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Doctor of Philosophy

Analysis and Optimal Management of Mobile Networks Towards Pervasive

Intelligence

by Arcangela RAGO

This thesis investigates machine learning techniques as powerful tools for the analy-
sis and the optimal management of mobile networks towards Pervasive Intelligence.
In this context, it describes recent solutions conceived for addressing three different,
but related, issues. Firstly, after tailoring an unsupervised learning methodology to
characterize radio resource utilization patterns, a Multi-Task Learning model, run-
ning directly at the edge of the network, is conceived to perform data mining from
the control channel of an operative mobile network. Two configurations of neu-
ral networks, based on Undercomplete or Sequence to Sequence autoencoders, are
exploited to obtain common feature representations of traffic profiles. Then, soft-
max and fully-connected layers are used to anticipate information on the type of
traffic to be served and the radio resource utilization pattern requested by each
service during its execution, respectively. Moreover, a Software-Defined Network-
ing approach is exploited to monitor users’ mobility. Consequently, the prediction
of both the distribution of users among cells and the communication and com-
putational resources they request over different look-ahead horizons is performed
through a Convolutional Long Short-Term Memory architecture. This information
is used to perform anticipatory allocation and distribution of users’ requests via
Dynamic Programming. Hence, a Tenant-driven Radio Access Network slicing en-
forcement scheme based on Pervasive Intelligence is proposed to avoid the radio
resources over-provisioning while saving bandwidth (i.e., the Pay for What You
Get paradigm). The Infrastructure Provider exploits a convolutional autoencoder to
compress the information on network resources and connectivity and share it with
the Tenants. In turn, each Tenant implements a Deep Deterministic Policy Gradi-
ent algorithm to dynamically adapt bandwidth requests according to its own users’
requirements. The outcomes of this algorithm are then used by the Infrastructure
Provider to effectively enforce network slicing. The investigation in real scenarios
and the comparison against conventional approaches adopted for the analysis and
the optimal management of mobile networks demonstrate the effectiveness of the
proposed machine learning-based solutions. In terms of applicability, the conceived
methodologies are also in line with the evolution of mobile networks, where Artifi-
cial Intelligence will be natively and pervasively integrated for enabling full network
automation.
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5

Introduction

Machine Learning (ML) is the branch of Artificial Intelligence (AI) that investigates

algorithms able to learn and improve their experience and performance over time

directly from data examples, without being explicitly programmed. Algorithms can

extract knowledge from complete data: hidden patterns in the training data are iden-

tified and used to unveil useful information at runtime and to drive the execution

of a given task (typically classification, prediction, or clustering). To improve these

capabilities, the sub-branch of ML called deep learning further enables the mining of

valuable information of data coming from heterogeneous sources and finding hid-

den correlations automatically, which would have been too complex to extract by

human experts. Deep learning also supports Reinforcement Learning (i.e., Deep Re-

inforcement Learning), providing autonomous decision-making. Therefore, AI and

ML are powerful tools that are increasingly spreading in the mobile networking do-

main, where the growing diversity and complexity of the mobile network architec-

tures have made the monitoring and the instantaneous managing of the multitude

of network elements intractable. In fact, moving toward the 5th Generation (5G)

and Beyond networks, since a large amount of network resources needs to be intel-

ligently configured for offering extremely high data transmission rate and stringent

low-latency requirements, AI will be pervasively integrated into the mobile network

design.

In line with this emerging research trend and differently from most of the liter-

ature in the field, this thesis addresses ML techniques for the analysis and the joint

mobile traffic classification and prediction, for the anticipatory allocation of commu-

nication and computational resources at the network edge, and for the management

of network slicing in the Radio Access Network (RAN). A brief description of the

chapters that make up the thesis is provided below.

Chapter 1 introduces 5G and Beyond networks with their enabling technolo-

gies, that are Software-Defined Networking (SDN), Network Function Virtualization

(NFV), network slicing, and Multi-access Edge Computing (MEC) paradigms. After

highlighting AI advantages in the context of mobile networks, this Chapter provides

an overview of ML techniques and introduces the related work on the analysis and

optimal management of mobile systems, by identifying the gaps that this thesis in-

tends to fill.

In Chapter 2, after tailoring an unsupervised learning methodology to charac-

terize radio resource utilization patterns, a Multi-Task Learning model, running di-

rectly at the network edge, is conceived to perform data mining from the control
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channel of an operative mobile network. It guarantees reduced storage require-

ments, fast data processing, and limited monitoring complexity. Autoencoders are

used as key building blocks of the proposed Multi-Task Learning methodology for

common feature representations, shared by both classification task (anticipation on

the type of traffic to be served) and prediction task (anticipation on the resource

allocation pattern requested by each service throughout its duration).

In Chapter 3, an ETSI-MEC compliant architecture adopts SDN facilities to mon-

itor users’ mobility during the time. Then, it exploits a deep learning architecture

based on Convolutional Long Short-Term Memory for predicting the distribution

of users among cells and their related service demands over a look-ahead temporal

horizon. A centralized orchestrator uses this information to distribute users’ de-

mands among available MEC servers in an anticipatory manner via Dynamic Pro-

gramming, while satisfying communication and computational constraints at the

network edge and the upper bound for latency expected by mobile users.

In Chapter 4, a Tenant-driven RAN slicing enforcement scheme based on Per-

vasive Intelligence is proposed. The proposed approach grounds its roots in the

Pay for What You Get paradigm, which promises to avoid the radio resources over-

provisioning while saving bandwidth. To achieve these goals, the Infrastructure

Provider exploits a convolutional autoencoder to compress the information on net-

work resources and connectivity and share it with the Tenants. In turn, each Tenant

implements a Deep Deterministic Policy Gradient algorithm to dynamically adapt

bandwidth requests according to its own users’ requirements. The outcomes of this

algorithm are then used by the Infrastructure Provider to effectively enforce network

slicing at the RAN level.

To demonstrate the effectiveness of the conceived methodologies for the analy-

sis and the optimal management of mobile networks, they are investigated in real

scenarios and compared against conventional approaches.

Finally, the thesis closes with the Conclusions, summing up the main findings

while drawing future research directions towards Pervasive Intelligence.
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Chapter 1

Introduction to 5G and Beyond

Networks: Enabling Technologies

Towards Pervasive Intelligence

In this Chapter, current and future generations of mobile networks, with the en-

abling technologies, are introduced. The description carried out throughout this part

of the thesis describes their main functionalities. The dissertation continues provid-

ing an overview of the potential of Machine Learning (ML) in the analysis, man-

agement, and optimization of mobile networks for pursuing full network automa-

tion in pervasive intelligent endogenous future mobile systems. After this general

overview, the Chapter presents the related work on mobile traffic analysis, anticipa-

tory resource allocation, and the management of network slicing in which ML plays

a key role. In particular, the gaps bridged in this thesis are identified and detailed.

1.1 5G and Beyond Networks

Driven by the increasing demand of mobile data traffic and the tremendous growth

in connectivity, the 5th Generation (5G) of mobile technology has begun to revolu-

tionize the existing wireless networks [1], [2].

High-level performance targets of 5G are classified into three different categories

of use cases [3]:

• enhanced Mobile BroadBand (eMBB), which provides the service of mobile broad-

band in order to ensure consistent Quality of Service (QoS)/Quality of Expe-

rience (QoE). Typical examples of eMBB services are 4K/8K video and virtual

reality.

• Ultra-Reliable and Low Latency Communication (URLLC), with extends network

capabilities in terms of reliability and latency (e.g., autonomous driving).

• massive Machine Type Communication (mMTC), enabling massive connectivity

(i.e., massive access by a large number of devices). For example, smart cities

fall into this category.
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In order to extend the performance of mobile networks in terms of throughput,

latency, reliability, density, and mobility, 5G is characterized by embedded flexibility

to optimize the network usage. Specifically, for accommodating a wide range of ad-

vanced use cases in an agile and cost efficient manner, the 5G architecture includes

modular network functions that could be deployed and scaled on demand. To this

end, a new radio air interface, namely 5G New Radio (NR) or 5G NR air interface,

has been standardized by 3rd Generation Partnership Project (3GPP) and developed

for adding novel features like flexible spectrum, scalable numerology, forward com-

patibility, and ultra-lean design, as compared to the prior Long Term Evolution (LTE)

systems.

1.1.1 5G New Radio

5G NR is a totally new air interface that can operate alongside 4G LTE. In addition

to the ability of handling much faster data rates and of providing higher capacity

to users with respect to previous generations, the key NR pillar ensuring the imple-

mentation of numerous 5G applications in different scenarios is the flexibility [3].

Regarding the spectrum, different frequency bands are flexibly used for different

types of communication so that several functionalities and features can be enabled.

In fact, 5G NR operates on any frequency band between 450 MHz and 52.6 GHz.

The lower bands are needed for coverage, while the higher bands will provide high

data rate services and high traffic capacity. Specifically, 3GPP defines two frequency

ranges: the first one (Frequency Range 1) covers the frequencies between 450 MHz

and 6 GHz range, whereas the second one (Frequency Range 2) refers to the frequen-

cies within the 24.250–52.600 GHz interval. These frequency ranges are commonly

referred to as sub-6 GHz and millimeter-wave, respectively [3].

Moreover, 5G NR supports flexible numerology. In LTE, Orthogonal Frequency

Division Multiplexing (OFDM) is used with a fixed subcarrier spacing of 15 kHz

and 12 subcarriers are combined in the frequency domain to define the basic radio

resource, namely the Resource Block (RB) [3]. Also in 5G a RB has 12 subcarriers.

However, 3GPP introduces in the NR standard the idea of flexible and scalable nu-

merology, which is characterized by a set of supported subcarrier spacings and cyclic

prefixes [4]. Specifically, the 5G NR supported carrier spacing is scaled by multiply-

ing the factor 2n to the LTE supported carrier spacing (i.e., 15 kHz), with the integer

n ranging from 0 to 5. Therefore, 5G NR supports spacing of 15, 30, 60, 120, and 240

kHz, i.e., RBs of 180, 360, 720, 1440, and 2880 kHz width, respectively. In the dime

domain, to maintain a certain backward compatibility with LTE, the NR frame is 10

ms long, and it is composed of ten subframes of 1 ms each. Nonetheless, according

to the chosen numerology, each subframe is split into a variable number of slots,

which increases with the subcarrier spacing: the smaller the slot length, the higher

the subcarrier spacing. Then, each slot contains a fixed number of OFDM symbols,

that are 14 and 12 for the normal and the extended cyclic prefix length, respectively.
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Thus, this architecture enables a flexible NR frame structure, allowing a different

number of slots per subframe, as well as varying OFDM symbol and slot lengths [5].

In addition to the flexibility, the NR system is characterized by an ultra-lean de-

sign, so as to decrease the power utilization through the reduction of ‘always on’

signals (i.e., synchronization signals, broadcast signals, and the reference signal).

It helps increasing the energy efficiency of the system and minimizing the interfer-

ences, especially in high traffic load conditions. It also enhances forward compatibil-

ity, that is another feature of the NR system. In fact, besides guaranteeing backward

compatibility with LTE, 5G NR allows the network to support future applications

which will characterize 5G and Beyond 5G (B5G) networks.

1.1.2 Enabling Technologies

Concrete opportunities to develop advanced 5G services are offered by the inte-

gration of Software-Defined Networking (SDN), Network Function Virtualization

(NFV), and network slicing paradigms. They ensure high performance in terms of

scalability and rapid time to market, while increasing the network programmability

and reducing CAPital EXpenditure (CAPEX) and OPerational EXpenses (OPEX) [6],

[7]. Specifically, SDN decouples the data and control plane, enabling the control and

orchestration of switches and routers from a central entity, which is configured in a

way that is agnostic to the underlying hardware infrastructure [6], [8]. NFV is the

virtualization of network functions, i.e., Virtual Network Functions (VNFs), which

are decoupled from dedicated hardware devices [8]. Network slicing consists of ex-

ecuting multiple logical network instances on a shared infrastructure [6]. It can be

considered as a convergence of SDN with NFV because SDN provides a global view

of network infrastructure and the capability of programmable network control by

creating the control plane, while, through NFV, network functions and resources are

not restricted to dedicated network infrastructures anymore [8].

However, since end-users mostly have limited storage and processing capacities,

running compute-intensive applications on resource-constrained users is still an im-

portant issue [9]. For this purpose, in both 5G and B5G networks, Multi-access Edge

Computing (MEC) is emerging as a fundamental enabling technology for the rapid

diffusion of advanced services, such as autonomous driving, virtual/augmented re-

ality, e-Health, robotics, and tactile Internet [8]–[11]. According to ETSI-MEC speci-

fications [12], MEC servers are deployed at the network edge to offer intensive com-

puting and memory capabilities in the proximity of end-users, while guaranteeing

low communication latencies to new heavy demanding and real-time services [9].

They are also able to limit network congestions by processing data directly at the

edge, instead of forwarding a big amount of data to the cloud. This particularly

applies to MEC servers co-located with gNBs (base station of 5G networks), that

can provide computational capabilities as close as possible to end-users and capture

information for further purposes (data analytics and big data processing) [9].
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1.2 Towards Pervasive Intelligence

In order to fulfill the expanding diversity and complexity of the mobile network ar-

chitectures and the even growing amount of users’ requests, mobile traffic and com-

munication and computational resources available in the network infrastructure, in-

cluding core network, edge network, and Radio Access Network (RAN), should be

properly managed [13], [14]. Networking researchers have been recently recogniz-

ing the importance of ML and its ability to solve the hard monitoring and managing

of the multitude of network elements in current and future generations of mobile

systems [15]–[19].

ML is the branch of Artificial Intelligence (AI) that investigates algorithms able

to learn and improve their experience and performance over time directly from data

examples, without being explicitly programmed. With these algorithms, a system

can deduce knowledge from data: hidden patterns in the training data are identified

and used to analyze unknown information and drive the execution of a given task

(typically classification, prediction, or clustering) [20]. AI algorithms can be classi-

fied into three main categories, the choice of which depends on the type of available

data and on the problem goals:

• Unsupervised Learning, when the training phase, whose objective is to learn

relationships and structure from the input data, is based on unlabelled data or

an undefined and unspecific output;

• Supervised Learning, when algorithms learn to build a statistical model for pre-

dicting or estimating an output based on one or more inputs by using labelled

data;

• Reinforcement Learning (RL), that is a growing field related to sequential deci-

sion making, where optimal policies (the decisions or actions) are learnt by an

agent in a given environment by interacting with the environment itself, i.e.,

by iteratively implementing actions and receiving rewards (the feedback).

To improve ML capabilities, its sub-branch called deep learning further enables the

mining of valuable information of data coming from heterogeneous sources and un-

veils hidden correlations automatically, which would have been too complex to ex-

tract by human experts [18]. Deep learning techniques employ Artificial Neural

Networks (ANNs), that mimic biological neural networks from which they get their

name. In fact, as the biological neurons are interconnected to form the brain net-

works, which allow the individuals, for example, to reason, recognize sounds and

images, and learn to act, ANNs are interconnected groups of artificial neurons for

information processing. Artificial neurons are grouped into sets called layers, so

that the real numbers, which replace the electrical signals of brain synapses, go from

one layer to another one. There are three types of layers: input layer, where the

input data are received; hidden layers, through which the real numbers travel, un-

dergoing modifications based on the weights of the connections and neurons; and
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FIGURE 1.1: Venn diagram of the relation among AI techniques.

output layer, which returns the result of the processing performed by the network.

In this sense, only ANNs that have a lot of hidden layers (i.e., even if one hidden

layer can be enough by definition) can be regarded as deep models, i.e., deep neural

networks [17], [21]. By combining deep learning with RL techniques, there are also

Deep Reinforcement Learning (DRL) algorithms, where the agents exploit neural

networks to make decisions from unstructured input data without manual engineer-

ing of the state space (i.e., the set of the possible situations in which the agent finds

itself) for obtaining the optimal policy [17], [22]. Figure 1.1 illustrates the relation

among AI techniques through a Venn diagram.

Nowadays, ML and AI in general are taking an increasingly central role in the

context of mobile networks. Moving toward 6th Generation (6G) and Beyond, a

huge amount of network resources needs to be intelligently configured for offering

extremely high data transmission rate and very stringent low-latency requirements.

This motivates the utilization of AI to fundamentally rethink the 6G communication

system design [23]. Differently from 5G networks, which did not take AI into ac-

count at the beginning of the architectural plan, the design of 6G architecture should

natively and pervasively integrate AI in various layers of the network for enabling

full network automation [3]. Thus, the traditional and obsolete approaches in net-

work planning, analysis, and optimization will be replaced with automated methods

that use AI/ML to guide planning decisions and dynamically manage physical and

virtual network resources [21].

In line with these emerging research trends, this thesis describes innovative so-

lutions that exploit the potential of AI/ML towards Pervasive Intelligence for ad-

dressing three different, but related, issues, with the common goal of analyzing and
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FIGURE 1.2: Thesis organization.

optimally managing mobile networks. In particular, the dissertation targets the fol-

lowing objectives: i) to unveil radio resource utilization dynamics through ML and

to jointly classify and predict mobile traffic through deep learning; ii) to understand

spatio-temporal dynamics of mobile users in order to optimally and anticipatorily

allocate communication and computational resources at the network edge through

deep learning; and iii) to manage the network slicing at the RAN level by using

deep learning and DRL. In order to achieve the first target, an unsupervised learning

methodology is put forward to analyze mobile traffic at the radio link level and iden-

tify similar radio resource utilization patterns of mobile traffic. Then, the potential of

deep learning is investigated in order to jointly perform mobile traffic classification

and prediction, which are key tasks for network optimization. Section 1.3.1 reviews

the related work on this area and identifies the gaps bridged by Chapter 2, where the

conceived approach is detailed. Regarding the user mobility, this PhD work antici-

patorily allocates communication and computational resources at the network edge,

based on the prediction of spatio-temporal dynamics of mobile users and the related

requests performed through deep learning. The novelty of the proposed solution

is pointed out in Section 1.3.2, while more details can be found in Chapter 3. Fi-

nally, to effectively enforce the network slices in the RAN, this work goes beyond

the state-of-the-art literature on network slicing management, as outlined in Section

1.3.3. In fact, a Tenant-driven RAN slicing enforcement scheme based on Pervasive

Intelligence is conceived. It exploits deep learning and DRL to compress the infor-

mation on network resources and connectivity and to dynamically adapt bandwidth

requests, respectively. For further details, see Chapter 4. Figure 1.2 summarizes the

thesis organization: each following subsection introduces the scientific work used as

background for the main contributions of this thesis explained in the next chapters.
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1.3 State of the Art

This section reviews the related work on mobile traffic analysis, resource allocation,

and network slicing management and identifies the gaps bridged in this thesis by

using AI/ML techniques in the context of the analysis and the optimal management

of mobile networks.

1.3.1 Mobile Traffic Analysis

Understanding the dynamics of mobile traffic demands is of utmost importance

for proper and secure management of network resources (e.g., spectrum, energy,

computation) [24], [25]. Specifically, traffic classification at the radio link level and

forecast may enable advanced QoS and QoE enforcement policies based on a priori

knowledge of application behaviors.

The scientific literature addressed traffic classification in mobile networks

through machine or deep learning methodologies [26].

Several approaches, based on Support Vector Machine and Random Forest al-

gorithms, have been conceived to identify applications or smartphone types start-

ing from the observation of encrypted communication flows [27]–[30]. Neverthe-

less, mobile data are usually generated by heterogeneous sources, exhibit non-trivial

spatio/temporal patterns, and often embrace high volumes of different information

[31]. Flows’ characteristics are also rapidly prone to be out of date and need to be

frequently updated [32]. In these complex and dynamics conditions, ML algorithms

generally fail to automatically extract and use the key features describing the inves-

tigated flows [17]. On the contrary, deep learning methods demonstrated to be able

to overcome the traditional ML approaches because of their native ability to success-

fully support traffic analysis and accurately characterize traffic dynamics [17], [32]–

[38]. Unfortunately, mobile networking and deep learning problems have been ex-

plored mostly independently and only recently crossovers between the two research

areas have emerged.

Reference deep learning solutions for traffic classification leverage Convolu-

tional Neural Networks with one-dimensional [39]–[41] or two-dimensional [41],

[42] convolutional layers, Stacked Autoencoder with five stacked layers[40]–[42],

Multi-Layer Perceptron (MLP) with one [41] or two hidden layers [41], [42],

and standard or hybrid Long Short-Term Memory (LSTM) combined with two-

dimensional convolutional layers [41]. However, only the contribution in [41] fo-

cuses on mobile networks. Among the other important investigations it provides,

[41] also demonstrates how deep neural networks guarantee greater accuracy lev-

els than conventional ML approaches in mobile networks. On the other hand, deep

learning also outperforms baseline approaches for traffic prediction, including the

conventional Auto Regressive Integrated Moving Average scheme [17], by accu-

rately predicting traffic volume/load [17], [34]. Here, reference methodologies are

based on MLPs [43], densely connected Convolutional Neural Networks (CNNs)
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with two-dimensional convolutional layers [44], LSTMs [45]–[49], and Multivariate

LSTMs [50], as well as on the combination of CNNs and LSTMs [51]–[53], that can

extract spatial and temporal correlations of data through the convolutional operation

and LSTM memory cells, respectively. In that case, all of the reviewed contributions

focus on mobile networks.

The analysis of the state of the art on deep learning strategies reveals that traffic

classification and prediction are generally treated separately. In other words, classi-

fication and prediction are achieved as two isolated tasks. This represents a major

drawback because their parallel execution involves the training of different learning

architectures, as well as an inevitable increase of computational requirements [54].

The Multi-Task Learning (MTL) approach solves the aforementioned issue, while

often reaching greater performance levels when compared with single-tasks ap-

proaches [54], [55]. Differently from the single-task scheme, MTL basically embraces

a learning architecture that extracts common feature representations from the train-

ing data and jointly executes multiple, but related, tasks. Therefore, MTL, especially

in view of Pervasive Intelligence in 6G and Beyond, emerges as a suitable solution

for meeting the computational and memory constraints that increasingly affect mo-

bile networks [17]. Valuable contributions in this direction are presented in [56],

[57], where an MTL architecture is designed to implement multiple tasks related to

the traffic classification only. Unfortunately, they do not address traffic prediction

and do not focus on mobile networks.

Another important consideration emerging from the scientific literature is that

all the investigated contributions in this field perform data mining from the mes-

sages exchanged over the data plane (i.e., traffic volume/load collected at the net-

work or application layers, equipped with application labels for classification task).

Therefore, by considering the huge amount of data handled by mobile systems, the

reviewed methodologies cannot be applied to the control plane and require high

computational and memory capabilities, thus rendering their use impractical at the

mobile edge.

Recently, researchers are given access to Call Detail Records (CDRs) of mobile

operators and the analysis is more oriented on extrapolating spatio-temporal char-

acteristics of the mobile user traffic [58]–[60]. However, datasets on CDRs are rarely

made available by operators and they are difficult to achieve. Although they were

used by researchers, the considered datasets miss characterizing fine-grained de-

tails such as access level dynamics, which, instead, are considered crucial for mobile

network optimization. In fact, CDRs would help identify user service requests and

throughput, but do not offer any detail on wireless link level information, channel

conditions, retransmissions, packet fragmentation, and so on. Thus, CDRs are in-

complete and do not suffice to get appropriate representations of mobile traffic and

train neural networks.

To bridge this gap, Chapter 2 exploits data mining from the unencrypted control

channel of an operative mobile network to properly characterize the mobile traffic
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TABLE 1.1: Comparison among this work and the other contributions focusing on traffic
analysis through deep learning.

Contributions Task
Mobile

scenario

Processed messages Dataset type

Classification Prediction Joint Data plane Control plane

Network/

application

level data

Traffic

volume/

load

Radio

link-level

data

[39], [40], [42] ! ! ! !

[41] ! ! ! ! !

[43]–[53] ! ! ! ! !

[56], [57] ! ! ! !

[61] ! ! ! ! !

[62] ! ! ! ! ! !

[63] ! ! ! ! !

Chapter 2

of this thesis
! ! ! ! ! !

at the radio interface, in addition to getting out data plane information (i.e., traffic

volume/load and application labels) and reducing storage and monitoring process-

ing. Therefore, even if the data mining is performed on the control plane, the accu-

racy of the classification and prediction tasks is still evaluated on the derived data

plane information. Interesting contributions in this direction address traffic pattern

analysis and classification [61], [62] and traffic prediction [63] through data mining

performed on the Physical Downlink Control CHannel (PDCCH). The proposed so-

lutions, however, are not based on an MTL approach.

Differently from the current state of the art, the goal of this PhD work is to mainly

adopt an MTL architecture at the edge of the network to jointly classify mobile ser-

vices and forecast future traffic demands, enabling advanced QoS and QoE enforce-

ment policies based on a priori knowledge of application behaviors. Thus, network

operators can configure and manage network resources in a more intelligent and

prolific mode thanks to the knowledge extracted by deep learning algorithms.

To conclude, Table 1.1 summarizes the goals and the methodologies followed

by the scientific contributions reviewed in this section, while highlighting the main

differences with respect to the innovative MTL model proposed in this thesis.

1.3.2 Optimal Resource Allocation

In the context of network optimization, network resource management, computa-

tional resource allocation, task offloading, and VNF placement represent typical

technical problems of interest for industry and academia working on mobile com-

munication systems [64]–[66]. Very frequently, they are addressed with optimiza-

tion algorithms willing to minimize energy consumption [66]–[70], delay [71]–[73],

or both [74], [75]. Sometimes, a constraint on the maximum allowed delay is taken

into account as well [66]–[69], [72].

Emerging methodologies exploit AI technologies, like ML, deep learning, and

DRL, for network optimization [76]. While most of the contributions in this context

focus on the optimal management of computational resources only [77]–[79], some
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other works consider at the same time the goal of managing and allocating com-

munication and computational resources [80], [81]. Available approaches intend to

maximize the overall resource capacity [79], to minimize energy consumption [78]

and delay [77], [80], [81], as well as to fulfill the expected upper bound for the overall

delay [77], [81].

The contributions presented in [64], [65], [82] highlight that the knowledge (i.e.,

prediction) of users’ mobility and/or the set of requests that they may formulate in

a given geographical area over time introduce further key information for network

optimization tasks.

The prediction of users’ trajectory and location can be achieved with mathemat-

ical models [83]–[85]. The mobility forecasting obtained in [83] is used to offload

computing tasks (requested by mobile users) to a single remote MEC server. To this

end, an optimization problem that jointly minimizes energy consumption and la-

tency, satisfying the expected maximum delay, is formulated in [83]. The knowledge

of trajectories during the next look-ahead window is considered in [84] for plan-

ning the migration of virtual machines at the network edge. This goal is reached by

employing an optimization problem that minimizes communication latencies, en-

suring at the same time expected upper bounds. Finally, the work in [85] leverages

a Markov Decision Process (MDP) to predict user mobility and formulates an itera-

tive approach for jointly allocating communication resources among available users

and placing virtual machines at the network edge. Similarly to [83], the presented

solution minimizes energy consumption and delay.

Differently from the above-discussed methodologies, solutions based on ML

promise to better anticipate network behaviors and dynamics, also in heterogeneous

and large scale scenarios [86], [87]. For example, the prediction of trajectory and lo-

cation is performed through deep learning architectures, as LSTMs [88]–[91], LSTMs

with attention mechanism [92], CNNs [93], and a combination of recurrent and

CNNs with Markov Chains [94]. Furthermore, the number of users in a given geo-

graphical area is predicted through ML-based Regressors in [95] and a combination

of deep learning and Bayesian networks in [96]. Mobility forecasting in [89] sup-

ports an optimization problem willing to distribute computing caching capabilities

among mobile users, maximizing the overall resource capacity and satisfying the ex-

pected maximum delay. The knowledge of locations into the future, forecasting one

[93] or multiple steps ahead [91], [94], is also adopted to drive the migration of vir-

tual machines at the network edge. In more detail, the contribution in [93] describes

an iterative procedure for minimizing the communication latencies and satisfying

the expected maximum delays. Optimization problems willing to minimize delay

[91] and energy consumption [94] are formulated in [91], [94]. Finally, the work dis-

cussed in [90] adopts DRL to manage computation offloading tasks among different

remote MEC servers in order to minimize the delay.

Instead, traffic volume/load can be accurately predicted through deep learning

methods [17], [34], as anticipated and detailed in Section 1.3.1. Traffic forecasting
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TABLE 1.2: Comparison among this work and the other contributions performing
mobility/requests prediction and network optimization.
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[83] ! ! 1 ! ! !

[84] ! ! ! ! ! !

[85] ! ! ! ! !

[89] ! ! ! ! !

[93] ! ! ! ! !

[91], [94] ! ! ! ! !

[90] ! ! >1 !

[48], [49] ! ! ! 1 !

[43] ! ! ! >1 ! !

[50], [97] ! ! ! ! !

Chapter 3

of this thesis
! ! ! ! ! ! >1 ! !

during the next look-ahead horizon through LSTMs assists network optimization

in terms of computation offloading and resource allocation with one MEC server in

[48], [49], minimizing energy consumption. Traffic prediction performed through

MLPs also aids the joint communication and computational resource allocation for

user association and Service Function Chain placement among MEC servers in [43].

In the last paper, an optimization algorithm is adopted for minimizing delay, while

meeting delay guarantees (a worst case service latency). Moreover, the knowledge

of traffic requests obtained by means of Multivariate LSTMs in Cloud-Radio Access

Network (Cloud-RAN) context supports the Remote Radio Head (RRH)-Base Band

Unit (BBU) mapping in [50], where an optimization problem minimizes deployment

cost and energy consumption. The traffic volume of RRHs with the number of users

moving between a pair of two RRHs is predicted in [97] through Multivariate LSTM.

This information is exploited to optimally perform RRH-BBU mapping, minimizing

energy consumption and delay.

To conclude, Table 1.2 summarizes the goals and methodologies followed by the

reviewed scientific contributions performing mobility/requests prediction and net-

work optimization, highlighting the main differences with respect to the approach

proposed in Chapter 3 of this thesis. It emerges that no contributions in the current

state of the art jointly predict, through deep learning, the geographical distribution

of users over time (i.e., the number of users available within each cell in a given mo-

ment) and the related requests for a look-ahead horizon, as proposed in this work

in order to better manage task offloading also in a 5G slicing context. Thus, they do

not take advantage of mobility and requests prediction to dynamically and antici-

patorily optimize communication and computational resource management among
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available MEC servers, satisfying the upper bound of communication latencies.

1.3.3 Network Slicing Management

Even in the presence of perfect traffic estimation, evaluating the optimal Radio Re-

source Management (RRM) setting is a very difficult task owing to the random na-

ture of the radio conditions, requiring the use of optimization tools with unman-

ageable computational complexity. Alternatively, deep learning and RL/DRL offer

low-complexity and effective solutions for RRM in communication and computing

systems [17], [22], [98]–[101].

Since deep learning can extract important features from data and model its high-

level abstractions, avoiding manual description of a data structure [17], [22], deep

learning architectures have been successfully proposed in channel estimation in re-

cent years. For example, LSTM networks perform the prediction of RAN resource

usage by a network slice [102] and the prediction of future Channel Quality Indica-

tor (CQI) values in a data-driven RAN slicing framework with URLLC and eMBB

slices [103]. Furthermore, an encoder-decoder structure based on CNN is presented

in [104] for estimating the traffic of slices deployed at Cloud-RAN, MEC, and core

datacenters.

The time-varying wireless channel and its unpredictable variability, network dy-

namics and heterogeneity, slice isolation, as well as different QoS of various services

largely impact the optimal decision-making process for the management of network

slicing in the RAN. Differently from traditional solutions that require to rerun the

algorithms every time the environment changes, RL and DRL methods are fit for

these challenges [22]. A slice admission strategy based on RL is presented in [105]

for a flexible RAN. Q-learning is adopted to handle RAN slicing [106], supporting

an eMBB and a Vehicle-to-Everything slice on the same RAN infrastructure. In [107],

LSTM is incorporated into the actor-critic DRL algorithm for an intelligent resource

management of RAN slicing. Deep Q-Network [108], [109] and its modified versions

[110], [111] are exploited for slice management in RAN. Specifically, the contribution

in [110] entails a Generative Adversarial Network-powered Deep distributional Q-

Network for demand-aware resource allocation, while resource block allocation to

multiple slices is optimized in [111] by exploiting a method called Ape-X, that uses

distributed learning in the Deep Q-Network (DQN) with multiple actors. Coopera-

tive multi-agent deep Q-learning jointly solves the RAN slicing and computing task

offloading problem in [112]. Moreover, by jointly optimizing radio and computation

resources in the context of RAN network slicing, the utility maximization problem

formulated as a MDP is solved in [113] through the Deep Deterministic Policy Gradi-

ent (DDPG) algorithm, that combines DQN and the actor-critic approach. Similarly,

the contributions in [114] and [115] extend the DDPG algorithm to obtain an optimal

RAN slicing policy, by minimizing the long-term system cost in the context of vehic-

ular networks and both the long-term QoS of services and spectrum efficiency of

slices, respectively. Q-learning [116], Deep Q-learning [116], [117], and a distributed
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TABLE 1.3: Comparison among this work and the other contributions adopting AI-based
techniques for the management of network slicing.

Contributions
AI-based techniques Network Slicing

Deep
Learning

RL/
DRL

Core
Network

Radio
Access

Network

Tenant-
driven

Network
status

compression

[102], [103] ! !

[104] ! ! !

[105]–[115] ! !

[116]–[118] ! ! !

[119] ! ! ! ! !

Chapter 4
of this thesis

! ! ! ! !

DRL strategy based on the Advantage Actor Critic (A2C) algorithm [118] also assist

network slicing involving both RAN and core network.

Deep learning can also support DRL-based resource allocation methods, espe-

cially in pervasive intelligent endogenous future mobile systems [100]. For exam-

ple, the compression of high-dimensional CQI information, obtained through an

autoencoder, is exploited in a DQN-based framework in [99]. This valuable con-

tribution aims at optimizing computation offloading in the large-scale MEC system,

but it does not focus on the network slicing problem. Autoencoders are also adopted

in the core network slicing context. In particular, the framework proposed in [119]

firstly entails an autoencoder-based classifier, which is used by the Infrastructure

Provider to distribute Tenants’ virtual network slicing requests with similar char-

acteristics to its different agents. Then, an autoencoder-based compression module

extracts the key features of the virtual network requests. The compressed represen-

tation of features is fed into a DDPG-based model for resource pricing, advertising,

and motivating Tenants to request resources in a load-balanced manner. Therefore,

virtual network slicing is accomplished in a distributed and Tenant-driven man-

ner: after compressing the features of requests, Tenants compute their own virtual

network embedding schemes independently and distributedly, according to the re-

source information (i.e., the available resources and their prices) advertised by the

DRL agent.

Table 1.2 summarizes the goals and methodologies followed by the reviewed

contributions adopting AI-based techniques for the management of network slicing.

To the best of the authors’ knowledge, it emerges that no contributions in the cur-

rent scientific literature jointly exploit deep learning and DRL for a Tenant-driven

RAN slicing enforcement scheme, as proposed in Chapter 4 of this thesis in order to

dynamically adapt bandwidth requests according to users’ requirements of Tenants,

without fully knowing the network status. CQI information (i.e., network status)

is compressed by the Infrastructure Provider through a deep learning architecture

(i.e., convolutional autoencoder). Then, the compressed network status is used as

the input of DRL frameworks based on the DDPG algorithm, that are implemented

by Tenants.
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Chapter 2

Traffic Analysis at the Mobile Edge

This Chapter concerns the mobile traffic analysis (i.e., characterization, classification,

and prediction) at the radio link level. Since the widespread and growing usage of

smartphones and machine-type communications are deeply changing the type of

traffic that traverses the mobile networks, mobile traffic analysis at the edge can be

very useful for proper and optimal management of network resources.

To this end, in this Chapter the mobile traffic analysis is firstly treated as an un-

supervised learning problem, which aims at identifying and characterizing spatio-

temporal radio resource utilization patterns of mobile sessions. Note that any active

session can be described, at the radio link level, through a traffic profile reporting

the amount of data exchanged between the base station and a mobile terminal as

time evolves, referred to as radio resource utilization pattern. The Online Watcher for

LTE (OWL) tool [120], [121] is used for monitoring the unencrypted PDCCH of an

operating LTE network deployed in Spain. The advantage of this tool is the rich-

ness of the gathered information (i.e., link level data) and the temporal granularity

of the data (i.e., 1 ms). Obtained datasets, referring to residential and campus ar-

eas, are processed to group monitored sessions according to the achieved data rate,

the adopted transmission settings, the radio resource usage, and the duration. The

outcomes of the conducted study highlight the properties of groups of sessions with

similar characteristics, expressed in terms of bandwidth demands and application

level requirements.

Then, the potential of deep learning for mobile traffic classification and predic-

tion, which are key tasks for network optimization, is investigated. In fact, the envis-

aged architecture of the 5G and B5G mobile broadband systems will integrate new

technology components (e.g., massive MIMO, mm-Wave communication, network

slicing, vehicular networks, more and broader frequency bands), a higher variety of

devices (e.g., smartphone, sensors, and different types of machines), a larger number

of services (e.g., augmented/virtual reality and autonomous driving) with tighter la-

tency requirements, so that resource allocation is expected to reach unprecedented

complexity [33], [122], [123]. In this context, network optimization frameworks may

be supported by deep learning algorithms, which, when properly tailored, may an-

ticipate information on: i) the type of traffic to be served, e.g., its main characteristics

in terms of bandwidth and latency requirements (i.e., traffic classification) and ii) the
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resource allocation pattern requested by each service throughout its duration (i.e.,

traffic prediction). Differently from most of the literature in this field, which treats

traffic classification and prediction separately (please see Section 1.3.1 for further

details), an MTL approach [124] is proposed herein. It reduces the number of train-

ing samples to be learnt by the two tasks and leads to performance improvement

compared with learning them individually [54]. At the same time, it is important

to remark that offloading the huge amount of data generated from edge to cloud

is intractable in 5G scenarios since it causes network congestion. Therefore, it is

highly preferable that deep learning algorithms run at the edge of the network and

give online support to optimization frameworks to promptly make decisions and

trigger the proper management actions (e.g., radio resource scheduling, cell selec-

tion, and sleep mode enabling, to name a few) [80], [87], [125], [126]. Almost all

the approaches presented in the current state of the art implement data mining on

the huge amount of information collected at the network or application layers of the

data plane. Instead, the proposed MTL model considers data belonging to the con-

trol plane, as recently investigated, and it is trained with information extracted from

the PDCCH of an operative mobile network. The rationale behind the choice of us-

ing the control channel in the conceived MTL approach is twofold. First, the volume

of control messages from the control plane is much smaller than the user traffic from

the data plane (which may also be encrypted, i.e., it does not necessarily require to

be decrypted), leading to fast and efficient classification and prediction, which are

still evaluated on the derived data plane information. Second, the algorithm runs at

the radio interface, which allows fast execution of the two tasks directly at the edge.

Note that the lack of need to decrypt traffic for classification may be good as the

network operator does not have to go deep into the user traffic to classify and make

decisions. However, it could be a disadvantage as even a malicious user may infer

what type of messages and applications are exploited without decrypting the mo-

bile traffic. The comparison with conventional single-task learning approaches for

traffic classification and prediction, that do not use autoencoders and tackle classifi-

cation and prediction tasks separately, clearly demonstrates the effectiveness of the

proposed MTL approach under different system configurations, investigating the

impact of the observation window of traffic profiles on the classification accuracy,

prediction loss, complexity, and convergence.

2.1 Unveiling Radio Resource Utilization Dynamics through

Unsupervised Learning

In this section, a multivariate analysis on mobile traffic sessions (i.e., monitored mo-

bile traffic associated with a certain service during its execution) collected at the

radio link level is carried out to unveil and characterize radio resource utilization

dynamics of mobile traffic. To this end, an unsupervised learning methodology (i.e.,
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K-means) is used to identify similar radio resource utilization patterns of mobile traf-

fic gathered from the PDCCH of an operating mobile network.

2.1.1 The proposed Clustering approach

With reference to the radio interface, LTE embraces two main communicating enti-

ties: the base station and the mobile terminal. At the physical layer, radio resources

are distributed among mobile terminals in a time-frequency domain and the RB rep-

resents the smallest assignable radio resource unit. It lasts 1 ms in the time domain,

namely Transmission Time Interval (TTI), and 180 kHz in the frequency domain.

Every TTI, the base station allocates RBs to mobile terminals according to a specific

scheduling algorithm. Transmission settings, expressed in terms of Modulation and

Coding Scheme (MCS), are dynamically defined through a link adaptation mecha-

nism. Moreover, the resulting amount of data to send during one TTI is fixed and

depends on the selected MCS and the number of RBs assigned to a given mobile

terminal, as reported by the Transport Block Size (TBS) table [127]. The scheduling

decisions are shared with mobile terminals through control messages exchanged, at

the beginning of the TTI, by using the PDCCH. Immediately after, data packets are

exchanged through the Physical Downlink Shared CHannel (PDSCH).

The possibility of accessing to mobile traffic data represents a challenging task to

accomplish. For security reasons, in fact, mobile operators avoid sharing their logs

and data packets sent across the radio interface are encrypted. Nevertheless, control

messages exchanged through the PDCCH are transmitted as clear text. This repre-

sents a valid opportunity to extract key information related to mobile traffic data, as

well as generating reference datasets to be used for traffic analysis. In this context,

data collection from the PDCCH has been already presented in [120], [121]. In those

papers, an online decoder based on Software Defined Radio (SDR), namely OWL, is

used to decode PDCCH messages sent by the base station within a given coverage

area, thus collecting scheduling decisions every TTI. OWL generally produces a raw

file. Then, a script can be used to generate a usable dataset that summarizes the main

data of interest, associated with each captured traffic session.

The methodology proposed in this contribution evaluates mobile traffic sessions

by investigating radio resource utilization dynamics in the downlink. Specifically,

a multivariate analysis has been conceived to characterize mobile traffic sessions at

the radio link level, according to their properties (the average data rate, the average

MCS index, the average number of allocated RBs, and the duration of sessions). To

this end, K-means [128], [129], which is a well-known unsupervised ML scheme, is

used to map sessions with similar properties into K clusters. The number of clus-

ters, i.e., K, is selected with the silhouette analysis, as detailed below. The variables

of interest are firstly normalized within the range ]0,1]. Then, each session is rep-

resented as a point in a hyperplane, whose dimensions refer to the variables of in-

terest of the conducted analysis. At this point, the dissimilarity associated with two

sessions is defined as the Euclidean distance between the two related points in the
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aforementioned hyperplane. Indeed, the optimal value of K is calculated in order to

ensure that the intra-cluster distances are minimized and the inter-cluster distances

are maximized [129] (note that, according to K-means terminology, this means that

the silhouette [130], [131] is maximized). Finally, the clustering process provides in

output the sessions of each cluster and a special point of the hyperplane, namely

centroid, that identifies the cluster itself. Their coordinates are obtained by averag-

ing the value of variables associated with the sessions belonging to the considered

cluster. By studying the obtained groups of sessions, it is then possible to extract

statistical details associated with each cluster and characterize the traffic.

2.1.2 Mobile Traffic Analysis and Discussion

Two LTE base stations in a residential and campus area of Barcelona (Spain), operat-

ing in a bandwidth of 20 MHz, are monitored to collect mobile data. The residential

area has been monitored from 6 February 2018 to 5 March 2018 and the resulting

dataset contains 521 sessions. Instead, the campus area has been monitored from 22

March 2017 to 26 April 2017 and the resulting dataset contains 4946 sessions. The

analysis proposed next discusses the properties of the gathered mobile data for each

base station considering (i) the dataset as a whole and (ii) the dataset divided into 4

time-slots (i.e., parts of the day) that are morning, afternoon, evening, and night.

Study of the datasets as a whole

The two monitored base stations show different behavior in terms of radio resource

usage patterns, as detailed below. The first difference refers to the output of the

silhouette analysis, which is used to study the separation distance between the re-

sulting clusters. For each session, the silhouette value, ranging from –1 to 1, is a

measure of how similar that session is to sessions in its own cluster, when compared

to the ones in other clusters: a high silhouette value indicates that the session is

well matched to its own cluster, and poorly matched to other clusters. Since the sil-

houette analysis groups the residential and campus traffic in four and two clusters,

respectively, a deeper study of sessions should be appropriate for characterization

purposes (as carried out later). Figures 2.1 and 2.3 show the outcome of the K-means

clustering process, carried out for the residential area and the campus area, respec-

tively. For each variable of interest, the figures highlight the identified clusters, their

centroids (i.e., the red dots), the 25th and the 75th percentile (i.e., the bottom line

and the top line of the blue rectangle), as well as the minimum and the maximum

measured value (i.e., the edges of the vertical red line) of the variables of interest.

The number of sessions belonging to every single cluster and the related percentage,

instead, are reported in Table 2.1.

Comments for the residential area. It is important to note that there is a strict

relation between the number of sessions belonging to the cluster and the average

data rate experienced by its traffic sessions. About 45% of the sessions report an
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TABLE 2.1: Distribution of sessions among clusters.

Dataset Cluster id Number of sessions

per cluster [#]

Percentage of sessions

per cluster [%]

Residential
area

1 235 45.11
2 187 35.89
3 82 15.74
4 17 3.26

Campus
area

1 4942 99.92
2 4 0.08

average data rate equal to 0.46 Mbps. Instead, only 3.26% of them register an average

data rate of 5.74 Mbps. Intermediate average data rates refer to intermediate groups

of sessions (i.e., 35.89% and 15.74% of sessions present an average data rate of 1.33

Mbps and 2.60 Mbps, respectively).

Similar behavior is observed for MCS indexes and the allocated RBs. Figure

2.1(b) shows that the selected average MCS index is lower than 4 for about 45%

of sessions. Only 3.26% of sessions use an average MCS index close to 10. Moreover,

35.89% and 15.74% of sessions use an average MCS index approximately equal to 6

and 8, respectively. Only intermediate clusters register peaks of MCS up to nearly

26. Considering that LTE allows a maximum MCS index of 31, these findings high-

light that the channel quality experienced by mobile terminals during the monitored

sessions is relatively scarce.

Very interesting details related to the distribution of radio resources among mo-

bile terminals are depicted in Figure 2.1(c). About 45% of sessions, with an average

data rate of 0.46 Mbps, consume the lowest amount of physical resources. Consider-

ing that 100 RBs per TTI are available in a slice of 20 MHz of bandwidth, an average

number of RBs per TTI approximately equal to 23 means that sessions belonging to

the first cluster occupy less than 1/4 of the overall amount of resources available

within a cell. On the other hand, only 17 sessions consistently use a larger amount

of resources per TTI, thus obtaining higher data rates.

A quite different behavior emerges from the analysis of the average session dura-

tion. Sessions that register the average data rate equal to 5.74 Mbps remain active for

about 40 s, which is the lowest amount of time among the four clusters. For other

clusters, instead, the duration increases with the number of sessions belonging to

the cluster. It is also important to note that the session duration always presents an

extremely high variability: the actual duration of 75% of sessions in each cluster is

lower than the one associated with the related centroid.

To conclude, Figure 2.2 provides a summary of the obtained results. The pro-

posed clustering methodology brings to important remarks concerning the usage

of radio resources and the QoS requirements of analyzed traffic sessions. On aver-

age, 45% of sessions use about 1/4 of bandwidth per TTI for about 156 s; 35.89%

of sessions use about 1/3 of bandwidth per TTI for about 190 s; 15.74% of sessions

use almost 1/2 of bandwidth per TTI for about 634 s; 3.26% of sessions use 60%

of bandwidth per TTI for about 40 s. Therefore, 235 out of 521 sessions consume
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FIGURE 2.1: Study of dataset related to the residential area, as a whole: (a) rate, (b) MCS, (c)
RBs, and (d) duration.

a small amount of resources for less than 3 minutes each. At the same time, there

exists a little percentage of sessions (i.e., 3.26%), that register peaks of bandwidth

consumptions, while lasting for a very short period.

Comments for the campus area. The campus area presents a number of sessions
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FIGURE 2.2: Clusters related to the residential area, as a whole.

extremely higher than the residential case, but the reported bandwidth requirements

are extremely lower. As expected, there is a strict relation between the number of

sessions per cluster and the average data rate. Nevertheless, almost all the sessions

monitored in the campus area (i.e., 99.92%) fall within the same cluster and register

a very low average data rate equal to 0.14 Mbps. Only 0.08% of sessions register an

average data rate of 5.47 Mbps.

The study of MCS indexes provides a reverse relation, as shown in Figure 2.3(b).

The former group of sessions experiences variable channel conditions, translating

into the usage of all the admitted transmission settings. While the average MCS

index is 13, the maximum value is equal to 31. The second group of sessions (4

out of 4946) registers worse channel conditions. In this case, the average and the

maximum MCS indexes are about 7 and 10, respectively.

Figure 2.3(c) confirms what observed for the residential area: the higher the av-

erage number of RBs used per TTI, the higher the achieved data rate. Reported

results still show that 4942 sessions use about 1/4 of the bandwidth per TTI. On the

contrary, only 4 sessions use a larger amount of resources per TTI (i.e., more than

52).

As depicted in Figure 2.3(d), the campus area hosts sessions with very short du-

rations. Apart from one exception (e.g., the graph reports one session duration equal

to 1465 s), the former group of sessions registers an average session duration of 5 s.

The duration of sessions belonging to the second cluster, instead, is lower than 2 s.

To conclude, Figure 2.4 provides a summary of obtained results. More than 99%

of sessions use, on average, about 1/4 of bandwidth per TTI for about 5 s, and 0.08%

of sessions use about 1/2 of bandwidth per TTI for about a second and a half. Thus,
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FIGURE 2.3: Study of dataset related to the campus area, as a whole: (a) rate, (b) MCS, (c)
RBs, and (d) duration.

the campus area emerges as a place where a mobile network is called to manage

many short sessions with limited bandwidth requirements.



2.1. Unveiling Radio Resource Utilization Dynamics through Unsupervised

Learning
29

FIGURE 2.4: Clusters related to the campus area, as a whole.

Scatter-plots analysis

The scatter-plot is a well-known cluster visualization technique [131], which allows

to improve the study presented in Section 2.1.2, by highlighting the importance that

every single variable of interest has in the multivariate analysis. The scatter-plot for

both datasets is shown in Figure 2.5. Here, markers represent sessions and colors

help distinguish clusters.

In general, the duration of sessions frequently emerges as a key parameter for

classifying traffic according to the related application [31]. Nevertheless, for the

evaluation of the radio resource utilization dynamics, it plays a minor role. In highly

loaded scenarios, as the analyzed residential area, average MCS indexes, average

data rate and average number of RBs allocated per TTI present a heavy weight in the

clustering procedure: the scatter-plot reported in Figure 2.5(a) demonstrates that the

joint study of these parameters allows the division of sessions among their reference

clusters. Thus, as expected, it validates the suitability of the conceived multivariate

feature design for clustering mobile traffic sessions. With reference to the campus

area, reporting a lower traffic load, the data rate emerges as the main discriminatory

parameter for traffic clusterization, as can be seen from the second column of Figure

2.5(b). In fact, the separation of clusters could be achieved by only considering the

data rate with any other measured variable (that is the average MCS, the average

RBs or the duration). However, a multivariate analysis, which considers more than

two variables, is still useful to further characterize the properties of clusters from a

different perspective.

Time-slot analysis

The analysis of mobile traffic on time-slots (i.e., parts of the day) basis leads to a de-

tailed characterization of sessions, with a consequent more accurate identification of

the resource usage and QoS requirements that a mobile network has to address dur-

ing different parts of the day. The outcomes of the proposed clustering methodology

on time-slots basis, applied to both residential and campus areas, are summarized

in Tables 2.2 and 2.3, respectively.
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FIGURE 2.5: Scatter-plot matrix.

Comments for the residential area. The relation between the number of ses-

sions belonging to the cluster and the average variable registered by related traffic
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TABLE 2.2: Study of the dataset related to the residential area, on time-slots (i.e., parts of the
day) basis.

cluster

id

# of

sessions

rate [Mbps] MCS [#] RBs [#] duration [s]
min max avg min max avg min max avg min max avg

morning (from 6:00 am to 12:59 pm, 58 sessions)
1 17 0.08 0.37 0.22 1.59 3.56 2.68 11.85 24.29 17.90 12 69 19.88
2 23 0.46 0.97 0.65 2.96 7.07 4.59 19.11 37.75 26.14 12 2696 324.39
3 18 0.99 2.17 1.31 4.28 6.83 5.75 26.75 47.93 34.64 12 3304 367.11

afternoon (from 1:00 pm to 7:59 pm, 297 sessions)
1 120 0.06 0.86 0.48 1.15 6.95 4.11 12.08 48.55 23.72 12 478 51.67
2 116 0.87 1.80 1.26 3.51 25.69 5.80 19.09 63.05 33.79 12 3716 158.72
3 53 1.84 3.39 2.39 4.27 21.28 6.99 27.78 61.86 40.99 12 9845 598.09
4 8 3.56 6.12 4.47 7.39 11.96 9.49 45.81 72.62 61.34 12 20 15.38

evening (from 8:00 pm to 12:59 am, 134 sessions)
1 78 0.09 1.58 0.79 1.98 7.45 4.67 12.98 57.24 27.12 12 135 26.14
2 46 1.64 4.31 2.48 5.14 24.44 8.07 26.86 66.82 44.36 12 8600 571.87
3 10 4.80 8.07 6.26 7.19 11.74 9 42.10 70.52 57.83 12 41 17.60

night (from 1:00 am to 5:59 am, 31 sessions)
1 27 0.02 0.71 0.30 0.75 6.72 3.38 10.45 44.89 23.19 12 14630 793.81
2 2 1.15 1.60 1.38 3.97 6.87 5.42 34.77 48.56 41.67 20 3416 1718
3 1 2.85 2.85 2.85 7.83 7.83 7.83 46.86 46.86 46.86 126 126 126
4 1 5.91 5.91 5.91 12.73 12.73 12.73 66.62 66.62 66.62 399 399 399

TABLE 2.3: Study of the dataset related to the campus area, on time-slots (i.e., parts of the
day) basis.

cluster

id

# of

sessions

rate [Mbps] MCS [#] RBs [#] duration [s]
min max avg min max avg min max avg min max avg

morning (from 6:00 am to 12:59 pm, 1225 sessions)
1 681 <0.01 0.16 0.06 0.79 29 12.54 5 47.33 24.18 <1 292 8.45
2 538 0.16 0.79 0.25 1.55 20.93 14.44 10.83 38.25 24.99 <1 11 <1
3 6 0.88 2.43 1.42 3.70 14.19 8.60 20.73 33.34 27.73 <1 908 151.33

afternoon (from 1:00 pm to 7:59 pm, 1134 sessions)
1 425 <0.01 0.07 0.02 1 29 11.35 5 49 24.18 <1 1114 12.04
2 298 0.07 0.17 0.12 6.27 27 13.80 11.65 54.50 22.66 <1 <1 <1
3 278 0.17 0.27 0.21 2.65 21.12 14.32 11.66 40.08 24.60 <1 3 <1
4 99 0.27 0.44 0.32 2.34 20 14.38 13.62 36.95 25.43 <1 1465 23.10
5 32 0.45 1.10 0.57 3.44 17.65 13.72 18.73 31.36 24.86 <1 <1 <1
6 1 2.23 2.23 2.23 8.09 8.09 8.09 47.64 47.64 47.64 16 16 16
7 1 3.73 3.73 3.73 6.09 6.09 6.09 42.78 42.78 42.78 1 1 1

evening (from 8:00 pm to 12:59 am, 848 sessions)
1 846 <0.01 0.82 0.13 0.58 31 13.09 4.50 52 23.41 <1 234 3.04
2 2 5.16 6.45 5.80 5 9.99 7.49 55.16 57.86 56.51 2 2 2

night (from 1:00 am to 5:59 am, 1738 sessions)
1 627 <0.01 0.09 0.03 0.12 26.67 11.22 4.75 52 22.37 <1 695 12.39
2 690 0.09 0.22 0.16 0.72 23.11 14.08 8.77 45.25 23.62 <1 1 <1
3 363 0.22 0.42 0.28 1.90 21.29 14.66 11.77 36.63 25.31 <1 11 <1
4 57 0.42 0.98 0.56 2.92 16.82 14.07 16.14 31 25.01 <1 1080 19.14
5 1 6.56 6.57 6.56 8.36 8.36 8.36 53.74 53.74 53.74 1 1 1

sessions still exists. About 30% of the morning sessions report an average data rate

of 0.22 Mbps, while about 40% have an average data rate of 0.65 Mbps. During the

afternoon, which is the part of the day with the highest number of active residential

sessions, the data rate starts growing. In fact, about 40% of the afternoon sessions

have an average data rate equal to 0.48 Mbps and the other 40% of sessions have

an average data rate of 1.26 Mbps. The data rate still grows during the evening.

The average data rate is 0.79 Mbps and 2.48 Mbps for about 60% and 35% of the

evening sessions, respectively. Considering night sessions, whose number is limited

because people tend to sleep, the average data rate goes down: about 87% of the
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night sessions report an average value of 0.30 Mbps.

The average MCS index is lower than 5 for about 70% of the morning sessions.

In particular, around 40% use an average MCS index close to 5 and around 30%

even use an average MCS index approximately equal to 3. During the afternoon,

average MCS indexes increase. In fact, about 40% of the afternoon sessions have an

average MCS index close to 4 and a further 40% have an average value close to 6.

The MCS indexes still grow during the evening, as the data rate does. The average

MCS index is approximately 5 and 8 for about 60% and 35% of the evening sessions,

respectively. As for the night sessions, MCS indexes tend to reduce. In fact, about

87% of the night sessions have an average value close to 3.

The distribution of radio resources follows a similar pattern. About 30% of the

morning sessions report an average number of RBs per TTI equal to 1/6 of the over-

all amount of resources available within a cell, while about 40% have an average

value equal to 1/4. During the afternoon, about 40% of sessions use an average

number of RBs per TTI close to 1/4 of bandwidth per TTI and a further 40% stabi-

lize to 1/3 for this aspect. During the evening, the average amount of resources per

TTI is more than 1/4 and about 1/2 of the overall bandwidth for about 60% and 35%

of sessions, respectively. Then, bandwidth consumptions decrease during the night:

about 87% of the night sessions consume less than 1/4 of bandwidth per TTI.

The average duration, which varies greatly, has different behavior. Sessions gen-

erally show a short duration (i.e., 600 s), except during the night. In fact, about

87% of the night sessions last about 800 s. Moreover, around 6.5% have an average

duration of 1718 s.

Comments for the campus area. The campus area reports a more balanced dis-

tribution of sessions among the whole-day slots. As expected, traffic characteriza-

tion on time-slots basis offers a better characterization of sessions. For example, up

to 7 clusters are identified for the afternoon time-slot, against the only two clusters

reported for the analysis of the dataset as a whole.

Regarding the data rate in the campus area, more than 55% of the morning ses-

sions report an average data rate of 0.06 Mbps, while about 40% have an average

data rate of 0.25 Mbps. During the afternoon, the data rate tends to decrease. In

fact, about 40% of the afternoon sessions report an average data rate equal to 0.02

Mbps and about 26% register an average data rate equal to 0.12 Mbps. The data rate

is still low during the evening. In fact, the average value of 0.13 Mbps is measured

for more than 99% of such sessions. During the night, that is the time-slot with the

highest number of sessions, the average data rate tends to increase. From Table 2.3,

it is 0.03 and 0.16 Mbps for about 36% and 40% of the night sessions, respectively.

The average MCS index is similar among the time-slots. In particular, about 55%

of the morning sessions have an average value close to 13. About 40% of the after-

noon sessions register an average MCS index close to 11, while about 26% and 25%

use an average MCS index approximately equal to 14 and more than 14, respectively.
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During the evening, the average MCS index is approximately 13 for 99.76% of ses-

sions. Lastly, it is close to 11 and 14 for about 36% and 40% of the night sessions,

respectively.

Also the allocated RBs per TTI have similar behavior. In particular, they slightly

increase and decrease during the morning and the afternoon and during the evening

and the night, respectively. About 56% of the morning sessions and 38% of the af-

ternoon sessions report an average number of RBs per TTI close to 1/4 of the overall

amount of resources available within a cell. Instead, the average amount of resources

per TTI is more than 1/4 of the overall bandwidth for 99.76% of the evening sessions

and about 76% of the night ones.

The average duration is extremely low during all the considered time-slots. In

particular, about 56% of the morning sessions last about 9 s. Furthermore, about

38% of the afternoon sessions last longer than 10 s (i.e., about 12 s), while more than

50% (the clusters 2 and 3 in the afternoon) last less than 1 s. The average duration is

approximately equal to 3 s for about 99% of the evening sessions. As the last report,

about 36% of the night sessions last longer than 10 s (i.e., about 12 s), while around

60% last less than 1 s.

2.1.3 Lessons learned and network optimization opportunities

The proposed study shows that the analysis of mobile traffic across the different

parts of the day (i.e., on time-slots basis) gives a deep insight into radio resource

utilization dynamics. Interesting outcomes are summarized in what follows. As

far as the residential area is concerned, a high number of sessions are measured

in the afternoon and peaks of bandwidth requirements are measured both in the

afternoon and in the evening. By observing data related to the night time-slot, it

is possible to understand that a residential area significantly reduces its traffic load

when people usually go to sleep. Nonetheless, differently from daily time-slots, the

few sessions that remain active during the night present very high durations. As far

as the campus area is concerned, sessions use a higher MCS index than residential

sessions, but a very low rate: analyzed campus sessions do not transmit a lot of

data, even if the quality of channel could be good, because the traffic load is not

significant.

By knowing the radio resource utilization patterns of mobile traffic, possible

challenges that can be addressed for optimizing mobile networks include:

• Advanced QoE/QoS management through dynamic radio resource schedul-

ing algorithms exploiting the patterns and dynamics of mobile sessions at the

radio link level;

• Dynamic and fine-grained management of slices and virtual functionalities of-

fered through the radio access networks in 5G and B5G architectures;
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• Optimal energy saving mechanisms (e.g., sleep mode of base stations and dis-

continuous reception in mobile terminals) and opportunistic handover man-

agement procedures that leverage the predicted behavior of classified traffic

sessions;

• Planning for new base stations deployments in geographical regions where

higher traffic load is expected;

• Massive usage of mobile base stations (i.e., deployed as drones), chasing the

actual radio resource utilization dynamics.

2.2 Multi-Task Learning at the Mobile Edge

After tailoring an unsupervised learning methodology to characterize radio resource

utilization patterns, an MTL model, running directly at the edge of the network, is

conceived to perform data mining from the PDCCH control channel of an operative

mobile network and jointly classify and predict mobile traffic. To this end, autoen-

coders, i.e., Undercomplete and Sequence to Sequence (Seq2Seq) architectures, are

used as key building blocks of the proposed MTL methodology for common feature

representations, shared by both classification and prediction tasks.

2.2.1 The proposed Multi-Task Learning approach

The developed methodology originates from the consideration that by observing

such a traffic profile reporting the amount of data exchanged between the base sta-

tion and the mobile terminal during a time interval T (i.e., radio resource utilization

pattern), it could be possible to classify the application type the investigated session

belongs to (task 1) and predict the radio resource utilization pattern that the ses-

sion will experience in the upcoming time instants (task 2). This goal is successfully

achieved through an MTL architecture running directly at the edge of a mobile net-

work (Figure 2.6). Without loss of generality, the contribution directly focuses on the

downlink communication, but it should be remarked that the contribution can be

applied to the uplink as well. Moreover, note that Figure 2.6 depicts one base sta-

tion, but it is precisely in view of the Pervasive Intelligence paradigm that the MTL

approach can be pervasively applied to all the base stations in the network.

To facilitate the understanding of the notations adopted in what follows, a sum-

mary of symbols is reported in Table 2.4.

Following these initial considerations, the proposed MTL approach grounds its

roots into the feature learning representation concept [54], according to which the fea-

tures for a common representation of the input (i.e., traffic profiles) are extracted and

jointly used to execute the two tasks (i.e., classification and prediction). In particu-

lar, the conceived methodology uses an autoencoder to obtain the common feature

representations of input data for the two tasks because it can directly accomplish
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FIGURE 2.6: Input and output of the proposed MTL approach in a mobile network.

this operation without requiring the knowledge of data distribution nor the explicit

identification of a certain structure [37]. Classification and prediction tasks are later

executed through softmax and fully-connected layers, respectively. Accordingly, the

autoencoder is a key building and enabling block of the proposed MTL methodol-

ogy, that effectively allows the joint execution of classification and prediction tasks.

As depicted in Figure 2.6, the outcomes of the proposed scheme can be exploited

to implement advanced methodologies for the management and the optimization of

mobile networks. This approach is conceived to process data directly at the edge, so

that the right actions may be triggered faster and locally. Possible strategies that may

benefit from the implementation of the proposed architecture range from radio re-

source scheduling and admission control, mobility management and energy saving

mechanisms, to network slicing and dynamic placement of virtualized functions, as

well as to the optimization of computing resources at both edge and core network

(see Figure 2.6). Nevertheless, note that the rest of this Chapter focuses on the MTL

approach and the reference dataset taken into account for training purposes.

The training dataset

Being the proposed approach intended to work at the mobile edge, data exchanged

through the radio interface are needed for training the model. An operator owing

the mobile infrastructure can simply retrieve this information and use it for both the

training and operating phases. However, the adopted dataset [62] consists of traffic

traces containing the Downlink Control Information (DCI) messages carried within

the PDCCH with a time granularity of 1 ms. This information is used by the eNodeB

to communicate scheduling information to the connected mobile terminals. DCI

messages are unencrypted and decoded by the hardware/software tool called OWL

[120], already presented in Section 2.1.1. A key characteristic of the training dataset is
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TABLE 2.4: List of mathematical symbols adopted in Chapter 2.

Symbol Description

i Traffic session index

j Time instant index

D Original input matrix with traffic profiles

di Row vector in D that represents traffic session

rD Number of rows (traffic sessions) in D

∆ Number of columns (time instants) in D

c Column vector of labels associated with D

ci Label (i.e., component of c) associated with di

T Observation window

M Pre-processed input matrix with traffic profiles

mi Row vector in M that represents traffic session lasting T

mi,j Component of mi during the j-th time instant

rM,tr Number of rows of M selected as training set

H Codeword matrix with feature learning representations of M

hi Feature learning representation (i.e., component of H) of mi

M̂ Reconstructed input matrix

m̂i Reconstructed traffic session in M̂

m̂i,j Reconstructed component of m̂i during the j-th time instant

l Column vector of labels associated with M

li Label (i.e., component of l) associated with mi

l̂ Column vector of learned labels associated with M

l̂i Learned label (i.e., component of l̂) associated with mi

mT+1 Column vector with data exchanged at T + 1

mi,T+1 Component subsequent to mi with data exchanged at T + 1

m̂T+1 Predicted column vector with data exchanged at T + 1

m̂i,T+1 Predicted component at T + 1 related to mi

LA Mean Square Error (loss) of the Autoencoder

LC Mean Square Error (loss) of the Classifier

AC Classifier accuracy

LP Mean Square Error (loss) of the Predictor

PMT L Multi-objective performance metric for the MTL model

that it is gathered from the control channel, which simplifies the monitoring system

complexity, assures fast data processing, and reduces the storage capacity due to the

limited volume of data.

The captured traces are generated by different applications running in a mobile

terminal under control and attached to an operative mobile network in Spain. Six

different applications grouped in three categories have been tested: YouTube and

Vimeo for video-streaming, Spotify and Google Music for audio-streaming, and Skype

and WhatsApp Messanger for video-call. Those applications have been selected be-

cause they generally produce, according to recent Ericsson [132] and Cisco [133]

reports, more than 80% of the mobile data traffic and require optimal resource man-

agement due to their strict quality requirements. The proposed approach, however,

can be applied to other mobile network scenarios with a different set of applications
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FIGURE 2.7: Number of sessions vs application types in the considered dataset.

and services, only requiring a new training procedure. Also, after an effective train-

ing, the adopted methodology can be extended to any number of classes because it

is general and not restricted to a specific use-case (see Section 2.2.2 for more details).

Among the several parameters extracted from the DCI messages, the TBS, which

specifies the length of the packet burst to be sent to/from the considered mobile

terminal in the current time slot [127], has been used. Then, TBS values are processed

to generate the radio resource utilization patterns describing the amount of data

exchanged between the base station and mobile terminal, with a time granularity of

1 s.

Formally, let rD be the number of traffic sessions collected in a period of time

equal to ∆. In this work, rD = 11574 and ∆ = 60s. The distribution of the sessions

among the considered application categories is reported in Figure 2.7. The original

training dataset contains a matrix D and a vector c of labels. In particular, the orig-

inal input matrix D describes the captured traffic profiles (also referred to as the

radio resource utilization patterns) of rD different sessions for an amount of time

equal to ∆. Thus, the matrix D has a dimension of rD × ∆, where rD and ∆ are the

number of rows (traffic sessions) and the number of columns (time instants) in D.

The vector c of labels contains the application type of the controlled sessions, with

a dimension of rD × 1. For example, given the i-th investigated session, it holds

that di,j ∈ D and ci ∈ c are the amount of data delivered across the radio interface

during the j-th time slot and the label describing the application type of the i-th ses-

sion, respectively. All the values stored in D are normalized within the range [0,1]

to accelerate the training convergence [134].

The training dataset has been conveniently pre-processed to be managed by the

proposed deep learning models. For the sake of clarity, the pre-processing procedure

has been depicted in Figure 2.8. A new matrix M is generated from D, whose

rows represent the observation windows of duration T. The resulting matrix M has

a dimension of rD(∆ − T + 1) × T. The vector c is used to generate a new set of

labels, namely l, describing the application type associated with each portion of the

investigated session stored in M. The vector l has a dimension of rD(∆ − T + 1)×
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1. A set of new column vectors, namely mT+1, mT+2, and mT+3, with dimension

rD(∆ − T + 1) × 1, are generated from D to store the amount of data exchanged

between base station and the mobile terminal after the observation window T.

Finally, 80% of M is used as training set, while the remaining 20% is used as

validation set. The number of rows of the matrix M selected as training set, whose

performance will be listed and evaluated, is simply denoted by rM,tr.

Components of the developed MTL model

Figure 2.9 shows the proposed MTL model, embracing three main components: au-

toencoder, classifier, and predictor. Each component presents specific input and

output parameters. The training of the developed MTL model is divided into two

stages. The first stage consists of the training of the autoencoder. The second stage

refers to the training of both classifier and predictor, known the set of feature learn-

ing representations provided by the encoder.
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The autoencoder: It represents a particular ANN implementing two key func-

tionalities. Given an input data mi = {mi,1, ..., mi,T}, that is a row of the matrix M,

the encoder generates the corresponding feature representation, namely hi, which

then allows the joint execution of the two tasks. Specifically, hi ∈ H appears like a

compression of input data [37] and it is referred to as codeword in the next sections.

On the other hand, the decoder provides a reconstruction of the input data, namely

m̂i = {m̂i,1, ..., m̂i,T}, starting from the aforementioned feature learning representa-

tion. The autoencoder uses the sigmoid activation function for the output layer and

Rectified Linear Unit (ReLU) for other layers [17]. In addition, it also uses weights,

that are properly configured during the training phase.

This work investigates two different autoencoder schemes:

• the Undercomplete Autoencoder, leveraging regular densely-connected neural

network layers, based on MLP [135]. In particular, MLP is a fully-connected

and feed-forward neural network, that has low computational complexity.

• the Seq2Seq Autoencoder, that manages encoder and decoder functionalities

through LSTM [136]. The LSTM is a popular variant of Recurrent Neural Net-

works (RNNs) that can extract long range temporal dependencies through in-

put, forget, and output gates and mitigate gradient vanishing and exploding

problems. This type of neural network is suitable for processing time series

because the output of each memory cell may depend on the entire sequence of

previous cell states [17], [41], [137]. Due to the intrinsic temporal relations in

mobile traffic data, LSTM-based architecture appears as the logical choice, at

the cost of higher computational complexity.

To train the two types of autoencoder, weights are iteratively updated in order to

minimize the Mean Square Error (MSE) loss function LA, formally defined as [135],

[138]:

LA =
1

rM,tr

rM,tr

∑
i=1

T

∑
j=1

(mi,j − m̂i,j)
2 (2.1)

As shown in Figure 2.9, the common feature representation hi generated by the

autoencoder is provided to both classifier and predictor for driving classification and

prediction tasks.

The classifier: It maps the feature learning representation hi to a learned label l̂i

describing the application type of the investigated session. To this end, it uses the

softmax layer, based on the softmax activation function [17], working with a number

of classes (i.e., the considered application types) equal to 3, even if the conceived

methodology is extendable to any number of classes.

The softmax layer of the classifier is configured by penalizing the MSE loss func-

tion LC between the true label li associated with the input data mi and the learned
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label l̂i associated with the feature learning representation hi:

LC =
1

rM,tr

rM,tr

∑
i=1

(li − l̂i)
2
. (2.2)

Once configured, the classifier accuracy AC quantifies the percentage of correct

classifications with respect to the total number of classifications [139]:

AC =
number of correct classifications

rM,tr
· 100. (2.3)

The predictor: It predicts the amount of data that a given session is expected

to exchange with the base station after the observation window T, that are: m̂i,T+1

stored in m̂T+1, m̂i,T+2 stored in m̂T+2, m̂i,T+3 stored in m̂T+3, and so on. It makes

use of a fully-connected layer with the ReLU activation function [17].

The predictor is configured in order to minimize the MSE loss function LP , for-

mulated for T + 1s as [140]:

LP =
1

rM,tr

rM,tr

∑
i=1



mi,T+1 − m̂i,T+1





2

. (2.4)

Of course, it is expected that the prediction loss function, which minimizes the

difference between the true and the predicted amount of exchanged data, will in-

crease with the time distance between the latest value of the investigated traffic pro-

file and the predicted one.

2.2.2 Performance Evaluation

The conceived MTL architecture has been implemented in Keras, a high-level neural

networks API written in Python, running on top of TensorFlow [141], and simula-

tions have been executed on an Intel Core i7 CPU with 16 GB of RAM. Moreover,

different configurations of neural networks are investigated to quantify the impact

of the observation window, T, on the classifier accuracy, AC , and the prediction loss,

LP . Once the best solutions are selected, a complete analysis on the classification

and prediction performance together with a discussion on the complexity and con-

vergence of the selected architectures is presented.

To simplify the understanding of the analysis presented in this section, the pro-

posed MTL architectures are named as follows: MTL-U refers to the MTL architec-

ture based on the Undercomplete Autoencoder; MTL-S2S refers to the MTL archi-

tecture based on the Seq2Seq Autoencoder.

Assuming to describe the ratio between the size of the input layer and the size

of hidden layers in the form X:Y for the neural networks with only one hidden layer

and X:Y:Z for the neural networks with two hidden layers, the investigated config-

urations include 8:5, 8:6, 8:8, and 8:5:3. The observation window T is chosen in the
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TABLE 2.5: Performance of MTL-U. For each T, the Best Configuration is highlighted.

T [s] Codeword

MTL-U
1 hidden layer 2 hidden layers

8:5 8:6 8:8 8:5:3

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

5
3 0.83 89.20 2.56 6.69 93.02 2.54 5.68 91.72 2.50 23.10 86.86 2.60
4 0.83 88.39 2.56 4.25 91.22 2.50 2.12 92.37 2.53 23.09 87.51 3.49

10
3 6.64 95.02 1.77 6.04 95.41 1.70 2.26 91.93 1.63 8.20 93.21 1.67

4 2.93 93.47 1.73 4.98 96.99 1.66 3.94 94.61 1.61 6.73 92.99 1.68
5 2.06 91.02 1.73 4.85 95.45 1.72 2.12 92.90 1.61 4.49 93.33 1.69

15

3 4.32 90.56 1.27 5.12 94.75 1.18 2.28 90.51 1.15 4.25 94.95 1.21
4 3.70 90.16 1.24 5.15 93.90 1.17 0.57 94.92 1.15 2.86 94.19 1.19
5 1.97 93.82 1.18 3.62 98.08 1.20 0.25 94.37 1.14 4.80 97.53 1.16

10 3.61 96.21 1.18 2.69 96.31 1.11 2.49 98.75 1.03 1.82 93.51 1.22

20

3 3.84 88.97 0.96 4.56 97.64 0.91 2.50 90.50 0.83 1.43 95.41 0.88
4 0.52 94.57 0.95 3.32 99.43 0.88 0.30 94.94 0.81 3.38 95.22 0.85
5 0.43 94.91 0.91 3.44 98.26 0.90 0.34 91.16 0.79 3.04 94.10 0.91

10 2.29 96.60 0.90 2.48 99.36 0.81 1.80 97.23 0.73 1.56 94.95 0.87

FIGURE 2.10: Baseline single-task learning architectures for classifier and predictor.

range from 5 to 20. Regarding the autoencoder, the size of the codeword is also set

to different values (please see Tables 2.5 and 2.6 for further details).

The training phase for all the components belonging to the designed MTL archi-

tectures lasts 200 epochs (i.e., complete passes through the training data [142]). The

Adam optimization is used to iteratively update the network weights based on the

training data [143].

To provide further insight, the comparison with baseline single-task learning ar-

chitectures, that do not use the autoencoder and that tackle traffic classification and

prediction in isolation, is presented as well. In particular, the reference single-task ar-

chitectures selected for the cross-comparison are based on LSTM because, as stated

in Section 2.2.1, this type of neural network is suitable for processing time series.

Furthermore, due to the wide adoption of LSTM in the state-of-the-art deep learn-

ing models (e.g., [41], [45]–[47], [50]), LSTM-based architecture appears as the logical

choice for the comparison (single-task learning) schemes, as well as for the MTL ap-

proach. Assuming to work with the same training dataset and to adopt the same

set of symbols, the single-task classifier and the single-task predictor are depicted in

Figure 2.10.
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TABLE 2.6: Performance of MTL-S2S. For each T, the Best Configuration is highlighted.

T [s] Codeword

MTL-S2S
1 hidden layer 2 hidden layers

8:5 8:6 8:8 8:5:3

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

LA
[·10−3]

AC
[%]

LP
[·10−3]

5
3 0.014 92.72 2.41 0.024 92.40 2.48 0.058 92.25 2.33 16.68 90.09 2.44
4 16.72 92.56 2.50 0.011 92.35 2.39 16.70 92.10 2.39 16.73 90.59 2.45

5 0.027 94.55 2.46 0.048 94.26 2.42 0.017 94.59 2.33 16.70 90.36 2.51

10
3 0.0081 96.52 1.55 0.016 97.19 1.51 0.029 93.53 1.50 16.69 92.22 1.54
4 0.0045 96.71 1.51 0.0099 96.69 1.53 0.0045 95.67 1.40 15.50 96.44 1.61

5 0.019 96.17 1.51 0.021 97.33 1.46 0.0032 94.45 1.38 0.060 97.52 1.54

15

3 0.0066 96.21 1.17 0.023 97.15 1.07 0.011 98.03 0.87 16.68 91.99 0.97
4 11.16 98.54 1.01 0.018 95.48 1.03 0.011 97.75 1.02 11.13 96.60 1.22
5 0.0083 98.16 1.03 0.014 95.22 0.98 0.0034 98.26 0.95 0.0076 95.48 1.01

10 0.0029 97.96 0.91 0.0048 98.06 0.86 0.0075 99.33 0.81 0.019 95.41 1.01

20

3 0.014 97.85 0.78 0.0035 92.52 0.66 0.012 93.68 0.61 0.0047 98.47 0.70
4 0.0087 98.18 0.75 0.0035 94.07 0.74 0.0060 98.50 0.67 0.016 97.56 0.77
5 0.0039 98.00 0.81 0.0045 94.92 0.75 0.0032 97.84 0.61 0.019 98.23 0.75

10 0.0032 98.95 0.77 0.0034 97.92 0.67 0.0072 99.64 0.62 0.0055 95.02 0.68

TABLE 2.7: Performance of the single-task approach. For each T, the Best Configuration is
highlighted.

T [s]

Single-task classifier

1 hidden layer
2 hidden

layers

8:5 8:6 8:8 8:5:3

AC
[%]

AC
[%]

AC
[%]

AC
[%]

5 88.02 92.52 91.44 90.81

10 95.56 94.69 95.97 93.22

15 96.76 96.60 97.18 96.07

20 95.36 97.73 97.52 97.04

T [s]

Single-task predictor

1 hidden layer
2 hidden

layers

8:5 8:6 8:8 8:5:3

LP
[·10−3]

LP
[·10−3]

LP
[·10−3]

LP
[·10−3]

5 2.64 2.56 2.47 2.43

10 1.77 1.67 1.48 1.55

15 1.22 1.12 0.97 1.11

20 0.91 0.84 0.77 0.79

Selection of suitable MTL architectures

Autoencoder loss, LA, classification accuracy, AC , and prediction loss, LP , achieved

for all the configurations of the designed MTL architectures are reported in Tables

2.5 and 2.6. The same performance indexes obtained with single-task approaches

are reported in Table 2.7. For both MTL and single-task architectures and for each

observation window T, these results are used to select the configurations that ensure

the best performance.

Regarding the conceived MTL architectures, the analysis concerns multiple ob-

jectives, that refer to the maximization of AC and the minimization of LP . To this

end, a performance metric, PMT L, is defined in (2.5) as a weighted linear sum of

obtained results for each task:

PMT L = αAC + (1 − α)





LP − LPmin

LPmax − LPmin
(L′

Pmax − L′
Pmin) + L′

Pmin



 (2.5)
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FIGURE 2.11: (a) Classification accuracy and (b) prediction loss at T + 1s registered by the
best configurations of MTL-U, as a function of α.

where the weight α may assume an arbitrary value from 0 to 1 [144], [145]. Since the

higher the loss, the lower the performance, the min-max normalization is performed

for LP to properly combine the two metrics [139], considering the minimum predic-

tion loss reported in Tables 2.5, 2.6, and 2.7 (i.e., LPmin), the maximum prediction loss

reported in Tables 2.5, 2.6, and 2.7 (i.e., LPmax), the value of the normalized metric

describing the worst performance (i.e., L′
Pmax = 0), and the value of the normalized

metric describing the best performance (i.e., L′
Pmin = 100).

Figures 2.11 and 2.12 show the performance of the MTL configurations achieving

the highest PMT L metric as a function of α, for MTL-U and MTL-S2S, respectively.

These figures help to identify the suitable values of α to be used for the selection of

the best MTL configurations. Reported curves demonstrate that α = 0.5 and α = 1

cannot be used for this purpose. In fact, if α ≤ 0.5, the multi-objective metric PMT L

suggests to select configurations having low classification accuracy. On the contrary,

when α = 1, the multi-objective metric PMT L suggests to select configurations that
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FIGURE 2.12: (a) Classification accuracy and (b) prediction loss at T + 1s registered by the
best configurations of MTL-S2S, as a function of α.

register higher prediction losses, especially when T increases. Other values of α pro-

vide similar outcomes. Thus, the rest of this study considers the best configurations

of the proposed MTL architectures selected with α = 0.8. They are highlighted in

Tables 2.5 and 2.6.

Regarding the single-task approaches, the best configurations are simply selected

by considering those that offer better performance for each T. Also in this case, they

are highlighted in Table 2.7.

In general, it can be noted that the performance of both MTL and single-task ap-

proaches improve for an increasing T because more data are used to make decisions.

Focusing the attention on the proposed MTL model, there is not a precise relation-

ship between the MTL performance and the codeword size: while MTL-S2S always

achieves the best performance with the biggest codeword size, the same considera-

tion cannot be made for MTL-U.
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FIGURE 2.13: Classification performance.

TABLE 2.8: F-score Analysis.

Architecture
F-score

T=5s T=10s T=15s T=20s

MTL-U 0.9312 0.9755 0.9904 0.9926
MTL-S2S 0.9501 0.9652 0.9927 0.9971

Single-task classifier 0.9198 0.9586 0.9817 0.9866

Classification performance

Figure 2.13 depicts the classification accuracy of the selected architectures as a func-

tion of T. As already anticipated, the performance always improves when T in-

creases because all the learning architectures can use a higher number of training

data to perform session classification. It is also evident that the single-task approach

reaches lower accuracy levels, ranging from 92.52% to 97.73%. On the contrary, bet-

ter results are obtained by the proposed MTL architectures: in this case, it is possible

to reach an accuracy level up to 99.64%. The conducted study also demonstrates that

MTL-S2S achieves higher classification accuracy for each T.

Classification performance can be further investigated through the F-score [139]

index. Theoretically, the higher the F-score value, the better the classifier perfor-

mance. The results summarized in Table 2.8 generally confirm what already dis-

cussed. In fact, F-score improves when T increases, and the single-task approach

always has the lowest F-score values. Regarding the proposed MTL architectures,

an exception is reported when T = 10s: in that case, even if MTL-U has the highest

F-score, it achieves a lower classification accuracy than MTL-S2S because of a higher

error rate for a specific application type (see the study on the confusion matrices

proposed below).

To analyze which classes are mismatched in the classification process, the con-

fusion matrices are provided in Figure 2.14 for each T. In general, both MTL archi-

tectures misclassify video-streaming sessions with audio-streaming ones. Nonethe-

less, such an error classification rate decreases when T increases. When T = 5s,
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FIGURE 2.14: Confusion matrix for MTL-U, MTL-S2S, and the single-task classifier when (a)
T = 5s, (b) T = 10s, (c) T = 15s, and (d) T = 20s.
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in fact, 14% and 13% of video-streaming sessions are (wrongly) classified as audio-

streaming by MTL-U and both MTL-S2S and the single-task classifier, respectively.

These percentages decrease to 2% for MTL-U, 1% for MTL-S2S, and 4% for the single-

task classifier when T = 20s. However, also in this case, it is possible to observe how

the proposed MTL architectures always provide better results with respect to those

measured for the single-task approach. Going more into detail, MTL-S2S presents

the highest percentage of sessions, which are correctly classified, for each T, except

for T = 10s. When T = 10s, as anticipated with the analysis of F-score, MTL-U re-

ports a lower AC than MTL-S2S. However, MTL-U reports a higher F-score. The

confusion matrices show the reason why this occurs. The percentages of video-

streaming sessions which are correctly classified by MTL-U (see Figure 2.14(b), on

the left) and MTL-S2S (see Figure 2.14(b), in the middle) are 94% and 92%, respec-

tively.

Prediction performance

Figure 2.15 shows the prediction loss for the time instants T + 1s, T + 2s, and T +

3s. First of all, it is evident that the curves for T + 3s are incomplete. In this case,

the training process always fails when T = 5s. As expected, the prediction loss

decreases with the observation window T, because the learning architectures have

more training data to make a prediction. Regarding the prediction performed at

both T + 1s and T + 2s, MTL-S2S and MTL-U always achieve the best and the worst

performance levels, respectively. On the other hand, when the prediction is done a

T + 3s, the single-task approach slightly exceeds the prediction losses of MTL-U.

In summary, MTL-S2S always guarantees the lowest prediction losses, at the cost

of a higher complexity (see Section 2.2.2). MTL-U has the worst performance when

the prediction is done at T + 1s and T + 2s. The single-task approach exhibits inter-

mediate performance levels when T + 1s and T + 2s, but the prediction accuracy is

lowest at T + 3s. These results also confirm the ability of LSTM, which is exploited in

both MTL-S2S and the single-task scheme, to suitably process time series by taking

into account the temporal sequence of TBS values.

Complexity and convergence analysis

The complexity of selected learning architectures is evaluated by measuring the

number of trainable parameters: the higher the number of parameters, the higher

the complexity. Firstly, it is evident that the complexity of all the investigated learn-

ing architectures increases with an increasing duration T of the observation window.

MTL-S2S always has the highest complexity. Also the single-task approach, based

on LSTM, has a high complexity because of the structures of LSTM cells. On the

contrary, MTL-U guarantees the lowest complexity for each observation window T.

The convergence analysis evaluates the performance of the investigated learn-

ing architectures (including autoencoder loss, classification accuracy, and prediction
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FIGURE 2.15: Prediction performance of the best configurations of MTL-U and MTL-S2S
and the single-task approach: a) prediction loss at T + 1s, b) prediction loss at T + 2s, and c)

prediction loss at T + 3s.

loss) as a function of the number of epochs considered during the training phase.
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TABLE 2.9: Complexity analysis of learning architectures.

Architecture
# Parameters

T=5s T=10s T=15s T=20s

MTL-U

Autoencoder 98 314 805 960
Classifier 72 189 543 618
Predictor 43 114 411 486

MTL-S2S

Autoencoder 806 1607 5496 8781
Classifier 438 665 2513 3603
Predictor 386 563 2211 3201

Single-task
Classifier 111 513 1068 1068
Predictor 82 491 1036 1781
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FIGURE 2.16: Autoencoder loss vs number of epochs.

Figure 2.16 shows the autoencoder loss as a function of the number of epochs. MTL-

S2S has the slowest convergence time, while providing the lowest autoencoder loss.

Figure 2.17 depicts the classification accuracy as a function of the number of epochs.

While the proposed MTL architectures reach similar performance, the single-task

approach always has the highest convergence time. Figure 2.18 shows the predic-

tion loss as a function of the number of epochs. In this case, it is possible to observe

that MTL-S2S achieves lower performance losses, at the cost of a slower convergence

time.
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FIGURE 2.17: Classification accuracy vs number of epochs.

A further evaluation with more classes

As described in Section 2.2.1, the proposed MTL approach can be applied to dif-

ferent scenarios with a higher number of classes. To provide further insight, the

training dataset considered in this work allowed to evaluate the performance of the

proposed methodology when considering the six available classes of applications:

YouTube, Vimeo, Spotify, Google Music, Skype, and WhatsApp Messanger. Specif-

ically, differently from the original investigation, the applications belonging to the

same service category have been treated as separate classes. The configurations of

the MTL-S2S approach that achieved the best performance in the analysis of three

service categories only have been tested. Figures 2.19 and 2.20 depict the classifica-

tion accuracy and the prediction loss of MTL-S2S and the single-task schemes with

six classes as a function of T. Obtained results further confirm that the proposed

MTL approach outperforms the baseline single-task scheme also in scenarios with

a higher number of classes. Differently from the previous case, however, lower ac-

curacy levels are caused by very similar patterns of applications (especially those

of audio-streaming type) and it is increasingly difficult to distinguish the different

applications when the observation window T decreases.
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FIGURE 2.18: Prediction loss vs number of epochs.
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FIGURE 2.19: Classification performance with six application classes.

2.2.3 Final considerations

This study, after introducing an unsupervised learning methodology to characterize

radio resource utilization patterns, has tailored an MTL model for traffic classifica-

tion and prediction at the mobile edge, which leverages data mining from the PD-

CCH and two types of autoencoders (i.e., the Undercomplete Autoencoder and the

Seq2Seq Autoencoder) exploited as key building blocks for obtaining common fea-

ture representations. Different configurations of neural networks have been trained
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FIGURE 2.20: Prediction performance at T + 1s with six application classes.

with a real dataset collected from an operative mobile network in Spain. More-

over, the performance of the proposed approach has been thoroughly investigated

in terms of classification accuracy, prediction loss, complexity, and convergence. A

cross-comparison with respect to conventional single-task learning schemes, that

do not use autoencoders and that are generally investigated in the current state of

the art for traffic classification and prediction, has also demonstrated that: i) the

MTL architectures, leveraging the autoencoders, always guarantee higher perfor-

mance than the single-task learning approach, ii) the MTL architecture based on the

Seq2Seq Autoencoder always achieves the highest classification accuracy and the

lowest prediction losses, at the cost of a higher complexity and convergence time.
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Chapter 3

Anticipatory Resource Allocation

at the Edge using Spatio-Temporal

Dynamics of Mobile Users

In this Chapter, a novel methodology for anticipatorily allocating communication

and computational resources at the network edge is formulated.

Specifically, communication and computational resources available at the net-

work edge should be properly managed to fulfill the spatio-temporal dynamics and

the even growing amount of users’ requests [13], [14]. Most of the scientific con-

tributions in this context address network resource management, computational re-

source allocation, and task offloading through optimization algorithms [66]–[75] or

iterative procedures based on artificial intelligence [76]–[81]. Unfortunately, these

contributions generally consider a static picture of the overall systems and ignore

the impact that future spatio-temporal dynamics of mobile users may have on the

system behavior. Differently, the knowledge (i.e., prediction) of both users’ mobil-

ity and communication and computational resources they request over time within

a given geographical area could significantly improve network optimization mech-

anisms [64], [65], [82]. The current state of the art proposes various techniques to

forecast the movements of users, their requests, or both [97] (see Section 1.3.2 for

more details). Solutions based on machine and deep learning also promise to better

anticipate network behaviors and dynamics in heterogeneous and large-scale sce-

narios characterizing 5G and Beyond systems [86], [87]. Nevertheless, the resulting

network optimization problems fail to take advantage of the joint prediction of both

users’ mobility and service demands over a look-ahead temporal horizon and within

a standard compliant ETSI-MEC context.

To bridge this gap, in the following an innovative methodology is formulated

for the anticipatory allocation of communication and computational resources at the

network edge (i.e., task offloading), based on the knowledge of spatio-temporal dy-

namics of mobile users. The conceived architecture adopts a SDN approach to mon-

itor users’ mobility during time. Then, it exploits a deep learning architecture based
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on Convolutional Long Short-Term Memory (ConvLSTM) [146] to predict the distribu-

tion of users among cells and their related service demands over a look-ahead tem-

poral horizon. A centralized Multi-access Edge Orchestrator uses this information

to anticipatorily distribute users’ demands among available MEC servers, while sat-

isfying communication and computational constraints at the network edge and the

upper bound for latency expected by mobile users. Specifically, the optimal alloca-

tion problem is formulated as a sequential decision-making process, which consid-

ers future steps in the optimization horizon and it is solved by Dynamic Programming

[147].

The behavior of the proposed approach is investigated with real mobility traces

and realistic network and service settings by using computer simulations. First of all,

the presented study underlines that the usage of both ConvLSTM and Dynamic Pro-

gramming ensures results comparable with those obtained by the same optimization

algorithm running on a perfect knowledge (i.e., ground truth) of spatio-temporal dy-

namics of mobile users. This demonstrates the high performance of the prediction

process. At the same time, the comparison against a baseline approach, which lever-

ages the distribution of users at the current time instant and allocates users’ demands

to the closest MEC server, reveals that only the conceived anticipatory approach can

fairly distribute users’ requests among the resources available at the network edge,

while ensuring the targeted quality of service level. Finally, a complexity analysis

confirms the applicability of the proposed methodology in a pratical network.

3.1 Reference Scenario

The proposed study mainly refers to the task offloading problem, according to which

it is necessary to deploy (and properly use) available communication and intensive

computational capabilities at the network edge to offer new heavy demanding and

latency-critical services with demanding user QoS requirements [9], [12], [148]. E-

Health, autonomous driving, and augmented/virtual reality are possible examples

of advanced services with very heterogeneous communication and computational

demands. For example, bandwidth requirements amount to 100 Mbps, 700 Mbps,

and 1 Gbps [148] for e-Health, autonomous driving, and virtual reality use cases, re-

spectively, while their memory requirements range from 8 GB to 32 GB [149]–[151].

This kind of heterogeneity is also expected for the communication latency, ranging

from 1 ms (e.g., for e-Health, virtual reality, and robotics) to 100 ms (e.g., for au-

tonomous driving) [148].

The conceived approach can be implemented within the 5G slicing paradigm. In

fact, according to 3GPP specifications [152], a slice instance represents a set of net-

work functions and related resources which are arranged and configured in a logical

network to meet certain network characteristics. To this end, a Service Provider (or

Tenant) declares communication service requirements (e.g., coverage area, number

and distribution of users, traffic demand, mobility, latency, etc.) to the Infrastructure
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FIGURE 3.1: Reference mobile network with different contributions of latency lijm in the
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Provider. In turn, the Infrastructure Provider configures the corresponding network

slice instance, whose preparation phase includes the on-boarding and verification

of network function products and the necessary network environment. From this

moment on, the Service Provider (or Tenant) can dynamically allocate the resources

belonging to the aforementioned slice to the served mobile users (i.e., the task of-

floading within a specific slice). Note that in complex deployments, where hetero-

geneous services are offered through different slices, the proposed approach can be

replicated for each slice.

In line with 5G specifications, emerging guidelines for the upcoming B5G sys-

tems, and the ETSI-MEC standard [153], the mobile network considered in this work

embraces mobile users, gNBs, MEC servers, SDN controllers, and a Multi-access

Edge Orchestrator (see Figure 3.1). Here, gNBs are part of the 3GPP network inte-

grated within the ETSI-MEC architecture. They provide wireless connectivity to mo-

bile users through heterogeneous technical components at the radio interface [153].
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It is important to remark that gNBs can be connected to each other in different ways.

Ring, tree, or mesh topologies can be implemented by the Infrastructure Provider

[154]. Without loss of generality, a mesh topology is depicted in Figure 3.1 as an

example of the backhaul network topology, even if the system model described in

Section 3.2.1 will be general enough for capturing the behavior of any topology.

A number of MEC servers (or MEC hosts) expose resources to mobile users, de-

pending on one or more services they use [153]. In this sense, the example reported

in Figure 3.1 shows that the green and red blocks of MEC servers are dedicated to

autonomous driving and e-Health services, respectively. According to ETSI-MEC

specifications, MEC servers can be deployed at the gNBs, at aggregation points, or

at the edge of the core network [12]. Independently from their position, however,

MEC resources (i.e., memory and computing) can be used by users attached to dif-

ferent cells. This important flexibility, however, requires a careful distribution of

users’ demands, that should take care of the stringent communication requirements,

instead of just considering the computational capabilities of MEC servers.

Network resources are monitored, configured, and orchestrated [153]. To this

end, SDN controllers continuously interact with gNBs and MEC servers for mon-

itoring the number of users served by each cell, the computational resources they

request, and the amount of resources exposed and/or available in each MEC server.

Note that SDN controllers can retrieve useful information from network elements

through standardized protocols (i.e., OpenFlow, RESTCONF, etc.) [155]. Specifi-

cally, since gNBs know how many users are attached to them, they can retrieve in-

formation about the number of users served by each gBN by simply asking for such

information to the gNBs.

This information is delivered to the Multi-access Edge Orchestrator for network

optimization purposes. It represents a fundamental entity of the ETSI-MEC refer-

ence architecture, included in the MEC system level management [153]. The en-

visaged solution uses Multi-access Edge Orchestrator capabilities for managing a

certain number of gNBs and MEC servers in a given geographical area (i.e., the ra-

dio access network is divided into clusters, controlled by one orchestrator) in order

to optimally allocate computing and communication resources for task offloading,

based on the prediction of spatio-temporal users’ dynamics. This is done by satis-

fying heterogeneous traffic demands. The proposed optimization algorithm, which

can be aided by exploiting mobility and service requests prediction, is executed by

each orchestrator instance in order to minimize the latency (which is one of the most

leading performance measures of 5G and B5G [13], [14]) of each service, while jointly

considering network communication and computational requirements and satisfy-

ing the upper bound of service latency and related network constraints.

Note that the proposed service infrastructure can embrace different domains,

whose network equipments are managed by a single SDN controller, namely the

domain controller (see Figure 3.2). At the large-scale, the configuration of differ-

ent domains can be managed through a hierarchical and highly scalable architecture
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of controllers [148]. Specifically, multiple domain controllers, that are connected to

generic base stations, nodes hosting any kind of IT resources, and network routers

of the core network, are specialized controllers in charge of intra-domain services.

They are coordinated by a parent controller or directly orchestrated by the Orches-

trator, which interoperates with domain controllers to provide end-to-end and inter-

domain services.

Moreover, an intrinsic characteristic of many 5G services (e.g., autonomous driv-

ing, virtual/augmented reality assisting museum tours) is mobility. Therefore, the

communication and computational resources must be managed by using a mobility-

aware approach, which is considered to be one of the most critical and challenging

issues for network orchestration [14], [90].

3.2 Problem Statement

In this section, the system model is described and the optimization problem for the

reference scenario and the adopted mobility prediction model are formulated. To

facilitate the understanding of the notations adopted in what follows, a summary of

symbols is reported in Table 3.1.

3.2.1 System model

Let I and |I| be the set and the number of users moving in the considered geograph-

ical area, respectively. According to the target application, the request formulated

by the i−th user is characterized by the following communication and computa-

tional requirements: the communication bandwidth set to bi, the upper bound of

latency equal to τi, the input data size si, the memory requirement set to mi, and the

demanded computational capability (expressed in terms of number of CPU cycles)
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TABLE 3.1: List of mathematical notation adopted in Chapter 3.

Symbol Description

i Index of the i−th user
j Index of the j−th gNB
m Index of the m−th MEC server
tk Discrete-time interval
I(k) Set of users
J Set of available gNBs and related attached cells
M Set of available MEC servers
I

gNB
j (tk) Set of users attached to the j−th gNB

IMEC
m (tk) Set of users served by the m−th MEC server
|set| Set cardinality

| Îj
gNB

(tk)| Predicted number of users attached to the j−th gNB
bi Communication bandwidth of the i−th user
τi Upper bound of latency for the service requested by the i−th user
si Input data size of the i−th user
mi Memory requirement of the i−th user
ci Computational capability requirement (in CPU cycles) of the i−th user
Bj Available bandwidth within the cell attached to the j−th gNB
eij(tk) Spectral efficiency between the i−th user and the j−th gNB
Mm(tk) Memory capability of the m−th MEC server
M

opt
m (tk) Memory capability of the m−th MEC server in the optimization prob-

lem
Mcons

m (tk) Consumed memory by the m−th MEC server
Fm(tk) Computing capacity (in CPU cycles/second) of the m−th MEC server
F

opt
m (k) Computing capacity (in CPU cycles/second) of the m−th MEC server

in the optimization problem
lijm(tk) Total latency experienced by the i − th user attached to the j−th gNB

and served by the m−th MEC server
l̄ijm(tk) Average latency per user
lradio
ij (tk) Communication latency experienced between the i− th user and the

j−th gNB over the radio interface
lbackhaul
ijm (tk) Backhaul latency between the j−th gNB and the m−th MEC server for

the i−th user
lexe
im (tk) Execution latency experienced at the m−th MEC server for serving the

i−th user
Ijm(tk) Portion of users attached to the j−th gNB and served by the m−th MEC

server
rjm(tk) Capacity of the backhaul link between the j − th gNB and the m − th

MEC server
fim(tk) Number of CPU cycles/second allocated by the m−th MEC server to

the i−th user
αim(tk) Binary decision variable denoting if the i−th user is served by the m−th

MEC server
T Observation window
N Look-ahead temporal horizon
tk,n Decision cycle
k Index of the decision epoch tk

γ Discount factor
n Index of the considered time steps in each decision epoch tk
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equal toci. Let J be the set of available gNBs. The number of gNBs is given by |J |,

that is the cardinality of J , and Bj represents the amount of bandwidth available

within the cell served by the j − th gNB. Let M and |M| be the set and the number

of the available MEC servers, respectively. Mm and Fm indicate the memory capa-

bility and computing capacity (expressed in terms of CPU cycles per second) of the

m−th MEC server. I
gNB
j is the set of users in the j−th cell, attached to the j−th gNB,

and IMEC
m is the set of users served by the m−th MEC server.

The system evolves in discrete-time intervals: every time tk, a different number

of users I
gNB
j and IMEC

m is served by the j−th gNB and the m−th MEC server, respec-

tively. It also holds that |I(tk)| = ∑j∈J |I
gNB
j (tk)| = ∑m∈M |IMEC

m (tk)| for all time

intervals.

The total latency experienced by the i − th user attached to the j − th gNB and

served by the m − th MEC server in the k − th time interval is given by:

lijm(tk) = lradio
ij (tk) + lbackhaul

ijm (tk) + lexe
im (tk), (3.1)

where lradio
ij (tk)is the communication latency experienced between the i−th user and

the j−th gNB over the radio interface, lbackhaul
jm (tk)is the backhaul latency experienced

between the j−th gNB and the m−th MEC server, and lexe
im (tk) is the execution la-

tency experienced at the m−th MEC server [14], [69], [148]. These different latency

contributions are shown in Figure 3.1.

In compliance with ITU specifications, the communication latency over the radio

interface, lradio
ij (tk), is expected to be less than 5 ms [123], [148].

The backhaul latency lbackhaul
ijm (tk) is obtained by dividing the aggregate traffic

load generated by the users attached to the j − th gNB and served by the m − th

MEC server, that is ∑i∈Ijm(tk)
si, and the capacity of the backhaul link between the

j − th gNB and the m − th MEC server, rjm(tk) [43]:

lbackhaul
ijm (tk) =

∑i∈Ijm(tk)
si

rjm(tk)
, (3.2)

where Ijm(tk) is the portion of users attached to the j−th gNB and served by the

m−th MEC server, that share the same backhaul link. The system model described

herein is general enough for capturing the behavior of any backhaul topology. With-

out loss of generality, a mesh topology, with the same capacity for each backhaul

link, is considered (see Figure 3.1). MEC servers can be deployed at the gNBs, at

aggregation points, or at the edge of the core network. Therefore, the backhaul la-

tency varies depending on the scenario. Specifically, assuming that MEC servers

are co-located with gNBs without loss of generality, there are two possibilities when

calculating the backhaul latency. No additional delay (i.e., lbackhaul
jm (tk) = 0) is intro-

duced in the backhaul if the m − th MEC server co-located with the j − th gNB (i.e,

m = j), to which the user is attached, is the one serving the user. Conversely, the

backhaul latency is considered and calculated for the backhaul path connecting the
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gNB, to which the user is attached, with a neighboring MEC host, which is serving

the user.

During the time interval tk, the computing capabilities exposed by each MEC

host are assumed to be uniformly allocated among served users. Therefore, the exe-

cution latency lexe
im (tk) is [69], [73]:

lexe
im (tk) =

ci

fim(tk)
=

ci

Fm(tk)/|IMEC
m (tk)|

, (3.3)

where fim(tk) is the number of CPU cycles per second allocated by the m−th MEC

server to the i−th user. The equation above is generic enough for being used in any

realistic scenario with homogenous and heterogeneous service requirements: the ex-

ecution latency refers to the computational capability requirements of users, which

can execute a single application task, as well as more heterogeneous application

tasks.

3.2.2 Optimization problem

The goal of the proposed optimization framework is to distribute users’ requests

among the available MEC servers, so that the latency of each considered service is

minimized and network outage in terms of memory, computing, and bandwidth

resources is avoided. Decisions are made at each time tk, which is also referred

to as decision epoch in the following. This problem is formulated as a sequential

decision-making process: at every decision epoch tk, control actions aiming at as-

signing users’ demands to the best suitable MEC servers are executed, according to

their available memory capabilities (i.e., M
opt
m for the m−th MEC server) and com-

puting capacities (i.e., F
opt
m for the m−th MEC server), in order to minimize latencies

experienced by users and to satisfy service latency constraints. At every decision

epoch tk, the requests and, hence, the resources needed to run the user services for

the N steps ahead are leveraged and the control is executed based on the optimiza-

tion problem P1 stated in (3.4). The solution of the problem is found by executing the

dynamic programming approach [147] at every decision epoch tk (i.e., each point of

the sequential decision-making process where decisions are made), transforming a

complex problem into a sequence of simpler problems. In line with the standard dis-

counted dynamic programming framework [147], the discount factor γ, (0<γ≤ 1),

is introduced to incorporate the concept of discounting for the look-ahead temporal

horizon N. Specifically, besides the decision epoch tk, the decision cycle tk,n, with

n ∈ {0, 1, ..., N}, is needed. It represents the sequence of the considered time steps

(with tk,n = tk+n) to reach and implement decisions in each epoch tk, whose impact

is exponentially weighted through γn. Thus, it is possible to understand that, when

n = 0, tk,0 is weighted through γ0 = 1, while the future time steps in the sequence

have a gradually decreasing weight (i.e., from γ1 for tk,1 to γN for tk,N) in the decision

cycle tk,n.
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P1 : min
{αim(tk)}

{

N

∑
n=0

γn

[

∑
j∈J

∑
i∈I

gNB
j (tk,n)

(

lradio
ij (tk,n)+∑

m∈M

αim(tk,n)·
[

lbackhaul
ijm (tk,n)+lexe

im (tk,n)
]

)]}

,∀tk

(3.4)

subject to: ∑
i∈I(tk,n)

αim(tk,n) · mi ≤M
opt
m (tk,n), ∀m∈M, ∀n, ∑

i∈I(tk,n)

mi ≤ ∑
m∈M

M
opt
m (tk,n), ∀n

(3.4a)

∑
i∈I(tk,n)

αim(tk,n) · fim(tk,n)≤F
opt
m (tk,n), ∀m∈M, ∀n (3.4b)

lradio
ij (tk,n)+∑

m∈M

αim(tk,n)·
[

lbackhaul
ijm (tk,n) + lexe

im (tk,n)
]

≤τi, ∀i ∈ I(tk,n), ∀n

(3.4c)

Bj · eij(tk,n) ≥ bi, ∀i∈ I
gNB
j (tk,n), ∀n (3.4d)

αim(tk,n)∈{0, 1}, ∑
m∈M

αim(tk,n)=1, ∀i∈I(tk,n),

∑
i∈I(tk,n)

αim(tk,n)= |IMEC
m (tk,n)|, ∀m∈M, ∀n (3.4e)

|I
gNB
j (tk,n)|= ∑

m∈M

|Ijm(tk,n)|, ∀j∈J , |IMEC
m (tk,n)|=∑

j∈J

|Ijm(tk,n)|, ∀m∈M, ∀n

(3.4f)

The implemented control is expressed by a binary decision variable αim(tk), that

is:

αim(tk)=























1 if the i−th user is served by the m−th

MEC server, i.e.,∀i∈ IMEC
m (tk);

0 otherwise.

(3.5)

Note that αim(tk)only involves the backhaul and the execution latency because

they depend on the concerned MEC server, while the radio component is indepen-

dent thereof. The constraints in (3.4a) consider the memory capabilities and re-

quirements: the memory capability of the m−th MEC server M
opt
m (tk,n) cannot be

exceeded by served users in each decision cycle tk,n and the overall memory capa-

bilities need to be sufficient for satisfying memory requirements. The constraint in

(3.4b) regards the CPU ability of the m−th MEC server F
opt
m (tk,n) in each decision

cycle tk,n. Because of the definition of the execution latency component in (3.3), com-

puting capabilities are included in the service latency constraint (3.4c), that is valid

for each i−th user in the network , where the maximum tolerable latency τi is the

upper bound of user latency experienced during each decision cycle tk,n. If the com-

puting capacities are not enough, (3.4c) is not verified. Bandwidth requirements are

considered in (3.4d), where eij(tk,n) is the spectral efficiency between the i−th user

and the j−th gNB. Moreover, in every decision cycle tk,n each user can be served by
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one and only one MEC server, as reported in (3.4e) and (3.4f), that means the number

of users attached to different gNBs should be equal to the number of users served

by different MEC hosts.

The solution of the optimization problem P1 stated in (3.4) may be anticipatorily

found, forecasting the number of users in the coverage area of each gNB. In what

follows, the anticipatory optimization approach presented in this work is referred

to as Prediction-based Control (P-C). Since the solution of the network optimization

problem P1 stated in (3.4) may be also found supposing to know the mobility of

users in advance, in Section 3.3 also the anticipatory network optimization approach

based on ground truth, i.e., Ground Truth-based Control (GT-C), is evaluated.

3.2.3 Mobility prediction model

The users moving in the considered geographical area may pass from one cell to

an adjacent one. Accordingly, the number of users attached to each gNB changes

over time. The goal of the mobility prediction model described in this section is to

anticipatorily discover the distribution of mobile users among available cells, based

on the knowledge of the number of users attached to the gNBs that served them in

the past. Service demands can be later estimated based on the services requested by

the users.

To this aim, this contribution leverages real mobility data from the dataset pre-

sented in [156], which reports the movements of around 100 taxi cabs in Rome (Italy),

from 1 February 2014 to 2 March 2014, with a granularity of about 15 s. The traces

of the published version of the dataset provide information on when the location

of the taxis were collected, with a precision of microseconds, and GPS coordinates,

in the decimal format. The considered geographical area of the center of Rome has

been divided into square cells, covering an area of 1 km × 1 km each (an exam-

ple is reported in Figure 3.3). Note that square cells have been considered, but the

considerations also hold for arbitrarily shaped cells.

These real traces are used to generate a list of matrices describing the geographi-

cal distribution of users over time. For example, Figure 3.4 shows the distribution of

the number of users for two cells (i.e., j = 1 and j = 3) with a low and high number

of users, respectively.

The conceived mobility prediction model exploits the ConvLSTM architecture to

predict the distribution of mobile users among the available cells and for the up-

coming N consecutive time intervals, based on the knowledge of the distribution of

users (i.e., retrieved by SDN controllers from gNBs, that know how many users are

attached to them) observed during the latest T observation time intervals. As shown

in Figure 3.5, the considered ConvLSTM architecture is based on LSTM [137], with

the convolution operator as input, forget, and output gates instead of the element-

wise or Hadamard product [146]. Therefore, it is able to extract temporal and spatial

correlations of data through LSTM memory cells and the convolutional operation,

respectively [17], [135]. More specifically, this work conceives a learning architecture
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FIGURE 3.3: The considered geographical area with example temporal movements of three
taxi cabs.
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FIGURE 3.4: Distribution of the number of users over time for two cells.
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FIGURE 3.5: The conceived mobility prediction model.

embracing two 2-dimensional ConvLSTM layers, after each one a batch normaliza-

tion layer is used to accelerate deep network training [157]. The number of epochs

and the number of filters are set to 30 (see the convergence analysis proposed in

Section 3.3.1) and 200, respectively. At the end, there is a fully-connected layer with

ReLU activation function [17] to predict the expected distribution of users, after the

observation window T, for a specific look-ahead temporal horizon N. The predic-

tor is configured in order to minimize the MSE loss function, which minimizes the

difference between the ground truth and the predicted distribution of users [135].

The Adam optimization [143], with a learning rate of 0.001, is used to update the
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network weights.

3.3 Performance Evaluation

Herein, the performance of the conceived anticipatory network optimization scheme

is evaluated by using computer simulations. Without loss of generality, the study

considers an autonomous driving use case (with real mobility traces [156] described

in Section 3.2.3 and conceivable network and service settings [72], [123], [148], [150],

[158]–[161]). The approach can also be applied to each use case and heterogeneous

scenarios by properly adapting the related parameter settings.

A real geographical area of 10 km2 in Rome (Italy) is considered, divided into 10

square cells (i.e., |J | = 10). According to the autonomous driving use case, for the

i − th user the communication bandwidth and the upper bound of service latency

are set to bi = 700 Mbps and τi = 100 ms, respectively [148], the input data size is

set to si = 5 Mbit [72], [159], and the memory and computational capability require-

ments are set to mi = 16 GB [150] and ci = 300 Megacycles [159], respectively. The

available bandwidth within the cell attached to the j − th gNB and the capacity of

the backhaul link between the j − th gNB and the m − th MEC server are set to Bj =

40 MHz [160] and rjm = 10 Gbps, respectively. Since it is assumed that MEC servers

are co-located with gNBs without loss of generality, |J |= |M|=10 in the tests. The

parameters of MEC servers, whose sizing is a key issue in such systems, are ade-

quately dimensioned with respect to overall requests in each tk,n [161]: the memory

capability and the computing capacity of the m − th MEC server are set to M
opt
m =

176 GB and F
opt
m = 36 Gigacycles/s, respectively. In simulations, it is considered

the upper bound of the communication latency experienced over the radio interface

lradio
ij (tk,n), that means to use constant values for lradio

ij (i.e., 5 ms [123], [148]) and the

spectral efficiency eij (i.e., 30 bit/s/Hz [158]) in each tk,n. Table 3.2 summarizes the

main adopted parameters.

In line with the dynamic programming approach [147], the optimal solution has

been found at each decision epoch tk through the value iteration algorithm imple-

mented by using MATLAB. As anticipated in Section 3.2.2, the optimization prob-

lem P1 is solved by considering the predicted number of users per cell over a spe-

cific temporal horizon, i.e., | Îj
gNB

(tk,n)| by using the actual distribution of users for

n = 0 and the prediction of the number of users for the future time steps in the deci-

sion cycle tk,n, and the perfect knowledge (ground truth) of users’ distributions, i.e.,

|I
gNB
j (tk,n)|. These anticipatory mechanisms based on prediction and ground truth

are denoted with P-C and GT-C, respectively. Note that the comparison between P-C

and GT-C intends to highlight the effectiveness of the prediction procedure and its

impact on the overall system performance. The behavior of both P-C and GT-C is

studied for different temporal horizons, that are N = 5 s, 10 s, 20 s, 40 s, to evalu-

ate their effect on key performance indicators. Moreover, to provide further insight,

the anticipatory methods P-C and GT-C are compared against a Baseline approach.
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TABLE 3.2: Main simulation parameters.

Parameter Value

Area 10 km2

|J |= |M| 10

T 40 s

N 5 s, 10 s, 20 s, 40 s

Learning rate 0.001

γ 0.9

bi 700 Mbps [148]

τi 100 ms [148]

si 5 Mbit [72], [159]

mi 16 GB [150]

ci 300 Megacycles [159]

Bj 40 MHz [160]

rjm 10 Gbps

M
opt
m 176 GB

F
opt
m 36 Gigacycles/s

lradio
ij 5 ms [123], [148]

eij 30 bit/s/Hz [158]

Period of time 3600 s

It just leverages the distribution of users at the current time instant tk and allocates

their requests to the closest MEC server (i.e., co-located with the gNB in the related

cell), without envisaging optimization problems and constraints. Therefore, since

the related literature is missing works that perform network resource optimization

based on the prediction of the number of users problem (please see Section 1.3.2 for

further details), the proposed anticipatory optimization approach based on mobility

prediction is compared with the anticipatory network optimization approach based

on ground truth and with the Baseline approach defined above.

Since the system configuration decision and the user latency (as well as the com-

putational requests) are updated with a time granularity of 1 s, the latency constraint

(3.4c) is continuously taken into account by P-C and GT-C to consider the impact of

users’ mobility, handovers, and possible service migrations among MEC servers. As

a consequence, the proposed system model and the conceived optimization problem

allow to successfully meet the whole service latency constraint. Note that the devel-

oped approach has been conceived for 5G and B5G networks. Indeed, it is possible to

assume a 0 ms handover latency (namely mobility interruption time in 3GPP specifi-

cations) [162]. At the same time, this assumption does not influence the behavior of

the proposed approach because resources are optimally allocated on a much higher

time granularity than the mobility interruption time allowed in 5G (and Beyond) de-

ployments. For the same reason, the presented approach does not explicitly consider

the virtual machine/container migration process. With a time granularity of 1 s, the
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Multi-access Edge Orchestrator, that optimally orchestrates requested services and

available communication and computational resources, communicates with all the

network entities. Therefore, any configuration changes (i.e., on the number of users

and related resources to be allocated) are known by MEC servers through the inter-

action with the orchestrator. Moreover, the delay of task migration between MEC

servers can be considered to be negligible in a vehicular context [163], as the ana-

lyzed case, or, through prediction information for the look-ahead temporal horizon

N, the migration process can eventually occur before it actually happens so that the

users do not experience any additional delay due to migration [164].

The measured key performance indicators entail a complete analysis on mobil-

ity prediction performance and latency per user, as well as the number of changes

among MEC servers, the distribution of users among MEC servers, consumed mem-

ory, and CPU usage. The number of changes among MEC servers is included as a

key performance metric because, in mobile scenarios, it is important to guarantee

service continuity. The changes among MEC servers (and so also the number of

potential migrations) imply the establishment of new backhaul connections, having

a negative impact on the experienced latency. Also the backhaul connection qual-

ity affects the computation execution [11]. Therefore, it is better to avoid changes

among MEC servers and keep connectivity between the user and the serving MEC

host [11], [165]. Finally, also the complexity of the proposed anticipatory network

optimization scheme is evaluated.

All the results that are reported next have been evaluated in a period of time (i.e.,

decision epochs) of 3600 s, with a time granularity of 1 s, and have been obtained

by averaging the outcomes on the 3600 realizations. Together with average values,

the 95%−confidence intervals, computed through the Gaussian statistical distribu-

tion, are reported as well for the spatial characterization. For the characterization

during 3600s, the Cumulative Distribution Functions (CDFs) illustrate only P-C and

Baseline, because GT-C trends overlap with P-C and they are omitted for the sake of

clarity.

3.3.1 Mobility prediction performance

Regarding the prediction procedure (integrated within the P-C scheme), the con-

ceived mobility prediction model exploits the ConvLSTM architecture, as described

in Section 3.2.3. To provide further insight, the comparison with a state-of-the-art

mobility prediction approach, that uses the LSTM architecture aided by the atten-

tion mechanism for capturing long-range dependency [92], is presented as well. In

particular, the reference learning architectures selected for the cross-comparison em-

brace four LSTM layers (i.e., two with 200 and 2 with 100 hidden units, respectively,

after each one a batch normalization layer is used) in order to have a comparable

complexity (i.e., a similar number of training parameters) of the corresponding Con-

vLSTM architecture. Note that the mobility prediction architecture needs a different
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TABLE 3.3: Complexity analysis of learning architectures.

Architecture
# Parameters

N=5s N=10s N=20s N=40s

ConvLSTM 801205 802210 804220 808240

LSTM with attention 799940 801850 804030 808140
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FIGURE 3.6: Prediction loss (i.e., MSE) vs number of epochs for a) ConvLSTM architecture
and b) LSTM architecture with attention.

number of training parameters for each considered temporal horizon N, as summa-

rized in Table 3.3.

Figure 3.6 shows the prediction loss (i.e., MSE) of the ConvLSTM architecture

and the LSTM architecture with attention as a function of the number of epochs for

the training set and the validation set, representing 80% and 20% of the adopted

dataset, respectively. The reported curves confirm that the developed ConvLSTM

architecture reaches lower values of MSE with respect to the LSTM architecture with

attention. Moreover, differently from the LSTM architecture with attention, the Con-

vLSTM architecture fastly converges to stable values, i.e., it does not need a long
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FIGURE 3.7: Prediction of the number of users over time for two cells taken as examples: a)
j=1 and b) j=3.
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FIGURE 3.8: MSE for each j − th cell, registered with different N.

training period. Accordingly, the ConvLSTM architecture trained during 30 learn-

ing epochs, which achieves better results in terms of prediction loss and convergence

time/complexity, is considered hereafter.

Figure 3.7 shows the observed and the predicted distribution of users over time

for two selected cells that are significant (i.e., j = 1 and j = 3 with a low and high

number of users, respectively) to evaluate the prediction performance of the con-

ceived model. In particular, the solid lines represent the ground truth of the number

of users (integrated within the GT-C scheme), while the red dotted lines describe the

predicted number of users (integrated within the P-C scheme), that are rounded up

to the nearest integer. It can be noted that the two trends are almost overlapping.

To thoroughly evaluate the mobility prediction performance in the investigated

scenario, Figure 3.8 reports the MSE values for each j − th cell, registered with the
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(a)

(b)

FIGURE 3.9: Example of taxi distribution at (a) 1:00 pm and (b) 5:00 pm in San Francisco.

different temporal horizons N. Cells j = 3 and j = 8, with the highest number

of users (see the trend of |IgNB
3 | in Figure 3.4), reach the greatest prediction losses.

Moreover, the MSE tends to increase with N, as expected. In fact, the highest values

of MSE are observed for N = 40 s, even if in this case MSE is generally lower than 4.

A further evaluation in another scenario

The conceived mobility prediction model exploiting the ConvLSTM architecture can

be applied to different scenarios. The different load of cells and the different users’

dynamics in the conducted study (see Figure 3.7) help to demonstrate the validity

of the proposed approach in changing scenarios. To provide further insight, other

real mobility traces from the similar dataset presented in [166], which reports the
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FIGURE 3.10: Prediction of the number of users over time for two cells taken as examples in
San Francisco: a) j=6 and b) j=73.

movements of around 500 taxi cabs in San Francisco (USA), from 17 May 2008 to 10

June 2008, are employed. Figure 3.9 shows an example of taxi distribution at 1:00

pm and 5:00 pm. Similarly to the Rome scenario, the considered geographical area

of 100 km2 in San Francisco has been divided into 100 square cells, covering an area

of 1 km × 1 km each.

Mobility. To evaluate the mobility prediction performance, the same learning

setup detailed in Section 3.2.3 and summarized in Table 3.2 is adopted. The results

reported below have been evaluated in a period of time of 18000 s. Figure 3.10 shows

the observed and the predicted distribution of users over time for two cells taken as

examples (i.e., j=6 and j=73). Obtained results further confirm the effectiveness of

the conceived mobility prediction model also in a larger area (100 cells instead of 10)

and for a longer period (18000 s instead of 3600 s).

Users’ requests. By assuming that all the users execute the same service, the ag-

gregate requests of communication and computational resources to be allocated in

each cell can be preliminary estimated by multiplying the predicted number of users

in the j-th cell by the related service requirements (see numerical details in Section

3.1). For example, Figures 3.11 and 3.12 show the aggregated communication and

computational resources coming from the two selected cells (i.e., j=6 and j=73) for

autonomous driving and virtual reality use cases. Note that the basic multiplicative

estimation is focused on bandwidth and memory requirements as examples of com-

munication and computational requirements, respectively. Specifically, according to
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FIGURE 3.11: Aggregated communication and computational resources estimated for au-
tonomous driving use case for j=6 and j=73.

the autonomous driving use case, for the i − th user the communication bandwidth

and memory requirements are set to bi = 700 Mbps [148] and mi = 16 GB [150],

respectively (Table 3.2). For the virtual reality use case, for the i − th user the com-

munication bandwidth and memory requirements are set to 1 Gbps [148] and 32 GB

[150], respectively. The highly accurate predictions of users’ mobility, communica-

tion and computational resources over time within a given geographical area could

significantly improve network resource optimization (as demonstrated below).

3.3.2 Latency per user

Figure 3.13 depicts the average latency per user served by each MEC server. The

average latency per user for both P-C and GT-C schemes is always lower than the

maximum tolerable latency τi. Furthermore, the proposed optimization approaches,

involving a load balancing among MEC servers, keep a nearly stable and uniform

latency throughout the network. Thus, they can improve the computation efficiency

of MEC servers, avoiding overloaded MEC servers, as well as degraded user expe-

rience, balancing MEC servers loads and always satisfying service latency require-

ments [14], [161].

On the contrary, without the previous implications, the Baseline scheme registers

an average latency per user that exceeds the maximum tolerable latency τi in high-

loaded cells.

The CDFs of all the latencies per user reported in Figure 3.14 thoroughly confirm

that only P-C always ensures service latency requirements for all the users in the
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FIGURE 3.12: Aggregated communication and computational resources estimated for vir-
tual reality use case for j=6 and j=73.
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FIGURE 3.13: Average latency per user (with the 95%−confidence intervals) served by each
MEC server for P-C, GT-C, and Baseline.

network, differently from the Baseline approach. To analyze the impact of the hori-

zon N, the values of the average latency per user among MEC servers for P-C with

each analyzed horizon are reported. They amount to 83.2 ms for the optimization

horizon N = 5 s, 81.1 ms for N = 10 s, 82.7 ms for N = 20 s, and 83.6 ms for N =

40 s. Obtained results reveal that from N = 5 s to N = 10 s the average latency per

user among different MEC servers decreases, while it tends to increase with values

higher than N = 10 s, obtaining the highest value of latency for N = 40 s.

To conclude, N =10 s is a suitable optimization horizon because of slightly lower

values of latency.
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FIGURE 3.14: CDF of the latency per user for P-C and Baseline.

3.3.3 Changes among MEC servers

Figure 3.15 shows the CDFs of the number of changes among MEC servers. Re-

ported curves demonstrate that the presented proposal generally has the highest

performance levels: a number of changes equal to 0 is registered by only 28.31%

of realizations for the Baseline scheme, whereas the proposed approach presents

around 90% of samples with 0 changes. Focusing on the horizon N, from N = 5 s to

N = 10 s the performance improves, while it tends to decrease with values higher

than N = 10 s. In fact, when N = 10 s, the number of changes is always lower and

the value of the 95−th percentile is 4 changes with respect to 7, 5, and 9 changes

measured for N = 5 s, N = 20 s, and N = 40 s, respectively. Thus, increasing the

considered optimization horizon (i.e., from N = 5 s to N = 10 s) in the optimization

problem P1 reduces the number of changes among MEC servers. However, because

of higher variability, for longer temporal horizons (i.e, N = 20 s and N = 40 s) the

anticipatory network optimization approach leads to a higher number of changes

among MEC servers and the highest number is reached with N = 40 s. The 95−th

percentile of the presented approach with N = 10 s outperforms also Baseline (i.e., 5

changes).

In summary, this analysis further confirms that N = 10 s is a suitable optimiza-

tion horizon since it minimizes the average user latency and the number of changes

among MEC servers.

3.3.4 Distribution of users among MEC servers

Figure 3.16 shows the average number of users served by each MEC server. Both

anticipatory network optimization methods (P-C and GT-C) are able to fairly dis-

tribute users’ demands among the different MEC servers, regardless of the gNB

with which they are co-located. Moreover, since the ConvLSTM architecture has

very high prediction performance, P-C behaves very similarly to GT-C. They have

exactly the same behaviors for MEC servers co-located with gNBs having a high
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FIGURE 3.15: CDF of the number of changes among MEC servers for P-C and Baseline.
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FIGURE 3.16: Average number of users (with the 95%−confidence intervals) served by each
MEC server for P-C, GT-C, and Baseline.

number of users (e.g., j=3), that are fully used under memory and computing con-

straints. Also by varying the temporal horizon N, P-C and GT-C achieve a very

similar average number of users served by each MEC host.

Instead, the Baseline approach is largely biased by the distribution of the users

among cells and, in particular, its policy is to maintain the users at the MEC server

co-located with the gNB in which they are attached.

Figure 3.17 illustrates the CDFs of the number of users served by different MEC

servers. It further confirms the extremely high similarity between the trends of P-C

with different N, that behaves differently from the Baseline scheme having higher

variability.

3.3.5 Amount of memory consumed by MEC servers

Figure 3.18 represents the average values of the memory consumed by each MEC

server. Also in this case it is possible to observe that both P-C and GT-C meth-

ods, with different horizons N, well balance the load among the MEC servers. This

result confirms the fairness property investigated in the previous subsection. In

high-loaded cells, the MEC servers co-located with the gNBs saturate their available
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FIGURE 3.18: Average amount of memory (with the 95%−confidence intervals) consumed
by each MEC server for P-C, GT-C, and Baseline.

memory. As a consequence, the proposed approaches redirect some of the requests

generated within these cells towards other MEC servers, thus always satisfying the

constraint reported in (3.4a).

Instead, the consumed memory Mcons
m for Baseline, without memory constraints,

reaches an average value of around 400 GB for MEC servers corresponding to cells

with a high number of users (e.g., m= j=3), as demonstrated by the reported results.

As an additional confirmation, the CDFs reported in Figure 3.19 describe how the

Baseline approach registers peak usage of memory equal to around 600 GB. On the

contrary, the anticipatory optimization scheme developed in this work guarantees

quite balancing of the amount of memory consumed in the available MEC servers,

which is always below the target upper bound.

3.3.6 CPU usage of MEC servers

According to the definition in (3.3) and the related constraint (3.4b) of the formulated

optimization problem P1, the CPU capability of each MEC server is completely con-

sumed in all the implemented approaches. Note that the computing capacity of the

m − th MEC server in the optimization problem P1, i.e., F
opt
m = 36 Gigacycles/s, is
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FIGURE 3.19: CDF of the amount of memory consumed by MEC servers for P-C and Base-
line.

adequately set with respect to overall requests and it is lower compared to typical

values of the MEC server ability. In fact, they can be greater than 1000 Gigagycles/s

[167] and, with that assumption, the vast majority of the available CPU resources

could be dedicated to other services and purposes.

Of course, the CPU ability of MEC server affects the execution latency experi-

enced by each user, which is the most significant component of user latency. In

fact, because of the computing sizing of MEC servers (i.e., F
opt
m ), the average total

latency per user performed through the optimization approach is generally closer to

the maximum tolerable latency τi (as detailed in Section 3.3.2) and it validates the

current assumption in considering the radio component as constant. Without load

balancing among MEC servers, the same computing capacities (i.e., Fm = F
opt
m ) are

not sufficient to always satisfy the upper bound of service latency τi in the Baseline

case. In particular, the average number of CPU cycles/second allocated by the m− th

MEC server to the i − th user, i.e., f̄im, is generally lower for Baseline compared to

P-C and GT-C, as demonstrated in Figure 3.20. Therefore, the Baseline case has a

higher execution latency because of lower values of f̄im. Furthermore, since f̄im is in-

versely related to the number of users served by the m − th MEC server |IMEC
m |, the

Baseline scheme registers the lowest and the highest values of f̄im for MEC servers

co-located with gNBs having a high and a low number of users, respectively.

The related CDFs reported in Figure 3.21 illustrate the similar behaviors of P-

C with different horizons N, that generally has higher values of f̄im with respect

to Baseline. Moreover, this plot confirms that the maximum possible value for the

number of CPU cycles per second allocated by the m−th MEC server to the i−th

user (i.e., fim) is the CPU ability of MEC server F
opt
m .

3.3.7 Complexity analysis

Despite the overall better performance reported above, introducing the anticipatory

methods increases the complexity in the network management system, basically due
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FIGURE 3.20: Average number of CPU cycles/second (with the 95%−confidence intervals),
allocated by each MEC server to served users, for P-C, GT-C, and Baseline.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

N=5s

N=10s

N=20s

N=40s

Baseline

F
m

opt

FIGURE 3.21: CDF of the average number of CPU cycles/second per user for P-C and Base-
line.

TABLE 3.4: Complexity analysis per decision epoch.

Complexity parameter

Approach

P-C Baseline

N=5s N=10s N=20s N=40s

Running

time
4.37s 7.81s 34.78s 78.62s 0.04s

# Objective function

evaluations
5321 10125 21369 43791 -

to finding the solution to the optimization problem P1. In Table 3.4, P-C and Base-

line are compared in terms of the average running time of each decision epoch tk

and the average total number of objective function evaluations needed for each de-

cision epoch tk, characterizing only P-C solved through value iteration, which is

∑j∈J |I
gNB
j (tk,n)| · |M| · N [168]. GT-C is omitted because the cost of the optimiza-

tion process is analogous to P-C. However, here it is highlighted that the mobility

prediction model required by P-C needs an extra-training phase, which early con-

verges anyhow (Section 3.3.1). Without the optimization problem, Baseline has an

extremely lower running time because it does not implement any controls and does



78 Chapter 3. Anticipatory Resource Allocation at the Edge

not anticipatorily evaluate the user distributions. For P-C, it is evident that the com-

plexity increases with N. In fact, the larger the look-ahead horizon N, the deeper in

future in the objective function of each k−th optimization problem (i.e., by consider-

ing N steps ahead in each decision cycle tk,n). Thus, P-C with N = 5 s has the lowest

average running time and the lowest number of objective function evaluations per

decision epoch. Intermediate values are reached when N = 10 s and N = 20 s and

P-C with N = 40 s has the highest complexity. Again, N = 10 s is the best trade-off

between performance and complexity.

Note that simulations have been executed on an Intel Core i5 CPU quad-core

with 8 GB of RAM and the running time will be extremely reduced on a power-

ful machine with GPU, by improving the efficiency of the proposed approach [169],

[170]. In particular, GPU server is at least 4-5 times faster than CPU server (with

16/24 cores) [170]. The significant profit of using a powerful machine makes the

running time not only comparable to but much lower than the optimization epoch

of the optimization algorithm. The effectiveness can be further enhanced (i.e., much

shorter running time) by using a GPU server with more features [170], that are actu-

ally used by network operators.

It is remarked here that the encouraging results achieved by the proposed antici-

patory network optimization approach open future research directions aiming at de-

creasing the computational complexity of the proposed solution based on dynamic

programming while maintaining the same performance. To this aim, solutions based

on DRL [22], [171], [172] and distributed training [173]–[176] seem interesting areas

to be further explored.

3.4 Final considerations

This study has presented a novel methodology for anticipatorily allocating com-

munication and computational resources at the network edge, and over different

look-ahead temporal horizons. Specifically, the ConvLSTM has been used to predict

the number of users served within a given number of cells and their related service

demands, and the Dynamic Programming has been exploited to optimally allocate

users’ requests among MEC servers for better managing task offloading within a

network slice created into a 5G system. By focusing on the autonomous driving use

case, computer simulations have demonstrated the capability of the proposed solu-

tion to fairly distribute users’ requests at the network edge, while satisfying com-

munication and computational constraints, as well as meeting latency constraints of

the considered service.
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Chapter 4

A Tenant-Driven Radio Access

Network Slicing Enforcement

Scheme based on Pervasive

Intelligence

A Tenant-driven RAN slicing enforcement scheme based on Pervasive Intelligence

is proposed in this Chapter to achieve an important step forward in the management

of network slicing at the RAN level.

B5G networks are expected to support various new use cases from vertical indus-

tries, which impose a wide range of performance and requirements. Network slicing

is a valid key enabler to support customized network services on-demand, permit-

ting multiple vertical industries to execute their solutions on the top of a shared

infrastructure and accommodating heterogeneous services [8], [177]–[181]. At the

same time, it promises to open new business models for all the interested stake-

holders (that are Infrastructure Providers and Service Providers or Tenants), while

intensifying the collaboration among all the involved parties and keeping their re-

quirements distinct [119], [182]. On the one hand, in fact, the Infrastructure Provider

should manage and accept resource requests issued by Tenants, without having ac-

cess to their most significant data, and configure (potentially on-demand) the cor-

responding network slice instances. On the other hand, Tenants should be able to

submit their requests, without having a complete understanding of the network it-

self. The management of network slicing in the core network has been intensely

investigated in the current scientific literature. On the contrary, handling network

slicing in the RAN is still an open issue. In fact, the unpredictable variability of the

wireless channel, network dynamics, slice isolation, scarcity of resources, increased

inter-cell/inter-tier interference caused by spatial multiplexing of the spectrum, as

well as diverse QoS requirements of different services pose significant technical chal-

lenges on the management and provisioning of RAN slicing [180], [183]. To this

end it would be essential to pervasively adopt AI within the slicing paradigm other

than to anticipatorily allocate communication and computational resources at the

network edge for solving the task offloading problem (as analyzed in the previous



80 Chapter 4. A Tenant-Driven RAN Slicing Enforcement Scheme

Chapter), especially in view of the ever-increasing network complexity of future mo-

bile systems due to resource sharing among multiple entities [13], [100]. Most of the

contributions employing AI-based methods for channel estimation and the manage-

ment of network slicing in the core network and RAN, propose centralized solutions

based on deep learning and RL/DRL, where the network status is fully observable

(please see Section 1.3.3 for further details).

In the business vision of network slicing, however, Tenants are decoupled from

the Infrastructure Provider and they can only have a partial view of the network

status [8], [9], [184]. The current state-of-the-art approaches do not handle these

aspects, by presenting slicing enforcement schemes driven directly by the Infras-

tructure Provider.

To bridge this gap, a novel Tenant-driven RAN slicing enforcement scheme based

on Pervasive Intelligence, that can be fully implemented in the business and privacy-

preserving vision of network slicing, is proposed in this Chapter. Thanks to the

Tenant-driven nature of the proposal, Tenants can operate independently (by only

use their own partial view of the network status) on the underlying infrastructure to

dynamically adapt bandwidth requests and guarantee their expected service perfor-

mance [8], [185]. This aspect also provides higher scalability with respect to any cen-

tralized method [119]. Moreover, according to the Pervasive Intelligence paradigm,

both Infrastructure Provider and Tenants exploit AI to accomplish their tasks. This

is fully aligned with the pervasive intelligent endogenous design of future genera-

tions of mobile networks [100]. Specifically, the Infrastructure Provider exploits a

deep learning method based on a convolutional autoencoder, which compresses the

information on network resources and connectivity and shares the actual (but hid-

den through compression) network status with the Tenants. In turn, each Tenant

exploits the resulting hidden knowledge of the network status in a DRL agent based

on the DDPG algorithm to dynamically adapt bandwidth requests according to its

own users’ requirements. Finally, the Infrastructure Provider employs the outcomes

of the DDPG algorithm to effectively enforce the network slices in the RAN. Thus,

even if each Tenant does not fully know network resources and conditions infor-

mation, the bandwidth requested for offering services and respecting a given QoS

constraint (i.e., target Service Availability) could be optimally allocated according to

the Pay for What You Get paradigm: the lower the requested bandwidth, the higher

the Tenant savings, while avoiding the radio resources over-provisioning.

The efficiency of the devised Tenant-driven RAN slicing enforcement scheme

based on Pervasive Intelligence is investigated for the eMBB and Remote Driving

use cases, by using computer simulations with real and conceivable network and

QoS settings in compliance with ITU and 5G specifications [186]–[188]. The compar-

ison with conventional resource allocation methods, corresponding to the optimal,

random, and dynamic (i.e., proportional to the users’ requests) allocation of band-

width, demonstrates that the proposed approach ensures the best trade-off between

bandwidth savings and bandwidth over-provisioning, while always ensuring the
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target Service Availability.

4.1 The proposed scheme

To present the main theoretical aspects related to the conceived approach, this Sec-

tion focuses on a single Infrastructure Provider, willing to lease a portion of its hard-

ware and software resources to a number of Tenants for the creation of independent

slices [189]. In turn, each Tenant uses these resources to install applications, hold

its own data, enable its preferred security and privacy policies, and provide services

with different bandwidth, latency, and QoS requirements [8], [9], [178]. To this end,

different logical entities and networking functions are exploited across the overall

communication infrastructure, including core network, edge network, and RAN (see

Figure 4.1).

Specifically, the Management and Orchestration entity is in charge of configur-

ing the entire system. For instance, it sets traffic routing policy and flow priorities

throughout the network and initiates and manages network resources. At the same

time, the network edge hosts the Infrastructure Provider subsystem, a number of

Tenants subsystems, and the RAN controller, which continuously interact over time

to ensures a dynamic RAN slicing enforcement strategy. It is important to highlight
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that the considered architecture is suitable to manage the entire network slices life-

cycle, including preparation, instantiation, configuration, activation, run-time, and

decommissioning phases [190]. However, as already mentioned, the discussion will

consider the run-time phase only, dedicated to the slicing enforcement.

As expected, the Infrastructure Provider has a comprehensive view of the net-

work and it can access to data not natively accessible for Tenants. For example, the

Infrastructure Provider subsystem is the only entity able to retrieve information from

the RAN. The most important data exploited in this work is the radio channel con-

dition experienced by end-users, shared with the Infrastructure Provider through

Channel State Information (CSI) feedbacks. Being a well-founded methodology in

legacy cellular networks [191], in fact, it is assumed to be used in 6G & Beyond as

well. Among the other parameters carried by the CSI feedback, the CQI provides

information about the current communication channel quality.

The methodology presented in this work assumes that the Tenant subsystem may

control its slice based on the information carried out by CQI feedbacks. At the same

time, however, it is not reasonable to suppose that the Infrastructure Provider sub-

system forwards all the collected CQI feedbacks to each Tenant subsystem. Oth-

erwise, privacy-preserving requirements and business roles of the Infrastructure

Provider and Tenants would be compromised, and the communication overhead at

the network edge would be unnecessarily high [103]. To solve these issues, accord-

ing to the Pervasive Intelligence paradigm, the Infrastructure Provider subsystem

processes the collected CQI feedbacks through deep learning and exposes a com-

pressed vision of the RAN status to the Tenant subsystems. This task is performed

through an autoencoder and represents one of the main novel ideas presented in this

work. Specifically, by discarding irrelevant information and reducing the dimen-

sionality of data, the autoencoder is used to generate a feature vector representing

the CQI feedbacks, without requiring the knowledge of data distribution nor the ex-

plicit identification of a certain structure [37], [192]. As a result, by compressing the

CQI information, it is possible to hide the network status (because Tenants cannot

reconstruct original CQI indexes) and to limit network complexity (because of re-

duced information exchanged with Tenants subsystems). Indeed, the Infrastructure

Provider subsystem sends the compressed CQI feedbacks to the Tenant subsystem.

The adopted autoencoder will be thoroughly described in Section 4.1.1.

Then, the Tenant subsystem further processes the received data (also in this case,

through specific AI algorithms falling into DRL, as discussed hereafter) and supplies

instructions for the successful handling of its RAN slice. It is important to remark

that the Tenant subsystem cannot manage RAN slices directly. However, any action

is controlled (first) and implemented (then) by the Infrastructure Provider. For this

reason, the Tenant subsystem sends the aforementioned instructions to the RAN con-

troller, which decides to accept/deny them, allocates RAN resources to the slice, and

enforces the slicing policy on the available spectrum. The requests that the Tenant
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subsystem may submit to the RAN controller include bandwidth allocation, vari-

ation of radio resource scheduling algorithms, Hybrid Automatic Repeat reQuest

(HARQ) configurations, channel coding schemes, power control strategies, multi-

cast/broadcast activation, or beam management [193], [194]. Also, these requests

must be issued in real-time, to successfully meet end-users requirements under the

current RAN conditions.

The conceived slice enforcement strategy allows the Tenant subsystem to esti-

mate, in real-time and slot by slot, the amount of radio resources to allocate to the

controlled slice. Thanks to the Pay for What You Get paradigm, only the required

amount of bandwidth is allocated, so that the radio resources over-provisioning is

avoided. At the same time, however, it is requested that allocation decisions must be

executed instantaneously to reduce communication latency and avoidable expenses

[184]. In this context, the scenario appears as a classical MDP:

• the environment is the cellular network architecture;

• the state s ∈ S of the environment is represented by information coming from

the Infrastructure Provider subsystem as well as data already available at the

Tenant subsystem;

• the action a ∈ A is executed by the Tenant subsystem to modify the environ-

ment, i.e., to control the RAN;

• the reward R is the efficiency of the chosen action a subject to Tenant QoS con-

straints.

Accordingly, the developed solution definitively employs DRL for supporting the

slice enforcement strategy. Tenants subsystems act as DRL agents that process the

features extracted by the autoencoder (and provided by the Infrastructure Provider

subsystem, as illustrated before), and optimize their actions. Since DRL provides

autonomous decision-making, the resulting system also ensures a high scalability

level. Indeed, Tenants subsystems can make observations and obtain the best policy

locally without exchanging information among each other. This reduces commu-

nication overheads and also improves the security and robustness of the networks

[22]. The agent–environment interaction breaks into episodes, that consist of a cer-

tain number of time steps, during which the agent selects the action in A. Then,

as a consequence of its action, the agent receives the reward R and move to a new

state s [195]. Section 4.1.2 will provide more details about the implemented DRL

framework.

To facilitate the understanding of the notations adopted in what follows, a sum-

mary of symbols is reported in Table 4.1.
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TABLE 4.1: List of mathematical symbols adopted in Chapter 4.

Symbol Description

Y Input spatial snapshot of CQI indexes
K Number of rows of Y

L Number of columns of Y

Nl Number of filters used by the l − th convolutional layer of the
autoencoder

rl Number of rows of the l − th convolutional layer of the autoen-
coder

cl Number of columns of the l − th convolutional layer of the au-
toencoder

vl Vertical step size of the l − th convolutional layer of the autoen-
coder

hl Horizontal step size of the l − th convolutional layer of the au-
toencoder

chl Number of channels for the channel-wise normalization of the
l − th convolutional layer of the autoencoder

f Feature learning representation vector
F Dimension of f

Ŷ Reconstructed input snapshot
βs Mini-batch size
a Action
A Action space
s State
S State space
R Reward
u Number of users per sector
W Number of cell sectors in the system
w Sector index
σ Service Availability
Q̂(s, a|θQ)/Q̂′(s, a) Approximation through which the critic/target critic network

evaluates the Q function
µ(s|θµ)/µ′(s) Policy modeled by the actor/target actor network
θQ/θQ′

Parameters of the critic/target critic network
θµ/θµ′

Parameters of the actor/target actor network
Lc Loss minimized by the critic network
M Number of experiences sampled from the experience replay
J Environment start distribution
λn Number of neurons of the n − th fully connected layer of the

actor and critic networks
PLOS LOS probability
PLLOS/PLNLOS Pathloss model in the case of LOS/NLOS propagation condition
T Downlink target rate
B Maximum bandwidth that each Tenant subsystem may request

for every sector
p Percentile of the SINR distribution
E Episode Availability Indicator
NE Number of test episodes
ǫt Parameter related to the target Service Availability σ

t Test episode index
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FIGURE 4.2: Architecture of the adopted convolutional autoencoder.

4.1.1 Design of the Autoencoder used by the Infrastructure Provider sub-

system

As anticipated in Section 2.2.1, the autoencoder is a particular ANN implementing

two key functionalities: the encoder generates the corresponding feature learning

representation of input data, while the decoder provides a reconstruction of the in-

put data, starting from the aforementioned feature learning representation.

The input data are spatial snapshots (i.e., matrices) related to the CQI indexes of

mobile users, namely Y ∈ R
K×L, where K and L are the chosen numbers of rows

and columns of the snapshot, respectively. Note that K and L are design parame-

ters. As depicted in Figure 4.2, the investigated encoder is made of three chained

2-dimensional convolutional layers to extract spatial correlations of CQI indexes

snapshots [135]. Each layer comprises a set of filters which are convolved with the

CQI indexes snapshot to extract the features of a certain input region and with the

ReLU activation function. Then, two pooling layers follow each convolutional layer

to perform down-sampling (i.e., max-pooling picks the maximum value) of inter-

mediate representations, for complexity reduction and overfitting mitigation [17],

[41]. The first and the second convolutional layers use N1 filters (r1 × c1) and N2

filters (r2 × c2), respectively. Note that N1 and N2 represent the number of filters,

while (r1 × c1) and (r2 × c2) describe the dimensions of filters, where r1, c1 and r2,

c2 represent the number of rows and columns of the first and the second convo-

lutional layers. In addition, the filters can have diverse strides [v1 h1] and [v2 h2]

(where v1, v2 and h1, h2 represent the vertical and the horizontal step size for the

first and the second convolutional layers). Then, a channel-wise normalization with

ch1 channels and ch2 channels per element is performed for the first and the second

convolutional layers, respectively. A typical operation in CNN is indeed the chan-

nel normalization for rescaling each channel (whose number determines the depth

of the snapshot) into the range of [0,1], thus avoiding vanishing gradients [196]. By

receiving as input the snapshot of CQI indexes Y ∈ R
K×L, the encoder generates

the corresponding feature learning representation vector, namely f ∈ R
F, with F

depending on (K, L, r1, c1, r2, c2).

The output of the encoder, i.e., the features f extracted for each input snapshot,
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is obtained by the third convolutional layer with 1 filter (1 × 1) and then it is given

to Tenant subsystems as input for the DRL agents.

Finally, the decoder provides the reconstruction of the CQI indexes, namely

Ŷ ∈ R
K×L, starting from the aforementioned feature learning representation f. By

going backwards to input reconstruction, the decoder makes use of two up-sampling

layers, corresponding to the two max-pooling layers in the encoder [17], [41], and

three convolutional layers, with the ReLU activation function, except for the out-

put layer, which uses the sigmoid activation function [17]. The convolutional layers

employ N2 filters (1 × 1), N1 filters (r2 × c2), and 1 filter (r1 × c1), respectively.

All the CQI indexes stored in Y are normalized within the range [0,1] to acceler-

ate the training convergence [134]. The autoencoder uses weights that are properly

configured during the training phase and iteratively updated for each mini-batch

of the dataset in order to minimize the MSE loss function. Formally, the MSE loss

function is defined as [135], [138]:

MSE =
1
βs

βs

∑
b=1

K

∑
k=1

L

∑
l=1



ŷb,k,l − yb,k,l





2

, (4.1)

where βs represents the mini-batch size, yb,k,l ∈ Yb, and ŷb,k,l ∈ Ŷb.

The encoder is the key building block of the presented deep learning architec-

ture because it generates the compressed CQI indexes (i.e., the CQI features f) [37]

to be shared with the DRL framework. The decoder, instead, is used to train the au-

toencoder to return the reconstructed CQI indexes and evaluate the performance of

the designed encoder. Other than this analysis, it will not be employed by the DRL

framework because at runtime, once the autoencoder is trained, only the encoder

part is utilized.

4.1.2 Design of the Deep Reinforcement Learning Agents used by the

Tenant subsystems

As already mentioned, policies based on Pay for What You Get paradigm are used by

the Infrastructure Provider to prevent the over-provisioning of a Tenant. In other

words, the Infrastructure Provider associates a unitary cost with each bandwidth

resource and determines a maximum amount of bandwidth to use in each cell. The

role of the DRL agent of each Tenant subsystem is to reserve the minimum amount

of bandwidth in each cell to satisfy its QoS requirements, so as to avoid resource

over-provisioning. Therefore, the Tenant subsystem places its bandwidth allocation

requests expressed as a fraction of the maximum available bandwidth within a fixed

allocation period.

The action a ∈ A is the ratio between the amount of bandwidth the Tenant re-

quests to the Infrastructure Provider every allocation period and the maximum al-

lowable bandwidth. It is a continuous value between 0 and 1 (i.e., 0% and 100% of
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the bandwidth made available to the Tenant).

The state s ∈ S is a vector defined as in the following:

s = (u, f, σ) (4.2)

where u ∈ N
W is the number of users per sector (W is the number of cell sectors in

the system, i.e., portions of the cell served by one of the W co-located base stations),

f ∈ R
F represents the feature learning representation, and σ ∈ R is the communica-

tion Service Availability throughout each episode. In more detail, the component of

the feature learning representation fi, ∀i = 1, 2, ..., F are the features on radio channel

conditions extracted by the autoencoder. The communication Service Availability σ

is defined as the percentage value of the amount of time the Tenant service is de-

livered according to the agreed QoS, divided by the amount of time the Tenant is

expected to deliver the service [187].

It is also important to highlight that the details of the radio interface, e.g., the

adopted numerology, the scheduling policy, the packet fragmentation rules, and so

on, are fully in charge of the Infrastructure Provider and are not known by the Tenant

agents, which only rely on the compressed version of the radio link conditions of

their users (i.e., compressed network status) [191], [197].

Finally, the choice of the reward R in a DRL problem is subject to empirical con-

siderations: a good reward function should capture the essence of the problem. In

this study, the reward should take into account the amount of bandwidth the Tenant

subsystem saves with respect to the maximum bandwidth B, provided that the QoS

constraints can be satisfied. To elaborate, the reward R is computed as:

R =























1 − a, if the target Service Availability σ is

guaranteed;

−1, otherwise.

(4.3)

Thus, according to the Tenant service and the agreed QoS, the less the bandwidth

requested by the Tenant, the higher the reward. The strategy is adopted to terminate

the training episode when R = −1, i.e., as soon as the Tenant subsystem is not

providing the service with the target Service Availability.

Among the possible DRL techniques, a deterministic policy gradient algorithm,

i.e., the DDPG algorithm, is considered since it is known to be suitable for deal-

ing with continuous states and actions [195], [198]. It is an actor-critic, model-free,

off-policy DRL method which computes an optimal policy that maximizes the long-

term reward [22], [199]. DDPG primarily uses two neural networks, one for the actor

and one for the critic, as illustrated in Figure 4.3. The critic evaluates the Q func-

tion through an approximation Q̂(s, a|θQ) and the actor models the policy through

µ(s|θµ). θQ and θµ are the parameters of the critic and actor networks, respectively.
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FIGURE 4.3: Architecture of the adopted DDPG algorithm.

Besides, two duplicates of the actor and critic networks, which are called target net-

works, are employed to improve the stability during learning, being the target val-

ues forced to change slowly. The target critic is identified by Q̂′(s, a) and θQ′

, while

µ′(s) and θµ′

are related to the target actor.

The update of the actor and critic networks occurs with the gradient descent

method. Specifically, the critic’s θQ is updated by minimizing the loss Lc:

Lc =
1
M

M

∑
i=1

(

yi − Q̂(si, ai|θ
Q)

)2
, (4.4)

where M is the number of experiences sampled from the experience replay (i.e.,

where the agent stores each of its experiences during training) [200], yi = Ri +

γQ̂′(si, µ′(s′i|θ
µ)|θQ′

) is the Q function target approximated through bootstrapping

[195], γ is the future reward discount factor [195], and s′i represents the next obser-

vation.

In turn, the actor’s θµ is updated by following the sampled policy gradient to

maximize the expected discounted reward:

∇θµ J ≈
1
M

M

∑
i=1

∇µ(si)Q̂
(

si, µ(si)|θ
Q
)

∇θµ µ(si|θ
µ), (4.5)

where J is the environment start distribution as defined in the policy gradient theorem

[195].

To further elaborate, the state s passes through the first and second fully-

connected layers of critic and actor neural networks with λ1 and λ2 neurons, re-

spectively, and ReLU activation function. Then, as shown in the right part of Figure
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4.3, the actor network provides the action µ(s|θµ) = a as output by using a fully-

connected layer with 1 neuron and hyperbolic tangent (i.e., tanh) activation function.

The action a is also received as input by the critic network and it passes through a

fully-connected layer with λ2 neurons. After adding the processed state, the expected

cumulative long-term reward Q̂(s, a|θQ) is obtained by the critic network through a

fully-connected layer with 1 neuron and ReLU activation function.

4.2 Performance Evaluation

The performance of the conceived Tenant-driven RAN slicing enforcement scheme

based on Pervasive Intelligence is evaluated through computer simulations. To this

aim, a system-level simulator of a mobile system is developed in MATLAB, based

on the ITU’s methodology recommendation [186]. The tool specifically models the

downlink transmission. However, similar considerations and results can be ob-

tained for the uplink case. A given number of base stations is placed in a regular

grid, following a hexagonal layout. All cell sites consist of 3 sectors, where a config-

urable number of mobile terminals, or User Equipments (UEs), is dropped indepen-

dently with a uniform distribution. The UEs, which have a fixed and identical speed

with a randomly distributed direction, are attached to the base station able to ensure

the highest Signal-to-Interference-plus-Noise Ratio (SINR).

All the links between base stations and UEs in the system are simulated with

dynamic channel properties, taking into account a network layout configuration

that wraps around the simulation map as one gets to one of its borders. The im-

plemented channel modeling considers inter-site interference and large-scale pa-

rameters, i.e., pathloss, shadow fading, and Line-Of-Sight (LOS)/Non-Line-Of-Sight

(NLOS) propagation condition, according to the ITU guidelines [186]. Indeed, the

propagation condition is determined by comparing a realization of a random vari-

able with the distance-dependent LOS probability. If the value of the random vari-

able is less than the LOS probability, the simulation considers the UE in a LOS prop-

agation condition. Otherwise, a NLOS propagation condition is taken into account.

Let d2D be the distance between the base station and the UE in km, d3D the 3D

distance (including heights in the computation), ω the center frequency in Hz, c the

speed of light, HgNB the height of the base station, and HUE the height of the UE.

The LOS probability PLOS is given by the following:

PLOS =







1, d2D ≤ 18m;

P′
LOS, d2D > 18m;

(4.6)

where

P′
LOS =

[

18
d2D

+ e−d2D/63
(

1 −
18

d2D

)]

(

1 + C′(HUE)
5
4

(

d2D

100

)3

e−d2D/150

)

, (4.7)
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with

C′(HUE) =











0, HUE ≤ 13m;
(

HUE−13
10

)1.5
, 13m < HUE ≤ 23m.

(4.8)

According to the selected propagation condition (that is LOS or NLOS), a specific

pathloss model is applied. In the case of LOS propagation condition, the pathloss

model is:

PLLOS =







PL1, d2D < dbp1

PL2, d2D > dbp1

(4.9)

where

dbp1 = 4(HgNB − 1)(HUE − 1)(ω/c) (4.10)

and

PL1 = 28.0 + 22 log10(d3D) + 20 log10(ω), (4.11)

PL2=40 log10(d3D) + 28.0 + 20 log10(ω)−9 log10

(

dbp1
2 + (HgNB − HUE)

2
)

. (4.12)

Otherwise, in the case of NLOS propagation condition, the pathloss is modeled as:

PLNLOS = max(PLLOS, PL′
NLOS), (4.13)

where

PL′
NLOS = 161.69 +

(

43.42 − 3.1 log10(HgNB)
) (

log10(d3D)− 3
)

+ 20 log10(ω)+

−

(

24.37−
1480 log10(HgNB)

H2
gNB

)

−0.6(HUE − 1.5)−
(

3.2(log10(17.625))2−4.97
)

.

(4.14)

The shadow fading is modeled as a log-normal random variable, with standard

deviation set to 4 dB and 6 dB for LOS and NLOS propagation conditions, respec-

tively.

At the application level, the full-buffer traffic model (where the queue depths are

assumed to be infinite) is implemented. The user-experienced data rate is derived

through the Shannon theorem, which is exploited to estimate the upper bound of

the performance. Finally, the MAC scheduling strategy enforced by Infrastructure

Provider’s base stations is Round Robin.

To evaluate the compliance of the developed simulator with 3GPP specifications,

Figure 4.4 shows the CDF of the wideband SINR experienced by the UEs adopt-

ing the developed MATLAB simulator. The reported curve demonstrates that the

simulator is well calibrated according to the 3GPP Phase 1 NR MIMO system level

calibration for multi-antenna systems [201].
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FIGURE 4.4: CDF of the wideband SINR of the developed simulator with respect to 3GPP
Phase 1 dense-urban (macro-layer) system-level calibration for multi-antenna systems.

TABLE 4.2: Scenarios.

eMBB
Remote

Driving

Network deployment ITU Dense Urban eMBB [186] ITU Urban Macro URLLC [186]

UE speed 3 km/h [186] 30 km/h [186]

UE density 2000 UE/km2 [187] 1200 UE/km2 [188]

Downlink target rate T 50 Mbps [187] 400 kbps [188]

Service Availability σ 90% 99%

Traffic model Full-buffer [186] Full-buffer [186]

Without loss of generality, the Tenant subsystems are assumed to operate two

types of network slices, i.e., eMBB and Remote Driving slices, with real and conceiv-

able network and service settings. Of course, the whole scheme can be applied to

each type of slice and scenario by correctly adapting the related parameter settings.

For the eMBB scenario, the speed and density of UEs are set to 3 km/h [186]

and 2000 UE/km2 [187], respectively, and the downlink target rate and the Service

Availability are set to T = 50 Mbps [187] and σ = 90%, respectively, according to

the ITU Dense Urban eMBB deployment [186]. For the Remote Driving scenario, in

line with the ITU Urban Macro URLLC deployment [186], the speed and density of

UEs are set to 30 km/h [186] and 1200 UE/km2 [188], respectively, and the downlink

target rate and the Service Availability are set to T = 400 kbps [188] and σ = 99%,

respectively. Then, the full-buffer traffic model is implemented for both scenarios

[186]. Table 4.2 summarizes the parameter settings.
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TABLE 4.3: Performance of the different configurations of convolutional autoencoders.

Configuration Performance

Filters Channel-wise

normalization

Training

RMSE

Number of

trainable

parameters

Number Dimension Stride
N1 N2 r1 c1 r2 c2 v1 h1 v2 h2 ch1

200 100 3 3 1 3 4 4 1 1 2 1.2012 123202

200 100 3 2 1 6 4 4 1 1 2 1.2032 243202

200 100 3 2 1 5 4 2 3 2 2 0.1277 203202

200 100 3 2 1 5 4 2 3 2 3 0.1384 203202

300 150 3 2 1 5 4 2 3 2 2 0.1295 454802

400 200 3 3 1 5 3 3 1 1 2 0.1237 808802

200 100 3 3 1 5 3 3 1 1 2 0.1188 204402

200 100 3 3 1 5 3 3 1 1 3 0.1195 204402

4.2.1 Performance of the Autoencoder used by the Infrastructure Provider

subsystem

The autoencoder, used by the Infrastructure Provider subsystem to compress the

network status, leverages data related to the radio channel conditions. Specifically,

a dataset generated by the implemented MATLAB simulator in compliance with

3GPP specifications is used. For both the scenarios reported in Table 4.2, the adopted

dataset consists of 10000 realizations reporting the CQI indexes. Each realization is

a snapshot with K × L = 3× 30 = 90 CQI values for each base station: if the number

of attached UEs is greater than 90, only the worst 90 values are included; if the

number of attached UEs is less than 90, an appropriate padding is performed to have

snapshots of the same dimensions. Thus, the autoencoder must not be retrained if

the number of UEs changes in the network scenario.

Different configurations of convolutional autoencoders, characterized by differ-

ent values of parameters listed in Section 4.1.1, are investigated for identifying the

suitable configuration to be used in the DRL framework. In particular, different

numbers N1 and N2, dimensions r1 × c1 and r2 × c2, and strides [v1 h1] and [v2 h2]

of filters for the first and the second convolutional layer are analyzed (please see Ta-

ble 4.3 for further details). Also the channel-wise normalization is performed with

diverse ch1 channels for the first convolutional layer, while ch2 for the second convo-

lutional layer is omitted because it is always set equal to 1. Note that the dimension

of the feature learning representation vector f is the same for all the configurations

in Table 4.3, that is F = 6 (i.e., a sufficient number of representative features on radio

channel conditions).

The training set, whose performance is listed and evaluated in Table 4.2, the val-

idation set, and the test set consist of 70%, 15%, and 15% of the adopted dataset,

respectively. The training phase, during which weights are iteratively updated in

order to minimize the MSE loss function, lasts 100 epochs (i.e., complete passes
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through the training data [142] such that each example has been seen once) for all

the evaluated configurations of convolutional autoencoders. The Adam optimiza-

tion [143], with a learning rate of 0.01, is used to iteratively update the network

weights. The performance is investigated in terms of training Root Mean Square Er-

ror (RMSE) and the number of trainable parameters. The RMSE represents the root

of the MSE, as defined in (4.1), and allows a better understanding of resulting values.

The number of trainable parameters measures the complexity of selected learning ar-

chitectures: the higher the number of parameters, the higher the complexity. Note

that the RMSE gives the reconstruction performance of the whole autoencoder, even

if the CQI reconstruction is not the focus of this work. However, if an autoencoder

is able to well reconstruct the input, it means that its single blocks (i.e., encoder and

decoder) have high performance.

Obtained results are reported in Table 4.3 for all the evaluated configurations

of convolutional autoencoders. The second-last configuration, which is highlighted

in Table 4.3, represents a good trade-off between loss and complexity. As a conse-

quence, the rest of the presented work considers this configuration as the best one

of the proposed autoencoder used by the Infrastructure Provider subsystem. Then,

its compressed CQI feature learning representation is passed to the DRL agents em-

ployed by the Tenant subsystems.

Once the best autoencoder configuration is selected, the convergence analysis

evaluates the performance of the deep learning architecture as a function of the

number of epochs considered during the training phase. Figure 4.5 shows the au-

toencoder loss as a function of the number of epochs for the training set and the

validation set. The validation set reaches slightly lower values of loss with respect

to the training set because it is not hard to reconstruct. The reported curves confirm

that the selected convolutional autoencoder fastly converges to stable values, with-

out underfitting nor overfitting after the training phase, and does not need a long

training period.

Finally, Figure 4.6 reports the reconstruction errors on the test set with the relative

frequency. It is evident that the selected configuration of the convolutional autoen-

coder reconstructs data with very high accuracy during the test phase. In fact, the

reconstruction with an overestimation/underestimation of more than 2 CQI indexes

occurs with a relative frequency always lower than 0.01.

4.2.2 Performance of the Deep Reinforcement Learning Agents used by

the Tenant subsystems

The performance of the DRL agents used by the Tenant subsystems is evaluated

through the calibrated simulator. Specifically, a DDPG algorithm is implemented by

Tenant subsystems. As anticipated, two different Tenant subsystems are taken into

account. They are assumed to provide eMBB services and Remote Driving services,

whose target Downlink rate T and Service Availability σ are reported in Table 4.2).

Each episode lasts 1 s, i.e., the DRL agent performs its actions every second. This
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FIGURE 4.5: Autoencoder loss (i.e., MSE) vs number of epochs.
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FIGURE 4.6: Relative frequency of the reconstruction errors on the test set.

means that the Tenant subsystems can update their bandwidth allocation requests

every second (i.e., with an allocation period of 1 s). Each Tenant subsystem may

request a maximum bandwidth B of 100 MHz for every considered sector. Note that

the sum of requested bandwidth cannot exceed the bandwidth of the Infrastructure

Provider. As for the actor and critic neural networks, the learning rate is set to 0.001

and 0.0001, respectively; after some attempts, the number of neurons is set to λ1 =

2000 and λ2 = 1500. The number of training epochs, each corresponding to 100

training episodes, is set to 50.

Figure 4.7 shows the achieved reward as a function of the number of training

epochs for the two analyzed scenarios. Each point is the average reward obtained

during the related epoch (i.e., 1 epoch = 100 episodes). It is possible to observe

that both the DRL agents fastly learn the policy from the state: the average reward

in eMBB and Remote Driving scenarios converges to stable values after 20 and 15
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FIGURE 4.7: Average episode reward vs number of epoch (with 1 epoch corresponding to
100 training episodes) for eMBB and Remote Driving scenarios.

training epochs, respectively. Thus, 50 training epochs are sufficient for convergence

(and that is the reason why the number of training epochs is set to 50).

To deeply analyze the performance of the proposed framework, the proposed

approach based on the DDPG algorithm is compared with different conventional

resource allocation methods, which are implemented with the same parameter set-

tings:

• Genie, that corresponds to the optimal allocation of bandwidth for each slice,

i.e., the minimum amount of bandwidth that guarantees σ = 100% as Service

Availability. It is important to note that the bandwidth, in this case, is deter-

mined through iterative adjustments during simulations. Therefore, the Genie

approach is infeasible in actual deployments;

• Random, i.e., the bandwidth allocated to each slice is randomly chosen between

10% and 90% of the maximum bandwidth B.

• Heuristic, which represents the dynamic allocation of bandwidth. Specifically,

the bandwidth is proportional to the highest number of UEs in a sector (that

is an information available in the state s). In particular, for each scenario (i.e.,

eMBB and Remote Driving use cases), the action a is computed at each step

according to the following:

a=min
{(

max
1≤w≤W

uw ·
T

B log2(1 + SINRp)

)

, 1
}

(4.15)

where uw is the number of UEs in the w − th sector, T is the downlink target

rate, and SINRp is a specific percentile p of the SINR distribution. In the fol-

lowing, p = 5%, namely the cell-edge SINR [202], and p = 50%, namely the

median SINR [202], are considered. Thus, the Heuristic approach allocates a
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TABLE 4.4: Episode Availability Indicators E for the analyzed approaches.

E (%)

eMBB
Remote

Driving

Random 74 0
Heuristic (p = 5%) 100 32
Heuristic (p = 50%) 100 0

DDPG 100 100

bandwidth which is proportional to the maximum number of UEs per sector

with two different choices for the proportionality factor: Heuristic (p = 5%)

represents a worst-case situation calibrated for mobile users at the cell edge,

whereas Heuristic (p = 50%) is calibrated for median users.

The performance is investigated in terms of Episode Availability Indicator E and

bandwidth saved with respect to the Genie (that represents the optimal bandwidth

for 100% of communication Service Availability σ). The Episode Availability Indica-

tor E is defined as:

E =
1

NE

NE

∑
i=1

ǫi · 100 (4.16)

where NE is the number of test episodes and ǫt is related to the target Service Avail-

ability σ, that is:

ǫt =























1, if the Service Availability σ is guaranteed

in the t−th test episode, ∀t;

0, otherwise.

(4.17)

Therefore, the Episode Availability Indicator E is the percentage value of the number

of test episodes the service of the Tenant subsystem is delivered according to the

agreed Service Availability σ, divided by the total number of test episodes NE. Note

that the total number of test episodes NE is set to 500.

Table 4.4 reports the Episode Availability Indicators E performed by the ana-

lyzed approaches for eMBB and Remote Driving scenarios, respectively. As a first

observation, it is worth noting that the proposed approach based on the DDPG algo-

rithm always guarantees the 100% of Episode Availability Indicator E , i.e., it allows

to always provide the service with 90% and 99% Service Availability σ for eMBB and

Remote Driving cases, respectively. Specifically, in the eMBB scenario, the Episode

Availability Indicator E equal to 100% can also be obtained by both the Heuristic

approaches (with p = 5% and p = 50%), and it is never obtained by the Random

approach. In the Remote Driving scenario, only the proposed solution based on the

DDPG algorithm has the Episode Availability Indicator E equal to 100%, which far

exceeds those of the other approaches.
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FIGURE 4.8: Comparison among different approaches with respect to the Genie in terms of
bandwidth savings.

Figure 4.8 shows the percentage of bandwidth savings performed by the ana-

lyzed approaches for both scenarios. In the eMBB scenario, the proposed approach

based on the DDPG algorithm saves the highest amount of bandwidth (i.e., around

40%) with respect to the other approaches. Note that, in this case, the Heuristic

(p = 5%) approach requires a greater amount of bandwidth than the Genie. In the

case of Remote Driving, the proposed approach based on the DDPG algorithm does

not ensure the highest bandwidth saving: the bandwidth saving of the DDPG-based

approach is the lowest one (i.e., 20%), except for the Random approach. However,

as anticipated, only the proposed solution based on the DDPG algorithm has the

Episode Availability Indicator E equal to 100%. Thus, it can be considered as the

winning approach also for this scenario.

To sum up, the DRL agents used by the Tenant subsystems, which implement the

DDPG algorithm, actually learn to save bandwidth, while always ensuring the Ser-

vice Availability and avoiding the bandwidth over-provisioning in contrast to the

Genie. Overall, the proposed approach outperforms other conventional strategies

also because it can be intelligently and flexibly tuned on the required Service Avail-

ability of the Tenant subsystem during training, as demonstrated by the results of

both scenarios. Thus, the bandwidth requested for offering services and respecting

the target Service Availability could be optimally allocated according to the Pay for

What You Get paradigm.

4.3 Final considerations

This Chapter has presented a novel Tenant-driven RAN slicing enforcement scheme

based on Pervasive Intelligence. At the basis of the proposed solution, there is the

idea that the Tenant dynamically decides the amount of bandwidth to assign to its

slice, based on the Pay for What You Get paradigm at the RAN. The Infrastructure
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Provider supports this activity by exploiting a deep learning scheme (i.e., convolu-

tional autoencoder) to compress network status and share it with Tenants. In turn,

each Tenant implements a DRL algorithm (i.e., DDPG) to dynamically adapt band-

width requests. Finally, the resulting outcomes are employed by the Infrastructure

Provider to effectively enforce the RAN slicing. The comparison with conventional

resource allocation methods has demonstrated that the proposed approach ensures

the best trade-off between bandwidth savings and bandwidth over-provisioning,

while always guaranteeing the target Service Availability.
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Conclusions

This thesis described innovative solutions conceived for the analysis and the optimal

management of mobile networks that adopt Machine Learning techniques towards

Pervasive Intelligence.

In particular, after tailoring an unsupervised learning methodology to charac-

terize radio resource utilization patterns, a Multi-Task Learning model, running di-

rectly at the network edge, was effectively trained with a real dataset collected from

the control channel of an operative mobile network. It jointly anticipated informa-

tion on the type of traffic to be served and the radio resource utilization pattern

requested by each service. To this end, it exploited the Undercomplete and the

Sequence to Sequence autoencoders as key building blocks for obtaining common

feature representations for traffic classification and prediction. A cross-comparison

with respect to conventional single-task learning schemes demonstrated that the

Multi-Task Learning architectures always guarantee higher performance than the

single-task learning approach.

This thesis also demonstrated that Machine Learning techniques can effectively

aid the anticipatory allocation of communication and computational resources at

the network edge, and over different look-ahead temporal horizons. Specifically,

in a realistic autonomous driving use case, the number of users served within a

given number of cells and their related service demands were predicted through

the Convolutional Long Short-Term Memory and the Dynamic Programming was

exploited to optimally allocate users’ requests among Multi-access Edge Computing

servers for better managing task offloading.

Also the management of network slicing in the Radio Access Network can ben-

efit from the ubiquitous and pervasive adoption of Artificial Intelligence mecha-

nisms, avoiding the radio resources over-provisioning while saving bandwidth. At

the basis of the proposed Tenant-driven Radio Access Network slicing enforcement

scheme, a convolutional autoencoder was exploited by the Infrastructure Provider

to compress network status and share it with Tenants. In turn, in realistic enhanced

Mobile BroadBand and Remote Driving scenarios, a Deep Deterministic Policy Gra-

dient algorithm was implemented by each Tenant to dynamically adapt the amount

of bandwidth to assign to its slice. At the end, the Infrastructure Provider employed

the resulting outcomes to effectively enforce the Radio Access Network slicing.

The investigation in real scenarios and the comparison against conventional
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approaches adopted for the analysis and the optimal management of mobile net-

works demonstrated the effectiveness of the proposed Machine Learning-based ap-

proaches. Moreover, the proposed solutions were evaluated in scenarios with chang-

ing conditions to encompass a variety of deployments (e.g., in terms of different

number of classes for traffic analysis or different areas for mobility).

The conceived methodologies could be merged and jointly exploited to prop-

erly design the future mobile networks, where Artificial Intelligence should be na-

tively and pervasively integrated into various layers of the network for enabling

full network automation. Mobile traffic classification and prediction will be jointly

performed with the mobility prediction by considering the even-more complex net-

work scenarios with heterogeneous services sharing a variable amount of resources

at the network edge. Future research activities will further extend also the proposed

Tenant-driven Radio Access Network slicing enforcement scheme by predicting the

network status, in addition to its compression, to boost the presence and the ex-

ploitation of Pervasive Intelligence in the network. Finally, recent Machine Learning

deployments, i.e., solutions based on distributed learning, need to be considered in

order to decrease the computational complexity and to address critical issues such

as data privacy, data security, and data access rights to heterogeneous data. In con-

trast to traditional centralized learning techniques, distributed learning approaches

will train Machine Learning algorithms across multiple local datasets, managed by

decentralized edge devices or servers holding local data samples. In this context,

Federated Learning with its privacy and security preservation nature is particularly

attractive to achieve ubiquitous Artificial Intelligence in 6G and Beyond mobile net-

works. Thus, it will be investigated to further reduce the monitoring system com-

plexity and the storage capacity of the Multi-Task Learning model at the edge, or

bandwidth, computational complexity, and energy consumption in the task offload-

ing problem, or to enhance the privacy preservation as well as the independence

of Tenant actions in multiple slices scenarios. In fact, the efficiency of the Machine

Learning models is an open issue to be taken into account since Machine Learning

carbon footprint is starting to be high as its adoption in many fields is getting so

widespread. Thus, distributed implementations as Federated Learning will become

more and more important because, by having similar performance, they could save

energy with respect to their correspondent centralized versions.

To conclude, Artificial Intelligence techniques are and will increasingly be the

basis of advanced techniques for mobile network optimization, ranging from radio

resource scheduling and admission control, resource and mobility management and

energy saving mechanisms, to network slicing and dynamic placement of virtual-

ized functions, so as to achieve the Pervasive Intelligence paradigm in next genera-

tion mobile systems.
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