing themselves in a sort of balance comfort zone, granting them to
avoid the risk of falling and its perception. Therefore, their move-
ment results very limited and significantly different with respect to
the one by a healthy subject.

To conclude, Hot Air exergame yielded to two other considera-
tions related to balance ability in patients. As for Feature 5 mea-
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suring frontal displacement, it emerges that patients are likely to
perform also a significant anteroposterior movement even though it
is not required by the exergame. Actually, it denotes an unsteadi-
ness in the standing posture, which yields them to swing thus act-
ing significantly different from the control group. Then, Feature 6
showed a limited mediolateral movement. In this case, similarly to
the forward elongation in the Push Box exergame, patients preferred
avoiding large movements which may stress their balance and make
them fall.

The final part of the discussion is for the study on the home-based
rehabilitation sessions.

Starting from the Hot Air activity, the patient proved good bal-
ance abilities which are actually in line with the one by the control
group. In particular, Figure 6.31 depicts a short summary of the
sessions, based on the defined features. Here, full circles represent
Feature 5, while empty circles are for the Feature 6. Whenever the
ANOVA test proved homogeneity in the joint population of healthy
subjects plus the current patient’s session, a blue circle was included
in the graph, placed over a discriminator line. Conversely, if the
result of the ANOVA test is the rejection of the homogeneity hy-
pothesis, a red circle is place under the discriminator line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 6.31: Performance of the patient during the longitudinal assessment.
Blue signs are for sessions where the features are significantly sim-
ilar to the ones by the control group. Conversely, red signs are for
sessions when features significantly differ from the control group.
Full circles are for the Feature 5, empty circles are for the Feature
6. In general the patient well-performed the Hot Air exergame,
with respect to the control group.

However, when taking into account Equilibrium Paint, it can be
noticed that patient’s sessions are significantly different from the
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control group. The rationale behind Figure 6.32 is the same as in
Figure 6.31.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 6.32: Performance of the patient during the longitudinal assessment.
Blue signs are for sessions where the features are significantly sim-
ilar to the ones by the control group. Conversely, red signs are for
sessions when features significantly differ from the control group.
Empty circles are for the Feature 1, full circles are for the Feature
2. In general the patient poorly performed the Equilibrium Paint
exergame, with respect to the control group.

In this case, it could be interesting for the clinical staff to verify
whether the patient is actually worsening his activity, or if the pa-
tients is at least maintaining his ability, even if he is not improving
and getting similar to healthy subjects in performance. Indeed, it is
actually rare that neuro-degenerative patients significantly improve
their activity, while maintenance is often a more concrete and reach-
able goal of the rehabilitation. Conversely, a general motion pattern
is likely to be kept and can be monitored by the clinical staff.

To this purpose, it is possible to consult the values of the involved
indicator, and take into account their variation in time, i.e., longi-
tudinally. Figures 6.33 and 6.34 depict such feature values variation
in time.
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Figure 6.33: Feature 1 variation along session
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Figure 6.34: Feature 2 variation along session

From such graphs, it can be noted that the general trend of the
features is constant, apart from the Sessions where the patients per-
formed as the control group. However, since such sessions are a
few, they can be considered as occasional outstanding performance
rather then a sign of improvement.

Even though in this case the longitudinal study was conducted
with regards to the control group, an approach customized on the
patient can be adopted. Indeed, patients’ sessions could be charac-
terized while in the facility, to monitor home-based activity using
themselves as reference values.



Chapter 7

Conclusion and future perspectives

The goal of the present thesis was to propose novel approaches for
biomedical image and signal processing, aimed at fostering the devel-
opment of digital and enabling technologies in the medical domain.

Two major topics have been covered, i.e., diagnostic imaging and
tele-rehabilitation. Indeed, such application have been acquiring rel-
evance for the last years, and also the current pandemic emergency
is stressing the need for agile and efficient medical technologies.

Diagnostic imaging and tele-rehabilitation are linked procedure
from the points of view of both the medical practice and the tech-
nologies aspect. As for the former, it is clear how rehabilitation is
crucial with regards to many pathological conditions, which may be
diagnosed based on image findings. As the latter, the development
of some technology for diagnostic purposes is intended to deliver
information useful to overcome the pathology-related issues, where
(tele-)rehabilitation can act. In addition, the development of web-
based technologies enables an easy access to both diagnostic and
disease-management related information, and are of great interest
nowadays.

A possible naive pipeline starting from diagnostic imaging and
leading to recovery, passing through technology-enabled rehabilita-
tion is shown in Figure 7.1.

The deployed techniques and conducted studies were exploited
by referring to the two research themes in parallel, promoting the
study of the full medical process for a single pathology as a future
development.

For what concerns diagnostic imaging (Chapters 3 and 5), the
major contributions of the present work are referred to the context
of image segmentation. In particular a novel technique for unsu-
pervised image segmentation was presented. It is an ensemble of
graph- and statistical signal processing, aimed at the segmentation
of regions of interest in the scene, which are meaningful for some
application, e.g., the detection of carpal bones in MR images of the



143

Figure 7.1: General pipeline for the medical practice based on the proposed
techniques.

wrist.
In addition, the problem of human bias in automatic medical

image analysis is tackled. In such a context, some operations are
suggested, which may be useful either for standardizing the refer-
ence data or for making the evaluation process objective and in-
dependent on the raters. The applications taken into account are
the unsupervised evaluation of segmentation results, and the intro-
duction of a pre-processing phase prior manual annotations, aimed
at reducing raters dependence of ground-truth images. Also, this
last study suggests a glimpse into the development some web-based
tool for medical images annotation, aimed at enlarging the pool of
annotators thus making the labeled data more reliable.

With regards to tele-rehabilitation (Chapters 4 and 6)„ ReMoVES
was involved in studies for several pathologies, including Systemic
Sclerosis, Unilateral spatial neglect, post stroke, and frailty. Data
from patients experiencing such diseases were analyzed with SoA
methods, for classification purposes and for defining proper indica-
tors to summarize game sessions based on the considered pathology.

While the paragraphs above are meant to recapitulate the results
of the present work, it is interesting to spend some words on the
research framework which the present studies are contextualized in,
and on the aspect that they may affect.

The research activity is compliant with the National Strategy of
Intelligent Specialization (Strategia Nazionale di Specializzazione In-
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telligente - SNSI) and the National Research Program (Programma
Nazionale per la Ricerca - PNR), and coherent with Law 240/2010,
with the aim of favoring innovation and interchange between the
world of research and the world of production and the qualification
of the contribution of the activities research in the fields of innova-
tion (Law 240/2010, art.24, co. 3 and subsequent amendments).

Also, the current Covid-19 pandemic has highlighted the impor-
tance of applications such as telemedicine, remote patient monitor-
ing, and interactive medicine so that they are acquiring a crucial
position in the novel medical practice.

To conclude, also from an industrial point of view, the health-
care technology sector is significantly expanding, as innovative med-
ical technologies are able to deliver substantial new opportunities to
those healthcare facilities implementing them. Indeed, in a world
where disruptive digital technologies are revolutionizing almost ev-
erything, also patient care could benefit from such an innovation
process, yielding to better working condition for the clinical staff,
and thus, to an improved patient management and experience.
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Other works

In this appendix, the other works developed during the PhD, but
not described in the present thesis are introduced.

B.1 Ultrasound imaging and hepatic diseases

The present section briefly discloses the work in [195] and [196].
Due to the need for quick and effective treatments for liver dis-
eases, which are among the most common health problems in the
world, staging fibrosis through non-invasive and economic methods
has become of great importance. Taking inspiration from diagnostic
laparoscopy, used in the past for hepatic diseases, ultrasound im-
ages of the liver can be studied focusing on a specific region of the
organ where the Glisson’s capsule is visible. In ultrasound images,
the Glisson’s capsule appears in the shape of a line which can be
extracted via classical methods in literature. By making use of a
combination of standard image processing techniques and CNN ap-
proaches, one can give evidence to the idea that a great informative
potential relies on smoothness of the Glisson’s capsule surface. To
this purpose, several classifiers are taken into consideration, which
deal with different type of data, namely ultrasound images, binary
images depicting the Glisson’s line, and features vector extracted
from the original image. An example of ultrasound image and ex-
tracted line is depicted in Figure B.1

The available dataset has been classified according to two, three,
and five classes, based on the Metavir score F0 � F4 [197]. More
specifically, when considering two classes, the dataset was divided
into healthy subjects/low disease patients (stages F0 and F1) and
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Figure B.1: Example of Glisson’s line extraction from a patient’s image.

impaired patients (stages F2, F3, and F4); when referring to three
classes, the considered groups were healthy subjects (stage F0), low/mild
level disease patients (stages F1 and F2), and severe stage/cirrhotic
patients (stages F3 and F4).

The study consisted of four steps: 1) CNN to process only the
ultrasound images; 2) CNN to process the ultrasound images to-
gether with the extracte Glisson’s line; 3) features extraction from
the ultrasound images and classification via a shallow neural net-
work; 4) CNN processing of the ultrasound images together with
the extracted lines, then concatenated with the output from the
shallow network.

The classification accuracy increased as the number of informa-
tion processed by the model grows. In particular, accuracy increase
is mostly significant when features extracted on the basis of the Glis-
son’s line are considered. Then, a small improvement for the clas-
sification happens when considering the concatenated model, thus
confirming the assumption that the Glisson’s capsule is responsible
for the highest information content related to the hepatic diseases.

The present study is a preliminary work, due to some limita-
tions i.e. the use of elastometric results as ground truth data rather
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than the histological examination, and the small sample size (only
157 patients). As for the former issue, ground truth staging was
indeed provided by Fibroscan and SWE examination when both
the methodology were concordant (to address the problem of user-
dependance of SWE diagnosis). However, biopsy is the gold stan-
dard for staging liver diseases even though its applicability is limited.
Hence, a long time is required to collect enough data to test a classi-
fication based on the bioptic exam, which is necessary to validate the
proposed approach. In addition, some staging techniques, included
Fibroscan and SWE, may depend also on pathological conditions,
such as obesity and liver congestion, thus affecting the goodness of
the diagnosis. On the contrary, since the proposed study is focused
on morphological criteria, based on the Glisson’s line, any modifica-
tions on the liver status, deriving from pathological conditions, does
not influence the results of the current approach.

B.2 Remote sensing applications

The method presented in 5.1 was also applied to the remote sensing
domain. In particular, Synthetic aperture radar (SAR) intensity
images were considered. They were acquired either by COSMO-
SkyMed in the HH polarization at the spatial resolution of 5m, and
depict rural areas in the north of Italy, or by TerraSAR-X in SC
mode at the resolution of 18m, acquired in the Mediterranean sea
near the French coast.

Concerning the first images, the visible agricultural fields were
mainly of three types, corresponding to lower, higher, and interme-
diate values of the backscattering coefficient and not exhibiting ap-
preciable texture. The proposed segmentation method was applied
with the purpose of segmenting the two types of field corresponding
to the brighter and darker areas (i.e., higher and lower backscatter-
ing), and was also compared with a state-of-the-art method for SAR
image segmentation [198].
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Figure B.2 shows an example of the application, depicting the
original image, the available and manually annotated ground truth
data, and the segmentation result obtained via the two aforemen-
tioned cases in the considered trials. It is worth mentioning that
when referring to the method in [198], ROIs included in the ground
truth have been manually selected in the final segmentation map
(i.e., by merging oversegmented areas) in order to enable a quanti-
tative comparison.

(a) Data (b) Ground truth

(c) Proposed method (d) Comparison

Figure B.2: Agricultural fields segmentation in SAR imagery.

Similarly to the case of MR images, the use of the MRF model
allowed to achieve a spatial regularization in the segmentation map.
Indeed, the polygonal shapes of the fields are preserved, despite the
speckle [150] that may lead to errors in identifying the borders. In
addition, also methods in [26] and [179] were used in this context.
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However, they did not result appropriate for such data. In particu-
lar, the method in [26] is likely unsuitable for SAR images, were the
speckle yields to a significant over-segmentation. Furthermore, the
borders of ROIs in SAR data are not well defined, and it is likely
the reason why the method in [179] does not perform effectively on
such images.

The adopted parametric model for the SAR imagery is the Gamma
distribution. Figure B.3 depicts the gray levels histogram of one of
the ROIs in the COSMO-SkyMed dataset and the corresponding
MoLC-fitted Gamma distribution. The interpretation of the figure
is twofold. On one hand, it shows the accuracy of the MoLC esti-
mation for the parameters of the Gamma distribution and, on the
other hand, it also visually confirms the Gamma distribution to be a
valid model for the statistics of the pixel intensities in the regions de-
tected by the proposed method when applied to this type of image.
The same comment holds with regard to the statistics conditioned
to other regions in the image.
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Figure B.3: Gray levels histogram of one of the ROIs in the SAR image depicting
the agricultural fields and the MoLC-fitted gamma distribution.

Figure B.4 shows an oil slick located in the Mediterranean sea,
along with the segmentation result. The goal is to detect the oil
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spill, which appears as dark region over the bright background, in
order to enable the quantification of its spread. Conversely to the
previous case, no ground truth was available in this case study. Yet,
qualitative results are provided in order to give a visual feedback
on the performances achieved by the proposed method in this new
scenario.

Also in this case, the segmentation method was able to achieve
satisfactory results. In particular, the segmentation was able to
separate the homogeneous regions characterized by the oil spill with
the surrounding area, yet the fine details of the oil spill in the upper
left part of the images were not identified. This is due to the random
grid strategy in the seed placement step. Due to the thin shape
of such details, none of the seeds was placed inside the region of
interest and, as a consequence, such fine details were not assigned
to the homogeneous region associated with the oil spill. The reader
may also notice the difference with respect to the output of method
[198], where no particular ROI is actually visible.

(a) Data (b) Proposed method (c) Comparison

Figure B.4: Oil spill segmentation in SAR images.



160 Other works

B.3 Cultural heritage preservation

In the present section, the work in [199] is briefly described.

Cultural heritage bears witness to life and history, provides an
identity to nations, and represents an irreplaceable source of inspira-
tion. Its importance from cultural, historical, and economic points
of view is invaluable; thus, its preservation and valorization are cru-
cial topics for our society. Natural aging and deterioration due to
external agents endanger artworks such as paintings, sculptures, and
architecture, and therefore diagnostic tools are needed for monitor-
ing and preservation.

Monitoring historical artistic heritage consists of the evaluation
of possible modifications of some characteristics of the object under
observation. When it comes to a artwork or, more generally, a mono-
or polychromatic surface, color is one of those characteristics, as it
is easily perceivable by the human eye, allows one to distinguish an
artwork, and provides information on the nature and status of an
artwork.

Color analysis on artworks is generally performed, both qualita-
tively and quantitatively, via specific instruments such as colorime-
ters and spectrophotometers, working in a device-independent color
space as CIE L⇤a⇤b⇤ [200, 201]. This allows for objective assessment
of color changes in order to monitor the state of the painting over
time and appropriately plan periodic protection and/or restoration
actions. Color studies of artworks make also use of Infrared (IR)
and Ultraviolet (UV) data (by means of, e.g., infrared reflectog-
raphy, UV–Visible spectrophotometry, UV reflectance, etc.), or of
X-ray fluorescence spectroscopy (XRF) [202, 203].

In the present study, 117 tiles from the database of diagnostic
analyses of The Foundation Centre for Conservation and Restora-
tion of cultural heritage La Venaria Reale (in collaboration with the
National Institute of Metrological Research and Laboratorio Anal-
isi Scientifiche of Regione Autonoma Valle d’Aosta) are considered
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[202]. Figure B.5 shows a table of the considered tiles.

Figure B.5: Picture of a table collecting colored tiles from The Foundation Cen-
tre for Conservation and Restoration of cultural heritage La Venaria
Reale.

The innovative aspect of the work is the combination of SoA
methods with clustered data, in order to have a better correction.
In particular, a supervised approach for color correction is proposed,
following a cluster analysis based on two different criteria: color and
chemical properties of pigments. Aimed at overcoming the issues of
small data amount and at finding one-to-one correspondence be-
tween image and colorimetric data, samples referring to the same
tile are sorted by hue values. This allows for having coupled data
and leveraging on supervised methods for a precise and punctual
color correction. From the experimental phase, it results that Poly-
nomial Regression [204] is an approach that nicely performs. In
addition, the proposed method proved to be effective also with or-
ganic pigments, which cannot be analyzed via standard approaches
such as XRF.

An example of the obtained result is depicted in Figure B.6. In
particular, each visualization depicts the uncalibrated color values,



162 Other works

the colorimeter data, and the correction when the method is trained
on the whole dataset and on the specific cluster. The reader may
notice the improvement on the visual rendering when dealing with
clustered data.

Figure B.6: Figures depicting an example of color correction with respect to the
Polynomial Regression method.

B.4 Development cooperation

Private voluntary organizations (PVOs) are major players in re-
sponding to many humanitarian needs. For instance, PVOs play
a leading role in providing health care and education in the coun-
tries where they act. The interest toward the non-profit sector is
increasing all around the world, thus denoting a large number of
well-intentioned actors. In such a context, the need for coordina-
tion between organizations and information access has become rel-
evant, to effectively respond to the major issues for populations to
be helped.

In such a framework, an online platform, called SPeRA web-
portal, was developed [205]. Its aimed at collecting data related
to PVOs operating in Africa. As a starting point, the portal is
collecting data related to small Italian PVOs, in order to give them a
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voice. Indeed, despite their concrete operations and laudable efforts,
their activities are barely promoted and described, and that hinders
the possibility of joining and channeling efforts, in order to optimize
their operations.

Since 2010, the consortium Solidarietà, Progetti e Risorse per
l’Africa (SPeRA) is collecting information related to cooperation
projects. In order to leverage on such information for driving future
projects, based on the necessities that are still not addressed, an
online portal describing Italian associations and their activities was
created. There are more than 650 projects run by more than 260
different associations. The sectors of activities span from school ed-
ucation to prevention and health care, from support to agricultural
and livestock activities to the promotion of entrepreneurial work ac-
tivities, from the construction of structures and infrastructures to
the improvement of the use of local resources. Projects are mostly
aimed at helping the local population, with particular attention to
women and children, covering many sectors of intervention, in par-
ticular prevention and health and many are also projects aimed at
helping children and the issue of correct nutrition. Also, the focus
is centered towards education, starting from basic school activities,
to professional updating for health personnel at various levels, up to
cooperation between universities, for example through the creation
of an interactive multimedia platform via the web and usable with
very low costs and also in situations with a continuous energy sup-
ply deficit. To conclude, there are also many interventions in the
technological field, aimed at finding solutions to support agriculture,
zootechnics, and fishing in many countries, which therefore aim at
encouraging the economic development of local communities.

The process of Africa’s marginalization is gradually being re-
versed, and also the perception toward Africa strategic relevance
has changed. All of this is highlighting a growing strategic role of
Africa in the world economy. For instance, on May 13th 2000, The
Economist titled “The hopeless continent” by referring to African
development. Then, the international sensitivity with respect to
Africa started growing in response to African ascending, so that
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the same newspaper published numbers titled “Africa rising” and
“The new scramble for Africa” on December 3rd 2011 and March
9th 2019 respectively. Indeed, democracy is advancing in Africa
and that means progress in political stability leading to economic
growth. For instance, an important signal of growth comes from
the trade agreement African Continental Free Trade Area (ACFTA)
[206], which aims at creating a single market fostering the economic
advancement of the continent. In addition, it is worth mentioning
that African gross domestic product (GDP) was supposed to grow of
the 8% each year in average [207], prior the advent of the Covid-19
pandemic which caused a stop.

The goal of the portal is to promote study and research activities
for the understanding of the phenomenon of Cooperation in Africa,
for statistical analysis, anthropological and geopolitical studies, and
of other nature. The final users are the societies themselves, public
Institutions, and private companies, who will find a useful tool for
the exchange of information and interaction in view of possible joint
projects with the aim of improving the effectiveness of the action of
the Cooperation.

In general, small PVOs result in being very well integrated in
the local society where they operate, but often they are not strictly
compliant with the requirements defined by Institutions, as acting
independently. Thus, when referring to societies as final user of the
portal, it means they can benefit from the exchange of information
as it fosters the building of formal contacts with Institutions. Con-
versely, Institutions can collect and analyze data related to small
PVOs, aimed at disseminating the best practice which volunteers
should follow.

Finally, a well-defined relation between societies and Institutions
can also favor the collaboration with private companies, who can
leverage on the experience of PVOs to gather information useful for
starting activities addressing the actual needs of the local popula-
tion.
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The importance of the SPeRA portal relies in its possible use
for strategic purposes. Accessing data related to humanitarian work
in Africa is helpful for defining further operations which address
specific needs, which have been identified based on a scientific and
precise requirements analysis.

From a technical point of view, the portal deploys PHP, MySql,
and SlimFramework v3 technologies for the Back-end, and Ionic,
AngularJS, Bootstrap, and Jquery for the Front-end. The Back-end
exposes Web Services which, after successful authentication, can be
used by the Front-end.
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