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INTRODUCTION 
 

 

The role of major naurotransmitter pathways is epilepsy  

Epilepsy is one of the most common neurological disorders, affecting about 1% of 

human population worldwide. Epilepsy is characterized by the repeated occurrence of 

sudden, transitory and localized bursts of electrical activity, known as seizures. Seizures 

are temporary alterations in brain functions due to abnormal electrical activity of a 

group of brain cells that result in a wide variety of clinical and sub-clinical symptoms. 

 

A large body of experimental evidence suggests that overactivity of the excitatory 

neurotransmitter glutamate, or reduced activity of the inhibitory neurotransmitter 

GABA, is central to the process of epileptogenesis. However, all major neurotransmitter 

pathways regulate overall brain excitability and are involved in epileptogenesis. 

Specifically, monoamines represent a group of neuroactive substances that are capable 

of regulating the initiation  and spread of  seizure  activity. Dopamine (DA) may be 

crucially involved in propagation of seizure and control of seizure threshold (Starr 

1996). Serotonin (5-hydroxytryptamine, 5-HT) is another monoaminergic transmitter 

crucially involed in seizure propoagation. Different types of 5-HT receptors are present 

on the cortical and/or hippocampal glutamatergic or GABAergic neurons or terminals, 

where they can cause a significant shift in excitability in most networks involved in 

epilepsy (Badgy et al. 2007). Classical pharmacological studies clearly showed that 

both DA and 5-HT may have potent anti-convulsant effects, acting through specific 

receptor pathways.  

 

There is a substantial body of clinical data in support of an antiepileptic action of 

dopamine in man. It is widely accepted that agents which increase dopamine level 

(dopamine agonists) are considered as an anticonvulsants and reduce the seizure 

threshold, while agents which block dopamine action (dopamine antagonists) are 

considered as a proconvulsants. Consistent with that, clinical data not only indicate that 

high dopaminergic activity in the brain suppresses seizure activity, but also that a 
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reduction of dopaminergic tone is pro-epileptogenic (Starr, 1996). This led to 

hypothesize that  dopamine  is  an  important  suppressor of  the processes which govern  

the genesis and propagation of  seizures. 

 

Studies in animal models and analysis of dissected tissue from epileptic patients provide 

evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with 

serotonin agonist and/or antagonist properties play a significant role in the pathogenesis 

of epilepsies (Bagdy et al. 2007). The effects of genetic manipulation and 

pharmacological intervention (including the effects of subtype-selective receptor 

agonists and antagonists) on the development of seizure and epileptic activity have been 

clearly characterized (see below). Moreover, anti-epileptic drugs elevate and/or 

stimulate basal 5-HT levels and/or release, (Okada et al. 1992; Dailey et al. 1996; 

Ahmad et al. 2005). 

 

Dopamine synthesis and Dopaminergic transmission 

Dopaminergic pathways are neural pathways in the brain by which dopamine is spread 

to a range of different destinations in the brain. There are four major central dopamine-

containing pathways, which are described in Figure 1. 

 

1) The nigrostriatal pathway, in which substantia nigra (SN) neurons innervate the     

           striatum. This pathway is involved in movement control. 

2) The mesocortical pathway, which links the ventral tegmental area (VTA) to medial   

prefrontal, cingulate and entorhinal cortices. This pathway is involved in 

motivational and emotional responses. 

3)  The mesolimbic pathway, composed of VTA cells projecting to the nucleus 

accumbens and other limbic areas which includes the amygdala and the 

hippocampus. This pathway is significantly involved with reward and pleasure 

response. 

4) The tuberoinfundibular system, which projects from arcuate and periventricular 

nuclei of the hypothalamus to the pituitary gland and is involved in the control of 

neuroendocrine function.  
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Figure 1. Schematic representation of major dopaminergic pathways in rodents, originate from groups of 
cells in the rostral areas of the brain (Kandel, Principles of Neural Science, 4th edition)   
 

All these pathways are involved in several neurological, psychiatric and neuroendocrine 

diseases (Figure 2). Reduced dopamine levels in the nigrostriatal pathway, resulting 

from selective loss of SN cells, are the primary cause of Parkinson’s disease. Reduced 

function of the nigrostriatal system (as a consequence of striatal degeneration) is also 

typical of Huntington’s disease. Conversely, increased dopamine signalling in the 

striatum and frontal lobes has been implicated in attention-deficit–hyperactivity disorder 

(ADHD; Madras et al. 2005). Increased levels of dopamine in the mesolimbic pathway, 

namely in the nucleus accumbens, represent the neurobiological substrate of the 

rewarding properties of all drugs of abuse, and also contribute to appetite disorders 

(Volkow and Wise 2005). 

 

Altered dopamine signalling in the limbic system has also been implicated in epilepsy 

(Starr, 1996; Bozzi et al. 2000) and, more recently, in depression (Park et al. 2005). 

Finally, reduced dopamine signalling to the hypophysis is clearly implicated in the 

aetiology of pituitary tumours (Iaccarino et al. 2002). 
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Figure 2. Alterations of dopamine systems in neurological, neuroendocrine and psychiatric diseases. 
Dopamine pathways are shown in different colours (red, nigrostriatal; blue, mesocortical and mesolimbic; 
orange, tuberoinfundibular). Altered levels of dopamine function in specific areas are indicated for the 
different pathologies. Abbreviations: ADHD, attention-deficit–hyperactivity disorder; HT, hypothalamus; 
nAcb, nucleus accumbens; SN, substantia nigra; VTA, ventral tegmental area (from Bozzi and Borrelli, 
2006). 
 

                  Dopamine synthesis, like that of all catecholamines, originates from the 

amino acid precursor tyrosine, which must be transported across the blood brain barrier 

into the dopamine neuron. Dopamine is synthesized in the body (mainly by nervous 

tissue and the medulla of the adrenal glands) first by the hydroxylation of the amino 

acid L-tyrosine to L-DOPA via the enzyme tyrosine 3-monooxygenase, also known as 

tyrosine hydroxylase, and then by the decarboxylation of L-DOPA by aromatic L-amino 

acid decarboxylase (which is often referred to as dopa decarboxylase).  This latter 
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enzyme turns over so rapidly that DOPA levels in the brain are negligible under normal 

condition. Because of the high activity of this enzyme and the low endogenous levels of 

DOPA normally present in the brain, it is impossible to enhance dramatically the 

formation of dopamine by providing this enzyme with increased amount of substrate. 

Since tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of dopamine, 

this enzyme sets the pace for the formation of dopamine synthesis and physiological 

regulation (Figure 3). 

 
Figure 3. Biosynthesis of Dopamine- Tyrosine, an amino acid abundant in dietary proteins, is first 
hydroxylated into L-DOPA.  The cytostolic enzyme, tyrosine hyroxylase, catalyses this conversion and is 
normally the rate-limiting step in dopamine biosynthesis.  Subsequently, aromatic amino acid 
decarboxylase (dopa-carboxylase) catalyses the conversion of L-DOPA to dopamine 
(http://sprojects.mmi.mcgill.ca/gait/parkinson/biochemistry.asp) 
 

              In dopaminergic neurons, dopamine is transported from the cytoplasm to 

specialized storage vesicles. Upon the arrival of an action potential which triggers 

subsequent exocytosis, vesicles discharge the neurostransmitters into the synapse. 

Dopaminergic terminals possess transporters (dopamine transporter, DAT) that are 

critical in terminating transmitter action and in maintaining transmitter homeostatsis 

through DA reuptake (figure 4). Under normal conditions, potent, high-affinity 

membrane carriers recycle dopamine that has been released into synaptic cleft by 

actively pumping extracellular dopamine back into the nerve terminal. (Elsworth et al. 

2002). 
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The dopamine receptor family contains five members that, according to structural and 

pharmacological similarities, are divided into two sub- families: the D1-like family, 

comprising D1 and D5 receptors; and the D2-like family, which includes D2, D3 and 

D4 receptors (Cooper 1996; Jackson et al. 1994).  

 

 
Figure 4. Schematic drawing of dopaminergic neurotransmission- The key steps in synthesis and 
degradation of dopamine (http://www.nibb.ac.jp/en/sections/sasaoka.html). 
 
 
DA and epilepsy.  

DA has long been postulated to have an anti-epileptic action. The anti-convulsant 

properties of apomorphine (a prototypic DA agonist) were first described more than one 

century ago. Seizure inhibition has been also observed in patients administered 

amphetamines or antiparkinsonian drugs such as pergolide and bromocriptine, which 

are potent D2 agonists, which all stimulate dopaminergic transmission. For example 

Gatterau and coworkers (1990) found that pergolide  gave  complete  relief  against  

temporal  lobe  epilepsy when administered  to patients in a daily dose  of  25-50  pg  

for  8 months. Moreover, the protection lasted for a further 27 months after 

discontinuing the treatment. Mauro et al. (1986) gave bromocriptine in conjunction with 
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the MAO-B (Monoamine Oxidase-B) inhibitor selegiline to patients  suffering  from  

Lafora’s disease  and  showed  it markedly reduced the frequency of generalised 

convulsive seizures and myoclonic  jerks. 

 

There are several reports dealing with the influence of 6-OHDA (6- hydroxydopamine) 

treatment on seizure sensitivity during early postnatal development. London and 

Buterbaugh (1978) showed that intracisternal 6-OHDA modified tonic pentylenetetrazol 

convulsions in young rats. Also, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 

selectively depleted brain dopamine (but not noradrenaline or 5-hydroxytryptamine) 

and abolished strychnine and electroshock-induced seizures in mice (Fariello et al.  

1987). 

 

The use of dopaminergic ligands specific for the different subclasses of DA receptors 

allowed to demonstrate that DA has an anti-epileptic action also in a wide variety of 

animal models (Starr 1993, 1996). In particular, these studies illustrated the opposite 

actions of D1-like and D2-like receptors in the regulation of seizure activity. The 

physiological balance of DA activity at these two different receptors would be crucial 

for determining the response to seizure-promoting stimuli: activation of D1-like 

receptors is generally pro-convulsant, whereas D2-like receptor stimulation can block 

seizures. More recently, studies performed on different dopamine receptor knockout 

mouse lines confirmed these findings (Bozzi et al. 2006; Bozzi et al. 2002; Bozzi et al. 

2000; O'Sullivan et al. 2008). The limbic system is crucially involved in the 

dopaminergic control of epileptic seizures. Indeed, limbic areas of the brain receive 

dopaminergic innervation (Verney et al. 1985) and express different types of DA 

receptors (Jackson et al. 1994).  Indeed, a high abundance of DA D1 and D2 receptors 

has also been detected in amygdala (Camps  et  al.  1990, Palacios and  Pazos,  1987). 

DA D2  receptor  levels  are medium  to high  in  laminae V  and VI  in both cingulate 

and  temporal cortex and  in  the  entorhinal  cortex  (Bouthenet  et  al. 1987), while 

mRNA for the DA D5 receptor has been detected mainly in hippocampal (Meador-

Woodruff et  al. 1992). 

 

 13

http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Phenyl
http://en.wikipedia.org/wiki/Pyridine


 

5-HT synthesis and 5-HT transmission 

The principal centres for serotonergic neurons are the rostral and caudal raphe nuclei. 

From the rostral raphe nuclei axons ascend to the cerebral cortex, limbic regions and 

specifically to the basal ganglia. Serotonergic nuclei in the brain stem give rise to 

descending axons, some of which terminate in the medulla, while others descend the 

spinal cord (Figure 5). Serotonin plays a role in many brain processes, including 

regulation of body temperature, sleep, mood, appetite and pain. Problems with the 

serotonin pathway can cause obsessive-compulsive disorder, anxiety disorders, and 

depression. 

 
Figure 5.  The major human (A) and rodents (B) serotonergic pathways arise in the raphe nuclei 
(Adapted from Heimer 1995 and Kandel, Principles of Neural Science, 4th edition).  
 

Serotonin is synthesized from the amino acid L-tryptophan (Figure 6). Transformation 

of tryptophan into serotonin involves two steps:  

      1) Hydroxylation in 5-hydroxytryptophan catalyzed by tryptophan hydroxylase  

    (TPH). 

2) Decarboxylation of 5-hydroxytryptophan is catalyzed by L-aromatic amino acid    

    decarboxylase (DDC). 

 

TPH-mediated reaction is the rate-limiting step in the pathway. TPH has been shown to 

exist in two forms: TPH1, found in several tissues, and TPH2, which is a brain-specific 

isoform. In the brain, serotonin biosynthesis depends on the quantity of tryptophan  
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Figure 6.  Serotonin is synthesized from the amino acid L-tryptophan by a short metabolic pathway 
consisting of two enzymes: tryptophan hydroxylase (TPH) and amino acid decarboxylase (DDC). 
(http://herkules.oulu.fi/isbn9514267672/html/i43346.html) 
 
 

 
Figure 7.  Serotonergic transmission (http://health.howstuffworks.com/nerve5.htm) 
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which crosses the blood-brain barrier. Only free plasma tryptophan penetrates into the 

brain.  

 

5-HT receptors are a group of G protein-coupled receptors (GPCRs) and ligand-gated 

ion channels (LGICs) found in the central and peripheral nervous system.There are 7 

different types of 5-HT receptors (5-HT1 to 5-HT7) and each of 7 classes contains 

many receptor subtypes. 

 

Serotonergic action is terminated primarily via uptake of 5-HT from the synapse. This is 

through the specific monoamine serotonin transporter (SERT), on the presynaptic 

neuron. Various agents can inhibit 5-HT reuptake including tricyclic antidepressants 

(TCAs) and selective serotonin reuptake inhibitors (SSRIs) (Figure 7). 

 

 

5-HT and epilepsy 

The idea that there may be a link between 5-HT and seizure inhibition was first 

suggested as early as 1957 (Bonnycastle et al.). In this study, a series of 

anticonvulsants, including phenytoin, were shown to elevate brain 5-HT levels. In 

recent years, there has been increasing evidence that serotonergic neurotransmission can 

modulate seizures in a wide variety of experimental models. It is now generally 

accepted that drugs elevating extracellular 5-HT levels (such as 5-hydroxytryptophan or 

selective serotonin reuptake inhibitors, SSRI) exert a powerful antiepileptic action 

against both focal (limbic) and generalized seizures (Löscher 1984; Prendiville et al. 

1993; Yan et al. 1994). The anticonvulsant effect of the SSRI fluoxetine has been 

clearly demonstrated in a wide variety of experimentally-induced seizure models, as 

well as in genetically epileptic animals. Conversely, depletion of brain 5-HT by para-

chloroamphetamine (PCA, a selective neurotoxin for 5-HT neurons) or para-

chlorophenilalanine (pCPA, an inhibitor of 5-HT synthesis) can lower seizure threshold, 

increasing the severity of limbic status epilepticus (Bagdy et al. 2007; Mazarati et al. 

2005). 
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5-HT receptors are expressed in almost all networks involved in epilepsies. Audiogenic 

seizures are the best known defect caused by genetic manipulation of a 5-HT receptor 

subtype which provides a robust model for examination of the serotonergic mechanism 

in epilepsy. Mutant mice lacking the 5-HT2C receptor subtype are extremely 

susceptible to audiogenic seizures and are prone to spontaneous death after seizures, 

suggesting that serotonergic neurotransmission mediated by 5-HT2C receptors 

suppresses neuronal network hyperexcitability and in turn seizure activity (Tecott et al. 

1995; Brennan et al. 1997; Applegate and Tecott 1998). 5-HT1A receptor knockout 

mice display lower seizure threshold and higher lethality in response to glutamate 

agonist kainic acid (KA) administration. Furthermore, 5-HT1A knockout mice 

demonstrate impaired hippocampal-dependent learning and enhanced anxiety related 

behaviours (Sarnyai et al. 2000; Parsons et al. 2001). The areas which are crucially 

involved in the serotonergic control of seizures are the ventral midbrain and limbic 

system such as amygdala and hippocampus.  

 

Fourteen mammalian 5-HT receptor subtypes are currently recognized, and these have 

been classified into seven receptor families on the basis of their structural, functional 

and, to some extent, pharmacological characteristics (Bradley et al. 1986; Hoyer et al. 

1994). Among these receptors, the 5-HT1A, 5-HT2C, 5-HT3 and 5-HT7 subtypes, 

which are all expressed in epileptogenic brain areas (mainly, cerebral cortex and/or 

hippocampus), are the most relevant in epilepsy (Bagdy et al. 2007). 5-HT1A receptors 

are located both postsynaptically to 5-HT neurons (in the forebrain regions) at the level 

of the soma and dentrites in the mesencephalic and medullary raphe nuclei, cortical 

pyramidal neurons as well as pyramidal and granular neurons of the hippocampus 

(Francis et al. 1992). 5-HT2C binding sites are widely distributed and present in 

choroid plexus, areas of the cortex (olfactory nucleus, pyriform, cingulated and 

retrospenial), limbic system (nucleus accumbens, hippocampus and amygdala) and the 

basal ganglia (caudate nucleus and substantia nigra). 5-HT3 receptors are found in the 

nervous system both centrally and peripherally. The highest density of 5-HT3 receptors 

in the brain is found in the nuclei of the brainstem. Lower densities of 5-HT3-binding 

sites are found in the cortex and areas of limbic region such as hippocampus, amygdala, 
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and in medial nucleus of the habenula. 5-HT7 receptor expression is relatively high 

within the thalamus, hypothalamus and hippocampus with generally lower levels in 

areas such as the cerebral cortex and amygdala (To et al. 1995; Gustafson et al. 1996; 

Stowe and Barnes 1998). 

 

Indeed, the role of at least 5-HT1A, 5-HT2C, 5-HT3 and 5-HT7 receptor subtypes in 

epileptogenesis and/or seizure propagation has been described. These receptors are 

present on cortical and/or hippocampal glutamatergic or GABAergic neurons or 

terminals (Bagdy et al. 2007). For example, 5-HT1A receptor knockout mice display 

lower seizure thresholds and higher lethality in response to kainic acid administration 

(Sarnyai et al. 2000). Growing body of evidence suggest that 5-HT1A receptors may 

have an inhibitory role in the generation of hippocampal seizures and it depends on 5-

HT1A postsynaptic receptors. Neuroanatomical evidence shows a dense innervation of 

5-HT fibres to the hippocampus mainly originating from the median raphe forebrain 

nucleus (Azmitia & Segal, 1978).  

 

Inhibition of epileptiform bursts was also achieved with the selective 5-HT1A agonist, 

8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, a specific 5-HT1A agonist). 

They found that these effects were completely antagonized by WAY-100135, a 5-HT1A 

receptor antagonist (Salgado and Alkadhi, 1995). Administration of 8-OH-DPAT is able 

to reduce experimentally induced seizures in rats (Gariboldi et al. 1996). In general, 

hyperpolarization of glutamatergic neurons by 5-HT1A receptors and depolarization of 

GABAergic neurons by 5-HT2C receptors as well as antagonists of 5-HT3 and 5-HT7 

receptors decrease the excitability in most networks involved in epilepsies (Bagdy et al. 

2007).               

 

Embryonic development of Dopaminergic and Serotonergic neurons: 

The embryonic development of the Central Nervous System (CNS) requires an 

orchestrated series of events tightly regulating the patterning and regionalization of the 

neural tube, as well as the proliferation, survival and differentiation of distinct neuronal 

populations. All these events are controlled by cascades of activation of transcription 
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factors that regulate the expression of specific subsets of genes in restricted regions and 

neuronal populations of the developing CNS. Among these transcription factors, 

homeobox-containing proteins play a crucial role, and altered expression of these 

factors can impact embryonic as well as adult CNS functions. In particular, homeobox-

containing genes have been described to crucially regulate differentiation of 

dopaminergic and serotonergic neurons during brain development. In the adult brain, 

dopaminergic and serotonergic neurons, respectively located in midbrain and hindbrain 

regions, diffusely innervate several forebrain areas, contributing to regulate several 

physiological functions including brain excitability. DA neurons are divided into ten 

distinct groups. The most prominent ones reside in the ventral midbrain (called A8, A9 

and A10), and in the diencephalon (groups A11-A15). The telencephalon contains two 

smaller groups of DA neurons, and these are restricted to the olfactory bulb (A16 

group) and retina (A17 group). Groups A1-A7 are noradrenergic. Mammalian 5-HT 

neurons are classically divided from anterior to posterior into nine cell groups (B9–B1, 

respectively). The more rostral 5-HT groups (B9-B5) reside in the midbrain and rostral 

hindbrain, whereas groups B4-B1 are located more caudally. Rostral group accounts for 

85% of all serotonergic neurons in the brain. The most rostral serotonergic neurons in 

the brainstem are located in the ventral tegmental area (Cordes 2005). 

Understanding the embryonic development of these neuronal subtypes is crucial to 

elucidate their physiological function in the adult brain. In the mammalian nervous 

system, individual populations of neurons develop in a stereotypic position identified by 

their coordinates along the antero-posterior (A/P) and dorso-ventral (D/V) axes of 

neural tube (Hynes et al. 1999; Tanabe et al. 1996). Three organizing centers, the mid-

hindbrain boundary (MHB or isthmus), the floorplate (FP), and the anterior neural ridge 

(ANR) control regionalization of the two main axes and specify the location and the cell 

fate of specific neuronal population within the brain fate map (Rubenstein et al. 1994).  

This is also true for dopaminergic (DA) and serotonergic (5-HT) neurons localized in 

caudal midbrain and rostral hindbrain, respectively (Hynes et al. 1999).  
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Figure 8. Gene regulatory networks involved in DA and 5-HT neuron differentiation.  
(Top) Patterning signals in the developing brain. Sagittal view of an E11 mouse embryo neural tube; 
anterior is on the left. Expression of the secreted factors fibroblast growth factor 8 (Fgf8), Wnt1 and sonic 
hedgehog (Shh) is depicted at the MHB, in the anterior neural ridge and ventral diencephalon and within 
the floor/basal plate of the spinal cord, hindbrain, midbrain and caudal forebrain. Mesencephalic 
dopaminergic (DA) neurons are induced by a combination of Fgf8 and Shh (arrows). 5-HT neurons are 
specified by a combination of the same factors but they require an early inductive signal (Fgf4, not 
shown) derived from the anterior mesoderm during gastrulation. (Bottom) Gene expression patterns 
participating to DA and 5-HT neuron differentiation; anterior is on the left. Gbx2 expression maintains 
Fgf8 expression, whereas Otx2 and Gbx2/Fgf8 regulate each other negatively. Concomitantly, the 
expression territories of Fgf8, Wnt1, Engrailed and Pax genes become interdependent and establish a 
positive regulatory loop that is necessary to maintain MHB identity. The mid-diencephalic border is 
positioned by negative cross-regulations of Engrailed/Pax and Pax6 (not shown), whereas Fgf8 exerts a 
negative influence on the caudal expression of Hox genes (not shown). Later on, Shh induces the 
expression of Lmx1a and Msx1/2. While Lmx1a is sufficient to induce DA cell differentiation of ventral 
progenitors cells and induces the expression of Msx1/2, Msx1/2 is involved in the repression on the 
lateral progenitors cell fate (not shown). Midbrain DA neurons are specified dorso-ventrally by Shh 
signaling and antero-posteriorly by Otx2 signals, while 5-HT cells originate from precursors lacking the 
Otx2 signal. Shh signaling induces the expression of Nkx2.2, which is then essential for specification of 
5-HT neurons and ventral progenitor identity, conferring competence to become 5-HT neurons. Once 
positioning and identity of the neuronal precursors are determined, specific differentiation programs are 
activated in DA (Lmx1b, Pitx3, Nurr1) and 5-HT neurons (Lmx1b and Pet-1). Adapted from Prakash & 
Wurst 2004, Wurst & Bally-Cuif 2001, Tripathi et al. 2010. See text for details. Abbreviations: Di, 
diencephalons; Ms, mesencephalon; r, rhombomeres. 
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Regionalization of midbrain/hindbrain territory.  

The MHB is anatomically characterized as a neuroepithelial constriction between 

midbrain and hindbrain; however, as an organizing center, the MHB is the tissue that 

has the ability to recreate pattern when transplanted to a different region of the neural 

tube. Anatomical boundaries of this functional center have not yet been determined, so 

investigators have used genes that either are expressed specifically or have borders that 

terminate in the region at the early embryonic ages to define it. For this reason the 

borders of the MHB are only defined with the use of expression patterns of specific 

genes, which delineate its competence territory (Figure 8). These genes are expressed in 

the junction (e.g. En1, En2, Pax2, Pax5, Pax8, and Fgf8, Fgf17 and Fgf18), or cover a 

broad domain that terminate at the boundary between the mid- and hindbrain (e.g. Otx2 

and Gbx2). 

 

 On the basis of expression of the multiple MHB-associated genes, it has been 

determined that the MHB initially covers a broad region within the neural plate, 

occupying territories in both the presumptive midbrain and presumptive hindbrain. 

Between the headfold stage (>1 somite) and mid-gestation, it appears that this region 

gradually diminishes in size, subsequently occupying an area between the midbrain and 

hindbrain. By embryonic stage 7.5 (E7.5) in mouse, the transcription factors Otx2 and 

Gbx2 are expressed in a complementary fashion in the embryo: the border along their 

expression territories delineates the future junction between mesencephalon and 

metencephalon, the MHB (Figure 9). Slightly later, at E8, the transcription factor Pax2 

and the secreted molecule Wnt1 are expressed in broad, overlapping domains (Rowitch 

& McMahon, 1995). Wnt1 expression is largely restricted to the Otx2-positive territory, 

whereas Pax2 expression crosses the Otx2/Gbx2 border (Bally-Cuif, 1995). Shortly 

after, the transcription factors Engrailed 1 (En1) (at the 1-somite stage), Engrailed 2 

(En2) (at the 3–5-somite stage) (Davis & Joyner 1988; Davis et al. 1988) and Pax5 (at 

the 3/5-somite stage) (Asano & Gruss, 1992) are expressed across the Otx2/Gbx2 

border. The secreted factor fibroblast growth factor 8 (Fgf8) is similarly switched on at 

the 3–5 somite stage but is restricted to the caudal, Gbx2-positive side of the mes-

metencephalic junction (Crossley & Martin, 1995). 
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Otx1 and Otx2 are expressed rostral to the MHB (Simeone 1992, 1993; Millet 1996). 

Some others, such as Gbx2, are caudal to this boundary (Bulfone et al. 1993; von 

Bubnoff et al. 1995; Wassarman et al. 1997; Hidalgo-Sánchez et al. 1999), whereas 

others, such as En1 and En2 (Davis et al. 1988; Gardner et al. 1988) and three members 

of the Pax family (Pax2, Pax5 and Pax8; Asano and Gruss, 1992) are expressed at both 

sides of the boundary, forming a decreasing gradient in rostral and caudal directions 

(Hidalgo-Sánchez et al. 1999). 

 

. 

 
 
Figure 9.  Dynamics of gene expression patterns at the mid-hindbrain border.  
Dorsal views of the mouse embryonic neural plate at a) 0-somite stage, b) 6-somite stage and c)| E10 
stage. Anterior is on the top. a) At the end of gastrulation (0 somites), the neural plate is broadly 
subdivided into an anterior domain that expresses Otx2 and a posterior domain that expresses Gbx2. The 
expression patterns of both genes meet at the mid-hindbrain border and form decreasing gradients in 
opposite directions. b) At 6 somites, the posterior border of Otx2 expression and the anterior border of 
Gbx2 expression have sharpened and abut each other. Wnt1 expression is initiated in the mesencephalon, 
and En1 (quickly followed by En2) and Pax2 are turned on across the Otx2–Gbx2 border. Slightly later, 
Fgf8 expression is recruited to the caudal side of the Otx2–Gbx2 border. c) At E10, the Otx2–Gbx2 
border identifies the midbrain/hindbrain boundary. The expression of Wnt1 and Fgf8 has become 
restricted to narrow rings encircling the neural tube on either side of this boundary. The domains of En1 
and Pax2 expression, which still overlap the boundary, have also become narrower, whereas En2, Pax5 
and Pax8 are expressed across most of the mid-hindbrain domain. (En, engrailed; Fgf8, fibroblast growth 
factor 8; Gbx2, gastrulation brain homeobox 2; Ms, mesencephalon; Mt, metencephalon; Otx2, 
orthodenticle homologue 2; P, prosencephalon; Pax, paired box; r, rhombomeres; hatched line, axis of 
symmetry). An arrow to the left of each panel indicates the position of the midbrain/hindbrain boundary. 
(Wurst & Bally-Cuif, 2001) 
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At early stages Fgf8, Wnt1 and Otx2 are expressed in the caudal midbrain regions that 

give rise to midbrain DA neurons. In contrast, Fgf8 and Gbx2, but not Wnt1, are 

expressed in the region that gives rise to rostral 5-HT progenitors (Figure 8). The 

transcription factors Engrailed1 (En1) and Engrailed2 (En2) are instead expressed in 

both caudal midbrain and anterior hindbrain. The expression domain of each gene 

reflects the role the gene plays in the formation of this territory. Otx2 and Gbx2 

expression domains are restricted to the anterior and posterior part of the neural tube 

and, by doing so, define positioning of MHB along the anterior-posterior axis; Wnt1 

and Fgf8 expression patterns are restricted to the mid-hindbrain junction in specular 

domains and are involved in the growth and maintenance of MHB cells; genes 

expressed across the entire mid- and hindbrain territory, such as Pax2, Pax5, En1/2, 

define the identity of this region, as a whole (Acampora et al. 1995, 1997; Suda et al. 

1997). The second organizing center of the midbrain/hindbrain region is the FP. Sonic 

hedgehog (Shh), a secreted glycoprotein and the key-signaling molecule of the FP, is 

mainly supplied to the neural tube by the ventral midline structures. In mice lacking Shh 

(Matsunaga et al. 2000), the nervous system shows abnormalities in the development of 

ventral midline structures like floor plate, notochord and the differentiation of ventral 

cell types. Shh provided by the floor plate and notochord transforms the dorsal into 

ventral fates and is required for the ventral cell types differentiation (Alexandre & 

Wassef 2005). Midbrain dopamine neurons and 5-HT neurons are induced close to the 

floor plate around E10. Dopamine neurons appear rostral to the MHB, whereas 5-HT 

neurons are generated caudally. Dopamine neurons of the tegmentum respond to a 

combination of Shh and Fgf8 while serotonin neurons of the pons require early Fgf4 

signalling, followed by Shh and Fgf8. However, Shh or Fgf8 or Fgf4 can not induce 

dopamine/serotonin neurons independently, indicating that an integration of 

dorsoventral and anteroposterior signals might be required (Ye et al. 1998). 

 

Development of mDA progenitors.  

The concomitant action of MHB and FP in the midbrain activates a combination of 

transcription factors including Otx2, Lmx1a/b, En1/2, Msx1/2, Ngn2 and Mash1, in a 

temporal sequence. The expression of Otx2, Lmx1b and En1/2 genes is already initiated 
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by E9.0 (Simeone et al. 1992; Ang et al. 1994; Simon et al. 2001; Smidt et al. 2000). 

Subsequently, Lmx1a and Msx1/2 expression turns on around E9.5, while Ngn2 and 

Mash1 are not expressed until E10.75 (Andersson et al. 2006a). The molecular 

mechanisms leading to the sequential activation of these genes is not understood. Shh 

can induce Lmx1a and Msx1/2 expression endogenously in mouse embryos one day 

later than the initiation of Shh expression (Echelard et al. 1993). These results suggest 

that Shh signalling induces another signal or factor that is required for the expression of 

Lmx1a and Msx1/2.  

 

Induction of the mDA neurons 

Birth dating studies demonstrate that mDA progenitors generate postmitotic immature 

mDA neurons between E9.5 and E13.5 in mice (Bayer et al. 1995). Immature mDA 

neurons induce Nurr1 expression (Zetterstrom et al. 1997) and En1/2 expression (Simon 

et al. 2001; Alberi et al. 2004) during this differentiation step (Figure 10). From E11.0 

onwards, immature mDA neurons continue to migrate radially on radial glial fibres and 

further differentiating into mDA neurons (Kawano et al. 1995). These neurons express 

Pitx3, TH (tyrosine hydroxylase) and aromatic amino acid decarboxylase (Aadc, the 

enzyme that converts DOPA into dopamine), in addition to the earlier markers 

expressed in immature mDA neurons. Ngn2, however, is not expressed in mature mDA 

neurons. Aadc mRNA transcripts are thought to be expressed already in immature mDA 

neurons (Smidt et al. 2004).  

 

 
 
Figure 10. The sequential timing of transcription factor activation in mDA progenitors. The curved arrow 
indicates cycling cells. (Ang 2006) 
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Transcription factors required for mDA neuron development  

The roles of transcription factors, such as Nurr1, En1/2 and Ptx3, acting during the late 

differentiation step of the mDA lineage (described briefly above, see Figure 10 and 

Table 1) have been extensively reviewed (Goridis & Rohrer 2002; Riddle & Pollock 

2003; Wallen & Perlmann 2003; Simeone et al. 2005; Smits et al. 2006; Prakash et al., 

2006). However, the roles of the transcription factors that govern the specification and 

early differentiation of mDA progenitors have only recently started to emerge during 

the past decade (Table 1).  

 

 
Table 1. A summary of the role of transcription factors in mDA neuron development (from Ang, 2006) 
 

 

Otx2 

Otx2 encodes a member of the bicoid sub-family of homeodomain-containing 

transcription factors that is widely expressed before gastrulation, but its expression 

becomes progressively restricted to the anterior third of the mouse embryo after E7.75 

(Simeone et al. 1993; Ang et al. 1994). Within the nervous system, Otx2 expression is 

restricted to the forebrain and midbrain between E8.5 and E12.5. In addition to these 

anterior brain region, expression is also detected in the rhombencephalon from E12.5 

onwards (Mallamaci et al. 1996). Otx2 is required for the formation of the forebrain and 

midbrain as a result of its role in the anterior visceral endoderm, where it functions to 

restrict posterior fates (Mallamaci et al. 1996; Perea-Gomez et al. 2001) (Simeone & 
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Acampora, 2001). Subsequently, Otx2 is also required for positioning the expression of 

Fgf8 and Wnt1 at the midbrain boundary (Brodski et al. 2003), and it limits the dorsal 

extent of Shh expression in the ventral midbrain (Puelles et al. 2003).  

 

The homeobox-containing transcription factor Otx2 has additional roles in specification 

and differentiation of mDA progenitor (Simeone et al. 2002; Simeone 2005). At the 

midbrain/hindbrain boundary, Otx2 specifies identity and number of dopaminergic 

versus serotonergic progenitors by antagonizing the fibroblast growth factor 8 (Fgf8) 

and sonic hedgehog (Shh) pathways and preventing ventral de-repression of the Nkx2.2 

transcription factor (Puelles et al. 2003; 2004; Prakash et al. 2006).  In dopaminergic 

progenitors, Otx2 is co-expressed with Engrailed 1 (En1) (Puelles et al. 2004).  

 

Several conditional Otx2 mouse mutants have been generated to delete Otx2 at different 

developmental stages. For example, conditional mutant mice were generated to 

inactivate Otx2 by a Cre recombinase expressed under the control of the En1 promoter 

(En1cre/+; Otx2flox/flox) (Figure 11). This strategy allowed to delete Otx2 only in the 

midbrain of En1Cre/+; Otx2flox/flox embryos; from E9.5 (around 25 somites) onwards, a 

virtually complete inactivation of Otx2 was detected in the ventral and caudal midbrain 

and functional Otx2 transcripts were confirmed to the dorsolateral aspect of the anterior 

midbrain (Puelles et al. 2004). 

 

Figure 11. Wild-type locus (thick upper line) is compared to three Otx2 mutant loci: after homologous 
recombination with the targeting vector (second line), after removal of the PGK neocassette (third line) 
and after excision of the Otx2 exon 2 (fourth line). (Puelles et al., 2004) 
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In Otx2 conditional mutant mice (En1cre/+; Otx2flox/flox), midbrain dopaminergic neurons 

were greatly reduced in number and most of their precursors underwent 

neurotransmitter fate switch, generating 5-HT-positive neurons (Puelles et al. 2004) 

(Figure 12).  

 
Figure 12. Abnormalities in the ventral midbrain of En1Cre/+; Otx2flox/flox mutants. Th+ (A) and 5-HT (B) 
immunohistochemistry of DA and 5-HT area (Puelles et al., 2004). 
 
In these En1Cre/+; Otx2flox/flox mutant embryos, midbrain expression of Shh expands 

dorsally, whereas Fgf8 expression, which is normally restricted to the anterior 

hindbrain, shifts anteriorly into the midbrain (Puelles et al. 2004). Despite these 

changes in AP and DV patterning molecules, a small domain of midbrain tissue 

develops normally. Within this domain, expression of the homeodomain protein Nkx2.2 

expands ventrally into presumptive DA progenitors around E9.5, indicating that Otx2 is 

required for the repression of Nkx2.2 in these progenitors (Prakash et al. 2006). 

Interestingly, serotonergic neurons are generated ectopically in these Otx2 conditional 

mutants at the expense of TH+ mDA neurons. This alteration is maintained throughout 

life, since En1cre/+; Otx2flox/flox adult mice still display reduced DA and increased 5-HT 

levels in the striatum and cerebral cortex (Borgkvist et al. 2006).  

 

A different role for Otx2 in mDA progenitors was identified from studies of Nestin-Cre; 

Otx2flox/flox embryos (Vernay et al. 2005). In these conditional mutants, loss of Otx2 

protein from E10.5 onwards results in loss of expression of the proneural genes Ngn2 
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and Mash1 in ventral mDA progenitors. Subsequently, mDA neurons are missing at the 

ventral midline of the midbrain. These results indicate that Otx2, presumably via 

regulating the expression of Ngn2 and Mash1, is also required for the generation of 

mDA neurons.  

 

To study the role of Otx2 in the development of ventral midbrain dopaminergic 

neurons, mutant mice En1Cre/+; tOtx2ov was created (Omodei et al. 2008) in which Otx2 

was conditionally over-expressed by a Cre recombinase under the control of the En1 

promoter (Figure 13). 

 

 
 
 
Figure 13. Generation of mouse mutants overexpressing Otx2. The genomic position at the chromosome 
7 D2 region is shown in upper line whereas the tOtx2bov cassette is shown in second line, is inserted. 
Cre-mediated removal of the Neo-triple polyA stop cassette generates the tOtx2ov allele (third line). 
(from Omodei et al., 2008) 
 

These mice over-express Otx2 gene at rostral midbrain and hindbrain. The comparison 

between the control mice tOtx2ov and mutant mice En1Cre/+; tOtx2ov shows that mutant 

mice En1Cre/+;tOtx2ov in which Otx2 is overexpressed in hind brain region (prospective 

cerebellum) and over express throughout the midbrain. The Otx2 gene is essential for 

regulating the proliferation and differentiation of dopaminergic neurons. This over-

expression of Otx2 gene in these mutant mice was linked to the position occupied by 

the midbrain dopaminergic progenitors which adjusting the number through a dose-

dependent mechanism. 
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Indeed, En1Cre/+;tOtx2ov mice have an increase of 35% of dopaminergic progenitors 

neuron in the VTA of the anterior, and more prominently in posterior mesencephalon 

(Omodei et al. 2008) (Figure 14). Moreover, Otx2 controls selectively the development 

of dopaminergic neurons which modulates the number along the anterior-posterior axis 

of the ventral midbrain. Otx2 overexpression induces a selective expansion of both 

mesDA progenitors and neurons, without affecting identity and size of adjacent 

progenitor domains or their post-mitotic progeny. The features of the oculomotor (OM) 

and red nucleus (RN) was similar in En1Cre/+; tOtx2ov  mice when compared with the 

tOtx2ov mice (Omodei et al. 2008). 

 
Figure 14. The overexpression of the Otx2 gene induces an increase in the number of dopaminergic 
neurons along the AP. Immnohistochemistry for  the dopaminergic marker tyrosine hydroxylase (TH) at 
the level of the ventral midbrain clearly demonstrate that number of TH+ neuron were less in tOtx2ov (A) 
in comparison to En1Cre/+;tOtx2ov (B) (Omodei et al. 2008). 
 
 
 

Lmx1a and Lmx1b 

Lmx1a and Lmx1b are members of the family of LIM homeodomain transcription 

factors. Lmx1a expression begins at E9.5 in the ventral midbrain and then progressively 

expands dorsally (Andersson et al. 2006). By contrast, Lmx1b is expressed in the 

midbrain from E8.0 onwards (Smidt et al. 2000), but this expression becomes restricted 
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by E9.5 to the mid-hindbrain boundary, roof plate and the ventral midbrain, including 

the floor plate. At E9.5, Lmx1b expression encompasses more cells in the ventral 

midbrain than does Lmx1a, but that by E10.5 the expression domains of the two genes 

largely coincide. Since the expression of Lmx1a directly overlies a region where TH+ 

neurons develop at E11.5, Lmx1a expression has been proposed to mark the dorsal 

boundary of mDA progenitors (Andersson et al. 2006). 

 

Loss-of-function studies have shown that Lmx1b is required for the maintenance of 

TH+ mDA neurons. Recently, Lmx1a has been identified as a crucial determinant of 

mDA neuron fate development (Andersson et al. 2006). Overexpression of Lmx1a in 

the ventral midbrain promoted the generation of DA neurons over that of other neuronal 

subtypes. It is noteworthy that Lmx1a alone is not sufficient to induce mDA neurons, 

and that it functions cooperatively with ventral factors induced by the Shh pathway 

(Fig. 15).  

 

 
Figure 15. Model of mDA neuron specification. Shh induces Lmx1a and X (an unknown transcription 
factor) in mDA progenitors. Based on the timing of induction of endogenous Lmx1a expression 
compared with Shh expression, the induction of Lmx1a may be indirect. Lmx1a and X then act 
cooperatively to specify immature mDA neurons. Lmx1a in turn activates Msx1, which induces Ngn2. 
Ngn2 promotes neuronal differentiation and, perhaps, also the subtype specification of immature mDA 
neurons. In addition, Msx1 is required and is sufficient for the suppression of Nkx6.1 expression in DA 
progenitors. Dotted arrows indicate hypothetical functions that remain to be proven. This model is 
modified, from Andersson et al. 2006. 
 

Additional support for cooperative interactions between Shh and Lmx1a has come from 

studies using the differentiation of embryonic stem (ES) cells. Mouse ES cells 
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transfected with Lmx1a differentiate into DA neurons in the presence, but not in the 

absence, of Shh (Andersson et al. 2006). Conversely, Lmx1a knockdown by siRNA 

electroporation resulted in a loss of DA neurons, which was not compensated for by 

unperturbed expression of Lmx1b (Andersson et al. 2006). This hypothesis is consistent 

with the observation that Lmx1b is much less efficient than Lmx1a at promoting mDA 

neuron differentiation in ES cells (Andersson et al. 2006). 

 

Msx1 and Msx2 

The mouse Msx genes, Msx1, Msx2 and Msx3, encode homeodomain transcription 

factors and function as transcriptional repressors (Ramos & Robert 2005). Msx1 and 

Msx2 are expressed in DA progenitors in the ventral midbrain (Andersson et al. 2006). 

Msx3, by contrast, is expressed exclusively in the dorsal aspect of the neural tube in the 

mouse, caudal to the mid-hindbrain boundary (Shimeld et al. 1996; Wang et al. 1996). 

Msx1-/- embryos exhibit a strong reduction in the normal number of mDA neurons, 

probably as a result of the downregulation of Ngn2 expression (Andersson et al. 2006). 

Moreover, Msx1 is required to repress Nkx6.1 expression in ventral midbrain 

progenitors (Andersson et al. 2006). Premature expression of Msx1 in the midbrain in 

transgenic mice also leads to the precocious expression of Ngn2 and Nurr1, and to the 

downregulation of Shh in the floor plate, indicating that Msx1 sets the timing of mDA 

neuron generation possibly by inducing Ngn2 expression in ventral midbrain 

progenitors (Andersson et al. 2006). Given that Msx genes normally function as 

repressors, Msx1 may regulate the activity of a repressor of Ngn2 in mDA progenitors.  

 

Ngn2 and Mash1 

Proneural genes Mash1, Ngn2 and Ngn1 show an intricate pattern of expression in the 

ventral midbrain. Ngn2 and Mash1 are expressed in mDA progenitors, whereas Ngn1, 

Ngn2 and Mash1 are co-localized in the ventricular zone more dorsally (Kele et al. 

2006). Ngn2 is required for the generation of Nurr1+ immature mDA neurons, and 

probably also for their subsequent differentiation into TH+ mature mDA neurons 

(Andersson et al. 2006b; Kele et al. 2006). Although Mash1 by itself is not required for 

mDA neuron development, the loss of both Mash1 and Ngn2 in Mash1;Ngn2 double 
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mutant mouse embryos leads to a greater loss of mDA neurons than occurs in Ngn2 

single mutants, suggesting that Mash1 can partially compensate for the loss of Ngn2 

function in mDA progenitors. Accordingly, this results in a further rescue of Th+ 

neurons in Ngn2KIMash1/Mash1 embryos that express Mash1 under the control of the 

Ngn2 promoter (Kele et al. 2006). Ngn2 has a role in regulating generic neuronal, as 

well as subtype-specific, differentiation programs in other parts of the CNS (Bertrand et 

al. 2002). In other parts of the CNS, the role of Ngn2 in subtype specification has been 

demonstrated by the inability of other classes of proneural genes to compensate for 

Ngn2 activity (Bertrand et al. 2002). Mash1 is able to compensate partially for Ngn2 

function, as 60% of the normal number of mDA neurons are generated in 

Ngn2KIMash1/KIMash1 embryos. This partial compensation suggests some unique 

role for Ngn2 in specification of the mDA neuronal subtype. In addition, the expression 

of Ngn2, but not Mash1, in postmitotic DA neurons is consistent with an additional and 

unique role for Ngn2 in regulating later differentiation steps in immature mDA neurons. 

However, Ngn2 alone is insufficient to promote the ectopic expression of DA neuron 

markers and the generation of ectopic DA neurons (Kele et al. 2006).  

 

The Engrailed (En) homeobox genes are one of the most widely studied group of 

transcription factors, described and investigated in a variety of species. The En genes 

are involved in regionalisation during early embryogenesis (Hidalgo, 1996; Joyner, 

1996), and later in the specification of certain neuronal populations (Lundell et al. 1996; 

Simon et al. 2001). During early embryogenesis, they are required for the maintenance 

of Fgf8 expression in the midbrain and hindbrain. During later development and 

throughout life, the two genes are required for the survival and maintenance of mesDA 

neurons in a cell-autonomous and gene dose-dependent manner. In mouse embryo 

expression of these genes was first detected at 8 day. In vertebrate species, two 

homologs of Engrailed exist, En1 and En2. At the protein level, the sequence 

differences between homologs and paralogs are significant, while homeobox domain is 

highly conserved. En1 has roles in generation of mid-hindbrain precursor cells and in 

signaling normal development of the limbs and sternum (Wurst 1994). Engrailed-1 is a 

target of Wnt-1 signaling pathway in the midbrain development. En1 mutant mice die at 
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birth with a large mid-hindbrain deletion, whereas En2 mutants are viable, with 

cerebellar defects. En1 mutant phenotype was rescued by replacement of En1 with En2 

(Hanks et al. 1995). Engrailed-2 was ectopically expressed in cerebellar Purkinje cells 

from the late embryonic stage into adulthood (Baader et al. 1999). 

 

The En2 mutation was created by homologous recombination, resulting in the 

replacement of approximately 1 kb of the En2 gene (300 bp of intron and 700 bp of the 

homeobox exon including the end of translation) (Figure 16; Joyner et al. 1991). 

 
 

 
 
Figure 16. Structure of the En-2 protein and wild-type and mutant loci- The normal En-2 protein product 
is shown schematically at the top with the four engrailed conserved domains depicted as stippled boxes. 
The conserved domains NH2- and COOH-terminal of the homeobox are 17 and 21 amino acids, 
respectively. The arrow indicates the position of the intron in the En-2 gene. The En-2 wild-type (middle) 
and mutant (bottom) loci are shown schematically with the 5' end to the left. The En-2 exons are marked 
as thick-lined rectangles with the translated sequences stippled and the homeobox solid. The neo 
containing vector is shown as a thin-lined rectangle and Pr indicates the 500-bp human P-actin promoter 
sequences. The one transcript of the wild-type En-2 gene and two transcripts of the mutant En-2 locus 
from both the En-2 promoter and the 1-actin promoter are indicated below the loci with narrow rectangles 
indicating the exon sequences. The restriction sites are B, Barn HI and Bg, Bgl II. (Bg) indicates the Bgl 
II restriction site destroyed in making the mutation (from Joyner et al., 1991). 
 
 

For generation of En1+/-/En2-/- or En1/tau-LacZ+/-/En2-/- mice, first En1/tau-LacZ  mice 

were generated by a “knock-in” strategy in which the first 71 codons, including the start 
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codon, were replaced by a tau-LacZ sequence (Callahan and Thomas, 1994) and 

resulted in an En1 null allele. The construct and procedures are described below 

(Saueressig et al. 1999). Parental lines for producing the mutant mice deficient for both 

En1 and En2 were kept as En1+/-/En2-/- or En1/tau-LacZ+/-/En2-/- (Simon et al. 2001) 

(Figure 17) 

 
Figure 17.  Structure of the mouse En1 locus- The En1/tau-LacZ  knock-in targeting vector is shown 
below. Abbreviations: B, BamHI; C, ClaI; H, HindIII; R, EcoRI; X, XbaI; neo, PGKneopA G418 
resistance cassette used for positive selection flanked by loxP recombination sites (triangles); T-lacZ, 
coding region of the tau-lacZ fusion gene; pA, SV40 polyadenylation signal. DNA probe: A 0.7 kb 
EcoR1-HindIII fragment from the 3′ end of the En1 gene was used to screen ES cells for homologous 
recombinants (Saueressig et al. 1999). 
 

The single-null mutants for either En1 (En1-/-) or En2 (En2-/-) show no significant 

alterations in the organization of the mesDA system at birth. En1-/-, En1-/-; En2+/- and 

En1-/-; En2-/- mice die at birth and show a gene-dose- dependent reduction of mesDA 

neurons ((Simon et al. 2001). Mice of other Engrailed genotypes are viable and fertile. 

Among these, En1+/-, En1+/-/En2+/-, En2+/-, and En2-/- mice displayed a wild-type-like 

distribution of the neurons at all ages. En1+/-; En2-/- (EnHT) mice are viable and fertile 

and showed a specific loss of DA neurons in the SN.  

 

In the EnHT mice, the numbers of mesDA neurons continued to decrease until 3 months 

after birth while the distribution and number of mesDA neurons were stablized in En2-/-  

    
mice at all age. Indeed, from 3 months after birth, the mutants had on average 32.6% 

fewer mesDA neurons than their En2-/- litter-mate controls (Sgado et al. 2006) (figure 

18). Moreover, no major defect in DA and 5-HT systems has been found in the En2-/- 

mice so  for this purpose En2-/- mice has been considered as control littermates (Sgado 

et al. 2006). In the open field test, a general assessment of locomotor and exploratory 
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behavior, EnHT mice were not impaired at 8 months; however, by 18 months of age, 

they showed a significant reduction in forward locomotion compared with En2-/- 

littermate controls and to their own performance at 8 months, whereas in En2-/- mice, 

locomotion was not significantly altered (Sgado et al. 2006). 

 

 
Figure 18. Progressive postnatal degeneration of dopaminergic cells of the substantia nigra-TH 
immunostaining on coronal brain section at P0 (A, A’), P30 (C, C’), and 3months (E, E’) of En2-/-and 
EnHT mutant mice on the level of the substantia nigra. (Scale bars: 0.5mm) (from Sgadò et al. 2006). 
 
 

Development of hind brain serotonergic neurons. 

Genetic and transplantation experiments have demonstrated that the sonic hedgehog 

(Shh) signal, which is emitted by the notochord and the floorplate (midline of the neural 

tube), is required to induce 5-HT cell fate. Although 5-HT neurons are born near the 

floorplate, they migrate to specific positions along the dorso-ventral axis as the raphe 

nuclei are formed (refs?). 

 

Induction of the hindbrain 5-HT neurons 

The inductive requirements of 5-HT neurons of the DRN (dorsal raphe nucleus) differ 

from those of the MRN (medial raphe nucleus). The first 5-HT neurons that are born in 

r1 (rhombomere 1) become the 5-HT neurons of the DRN, and may be particularly 
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dependent on Fgf8 or another signal from the mid/hindbrain organizer, also known as 

the isthmus. When Fgf8 expression is reduced by shifting expression of the 

homeodomain gene Otx2 caudally, 5-HT neurons in the DRN are reduced (Brodski 

2003). Conversely, if the expression of the Gbx2 homeodomain gene is shifted rostrally 

and Fgf8 expression extended, the DRN is enlarged (Wassarman et al. 1997). The 5-HT 

neurons of the DRN also rely on a non-cell autonomous, dosage-sensitive function of 

the En1 and En2 transcription factors, which again could be mediated by altered Fgf8 

expression (Cordes 2005). Taken together, these data appear to suggest that high early 

levels of Fgf8 or another isthmus-specific signal may be required to induce 5-HT 

neurons in the DRN, while lower Fgf8 levels may suffice to induce 5-HT neurons in the 

MRN. 

 

Transcriptional determinants of early 5-HT neuron specification 

The transcription factors involved in 5-HT neuron development can be roughly divided 

into two broad classes:  

1) Nkx2.2, Nkx6.1, and Mash1 are required to generate 5-HT precursors,  

2) Mash1, Gata2, Gata3, Lmx1b, and Pet1 are required for -5-HT subtype selection and  

    5-HT neuron terminal differentiation. 

 

Nkx2.2 homeodomain transcription factor acts downstream of Shh signaling. Nkx2.2 is 

essential for initiating the specification of all 5-HT neurons in the raphe except for those 

from the DRN. In Nkx2.2–/– mice, only dorsal raphe 5-HT neurons are present, and all 

others are missing. Nkx2.2 is thought to promote 5-HT neuron differentiation in part by 

down regulating the homeodomain transcription factor Phox2b. During 5-HT neuron 

development, Nkx2.2 does collaborate with the related homeodomain transcription 

factor Nkx6.1, which is expressed more broadly than Nkx2.2 in the ventral hindbrain. 

Nkx2.2 and Nkx6.1 together direct Gata2 and Gata3 expression and 5-HT neuron 

specification. As already described, Nkx2.2 expression is negatively controlled by Otx2 

in presumptive DA progenitors. De-repression of Nkx2.2 in these progenitors due to 

conditional knockout of Otx2 in these cells results in ectopic generation of serotonergic 

neurons in place of mDA neurons (Puelles et al. 2003, 2004). 
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Nkx6.1 is a Shh-inducible HD transcription factor similar to Nkx2.2 but with a broader 

expression domain (Briscoe et al. 2000). Shh regulates Gata2 and 5-HT expression in r1 

through a combination of Nkx2.2 and high Nkx6.1 signals (Figure 19). Down-

regulation of Nkx6.1 by antisense morpholinos in the hindbrain leads to loss of Gata2, 

Gata3, and Pet1 expression and the absence of 5-HT neurons (Craven et al. 2004). The 

Gata2 and Gata3 zinc finger transcription factors are required in a global 5-HT neuron-

specific and a 5-HT cluster-specific manner, respectively (Cordes et al. 2005) (Figure 

19). Ectopic expression of either Gata protein is sufficient to induce 5-HT neurons in r1 

of the hindbrain, and this occurs downstream of Nkx2.2/Nkx6.1, and upstream of 

Lmx1b /Pet1 (Craven et al. 2004). Gata3 is expressed in both clusters of 5-HT neurons 

starting at E10.5–11.5, but it is only required for development of 5-HT neurons in the 

caudal raphe nuclei (Pattyn et al. 2004). In Gata3–/– embryos, a normal number of 5-

HT precursor cells are formed, but a striking gradient of diminishing requirement for 

Gata3 from caudal to rostral can be seen (Pattyn et al. 2004). 

 
Figure 19. The specification of rostral 5-HT neurons in the vertebrate hindbrain. Shh signaling in the 
ventral midline activates the Nkx2.2 and Nkx6.1 in the rostral hindbrain. Nkx2.2 and Nkx6.1 are 
sufficient to activate expression of Gata2 and Gata3, which can positively regulate each other. Gata2, in 
turn, is necessary and sufficient to activate Lmx1b and Pet1, and to specify 5-HT neurons. Gata2 may 
activate additional transcription factors and/or may be required to directly cooperate with Lmx1b and 
Pet1 in 5-HT specification (modified from Cordes 2005) 
 

Two lines of evidence suggest that terminal differentiation of 5-HT neurons depends on 

Lmx1b. First, no expression of differentiated 5-HT neuronal markers such as 5-HT, 

serotonin transporter (SERT) and Pet1 are detected in the Lmx1b-/- mutant mice. 

Second, most Lmx1b–/– cells exhibit aberrant migratory behavior at a late stage of their 

development. Lmx1b-positive 5-HT precursors were derived from Nkx2-2-expressing 

precursors. Lmx1b-mediated event provides a critical step that couples the Nkx2-2-
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dependent early specification of neurons with the Pet1-dependent terminal 

differentiation of 5-HT neurons (Ding et al.  2003). Pet1 working synergistically with 

GATA3 in the caudal raphe nuclei and other unidentified Pet1-independent 

transcription factors that are downstream to Lmx1b, control the terminal differentiation 

of 5-HT neuron (Ding et al. 2003). 
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AIM OF THESIS 
 

 

The aim of this thesis was to investigate whether an altered embryonic development of 

dopaminergic and serotonergic neurons could alter seizure susceptibility in the adult 

life. To this purpose, a series of classical and conditional knockout mouse lines with 

targeted inactivation of Otx2 and En genes were studied. The mouse lines used in this 

study are as follow. 

 

1) En1cre/+; Otx2flox/flox conditional mutant mice in which midbrain dopaminergic 

neurons were greatly reduced and 5-HT positive neurons increased.  

2)  En1Cre/+;tOtx2ov condition mutant mice in which dopaminergic neurons were greatly 

increased. 

3) En1+/-; En2-/-(EnHT) mice which have progressive postnatal degeneration of 

dopaminergic cells. 

 

Using these mouse lines, we addressed how an altered development of dopamine and 

serotonin neurotransmitter pathways can markedly affect seizure susceptibility in the 

adult brain. As a seizure model, systemic administration of the glutamate agonist kainic 

acid (KA) was used. Behavioural observation of KA-induced seizures was performed, 

and induction of immediate early genes (IEGs) like c-fos and c-jun was also followed 

after KA seizures. In order to assess whether altered susceptibility to KA-induced 

seizure in these mice also resulted in altered susceptibility to long-term damage, 

histological and immunohistochemical stainings were also performed. 
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MATERIALS AND METHODS 
 

 

Animals. 

The generation and genotyping of En1Cre/+; Otx2flox/flox (Puelles et al., 2003; 2004), 

En1Cre/+;tOtx2ov (Omodei et al., 2008), EnHT (Sgadò et al., 2006) and En2-/- (Joyner et 

al., 1991) mutant mice have been already reported.The two strains (En1Cre/+ xOtx2flox/+ 

and En1Cre/+  xtOtx2ov) were mated to generate parental mice (En1Cre/+; 

Otx2flox/+,Otx2flox/flox, En1Cre/+;tOtx2ov and tOtx2ov).Otx2flox/flox and tOtx2ovmice were 

chosen as controls, as they do not show any anatomical or behavioral abnormality 

respect to wild-type animals (Puelles et al. 2003; Borgkvist et al. 2006, Omodei et al. 

2008). Adult (3-6 months old; weight = 20-35 g) mice of both sexes were used. The 

EnHT and En2 mutants (mixed 129Sv x Swiss–Webster genetic background) were 

crossed at least three times into a C57BL/6 background. Adult (5 months old; weight = 

25-35 g) male mice were used in all experiments. Animals were housed in a 12 hr 

light/dark cycle with food and water available ad libitum. Experiments were conducted 

in conformity with the European Communities Council Directive of 24 November 1986 

(86/609/EEC). Additional details on the mouse strains used in our studies can be found 

in Tripathi et al., 2008, 2009. 

 
 
Drug treatments.  

For seizure studies, Otx2flox/flox (n= 10), En1Cre/+; Otx2flox/flox (n= 10), En1Cre/+;tOtx2ov 

(n= 7), tOtx2ov (n=7), tOtx2ov (n=7), EnHT (n=8), Wild type (n=8), En2-/- (n= 12) mice 

received a single intraperitoneal injection of kainic acid (KA; Ocean Produce 

International, Shelburne, NS, Canada; dissolved in saline) at 20 mg/kg.For pCPA+KA 

treatments, mice (n = 10 per genotype), received the same dose of KA 16 hr after the 

last pCPA injection. All experiments were performed blind to genotype and treatment. 

To deplete 5-HT, Otx2 conditional mutant mice and their controls (n = 5 per genotype) 

received pCPA (4-chloro-L-phenylalanine hydrochloride, Sigma; 10 mg/ml stock in 

saline) twice a day (≈ 10:00 and 18:00 hr) at a dose of 100 mg/kg (i.p.) for 3 
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consecutive days (Rantamäki et al., 2007). Five Otx2flox/floxand five En1Cre/+; 

Otx2flox/floxmice received saline with the same schedule and served as controls. Sixteen 

hr after the last pCPA/saline injection, brains were dissectedOne hemisphere was used 

for immunohistochemistry, and the other for HPLC. 

 

Behavioural observation of KA-induced seizures.  

Seizures were scored according to Racine (1972): stage 0: normal behavior; stage 1: 

immobility; stage 2: forelimb and/or tail extension, rigid posture; stage 3: repetitive 

movements, head bobbing; stage 4: forelimb clonus with rearing and falling (limbic 

motor seizure); stage 5: continuous rearing and falling; stage 6: severe whole body 

convulsions (tonic-clonic seizures); stage 7: death. For each animal, seizure severity 

was scored every 20 min for 2 hr after KA administration. The maximum rating scale 

values reached by each animal over each 20 min interval were used to calculate the 

rating scale value (± SE) for each treatment group. Statistical analysis was performed 

by two-way repeated measures ANOVA followed by post-hoc Holm-Sidak test. 

 

5-HT dosage by HPLC.  

5-HT was measured according to Atkinson et al. (2006) in the Otx2flox/flox and En1Cre/+; 

Otx2flox/flox mice. Brain areas (pons/ventral midbrain, hippocampus and cerebral cortex) 

were dissected on ice, weighed to the mg sensitivity and extracted with a buffer 

containing 8.2% ascorbic acid, 1.64% Na2S2O5, 0.83M HClO4. Extraction buffer 

volume (in μl) corresponded to three times the weight in mg of the specimen. 

Homogenates were centrifuged (30 min, 18,000 rpm, 4°C) and supernatants were used 

as samples for HPLC. Standard solutions were prepared dissolving 5-HT and 

tryptophan  (Sigma) in extraction buffer. Twenty μl of samples or standards were 

injected into a Synergy Hydro-RP separation column, fitted with a C18 cartridge 

column (Phenomenex, Bologna, Italy). The column was eluted isocratically (0.8 

ml/min, 29°C) with mobile phase (100 mM ammonium acetate pH 4.5: methanol, 

12.5:1 v/v) in a Waters Alliance HPLC apparatus. Detection was performed with a 

Waters 474 scanning fluorescence detector (excitation and emission wavelengths: 290 
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and 337 nm, respectively) and data analysis was performed with Waters Millenium 

software. Values (± SE) were reported as pmol of 5-HT per mg of wet tissue. Statistical 

analysis was performed by one-way ANOVA followed by post-hoc Tukey test. 

 

In situ hybridization.  

In situ hybridization experiments were performed to detect IEGs activation following 

KA seizures. Mice were killed at 2 hr (for En1Cre/+; Otx2flox/flox) or 3 hr (for En1Cre/+; 

tOtx2ov, tOtx2ov, EnHT and En2-/-) after KA injection, and brains were rapidly removed 

and frozen on dry ice. Coronal cryostat sections (20 μm thick) were fixed in 4% 

paraformaldehyde. Non-radioactive in situ hybridization was performed as previously 

described (Antonucci et al. 2008) using a digoxigenin labeled c-fos and c-jun 

riboprobes (Bozzi et al. 2000). Signal was detected by alkaline phosphatase-conjugated 

anti-digoxigenin antibody followed by alkaline phosphatase staining. The specificity of 

the results was confirmed by the use of sense riboprobes which gave no detectable 

signal (not shown). Brain areas were identified according to Franklin and Paxinos 

(1997). To quantify the level of c-fos and c-jun mRNAs, digital images of three 

matching sections per animal, taken at the level of the dorsal hippocampus, were 

analysed using the Image J free software (http://rsb.info.nih.gov/ij/). For each section, 

signal intensity was measured in ten different circular windows (area = 0.01 mm2) 

placed in layers 2-3 and 5-6 of the parietal/temporal cortex. Mean signal intensity was 

divided by the background labeling calculated in the corpus callosum. Statistical 

analysis was performed by Student’s t-test. 

 

Immunohistochemistry.  

Brains were fixed by immersion in 4% paraformaldehyde, cryoprotected in 30% 

sucrose/1xPBS and coronal sections (40 μm thick) were cut on a freezing microtome. 

Serial sections were incubated overnight with different antibodies (anti-5-HT, anti-

SERT, anti-NeuN, anti-NPY, anti-Parvalbumin, anti-Somatostatin, see the table 2 for 

dilution), diluted in a PBS solution containing 1% serum and 0.1% Triton X-100. 

Sections were then reacted with a biotinylated secondary antibody (Vector Laboratories, 
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Burlingame, CA) followed by avidin-biotin-peroxidase complex (ABC kit, Vector 

Laboratories) and diaminobenzidine reaction. 

Quantitative analyses of 5-HT immuhistochemistry experiments in control and Otx2 

mutant mice were performed on digitized images (10x primary magnification) by using 

the Metamorph software. Three sections at the level of the ventral tegmental area 

(VTA), CA3 subfield (dorsal hippocampus) and dorsal raphe nucleus were taken from 

each animal (3-5 animals per genotype). To count 5-HT positive cells in the VTA, four 

squared counting boxes (75 mμ per side) were taken per section. 5-HT staining in the 

CA3 pyramidal layer was measured in 20 sampling windows (approximately the size of 

one cell) per section, and obtained values (grey levels) were divided by the background 

value measured in the callosum. 5-HT staining per cell in the dorsal raphe nucleus was 

measured in 10 cell bodies per section, and obtained values (grey levels) were divided 

by the background value measured in the callosum. Statistical analyses were performed 

by one-way ANOVA followed by appropriate post-hoc test 

 
Neuronal damage in WT and En2-/- mice was qualitatively in CA1/CA3 areas according 

to the following scale (Bozzi et al. 2000; Bozzi and Borrelli, 2002; Cilio et al. 2001): 

little damage, presence of scattered degenerated cells; mild damage, small areas with 

degenerated cells and/or tissue sclerosis; severe damage, extended areas of neuronal and 

fiber degeneration, accompanied by tissue sclerosis. Neurodegeneration was also 

confirmed by Nissl staining, performed on sections adjacent to those used for NeuN 

histochemistry. 

 
Quantitative analyses of PV, SOM and NPY-positive cells in WT En2-/- mice were 

performed on digitized images (20x primary magnification) by using the Metamorph 

software. Three sections at the level of the dorsal hippocampus and overlying 

somatosensory cortex were taken from each animal (3-5 animals per genotype). To 

count positive cells in cortical layers 2-3 and 5-6, six squared counting boxes (100 mμ 

per side) were taken per section. To count positive cells in the hilus, all cells were 

counted within each hilus, and values were expressed as the number of cells per hilar 

area. Statistical analyses were performed by one-way ANOVA followed by appropriate 

post-hoc test 
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Antibody Company/Species/Serotype Dilution 

5-HT Sigma-Aldrich, rabbit, polyclonal 1:5000 

5-HT Millipore, rat/monoclonal 1:200 

SERT Calbiochem, rabbit, polyclonal 1:5000 

NeuN Chemicon, mouse, monoclonal 1:500 

NPY Bachem, rabbit, polyclonal 1:5000 

Parvalbumin Sigma –Aldrich, mouse, monoclonal 1:5000 

Somatostatin Bachem, rabbit, polyclonal 1:5000  

Table 2. Antibodies used during the immunohistochemistry experiments and their respective dilution. 
 

Quantitative RT-PCR for En2 mRNA 

Total RNAs were extracted by Trizol© reagent (Invitrogen) from the cerebral cortex, 

hippocampus, ventral midbrain and cerebellum of four adult WT mice and pooled. 

DNAse-treated RNAs were purified and concentrated with Nucleospin RNA XS 

columns (Macherey-Nagel). cDNA for real-time PCR was synthesized from RNA (2 

μg) using the Reverse Transcriptase Core kit (Eurogentec) according to the 

manufacturer’s instructions. Quantitative PCR was performed using a Rotor-gene 

2000™ thermal cycler with real-time detection of fluorescence (Corbett Research, 

Sydney, Australia). PCR reactions were conducted in a volume of 25 μl using the 

MESA GREEN qPCR kit (Eurogentec) according to manufacturer’s instructions. 

Mouse mitochondrial ribosomal protein L41 (Mrpl41) was used as a standard for 

quantification. Primers (Sigma Genosys, UK) were as follows: En2 forward 5’-

AGAGAGGGCGCAGTTCTTTG-3’; En2 reverse 5’-GACACAGACGCAGACACAC-

3’ (GenBank accession no. NM_010134.3; expected fragment size: 151 base pairs); L41 

forward 5’-GGTTCTCCCTTTCTCCCTTG-3’; L41 reverse 5’-GCACCCCGACTCTT-

AGTGAA-3’ (GenBank accession no. NM_001031808.2; expected fragment size: 179 

base pairs). Each PCR cycle consisted of denaturation for 10 s at 94 ºC, annealing for 

20 s at 60 ºC (58 ºC for L41), and extension for 30 s at 72 ºC. The fluorescence intensity 
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of SYBR green I was read and acquired at 72 ºC after completion of the extension step 

of each cycle. PCR conditions for individual primer sets were optimised by varying 

template cDNA and magnesium ion concentration in order to obtain amplifications 

yielding a single product and melt curves with a single uniform peak. Quantification of 

individual transcripts was performed using the dComparative QuantitationT software 

supplied with Rotor-gene. En2 and L41 mRNA concentrations in ventral midbrain, 

cerebral cortex and hippocampus were referred to those detected in the cerebellum 

(comparative quantitation). Ratios of En2 mRNA/L41 mRNA comparative 

concentrations were then calculated and plotted as the average of three different 

technical replicates obtained from each RNA pool. 
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RESULTS 
 

 
 

En1Cre/+; Otx2flox/flox mice 
 

Distribution of 5-HT and 5-HT transporter (SERT) in the ventral midbrain and 

hippocampus  

We first analyzed the distribution of 5-HT and 5-HT transporter (SERT) in the ventral 

midbrain and hippocampus of drug-free En1Cre/+; Otx2flox/flox mutant and Otx2flox/flox 

control adult mice.  

 
C 

Mice 5-HT cells in VTA 
(cells/area)  

5-HT staining in the CA3 
(staining density/cell)   

Otx2flox/flox mice 7 ± 1 1.155 
En1Cre/+; Otx2flox/flox 

mice 
14 ± 3 1.491 

 
Figure 20. 5-HT is increased and SERT is decreased in the ventral midbrain and hippocampus of Otx2 
conditional mutant mice. Figures show coronal sections through the ventral tegmental area of the 
midbrain (top) and CA3 region of the hippocampus (bottom) from Otx2flox/flox and En1Cre/+; Otx2flox/flox 

mice, stained with 5-HT (A) and SERT (B) antibodies. Quantitative analysis confirmed the increased 
number of 5-HT cells in the VTA and 5-HT staining in the CA3 area of En1Cre/+; Otx2flox/flox mice (C). 
Scale bar = 150 μm. 
 
 
Immunohistochemistry experiments confirmed the presence of 5-HT-positive neurons 

in the ventral midbrain of En1Cre/+; Otx2flox/flox but not Otx2flox/flox mice (Figure 20A). In 
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the hippocampus, 5-HT staining was increased in the CA3 area of Otx2 conditional 

mutant mice, as compared to control mice (Figure 20A). These findings were confirmed 

by quantitative analysis. A small number of 5-HT positive cells were detected in the 

ventral tegmental area (VTA) of Otx2flox/flox mice. These cells had a very small size and 

a rounded shape, suggesting that they were likely platelets (Brenner et al. 2007). 

Conversely, a higher number of 5-HT positive cells, clearly identifiable as neurons, was 

detected in the VTA of En1Cre/+; Otx2flox/flox mice. Quantitative analysis confirmed the 

increased number of 5-HT cells in mutant mice (mean number of cells per counting 

box, ± SE: control, 7 ± 1; mutant, 14 ± 3; n = 36 counting boxes from 3 mice per 

genotype; t-test, p<0.05) (Figure 20C). Quantitative analysis also confirmed increased  

5-HT staining in the CA3 area of Otx2 conditional mutant mice, as compared to control 

mice (median value of 5-HT staining / background: control, 1.155; mutant, 1.491; n = 

180 sampling windows from 3 mice per genotype; Mann-Whitney rank sum test, 

p<0.001) (Figure 20C). Conversely, SERT levels in serotonergic fibers were markedly 

reduced in these areas in En1Cre/+; Otx2flox/flox mice, when compared to control animals 

(Figure 20B). 

 

5-HT levels in ventral midbrain and hippocampus 

We next determined the 5-HT levels in different brain areas of En1Cre/+; 

Otx2flox/flox and Otx2flox/flox mice (n = 5 per genotype). HPLC analysis in Otx2 conditional 

mutant mice revealed a significant increase of 5-HT content in the pons/ventral 

midbrain, as compared to control mice (Figure 21A, saline-treated groups; one-way 

ANOVA, p<0.05; post-hoc Tukey test control vs. mutant, p<0.05). A slight but not 

significant increase of 5-HT content was detected in the whole hippocampus of 

En1Cre/+; Otx2flox/flox, as compared to Otx2flox/flox mice (one-way ANOVA, p>0.05). 

According to a previous study (Borgkvist et al. 2006), 5-HT levels were also increased 

in the cerebral cortex of mutant mice (pmol 5-HT/ mg tissue: saline-treated Otx2flox/flox, 

1.71±0.19; saline-treated En1Cre/+; Otx2flox/flox, 4.8±0.77; one-way ANOVA, p<0.05; 

post-hoc Tukey test, p<0.05). In both control and Otx2 conditional mutant mice (n = 5 

per genotype), prolonged treatment with the 5-HT synthesis inhibitor para-

chlorophenylalanine (pCPA) significantly reduced 5-HT levels in the pons, ventral 
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midbrain and hippocampus (Figure 21A). pCPA also decreased 5-HT content in the 

cerebral cortex in both genotypes (pmol 5-HT/ mg tissue: pCPA-treated Otx2flox/flox, 

0.98±0.16; pCPA-treated En1Cre/+; Otx2flox/flox, 1.7±0.5; one-way ANOVA, p < 0.05; 

post-hoc Tukey test, pCPA vs. saline of same genotype, p<0.05). 5-HT levels in pCPA-

treated En1Cre/+; Otx2flox/flox mice did not significantly differ from those detected in 

saline-treated Otx2flox/flox animals (Figure 21A). 

 

 

  D 

Mice Treatment 5-HT staining per cell in 
the DRN (arbitrary units) 

Otx2flox/flox Saline 1.90±0.02 
En1Cre/+; Otx2flox/flox  Saline 2.22±0.02 
Otx2flox/flox  pCPA 1.65±0.03 
En1Cre/+; Otx2flox/flox pCPA 1.63±0.03 

 
Figure 21. 5-HT depletion in control and Otx2 conditional mutant mice. A) HPLC determination of 5-HT 
content in the pons/ventral midbrain (top) and hippocampus (bottom) from Otx2flox/flox and En1Cre/+; 
Otx2flox/flox mice, following a 3 days treatment with saline or pCPA. Data are reported as mean ±  SE (n = 
5 animals per group). *, p<0.05, post-hoc Tukey test. B) Representative low-magnification images 
showing 5-HT immunostaining on sagittal brain sections from control and Otx2 conditional mutant mice, 
treated with saline or pCPA. Genotypes and treatments are as indicated. Abbreviations: bf, basal 
forebrain; ctx, cerebral cortex; dr, dorsal raphe nucleus; p, pons; vmb, ventral midbrain. Scale bar = 3.4 
mm. C) Representative high-magnification images showing 5-HT immunostaining in the dorsal raphe 
nucleus from control and Otx2 conditional mutant mice, treated with saline or pCPA. D) Quantitative 
analysis shows Mean values (± SE) of 5-HT staining per cell (normalized to background) in the dorsal 
raphe nucleus of En1Cre/+; Otx2flox/flox and Otx2flox/flox mice, treated with saline or pCPA. Genotypes and 
treatments are as indicated. Scale bar = 150 μm. 
 

 48



 

5-HT immunohistochemistry performed on brain sagittal sections from saline- 

and pCPA-treated Otx2flox/flox and En1Cre/+; Otx2flox/flox mice confirmed these findings. 

According to our previous results (Figure 21A, B and Borgkvist et al. 2006), increased 

5-HT staining was detected in several areas including ventral midbrain, basal forebrain, 

cerebral cortex (Figure 21B) and pons (raphe nuclei, Figure 21B, C) of saline-treated 

En1Cre/+; Otx2flox/flox mutants, as compared to saline-treated Otx2flox/flox controls. 

Treatment with pCPA markedly reduced 5-HT staining in all these areas in both 

genotypes (Figure 21B, C, D). Quantitative analysis of 5-HT staining per cell in the 

dorsal raphe nucleus confirmed these findings (Figure 21D). Mean values (± SE) of 5-

HT staining per cell (normalized to background) were as follows: Otx2flox/flox saline, 

1.90±0.02; En1Cre/+; Otx2flox/flox saline, 2.22±0.02; Otx2flox/flox + pCPA, 1.65±0.03; 

En1Cre/+; Otx2flox/flox + pCPA, 1.63±0.03 (n = 150 cells from 5 animals per group) 

(Figure 21D). Statistical analysis confirmed that 5-HT levels were increased in saline-

treated mutant mice, as compared to controls (one-way ANOVA, p<0.001; post hoc 

Holm-Sidak test, p<0.001) and that pCPA significantly decreased 5-HT staining in both 

genotypes (one-way ANOVA, p<0.001; post hoc Holm-Sidak test, p<0.001, control 

saline vs. control pCPA, and mutant saline vs. mutant pCPA). No difference was 

detected between control and mutant mice treated with pCPA (one-way ANOVA, 

p>0.05; post hoc Holm-Sidak test, p>0.05). 

 

5-HT levels alter seizure susceptibility 

We next investigated whether increased 5-HT levels might alter seizure 

susceptibility in Otx2 conditional mutant mice. Adult En1Cre/+; Otx2flox/flox and 

Otx2flox/flox mice (n = 10 per genotype) received a single systemic injection of KA (20 

mg/kg) and were observed for 2 hr. KA treatment had a strong convulsant effect in 

Otx2flox/flox mice. All mice showed initial immobility, rapidly followed by repeated 

generalized (stage 4-6) seizures (Figure 22). The mean latency to the first generalized 

seizure in KA-treated Otx2flox/flox mice was 18.9 ± 8.7 min (Table 3). Progression of 

clinical signs was dramatically different in En1Cre/+; Otx2flox/flox animals (Figure 22). 

Indeed, the trajectory in behavior score of En1Cre/+; Otx2flox/flox mice differed from that 

of control mice starting from 20 min following KA administration (two-way repeated  

 49



 

 

 

Figure 22. Resistance to KA-induced seizures in Otx2 conditional mutant mice is abolished by 5-HT 
depletion. Graph shows the progression of behavioral changes over a 2 hr observation period following 
KA in control and Otx2 conditional mutant mice, with or without pCPA pre-treatment. Genotypes and 
treatments are as indicated. Data are reported as mean seizure scores  ±  SE (n = 10 animals per group). 
**, p < 0.001, post hoc Holm-Sidak test, En1Cre/+; Otx2flox/flox vs. the other three treatment groups. 
 

measures ANOVA, p < 0.001; post hoc Holm-Sidak test, En1Cre/+; Otx2flox/flox vs. 

Otx2flox/flox mice, p < 0.001). The majority of Otx2 conditional mutant mice displayed 

only pre-convulsive behaviors, never showing any sign of generalized seizure activity 

(Figure 22). Only 1 out of 10 En1Cre/+; Otx2flox/flox mice showed forelimb clonus with 

rearing and falling, followed by a single, brief tonic-clonic seizure. In this animal, 

latency to the first generalized seizure was 52 min (Table 3). En1Cre/+; Otx2flox/flox never 

showed any sign of generalized seizure activity also at later times (> 2 hours) after KA 

administration (data not shown). Depletion of endogenous 5-HT by pre-treatment with 

pCPA in Otx2 conditional mutant mice (n = 10) resulted in the occurrence of strong 

KA-induced generalized seizures, as observed in Otx2flox/flox mice (Figure 22). Indeed, 

seizure severity in En1Cre/+; Otx2flox/flox pre-treated with pCPA was significantly 
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different than that observed in the same mice without pCPA (two-way repeated 

measures ANOVA, p < 0.001; post hoc Holm-Sidak test, En1Cre/+; Otx2flox/flox + pCPA 

vs. En1Cre/+; Otx2flox/flox , p < 0.001; En1Cre/+; Otx2flox/flox + pCPA vs. Otx2flox/flox, p > 

0.05). 

Latency to first generalized seizure in Otx2 conditional mutant mice pre-treated 

with pCPA was comparable to that observed in Otx2flox/flox mice (Table 3). Pre-treatment 

with pCPA in Otx2flox/flox mice (n = 10) resulted in the same severity of KA-induced 

behavioral seizures as observed in Otx2flox/flox mice without pCPA and En1Cre/+; 

Otx2flox/flox mice pre-treated with pCPA (two-way repeated measures ANOVA, p>0.05; 

post hoc Holm-Sidak test, Otx2flox/flox + pCPA vs. Otx2flox/flox or En1Cre/+; Otx2flox/flox + 

pCPA, p > 0.05). Saline-treated animals of all genotypes never showed any sign of 

seizure activity (data not shown). 

 
  

Otx2flox/flox

 

 
En1Cre/+; 

Otx2flox/flox

 

 
En1Cre/+; 

Otx2flox/flox  
+ pCPA 

 
Otx2flox/flox

+ pCPA 

 
number of animals 
with generalized 
(stage 4-6) seizures 
 

 
10/10 

 
1/10 a

 
10/10 

 
10/10 

 
latency to 1st 
generalized (stage 4-
6) seizure (min) 
 

 
18.9 ± 8.7b

 
52c

 
25 ± 7.9 

 
32.3 ± 12.7 

     
 

Table 3. Effect of 5-HT depletion on KA seizures in control and Otx2 conditional mutant mice. a 
The number of animals with generalized seizures significantly differed between En1Cre/+; Otx2flox/flox  and 
the other groups (z-test, p < 0.001). b Latency to the 1st generalized seizure is calculated from the time of 
KA administration. Values (min) are reported as mean ± SD. Latency did not differ between  Otx2flox/flox, 
Otx2flox/flox  + pCPA and En1Cre/+; Otx2flox/flox  + pCPA mice (one-way ANOVA, p=0.062).c The value 
reported refers to the only animal that showed a generalized seizure. 
 

 

Expression of c-fos in Otx2 inactivated mice 

We next used c-fos mRNA in situ hybridization to study the pattern of brain 

activation at 2 hr after KA injection. A strong c-fos mRNA labeling was observed in the 

septum, caudate-putamen, cerebral cortex, amygdala, hypothalamus and hippocampus 
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of Otx2flox/flox mice, whereas c-fos mRNA induction was restricted to the hippocampus 

in En1Cre/+; Otx2flox/flox mice (Figure 23). Conversely, En1Cre/+; Otx2flox/flox mice pre-

treated with pCPA showed the same widespread c-fos mRNA labeling, as observed in 

Otx2flox/flox mice. Pre-treatment with pCPA did not alter the pattern of KA-induced c-fos 

mRNA expression in Otx2flox/flox mice (figure 23). Saline-treated animals of both 

genotypes did not show any c-fos mRNA labeling throughout the brain (data not 

shown). 

 

 

Figure 23. Effect of 5-HT depletion on c-fos mRNA expression in the brain of KA-treated control and 
Otx2 conditional mutant mice. Panels show c-fos mRNA in situ hybridizations on coronal sections at the 
level of the caudate-putamen (top) and dorsal hippocampus (bottom) from representative control and 
Otx2 conditional mutant mice (with or without pCPA pre-treatment), 2 hr following KA. Genotypes and 
treatments are as indicated. Abbreviations: amy, amygdala; CPu, caudate-putamen; ctx, cerebral cortex; 
hip, hippocampus; ht, hypothalamus; sept, septum. Scale bar = 2 mm. 
 
 

En1Cre/+; tOtx2ov transgenic mice 
 
KA seizure susceptibility 

Adult En1Cre/+; tOtx2ov mice and control tOtx2ov mice received a single systemic 

injection of KA (20 mg/kg) and seizure susceptibility were observed for 3 hrs.  tOtx2ov 

(n= 5) mice showed pre-convulsive behavior, with head movements, rigid posture and 
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facial automatisms in the first half hour (stage 2). Stage 3-4 behaviours (head bobbing 

followed by isolated limbic motor seizures) appeared after about 60 min following KA 

administration. This condition lasted for about 1.5 hours. During the 3rd hour, the 

animals regained some control and began to recover (Figure 24). KA-induced behaviors 

in En1Cre/+; tOtx2ov mice (n = 8) did not present significant differences compared to 

control animals. Animals showed pre-convulsive behaviors within thirty minutes after 

the injection, followed by a worsening of conditions in 60 minutes (stage 4). During the 

2nd hours animals showed convulsive behaviors and recovered during the 3rd hour 

(Figure 24). 

 
Figure 24. KA seizure susceptibility in Otx2 overexpressing mice. Graph shows the progression of 
behavioral changes over a 3 hr observation period following KA in tOtx2ov (n=5) and En1Cre/+;tOtx2ov 

mice (n=8). Data are reported as mean seizure scores  ±  SE. 
 

Expression of c-fos mRNA in Otx2 over expressing mice 

The expression of c-fos mRNA is used as a "marker" of neuronal activity to identify 

areas involved in epileptic seizures (Willoughby, 1997). The expression of c-fos mRNA 

was analyzed by non-radioactive in situ hybridization on sagittal sections from adult 

brains. In tOtx2ov mice treated with KA (stage 4-6 seizures) c-fos mRNA expression was 

throughout the cortex, striatum, thalamus, hippocampus and the entire cerebellum; 

tOtx2ov mice treated with saline only showed a weak signal in the cortex (Figure 25). 
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Figure 25. Expression of c-fos mRNA expression in the brain of KA-treated control and Otx2 
overexpressing mutant mice. The Panels show c-fos mRNA in situ hybridizations on coronal sections at 
the level of the dorsal hippocampus from representative control and Otx2 over-expressing mice, 2 hr 
following KA. Genotypes and treatments are as indicated. Abbreviations: cb, cerebellum; ctx, cerebral 
cortex; DG, dentate gyrus; ht, hypothalamus; thal, thalamus. Scale bar 0.5 cm.  
 
 

Conversely, saline-treated En1Cre/+; tOtx2ov mice showed c-fos mRNA expression at the 

level of temporal cortex, striatum and the thalamus. Interestinglym En1Cre/+; tOtx2ov 

mice treated with KA presented a generally lower c-fos mRNA expression throughout 

the entire brain, with the exception of the CA3 region of the hippocampus (Figure 25). 

 

 

En-1+/-/En-2-/- (EnHT) mutant mice 

 
Seizure susceptibility in EnHT mice.  

Adult EnHT mice and wild type mice (n=8 per genotype) received a single systemic 

injection of KA (20 mg/kg) and were observed for 3 hrs. EnHT mice showed pre-

convulsive behaviors (head bobbing and rigid posture) in the initial 20 min after KA 

administration. Soon after, they reached behavioral seizure score 4-5 (repeated limbic 
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seizures), and this condition lasted for a period of 90 minutes. Progression of clinical 

signs in the wild type mice was little less but not significantly different from what 

observed in EnHT mice (Figure 26). 
 

 
 
Figure 26. Seizure susceptibilityinduced by KA injection. Graph shows the progression of behavioral 
changes over a 3 hr observation period following systemic KA administration (20 mg/kg, i.p.) in wild 
type (n=8) and EnHT mice (n=8). Data are reported as mean seizure scores  ±  SE. 
 

 

Expression of IEG in EnHT mice 

We next used c-fos mRNA in situ hybridization to study the pattern of brain activation 

at 3 hr after KA in WT and EnHT mice. A c-fos mRNA labeling was observed in the 

cerebral cortex, amygdala, thalamus and hippocampus of WT mice, whereas weak c-fos 

mRNA induction was restricted only to the hippocampus (CA3 region) in EnHT mice. 

Saline-treated animals of both genotypes did not show any c-fos mRNA labeling 

throughout the brain (Figure 27). 
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Figure 27. Expression of c-fos mRNA expression in the brain of KA-treated control and EnHT mutant 
mice. The images show that c-fos mRNA labelling (in black), 3 hr following KA. Scale bar = 2mm. 
Abbreviations? 

 

 

En2-/- mutant mice 

En2-/- mice display an increased susceptibility to KA seizures. 

En2-/- mice were initially used used as controls for EnHT mice in KA seizure 

susceptibility experiments. Unexpectedly, En2-/- mice showed an increased response to 

KA (20 mg/kg) when compared to WT (Figure 28) as well as EnHT mice (see Figure 

26). In WT, this dose of KA generally resulted in the sole appearance of pre-convulsive 

behaviors at all time-points analyzed (Figure 26 and 28). Only four out of 8 WT mice 

displayed brief, isolated episodes of limbic motor seizures (rearing with forelimb 

clonus, stage 4), and never showed tonic-clonic (stage 6) seizures. The same KA dose 

in En2-/- mice elicited clear signs of focal epilepsy (head bobbing) within the first 20 

min, rapidly culminating in stage 4 limbic motor seizures. Latency to the first stage 4 

seizure did not differ from that observed in WT mice (Table 4). In sharp contrast with 

WT, the majority (7 out of 12) of En2-/- mice displayed severe tonic-clonic seizures 

(Table 4). En2-/- mice showed generalized stage 4-6 seizures for about two hours (40-

160 min; Figure 28). Statistical analysis performed by two-way repeated measures  
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Figure 28. Increased susceptibility to KA-induced seizures in En2-/- mice. Progression of behavioral 
changes after systemic KA administration (20 mg/kg, i.p.) in WT and En2-/- over a 3 hr observation 
period. Data are mean seizure scores ± SE. *, p< 0.05 (post-hoc Tukey test). 
 
 
. 

  
WT 

 
En2-/-

 
animals with 

stage 4 seizures 

 
 

4/8 

 
 

10/12 a
 

latency (min) to 1st

stage 4 seizure 
 

 
 

35.5 ± 7.7 

 
 

24.7 ± 3.2 b

animals with 
stage 6 seizures 

 

 
0/8 

 
7/12 *

latency (min) to 1st

stage 6 seizure 
 

 
n.d. 

 
49.8 ± 13.9 

 
Table 4. Generalized seizures in WT and En2--/- mice.Seizure latency (mean ± SE) is calculated from 
the time of KA administration. a not different between the two groups (z-test, p > 0.05); b not different 
between WT and En2--/- mice (Mann-Withney test, p  > 0.05); * significantly different between the two 
groups (z-test, p < 0.05); n.d., not determined. 
 
ANOVA revealed a significant effect of genotype (F(1,136) = 7.522, p = 0.014). Multiple 

comparison procedure showed that En2-/- mice had significantly higher behavioral 

scores than WT mice at all time points analyzed (Figure 28; Holm-Sidak post-hoc-test, 

WT vs. En2-/- mice, p < 0.05). Saline-injected animals of both genotypes showed no 

sign of epileptic activity during the whole period of observation (not shown). 
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En2-/- mice display increased induction of IEGs after KA seizures. 

c-fos and c-jun mRNA induction was analyzed by in situ hybridization on WT 

and En2-/- brains, 3 hr after KA administration, to map brain areas differentially 

activated by KA in the two genotypes. In WT mice, c-fos mRNA was mainly detected 

in the hippocampus and in other limbic areas (amygdala, pyriform/entorhinal cortex). 

No signal was detected in the caudate-putamen and thalamus (Figure 29A). This 

induction profile was also observed for c-jun mRNA, with the exception of the 

pyriform cortex (that showed no c-jun mRNA labelling) (Figure 29A).  

 

 

Figure 29. IEGs are differentially induced by KA in WT and En2-/- mice. A) c-fos and c-jun mRNA in 
situ hybridizations, 3h after KA. Representative sections at the level of the caudate-putamen and dorsal 
hippocampus are shown. Genotypes and relevant brain areas are as indicated. Abbreviations: amy, 
amygdala; CA1/CA3, pyramidal cell layers of the hippocampus; CPu, caudate-putamen; DG, dentate 
gyrus; ent, entorhinal cortex; ht, hypothalamus; pyr, pyriform cortex; sept, septum; thal, thalamus. 2-3 
and 5-6 indicate layers of the cerebral cortex Scale bar = 2 mm. B,C) Quantification of c-fos (B) and c-
jun (C) mRNAs in parietal/temporal cortex of KA-treated WT and En2-/- mice. Values are mean 
normalized signal intensities ± SE. **, p<0.001 (Student’s t-test). 
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In keeping with seizure generalization observed by behavioral analysis, a widespread 

and strong induction of both c-fos and c-jun mRNAs was detected throughout En2-/- 

brains. In particular, c-fos and c-jun mRNA labelling was evident in caudate-putamen, 

pyriform cortex, thalamus, amygdala, hippocampus, entorhinal cortex and other cortical 

areas (Figure 29A). Quantification of in situ hybridization experiments performed at the 

level of the parietal cortex confirmed that c-fos and c-jun mRNAs were significantly 

increased in both layers 2-3 and 5-6 in En2-/- brains, as compared to WT controls 

(p<0.001, Student’s t-test) (Figure 29B-C) Saline-treated mice of both genotypes did 

not show any c-fos mRNA signal, while basal levels of c-jun mRNA were detected in 

the hippocampus in these animals (not shown). 

 

Long-term histopathology in KA-treated En2-/- mice. 

          In order to assess whether increased susceptibility to KA-induced seizures in 

En2-/- mice also resulted in increased susceptibility to long-term damage, the histology 

of pyramidal cell layers and mossy fiber pathway was evaluated in the hippocampus of 

WT and En2-/- mice, 7 days after KA. Immunostaining for the pan-neuronal marker 

NeuN on brain sections from WT mice did not reveal any damage in the CA1 

pyramidal cell layer (Figure 30), and scattered degenerated cells were only occasionally 

observed in CA3 pyramidal neurons (Table 5). Conversely, in En2-/- mice, cell loss and 

tissue sclerosis were detected in 4 out of 7 animals in both CA1 and CA3 regions 

(Figure 30 and Table 5). 

 

Figure 30. KA-induced neurodegeneration in the CA1 subfield of En2-/- mice. NeuN immunostaining of 
coronal sections from the dorsal hippocampus of WT and En2 -/- mice, 7 days after KA. Abbreviations: 
cc, corpus callosum; pyr, pyramidal cell layer. Scale bar: 150 μm. 
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Histological changes in the mossy fiber pathway were evaluated using 

neuropeptide Y (NPY) immunohistochemistry. A robust up-regulation of NPY 

immunoreactivity was found in the mossy fibers of dentate gyrus in all En2-/- mice 

(Figure 31B), whereas no such labelling was detected in WT animals (Figure 31A). 

Quantification of NPY staining in the mossy fiber pathway from WT and En2-/- mice 

confirmed these findings (Figure 31C). Saline-treated mice of both genotypes did not 

show any sign of hippocampal histopathology (not shown). 
 
 

   
Degree of  cell damage (n. of animals) 

 
 
Brain area / genotype 

 
none 

 
little 

 
mild 

 
severe 

     

CA1 

WT (n = 5) 

En2-/- (n = 7) 

 

5 

3 

 

0 

2 

 

0 

1 

 

0 

1 

     

CA3 

WT (n = 5) 

En2-/- (n = 7) 

 

3 

3 

 

1 

2 

 

1 

0 

 

0 

2 

 
Table 5.  Cell damage in hippocampal CA1/CA3 pyramidal layers of KA-treated WT and En2-/- 
mice. Brain damage was evaluated in NeuN-stained sections, 7 days after KA, according to the scale 
described in Experimental Methods. 

 

 

Figure 31. NPY up-regulation in the mossy fiber pathway of KA-treated En2-/- mice. A,B) 
Representative NPY staining in the hippocampus of WT (A) and En2-/- (B) mice, 7 days after KA. The 
almost complete loss of CA1 pyramidal cell layer is also visible in (B). Abbreviations: CA1, pyramidal 
cell layer; h, hilus; mf, mossy fibers. Scale bar: 500 μm. C) Quantification of NPY staining intensity in 
the mossy fibers of WT and En2-/- mice. Each box chart summarizes the distribution of the NPY signal-
to-background ratio (intensity of NPY label divided by the background staining) for all hippocampal 
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sections in each group. The horizontal lines in the box denote the 25th, 50th, and 75th percentile values. 
The error bars denote the 5th and 95th percentile values. **, p < 0.001 (Mann-Whitney rank sum test). 
 

En2 mRNA is expressed in the adult mouse hippocampus and cerebral cortex.  

Neuroanatomical and behavioural studies performed on adult En2-/- mice suggest that 

En2 might be expressed also in anterior brain structures during adulthood (Cheh et al. 

2006; Kuemerle et al. 2007). We therefore investigated En2 mRNA expression in 

different brain areas of the adult mouse brain. To this purpose, we performed 

quantitative real-time RT-PCR experiments using the mitochondrial ribosomal L41 

protein mRNA as a standard for quantification.  

 

 
Figure 32- En2 mRNA is expressed in adult mouse hip and ctx and is regulated by seizure activity. (A, 
B) Real-time RT-PCR amplification profiles of mitochondrial ribosomal protein L41 (A) and En2 (B) 
mRNAs from the cb (blue line), vmb (green line), hip (black line) and ctx (red line) of WT adult mice. 
The graphs report the appearance of fluorescence in PCR amplicons as a function of the number of PCR 
cycles. (C, D) Graphs report the quantification of real-time RT-PCR experiments. In (C), values are 
expressed as En2 mRNA/L41 mRNA comparative quantitation ratios (average values of three technical 
replicates) in different adult brain areas, normalized to cb. In (D), values are expressed as En2 
mRNA/L41 mRNA comparative quantitation ratios (average values of three technical replicates), from 
the hip of KA-treated adult mice (3 h post KA, 20 mg/kg i.p.), normalized to saline-treated controls. 
Abbreviations: cb, cerebellum; ctx, cerebral cortex; hip, hippocampus; vmb, ventral midbrain.  
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As expected, L41 amplification gave comparable amplification curves from all brain 

areas analyzed (cere- bellum, ventral midbrain, hippocampus, cerebral cortex; Figure 

32A). En2 transcripts were detected at low but significant levels in the hippocampus and 

cerebral cortex; En2 amplification curves from these two areas were indistinguishable 

(Figure 32B). According to previous studies (Joyner et al. 1991; Millen et al. 1994; 

Simon et al. 2001), En2 mRNA was detected at higher levels in the ventral mid-brain 

and cerebellum (Figure 32B). Comparative quantification of real-time RT-PCR 

experiments showed that in hippocampus and cerebral cortex, En2 mRNA was present 

about 100 times less than in cerebellum (Figure 32C). In the adult hippocampus, En2 

mRNA levels were regulated by pathological hyperactivity. In animals that experienced 

generalized seizures following systemic administration of the glutamate agonist KA (20 

mg/kg i.p.), En2 mRNA levels were decreased by 30%, as compared to saline-treated 

controls (Figure 32D). 

 

En2-/-  mice have a reduced expression of GABAergic markers in the hippocampus, 

cerebral cortex and hilus.  

Since En2 is expressed in the adult hippocampus (Figure 32B, C), we sought to 

investigate the presence of subtle neuro-anatomical defects in this structure of En2-/-  

mice. Immunohistochemistry experiments with anti-parvalbumin and anti-somatostatin 

antibodies were performed to detect selected GABAergic interneuron populations 

(Matyas et al. 2004; Jinno and Kosaka, 2006) in the hippocampus of WT and En2-/-  

mice. In WT mice, parvalbumin revealed the typical staining around the cell bodies of 

pyramidal neurons of CA1 (not shown) and CA3 (Figure 33) hippocampal subfields 

(see also Matyas et al. 2004), whereas somatostatin predominantly labeled stratum 

lacunosum moleculare and hilar interneurons (Fig. 33; see also Matyas et al. 2004). In 

En2-/-  mice, staining for both parvalbumin and somatostatin was markedly reduced in 

CA3 pyramidal layer and stratum lacunosum moleculare, respectively (Figure 33). 
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Figure 33. Downregulation of GABAergic markers in the hippocampus of En2-/- mice. (A) 
Representative parvalbumin staining in the CA3 pyramidal cell layer of WT and En2-/- mice. (B) 
Representative somatostatin staining in the slm and hilus of WT and En2-/- mice. Abbreviations: gcl, 
granule cell layer; ml, molecular layer; slm, stratum lacunosum moleculare. Scale bar 50 μm. 
 
 

We further investigated the neuroanatomy of GABAergic interneurons in the 

hippocampus and cerebral cortex of adult En2-/- mice by performing 

immunohistochemistry for parvalbumin (PV), NPY and somatostatin (SOM). Adult (6 

months old) En2-/- mice, when compared to their age-matched WT controls, present a 

statistically significant reduction in the number of PV-positive interneurons in layers 2-

3 of the parietal/temporal cortex and in the hilus of the dentate gyrus but no significance 

difference was observed in layers 5-6 of the parietal/temporal cortex (Figure 34). A 

statistically significant reduction in the number of NPY-positive interneurons was also 

detected in the parietal/temporal cortex (layers 2-3 and 5-6) as well as the hilus of En2-/- 

mice, as compared to WT (Figure 34). Similarly, the significant reduction in the number 

of SOM-positive interneurons was observed in En2-/- mice in layers 2-3 of the 

parietal/temporal cortex when compared with the WT animals, but no significance 

difference was observed in layers 5-6 of the parietal/temporal cortex and hilus of the 

dentate gyrus (Figure 34). 
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Figure 34. Reduction of parvalbumin, NPY and somatostatin positive neurons in the cerebral cortex and 
hilus of En2-/- mice. Top: representative PV, NPY, SOM immunostainings from the parietal/temporal 
cortex of WT and En2-/-  mice. Cortical layers are indicated. Middle: representative PV, NPY, SOM 
positive neurons in the hilus of WT and En2-/- mice. Bottom: quantification of PV, NPY, SOM 
immunohistochemistry data. Data are expressed as the mean number of positive cells per area +/- s.e.m 
(area was 0.06 mm2 for cortical layers and 0.1 mm2 for the hilus). *, p< 0.05;  ***, p< 0.001 (t-test, En2-/- 

vs. WT). n.s., not significant difference. Scale bar: 100 μm. 
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DISCUSSION 
 

 

Summary of results 

Our studies, performed on classical and conditional knockout mouse lines, demonstrate 

that altered embryonic development of dopaminergic and serotonergic neurons results 

in altered seizure susceptibility in the adult life. 

 

We investigated seizure susceptibility in the following mutant mice. 

1) Mice with conditional inactivation of the Otx2 gene in DA precursor cells. In these 

mice, Otx2 was conditionally inactivated by a Cre recombinase expressed under the 

transcriptional control of the En1 gene (En1Cre/+; Otx2flox/flox). Severe abnormalities 

were detected in the ventral midbrain, namely extensive reduction and 

disorganisation of DA neurons. This resulted in a neurotransmitter fate switch from 

DA to 5-HT so that these mice had a 70% reduction in the number of DA neurons 

and an increased number of 5-HT neurons in the ventral midbrain, that persisted 

until adult age (Puelles et al. 2004; Borgkvist et al., 2006). In particular, adult 

En1Cre/+;Otx2flox/flox mice showed a massive increase of 5-HT in the pons, ventral 

midbrain, hippocampus (CA3 subfield) and cerebral cortex, that was paralleled by 

reduced levels of 5-HT transporter (Sert) in the same areas. Due to this increased 5-

HT hyper-innervation, En1Cre/+; Otx2flox/flox mice were resistant to generalized 

seizures induced by the glutamate agonist kainic-acid (KA). Brain 5-HT depletion 

by pCPA in conditional mutant mice reduced 5-HT content to control levels in these 

brain areas, fully re-establishing KA-seizure susceptibility, meaning that increased 

brain 5-HT levels were responsible for seizure resistance in Otx2 conditional 

mutants.  

 

2) Mice with conditional over-expression of the Otx2 gene in DA precursor cells. In 

these mice, Otx2 was conditionally overexpressed by a Cre recombinase under the 

transcriptional control of the En1 gene (En1Cre/+; tOtx2ov). Otx2 overexpression 

resulted in a 35% increase of DA progenitors neurons in the VTA of the anterior, 
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and more prominently in posterior mesencephalon (Omodei et al. 2008). It is 

important to point out that, apart from the increased number of DA progenitors, 

these conditional over-expressing mice did not show any alteration in 5-HT neurons. 

The increase in DAergic cell number persisted until adult age. En1Cre/+; tOtx2ov 

mice did not show significantly altered KA induced seizure susceptibility when 

compared to control animals. 

 

3) En1+/-; En2-/- (EnHT) mice, which display a postnatal and progressive loss of DA 

neurons of the substantia nigra. The phenotype of these mutant mice resembles key 

pathological features of Parkinson’s disease. It is important to point out that the 

postnatal DA cell loss in EnHT mice is not accompanied by altered number of 5-HT 

cells. EnHT mice did not show significantly altered KA induced seizure susceptibility 

when compared to control animals. 

 

4) En2-/- mice, which show no alteration in the number of DA and 5-HT neurons at all 

ages, were initially used as a control strain for experiments performed on EnHT mice. 

When we evaluated KA seizure susceptibility in En2-/- mice, we surprisingly and 

unexpectedly found that En2-/- mice have an increased susceptibility to KA-induced 

seizures. En2-/- mice also showed long-term histopathology with marked 

degeneration in CA1 pyramidal neuron and up-regulation of mossy fiber pathway. 

The occurrence of generalized seizures in En2-/- mice was likely due to defects in 

GABAergic innervation onto principal hippocampal neurons and reduced number of 

inhibitory neurons (such as SOM, PV and NPY-positive neurons) in the hilus and 

cortical layers 2-3 and 5-6.  

 

DA, 5-HT and seizure susceptibility 

Systemic KA administration has been widely used to study the susceptibility to acute 

seizures and seizure-induced long-term histopathology in inbred and mutant mouse 

strains. Our studies, carried out in mutant mouse lines with alteration in Otx2 or 

Engrailed1/2 genes, show that altered specification of DA and 5-HT cell fate during 

embryonic development results in altered seizure susceptibility in the adult age. 
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Classical pharmacological studies indicate that both DA and 5-HT may have an anti-

epileptic action.  

          A large series of studies strongly support the idea of an antiepileptic action of 

DA. Indeed, DA agonists inhibit convulsive seizures, both in experimental animals and 

humans. For example, the prototypical mixed D1/D2 receptor stimulant apomorphine 

has long been known to exert an antiepileptic action in humans (Starr, 1996). Indeed the 

neuroprotective role of DA D2 receptors against glutamate-induced excitotoxicity has 

been well described (reviewed in Bozzi and Borrelli, 2006). DA through D2 receptor 

exerts an inhibitory control on the response to seizure promoting stimuli such as KA 

(Bozzi et al. 2000). Mesolimbic DAergic pathways have been proposed to exert this 

inhibitory control (LaGrutta and Sabatino, 1990; Starr, 1996). Similarly, there has been 

increasing evidence that serotonergic neurotransmission modulates a wide variety of 

experimentally induced seizures. Generally, agents that elevate extracellular 5-HT 

levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal 

and generalized seizures. Conversely, depletion of brain 5-HT lowers the threshold to 

audiogenically, chemically and electrically evoked convulsions (Badgy et al. 2007). 

Furthermore, it has been shown that several anti-epileptic drugs such as valproic acid, 

lamotrigine, carbamazepine, phenytoin, zonisamide elevate and/or stimulate basal 5-HT 

levels and/or release, as part of their anticonvulsant action (Okada et al. 1992; Dailey et 

al. 1996; Ahmad et al. 2005). Moreover, 5-HT receptors are expressed in almost all 

networks involved in epilepsies. These studies indicate that both DA and 5-HT are 

clearly involved in the control of epileptic seizures. According to this view, it was 

expected that reduction of DA cells in both En1Cre/+; Otx2flox/flox and EnHT mice would 

contribute to increase seizure susceptibility in these animals, while increase in DA cells 

in En1Cre/+; tOtx2ov mice would contribute to lower seizure susceptibility severity. On 

the contrary, En1Cre/+; Otx2flox/flox mice were markedly resistant to KA seizures due to 5-

HT hyper-innervation, whereas En1Cre/+; tOtx2ov mice and EnHT mice (in which 5-HT 

levels were unchanged) showed a normal susceptibility to KA induced seizures (Table 

6). This is in line with earlier observation that 5-HT levels are inversely proportional to 

seizure susceptibility. More importantly, altered level of DA in En1Cre/+; Otx2flox/flox, 

En1Cre/+; tOtx2ov and EnHT mice had less impact in altering seizure susceptibility. 
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Indeed En1Cre/+; Otx2flox/flox mice (which have reduced level of DA) did not show 

increased seizure susceptibility, while En1Cre/+; tOtx2ov and EnHT mice (which have 

higher and lower level of DA, respectively, with no alterations in 5-HT), showed 

unaltered seizure threshold. Thus, the altered embryonic development of 5-HT neurons 

seems to have a more prominent effect onto seizure control than the altered 

development of DA neurons (Table 6: Tripathi et al. 2010).  
 

Mouse strain DA and 5-HT alterations KA seizure susceptibility 

En1Cre/+; Otx2flox/flox Less DA, more 5-HT Resistant 

En1Cre/+; tOtx2ov More DA, no difference 5-HT Not altered  

En1+/-; En2-/- (EnHT) Less DA, no difference 5-HT Not altered  

En2-/- No difference DA, 5-HT Increased  

Table 6. The effect of 5-HT hyper-innervation onto seizure control is more prominent than that of DA 
reduction in these animal models. 
 

             The brain areas which are crucially involved in the serotonergic control of 

seizures are the ventral midbrain and limbic system. For example, endogenous 5-HT 

transmission in the substantia nigra is able to inhibit the spread of seizure activity 

generated in the limbic system (Pasini et al. 1996). In En1cre/+; Otx2flox/flox mice, we 

detected increased levels of 5-HT in several brain areas, including the ventral midbrain, 

basal forebrain, cerebral cortex and hippocampal CA3 subfield. Prolonged pre-

treatment of En1cre/+; Otx2flox/flox mice with the 5-HT synthesis inhibitor pCPA restored 

brain 5-HT content to control levels and abolished seizure resistance in mutant mice. 

This indicates that increased availability of synaptic 5-HT is indeed protective against 

KA seizures in En1cre/+; Otx2flox/flox mice. Increased synaptic availability of 5-HT was 

also indicated by decreased SERT levels in the hippocampus and ventral midbrain of 

En1cre/+; Otx2flox/floxmice. Indeed, SERT decrease has been demonstrated to occur after 

prolonged elevation of 5-HT levels in mice (Mirza et al. 2007). Thus, in Otx2 

conditional mutant mice, decreased SERT levels might be a consequence of increased 

5-HT innervation. 
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Impact of genetic background on seizure susceptibility 

It is widely known that the genetic background impacts seizure susceptibility in the 

mouse. Specifically, several studies demonstrate that different inbred mouse strains 

have a different response to KA-induced seizures. For example, DBA/2 mice are 

extremely prone to KA-induced seizures, whereas C57Bl/6 have a relatively lower 

susceptibility when compared to DBA/2 (Ferraro et al. 1995; Schauwecker and 

Steward, 1997). In our study, we used Otx2flox/flox, En1cre/+; Otx2flox/flox, tOtx2ov and 

En1Cre/+; tOtx2ov mice of a mixed DBA/2 x C57BL/6 genetic background, while EnHT, 

En2-/- and WT mice were of a mixed 129/Sv x C57BL/6 genetic background. 

Otx2flox/flox control mice displayed high susceptibility to seizures induced by 20 

mg/kg KA, similarly to what has been observed in DBA/2 mice (Ferraro et al. 1995; 

McLin and Steward, 2006) and mice with a mixed DBA/2 x C57BL/6 background 

(Dell’Agnello et al. 2007). Conversely, En1cre/+; Otx2flox/flox mice showed a marked 

resistance to KA induced seizures, indicating a protective effect of 5-HT in the mixed 

DBA/2 x C57BL/6 background. This also strengthens the idea that the effect of 5-HT 

hyper-innervation onto seizure control is more prominent than that of DA reduction. 

Since En1Cre/+; tOtx2ov mice have a mixed DBA/2 x C57BL/6 genetic 

background, one would have expected higher susceptibility to KA-induced seizures in 

these mice. However,  En1Cre/+; tOtx2ov mice showed moderate susceptibility to seizures 

induced by KA. This can be explained with the fact that conditional overexpessing mice 

have an increased number of DA in VTA but no alteration in 5-HT neurons. Indeed, in 

the experiments with Otx2 conditional mutants we have shown that altered DA levels 

have no impact onto seizure susceptibility. 

           In the experiments with En1+/-; En2-/- (EnHT) and En2-/- mice we used animals of 

amixed 129/Sv x C57BL/6 genetic background. As expected, WT mice of this 

background displayed a very mild response to 20 mg/kg KA, never showing continuous 

generalized epileptic activity (stage 5 seizures) or tonic-clonic seizures (stage 6) after 

KA. The response of EnHT mice to the same KA dose did not differ from that of WT 

controls; this is in keeping with our idea that altered DA cell number has a minimal 

influence onto seizure control. Unexpectedly, En2-/- mice of this background showed 

higher seizure susceptibility; the importance of these results is discussed below. 
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IEGs study in the different mouse strains 

The striking activation of immediate early genes (IEGs) like c-fos and c-jun expression 

in neurons following seizures (Morgan et al. 1987) led to consider the induction of 

these genes as a marker of neuronal activity in the mammalian nervous system (Sagar et 

al.  1988). A precise correlation exists between the appearance of generalized seizures 

following KA and the pattern of c-fos and c-jun mRNA induction. Pre-convulsive 

behaviors (stages 1-3 of the Racine’s scale) induce c-fos mainly in the hippocampus, 

whereas generalized seizures (stages 4-6) result in a widespread expression in several 

brain areas (Willoughby et al. 1997; Bozzi et al. 2000). Seizure resistance in En1cre/+; 

Otx2flox/flox mice was indeed confirmed by gene expression studies. En1cre/+; Otx2flox/flox 

mice never experienced generalized seizures after KA, showing c-fos mRNA induction 

restricted to the hippocampus. Conversely, En1cre/+; Otx2flox/flox mice pretreated with 

pCPA, as well as Otx2flox/flox mice, showed KA-induced generalized seizures and 

widespread induction of c-fos mRNA from hippocampus to different brain region 

including caudate putamen, septum, cerebral cortex, amygdala and hypothalamus 

(Figure 23; Tripathi et al. 2008). Pre-treatment with pCPA did not alter the pattern of 

KA-induced c-fos mRNA expression in Otx2flox/flox mice. 

Mild susceptibility to KA seizures in tOtx2ov control mice correlated with 

moderate to high c-fos mRNA expression in temporal and parietal cortex, thalamus, 

hippocampus and cerebellum. Conversely, conditional overexpression of Otx2 in  

En1Cre/+; tOtx2ov mice resulted in a reduced expression of c-fos mRNA in these brain 

regions following KA treatment. This suggests that the incresased VTA cell number 

(and, likely, increased DA projections to the limbic system) has an inhibitory effect 

onto KA-dependent c-fos mRNA expression in En1Cre/+; tOtx2ov mice. These data 

definitely need further investigation. 

EnHT mice have a moderate KA seizure susceptibility and show a weak c-fos 

mRNA induction restricted only to the hippocampus (mainly in the CA3 region). It is 

interesting to note that apart from the reduced number of DA neuron, EnHT mice have 

lower levels of the dopamine transporter (DAT) (Paola Sgadò, personal 

communication) meaning that synaptic DA level might not be significantly less or 
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different than control animals. This might explain the unaltered seizure susceptibility 

observed in these mice (Figure 26). Indeed DAT may play an important role in 

modulating gene expression and contributing to neuroadaptive processes within 

dopamine neurons. The DAT substrates dopamine and amphetamine robustly induced 

c-fos expression in hDAT cells but not in wild-type HEK-293 cells, demonstrating that 

that dopamine can induce c-fos expression in a DAT-dependent manner (Yatin et al. 

2002). In accordance with this, lower level of DAT might contribute also in reduced c-

fos mRNA expression in EnHT mice. 

En2-/- mice showed long-lasting generalized seizures and widespread induction 

of IEGs like c-fos and c-jun mRNA in caudate-putamen, pyriform cortex, thalamus, 

amygdala, hippocampus, entorhinal cortex and layer 2-3 and layer 5-6 of cortical areas. 

As expected, WT C57BL/6 mice experienced no or very brief generalized seizures after 

KA, showing IEGs mRNA induction restricted to the hippocampus and other limbic 

areas (Figure 29; Tripathi et al. 2009). 

 

Long-term damage  

In order to assess whether increased susceptibility to KA-induced seizures in En2-/- 

mice also resulted in increased susceptibility to long-term damage, the histology of 

pyramidal cell layers was evaluated in the hippocampus of WT and En2-/- mice, 7 days 

after KA. It is well known that CA1 and CA3 pyramidal neurons are the most 

vulnerable to the excitatory and neurotoxic effects of KA (Ben-Ari, 1985) because of 

the high density of KA binding sites in this terminal field of the hippocampal mossy 

fibre system (Berger and Ben-Ari, 1983). Indeed, CA1 pyramidal cells of KA-treated 

rats show increased N-methyl-D-aspartate (NMDA) excitatory postsynaptic responses 

(Turner and Wheal 1991; Williams et al. 1993) while GABA mediated inhibitory 

synaptic responses are diminished in CA1 pyramidal cells of KA-treated rats (Ashwood 

et al. 1986; Franck and Schwartzkroin 1985; Franck et al. 1988). Generally, mouse 

strains derived from the C57BL/6 strain show minimal cell death in pyramidal 

hippocampal neuron and are resistant to mossy fibre sprouting (McLin and Steward, 

2006). In keeping with these findings, our WT mice never showed cell damage in the 

CA1 pyramidal layer and only occasionally presented little or mild damage in the CA3. 
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A marked degeneration was instead observed in all En2-/- mice analyzed in the CA1 

and, to a lesser extent, in the CA3. The variability in the degree of brain damage 

following systemic KA administration that we observed in WT and En2-/- mice is in 

agreement with previous studies (Schauwecker and Steward, 1997; Bozzi et al. 2000; 

McLin and Steward, 2006). NPY is particularly abundant in the dentate gyrus. In this 

region, it is normally expressed mainly by a subset of hilar GABA neurons. It is 

believed that mossy fibre sprouting after KA-induced seizures occurs in response to the 

denervation of the inner molecular layer as a result of the death of neurons in the hilus 

of the dentate gyrus (Cantallops & Routtenberg, 2000). For this purpose, we studied 

NPY up-regulation in the mossy fiber pathway (dentate gyrus to CA3). Importantly, 

En2-/- but not WT mice treated with KA displayed NPY up-regulation in the mossy 

fiber pathway. This pattern of NPY up-regulation is generally considered a reliable 

marker of long-term, post-seizure synaptic rearrangements, and is thought to be 

indicative of an acquired hyper-excitability of the hippocampus following seizures 

(Morimoto et al. 2004; Nadler et al. 2007; Dudek and Sutula, 2007; Sperk et al. 2007; 

Sutula and Dudek, 2007). Moreover, as observed for pyramidal cell loss, 

rearrangements in mossy fibers do not occur following KA in mouse strains derived 

from C57BL/6 (Schauwecker et al. 2000). Our data suggest that inactivation of the En2 

gene also results in long-term anatomical modifications and, likely, hyper-excitability 

of hippocampal circuitry in response to KA seizures. 

 

Seizure susceptibility in En2-/- mice: the role of GABAergic inhibitory system 

En2-/- mice showed increased seizure severity in response to KA. Importantly, 

spontaneous seizures never occurred in naive En2-/- mice (data not shown), indicating 

that increased susceptibility of En2-/- mice is evident only in response to a potent 

seizure-promoting stimulus, such as KA. We investigated whether this increased 

response to KA might be due to altered anatomy of inhibitory GABAergic neurons in 

the hippocampus and cerebral cortex. 

             Changes in GABAergic inhibition in the hippocampus have been examined in 

many experimental models of epilepsy. In general, inhibitory cell loss in epileptogenic 

zones correlates with the induction of seizures, and results in the decrease in synaptic 
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inhibition in pyramidal neurons (Bekenstein and Lothman 1993; Sloviter 1987). 

Moreover, a reduced number of GABAergic neurons in epileptogenic areas is a likely 

cause of hyper-excitability. For this reason, we studied the anatomy of different 

subpopulations of GABAergic neurons (SOM-, PV- and NPY-positive) in the cerebral 

cortex and hippocampus of En2-/- mice. We observed a reduced staining of all these 

inhibitory markers in the cerebral cortex (layers 2-3) and hippocampus of En2-/- mice, 

that might explain the hyper-excitability observed in these mutants. 

 It remains to be determined how the En2 mutation can impact hippocampal 

excitability, a point that was not addressed by our study. Indeed, the En2 gene is 

commonly known for its crucial role in pattern formation of the midbrain and hindbrain 

regions. Perhaps due to the more posterior location of engrailed expression, none of the 

alteration in telencephalic structures has been analyzed in either engrailed mutant. 

However, novel evidence suggests that En2 might be implicated also in the 

development of more anterior telencephalic structures. Kuemerle and coworkers 

recently reported distinct anterior shift in the position of the amygdala in the cerebral 

cortex of En2-/- mice. Specifically, it was found that in En2 mice the lateral, basolateral, 

central and medial nuclei of the amygdala are located in approximately 500 um to a 

more anterior position in the cortex when compared to controls (Kuemerle et al., 2007). 

This parallel anterior shift of all four of the nuclei indicates that a noteworthy 

amygdaloid defect is present in the En2 mice. Interestingly, Miyazaki et al. have 

reported a more caudal (posterior) shift in the location of 5-HT immunostained cells in 

the dorsal raphe nucleus of postnatal day 50 rats that were exposed to thalidomide or 

valoproic acid during early embryogenesis. The authors surmise that the locational shift 

of the 5-HT cells is most likely the result of aberrant neuronal migration early in 

development (Miyazaki et al. 2005). It might be possible that something similar could 

be happening in the En2 mutant. With these studies, it seems apparent that the 

organization of the CNS places a high premium on developing a proper balance among 

its many components (Kuemerle et al. 2007). These anatomical alterations might 

impact circuitry and excitability of the amygdala and other limbic structures in En2-/- 

mice. En2 secretion from posterior structures to anterior target areas could explain these 

effects. Indeed, En-2 may also have a role in cell–cell communication, as suggested by 
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the presence of other domains involved in nuclear export, secretion and internalization 

(Joliot et al. 1998; Brunet et al. 2005; Sonnier et al. 2007). Further studies might be 

aimed at determining whether En2 released from ventral midbrain projections can 

influence excitability of more anterior limbic structures such as hippocampus. Our data 

show that in the adult mouse brain, En2 is also expressed in the hippocampus and 

cerebral cortex, two regions crucially involved in seizure generation and spread. These 

results confirm and expand non-quantitative RT- PCR expression data previously 

published online in the Mouse Genome Informatics (MGI) database 

(http://www.informatics.jax.org). 

 

Engrailed-2 and Autism Spectrum Disorders (ASD) 

             The autism spectrum disorder (ASD) is among the most devastating disorders 

of childhood, afflicting up to 13 out of every 10,000 individuals (Fombonne et al. 

2005). ASD comprises several different disorders as defined by deficits in social 

behaviors and interactions. These deficits prevent the development of normal 

interpersonal relationships features that typify the broad range of autistic behavior 

include language impairments (including deficits in verbal and non-verbal 

communication), restricted patterns of interests and activities, abnormal responses to 

sensory stimuli, poor eye contact, an insistence on sameness, an unusual capacity for 

rote memorization, and often repetitive actions (Kemper et al. 1998). Although the 

neuroanatomical basis of autism is still somewhat unclear, certain brain regions appear 

to be regularly altered in individuals with ASD. These include areas in the neocortex, 

cerebellum, amygdala, hippocampus and brain stem (Bauman 1991; Bauman et al. 

1985; Courchesne 1995). It is believed that there are a half dozen or more genes 

remaining to be discovered, three genes that are emerging as plausible players in the 

etiology of ASD are reelin (RELN), the serotonin transporter gene (5-HTT), and En2 

(Bartlett et al. 2005). 

            Due to their complex neurodevelopmental, neuroanatomical and behavioral 

phenotype, En2-/- mice have been proposed as a novel model for autism spectrum 

disorder (ASD). Indeed, abnormalities observed in En2-/- mice resemble – at least in 

part – some of those that have been reported in ASD patients, such as hypoplasia of 
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cerebellar vermal lobules (Courchesne et al. 1988) and subtle but reproducible 

disruption in the anterior/posterior pattern of cerebellar foliation and transgene 

expression, particularly in posterior vermis (Joyner et al. 1991; Millen et al. 1994). 

Many studies also reported a significant reduction in Purkinje cell number, cerebellar 

nuclei and inferior olive in ASD individuals (Williams et al. 1980; Bauman and 

Kemper, 1985; Bauman, 1991; reviewed in DiCicco-Bloom et al., 2006), as also 

observed in En2-/- mice (Kuemerle et al. 1997), as well as “autistic-like” behaviours, 

such as decreased attitude to play, reduced aggressiveness and special learning deficits. 

The cerebellum of En2-/- mice is about one-third smaller than its wild type counterpart 

and harbors subtle abnormalities in its folial pattern. Cell counts reveal that all the 

major cell types of the olivocerebellar circuit (Purkinje, granule, inferior olive and deep 

nuclear) are reduced by 30–40% in the En2-/- mice (Kuemerle et al. 1997). Although 

the structural and cellular changes in the En2-/- cerebellum are not completely 

congruent with those reported in the autistic brain, they are still quite analogous. At a 

functional level, Pierce and Courchesne (2001) provide insight as to how cerebellar 

abnormalities may be linked with autistic behavior.  

                More recently, altered anatomical structure of the amygdala has also been 

reported in En2-/- mice. In these mice, there is an anterior shift of lateral, basolateral, 

central and medial amygdalar nuclei reside in the cortex (Kuemerle et al. 2007). It is 

interesting to notice that in ASD patients, significant neuropathological alterations have 

been described in several telencephalic structures, including the amygdala, 

hippocampus, entorhinal cortex and other limbic areas have shown small cell size and 

increased cell packing density at all ages (reviewed in Palmen et al. 2004; Bauman and 

Kemper 2005; DiCicco-Bloom et al. 2006). Finally, the human EN2 gene maps to 

7q36, a chromosomal region that has been linked to ASD, and two single-nucleotide 

polymorphisms (SNPs) rs1861972 and rs1861973, in the EN2 gene have been 

associated to ASD (Gharani et al. 2004; Benayed et al. 2005; Brune et al. 2008, 

Benayed 2009). 

 

A focal brain pathology that affects frontal or mesiotemporal structures (limbic system) 

can be at the origin of an autistic phenotype as well as the trigger of an epilepsy that 
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aggravates the autistic symptoms. Epilepsy and epileptic process occurring in early 

development interferes with the developing function of specific brain networks 

involved in communication and social behavior (Deonna and Roulet, 2006). Our results 

showed that En2-/- mice have an increased susceptibility to seizures evoked by KA 

(Tripathi et al. 2009). This is in agreement with the high prevalence of epilepsy 

described in ASD patients (Canitano, 2007). Moreover, En2-/- mice display a series of 

neuroanatomical alterations (i.e., reduced expression of GABAergic markers in the 

hippocampus) that might underlie increased excitability in these mutants (Figure 33, 34 

and Tripathi et al. 2009). These data, along with recent findings from other authors 

(Kuemerle et al. 2007), suggests that En2 is implicated also in the development of 

telencephalic structures. Kuemerle and coworkers reported an anterior shift of the 

amygdala in En2 mice. Specifically, it was found that in mutant mice the lateral, 

basolateral, central and medial nuclei of the amygdala are located in a more anterior 

position in the cortex when compared to controls (Kuemerle et al. 2007). Taken 

together, all these studies suggest that En2-/- mice are a suitable model for investigating 

the neurodevelopmental bases of ASD. It remains to be determined how the En2 

mutation can impact hippocampal excitability, and more generally, the structure and 

function of the forebrain. Indeed, the En2 gene is commonly known for its crucial role 

in pattern formation of the midbrain and hindbrain regions. We will further investigate 

the effect of En2 inactivation on the development of forebrain areas and their function 

in the adult brain, with particular attention to those neurodevelopmental, 

neuroanatomical and neurochemical features that are important for ASD. In addition, 

we plan to use En2-/- mice to test a behaviour-based therapeutic strategy for ASD. 
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LIST OF ABBREVIATIONS 
 

 

5-HT                                              5-hydroxytryptamine, 

6-OHDA                                        6-Hydroxydopamine  

8-OH-DPAT                                  8-hydroxy-2-(di-n-propyl amino)tetralin 

A/P                                                 Antero-posterior  

ADHD                                           Attention-deficit–hyperactivity disorder  

Amy                                               Amygdala  

Bf                                                  Basal forebrain  

cc                                                  Corpus callosum  

CNS                                              Central Nervous System  

Cpu                                               Caudate-putamen 

Ctx                                                Cerebral cortex  

D/V                                               Dorso-ventral  

DA                                                Dopamine 

DAT                                              Dopamine transporter, 

DG                                               Dentate gyrus  

Di                                                 Diencephalons  

DRN                                             Dorsal Raphe Nucleus 

En                                                Engrailed  

Ent                                               Entorhinal cortex  

ES  cell                                        Embryonic stem cell 

FP                                               Floorplate 

Fgf8                                            Ffibroblast growth factor 8 

GABA                                         Gamma-aminobutyric acid 

Gbx                                             Gastrulation brain homeobox  

GPCR                                         G protein-coupled receptors 

Hip                                             Hippocampus  

HPLC                                         High performance liquid chromatography  

HT                                              Hypothalamus  
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IEG                                             Immediate early gene  

IHC                                             Immunohistochemistry 

ISH                                              In situ hybridization  

KA                                               Kainic acid  

LGIC                                           Ligand-gated ion channel 

Lmx                                             LIM homeobox transcription factor  

MAO                                           Monoamine Oxidase  

mDA                                            Mesencephalic dopamine  

MHB                                           Mid-hindbrain boundary  

MPTP                                         1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

Mrp                                             Mitochondrial ribosomal protein 

Ms                                               Mesencephalon  

Msx                                             Msh homeobox  

Mt                                               Metencephalon  

nAcb                                           Nucleus accumbens  

NeuN                                          Neuronal Nuclei 

NPY                                            Neuropeptide Y  

Ngn                                             Neurogenin  

Nurr                                            Nuclear receptor-related 1 

OM                                             Oculomotor  

Otx                                             Orthodenticle homologue  

P                                                 Prosencephalon  

Pax                                             Paired box  

pCA                                             para-chloroamphetamine 

pCPA                                          para-chlorophenilalanine  

PCR                                            Polymerase Chain reaction 

Pet                                              Plasmacytoma expressed transcript 1  

Pitx                                             Paired-like homeodomain transcription factor 3  

PV                                              Parvalbumin 

Pyr                                             Pyriform cortex  
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SE                                             Standard error  

Sept                                           Septum  

SERT                                        Serotonin transporter 

SD                                            Standard deviation 

Shh                                           Sonic hedgehog homolog  

SN                                            Substantia nigra 

SOM                                        Somatostatin 

SSRI                                         Selective serotonin reuptake inhibitors 

TCA                                          Tricyclic antidepressants  

Th                                             Tyrosine hydroxylase  

Thal                                          Thalamus 
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ABSTRACT 
 
The embryonic development of the Central Nervous System (CNS) requires an 
orchestrated series of events tightly regulating the patterning and regionalization of the 
neural tube, as well as the proliferation, survival and differentiation of distinct neuronal 
populations. All these events are controlled by cascades of activation of transcription 
factors that regulate the expression of specific subsets of genes in restricted regions and 
neuronal populations of the developing CNS. Among these transcription factors, 
homeobox-containing proteins play a crucial role, and altered expression of these 
factors can impact embryonic as well as adult CNS functions. In particular, homeobox-
containing genes have been described to crucially regulate differentiation of 
dopaminergic and serotonergic neurons during brain development. Dopaminergic and 
serotonergic neurons, respectively located in midbrain and hindbrain regions, diffusely 
innervate several forebrain areas, contributing to regulate several physiological 
functions including brain excitability. Classical pharmacological studies clearly showed 
that both dopamine and serotonin markedly regulate seizure susceptibility through 
specific receptor pathways. Our recent studies, performed on classical and conditional 
knockout mouse lines, demonstrate that altered embryonic development of 
dopaminergic and serotonergic neurons results in altered seizure susceptibility in the 
adult life. Here we will review our major findings, in light of other studies recently 
published by other groups. 
 
 
 
KEYWORDS 
Dopamine, serotonin, epilepsy, limbic system, knockout mouse 
 
 
INTRODUCTION 
 
Epilepsy is one of the most common neurological disorders, affecting about 1% of 
human population worldwide. The disease is characterized by the repeated occurrence 
of sudden, transitory and localized bursts of electrical activity, known as seizures. 
Seizures may arise in both cortical and subcortical areas, and depending on the brain 
area that is affected may result in episodes of motor, sensory, autonomic and psychic 
origin. Genetic, traumatic and developmental factors have been clearly implicated in the 
genesis of epilepsy. 
 
The developmental bases of epilepsy are largely unknown. Altered function of genes 
controlling specification of brain areas, neuronal identity and circuit formation may 
certainly lead to altered seizure susceptibility and epilepsy. For example, abnormal 
expression and function of genes involved in brain development might lead to altered 
differentiation of selected neuronal populations and improper shaping of neuronal 
circuitry, thus resulting in imbalance between excitation and inhibition in the postnatal 
brain. 
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A vast series of clinical and experimental studies clearly demonstrate that all major 
neurotransmitter systems are involved in epileptogenesis, including dopamine (DA) and 
serotonin (5-hydroxytryptamine, 5-HT) [1, 2]. Classical pharmacological studies clearly 
showed that both DA and 5-HT may have potent anti-convulsant effects, acting through 
specific receptor pathways. However, little is known about the impact of an altered 
embryonic development of dopaminergic and serotonergic neurons onto seizure 
susceptibility in the adult life. Here we will review our recent findings resulting from 
the study of classical and conditional knockout mouse lines with an altered 
development of DA and 5-HT systems. 
 
 
ROLE OF DA AND 5-HT IN EPILEPSY 
 
The role of DA and 5-HT in the genesis and control of seizures has been extensively 
reviewed in previous studies [1-4], to which the reader is referred for a detailed 
description of the experimental data. Here we will briefly summarize the major findings 
in this field. 
 
DA and epilepsy. DA has long been postulated to have an anti-epileptic action. The 
anti-convulsant properties of apomorphine (a prototypic DA agonist) were first 
described more than one century ago. Seizure inhibition has been also observed in 
patients administered amphetamines or antiparkinsonian drugs such as pergolide and 
bromocriptine, which all stimulate dopaminergic transmission [2].  
 
The use of dopaminergic ligands specific for the different subclasses of DA receptors 
allowed to demonstrate that DA has an anti-epileptic action also in a wide variety of 
animal models [2, 5]. In particular, these studies illustrated the opposite actions of D1-
like and D2-like receptors in the regulation of seizure activity. The physiological 
balance of DA activity at these two different receptors would be crucial for determining 
the response to seizure-promoting stimuli: activation of D1-like receptors is generally 
pro-convulsant, whereas D2-like receptor stimulation can block seizures. More 
recently, studies performed on different dopamine receptor knockout mouse lines 
confirmed these findings [3, 6-8]. The limbic system is crucially involved in the 
dopaminergic control of epileptic seizures. Indeed, limbic areas of the brain receive 
dopaminergic innervation [9] and express different types of DA receptors [10].  
 
5-HT and epilepsy. The idea that there may be a link between 5-HT and seizure 
inhibition was first suggested as early as 1957 [11]. In this study, a series of 
anticonvulsants, including phenytoin, were shown to elevate brain 5-HT levels. In 
recent years, there has been increasing evidence that serotonergic neurotransmission 
can modulate seizures in a wide variety of experimental models. It is now generally 
accepted that drugs elevating extracellular 5-HT levels (such as 5-hydroxytryptophan or 
selective serotonin reuptake inhibitors, SSRI) exert a powerful antiepileptic action 
against both focal (limbic) and generalized seizures [12-14]. The anticonvulsant effect 
of the SSRI fluoxetine has been clearly demonstrated in a wide variety of 
experimentally induced seizure models, as well as in genetically epileptic animals. 
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Conversely, depletion of brain 5-HT by para-chloroamphetamine (PCA, a selective 
neurotoxin for 5-HT neurons) or para-chlorophenilalanine (pCPA, an inhibitor of 5-HT 
synthesis) can lower seizure threshold, increasing the severity of limbic status 
epilepticus [1, 15]. 
 
Fourteen mammalian 5-HT receptor subtypes are currently recognized, and these have 
been classified into seven receptor families on the basis of their structural, functional 
and, to some extent, pharmacological characteristics [16, 17]. Among these receptors, 
the 5-HT1A, 5-HT2C, 5-HT3 and 5-HT7   subtypes, which are all expressed in 
epileptogenic brain areas (mainly, cerebral cortex and/or hippocampus), are the most 
relevant in epilepsy [1]. For example, administration of 8-hydroxy-2-(di-n-
propylamino) tetralin (8-OH-DPAT, a specific 5-HT1A agonist) is able to reduce 
experimentally induced seizures in rats [18], whereas increased lethality after seizures 
is observed in mice with targeted inactivation of the 5-HT1A gene [19]. Mice lacking 5- 
HT2C receptors also develop epilepsy [20, 21]. 
 
Taken together, all these studies clearly demonstrate that pharmacological and genetic 
manipulation of DA and 5-HT levels can markedly affect seizure origin and spread; 
conversely, little is known about the impact of an altered embryonic development of 
DA and 5-HT neurons onto seizure susceptibility in the adult life. In the following 
paragraph, we will briefly review the genetic networks regulating the differentiation of 
DA and 5-HT neurons during embryonic brain development. We will then summarize 
our recent findings supporting the idea that an altered maturation of these two 
neurotransmitter pathways can markedly affect seizure susceptibility in the adult brain. 
 
 
DEVELOPMENT OF DOPAMINERGIC AND SEROTONERGIC NEURONS 
 
In the mammalian nervous system individual population of neurons develop in a 
stereotypic position identified by their coordinates along the antero-posterior and dorso-
ventral axes [22, 23]. Three organizing centers, the mid-hindbrain boundary (MHB or 
isthmus), the floorplate (FP), and the anterior neural ridge (ANR) control 
regionalization of the two main axes and specify the location and the cell fate of 
specific neuronal population within the brain fate map [24].  This is also true for 
dopaminergic (DA) and serotonergic (5-HT) neurons localized in caudal midbrain and 
rostral hindbrain, respectively [22]. 
 
Regionalization of midbrain/hindbrain territory. The MHB is anatomically 
characterized as a constriction between midbrain and hindbrain, although its precise 
anatomical boundaries have not yet been determined. For this reason the borders of the 
MHB are only defined with the use of expression patterns of specific genes, which 
delineate its competence territory (Figure 1). By embryonic stage 7.5 (E7.5) in mouse, 
the transcription factors Otx2 and Gbx2 are expressed in a complementary fashion in 
the embryo: the border along their expression territories delineates the future junction 
between mesencephalon and metencephalon: the MHB (Figure 1). At early stages Fgf8, 
Wnt1 and Otx2 are expressed in the caudal midbrain regions that give rise to midbrain 
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DA neurons. In contrast, Fgf8 and Gbx2, but not Wnt1, are expressed in the region that 
gives rise to rostral 5-HT progenitors (Figure 1). The transcription factors Engrailed1 
(En1) and Engrailed2 (En2) are instead expressed in both caudal midbrain and anterior 
hindbrain. The expression domain of each gene reflects the role the gene plays in the 
formation of this territory. Otx2 and Gbx2 expression domains are restricted to the 
anterior and posterior part of the neural tube and, by doing so, define positioning of 
MHB along the anterior-posterior axis; Wnt1 and Fgf8 expression patterns are restricted 
to the mid-hindbrain junction in specular domains and are involved in the growth and 
maintenance of MHB cells; genes expressed across the entire mid- and hindbrain 
territory, such as Pax2, Pax5, En1/2, define the identity of this region, as a whole [25-
27]. The second organizing center of the midbrain/hindbrain region is the FP. Sonic 
hedgehog (Shh), the key-signaling molecule of the FP, is mainly supplied to the neural 
tube by the ventral midline structures. During neurogenesis, dopaminergic and 
serotonergic neuron progenitors within the neuroepithelium are committed by the 
combined action of Fgf8 and Shh, originating form the MHB and the FP, respectively.  
 
Determination and differentiation of dopaminergic and serotonergic progenitors. The 
concomitant action of MHB and FP activates in the midbrain a combination of 
transcription factors including Otx2, Lmx1a/b, En1/2, Msx1/2, Ngn2 and Mash1, in a 
temporal sequence. The expression of Otx2, Lmx1b and En1/2 genes is already initiated 
by E9.0 [28-31]. Subsequently, Lmx1a and Msx1/2 expression turns on around E9.5, 
while Ngn2 and Mash1 are not expressed until E10.75 [32]. While Otx2 and En1/2 
participate to the positioning of the MHB region, recent studies identified Lmx1a and 
Msx1 as determinants of midbrain DA neurons [33]. The two transcription factors are 
induced by Shh, either directly or through an unknown signal, in ventral midline cells in 
the mesencephalon. However at least in the intermediate and posterior ventral midbrain 
activation of Lmx1a and Msx1/2 appears to depend on the presence of Otx2 [34], 
suggesting that Otx2 might be required for direct activation of Lmx1a and Msx1/2 
and/or to provide DA progenitors with competence in responding to the Shh by 
inducing the expression of Lmx1a and Msx1/2. Furthermore, while Lmx1a is sufficient 
to induce DA cell differentiation in ventral progenitors cells and induces the expression 
of Msx1/2, Msx1/2 seem to be instead involved in the repression on the lateral 
progenitors cell fate. Floor plate (Shh-positive) cells can turn into dopaminergic 
progenitors through the acquisition of neuronal potential and down-regulation of Shh, a 
step that involves the activation of the proneural genes Ngn2 and Mash1 by the 
combined action of Lmx1a and Msx1/2 [33, 35].  
 
Recent reports have suggested that mesencephalic floor plate cells have indeed the 
potential to directly generate mesencephalic dopaminergic neurons whose A-P identity 
depend on the expression of Otx2 [36]. Despite several reports demonstrate an early 
requirement for Shh, supporting DA progenitors through the induction of Lmx1a, recent 
evidence indicate an additional, later role of Shh to inhibit midline (DA) progenitors 
proliferation and neurogenesis [37]. In this context Wnt1 might have a relevant role in 
regulating cell proliferation. This is supported by the finding that mouse mutants 
lacking or over-expressing Otx2 respectively exhibit loss or increase in both Wnt1 
expression and proliferating activity [34, 38]. Midbrain DA neurons would be therefore 
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specified dorso-ventrally as FP cells and antero-posteriorly by Otx2 signals while 
hindbrain neurons, such a 5-HT cells, would originate from precursors lacking the Otx2 
signal [36, 39]. 
 
A number of genes important for final differentiation and long-term maintenance of DA 
neurons start to be expressed in immature DA neurons including the homeobox genes 
Lmx1b, Pitx3 and En1/2 and the nuclear orphan hormone receptor Nurr1. Loss of 
function of these genes results in the loss of dopaminergic neurons after birth [30, 40, 
41]. During maturation of DA neurons, other genes necessary for the synthesis and 
homeostasis of DA are expressed including, tyrosine hydroxylase (Th), aromatic 
amino-acid decarboxylase (Aadc), vescicular monoamine transporter 2 (Vmat2), 
dopamine D2 receptor (D2r) and dopamine transporter (Dat) as well as other genes 
including c-ret and glial cell-line derived neurotrophic factor receptor α-1 (Gdnfrα-1), 
the receptor complex for the neurotrophic factor glial cell line-derived neurotrophic 
factor (Gdnf). 
 
Rostral hindbrain 5-HT neurons, like midbrain DA neurons, have been shown to 
depend on both the activity of the MHB and the FP. However a third signal, Fgf4, 
coming from the primitive streak, participate to the specification of hindbrain 5-HT 
progenitors. Expression of Nkx2.2 is then essential for specification of 5-HT neurons 
and ventral progenitor identity, conferring competence to become 5-HT neurons [42, 
43]. Nkx2.2 is a homeodomain transcription factor expressed in the ventral-most 
neuroepithelium in response to Shh signaling. Once the position of the precursors is 
defined, other transcription factors are required to establish the serotonergic phenotype. 
These transcription factors are expressed in postmitotic cells, and comprise a Lim 
homeodomain gene Lmx1b, and a transcription factor Pet1. Pet1 has a unique 
expression pattern: it is strictly limited to the raphe nuclei, and appears one day before 
the serotonergic neurons can be identified. This factor could directly activate the 
transcription of the genes that define the 5-HT phenotype: tryptophan hydroxylase 
(Tph), aromatic amino acid decarboxylase (Aadc), the 5-HT transporter (Sert) and the 
vesicular monoamine transporter (Vmat) [43]. 
 
The MHB organizer not only determines the competence of the territory to develop 
certain neuronal populations (dopaminergic and serotonergic), but also defines the 
compartments where progenitor cells are to be positioned along the anterior-posterior 
and dorso-ventral axes. Changing position and extension of the MHB territory, by 
shifting Otx2 or Gbx2 expression domains, can either expand or reduce the DA or 5-HT 
neuron population [39, 44-46]. Furthermore, Otx2 has been shown to be required for 
midbrain DA neuron generation independently of controlling isthmic organizer 
positioning, suggesting that Otx2 may determine the A-P identity of neural progenitors 
that confer DA neuron identity [39, 47].  In particular, manipulations of Otx2 
expression domain result in anterior to posterior (En1Cre/+; Otx2flox/flox mice; [39]) or 
dorsal to ventral (Otx1Cre/+; Otx2flox/flox mice; [46]) transformation of the cell fate with 
the consequent alteration of positioning and extension of DA and 5-HT neuronal 
population. Figure 1 summarizes the genetic networks controlling the differentiation of 
DA and 5-HT neurons during embryonic brain development. 
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Figure 1. Gene regulatory networks involved in DA and 5-HT neuron differentiation. 
(Top) Patterning signals in the developing brain. Sagittal view of an E11 mouse embryo neural 
tube; anterior is on the left. Expression of the secreted factors fibroblast growth factor 8 (Fgf8), 
Wnt1 and sonic hedgehog (Shh) is depicted at the MHB, in the anterior neural ridge and ventral 
diencephalon and within the floor/basal plate of the spinal cord, hindbrain, midbrain and caudal 
forebrain. Mesencephalic dopaminergic (DA) neurons are induced by a combination of Fgf8 and 
Shh (arrows). 5-HT neurons are specified by a combination of the same factors but they require 
an early inductive signal (Fgf4, not shown) derived from the anterior mesoderm during 
gastrulation. 
(Bottom) Gene expression patterns participating to DA and 5-HT neuron differentiation; anterior 
is on the left. Gbx2 expression maintains Fgf8 expression, whereas Otx2 and Gbx2/Fgf8 
regulate each other negatively. Concomitantly, the expression territories of Fgf8, Wnt1, 
Engrailed and Pax genes become interdependent and establish a positive regulatory loop that 
is necessary to maintain MHB identity. The mid-diencephalic border is positioned by negative 
cross-regulations of Engrailed/Pax and Pax6 (not shown), whereas Fgf8 exerts a negative 
influence on the caudal expression of Hox genes (not shown). Later on, Shh induces the 
expression of Lmx1a and Msx1/2. While Lmx1a is sufficient to induce DA cell differentiation of 
ventral progenitors cells and induces the expression of Msx1/2, Msx1/2 is involved in the 
repression on the lateral progenitors cell fate (not shown). Midbrain DA neurons are specified 
dorso-ventrally by Shh signaling and antero-posteriorly by Otx2 signals, while 5-HT cells 
originate from precursors lacking the Otx2 signal. Shh signaling induces the expression of 
Nkx2.2, which is then essential for specification of 5-HT neurons and ventral progenitor identity, 
conferring competence to become 5-HT neurons. Once positioning and identity of the neuronal 
precursors are determined, specific differentiation programs are activated in DA (Lmx1b, Pitx3, 
Nurr1) and 5-HT neurons (Lmx1b and Pet-1). Adapted from [50, 51]. See text for details. 
Abbreviations: Di, diencephalons; Ms, mesencephalon; r, rhombomeres. 
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ALTERED DEVELOPMENT OF DA AND 5-HT NEURONS CAN AFFECT 
SEIZURE SUSCEPTIBILITY: INDICATIONS FROM MUTANT MICE 
 
We recently investigated seizure susceptibility in mutant mice with conditional 
inactivation of the Otx2 gene in DA precursor cells. In these mice, Otx2 was 
conditionally inactivated by a Cre recombinase expressed under the transcriptional 
control of the Engrailed1 (En1) gene (En1Cre/+; Otx2flox/flox), resulting in a reduced 
number of DA neurons and an increased number of 5-HT neurons in the ventral 
midbrain that persists until adult age [39, 48]. In particular, adult En1Cre/+; Otx2flox/flox 
mice showed a massive increase of 5-HT in the pons, ventral midbrain, hippocampus 
(CA3 subfield) and cerebral cortex, that was paralleled by reduced levels of 5-HT 
transporter (Sert) in the same areas. Due to this increased 5-HT hyper-innervation, 
En1Cre/+; Otx2flox/flox mice were resistant to generalized seizures induced by the 
glutamate agonist kainic-acid (KA) (Figure 2). Brain 5-HT depletion in mutant mice 
restored 5-HT content to control levels, fully re-establishing KA-seizure susceptibility 
[48]. 
 

 
 

 
 
Figure 2. Seizure susceptibility in mutant mice with altered development of DA and 5-HT 
neurons. En1Cre/+;Otx2flox/flox mice show a marked resistance to kainic acid (KA)-induced 
seizures, as compared to their controls (Otx2flox/flox mice). Conversely, no significant difference 
in KA seizure score is detectable between En1+/-; En2-/- (HT) mice and their wild-type (WT) 
controls (C57Bl/6x129Sv mixed genetic background). Otx2flox/flox control mice have a higher KA 
susceptibility respect to WT mice since they are generated in the KA-sensitive DBA2 
background [48]. Bars represent the maximum seizure rating scale value scored by each 
genotype (n = 8-10 animals per group) over a period of two hours after intraperitoneal (i.p.) 
administration of KA (20 mg/kg). Data are expressed as mean ± s.d. ** p<0.001, t-test; n.s., not 
statistically significant difference (p>0.05, t-test). Seizures were scored as described in [48]: 
stage 0: normal behavior; stage 1: immobility; stage 2: forelimb and/or tail extension, rigid 
posture; stage 3: repetitive movements, head bobbing; stage 4: forelimb clonus with rearing and 
falling (limbic motor seizure); stage 5: continuous rearing and falling; stage 6: severe whole 
body convulsions (tonic-clonic seizures); stage 7: death. Data for Otx2flox/flox and 
En1Cre/+;Otx2flox/flox mice are re-adapted from [48]. 
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In parallel experiments, we also evaluated KA seizure susceptibility in En1+/-; En2-/- 
mutant mice (HT mice), which display a post-natal and progressive loss of DA neurons 
of the substantia nigra [49]. It is important to point out that the post-natal DA cell loss 
in HT mice is not accompanied by increased number of 5-HT cells (our unpublished 
observations). HT mice did not show significantly altered seizure susceptibility when 
compared to control (Figure 2). 
 
 
CONCLUSIONS 
 
Altered expression and function of homeobox genes during brain development may 
lead to abnormal specification of brain areas, neuronal identity, circuit formation, 
ultimately leading to an imbalance between excitation and inhibition. Our studies, 
carried out in mutant mouse lines lacking Otx2 or Engrailed1/2 genes, show that altered 
specification of DA and 5-HT cell fate results in altered seizure susceptibility in the 
adult age. Classical pharmacological studies indicate that both DA and 5-HT may have 
an anti-epileptic action. It might be therefore questioned that reduction of DA cells in 
both En1Cre/+; Otx2flox/flox and HT mice could contribute to lower seizure susceptibility 
in these animals. On the contrary, En1Cre/+; Otx2flox/flox mice were markedly resistant to 
KA seizures due to 5-HT hyper-innervation, whereas HT mice (in which 5-HT levels 
were unchanged) showed a normal susceptibility to KA seizures. These results suggest 
that the effect of 5-HT hyper-innervation onto seizure control is more prominent than 
that of DA reduction. 
 
 
 
ABBREVIATIONS  
 
ANR, anterior neural ridge; 
Aadc, aromatic amino-acid decarboxylase; 
CNS, Central Nervous System; 
DA, dopamine; 
Dat, dopamine transporter; 
D2r, dopamine D2 receptor; 
E, embryonic stage; 
En, Engrailed; 
Fgf, fibroblast growth factor; 
FP, foorplate 
Gdnf, glial cell line-derived neurotrophic factor; 
Gdnfrα-1, glial cell-line derived neurotrophic factor receptor α-1; 
HT mice, En1+/-; En2-/- mutant mice; 
5-HT, 5-hydroxytryptamine (serotonin); 
8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino) tetralin; 
KA, kainic acid; 
MHB, mid-hindbrain boundary; 
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PCA, para-chloroamphetamine; 
pCPA, para-chlorophenilalanine; 
Sert, serotonin transporter; 
Shh, Sonic hedgehog; 
Th, tyrosine hydroxylase; 
Tph, tryptophan hydroxylase: 
Vmat, vescicular monoamine transporter; 
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