
Abstract

The digitisation of Architectural Heritage emerges as a 
pivotal and groundbreaking practice crucial for the 
preservation and enhancement of cultural assets. 
By cutting-edge technologies within a scenario dominated by 
Artificial Intelligence, which disrupts established paradigms 
and approaches, this initiative aims to address the inherent 
challenges of long-term conservation. 
The present thesis, adopts comprehensive and 
multidisciplinary approaches to delve into diverse themes 
converging within the realm of architectural survey and 
drawing for heritage virtualisation. 
Through extensive field research conducted in both Italy and 
Spain, the combined methodologies of various surveying 
techniques and technologies, including LiDAR and 
Photogrammetry, are thoroughly examined as foundational 
elements for the digital acquisition of historical monuments. 
The resulting data, presented as point clouds, images, 
and/or polygonal models, undergo a detailed processing and 
optimisation phase employing semi-automatic procedures. 
These procedures, primarily focusing on the semantic 
enrichment of architectural and structural components, are 
geared towards facilitating an in-depth analysis of the 
conservation status of the monument. 
Moving beyond the survey activity, the investigation 
advances towards Heritage Building Information Modelling 
(HBIM) through the adoption of a Scan to BIM approach. The 
latter is seamlessly integrated into a unified protocol, 
streamlining data processing while ensuring adherence to 
health and safety regulations for the operator. 
This methodology enables a thorough analysis and faithful 
digitisation of the reproduced case studies, leveraging metric 
and geometric references guaranteed by the instrumentation 
used, as well as semantic segmentation and classification of 
data derived from the automations.
The proposed processes of automation, designed to 
accelerate processing times, control operational costs, and 
enhance the precision and accuracy of results, are 
meticulously crafted. 
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EXTENDED ABSTRACT (eng) 

The digitisation of Architectural Heritage emerges as a pivotal and ground-

breaking practice crucial for the preservation and enhancement of cultural assets. 

This significance becomes particularly pronounced in an era marked by profound 

transformations and challenges across multiple fields. 

By cutting-edge technologies within a scenario dominated by Artificial Intelligence, 

which disrupts established paradigms and approaches, this initiative aims to address 

the inherent challenges of long-term conservation. Simultaneously, it aspires to 

achieve the broader objective of ensuring enhanced access and a more enriched ex-

perience of historical monuments for both current and future generations, thereby 

safeguarding their unique identities. 

Heritage's vulnerability must be carefully weighed to strike a delicate balance between 

accessibility and contemporary interpretation on the one hand, and authenticity and 

integrity on the other. The hazards of digitisation, including the potential loss of stored 

information or intentional obsolescence, are closely related to this susceptibility as 

well as physical material modifications. 

The present thesis, born out of these critical considerations, adopts comprehensive 

and multidisciplinary approaches to delve into diverse themes converging within the 

realm of architectural survey and drawing for heritage virtualisation.  

Through extensive field research conducted in both Italy and Spain, the combined 

methodologies of various surveying techniques and technologies, including LiDAR 

and Photogrammetry, are thoroughly examined as foundational elements for the digi-

tal acquisition of historical monuments. The resulting data, presented as point clouds, 

images, and/or polygonal models, undergo a detailed processing and optimisation 

phase employing semi-automatic procedures.  

These procedures, primarily focusing on the semantic enrichment of architectural and 

structural components, are geared towards facilitating an in-depth analysis of the 

conservation status of the monument.  



This, in turn, translates into improved information management, providing crucial 

support for subsequent phases involved in constructing the replicated model of the 

architectural masterpiece.  

Moving beyond the survey activity, the investigation advances towards Heritage Build-

ing Information Modelling (HBIM) through the adoption of a Scan to BIM approach. 

The latter is seamlessly integrated into a unified protocol, streamlining data pro-

cessing while ensuring adherence to health and safety regulations for the operator. 

This methodology enables a thorough analysis and faithful digitisation of the repro-

duced case studies, leveraging metric and geometric references guaranteed by the in-

strumentation used, as well as semantic segmentation and classification of data de-

rived from the automations. 

The proposed processes of automation, designed to accelerate processing times, 

control operational costs, and enhance the precision and accuracy of results, are me-

ticulously crafted. Simultaneously, due consideration is given to the experience and 

expertise of the operator involved in the activities, ensuring a thoughtful and con-

scious approach throughout all stages of the process. 

keywords: Cultural Heritage, Architectural Heritage, Digitisation, 3D Survey, Health 

and Safety, Planning for Scanning, Point Cloud, Mesh, Semantic Enrichment, Seg-

mentation, Classification, Automation, Artificial Intelligence, Machine Learning, Herit-

age Building Information Modelling, Scan to BIM 



EXTENDED ABSTRACT (ita) 

Il processo di digitalizzazione del Patrimonio Architettonico si configura come 

una pratica cruciale e innovativa per la tutela e valorizzazione dello stesso, particolar-

mente rilevante in un’epoca caratterizzata da profonde trasformazioni e sfide riscon-

trabili in diversi settori. 

La sua realizzazione, facilitata dall’impiego delle tecnologie all’avanguardia e in un 

contesto in cui l’Intelligenza Artificiale predomina e scardina paradigmi e approcci nel 

tempo consolidati, mira a fronteggiare le sfide intrinseche alla conservazione a lungo 

termine, mentre si proietta verso l’obiettivo di garantire un accesso più ampio e una 

fruizione più ricca dei monumenti storici, da parte delle generazioni presenti e future, 

per preservarne la loro identità.  

La necessità di bilanciare l'autenticità e l'integrità con la reperibilità e l'interpretazione 

contemporanea richiede una profonda riflessione sulla vulnerabilità del patrimonio, le-

gata sia alle questioni di alterazione fisico-materica cui è soggetto, che ai rischi asso-

ciati alla digitializzazione, come la perdita di informazioni archiviate o l’obsolescenza 

programmata. 

A partire da tali considerazioni, si inserisce la presente tesi, che con approcci olistici e 

multidisciplinari si propone di esplorare tematiche diversificate, ma riconducibili ad un 

unico settore, quello del rilievo e del disegno architettonico per la virtualizzazione del 

patrimonio. 

Attraverso attività di ricerca condotte sul campo, in Italia e in Spagna, vengono esa-

minate metodologie combinate delle diverse tecniche e tecnologie del rilievo, come i 

LiDAR e la Fotogrammetria, che costituiscono la base per l’acquisizione digitale dei 

monumenti storici. I dati ottenuti, presentati come nuvole di punti, immagini e/o mo-

delli poligonali, vengono sottoposti ad un rigoroso processo di elaborazione e ottimiz-

zazione attraverso l’impiego di procedure semi-automatiche. Queste, focalizzate per lo 

più sull'arricchimento semantico dei componenti architettonici e strutturali, mirano 

all'analisi approfondita dello stato di conservazione del monumento.  



Ciò, a sua volta, si traduce in una gestione informativa migliorata, fornendo un fon-

damentale supporto per le fasi successive di costruzione del modello replicato 

dell’opera architettonica. 

Dall’attività di rilievo, l’indagine prosegue in direzione dell’Heritage Building Informa-

tion Modelling (HBIM), mediante l’adozione di un approccio Scan to BIM. 

Quest’ultimo è integrato all'interno di un protocollo unificato che non solo facilita l'ela-

borazione dei dati, ma assicura anche il rispetto delle normative di salute e sicurezza 

per l'operatore. Tale metodologia consente un’analisi approfondita e una fedele digita-

lizzazione dei casi di studio riprodotti, sfruttando il riferimento metrico e geometrico, 

garantiti dalla strumentazione utilizzata e altresì dalla segmentazione semantica e dalla 

classificazione dei dati derivanti dagli automatismi precitati. 

I processi di automazione ivi proposti, volti ad accelerare i tempi di elaborazione, con-

tenere i costi operativi e migliorare la precisione e l'accuratezza dei risultati, sono at-

tentamente progettati. Allo stesso tempo, si tengono costantemente in considerazione 

l'esperienza e le competenze dell'operatore coinvolto nelle attività, garantendo un ap-

proccio ponderato e consapevole durante tutte le fasi del processo. 

keywords: Cultural Heritage, Architectural Heritage, Digitisation, 3D Survey, Health 

and Safety, Planning for Scanning, Point Cloud, Mesh, Semantic Enrichment, Seg-

mentation, Classification, Automation, Artificial Intelligence, Machine Learning, Herit-

age Building Information Modelling, Scan to BIM 
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INTRODUCTION 

Cultural Heritage (CH), and more especially Architectural Heritage (AH), lie at 

a crossroads where they can seize both historically unique and exciting opportunities 

in an era where new technology permeates every part of our society. 

A potential innovation catalyst is revealed by the use of digitisation as a critical in-

strument for heritage enhancement and preservation.  Advanced modelling, acquisi-

tion, and visualisation techniques are used in this type of process, which is always 

changing, to provide precise and comprehensive virtual representations of ancient 

buildings, monuments, and sites. This approach not only facilitates the digital preser-

vation of vulnerable structures over time but also opens the possibility of remotely 

accessing these historical artifacts, fostering an unprecedented intergenerational dia-

logue. Simultaneously, it exposes intricate ethical considerations and challenges that 

necessitate strategic exploration. 

To regulate the realm of Cultural Heritage documentation
1

 and conservation, a com-

prehensive framework is shaped and guided by a wealth of international standards, 

charters, and conventions created to safeguard and sustainably manage historical 

and architectural treasures globally (RecorDIM, 2007).  

Key contributors include esteemed organisations such as the ‘International Council on 

Monuments and Sites’ (ICOMOS), the ‘United Nations Educational, Scientific and Cul-

tural Organization’ (UNESCO), the ‘International Committee of Architectural Photo-

grammetry’ also called ‘International Committee for Documentation of Cultural Herita-

ge’ (CIPA) in collaboration with ‘International Society of Photogrammetry and Remote 

Sensing’ (ISPRS) and national bodies, each providing directives that underscore prin-

ciples for effective heritage conservation.  

1
 Heritage Documentation is here defined as ‘a continuous process enabling the monitoring, 

maintenance and understanding needed for conservation by the supply of appropriate and timely in-

formation. Documentation is both the product and action of meeting the information needs of heritage 

management. It makes available a range of tangible and intangible resources, such as metric, narrative, 

thematic and societal records of Cultural Heritage’ (RecorDIM, 2007). 
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The ‘Venice Charter’ (1964), a foundational document of ICOMOS, serves as a prima-

ry guide, outlining principles for the conservation of Cultural Heritage and emphasi-

sing the paramount importance of authenticity and site integrity. Complementing this, 

the ‘Nara Document on Authenticity’ (1994) from ICOMOS specifically focuses on ar-

chitecture, promoting international standards and consistent conservation approa-

ches. The ‘Burra Charter Guidelines’ (1999), developed by ICOMOS Australia, provide 

essential principles for the conservation of Architectural Heritage, emphasising 

adaptability to new uses – a crucial aspect in the evolution of heritage management.  

Additionally, the ‘EN 16096 standard’ (2012) offers European-level guidelines for Cul-

tural Heritage conservation, ensuring a cohesive approach on the continent. 

To complement these directives, ongoing efforts by ICOMOS are reflected in a series 

of charters and guidelines, addressing unique challenges posed by 20th-century Ar-

chitectural Heritage.  

Moreover, the ‘London Charter’ (2009) (Brusaporci and Trizio, 2013) establishes fun-

damental principles for the use of digital visualisation in Cultural Heritage, emphasi-

sing intellectual integrity, reliability, documentation, sustainability, and accessibility. It 

refrains from prescribing specific methods but outlines broad principles for usage 

across academic, educational, cultural, and commercial contexts, with particular rele-

vance in the entertainment industry related to Cultural Heritage reconstruction.  

In Italy, the management of Cultural Heritage is governed by Legislative Decree 

42/2004, known as ‘Codice dei Beni Culturali e del Paesaggio’ (Italian Ministry of 

Culture (MiC), 2004). This legislative framework outlines guidelines for the protection, 

conservation, and enhancement of cultural and landscape assets in the country.  

Covering a wide range of elements, including monuments, artworks, and archaeologi-

cal sites, the code establishes procedures and responsibilities to ensure compliance 

with national and international regulations. Its implementation involves various institu-

tions, aiming to preserve Italy's rich historical and artistic heritage for future genera-

tions and promote cultural awareness. 
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Meanwhile, the ‘UNESCO Convention’ of 1972 continues to play a central role in the 

identification, protection, and preservation of Cultural Heritage worldwide.  

In a contemporary context, the continuous updates and revisions of these guidelines, 

along with the emergence of new standards, reflect the dynamic nature of Cultural 

Heritage conservation. This dynamism is further accentuated by the integration of 

emerging technologies and procedures, with notable mentions including point clouds, 

Digital Twins, Building Information Modelling (BIM) or HBIM (where the H stands for 

Heritage), and Scan to BIM. 

Point clouds, obtained through laser scanning or photogrammetry, provide a detailed 

set of three-dimensional coordinates, enabling highly accurate representations of ar-

chitectural objects. These point clouds are invaluable for graphical restitution, ena-

bling the creation of detailed and faithful three-dimensional models. 

On the flip side, BIM models emerge as a revolutionary catalyst, reshaping the Archi-

tectural, Engineering, and Construction (AEC) landscape by offering a comprehensive 

and integrated approach to information management across the entire lifecycle of 

buildings. This transformation is propelled by standards like ISO 19650 (International 

Organization for Standardization (ISO), 2018), which establish crucial guidelines for 

effective implementation.   

Applied to Cultural Heritage, HBIM offer an integrated view, incorporating not only 

three-dimensional geometry but also information about the physical and functional 

properties of objects.  

The Digital Twin and Scan to BIM serve as intertwined foundations in the conservation 

and management of the AH. Scan to BIM, employing advanced techniques for accura-

te 3D model generation through detailed point cloud analysis, complements the Digital 

Twin – a dynamic, continually updated digital replica facilitating ongoing monitoring 

and in-depth analysis. The amalgamation of all these technologies yields a holistic 

perspective, merging the precision of acquired details with the ever-evolving, seamle-

ssly managed environment facilitated by the Digital Twin. 
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However, with every innovation, intrinsic risks arise, including the potential loss of au-

thenticity and the introduction of errors during the acquisition process. Risks associa-

ted with the intensive use of virtual representations, such as the possible loss of tradi-

tional conservation practices and potential disconnection from the physical reality of 

architectural objects, become apparent. Simultaneously, digital security risks, inclu-

ding breaches and damage to sensitive data of cultural sites, require careful and tar-

geted approaches. 

Furthermore, the application of programming languages and Artificial Intelligence (AI) 

is playing an increasingly advanced role in managing and analysing data derived from 

the digitisation of heritage assets.  

Artificial Intelligence, with its advanced learning and interpretation capabilities, facilita-

tes the interpretation and classification of information, enabling continuous access, 

exchange, and updating of knowledge related to heritage. In this context, AI techni-

ques are frequently used for segmentation and classification of images and point 

clouds in order to optimise and significantly speed up these operations, which in turn 

provides critical support for the in-depth analysis of the structure of digitised architec-

tural objects.  

However, the implementation of AI requires an ethical and conscious approach.  The 

risk of misinterpretations or manipulations of information through AI underscores the 

need for careful ethical and regulatory considerations. 

In an attempt to foster further studies and discussions in this field, this doctoral dis-

sertation not only addresses the previously mentioned topics but delves into the intri-

cate details of Architectural Heritage management and preservation. It emphasises in-

novation while preserving a steadfast commitment to tradition. This dual approach 

contributes to shaping a comprehensive and balanced vision for the future of safe-

guarding our rich historical heritage. 
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GOALS AND THESIS STRUCTURAL OVERVIEW 

The thesis explores several tailor-made strategies for the application of ad-

vanced technologies in architectural design and surveying, all converging towards the 

common goal of enhancing the preservation and conservation of Architectural Herita-

ge through digitisation. This involves cutting-edge approaches, particularly in the 3D 

context, through a unified Scan to BIM protocol that enhances the precision of the re-

presentation of Cultural Heritage.  

Crucial phases of the process include integrated surveying with point cloud acquisi-

tion, advanced point cloud analysis, HBIM, and rigorous testing of data, adhering to 

international standards for heritage documentation. 

The first chapter elucidates state-of-the-art techniques employed in surveying, en-

compassing the acquisition and recording of point clouds, automated survey planning 

for scanning, updated specifications and regulations of BIM, Scan to BIM, and optimi-

sation procedures for data management and semantic enrichment. Emphasis is pla-

ced on process automation, such as through segmentation and classification. 

The second chapter delves into the concept of a unified protocol adopted for the digi-

tisation of Architectural Heritage, elucidating its development and the necessary 

aspects required for conducting a survey securely, along with guidelines on data deli-

very. 

The third chapter presents initial results from case studies, focusing on the proces-

sing of point clouds, the construction of archaeological BIM models linked to relatio-

nal databases, and other pivotal methodologies aimed at guaranteeing the coherence 

and efficacy of a BIM project across all developmental and construction stages. 

Chapter 4 introduces innovative concepts related to the use of automatisms such as 

Artificial Intelligence, starting from data acquired through digital surveying to analyse 

them in contexts such as monitoring the physical-material obsolescence of buildings, 



 

6 

 

graphic representation of heritage through BIM models, and automated planning of 

digital surveying.  

Semantic segmentation and point cloud classification through open-source algo-

rithms or innovative and increasingly widespread Machine Learning techniques com-

plete the framework of the thesis, along with conclusions and reflections for future 

developments of the presented work. 
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1. STATE OF THE ART AND LITERATURE REVIEW 

Over the last twenty years, digital documentation associated with cultural, ar-

chitectural and archaeological artifacts has assumed a prominent role due to its ease 

of storage, accessibility, and resilience against the threats of material or functional 

obsolescence and institutional negligence (Puma, 2016; Balzani, Maietti and Mugayar 

Kühl, 2017).  

Particurarly, architectural surveying, as a keystone in spatial representation manage-

ment, holds a crucial role in the processes of preservation of the heritage, enabling 

the exploration of architectural morphologies from two-dimensionality to three-

dimensionality and viceversa.  

Its evolution over time is evident in the widespread adoption of advanced technologies 

which have gradually replaced or integrated traditional surveying methods (De Fino, 

Galantucci and Fatiguso, 2023; Junshan Liu et al., 2023). This is because, depending 

on the level of detail needed and the accessibility of the environment, the varied and 

contemporary technologies used for data capture allow the heterogeneity and com-

plexity of an object to be taken into consideration, becoming increasingly important. 

Significant strides have been made in the fields of Computer Graphics and Computer 

Vision, particularly within the realms of ‘Close-Range Photogrammetry’ (CRP) and 

‘Structure from Motion’ (SfM). These advancements include ‘reality-based’ tech-

nqiues, such as ‘image-based’ methodologies, which reconstruct 3D models from 2D 

images derived from passive sensors like digital cameras, as well as ‘range-based’ 

approaches utilising Light Detection and Ranging (LiDAR) active sensors, recognised 

for their accuracy and resolution (Remondino, 2011; Aicardi et al., 2018; El-Din 

Fawzy, 2019; Hassan and Fritsch, 2019; Tan, 2020). 

The selection of scanning techniques is influenced by several factors, encompassing 

precision needs, object dimensions, portability, and project budget. However, both 

active and passive surveying methods converge in generating a point cloud as their 
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ultimate output, with a frequent utilisation of a hybrid approach (Beraldin, 2004; Yang, 

Xu and Huang, 2022; Pierdicca et al., 2023). 

This type of combination results in an efficient methodology that rapidly delivers ac-

curate point clouds, spatially located through spatial coordinates and colorimetric 

characteristics (Beraldin, 2004; Florio, Catuogno and Della Corte, 2019; Aterini and 

Giuricin, 2020). Such an approach allows for diverse applications, including parame-

tric three-dimensional modelling (Hichri, Stefani, De Luca, Veron, et al., 2013; 

Verdoscia, Musicco and Tavolare, 2019), graphic representations of archaeological 

sites (Fiorillo et al., 2015; Monterroso-Checa and Gasparini, 2016; Willis et al., 

2016), and multiscalar analysis for documenting changes in historic buildings over 

time (Russo and Manferdini, 2014).  

It is essential to highlight that achieving an accurate integration of data obtained 

through various acquisition techniques necessitates rigorous control over metric ac-

curacy. This becomes particularly vital since image-based technologies are not inhe-

rently intended for capturing the absolute dimensions of objects. 

Lately, Neural Radiance Fields (NeRF) technology has introduced a new era in reali-

stic and accurate 3D modelling by using Deep Learning and Computer Vision to re-

construct historical sites and artefacts from 2D photos by exploiting artificial neural 

networks (ANN), revolutionising the preservation of Cultural Heritage (Croce, Caroti, et 

al., 2023; Mazzacca et al., 2023).  

Moreover, this versatility of the these modern approaches extends to various do-

mains, encompassing historical documentation (Remondino, 2011; Brusaporci and 

Trizio, 2013; Alshawabkeh, Baik and Miky, 2021), conservation and protection (Akca 

et al., 2006), monitoring and classification of degradation forms, as well as compute-

rised diagnostics (Lerones et al., 2016; Messaoudi et al., 2018; Bruno et al., 2019; 

Fatiguso and Buldo, 2020). 

It further applies to temporal simulations and analysis (Gonizzi Barsanti, Guidi and De 

Luca, 2017b; Rodríguez-Gonzálvez et al., 2019) virtual reality and computer graphic 
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applications (Voinea and Girbacia, 2019), three-dimensional libraries (Andrews, 

Zaihrayeu and Pane, 2012; Baik, Boehm and Abaikkauedusa, 2017), multimedia mu-

seum exhibitions, and remote visualisation and navigation, among other contexts 

(Osman, Wahab and Ismail, 2009; Amicis et al., 2010; Bonacini, 2015; De Fino, 

Galantucci and Fatiguso, 2019). This diverse applicability underscores the robustness 

and utility of these methodologies in addressing various facets of Cultural Heritage 

and architectural exploration. 

Three-dimensional survey data can be included into Building Information Modelling 

(BIM) information systems, where architectural elements dynamically change their 

value according to datasets collected in the survey stage and historical records 

(Pocobelli et al., 2018). Utilising techniques like ODBC (Open DataBase Connectivity), 

proprietary interfaces (Eastman et al., 2011; Verdoscia et al., 2020), Visual Pro-

gramming Language (VPL) applications like Dynamo Studio Autodesk® and Gra-

phisoft Grasshopper® (Negendahl, 2015), and real-time monitoring in cloud plat-

forms, platforms integrated into modelling environments facilitate data management 

and evaluation. 

Nevertheless, finding a way to effectively combine heterogeneous information that 

help assigning a meaning to the 3D data derived from point clouds, meshes and im-

ages, is still a very difficult objective to be attained. 

Reconstruction of diachronic models (Templin, Brzezinski and Rawa, 2019; 

Verdoscia et al., 2020), formal analysis, conservation and preservation (Diara and 

Rinaudo, 2020), structural analysis (Vatan, Selbesoglu and Bayram, 2009), docu-

mentation processes, and virtual reality enhancement (Banfi, 2020) are some of the 

areas where BIM has shown particularly impressive results. 

 

Additionally, devising a method to effectively merge diverse data that assists in 

providing context for 3D data generated from point clouds, models, and images con-

tinues to be an extremely challenging task. 
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In BIM, the segmentation technique – which aims to assign a semantic class to any 

point detected – is immensely helpful in defining a structured and ordered set of ge-

ometric points that can be used for additional elaborations, like extrapolating genera-

trices, or erasing the objects that are useless to a specific purpose. 

This process uses its automatic modality to identify primitive geometrical elements 

(i.e., sides, edges, planes, cylinders, etc.) by taking advantage of the properties and 

spatial relationships that can be assigned to each point in relation to those nearby 

(Rabbani, van den Heuvel and Vosselman, 2006). 

In recent years, a transformative innovation has emerged in the field of Cultural Herit-

age through the integration of Artificial Intelligence. This paradigm shift has signifi-

cantly enhanced the segmentation and classification processes of point clouds, revo-

lutionising the analysis and preservation capabilities within the heritage domain. The 

application of these advanced technologies not only allows for semantic segmenta-

tion of point clouds but also optimises and improves processing workflows within the 

Building Information Modelling (BIM) framework, providing a more efficient and accu-

rate approach to managing 3D spatial data. 

Providing that the training dataset is correctly arranged, such techniques allow to ob-

tain an automated segmentation according to the criteria and proprieties chosen a 

priori by the user (Brodu and Lague, 2012). In particular, the use of Machine Learning 

or Deep Learning (Llamas et al., 2016; Grilli, Menna and Remondino, 2017; Jeevitha 

et al., 2020; Matrone, Grilli, et al., 2020; Pierdicca et al., 2020; Yang, Hou and Li, 

2023) enables to gather data (points, patches) with similar colorimetric and/or geo-

metric features together in homogeneous subsets (Croce, Caroti, Piemonte, et al., 

2021; Russo et al., 2021; Buldo et al., 2023) although the areas of investigation are 

numerous.  

Several studies (Nguyen and Le, 2013; Grilli, Menna and Remondino, 2017; Xie, Tian 

and Zhu, 2020; Zhang et al., 2023) have identified the most popular methodologies 

for segmenting and classifying point clouds. These methodologies include ‘edge-
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based’, ‘region-based’, ‘model-based’, ‘attributes-based’, and ‘graph-based’ ap-

proaches, which employ algorithms based on clustering of data features from the 

point clouds. 

 

The classification of point clouds is a versatile process, tailored to address specific 

objectives. For example, it can be employed to discretise points related to vegetation 

elements during the survey phase, facilitating their easy exclusion in subsequent 

modelling stages and alleviating users from visual hindrances. Additionally, this clas-

sification technique allows for the identification and labeling of elements within the 

surveyed area through the application of metadata.  

Furthermore, it enables the automatic recognition of distinct rooms within detected 

buildings by distinguishing their perimeters, showcasing its applicability in diverse 

scenarios such as urban planning, heritage documentation, and environmental moni-

toring (Jung, Stachniss and Kim, 2017). 

Given the highly diverse geometries inherent in historical architectural environments, 

the automated application of these algorithms faces some limitations, particularly due 

to the challenge of acquiring a uniformly structured training dataset. This automated 

approach often necessitates human intervention to ensure accurate application and 

verification, underscoring the need for a nuanced understanding of the complex archi-

tectural context. 

Moreover, despite the promising outcomes demonstrated in point cloud processing, 

their seamless integration into HBIM modelling procedures remains constrained, as 

these operations predominantly rely on manual efforts. 

To address this limitation, there is a compelling need to explore a Scan to BIM meth-

odology (Hichri, Stefani, De Luca, Veron, et al., 2013; Verdoscia, Musicco and 

Tavolare, 2019),  that, starting from laser scanner and photogrammetric data in form 

of point clouds facilitates the creation of ‘as-built’ BIM models, extracting accurate 

building parameters, particularly from a geometric standpoint (Anil et al., 2013; Antón 

et al., 2018; Badenko et al., 2019; Radanovic, Khoshelham and Fraser, 2020). 
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It establishes a foundation for operational planning, supporting the construction of a 

comprehensive digital information model capable of integration and utilisation for di-

verse interdisciplinary purposes. 

To achieve this goal, it becomes indispensable to clearly define the essential require-

ments for both the surveying process and model creation, along with their respective 

informative properties intended for integration. In the absence of global standardisa-

tion, individual countries are independently developing protocols and standards based 

on Levels of Detail/Development (LOD), resulting in inevitable procedural variations, 

yet mitigating the potential for misunderstandings between clients and designers. 

 

1.1 Survey Technologies and Techniques 

The advent of cutting-edge has engendered a transformative impact on survey 

recording, facilitating an extremely accurate capture of architectural structures 

(Remondino, 2011; Battini, 2012).  

However, it is imperative to underscore that an effective strategy invariably necessi-

tates the judicious integration of both state-of-the-art technologies and conventional 

approaches (Haddad, 2011). The synergistic amalgamation holds the potential to 

yield a more exhaustive and precise representation of heritage.  

Whether employing active or passive techniques, both surveying methods provide 

sophisticated tools for collecting comprehensive three-dimensional data. 

While passive methods record the radiation that is reflected off a surface, active 

methods mark a point in space with directed radiant energy. 

Active methods entail sending laser pulses in the direction of the object's surface, 

such as Light Detection and Ranging (LiDAR) surveys. Very accurate three-

dimensional coordinates of places on the object's surface may be acquired by timing 

how long it takes for the pulses to return to the sensor. This method works especially 

well for capturing morphological and topographical characteristics in outdoor settings 
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(Chehata, Guo and Mallet, 2009; Kang et al., 2009; Brodu and Lague, 2012; Risbøl 

and Gustavsen, 2018; Wang et al., 2020) . 

Conversely, passive methods such as terrestrial photogrammetry (Beraldin, 2004; 

Remondino, 2011; Liang et al., 2018; El-Din Fawzy, 2019; Alshawabkeh et al., 2020; 

Alshawabkeh, Baik and Miky, 2021; J. Liu et al., 2023) and platforms such as Un-

manned Aerial Vehicles (UAVs), collect geometric information from photographic pic-

tures or movies. Accurate 3D models may be built by analysing related points in the 

photos using complex algorithms. The cost-effectiveness and versatility of photo-

grammetry make it an ideal choice for digitising objects, whether they are located in-

doors or outdoors. 

Recently, there has been a notable proliferation of mobile vehicles (Mader et al., 

2016; Adami et al., 2019; Bakirman et al., 2020), and other ground-based platforms 

(García-Gago et al., 2014; Palomba et al., 2019; Yang, Xu and Huang, 2022), porta-

ble mobile 3D laser mapping systems (Serna et al., 2014; Sevgen and Abdikan, 

2023), low-cost spherical cameras (Sun and Zhang, 2019; Herban et al., 2022), and 

smartphone-mounted LiDAR sensors (Teppati Losè et al., 2022; Mazzacca et al., 

2023; Musicco, Rossi and Verdoscia, 2023).  

These methods yield remarkably realistic large- and small-scale representations 

of embellishments and complex surface features, thanks to the remarkable accuracy 

of the point clouds produced. It facilitates meticulous recordkeeping and enables 

more targeted restoration strategies and in-depth examinations. 

 

In 1999, Boehler and Heinz attempted to illustrate the implementation range of differ-

ent 3D registration methods (Boehler and Heinz, 1999), as shown in Fig. 1. In the di-

agram, the scope of each technique is represented in terms of object size (x-axis) and 

the number of points per object (y-axis).  

Traditional methods, such as manual and tactile measurements, are suitable for small 

details or objects, especially in museum contexts, while geodetic and tachymetric 

measurements are limited in long-range registration.  
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3D documentation of movable and immovable assets can cover dimensions from a 

few millimeters to a few thousand meters, with no practical limits on the number of 

points and images acquired. Documentation methods can be further grouped based 

on those involving light registration (orange areas) and those that do not (yellow are-

as). 

 

 

Fig. 1 Survey methods classified by size and object complexity (©UNESCO Chair on Digital Cultural 

Heritage at CUT (Pritchard et al., 2022), ©adapted from (Boehler and Heinz, 1999)). 

 

Key concepts to bear in mind regarding measurement errors in instruments are 

undoubtedly ‘precision’ and ‘accuracy’, as they together provide a comprehensive 

view of the quality and reliability of the employed instruments. 
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Precision and accuracy (shown in Fig. 2) are often mistakenly considered 

synonymous.  

- ‘Precision’ refers to the consistency and repeatability of results obtained from 

a measuring instrument. In practice, a precise instrument will yield similar 

results on multiple occasions, providing a measure of its reliability and 

consistency over time. 

- ‘Accuracy’ is linked to how well the measurements made with an instrument 

coincide with values considered true or accepted. An instrument is deemed 

accurate if its measurements closely align with reference values. Thus, 

accuracy assesses how closely the obtained result corresponds to the actual 

value intended for measurement. 

 

 

Fig. 2 . Conditions of Precision and Accuracy for measurement errors of the instruments. 
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1.1.1     Active Recording Systems 

While traditional manual measurements through direct surveying may be suit-

able for relatively small objects, the use of topographic instruments becomes essen-

tial for larger objects and the establishment of extensive control networks. 

Instrumental surveying, also known as topographic surveying (Luh et al., 2014; Raju 

and Khandakar, 2022), relies on the visual sighting of points, and it is used as a com-

plement to direct and indirect surveying for precise measurements, extensive plani-

metric surveys, and points that are inaccessible. It is essential for connecting the sur-

veyed structure to the national topographic network. 

In the past, optical-mechanical theodolites were used for geodetic and topographic 

surveys. Today, these instruments have been replaced by total stations, which differ 

significantly from traditional optical-mechanical theodolites as they are equipped with 

an electronic distance meter and a computer for data storage and calculation.  

Total Stations can measure angles and distances of a series of points, determining 

their spatial location relative to a predefined coordinate system. Unlike the Global Nav-

igation Satellite System (GNSS), a total station is an autonomous instrument that 

does not require satellite presence (Rifandi, Ningtyas and Assagaf, 2013; Altuntas, 

Karabork and Tusat, 2014). However, it is affected by atmospheric conditions such 

as humidity and temperature, influencing the refractive index and increasing the aver-

age error. Nowadays, the Total Theodolite Station (TST) incorporates Global Position-

ing System (GPS) technology, which increases the efficiency and accuracy of field 

surveys with angular and distance measurements. The disadvantages are related to 

the monotony of the operation and the time-consuming recording of points. 

Instead, GNSS measurements exhibit a high level of accuracy, typically on the order 

of a few centimeters or even better, establishing a robust network of Ground Control 

Points (GCPs). GNSS is characterised by other its properties of integrity, continuity, 

and availability.  
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It is a technology essential for georeferencing, providing precise geographic coordi-

nates to objects, locations, or phenomena on Earth. It relies on a network of satellites 

like GPS or GLONASS, and GNSS receivers on devices use signals from these satel-

lites to accurately determine their position. This technology is crucial for applications 

such as navigation, surveying, and remote sensing, enabling precise location-based 

information across various sectors.  

By using laser beams that allow to record information on the position of each point 

with the intensity of the reflected radiation, active range sensors known as laser 

scanners, play a central role for high-precision capture of three-dimensional data in 

the Cultural Heritage field (Edl, Mizerák and Trojan, 2018). 

Terrestrial laser scanners (TLS) are commonly employed for medium-range surveys, 

capturing details such as building surfaces, historical monuments, and archaeological 

sites. They can also extend their range to 300 meters, allowing for large-scale sur-

veys of terrain and vegetation, similar to the capabilities of airborne laser scanners 

(ALS). Laser scanners offer high accurate, non-invasive, and swift 3D data acquisi-

tion. Their versatility and seamless integration with other technologies make them es-

sential for detailed and efficient documentation (Muralikrishnan, 2021). 

A type of scanning instrumentation is the Triangulation Scanner (TS), where an emit-

ter laser directs a point or laser line reflected by a rotating mirror towards the object. 

This laser beam reflects back and is captured by one or more Charged Coupled Devi-

ce (CCD) or Complementary Metal Oxide Semiconductor (CMOS) sensors at predefi-

ned distances, crucial for spatial geometric definition. 

TS includes Single spot, Slit scanner, and Structured Light Scanning (SLS) Systems. 

Single spot scanners use individual laser points redirected by lenses to record illumi-

nated points on the surface, primarily employed in precision-demanding industrial set-

tings. Slit scanners project the laser as a line, recording the object's profile step by 

step, suitable for small objects to extract their profile and surface sections. SLS differ 
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as they do not project a laser but capture shapes, often horizontal and vertical lines, 

recorded by a camera. 

Another commercially available TLS systems include Time of Light (ToFS) and Phase 

Shift (PSS) scanners (Fig. 3), widely used in architecture and surveying, providing 

centimeter to millimeter precision at a data collection rate of up to 10,000 points per 

second. These instruments are compared to Total Stations, using a laser rangefinder 

oriented by azimuthal and zenithal angles set during the initial setup. ToF scanners 

consist of a laser emitter, rotating mirrors, and a laser receiver. The distance of the 

scanned object is determined by calculating the time taken for the laser to travel from 

emission to return. They are less suitable for detailed surveys. 

 

 

Fig. 3 Operating principles of the laser scanner A) Time of Flight; B) Phase Shift (©adapted from (Frey, 

2019). 
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An alternative method involves the development of a scannerless device, where a sin-

gle emitter emits divergent light to illuminate the entire targeted scene. The reflected 

light is subsequently captured on a two-dimensional array of photodetectors, specifi-

cally using a ToF depth camera (Horaud et al., 2016). Unlike conventional cameras 

that gauge the intensity of ambient light, ToF cameras measure the reflected light ori-

ginating from the camera's dedicated light-source emitter. 

Concerning Phase Shift Scanners, the emitted laser reflects off the object's surface 

with a different wavelength. The phase difference enables the calculation of the ob-

ject's distance from the scanner's center. When employing a ToFS or PSS, the 

measurement error increases linearly with the detection distance. Greater distances 

result in a larger error in data registration. On the contrary, in the case of Triangulation 

Scanners, accuracy follows a parabolic trend that improves with the scanner-to-

object distance. Greater distances lead to higher precision in data recording. 

3D Optical Triangulation Scanners (OTS) are examples of hybrid devices that typically 

include a projector and a camera. These systems, which provide detailed information 

down to the submillimeter level, are widely used in the automotive and aerospace in-

dustries. They work by projecting a known pattern onto the object and using triangu-

lation techniques to digitise the surface, measuring deviations from the original pat-

tern (Schlarp, Csencsics and Schitter, 2020). They do have certain drawbacks, 

though, such as a small field of view and short scanning distances. Additionally, they 

frequently exhibit sensitivity to changes in ambient brightness. 

An additional type of scanner is the Mobile Laser Scanner (MLS), an advanced three-

dimensional sensing system that integrate laser technology and often come equipped 

with GNSS and an Inertial Measurement Unit (IMU) to enhance precision in positio-

ning and orientation during data acquisition. These devices also incorporate optical 

cameras and are mounted on mobile platforms such as ground vehicles or aircraft (Di 

Stefano et al., 2021).  
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Their operation involves one or more laser scanners installed on a moving vehicle. 

These scanners emit lasers towards the surrounding surface, recording the return of 

the light beam for each detected point, along with information on distance and angular 

orientation. Thanks to the vehicle's speed, it is possible to rapidly acquire data over 

extensive areas, generating high-density three-dimensional point clouds. MLS are 

ideal tools for various applications, including topographic surveying, buildings and ur-

ban modelling, land management, and infrastructure design (Adán, Quintana and 

Prieto, 2019).  

Smart technologies known as SLAM laser scanners (Keitaanniemi et al., 2021; 

Camiña et al., 2022) empower robots or autonomous vehicles to navigate unexplored 

territories by initially determining their location with a laser scanner, which assesses 

the size and shape of nearby objects as they move. Utilising these data, SLAM algo-

rithms construct and continually update a real-time map of the surroundings, all while 

continuously estimating the device's position. This ongoing process enables the sy-

stem to autonomously navigate even in intricate environments. Upon completion of 

the initial mapping and localization, the system can independently navigate the world 

using the generated map. 

Regarding the success of data registration using laser scanners, it is closely influen-

ced by both the number of scans and the quality of the acquired data. Insufficient da-

ta, in terms of both quantity and quality, will compromise the necessary overlap for 

effective registration, while an excess of scans may result in a significant and unne-

cessary expenditure of time. Therefore, it is essential to find an optimal balance 

between the number of scans conducted and the computational efforts employed. 

For TLS, two primary phases can be distinguished: coarse and fine registration 

(Biswas, Bosché and Sun, 2015). 

Coarse registration of point clouds involves aligning 3D features using either artificial 

targets or algorithms capable of extracting discriminative features naturally present in 



21 

 

the scene. Manual insertion of targets may extend scanning time, while automated al-

gorithms reduce this time, still necessitating corresponding features between scans. 

On the other hand, fine registration, following coarse registration, represents an opti-

mal solution that utilises more data from scans, often relying on the Iterative Closest 

Point (ICP) algorithm. This iterative algorithm estimates the rigid transformation by 

aligning points in one point cloud with the nearest points in the successive scan. 

 

1.1.2     Passive Recording Systems 

Passive recording systems are a crucial component in documentation, data 

acquisition, and three-dimensional reconstruction methodologies, especially in the 

context of Cultural Heritage. These systems capture light or radiation originating from 

independent sources, such as the sun or artificial lighting, reflected by objects of in-

terest without the use of active sources like lasers (Russo, Remondino and Guidi, 

2011; Del Pozo et al., 2017). 

These techniques process optical images to extract metric information about the ob-

ject, including its geometry and realistic texture. In CH and AH applications, they are 

often preferred for their efficiency, non-invasiveness, ease of use in both indoor and 

outdoor environments, and relatively low cost. 

A significant challenge is the development of intelligent algorithms in photogrammet-

ric techniques to automate traditional procedures while allowing the use of any type of 

camera and reducing costs. Therefore, the field of Computer Vision has contributed to 

automating the process (García-Gago et al., 2014; Aicardi et al., 2018). Image-based 

techniques can be categorised into single, stereo, or multiple views, depending on the 

number of images used, even from different sensors, to retrieve metric information in 

three-dimensional space and generate a point cloud (Tan, 2020). 

Algorithms such as Structure from Motion, Multi-View Stereo, or Dense Stereo 

Matching are used to create a three-dimensional representation of the object (Willis et 
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al., 2016; Wang et al., 2021) The importance of lateral and longitudinal image overlap 

must be ensured as much as possible (at least 60%-80%). 

Aerial photogrammetry typically involves imaging systems on satellites (remote sens-

ing), aircraft, and UAVs, while terrestrial or close-range photogrammetry methods, 

employing images acquired from a short distance, are used for digitising small ob-

jects with sub-millimeter accuracy and resolution (Pierdicca et al., 2023).  

 

 

Fig. 4 Collinearity condition: A) Verification of alignment between the projection center, the point on the 

image, and the point on the object for accurate photogrammetric reconstruction; B) Intersection of rays 

from two images defining the position of the object in three-dimensional space (©adapted from 

(Bedford, 2017)). 
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Photogrammetry relies on converting the two-dimensional image coordinates (2D) in-

to a real 3D coordinate system. This process demands a meticulous verification of 

collinearity (Fig. 4), ensuring alignment among the projection center, image point, and 

object point, following the central projection imaging model. The collinearity equations 

guide the transformation of images, defining the central perspective of a three-

dimensional object through nine independent parameters. The three-dimensional 

coordinates of each point on the object are derived from the images based on the mu-

tual position of the cameras reproducing the same points. 

During the capture of an image from a camera, each point on the image represents 

the convergence of various rays of light. In photogrammetry, the ray of interest is the 

one theoretically passing in a straight line from the object point through the perspecti-

ve center and arriving on the image plane at specific positions. The three-dimensional 

reconstruction of an object requires at least a pair of images providing stereoscopic 

restitution, and it is crucial to note that parts of the object not visible in at least two 

images cannot be reconstructed. 

Real cameras introduce geometric distortions, and these deviations must be quanti-

fied, mathematically described, and compensated for. For this purpose, camera cali-

bration is crucial for metric 3D reconstructions and involves four types of orientation: 

internal (bundle of rays related to the object in space) and external (position and 

orientation of the ray bundle relative to the object coordinates in space), which can be 

relative or absolute. 

Internal calibration takes into account the scale factor of a photogrammetric image, 

defined as the ratio between the distance from the object to the perspective center 

and the principal distance between the image plane and the perspective center. Exter-

nal orientation parameters describe the geometric model of the camera in terms of 

spatial position and orientation in the global coordinate system. 

Regarding the optical system selection, it is preferable to use fixed focal length lenses 

to ensure consistent shooting parameters. Lenses with a focal length of 50-60 mm 
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are ideal for capturing details, while those ranging from 16-20 mm are suitable for 

general shots. Very long telephoto lenses (80-300 mm) limit the field of view, compli-

cating image overlap, whereas wide-angle lenses (<16 mm) may introduce distor-

tions, especially in cases requiring high detail. 

A crucial aspect for photogrammetric application is the required Level of Detail (LOD), 

determined by the goal of the processing, which may involve accurate two-

dimensional representations such as orthophotos and vector plans, or mesh models 

for use in virtual tours or implementation in BIM models. More data implies longer 

processing times, often due to data redundancy. Therefore, careful planning of the 

survey before field execution is essential to facilitate operations. 

Oblique imagery, incorporating both horizontal and vertical perspectives, and em-

ploying convergent configurations, offers distinct advantages over parallel imaging 

(Wackrow and Chandler, 2011). This configuration not only mitigates systematic er-

rors resulting from imprecise lens distortion estimation but also enables a complete 

overlap if needed. This enhances the efficiency of subject coverage and facilitates 

capturing valuable images in challenging scenarios where conventional stereo photo-

graphy may be impractical.  

In the case of parallel-axis images, the perspective remains similar and parallel, with 

minimal convergence of optical rays. This implies that the images are captured at a 

constant angle relative to the object, ensuring significant uniformity in perspective di-

stortion.  

This approach is commonly employed for detailed acquisition, primarily focusing on 

building façades (Fig. 5). In aerial imagery, contemporary photogrammetric software 

accommodates oblique images from circling flights, markedly enhancing result accu-

racy when integrated with standard vertical images. 
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Fig. 5 Photogrammetric survey with parallel and convergent axes (©adapted from (Agisoft, 2020)). 

 

1.2 Some Information on Point Clouds 

As previously described, today, amazing details of old buildings may be cap-

tured by various technologies, offering a digital perspective that greatly surpasses the 

constraints of conventional photos or 3D models (Blaise, Florenzano and De Luca, 

2004; Yang, Xu and Huang, 2022). 
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Point clouds are the results of 3D acquisition techniques and represent a significant 

step towards long-term preservation because it enables the permanent digital archiv-

ing of structures, ensuring that their essential characteristics remain intact even in the 

face of physical damage or alterations. In addition to being useful for research and 

study, this digital documentation can also prove to be a useful tool for public out-

reach, giving anybody the ability to digitally visit historical locations from anywhere in 

the globe.  

 

Undoubtedly, a nuanced complexity underlies this endeavor. The adept management 

of voluminous datasets, navigation through the intricacies of acquisition technologies, 

and the mitigation of associated costs present formidable challenges that require judi-

cious attention. Furthermore, the absence of standardisation poses a potential imped-

iment to seamless interoperability among diverse systems and industry professionals 

(Storeide et al., 2023). 

Generic protocols for open and interchangeable point cloud processing formats and 

digital documentation of CH have been established. For example, the directives stipu-

lated by the ‘American Society for Photogrammetry and Remote Sensing' (ASPRS), 

notably those pertaining to the .LAS open file format for LiDAR data storage and de-

livery, are an additional and essential resource in ensuring the positional accuracy of 

digital geospatial data (Samberg, 2007).  

ASTM E2807, a pivotal standard from ‘American Society for Testing and Materials In-

ternational’ (ASTM International), delineates procedures for data exchange. The .E57 

format file, linked to this standard, thoroughly captures 3D point data, attributes in-

cluding color and intensity, and 2D imagery utilising a hybrid binary and eXtensible 

Markup Language (XML) format (Huber, 2011). 

An additional instance is the revered government agency ‘Historic England’, which 

oversees and provides expert advise on metric surveys, thus playing a critical part in 

the conservation of England's historic heritage. Strict guidelines covering general re-
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quirements, performance standards, data formats, and techniques like building sur-

veying, topographic surveying, imaging, terrestrial laser scanning, and building infor-

mation modelling (BIM) are established, with reference to the metric survey specifica-

tions for Cultural Heritage (Bryan et al., 2009). 

In a recent review by NASA's ESDIS Standards Coordination Office (ESCO), assess-

ments of point cloud data formats and guidance for cloud-based storage trends were 

provided, serving as a foundational resource for further research  in this field (Khalsa 

et al., 2022). 

The  VIGIE 2020/654 study, commissioned by the European Commission, represents 

a comprehensive exploration of the 3D digitisation landscape for tangible Cultural Her-

itage (CH) (Pritchard et al., 2022). Conducted by the Digital Heritage Research Lab at 

Cyprus University of Technology and a team of collaborators, the study is structured 

into tasks. It encompasses defining and exemplifying the complexity levels of tangible 

CH for 3D digitisation, identifying, and analysing quality parameters, examining exist-

ing formats, standards, benchmarks, methodologies, and guidelines, scrutinising past 

and ongoing 3D digitisation projects, and mapping the findings to diverse digital pur-

pose.  

The inherent limitations in accuracy and comprehensiveness of traditional methods, 

rooted in manual measurements and paper drawings, propel the standards beyond 

conventional architectural surveying techniques (Alexander, 1983; Pellegri, 2015). 

These standards are strategically integrated into avant-garde approaches, demon-

strating their pivotal role in advancing the preservation and documentation of heritage. 

Concerning the point cloud, as the result of the modern scanning approaches, it is 

formally represented as a set of three-dimensional coordinates, where each point is 

characterised by a triplet of Cartesian coordinates (X, Y, Z). 

Denoting the point cloud as P, a single point pi in the cloud can be expressed as:  
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p
i
= (x

i
, y, zi)  

[ 1 ] 

 

Where: 

i = index of the point.  

The quality of the representation is largely dependent on the density and spatial distri-

bution of points within the cloud. Density quantifies the number of points within a 

specific space unit and can be expressed as surface density, measuring points on the 

surface within a defined area, or volumetric density, measuring points within a specif-

ic volume inside the three-dimensional object. The spatial distribution of points on the 

surface, depends also on the density and encompasses how the points are arranged 

and the overall pattern they form. 

The complexity of a dataset in a point cloud can be enhanced by incorporating addi-

tional attributes for each point, extending beyond spatial coordinates. These supple-

mentary attributes may include details such as color, intensity, or other parameters 

specific to the context of the data (Tatoglu and Pochiraju, 2012). 

The extended mathematical representation of a point pi with these attributes becomes:  

 

p
i
= (x

i
, y, zi, ci, Ii,…) 

 

[ 2 ] 

 

Where: 

ci = colour 

Ii = intensity of the point pi. 

 

These attributes provide details about the visual appearance and radiometric proper-

ties associated with each point.  
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For instance, colour information can capture the surface appearance, and intensity 

may convey information about the Light Reflectance Value (LRV), i.e. the percentage 

of light reflected by a surface (Kang et al., 2009). 

According to the quality data specifications developed by the U.S. General Service 

Administration (GSA), there are currently two main criteria by which a point cloud can 

be evaluated (Akca, 2003, 2010): 

- ‘Level of Accuracy’ (LOA): Tolerance of the positioning accuracy of each indi-

vidual point in the 3D point cloud data. LOA is typically denoted in millimeters. 

- ‘Level of Detail’ or ‘Level of Density’ (LOD): Minimum size of the object that 

can be extracted from the point clouds. LOD refers to the surface sampling, 

i.e., how close the scanned points are to each other, indicating the density of 

the point cloud. LOD is typically denoted as a square area (in mm
2

) obtained 

as the product of the vertical and horizontal distance (in millimeters) between 

nearby scanned points. 

While LOD can be assessed using only acquired survey data, evaluating LOA requires 

additional data obtained from a control network using another sensor with an accura-

cy that should be an order of magnitude higher (for example, a Total Station).  

Tab. 1 shows the four specification levels for LOA and LOD developed by GSA, se-

lected based on the intended use of point clouds or derived 3D models. Typically, for 

indoor applications (e.g., interior layout) involving small dimensions, a higher 

LOA/LOD is required. For outdoor applications (e.g., outdoor building components, 

facades), dealing with larger dimensions, a lower LOA/LOD is desired (Aryan, Bosché 

and Tang, 2021). 
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Tab. 1 Standardised data quality requirements by the GSA. 

GSA 

(Level) 

LOA (Tolerance) 

(mm / inch) 

LOD (Data Density) 

(mm*mm) / (inch*inch) 

1 ±51 /±2 (152*152) / (6*6) 

2 ±13 /±1/2 (25*25) / (1*1) 

3 ±6 /±1/4 (13*13) / (1/2*1/2) 

4 ±3 /±1/8 (13*13) / (1/2*1/2) 

 

 

A more recent addition is the parameter ‘Level of Surface Completeness’ or ‘Level of 

Surface Coverage’ (LOC), denoted as the minimum amount of surface of an object of 

interest that has been scanned, and possibly which parts of this surface need to be 

acquired (Biswas, Bosché and Sun, 2015).  

This criterion is releavant because capturing the entire surface of an object, especially 

with ground-based stations, can be challenging, but obtaining a sufficient portion of 

this surface may be adequate for the intended purpose. 

 

1.3 Planning for Scanning (P4S) 

The application of terrestrial laser scanning (TLS) in digitising Cultural Herita-

ge necessitates meticulous planning of the architectural survey.  

This preliminary phase is crucial to ensuring the comprehensive registration of the 

target object is accomplished under optimal conditions. Effective planning plays a pi-

votal role in streamlining the process, thereby reducing the time required and minimi-

sing computational expenses associated with complete registration (Aryan, Bosché 

and Tang, 2021; Huang, Zhang and Hammad, 2021). 
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Fig. 6 Planning for Scanning Framework using BIM Models (©adapted from (Aryan, Bosché and Tang, 

2021). 

This goal can be accomplished through the strategic reduction of laser stations, ensu-

ring the creation of a uniformly distributed dense point cloud while mitigating occlu-

sion from objects within the survey acquisition scene (López et al., 2023). This me-

thodology not only minimises data redundancy (over-scanning) but also guarantees 

no missing pieces (under-scanning) and the comprehensive collection of data, the-

reby enabling a swifter and more efficient post-processing workflow. 

However, the decision on where to position the TLS relies on the experience and ca-

pabilities of the operator, lacking systematic procedures to optimise the instrument's 

placement (Cabo, Ordóñez and Argüelles-Fraga, 2017; Huang, Zhang and Hammad, 

2021). 

The choice of positions is thus subjective, but it can still be appropriately planned by 

referring to predetermined specifications and requirements, such as Level of Density 

(LOD), Level of Accuracy (LOA), and Level of Surface Completeness (LOC), as 

shown in (Fig. 6). This not only enhances efficiency but also ensures the achievement 

of precise and high-quality results  (Biswas, Bosché and Sun, 2015). 
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Thus, a group of experts has defined, in a systematic review, the Planning for Scan-

ning (P4S) challenge as the task of identifying the minimum number of predefined 

viewpoints necessary to ensure comprehensive coverage of scanning targets while 

meeting data quality requirements (Aryan, Bosché and Tang, 2021). 

While the need for scanning planning has only recently emerged in the construction 

industry, it has already been investigated in the manufacturing sector often for diffe-

rent types of 3D laser scanners. Different methods are proposed for the TLS automa-

tic planning with the goal of reducing costs and inspection time (Son, Park and Lee, 

2002; Fernández Álvarez et al., 2008; Mahmud et al., 2011; Turkan et al., 2013). 

These approaches utilise the 3D CAD model of the object to be inspected for planning 

the scanning operations. 

In 2017, a thorough study was conducted on optimisation methods for TLS station 

placements to enhance architectural survey planning (Cabrera-Revuelta, 2017).This 

investigation addressed the Art Gallery Problem (AGP) to determine the minimum 

number of guards required to surveil the internal polygon under consideration in archi-

tectural surveying. Additionally, it delved into the Fortress Problem (FP), which focu-

ses on ensuring visibility from the exterior of a polygon (Cabrera-Revuelta, Chávez de 

Diego and Márquez-Pérez, 2018).  

Furthermore, an innovative genetic algorithm (GA), employing a metaheuristic ap-

proach, was developed to maximise survey completeness, reduce data redundancies, 

and minimise point cloud overlaps (Cabrera-Revuelta et al., 2021), as shown in Fig. 

7. 

In recent years, advancements in scanning technology have prompted the deve-

lopment of novel algorithms aimed at enhancing the precision of data acquisition.  

In 2021, a study (Huang, Zhang and Hammad, 2021) focused on optimising the ef-

fective scan range by considering neighboring-point distributions on both vertical and 

horizontal planes.   
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Fig. 7 Automatic TLS survey planning: A) Stations detected with a Genetic Algorithm; B) Point cloud 

generated by such stations (Cabrera-Revuelta et al., 2021).  

 

Another approach (Dehbi et al., 2021) delved into a comprehensive study, not only 

addressing the necessity for sufficient bilateral overlap between neighboring stations 

but also examining the global connectivity of the station network. 

Moving into 2022, a paradigm shift was observed in scanning methodologies. While 

the majority of algorithms were fixated on two-dimensional sketches, a growing reco-

gnition of the need for comprehensive three-dimensional data processing led to the 

development of innovative approaches for planning both static and mobile scans 

(Frías et al., 2022). During the same year, it was proposed a groundbreaking me-

thodology for optimising the positioning of TLS stations, leveraging a pre-existing 

three-dimensional triangular mesh model (Rougeron, Garrec and Andriot, 2022). 
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In 2022, visibility analyser was introduced to enhance optimization processes, con-

structing a vertical visibility polygon and seamlessly integrating the results into the 

scanning optimization workflow (Jia and Lichti, 2022). 

As the transition to 2023 unfolded, cutting-edge techniques for optimising Terrestrial 

Laser Scanning (TLS) surveys within three-dimensional environments were explored 

(López et al., 2023). The employed methodologies, including spatial searches, GA al-

gorithms, and General Purpose Computing on Graphics Processing Unit (GP-GPU), 

marked a significant milestone, achieving unprecedented efficiency in TLS data ac-

quisition. 

In all these advancements, the key aspect lies in determining the optimal position for 

TLS data acquisition in digital surveying, ensuring meticulous planning for optimal 

outcomes.  

On the other hand, the automation of photogrammetric surveying with predefined 

flight planners like Pix4D® (Strecha, Küng and Fua, 2012), DJI Flight Planner® (DJI, 

2020), Litchi® (Litchi, 2020) or others, has already seen significant development.  

While these tools effortlessly generate flight paths, they require prior knowledge of the 

scene's height to avoid collisions, often necessitating manual interventions by pilots.  

Recently, in the field of UAV path mapping, the trend is shifting towards optimisation 

methods, categorised into ‘model-free’ approaches (for exploring unknown environ-

ments) and ‘model-based’ approaches (global optimisation with an approximate mo-

del) (Koch, Körner and Fraundorfer, 2019; F. Wang et al., 2022). 

'Model-based' strategies are also primarily employed for offline Planning for Scanning 

(P4S), leveraging pre-existing information about the scanning environment, such as 

2D (CAD) floor plans (Scott, 2009; Biegelbauer, Vincze and Wohlkinger, 2010). 

Conversely, 'non-model-based' approaches, also kwon as ‘view planning’ or ‘next 

best view’ (NBV) find application in online planning and are commonly considered wi-

thin the field of SLAM in robotics (Biegelbauer, Vincze and Wohlkinger, 2010; Potthast 

and Sukhatme, 2014). 
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1.4 Building Information Modelling (BIM) and Scan to BIM 

 

In the Architecture, Engineering, and Construction (AEC) field, Building Infor-

mation Modelling (BIM) stands out as a pioneering methodology, placing the use of 

intelligent digital models at the core of its approach (Ali, Alhajlah and Kassem, 2022).  

It was 1974 when Professor Charles M. Eastman of Carnegie Mellon University in 

Pittsburgh introduced the theory of a building design process initially called or Build-

ing Description System (BDS), later renamed as Building Information Modelling (BIM) 

(Zhang et al., 2013). 

Since then, BIM has undergone significant development, emerging as a pivotal meth-

odology in different fields, such as Cultural Heritage, industrial sectors, infrastructure, 

real estate, interior design, and more. 

This approach is described as a virtual and parametric representation of the structure 

capable of containing information. The highly detailed models serve as an integrated 

tool for the design, construction, and management of building structures, providing a 

comprehensive and three-dimensional view. The paramount goal of BIM is to optimise 

the life cycle of constructions, fostering greater efficiency in the phases of design, 

construction, and maintenance (Ali, Alhajlah and Kassem, 2022; Morsi et al., 2022) 

with implications for effective facility management (Pinti, Codinhoto and Bonelli, 

2022).  

A natural evolution of BIM applied to the built environment and widely used in the ar-

chitectural/heritage sector has manifested as ‘Historic/Heritage Building Information 

Modelling’ (HBIM), with the term ‘Historic’ originally coined in 2009 by Professor 

Maurice Murphy and his colleagues at the School of Surveying and Construction In-

novation (Murphy, McGovern and Pavia, 2009). 

This specific extension aims to digitally preserve, document, and manage historical 

buildings and monuments, surpassing mere physical representation of structures 

(Oreni et al., 2013; Quattrini et al., 2015; Banfi, 2020). HBIM distinguishes itself 
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through the integration of historical, architectural, and structural data, offering a com-

plete framework of cultural features, as-built models, historical information, and con-

servation interventions (Hichri, Stefani, De Luca and Veron, 2013).  

Analysis and simulations constitute another essential component of HBIM, enabling 

the assessment of potential impacts of restoration interventions or environmental 

changes on historical buildings. This results in a predictive framework of conse-

quences, supporting informed decision-making. Collaboration is actively encouraged 

and facilitated through shared access to a digital environment, engaging architects, 

engineers, conservators, and heritage administrators in a synergistic and cooperative 

process (Khohar et al., 2021). 

The standards for BIM undergo continuous updates and constitute essential docu-

ments that establish guidelines, procedures, and technical specifications for the crea-

tion, management, and exchange of information based on the digital model of a pro-

ject. 

In the United States, the American Institute of Architects (AIA) has introduced a proto-

col known as the ‘G202-2013 Building Information Modeling’ (BIMForum and 

American Institute of Architects, 2023) This protocol defines Level of Development 

(LOD) as the level of completeness applicable to an element of the model in five pro-

gressively detailed steps, identified by a numeric scale expressed in hundreds, rang-

ing from 100 to 500.  

At LOD 100, elements are symbolically represented with information derived from 

other sources. LOD 200 introduces approximate details, such as quantity and size. 

LOD 300 refines the design, allowing precise measurements of quantity, size, shape, 

location, and orientation. LOD 350 extends this by incorporating interfaces with adja-

cent elements. LOD 400 provides detailed representations suitable for fabrication and 

installation. Finally, LOD 500 captures existing or as-constructed conditions with a 

specified level of accuracy, achieved through observation, field verification, or inter-

polation. 
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In the United Kingdom, regulations ‘NBS 1192:2007’ and ‘PAS 1192-2:2013’ (BSI, 

2013) serve as the reference for information exchange in BIM projects. They identify 

‘Levels of Definition’ (ranging from 1 to 7), further subdivided into ‘Levels of Detail’ 

(LOD), progressively describing the graphic content of a model, and ‘Levels of Infor-

mation’ (LOI), detailing the non-graphic content of a model. 

The Italian regulation ‘UNI 11337-4:2017’ (Ente Italiano di Normazione (UNI), 2017) 

defines LOD in terms of ‘Levels of Development’, distinguishing between ‘Levels of 

Geometry’ (LOG) for all graphic attributes and ‘Levels of Information’ (LOI) for all in-

formation attributes. It also introduces a LOD scale codified with Latin capital letters 

(from A to G), including additional intermediate levels that can be defined upon the 

customer's request (Mirarchi et al., 2020). 

In 2018, with the international regulations ISO 19650-1:2018 (International 

Organization for Standardization (ISO), 2018) on information management in BIM, the 

definition of ‘Level of Information Need’ (LOIN) was introduced, aiming to overcome 

the limitations of a rigid classification based on predetermined classes 1 (Seyis and 

Cekin, 2020; Godager et al., 2022). Unlike other approaches, LOIN requires a coher-

ent identification of the reading and usability requirements of the model to effectively 

integrate it into its information processes. A functional classification (based on tech-

nology or semantics) gives way to a description illustrating the actual intended use of 

the object or collected information, thereby explaining the reasons behind certain 

choices, and avoiding model overload. 

BuildingSMART, formerly known as the’ International Alliance for Interoperability’ 

(IAI), is an international organisation that seeks to improve information exchange be-

tween software applications used in the construction industry. It has developed Indus-

try Foundation Classes (IFCs) as a neutral and open specification for BIM. 

This interoperability framework aligns with the broader context of BIM's evolution. 

Moreover, the concept of ‘Level of Reliability’ (Maiezza, 2019) in HBIM finds a rele-

vant application within this framework. This concept goes beyond the formal corre-
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spondence between models and point cloud ‘Level of Accuracy’ (LOA) (Antón et al., 

2018). Instead, it addresses the broader notion of reliability, encompassing the trust-

worthiness of information regarding materials, construction processes, and more 

(Brusaporci, Maiezza and Tata, 2018). 

In the broader context of the building project's lifecycle, the various phases or levels 

of development and implementation of the digital model are referred to as ‘dimensions 

of BIM’ (Mesároš, Smetanková and Mandičák, 2019; Wang and Jin Liu, 2020). 

The 3D dimension, surpassing traditional two-dimensional representation, allows for a 

comprehensive visualisation of physical elements in a three-dimensional environment. 

Advancing to the 4D dimension, the temporal element integrates with geometry, ena-

bling the visualisation of project evolution over time. Temporal event sequences, in-

cluding construction processes, become clear, providing a dynamic and chronologi-

cal perspective. The addition of the 5D dimension introduces a financial aspect, ena-

bling monitoring and management of project costs across various developmental sta-

ges. This establishes a clear foundation for financial management and budget plan-

ning.  

In the sixth dimension, 6D, sustainability is addressed, incorporating data on energy 

efficiency, the use of sustainable materials, and other environmental considerations. It 

is an approach focused on making more sustainable construction decisions throu-

ghout the entire building lifecycle. Finally, the 7D dimension focuses on post-

construction management and maintenance, providing data on scheduled maintenan-

ce, inspections, and overall management. The goal is to optimise operational efficien-

cy and extend the building's lifespan. 

 

As the industry continues to evolve, new dimensions of BIM, such as 8D, 9D, 10D, 

and 11D may be added to address emerging challenges and opportunities. However, 

these dimensions are not yet recognised by ISO 19650 (Piaseckienė, 2022). 

Specifically, 8D BIM is dedicated to safety during design and construction, integrating 

risk control and eliminating potential threats before construction begins. The 9D di-
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mension of BIM focuses on lean construction, optimising construction processes and 

reducing waste through the application of lean principles.  

The 10D dimension of BIM concentrates on the industrialisation of construction, ai-

ming to increase efficiency and productivity through the use of off-site construction 

methods and prefabrication. Leveraging a productivity-focused approach and innova-

tive solutions, the conceivable emergence of the 11th dimension of BIM aims to cata-

lyse substantial advancements in energy and systems sectors, enhancing the suc-

cess and sustainability of client. 

Implementing these dimensions allows for a more comprehensive and informed ma-

nagement of construction projects, providing an integrated framework covering phy-

sical, temporal, financial, sustainable, and operational aspects.  

In the context of Building Information Modelling (BIM), a crucial concept pertains to 

parameterisation, involving the definition of parameters associated with model ele-

ments, encompassing dimensions, shapes, materials, and relationships (De Luca, 

Veron and Florenzano, 2006; Pocobelli et al., 2018; Croce et al., 2022). 

This methodology enables models to be dynamic and adaptable, facilitating advanced 

analyses and simulations during the design and construction phases. The approach 

emphasises a comprehensive and interconnected representation of construction ele-

ments, further underscored by the concept of ‘object-oriented modelling’. It involves 

representing elements as ‘objects’ endowed with specific attributes that extend be-

yond mere geometry  (Jeong and Kim, 2016; Li and Xu, 2022). 

In practice, the implementation of BIM necessitates the use of specialised software, 

such as Autodesk Revit®, ArchiCAD®, Bentley®, and more (Wang, Zhu and Wei, 

2022). These tools facilitate real-time collaboration among stakeholders (Rocha et al., 

2020), promoting greater efficiency and coherence in the design process and the ma-

nagement of the life cycle of constructions (Fig. 8). 
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Fig. 8  Diagram of a BIM workflow (©adapted from (Rocha et al., 2020)). 

 

In recent imes, the concept of Scan-to-BIM has gained significant importance as a 

methodology that leverages data acquired from technological instruments, such as 

laser scanners or photogrammetry, to obtain accurate metric references during the 

construction of a BIM model, as faithful as possible to (Dore and Murphy, 2013; 

Adekunle, Aigbavboa and Ejohwomu, 2022).  

Conversely, Scan-vs-BIM highlights the critical examination and validation process in-

volving the comparison of data acquired from laser scans or photogrammetry with an 

established BIM model (Bosché et al., 2015; Abreu et al., 2023). 
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This meticulous analysis is geared towards assessing the accuracy and alignment of 

the BIM model with respect to a point cloud, pinpointing any disparities to refine and 

enhance the overall congruence between the virtual model and the physical reality. 

In Cultural Heritage, several authors explored the creation of models from point clouds 

for HBIM enrichment (Rocha et al., 2020; Alshawabkeh, Baik and Miky, 2021; Croce, 

Bevilacqua, et al., 2021; Verdoscia, Buldo, Musicco, et al., 2022b), involving both 

manual or fast semi-automatic methods (López et al., 2017; Antón et al., 2018), for 

geometry analysis (Capone and Lanzara, 2019; Qiu et al., 2022). 

Applications range from architectural management in BIM e GIS (Saygi and 

Remondino, 2013), to querying information related to a 3D model for the entire life 

cycle of a building (Agustín-Hernández, Fernández-Morales and Quintilla-Castán, 

2018; Agustín-Hernández and Quintilla-Castán, 2019; Morsi et al., 2022). 

Additionally, explorations extend to applications in archaeological contexts (Scianna, 

Serlorenzi and Gristina, 2015; Battini and Sorge, 2016; Bosco et al., 2019; Capparelli 

and Camiz, 2019), strategies for BIM modelling education (Agustín-Hernández, 

Sancho-Mir and Fernández-Morales, 2016), or other fields such as monitoring and 

diagnostics (Messaoudi et al., 2018; Bruno et al., 2020) or post-disaster built herita-

ge reconstruction process within the digital twin framework (Gros et al., 2023; 

Nguyen and Adhikari, 2023). 
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1.5 Semantic Enrichment of Cultural Heritage 

 

Nowadays, climate change, natural disasters, and damages caused by hu-

mans present serious difficulties for Cultural Heritage (CH). For this reason, the need 

to protect and conserve it has become critical. Promising results are being obtained in 

the areas of documentation and conservation thanks to sophisticated acquisition 

technologies that get beyond the drawbacks of direct measurements and produce 

precise morphometric and geometric 3D models.  

Nevertheless, even while the volume of data gathered – especially in the form of ima-

ges and point clouds – represents a significant advancement, problems with disarray 

and information dispersal remain. 

 

 

Fig. 9 Network map produced by bibliometric analysis using the the R-tool ‘bibliometrix’ and the web 

interface ‘biblioshiny’. The graph connects the primary keywords associated with the topic of semantic 

enrichment using search terms like ‘Cultural Heritage’, ‘Point Cloud’, ‘Segmentation’, and ‘BIM’. It is 

produced from a combination of 470 English-language papers evaluated on Scopus and Web of 

Science between 2012 and 2024. 
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The process of semantic enrichment in relation to Cultural Heritage becomes impera-

tive in order to tackle this difficulty (Fig. 9). The objective is to decipher the 3D scene, 

pinpoint specific elements, and lay the groundwork for generating Heritage Building 

Information Models (HBIM) via procedures like Scan to BIM, or for preservation, re-

storation, and monitoring. However, combining heterogeneous information to provide 

3D data a semantic meaning is still a difficult requirement that can be satisfied by au-

tomated segmentation and classification techniques. The complete comprehension 

and preservation of CH are made possible by the integration of such approaches, 

which is crucial for realising the full potential of the collected data. 

‘Segmentation’ is the process of grouping data (points, patches) into subsets (points, 

homogeneous regions) based on similar features (colorimetric, radiometric, geome-

tric, etc.). Simultaneously, these data are defined and assigned to distinct labelled 

classes based on various criteria under the term ‘Classification’. 

Numerous studies are associated with the theme of semantic classification, primarily 

driven by specific requirements provided by the application field, such as Building In-

formation Modelling (BIM) (Macher, Landes and Grussenmeyer, 2015), Cultural Heri-

tage (Gonizzi Barsanti, Guidi and De Luca, 2017a), Robotics (Maturana and Scherer, 

2015), Autonomous Driving (Wang, Zhang and Wang, 2017), Urban Planning (Xu, 

Vosselman and Oude Elberink, 2014), etc. 

The most popular segmentation and classification techniques examined over time, 

specifically with reference to point clouds, have been compiled in the literature (Yang, 

Xu and Huang, 2022; Zhao et al., 2023). Therefore, the most recurrent segmentation 

approaches are grouped into categories such as ‘edge-based’, ‘region-based’ (or ‘re-

gion-growing’), ‘attributes-based’, ‘model-based’ (or ‘model-fitting’), ‘graph-based’, 

‘hybrid’, ‘Machine Learning’ and ‘Deep Learning’. 

Specifically, edge-based segmentation algorithms are divided into two main phases: 

the first defines edge detection to delineate boundaries of different regions, and the 

second involves grouping points within boundaries to obtain the final segments 
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(Rabbani, van den Heuvel and Vosselman, 2006). Edges describe the shape charac-

teristics of objects; therefore, in depth maps, they are defined by points where visible 

changes in local surface properties (e.g., gradients, normals, principal curvatures, or 

higher-order derivatives) exceed a certain threshold value (Bhanu et al., 1986; Sappa 

and Devy, 2001; Wani and Arabnia, 2003). 

The quick segmentation process is undoubtedly an advantage of edge-based approa-

ches; nevertheless, accuracy problems relating to noise sensitivity, irregular point 

cloud density, and the difficult detection of closed segments – which frequently hi-

ghlight disconnected edges – offset this benefit. 

Region-based methods employ ‘Neighborhood Information’ algorithms capable of 

combining nearby points with similar properties, thereby obtaining distinct isolated 

regions. These techniques offer a greater level of noise accuracy as compared to ed-

ge-based techniques (Liu and Xiong, 2008). However, they have trouble drawing 

boundaries between regions and may have problems with under- or over-

segmentation. 

There are two different kinds of approaches in this context, called ‘bottom-up’ and 

‘top-down’. Regarding the bottom-up approaches, known as seeded region, the pro-

cess commences by seeding a specific number of starting points (seed points). Each 

region (segment) then develops by adding neighboring points based on data similarity 

criteria (such as curvature or surface orientation) or compatibility thresholds 

(Rabbani, van den Heuvel and Vosselman, 2006) (Jagannathan and Miller, 2007). 

Therefore, imprecise selection of starting points can impact the segmentation pro-

cess, leading to under- or over-segmentation problems.  

The second class of methods, called top-down or unseeded-region, starts with all 

points grouped into an area, and then a single surface is tailored to fit the region. As 

long as the selected merit figure for adaption is higher than a predetermined thre-

shold, the region subdivision will continue. One of the main challenges for these algo-

rithms is still deciding where and how to divide the region. Another is that they require 
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a significant amount of prior knowledge (number of regions, object models, etc.), 

which is typically unknown in complicated scenarios. 

 

Attributes-based methods represent robust approaches centered around the cluste-

ring of attributes derived from point clouds. The first step involves computing the at-

tributes of point clouds, followed by grouping them based on the identified attributes 

into homogeneous regions. While these methods ensure reliability in managing attri-

butes during the segmentation process, they exhibit a limitation on the quality of the 

attributes themselves, heavily reliant on the precision of calculations crucial for de-

termining the optimal separation process of different classes. 

In the literature, various attributes-based methodologies have been proposed. For in-

stance, they have been adopted for clustering surfaces derived from airborne laser 

scanners (Filin, 2001). Unsupervised approaches, such as fuzzy clustering, have 

been employed for segmenting point clouds from TLS (Biosca and Lerma, 2008). 

Additionally, the ‘Hough Transformation’ (HT) method in 3D form has been utilised for 

segmenting planar surfaces within irregularly distributed point clouds from laser 

scanners (Vosselman and Dijkman, 2001). 

In model-based or model-fitting procedures, points with the same mathematical re-

presentation are grouped into one area using geometric primitive forms (e.g., sphere, 

cylinder, cone, or plane). The two most popular algorithms at the forefront of modern 

methodology are the aforementioned Hough Transformation (HT) and Random Sam-

ple Consensus (RANSAC).  

RANSAC has been employed to detect mathematical features such as straight lines, 

circles, etc., for the segmentation and classification of complex point clouds derived 

from slippery shapes (Gelfand and Guibas, 2004). It has been utilised for the segmen-

tation of data from polygonal meshes and point clouds (Fischler and Bolles, 1981), as 

well as primitive shapes such as planes and cylinders (Schnabel, Degener and Klein, 

2009). RANSAC, being a robust algorithm, demonstrates versatility in segmenting 

point clouds based on geometric primitives, offering valuable contributions to the field 

of point cloud analysis. 
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HT, on the other hand, has been employed to detect arbitrarily complex shapes 

(Ballard, 1981), identify planes (Vosselman and Dijkman, 2001), cylinders, and sphe-

res (Vosselman and Dijkman, 2001), cilindri e sfere (Rabbani, van den Wildenberg 

and Vosselman, 2006).  

A study comparing approaches for the automatic detection of flat building roofs was 

carried out, and the findings showed that RANSAC was more effective in terms of 

execution times and segmentation outcomes, even with the limitations noted in both 

methods (Tarsha-Kurdi, Landes and Grussenmeyer, 2007). Moreover, it was introdu-

ced an altered RANSAC segmentation algorithm that is less susceptible to noise, 

maintains topological coherence among primitives, and prevents under- or over-

segmentation. This was accomplished by applying a region-growing method to sepa-

rate coplanar primitives using a vector data structure based on irregular triangles and 

a Triangulated Irregular Network (TIN) (Chen et al., 2014). 

‘Graph-based’ techniques, which treat point clouds as a graph with edges connecting 

pairs of adjacent points and vertices representing individual points in the data, are be-

coming more and more popular because to their accuracy and efficiency, particularly 

in robotic applications. Prominent uses encompass the division of 2D images into de-

signated areas (Meyer and Drummond, 2017), the creation of 3D graphs from point 

clouds using ‘K-Nearest Neighbours’ (KNN) algorithms (Golovinskiy and Funkhouser, 

2009), and the calculation of normals and colour identification on pictures (Strom, 

Richardson and Olson, 2010). 

These approaches can be coupled to provide ‘hybrid-based’ techniques for segmen-

ting pictures, polygonal models, and point clouds. This entails figuring out each me-

thod’s advantages and disadvantages and combining them to improve performance 

as a whole (Lavoué, Dupont and Baskurt, 2005; Vieira and Shimada, 2005). 

The far-reaching influence of ‘Machine Learning’ (ML) across various sectors within 

Computer Science and Artificial Intelligence (AI) is notably significant, employing trai-

ned algorithms and statistical techniques for accurate predictions and classifications. 
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Different techniques in the broad field of machine learning propel automatic learning in 

different directions (Jo, 2021). In ‘Supervised Learning’, the model learns to generate 

predictions or classifications by assimilating patterns from labelled data. On the other 

hand, in ‘Unsupervised learning’, the model looks for structures in unlabelled data wi-

thout prior knowledge. Combining aspects of both, ‘Semi-Supervised Learning’ uses 

both labelled and unlabelled data for training. ‘Reinforcement Learning’ involves an al-

gorithm that learns from its interactions with the environment and adjusts its beha-

viour in response to positive or negative results. Using deep neural networks that can 

handle complicated data representations makes ‘Deep Learning’ unique. Multiple mo-

del instances are combined in ensemble learning to increase overall performance. 

 

Some example of the most popular unsupervised ML techniques use algorithms like 

‘K-means Clustering’ (KMC), and ‘Hierarchical Clustering’ (HC), while ‘Random Fo-

rest’ (RF) is a predominat supervised algorithm combining numerous classifiers to 

enhance a model’s performance. 

KMC minimises the sum of squared distances between each point and the cluster 

centre, effectively dividing a set of n objects (points) into k groups (clusters). Re-

search has focused on developing the technology since MacQueen first developed it 

in 1967 (MacQueen, 1967), expanding its use to point clouds (Lavoué, Dupont and 

Baskurt, 2005; Yamauchi et al., 2005; Chen et al., 2014). 

HC generates nested sets of clusters by analysing similarities between pairs of points 

and grouping objects into a hierarchical tree (Ng and Han, 1994). In the last decade, a 

new HC algorithm has been introduced, capable of grouping data of any dimensionali-

ty. It finds application in mobile mapping in the geo-spatial domain and processing 

point clouds derived from aerial or terrestrial data (Xiao et al., 2013). 

RF is an ensemble learning method that creates several decision trees during training 

and combines them to produce predictions that are more reliable and accurate (Fig. 

10). Random subsets of the training data and features are used to build each tree 
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(Breiman, 2001). The data’s randomness and the feature selection process work to-

gether to reduce overfitting and improve the model’s capacity for generalisation. Ran-

dom forests can be used for pattern recognition and image segmentation, among 

other tasks. It is renowned for its robustness and versatiility and excels at managing 

complicated relationships within the data. 

 

 

Fig. 10 Random Forest simplified explanation. 

 

Because most work relied on statistical toolboxes applied to tiny datasets that are 

typically not publicly available, the application of Machine Learning (ML) in the con-

text of Cultural Heritage was limited until a few years ago (Fiorucci et al., 2020). A 

few classification techniques for 3D models in this field have only recently been defi-

ned (Pellis et al., 2022; Kutlu et al., 2023; Yang, Hou and Li, 2023; Zhao et al., 2023): 
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texture classification from 2D images processed through UV mapping and reprojected 

onto 3D models, segmentation of ortho-rectified image (Malinverni et al., 2017; Luo, 

Wang and Tan, 2019; Abgaz et al., 2021; Croce, Caroti and Piemonte, 2021; Vorobel 

et al., 2021), segmentation of point clouds based on colorimetric and geometric fea-

ture extraction (Grilli et al., 2018; Fatiguso and Buldo, 2020; Musicco et al., 2021) 

(Matrone, Lingua, et al., 2020) (Matrone, Grilli, et al., 2020) and  multi-level and mul-

ti-resolution classification (Teruggi et al., 2020). 

Semantic annotation in HBIM processes has witnessed significant advancements, 

with dynamic changes driven by the incorporation of Deep Learning techniques 

(Croce, Caroti, De Luca, et al., 2021; Croce, Caroti, Piemonte, et al., 2021) Notably, 

methodologies like PointNet, Pointnet++, KNN, and Dynamic Graph Convolutional 

Neural Network (DGCNN) have been pivotal in segmenting architectural elements like 

arcs, columns, walls, windows, and more (Malinverni et al., 2019; Pierdicca et al., 

2020; Croce, Manuel, et al., 2023; Matrone et al., 2023; Pellis et al., 2023; Battini et 

al., 2024). These approaches, underscore the dynamic nature of the field, showca-

sing the continuous evolution in HBIM processes within historic structures. 
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2. A NOVEL UNIFIED PROTOCOL FOR DIGITISING THE  

ARCHITECTURAL HERITAGE 

In this dissertation, a harmonised methodology was systematically employed 

across all the case studies, carefully adapted to suit the unique objectives of each 

investigation. This strategic approach facilitated a seamless and uniform application 

of the modus operandi, ensuring consistency while affording the requisite flexibility to 

cater to the various contexts and purposes, meeting the specific needs and 

challenges inherent in each individual research endeavor. 

Particularly, incorporating the principle of drawing and descriptive geometry into the 

architectural survey of the Cultural Heritage proves highly beneficial for computerising 

building heritage. This is especially crucial for knowledge and preservation, as it 

leverages modern technologies to investigate morphological and material 

characteristics in both two-dimensional and three-dimensional environments. 

This integration improves the effectiveness of the survey process by providing a 

comprehensive understanding of architectural elements and facilitating their digital 

documentation. The use of contemporary technologies further underscores the 

importance of this approach in capturing intricate details crucial to the preservation 

and informed management of Cultural Heritage.  

Moreover, the implementation of the Scan to BIM methodology amplifies the accuracy 

and depth of the 3D model, contributing to a more robust and accurate representation 

of the Cultural Heritage site. 

In this context, the adopted approach entails a process of 3D acquisition and 

elaboration, aiming to deliver digital documentation and reconstruct 3D models of 

Cultural Heritage through the development of an innovative Scan to BIM methodology. 

This methodology comprises distinct operational phases: 

• Integrated Architectural Survey with Point Cloud Acquisition: Utilising range-

based and image-based scanning techniques, along with GNSS for precise 
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georeferencing, detailed point clouds are captured as foundational data for 

subsequent stages. 

• Point Cloud Analysis and Segmentation: Applying advanced segmentation 

techniques, acquired point clouds are splitted into meaningful components, 

enhancing the interpretability of the data. 

• Modelling in BIM Environment: Leveraging the segmented point clouds, a 

meticulous construction of a detailed 3D model within the Building 

Information Modelling (BIM) environment ensures a comprehensive 

representation of architectural elements. 

• Testing of the Model: Rigorous testing validates the accuracy and reliability of 

the generated 3D model, aligning with established international standards for 

the digital documentation of the Architectural Heritage. 

 

 

Fig. 11 Scan to BIM Methodology workflow. 
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According to the procedures for digitisation of Cultural Heritage adopted by 

international research groups (Bryan et al., 2009; Di Giulio et al., 2017; Stylianidis, 

2019; Verdoscia, Buldo, Musicco, et al., 2022b), an operational Workflow of this 

unified protocol was defined for the integrated three-dimensional architectural survey, 

briefly summed up as follows (Fig. 11): 

i. Planning: The initial phase involves identifying project requirements and spe-

cific needs to establish an efficient work schedule. Following this, one or mo-

re on-site inspections, which may include architectural survey sketches, are 

organised to examine the building and determine the level of information depth 

and accuracy of morphometric data in relation to quality indicators.  

These indicators include the LOC (Level of Completeness), representing the 

minimum surface quantity to be detected (Biswas, Bosché and Sun, 2015). 

The LOA (Level of Accuracy) indicates the measurement tolerance (expressed 

in millimeter) applicable to the position of each point in the cloud, and the 

LOD (Level of Density or Detail), defined as the minimum dimension, denoted 

in points per unit of surface (specifically points per square millimeter) of the 

object extractable from the point clouds, essentially denoting the density of 

the point clouds (Aryan, Bosché and Tang, 2021). 

This planning phase also entails evaluating the architectural characteristics of 

the building, the site’s morphology, weather forecasts, and any restrictions on 

airspace accessibility. Identification of potential issues such as occlusions, 

physical obstacles (e.g., electrical cables, pylons), and areas with reduced vi-

sibility and accessibility is critical. Additionally, thorough research involves 

acquiring bibliographic and archival documents detailing the building’s history 

over time. Lastly, the selection of the digital format for accessing and sharing 

surveys and models aligns with representational needs and is considered an 

essential aspect of this planning stage. 
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ii. Health and Safety: The acquired information enables the meticulous planning 

of the survey campaign in adherence to security measures outlined by natio-

nal technical regulations (Legislative Decree 81/2008, commonly referred to 

as the ‘Testo Unico sulla Salute e Sicurezza sul Lavoro’ (Italian Ministry of 

Labour and Social Policies (MLPS), 2008) and ‘Presidential Decree 

380/2001’ (Italian President of the Republic, 2001)). During this stage, a 

comprehensive review of certificates of occupancy is imperative, assessing 

the need for specific security measures on the construction site. Additionally, 

thorough attention is given to the training and preparation of the professionals 

involved in the survey to ensure a safe and secure working environment. 

 

iii. Data Acquisition: The third phase involves the execution of the survey cam-

paign, utilising a combination of range-based and image-based scan techni-

ques. Additionally, actions to support technological equipment are underta-

ken, such as conducting photographic surveys, maintaining detailed field no-

tes, strategically placing georeferenced targets and light sources, and em-

ploying other complementary methods. This comprehensive approach ensu-

res a rich dataset capturing various aspects of the architectural environment. 

iv. Data Processing: During this critical phase, diverse datasets, including in-

strumental data, bibliographical and archival documentation, and photo-

graphic surveys, undergo meticulous processing. The objective is to elaborate 

and integrate all collected data, resulting in a multi-faceted dataset comprising 

point clouds, meshes, textures, orthophotos, 360° photos, DEM, and more. 

This integrated database serves as a foundation for subsequent analyses and 

reconstructions.  

The data collected is processed using sophisticated software that harnesses 

the capabilities of advanced algorithms for image and point cloud processing. 

This enables the generation of three-dimensional reconstructions from point 

clouds, showcasing the full potential of these cutting-edge processing techni-

ques.  
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The processed data undergoes thorough quality checks to ensure accuracy 

and completeness, establishing a reliable foundation for subsequent stages in 

the survey and documentation process. 

v. Export: The final phase involves the optimisation of the processed data, in-

corporating essential operations such as filtering, decimation, and segmenta-

tion. These actions refine the dataset, ensuring it aligns with the desired pre-

cision and quality standards. Simultaneously, meticulous graphic configura-

tion of the content takes place, involving choices related to colours, graphic 

settings, and other visual attributes. This step aims to enhance the overall vi-

sual appeal and interpretability of the generated models. 

Furthermore, this phase also includes the conversion of files to the appropria-

te formats for seamless integration into various applications. This may en-

compass file formats such as .RCP, .RVT, .FBX, JPEG, and more, catering to 

specific needs and compatibility requirements. The export stage is crucial for 

delivering the finalised, optimised, and visually refined outputs, ready for dis-

semination, analysis, or integration into broader Architectural and Cultural He-

ritage contexts. 

 

The outlined procedure has been further validated through practical application in the 

field, with experimentation conducted by the ‘Architectural and Urban Modelling Labo-

ratory’ (MAULab) of the Politecnico di Bari, with the collaboration of the ‘Grupo de 

Representación Arquitectónica del Patrimonio Histórico y Contemporáneo’ 

(GRAPHyC) of the Universidad de Zaragoza and the ‘Graphical Methods, Optimization 

and Learning Research Group’ (GOAL) of the Universidad de Cádiz.  

This experimentation involved the examination of several monumental buildings situa-

ted in central-southern Italy and abroad, particularly in Spain. Subsequent paragraphs 

will offer a thorough overview of the procedures employed in these notable case stu-

dies, emphasising the key methodologies selected.  
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3. EXPLORING METHODOLOGIES: BRIDGING 3D SURVEY 

TO BIM MANAGEMENT 

This chapter aims to explore the complex path from three-dimensional sur-

veying, conducted through technologies such as laser scanning and photogrammetry, 

to the construction of a Building Information Modelling (BIM) model, followed by its 

management and the critical phase of geometric accuracy validation. This process 

represents a fundamental step in integrating advanced methodologies for the preser-

vation and management of Architectural Heritage and, in this case, the previously de-

scribed unified protocol applies. 

Throughout this exploration, data acquired through 3D surveying undergoes an inte-

gration process, where the combination of information from different sources genera-

tes a unified and detailed representation of the architectural object under examination. 

The subsequent step involves translating this three-dimensional representation into a 

BIM model using specialised software, enriching elements with essential attributive 

data. The management of the BIM model then becomes crucial, involving specific me-

thodologies and platforms to ensure its efficiency and continuous updating. The cul-

mination of this journey is represented by the validation of geometric accuracy, whe-

rein the BIM model is compared to the reference data from 3D surveying, utilising ad-

vanced techniques such as clash detection and deviation analysis. 

Through the analysis of specific case studies, this chapter aims to provide an in-

depth perspective on the challenges and solutions in implementing these integrated 

methodologies. The ultimate goal is to offer a comprehensive knowledge base for 

those involved in the conservation and management of Architectural Heritage through 

the practical application of cutting-edge technologies. Namely, in this section various 

methodologies are introduced, each unique in its approach but united by a common 

thread. These methodologies are applied across three distinct cases, providing a 

comprehensive overview of the solutions employed in specific contexts.  
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Hereafter, brief summaries of the case studies are presented. 

• Church of Saint Mary Veteran in Triggiano (Apulia, Italy): 

In this project, the primary objective is to validate an integrated survey 

workflow utilising laser scanning (TLS) and aerial photogrammetry (UAV) data 

through Iterative Closest Point (ICP) algorithms. The aim is to generate a hy-

brid point cloud capable of robustly supporting subsequent parametric model-

ling processes within the Heritage Building Information Modelling (HBIM) en-

vironment. The case study revolves around the Church of Saint Mary Veteran, 

constructed in 1580, exploiting multi-sensor registration for both interior and 

exterior areas within the point cloud. 

 

• Baths of Diocletian in Rome (Latium, Italy): 

This study explores the intricate link between entered data and represented 

objects, showcasing various methods of managing and computing data wi-

thin the three-dimensional modelling environment. Techniques include relatio-

nal databases, open-source middleware, proprietary software, and customi-

sable applications developed through scripts or visual programming langua-

ges. Focused on the Baths of Diocletian in Rome, the study illustrates the utili-

ty of the A-BIM approach throughout the preservation process, aiding in site 

survey, archaeological archive compilation, and the development of a detailed 

three-dimensional model. 

 

• Former Monastery of the Saint Mary of the Cross in Modugno (Apulia, Ita-

ly): 

The proposed Scan to BIM approach seamlessly integrates laser scanning, 

photogrammetry, and parametric modelling for the former Monastery of the 

Saint Mary of the Cross in Modugno. Geometric accuracy is assessed 

through Clash Detection and Surface Deviation Analysis, ensuring that the 

BIM and reference point cloud align within specified tolerances. Clash detec-

tion evaluates component positions, identifying clashes, while Surface Devia-
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tion Analysis evaluates geometric accuracy and pinpoints modelling errors 

concerning a model adopted as a ground truth. 

 

The exploration of these methodologies and the analysis of these case studies contri-

bute valuable insights into the holistic process of integrating 3D survey techniques 

with BIM management for Architectural Heritage. The subsequent sections will delve 

deeper into each case study, unraveling the nuances and lessons learned in the pur-

suit of accurate and effective heritage preservation. 
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3.1 Integrated 3D Survey Techniques 

In the realm of Cultural Heritage, achieving precise surveys through 3D acqui-

sition tools has become indispensable to create a digital replica of structures with 

high metric accuracy. Despite the high costs and limited portability associated with 

LiDAR technology in certain situations, the photogrammetric technique has gained 

traction. Each method has its merits and drawbacks, necessitating a careful conside-

ration based on initial documentation needs and specific contextual requirements. 

There are three key distinctions between these approaches: i) active systems produce 

a point cloud directly from the acquisition process, while passive techniques rely on 

two-dimensional images adhering to photogrammetric principles; ii) the point cloud 

generated by Terrestrial Laser Scanning (TLS) is considered a metrically accurate re-

construction, in contrast to photogrammetry, which relies on onsite metric references, 

potentially introducing errors in model capturing and scaling; iii) TLS may encounter 

challenges in capturing certain parts of a structure, such as rooftops, and may face 

texture quality issues. To address the limitations inherent in each digital survey tech-

nique, the combination of LiDAR and Photogrammetry has become a common practi-

ce (Battini and Sorge, 2016; Liang et al., 2018). 

The focus of this project is to validate an integrated survey workflow employing laser 

scanning (TLS) and aerial photogrammetry (UAV) data through Iterative Closest Point 

(ICP) algorithms. The objective is to generate a hybrid and comprehensive point cloud 

(Verdoscia, Buldo, Tavolare, et al., 2022) capable of robustly supporting subsequent 

parametric modelling processes within the Heritage Building Information Modelling 

(HBIM) environment.  

The case study involves the survey of the Church of Saint Mary Veteran, constructed 

in 1580 atop the ruins of a pre-existing medieval church in Triggiano, Italy.  

The survey employed a multi-sensor registration, leveraging range-based data for re-

constructing interior and exterior areas within the point cloud. 
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Simultaneously, image-based data played a crucial role in detecting roofs and filling 

gaps, particularly where laser scanning from ground stations encountered limitations 

in capturing the exterior walls. 

 

3.1.1     The Church of Saint Mary Veteran in Triggiano (Italy) 

The Church of Saint Mary Veteran (Fig. 12), located a few kilometers from Ba-

ri (Apulia), boasts an artistic history spanning from the 1600s to the 1700s, signifi-

cantly contributing to the artistic life of the region. Built in 1580 on a pre-existing me-

dieval church dedicated to Madonna della Grazia and founded around 1080, the 

church has undergone various transformations over the centuries to adapt to the de-

mographic and urban growth.  

The architectural aspect of the church is remarkable, featuring a tripartite façade in 

white stone with Ionic pilasters and artistic decorations. Originally facing west, the 

façade was relocated to the east in 1908-1913, adding a distinctive artistic embel-

lishment. The façade is divided into two levels: a lower one with elements such as 

Corinthian columns and portals, and an upper pointed one with a precious decorated 

rose window dating back to 1500. This upper level is surmounted by a sloping 

tympanum richly adorned. The bell tower from 1580, damaged in 1681, lacks its ori-

ginal pyramidal spire. 

Inside, the church follows a basilical layout with three naves and an apse, adorned 

with decorated pillars and 16th-century round arches. The monumental altar, from the 

20th century, is in Byzantine Pugliese style, dedicated to the Virgin and dominated by 

a painting depicting the Exaltation of the Virgin by Vitantonio De Filippis. 

The church houses several side chapels, including the notable ‘Cappellone’ dedicated 

to Most Holy Mary of Costantinopoli. Artworks inside comprise frescoes, bronze re-

liefs, and paintings dating from the 16th to the 19th century. The coffered ceiling di-

splays mixed-line paintings portraying the pictorial cycle of the life of the Virgin Mary, 

though it lost some of its Renaissance character due to the Liberty-style decorations 

added during the restoration of 1908-1913.  
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Fig. 12 Exterior and interior view of the Church of Saint Mary Veteran in Triggiano (Italy). 

 

3.1.2     Methodology 

The project embraced a data acquisition-and-processing procedure-based 

approach that combined range-based (terrestrial laser scanner) and image-based (ae-

rial photogrammetry) scanning techniques, in ensuring an integrated and complete 

survey of the building, to be displayed as a point cloud, thus being useful for subse-

quent reconstruction in BIM environment. 

The segment dedicated to instrumental surveying is integral to a methodologi-

cal framework aligned with international standards for the digital documentation of 

Cultural Heritage Culturali (Bryan et al., 2009; Di Giulio et al., 2017; Stylianidis, 

2019).  
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This framework is elucidated through an operational workflow (Fig. 13) delineating the 

sequential progression across distinct application levels. These encompass the plan-

ning phases for the two different techniques, incorporating health and safety opera-

tions, data acquisition, and data processing. The latter involves integration with the 

ICP algorithm and culminates in final decimation and filtering, as detailed below. 

 

 

Fig. 13 Operational workflow for the integrated survey of the church. 
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i. Planning 

The initial step involvesthe requirements and criteria of the project to ensure 

an effective activity planning. This includes on-site inspections and the concurrent de-

termination of the depth of information and morphometric accuracy, guided by quality 

indicators such as the LOC (Level of Completeness), i.e. the minimum quantity of 

surface detected (Biswas, Bosché and Sun, 2015).  

Additionally, the LOA (Level of Accuracy), i.e. the position measurement tolerance 

(given in mm) of each individual point of the cloud; the LOD (Level of Detail or Densi-

ty), i.e. the minimum size (given in points per mm
2

) of the object that can be extracted 

from the point clouds, that is the point cloud density (Aryan, Bosché and Tang, 

2021). 

Furthermore, the assessment encompasses architectural and constructive features of 

the building, site morphology, anticipated weather conditions, airspace restrictions, 

potential occlusions, physical obstacles such as power line cables and pylons, and 

areas with reduced visibility and accessibility. 

Selection of the digital format for survey use and sharing, based on graphic require-

ments, is complemented by the acquisition of archival and bibliographic documenta-

tion detailing the building and its time-evolution. 

In the case study, covering an area of approximately 34x36 m
2

, meticulous planning 

is undertaken for the range-based survey executed with the CAM2® FARO Focus 3D 

120 laser scanner. This involves determining the minimum number and position of 

shooting points relative to object geometry (concave/convex, closed/open), conside-

ring the vertical and horizontal angles (305°/360°) of the instrument’s operational co-

verage. Core criteria include reducing shaded areas and optimising acquisition angles. 

The objective is to achieve completeness and uniform resolution of the scanned sur-

face in alignment with expected LOC and LOA values (Fig. 14). 
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Fig. 14 Laser-scanning survey planning. 

 

In the data acquisition operational phases, the planning of the aerial photogrammetric 

survey campaign strategically chose the central hours of cloudy days. This decision 

aimed to mitigate the contrast between light and shadows, ensuring an even 

illumination of the surfaces.  

To achieve the most accurate three-dimensional reconstruction during data 

processing, a series of manual flight missions (Fig. 15) were executed. These 

missions employed a double grid and circular type at varying heights, incorporating 

frontal (0°), oblique (45°), and nadiral (90°) shots. 

With respect to LOC, a front and side overlap of 60/80% between contiguous frames 

was meticulously maintained, along with a Ground Sample Distance (GSD) value of 

approximately 6 mm/pixel. The dataset comprised a total of 197 shots in JPEG 

format.  
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To facilitate alignment and ensure accurate scaling of the survey, Ground Control 

Points (GCPs)
2

 targets were employed. These targets, printed on solid panels sised 

80x80 cm, provided essential reference points for the survey. 

 

 

Fig. 15 Aero-photogrammetric survey planning. 

 

 

ii. Health and Safety 

National safety regulations (D.Lgs. 81/2008, ‘Testo Unico sulla Salute e Sicu-

rezza sul Lavoro’, DPR 380/2001) were meticulously considered during the planning 

phase. This involved educating and briefing all personnel involved in the survey, deli-

neating procedures for the adoption of specific safety measures at the site. This pro-

cess included a thorough examination of viability and safety certificates necessary for 

accessing the survey area. 

 
2
 ‘Ground Control Points’ (GCP) enhance 3D reconstruction accuracy in photogrammetry by 

providing known reference points for georeferencing. Crucial for applications like cartography and envi-

ronmental monitoring, GCP strategically correct errors during image processing, ensuring precise ali-

gnment with the real-world context. 
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Furthermore, a preliminary inspection was conducted to assess environmental condi-

tions, identify potential critical issues, and evaluate interferences with urban mobility 

for both pedestrians and vehicles. Additionally, the survey team scrutinised the pre-

sence of construction sites or other activities within the workplace.  

In preparation for UAV usage, comprehensive Risk Analysis and Assessment Proce-

dures were adhered to in the days leading up to deployment. This included consulting 

thematic maps (Fig. 16) and checking for any Notice To AirMen (NOTAM) communi-

cations. 

 

 

Fig. 16 Thematic map on airspace limitation. 

 

iii. Data Acquisition 

At this stage, a combination of active and passive scanning methods, along 

with supporting actions for technological equipment (e.g., photographic survey, in-

situ annotations, arrangement of targets, and light sources), is employed.  

The outcome includes 19 outdoor scans with a dimensional resolution of 28.2 Mega-

points per scan (Mpts) and an acquisition resolution of 7.670 mm/10 m (i.e., the dis-

tance between points in a 10 m range). Additionally, 36 indoor scans were conducted 
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with a dimensional resolution of 11 Mpts and an acquisition resolution of 12.272 

mm/10 m. 

The initial scan positions, as determined in the planning phase, were adjusted or ex-

tended as needed. Notably, unforeseen elements such as chairs, benches, curtains, 

panels, and chandeliers were minimised to enhance coverage of the main architectur-

al elements. The exposure metering mode was meticulously configured to match the 

ambient light pattern, using Horizon Weighted Metering for indoor areas and Even 

Weighted Metering for outdoor locations.  

Throughout the survey operations, any changes in configuration (e.g., brightness var-

iations, opening or closing of doors and windows, transit of persons) were diligently 

recorded. This documentation facilitated the easy identification and correction of dis-

crepancies during the subsequent data processing phase. To address a specific chal-

lenge encountered when merging scans of the nave and those of the wooden choir, 

connected by a double-winder U-shaped staircase, scans were strategically arranged 

at varying heights (Fig. 17). 

 

 

Fig. 17 Laser scanner stationing at different instrumental heights. 
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iii. Data Processing 

The alignment of LiDAR and photogrammetric data was performed using spe-

cific software tools: Autodesk Recap and CloudCompare for laser scanning (Fig. 18), 

and Agisoft Metashape Pro® for the outdoor photogrammetric survey.  

 

 

Fig. 18 Range-based point cloud: internal view. 

 

The registration of the point cloud acquired from the laser scanner was initially carried 

out through automated procedures within the software. In instances where the soft-

ware failed to overlay specific pairs of scans, a manual union was performed, involv-

ing the identification and connection of three homologous points to maintain model 

consistency. 

Conversely, in generating the aerophotogrammetric 3D model, initially presented as a 

sparse and subsequently densified point cloud, the Structure from Motion (SfM) soft-

ware was employed. Following the identification of correspondences among visual 
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features in overlapping images, the crucial Bundle Adjustment process was executed. 

This step optimised the position and orientation of the cameras used for image acqui-

sition, refining the 3D coordinates of points within the model. It significantly contribut-

ed to ensuring a more precise and coherent three-dimensional reconstruction of the 

scene, mitigating systematic errors, and elevating the overall accuracy of the final 

model. 

This point cloud was subsequently scaled using roof targets as a reference, with dis-

tances measured using a tape measure (Fig. 19). The decision was made to dispense 

with GNSS technology, opting instead for a local reference system with the origin po-

sitioned at the entry threshold of the church. 

The integration of the obtained point clouds was achieved by selecting homologous 

points on the main façade of the church – points visible in both point clouds. This 

process involved fine registration through the Iterative Closest Point (ICP) algorithm, 

minimising distances between clouds of different reference origins. 

 

 

Fig. 19 Image-based point cloud reconstruction and target scaling. 
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The ICP algorithm introduced by Besl and McKay in 1992 (Besl and McKay, 1992), 

has been enhanced by various authors, including improvements by Eggert et al. 

(1998) and Zhang (1994) (Zhang, 1994; Eggert, Fitzgibbon and Fisher, 1998). 

Another approach involves the method of Least Squares 3D Surface Matching, as 

demonstrated by Akca in 2010 (Akca, 2010). 

ICP involves initialising a transformation, finding the corresponding points, estimating 

the optimal transformation, applying it to one of the point clouds and verifying con-

vergence. The process is repeated until a satisfactory alignment is achieved. ICP is 

widely used in applications such as 3D reconstruction and laser scanning registration, 

but its performance can be sensitive to initial conditions and outliers. 

The ICP point-to-point algorithm, as originally described in (Bellekens, Spruyt and 

Weyn, 2014) establishes point correspondences by finding the nearest neighbour tar-

get point qi for each source point pj in the source point cloud.  

The nearest neighbour matching is determined based on the Euclidean distance me-

tric [ 3 ]: 

 

 

[ 3 ] 

 

 

Here, i ∈ [0, 1, …, N], and N denotes the number of points in the targe point cloud. 

The rotation matrix R and translation vector t parameters are estimated by minimising 

the squared distance between these corresponding pairs: 

 

 

[ 4 ] 
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The ICP algorithm iteratively solves equations [ 3 ] and [ 4 ] to refine the estimates 

obtained from previous iterations. This iterative refinement process is depicted in Fig. 

20, where surface s is aligned to surface t through multiple n ICP iterations. 

 

 

Fig. 20 ICP alignment based on point to point approach (©adapted from (Bellekens, Spruyt and Weyn, 

2014)). 

 

Considering the anticipated geometric requirements, and after completing the pro-

cessing phase, the work underwent additional post-processing, involving the applica-

tion of 5 mm and subsequently 2 cm decimation algorithms to enhance manageabil-

ity. To enhance the optimisation of the point cloud, overlaps and interferences were 

subsequently removed.  

An additional decimation, based on statistical criteria, was performed using the Statis-

tical Outlier Removal (SOR) algorithm (Fig. 21). 

The SOR algorithm has been proposed in different ways in recent, such as work 

based (Rusu et al., 2008) on calculating the distribution of distances between points 
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and neighbours in the input data set or removing the radius outlier using the threshold 

of distance and number of neighbours years (Dung and Lee, 2015). 

 

Fig. 21 Integrated point cloud decimation process with the SOR algorithm. 

 

For this purpose, SOR algorithm involved setting the number of points used for mean 

distance estimation to 5 and establishing a standard deviation multiplier threshold 

(n_sigma), taking into account that the maximum distance would be calculated as 

follows [ 5 ]. 

 

maximum distance = average distance + (nsigma * standard deviation)  
[ 5 ] 
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3.1.3     Results 

The optimisation of the processed data, involving tasks such as decimation 

and filtering, is intricately connected to rendering settings, including graphic and col-

our configurations, as well as the choice of file format (.RCP, .RVT, .FBX, OBJ, JPEG).  

 

 

Fig. 22 Integrated point cloud: internal view (on the top) and external view (on the bottom). 
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To achieve this goal, the entire process effectively identified and removed isolated 

points, resulting in a decimated point cloud with 17,145,817 points instead of the ini-

tial 260,336,288 points (Fig. 22). This point cloud is not only more geometrically uni-

form but also spatially coherent. 

The SOR filter improved the quality of the point cloud by calculating local statistics for 

each point, evaluating discrepancies within its neighbouring group, defining a thresh-

old to identify significant deviations, and subsequently removing outliers. The process 

can be also iterated for further refinement, ensuring a cleaner and more accurate rep-

resentation. 

In the context of a Scan-to-BIM workflow, as three-dimensional models evolve, the 

extraction of geometric profiles becomes pivotal. These profiles identify generators 

and directions, crucial for subsequent authoring steps. It is imperative for these op-

erations to align with graphic objectives (such as planimetric and three-dimensional 

requirements, and scale of representation) and be compatible with the software uti-

lised in the process. 

 

3.1.4     Closing Insights 

Conducting an integrated digital survey presents unique challenges, criteria, 

and critical considerations that may vary based on metric and graphic requirements 

as well as environmental factors. The effort has resulted in the development of well-

defined operational procedures, adhering to a standards-based approach.  

This approach incorporates quality and safety parameters, aligning with survey metric 

and information needs. Consequently, the configuration statistics are harmonised to 

suit the project’s specific use.  

The coordinated strategy involves the integration of various technologies and exper-

tise to optimise methods and streamline operational processes. This ensures efficien-
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cy in both on-site execution and subsequent data processing by avoiding unneces-

sary information that could lead to delays. Recognising the significance of planning 

for information requirements is pivotal for a comprehensive definition of architectural 

surveys and their graphic representation, making informed methodological choices a 

key factor in the process. 
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3.2 Digital Documentation and Archaeological Building Information 

Modelling 

In the archaeological field, the Archaeological Building Information Modelling 

(ABIM) approach within BIM redefines the semantic aspect of architectural assets. It 

extends beyond morphometric considerations, incorporating datasets acquired during 

surveys or archived information (Tomasello, Cascone and Russo, 2018; Bosco et al., 

2019).  

The entered data are intricately linked to the represented objects and can be managed 

and computed in platforms integrated with the three-dimensional modelling environ-

ment in different ways: i) through relational databases exported/imported with open-

source middleware, such as Open Database Connectivity (ODBC) drivers or proprieta-

ry software or a proprietary software, such as GDL in ArchiCAD® or MDL in Bent-

ley® (Eastman et al., 2011; Verdoscia et al., 2020); ii) via customisable and flexible 

applications developed through scripts (add-ins), Application Programming Interface 

(API), or Visual Programming Language (VPL) (supported for instance by Dynamo 

Studio Autodesk® and Graphisoft Grasshopper®) (Negendahl, 2015; Alzara et al., 

2023); iii) using customisable cloud platforms capable of establishing connections 

between the three-dimensional model and relational databases for real-time monito-

ring (Chien et al., 2017).  

Focusing on the Baths of Diocletian in Rome, this work illustrates the utility of the A-

BIM approach throughout the entire preservation process (Verdoscia, Musicco, Buldo, 

et al., 2021).  

From site survey and archaeological archive compilation to the development of a 

three-dimensional model with three levels of detail (low, medium, high), the integrated 

approach aids in both the management and conservation procedures associated with 

this historical site. 
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3.2.1     The Baths of Diocletian in Rome (Italy) 

The Baths of Diocletian, a monumental complex dedicated to Emperor Diocle-

tian, were constructed between 298 and 306 A.D. Spanning an expansive 13-hectare 

area between the Quirinal and the Viminal Hills, the design of the baths emulated the 

architectural patterns of the Trajan and Caracalla thermal complexes. With a capacity 

to accommodate up to 3000 individuals, the complex comprised three main ele-

ments: the Central Building, the quadrangular Outer Settlment, the Large Garden. 

This longitudinal structure of the Central Building featured symmetrical rooms flanking 

the transversal median axis, where various thermal activities occurred. The building 

(Fig. 23) covered approximately 37,200 square meters and housed entrances, vesti-

bules, changing rooms, gyms, heated rooms, such as Iaconica and sudationes, the 

calidarium, the tepidarium, and the frigidarium with a substantial swimming pool. Ad-

ditionally, it included spaces for body care, massages, eateries (thermopolia and po-

pinae), and areas for shows. Adjacent to the heated rooms, sizable areas were alloca-

ted for technical equipment. 

Encompassing an area of about 388x328 meters, the quadrangular space of the Outer 

Settlment included an exedra with a 150-meter diameter on its south-western part. 

The exedra housed rooms designated for cultural and recreational activities. 

Serving as a scenic buffer, the Large Garden separated the aforementioned spaces 

and featured green areas adorned with pools and fountains. 

Over time, the Baths of Diocletian underwent significant transformations. Following 

the barbaric invasions in the 6th century, the complex experienced changes in both 

function and layout. These adaptations included the establishment of a church dedi-

cated to Our Lady of the Angels and Christian martyrs, adorned by Michelangelo in 

1562.  
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Subsequent additions comprised the construction of the annexed Charterhouse in 

1754, Gregorio XIII’s granaries, and the chapel honoring Saint Isidor, the protector of 

the harvests, also erected in 1754. In 1889, the thermal complex gained further signi-

ficance with the establishment of the National Roman Museum (Sanchirico, 2016). 

 

 

Fig. 23 Room XI of the Baths of Diocletian. 

 

 

3.2.2     Methodology 

This investigation was carried out using a methodology that involved multiple 

operational phases. First, a large LIDAR point cloud was obtained in the National Ro-

man Museum’s rooms VIII, X, and XI using an ABIM (Archaeological Building Infor-

mation Modelling) technique. The museum is located in the Baths of Diocletian in 

Rome. A relational data link was subsequently added to this acquisition. 
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Next, utilising parametric modelling to enable automatic mesh surface extraction from 

survey outputs, the creation of the three-dimensional geometric model took place. 

Microsoft Access was used to arrange and classify the data, administrative informa-

tion, georeferencing, sources, and reference materials that were gathered. 

In the end, these components were connected to the BIM model via the ODBC drivers 

to guarantee excellent connection, providing an efficient and cohesive integration of 

the whole information system. 

 

i. The Architectural Survey 

The survey of the building was conducted in conjunction with the exhibition 

‘Roads of Arabia: Treasures of Saudi Arabia’ jointly promoted by the Ministry of Cultu-

re of Saudi Arabia and the Ministry of Cultural Heritage and Activities and Tourism of 

Italy (MiBACT). The purpose of the work was to support the assessment of proposals 

presented by the Alda-Fendi-Esperimenti Artistic Direction in collaboration with Klina-

men Cloud Srl.  

Specifically, the survey focused on rooms X-XI and a portion of room VIII at the Na-

tional Roman Museum. The initial operational phase involved devising an acquisition 

plan to optimise the balance between scan quantity, resolution, acquisition time, and 

appropriate overlap. The laser scanner utilised was the CAM2® FARO Focus 3D 120, 

known for its specifications providing an accuracy of ± 2 mm, a range from 0.6 m to 

120 m, a measurement speed of 976,000 points per second, and a vertical and hori-

zontal plain sight of 305° and 360°, respectively. The laser spot featured a circular 

pattern with a diameter of 3.00 mm. 

Considering the extensive areas of interest, totaling approximately 300 square meters, 

a decision was made to conduct 45 acquisitions. The resolution varied between 6.0 

and 7.5 mm at a distance of 10 m, resulting in approximately 30 million points per 

scan. This strategy ensured a minimum resolution of 8,248x3,414 pts and a maxi-

mum resolution of 10,310x4,268 pts. 
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ii. Data Processing 

The data processing phase involved the utilisation of two software tools, Au-

todesk Recap Pro® and CloudCompare. Each scan’s point clouds underwent meticu-

lous scrutiny, and redundant data was eliminated. Subsequently, the scans were ali-

gned and merged to create a unified three-dimensional reconstruction comprising ap-

proximately 950 million points. Subsequent to this, the resulting point cloud under-

went resampling and decimation, resulting in a reduction to around 550 million points 

(Fig. 24). 

 

 

Fig. 24 Point cloud of the entire complex. 

 

Architectural elements, including walls, vaults, columns, and decorations, were ex-

tracted with a 10 cm offset, employing a parametric segmentation process that identi-

fied 8 coplanar points. This step allowed for the initial identification of elements that 

would serve as references for modelling parametric families in Autodesk Revit®, ul-

timately leading to the generation of a three-dimensional mesh (Fig. 25). 
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Fig. 25 Tomb of the Platorini decimated point cloud (visualisation in RGB colour scale and normals). 

 

The complex geometric parametrisation of architectural elements presents inherent 

obstacles when modelling them in BIM. There are no automated tools or programmes 

that can instantly convert a point cloud into an extensive BIM model, making this pro-

cedure exceptionally complicated. To create a BIM model that accurately replicates 

the actual structure, a suitable Level of Detail (LOD) must be determined using gathe-

red information and operational goals. 

In this study, the method was streamlined to reduce errors, guarantee data quality, 

and maintain important details by building the three-dimensional model from a re-

sampled point cloud. The method preserved the proportional relationships between 

shapes while closely adhering to architectural requirements. The multi-LOD technique 

not only allows customisable geometric discretisation, but also gives the freedom to 

select several display options for object representation based on specific require-

ments. 

Considering the objectives of the A-BIM model, a primarily local modelling approach 

was adopted, prioritising shapes over information scalability. Specifically, distinct 

models were created for the Hercules and Achelous mosaic in the room IX and the 

Tomb of the Platorini family. For the latter, a relational data scheme was developed to 

establish an information link. 
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In addressing the irregular elements comprising the remnants of the barrel vault in 

room X and the cross vault adjacent to XI, a decision was made to construct a loa-

dable generic model family. This family incorporates a polygonal reconstruction ba-

sed on a LIDAR point cloud using the Ball-Pivoting algorithm (Bernardini et al., 1999). 

This choice preserves the morphological irregularity of the structures (Figs. 26-27). 

 

Fig. 26 A-BIM model of the thermal complex. 

 

 



 

82 

 

 

Fig. 27 Axonometric section illustrating the arrangement of 3D meshes and BIM elements in the A-BIM 

model. 

 

For the Tomb of the Platorini, a loadable family was created to represent the sepul-

cher, offering three distinct representations with varying levels of detail. The family al-

lows users to activate specific display options within BIM Authoring Autodesk Revit®. 

• At a low level of detail, architectural elements were generated from local mo-

dels using polygonal generators, maintaining a formal separation for potential 

specific information parameters while achieving high representational simpli-

fication. 

• With a medium level of detail, the loaded family introduces texture to the outer 

layers of the volumes. This texture was achieved through RGB mapping deri-

ved from the point matrix and optimised using the study of local UV coordina-

tes, preserving material appearance and object style. 

• For the high level of detail, the software automatically presents a third version 

of the Tomb. This version is extrapolated from a polygonal mesh reconstruc-

ted from a point cloud through a process of 2 cm decimation and optimisa-

tion, carried out using CloudCompare (Fig. 28). 
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Fig. 28 Representation and compositing of the Revit family for the Tomb of the Platorini, with different 

levels of detail: A) picture; B) low detail; C) medium detail; D) high detail. 

 

 

The process of selecting descriptive information to be incorporated into the A-BIM 

model (Fig. 29) involved a comprehensive approach. Utilising data from the Informa-

tion Sheets of the General Catalogue of Cultural Heritage served as the foundation, 

with additional information sourced from the survey, multimedia files, and three-

dimensional mesh reconstructions. 

This gathered information encompasses a spectrum of details, including the identifi-

cation of the object with its name, location, type, and function. Administrative geo-

graphical aspects, such as the state, region, and address, were meticulously recor-

ded. Georeferencing details, such as the excavation name and period, were also in-

corporated, providing essential context. 
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Fig. 29 Descriptive information connected to the A-BIM model in the database. 

 

 

Chronological information played a significant role, covering the chronological con-

text, specific chronology, date of reconstruction, and the current state of conserva-

tion. Analytical data, including the type of construction, generic description, and criti-

cal-historical insights, enriched the model further. 

The inclusion of sources and reference documents involved a thorough bibliography, 

sitography, and the integration of three-dimensional mesh data. Survey details, such 

as the technology used, device model, and the number of acquisitions, were also 

seamlessly integrated. 

To establish a robust connection between the model and the database, the Open Da-

taBase Connectivity (ODBC) approach was employed. This ensured application inde-

pendence from data programming languages. The Autodesk Revit® project was lin-

ked to a meticulously structured Microsoft Access® database. 

The database itself was organised in charts and relations, employing hierarchical ca-

taloging schemes in the XSD format (Fig. 30).  
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Fig. 30 Microsoft Access format database connection. 

 

3.2.3     Results and Final Remarks 

The Baths, distinguished by their irregular and heterogeneous morphology, 

derive substantial advantages from the dependable A-BIM methodology. This ap-

proach harmoniously amalgamates a top-tier model with accurate geometric repre-

sentation, offering adaptability across varying levels of detail. Moreover, it forges 

connections with diverse datasets by harnessing a range of relational databases. 

This integration between the model and the database facilitated a holistic and informa-

tion-rich A-BIM model. This methodology, apart from facilitating standardised infor-

mation organisation, establishes a seamless interface with specific software tools and 

enables the indexed structuring of textual, graphic, and general information resources. 
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The linkage between individual elements in the 3D model and their corresponding in-

formation base relies on an ID parameter, retrievable via SQL queries. This ensures 

scalability and customisation in data retrieval. 

Essentially, the BIM model serves as a central hub, offering efficient access to and 

comprehension of all related sources. The hierarchical data organisation enhances 

storage space management, allowing for file reuse (a single file attributed to multiple 

model objects) and cross-platform saving options (files can be stored on local hard 

drives, network-attached storage (NAS), or online) (Fig. 31). 

 

 

Fig. 31 Cross-platform use of the A-BIM model. 
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In detail:  

• Revit BIM File: This is the model file created in Revit, containing information 

about the geometry, relationships, and properties of objects within the Baths. 

• Internet Gateway: From the Revit modelling environment, the workflow passes 

through an Internet Gateway, which could be an online link or a platform facili-

tating connection to external resources or cloud services. 

• ODBC Interface: The ODBC (Open Database Connectivity) Interface acts as a 

bridge between the Revit environment and the MS Access database. This in-

terface enables communication and data transfer between the model and the 

database. 

• Local API Runtime DB Engine: A local API Runtime database engine performs 

specific functions for accessing and managing data during the workflow. This 

component can interact with the ODBC Interface to allow access to model da-

ta. 

• MS Access Database: This is the MS Access database serving as the primary 

repository for model information. It is divided into various components: 

- XSD Schema: An XSD schema provides a structure for defining and vali-

dating data in the database. 

- Web-based Point Cloud Viewer: A web-based viewer for point clouds 

enables three-dimensional visualisation of specific details of the Baths. 

- Digital Documentation: This part of the database contains documents re-

lated to the Baths, providing additional information. 

- 3D Mesh Model: Visualisation of the Tomb of the Platorini as a mesh mo-

del (high level of detail). 
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This organised and interconnected workflow allows for efficient data management, 

from the modelling environment to linked information resources, enhancing consi-

stency and accessibility of information during the creation, management, and visuali-

sation of the Baths. 
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3.3 Geometric Reliability Assessment in the Scan-to-BIM Process 

In the ever-evolving landscape of Cultural Heritage (CH), a surge of innovative 

approaches has emerged for the conservation and management of historic buildings. 

Advancements in laser scanning and photogrammetry have paved the way for the 

creation of highly precise reality-based models and concurrently, the integration of 

Heritage Building Information Modelling (HBIM) into the Scan to BIM process has re-

volutionised the field (Capone and Lanzara, 2019; Adekunle, Aigbavboa and 

Ejohwomu, 2022). This process seamlessly merges digital survey techniques with 

HBIM principles, allowing for the systematic translation of point-cloud data collected 

by laser scanners or photogrammetry into three-dimensional as-built (as-is) Building 

Information Models (BIMs).  

However, applying BIM to existing buildings and creating comprehensive as-built mo-

dels remains challenging. Certain applications, such as visualisation, documentation, 

or virtual tours, require visual fidelity and high geometric accuracy, while others, like 

conservation and life-cycle management, demand parametric flexibility and high se-

mantic richness. Despite these advancements, the manual nature of creating as-built 

BIMs introduces potential errors during data collection, pre-processing, and modelling 

phases. The intricate irregularities and morphological diversities inherent in ancient 

buildings pose additional challenges to the geometric parametrisation process. 

To this purpose, various methods can evaluate the geometric accuracy of a BIM mo-

del (Radanovic, Khoshelham and Fraser, 2020). Visual inspection involves a subjecti-

ve visual comparison, lacking the ability to provide a quantitative evaluation.  

Clash detection, on the other hand, assesses component positions and identifies cla-

shes if they are too close or occupy the same space, using a predefined threshold. 

Physical measurement method presents a series of measurements taken from the ac-

tual building and their virtual counterparts in BIM. Statistical analysis of these values 

yields a confidence level, offering an advantage by avoiding errors stemming from 

point cloud scaling. Nevertheless, it has limitations, as it cannot comprehensively co-
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ver all possible measurements, such as those related to ceiling heights or complex 

morphologies. Additionally, the method struggles to directly identify error sources due 

to the limited number of measurements, making it a time-consuming process requi-

ring a large dataset. 

Surface Deviation Analysis, originating from the manufacturing context, evaluates 

geometric accuracy and pinpoints modelling errors concerning a model adopted as a 

ground truth. In the architectural domain, the comparison typically occurs between a 

3D model and a reference point cloud. A fundamental assumption is that the BIM and 

reference point cloud should geometrically align within a specified tolerance (Anil et 

al., 2013). 

Conducting a deviation analysis involves three primary steps. The first entails compu-

ting deviations of the point cloud from the BIM model to identify errors. Estimating 

correspondences between points and the BIM can be achieved through direct or indi-

rect methods, such as i) calculating the minimum Euclidean distance to associate da-

ta points with nearby objects; ii) projecting points onto three-dimensional surfaces; iii) 

tracing rays on surfaces to find correspondences, or eliminating matches based on 

specific metrics (e.g., normal direction).  

The second step involves visualising correspondences through a colour-coded devia-

tion map, colouring each surface according to different distances. Deviation patterns 

arising from various errors can be analysed to identify their sources, type, and rele-

vance within the point-cloud data or those derived from the as-is BIMs. Several colou-

ring methods, including binary maps, continuous colouring, or unsigned/signed maps 

(Atasoy et al., 2010), can be employed to enhance understanding.  

Finally, the third step entails analysing the deviation maps to identify specific deviation 

patterns. 

The proposed Scan to BIM approach (Verdoscia, Musicco, Tavolare, et al., 2021b, 

2021a) seamlessly integrates two three-dimensional survey methods – laser scan-

ning and photogrammetry – along with a parametric modelling approach to develop a 

comprehensive 3D model for the former Monastery of the Saint Mary of the Cross in 
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Modugno (Bari, Italy). The investigation into geometric accuracy is conducted through 

clash detection and deviation analysis. 

 

3.3.1     The Monastery of Saint Mary of the Cross in Modugno (Italy) 

The former Monastery of Saint Mary of the Cross, dating back to 1618, is si-

tuated in the historic center of Modugno, within the metropolitan city of Bari, Italy.  

Positioned on Piazza del Popolo square, it stands proudly in front of the Mother 

Church and adjacent to the Saint Mary of the Cross church, from which it derives its 

name. 

Over the years, the monastery (Fig. 32) has undergone a series of interventions and 

transformations to accommodate various purposes. In addition to serving as the resi-

dence for the Olivetan Benedictine nuns for an extended period, it has also functioned 

as the location for municipal offices, the district court, the local prison, and an ele-

mentary school. 

 

 

Fig. 32 Internal courtyard of the former Monastery of Saint Mary of the Cross in Modugno (Bari, Italy). 
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The structure is primarily composed of two bodies surrounding a cloister enclosed by 

a double order of covered walkways. The ground floor features square pillars with do-

ric capitals, while the first floor showcases columns adorned with phytomorphic de-

corations. 

The covered walkway surrounding the cloister consists of a system of cross vaults on 

the ground floor, resting on walls that separate internal and external spaces. The in-

ternal areas feature a combination of barrel and pillar vaults. The ground floor’s 

smooth tuff façade is clad with ashlar. 

During the interventions in the fall of 2018, professionals discovered remnants in a 

few ground floor rooms that belonged to structures predating the construction of the 

monastery. These included hypogea with basoli stone paving, walkways, water drai-

nage channels, a cistern, a spiral staircase, stables, as well as copper and bronze ob-

jects. Initial expert evaluations suggest these findings date back to the Renaissance 

period and possibly even earlier periods. Recognised as of notable historic-artistic in-

terest on May 30, 1981, in accordance with Law 1089/39, the monastery stands as a 

testament to the sacred architecture of the town. Presently serving as the town hall, 

since 2018, it has also been established as a cultural hub. 

 

3.3.2     Methodology 

The monastery was meticulously surveyed using two distinct digital survey 

techniques. The laser scanner was employed for the comprehensive scanning of the 

entire building, while photogrammetry was utilised to capture detailed imagery of both 

the column capitals on the second order, overlooking the internal cloister, and the 

embellishments adorning the entrance portal. 

 

i.  Laser Scanning and Point Cloud Processing 

For the survey of the entire complex, the CAM2® FARO Focus 3D 120 laser 

scanner was utilised. This advanced tool boasts technical specifications that deliver a 
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remarkable measurement accuracy of ± 2 mm, a range spanning from 0.6 to 120 

meters, a rapid measurement speed of 976,000 points/second, and expansive vertical 

and horizontal fields of view at 305° and 360°, respectively.  

The selection of scan points was strategically determined through the creation of an 

acquisition plan, formulated after an initial on-site inspection. This plan served to op-

timise the balance between the total number of scans and their resolution, the time 

required for acquisition, and the attainment of adequate overlap. Moreover, it conside-

red the instrument’s average distance from the object to ensure uniform precision and 

minimise shadow areas (Fig. 33). 

 

 

Fig. 33 TLS acquisition for the ground floor. 

 

A thorough analysis of each room was conducted, encompassing the spatial distribu-

tion, entrances, wall morphology, ceiling structures, and materials. This detailed exa-

mination guided the selection of the most suitable survey method for each specific 

aspect of the monastery’s architecture.  
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Due to the extensive nature of the complex, a total of 288 scans were conducted at a 

distance of 10 meters. These scans featured a variable resolution ranging between 

6.0 and 7.5 mm, with approximately 30 million points per scan.  

This configuration ensured a minimum resolution of 8248x3414 points and a maxi-

mum of 10310x4268 points. The processing of the scans was carried out using Au-

todesk Recap Pro® software. Each point cloud underwent meticulous scrutiny, with a 

manual alignment process implemented to remove extraneous data and ensure accu-

racy (Fig. 34). 

 

 

Fig. 34 Point cloud: external view of the entire complex (on the left); internal view of the courtyard (on 

the right). 

 

ii. Photogrammetric Survey and 3D Modelling 

The photogrammetric survey utilised a Sony DSC-QX100 digital camera, 

featuring a 20.2MP sensor resolution, 13.2 mm x 8.8 mm sensor size, CMOS Exmor 

R® 1’ sensor format, and an image resolution of 5472 x 3648 pixels. The camera 

was mounted on a telescopic rod via a two-axis gimbal. A series of photos were cap-
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tured with converging axes at various inclinations to ensure optimal overlap between 

acquisition points while preventing shadow areas. 

Subsequently, all acquired images underwent processing using Agisoft Metashape 

Pro®, generating a point cloud and a textured polygonal mesh for each element (see 

Fig. 35). Nevertheless, some refinements were applied to the polygonal mesh, inclu-

ding decimation, removal of outliers, and hole correction. 

 

 

Fig. 35 Pictures of a portal decoration and a capital (on the left); related polygonal meshes (on the 

right). 

 

iii. Construcution of the BIM Model 

The three-dimensional model of the former monastery was generated from the 

entire point cloud to achieve a superior level of geometric precision while preserving 

the architectural hierarchies and semantic relationships of the depicted elements.  

Autodesk Revit® was employed for the parametric modelling, allowing the considera-

tion of architectural elements as distinct objects from both hierarchical and semantic 

perspectives, utilising ‘Families’ endowed with parameters that can be customised 

and edited to incorporate geometric and informational attributes. 
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For instance, adaptive families was designed specifically for vaulted structures, based 

on geometric properties and parametric modelling was employed to create the 3D 

model of the entrance portal, encompassing details such as moldings, doors, and 

steps. Additionally, three-dimensional mesh was utilised to capture the intricate phy-

tomorphic decorations and coat of arms, enhancing the overall visual representation 

of the architectural aesthetics.  

Regarding the construction of the parametric families with decorative elements, 

specific ornamental details were imported as meshes into Revit in .obj format and 

seamlessly integrated into the design context (Fig. 36). 

 

 

Fig. 36 Entrance portal of the monastery: picture (on the left); parametric family built on Revit (on the 

right). 
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More specifically, an advanced approach was employed for managing meshes within 

the BIM model context, utilising the Visual Programming Language (VPL) through the 

Dynamo plugin, and specifically leveraging the Mesh Toolkit package (Fig. 37). 

 

 

Fig. 37 Application of VPL through Dynamo for the management of meshes within Revit families. 

 

The executed process unfolds in the following manner: 

• Mesh Importation: Utilisation of the MeshToolkit.Import.Mesh node or a 

similar node to import a mesh into the Dynamo project in Revit. 

• Level of Detail (LOD) Management: Application of the MeshToolkit.Reduce 

node to control the level of detail of the mesh by adjusting the number of 

polygons and optimising performance. 

• Uniform Remodelling of Triangles: Use of the MeshToolkit.Remesh node to 

achieve a uniform remodelling of triangles, thereby improving the structure of 

the mesh. 
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• Representation Scaling: Application of the MeshToolkit.Scale node to adapt 

the dimensions of the mesh to the project specifications. 

• Conversion to BIM Object: Utilisation of the DirectShape.ByMesh node in 

Dynamo to convert the manipulated mesh into a BIM object, seamlessly 

integrating it into the Revit model. 

• Attribution of Parameters and Technical Information: Use of Dynamo nodes to 

assign specific parameters to the associated BIM family of the mesh. This 

includes details regarding material and other technical aspects, enriching the 

model with detailed information. 

 

3.3.3     BIM Evaluation and Results 

The support provided by the point cloud has been remarkable, allowing for the 

approximation of the irregular or curved geometry of the elements with a negligible 

margin of error and providing real-time geometric dimensions. 

The VPL methodology enabled precise control and efficient manipulation of meshes, 

incorporating stages such as reducing the level of detail, uniformly remodelling 

triangles, scaling representation, and accurately attributing parameters and technical 

information. The .obj format facilitated the preservation of the fine details and complex 

geometries of these elements, offering a high level of fidelity in their representation 

within the Revit model.  

This approach not only contributed to the visual richness of the architectural 

composition but also provided the design team with the flexibility to tailor and fine-

tune these decorative elements to harmonise with the overall design vision. Once 

completed, the entire model (Fig. 38) serves as the foundation for conducting a series 

of studies, checks, and simulations, leveraging the concept of interoperability on 

which the BIM approach to design is founded. 
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Fig. 38 3D model rendering of the portico on the second floor (on the left) and the inner cloister (on the 

right). 

 

To this purpose, for validating the precision of the three-dimensional model, we 

conducted a two-step evaluation. Initially, Clash Detection was executed among the 

elements of the three-dimensional model. Subsequently, a Surface Deviation Analysis 

was performed, comparing the point cloud data with the three-dimensional model. 

The Clash Detection process was executed using Autodesk Navisworks® software, 

revealing critical issues resulting from three modelling mistakes (Fig. 39). It identified 

modelling imprecisions across various elements, leading to a configuration diverging 

significantly from reality – most notably, an incorrect interpenetration of walls and 

ceilings.  

Additionally, it flagged inferences in certain BIM objects, part of different parametric 

families constituting the model, exposing interferences between the structural and 

architectural models, particularly at the beam-masonry interface. This examination 

also shed light on errors in parameter insertion.  

Notably, an interference between a stairway and the lower part of its railing was 

observed and resolved by implementing an appropriate offset. 
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Fig. 39 Identification of interferences among construction elements through Clash Detection (on the 

left) and recognition of parametric errors (on the right). 

 

The deviation analysis was conducted using the As-built® software developed by 

FARO Technologies. Specifically, a threshold deviation value was established to 

compare the minimum Euclidean data-object distance for each modelled architectural 

component against the point cloud.  

Smaller threshold values (20 – 50 mm) proved more effective for visualising detailed 

deviations, such as local geometric errors, and were therefore applied to elements like 

frames, vaults, and arched openings. Conversely, larger threshold values (50 – 300 

mm) were employed for the walls due to the potential impact of the ashlar on the 

analysis. The colour scheme ranges from red (indicating the maximum positive value) 

to green (0 mm, neutral) and blue (the minimum negative value).  

Fig. 40 illustrates the consistency between the model and the point cloud. In detail, a 

negative deviation was identified in the irregular arches supported by the pillars of the 

first-order cloister, along with a crack not visible in the three-dimensional model. 
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Fig. 40 Surface Deviation Analysis between the point cloud and the BIM model. 

 

After addressing the modelling errors identified through clash detection and deviation 

analysis, a final BIM model was achieved, characterised by high geometric accuracy.  

Once the BIM model was obtained, it was exported in the standard Industry 

Foundation Classes (IFC) format for subsequent import into Unreal Engine®, an 

optimal environment for crafting virtual reality (VR) experiences (Fig. 41). 

 

 

 

Fig. 41 VR Elaboration from the BIM model: Exploring the Monastery of St. Mary of the Holy Cross in 

the Unreal Engine’s environment. 
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The adoption of the IFC format provided maximum interoperability across diverse 

software platforms. As an open and neutral format, IFC facilitates seamless data 

exchange between various applications within the realms of design and construction. 

Opting for IFC ensured a smooth transition of the BIM model between Revit and 

Unreal Engine, preserving the integrity of the data and enhancing the overall efficiency 

of the process. 

Within Unreal Engine the model was optimised to ensure smooth real-time 

visualisation, considering elements such as lighting, materials, and textures. 

Programming was employed to introduce interactivity into the virtual environment, 

allowing users to explore the monastery in an engaging manner. This phase included 

the creation of detailed virtual environments, navigation management, and the 

implementation of interactive features, such as the ability to open doors or turn on 

lights within the model. 

The distinctive aspect of the project was the use of virtual reality as the mode of 

experiencing the environment. Thanks to integration with VR devices like Oculus Rift 

or HTC Vive, users could fully immerse themselves in the virtual environment of the 

Monastery of St. Mary of the Holy Cross. Virtual reality provides an engaging 

experience, enabling users to explore every detail of the building realistically and 

interactively. 

 

3.3.4     Closing Remarks 

The innovative approach presented in this study, focusing on scrutinising the 

geometric accuracy of parametric 3D models derived from point-cloud data, not only 

demonstrates a robust methodology but also emphasizes the inherent benefits of 

BIM.  

BIM, with its collaborative and data-rich nature, serves as a foundation for 

comprehensive geometric assessments. The incorporation of VPL, as exemplified 

through Dynamo, further enhances the efficiency and precision of this process. This 
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synergy not only contributes to the ongoing evolution of methodologies for geometric 

accuracy assessment but also reflects the industry’s commitment to embracing 

advanced tools and technologies for more refined and efficient solutions in the 

domain of 3D building information management. 

For evulating the geometric accuracy of the model, two different methods were 

emplyed: Clash Detection and Surface Deviation Analysis. 

The initial method, Clash Detection, served to identify and rectify interferences among 

the components within the BIM model. Subsequently, a more in-depth analysis 

unfolded, involving the computation of Surface Deviations between the point cloud 

and the 3D model. This phase provided a comprehensive assessment, enabling the 

verification and quantification of errors. The utilisation of a pre-established colour 

map facilitated the evaluation of the magnitude of inconsistencies, streamlining the 

identification process within the model. 

The seamless integration of these methodologies not only enhances the precision of 

the 3D models but also contributes to the ongoing evolution of methodologies for 

geometric accuracy assessment in the realm of architectural and construction 

projects. As technology continues to advance, the presented approach stands as a 

testament to the constant quest for refined and efficient solutions in the domain of 3D 

building information management. 

 

 

 

 

 

 

 

 



 

104 

 

4. ENHANCING SURVEYING AND BIM THROUGH               

AUTOMATED PROCESSES LEVERAGING MACHINE LEARNING 

ALGORITHMS AND MORE 

This chapter embarks on an exploration of the frontiers of innovation within 

the realm of architectural surveying and Building Information Modelling (BIM), with a 

specific focus on advanced automation processes powered by Artificial Intelligence 

(AI) algorithms. 

The segmentation of point clouds emerges as a pivotal element, presenting a dynamic 

and precise approach to gathering three-dimensional data. Simultaneously, the 

utilisation of various approaches for geometric modelling contributes to defining a 

flexible and sophisticated methodology for representing complex structures. 

The cornerstone of this innovation lies in the full implementation of machine learning 

algorithms, introducing a new level of intelligence to the processes. These AI 

algorithms not only optimise precision and efficiency in digital surveying phases but 

also play a crucial role in shaping the evolution of BIM operations.  

The future outlook of this chapter not only anticipates a revolution in operational 

practices but also provides insight into a landscape where automation processes 

converge to redefine how Architectural Heritage is understood, modelled, and 

preserved. 

Here is a brief overview of the analyzed case studies, highlighting their respective 

adopted methodologies. 

• Venosa’s Most Holy Trinity Complex (Basilicata, Italy): The study aims to 

create a unified process using diverse architectural surveying techniques, in-

cluding both range-based and image-based methods, with a focus on the 

Most Holy Trinity Complex in Venosa. The work explores 360° online virtuali-
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sation for architectural surveys, addressing COVID-19 travel restrictions and 

promoting remote tourism. The methodology involves data extraction, 3D 

model construction, and an innovative pathology assessment on stone surfa-

ces, utilising advanced techniques such as decay mapping, point cloud ana-

lysis, and texture mapping via machine learning algorithms. 

• Disused Industrial Building in Milan (Lombardy, Italy): The study focuses 

on the efficient segmentation of point clouds in a disused industrial building 

near Milan. It employs standards such as UN EN ISO 19650 and UNI 11337, 

along with denoising, subsampling, semantic classification, and geometric 

recognition algorithms, such as CANUPO and RANSAC. This thorough and 

organised process was designed to meet the complicated demands of digital 

surveying by optimising the point cloud for effective BIM authoring. 

• Nico Palace in Gioia del Colle (Apulia, Italy): The research concentrates on 

categorising the intricate staircase within Nico Palace to optimise subsequent 

modelling steps. The methodology involves voxel downsampling, targeted de-

cimation, and the application of the CANUPO algorithm for classification and 

the RANSAC method for segmentation. The goal is to extract specific ele-

ments from the point cloud dataset, focusing on the geometric quality and 

completeness of the final 3D model. 

• Vaulted Systems in Various Locations (Italy): The study assesses an auto-

mated iterative process within a scan-to-BIM methodology for various ma-

sonry vaulted systems. The process encompasses point cloud segmentation 

utilising open-source algorithms, initially tested on ideal models and subse-

quently on real-world models. It involves geometric modelling employing Non-

Uniform Rational B-Splines (NURBS) and semi-automated 3D reconstruction. 

The primary objective is to facilitate 3D parametric/adaptive reconstruction 

compatible with BIM Authoring, underscoring the complexities introduced by 

irregular geometries within scanned point clouds. 
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• Church of Ognissanti di Cuti in Valenzano (Apulia, Italy): This case explores 

two automation techniques for TLS station planning, one based on the ‘Art 

Gallery Problem’ and the other utilising a genetic algorithm. The deterministic 

approach optimises TLS stations, while the genetic algorithm ensures strate-

gic viewpoint additions during on-site surveys. The research aims to improve 

TLS instrument station layout efficiency, also combining TLS with aero-

photogrammetric data and implementing semantic segmentation for parame-

tric modelling in the BIM environment. 

• Palace of the Counts of Sástago in Zaragoza (Aragon, Spain): The focus is 

on semantically segmenting the architectural elements of the Palace, utilising 

a machine learning algorithm in Python. Testing various combinations of 

geometric features characterising the point cloud, the study aims to classify 

and break down the point cloud into distinct components. The ultimate goal is 

to expedite future processes in Historic Building Information Modelling 

(HBIM). 
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4.1 Virtualisation of Integrated Survey and Degradation Analysis via 

Machine Learning algorithms 

In the 21st century, the digital documentation of Cultural Heritage has 

emerged as a crucial ally for preservation and enhancement, serving as a safeguard 

against institutional neglect and the potential obsolescence of physical materials 

(Balzani, Maietti and Mugayar Kühl, 2017). The different nature of historic buildings 

necessitates a broad spectrum of data acquisition techniques capable of delivering 

comprehensive information, considering factors such as geometric complexity, area 

accessibility, and the required level of detail.  

Managing data obtained from diverse acquisition techniques requires meticulous 

control of morphometric accuracy and resolution, as image-based technologies alone 

cannot capture the real dimensions of objects without support from range-based 

technologies (Remondino, 2011; Aicardi et al., 2018). Their combination  (Florio, 

Catuogno and Della Corte, 2019; Aterini and Giuricin, 2020), yielding point clouds, 

ensures precise results, optimises data acquisition times, and, through the ‘Scan to 

BIM’ process, can be incorporated into various elaboration processes, including 

parametric three-dimensional modelling (Hichri, Stefani, De Luca, Veron, et al., 2013; 

Verdoscia, Musicco and Tavolare, 2019), and specific graphic representations 

through interdisciplinary collaboration (Fiorillo et al., 2015). 

This is where the primary objective of this study lies: to develop a unified process 

using different architectural surveying techniques, including both range-based and 

image-based methods, illustrated through the case study of Venosa’s Most Holy 

Trinity Complex in Venosa (Potenza, Italy).  

Additionally, the work explores the potential of 360° online virtualisation of 

architectural surveys, contributing to disciplinary knowledge and promoting remote 

tourism. This addresses travel restrictions imposed by the COVID-19 pandemic, 

emphasising the need to preserve environmental sustainability. Notably, the concept 

of tourism applied to Cultural Heritage has evolved worldwide in response to the virus 
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outbreak, manifesting as innovative virtual travel experiences (Folinas and Metaxas, 

2020). 

Today, exploring monuments, galleries, and museums closed due to virus prevention 

measures remains possible (Chirisa, 2020; Deb and Nafi, 2021). This is facilitated 

through navigation of three-dimensional models, immersive environments based on 

photographic scanning  (De Fino, Galantucci and Fatiguso, 2019), or 360° virtual 

tours embedded with captions and comprehensive artwork descriptions (Osman, 

Wahab and Ismail, 2009; Bonacini, 2015). Such experiences are accessible globally, 

offering ease of access and enjoyment at any time, without the need for advanced 

planning. 

The subsequent segment of this study delves into the application of photorealistic 

three-dimensional models, presented through coloured point clouds and textured 

polygonal meshes. These models not only serve as innovative diagnostic tools but 

also act as comprehensive sources of information regarding morpho-typological and 

material-conservative characteristics. This digital representation not only facilitates 

advanced analyses to deepen fundamental knowledge but also opens avenues for 

automated processes through image processing techniques. 

3D models enable sophisticated processing, including automated procedures such as 

segmentation, extrapolation, and classification of specific model portions (Grilli et al., 

2018; Grilli and Remondino, 2019). Specifically, for mapping surface alterations on 

masonry façades, recognition procedures based on colour or texture properties can 

be implemented (Fatiguso and Buldo, 2020). These methodologies leverage the 

colour properties of point clouds and the texture of polygonal meshes, allowing for the 

extraction of detailed information regarding various visible forms of degradation. 

Specifically, the study utilises the Most Holy Trinity Complex as a reference case, 

starting from the extraction of data derived from the previous phases of the 3D model 

construction. It then proceeds with the subsequent processing of this data aimed at 

qualifying pathologies observed on stone surfaces.  
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Point colour selection and Machine Learning algorithms, specifically Fast Random 

Forest and K-Nearest Neighbours, have been implemented for this purpose.  

This approach exemplifies how the integration of photorealistic three-dimensional 

models and automated analysis processes can provide a detailed and efficient 

assessment of the structural and conservative conditions of cultural assets. 

 

4.1.1     The Most Holy Trinity Complex in Venosa (Italy) 

The Complex of the Most Holy Trinity stands as a significant architectural 

marvel situated in the ancient Latin colony of Venosa, nestled within the picturesque 

region of Basilicata in Southern Italy (de Lachenal, 1998). Its historical significance 

spans from the Roman period (Republican era, III century BC) to the Baroque era 

(XVII – late XVIII century). 

The entire complex (Fig. 42) encompasses various elements: the frontal section 

leading to the smaller ancient church, characterised by a Paleo-Christian design 

featuring a central nave, two side aisles, and a distinctive ‘corridor crypt’. Adjacent to 

this is an elegant guesthouse, complementing the ensemble. Behind the primary 

church stands the imposing ‘Unfinished’ church, a magnificent structure that, despite 

its grandeur, was never completed. 

The ancient church underwent significant transformations starting from the VII 

century, influenced by the presence of the Lombards (X century) and later the 

Normans (XI and XIII century). In 1059, Pope Nicholas II consecrated the abbey, 

designating it as the familial shrine for the Hauteville family upon the request of Robert 

Guiscard. By the end of 1297, Pope Boniface VIII entrusted the custody of the 

complex to the Malta Order. However, the new church’s monastic layout was largely 

ignored and, regrettably, the construction of the complex was never fully realised. 

Today, it remains a unique testament to medieval building practices, where the 

original structure was deliberately left intact until the completion of the new one was 

feasible (Laviano and Summa, 1999). The Complex of the Most Holy Trinity stands as 
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a poignant reminder of the intricate historical tapestry woven through the centuries in 

this captivating corner of Southern Italy. 

 

 

Fig. 42 The Most Holy Trinity Complex in Venosa (Italy). 

 

4.1.2     Methodology adopted for the 3D Survey 

The adopted methodology for documenting the Architectural Heritage 

(Verdoscia, Buldo, Musicco, et al., 2022a) aims to achieve three key objectives: 

Digital Documentation, Preservation, and Enhancement (Fig. 43). 
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Fig. 43 Methodology workflow. 

 

• Digital Documentation allows for the preservation of every architectural detail 

in a digital format, facilitating easy access and ensuring long-term 

conservation. The use of cutting-edge 3D survey techniques provides a 

unique perspective, contributing to a comprehensive documentation of the 

entire site. 

• Preservation is a central objective, as digital documentation serves as a 

valuable tool for monitoring the current state of the structure over time, 

identifying potential damage or changes, and intervening promptly to preserve 

the heritage’s integrity. 

• Finally, Enhancement is achieved through the creation of accurate and 

accessible documentation, enabling scholars, conservators, and the public to 

virtually explore the abbey. This advanced approach contributes to raising 

awareness and appreciation for Architectural Heritage, ensuring its historical 

and cultural continuity. 

Utilising advanced tools (see Tab. 2) such as the CAM2® FARO Focus 3D 120 

terrestrial laser scanner, the Phantom DJI 3 Professional remote-pilot quadcopter, and 

the Canon EOS 1200D reflex camera, the goal is to create a detailed and accurate 

digital representation of the abbey, including the crypt, Roman remains, guesthouse, 

and the wall structures of the ‘Unfinished’ church. 
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For this study, strategic planning of the survey campaign proved essential due to the 

complex dimensions, considering an area of approximately 150 by 60 square meters. 

 

Tab. 2 Technology parameters. 

Technology Parameters 

Terrestrial Laser scanning 

(CAM2® FARO Focus 3D 120) 

 

Range: 0.6 to 120 m, Capture Speed: up to 976.000 points/sec, 

Ranging Error: ±2mm at 10m and 25m 

UAV Photogrammetry 

(Phantom DJI 3 Pro) 

 

Lens: FOV 94° 20 mm (35 mm format equivalent), f/2.8 focus at 

∞, 12 effective Mpx 

Terrestrial Photogrammetry (Canon 

EOS 1200D) 

Lens: 22.3*14.9 mm, 18 effective Mpx and 18.7 total Mpx 

 

i. 3D Survey Planning and Acquisition 

The entire survey operations (refer to Fig. 44) were meticulously executed 

based on a well-structured program. This program accounted for both the number 

and positioning of shooting points, with the latter determined by considering the 

geometric characteristics of the objects, including concavity/convexity and 

openness/closure. 

In terms of the laser survey, key criteria were adhered to, ensuring a reduction in 

shadows caused by occlusions, a decrease in the acquisition angle, and an optimal 

overlap between scans. Specifically, purpose-built 12-bit targets, measuring 30 by 30 

cm with a 20 mm radius, were employed. This choice resulted in scans with 

consistent resolution, prioritising geometric accuracy, which naturally fluctuated 

based on variations in the sensor’s distance from the object. 

A total of 236 scans were conducted, all in colour and averaging a duration of 10 

minutes each. These encompassed 153 scans within the abbey, 59 along the outer 

perimeter, and 24 within the ‘Unfinished’ church. The scans provided a 

comprehensive vertical/horizontal Field of View (FOV) coverage of 305°/360°.  
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This strategic approach ensured a thorough and precise documentation process, 

capturing the intricacies of the architectural elements both inside and outside the 

abbey. 

 

 

Fig. 44 Range-based (on the left) and image-based (on the right) survey layouts. 

 

The aerial-photogrammetric survey process was preceded by a meticulous series of 

preparatory steps. This included an assessment of the site’s orographic 

characteristics, a thorough examination of aeronautical charts to navigate airspace 

coverage constraints, and an evaluation of the building’s architectural features to 

identify areas with reduced visibility. To mitigate the impact of shadows on surfaces 

during overflights, preference was given to central hours on cloudy days, ensuring 

greater photogrammetric homogeneity and minimising radiometric errors. 
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The Pix4Dcapture® application played a crucial role in piloting, facilitating nine flight 

sessions set in auto-mode, encompassing single, double, and circular grid patterns. 

Additionally, a manual session was conducted at various heights, incorporating shots 

at 0°, 30°, 45°, 60°, and 90° angles with rispect the horizontal plane, to aid in the 

reconstruction of elevation elements. Careful attention was given to maintaining an 

overlap between contiguous frames, reaching up to 80% in both frontal and lateral 

shooting directions. This meticulous approach resulted in a total of 618 drone shots, 

all captured in JPEG format, ensuring the highest manageable resolution for the 

comprehensive documentation of the surveyed area. 

 

ii. Data Processing 

For the extraction and processing of laser-scanned point clouds, Autodesk 

Recap Pro® software was employed. Concurrently, Agisoft Metashape Pro® was 

utilised for the processing of both aerial and terrestrial photogrammetry frames. To 

enhance the point cloud’s density, a noise reduction filter was applied to the range-

based data, coupled with a low decimation grid value (3 mm). 

The laser scans underwent a manual registration process, meticulously paired to 

identify three homologous points in each subsequent scan. This approach, avoiding 

potential errors inherent in automatic registration – often less effective in large-scale 

projects – ensured precision and reliability throughout the registration process (refer 

to Fig. 45). 

To streamline the data processing and mitigate potential errors due to overlap among 

scans, the comprehensive alignment project was strategically divided into three 

groups. These groups were subsequently merged following a meticulous cleaning of 

the point clouds to ensure optimal results. 

In the realm of photogrammetric processing, aimed at enhancing geometric 

reconstruction accuracy and overall quality, several crucial operations were executed. 

These included exposure and contrast optimisation, balancing saturation, whites and 
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blacks in the images, controlling pixel resolution, and removing extraneous elements, 

such as people or vehicles. 

 

 

Fig. 45 Range-based point cloud: A) the ancient church; B) the ‘Unfinished’ church. 
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To achieve a high level of accuracy, a specific target was set, defining 1,000,000 Key 

points (distinct features in a single image) and Tie points (identical features across 

multiple images) during the alignment phase
3

.  

The process initiated with the creation of a sparse point cloud, followed by a dense 

one (Fig. 46) choosing a medium to high level of reconstruction quality. 

Subsequently, a three-dimensional Mesh was generated, culminating in the 

processing of textures derived from photographic shots. These textures, sised 

8192*8192 pixels, employed a generic mapping mode and a mosaic blending 

method to achieve a comprehensive and visually compelling representation. 

 

 

Fig. 46 Image-based point cloud: the abbey complex. 

 

 
3
 ‘Key Points’ are distinctive features within each image, characterised by high contrast and 

good texture. These points of interest, identified by the software, are unique to each individual image 

and play a crucial role in the alignment process, contributing to the creation of an accurate 3D model. 

On the other hand, ‘Tie Points’ are used to establish connections between different images. They re-

present the matching points between features identified in the Key Points of overlapping images. Es-

sentially, Tie Points link images in pairs, allowing the software to understand their relationships, for 

constructing a cohesive and three-dimensional model, 
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Subsequently, using Autodesk Recap Pro® software, the point cloud groups resulting 

from various scanning techniques were combined, ensuring precise correspondence 

and uniform dimensional ratios (Fig. 47). 

The process of data integration included an initial geometric evaluation of the results, 

facilitated by Ground Control Points (GCPs). These GCPs were strategically identified 

using several targets positioned outside the complex, providing a reliable framework 

for aligning and validating the merged datasets. 

 

 

Fig. 47 Integrated point cloud of the entire complex. 

 

4.1.3     Results of the 3D Survey  

In the context of laser-tech 3D data processing, the device’s maximum range 

– limited tp 120 meters – had no adverse impact on the outcomes. The entire 

complex was efficiently scanned, maintaining a consistent pace between stations, 

with the laser beam’s maximum range limited to approximately 23 meters at the bell 

gable coverage highest point.  
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The point cloud generated from the aerial-photogrammetric survey exhibits a Ground 

Sample Distance (GSD)
4

 of 1.47 cm/px. In contrast, the terrestrial photogrammetric 

counterpart boasts a finer GSD of 0.661 mm/px, accompanied by a three-dimensional 

point error of 0.008 meters and a point reprojection error on the image of 0.019 

pixels. 

To validate the seamless integration of the data, an analysis was conducted within 

CloudCompare® software. This involved calculating absolute distances between 

pairs of points originating from different sources – range-based and image-based – 

utilising the Nearest Neighbour Distance algorithm (as shown in Equations [ 3 ] and [ 

4 ]).  

For each point in the image-based cloud, the software identified the nearest point in 

the reference cloud (range-based) and computed their Euclidean distance (see Fig. 

48).  

The resulting minimal mean distance (0.01 m) and low standard deviation (0.03 m) 

unequivocally confirmed the accurate alignment and overlap between the compared 

point clouds. 

 

 

Fig. 48 Graphic visualisation and Gaussian distribution of the absolute distances between range and 

image-based point clouds. 

 
4
 ‘Ground Sample Distance’ (GSD) is a critical parameter in aerial photogrammetric surveys, 

defining the distance between adjacent pixels on the ground or the pixel size relative to real-world di-

mensions. A smaller GSD indicates higher image detail, with finer pixel representation of the Earth's 

surface. Influenced by factors like camera focal length, flying height, sensor dimensions, and image si-

ze, GSD determines the image's ability to capture detailed information about the terrain. 
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Furthermore, to assess realistic rendering, two polygonal models, one generated from 

range-based data and the other from image-based data, were processed for the same 

wall face. Notably, the entrance portal of the ‘Unfinished’ church appears more 

simplified in the range-based meshes compared to the other model. This distinction is 

primarily attributed to the higher resolution of textures applied in the image-based 

model, where intricate details are clearly recognisable (see Fig. 49). 

 

 

Fig. 49 Comparing 3D polygonal models of the ‘Unfinished’ church portal: A) range-based method; B) 

image-based method. 
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4.1.4     Virtual tour during the COVID-19 Era 

The current research project also extends its exploration into leveraging 

architectural survey data for the development of an accessible and sustainable remote 

tourism experience. The objective is not only to digitally document the acquired reality 

through advanced techniques but also to conserve and amplify the monument’s 

identity, fostering global sharing. The utilisation of two real-time visualisation software 

tools enables the online and multimedia consumption of the abbey complex, 

meticulously captured through diverse scanning techniques and 360° panoramic 

photos obtained from laser equipment. 

The application of Autodesk Recap Pro® software facilitates a virtual tour experience 

for technically proficient users. It allows seamless navigation within the integrated 

model, providing customisation options and workflow management. Simple links can 

be shared without the need for specific software, enhancing accessibility. 

For the creation of an authentic virtual tour of the abbey complex from panoramic 

images, Lapentor® cloud-based software was strategically chosen. The model was 

enriched by incorporating tags and captions in alignment with the cataloging 

standards for artworks within the HistAntArtSI web portal database (HistAntArtSI Site, 

2019). This database is a collaborative project initiated for the preservation, 

enhancement, and management of Southern Italy’s Cultural Heritage, championed by 

national and international institutional bodies.  

Acting as an interactive tourist guide on a per-user basis, the model presented in Fig. 

50 aligns with the project’s mission to offer a comprehensive and engaging virtual 

exploration of the abbey complex. 
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Fig. 50 Virtual tour via Lapentor® linked to the HistAntArtSI web portal. 
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4.1.5     Methodology for Degradation Mapping 

The application of Machine Learning, encompassing both the K-Nearest-

Neighbours (K-NN) and the Random Forest (RF) algorithms, plays a pivotal role in 

image classification within the realm of Architectural Heritage (Janković, 2020). While 

K-NN classification or regression algorithms encounter challenges stemming from 

their inherent complexity, particularly in the era of big data, the Random Forest 

algorithm, Support Vector Machines (SVM) or Deep Learning (DL) present more 

sophisticated alternatives. These advanced methods provide efficient solutions for 

accurately identifying architectural styles, historical periods, and specific details in 

images. In the context where preserving heritage is paramount, the utilisation of 

learning techniques proves invaluable for safeguarding and intervening early on these 

significant historical landmarks. Additionally, these approaches contribute 

significantly to monitoring and assessing the deterioration of historic buildings 

(Meroño et al., 2015; Fatiguso and Buldo, 2020). 

The degradation (or eventually decay) mapping emerges as a crucial process for 

detecting and analysing any surface alterations present of a building. This 

comprehensive procedure not only provides a detailed insight into the current 

conditions of the building surfaces but also serves as a fundamental starting point for 

implementing preventive or corrective maintenance strategies. This approach 

significantly aids in preserving the building’s structural integrity over time. 

In this regard, the decay mapping was conducted on a section of the southwest 

façade of the Unfinished Church, covering an area of 60 m² (Fig. 51). 

The initial phase involved an analysis of the point cloud, pinpointing areas linked to 

diverse surface alterations through the assignment of distinct colours to each region 

employing conditional statements. 

Subsequently, mapping was performed on the texture extracted from the 3D model. 

Texture analysis was carried out through two distinct approaches: the first approach 

using proprietary software that employs a machine learning algorithm, specifically the 
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Fast Random Forest; the second one was developed within the MATLAB® 

environment using a K-Nearest Neighbours (K-NN) algorithm. 

 

 

Fig. 51 Southwest façade of the Unfinished Church. 

 

i. Building the 3D Photogrammetric Model 

To facilitate these processes just mentioned, a high-resolution 3D model was 

generated. Specifically, photogrammetric techniques were employed using a Canon 

EOS 1200D digital reflex camera and a Phantom DJI 3 Professional drone, capturing a 

total of 269 shots for the reconstruction of the model. The shots were taken at a 

maximum distance of approximately 10 m from the surface, with an overlap of about 

80% in both shooting directions between adjacent images. The photographs were 

pre-processed to optimise exposure, contrast, saturation, sharpness, white balance, 

and black balance using Adobe Photoshop’s Camera Raw plugin.  

Subsequently, they were imported into photogrammetric software for digital image 

processing and the generation of three-dimensional spatial data, specifically using 

Agisoft Metashape Pro®. The initial alignment of the shots was conducted 

automatically based on the software’s recognition of recurring distinctive points or tie 

points. However, as not all images were aligned automatically, additional tie points 

were manually implemented. 
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Fig. 52 Dense point cloud of the façade. 

 

To verify the correctness of the alignment, both automated and automated/manual 

procedures were employed, involving the generation of a sparse point cloud, which is 

computationally and temporally less demanding. Once the alignment was optimised, it 

was possible to generate the dense point cloud accurately, consisting of almost 64 

million points, later reduced to 40 million by eliminating irrelevant portions for analysis 

purposes (Fig. 52). This point cloud was then scaled to real dimensions based on 

measurements directly taken on-site. 

 

ii. Colour-based Classification on the point cloud 

Starting from the dense point cloud reconstruction of the southwest façade of 

the Unfinished Church, the recognition and extraction of point sets based on 

homogeneous chromatic characteristics were conducted using Metashape Pro® 

software, aimed at degradation mapping. 

During the experimental phase, four types of surface alterations were identified, as 

codified by the UNI 11182:2006 standard ‘Cultural Heritage - Natural and Artificial 

Stone - Description of the Alteration - Terminology and Definition’ (Ente Italiano di 
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Normazione (UNI), 2006) and by the Illustrated Glossary on Stone Deterioration 

Patterns (ICOMOS, 2008): 

• Patina: ‘Chromatic modification of the material, generally resulting from 

natural or artificial ageing and not involving in most cases visible surface 

deterioration’. 

• Biological Colonisation (or Biological Patina): ‘Colonisation of the stone by 

plants and micro-organisms such as bacteria, cyanobacteria, algae, fungi and 

lichen (symbioses of the latter three). Biological colonisation also includes 

influences by other organisms such as animals nesting on and in stone’. 

• Efflorescence: ‘Generally whitish, powdery or whisker-like crystals on the 

surface. Efflorescences are generally poorly cohesive and commonly made of 

soluble salt crystals’. 

• Plant (or Vegetation): ‘Vegetal living being, having, when complete, root, 

stem, and leaves, though consisting sometimes only of a single leafy 

expansion (e.g. Tree, fern, herb)’. 

For each type, the software facilitated the application of a selection procedure for 

representative points, identifying RGB characteristics to describe unique colours 

based on the intensity of Red, Green, and Blue.  

Subsequently, the application underwent training for segmenting the entire point cloud 

using an approach where the algorithm employs conditional statements to selectively 

identify points within the point cloud based on colour criteria. This process enables 

the algorithm to recognise recurring patterns, thereby facilitating subsequent post-

processing or analytical tasks within the Metashape environment.  

The following explanation demonstrates how to select the tie points based on RGB 

colour values and a specified tolerance: 
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• In detail, the selection method operates on a current document and 

associated chunk within Metashape. After importing the necessary libraries, 

including Metashape and sys, the script accesses the active document and its 

corresponding chunk. The point cloud and track information within this chunk 

are then obtained for further processing. 

• Colour parameters are defined, such as ‘r’, ‘g’, and ‘b’, alongside a tolerance 

value (‘tolerance’). These values are utilised to establish a range within which 

points will be selected based on their associated track colours. 

• A loop iterates over each point in the point cloud, checking if the colour of the 

associated track falls within the specified range, considering the defined 

tolerance. Points meeting this criterion are marked as selected. 

• Following the point selection process, the script updates the Metashape user 

interface to reflect the made selections using ‘Metashape.app.update()’. 

• Finally, a message is printed, signaling the completion of the point selection 

process. 

In this case, the manual selection, depicted in (Fig. 53), involved ten groups of 

representative points in a colour scale for each degradation type. This led to the 

determination of a tolerance interval for subsequent automated segmentation (Fig. 54) 

and extraction of thematic point clouds to which semantic classes are associated 

(Fig. 55). 

Finally, starting from these point clouds, polygonal mesh generation was performed 

for each surface alteration.  

These continuous three-dimensional models consist of networks of flat surfaces 

oriented in space, enabling the implementation of the area calculations of the different 

forms of degradation (Fig. 56). 
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Fig. 53 Manual selection of representative points in RGB scale for different types of degradation. 

 

 

Fig. 54 Example of segmented point cloud: the ‘patina’ class. 
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Fig. 55 Semantic point cloud classes: Patina (red); Biological Colonisation (blue), Efflorescence 

(brown), Plant (green). 

 

 

Fig. 56 Example of extracting surface measurements from ‘Patina’ mesh. 

 

iii. Texture-based Classification with ML algorithm (Fast Random Forest) 

To evaluate the comparative reliability of various automated approaches for 

recognising superficial alterations on stone surfaces, image processing procedures 

were applied to the three-dimensional model of the southwest façade of the 
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Unfinished Church. These procedures focused on texture characteristics linked to 

manifestations of degradation. 

For this purpose, after generating a textured polygonal mesh of the façade using 

Metashape Pro® software, a UV mapping was extracted. This mapping involves 

converting the three-dimensional model, described by points with x-y-z coordinates, 

into a two-dimensional surface described by points with u-v coordinates.  

In practice, the letters U and V indicate the axes of a Cartesian coordinate system, 

within which the solid model’s polygons are arranged to enable subsequent analyses 

on raster images. In this specific case, the UV mapping of the façade (Fig. 57) was 

imported into an open-source digital image processing software, such as Open 

Source FIJI®, based on the Java programming language. 

 

 

Fig. 57 UV mapping relating to the 3D model of the church. 
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Before entering the supervised classification phases, a reference scale was 

established by inputting identical distances measured between targets on the 

Metashape-processed model. This step is crucial as it establishes a correlation 

between image pixels and the authentic reference scale of the physical model.  

In this case, the software automatically converted the 1024*1024 pixel RGB image 

into an image with the same radiometric characteristics but in a metric scale of 

10.68*10.68 meters. 

To perform the texture-based classification, a plugin named Trainable WEKA (Waikato 

Environment for Knowledge Analysis) Segmentation (Arganda-Carreras et al., 2017) 

(see Fig. 58) was utilised within the software FIJI (Schindelin et al., 2012), offering a 

suite of visualisation tools and algorithms for data analysis and predictive modelling. 

Additionally, it includes user-friendly graphical interfaces for convenient access to 

these functionalities and supports numerous standard data mining tasks, such as 

data preprocessing, clustering, classification, regression, visualisation, and feature 

selection. 

 

 

Fig. 58 Trainable WEKA Segmenation Workflow ((Arganda-Carreras et al., 2017). 
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WEKA’s 2D features for training encompass diverse image processing methods, 

including filters like blur, Sobel, Hessian, and more. These techniques enhance 

images, highlight differences (e.g., Difference of Gaussians), emphasise membrane-

like structures (Membrane Projections), and perform statistical operations.  

Filters like Anisotropic Diffusion, Bilateral Filter, Lipschitz Filter, Kuwahara Filter, and 

Gabor Filter contribute to noise reduction, edge preservation, and texture detection. 

Additionally, Derivatives, Laplacian, Structure Filter compute high-order derivatives, 

Laplacian, and structure tensor eigenvalues. Entropy and Neighbours measure image 

entropy and create features by shifting images. Grayscale images include the original, 

while colour images consider features like Hue, Saturation, and Brightness.  

The default classifier in WEKA is the Fast Random Forest (FRF), a multi-threaded 

machine learning algorithm based on decision trees that belongs to the Random 

Forest (RF) family. Random Forest is an ensemble of decision trees, each trained on a 

random subset of the training data, and its prediction is obtained by aggregating the 

predictions of the individual trees. 

FRF initialised with 200 trees and 2 random features per node is designed to be 

computationally more efficient than RF, and this implementation aims to reduce 

training time while maintaining good predictive performance.  

However, the exact specifications of the implementation may vary depending on the 

specific version of WEKA and any modifications made by users or developers. 

For this purpose, the tool required the operator to provide training and learning data 

for each type of texture of interest, identified with a label. This involved manually 

selecting small image regions of interest (ROI) for training purposes. 

Overall, these steps facilitated the execution of a comprehensive analysis aimed at 

automated recognition and classification of surface alterations based on texture 

characteristics in the three-dimensional model of the Unfinished Church’s southwest 

façade. The operation was conducted for six types of alterations – Patina, Biological 

Colonisation, Efflorescence, Plant, No Pathology, Background – each described by 

ten representative regions (Fig. 59).  
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Fig. 59 Attribution (on the left) and processing (on the right) of training data: Patina (red), Biological 

Colonisation (blue), Efflorescence (pink), Plant (green), No Pathology (yellow), Background (purple). 

 

The 32-bit UV mapping, obtained through subsequent automated classification, can 

be converted to 8-bit for easier manipulation (Fig. 60). 

 

 

Fig. 60 32-bit pre-classification (on the left) and 8-bit post-classification (on the right) UV mapping. 

 

However, to estimate the surface development of different forms of alteration, 

probability maps were generated within the software (Fig. 61). These maps highlight, 

based on thresholds iteratively established by the operator, the portions of the 32-bit 

UV mapping attributable to each degradation type. 
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Fig. 61 Probability maps of the segmented classes: A) Patina; B) Biological Colonisation; C) 

Efflorescence; D) Plant; E) No Pathology; F) Background. 

 

A red colour was employed to highlight selected degradation particles against a black 

background. Additionally, a method of converting the image into black and white 

binary was chosen (Convert Stack to Binary) using masks with an inverse Look-Up 

Table (LUT) (white: 0; black: 255). 

The algorithm used to calculate the threshold then separates the image into objects 

and background based on a trial threshold, computing the mean of pixels above and 

below the threshold [ 6 ]. By incrementally increasing the threshold, the process is 

repeated until the threshold exceeds the obtained mean. 

 

threshold = 
average background+average objects

2
  

[ 6 ] 
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Subsequently, the surface areas related to every particle of the degradation patterns 

(Fig. 62) were calculated setting the minimum (0) and maximum (infinity) values of 

the pixel areas converted to m
2

 and excluding unwanted parts of the image by means 

of circularity values. 

 

Object circularity can be calculated using the formula [ 7 ]: 

 

circularity = 4pi*(area/perimeter
2)  

[ 7 ] 

 

A circularity value of 1.0 signifies a perfect circle, while a decreasing value 

approaching 0.0 suggests a polygon with increasing elongation. 

 

 

Fig. 62 Example of particle analysis applied to the segmented class ‘Patina’. 
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iv. Texture-based Classification with ML algorithm (K-Nearest Neighbours) 

In addition to the Fast Random Forest method, an exploratory work on the 

study of degradation phenomena was carried out within the MATLAB® work 

environment. This involved the development of a novel code based on the K-Nearest 

Neighbours algorithm, specifically crafted for the classification of UV textures 

extracted from the 3D model of the church. 

Specifically, the K-Nearest Neighbours algorithm, which assesses the Euclidean 

distance in an n-dimensional space between the target and elements in the training 

data. Here, n is determined by the number of object attributes employed during 

classification. This method exhibits greater robustness compared to a traditional 

nearest-neighbour classifier, as it considers the majority vote of the k-nearest 

distances to determine the target’s class.  

The K-NN approach proves less susceptible to outliers and noise in the dataset, 

typically yielding more accurate classification results than traditional nearest-

neighbour methods. 

In this case, the algorithm is based on the Euclidean distance in the ‘ab’ colour space 

and makes use of K-NN with k=1 for classification. The coloured representation of 

the classified image and the scatter plot provide a visualisation of the results. 

The methodology used for the code is as follows: 

• Visualisation and definition of the source image size 

- The script reads and displays the source RGB colour scale image (in 

red, green, and blue).  

- It also defines the image size in pixels and its corresponding actual 

size in meters. 

The source RGB (red, green, blue) colour scale image is visualised and its pixel 

dimensions are defined, providing insights into spatial resolution. Additionally, the 

real-world dimensions in meters are specified, establishing a crucial link for meani 

ngful interpretations of actual object sizes in the image.  
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The image discussed is identical to that employed in the previous methodology 

involving the Fast Random Forest (Fig. 57). 

 

• Selection of regions of interest (ROI) for each class: 

- The user selects at least 10 example regions for each class directly 

from the image. 

- The example regions are stored in ‘sample_regions’, a cell of logical 

arrays indicating the positions of the selected regions.  

Region of Interest (ROI) designates a specific area within an image chosen for in-

depth analysis or processing in contrast to the remainder of the image (Fig. 63).  

 

 

Fig. 63 Examples of region of interest (ROI) for each class: A) Patina; B) Biological Colonisation; C) 

Efflorescence; D) Plant; E) No Pathology; F) Background. 
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Allowing the user to manually select example regions enables explicit knowledge 

acquisition about the nature of different UV texture classes. This is particularly useful 

when class features are complex or not easily mathematically modeled.  

In the code, ten regions of interest (Fig. 64) from an image were manually selected 

and employed for the k-NN algorithm to characterise each class. This strategy aims to 

offer a comprehensive representation of class features, particularly beneficial when 

dealing with intricate classes.  

Nonetheless, consideration should be given to the overall dataset size, and 

performance assessment on a test dataset is essential to optimise the balance 

between detail and generalisation. 

 

 

Fig. 64 Sample region for each class: A) Patina; B) Biological Colonisation; C) Efflorescence; D) Plant; 

E) No Pathology; F) Background. 
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• Conversion of the RGB image to the L*a*b* colour space (CIELAB): 

- The input RGB (Red, Green, Blue) image is converted into an image in 

the ‘Lab’ coordinate system. 

- The mean ‘a*’ and ‘b*’ values are calculated for each class using the 

selected example regions  

Converting the ‘RGB’ image to the ‘Lab’ colour space is chosen to enhance the 

algorithm’s robustness to lighting variations. In the Lab space, the ‘L’ channel 

represents brightness, while ‘a’ and ‘b’ represent chromatic components. This 

separation improves the algorithm’s ability to capture colour variations by separating 

colour information from brightness. 

 

• Pixel classification using K-NN (k=3): 

- For each pixel in the image, ‘a*’ and ‘b*’ coordinates are calculated. 

- The Euclidean distance between the pixel coordinates and the 

calculated means for each class is computed. 

- The pixel is classified as belonging to the nearest K-NN class (k=3).  

When using the k-NN algorithm, a class is assigned to a data point based on the 

majority class among its ‘k’ nearest neighbours in the training dataset. Therefore, 

specifying k=3 means that during the classification of a given point, the k-NN 

algorithm considers the labels of the three instances closest to that point and assigns 

the most common class among these three.  

With k=3 strikes a balance between local sensitivity (k=1) and increased robustness 

against noise (k>1), making the algorithm more suitable for local classification 

problems where local features are crucial, enhancing the model’s ability to 

discriminate between classes. 
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• Visualisation of the classified image: 

- A coloured image is generated based on the classes assigned to the 

pixels. 

Generating a coloured image in the RGB colour space (Fig. 65) allows for easy visual 

interpretation of results and facilitates saving. This is useful for quickly inspecting 

algorithm performance and understanding how classes are assigned in different 

regions of the image. 

 

 

Fig. 65 Classified image in the RGB colour space: Patina (pure red) [255 0 0]; Biological Colonisation 

(cyan) [0 255 255]; Efflorescence (magenta) [255 0 255]; Plant (pure green) [0 255 0]; No Pathology 

(yellow) [255 255 0]; Background (pure blue) [0 0 255]. 
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• Scatter plot in the ‘ab’ colour space: 

- A scatter plot is created showing the distribution of pixels in the ‘ab’ 

space with different colours for each class.  

- X-axis (‘a*’ values): Represents the values of the ‘a*’ chromatic 

component in the Lab colour space. 

- Y-axis (‘b*’ values): Represents the values of the ‘b*’ chromatic 

component in the Lab colour space. 

The scatter plot in the ‘ab’ space (Fig. 66) provides a compact visualisation of pixel 

distribution for each class, aiding in identifying any overlaps or clear separations 

between classes in the Lab colour space. The position of the point on the ‘a*’ and 

‘b*’ coordinates reflects its location in the Lab colour space, and the colours of the 

points are determined by the classes assigned during classification.  

 

 

Fig. 66 Scatter plot of the segmented pixels in ‘a*b*’space and visualisation in ‘RGB’ space: Patina 

(‘r’); Biological Colonisation (‘c’); Efflorescence (‘m’); Plant (‘g’); No Pathology (‘y’); Background (‘b’). 
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In this context, the interpretation of the scatter plot is as follows: a red point 

corresponds to a region classified as ‘Patina’, a cyan point represents ‘Biological 

Colonisation’, a magenta point signifies ‘Efflorescence’, a green point represents 

‘Plant’, a yellow point signifies ‘No Pathology’, and a blue point stands for 

‘Background’. These colour assignments are based on the defined colour mapping- 

The scatter plot results showcase distinct separations among points representing 

different classes in the Lab colour space, with negligible overlapping. This observation 

indicates that the classification algorithm, relying on the ‘a*’ and ‘b*’ features, has 

proven highly effective in discriminating between diverse pathology categories and 

backgrounds in the image, with minimal instances of overlap. 

 

• Calculation and visualisation of percentage areas: 

- The number of pixels and area in square meters are calculated for 

each class. 

- Percentage areas relative to the total area are displayed on the screen.  

Calculating percentage areas provides quantitative information about the spatial 

distribution of different classes in the image. This information is valuable for 

assessing the relative prevalence of the various pathologies under consideration. 

 

4.1.6     Results of the Degradation Analysis 

Here are the outcomes of the degradation mapping, presented in terms of 

graphic representation, surface area and percentage relative to the total area. 

Therefore, data from the three proposed methods are compared: Point Cloud (PC) 

Colour-based Texture-Based with FRF, and Texture-based with K-NN. Showing the 

classified point cloud and the polygonal meshes on which the UV textures classified 

by the two methods were reprojected (Fig. 67 and Fig. 68). To enhance the 

visualisation of the results, uniform colours were assigned to the classes across all 
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the three methodologies: ‘Patina’ (pure red), ‘Biological colonisation’ (cyan); 

‘Efflorescence’ (magenta); ‘Plant’ (pure green); and ‘No Pathology’ (pure grey). 

 

 

Fig. 67 Visualisation of the starting data (point cloud or mesh) and the final classified data: A) Point 

cloud; B-C) Poygonal Mesh; D) Classified Point cloud; E) Classified 3D Mesh with FRF; F) Classified 

3D Mesh with K-NN. 

 

 

Fig. 68 Displaying details: A) Picture; B) Classified Point cloud; C) Classified 3D Mesh with FRF; 

Classified 3D Mesh with K-NN. 
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Significant qualitative strides have been made in recognising patterns corresponding 

to various degradation phenomena, stemming from the classification derived from the 

dense point cloud. It’s worth noting that the classification, though robust, is never 

entirely unequivocal. Executing the process with diminished accuracy and a reduced 

dataset may introduce errors in representing the segmented region across multiple 

labelled classes. 

With the texture-based approach implemented via both FRF and K-NN, the results 

visually align with the initial approach but face challenges, particularly in accurately 

identifying the Efflorescence phenomenon. There’s a potential for confusion, albeit 

minimal, with substances of plant origin secreted by lichens within Biological 

Colonisation. Notably, the Patina and Plant phenomena are more precisely identified, 

especially with the application of the FRF method. 

Comparing the three different mapping approaches shows significant variations in the 

estimates of the areas occupied by the different types of degradation. 

 

Tab. 3 Results of the degradation mapping with the Point Cloud Colour-based approach. 

Type of degradation Surface area (m
2

) Percentage over total area (%) 

Patina 19.86 33.03 

Biological Colonisation 10.02 16.67 

Efflorescence 5.36 8.92 

Plant 5.59 9,30 

No pathology 19.29 32.09 

 

Tab. 4 Results of the degradation mapping with the FRF Texture-based approach. 

Type of degradation Surface area (m
2

) Percentage over total area (%) 

Patina 20.02 33.33 

Biological Colonisation 10.26 17.08 

Efflorescence 5.56 9.27 

Plant 5.75 9.58 

No pathology 18.47 32.75 
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Tab. 5 Results of the degradation mapping with the K-NN Texture-based approach. 

Type of degradation Surface area (m
2

) Percentage over total area (%) 

Patina 18.10 30.15 

Biological Colonisation 12.21 20.33 

Efflorescence 4.45 7.42 

Plant 5.22 8.68 

No pathology 20.07 33.42 

 

About the Point cloud colour-based approach (Tab. 3), ‘Patina’ emerges as the 

predominant category, occupying 33.03% of the total surface. This percentage is 

closely followed by ‘No Pathology’, representing 32.09% of the area. A balanced 

distribution is observed among various degradation types, with ‘Biological 

Colonisation’ and ‘Efflorescence’ accounting for 16.67% and 8.92% of the surface, 

respectively. ‘Plant’ is noteworthy, covering 9.30% of the area. 

With the FRF Texture-based Approach (Tab. 4), despite ‘Patina’ remaining dominant 

at 33.33%, a significant percentage redistribution is evident compared to the colour-

based approach. ‘Biological Colonisation’ shows a slight increase, reaching 17.08%, 

while ‘Efflorescence’ and ‘Plant’ both see increments to 9.27% and 9.58%, 

respectively. ‘No Pathology’ slightly decreases to 32.75%. 

The K-NN Texture-based Approach (Tab. 5) introduces considerable variations in 

surface estimations. ‘Biological Colonisation’ becomes the dominant category at 

20.33%, surpassing ‘Patina’ (30.15%). ‘Efflorescence’ undergoes a significant 

decrease to 7.42%, while ‘Plant’ and ‘No Pathology’ maintain their relevance at 8.68% 

and 33.42%, respectively. 

The comparison across the approaches (Fig. 69) reveals the the Point cloud colour-

based approach shows a fairly uniform distribution among degradation categories, 

with ‘Patina’ and ‘No Pathology’ in equilibrium. 

The FRF approach highlights an increase in the estimation of ‘Plant’ and a 

redistribution of other categories compared to the colour-based approach. 
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Fig. 69 Comparative analysis of three Classification approaches based on the percentage of occupied 

area throughout the entire wall. 

 

The K-NN approach presents a surprising variation, with ‘Biological Colonisation’ 

emerging as the predominant category and significant shifts in other surface 

estimations. 

Concluding the analysis, a detailed examination of the data highlights how the chosen 

mapping approach significantly influences surface estimations for different 

degradation types. Understanding these distinctions is pivotal for precise 

interpretation, underscoring the importance of selecting an approach tailored to the 

specific analysis requirements. 
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4.1.7     Concluding Observations 

The research adopted a cognitive approach intricately connected to the mode 

and acquisition of an extensive array of data in various formats and processing 

methods. The aim was to develop a standardised protocol for seamlessly integrating 

architectural surveys. The primary focus of the experimentation was an application 

closely tied to three-dimensional modelling of the built environment, representing a 

digital and formal reproduction that serves as a preliminary step for specialised 

architectural or diagnostic studies. The comparison of the acquired data not only 

facilitated the evaluation and verification of morphometric accuracy but also 

considered the merits and drawbacks of diverse acquisition techniques. 

The result was a meticulous and reliable 3D survey of the monument, designed not 

only for technical users but also with the potential of being implemented in digital 

experiences. This aspect gains particular significance in the current context of the 

COVID-19 pandemic, enabling tourist visitors to access the benefits of guided virtual 

tours with just a few clicks. 

On the other hand, the implementation of semi-automated procedures for extracting 

information related to colour properties and texture characteristics from photorealistic 

three-dimensional representations of architectural surfaces represents a highly 

valuable and effective tool for semantic classification. This approach is not limited to 

the classification of degradation forms, as demonstrated in the presented case, but 

extends to encompass materials, construction techniques, and surface finishes. 

However, the operator’s oversight remains essential, both in the initial selection of 

data to establish the knowledge base for subsequent analysis and in validating results 

through direct comparisons between computer-generated mappings and expert 

observations from a surveyor. 

This preliminary assessment is critical to determining the capacity of colour and/or 

texture to meaningfully and distinctively describe each category or type of interest 

compared to others within the same classification. Assuming a positive evaluation, 

these processing procedures for segmenting coloured point clouds and textured 
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polygonal meshes can significantly streamline the time and resources required for 

thematic mapping. Moreover, they have the potential to generate innovative digital 

formats compatible with further processing tools. 
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4.2 Automated Processes for Preparing a Point Cloud within the   

Scan-to-BIM Approach 

In the Architecture Engineering Construction (AEC) industry, particularly within 

the context of as-built procedures, the modelling process of Building Information 

Modelling (BIM) containers introduces challenges in the interpretation of spatial 

arrangements and building components. These challenges may give rise to difficulties 

in representation and understanding.  

To this end, Scan-to-BIM methods, integrating digital survey phases with subsequent 

BIM Authoring phases and catering to various expert disciplines, have gained 

popularity as a solution to these issues. While this integration has expedited the 

collection and registration of architectural environments, it has also led to the use of 

increasingly complex and heavy point clouds.  

These point clouds often pose challenges due to file sizes and the inclusion of points 

irrelevant to subsequent modelling phases. Moreover, the demand for producing 

highly optimised point clouds tailored to specific information needs, which can vary 

from one project to another, is becoming more prevalent in interdisciplinary 

modelling. 

To effectively employ a point cloud in BIM authoring processes, a range of manual 

and automatic methods have been researched and implemented. Manual techniques, 

albeit labor- and resource-intensive, involve visually classifying the building’s 

constituent parts [(Pocobelli et al., 2018; Adekunle, Aigbavboa and Ejohwomu, 

2022).  

Conversely, labelling and recognition algorithms facilitate the classification of 

recognised features through various automated procedures, such as identifying 

primitive geometries, comparing geometric features, and employing semantic 

segmentation through artificial intelligence (Fiorucci et al., 2020; Pierdicca et al., 

2020). 

In the context of this study, an evaluation is sought for a workflow aimed at 

optimising the digital survey for Scan-to-BIM purposes through the implementation of 



149 

 

a mixed manual-semi-automatic segmentation method (Tavolare, Buldo and 

Verdoscia, 2023).  

As a case study, a disused industrial building located on the outskirts of Milan, 

constructed in the 1960s, featuring a frame structure of reinforced concrete pillars 

and beams, has been selected (Fig. 70). 

Spanning four above-ground floors and a basement, characterised by spacious 

windows and flat ceilings, the building can be deemed a typical scenario for Scan-to-

BIM operations in the engineering field. 

 

 

Fig. 70 Point cloud perspective view of the façade (Milan). 

 

4.2.1     Methodology 

In the initial phase, partitioning criteria were applied following the UN EN ISO 

19650 and UNI 11337 standards, utilising the Homogeneous Spatial Scope (ASO) 

subdivision method. This facilitated the segmentation of the point cloud, enhancing 

the overall efficiency of the process.  



 

150 

 

To streamline BIM authoring processes effectively, the methodology continued with a 

meticulous denoising approach utilising the SOR algorithm, addressing environmental 

interferences and refining the point cloud. Subsequently, the workflow integrated 

subsampling through voxelisation to strategically reduce point cloud density, a pivotal 

step in managing the abundance of surveying data.  

Semantic classification, facilitated by the CANUPO algorithm, played a crucial role in 

distinguishing between windows and walls, enhancing the categorisation of the point 

cloud. Simultaneously, the RANSAC algorithm contributed to probabilistic geometry 

recognition, enabling the identification of primitive structures like pillars, floors, 

ceilings, and walls. 

The closing phase involved the customisation of parameters to tailor the export 

process, ensuring alignment with OpenBIM standards, notably ISO 19650. This 

comprehensive and structured workflow aimed at optimising the point cloud for 

efficient BIM authoring purposes, catering to the complexities of digital surveying 

challenges. 

 

i. Homogeneous Spatial Scope Segmentation 

In the early stages of the analysis, a comprehensive exploration was conducted into 

the modelling process of building elements, encompassing entities and classes within 

the existing OpenBIM coding schemes. Additionally, the investigation extended to 

more intricate geometries, incorporating advanced Non-Uniform Rational Basis-

Splines (NURBS) integration. 

For architectural structures of heightened complexity, the strategic application of 

partitioning criteria within the BIM Management domain, aligned with established 

standards like UN EN ISO 19650 and UNI 11337, assumed a critical role.   
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The introduction of a subdivision based on the Homogeneous Spatial Scope (HSS)
5

, 

illustrated in Fig. 71, has proven to be an essential strategy.  

 

 

Fig. 71 Height subdivision of the point cloud (on the left) and longitudinal section (on the right).  

 

This method facilitated the systematic segmentation of the point cloud based on 

reference height levels, offering a structured framework that proved advantageous, 

particularly in addressing the challenges associated with intricate architectural 

formations. 

 
5
 The informational structure of space is divided into the following three terms: 

 

‘Homogeneous Functional Scope’ (HFS), also known as Ambito Funzionale Omogeneo (ASO) in Italian: 

Represents the spatial delimitation, for both surfaces and volumes, of a natural or built environment. 

This term refers to a system of homogeneous functional scopes identified based on their common cor-

respondence to a characteristic aggregating function. 

 

‘Homogeneous Spatial Scope’ (HSS), also known as Ambito Spaziale Omogeneo (ASO) in Italian: Indi-

cates the spatial delimitation, for both surfaces and volumes, of a natural or built environment. In this 

case, it refers to a set of spaces identified based on their common correspondence to a characteristic 

aggregator. 

 

‘Space’: Represents the spatial delimitation, for both surfaces and volumes, of a natural or built envi-

ronment. This term refers to the common correspondence of that space to its own characteristic func-

tion. 
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This tailored methodology facilitated a nuanced and customised approach in the 

subsequent stages, aligning the modelling process with the distinct requirements of 

diverse building elements. It laid the groundwork for the ensuing denoising and 

subsampling phases, enhancing the overall efficiency of the BIM authoring process. 

 

ii. Denoising Process with the SOR filter 

Through the emission of an infrared laser beam sensitive to potential 

interference from environmental factors like temperature and humidity or material 

conditions, laser measuring activities are conducted during digital surveying.  

This behavior can result in the presence of orphan points in close proximity to the 

measured element, introducing complexity to the geometric interpretation of the 

element and posing challenges in the registration, alignment, and calculation phases 

of the point cloud (Mugner and Seube, 2019). 

Various algorithms have been developed to automatically detect and eliminate such 

points, employing diverse approaches. Some methods focus on the identification of 

geometric descriptors, while others leverage recent advancements in deep learning 

applications  (Hu et al., 2021) and others rely on the triangulation approach of the 

Ball-Pivoting Algorithm (BPA) (Bernardini et al., 1999). 

 

 

Fig. 72 A) Raw point cloud; B) Cleaned-up point cloud using the SOR filter; C) Optimised point cloud 

with the RGB colour range filter with 1% variation. 
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In the quest for a comprehensive approach, the Statistical Outlier Removal (SOR) 

algorithm, using CloudCompare software, has been chosen for implementation (refer 

to Fig. 72). This approach is further complemented by the integration of other 

techniques (Nazeri and Crawford, 2021) (Cheng et al., 2021) to augment its 

effectiveness. 

 

 

Fig. 73 Gaussian distribution based on scalar reflectance value for analysing point cloud noise 

generating by the glazing: A) Distribution fitting; B) Point cloud with scalar reflectance; C) Point cloud 

noise (blue colour). 
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The average distance between each point and its neighbours is calculated. Points with 

mean distances falling outside a predefined range are identified, labelled as outliers, 

and subsequently removed from the dataset, taking into account the resulting 

Gaussian distribution with a mean and standard deviation.  

While more intricate semi-automated methods can be employed to refine the 

outcomes of this algorithm, they necessitate more complex parameterisation. In this 

case, an additional filtering method based on the RGB value of the points was 

implemented, excluding points with a value of 255,255,255 and a variance within 1%, 

addressing the noise generated in proximity to the windows. 

This method is suitable only for environments without objects of the same colour, and 

the scan must be conducted in the RGB scale. In uncoloured point clouds, a filtering 

technique based on the scalar reflectance value stored in the file can be utilised.  

By examining the distribution of scalar values assigned to the points, it can be inferred 

that the noise generated by glazing exhibits a sub-threshold reflectance value, falling 

within the range of blue colours (Fig. 73). 

 

iii. Sub-sampling Process with Voxelisation 

While capturing a comprehensive and precise point cloud during the surveying 

process, the abundance of points collected can pose limitations and challenges when 

utilising modelling tools. To address this, consideration is given to a subsampling 

(decimation) phase, often relying on mesh- and point-based approaches. 

The first method involves polygonal geometric simplification, where three-dimensional 

meshes are created by interpolating the points within a specific area (Garland and 

Heckbert, 1997). In contrast, the second method immediately applies simplification 

techniques to the point cloud. In the latter approach, simplified decimation is 

commonly employed, utilising a grid with three-dimensional cells to identify points 

within a certain distance. However, this method may overlook the varying weight, 

concentration, and importance of different regions within point clouds (Fan and 

Atkinson, 2019).  
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A more intricate approach involves resample functions, changing points within each 

cell to the grid’s center of gravity (Sim, Lee and Kim, 2005). While this method alters 

the spatial positioning of surveyed shapes, it may diminish the elements’ 

recognisability. 

For this purpose, after denoising, voxelisation of the point cloud was performed, in 

Python environment, to reduce the density of the point cloud. This comprehensive 

voxelisation process (Poux and Billen, 2019) is sub-divided into several sections: 

• Grid Structure Initialisation: The inaugural stride involves the creation of a grid 

structure enveloping the point cloud. This process commences by computing 

the bounding box, an all-encompassing spatial enclosure for the point cloud. 

Subsequently, the bounding box metamorphoses into small cubic grids 

known as voxels. The dimensions of these voxels are determined, either by 

equating their length, width, and height, or by specifying the desired voxel 

count along each direction of the bounding box. In this case, a voxel size of 

10 cm per side was employed (Fig. 74). 

• Voxel Indexing and Point Assignment: Each small voxel undergoes scrutiny to 

ascertain the presence of one or more data points. Voxels containing data 

points are preserved, and the indices of the associated points are 

meticulously documented. The script orchestrates an adept return of 

designations for each non-empty voxel, employing indices for operational 

simplicity and efficiency. Unique values rooted in integer indices for each 

point are identified and subsequently sorted for later linkage with the 

corresponding voxel index. 

• Computation of Voxel Representatives: The conclusive phase involves the 

meticulous computation of representatives for each voxel. Two contenders vie 

for this role: the centroid and the point closest to the centroid, discerned 

through the application of Euclidean distances. An iterative loop navigates 
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through each non-empty voxel, dutifully updating the voxel_grid dictionary 

with the catalogue of enclosed points. 

 

Fig. 74 Voxelisation of the point cloud: external view (on the left) and internal view of the building (on 

the right). 

 

iv. Classification with CANUPO and Segmentation with RANSAC 

An alternative to voxelisation, especially when data resolution is crucial for 

automation in BIM model construction, can be the process of classification or 

segmentation of point clouds.  

 

 

Fig. 75 Use of the CANUPO algorithm for classifying the windows and walls of the point cloud. 
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In this case, the CAractérisation de NUages de POints (CANUPO), a binary parametric 

semantic classification algorithm, was applied to segment the point cloud into two 

subcategories, classifying them as windows or walls (Fig. 75).  

This algorithm facilitates point classification by identifying the geometric properties of 

the space surrounding each point, employing various scales to discern features 

(Brodu and Lague, 2012). While this approach is limited to the identification of 

elementary object categories in the scene, it appears to be a simple and initial 

approach readily available in applications like CloudCompare.  

Furthermore, the use of model-fitting algorithms such as RANdom SAmple 

Consensus (RANSAC) capable of probabilistically finding geometries that interpolate 

points belonging to primary solids like cylinders, planes, etc., allows for the 

identification of points associated with primitive geometric structures such as pillars, 

floors, ceilings, and walls (Fischler and Bolles, 1981; Oh et al., 2021). 

The application of this algorithm necessitates the configuration of specific 

parameters, such as the threshold distance between points and identified surfaces, 

the maximum number of points that can belong to the surface (a value dependent on 

surface resolution and extent), and the probabilistic value. These values require the 

operator to conduct a preliminary analysis based on the point cloud properties and 

target geometries.  

For the case study, the point density distribution within a reference circular surface of 

1 m² (radius = 0.56 m) was calculated. This value will serve as a starting point for 

further parameterisation of the model.  

Alternatively, Fig. 76 demonstrates that the distribution of points in the environment is 

non-uniform, exhibiting fluctuations influenced by the orientation of surveyed surfaces 

and the spatial locations of the stations, while maintaining constant instrumental 

survey settings. 
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Fig. 76 Distribution of the point density (number of points/m
2

). 

 

Given this point density distribution and a typical building floor plan, the geometric 

recognisability parameters can be aptly configured based on the desired 

segmentation of elements and their characteristic point densities.  

An illustrative configuration is presented in Fig. 77 where the objective is to segment 

specific building elements (Fig. 78) namely the floor, ceiling, and exterior masonry, 

while excluding others, such as partitioning.  

 

 

Fig. 77 RANSAC parameters adopted for the segmentation of the geometric data elements. 
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Fig. 78 Section of the point cloud employed in the RANSAC processing (on the left); segmentation 

result featuring elements exclusively detected through dominant planes (on the right). 

 

Estimations for the minimum points on each element are derived by considering the 

surface area and average resolution, as shown in the equations [ 8 ] and [ 9 ]: 

 

point density =
1

point spacing
2
  

[ 8 ] 

 

 

min. points = surface area*average density  

[ 9 ] 

 

 

This information serves as algorithmic input to generate a relevant reference sample 

for class identification. Furthermore, by defining parameters such as ‘sampling 

resolution’ and ‘max distance to primitive’, with the latter set at twice the resolution, 

the average resolution for each element can be ascertained. 

 

4.2.2     Exporting Process and Final Deliberations 

In this study, an effort has been made to develop a general workflow consistent with 

common Scan-to-BIM modelling requirements in the field of building engineering, 

while highlighting crucial troubles and potential solutions. 
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Decimation and classification tasks, applied in sequential steps, can improve the 

preservation of the three-dimensional morphology of the architectural environment’s 

components, providing an opportunity for the designer to choose the level of 

geometric detailing that he intends to pursue. 

Parameter settings, specifically those used with RANSAC, can be changed and 

customised to subdivide the different pieces of the point cloud, which can then be 

exported as separate files and employed for the next modelling stage.  

 

 

Fig. 79 IfcAdvanceBrep entity definition adapted from advanced_brep_shape_representation defined in 

standard BuildingSmart and ISO 10303-514. 
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In this case, the adoption of the Boundary Representation (BRep) modelling could be 

the best solution, as it aligns with the OpenBIM standards outlined in ISO19650 and 

complies with the IFC4 and IFC2x3 schema (Fig. 79). 

This approach necessitates defining two-dimensional generators and directrices to 

automate the geometric construction of 3D elements through the extraction of specific 

building elements within the Scan to BIM process.  

To ensure the preservation of the geometric profile of the sectioned element, most 

algorithms employed for generating such features rely on slicing operations (Daniels 

et al., 2007; Kyriazis, Fudos and Palios, 2007) or on normal section profiles (Sun, 

Zhang and Zhang, 2021).  

The exporting procedure must be configured to maintain the spatial references of 

each segmented point cloud, facilitating a proper federation process within BIM 

Authoring software. 
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4.3 Optimising Point Clouds for Authoring BIM 

The CANUPO multiscale algorithm, mentioned before, has gained increased 

recognition in the Cultural Heritage (CH) domain, as evidenced by its growing 

popularity  (Moyano et al., 2021). In contrast, the RANSAC model-fitting method is 

widely adopted, offering the capability to assimilate portions of point clouds into 

geometric primitives like planes, cylinders, spheres, and cones (Schnabel, Wahl and 

Klein, 2007).  

In the pursuit of streamlining point cloud processing, the research methodology 

adopts a comprehensive strategy, commencing with the implementation of a minimal 

Voxel Down-sampling technique (S. Wang et al., 2022). Subsequently, a targeted 

decimation process is applied, with the specific objective of reducing non-critical 

points deemed irrelevant for subsequent phases of 3D generation within the BIM 

Authoring process. Ultimately, the incorporation of the CANUPO algorithm for 

classification and the application of the RANSAC method for segmentation collectively 

aim to extract a specific class of elements from the expansive point cloud dataset. 

The focus is on meticulously categorising the intricate staircase within Nico Palace, a 

neoclassical structure in Gioia del Colle, Italy, aiming to optimise the subsequent 

modelling steps. 

 

4.3.1     Quick Overview of the Nico Palace in Gioia del Colle (Italy) 

Nico Palace (Fig. 80), featuring three entrances on Via G. Mazzini, Via Cairoli, and Via 

G. del Re, provides a unique gateway to its history. Acquired in the 1900s by a 

relative of Lawyer Nico from Gioia Del Colle (BA), a vast plot of land was obtained, 

leading to the construction of the magnificent Nico Palace by the architect Cristofaro 

Pinto.  
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Fig. 80 Nico Palace in Gioia del Colle (Italy). 

 

Today, the building housed the Nartist Gallery, serving as an innovative platform that 

goes beyond a physical and virtual space for art exhibition. It fosters collaborative 

relationships and philanthropic initiatives, expanding art into a daily experience and a 

channel for solidarity. 

From the ground floor, granting access to cellars, the garden, and apartments, a 

splendid self-supporting staircase ascends, reaching the first floor that houses 

spacious apartments. The staircase, a distinctive element of the building, presents 

itself as a geometric masterpiece with two mirrored ramps and a central shared one, 

totaling three ramps, contributing to the palace a distinct character. The balustrades, 

neoclassical-style floors, vaults, and other features constitute an architecturally 

valuable heritage.  

The refined interior architecture makes it an exemplary subject for evaluating the 

effectiveness of advanced computational techniques in classification, laying the 

foundation for subsequent modelling procedures. 
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4.3.2     Methodology 

The applied methodology in this study encompasses a multi-faceted strategy 

(Tavolare et al., 2023), primarily emphasising the decimation process through voxel 

down-sampling of the point cloud. Subsequently, the focus shifts to classification and 

segmentation phases, leveraging the CANUPO and RANSAC algorithms, respectively. 

The final stage involves BIM Authoring modelling and model validation (Fig. 81). 

 

Fig. 81 Workflow for optimising the Scan-to-BIM process. 
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i. Point cloud Decimation Process 

The strategy utilised a versatile approach, initiating with a fundamental Voxel 

Down-sampling and progressing to a decimation process that involved the removal of 

non-critical points deemed irrelevant for subsequent 3D generation phases.   

The choice was made to focus this application specifically on the vertical connection 

system, comprising five straight ramps per floor, to simplify the parametric analysis 

of various algorithmic properties. The point cloud, acquired through a TLS survey 

using the CAM2® FARO Focus 3D 120 laser scanner, comprises 84 million points 

from 21 scans, detailed in Tab. 6 below: 

 

Tab. 6 Laser scanner technical specification. 

Parameters Specification 

Resolution 1/5 

Nominal Ocular Hazard Distance (NOHD) 10.60/3.30 

Quality 4x 

Point Resolution 28.2 MPts 

Scan Dimension 8248*3414 Pts 

Colour RGB+Scalar 

 

The LiDAR survey product generates a point cloud characterised by non-uniform 

density (Fig. 82) leading to varying linear resolution in different segments of the cloud. 

This variability arises from the irregular positioning of the instrument in space and its 

variable orientation in relation to the building elements. 

 



 

166 

 

 

Fig. 82 A) Point cloud of the Nico Palace; B) Point cloud Surface Density (Mpts/m
2

). 

 

For this purpose, an initial normalisation process was implemented to standardise the 

geometric resolution of the points, taking into account the accuracy and Level of 

Detail (LOD) requirements for the Scan-to-BIM process. This process was carried out 

within the Python environment, employing a voxel-based spatial decimation method. 

While this simplification method is computationally efficient, improper configuration 

can lead to an overly simplified point cloud, resulting in a loss of detail through the 

indiscriminate removal of points, including those crucial for maintaining formal 

recognisability. 

The chosen approach involves constructing a three-dimensional voxel grid (Fig. 83), 

where the distance of each point from the centroid of the individual voxel is 

calculated. The point closest to the center is retained, while the other points are 

discarded. 

The decimation intensity of the algorithm and, consequently, the preservation of 

detected details are influenced by the size of the voxel grid. In this scenario, to 

evaluate the voxel size, a virtual voxelisation of the ramp was conducted, involving a 
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qualitative analysis of the representability and identifiability of the required details (Fig. 

84). 

 

 

Fig. 83 A) Detail of the voxel grid; B) The red point is the centroid; C) The green one is the nearest 

point. 

 

 

Fig. 84 Voxel size: A) 2 cm; B) 1 cm; C) 0.5 cm. 

 

The visual representation of the geometric voxelisation of the stair steps aids in 

selecting the minimum resolution necessary for preserving morphological features. 

Additionally, if the required LOD or geometric precision is known, an analytical 

evaluation can be conducted to determine the optimal voxel size. 

While this initial decimation process can be applied universally across the entire 

model, it’s important to note that conditions for representability often vary depending 

on the specific area and elements present. 
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For the second decimation step, it is crucial to pinpoint the defining points – those 

that encapsulate the key areas of the point cloud indispensable for subsequent 3D 

generation phases. Typically, these points correspond to the edges of surveyed 

geometric elements, as exemplified in this case by the profile of the ramp steps. 

In the quest to identify these pivotal points, reliance was placed on Mean Curvature 

Analysis (Yang et al., 2015). This method involves calculating the radius of the 

segmentation range, defining the circular selection area. This area is determined by 

comparing the mean curvature value of a selected point to the average mean 

curvature of the entire point cloud, as shown in the formula below [ 10 ]: 

 

ri= α ∙ 
H

 Hi 
 
 

[ 10 ] 

 

Where: 

 

ri = radius of the segmentation range 

α = scale factor of the segmentation range 

H = average mean curvature of the entire point cloud 

|Hi| = mean curvature of the single i point 

 

The range is narrow in areas with higher curvatures, while it widens in areas with 

lower curvatures. However, this iterative procedure necessitates a substantial 

computational effort, potentially causing delays in processing steps. Nonetheless, this 

approach allows for precise and timely geometric analysis of specific regions within 

the point cloud. 

For this purpose, a simplified computation approach was adopted in this study: 

specifically, the mean curvature (Har’el, 1995) for each point was calculated 

concerning the neighbouring points within a radius of 9 cm. This radius was 
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experimentally evaluated with consideration for the sizes of the elements to be 

modelled, proving sufficient to highlight critical points on non-planar surfaces. 

Points with low mean curvature, potentially indicative of non-critical areas, were 

treated as redundant and deemed unnecessary for the 3D model representation. 

Applying a filter to select points with a mean curvature below a specified threshold 

enables a parametric simplification of planar points while preserving the 

recognisability of the features, particularly in the case of the stairway. This process 

proves valuable for three-dimensional reconstruction within the BIM Authoring 

environment, as depicted in Fig. 85. 

 

 

Fig. 85 Point cloud of the staircase ramp with mean curvature visualisation; B) Filtered point cloud with 

mean curvature > 2 (total points: 229,786). 

 

Indeed, in this simplification stage, it is crucial to trace geometries back to their three-

dimensional origin, considering the modelling methods that will be used 

subsequently. For instance, in the IFC4.1 and IFC4.3 schemes, the ramp is defined 

through the configuration of specific classes and entities (Fig. 86). 
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Fig. 86 A) IfcStairType from the IFC 4.1 scheme; B) Entity inheritance from the IFC 4.3 scheme. 

 

The dimensions of the vertical connection, the quantity of risers and treads, and the 

profiles constituting the step covering serve as parameters for the geometric definition 

of a ramp in this diagram. All of this information can be inferred from the points that 

were filtered earlier. The decimation result must undergo validation before being 

accepted for further processing. 

 

ii. Classification and Segmentation Processes 

As previously mentioned, the purpose of classification techniques is to ‘label’ 

groups of points sharing similar characteristics, categorising architectural elements 

within the Scan-to-BIM framework in terms of various Levels of Detail (LOD).  

This enables the retrieval and individual management of these elements by 

multidisciplinary teams, allowing them to concurrently work on BIM Authoring 

procedures. One of the key challenges in these approaches lies in their design 

complexity and the difficulty of generalising the training process without a reference 

dataset, essential for achieving satisfactory results.  

For this reason, the exploration of utilising the CANUPO algorithm (Brodu and Lague, 

2012) has been decided within an optimisation process targeted at extracting points 

that constitute the profiles of stair ramps. The decision was made to extract a single 
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section of the ramp and utilise it in the algorithm’s training phase, considering the 

symmetric and modular spatial shape of ramps (Fig. 87). 

 

 

Fig. 87 Training process and binary classification with the CANUPO algorithm: A) Staircase ramp used 

for the training process; B) Classification distribution for the classe separation; C) Classification result 

(blue: ramp; red: other); D) Isolation of the ramp-class points. 

 

The algorithm’s limitations were shown by the test, which included the classification 

of flights of stairs while grouping points outside of this category. This was 

demonstrated by the distribution graph used to represent point classes during 

training.  
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The computational simplicity used in the calculation phase and a quick, but unduly 

basic training strategy limit the method. An additional optimisation method may be 

explored to enhance the segmentation of staircase ramp points in case the results 

obtained are not sufficiently satisfactory. 

Next, segmentation data were processed by applying the RANSAC algorithm (Fischler 

and Bolles, 1981; Schnabel, Wahl and Klein, 2007; Oh et al., 2021) to identify the 

points belonging to the inclined planes denoting the stair ramps. 

When the algorithm finds a plane in which to place a group of points, it randomly 

selects the minimum number of points required to define the model, in this case three 

non-collinear points. It computes the model utilising the selected points, such as 

through the least squares approach, and assesses how well these points in the point 

cloud conform to this model. It then classifies points as ‘inliers’ or ‘outliers’ according 

to whether or not they are within a given distance threshold. Until a sufficient number 

of inliers is reached, these stages are iterated a fixed number of times. 

This method facilitated the isolation of individual staircase ramps (Fig. 88) from the 

overall environment, simplifying their integration into BIM procedures and workflows 

On the point cloud, the segmentation process can also be used as a first step, 

enabling the extraction of only the geometric elements designated for optimisation. 

Following the computation of the average distance between each point and its 

neighbours, any ‘orphan that are farther away from the average distance plus a 

specified number of times the standard deviation are eliminated.  

To align it with the Autodesk Revit® BIM Authoring software, the resultant point 

cloud, portraying the assembly of staircase ramps, was exported in .PTS format and 

transferred into the exclusive Autodesk Recap® processing environment. 
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Fig. 88 A) Points grouped by the plans identified in RANSAC for the ramp class 1; B) Detected planes 

and isolated point. 

 

iii. BIM Authoring 

Ramp block modelling was done in the BIM Authoring environment in order to 

verify the geometric quality and completeness of the final product and evaluate the 

workflow’s effectiveness. By applying the previously established automation methods 

to point clouds it was possible to identify the most distinguishing characteristics of 

the staircase body, which simplified the operations that followed (Fig. 89). 

Step width and slope angle were precisely defined as part of the modelling procedure 

in order to provide a realistic and useful portrayal of the stair forms within the overall 

project context (Fig. 90).  
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Fig. 89 Modelling the staircase ramp in the BIM Authoring environment using the previously optimised 

point cloud. 

 

 

Fig. 90 Final 3D model using Scan to BIM methodology. 
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The cross vault was another distinctive component used in the model’s construction. 

For this, a unique adaptive parametric family was developed, allowing for the 

inclusion of offset parameters for the distances at the wall arches, in addition to the 

heights related to the rises of the groin’s generating arches. 

 

4.3.3     Results and Conclusions 

Thanks to the methodology employed in optimising point clouds for BIM 

Authoring, the achieved results can be deemed satisfactory for several pivotal 

reasons. 

First and foremost, the approach demonstrated remarkable precision in maintaining 

geometric details throughout the entire decimation process. The combination of voxel 

down-sampling and mean curvature analysis ensured a high level of accuracy, 

meticulously preserving critical features of the staircase. 

The efficiency of the classification and segmentation stages, utilising the CANUPO 

algorithm and the RANSAC method, respectively, was evident in the consistent 

isolation of distinctive elements of the staircase. Despite identified limitations during 

testing, the overall approach successfully captured the desired shapes. 

The optimisation of the workflow was a significant outcome, showcasing seamless 

integration of processes from point cloud preparation to the final modelling in the BIM 

environment. Consequently, the automated processing of point clouds significantly 

streamlined subsequent operations, saving both time and resources. 

These positive outcomes not only contribute to the accurate modelling of the 

staircase but also lay a solid foundation for future developments and research in the 

field of managing point clouds for BIM Authoring. 
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4.4 Automatic Point Cloud Segmentation and Parametric-Adaptive 

Modelling of Vaulted Systems 

In the context of leverage data derived from digital surveying, the objective of 

this study is to assess an automated iterative process within a scan-to-BIM 

methodology. This process commences with automatic point cloud segmentation 

operations utilising open-source, model-fitting algorithms. The effectiveness of this 

method is expected to provide substantial support for the concluding phase of 3D 

parametric/adaptive reconstruction, ensuring compatibility with BIM Authoring.  

The work is specifically directed towards various masonry vaulted systems (Buldo et 

al., 2023). The analysis begins with the examination of these structures using ‘ideal 

models’, meticulously discretised and configured by the user. These models serve as 

a benchmark for validating the parameters of the RANSAC algorithm when applied to 

point clouds obtained from laser scanners. However, these latter ones exhibit irregular 

geometries, introducing complexities that pose challenges in terms of 

comprehension, analysis, and management. 

The segmentation of point clouds, whether performed manually or automatically, 

proves valuable in the analysis of vaulted masonry structures, as highlighted in 

previous studies (Angjeliu, Cardani and Coronelli, 2019; Lanzara, Samper and 

Herrera, 2019). This method aims to distinguish and regionalise points associated 

with the vault from those related to the supports and piers upon which it rests. 

Accordingly, this approach yields a precise representation of the structural geometry, 

significantly enhancing  subsequent 3D reconstruction procedures (Santagati, 2005; 

Capone and Lanzara, 2019).  The improvement may include identifying the geometric 

profiles of the vaults (Agustín-Hernández et al., 2021; Agustín-Hernández, Sancho-

Mir and Fernández-Morales, 2023), seamlessly integrating them with advanced 

algorithmic modelling techniques (Bagnolo, Argiolas and Vanini, 2022), or employing 

IronPython programming (Angjeliu, Cardani and Coronelli, 2019) and VPL languages 

(Quattrini et al., 2023). 
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4.4.1     Methodology 

To examine an automated process within a scan-to-BIM workflow, this 

research initiates with a comprehensive analysis of the geometric genesis related to 

specific types of vaulted structures represented as point clouds (refer to Fig. 91).   

The non-deterministic RANSAC algorithm, integrated into the open-source software 

CloudCompare, was employed to execute an automated segmentation approach. 

 

Fig. 91 Scan-to-BIM Workflow adopted for the vaulted systems. 
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The workflow encompassed the computation of point datasets derived from the 

discretisation of regular surfaces (plane, spherical, cylindrical) corresponding to 

vaulting models (Rondelet, 1832; Zaccaria, 1983; Saccardi, 2004), Subsequently, 

these results were applied to LiDAR point clouds with a comparable geometrical 

configuration. 

The study not only evaluated the validation of the outcomes but also focused on the 

creation of 3D models utilising open approaches that promote software 

interoperability. Additionally, the research delved into BIM Authoring, ensuring 

enhanced consistency and control despite data sharing. 

 

i. Segmentation Process 

The study investigates seven distinct types of simple and composite masonry 

vaults, namely the sail, barrel, barrel with lunettes, trought, mirror, groin, and 

hemispherical dome on a drum and pendentives. 

The segmentation process entailed an initial assessment and adjustment of the 

RANSAC algorithm’s parameters on the intrados surface of geometric models 

classified as ‘ideal’. These models are considered ideal due to their perfectly regular 

and discretized shapes. Generated in the CAD environment, these models were 

crafted using Boundary Representation (BRep) modelling, subsequently converted 

into a point cloud with a point spacing of 0.001 m. 

The RANSAC algorithm performs a probabilistic and recursive estimation of ‘inliers’ 

within a dataset that includes ‘outliers’ – points not encompassed by the geometric 

model under consideration. Inliers are collected in predefined subsets (‘minimal sets’) 

whose distribution can be linked to a model of available geometric primitives.  

Initial testing on these ‘ideal’ models yielded values for the algorithm variables, 

subsequently applied to clusters of points derived from LiDAR scans (captured using 

CAM2® FARO Focus 3D 120, and subsampled at 0.001 m).  
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Below are the algorithm parameters for the ideal models (Tab. 7) and the real ones 

(Tab. 8). 

• ‘Minimum support points per primitive’ represents the number of point 

samples that govern the density and size of the ‘inlier’ clusters for each 

primitive. This value is inversely correlated with the number of point groups 

utilised to sample a particular primitive. Through experimental analysis, a 

threshold value was determined, below which the algorithm struggles to 

accurately distinguish between different primitive surfaces for the same 

geometry. This threshold, falling within the range of 0.4% to 2%, is directly 

proportional to the number of points in the dataset. 

• ‘ε’, denoting the maximum distance value between points and primitive 

shapes, was experimentally evaluated within the range of 0.001 to 0.03. This 

parameter is crucial for discerning the presence of features such as ribs, 

groins, domes, pendentives, drums, and other typical geometric components. 

To accommodate the geometric discontinuity in LiDAR point clouds, this 

value was selectively increased, ensuring a balance that allows the primitives 

to be adequately fitted to the ideal point cloud while accounting for variations 

in geometry. 

• ‘α’, representing the maximum angular deviation between the points’ normal 

and the normal of the primitive surface. This parameter value serves as a 

threshold, aiding in the identification of points that conform closely to the 

expected geometric surface (inliers) and those that deviate beyond the 

specified angular threshold (outliers). The threshold, defined here as 25°, is 

typically determined empirically, taking into consideration the inherent noise 

present in the point cloud data. 

• ‘β’, sampling resolution, which denotes the distance between neighbouring 

points, is set within an experimental range of 0.060 to 0.100. In cases where 

the data is irregularly sampled, a lower value for this parameter is often 

preferred. This adjustment allows for flexibility in handling variations in point 
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cloud density, ensuring a more adaptable segmentation process that 

accommodates different data acquisition scenarios. 

• The ‘overlooking probability’ (OP), representing the the probability that no 

better candidate is overlooked during sampling, is kept at a low experimental 

value of 0.010. By minimising the overlooking probability, the segmentation 

process strives to meticulously identify suitable inliers for each primitive, 

contributing to the robustness and accuracy of the overall analysis. 

• ‘r’, which represents the radius size of primitive shapes like sphere and 

cylinder, is determined based on the dimensions of the generatrices of 

geometric surfaces. In these specific applications: 

- sail) 1. radius of the hemispherical intrados surface (vault);  

- barrel) 2. generatrix radius of the semi-cylindrical intrados surface 

(vault); 

- lunette) 3. generatrix radius of the semi-cylindrical intrados surface 

(lunette) – 4. generatrix radius of the semi-cylindrical intrados surface 

(barrel);  

- trought) 5. generatrix radius of the semi-cylindrical intrados surface 

(pavilion) – 6. generatrix radius of the semi-cylindrical intrados 

surface (barrel);  

- mirror) 7. generatrix radius of the semi-cylindrical intrados surface 

(pavilion) – 8. generatrix radius of the semi-cylindrical intrados 

surface (barrel);  

- groin) 9. generatrix radius of the semi-cylindrical intrados surface 

(groin);  

- dome) 10. radius of the hemispherical intrados surface (dome) – 11. 

radius of the hemispherical intrados surface (pendentive) – 12. 

generatrix radius of the semi-cylindrical surface (drum). 
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Tab. 7 Algorithm parameters for the ‘ideal models’. 

IDEAL MODELS 

Vault  

type 

Points Support 

points 

Primitive α (°) β (m) ε (m) OP Inliers                

points 

Sphere 

Cylinder 

Plane 

r
min 

(m) 

r
max  

(m) 

SAIL 1,000,000 20,000 s  - 
4.24

1

 
25 0.060 0.010 0.010 267,476 

c - - 

BARREL  1,000,000 20,000 s - - 25 0.070 0.010 0.010 390,903 

c - 
3.00

2

 

LUNETTE 1,000,000 5,000 s - - 25 0.100 0.010 0.010 999,156 

c 
1.40

3

 3.00

4

 

TROUGHT  1,000,000  4,000 s - - 25 0.100 0.001 0.010 1,000,000 

c 
3.00

5

 3.00

6

 

MIRROR 1,000,000 10,000 s - - 25 0.070 0.010 0.010 1,000,000 

c 
3.00

7

 3.00

8

 

p - - 

GROIN 1,000,000 5,000 s - - 25 0.060 0.001 0.010 423,661 

c - 
3.00

9

 

DOME  1,000,000 20,000 s 
5.00

10

 7.08

11

 
25 0.100 0.030 0.010 1,000,000 

c - 
5.00

12
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Tab. 8 Algorithm parameters for the ‘real models’. 

 REAL MODELS 

Vault  

type 

Points Support 

points 

Primitive α 

(°) 

β (m) ε (m) OP Inliers               

points 

Sphere 

Cylinder 

Plane  

r
min 

(m) 

r
max  

(m) 

SAIL 286,359 5,727 s - 
2.20

1

 
25 0.060 0.070 0.010 77,080 

c - - 

BARREL  2,936,243 58,724 s - - 25 0.070 0.040 0.010 1,285,150 

c 
 

 2.60

2

 

LUNETTE 5,767,107 28,836 s - - 25 0.100 0.060 0.010 1,841,853 

c 
1.20

3

 1.50

4

 

TROUGHT  19,248,518 76,994 s - - 25 0.100 0.060 0.010 6,269,093 

c 
2.10

5

 2.75

6

 

MIRROR 7,085,760 70,858 s - - 25 0.070 0.010 0.010 2,088,021 

c 
1.60

7

 2.10

8

 

p - - 

GROIN 5,697,696 28,489 s - - 25 0.060 0.030 0.010 1,813,099 

c - 
2.60

9

 

DOME 1,256,367 25,127 s 
2.10

10

 3.00

11

 
25 0.100 0.030 0.010 1,176,048 

c - 
2.10

12
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Fig. 92 Point cloud segmentation process, from the ideal models to the real ones. 

 

On both ideal and realistic models, Fig. 92 showcases the outcomes of the 

segmentation process applied to all types of vaults.  

The point clouds acquired by laser scanning are as follows:  

• Sail vault (Church of St. Mary Magdalene in Sammichele di Bari, Italy);  

• Barrel vault (Church of St. Mary of the Angels in Barletta, Italy); 

• Lunette vault (Romanazzi Carducci Museum in Putignano, Italy); 

• Trought vault (Marquis Palace in Laterza, Italy); 

• Mirror vault (Romanazzi Carducci Museum in Putignano, Italy); 

• Groin vault (Romanazzi Carducci Museum in Putignano, Italy); 
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• Dome on drum and pendentives (Abbey of the Most Holy Trinity in Venosa, 

Italy). 

 

ii. 3D Modelling 

To ensure compatibility between segmentation procedures and their 

corresponding encodings in open BIM formats, it was imperative to devise an initial 

approach to geometric modelling.  

 

 

Fig. 93 Utilising the concave hull algorithm to extract profiles of the vaulted structures. 

 

This approach is anchored in the utilisation of Non-Uniform Rational B-Splines 

(NURBS) generators and polygonal directrices that not only define but also 

geometrically delimit the analysed surfaces.  
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The semi-automated 3D reconstruction pinpointed specific section planes within the 

segmented clusters of the point cloud, intricately linked to the geometric configuration 

of the vaulted structures. 

The interpolation of points situated on these planes was achieved through the 

CloudCompare software, with meticulous consideration of an offset extension of 0.03 

m. Executing this operation involved the application of the ‘concave hull’ clustering 

algorithm
6

, taking into account both the resolution of the initial point clouds and a grid 

with a pitch of 0.02 m (see Fig. 93). 

 

 

Fig. 94 Topological structure of the the vault using NURBS and UV mapping. 

 
6
 The ‘concave hull’ algorithm is employed to generate an external envelope that closely con-

forms to a set of points, adept at capturing intricate details and concavities within the shape. In con-

trast to the ‘convex hull,’ which forms a convex outer shell, the concave hull yields a more nuanced 

and adherent representation, effectively accommodating intricate variations in the surface of the depic-

ted object (Yahya et al., 2017; Yan et al., 2019). 
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Potential anomalies introduced by noise or interference in the point cloud were 

mitigated through decimation and vertex segmentation processes applied to the 

resulting polylines. The profiles were then acquired and seamlessly integrated using 

multiple NURBS generators in MAXON’s CINEMA 4D software, with UV subdivision 

parameters employed for consistent topological structuring (Fig. 94). 

The 3D model underwent a transformation from its fundamental geometry using the 

BIM authoring tool Autodesk Revit. This facilitated the linking of polygonal surfaces to 

BIM elements, specifically roofs, and enabled the integration of management data and 

parameters (see Fig. 95). 

 

 

Fig. 95 Association of polygonal surfaces with BIM components. 
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Exploring an alternative modelling approach, a versatile adaptive metric model (.rfa 

format family) was created using only Revit for each type of vaulted structure. This 

model was designed to dynamically adapt to the irregular geometric properties 

present in the scanned point clouds. 

Regarding the flexible components, adaptive shape handle points were generated and 

interconnected through splines and/or reference lines. This approach was employed 

to articulate the geometry, whether void or solid, associated with the specific type of 

vaulted structure, ensuring adaptability to the characteristics of the point cloud (see 

Fig. 96). 

 

 

Fig. 96 Parametric modelling workflow: transitioning from adaptive families to the Scan-to-BIM model. 

 

Distance relationships (height and overhang) between points and reference planes, 

plus the radius of the generating arches were computed using the established 

parameters and constraints tailored for each model. Providing more details, a 

parameterisable geometric void, linked to the roof element, allowed the definition of 
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height parameters for the arch rises and the midpoint of the hemispherical structure 

associated with the sail vault (see Fig. 98 a). 

In the case of the barrel vault (Fig. 98 b), only the heights corresponding to the rises 

of the two generating arches forming the semi-cylindrical structure were generated.  

To construct the lunette vault, additional semi-cylinders were intersected with it, 

employing smaller yet identically parameterised heights, akin to the individual lunettes 

Fig. 98 c). Departing from conventional practices, the omission of the horizontal 

section plane was pivotal in creating the trought vault Fig. 98 d), derived from the 

mirror vault model (see Fig. 98 e). 

Regarding the latter, the radius parameter was linked to the apex height and span 

parameters, relative to the lowered pavilions, according to the following formula [ 11 ] 

and related to the Fig. 97. 

 

radius =
1

2
*

apex height
2
+span2

apex height
  

[ 11 ] 

 

 

Fig. 97 Geometric properties for the parametric construction of the mirror vault. 
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Fig. 98 Parametric adaptive families for the BIM models. 
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Subsequently, for the groin vault, in addition to the heights associated with the rises 

of the groins’ generating arches, parameters for distance offset at the wall arches 

were specified (see Fig. 98 f). 

In conclusion, for the hemispherical dome, distinct parameters governing the heights 

of the pendentives, drum, and dome itself were established. Multiple adaptive points 

were strategically placed to enable the model to adapt to the irregularities of the 

scanned surface (see Fig. 98 g). 

 

4.4.2     Results 

For the ideal models of the vaulted structures, very accurate results were achieved by 

meticulously choosing the specific value of the algorithm parameters, primitive types, 

and geometric dimensions. However, when the algorithm was applied to LiDAR point 

clouds, challenges arose in accurately extracting shapes that deviated from the pre-

selected set of primitives.  

Consequently, the ε parameter for the real structures was increased to accommodate 

their geometric irregularities, broadening the range of distances between inliers 

associated with the primitives. The automatically segmented regions of points 

representing actual vault components were compared with manually segmented 

‘ground truths’, considering the number of delected points and the percentage ratio 

between RANSAC and Ground truth (see Tab. 9). The data were also compared 

visually (see Fig. 99). 

Prominent discrepancies in the real models are evident in the non-spherical and non-

uniform nature of the dome pendentives (see Fig. 100), as well as in the barrel vault 

lunettes, ribs, and groins.  

Notably, the cylindrical shape of the barrel vault, the spherical form of the sail vault, 

and the plane of the mirror vault exhibit better identification owing to their simpler and 

more complete geometric configurations. Despite these challenges, the obtained 

results prove valuable for subsequent digital modelling stages.  
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Tab. 9 Comparing the number of points detected by Ground truth and RANSAC. 

 

Vault type 

GROUND TRUTH RANSAC 

number of points 
number of points  

(% RANSAC / GROUND TRUTH) 

SAIL green: 83,838 green: 77,499 (92.44%) 

BARREL orange: 1,304,199 orange: 1,285,150 (98.54%) 

LUNETTE purple: 988,713; 

yellow: 195,171; 

dark-green: 75,236; 

brown: 188,879; 

bordeaux: 134,872; 

green: 182,571; 

light-green: 129,271 

purple: 1,035,354 (104.72%); 

yellow: 175,170 (89.75%); 

dark-green: 58,957 (78.36%); 

brown: 173,385 (91.80%); 

bordeaux: 120,337 (89.22%); 

green: 161,220 (88.30%); 

light-green: 117,430 (90.84%) 

TROUGHT blue: 4,916,063; 

yellow: 656,343; 

pink: 696,687 

blue: 5,070,519 (103.14%); 

yellow: 601,256 (91.60%); 

pink: 597,318 (85.74%) 

MIRROR blue: 580,124; 

orange: 508,267; 

green: 533,062; 

yellow: 463,485; 

cyan: 193,379 

blue: 550,690 (94.93%); 

orange: 465,861 (91.66%); 

green: 509,619 (95.60%); 

yellow: 382,023 (82.42%); 

cyan: 179,828 (92.99%) 

GROIN dark-green: 660,275; 

light-green: 562,874; 

blue: 277,566; 

bordeaux: 306,677 

dark-green: 986,336 (149.38%); 

light-green: 343,595 (61.04%); 

blue: 231,113 (83.26%); 

bordeaux: 252,055 (82.19%) 

DOME orange: 585,629; 

cyan: 180,365; 

yellow: 237,693; 

bordeaux: 39,711; 

dark-green: 14,992; 

red: 35,024; 

light-green: 42,605 

orange: 585,292 (99.94%); 

cyan: 136,201 (75.51%); 

yellow: 153,206 (64.46%); 

bordeaux: 78,084 (196.63%); 

dark-green: 78,443 (523%); 

red: 69,475 (198,36%); 

light-green: 75,347 (176,85%) 
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Fig. 99 Comparing Ground truth vs. RANSAC. 
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Fig. 100 Example of segmented point cloud: hemispherical dome on drum and pendentives (Abbey of 

the Most Holy Trinity, Venosa). 

 

The geometric reconstruction process in open-mode particularly excelled in providing 

robust topological mesh control, facilitating precise UV mapping of surfaces, and 

allowing customisable polygonal resolution. The translation of the 3D geometry within 

the BIM authoring software, coupled with the flexibility to choose compatible software 

tools, facilitated seamless information and management parameter integration.  

The adoption of adaptive parametric families in the second modelling approach with 

BIM authoring enhanced efficiency, enabling the creation of highly tailored 

architectural elements with greater flexibility than standard system families.  

The incorporation of adaptive points, along with meticulous parameter and constraints 

control, facilitated precise placement of families for diverse structural configurations, 

resulting in time savings and heightened design efficiency. 

An analytical comparison with the point cloud was conducted to verify the geometric 

coherence of these reconstructions. The analysis revealed minimal discrepancies, 
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primarily within 0.06 m, attributed to the inherent irregularities in the detected intrados 

of the real vault. These variations align with the representative limits imposed by the 

BIM-oriented geometric NURBS regularity (see Fig. 101). 

 

 

Fig. 101 Deviation analysis between the point cloud and the BIM model (1
st

 approach). 

 

The second modelling approach revealed larger discrepancies for certain vault types, 

particularly in the case of the trought vault (average distance value of 0.07 m) and the 

dome, particularly noticeable at the spherical pendentives (average distance value of 

0.08 m), as shown in Fig. 102. 
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Fig. 102 Deviation analysis between the point cloud and the BIM Authoring model (2
nd

 approach). 

 

4.4.3     Last Remarks 

Point cloud segmentation is a useful method for obtaining geometrical and 

informative data that provides accurate architectural semantization in the domains of 

AEC (Architecture, Engineering, and Construction) and CH (Cultural Heritage). 

Through techniques that are easily incorporated into BIM (Building Information 

Modelling) models, this process is used for 3D reconstruction. 

There are numerous benefits to automated segmentation versus manual procedures. 

Faster processing rates are achieved, particularly when working with large datasets, 

and accurate repeatability is guaranteed, even for complex shapes that are difficult to 

segment manually. But for automation to be effective, reliable results from well-

calibrated algorithms are necessary. 
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The RANSAC method has shown to be especially successful in accurately 

discretising ideal models in the context of this investigation. It dependably provides 

even when noisy and irregular point clouds are present. 

This method’s effectiveness can be ascribed to the careful parameter selection that 

results from a thorough examination of the geometric configuration and graphical 

representation of the elements that are being analysed. 

The main goal of this study is to apply RANSAC to different kinds of vaulted 

structures, always in cooperation with the relevant BIM models, in order to enhance 

and broaden the comprehension of the method’s suitability in various architectural 

settings. 
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4.5 Planning for Scanning using Deterministic and Meta-Heuristic  

Approaches 

The scanning and digitisation of Cultural Heritage have undergone significant 

strides, particularly propelled by technological advancements and the widespread 

adoption of Building Information Modelling (BIM) within the Architecture, Engineering, 

and Construction (AEC) sector.  

The utilisation of advanced instrumentation such as LiDAR and photogrammetry has 

enabled the attainment of high precision and data density. When coupled with 

meticulous architectural survey planning, these technologies facilitate the 

comprehensive recording of the object of interest under optimal conditions, ensuring 

maximum efficiency and data quality. This approach is geared towards minimising 

both time and costs associated with survey operations.  

Often called ‘network design’, the expression really means ‘Planning for Scanning’ 

(P4S), particularly when discussing laser scanner acquisitions (TLS) (Biswas, 

Bosché and Sun, 2015; Aryan, Bosché and Tang, 2021). As elucidated in the state-

of-the-art literature, various algorithms have been developed to identify optimal 

positions for data acquisition.  

In the individual case of the Church of Ognissanti di Cuti in Valenzano (Italy), two 

distinct automation techniques were applied (Cabrera-Revuelta et al., 2024).  

A deterministic approach, based on the ‘Art Gallery Problem’, was employed for 

planning TLS stations within the building (Avis and Toussaint, 1981; Chesnokov, 

2018). Additionally, a meta-heuristic approach utilising a genetic algorithm (GA) was 

applied for external acquisitions (Cabrera-Revuelta, 2017; Cabrera-Revuelta et al., 

2021). 

Verifying the suitability of these techniques for improving TLS instrument station 

layout is the main goal of this research. This seeks to minimise redundancy and 

guarantee data completeness in the architectural survey of a heritage asset.   
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The next steps involved the combination of TLS with aero-photogrammetric data, 

georeferencing of the resulting point clouds using GNSS, automated procedures 

employing semantic segmentation using RANSAC, and parametric modelling within 

the BIM environment, custom-tailored to the specific case under analysis. 

 

4.5.1     The All Saint’s Church of Cuti in Valenzano (Italy) 

The All Saints’ Church of Cuti, situated in the rural expanse of Valenzano (Bari), 

stands as a relic of a Benedictine monastery with historical, administrative, and 

religious significance during the development of the Land of Bari (see Fig. 103). With 

dimensions measuring a mere 18.45 x 12.65 m², the church belongs to the category 

of buildings featuring axis domes, blending Byzantine influences with a distinct 

Apulian Romanesque design. 

 

 

Fig. 103 The All Saint’s Church of Cuti in Valenzano, Italy. 

 

A detailed analysis of the architectural and structural elements of the edifice reveals a 

clear dichotomy between the internal arrangement and the external envelope. While 

external modifications have cast doubt on the validity of chosen solutions, the interior 
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spatiality – without the tonal fields and frescoes that once adorned the walls – 

preserves the essence of the original architectural concept. 

The church’s planimetric layout adheres precisely to pre-existing canons, with a 

longitudinal axis oriented East-West. The construction is characterised by remnants of 

a three-arched portico, entrances on different facades, and three naves culminating in 

apses, where the central apse notably surpasses the two flanking ones in size. 

The primary nave is defined by three volumetric modules terminated by domes, while 

the two side aisles exhibit pilasters and rampant, half-barrel vaults. Beyond the 

domes, three square-based pyramids, adorned with Apulian stones and roofing 

slates, grace the exterior. The limestone walls of the church, squared and polished, 

remain unadorned except for bands flanking the windows. 

The choice of this building for the implementation of various optimisation methods is 

driven by several factors. Firstly, the church stands isolated, offering ample space for 

TLS placement, free from dense vegetation that might impede visibility. Additionally, 

its medium height and single-storey structure eliminate the need for scans from 

elevated viewpoints. Lastly, the regular and symmetric distribution of the interior plan, 

adorned with domes, facilitates the discretisation of the building as a constant floor 

plan. 

 

4.5.2     Methodolgy 

The primary objective of this study is to conduct a comprehensive quality comparison 

of data acquired through TLS, employing two distinct methodologies.  

• The initial approach employs automated optimisation methods, featuring a 

predetermined set of viewpoints outlined on the building plan. The internal 

viewpoints are derived through a deterministic method rooted in the Art 

Gallery Problem, while the external viewpoints are generated using a meta-

heuristic technique based on a genetic algorithm. 
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• In the second approach, the automatically identified viewpoints form the 

foundation for introducing additional strategic viewpoints during the on-site 

architectural survey, guided by the operator’s expertise. This ensures an 

optimal and comprehensive data acquisition process. 

Subsequently, two sets of point clouds will be generated: one exclusively featuring the 

viewpoints automatically surveyed, and another incorporating the supplementary field 

stationary points. 

The comparative analysis of the final point clouds aims to evaluate the overall 

effectiveness of the methods, emphasising the impact of absent staging points on the 

comprehensive coverage of the entire survey. Additionally, the study encompasses 

analyses of working time and the size of generated files. 

 

i. Planning the Interior Survey 

Reflecting on the Art Gallery Theorem, it asserts that [n/3] guards are both 

occasionally necessary and always sufficient to guard a polygon with n vertices 

(Chvátal, 1975). Avis and Toussaint’s Algorithm vividly exemplifies this theorem 

through three concise steps, as illustrated in Fig. 104:  

 

 

Fig. 104 The Art Gallery Problem (©adapted from (Avis and Toussaint, 1981)). 

 



201 

 

• Triangulate the polygon P, resulting in the creation of a graph T. 

• Apply a three-colouring scheme to the nodes of T. 

• Strategically position guards at the nodes assigned the least frequently used 

colour. 

This algorithm computes areas of visibility, outlining regions where a guard can move 

without losing sight of the designated part of the building they are assigned to protect. 

The process begins by triangulating the entire interior area of the church. 

Subsequently, the vertices of the triangles are colourised with three distinct colours in 

a manner that ensures no two adjacent vertices share the same colour (Fig. 105), 

adhering to the principles of the Four-Colour Theorem (Appel, Haken and Koch, 

1977). 

 

 

Fig. 105 Triangulation and three-colouring of the church plan. 

This colouring approach results in each triangle having one vertex of each colour: 

blue, green, and red. Consequently, the vertices on the floor of the building are 

categorised into three sets based on their assigned colour.   
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The placement of a guard at all points sharing the same colour ensures complete 

surveillance of the interior enclosure. Following the three-colouring process, the 

subset of vertices sharing the colour with lower repetitions is selected. In this 

instance, the least repeated colour is red, occurring a total of 63 times, in contrast to 

68 occurrences for both blue and green. Subsequently, the areas of visibility are 

calculated, outlining regions where the ‘guard’ (in this context, a TLS instrument 

tasked with monitoring a specific area) can navigate without losing sight of the 

assigned part of the perimeter. For each red vertex, the edges of the building floor that 

the guard must monitor are extended to generate convex areas, delimited by the 

building walls. 

To illustrate the detailed procedure for finding these visibility areas, let’s consider a 

specific part of the building’s floor plan. As depicted in Fig. 106a, each red vertex is 

assigned the surveillance of a section of the building’s perimeter based on the 

triangulation. Taking a specific vertex, Fig. 106b highlights the five edges that the 

guard must oversee, depicted in red. 

 

 

Fig. 106 A) Triangulation of an area of the church plan; B) The selected vertex and the five edges to be 

guarded by the guard are highlighted in red. 

 

To delineate the area around which the guard can move without losing sight of an 

edge, the line defining the edge is extended. This extension generates a straight line 

that divides the space into two parts: one encompassing the walkable area and the 
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other including obstacles such as pillars and walls. The guard is positioned on the 

walkable side.  

The five edges that the guard monitors are denoted as a1, ..., a5, in a clockwise 

direction. These edges are considered primary, while the others are secondary. 

Starting with the primary edge a1, the visible side is determined as the right side (See 

Fig. 107a). If an extension of a primary edge intersects with another edge, the 

operation is iterated for the new edge. This process continues until a convex area is 

generated, ensuring visibility of the primary edge (see Fig. 107b).  

This procedure is repeated for the remaining edges. The next edge area, a2, is 

analyzed in Fig. 107c and it is possible for visibility areas of multiple edges to overlap, 

as seen with edges a1 and a2. Continuing with the same approach, areas of visibility 

for edges a3, a4, and a5 are shown below (Fig. 107d-e-f). 

 

 

Fig. 107 A) Extension of the primary edge a1; B) Extension of the edge a1 and interesction with the 

other edges, resulting in convex areas of visibility; C) Visibility area for the edge a2; D) Visibility area 

for the edge a3; E) Visibility area for the edge a4; F) Visibility area for the edge a5. 

 

After calculating the visibility areas for each guard, it becomes essential to overlay 

them, allowing for the identification of the common area (see Fig. 108a). This 

composite region represents the total visibility area within which the guard can 
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maneuver without losing sight of the designated five edges (see Fig. 108b). This 

comprehensive process is repeated for every vertex, resulting in a total of 63 visibility 

areas corresponding to the 63 red-coloured vertices. Subsequently, the study of 

overlapping areas is conducted to minimise the number of positions by considering 

the coincidences among these regions (see Fig. 108c). 

 

 

Fig. 108 A) Overlapping of the five visibility areas: B) Common visibility area for the selected vertex; C) 

Overlapping of calculated visibility areas for the vertices within a section of the church’s interior. 

 

In conclusion, a total of 11 visibility areas have been identified to ensure 

comprehensive surveillance of the building interior. To execute the TLS scanning of 

the building, the instrument must be positioned in each of these 11 designated areas 

(see Fig. 109). 

 

 

Fig. 109 Optimised visibility areas. 
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To confirm the comprehensive coverage of the entire church plan by the 11 

designated areas, the UCL Depthmap software  (Turner, 2007) was employed. This 

spatial network analysis tool is specifically designed for understanding social 

processes within a built environment. It operates at various scales, from architectural 

spaces to entire regions, assessing visual accessibility by constructing ‘isovists’ – 

regions visually accessible from specific locations (Casado and Sanchez, 2018). 

By starting with the architectural space plan and fixing precise positions, the 

corresponding isovists represent the planar regions visible from those locations.  

Fig. 110 demonstrates the usefulness of this tool in previewing and verifying the 

coverage of each of the calculated areas. 

 

 

Fig. 110 Isovists generated for each of the 11 designated positions within the calculated visibility areas. 

 

Additionally, the 11 calculated isovists have been overlaid to validate the coverage of 

the entire interior space. The image below illustrates the collective coverage achieved 

by the selected positions (See Fig. 111). 
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Fig. 111 Overlapping of the 11 isovists produced in UCL Depthmap. 

 

Thus, it is inferred that these 11 positions would effectively cover the interior 

enclosure of the building. It is crucial to note that this is a theoretical approximation, 

and discrepancies may arise due to elements in height and objects not considered in 

the planimetry. 

Furthermore, this deterministic method lacks consideration for variables such as 

working distance or the angle of incidence between the face and the laser ray. While 

this tool ensures theoretical space coverage, the expertise of the professional remains 

indispensable in determining the optimal point within each visibility area 

 

ii. Planning the Exterior Survey 

While the Art Gallery Problem provides a relevant framework for the task of 

planning for scanning, it is crucial to recognise that real-world scenarios involve 

constraints and situations not considered in theoretical models (Dehbi et al., 2021). 

Therefore, the use of heuristic methods becomes essential for effectively addressing 

this problem in practical applications. These methods also enable the incorporation of 

TLS variables, such as working distance and the angle of incidence between the 
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instrument and the faces of the object. In this particular case, these variables are 

integrated into the genetic algorithm (GA). 

Concerning the GA utilised in this study for analysing the exterior area of the church, it 

integrates the concept of ‘survival of the fittest’ within sequence structures, 

employing a codified yet randomised exchange of information (Holland, 1992; 

Cabrera-Revuelta et al., 2021). 

Generally, GA commences with an initial set of potential solutions to a given problem, 

where each solution is denoted as an ‘Individual’, collectively forming the 

‘Population’, after the creation of an ‘Initial Population’. The operational environment 

for these individuals corresponds to the problem requiring resolution. Individuals will 

adapt to the environment with each successive generation. Each individual is 

assigned a code, analogous to the DNA of the individual, encapsulating all pertinent 

characteristics. These codes are associated with a value that quantifies the suitability 

of an individual as a solution to the problem, according to the ‘Fitness Value’, 

determined by the ‘Fitness Function’ (Cabrera-Revuelta, 2017).  

 

 

Fig. 112 Genetic Algorithm Workflow Diagram. 



 

208 

 

The stop criterion is defined to terminate the algorithm upon discovering an optimal 

solution. Until the stop criterion is met, the algorithm generates new pupolations 

through ‘Selection’, ‘Crossover’, and ‘Mutation’ operations (Majeed and Kumar, 

2014). A workflow diagram illustrating the functioning of a GA is presented in Fig. 

112. 

In this work, a multi-agent model programmed in the NETLOGO environment was 

employed with the aim of maximising the monitored perimeter of a polygon using the 

minimum number of viewpoints from its exterior side. The main steps of the algorithm 

are described below: 

• Draw or import the polygon to be monitored. 

• Define the exterior area where potential positions can be situated. 

• Specify the parameters of the TLS, including the working distance and angle 

of incidence. 

• Initiate visibility areas: from each point along the perimeter, a vision area is 

launched based on the TLS parameters. Leveraging the principle of reciprocity 

of vision, the visible area for a point encompasses all the points capable of 

observing the initial point. 

• Apply grayscale to the exterior area: lighter shades represent areas where a 

high number of visibility areas intersect, while darker shades indicate regions 

with fewer intersecting visibility areas. 

• Implement the genetic algorithm, encompassing the following steps: a) 

Generate the initial population; b) Evaluate the initial population using the 

Fitness Function; c) Create a new population; d) Evaluate the new population; 

e) If the stop criterion is met, the algorithm halts; otherwise, proceed to step 

c. 
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• Validate the solution: upon completion of the genetic algorithm, it is imperative 

to confirm that the set of points is sufficient for monitoring the perimeter of 

the provided polygon. 

In this algorithm, the ‘Fitness Value’ F(Ii) of an individual, denoted as Ii, is derived by 

applying the Fitness Function. This function is specifically crafted to maximise the 

monitored perimeter of the polygon, minimise the required number of positions, and 

optimise the connectivity between positions. It is defined as a weighted sum of three 

parameters: a) ‘Point of View Entropy’ (Γ), quantifying the information provided by a 

potential solution; b) Positioning Network Size (Φ), indicating the number of positions 

in a potential solution; c) Connection between Positions (Δ), measuring the 

connectivity among positions within a potential solution. 

This function is expressed in Equation [ 12 ]: 

 

F(Ii) = λ1Γ(Ii) + λ2Φ(Ii) + λ3Δ(Ii)  

[ 12 ] 

 

 

Regarding the application of this tool to the analysed case study, NETLOGO allows to 

operates by generating the plan of the building from a .DXF file imported as a .CSV 

format file. The unit of measurement and the parameters of the TLS are then 

established. The tool provides a 2D space segmented into patches, and the resolution 

of these patches can be adjusted as needed. 

Upon importing the plan, the tool autonomously identifies the perimeter of the polygon 

and defines the exterior area from which the perimeter needs to be monitored. The 

tool considers a working distance ranging from 30 to 100 meters and a minimum 

angle of incidence of 20° between the instrument and the walls to be recorded. 
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After establishing the primary parameters, the tool proceeds to analyse the entropy of 

each patch within the exterior area, reflecting the quality of a point of view in terms of 

the information it provides about the scene. This information is crucial for the Fitness 

Function, which evaluates the suitability of a potential solution to the problem. 

The GA has successfully identified a total of 8 stations on the exterior side of the 

building. Fig. 113 illustrates the evolution of populations over more than 13,400 

iterations. Notably, as the solution progressively adapts to the environment, 

increasing its Fitness Value, the number of positions oscillates until stabilising at 8. 

In Fig. 114, the positions are highlighted with red dots. It’s important to emphasise 

that this solution is theoretical, as the tool does not account for certain variables like 

the height of the building, environmental limitations, or the presence of obstacles. 

 

 

Fig. 113 Evolution of the Genetic Algorithm, depicting the rise in Fitness value in relation to the number 

of positions acquired. 
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Fig. 114 Localisation of the 8 TLS positions (marked with red dots) identified through the Genetic 

Algorithm within the NETLOGO environment. 

 

 

iii. Data Acquisition 

Drawing upon optimisation methods for planning the church survey, a total of 

19 TLS station locations are identified for effective data acquisition, with 11 

positioned indoors and 8 outdoors. To ensure a satisfactory Level Of Completeness 

(LOC) and mitigate potential uncertainties that the Genetic Algorithm (GA) may not 

fully address, 7 additional strategically chosen stations were incorporated based on 

the operator’s expertise. 

These supplementary positions were thoughtfully selected to ensure connectivity 

between stations that might be mutually invisible. The overall execution involved 26 

laser stationing positions, distributed as 14 for the exterior and 12 for the interior. 

In Fig. 115, the positions of the TLS are depicted, with the predicted ones marked in 

green and the additional ones in yellow. It’s noteworthy that the position of some of 
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the 19 initially calculated points has slightly adjusted, accounting for obstacles and 

ensuring connectivity between the interior and exterior areas. 

 

 

Fig. 115 Location of the 19 initially calculated stations (marked in green) and the 7 complementary 

ones (highlighted in yellow). 

 

Point clouds were gathered both inside and outside the church using the 

CAM2®FARO Focus 3D 120 laser scanner. Outdoor scans, conducted within a 20-

meter range, have a resolution of 28.2 Mpts and an acquisition resolution of 7.670 

mm/10 m, lasting up to 6 minutes and 38 seconds. Indoor scans, executed at a 10-

meter radius, possess an acquisition resolution of 12.272 mm/10 m and a resolution 

of 11 Mpts, with a scan time of 2 minutes and 57 seconds. 

Depending on ambient light conditions, horizon-weighted metering near openings and 

balanced metering outside were employed to determine scanning exposure. An 

automatic sky filter was activated to remove points with very low reflectance values, 

streamlining subsequent processing. 

For interior scans, only the inclinometer sensor was used to simplify and compensate 

for instrumental balance. 
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During external area acquisition, inclinometer, magnetometer sensors, GPS signals 

and also photogrammetry were utilised for metadata acquisition, aiding in subsequent 

processing and alignment (Fig. 116). 

 

 

Fig. 116 Survey planning with LiDAR, UAV, and GPS equipment. 

 

The photogrammetric survey was specifically conducted using a DJI Spark drone 

equipped with a 12 MPx camera, capturing a total of 240 shots. The flight plan 

involved a single-grid nadiral flight at a 45° angle in a circular path, and a 30° angle 

along the perimeter of the building. For georeferencing purposes, a topographic 

survey was performed utilising a Tersus Oscar GNSS receiver, measuring 24 ground 

control points (GCPs). Some of these points were positioned at targets associated 

with geographic coordinates in the WGS84 geodetic reference system (EPSG:4326), 

expressed in decimal degrees (latitude, longitude), with the addition of ellipsoidal 

height. 
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In this specific istance, the area, enclosed by a perimeter fence, proved to be 

sufficiently confined and secure for all laser survey and drone overflight operations. 

Safety and assessment procedures in compliance with Regulation (EU) No. 947/2019 

and subsequent amendments were adhered to during these activities. This included 

searching for any Notice To AirMen (NOTAM) communications and consulting 

thematic geographic maps (see Fig. 117). 

 

 

Fig. 117 Airspace map highlighting flight limitations. 

 

4.5.3     Results 

The LiDAR data processing was conducted using Autodesk Recap Pro® software. 

This involved the automated initial registration followed by a manual registration of 

aligned scan pairs through three homologous points. 

The registration process was executed twice: initially, considering all 26 scans 

(R_26S), and subsequently focusing solely on the optimised subset of 19 scans 

(R_19S). Following this, an analysis was conducted to assess the feasibility of 

registration for both sets, taking into account processing time, file size, and the quality 

of registrations. 
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i. Results of the TLS Data Registration 

The key outcomes for both scenarios (R_26S and R_19S) are presented 

inTab. 10. The optimised approach (R_19S) achieves a comprehensive registration of 

the geometry, leading to a 31% reduction in processing time and a 32% reduction in 

file size. The R_26S point cloud comprises 144 million points, while the R_19S point 

cloud comprises 119 million points. This indicates that the optimised process results 

in a 21% reduction in points. 

 

Tab. 10 Results of point cloud Registration using two Planning Methods (R_19S - Optimised Method; 

R_26S - Addition of station points). 

 R_26S R_19S 

Auto-registered groups 05 04 

File .E57 weight (GB) 10.9 07.4 

Number of points (millions) 144 119 

Importation time (min) 84 55 

Auto-registration time (min) 04 04 

Index scan time (min) 18 15 

Exportation time .E57 (min) 08 06 

Total Process time (min) 127 88 

 

Fig. 118 depicts the complete registrations of the perimeter for both projects. 

Following the importation and registration of the scans, the alignment quality is 

described based on a report generated by the software, considering three parameters 

explained below. Firstly, the ‘Overlap’ (O) represents the percentage of common 

features across the entire project. Secondly, the ‘Balance’ (B) indicates the 

percentage of common features within the scan. Thirdly, the parameter ‘Points (<6 

mm)’ (P) signifies the percentage of overlapping points within 6 mm of the 
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corresponding feature in the project, aiming for a value higher than 90%. The data 

obtained for both registrations are presented in Tab. 11. 

 

 

Fig. 118 Display of registered station points in Autodsk Recap: A) R_26 group; B) R_19 group. 

 

Tab. 11 Results of point cloud Alignment using two Planning Methods (R_26S and R_19S). 

 R_26S R_19S 

Station O (%) B (%) P (%) O (%) B (%) P (%) 

1 35.1 50.3 99.3 24.5 57.9 99.3 

2 43.4 60.3 99.9 37.0 58.5 99.9 

3 46.6 80.4 99.8 39.0 82.9 100 

4 51.7 76.4 100 51.7 73.0 100 

5 50.7 80.3 100 41.4 57.3 99.9 

6 49.1 79.1 99.8 45.6 79.5 100 

7 48.0 92.2 99.9 48.0 91.9 99.9 

8 48.9 75.3 100 46.0 52.3 100 

9 48.4 57.5 100 45.2 61.9 100 

10 55.0 67.5 100 50.8 67.9 100 

11 48.6 51.6 100 46.0 52.3 100 

12 73.7 40.6 99.5 46.4 63.9 100 

13 49.5 76.5 98.0 40.7 73.0 97.9 

14 32.3 2.0 98.8 21.3 0.0 98.3 

15 27.2 8.0 99.9 4.7 5.9 100 
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16 25.9 8.2 99.9 10.4 5.6 100 

17 48.0 5.5 99.8 34.4 5.8 99.7 

18 45.0 6.1 99.9 44.7 6.0 99.9 

19 48.8 33.2 99.6 41.1 37.3 99.5 

20 48.3 75.1 97.8    

21 65.7 24.2 99.2    

22 49.5 76.5 98.0    

23 35.9 31.1 99.5    

24 21.5 6.7 99.8    

25 46.6 34.5 99.9    

26 18.0 60.4 100    

 

 

The resulting point clouds from both sets were imported into the CloudCompare 

software (Girardeau-Montaut, 2020) to analyse geometric deviations between them. 

The Cloud-to-Cloud Distance comparison (C2C) algorithm was employed to measure 

the disparity between the clouds. This tool calculates distances between two clouds 

by designating one as the reference and the other as the compared cloud. It measures 

the distance from a point in the compared cloud to the nearest point in the reference 

cloud, displaying the results on a scalar field’s colour scale. 

This method revealed negligible differences between the clouds, indicating similar 

quality with no significant losses from omitting complementary positions. Out of 

143,951,541 points, 92% found corresponding points in the other cloud within a 

distance less than 5 mm. 

Fig. 119a illustrates that 8% of points from R_26S do not find corresponding points in 

R_19S within 5 mm. Fig. 119b shows their superimposition, revealing effective 

coverage by the optimised process, attributing deviations to point cloud registration 

rather than data absence. 

Additionally, Fig. 120 presents a histogram displaying the frequency of distances 

between points, with a notable concentration around 2 mm and a mean value of 2.98 

mm. 
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Fig. 119 A) 8% of points from R_26S without any corresponding points in R_19S within a distance 

less than 5 mm; B) Overlay of R_19S with this 8% of points. 

 

 

 

Fig. 120 Cloud-to-Cloud Distance Comparison between the two group of point clouds (R_19S and 

R_26S). 
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ii. Results of the Data Integration 

Subsequently, utilising Agisoft Metashape Pro®, the photogrammetric data 

mentioned earlier underwent subsequent processing to scale and georeference the 

model within the WGS84 geodetic system (EPSG:4326) (Verdoscia et al., 2023).  

This was achieved by placing markers in accordance with points measured using the 

GPS receiver. The accuracy of the entire model’s points averaged at 0.03 m, 

considering some Ground Control Points (GCPs) converted into Quality Control Points 

(QCPs). 

 

 

Fig. 121 Georeferenced and integrated point cloud of the church. 

 

Through targetless registration using three homologous points, the photogrammetric 

point cloud was later integrated with LiDAR data using Autodesk Recap Pro® 

software.  
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To position the church in EPSG:32633 – WGS 84/UTM zone 33N, geographic 

coordinates from GPS data were transformed into UTM projected coordinates. 

Georeferencing of the range/image-based data using GCPs as reference points was 

performed with the CloudCompare software.  Fig. 121 displays the integrated and 

georeferenced point cloud. 

 

4.5.4     Export and BIM Authoring Processes 

Decimation, filtering, and point cloud segmentation procedures were 

implemented to optimise the entire processed data in one of the final processing 

stages. 

To this purpose, utilising multi-RANSAC type algorithms in the Python language, 

automatic segmentation operations were conducted on the point cloud to recognise 

flat and curving walls, floors, and vaulted structures as references for adaptive 

parametric families used in model development (Fig. 122). 

For flat elements, specific variables considered included the value of the maximum 

distance (distance threshold) between inliers and the ideal shape, the number of 

points sampled (ransac_n), and the number of iterations (num_iterations). Spherical 

ideal geometries (center and radius parameters) and cylindrical rotation surfaces 

(center, radius, and rotation axis np.array (1,3)) were employed for outliers found on 

vaulted structures and curving walls. 

Subsequently, the segmented point clouds were imported into Autodesk Revit® 

modelling software for better management and visualisation, enhancing 

computational speed during the processing phase. System and in-place families were 

predominantly used for architectural and structural components. Customised loadable 

families (.rfa) were created using adaptable components, joined via splines or 

reference lines to define and fit the geometry of the vaulted structure to the point 

cloud, especially for reconstructing masonry vaults. 
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Fig. 122 Scan to BIM approach adopted: A) Multi-RANSAC automatic segmentation; B) Segmentation 

of the Vaulted Structures and Construction of the adaptive families; C) Integration of semantic 

segmentation in BIM Environment; D) Final BIM Authoring Model.  

 

4.5.5     Closing Statements 

While it is essential to begin digital data acquisition with a well-planned approach that 

incorporates the judgment and experience of the professional for on-site decisions, 

the presented work demonstrates promising results derived from the executed 

optimisation techniques. 

The achievement of the Level of Completeness, obtained through a deterministic 

approach and particularly facilitated by triangulations, enabling visibility zones within 

the studied church, was further complemented by a meta-heuristic approach using 

the genetic algorithm to identify optimised survey points. 
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In particular, the shortcomings of the first method, such as the non-consideration of 

variables like the operational range of the laser scanner and the angle of incidence 

between the instrument and the surveyed object, were addressed by the second 

method. However, in the latter case, although the Fitness Function was designed to 

reward solutions minimising the number of positions and maximising the monitored 

perimeter, constraints such as obstacles around the building were not taken into 

account. 

This work focused solely on the building’s floor plan as input, neglecting height and 

treating the building as a two-dimensional element. Nevertheless, the registration of 

the entire geometry, consistent in height and covered by domes and vaults, was 

successfully achieved with an acceptable loss of information as the distance between 

the TLS scanner and the walls increased. 

Given the diverse possibilities in the distribution, geometry, and external factors of 

buildings, it cannot be presumed that this method is universally applicable. However, 

it can be a valuable support during the survey planning phase, and it may be essential 

to develop a method capable of simultaneously considering both the exterior and 

interior of a building. 

The enhancing of operational work timelines and processing/post-production 

methods allowed for the simultaneous fulfillment of the informational-geometric 

quality requirements of the survey and the pre-assigned safety standards, avoiding 

the recording of unnecessary information that typically causes delays during project 

execution. 

Data integration, georeferencing, and automatic point cloud segmentation are 

additional operational aspects that achieved accurate geometric parameters of the 

building, providing valuable support for the creation of the as-built parametric model. 

Nevertheless, limitations and challenges were encountered, primarily due to the lack 

of comprehensive software for model management, involving data conversion, 

import, and export, which can significantly impact project efficiency. 
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4.6 Point Cloud Semantic Segmentation and Classification with                

Random Forest Machine Learning Algorithm 

The integration of automated point cloud segmentation and classification 

through various learning techniques signifies a noteworthy advancement in the 

current landscape of Artificial Intelligence (AI) and Heritage Building Information 

Modelling (HBIM) applications. These sophisticated methodologies introduce 

innovative approaches for the in-depth analysis of 3D data, particularly within the 

fields of architecture and engineering. 

AI, specifically machine learning and deep learning, has transformed the handling and 

interpretation of extensive datasets. In the realm of point clouds, automatic 

segmentation identifies and segregates distinct components within a three-

dimensional environment, including architectural elements and objects. This process 

is essential for enhancing the comprehensibility and usability of information collected 

from technologies like laser scanning and photogrammetry. 

The integration of these techniques with HBIM (Bassir et al., 2023) adds a layer of 

intelligence and contextualisation to geometric data. The automatic classification of 

point clouds enables the automatic assignment of semantic labels to different parts of 

the building (Grilli and Remondino, 2020; Croce, Caroti, De Luca, et al., 2021), 

contributing to the development of more comprehensive and practical BIM models. 

Such a combination includes expediting and refining the modelling of existing 

buildings, facilitating a detailed assessment of structural conditions, and streamlining 

information management throughout the lifecycle of the structure. 

This sets the stage for the work outlined below. The focus is on semantically 

segmenting the architectural elements of a renowned palace in Zaragoza, Spain. The 

objective is to classify the point cloud and break it down into its distinct components, 

laying the groundwork for expediting future processes in HBIM. 

In this context, AI plays a crucial role through a machine learning algorithm developed 

in the Python environment. The algorithm undergoes testing on various combinations 

of geometric features that characterise the point cloud. 
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In this regard, the outcomes will be examined through analytical and visual 

comparisons, specifically focusing on the two floors within the inner courtyard of the 

building. 

 

4.6.1     The Palace of the Counts of Sástago in Zaragoza (Spain) 

The Palace of the Counts of Sástago in 16th-century Zaragoza, a symbol of 

the formidable influence of the III Count of Sástago, Don Artal de Alagón y Luna, has 

played a pivotal role in history. From hosting monarchs and serving as military 

headquarters to enduring the Siege of Zaragoza, the palace has a rich legacy. 

Damaged during the burning of the nearby convent of San Francisco, it has been 

repurposed over the years, housing the Captaincy General of Aragon and functioning 

as police headquarters. 

Noteworthy for its eclecticist and neo-baroque charm, the palace features the 

renowned ‘Casa Zorraquino’ on the ground floor. Its brick façade reflects architectural 

norms shaped by the scarcity of stone in the region. The palace’s interior boasts a 

grand Renaissance courtyard, entrance hall, noble stairs, and distinguished rooms, 

including the Throne Room. Despite limited public access, the palace houses a 

modernist library and hosts exhibitions, showcasing works by artists like Picasso, 

Dalí, and Manuel Viola, transforming it into a vibrant cultural hub within its historic 

walls. 

Specifically, the architectural space of the inner courtyard (Fig. 123) is characterised 

by an elegant fusion of classical elements and typical Renaissance ornamental 

details. It features a symmetrical design with partially grooved columns and arches 

surrounding the central area. The columns, often adorned with sculpted motifs and 

floral details, support regular arches, creating a harmonious and refined atmosphere. 

The courtyard facades may showcase decorative elements such as friezes, finely 

sculpted ionic capitals, and ornamental windows.  
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The judicious use of materials such as stone adds a timeless elegance to the 

courtyard evoking a sense of history and beauty. 

 

 

Fig. 123 Inner courtyard of the Palace of the Counts of Sástago in Zaragoza, Spain. 
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4.6.2     Methodology 

The adopted approach (Fig. 124) aims to automatically recognise recurring 

architectural elements in the point cloud, particularly pertaining to the inner courtyard 

of the building. These elements are then classified and cataloged within a Scan to BIM 

context, streamlining future modelling operations and optimising efficiency. 

 

 

Fig. 124 Methodology Workflow. 

 

Specifically, starting from a raw portion of point cloud data acquired through laser 

instrumentation, a processing procedure was applied.  
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This involved identifying the most relevant geometric features, which, combined with 

manual annotations, were used to train a Random Forest machine learning algorithm. 

The goal was to enable the algorithm to automatically classify the remaining point 

cloud. 

The study area was divided into two subsets of data corresponding to the ground 

floor and the first floor. This division was based on different architectural components 

for each floor, aiming to facilitate the training process and prevent redundancy in error 

calculations. 

 

i. 3D Architectural Survey 

The survey was conducted using the CAM2® FARO Focus M 70 laser 

scanner, with a Field of View of 300° vertical / 360° horizontal, a Ranging Error of ± 

3 mm, and an Unambiguity Interval of 614m for up to 0.5 million points per second. 

A total of 32 indoor scans were performed, comprising 21 scans on the ground floor 

and 11 on the first floor. The scans were carried out at a radius of 10 meters, 

featuring a Resolution of 11 million points, a Net Scan Duration of 5 minutes and 11 

seconds, and a Scan Size of 5156*2134 points. 

The point cloud was registered using Autodesk Recap software through an automated 

and manual registration process, the latter involving the identification of three 

corresponding points for pairs of scans.  

The initial registration of 6 mm was subsequently refined. First, by employing a noise 

reduction process through the Statistical Outlier Removal (SOR) within the 

CloudCompare software, and then through subsampling at 2 cm intervals for better 

computational file weight management. 

As a result, the entire dataset, spanning an area of approximately 12.20 m x 8.90 m, 

was divided into two groups: one related to the ground floor of the inner courtyard 
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and the other to the first floor (Fig. 125). Subsequent processing steps were then 

carried out concurrently for each floor.  

Specifically, a portion of points was cropped for the Training phase, another for the 

Model Evaluation phase, and the remaining dataset for each floor was considered as 

the Test set for the final Classification. 

 

 

 

Fig. 125 Subdivision of the entire point cloud into two groups: Ground Floor and First Floor. 
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 Tab. 12 provides a more detailed overview of the dataset. 

 

Tab. 12 Full Dataset specification. 

 N° points Point spacing 

Point cloud_Ground Floor 5,323,756 6 mm 

Subsampled point cloud 427,068 2 cm 

Training 53,713 2 cm 

Evaluation 54,432 2 cm 

Test 318,923 2 cm 

Point cloud_First Floor 4,579,345 6 mm 

Subsampled point cloud 440,695 2 cm 

Training 56,032 2 cm 

Evaluation 54,914 2 cm 

Test 329,749 2 cm 

 

 

ii. Semantic Segmentation and Classification via Machine Learning 

The subsampled and optimised point cloud for each floor serves as input for 

the semantic segmentation work with Machine Learning. To achieve this, various 

phases are carried out, as mentioned in the previous workflow and outlined below: 

• Neighbourhood Selection; 

• Geometric Features Extraction; 

• Manual Annotation on Training and Evaluation Sets; 

• Geometric Features Selection using MDI (RF); 

• Normals and Feature Height Calculation; 
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• Features Combinations; 

• RF Classification on Test Set and Performance Evaluation; 

• Annotated Point Cloud 

 

Neighbourhood Selection 

In detail, on the two subsets of point clouds, using CloudCompare software, a 

series of covariance features were extracted, mainly chosen on the basis of different 

local neighbourhood radii.  

The ‘Local Neighborhood Radius’ refers to the extent of the surrounding area around 

each point in the point cloud that is taken into consideration during the extraction of 

geometric features (Weinmann, Jutzi and Mallet, 2013). This parameter establishes 

the maximum distance within which other nearby points are factored in when 

computing the geometric attributes of the central point.  

The fundamental concept is that the geometric characteristics of a point in a point 

cloud are notably influenced by the neighboring points. By precisely adjusting the 

radius of the local neighborhood, one gains control over the spatial scope considered 

during the analysis of features associated with each point. 

Hence, an approximately constant radius step, ranging from 10 to 20 cm, was 

established, covering the smallest element to be analysed up to values approaching 

one meter for larger architectural elements. 

 

Geometric Features Extraction 

‘Covariance features’ represent geometric characteristics extracted from the 

covariance matrix of a set of points in three-dimensional space, often referred to as 

the 3D structure tensor (Chehata, Guo and Mallet, 2009; Dahl, 2019; Rodríguez-

Gonzálvez and Rodríguez-Martín, 2019). This structure tensor is computed based on 

the spatial information of points within a specific local neighborhood.  
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This computation enables the capture of geometric relationships among points, 

offering insights into the distribution and shape of the point cloud. Specifically, 

Covariance features are derived from the eigenvalues of the covariance matrix, 

providing meaningful information about the local geometry of the points. 

From the Matrix of Points (A) [ 13 ], the Covariance Matrix (Cov) [ 14 ] for each of the 

n points in a point cloud with coordinates of x, y, z – where xm, ym, zm are the centroid 

coordinates – is acquired. This covariance matrix reflects variance values along its 

principal diagonal. Using a statistical analysis known as ‘Principal Component 

Analysis’ (PCA), after applying the diagonalisation process to the covariance matrix, 

the eigenvectors (e1, e2, e3) are obtained. This allows us to measure the local point 

variation set along the direction of the corresponding eigenvectors and reveals three 

eigenvalues (λ1, λ2, λ3) that help us understand the local geometry of the point 

cloud. 

 

A=  

x1-xm y
1
-y

m
z1-zm

⋮ ⋮ ⋮
xn-xm y

n
-y

m
zn-zm

   

[ 13 ] 
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n
 A

t
A  

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

   

[ 14 ] 

 

The eigenvalues, which are sorted in descending order as λ1 ≥ λ2 ≥ λ3, correspond 

to the major components of the spatial distribution of the points. The following 3D 

properties, which fall within the category of dimensional features are computed using 

these eigenvalues: Linearity [ 15 ], Planarity [ 16 ], and Sphericity [ 17 ]. 
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These eigenvalues also serve as the basis for other measurements, including 

Omnivariance [ 18 ], Anisotropy [ 19 ], Eigenentropy [ 20 ], Sum of Eigenvalues [ 21 

], and Surface Variation [ 22 ], which is also referred to as the Change of Curvature. 

Additional features that can be extracted are Verticality [ 23 ], which is regarded as a 

‘Normal-based feature’, and Height [ 24 ], which is considered as a ‘Height-based 

feature’.  

The kinds of features that can be extracted using the corresponding equations are 

listed in Tab. 13. 

 

Tab. 13 Geometric Features specification. 

Feature Typology Name Equation 

Covariance 

Linearity 

 

Lλ =
λ1 − λ2
λ1

  

[ 15 ] 

Planarity 

 

Pλ =
λ2 − λ3
λ1

  

[ 16 ] 

Sphericity 

 

Sλ =
λ3
λ1

  

[ 17 ] 

Omnivariance Oλ =  λ1λ2λ3
3

  

[ 18 ] 

Anisotropy 

Aλ =
λ1 − λ3
λ1

  

[ 19 ] 
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Eigenentropy 

Eλ = − λiln(λi)

3

i=1

  

[ 20 ] 

Sum of Eigenvalues 

Σλ = λi

3

i=1

  

[ 21 ] 

Surface Variation 

Cλ =
λ3
Σλ

  

[ 22 ] 

Normal-based Verticality Vλ= 1- |([0 0 1], e3)|  

[ 23 ] 

Height-based Height Z Coordinate 

[ 24 ] 

 

These features capture various aspects of the local geometry, allowing for a detailed 

analysis of the 3D point cloud. Adjusting the values of these features based on the 

radius influences the scale at which these geometric characteristics are evaluated 

within the point cloud. 

In detail: 

• Linearity: This feature measures how well the points in a local neighborhood 

align along a straight line. A higher value indicates a more linear arrangement, 

which could correspond to elongated structures or features in the point cloud. 

• Planarity: It assesses the extent to which points lie on a plane. A higher value 

implies a more planar arrangement, indicating surfaces or areas with relatively 

flat geometry. 
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• Sphericity: It characterises how well points are distributed in a spherical 

manner. Higher sphericity suggests a more rounded or isotropic distribution, 

which could be relevant for spherical structures. 

• Omnivariance: It represents the overall variance of the point distribution. It 

provides a comprehensive measure of the variability in different directions 

within the local neighborhood. 

• Anisotropy: It measures the directional variability of the point distribution. A 

higher anisotropy value indicates a greater difference in spread along different 

directions, highlighting directional patterns in the point cloud. 

• Eigenentropy: It measures the entropy or disorder based on the eigenvalues of 

the covariance matrix. Higher eigenentropy values indicate greater complexity 

and randomness in the point distribution. 

• Sum of Eigenvalues: The sum of eigenvalues reflects the total variance within 

the local neighborhood. It gives an overall measure of how spread out the 

points are in the space. 

• Surface Variation: Also kwons as Change of Curvature, it represents how 

much the surface curvature changes within the local neighborhood. Higher 

values suggest areas with more significant changes in surface shape. 

• Verticality: It is a normal-based feature that characterises how vertical the 

local point distribution is. Higher values indicate a more vertical alignment of 

points, which could be relevant for identifying vertical structures. 

• Height: It is a height-based feature that provides information about the overall 

height of the local point cloud. It could be useful for identifying elevated or 

depressed regions within the point cloud. 

The graphics (Fig. 126 and Fig. 127) display examples of ‘ad hoc’ features, examples 

of features that will be further discussed in relation to ‘ad hoc’ features – named for 

their relation to the geometric dimensions (radius and diameter) of architectural 

elements. 
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Fig. 126 Example of geometric features used for the training phase relating to the Ground Floor point 

cloud: A) Normals; B) Anisotropy; C) Planarity; D) Linearity; E) Surface Variation; F) Sphericity; G) 

Verticality; H) Z Coordinate. 
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Fig. 127 Example of geometric features used for the training phase relating to the First Floor point 

cloud: A) Normals; B) Anisotropy; C) Planarity; D) Linearity; E) Surface Variation; F) Sphericity; G) 

Verticality; H) Z Coordinate. 
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In addition to these features, considering the calculation of Normals can be 

advantageous in the classification of complex scenes.  

Normals in a point cloud consist of vectors perpendicular to the surface at each point, 

providing crucial insights into surface orientation. The normal can be described by a 

three-dimensional vector (Nx, Ny, Nz), where Nx is the component along the x-axis, Ny 

along the y-axis, and Nz along the z-axis. At this point, the decision was made to 

extract only the normal-based feature and the covariance features. After the 

previously mentioned best attributes are automatically selected by machine learning 

based on their value of relevance, the normals and height will be calculated. This will 

be used to test various feature combinations that could be used by the algorithm to 

automatically partition the test set. 

 

Manual Annotation on Training and Evaluation Sets  

To construct a Training and Evaluation set suitable for recognising 

architectural elements in the remaining portion of the point cloud, treated as the Test 

set, manual segmentation of point clouds for the ground floor and first floor was 

conducted. These training data, identified as classes, can be combined with selected 

geometric features, point coordinates, normals, and color properties (e.g., RGB 

scale). The point cloud was semantically segmented based on the classification of 

architectural elements according to the ontological taxonomy of the Art & Architecture 

Thesaurus© (AAT) by the Getty Research Institute (Getty, 2021), aligning with 

Information Standards in Practice (ISO and NISO) for thesaurus construction and, in 

this case, with classical architecture rules. 

For the ground floor, the segmentation, from bottom to top, is as follows: Pavement, 

Base, Lower Shaft, Ring, Upper Shaft, Capital, Corbel, Architrave, Frieze, Cornice (Fig. 

128) 

For the first floor, on the other hand, it includes: Parapet, Base, Lower Shaft, Ring, 

Upper Shaft, Capital, Arch, Stringcourse, Cornice, Corner Column. Thus, each floor’s 

ten classes were manually divided (Fig. 129). 
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Fig. 128 Manual annotation on Training and Evaluation sets for the Ground Floor (on the top); Test 

set employed to use Machine Learning for automatic class identification (on the bottom). 
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Fig. 129 Manual annotation on Training and Evaluation sets for the First Floor (on the top); Test set 

employed to use Machine Learning for automatic class identification (on the bottom). 
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Geometric Features Selection using MDI (RF) 

To select the most relevant geometric features for training stage, a preliminary 

multiscale analysis of feature importance was conducted using the Random Forest 

machine learning algorithm in a Python environment (PyCharm). Initially, 63 features 

were originally extracted for the ground floor and 72 features for the first floor. 

In detail, it was employed the ‘Mean Decrease in Impurity’ (MDI), that is a commonly 

used metric for feature importance in Random Forests (Scornet, 2021; Agarwal et al., 

2023). This metric assesses how each feature contributes to reducing impurity in the 

nodes of the forest’s trees during the training process. A feature that effectively 

divides the data, leading to a significant reduction in impurity, is considered more 

important. 

To obtain the feature importance ranking, several steps were executed: 

• Data Preparation: The data was structured with features (independent 

variables) and class labels (dependent variable); The dataset was split into a 

training set and a test set. 

• Random Forest Training: The scikit-learn library in Python was utilised to train 

the Random Forest model on the point cloud; During training, the model 

automatically calculates the importance of features. 

• Extraction of Feature Importance: Post-training, the feature importance is 

obtained from the model. In this implementation, this was achieved using the 

feature_importances attribute. 

• Creation of a Ranking: Features were organised to provide a visually intuitive 

understanding of their importance. The ranked features are depicted in Fig. 

130 and Fig. 131, based on the local neighborhood radius on the x-axis and 

the normalised feature importance scores. 
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Fig. 130 Feature Importance Ranking for the Ground Floor obtained through Random Forest MDI 

Analysis. 
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Fig. 131 Feature Importance Ranking for the First Floor obtained through Random Forest MDI Analysis. 
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At this stage, in an effort to optimise training time and assess the overall performance 

of the predictive model, the 15 most impactful features were carefully identified for 

the 63 features on the ground floor and the 72 features on the first floor, respectively.  

Subsequently, employing an iterative process with the same methodology, an 

additional set of 6 features was selected to observe their impact on the model’s 

behavior as the total number of features progressively decreased, aiming to mitigate 

overfitting errors. 

 

Tab. 14 Feature Importance Scores of the 15 features for the Ground Floor and the First Floor. 

Ground Floor First Floor 

Feature (radius) Score Feature (radius) Score 

Verticality (0.8) 0.05674217 Verticality (1) 0.07552335 

Verticality (1) 0.0516716 Surface Var. (0.6) 0.0438021 

Verticality (0.3) 0.03921137 Anisotropy (0.6) 0.04372397 

Eigenentropy (1) 0.03920605 Sphericity (0.6) 0.04066766 

Verticality (0.4) 0.03728326 Verticality (0.8) 0.03792759 

Linearity (0.8) 0.03241092 Planarity (1) 0.03345083 

Verticality (0.2) 0.03235743 Surface Var. (0.8) 0.03309696 

Omnivariance (1) 0.02869746 Surface Var. (0.4) 0.03010814 

Surface Var. (0.8) 0.02767854 Linearity (1) 0.02567088 
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Verticality (0.6) 0.02750381 Verticality (0.6) 0.02564896 

Anisotropy (0.8) 0.02535267 Anisotropy (0.8) 0.02492746 

Linearity (1) 0.02473062 Sphericity (0.4) 0.0232871 

Verticality (0.1) 0.02466849 Sphericity (0.8) 0.02164398 

Sphericity (0.8) 0.02439382 Sphericity (0.3) 0.02137714 

Surface Var. (0.4) 0.02417008 Planarity (0.8) 0.02003774 

 

As shown in Tab. 14, in both floors, Verticality proves to be a significant feature, with 

‘Verticality (1)’ playing a substantial role, especially on the first floor. Surface 

Variation and Anisotropy also hold importance on the first floor. Meanwhile, on the 

ground floor, additional features such as Omnivariance and Eigenentropy come to the 

forefront. 

 

Tab. 15 Feature Importance Scores of the 6 features for the Ground Floor and the First Floor. 

Ground Floor First Floor 

Feature (radius) Score Feature (radius) Score 

Eigenentropy (1) 0.20324868 Verticality (1) 0.23757974 

Verticality (0.8) 0.19481669 Planarity (1) 0.22981696 

Verticality (1) 0.19275127 Surface Variation (0.6) 0.16260546 
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Linearity (0.8) 0.18289954 Verticality (0.8) 0.1468888 

Verticality (0.4) 0.12677354 Sphericity (0.6) 0.11651344 

Verticality (0.3) 0.09951028 Anisotropy (0.6) 0.10659559 

 

In Tab. 15, it can be observed that in both floors, Verticality emerges as a significant 

feature, but other specific attributes also contribute significantly to the overall score, 

providing a distinctive profile for each floor. 

Subsequently, a tailored selection of 6 ‘ad hoc’ features was employed for each floor 

(as seen in Fig. 128 and Fig. 129Fig. 127), chosen based on their visual representation 

of individual architectural elements, closely aligning with manually labelled classes.  

Specifically, for the ground floor, features such as Anisotropy, Planarity, Linearity, and 

Sphericity were meticulously chosen, each with a radius of 0.4 meters, mirroring the 

diameter of the column. Additionally, Surface Variation was selected with a radius of 

0.2 meters, matching the column’s radius, and Verticality with a radius of 0.1 meters, 

constituting half of the column’s radius. 

Regarding the first floor, the features chosen by the operator included Anisotropy, 

Planarity, Linearity, and Sphericity, each with a radius of 0.2 meters, corresponding to 

the column’s diameter. Furthermore, Surface Variation was selected with a radius of 

0.1 meters, equal to the column’s radius, and Verticality with a radius of 0.04 meters, 

half of the column’s radius. 

On both floors, intentional exclusions were made, eliminating features like 

Omnivariance, Eigenentropy, and Sum of Eigenvalues. These features seemed, at 

least visually, to yield results that did not align with the expected outcomes, unlike the 

MDI method. 
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Normals and Feature Height Calculation 

The integration of parameters such as Normals and Feature Height (Z 

Coordinate) alongside other geometric features can be considered advantageous for 

the segmentation and classification of point clouds. These additional pieces of 

information enrich the description of surface characteristics and enhance the model’s 

ability to discriminate between different entities. 

As previously mentioned, Normals represent the direction perpendicular to the surface 

at each point, providing valuable insights into the orientation of surfaces throughout 

the point cloud. This feature is crucial for understanding the detailed geometry of the 

surface and facilitates the segmentation of elements such as walls, floors, inclined 

structures, or other patterns that might be challenging to identify using spatial 

coordinates alone. 

Simultaneously, the use of the Z coordinate proves equally valuable for exploring the 

three-dimensional structure of the environment. In particular, it enables the 

identification of variations in the arrangement of vertical spaces, providing a clear 

understanding of the overall building structure. This aspect is particularly useful for 

identifying significant details, such as the height difference between floors, balconies, 

or other elevated architectural features, contributing to a more accurate and detailed 

segmentation. 

For these reasons, a decision was made to integrate these two parameters and 

assess their efficacy in both the training and classification processes. 

 

Features Combinations 

For each iteration with different features (63 - 15 - 6 - 6 specifically tailored 

for the ground floor and 72 - 15 - 6 - 6 specifically tailored for the first floor), three 

distinct combinations were executed, resulting in a total of 12 combinations per floor, 

as outlined below. 
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Ground Floor: 

• 63 features; 63 features + Z Coordinate; 63 features + Z Coordinate + 

Normals 

• 15 features; 15 features + Z Coordinate; 15 features + Z Coordinate + 

Normals 

• 6 features; 6 features + Z Coordinate; 6 features + Z Coordinate + Normals 

• 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z Coordinate; 6 ‘ad hoc’ features + 

Z Coordinate + Normals 

 

First Floor: 

• 72 features; 72 features + Z Coordinate; 72 features + Z Coordinate + 

Normals 

• 15 features; 15 features + Z Coordinate; 15 features + Z Coordinate + 

Normals 

• 6 features; 6 features + Z Coordinate; 6 features + Z Coordinate + Normals 

• 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z Coordinate; 6 ‘ad hoc’ features + 

Z Coordinate + Normals 

 

The 12 combinations were tested with the Random Forest algorithm and were 

compared in terms of weighted F1-score and according to model training time. 

Specifically The weighted F1-score is a performance evaluation metric for a 

classification model that takes into account differences in the number of samples 

belonging to different classes, particularly useful when classes are imbalanced. The 

formula to calculate the weighted F1-score is as follows [ 25 ]: 
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F1weighted=

 wi*F1ii

 wii

  

[ 25 ] 

 

Where:  

 

F1i = F1-score for class i 

wi = weight associated with class i 

 

The summation is performed over all the classes. The F1-score for a single class is 

calculated using the standard F1-score formula [ 26 ]: 

 

F1i=

2 Precisioni*Recalli

Precisioni+Recalli
  

[ 26 ] 

 

Where:  

 

Precisioni = precision for class i 

Recalli = recall for class i 

 

The weights  wi  are calculated as the proportion of the number of samples in class i 

relative to the total number of samples.  

Below, in Fig. 132 and Fig. 133, Tab. 16 and Tab. 17 the results of different 

combinations are displayed. 
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Fig. 132 Featuree Combinations for the Ground Floor compared by weighted F1 score and training 

time. 
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Tab. 16 Specification of Feautures Combinations for the Ground Floor. 

Feature combinations n-estimators Training time 

(sec) 

Weighted F1-score 

63 features 200 40.9824 0.9736 

63 features + z coord. 100 44.2787 0.9606 

63 features + z coord. + normals 100 43.9770 0.9598 

15 features 200 19.1061 0.9710 

15 features + z coord. 200 22.3032 0.9373 

15 features + z coord. + normals 50 22.7215 0.9439 

6 features 200 15.9416 0.9296 

6 features + z coord. 50 13.9675 0.9148 

6 features + z coord. + normals 150 16.6206 0.9170 

6  ‘ad hoc’ features 200 19.5866 0.7930 

6  ‘ad hoc’ features + z coord. 200 15.7060 0.9180 

6 ‘ad hoc’ features + z coord. + 

normals 

100 17.0059 0.9200 

 

Furthermore, the hyperparameter that establishes the quantity of decision trees within 

the forest is referred to as the Number of Estimators’. Every decision tree adds to the 

final prediction, and the Random Forest model’s performance and capacity for 

generalisation can be greatly impacted by the number of trees. 

The results can be discussed for the specified four combinations: 

a) 63 features; 63 features + z coord.; 63 features + z coord. + normals: 

- For 63 features: The model with 63 features achieved a high weighted F1-

score of 0.9736 with 200 estimators and a training time of 40.9824 seconds. 
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- For 63 features + z coord.: Adding the z coordinate slightly reduced the 

weighted F1-score to 0.9606 with 100 estimators, and the training time 

increased to 44.2787 seconds. 

- For 63 features + z coord. + normals: Further adding normals led to a 

marginal decrease in the weighted F1-score to 0.9598 with 100 estimators, 

and the training time remained comparable at 43.9770 seconds. 

b) 15 features; 15 features + z coord.; 15 features + z coord. + normals: 

- For 15 features: The model with 15 features achieved a high weighted F1-

score of 0.9710 with 200 estimators and a training time of 19.1061 seconds. 

- For 15 features + z coord.: Adding the z coordinate led to a decrease in the 

weighted F1-score to 0.9373 with 200 estimators, and the training time 

increased to 22.3032 seconds. 

- For 15 features + z coord. + normals: Further adding normals resulted in a 

slight increase in the weighted F1-score to 0.9439 with 50 estimators, and 

the training time remained similar at 22.7215 seconds. 

c) 6 features; 6 features + z coord.; 6 features + z coord. + normals: 

- For 6 features: The model with 6 features achieved a weighted F1-score of 

0.9296 with 200 estimators and a training time of 15.9416 seconds. 

- For 6 features + z coord.: Adding the z coordinate resulted in a decrease in 

the weighted F1-score to 0.9148 with 50 estimators, and the training time 

decreased to 13.9675 seconds. 

- For 6 features + z coord. + normals: Further adding normals led to a slight 

increase in the weighted F1-score to 0.9170 with 150 estimators, and the 

training time increased to 16.6206 seconds. 

d) 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + z coord.; 6 ‘ad hoc’ features + z coord. 

+ normals: 
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- For 6 ‘ad hoc’ features: The model achieved a weighted F1-score of 0.7930 

with 200 estimators and a training time of 19.5866 seconds. 

- For 6 ‘ad hoc’ features + z coord.: Adding the z coordinate resulted in a 

notable increase in the weighted F1-score to 0.9180 with 200 estimators, and 

the training time decreased to 15.7060 seconds. 

- For 6 ‘ad hoc’ features + z coord. + normals: Further adding normals 

resulted in a slight increase in the weighted F1-score to 0.9200 with 100 

estimators, and the training time remained comparable at 17.0059 seconds. 

 

Considering only F1-score and overlooking the training time, which is relatively low 

across all configurations, the best performance for each of the four combinations is 

as follows: 

a) The highest F1-score is achieved only with the 63 features combination, 

attaining a score of 0.9736.  

b) Among the combinations with 15 features, the configuration with ‘15 features’ 

alone produces the highest F1-score, reaching 0.9710.  

c) The combination ‘6 features’ yields the highest F1-score, with a value of 

0.9296.  

d) In the case of ‘6 ‘ad hoc’ features’, incorporating the z coordinate and the 

normals results in the best F1-score, with a score of 0.9200. 

In light of this deduction, the optimal outcome for the ground floor emerges when all 

features are collectively considered. However, it is noteworthy that by reducing the 

number of features and incorporating ‘ad hoc’ features linked to the geometric 

dimensions of architectural elements, a highly satisfactory result is still achieved, as 

demonstrated in the subsequent figures. 
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Fig. 133 Features Combinations for the First Floor compared by weighted F1 score and training time. 
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Tab. 17 Specification of Feautures Combinations for the First Floor. 

Feature combinations n-estimators Training time 

(sec) 

Weighted F1-score 

72 features 100 43.5884 0.9772 

72 features + z coord. 200 41.4688 0.9700 

72 features + z coord. + normals 100 40.1178 0.9712 

15 features 200 21.1950 0.9092 

15 features + z coord. 200 21.2527 0.9248 

15 features + z coord. + normals 100 19.7888 0.9230 

6 features 200 18.0612 0.8521 

6 features + z coord. 100 14.1282 0.8970 

6 features + z coord. + normals 50 14.5784 0.8934 

6  ‘ad hoc’ features 200 22.2948 0.6749 

6  ‘ad hoc’ features + z coord. 200 14.5593 0.9018 

6 ‘ad hoc’ features + z coord. + 

normals 

150 17.6194 0.8815 

 

Concerning the outcomes for the specified feature combinations: 

a) 72 features; 72 features + z coord.; 72 features + z coord. + normals: 

- For 72 features: The model with 72 features achieved a high weighted F1-

score of 0.9772 with 100 estimators and a training time of 43.5884 seconds. 

- For 72 features + z coord.: Adding the z coordinate resulted in a slightly 

reduced F1-score of 0.9700 with 200 estimators, and the training time 

increased to 41.4688 seconds. 

- For 72 features + z coord. + normals: Further adding normals led to a 

slightly increased F1-score of 0.9712 with 100 estimators, and the training 

time remained comparable at 40.1178 seconds. 
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b) 15 features; 15 features + z coord.; 15 features + z coord. + normals: 

- For 15 features: The model with 15 features achieved a moderate weighted 

F1-score of 0.9092 with 200 estimators and a training time of 21.1950 

seconds. 

- For 15 features + z coord.: Adding the z coordinate resulted in an improved 

F1-score of 0.9248 with 200 estimators, and the training time remained 

similar at 21.2527 seconds. 

- For 15 features + z coord. + normals: Further adding normals led to a 

slightly increased F1-score of 0.9230 with 100 estimators, and the training 

time decreased to 19.7888 seconds. 

c) 6 features; 6 features + z coord.; 6 features + z coord. + normals: 

- For 6 features: The model with 6 features achieved a moderate F1-score of 

0.8521 with 200 estimators and a training time of 18.0612 seconds. 

- For 6 features + z coord.: Adding the z coordinate resulted in an improved 

F1-score of 0.8970 with 100 estimators, and the training time decreased to 

14.1282 seconds. 

- For 6 features + z coord. + normals: Further adding normals led to a slightly 

decreased F1-score of 0.8934 with 50 estimators, and the training time 

remained comparable at 14.5784 seconds. 

d) 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + z coord.; 6 ‘ad hoc’ features + z coord. 

+ normals: 

- For 6 ‘ad hoc’ features: The model achieved a lower F1-score of 0.6749 with 

200 estimators and a training time of 22.2948 seconds. 

- For 6 ‘ad hoc’ features + z coord.: Adding the z coordinate resulted in a 

significantly improved F1-score of 0.9018 with 200 estimators, and the 

training time decreased to 14.5593 seconds. 
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- For 6 ‘ad hoc’ features + z coord. + normals: Further adding normals led to 

a slightly decreased F1-score of 0.8815 with 150 estimators, and the training 

time increased to 17.6194 seconds. 

 

In terms of F1-score, disregarding the training time, the best results for each of the 

four combinations are as follows: 

a) The highest F1-score is achieved with the ‘72 features’ combination, attaining 

a score of 0.9772. 

b) The best F1-score is obtained with the ‘15 features’ combination, reaching a 

score of 0.9248. 

c) The highest F1-score is attained with the ‘6 features + z coord’. combination, 

with a score of 0.8970. 

d) The best F1-score is obtained with the ‘6 ‘ad hoc’ features + z coord’. 

combination, achieving a score of 0.9018. 

Once more, the outcomes seem encouraging for the first floor. The outcome that 

takes into account every possible feature combination is undoubtedly the greatest 

one, however when taking into account the ‘ad hoc’ features pertaining to the 

geometric dimensions of the architectural parts, the F1-score is extremely high. 

 

4.6.3     Results 

The following section presents the outcomes of machine learning 

classification, accompanied by evaluation metrics specifically chosen to serve the 

intended purpose. 
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RF Classification on Test Set and Performance Evaluation 

For segmentation within the PyCharm environment, two main modules have 

been employed. The first module is dedicated to training a Random Forest model for 

the automatic segmentation of point clouds, while the second module is designed for 

classifying a point cloud using a pre-trained model. 

In the training module, the code is structured in a modular manner to ensure a clear 

separation of functions. The ‘load_features_and_class’ function handles the loading 

of feature indices and class index from a specified text file. Similarly, the ‘read_data’ 

function is responsible for loading a labelled point cloud from a text file. The training 

phase of the model is managed by the ‘train_model’ function, which utilises a 

Random Forest classifier with specified parameters. 

On the other hand, the classification module is designed to enable the classification of 

point clouds of the Test set using a pre-trained model. The ‘load_features’ function 

loads feature indices from a text file, while the ‘read_model’ function reads a Random 

Forest model from a binary .pkl file. The actual classification is performed by the main 

function, which loads features, the model, and the data to be classified. The 

classification results are then written to an output file. 

To assess the performance of the machine learning model, the ‘Cross-Validation’ 

technique was employed. This approach was implemented to select the optimal 

hyperparameters (number of trees and maximum depth) for the Random Forest 

classifier. Specifically, the training set was partitioned into 5 folds, setting the number 

of folds in the cross-validation (k=5). The decision not to reduce the number of folds 

was made to avoid the risk of overfitting during hyperparameter selection. 

In this manner, the model was trained and evaluated five times, with each iteration 

using a different subset as the validation set and the remaining subsets for training.  

This iterative process provided a more robust estimation of evaluation metrics, such 

as Precision, Recall, F1-Score, and Overall Accuracy. These metrics were associated 
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with confusion matrices, specifically for the four most promising combinations per 

plan, as illustrated in the subsequent figures. This correlation aids in enhancing the 

comprehension of the predictive capabilities of the model. 

Specifically, for the confusion matrix (Tab. 18), the rows matrix display the actual 

(true) classes, manually annotated, while the columns display the predicted ones. 

 

Tab. 18 Example of Confusion Matrix. 

 Actual Values 

P
r
e
d
ic

t
e
d
 V

a
lu

e
s
 

 

TP 

 

 

 

FP 

 

 

 

FN 

 

 

 

TN 

 

 

 

Where: 

 

TP (True Positive): Instances correctly predicted as positive. 

FP (False Positive): Instances incorrectly predicted as positive. 

TN (True Negative): Instances correctly predicted as negative. 

FN (False Negative): Instances incorrectly predicted as negative. 

 

So, the metrics such as Precision [ 27 ], Recall [ 28 ], F1-Score [ 29 ], and Overall 

Accuracy [ 30 ] are calculated using values from the confusion matrix. Below are the 

formulas for each metric: 
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Precision=

TP

TP+FP
  

[ 27 ] 

 

 

Recall=

TP

TP+FN
  

[ 28 ] 

 

 

F1-Score=

2 Precision*Recall

Precision+Recall
  

[ 29 ] 

 

 

Overall Accuracy=

TP+TN

TP+FP+TN+FN
  

[ 30 ] 

 

 

For each of the top four combinations per floor plan, the confusion matrices are 

displayed in the following images (for the ground floor, Fig. 134, and Fig. 135, and for 

the first floor, Fig. 136, and Fig. 137), accompanied by the metric results evaluating 

these matrices (for the ground floor, Tab. 19, Tab. 20, Tab. 21 and Tab. 22, and for 

the first floor, Tab. 23, Tab. 24, Tab. 25, and Tab. 26). 
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Fig. 134 Confusion Matrix for the Ground Floor with the best combinations: 63 Features and 15 

Features. 
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Fig. 135 Confusion Matrix for the Ground Floor with the best combinations: 6 Features and 6 ‘ad hoc’ 

Features + Z Coordinate + Normals. 
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Fig. 136 Confusion Matrix for the First Floor with the best combinations: 72 Features and 15 Features 

+ Z Coordinate. 
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Fig. 137 Confusion Matrix for the First Floor with the best combinations: 6 Features + Z Coordinate 

and 6 ‘ad hoc’ Features + Z Coordinate. 
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Tab. 19 Performance Metrics with 63 Features (Ground Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

99.46 99.89 99.67 
 

98.55 98.33 98.44 
 

93.10 99.64 96.26 
 

99.44 96.65 98.02 
 

99.55 96.33 97.91 
 

98.88 94.93 96.86 
 

96.80 96.17 96.48 
 

96.38 94.46 95.41 
 

80.18 94.86 86.91 
 

99.48 99.63 99.56 
 

Simple Average Overall Accuracy 

96.18 97.09 96.55 97.38 

 

Tab. 20 Performance Metrics with 15 Features (Ground Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

99.65 99.37 99.51 
 

97.90 98.16 98.03 
 

92.82 99.68 96.12 
 

96.23 96.85 96.54 
 

99.40 95.91 97.62 
 

97.53 95.10 96.30 
 

96.31 95.16 95.73 
 

93.98 96.16 95.05 
 

89.73 89.14 89.44 
 

99.53 99.36 99.45 
 

Simple Average Overall Accuracy 

96.31 96.49 96.38 97.11 
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Tab. 21 Performance Metrics with 6 Features (Ground Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

99.73 98.79 99.26 
 

93.81 95.11 94.45 
 

79.96 96.06 87.28 
 

81.64 96.58 88.48 
 

97.36 88.80 92.88 
 

96.01 88.30 92.00 
 

92.80 92.87 92.83 
 

87.23 92.51 89.79 
 

82.07 69.30 75.15 
 

97.22 98.52 97.87 
 

Simple Average Overall Accuracy 

90.78 91.68 91.00 92.98 

 

Tab. 22 Performance Metrics with 6 ‘ad hoc’ Features + Z Coordinate + Normals (Ground Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

99.75 99.37 99.56 
 

98.23 98.48 98.36 
 

99.38 99.14 99.26 
 

96.23 96.93 96.58 
 

99.66 99.23 99.44 
 

97.61 81.31 88.72 
 

88.33 77.48 82.55 
 

77.33 83.18 80.15 
 

37.28 51.30 43.18 
 

87.97 100.00 93.60 
 

Simple Average Overall Accuracy 

88.18 88.64 88.14 91.97 
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Tab. 23 Performance Metrics with 72 Features (First Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

99.15 99.31 99.23 
 

66.82 84.62 74.67 
 

95.03 94.71 94.87 
 

71.37 76.06 73.64 
 

94.05 96.66 95.34 
 

85.33 90.22 87.70 
 

98.25 95.50 96.85 
 

94.55 95.61 95.08 
 

99.30 99.70 99.50 
 

97.59 97.30 97.45 
 

Simple Average Overall Accuracy 

90.14 92.97 91.43 97.73 

 

Tab. 24 Performance Metrics with 15 Features + Z Coordinate (First Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

90.51 100.00 95.02 
 

70.09 20.27 31.45 
 

93.92 68.16 78.99 
 

54.19 72.78 62.12 
 

76.67 92.02 83.65 
 

54.39 81.77 65.33 
 

90.03 94.03 91.98 
 

92.69 78.91 85.25 
 

100.00 97.68 98.83 
 

93.66 88.96 91.25 
 

Simple Average Overall Accuracy 

81.62 79.46 78.39 92.15 
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Tab. 25 Performance Metrics with 6 Features + Z Coordinate (First Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

86.20 100.00 92.59 
 

37.85 18.97 25.27 
 

90.49 61.57 73.28 
 

53.30 62.37 57.48 
 

84.62 87.34 85.96 
 

54.55 65.64 59.58 
 

83.67 92.07 87.67 
 

92.65 72.04 81.06 
 

100.00 97.80 98.89 
 

89.87 81.92 85.71 
 

Simple Average Overall Accuracy 

77.32 73.97 74.75 89.37 

 

Tab. 26 Performance Metrics with 6 ‘ad hoc’ Features + Z Coordinate (First Floor). 

PERFORMANCE METRICS 

Precision Recall F1-score 
 

92.63 100.00 96.17 
 

64.49 20.44 31.05 
 

72.75 78.18 75.37 
 

38.33 59.59 46.65 
 

78.39 85.03 81.58 
 

55.02 68.59 61.06 
 

85.93 84.49 85.20 
 

80.49 79.95 80.22 
 

100.00 97.28 98.62 
 

89.10 83.23 86.07 
 

Simple Average Overall Accuracy 

75.71 75.68 74.20 89.94 
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On the Ground Floor, noteworthy results for Overall Accuracy are observed, 

particularly with the combination of 63 features, achieving an impressive 97.38. 

Following closely is the combination with only 15 features, displaying a commendable 

accuracy of 97.11, while the combination with 6 features reaches a respectable value 

of 92.98. The lowest but still acceptable accuracy is associated with the combination 

of 6 ‘ad hoc’ features + Z Coordinate + Normals, yielding a score of 91.97. 

Shifting focus to the First Floor, the highest accuracy is obtained with the combination 

of 72 features, reaching an outstanding 97.73. In contrast, a lower accuracy, at 

92.15, is observed with the combination of 15 features + Z Coordinate. 

Subsequently, the combination of 6 ‘ad hoc’ features + Z Coordinate achieves a 

value of 89.94, and finally, the lowest accuracy is attributed to the combination of 6 

features + Z Coordinate, totaling 89.37. 

 

Semantic Point Cloud 

The subsequent figures depict the final point clouds ranked using Machine 

Learning, corresponding to the top four combinations for each respective floor (for 

the ground floor, Fig. 138, and Fig. 139, and for the first floor, Fig. 140, and Fig. 141). 

All combinations applied to the two distinct floors yield highly significant results. 

While prioritising combinations with more features based on the confusion matrix 

results, an interesting observation emerges from a graphical perspective, suggesting 

a potential reversal of roles. Specifically, it becomes evident that ‘ad hoc’ features, 

when combined with the Z Coordinate and Normals, result in a nearly perfect 

semantic discretisation for components related to columns. In this configuration, the 

ring that divides the two parts of the shaft is accurately distinguished. However, some 

semantic confusion arises in the upper parts, where the architrave is occasionally 

mistaken for the corbel on the ground floor, and the arch is sometimes confused with 

the corner column on the first floor.  



269 

 

 

Fig. 138 Semantic Point cloud of the Ground Floor using 63 and 15 Features. 
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Fig. 139 Semantic Point cloud of the Ground Floor using 6 Features and 6 ‘ad hoc’ Features + Z 

Coordinate + Normals. 
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Fig. 140 Semantic Point cloud of the First Floor using 72 and 15 Features + Z Coordinate. 
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Fig. 141 Semantic Point cloud of the First Floor using 6 Features + Coordinate Z and 6 ‘ad hoc’ 

Features + Z Coordinate. 

 

Intermediate results are observed with combinations featuring 15 and 6 features, 

displaying a few semantic distinction errors primarily related to the lower shaft on the 

ground floor and the parapet and stringcourse on the first floor. 
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4.6.4     Ending Statements 

The application of the Artificial Intelligence (AI) in the field of Architectural 

Heritage (AH), specifically concerning the automatic segmentation and classification 

of point clouds through Machine Learning, emerges as a revolutionary and promising 

approach for the preservation, analysis, and understanding of historical structures. 

In the context of this study, outstanding results have been achieved in the detailed and 

precise representation of one of the significant palaces of the Renaissance in 

Saragozza. 

The AI-based approach has enabled the differentiation of complex architectural and 

structural elements, facilitating the comprehension and digital documentation of 

details often overlooked by the human eye. Notably, processing times have been 

impressively optimised, as seen in the automatic classification of portions of point 

clouds used as test set, taking only a few seconds. 

Despite the achieved successes, several significant challenges have been 

encountered, among which the need for an adequate and representative training 

dataset has emerged as a critical limitation. Manual point cloud segmentation 

undoubtedly consumes time, depending on the level of detail and precision of 

operations conducted by the operator, thereby influencing the outcome of the final 

classification. 

The various combinations of geometric properties analysed in this study have allowed 

the highlighting of positive outcomes, even with a limited amount of training data, 

albeit requiring careful and logically rigorous selection. In this case, ‘ad hoc’ features 

were chosen based on the geometric dimensions of the architectural components 

intended for segmentation, yielding satisfactory results, though inferior to those 

obtained with combinations featuring more training data. 

The in-depth segmentation analysis has been notably enhanced by incorporating 

normal coordinates and the Z-coordinate, which have significantly contributed to 

enhancing the effectiveness and accuracy of the process. 
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The automated process demonstrated is generalisable in the context of Architectural 

Heritage. However, it is crucial to emphasise that training data are specific to each 

analysed study, a gap that could be addressed by implementing more advanced 

models, integrating multi-sensor data, and exploring approaches based on Deep 

Learning to further enhance system performance. Therefore, the creation of more 

diversified and inclusive datasets will allow greater generalisation of models and the 

management of a broader range of historical contexts. 

Innovation in this field holds the potential to open new perspectives for heritage 

preservation and enrich our understanding of architectural works that have shaped 

history, especially when integrated into a virtualisation context through HBIM. This 

undoubtedly serves as a point of reflection for future developments in this work, 

aiming to facilitate automation even in the operational phases of three-dimensional 

modelling. 
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CONCLUSIONS AND FUTURE DEVELOPMENTS 

Throughout the extensive exploration conducted in this research, a diverse 

array of methodologies has been thoroughly examined, each uniquely applied to delve 

into the realm of advanced technologies in architectural design and surveying. The 

primary focus has been on the preservation of Architectural Heritage through the 

intricate process of digitisation. The indispensable role of a Scan to BIM protocol has 

been clearly identified as a critical component, crucial for elevating the precision in 

representing heritage in the digital landscape. 

During the analysis of several case studies, unique challenges connected to the 

execution of integrated digital surveys have surfaced, with criteria and critical 

considerations that may vary based on metric and graphic requirements, as well as 

environmental factors. This has led to the definition of proven operational procedures, 

adhering to a standards-based approach, integrating parameters of quality and safety 

to ensure efficiency both in on-site execution and subsequent data processing. The 

avoidance of superfluous information, which could potentially lead to errors and result 

in significant time losses, has been a paramount consideration. 

The pivotal integration between three-dimensional models and their corresponding 

databases has emerged as a fundamental aspect for the creation of comprehensive 

informational models. This approach not only facilitated the standardised organisation 

of information but also established a seamless interface with specific software tools, 

thereby allowing for the indexed structuring of informational resources. Operations 

involving programming language and data optimisation processes have been 

instrumental in augmenting process efficiency, thereby contributing significantly to 

the ongoing evolution of methodologies for assessing geometric accuracy. 

An in-depth examination of automations and Artificial Intelligence algorithms has 

revealed groundbreaking perspectives. The focus has been on the analysis of data 

acquired through digital surveying, leading to novel applications such as monitoring 
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the physical-material obsolescence of buildings, graphical representation of heritage 

through BIM models, and the automated planning of digital surveying.  

The incorporation of open-source algorithms and Machine Learning techniques has 

enriched the overall research framework, notably contributing to semantic 

segmentation and point cloud classification. 

The outcomes obtained underscore the paramount importance of an integrated 

approach that seamlessly combines advanced technologies with specialised skills. 

This integration is crucial for optimising surveying methods and streamlining BIM-

oriented operational processes. The challenges identified collectively lay a robust 

foundation for future research and developments in the expansive field of 

Architectural Heritage conservation, encompassing all conceivable facets of this 

multidimensional domain.  

Most certainly, the extraordinary potential of Deep Learning in the analysis of point 

clouds, recently observed, could revolutionise the way experts automatically 

recognise and classify architectural elements within digital three-dimensional 

environments. A tempting idea is to create a large training dataset derived from a 

variety of case studies, thus enabling the adoption of a generalised methodology not 

bound to specific contexts but capable of extracting relevant information from each of 

them. This innovative approach could radically redefine information extraction from 

scanning data, perhaps facilitating the subsequent creation of detailed BIM models. 

The outlook of automatically generating BIM models from raw data promises to 

significantly simplify modelling processes, minimising human intervention and 

accelerating project delivery times. This result would represent a genuine turning 

point in modelling practice, indicating a clear direction towards a future of greater 

efficiency and precision. 

 

Naturally, to fully harness this potential, it will be essential to also develop standards 

for BIM data interoperability and ensure compatibility across different platforms and 
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software. This step is essential to promote more effective and seamless collaboration 

among stakeholders involved in Cultural/Architectural Heritage conservation projects 

and to ensure the success of large-scale implementations of these innovative 

methodologies. 

 

Drawing on the insights derived from the provided results and simultaneously 

anticipating future developments, this research journey comes to a close, 

underscoring the need to perpetuate innovation and adaptability to emerging 

technologies, the latter aimed at fostering improved communication between 

manufacturing companies and designers. A synergy that contributes to the generation 

of industrial products within a digital framework that is simultaneously sustainable 

and forward-thinking. 
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LIST OF ABBREVIATIONS 

2D: Two-dimensional 

3D: Three-dimensional (and so on according to the number of dimensions) 

AAT: Art & Architecture Thesaurus 

ABIM: Archaeological Building Information Modelling 

AEC: Architectural, Engineering, and Construction 

AGP: Art Gallery Problem 

AH: Architectural Heritage 

AI: Artificial Intelligence 

ALS: Airborne Laser Scanner 

ANN: Artificial Neural Network 

ASO: Homogeneous Spatial Scope 

ASTM International: American Society for Testing and Materials International 

BDS: Building Description System 

BIM: Building Information Modelling 

BPA: Ball-Pivoting Algorithm 

BRep: Boundary Representation 

CAD: Computer Aided Design 

CANUPO: CAractérisation de NUages de Points 

C2C: Cloud-to-Cloud Distance 

CCD: Charged Coupled Device 
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CH: Cultural Heritage 

CIE: Commission Internationale de l’Eclairage 

CIPA: International Committee for Documentation of Cultural Heritage or or Internatio-

nal Committee for Documentation of Cultural Heritage 

cm: centimetre 

CMOS: Complementary Metal Oxide Semiconductor 

CRP: Close-Range Photogrammetry 

DGCNN: Dynamic Graph Convolutional Neural Network 

DL: Deep Learning 

EPSG: European Petroleum Survey Group 

ESCO: ESDIS Standards Coordination Office 

ESDIS: Earth Science Data and Information System 

FF: First Floor 

FN: False Negative 

FOV: Field of View 

FP 
(1)

: False Positive 

FP 
(2)

: Fortress Problem 

FRF: Fast Random Forest 

GA: Genetic Algorithm 

GCP: Ground Control Point 

GF: Ground Floor 
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GIS: Geographic Information System 

GLONASS: Globalnaya Navigazionnaya Sputnikovaya Sistema 

GNSS: Global Navigation Satellite System 

GOAL: Graphical Methods, Optimization and Learning Research Group 

GP-GPU: General Purpose Computing on Graphics Processing Unit 

GPS: Global Positioning System 

GRAPHyC: Grupo de Representación Arquitectónica del Patrimonio Histórico y Con-

temporáneo 

GSA: General Service Administration 

GSD: Ground Sample Distance 

HBIM: Heritage/Historic Building Information Modelling 

HC: Hierarchical Clustering 

HFS: Homogeneous Functional Scope 

HSS: Homogeneous Spatial Scope 

HT: Hough Transformation 

IAI: International Alliance for Interoperability 

ICOMOS: International Council on Monuments and Sites 

ICP: Iterative Closest Point 

IFC: Industry Foundation Class 

IMU: Inertial Measurement Unit 

ISO: International Organization for Standardization 
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ISPRS: International Society of Photogrammetry and Remote Sensing 

KMC: K-Means Clustering 

KNN: K-Nearest Neighbours 

LiDAR: Light Detection and Ranging 
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Phantom 4 Pro, DJI Phantom 3 Pro, DJI Spark quadricopters) 

and digital SLR cameras. 

Excellent knowledge of office suite (Microsoft Office, word 

processor, spreadsheet, presentation software), photo-editing 

software (Adobe Photoshop, Adobe InDesign, Adobe Illustra-

tor), software for geographical analysis (QGIS), programming 

languages (Python, R, Matlab). 

   

 

PATENTS  Driving Licence (category B) 

 

   

SCIENTIFIC PUBLICATIONS  

 

  

• ANVUR's A-class Journal  

(Area 08)   

 Buldo, M., Agustín-Hernández, L., Verdoscia, C., & Tavolare, 

R. (2023). A Scan-to-BIM workflow proposal for Cultural 

Heritage. Automatic point cloud segmentation and 

parametric-adaptive modelling of vaulted systems. The 

International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences - ISPRS Archives, 

XLVIII(M–2), 333–340. https://doi.org/10.5194/isprs-

archives-XLVIII-M-2-2023-333-2023 

  Verdoscia, C., Buldo, M., Tavolare, R., & Musicco, A. (2022). 

Automatic model-based segmentation for the Scan-to-BIM 

process applied to Cultural Heritage. A study focused on ma-

sonry vaults. In P. Portoghesi & C. Gambardella (Eds.), Abita-

re la Terra/Dwelling on Earth, Quaderni n.7-8, 24–27.  



 

 

Gangemi Editore SpA International, Roma. ISBN13: 

9788849245318, ISBN10: 1592-860822002 

  Verdoscia, C., Musicco, A., Tavolare, R., & Buldo, M. (2021). 

Evaluation of the geometric reliability in the Scan to BIM pro-

cess: the case study of Santa Croce monastery. In P. Porto-

ghesi & C. Gambardella (Eds.), Abitare la Terra/Dwelling on 

Earth, Quaderni n.6, 54–55. Gangemi Editore SpA Internatio-

nal, Roma. ISBN13: 9788849241020, ISBN10: 1592-

860820006 

• ANVUR's Scientific Journal  

(Area 08) 

 Cabrera-Revuelta, E., Tavolare, R., Buldo, M., & Verdoscia, C. 

(2024). Planning for terrestrial laser scanning: Methods for 

optimal sets of locations in architectural sites. Journal of 

Building Engineering, 85. 

https://doi.org/10.1016/j.jobe.2024.108599 

  Tavolare, R., Cabrera-Revuelta, E., Verdoscia, C., & Buldo, M. 

(2023). A point cloud classification method for the ScanTo-

BIM process in Architectural Heritage. DISEGNARECON, 

16(30). https://doi.org/10.20365/disegnarecon.30.2023.20. 

ISSN: 1828-5961 

• Book Chapter 

 

 Verdoscia, C., Buldo, M., Musicco, A., & Tavolare, R. (2022). 

Technological Paradigms for Cultural Heritage. A Scan To BIM 

Methodology for the Description of Historical Architecture. In 

D. Bienvenido-Huertas & J. Moyano-Campos (Eds.), New 

Technologies in Building and Construction. Lecture Notes in 

Civil Engineering (Vol. 258, pp. 187–205). Springer, Singapo-

re. https://doi.org/10.1007/978-981-19-1894-0_11. ISBN: 

978-981-19-1893-3 

  Fatiguso, F., Buldo, M., (2020), Complesso della SS. Trinità di 

Venosa (PZ), In M. De Fino & F. Fatiguso (Eds.), La diagno-

stica per gli edifici storici. Metodi non distruttivi e tecnologie 

innovative per la valutazione e il controllo (Collana architettura 

sostenibile/culture costruttive per il costruire sostenibile, pp. 

169-180). EdicomEdizioni, Monfalcone. ISBN: 978-88-

96386-92-7 

• Conference Proceedings 

(Paper) 

 

 Tavolare, R., Buldo, M., & Verdoscia, C. (2024). Automated 

Processes for Preparing a Point Cloud Within the Scan-To-

BIM Methodology. In C. Manchado-del Val, M. Suffo-Pino, R. 



 

Miralbes-Buil, D. Moreno-Sánchez, & D. Moreno-Nieto (Eds.), 

Advances in Design Engineering IV. INGEGRAF 2023. Lecture 

Notes in Mechanical Engineering (pp. 44–55). Springer, 

Cham. https://doi.org/10.1007/978-3-031-51623-8_5. ISBN: 

978-3-031-51622-1 

  Verdoscia, C., Buldo, M., Tavolare, R., Cabrera-Revuelta, E., 

& Musicco, A. (2023). Sensor Data Fusion per i processi 

Scan to BIM. La Chiesa Ognissanti di Valenzano, Bari/Sensor 

Data Fusion for Scan to BIM Processes. The All Saints’ 

Church in Valenzano, Bari. In M. Cannella, A. Garozzo, & S. 

Morena (Eds.), Transizioni. Atti del 44° Convegno Internazio-

nale dei Docenti delle Discipline della Rappresentazio-

ne/Transitions. Proceedings of the 44th International Confe-

rence of Representation Disciplines Teachers Congress of 

Unione Italiana per il Disegno (pp. 3260–3277). FrancoAnge-

li, Milano. 

https://doi.org/10.3280/oa-1016-c466. ISBN: 978-88-35-

15511-9 

  Verdoscia, C., Buldo, M., Tavolare, R., & Musicco, A. (2022). 

Integrated 3D survey techniques for historical architecture. 

The Church of S. Maria Veterana in Triggiano (Italy). In C. 

Gambardella (Ed.), World Heritage and Ecological Transition. 

XX International Forum Le Vie dei Mercanti (pp. 425–433). 

Gangemi Editore SpA International, Roma. ISBN: 978-88-

492-4530-1 

  Verdoscia, C., Buldo, M., Musicco, A., & Tavolare, R. (2022). 

Integrated Architectural Survey Techniques for the Cultural 

Heritage Preservation and Enhancement in the Covid-Era. The 

Case Study of Venosa’s Most Holy Trinity Complex, Italy. In 

M. A. Ródenas-López, J. Calvo-López, & M. Salcedo-Galera 

(Eds.), Architectural Graphics. EGA 2022. Springer Series in 

Design and Innovation (Vol. 21, pp. 188–198). Springer, 

Cham. https://doi.org/10.1007/978-3-031-04632-2_20. 

ISBN: 978-3-031-04631-5 

  Verdoscia, C., Musicco, A., Buldo, M., Tavolare, R., & Pepe, 

N. (2021). La documentazione digitale del patrimonio costrui-

to attraverso l’A-BIM. Il caso studio delle Terme di Dioclezia-

no, Roma/The Digital Documentation of Cultural Heritage 

through A-BIM. The Case Study of the Baths of Diocletian, 



 

 

Rome. In A. Arena, M. Arena, D. Mediati, & P. Raffa (Eds.), 

Connettere. Un disegno per annodare e tessere. Linguaggi 

Distanze Tecnologie. Atti del 42° Convegno Internazionale dei 

Docenti delle Discipline della Rappresentazione/Connecting. 

Drawing for weaving relationship. Languages Distances 

Technologies. Proceedings of the 42th International Confe-

rence of Representation Disciplines Teachers Congress of 

Unione Italiana per il Disegno (pp. 2686–2703). FrancoAnge-

li, Milano. https://doi.org/10.3280/oa-693.152. ISBN: 978-

88-35-12589-1 

  Verdoscia, C., Musicco, A., Tavolare, R., & Buldo, M. (2021). 

Evaluation of the geometric reliability in the Scan to BIM 

process, the case study of Santa Croce monastery. In C. 

Gambardella (Ed.), World Heritage and Design for Health. XIX 

International Forum Le Vie dei Mercanti (pp. 650–657). 

Gangemi Editore SpA International, Roma. ISBN: 978-88-

492-4089-4 

• Conference Proceedings  

(Abstract) 

 

 Tavolare, R., Buldo, M., & Verdoscia, C. (2023). Automated 

Processes for Preparing a Point Cloud Within the Scan-To-

BIM Methodology. In R. Bienvenido-Bárcena, E. Cabrera-

Revuelta, P. Camacho-Magriñán, S. de la Rosa-Silva, I. del 

Sol-Illana, R. Gómez-Cabrera, D. Moreno-Nieto, D. Moreno-

Sánchez, M. Ángel Pardo-Vicente, P. Pavón-Domínguez, L. 

Rodríguez-Parada, P. Ruiz-Villalobos, M. Suffo-Pino, & A. 

Pliar Valerga-Puerta (Eds.), 32 INGEGRAF International 

Conference (pp. 104–105). University of Cádiz. ISBN: 978-

84-09-52380-1 

  Verdoscia, C., Buldo, M., Tavolare, R., & Musicco, A. (2022). 

Integrated 3D survey techniques for historical architecture. 

The Church of S. Maria Veterana in Triggiano (Italy). In C. 

Gambardella (Ed.), World Heritage and Ecological Transition. 

XX International Forum Le Vie dei Mercanti (p. 81). Gangemi 

Editore SpA International, Roma. ISBN: 978-88-492-4529-5 

  Verdoscia, C., Buldo, M., Musicco, A., & Tavolare, R. (2022). 

Tecniche di rilievo architettonico integrato per la conservazio-

ne e la valorizzazione dei Beni Culturali. Il caso di studio del 

Complesso abbaziale della SS. Trinità di Venosa, Italia. MÁS 

ALLÁ DE LAS LÍNEAS. La Gráfica y Sus Usos. XIX Congreso 

Expresión Gráfica Arquitectónica (EGA) (pp. 539–542). Uni-

versidad Politécnica de Cartagena, Cartagena. 

https://doi.org/10.31428/10317/11207. ISBN: 978-84-

17853-51-8 



 

  Verdoscia, C., Musicco, A., Tavolare, R., & Buldo, M. (2021). 

Geometric reliability evaluation in Scan to BIM process, the 

case study of Santa Croce monastery. In C. Gambardella 

(Ed.), World Heritage and Design for Health. XIX International 

Forum Le Vie dei Mercanti (p. 112). Gangemi Editore SpA In-

ternational, Roma. ISBN: 978-88-492-4088-7 

   

 

 

 

 

 

 

 

 

 

 

 

Bari, 12/04/2024 

 

The declarant 

 

 

_________________ 

 

(full and legible signature) 
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