
1 

 

UNIVERSITY OF NAPLES FEDERICO II 

UNIVERSITY OF BERGAMO 

Ph.D. Program in 
Technology, Innovation and Management (TIM) 

XXXV Cycle 

SSD: ING-IND/05 Aerospace Equipments and Systems 

Innovative Systems and Solutions  

for Unmanned Traffic Management

 

Ph.D. Advisors 

Prof. Domenico Accardo 

Prof. Giancarlo Rufino 

 

Ph.D. Course Coordinator 

Prof. Renato Redondi 

Ph.D. Candidate 

Eng. Claudia Conte 

ID: 1067616 

 

 

 



2 

 

Blank Page 

  



3 

 

Abstract 

The rapid increase of the Unmanned Aerial System market needed the definition of a 

regulated airspace that guarantees high accuracy and integrity levels, also considering the 

economic and social impact of unmanned platforms in the civil airspace. This study 

presents the development of innovative systems and solutions to support the so-called 

Unmanned Traffic Management. A modular system configuration called BRAINS was 

defined for an innovative integration of on-board units thanks to the identification of a 

core section and a custom section in a multi-platform and multi-mission scenario.  The 

defined core section includes the processing units to be installed on-board a generic 

platform. The custom section includes the units that are specific for platform and mission. 

The units that are involved by the Unmanned Traffic Management services were analyzed 

and innovative solutions were implemented and tested thanks to on-ground and in-flight 

tests. Specifically, a Deep Learning based method for Trajectory Prediction was 

developed to predict the Unmanned Aerial System time-of-flight and battery discharge 

during a generic path. A technique to estimate the battery capacity was reported to predict 

the battery State Of Charge. An innovative method for heading angle estimation based on 

a polarimetric camera was developed for airspace where the satellite-based navigation is 

challenging. Moreover, advanced techniques for payload data processing were 

implemented analyzing Unmanned Aerial System swarming capabilities also as support 

to emergency situations. The definition and development of tests by using both custom 

and commercial Unmanned Aerial Systems allowed to implement standard solutions and 

procedures that can be applied to support the Unmanned Traffic Management. 

Keywords: Mission Management System, Unmanned Aerial Systems, Unmanned Traffic 

Management 
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1. Introduction 

The latest years experienced a worldwide growth of air traffic that includes both manned 

and unmanned aircraft. New rules, procedures, and systems are required to support the 

challenging integration of Unmanned Aerial Systems (UASs) in the civil airspace. Beside 

the already assessed solutions developed for the Air Traffic Management (ATM),  

specific services must be identified and implemented to guarantee safe missions in the 

so-called Unmanned Aerial System Traffic Management (UTM) that includes low-

altitude UAS operations. 

The recent increase of UAS user demand is related to the wide diffusion of different types 

of mission that can be achieved reducing time and costs, as well as human risks. 

According to the European Drones Outlook Study [1] the sectors that will be mainly 

affected by the UAS introduction are agriculture, public security, transport, and energy. 

Fields and crops can be easily covered by using UASs with Electro Optical (EO) and 

Infrared (IR) payload systems to monitor the vegetation and terrain health state and act 

tempestive actions. Border patrolling and surveillance can be performed in less time and 

proving accurate data also in coordination with ground operations. Unmanned aerial taxi 

can provide rapid passenger transport links in the so-called Urban Air Mobility (UAM) 

scenario. Package delivery missions can support same-day distributions in the e-

commerce development. Emergency deliveries, such as biological samples and 

medicines, can benefit from rapid transport. In the Industry 4.0 framework, UASs can 

provide critical services, such as predictive maintenance, photogrammetry, infrastructure 

inspections, to support more efficient industrial operations and reducing the risk level for 

workers.  

The introduction of UAS technology must come with an equally rapid adaption of rules 

and procedures. The UAS regulation is undergoing several updates during the latest years 

in many countries. For example, the European Aviation Union Safety Agency (EASA) in 

Europe [2] and the Federal Aviation Administration (FAA) in the United States [3] are 

adapting the UAS regulation to face the rapid market changing. The core of the new 

regulation scenario is related to the risk evaluation that currently is performed considering 

the mission operative conditions other than the UAS specifications.  
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The need to realize a safe and efficient UTM has led to the development of advanced 

solutions for on-board and on-ground systems that will enable the integration of UASs 

with different specifications for several mission types. Planning, Conflict Detection & 

Resolution, and Contingency Management are some of the main topics that the research 

field is investigating to provide innovative solutions for the UTM development. 

This work presents the design of a modular task-oriented Mission Management System 

called BRAINS that allows an easy integration of on-board units. The main modules that 

interface with the UTM functions were identified. Innovative systems and solutions were 

developed to support UAS integration in civil airspace according to UTM requirements. 

Adequate test strategies were implemented to validate the achieved results thanks to on-

ground and in-flight tests by using custom and commercial UASs. The development of 

the proposed methods was supported by the adoption of low-cost and high-performance 

embedded Micro-Electro-Mechanical-Systems (MEMS) that allow to implement 

compact and lightweight solutions in the UAS multi-platform and multi-mission scenario. 

A schematic description of the presented work is shown in Fig. 1. Chapter 1 includes an 

introduction about the role of UASs in the current airspace scenario that is crowded by 

manned and unmanned vehicles with different specifications. The main features of 

unmanned traffic were analyzed as starting point to define accurate and efficient solutions 

in agreement with UTM requirements. Chapter 2 highlights the economic and social 

impact of UAS technology in the today market and the effect of  the UTM services 

introduction. Chapter 3 introduces the modular Mission Management System called 

BRAINS that proposes a task-oriented approach of on-board system integrations to 

satisfy UTM requirements. Chapter 4 describes a Deep Learning (DL) based method for 

Trajectory Prediction (TP) that can be adopted in strategical phase for flight planning and 

in tactical phase for re-planning evaluations of many UASs. Specifically, the UAS time-

of-flight and battery discharge were predicted thanks to a data-driven approach 

considering the nominal path and the wind vector as input values. Chapter 5 reports an 

innovative integration of a polarimetric camera that allows to accurate estimate the 

heading angle in environments where traditional navigation solutions are challenging. 

Chapter 6 analyzes UAS swarming capabilities that must be considered to develop 

adequate configurations. The identification of core enabling technologies for different 
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swarms allows to analyze the configurations that the UTM must face. Two case-studies 

were evaluated: the first case-study involves a UAS swarm that can monitor wide areas 

in emergency conditions, such as during COVID-19 pandemic; the second case-study 

involves a UAS swarm that electromagnetically obscure a ground-based radar for military 

applications. Chapter 7 includes the conclusion of the presented work with a summary of 

the obtained results. 

The proposed work aims at developing innovative systems and solutions to support the 

definition of standard procedures in the ongoing UTM requirements assessment for a safe 

integration of UAS in the civil airspace. 

  

Fig. 1. Flow-chart of activities presented in this thesis work. 

1.1. Unmanned Aerial Systems Overview 

In the last few years, the UAS market has had a rapid growth and, nowadays, it includes 

several systems with different size, weight and payload systems that are developed 

according to the planned mission. The period from 2001 until today has been defined as 

the “UAS Golden Era” [4], thanks to the system technological improvement, such as 

satellite communications, navigation systems, advanced payload systems. The 

widespread development of UAS market is related to the design and development of 
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versatile platforms that can achieve high performance for navigation and mission 

purposes in different environments. 

According to the International Civil Aviation Organization (ICAO), the term Unmanned 

Aircraft System [5] is referred to a macro-set of vehicles that does not have a human on-

board operator, so it includes both autonomous and remotely piloted vehicles. The 

advantages related to the adoption of UASs include the time and cost reduction of mission 

development and the possibility to cover large areas. Also, the use of UASs is strongly 

related to the reduction of the effort and/or risk of the human operator for the so-called 

Dull, Dirty, and Dangerous operations [4]: 

- Dull operations involve repetitive activities, such as surveillance, communication 

relay, and terrain mapping.  

- Dirty operations involve activities in contaminated areas with high levels of 

radiations and chemical agents.  

- Dangerous operations involve activities in high-risk areas that are affected by 

environmental disasters or military missions. 

Usually, the UAS concept includes the aerial segment, the ground segment, and the 

communication link [5]. The aerial segment involves the Unmanned Aerial Vehicle 

(UAV) and the on-board sensors, the ground segment involves the ground station to 

control the vehicle and monitor the flight parameters, and the communication link allows 

to exchange the downlink data related to the vehicle status and the uplink data related to 

the operator commands. Most of current applications involve the use of autonomous or 

automatic UASs. Autonomous UASs does not need human actions against flight plan 

perturbations, instead automatic UASs follow a planned flight plan, but the pilot must 

intervene if unexpected events occur. The design of the flight control system is a critical 

element because it must guarantee the management of planned flight plans and a proper 

payload control. Moreover, innovative sensor data processing can be exploited to improve 

both primary tasks, such as navigation, collision avoidance, contingency management, 

and payload operations. Exchangeable payload configurations and lightweight frames can 

be used to achieve compact platforms and improve the mission results.  
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1.2. Unmanned Aerial Systems Regulation 

The growth of UAS market determined the need to develop a safe regulated environment 

where different types of platforms must be integrated with the traditional manned 

aviation. The EASA developed common rules to realize a harmonized set of regulations 

in all member countries. Each member country has a transition period in which it must be 

complied with the issued rules in terms of certification procedures, designing, 

manufacturing, licenses. 

During the year 2019, the European regulation for UASs experienced a turning point with 

the introduction of Regulation (EU) 2019/945 [6] and Regulation (EU) 2019/947 [7]. The 

new documentation considers the whole UAS operation as classification criteria. So, the 

UAS operations can be classified in three categories: 

1) Open category. An authorization by the proper authority is not needed before the 

UAS operation. 

2) Specific category. An authorization by the proper authority is needed before the 

UAS operation. 

3) Certified category. A proper certification is requested for UAS, remote pilot, and 

operator to conduct the operation. 

The open category [8] provides guidelines for operations that includes UASs with a 

Maximum Take of Mass (MTOM) lower than 25kg and no flights over uninvolved 

people. According to MTOM, systems, and specifications, UASs in the open category are 

classified by using identification labels from C0 to C4. This category includes three sub-

categories: 

1) A1 sub-category. The sub-category includes operations with UASs characterized 

by a MTOM lower than 250g with lighter requirements for the pilot, and UASs 

characterized by a MTOM larger than 250g and lower than 500g with training 

requirements for the pilot. The UAS registration is mandatory if the UAS MTOM 

is larger than 250g and lower than 500g or if the UAS MTOM is lower than 250g, 

it is equipped with a camera and it is not considered a toy. 

2) A2 sub-category. The sub-category includes operations with UASs characterized 

by a MTOM lower than 2kg with specific training for the pilot. The limit is 4kg 
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for UASs that belong to C2 class. The operation must be conducted at a distance 

larger than 50m from uninvolved people. 

3) A3 sub-category. The sub-category includes operations with UASs characterized 

by a MTOM lower than 25kg with specific training for the pilot. The operation 

must be conducted at a distance larger than 150m from commercial and residential 

places. 

The limitation of MTOM at 500g is a temporary issue that will be increase to 900g.  

The specific category [9] provides guidelines for operations that must be approved before 

the mission start. An exception to the authorization is for UASs that are defined by the 

identification label C5 or C6 and operations that can be included in the so-called standard 

scenarios ST1 and ST2. For this type of operations, the UAS operator must send a 

declaration -not an authorization request- to the proper authority before the mission start. 

Otherwise, the UAS operator must conduct: 

1) A risk assessment. This procedure must be provided performing a risk analysis 

for the involved operations according to specific guidelines, such as the Specific 

Operations Risk Assessment (SORA) approach. 

2) A predefined risk assessment. Mitigations and particularities allow to simplify the 

authorization request according to specific characteristics.  

Moreover, organizations that are in compliant with specific requirements can obtain the 

Light UAS operator certificate (LUC). Thanks to this certificate the organization can self-

authorize operations in the specific category.  

The certified category [10] involves operation with the highest risk. The UAS must be 

certified, as it happens for manned aviation with airworthiness and type certificates. 

Moreover, certificates are also needed by the UAS remote pilot and operator to conduct 

the mission according to high-standard safety levels. The first operations that will be 

investigated in this category are: 

1) Type 1. Cargo UAS operations in A-C class airspace conducted in Instrumental 

Flight Rule (IFR). 

2) Type 2. UAM or package delivery operations. 

3) Type 3. UAS operations with a human on-board pilot. 
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1.3. Unmanned Traffic Management Overview 

The increase of UAS demand is also driving the development of a regulated airspace 

volume to integrate UASs in the Very-Low-Level (VLL) airspace. The concept of UTM 

aims at managing the traffic of unmanned aircraft in the civil airspace guaranteeing a high 

safety level for people and building on-ground and manned aircraft in the surrounding 

airspace volume. Tasks such as identification, tracking, monitoring, emergency 

management, conflict resolution must be implemented providing proper services [11]. 

The realization of harmonized solutions for UAS integration involves a great worldwide 

effort by aviation authority. Examples of UTM implementation are shortly reported for 

Europe and United States cases. 

The EASA supported several proposals aimed at developing a single airspace with 

common rules. The Single European Sky ATM Research (SESAR) Joint Undertaking 

[12] is an organization among private and public entities to support the development of a 

harmonized airspace among the member countries. It was born thanks to the cooperation 

between the European Union and Eurocontrol that is the European organization for 

supporting Air Traffic Management and Control. The effort to develop common rules 

does not include only manned aircraft. The rapid growth of the unmanned systems market 

introduced platforms with different specifications in the civil airspace.  

To face up the recent needs of UTM, the European solution called U-space [13] was 

developed to implement the airspace services of UASs. Several projects were funded to 

support the identification and implementation of U-space services. Each project was 

focused on specific tasks and systems that the UTM should develop to properly manage 

a high number of platforms in different conditions supporting the introduction of new 

features, such as Beyond Visual Line Of Sight (BVLOS) operations and the swarming 

capabilities. An overview of some European projects is reported in Table 1 underling the 

main goals of each work. 

 

 

 



22 

 

Table 1. Main projects about U-space implementation. 

Project Starting Date Goals 

CORUS [14] 01/09/2017 

Development of initial Concept of 

Operations for U-space. Definition of four 

incremental steps (U1-U4) for U-space 

services implementation. 

AIRPASS [15] 01/11/2017 

Identification of UAS on-board systems 

according to UAS performance and U-space 

services. 

GEOSAFE [16] 24/07/2018 
Definition of geofencing solutions to protect 

sensible areas. 

EuroDRONE [17] 01/10/2018 
Development of a cloud-based solution and 

innovative communications for UTM. 

DACUS [18] 01/07/2020 

Demand and capacity balancing 

guaranteeing adequate safety level and 

separation. 

Metropolis 2 [19] 01/11/2020 

Solutions for strategic and tactical 

deconfliction and dynamic capacity 

management. 

CORUS XUAM 

[20] 
01/12/2020 

Development of services for UAM 

operations. 

AMU-LED [21] 01/01/2021 
Development of Concept of Operations for 

UAM operations. 

USEPE [22] 01/01/2021 
Solutions for separation and deconfliction in 

high-demand scenarios. 
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The European Commission issued the Regulation (EU) 2021/664 [23] about “A 

regulatory framework for the U-space”. This set of rules is applicable to all UASs, UAS 

operators, and service providers except for operations that involve UAS with a MTOM 

lower than 250g or UASs that belong to C0 class. In the document the mandatory U-space 

services are reported, such as identification, geo-awareness, flight authorization, traffic 

and weather information, conformance monitoring, as summarized in Fig. 2.  

- Network identification. Critical data must be shared during the mission. The UAS 

operator must be identified by a unique registration number, as well as the UAS 

vehicle. Data about UAS position, course angle, remote pilot position must also 

be available.   

- Geo-awareness. Airspace constrains, specific limitations and constrictions must 

be identified and communicated. 

- Flight authorization. The UAS flight plans must be managed and authorized 

checking for collisions. A first-come first-served policy is applied. The UAS 

operator must receive a notification about the authorization response. 

- Traffic information. Data about nearby traffic must be shared. It includes both 

manned and unmanned operations. 

- Weather information. Data about wind, visibility, ceiling, temperature, and 

pressure must be collected to manage UAS operations. 

- Conformance monitoring. If an authorized flight is not compliant with the planned 

mission, the UAS operator must receive a notification, as well as the UAS 

operators that are in the same area. 

The airspace risk assessment must be evaluated in all conditions based on UAS 

performance and available services. UAS operators must know in each airspace sector 

which are the available services that are provided. The forecast of U-space services 

development involves a four-step-based implementation from U1 to U4 [24] that will 

support a full deployment starting from 2030. 
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Fig. 2. Mandatory U-space services according to Regulation (EU) 2021/664. 

FAA planned the Next Generation Air Transportation System (NextGen) program [25] to 

develop innovative improvements to the United States airspace system. The introduction 

of UASs in national airspace drove the development of the UTM Research Transition 

Team (RTT) with NASA and industrial partners in 2016. The UTM Pilot Program [26] 

was defined to manage the small UASs operations and detect the services needed to 

support the unmanned traffic. Initially, some tasks were identified, such as sharing data 

about the mission intent among the UAS operators, remote identification, situational 

awareness. So, the program developed a proof of concept for UTM system also aimed at 

improving the Flight Information Management System. 

The Integration Pilot Program [27] was developed to face up the challenge related to the 

UAS integration in national airspace promoting a harmonization strategy with local 

entities and authorities. The BEYOND program [28] was planned to continue the effort 

performed during the Integration Pilot Program focusing on Beyond Visual Line Of Sight 

(BVLOS) operations and designing standard procedure to allow a safe UAS integration. 

The UTM Concept of Operations v2 [29] was developed in order to provide the main 

guidelines for UAS operations in different airspace classes. The main services that must 

be provided to UASs are reported and a layered approach related to safety, security, and 

equity concepts was developed to manage the access to the airspace. Some operational 

scenarios are described considering different airspace classes and the interaction between 

manned and unmanned traffic.  
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2. Impact of Unmanned Traffic Integration 

The development of advanced core enabling technologies for unmanned vehicles allowed 

an increase of market demand involving different platforms and missions. The large use 

of UASs in civil sectors allows to reduce the operating mission time and the use of low-

cost MEMS supports a competitive cost strategy. So, the introduction of UAS is 

experiencing a strong impact on everyday life. 

According to [1], considering a time horizon up to the year 2050, the European interest 

related to the UAS operations will be mainly focused on the following fields: agriculture, 

public safety, energy, delivery, transport. In the scenario of Industry 4.0, the adoption of 

innovative UAS technologies allows to support critical tasks, such as predictive 

maintenance, infrastructure inspection, and 3D reconstruction. 

The condition of a more and more crowded airspace and the ongoing development of 

UTM systems and solutions are carrying a strong impact on both economic and social 

context. 

In the United States according to the FAA Aerospace Forecast Fiscal Years 2021-2041 

[30] the UAS market will include about 1.55 million units for recreation/Model fleet and 

about 0.83 million units for commercial/non-model fleet in 2025. In Europe according to 

[1] the UAS market will include about 7.00 million units for recreation operations and 

0.20 million units for commercial purposes in 2025. So, the introduction of UTM in civil 

airspace will improve economic growth, connectivity, creation of jobs, development of 

safer procedures. However, it requires a huge effort to adapt already available systems to 

the new UTM concept. 

Social acceptance is also a critical element that must be taken into account during the 

definition of UTM guidelines. For example, UAS swarms can be used to support 

monitoring operations or police patrol operations in urban environment. Future 

applications, such as UAM or package delivery operations will involve UAS with a 

MTOM larger than 25kg as intra-city or extra-city transport vehicles. Several studies are 

focusing on the determination of the main factors that affect the public opinion about 

UAS operations. According to [31] the main factors of social acceptance for UAM 

operations are: 
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- Noise 

- Safety 

- Privacy 

Requirements related to the mentioned factors must be analyzed during the design phase 

of UAS and UAS missions. Then, in tactical phase, the UAS operator must reduce the 

impact of these factors on uninvolved people, i.e. people that have not been informed 

about the UAS operation.  

The modular configuration that is described in Chapter 3 was designed to achieve 

interoperability capability in multi-platform and multi-mission operations exploiting 

already available systems that can be re-arranged according to the operation type to match 

the UTM requirements. Low-cost MEMS are preferred to develop compact systems with 

reduced cost. Moreover, the mass-production of standard systems allows to achieve more 

reliable devices. 

  



27 

 

3. BRAINS: Modular Configuration for Unmanned Vehicles 

The design and test of vehicle onboard systems must be performed according to the user 

demand and current regulation in order to guarantee a proper safety level. However, the 

context of unmanned vehicles is characterized by a multi-platform and multi-mission 

scenario, in which each platform can execute several missions with different operative 

conditions. This context increases the number of custom on-board systems. The aim of 

the proposed work is the development of an innovative task-oriented Mission 

Management System called BRAINS that includes a modular configuration to better face 

the new requirements of UTM scenario. 

3.1. Overview 

According to the traditional integration of on-board systems, each element of the system 

configuration should perform a specific function. This element must be customized for a 

specific vehicle including both the processing units and the sensing units. However, the 

traditional approach has a difficult system integration for the multi-platform and multi-

mission context because if a new platform is designed or if the same platform must 

perform a different mission, the whole system must be changed. So, if the onboard system 

configuration is based on applicative functions, the development of standard modules for 

different unmanned vehicles is still a challenge. 

The lack of standard modular systems involves the lack of standard procedures for 

systems development. So, the standardization of core enabling Guidance, Navigation and 

Control (GN&C) technologies is becoming a critical requirement that has not yet been 

fully realized. The development of modular systems involves the use and the integration 

of assessed technologies [32] [33] [34]. Moreover, there is a great interest in the use of 

embedded systems for modular configurations and open systems for aerial, terrestrial, and 

maritime applications [35] [36] [37]. 

A modular configuration can be defined thanks to standard processing modules that 

interface with sensing elements, such as sensors and actuators. The communication can 

be realized thanks to a specific data bus protocol. The proposed modular system is called 

BRAINS because this task-oriented Mission Management System is a bio-inspired 



28 

 

modular configuration similar to human brain. It was designed to be installed onboard a 

generic autonomous vehicle including processing units in the core section and custom 

units in the custom section. The units must be identified avoiding unused or duplicate 

systems. 

The proposed task-oriented Mission Management System aims at developing an 

advanced on-board system integration for unmanned platform as it happened in 

traditional aviation considering the Lockheed Martin F-35® and Northrop Grumman B-

21® experience. As a result, the human intervention can be destinated to high level 

operations, such as manned-unmanned interaction and swarm coordination. The use of 

the proposed configuration can reduce the manufacturing cost because the core section 

can be mass-produced at a more competitive cost. Moreover, the adoption of MEMS must 

support the identification of compact and high-performance hardware devices. The so-

called Commercial off-the-shelf (COTS) devices can be acquired to realize an easier 

system integration. This approach aims at increasing the reliability level and the 

development of standard procedure for safer missions.  

3.2. BRAINS System Configuration 

The presented modular configuration proposes a different approach with respect to the 

traditional configuration that involves a fully customized system. For example, the 

traditional configuration develops the Guidance, Navigation and Control (GN&C) 

functions with different custom systems.  

This modular system is presented in [38] and it proposes a core section that involves the 

processing modules, and a custom section that includes the specific devices of the vehicle. 

The traditional functions, such as GN&C, can be reconstructed thanks to a proper 

combination of the units included in core section and custom section. The outputs of the 

defined units combination are called synthetic functions. 

The units included in the core section must be selected considering the technologies that 

can be supported by a generic platform. At the beginning the systems that are in common 

among different autonomous systems must be identified. Then, a preliminary design 

analysis must be carried out to assess the feasibility of the integration in the main part of 
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the onboard configuration. The units of the core section are selected based on the 

processing type. Instead, the custom section includes the peripheral units, such as sensors, 

actuators, and antennas that are custom elements for each transport system and/or mission 

type. The communication among the units is guaranteed by a standard data bus. Standard 

interface must be preferred to provide the link with the units of the custom section. 

Systems can be easily interchanged supporting maintenance and improvement operations.  

BRAINS system configuration is showed in Fig. 3, where the processing units are at the 

center of the figure and the custom units are outside. Three data buses are reported, the 

first and second data buses are designed for Real-Time (RT) data at respectively low and 

high Data-Rate (DR), and they can provide communication links for primary tasks. The 

third data bus supports high DR considering a non-deterministic control and it is used to 

handle data from payload. 

 

 

Fig. 3. BRAINS system configuration. Blu line indicates real-time low Data-Rate, red line indicates real-

time high Data-Rate, bold red line indicates non real time high Data-Rate. 

The units that are included in the core section are described below.  
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- The Scheduler unit is the most critical unit because it coordinates all the units that 

are included in the core section. In nominal condition, the Scheduler activates the 

other units. Thanks to the data-bus interface, it can also access the partially 

processed raw data coming from the Sensors Data Processing unit to properly 

implement decision-making algorithms for module activation. Considering the 

important task, the Scheduler functioning must be guaranteed in all conditions, so 

redundant configuration can be developed in case of a failure of the main unit, or 

a multiple layer configuration can be designed to isolate the effect of failures. 

- The Event Monitoring unit detects failures in the system health status, and it is 

activated by the Scheduler in emergency conditions. This unit saves the system 

health status by using specific flags that are properly stored. 

- The Machine Learning unit can be used for classification and prediction tasks. 

This module receives data about the external environment thanks to the custom 

section modules and allows to run learning algorithms that can be used for both 

primary and payload operations, such as detection of sensor failures, vehicle 

trajectory prediction, positioning, obstacle detection. The choice of the hardware 

component must be driven by the computational cost required for the selected 

learning algorithms. 

- The Big Data Management unit can be used to improve the route scheduling task. 

This module elaborates data coming from traffic information sources and maps 

and allows to run algorithms to proper interpret and model the partially processed 

data from the Sensors Data Processing unit. It supports proper changes to the 

flight plan to select safe routes. 

- The Sensors Data Processing unit receives data from custom units, such as 

payload and navigation sensors and outputs data for navigation purpose. All the 

incoming data must be properly elaborated by custom units in a standard format.  

- The Data Fusion unit supports the integrated navigation task. An optimized 

solution must be developed considering specific filters, such as Kalman filter, 

extended Kalman filter, Particle filter to update the navigation state. 

- The Tracking unit receives data coming from the own vehicle or vehicles in the 

surrounding area. For example, considering the collision avoidance task, this unit 

provides information related to fixed and moving obstacles. 
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The units that are included in the custom section are specific for each vehicle model. 

However, some categories are described below. 

- The Navigation Process Sensors unit elaborates data coming from navigation 

sensors that require the information about the previous state, such as the Inertial 

Measurement Unit (IMU).  

- The Navigation Measurement Sensors unit elaborates data coming from 

navigation sensor measurements that are related only to the current state. Some 

sensors require low data rate bus, such as Global Navigation Satellite System 

(GNSS) sensors. Other sensors require high data rate, such as radars, lidars, 

cameras, and acoustic sensors. 

- The Payload Sensors unit involves all the sensors that are needed by the mission 

but not for the vehicle operations. Cameras, radars, lidars can be used and they 

require high data rate bus. 

- The Mission Plan unit elaborates the planned waypoints to define the mission 

profile. Data related to traffic and maps information can be integrated to update 

the flight plan.  

- The Command-and-Control Communication Link unit must be designed and 

selected according to the operational environment. Radio systems are used for air 

communications, as it happens for aerial and ground vehicles and maritime 

vehicles above the sea surface. Different solutions must be designed for 

underwater vehicles, such as sound waves or optical communications. For 

example, sonars can cover long distances, but they need high power, instead, 

LEDs and photodetectors can be used for short-range operations by using low 

power consumption.  

- The Traffic Communication unit handles data collected by the vehicles in the 

surrounding environment. This unit allows to map the other vehicles avoiding 

moving obstacles. 

- The Servos unit includes the low-level actuator control. Proper analysis must be 

performed to select the servo drives based on vehicle specifications. 

- The Storage unit collects the data that are processed by the other units. Data are 

exchanged at low data rate because the stored outputs have been already 

synthetized. 
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Considering the described system configuration, the GN&C functions can be developed 

as synthetic functions, as reported in the next examples. 

3.3. Example 1: Guidance Function 

The traditional Guidance function defines the nominal path that the vehicle should 

execute. The route can be defined as a series of waypoints that include information about 

position and velocity. The system units that are used to develop this function have a white 

background and the system units that are not used have a light grey background in Fig. 4. 

 

Fig. 4. System units involved in the Guidance function. The system units that are that are used to develop 

this function have a white background and the system units that are not used have a light grey 

background. 

The development of the traditional Guidance function as synthetic function is reported in 

Fig. 5. 
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Fig. 5. Guidance function developed as synthetic function. 

Before the mission start, the remote pilot of the unmanned vehicle activates the Mission 

Plan unit thanks to the Command-and-Control Communication Link unit. In this way, the 

flight plan is generated and uploaded. The remote pilot can also activate the Mission Plan 

unit during the tactical phase of the mission to update the nominal path. The Mission Plan 

unit can also be activated by the Scheduler unit if a system failure is detected.  

The remote pilot usually assigns the initial and final waypoints or a number of 

intermediate 3D/4D waypoints. The Mission Plan unit receives the information about the 

planned pilot intentions and develops a sequence of waypoints that are collected by the 

Storage unit. Then, the Big Data Management unit is activated by the Scheduler unit to 

manage all the feasible paths that can be developed. Moreover, this unit compares the 

planned waypoints with external data to select the nominal route that best fit the 

requirements. The external data can be defined by maps, airspace regulation, vehicle 

specifications and routes of other vehicles.  

The Storage unit save a flag related to the successful operation of path definition. The 

Scheduler unit updates the Even Monitoring unit about the path selection and the Storage 

unit saves the nominal path. Otherwise, the Scheduler iterates the path generation process 

changing the input parameters, such as allowing the remote pilot to modify the initial and 

final waypoint or delaying the mission start. The iterative process must be stopped if an 

assigned number of tentative is reached. 

Applications related to Guidance function will be discussed in Chapter 4 about Trajectory 

Prediction. 
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3.4. Example 2: Navigation Function 

The traditional Navigation function provides the real-time state of the vehicle and the 

deviations between the current path and the planned one. The system units that are used 

to develop this function have a white background and the system units that are not used 

have a light grey background in Fig. 6. 

 

Fig. 6. System units involved in the Navigation function. The system units that are that are used to 

develop this function have a white background and the system units that are not used have a light grey 

background. 

 

The development of the traditional Navigation function as synthetic function is reported 

in Fig. 7.  
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Fig. 7. Navigation function developed as synthetic function. 

The Scheduler unit activates the Navigation Sensors to acquire data that are needed for 

navigation purpose. The measurements of cameras, radars, lidars, and acoustic sensors 

are synthetized by the Sensor Data Processing unit and then integrated with other data. 

The Machine Learning unit can be used to calibrate sensors. All synthetic data are stored 

in the Storage unit. 

The Data Fusion unit processes data from the navigation sensors. This unit also integrates 

the output data of the Big Data Management unit to estimate the vehicle position and 

orientation. The Machine Learning unit can be eventually used for trajectory prediction 

solutions in order to better estimate the future vehicle trajectory.  

The Storage unit saves the current vehicle state. The Event Monitoring unit evaluates the 

development of the navigation state estimation, and it activates the Scheduler unit if a 

system failure is detected. 

Advanced applications related to Navigation function will be discussed in Paragraph 3.6 

about some examples of hardware implementation and Chapter 5 about integration of a 

polarimetric camera. 

3.5. Example 3: Control Function 

The traditional Control function defines the actions to limit the estimated trajectory 

deviations with respect to the planned path. The control function also activates the servo 
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drivers to send proper commands to the actuators. The system units that are used to 

develop this function have a white background and the system units that are not used have 

a light grey background in Fig. 8. 

 

Fig. 8. System units involved in the Control function. The system units that are that are used to develop 

this function have a white background and the system units that are not used have a light grey 

background. 

The development of the traditional Control function as synthetic function is reported in 

Fig. 9. 

 

Fig. 9. Control function developed as synthetic function. 

The output of the Guidance and Navigation synthetic functions are stored in the Storage 

unit. The Scheduler unit runs the control software that generates proper actions for the 
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Servos unit. The servos drivers generate feedback that is evaluated by the Event 

Monitoring unit that creates a flag about the system state. 

Applications of Control function will be discussed in Chapter 6 about UAS swarming 

capabilities. 

3.6. Hardware Test Examples 

To develop a competitive cost strategy, high-performance boards can be exploited as 

processing units in the core section, such as BeagleBone® Blue, Raspberry Pi®, STM 

Nucleo® boards [39] [40] [41], limiting the cost to few hundreds of Euros. An example 

of processing units for UAS modular configuration that were analyzed is reported in Fig. 

11 and a detailed view of the used boards is shown in Fig. 11. The integration of high-

performance units allows to easily integrate a so-called companion computer that can be 

used to communicate with the main board, that performs the Scheduler unit functions, 

developing advanced tasks of other processing units, such as Data Fusion, Sensor Data 

Processing, Machine Learning, Big Data Management, and Tracking.  

 

Fig. 10. Example of on-board processing units integration. 
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                                                   a)                                                                 b)                                      

Fig. 11. Details of used processing boards. a) Zoom on Raspberry Pi® 4 board. b) Zoom on BeagleBone® 

Blue board. 

During the design and development of critical BRAINS units, hardware implementations 

were provided to develop compact and high-performance systems that can be used on-

board the UAS core section for navigation purposes. A redundant configuration of low-

cost inertial units was implemented to reduce the IMU bias, comparing the results with a 

high-performance tactical-grade sensor, as presented in [42]. The method proposed in 

[43] achieved a bias instability and random walk reduction of about 25% by using 

redundant geometry of MEMS inertial sensors. A procedure to estimate the initial heading 

of a vehicle by using a tactical-grade inertial sensor, a low-cost MEMS magnetometer, 

and a certified inertial unit as reference is reported in [44]. A Machine-Learning based 

method to detect failures in the air data system thanks to the integration with MEMS 

inertial units is reported in [45]. An embedded system is described in [46] that allows to 

manage the release of decoys from the UAS payload for veterinarian applications. At the 

end, to exploit the integration of MEMS inertial sensors and Real Time Kinematic GPS 

for position monitoring of large infrastructures, the study described in [47] was 

developed. 
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The proposed examples show the high configurability of BRAINS solution that can be 

used by different unmanned systems also in maritime and ground environments, such as 

Autonomous Underwater Systems, Autonomous Surface Vessels, and Unmanned Ground 

Systems. 

3.7. BRAINS Business Assessment 

3.7.1. Market Analysis 

The technological improvement in the field of unmanned systems and the development 

of new UAS applications are driving the increase of UAS user demand. The first UASs 

were involved in military operations [48]. Then, according to [49], the industry 

emergence determined the increase of new applications such as the use of UASs for 

leisure purpose while the technology emergence determined the shift from leisure 

applications to commercial applications thanks to the adoption of advanced navigation 

and payload systems. The actual scenario of UAS market is strongly segmented based on 

the intended use [50], and three categories can be defined according to the user goal: 

leisure, commercial, and military. Each category involves specific requirements for UAS 

design and cost strategy. According to [1] the European market will involve 200 million 

Euros investments in UAS research and development field, and the annual economic 

impact will be about 15 billion Euros in 2050, as reported in Fig. 12. The units increase 

will reach a constant growth in 2050: 

- Leisure operations will be conducted by 7 million UASs. 

- Commercial operations will be conducted by 415 thousand UASs. 

- Military operations will be conducted by 3 thousand UASs. 
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Fig. 12. Annual economic impact of UAS market of about 15 billion Euros in 2050. 

The standardization of BRAINS core section can support the rapid increase and the 

segmentation of UAS market thanks to high configurability characteristics. The 

integration of low-cost embedded systems limits the cost of processing units adapting the 

proposed integrated system to different applications.  

3.7.2. Product Added Value 

BRAINS solution aims at exploiting a modular configuration to fit the rapid changes of 

UAS market and support the development of task-oriented integrated systems also in 

maritime and terrestrial environments. The mass-production of the core section for 

multiple platforms allows the reduction of the realization cost and an increase of the 

reliability level. A competitive cost strategy also exploits low-cost MEMS that are already 

available on the market. The certification procedure of the whole platform is supported 

by the certification of each module in different operative conditions. A task-oriented 

configuration allows an easier onboard system integration and unit exchange. The 

adoption of BRAINS solution can speed up maintenance operations, reducing the 

monitoring time and supporting planned predicted actions. Moreover, damaged units can 

be substituted without the need to replace the whole system. Shortcomings are related to 

the need of new validation tests to assess the integrated configuration, but an adequate 

test strategy can be planned and validated involving one-off costs. 
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3.7.3. Customers 

Target customers for the proposed task-oriented solution are government and professional 

entities that operate in multi-mission scenarios. High resolution cameras, compact radars, 

advanced communication links can be included in BRAINS custom section to achieve 

specific missions exploiting the same core section with dedicated units. Also, military 

operations can be supported by BRAINS configuration thanks to the introduction of 

tactical grade sensors and advanced data processing to improve the navigation 

performance. 

3.7.4. Competitors 

Conventional UASs involve fully customized systems and represent a wide sector in all 

UAS market segments. Conventional UASs are “turnkey” solutions that can access the 

market to achieve specific mission profiles after the test and certification procedures of 

the whole system. Modular system configurations, on the other hand, must be compliant 

with high system integration requirements, but the certification procedure of each 

component can support the certification procedure of the whole system. 

BRAINS solution exploits the advantages of modular configurations aiming at the 

development of a common core section to be installed on-board different types of 

platforms. The realization of a custom section represents an addiction to the whole effort 

of system implementation. 

3.7.5. Providers 

BRAINS configuration allows to optimize execution and achievement of several missions 

by exploiting the interoperability of different advanced methods and processing modules. 

High performance and low-cost processing units are widely available to limit costs [39] 

[40] [51]. However, for critical operations and/or military missions tactical grade sensors, 

for example [52], and advanced payload systems, such as [53], can be adopted.  

3.7.6. Risk Analysis 

Among the applications of UAS technology, the support to search and rescue operations, 

disaster monitoring, pandemic emergency represents an important element that 

characterizes the UAS market also in difficult conditions. However, the semiconductor 
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shortage can have critical consequences. Many studies are investigating the problem 

developing solutions to optimizing the supply chain and developing shortage processes 

[54] [55] [56]. System robustness against external factors can be improved thanks to 

redundant configurations of main modules still avoiding unused peripheral units. The 

main elements evaluated during the risk analysis are shortly discussed in the Strengths, 

Weaknesses, Opportunities, and Threats (SWOT) diagram in Fig. 13.  

 

Fig. 13. SWOT analysis for BRAINS business assessment. 
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4. Trajectory Prediction of Unmanned Aerial Systems 

The need to handle safe and reliable mission profiles drives the development of methods 

to predict the main mission parameters. TP methods can be exploited to support the pre-

tactical phase of flight during the plan scheduling, or the tactical phase of flight during 

the operative trajectory. The method proposed in this study aims at predicting two critical 

parameters, i.e. the UAS time-of-flight and the UAS battery consumption. This approach 

can be adopted in the controller consoles, and it must be interfaced with the on-board 

Traffic Communication unit that handles other traffic data in the surrounding 

environment. 

4.1. Overview 

The prediction of future trajectories is a critical element in ATM development because it 

allows to act prompt actions to manage the traffic challenges. ATM requirements include 

a low computational cost and the analysis of non-linear data. Currently, Air Traffic 

Control (ATC) flight data processors adopt algorithms that are based on a straightforward 

model of aircraft dynamics, such as the Total Energy Model (TEM). The model of aircraft 

performance is included in a database named Base of Aircraft Data (BADA) [57] that 

collects data from aircraft manufacturers, ATC radar recordings, and ADS-B. However, 

TEM based methods does not take into account non-linear behavior and random 

uncertainties of the involves parameters. 

Tools and procedures designed for ATM purposes aims at providing real-time predictions 

of several aircraft that are flying in the same airspace volume. Similarly, the recent 

introduction of unmanned vehicles in the civil airspace allowed to develop advanced TP 

methods for aeronautical applications, so that both ATM and UTM can benefit from this 

research topic [58] [59]. 

Several TP methods are based on physics parameters of the involved vehicle, such as 

model-based, probabilistic and Bayesian approaches [60] [61] [62] [63]. The 

development of accurate TP methods is related to the forecast of main vehicle parameters, 

such as position, autonomy, time-of-flight that must be assessed within a proper time 

interval thanks to advanced Flight Data Processors.  
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Data-driven approaches are used if simulated or real data are available, and they allow to 

standardize innovative approaches for traffic management [64] [65]. 

The use of ML will be helpful to support model-based method challenging. Indeed, thanks 

to data-driven approaches, learning algorithms can perform an optimal management of 

systems also considering uncertainties and non-linearities [66] [67] [68] [69] [70] [71] 

[72]. They can map transfer functions among many inputs that are not considered in 

model-based methods.  

Specifically, TP methods based on learning algorithms for both unmanned and manned 

vehicles can be used to implement modular configurations, which have several 

advantages with respect to other methods. Proper planning strategies must be actuated 

according to the number and type of unmanned vehicles that populate the airspace.  

Learning based solutions allow to improve the prediction accuracy by adding new 

samples to the training database; Machine Learning (ML) and DL algorithms involve the 

possibility to add new features without the need to develop again the whole algorithm by 

changing the training dataset. The deterministic time needed to compute the output is 

important because the run-time is not related to the inputs. So, this type of algorithms can 

be used for real-time applications. Several databases are currently available to replicate 

the aircraft performance, such as BADA [57] for aircraft. Otherwise, a custom database 

can be collected. An advanced approach can involve a transfer learning based algorithms 

[73], [74] to reduce the computational time cost needed to generalize the investigated 

problem for a different platform starting from model-based simulations or a previously 

trained model. Moreover, several open-source libraries are available for training, 

validation and test learning algorithms, comparing different solutions, and training 

strategies to select the most performant approach.  

Pre-processing phase is crucial for a proper algorithm configuration. A series of data 

sources shall be identified. Knowledge-based and stochastic evaluation of data must be 

performed to estimate the distribution of data and the amount of data required to train a 

network that gives adequate accuracy. A test strategy must be developed to evaluate the 

method performance thanks to non-learning-based benchmarks. Adaptive capabilities 

that are non-achievable for model-based approaches can be obtained by using learning-

based algorithms because they do not need a fixed dynamical model.  
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TP procedures can be useful for additional applications [75] [76], such as prediction of 

Estimated Time of Arrival ETA, integration with Collaborative Decision Making (CDM) 

tools, and trajectory propagation for radar tracking. Moreover, this type of algorithms can 

also be tuned to support the needed integration of ATM and UTM. 

4.2. Methodology 

The proposed methodology is presented in [77]. A generic path includes segments 

between consecutive waypoints. During the performed tests the UAS reaches a planned 

waypoint, stops, and performs a heading change according to the next waypoint direction. 

This method adopts the waypoint approach to implement a safe procedure that can be 

standardized for UTM consoles. The pilot can monitor the surrounding airspace during 

the “stop” phase and, if an incoming vehicle is detected, proper evasive maneuvers can 

be performed. A corner is defined by two legs of assigned length, i.e. the segment before 

the turn and the segment after the turn. The time-of-flight along a generic path can be 

computed summing the corner time-of-flight and the remaining segments that are not 

included in a corner. Fig. 14 shows an example of generic path in which corners are 

delimited by red circles. Path planning applications often use strategies related to path 

segmentation. 

 

Fig. 14. Generic path with corner segmentation. 
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A zoom over a generic corner is reported in Fig. 15, where 𝑆𝑖 is the corner initial point 

and 𝐹𝑖 is the corner final point. The nominal length of each corner leg is 𝑙. 

 

Fig. 15. Details of a standard corner. 

Several commercial UASs were evaluated in order to select a model that can be used for 

typical missions, such as photogrammetry, inspections, and leisure. The DJI Mavic 2 

Enterprise® [78] that is showed in Fig. 16 was selected.   

 

Fig. 16. UAS model used for flight tests. 

The Ground Station Software UgCS® [79] was used to upload the flight plan and monitor 

the mission execution. Each flight plan includes the assigned 3D waypoints with Latitude, 

Longitude and Above Ground Level Height coordinates. The missions were executed in 

automatic mode. 

The tests were performed with a ground speed limit of 5m/s that is a common speed limit 

for several applications according to the Regulation (EU) 2020/639 [80] for the standard 

scenario STS-01 about “VLOS over a controlled area in an urban populated 
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environment”. The application of a standard methodology that can be developed in 

accordance with standard scenarios and used for different UASs and missions, such as 

package delivery, surveillance, mapping, can support the introduction of the proposed 

approach in UTM consoles. The seven standard paths were flown at a constant height of 

20m AGL because this value allows to obtain a controlled ground area that is feasible for 

most of operations. The height can be changed, and the controlled ground area can be 

computed according to the regulation.  

Different path geometries were designed to compute the UAS time-of-flight over corners 

with specific characteristics. Standard paths involve corners with an assigned angle 

multiple of the 30deg angle between the two legs. Each segment between two consecutive 

waypoints is 30m long and each corner leg is 15m long. The segment length was selected 

according to the analysis reported in Paragraph 4.3. To identify each standard path, the 

symbol “TX” was used, where X is the characteristic relative angle in degrees. The design 

of seven standard paths, i.e. seven path geometries, allowed to collect samples of corners 

with a 0deg relative angle to corners with a 180deg relative angle, considering a step of 

30deg. During the tests, each path was executed clockwise several times. The corner 

performed counterclockwise were not considered because symmetrical properties are 

assumed. The impact of wind condition as source of asymmetric properties was accounted 

separately during the definition of Neural Network (NN) inputs. Each standard path was 

designed as closed path and the measurements were computed in the East North Up 

(ENU) reference frame. The seven standard path that were designed to collect the data 

are described below: 

- T0. The characteristics of the path are reported in Table 2 and the geometry of the 

path is showed in Fig. 17. The path includes 5 outer waypoints and 1 inner 

waypoint. The UAS performs each segment in both directions. To fly from one 

segment to another one, the UAS performs a 72deg corner. However, this type of 

corner was not considered in the training dataset.  
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Table 2. Characteristics of the path T0. 

Parameter Value 

Characteristic angle 0degrees 

Number of waypoints 6 

Number of segments 5 

Shape Star shape geometry 

Geometry Fig. 17 

 

 

Fig. 17. Path T0 geometry. ENU reference frame centered at WP1. 

- T30. The characteristics of the path are reported in Table 3 and the geometry of 

the path is showed in Fig. 18. The path includes 5 segments: the first 4 segments 

are arranged in 30deg corners, and they are 30m long. Instead, the fifth segment 

allows to execute a closed path and it is 31m long. The corners that have the 

fourth-fifth and fifth-first segments as legs do not include a 30 deg relative angle. 

So, type of corner was not considered in the training dataset. 
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Table 3. Characteristics of the path T30. 

Parameter Value 

Characteristic angle 30degrees 

Number of waypoints 5 

Number of segments 5 

Shape sawtooth shape geometry 

Geometry Fig. 18 

 

 

Fig. 18. Path T30 geometry. ENU reference frame centered at WP1. 

T60. The characteristics of the path are reported in Table 4 and the geometry of 

the path is showed in Fig. 19. The path was designed based on the equilateral 

triangle shape. 
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Table 4. Characteristics of the path T60. 

Parameter Value 

Characteristic angle 60degrees 

Number of waypoints 3 

Number of segments 3 

Shape triangle shape geometry 

Geometry Fig. 19 

 

 

Fig. 19. Path T60 geometry. ENU reference frame centered at WP1. 

- T90. The characteristics of the path are reported in Table 5 and the geometry of 

the path is showed in Fig. 20. The path was designed based on the square shape. 
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Table 5. Characteristics of the path T90. 

Parameter Value 

Characteristic angle 90degrees 

Number of waypoints 4 

Number of segments 4 

Shape square shape geometry 

Geometry Fig. 20 

 

 

Fig. 20. Path T90 geometry. ENU reference frame centered at WP1. 

T120. The characteristics of the path are reported in  

 

 

- Table 6 and the geometry of the path is showed in Fig. 21. The path was designed 

based on the hexagon shape. 
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Table 6. Characteristics of the path T120. 

Parameter Value 

Characteristic angle 120degrees 

Number of waypoints 6 

Number of segments 6 

Shape hexagon shape geometry 

Geometry Fig. 21 

 

 

Fig. 21. Path T120 geometry. ENU reference frame centered at WP1. 

- T150. The characteristics of the path are reported in Table 7 and the geometry of 

the path is showed in Fig. 22. The path was designed based on the dodecagon 

shape. 
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Table 7. Characteristics of the path T150. 

Parameter Value 

Characteristic angle 150degrees 

Number of waypoints 12 

Number of segments 12 

Shape dodecagon shape geometry 

Geometry Fig. 22 

 

 

Fig. 22. Path T150 geometry. ENU reference frame centered at WP1. 

- T180. The characteristics of the path are reported in Table 8 and the geometry of 

the path is showed in Fig. 23. The path was designed based on the straight line 

shape. 
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Table 8. Characteristics of the path T180. 

Parameter Value 

Characteristic angle 180degrees 

Number of waypoints 2 

Number of segments 3 

Shape straight line shape geometry 

Geometry Fig. 23 

 

 

Fig. 23. Path T180 geometry. ENU reference frame centered at WP1. 

The corner angle is a critical parameter for UAS time-of-flight estimation because if the 

relative angle is small, the UAS needs less time to execute the corner. However, this 

behavior is not linear. Thanks to the ground station software, the stop and turn setting 

was activated. This mode allows the remote pilot to monitor the surrounding area by using 

the on-board camera and act proper actions if needed. 
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Considering the stop and turn mode along the path, the UAS accelerates at the beginning 

of each segment, reaches a constant speed according to the assigned ground speed limit, 

i.e. 5m/s,  and decelerates. The central part of each segment between two waypoints is 

defined as constant-speed part. This method aims at predicting the UAS flight-time over 

the corner, i.e. the time-of-flight over the deceleration section before the turn, the stop, 

and the acceleration section after the turn. In this way, the remaining time-of-flight to be 

estimated is over the constant-speed part that can be easily computed. 

A preliminary analysis is needed to choose the length of segments and corner legs that 

allows to have a non-zero constant-speed segment length. So, preliminary flight tests were 

executed to fix the mentioned length values. 

4.3. Preliminary Flight Tests 

T60 and T180 paths were selected to develop preliminary test. The tests were executed at 

5m/s speed in same wind conditions. 

The segment length for the selected path is 30m and 40m. The aim of the tests is finding 

the smaller segment length that allows a non-zero constant-speed section length, i.e. a 

constant-speed section outside the corner, and the UAS must have the almost same speed 

at the initial and final corner points. The UAS performed T60 and T180 paths three times. 

The UAS telemetry was analyzed to find the initial and final points in which the ground 

speed is lower that one standard deviation with respect to the nominal one. Then, the 

length of the constant-speed section and the time-of-flight that the UAS needed to fly the 

constant-speed section were computed for each segment of T60 and T180 paths.  

The results of T60 and T180 paths with 30m and 40m segment length were compared and 

reported in Table 9 where the data were averaged for all laps of T60 and T180 paths.  
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Table 9. Preliminary flight test results. Data were computed for each constant-speed section and then 

averaged for all laps of T60 and T180 paths. 

 T60 T180 

40m 30m 40m 30m 

Ground Speed Mean Value (m/s) 5.0 5.0 5.0 5.0 

Ground Speed Std deviation (m/s) 0.2 0.2 0.2 0.2 

Distance Corner side length Mean Value (m) 32 22 33 22 

Distance Corner side length Std deviation (m) 0.6 0.5 0.4 0.4 

Flight-Time Mean Value (s) 6.5 4.5 6.6 4.5 

Flight-Time Std deviation (s) 0.13 0.07 0.16 0.12 

 

The results about the constant-speed section T180 paths with 40m and 30m are reported 

in Fig. 24. The boundaries of the constant-speed section along each lap of T180 path with 

40m segments are showed in Fig. 24 (a) and Fig. 24 (c). The ground speed amplitude 

along each lap of T180 path with 30m segments are showed in Fig. 24 (b) and Fig. 24 (d). 

For paths with 40 m segments the corner length is 40m, for paths with 30m segments the 

corner length is 30m. The analysis shows that the ground speed is well controlled because 

the mean value is equal to the nominal value and the standard deviation is within 5% of 

the nominal value. Moreover, the length of the acceleration and deceleration parts is 

constant  and equals to 4m. The paths with 30m segments can be selected in order to 

reduce the path size and the time of test execution. So, the reference corner has a length 

of 15m that is compatible with the typical size of most building and common UTM 

operations. 
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Fig. 24. Analysis of T180 path ground speed. (a) T180 path with 40m segments, ENU reference frame 

centered at WP1; (b) Amplitude of ground speed along the T180 path with 40 m segments; (c) T180 path 

with 30m segments, ENU reference frame centered at WP1; (d) Amplitude of ground speed along the 

T180 path with 30m segments. 

DL based methods need a dataset to be trained. A proper analysis is required to estimate 

the minimum number of samples that are needed to train the algorithm. The Chi-square 

approach was used by exploiting the upper threshold of Eq. 1 [81] to compute 𝑛, i.e. the 

minimum number of required samples to obtain the desired standard deviation. The 95% 

confidence level was considered, where the values of the Chi-Squared variables are 

ꭓ
1
2=74.2219 and ꭓ

2
2=129.561. In Eq. 1 𝜎𝑠 is the desired standard deviation that is equals 

to 1s in the presented applications. Instead, σ is the standard deviation that was 

experimentally evaluated thanks to several previous test experiences [82]. 

(𝑛−1)𝜎𝑠
2

ꭓ2
2 <  𝜎2  <  

(𝑛−1)𝜎𝑠
2

ꭓ1
2                                               Eq. 1 

The computed value of 𝑛 is about 60 by using the worst-case value of experimental 𝜎. 

So, the data that were collected for the new flight tests include 60 samples for each 

standard path. The value of 𝜎 that was computed considering the new flight tests is 

σ=0.87s. So, 𝑛 is equals to 57 by using Eq. 1. However, 𝑛=57 is the worst-case minimum 

number of samples, because considering the specific value of 𝜎 for each standard path, 

the minimum number of required samples can be reduced for the standard paths that have 

a lower 𝜎. The value of 𝑛 for each standard path is reported in Table 10. 
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Table 10. Minimum number of samples required for each standard path. 

Path ID N samples Std (m) 

T0 17 0.5 

T30 7 0.3 

T60 8 0.3 

T90 18 0.5 

T120 57 0.9 

T150 26 0.6 

T180 5 0.2 

 

To carry out the prediction method of the time-of-flight, it must be assured that there are 

reasonable spatial deviations between the performed trajectory and the planned path. So, 

two main types of deviation were computed.  

- Vertical deviations, i.e. deviations with respect to the assigned AGL height of 

20m. 

- Horizontal deviations, i.e. deviations with respect to the assigned corner length of 

30m. 

Considering the vertical deviations, the hypothesis of constant AGL height can be verified 

thanks to the results reported in Table 11, where the main values and deviations of the 

UAS height are reported for each standard path thanks to the telemetry analysis.  
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Table 11. Analysis of vertical deviations for each standard path. 

Path ID Height Mean Value (m) Height Std (m) 

T0 19.9 0.2 

T30 20.0 0.2 

T60 20.0 0.2 

T90 19.9 0.2 

T120 20.0 0.2 

T150 20.0 0.2 

T180 19.9 0.2 

Considering the horizontal deviations, the nominal boundaries of the corner were 

computed considering a nominal distance of 15m from the assigned waypoint. The 

telemetry data associated to each corner were computed considering the telemetry points 

that are closer to the nominal corner boundaries, i.e. 𝑆𝑖 and 𝐹𝑖 in Fig. 15, according to the 

minimum Euclidean distance. The main values and deviations of the UAS horizontal 

position are reported for each standard path in Table 12 thanks to the telemetry analysis. 

Table 12. Analysis of horizontal deviations for each standard path. 

Path ID Corner Length Mean Value (m) Corner Length Std (m) 

T0 30.0 0.4 

T30 30.0 0.6 

T60 30.0 0.4 

T90 30.0 0.5 

T120 30.0 0.4 

T150 30.0 0.4 

T180 30.0 0.4 
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4.4. Time-of-Flight Prediction 

The Trajectory Based Operations (TBO) [83] concept allows to develop reliable and high-

performance strategies to manage several vehicles that populate the same air sector. The 

use of 4D trajectories increases the safety level of flight management and development 

of standard procedures. This work proposes a DL based time-of-flight predictor that can 

be used to predict the time to collision in a multiple UASs scenario. 

4.4.1. Overview 

TP techniques are useful to develop advanced ATM tools for TBO following specific 

requirements, such as [84]. The main challenge related to the integration of UASs in civil 

airspace involves the evaluation of the total risk level with respect to the traditional traffic. 

The time of flight needed by a UAS to fly a generic path is a critical parameter to be 

predicted and it is crucial at strategical and tactical phases in the UTM context. Conflict 

detection allows to identify if a collision happens among platforms in a proper time 

interval.  

The adoption of TBO must be supported by the integration of flights data systems to 

manage the flights before the departure and acts proper route changes during the trajectory 

execution. The Trajectory Management and the Conflict Detection and Resolution tasks 

are critical features of UTM, and TP methods can support a harmonized integration of 

these tasks in UTM context.  

4.4.2. Method Implementation 

The time-of-flight was computed by the UAS telemetry files. Specifically, the time-of-

flight needed by the UAS to fly over each corner of the planned standard paths was 

computed. Then, the mean value and the standard deviation value were computed 

considering each standard path. A threshold of 3σ was set to neglect the data with high 

variability. The corners with a time-of-flight that exceeds the threshold were discarded. 

The final dataset includes 442 sample, as reported in Table 13. The mean value and the 

standard deviation value were computed for the new dataset to check that the time-of-

flight does not exceeds the threshold. The final dataset was used to train and test the 

developed NN.  
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Table 13. Number of samples for each standard path. 

Path ID Number of valid samples 

T0 75 

T30 55 

T60 58 

T90 69 

T120 59 

T150 68 

T180 58 

The proposed method was developed as a classifier, the NN predicts the UAS time-of-

flight over the 15m corner receiving inputs collected in categories, where each category 

has a specific path geometry and wind condition.  

The NN was developed thanks to the MATLAB® Deep Learning ToolboxTM. The NN 

was developed as a classifier processing the input parameters to obtain a limited number 

of categories. The NN characteristics were selected according to the investigated problem 

and compared with other approaches, as reported in Paragraph 4.5. Specifically, a 

feedforward NN with the Bayesian Regularization Backpropagation algorithm as training 

function [85] was developed because this training function allows to better manage high 

variability data with good generalization properties [86] [87] [88]. The NN architecture 

was selected comparing the performance obtained with different structures. The NN 

inputs are: 

- The clockwise angle between the corner legs that is computed from the second 

leg to the first leg. 

- The clockwise angle between the first corner leg and the wind direction. 

- The clockwise angle between the second corner leg and the wind direction. 

- The wind intensity category based on the Beaufort scale [89]. 



62 

 

Official weather forecast was used to estimate the wind intensity and direction. The use 

of the Beaufort scale for the wind intensity and the standard paths allowed to obtain a 

limited number of input categories that can be used by the NN. The flight tests were 

performed at a wind intensity of 5kts and a wind direction of 60deg from the North 

direction. A wind intensity from 0kts to 10kts is a typical allowable value for most UAS 

operations and it corresponds to the first four Beaufort categories. According to regulation 

guidelines [7], the wind condition must be carefully monitored during the flight and the 

mission must be stopped if critical conditions happen. Analyzing the weather archives of 

the flight test area, a wind intensity of 5kts is the most common wind intensity condition 

over one year that corresponds to the second Beaufort category.  

To develop the NN, the epoch number was limited to 1000. The dataset includes 442 

samples: the training phase used the 85% of the samples and the test phase the remaining 

15%. The Bayesian Regularization Backpropagation training function of the Deep 

Learning ToolboxTM does not need a validation dataset because it involves an internal 

validation process. The application of a 3σ threshold to reduce data variability and a 

random selection of data included in training and test datasets allows to reduce the 

dependency of method performance with respect to the acquired datasets. The main 

parameters of the developed method are reported in Table 14. 

Table 14. Characteristics of the developed Neural Network. 

NN Parameter Value 

Training Function 
Bayesian Regularization 

Backpropagation function 

Network Type Feedforward fully connected NN 

Dataset: Training, Validation, and Test  85%, 0%, 15% 

Epochs number 1000 

Number of input data 4 

Number of output data 1 
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The Normalized Root Mean Square Error (NRMSE) that is reported in Eq. 2 was used to 

assess the NN performance. The true and the predicted value of time-of-flight over a 

corner are respectively indicated as 𝑥𝑡 and 𝑥𝑝, the number of samples as 𝑁. 

NRMSE = √
1

𝑁
∑ (

𝑥𝑡−𝑥𝑝

𝑥𝑡
)

2
𝑁
𝑖=1                                         Eq. 2 

The structure of the NN can be investigated considering the two-layer NN with different 

neurons in each layer. The NN performance of the test phase was used to compare 

different NN structures, as reported in Fig. 25 where the horizontal axis shows the sum 

of neurons in the two layers considering the neurons displacement with the best 

performance. The NN structure with 4 and 6 neurons achieved the best solution and its 

performance in training and test phases are reported in Table 15. 

 

Fig. 25. NN performance of the test phase varying the total number of neurons in the two layers. 

Table 15. Performance of the NN with 4 and 6 neurons in the two hidden layers in training and test 

phases. 

NN Performance Training Phase Test Phase 

NRMSE (Eq. 2) 4.5% 5.0% 
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4.4.3. Method Test and Results 

After the NN assessment, generic paths were designed to test the generalization capability 

of the proposed method in the same wind conditions of the standard paths. The flights 

were performed in a proper test area, but the generic paths were designed to reproduce 

urban UAS applications. 

The proposed method predicts the time-of-flight over a corner, so the prediction of the 

time-of-flight over a generic path can be performed summing the time-of-flight values 

over each corner if the path only includes segment with 30m length. This case is referred 

as Case 1. Otherwise, if the path involves segments longer than 30m, the time-of-flight 

over the path can be computed summing the time-of-flight over each corner and the time-

of-flight over the remaining segment parts that are constant-speed sections according to 

the analysis reported in Paragraph 4.3. The time-of-flight over the constant-speed sections 

can be computed dividing the length of the constant-speed segment by the nominal ground 

speed, i.e. 5m/s. This case is referred as Case 2. 

Four generic paths were designed, and they are called with incremental numbers from 

Test path 1 to Test path 4, as summarized in Table 16. Test path 1 and Test path 3 belong 

to Case 1. Test path 2 and Test path 4 belong to Case 2.  

Table 16. Classification of designed generic paths. 

Case ID Time-of-flight contributions Test path ID 

Case 1 -Predicted time-of-flight over each corner  

Test path 1 

Test path 3 

Case 2 

-Predicted time-of-flight over each corner 

-Time-of-flight over constant-speed 

sections  

Test path 2 

Test path 4 

 

1) Case 1. Test path 1 and Test path 3 are included in Case 1.  

Test path 1 is showed in Fig. 26 (a) and Fig. 26 (b) and it reproduces a surveillance 

mission, for example over an urban crowded area. Our University main entrance 
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was considered as possible area. The path includes 10 segments with the same 

length of 30m. The UAS executes the path three times. The first section of the 

first segment and the last section of the last segment of the path are not included 

in a corner. However, this contribution is smaller than the flight-time values that 

are predicted by the NN.   

Test path 3 includes 9 segments with the same length of 30m. The UAS executes 

the path three times. The path is the red path in Fig. 27.   

2) Case 2. Test path 2 and Test path 4 are included in Case 2.  

Test path 2 is showed in Fig. 26 (c) and Fig. 26 (d) and it reproduces an urban 

canyon scenario with corridors and buildings. The path includes 9 segments with 

different length values longer than 30m. The UAS executes the path one time.  

Test path 4 includes 8 segments with different length values longer than 30m. The 

UAS executes the path three times. The path is the black path in Fig. 27. 

 

Fig. 26. Generic paths. (a) Test path 1, ENU reference frame centered at WP1. (b) Test path 1 in urban 

environment, Google Earth® view. (c) Test path 2, ENU reference frame centered at WP1. (d) Test path 2 

in urban environment, Google Earth® view. 
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The true time-of-flight that was obtained by the telemetry files was compared with the 

time-of-flight that was computed according to Case 1 and Case 2 strategies and the 

percent error Eq. 2 was computed. Moreover, a benchmark was considered dividing the 

nominal distance by the nominal ground speed. The results are reported in Table 17. A 

percent error less than 1% was obtained for the shortest path. A percent error lower than 

3.2% was obtained for the worst case. So, the proposed method can match the 

requirements for safe prediction, also considering the larger errors of the benchmark. 

 

Fig. 27. Test path 3 in red and Test path 4 in black. ENU reference frame centered at WP1. The blue star 

indicates the true CPA during the first lap, the blue circle indicates the predicted CPA during the first lap. 
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Table 17. Comparison among the true, predicted, and benchmark time-of-flight for the four generic paths. 

Method Performance 

Test path 1 

3 laps 

Test path 2 

1 lap 

Test path 3 

3 laps 

Test path 4 

3 laps 

True time-of-flight (s) 272.3 97.1 239.6 245.3 

Predicted time-of-flight (s) 263.6 96.9 240.1 250.2 

Percent error between true 

and predicted time-of-

flight 

3.2 % 0.2 % -0.2 % -2.0 % 

Time-of-flight at nominal 

ground speed - benchmark 

(s) 

180.0 69.1 162.0 177.0 

Percent error between true 

and benchmark time-of-

flight 

34 % 29 % 32 % 28 % 

 

The proposed method was tested for a typical UTM task, such as collision detection. Test 

path 3 and the Test path 4 were used as crossing paths to predict the time to the Closest 

Point of Approach (CPA). The UAS performed the two paths at different time, but the 

telemetry data of Test path 3 were translated to obtain a path that intersects the Test path 

4. In Fig. 27 the translated Test path 3 is shown in red and the Test path 4 in black. The 

time stamp of Test path 3 was aligned with the start time of Test path 3. The final 

configuration that was obtained involves two UASs flying simultaneously along crossing 

paths. The paths were executed three times. The CPA represents the point where there is 

the minimum distance between the UASs. The distance between the two UASs must be 

monitored to evaluate if it is larger than a safe threshold. Instead, the time-of-flight to the 

CPA must be computed to evaluate if the remaining time before collision allows proper 

corrective actions. The time-of-flight to the CPA was computed thanks to telemetry files 
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and predicted thanks to the proposed learning method. The two procedures are described 

below.  

1) True time-of-flight to the CPA. Thanks to the telemetry data, the distance between 

the two UASs can be computed for each time instant. The CPA was computed for 

each lap and the time-of-flight to reach the CPA can be computed from the start 

time. The sampling rate of telemetry file is less than 0.3s and it affects the 

computation of distance between the two UAS. 

2) Predicted time-of-flight to the CPA. The proposed method allows to predict the 

time-of-flight to the CPA in strategical points of the path, when the UAS is at the 

waypoint, at the initial and final corner points, and along constant-speed sections. 

At the beginning Test path 3 was considered as reference path. The position of the 

UAS along Test path 4 was computed for each strategical point position of the 

UAS along Test path 3. If the position of the UAS along Test path 4 belongs to 

strategical points, the distance between the UASs can be directly computed. 

Otherwise, the position of the UAS along Test path 4 UAS was interpolated and 

then the distance between the UAS was computed. This procedure was repeated 

with the Test path 4 as reference path. At the end, the CPA is the point of each lap 

where there is the minimum distance between the two UASs and the time-of-flight 

to the CPA was computed from the start time. 

The comparison between the true and the predicted time-of-flight to the CPA is reported 

in Fig. 28. The blue line data were computed by using the telemetry time-of-flight. In this 

case, the UAS positions can be computed at high data rate. The red points data were 

computed in the strategical points and in interpolated positions by using the predicted 

time-of-flight. The red points data were computed for both Test path 3 UAS and Test path 

4 reference paths. 
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Fig. 28. Comparison of distance values between the two UASs. The blue line data were computed by 

using the telemetry time-of-flight, the red points data were computed by using the predicted time-of-

flight. 

The comparison between the true and the predicted time-of-flight to the CPA is reported 

in Table 18 for each of the three laps. During the first lap the difference between the true 

and the predicted value of the time-of-flight to the CPA is lower than 2s. During the third 

lap the difference is 5s. The percent error can be computed dividing the difference 

between the true and the predicted time-of-flight by the true value and it is about 2.3% 

during the third lap in the worst-case.  

Considering the computational cost, if 100 UASs should be managed in the same airspace 

sector in 5min, about 1 million of elementary operations are needed by the proposed 

method to process the output. So, this method matches the requirements of UTM 

consoles. 

The presented results shows that the collection of UAS historical data can support the 

development of high-performance learning solutions for conflict detection, helping the 

development of standard UTM tasks. 
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Table 18. Comparison between the true and the predicted time-of-flight to the CPA for the three laps. 

Time-of-flight to CPA Lap 1 Lap 2 Lap 3 

True time-of-flight to CPA (s) 58.5 138.9 220.0 

Predicted time-of-flight to CPA (s) 57.3 140.8 215.0 

 

4.5. Comparison among different Machine Learning based methods 

The proposed strategy was developed by using four different Machine Learning based 

methods to compare the obtained results for time-of-flight prediction. The used methods 

are analyzed in [90] and reported below.  

1) Linear Regression (LR) algorithm. 

2) Regression Trees (LT) algorithm. 

3) Gaussian Process Regression (GPR) algorithm. 

4) Support Vector Machine (SVM) algorithm.  

The mentioned methods were developed by using the MATLAB® Regression Learner 

App. The algorithms were trained exploiting the same data collected for the proposed 

Deep Learning based method and proper datasets were built to compare the results. The 

percent error computed by using Eq. 2 for each of the four generic paths is reported in 

Table 19. As it results from the comparison between Table 15 and Table 19, the proposed 

DL based approach achieves better performance. 
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Table 19. Comparison of the percent error among the four Machine Learning based method for the four 

generic paths. 

Method Performance 

Test path 1 

3 laps 

Test path 2 

1 lap 

Test path 3 

3 laps 

Test path 4 

3 laps 

Linear Regression 9.9% 9.0% 8.9% 13.3% 

Regression Tree 9.1% 9.1% 8.9% 10.2% 

Gaussian Process 

Regression 
7.7% 6.0% 6.0% 8.1% 

Support Vector Machine 6.4% 6.6% 5.5% 5.2% 

4.6. Battery Discharge Prediction 

Most of commercial UASs are powered by batteries with limited autonomy performance. 

For example, multirotor UASs have about 20-30 minutes autonomy that is affected by the 

weather conditions. This work proposes a DL based battery discharge predictor that can 

be used to predict the absorbed current integral and the battery state of charge. A method 

to estimate the battery capacity is also presented. 

4.6.1. Overview 

The battery discharge of multi-rotor UASs is characterized by a strongly non-linear 

behavior. An accurate prediction of the battery level support safer operations in both 

strategical and tactical phases. 

1) Strategical phase. Before the mission start, the UAS operator must plan the route 

as a series of waypoints considering the required battery level. The development 

of a battery consumption predictor allows to estimate the battery level required to 

complete the assigned route also considering different wind conditions. If more 

than one battery is needed to complete the mission, the predictor can also support 

an optimal battery management. 

2) Tactical phase. During the mission execution, the UAS operator must monitor the 

remaining UAS battery level, changing the flight plan if external conditions occur 
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that increase the battery consumption. The predictor allows to evaluate if the 

mission should be safely terminated before its completion. An online re-planning 

can be supported by the proposed predictor to identify safe areas that can be 

reached by the UAS with the remaining battery level. 

Considering battery-powered vehicles, several parameters can be analyzed to estimate the 

battery performance, such as State Of Charge (SOC), Remaining Useful Life (RUL), and 

State Of Health (SOH) [91] [92] [93] [94]. 

A method to predict the battery discharge of electric aircraft is presented in [95] thanks 

to the use of the Unscented Kalman Filter algorithm. The study defines the battery model, 

and the battery demand is predicted by using the battery state and loads. The battery RUL 

of electric vehicles can be predicted by using the approach study reported in [96] by 

estimating the battery SOH and using real data. A particle filter is presented in [97] and 

it is used with a sliding-window grey model for battery RUL prediction. In [98] four 

Machine-Learning-based methods are compared for battery RUL prediction of a UAS. 

The four methods are: Least Absolute Shrinkage and Selection, Least Squares Support 

Vector machines for Regression, Multi-Layer Perceptron, and Gradient Boosted Trees. A 

Long-Short-Term Memory (LSTM) algorithm is proposed in [99] for battery SOC 

prediction. Then, battery State Of Power (SOP) is estimated by using a multiple-

constraints method, and a Kalman filter is adopted to estimate battery SOC and SOP. The 

study reported in [100] describes a LSTM approach that is used to predict the output of 

sensors. Then a Deep Belief Network is used to classify the faults and the battery RUL is 

estimated. 

4.6.2. Method Implementation 

The methodology that is described in Paragraph 4.2 can also be exploited to predict the 

battery consumption of an UAS over a generic path taking into account the wind 

condition, as presented in [101]. 

The UAS specifications report the nominal maximum time-of-flight that is often 

computed in different conditions, such as in hoovering for multirotor UASs or with an 

assigned value of wind speed. During the mission, the pilot must monitor the percent 

value of the battery level that is showed on the controller display or ground station. The 
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remaining battery level, i.e. the SOC, is strongly related to the battery capacity and it is 

also saved in the telemetry file. The use of the battery SOC is also useful to set proper 

waring alarms when the battery charge level is too low.  

The main aim of the work is to develop a method that allows the UAS operator to predict 

the battery consumption basing only on the planned route path and the weather condition. 

Specifically, the SOC estimation needs the knowledge of the battery capacity that is 

different for each battery and changes in different environmental conditions. So, the goals 

of the study are: 

1) The prediction of the current that is absorbed onboard.  

2) The prediction of the battery SOC. 

The absorbed current can be computed integrating the discharge current over time. The 

proposed predictor that allows to estimate the future absorbed current can be applied for 

the methodology described in Paragraph 4.2 with any type of battery capacity. 

The battery SOC estimation needs the knowledge of the absorbed current and the battery 

capacity. So, the prediction of the battery SOC was developed starting from the predictor 

of the absorbed current. However, the battery capacity estimation is challenging because 

it varies for different batteries -even if they belong to the same model- and for different 

operative conditions with non-linear performance. The battery life cycle has also a strong 

impact on the battery capacity. 

To compute the battery SOC at a generic time instant t, 𝑆𝑂𝐶𝑡, the Coulomb Counting 

method can be used by knowing the battery SOC at the previous time instant 𝑡0, the 

battery capacity, 𝑄, and the discharge current value 𝑐(𝜏) according to                                      

Eq. 3.  

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡0
−

1

𝑄
∫ 𝑐(𝜏)𝑑𝜏

𝑡

𝑡0
                                     Eq. 3 

New flight tests were performed with the same UAS according to the trajectory 

segmentation approach described in Paragraph 4.2 and the telemetry data related to the 

battery discharge were saved and analyzed. The UAS battery belongs to the Mavic 2 

series [78] with 3850 mAh nominal capacity. 
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The input parameters used to train the NN are the same that were used to develop the 

time-of-flight predictor: 

- The clockwise angle between the corner legs that is computed from the second 

leg to the first leg. 

- The clockwise angle between the first corner leg and the wind direction. 

- The clockwise angle between the second corner leg and the wind direction. 

- The wind intensity category based on the Beaufort scale. 

The wind intensity and direction were computed by using the portable weather meter 

Kestrel 5500® [102]. The weather meter allowed to compute the wind data on a tripod 

with a vane mount. The data related to head and cross wind components were analyzed 

to estimate the wind direction with respect to the magnetic North.  

The data that must be computed for each corner from the telemetry files are: 

1) The time-of-flight. 

2) The overall amount of absorbed current, i.e. the integral. 

The time-of-flight was computed considering the telemetry points that are closer to the 

nominal corner boundaries, i.e. 𝑆𝑖 and 𝐹𝑖 in Fig. 15, as reported in Paragraph 4.3.  

The absorbed current integral 𝑐𝑢𝑟𝑟𝑖 of the generic 𝑖𝑡ℎ corner was numerically computed 

by using the trapezoidal rule [103] Eq. 4 thanks to the knowledge of the current values 𝑐𝑘 

and 𝑐𝑘−1 at the time instants 𝑡𝑘 and 𝑡𝑘−1.  

𝑐𝑢𝑟𝑟𝑖 =  ∑
𝑐𝑘−1+ 𝑐𝑘

2
 (𝑡𝑘 − 𝑡𝑘−1)

𝐾𝑖
𝑘=1                                 Eq. 4 

Then, the battery SOC needs to fly over a corner can be computed by using the absorbed 

current integral 𝑐𝑢𝑟𝑟𝑖 in Eq. 3. 

The cleaning process to remove the data with high variability was performed considering 

both standard deviations related to the time-of-flight and the integral of current for each 

corner that belongs to standard paths. A 3σ threshold was set and 726 samples was 

obtained to train the DL based method. The reduction of data variability and the random 

selection of data in training and test datasets reduce the dependency of method 

performance with respect to the acquired datasets. 
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A feedforward NN was developed to predict the absorbed current integral by using the 

MATLAB® Deep Learning ToolboxTM. The same parameters used for the time-of-flight 

predictor were adopted, as reported in Table 14, specifically the Bayesian Regularization 

Backpropagation function. 

The NRMSE in Eq. 2 was used to compute the performance of both NNs, where 𝑥𝑡 and 

𝑥𝑝 represent the true and predicted value of the absorbed current integral over a corner. 

The samples were randomly assigned to training and test datasets. However, each NN 

training was repeated 10 times for different NN configurations in terms of layers and 

number of neurons and the average NRMSE value was considered to estimate the NN 

performance. NNs with one and two layers were investigated varying the number of 

neurons in each layer. The maximum number of neurons in each layer that was considered 

is 10 because in this range a constant value of NRMSE is reached.  

The 2-layer NN shows better performance with respect to the 1-layer NN. To identify the 

minimum number of neurons in each layer that allows to achieve the required 

performance, the NRMSE in percentage and the relative number of effective parameters 

R in percentage were computed by using the MATLAB® routine [104]. The relative 

number of effective parameters is obtained dividing the number of effective parameters 

by the total number of parameters used by the NN.  

The performance of 2-layer NNs are reported in Fig. 29. The NRMSE value in percentage 

is reported on the left axis, and the R value in percentage is reported on the right axis for 

different numbers of neurons. The number of neurons is the sum of neurons in both layers. 

If two or more NNs have the same number of neurons displaced in layers in different way, 

the NN with the lowest NRMSE value was reported. 
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Fig. 29. Performance of 2-layer NNs in terms of percent NRMSE (left axis) and percent R (right axis) for 

different numbers of neurons. 

 

The region with almost constant R values was identified in Fig. 29 and the NN with 5 and 

6 neurons was selected because it showed the best performance in terms of NRMSE. 

The performance of the absorbed current integral predictor is reported in Table 20 for 

training and test datasets. 

 

Table 20. NRMSE and R percent values for training and test datasets. The absorbed current integral 

predictor has 5 and 6 neurons. 

 NN for absorbed current integral prediction 

NRMSE training 3.88% 

NRMSE test 3.98% 

R 39.7% 
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4.6.3. Battery Capacity Estimation 

Standard paths were also used to estimate the battery capacity. The results obtained in 

Paragraph 4.6.4 by using the battery discharge predictor exploited an experimental value 

of UAS battery capacity. Five LiPo batteries model DJI® Mavic 2 Intelligent Flight 

batteries were adopted to perform the standard paths. The identification numbers used to 

name the batteries are B01, B02, B03, B04, and B05. 

The acquisition of the samples for the predictor training needed more than one flight over 

the same standard path because the average UAS autonomy is about 20 minutes. 

Considering the generic 𝑗𝑡ℎ flight, the relation that links the battery SOC at the end and 

the beginning of the path, i.e. 𝑆𝑂𝐶𝑗,𝑒𝑛𝑑 and 𝑆𝑂𝐶𝑗,𝑠𝑡𝑎𝑟𝑡, and the integral of the current 𝑐(𝜏) 

thanks to the battery capacity is reported in Eq. 5 where 𝑄̃𝑗 is the experimental battery 

capacity. 

𝑆𝑂𝐶𝑗,𝑒𝑛𝑑 = 𝑆𝑂𝐶𝑗,𝑠𝑡𝑎𝑟𝑡 −
1

𝑄̃𝑗
∫ 𝑐(𝜏)𝑑𝜏

𝑡𝑗,𝑒𝑛𝑑

𝑡𝑗,𝑠𝑡𝑎𝑟𝑡
                        Eq. 5 

In Eq. 5 the unknown parameter is the battery capacity 𝑄̃𝑗, the values 𝑆𝑂𝐶𝑗,𝑒𝑛𝑑 and 

𝑆𝑂𝐶𝑗,𝑠𝑡𝑎𝑟𝑡 can be computed by the telemetry files and the current integral can be 

numerically computed by using Eq. 6, where 𝑐𝑘−1 and 𝑐𝑘 are the values of current 

respectively at time instant 𝑡𝑘−1 and 𝑡𝑘 and 𝐾𝑗 is the number of samples in the telemetry 

files. 

𝑐𝑢𝑟𝑟𝑗   = ∑
𝑐𝑘−1+ 𝑐𝑘

2
 (𝑡𝑘 − 𝑡𝑘−1)

𝐾𝑗

𝑘=1                                 Eq. 6 

The experimental battery capacity 𝑄̃𝑗 can be estimated for the generic 𝑗𝑡ℎ flight according 

to Eq. 7. 

𝑄̃𝑗   = −
𝑐𝑢𝑟𝑟𝑗

𝑆𝑂𝐶𝑓𝑖𝑛,𝑗−𝑆𝑂𝐶𝑖𝑛,𝑗
                                          Eq. 7 

The experimental values battery capacity for each flight of standard paths, i.e. 𝑄̃𝑗, and 

the average value of battery capacity for each type of standard path, i.e. 𝑄𝑚𝑒𝑎𝑛, were 

reported in Table 21 for the used batteries from B01 to B05.  
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Table 21. Experimental value of battery capacity 𝑄̃𝑗 for each flight of standard paths and mean value of 

battery capacity 𝑄𝑚𝑒𝑎𝑛 for each type of standard path. 

Battery Standard Path 𝑸̃𝒋 (As) 𝑸𝒎𝒆𝒂𝒏 (As) 

B01 

T30-1 12093 

12234 

T90-2 12370 

T120-1 12181 

T180-2 12291 

B02 

T0-2 12236 

12522 

T30-2 12372 

T30-3 12667 

T60-1 12358 

T150-1 12583 

T180-3 12881 

T180-4 12556 

B03 

T0-1 12111 

12025 

T0-4 11907 

T60-2 11986 

T90-1 12095 

B04 

T0-3 12884 

12699 

T150-2 12514 

B05 

T120-2 12810 

12944 

T180-1 13079 

 



79 

 

Each flight of standard path in Table 21 is indicated with the standard nomenclature 

“TX”, where X is the characteristic angle, and an incremental number to identify the 

flights that belong to the same standard path. 

The obtained values of battery capacity 𝑄𝑚𝑒𝑎𝑛 were used in the Paragraph 4.6.4 to predict 

the battery discharge. 

4.6.4. Method Test and Results 

To test the proposed method also for the prediction of the absorbed current integral, the 

four generic paths reported in Fig. 26 and Fig. 27 were used. The performance of the 

proposed absorbed current integral predictor over the four generic paths is reported in 

Table 22. 

Table 22. Performance of the absorbed current integral predictor for the four generic paths. 

Method 

Performance 

Test path 1 

3 laps 

Test path 2 

1 lap 

Test path 3 

3 laps 

Test path 4 

3 laps 

NRMSE 13.79% 16.28% 13.94% 16.66% 

 

Test path 1 and Test path 2 include same length segments, so all the values of the absorbed 

current integral over corners were summed to obtain the predicted battery discharge over 

the whole path. Instead, Test path 3 and Test path 4 involve different length segments, so 

all the values of the absorbed current integral over corners were summed adding 

proportional values for the constant-speed segments outside the corners. The added values 

were computed considering the average value of current integral that was estimated 

thanks to flight tests along T180 paths. The values of true and predicted absorbed current 

integral are reported in Table 23 for one lap of the four generic paths.  
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Table 23. Comparison between the true and the predicted values of the absorbed current integral for the 

four generic paths. 

 

Test path 1 

1 lap 

Test path 2 

1 lap 

Test path 3 

1 lap 

Test path 4 

1 lap 

True absorbed 

current integral (As) 
962.4 884.6 853.2 984.6 

Predicted absorbed 

current integral (As) 
927.8 839.8 836.8 967.5 

 

The variation of battery SOC generated by the flight over the 𝑖𝑡ℎ corner, i.e. 𝛥𝑆𝑂𝐶𝑖, can 

be defined by Eq. 8 as the difference between the initial value 𝑆𝑂𝐶𝑖,𝑖𝑛 and the final value 

𝑆𝑂𝐶𝑖,𝑓𝑖𝑛 computed at the corner boundaries.  

𝛥𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖,𝑖𝑛 − 𝑆𝑂𝐶𝑖,𝑓𝑖𝑛                                       Eq. 8 

The variation of battery SOC can be computed according to Eq. 9 by inverting Eq. 3. The 

corner boundaries identified in the telemetry files are respectively named 𝐹𝑡𝑖 and 𝑆𝑡𝑖. 𝑄̃ 

is the estimated battery capacity. The accuracy of the predicted ∆𝑆𝑂𝐶𝑖 is strongly related 

to the battery estimation. A method to estimate the actual battery capacity is proposed in 

Paragraph 4.6.3, otherwise, the nominal battery capacity that is reported in the battery 

manual can be used.  

∆𝑆𝑂𝐶𝑖 =
1

𝑄̃
∫ 𝑐(𝜏)𝑑𝜏

𝐹𝑡𝑖

𝑆𝑡𝑖
                                         Eq. 9 

The proposed strategy was used to predict the battery SOC over generic paths. The flight 

tests were conducted by using the following batteries: 

- B01 for Test path 1 and Test path 2; 

- B02 for Test path 3; 

- B03 for Test path 4. 

The four generic paths were executed four times. The true ΔSOC was computed for each 

path as the difference between the battery SOC at the first waypoint of the first lap and 
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the battery SOC at the last waypoint of the last lap. The predicted ΔSOC was computed 

by using the proposed predictor according to Eq. 9. The comparison between the true and 

the predicted battery ΔSOC and the absorbed current integral is shown in Table 24. 

Table 24. Comparison between the true and predicted values of battery ΔSOC and absorbed current 

integral for four laps of generic paths. 

 

Test path 1 

4 laps 

Test path 2 

4 laps 

Test path 3 

4 laps 

Test path 4 

4 laps 

True Battery ΔSOC 32% 30% 27% 32% 

Predicted Battery ΔSOC 29.7% 26.7% 25.6% 31.2% 

True absorbed current 

integral (As) 
3702.1 3482.8 3233.6 3823.5 

Predicted absorbed 

current integral (As) 
3630.3 3272.2 3212.1 3756.7 

 

The variation of battery SOC shows an acceptable prediction with respect to the telemetry 

data that consider the integer approximation. 

As developed for the time-of-flight predictor, also for the absorbed current integral 

predictor a UTM application is proposed. Specifically, the proposed method can support 

the Path Planner task to predict the battery SOC needed to fly over a generic path and the 

Contingency Management task to evaluate the remaining battery level that can be used if 

unexpected events occur.  

A scaled package delivery mission was designed for urban or industrial areas. The battery 

SOC was predicted for the whole planned path. The maximum distance that the UAS can 

reach from strategical points that belong to the planned path can be predicted. So, the 

battery discharge predictor can be used to assess the area that the UAS can reach with the 

remaining battery level.  
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Considering the proposed application, the first mission waypoint is indicated as WP1 and 

the last mission waypoint as WPend as shown in Fig. 30. In the simulated environment the 

UAS carries small packages in an urban environment to drop off in the planned 

waypoints. The blue rectangle indicates the warehouse location where the UAS takes off 

and lands according to the nominal mission. The grey rectangles are fixed obstacles, i.e. 

houses, shops, buildings. The green circles are safe areas where the UAS could eventually 

land, such as the so-called vertiports, that are defined as Safe-Landing Areas (SLAs). 

Local weather forecasts or local weather stations can be used to evaluate the wind 

conditions, i.e. intensity and direction. The simulated wind vector is aligned in direction 

240deg with intensity of 2.0m/s. The involved Beaufort category is 2.   

 

Fig. 30. Designed path for scaled package delivery mission in a simulated urban environment. The 

nominal path is indicated with blue line, the package delivery warehouse with blue rectangle, the fixed 

obstacles, i.e. buildings, with grey rectangles, SLAs with green circles. 

Several SLA were located according to a random distribution in the path surrounding 

area, as reported in Fig. 31 with black circles. Random points that belong to the planned 

path were defined as Monitoring Points (MP) with red circles and it is possible to apply 

the proposed battery discharge predictor in these points. Only some SLA can be reached 
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by the UAS from the defined 13 MP, so the aim of the proposed application is predicting 

the SLAs that can be safely reached.  

 

Fig. 31. Designed path for scaled package delivery mission. The nominal path is indicated with blue line, 

the monitoring points with red circles, the fixed obstacles, i.e. building, with grey rectangles, SLAs with 

black circles. 

 

The predicted values of absorbed current integral, and battery ΔSOC at the MPs were 

reported in Table 25 starting the flight from the WP1 with battery SOC equals to 100%. 

This analysis helps to design the nominal path and the number of batteries that are needed 

to complete the mission. 
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Table 25. Predicted values of absorbed current integral and battery ΔSOC computed at the selected MPs 

of the scaled package delivery mission. 

 
Expected value of absorbed 

electric charge (As) 
Predicted battery ΔSOC 

MP1 609.6 95.0% 

MP2 1322.7 89.2% 

MP3 2114.3 82.7% 

MP4 2487.7 79.7% 

MP5 3084.3 74.8% 

MP6 3632.3 70.3% 

MP7 4553.5 62.8% 

MP8 5300.3 56.7% 

MP9 5935.2 51.5% 

MP10 6290.6 48.6% 

MP11 6808.5 44.4% 

MP12 7407.2 39.5% 

MP13 7906.1 35.4% 

 

Beside the proposed analysis that can be applied for Path Planning, a solution for 

Contingency Management is presented to support path re-planning when unexpected 

events occur. If the nominal path can not be completed, the UAS must land in a safe area, 

i.e. a SLA, that can be identified in the surrounding environment. Two conditions can be 

analyzed: 
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1) Case A - Straight Path. The UAS can execute a straight path from the current 

position to the closest SLA if it is flying above fixed obstacles at a safe height.  

2) Case B - Path with corners. The UAS can execute a straight path from the current 

position to the closest SLA from the current position to the closest SLA if it must 

avoid low level obstacles. 

The aim of the analysis is computing the predicted distance in both cases to evaluate the 

SLAs that can be reached by the UAS from a random MP. The battery ΔSOC predicted 

after reaching each MP was computed considering a safe threshold and it is named 

𝛥𝑆𝑂𝐶𝑀𝑃,𝑡ℎ. This value is the battery ΔSOC needs to reach a battery level threshold of 

30% flying from the current MP. The threshold of 30% is a typical value [105] [106] that 

must be saved to allow a safe landing. 

Case A solution was developed exploiting the tests conducted for T180 standard paths. 

The average value of ΔSOC per unit flown distance was computed considering the tests 

over straight paths and it is named 𝛥𝑆𝑂𝐶𝑢𝑙,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡.  The remaining battery ΔSOC for 

each MP, i.e. 𝛥𝑆𝑂𝐶𝑀𝑃,𝑡ℎ, was divided by the battery ΔSOC per unit flown distance to 

obtain the maximum distance 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 that the UAS can reach from the considered MP 

over a straight path, according to Eq. 10. 

𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡  =
𝛥𝑆𝑂𝐶𝑀𝑃,𝑡ℎ 

𝛥𝑆𝑂𝐶𝑢𝑙,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
                                         Eq. 10 

Case B solution was developed exploiting the tests that were conducted for paths with 

corners. The distance to fly from WP1 to each MP according to the planned path was 

computed. The battery ΔSOC per unit flown distance was computed dividing the battery 

ΔSOC by the traveled distance. The 70% of the flown distance was used to compute 

𝛥𝑆𝑂𝐶𝑢𝑙,𝑤𝑐 that represents the battery ΔSOC per unit flown distance in the worst-case. 

The worst-case includes the conservative condition in which the path with corners that 

must be flown to reach the identified SLA is strongly different with respect to the travelled 

path. The remaining battery ΔSOC for each MP, i.e. 𝛥𝑆𝑂𝐶𝑀𝑃,𝑡ℎ, was divided by the 

battery ΔSOC per unit flown distance to obtain the maximum distance 𝐿𝑤𝑐 that the UAS 

can reach from the considered MP over a path with corners, according to Eq. 11. 
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𝐿𝑤𝑐  =  
𝛥𝑆𝑂𝐶𝑀𝑃,𝑡ℎ

𝛥𝑆𝑂𝐶𝑢𝑙,𝑤𝑐
                                              Eq. 11 

Considering the planned path and the MPs reported in Fig. 31, the comparison between 

the maximum distances 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝐿𝑤𝑐 is analyzed in Fig. 32. The maximum reachable 

distance 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 is larger than 𝐿𝑤𝑐 for each MP because the in latter case the UAS must 

execute turning maneuvers to avoid obstacles to reach the SLA.  

 

Fig. 32. Comparison between the maximum distance that can be reached by the UAS with the remaining 

ΔSOC by flying over a straight path 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 or a path with corners 𝐿𝑤𝑐 . 

The available SLAs in the proximity of the planned path are identified during the strategic 

phase. If an unexpected event occurs when the UAS is flying over a generic MP, the 

maximum reachable distances, i.e. 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝐿𝑤𝑐, can be used to evaluate if the UAS 

can reach a SLA with the remaining battery level considering a straight path, i.e. Case A, 

or a path with corners, i.e. Case B. In the proposed application, the distances 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 

and 𝐿𝑤𝑐 represent the radius of two circles centered at each MP. If a SLA is within one 

of the two circles, it means that the UAS can reach the SLA with the remaining battery 

level. This concept is similar to the concept of Point of No Return (PNR) for aircraft, in 

which the pilot knows that if an unexpected even occurs he can not land at the departure 

airport after the PNR, but he must head towards the alternate airport. 
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Table 26 reports the topology matrix for each selected MP. It shows the list of SLAs that 

can be reached by the UAS considering the computed distances 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝐿𝑤𝑐.  

Table 26. Topology matrix of SLAs that can be reached by the UAS in Case A and Case B scenarios 

according to Eq. 10 and Eq. 11. The symbol “Y” indicates the SLAs that can be reached from the MP. 

The bold symbol “N” indicates the SLAs that can not be reached from the MP. 

 Reachable SLAs from selected MPs (Case A / Case B) 

 SLA1 SLA2 SLA3 SLA4 SLA5 SLA6 SLA7 SLA8 SLA9 SLA10 

MP1 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP2 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP3 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP4 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP5 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP6 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP7 Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y Y / Y 

MP8 Y / Y Y / Y Y / Y Y / Y Y / Y Y / N Y / Y Y / Y Y / Y Y / N 

MP9 Y / Y Y / Y Y / N Y / Y Y / Y Y / N Y / N Y / Y Y / Y Y / N 

MP10 Y / N Y / Y Y / N Y / Y Y / Y Y / N Y / N Y / Y Y / N Y / N 

MP11 Y / N Y / Y Y / N Y / Y Y / N N / N Y / N Y / N Y / N N / N 

MP12 Y / N Y / N Y / N Y / Y N / N N / N Y / N Y / N N / N N / N 

MP13 Y / N N / N Y / N Y / Y N / N N / N Y / N N / N N / N N / N 
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In Table 26, in each column the first symbol is referred to Case A in which the UAS 

executes a straight path, the second symbol is referred to Case B in which the UAS 

executes a path with corners. In some situations, such as for the couple MP8 - SLA6, the 

UAS can reach the SLA6 from the MP8 only by following a straight path. 

An example of determination of the available SLAs is reported in Fig. 33 for the MP13.  

 

Fig. 33. Determination of the available SLAs from the MP13 that is represented by a black star. ENU 

reference frame centred at WP1. The SLAs indicated by red circles can not be reached, the SLA indicated 

by green circle can be reached in both Case A and Case B, the SLAs indicated by blue circles can only be 

reached in Case A, i.e. with a straight path. 
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If an unexpected event occurs when the UAS has reached the MP13, the UAS can not 

complete the planned path and a SLA must be identified. The maximum distances in Case 

A and Case B are respectively 𝐿𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡=410.0m and 𝐿𝑤𝑐=248.9m for MP13. The SLAs 

indicated by red circles can not be reached, the SLA indicated by green circle can be 

reached in both Case A and Case B, the SLAs indicated by blue circles can only be 

reached in Case A, i.e. with a straight path. 
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5. Integrated Navigation with Polarimetric Camera 

Accurate attitude estimation is a critical parameter that must be achieved for navigation 

purpose. Traditional sensors are affected by poor performance to measure the heading 

angle. This work proposes the adoption of a polarimetric camera, integrated in the attitude 

determination system, to measure the skylight polarization angle and improve the heading 

angle estimation. The described solution can be adopted in BRAINS configuration as 

Navigation Measurements Sensor unit to improve navigation capabilities in challenging 

environments. 

5.1. Overview 

The passage of Sun light through the atmosphere layers polarizes the light. The 

polarization pattern depends on the relative position of Sun and Observer, so specific 

directions of the Sun polarization pattern can be used as a reference to improve the 

estimation of vehicle heading angle. The proposed method is bio-inspired by the animal 

behavior of some species. Several animals follow the Sun light polarization for 

orientation aims, such as Monarch butterflies, desert ants and locusts, field crickets [107] 

[108] [109].  

Several studies are interested in using this capability to improve navigation performance. 

An array of 128x128 pixels divided in three sectors was used in [110] to exploit the 

polarization data thanks to a metal grid micro-polarizer. The sectors measure the intensity 

and the polarized intensity according to different directions. If the light beam changes 

direction, the Degree Of Polarization (DOP) and the Fresnel Polarization Ratio (FPR) 

change values, as a compass. If the polarizer angle is 0°, the value of FPR reaches a 

maximum peak, if the polarizer angle is 90°, the value of FPR reaches a minimum.  

A multi-sensor navigation system is described in [111] to compute the orientation of a 

vehicle in an urban environment. The integrated system includes a monocular camera, an 

inertial system, and a light polarization sensor. The Kalman filter integrates the data 

coming from all the sensors to estimate the vehicle position and orientation, achieving a 

Root Mean Square Error (RMSE) of 2.04m for position and 0.84deg for orientation. 
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A light polarization measurement system was developed in [112]. It includes 4 Charge-

Coupled Device (CCD) cameras in order to acquire images with four polarization angles. 

Considering the Rayleigh model for skylight, the 80% of the Angle of Polarization (AOP) 

deviations are lower than 2deg. 

The robustness of Angle Of Polarization (AOP) measure was assessed in different 

weather conditions in [113]. A polarimeter based on Liquid Crystal Variable Retarders 

(LCVR) was adopted and the polarization pattern in different cloudy conditions was 

evaluated. Then, a navigation method based on the solar meridian identification was 

described. 

The polarization pattern was compared in [114] in different weather conditions and the 

solar meridian was computed by using a CCD camera with a fish-eye lens. The DOP was 

used to assess the accuracy of the AOP measures.  The maximum error achieved by the 

method to estimate the solar meridian orientation is lower than 0.5deg even in cloudy 

conditions. 

5.2. Methodology 

A low-cost IMU can be integrated with a Sun light polarization camera to improve the 

heading angle measurements. Specifically, the poor performance of traditional 

magnetometers that are included in an Attitude and Heading Reference System (AHRS) 

can be improved by using a polarimetric camera. The methodology and test equipment 

that was used to integrate the polarimetric camera are presented in [115]. 

The reference frames that were used during the method development must be defined. 

The camera location is assumed to be at the observer position named 𝑂. The ENU 

reference frame is centered at the observer position 𝑂. A sphere with a unit-radius was 

considered with the origin in 𝑂 and it is represented in Fig. 34. The red line vector is 

aligned with the Sun direction, the black vector is aligned with the observation direction. 

Point S is the intersection between the Sun direction and the unit-radius sphere, point P 

is the intersection between the observing direction and the unit-radius sphere. The 

coordinates of each point that belongs to the unit-radius sphere can be expressed by the 

spherical coordinates: 
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- φ the clockwise angle from the North direction and the point projection on the 

horizontal plane; 

- θ the clockwise angle from the Up direction of ENU reference frame and the 

vector that passes through the point. 

According to the mentioned definitions, the points reported in Fig. 34 have coordinates 

P(φP, θP) and S(φS, θS). The angle γ is defined as the angle between the observation unit 

vector and the Sun unit vector.  

 

Fig. 34. ENU reference frame centered at position of the observer O. The red vector points towards the 

Sun direction and S is the intersection between the Sun direction and the unit-radius sphere. The black 

vector points towards the observing direction and P is the intersection between the observing direction 

and the unit-radius sphere. 

The origin of the camera reference frame is positioned at the center of the device. The 

first axis towards the right side, the second axis towards the downside, and the third axis 

is aligned with the camera boresight. The observation unit vector of a generic point in the 

camera reference frame can be obtained thanks to the coordinates of that point in the 

image plane in pixels according to the Pinhole Camera model. The spherical coordinates 

in the ENU reference frame can be computed from the knowledge of the camera pointing. 

The single-scattering Rayleigh model was exploited to compute the theoretical DOP 

according to Eq. 12. The symbol σ represents the maximum value of DOP in range [0, 1]. 

In the presented study, the ideal value σ=1 was considered.  
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𝐷𝑂𝑃 = 𝜎 
(sin(𝛾))2

1+(cos (𝛾))2                                        Eq. 12 

The AOP was computed estimating the inverse tangent of the ratio between Eq. 13 and 

Eq. 14. The obtained AOP value is in range [-90°, 90°] [116].   

sin(𝐴𝑂𝑃) =
sin(𝜃𝑃) cos(𝜃𝑆)−cos (𝜑𝑆−𝜑𝑃)cos (𝜃𝑃)sin (𝜃𝑆)

sin (𝛾)
                   Eq. 13 

cos(𝐴𝑂𝑃) =  
sin(𝜑𝑆−𝜑𝑃)

sin(𝛾)
sin (𝜃𝑆)                               Eq. 14 

The reference object that can be used for navigation purpose is the position of the Sun 

meridian or anti-meridian because the identification of this reference is possible detecting 

the discontinuity in the AOP pattern [116]. If the Sun position and the observer position 

are known, the AOP discontinuity can be identified and compared with the AOP 

discontinuity identified in the acquired camera images. The comparison allows to 

estimate the heading angle of the observation direction.  

The test equipment that was used to acquire the images is shown in Fig. 35. It includes: 

1) The camera model FLIR® Blackfly S BFS-PGE-51S5P-C [53] was used to acquire 

row images that can be processed to extract light polarization data. This 

monochromatic camera involves a Polarization Image sensor IMX250MZR 

manufactured by Sony® with polarization filters. The filters are installed on the 

on-chip lens layer in a fixed 2x2 pixel pattern. Four polarization angles are 

considered: 0deg, 45deg, 90deg, and 135deg. The resolution of the detector is 

2448x2048 pixels, but the polarimetric images have 1224x1024 pixels resolution 

because the four polarization states must be considered. A lens with a focal length 

of 8 mm was used. 

2) The SensorTileTM [117] manufactured by STMicroelectronics was used to acquire 

data from gyroscope, magnetometer, and accelerometer. The small size of 

13.5x13.5mm allows to develop compact on-board system. 

3) The processing board STM32F401RE [41] with a microcontroller was used to 

acquire data through a Serial Peripherical Interface bus from used sensors. 

4) The Graphical User Interface (GUI) SpinView® by FLIR® software Spinnaker 

SDK® was used to acquire raw images from the camera. The camera settings allow 

to save a raw image and a processed image according to the parameter that was 
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selected, such as Degree Of Linear Polarization (DOLP), Angle Of Linear 

Polarization (AOLP), Stokes parameters.  

The camera and the inertial unit were installed on a rigid plate. The attitude of the plate 

can be changed thanks to the tripod hinges.  

 

Fig. 35. Test equipment used for images acquisition. 

A method to process the 8-bits raw image was developed to display the AOLP pattern in 

the 1224x1024 pixels image. Considering the full resolution raw image, filter patterns 

were identified with four pixels arranged in a square shape. Four images with resolution 

1224x1024 pixels were obtained grouping the pixels that collect the light with the same 

polarization angle. The light intensity for the four images is respectively named I0, I45, 

I90, and I135 according to the polarization angle.  

Considering the four obtained images, the linear Stokes parameters defined as S0, S1, and 

S2 were computed by using Eq. 15, Eq. 16, and Eq. 17. Thanks to the combination of the 

four images, three 1224x1024 pixels images were obtained according to the Stokes 

parameters pattern. At the end, DOLP and AOLP were obtained exploiting the linear 

Stokes parameters by using Eq. 18 and Eq. 19 [118] [119]. 
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𝑆0 = 𝐼0 + 𝐼90                                                   Eq. 15 

𝑆1 = 𝐼0 − 𝐼90                                                   Eq. 16 

𝑆2 = 𝐼45 − 𝐼135                                                Eq. 17 

𝐷𝑂𝐿𝑃 =  
√𝑆12+𝑆22

𝑆0
                                                Eq. 18 

𝐴𝑂𝐿𝑃 =  
1

2
arctan (

𝑆2

𝑆1
)                                            Eq. 19 

After the acquisition of raw images, the MATLAB® software was exploited to process 

each image obtaining a 1224x1024 pixels image that displays the AOLP patter. The 

position of the Sun meridian/anti-meridian was computed in the image reference frame 

and then reported in the camera reference frame.  

The Sun ephemeris can be computed because the acquisition GPS time -in format day, 

month, year, hour, minutes, and seconds- is reported for each image and the GPS 

observation position was acquired. So, the nominal position of the Sun meridian/anti-

meridian can be estimated and compared with the measured position. This comparison 

allows to compute the heading angle of the observation direction. 

Several tests were performed to assess the method by acquiring both Sun meridian and 

anti-meridian. The indication about the observing object, i.e. if the camera is observing 

the meridian or the anti-meridian, must be considered during the procedure, otherwise an 

error of 180deg can occur.  

The tests were conducted in the University campus courtyard in Naples city. The Sun 

azimuth φS and elevation λS that is the complementary of co-elevation θS were computed 

according to [120] by knowing the observation location and the acquisition time. The Sun 

direction can be computed in the ENU reference frame. The inertial unit was used to 

estimate the attitude angles that are named roll α, pitch β. 

The heading angle that is measured by the proposed method is referred to the true North 

direction, so a magnetic deviation of 3.80deg must be considered for Naples location 

according to the International Geomagnetic Reference Field (IGRF-13) [121] [122]. 

The heading angle can be estimated comparing the Sun direction in the ENU reference 

frame and the unit vector towards the Sun meridian/anti-meridian in the camera reference 

frame. 
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Specific techniques, such as the use of Radon transform, can support the identification of 

the Sun meridian/anti-meridian in the image reference frame avoiding the confusion with 

other objects, such as trees, light poles.  

5.3. Method Tests and Results 

An example of the proposed method to compute the heading angle exploiting a Sun light 

polarization camera is discussed. The main parameters that were set during the described 

test are reported in Table 27. Date and time data were obtained by the image timestamp, 

the location by the GPS receiver, the roll and pitch angles related to the camera attitude 

by the inertial unit. Considering the small values of roll and pitch angles, the camera plane 

that includes the first and third axes was almost parallel to the local horizontal plane. 

Table 27. Parameters used for local test. 

Acquisition Parameter Acquired value 

Date (dd/mm/yyyy) 30/04/2021 

Local Time (h:min:s) 09:32:06 

Latitude (deg) 40.83694 

Longitude (deg) 14.30667 

α (deg) 1.3 

β (deg) 12.6 

The Sun azimuth and elevation were computed for the reported position and date thanks 

to [120] and are reported in Table 28. 

Table 28. Sun position for local test. 

Sun position Value (deg) 

𝜑𝑆 104.1 

𝜆𝑆 38.4 
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According to the Rayleigh model, the DOP and AOP distributions over a unit-radius 

sphere centered at the observer location were computed by using Eq. 12 - Eq. 14 varying 

azimuth and the co-elevation, as displayed in Fig. 36.

 

Fig. 36. Rayleigh model computed for the assigned test parameters. ENU reference frame centered at 

observer location. The red circle is the intersection between the unit-radius sphere and the observation 

direction. The black star is the intersection between the unit-radius sphere and the Sun direction, the red 

star is the intersection between the unit-radius sphere and the nadir direction. a) Simulated AOP pattern 

over the unit-radius sphere. b) Simulated DOP pattern over the unit-radius sphere. 

 

The simulated image of AOP distribution was obtained by knowing the Sun position, the 

observer position, and the camera specifications to compute the nominal position of the 

Sun anti-meridian. 

The raw image acquired considering the parameters in Table 27 was processed to obtain 

the 1224x1024 pixels image about the AOLP distribution. The unit vector that points 

towards each pixel in the camera reference frame was referred to ENU reference frame 

with spherical coordinates. The resulting image is displayed in Fig. 37.  
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Fig. 37. AOLP distribution computed by the proposed image processing. φ (azimuth) and λ (elevation) 

are the spherical coordinates in the ENU reference frame centered at the observing location. 

A generic pixel that belongs to the Sun anti-meridian was identified considering the 

AOLP value and the unit vector of that observing direction was computed in ENU 

reference frame and the heading angle was estimated. 

The comparison between the heading angle computed by the inertial unit, i.e.  

𝛾𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙, and the proposed image processing, i.e. 𝛾𝑐𝑎𝑚𝑒𝑟𝑎, is reported in Table 29. 

 

Table 29. Comparison between the heading angle computed by the inertial unit and the proposed image 

processing. 

Heading Angle Value (deg) 

𝛾𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 283.1 

𝛾𝑐𝑎𝑚𝑒𝑟𝑎 283.3 

 

The results show that the difference between 𝛾𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  and 𝛾𝑐𝑎𝑚𝑒𝑟𝑎 is acceptable. An 

integrated system can be developed to use the heading angle computed by the proposed 
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method to reduce the heading error drift of the magnetometer or to support the navigation 

in GNSS challenging environments, such as in the so-called urban canyon. Moreover, this 

technique can also be exploited by Unmanned Underwater Systems to navigate at few 

meters below the sea level without the need to often re-emerge. 
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6. Design of Swarm Configurations 

UAS swarm configurations allow to achieve high performance in terms of robustness, 

autonomy, reliability, self-reconfigurability. Swarming capabilities must be analyzed to 

develop proper case-studies that can be supported by the UTM services. Specifically, the 

development of two solutions that exploit swarm capabilities for different Payload unit 

operations is presented. The first application involves a UAS swarm equipped with 

cameras to monitor human biomedical parameters. The second application involves a 

UAS swarm equipped with corner reflectors to obscure radar detection for military 

applications. 

6.1. Overview 

The rapid improvement of UAS hardware and software technologies in terms of 

localization, communications, decision making, collision avoidance, allowed the 

development of efficient configurations that involves several UASs arranged in swarms.  

In swarms, the workload of each involved UAS is distributed among all units, increasing 

the system robustness and the payload effectiveness. Thanks to the deployment of UAS 

swarms, the mission coverage area can be extended -for example- for surveillance and 

mapping operations, but also communications networks can benefit from the distributed 

communication relay [123] [124]. In military applications, UAS swarms are adopted to 

protect critical targets [125]. So, the development of UTM must include adequate rules 

and solutions to manage swarms of UASs. The definition of swarm configurations allows 

to define proper geometries that can be adopted for different types of mission, providing 

case-studies for UTM services that must assure proper safety levels.  

6.2. Swarms for Emergency Management 

An example of advanced processing of Payload unit data exploiting swarm capability is 

reported for an emergency management application, such as during the COVID-19 

pandemic, that was developed in the project funded by Regione Campania CUP 

B24E19000250007 [126]. 
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6.2.1. Overview 

The COVID-19 pandemic had a strong impact of worldwide population. The use of 

advanced UASs can support ground operations of institutional authorities to reduce the 

virus spread. The use of UASs allow to map large regions, such as parks, urban 

environments reducing the time consumption and the risk of people involved in the 

pandemic fight [127] [128] [129]. Advanced processing of UAS payload data can support 

emergency situations where a rapid time response is needed, for example during the 

COVID-19 pandemic to limit the virus spread, such as the study developed to identify the 

services for equipment delivery [130]. 

6.2.2. Monitoring, Transport, and Spray Tasks 

A distributed UAS swarm was designed to achieve specific tasks for UAS employment 

in emergency management: monitoring of biomedical parameters, transport of goods, and 

spray diffusion, as reported in Fig. 38. 

 

Fig. 38. Main tasks for emergency management by using UASs. 

The UAS swarm was designed to identify number and type of swarm units that must be 

included to achieve the mentioned tasks with proper accuracy and integrity levels. 

- Monitoring Task. It allows to identify crowded areas where the social distancing 

is violated, and people show altered biomedical parameters. Several images can 



102 

 

be acquired by a swarm of UASs so that the relative distances between observed 

targets can be estimated, as well as biomedical parameters, such as skin 

temperature, heartbeat, and respiratory [131] [132] [133]. Advanced thermal 

camera, and high-resolution visible band cameras with zoom capabilities can be 

installed on-board UASs and the target data can be processed by using proper 

algorithms. An alert signal must be generated by the swarm if one or more of the 

mentioned parameters assume higher values with respect to a set threshold. When 

the alarm is generated, ground patrols can intervene. 

- Transport Task. It can be developed by using a swarm of heavy-lift UASs that 

carry packages with medicines, essential goods, and biological samples and one 

or more UASs that monitor the surrounding area to identify possible risks or 

obstacles [134] [135] [136]. A thermal camera must be installed on-board the 

monitoring UASs to identify crowds of uninvolved people that must not be 

overflown by heavy-lift UASs. Small packages can be carried by heavy-lift UASs 

for long missions, such as biological samples for rapid laboratory analysis, or 

heavy packages for short high-risk missions, such as the transport of essential 

goods to people affected by the virus, reducing the exposure time of health 

workers.  

- Spray Diffusion Task. It can be achieved by using one or more monitoring UASs 

and one heavy-lift UAS equipped with a liquid tank and a spraying system. The 

presence of uninvolved people is detected by the monitoring UASs that generate 

an alarm to drive away the crowds and stop the spraying mission. Then, the UAS 

with the liquid tank spreads the sanitizing liquid in the area of interest. An example 

of  UAS that can be used for this type of mission is the UAS used in agricultural 

environment [137] [138], because it is equipped with tank and proper nozzles. 

The characteristics of UAS swarms defined to achieve the proposed tasks, i.e. monitoring, 

transport and spray diffusion, are summarized in Table 30. 
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Table 30. Characteristics of UAS swarms defined for monitoring, transport, and spray diffusion tasks. 

Task UAS Swarm 

Monitoring 

Two UASs equipped with visible band 

cameras and at least one UAS equipped 

with thermal camera to estimate critical 

human biomedical parameters. 

Transport 

At least one UAS equipped with thermal 

camera for monitoring purposes. One 

heavy-lift UAS for package delivery. 

Spray Diffusion 

At least one UAS equipped with thermal 

camera to monitor the presence of 

uninvolved people. One UAS equipped 

with large tank and nozzles for sanitizing 

liquid diffusion. 

 

6.2.3. Monitoring Task Overview 

To monitor the human healthy state, biomedical parameters must be evaluated, such as 

heartbeat, temperature, respiratory rate, oxygen saturation. During the discussion, the 

word target is referred to a person that must be monitored to measure his biomedical 

parameters.  The systems used to achieve the measures of biomedical parameters must 

provide accurate results in different conditions. Several studies were analyzed to identify 

the main technologies that can be used to measure human biomedical parameters: 

- Stereoscopy techniques. Several images of two or more targets can be acquired 

by visible band cameras considering different points of view. The relative distance 

between targets can be estimated by using stereoscopy-based approach [139] 

[140] [141]. 

- Thermal cameras. Infrared thermometers are the medical equipment that is used 

to measure the target temperature. However, thermal data about the target skin 

temperature can be obtained by using data fusion techniques for images acquired 
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by cameras with different performance. Some works reported strategies to 

measure the heartbeat and the breathing waveform from thermal image processing 

[142] [143]. The measure of target skin temperature can be used as preliminary 

scanning, for example to manage the access to indoor areas. Then, targets that 

present high values of skin temperature must be monitored by using medical 

devices.  

- Photoplethysmography (PPG) techniques. Cameras can acquire short videos to 

detect the radiation that is reflected by the target skin. So, some biomedical 

parameters can be estimated, such as respiration rate and heartbeat by measuring 

the blood volume. Cameras that exploit green, red, and near-infrared light bands 

are often used because the longer wavelength can penetrate the skin [144] [145]. 

In addition, specific human parts, such as nostrils and forehead, can be tracked by 

using proper ML algorithms thanks to the identification of a Region Of Interest 

(ROI). 

The traditional use of PPG techniques is related to wearable sensors. The device 

is placed on a finger. A beam is emitted from a LED, and it penetrates the skin. 

The variations of emitted light are measured by a photodiode that is on the 

opposite side of the finger. The amount of detected light is related to the pulse 

condition, because when the volume increases, more light is absorbed. However, 

some works reported the use of remote PPG [146] [147] [148] [149], also by using 

techniques to reduce the error related to the target motion [150].  

The evolution of PPG is related to Imaging Photoplethysmography (IPPG), where 

the light variations are detected by a camera. The study reported in [151] monitors 

the glucose level of blood. The works [152] [153] [154] [155] measure the heart 

rate. This technique can also be used to detect Atrial Fibrillation [156] and to 

obtain data about target stress state [157]. 

- Radar-based techniques. Respiration rate and heartbeat can be measured by 

exploiting radar-based systems, such as Continuous Wave, Frequency-Modulated 

Continuous Wave, Doppler radars, Forward Scatter, Ultra-Wideband Pulse-Based 

[158] [159] [160] [161] [162] [163]. The use of radar technology involves the 

proper selection of emitted power and frequency to protect people and devices in 

the surrounding areas according to local regulation. 
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- Acoustic Analysis. The detection of common symptoms can help the 

identification of human diseases, such as COVID-19. Identification techniques of 

human and animal cough and sneeze were developed in several works, such as 

[164] [165], also performing acoustic analysis [166]. A thermal camera can be 

used to identify the number of targets and a microphone to detect cough and 

sneeze symptoms. Filtering is the challenge task to avoid external sounds. ML 

techniques can also be used thanks to a database of sounds to identify cough and 

sneeze sounds [167].  

The use of UASs can support the widespread measurement of biomedical parameters in 

emergency scenarios, such as during the COVID-19 pandemic. Monitoring biomedical 

parameters, such as respiratory rates and heartbeat, and social distancing by using UASs 

helps to reduce the virus spread covering large and crowded areas in shorter time. 

Compact and lightweight systems can be installed on-board UASs to provide skin 

temperature, heartbeat, and respiratory rate [168] according to the mentioned techniques 

on wide areas. A proper benchmark must be select to compare the remote measures 

obtained by using UAS payload systems with data obtained by using medical devices, 

such as Holter monitor, infrared thermometers, pulse oximeters, respiratory belt 

transducers.  

Also, the UAS position must be estimated with high accuracy level to allow medical 

personnel and/or institutional authorities to reach the identified target with altered 

biomedical parameters, reducing time and cost. The payload systems must be identified 

considering proper performance in different light conditions and reducing the errors 

related to the target motion. Hardware selection is a critical parameter to identify the 

needed equipment according to size, weight, data-rate requirements. The remote 

measures can be used to perform accurate analysis at few meters distance with non-

invasive techniques. 

6.2.4. Test of Monitoring Swarm and Results 

A swarm of UASs was deployed and used to acquire data about human targets. The results 

presented in [169] describe the use of cameras installed on-board a UAS to measure three 

parameters, as reported in Fig. 39: 
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- Social distancing. Two UASs were equipped with visible band cameras. Image 

processing techniques based on stereo vision paradigm with cameras that point 

towards same region, were applied to compute the distance between the two 

identified targets. Path planning was a critical phase to realize an efficient camera 

pointing during the flight tests. 

- Skin temperature. A UAS was equipped with a thermal camera. The target skin 

temperature can be easily evaluated by the UAS camera. If the temperature is 

higher than a set threshold, an alarm is generated. A proper threshold can be 

selected performing several tests and camera tuning procedures, especially if the 

camera is non-radiometric.   

- Photoplethysmography signal. Video processing algorithms can be exploited to 

estimate the PPG signal from a short video acquired by a visible band camera that 

was installed on-board the UAS. The identified frequency band is at 0.65-4 Hz 

that is related to 40-240 beats per minutes for human heartbeat. The ROI must be 

selected considering that the target could wear a protective face mask and it must 

be followed during the overall video duration. The forehead area was identified 

as ROI for the reported test. 

 

Fig. 39. Monitoring task for emergency management by using UASs. 
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Among the tasks, the social distancing task was developed as possible case-study that was 

tested to be included in BRAINS configuration. To compute the relative position between 

the targets, the position of the two targets was computed in the image reference frame, 

then, it is possible to compute the distance between the UAS and each target, and at the 

end the distance between targets can be computed in the local reference frame. Thanks to 

the proposed technique, crowded areas where the social distancing is not applied can be 

identified. In this method, the estimation of UAS attitude and position is the main 

challenge because the accuracy of these data affects the results. 

The UAS swarm involves at least two UASs equipped with visible band cameras. For 

simplicity, to test the method two commercial UASs model Mavic 2 Enterprise® [78] were 

used. During the flight tests the UASs performed the planned paths in automatic mode 

considering the sequence of waypoints. Each waypoint was located along the radial 

direction with respect to the targets. The distance between each target and the UAS is the 

same. When the UAS reaches a waypoint, the camera acquires five images. Two human 

targets were located at fixed positions in the same region. A measuring tape was used to 

compute the relative distance between the targets and a colored label was applied on-

ground to fix the positions. The face region of each target was identified as ROI.  

After the flight tests, the post-processing phase exploited the MATLAB® Computer 

Vision ToolboxTM for calibration. The toolbox allows to calibrate both single and stereo 

cameras obtaining the intrinsic and extrinsic parameters.  

The  local reference frame North, East, Down (NED) reference frame centered at position 

of the first target, i.e. T1,  was considered to compute the absolute involved distances.  

The UAS position was acquired from the telemetry data, and it is expressed in terms of 

latitude, longitude, and AGL height. The UAS position in NED reference frame was 

computed by exploiting the WGS84 World Geodetic Model. 

The first UAS starts the mission flying over the marked target positions in hoovering to 

acquire and save in the telemetry file the GPS position. Then, both UASs start the planned 

mission along radial directions meanwhile the targets are fixed on the marked positions.  

According to the UAS navigation specifications [78] about the position accuracy 

hoovering in GPS mode, the horizontal hovering accuracy is 1.5m and the vertical 
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hovering accuracy is 0.5m. However, the error on attitude, i.e. the uncertainty on roll, 

pitch, and yaw angles. 

An example of processed results after a flight test is reported in Fig. 40. The UAS 

positions are respectively named D1 and D2. The blue circles represent the UASs position 

in NED reference frame. The red stylized camera shows the camera pointing. The black 

circle identifies the true position of the first and the second target, i.e. T1 and T2, 

according to the telemetry data reported in NED reference frame. The red circles represent 

the estimated target positions, i.e. and the red stars represent the target positions, i.e. T1̅̅̅̅  

and T2̅̅̅̅ , computed by using the presented method. 

The reported example involves a percent error of about 5% evaluating the difference 

between the true and the estimated distance. The whole error also involves the height 

error that is not visible in Fig. 40 but it must be considered in the 3D geometry.  

 

 

Fig. 40. Example of post-process results. The blue circle is referred to the UAS position. The red camera 

shows the camera pointing direction. The black circle identifies the true target position, and the red circle 

the estimated target position. NED reference frame centered at the true position of the first target. 
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The direction of the Line-Of-Sight (LOS) from the camera installed on-board the UAS to 

each target is strongly affected by the UAS attitude and position accuracy that increases 

the error on the relative distance between the targets. Advanced systems can be used to 

improve the position and attitude accuracy, such as the use of a Real-Time Kinematic 

positioning (RTK) station or advanced image processing techniques that can also be used 

to select the best UAS swarm configuration to reduce the relative distance error.  

6.3. Radar Detection Properties of Swarms 

The solution proposed in this work aims at identifying the geometry of UAS swarm 

equipped with Corner Reflectors (CR) that better electromagnetically covers a target 

blinding the radar. The study of UAS radiometric properties is interesting for military 

applications but also for civil applications about UTM procedures when swarming 

operations will be allowed. 

6.3.1. Overview 

Several projects were developed in different countries to use UAS swarms for manned 

aircraft self-protection. US Military Force developed the Perdix Program [170] to test 

several 3D printed micro-UASs that were released from F-16 fighter. The Defense 

Advanced Research Projects Agency (DARPA) carried out the Gremlins Program [171] 

for Close Air Support, and Intelligence, Surveillance, and Recognition operations. 

Leonardo s.p.a. designed and tested decoys with a Digital Radio Frequency Memory 

during the BriteCloud Project [172] to copy the radar pulses. Raytheon developed 

Miniature Air Launched decoys [173] that provide jamming capabilities. DefendTex 

deploys the miniaturized Drone40 systems [174] with encrypted data-link and about 1hr 

autonomy. 

6.3.2. Methodology 

A swarm of multi-rotor UASs was designed and tested to obscure a target by ground-

based radar detection. The results are described in [175]. The UASs that are included in 

the swarm are called decoy-UASs, the target that must be protected is called target-UAS. 

The test equipment is showed in Fig. 41. The SiRad Easy® Evaluation Kit [176] was used 

and it includes a Frequency Modulated Continuous Wave (FMCW) radar with a 24GHz 
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frontend. The Web Graphic User Interface (WebGUI) for SiRad Easy® allowed to 

estimate the distances where the peaks of targets are detected according to the radar echo. 

The magnitude of the radar echo in dB is called M.  

To obtain a larger Radar Cross Section (RCS), a trihedral CR was installed as Payload 

unit on-board the decoy-UASs. The CRs were 3D printed in Polylactic Acid (PLA) 

material and covered by an aluminum layer. An example of decoy-UAS equipped with 

CRs is shown in Fig. 42. 

 

                                                    a)                                                                 b) 

Fig. 41. Test equipment. a) Radar manufactured by Silicon Radar®. b) Corner reflector installed on-board 

the decoy-UASs. 

 

Fig. 42. Example of decoy-UAS during the corner reflector installation.  

During the study, it was assumed that the target-UAS was protected thanks to the UAS 

swarm if the percent ratio between the magnitude of the peak with the target-UAS covered 

by the decoy-UASs and the magnitude of the peak with the stand-alone target-UAS is 

less than 50%. 
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6.3.3. Flight Tests and Results 

Several ground and flight tests were performed to identify the best geometry of decoy-

UASs that achieves the mission. The tests are summarized in Table 31. 

Table 31. Short description of performed tests. 

Test Geometry 

Preliminary Tests 

CRs on tripods with different radar 

settings. 

Decoy-UAS with CR on tripods with 

different radar settings. 

Ground Tests A 
CR and target-UAS on tripods at 

different distances. 

Ground Tests B 
Two and three in-line CRs and target-

UAS on tripods at different distances. 

Ground Tests C 

Three CRs in triangular geometries and 

target-UAS on tripods at different 

distances. 

Flight Tests 

Three decoy-UASs on tripods and flying 

target-UAS at different distances. 

Two flying decoy-UAS and flying target-

UAS. 

 

The tests were designed according to a step-procedure, increasing the number of decoy-

UASs, and changing the swarm geometry: 

- Preliminary Tests. Ground tests were executed with a CR and a decoy-UAS 

equipped with a CR on wooden tripods to properly set the radar parameters, such 

as the gain and the preset. Several distances between the tripods and the radar 

were tested to compute the magnitude of peak target. 
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- Ground Tests A. Ground tests were executed with a CR and a target-UAS on 

tripods to evaluate the protection effect changing the distance between the CR and 

the target-UAS.  

- Ground Tests B. Ground tests were executed with two and three in-line CRs and 

a target-UAS on tripods to evaluate the minimum number of decoy-UASs that 

allows to obscure the target-UAS. Different distances were evaluated between the 

line of CRs and the target-UAS. 

- Ground Test C. Ground Tests were executed displacing three decoy-UASs in an 

equilateral triangular geometry and varying the distance between the radar and the 

swarm, the distance between the swarm and the target-UAS, and the length of the 

triangular geometry side. 

- Flight Tests. A first test was performed with decoy-UASs on tripods and a flying 

target-UAS. Then, flying decoy-UASs and target-UAS were tested to compute the 

distance at which the target-UAS was obscured. 

After the radar parameters tuning during Preliminary Tests and UAS characterization 

during Ground Tests A, Ground Tests B and Ground Tests C allowed to define the 

maximum distance that can be set between the swarm and the target-UAS for the assessed 

number of decoy-UASs, according respectively to the geometries reported in Fig. 43. 

 

                                           a)                                                                                   b) 

Fig. 43. Swarm geometries tested during Ground Tests B and Ground Tests C. The arrow represents the 

radar, the star the target-UAS, and the crosses the decoy-UASs. a) In-line geometry of decoy-UASs. b) 

Triangular geometry of decoy-UASs. 
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Specifically, fixing the distance between the radar and the swarm at 3.00m and 

considering three decoy-UASs, the maximum distance between the swarm and the target-

UAS that allows to obscure the target-UAS is 4.00m for decoy-UASs in triangular 

geometry with side length equals to 0.70m. Instead, the distance of 4.00m did not allow 

to achieve the goal for in-line decoy-UASs, as summarized in Table 32. 

Table 32. Comparison between the magnitude of target peak obtained according to the in-line and 

triangular geometry of decoy-UASs.  

Geometry Estimated peak distance (m) 
Magnitude of radar 

echo (dB) 

Stand-alone target-UAS 

Fig. 43 (a) 

6.98 -41 

CRs without target-UAS 

Fig. 43 (a) 

3.08 46 

Target-UAS and CRs 

Fig. 43 (a) 

6.98 -46 

Stand-alone target-UAS 

Fig. 43 (b) 

7.14 -27 

CRs without target-UAS 

Fig. 43 (b) 

3.73 38 

Target-UAS and CRs 

Fig. 43 (b) 

6.98 -34 

 

So, the triangular geometry showed a more performant behavior. Increasing the distance 

between the radar and the swarm to 7.00m and the length of the triangular geometry side 

to 2.50m, the maximum adequate distance between the swarm and the target-UAS is 

7.30m. The results are reported in Table 33. 
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Table 33. Magnitude of target peak obtained increasing the distance values in the triangular geometry of 

decoy-UASs. 

Geometry Estimated peak distance (m) M (dB) 

Stand-alone target-UAS 

Fig. 43 (a) 

6.98 -41 

CRs without target-UAS 

Fig. 43 (a) 

3.08 46 

Target-UAS and CRs 

Fig. 43 (a) 

6.98 -46 

 

At the end, flights tests allowed to evaluate the most appropriate strategy for flying UASs. 

Considering hoovering decoy-UASs and a target-UAS in manual flight mode, the 

estimated closest distance at which the target-UAS was not protected is 12.66 m. 
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7. Conclusion 

This work describes innovative systems and solutions that were developed to support the 

integration of Unmanned Aerial Systems in civil airspace. The Unmanned Traffic 

Management services were analyzed to identify systems and procedures that can support 

adequate solutions. The work drivers are related to the achievement of the following 

objectives. 

- Accurate and efficient solutions allow to develop on-board and on-ground systems 

that are characterized by high levels of reliability and integrity. 

- The systems must support Unmanned Traffic Management services according to 

the regulation requirements defined by proper authorities. 

- The realization of compact and lightweight systems can be obtained thanks to the 

use of already available high-performance Micro Electro-Mechanical Systems. 

- A competitive cost reduction strategy can be developed by integrating low-cost 

Commercial Off The Shelf and the mass-producing modules that are in common 

with different vehicles. 

The scientific rigor of the presented activities was supported by an adequate 

methodological approach according to the following steps: 

- The objectives of the work were defined and the original contribution of the 

proposed solutions with respect to the current state of the art was underlined. 

- The developed methodology was described for the method reproducibility. 

- Proper test strategies were designed and implemented to validate the proposed 

solutions. The test equipment was described in detail. 

- The results were analyzed and compared with proper benchmarks. Advantages 

and limitations of the proposed solutions were discussed. 

The work started with a comprehensive analysis of the Unmanned Aerial System market 

and regulations as reported in Chapter 1. The economic and social impact of Unmanned 

Traffic Management integration described in Chapter 2 allowed to define the work drivers 

presenting innovative integration and processing of available technologies rather than the 

research of new paradigms.  
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To face the different and under development needs of Unmanned Traffic Management, a 

task-oriented Mission Management System called BRAINS was designed to support an 

easy on-board system integration according to the mission requirements. The modular 

configuration described in Chapter 3 includes a core section that can be mass-produced 

for different vehicles and a custom section that must be developed for specific 

applications. This approach allows to avoid on-board redundant modules that are used 

only for a few cases that need particular solutions to achieve the mission goal or match 

the Unmanned Traffic Management requirements and focus on common modules that can 

be adopted by different unmanned systems. Three examples of traditional functions, i.e. 

Guidance, Navigation, and Control functions, were developed by using synthetic 

functions thanks to an adequate integration of the identified modules. Some studies 

related to the use of low-cost Micro Electro-Mechanical Systems were proposed as case 

studies of on-board hardware integration. 

Considering the need of sharing data about traffic in the surrounding airspace, Chapter 4 

presents a Deep learning based method for Trajectory Prediction. Unmanned Aerial 

System time-of-flight and battery discharge can be predicted considering the nominal 

path and the wind vector as input parameters. The results show that the percent error 

between the true and the predicted parameter is about 5% for time-of-flight prediction 

and less than 4% for battery discharge prediction during the training and test phases. The 

proposed approach allows to support Unmanned Traffic Management operations during 

the strategic phase of flight plan approval and the tactical phase of re-planning. The 

standardization of the proposed methodology for different vehicles and the definition of 

proper alarm thresholds contribute to a safety-oriented scenario for advanced 

applications, such as package delivery, surveillance, mapping in a non-segregated 

airspace according to standard scenarios. Two applications were proposed: the use of 

time-of-flight prediction for Conflict Detection that allows to predict the time-of-flight to 

the Closest Point of Approach, and the use of absorbed current integral and battery State 

Of Charge for Contingency Management to evaluate if a Safe Landing Area can be 

reached with the remaining battery level. The proposed waypoint-based approach can be 

extended to the case in which a stop maneuver over the planned waypoint is not to be 

performed: a new training dataset shall be acquired without the stop and turn mode and 

adopting proper safety strategies to monitor the surrounding airspace. Synthetic data 
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about the traffic flight parameters can be shared thanks to the BRAINS Traffic 

Communication unit. 

An accurate solution to reduce the error drift of heading angle in environments that 

requires high navigation performance is presented in Chapter 5. A polarimetric camera 

can be integrated with inertial sensors to obtain an accurate estimation of heading angle 

exploiting the skylight polarization pattern. An innovative image processing allowed to 

detect the Sun meridian/anti-meridian in images collected by the polarimetric camera 

identifying the discontinuity of the Angle of Linear Polarization pattern. The obtained 

error is in the order of 1deg and it allows to exploit the proposed approach in 

environments where the integration of inertial sensors with other navigation systems, such 

as the satellite-based systems, is challenging. Urban canyon condition is a critical case 

study for Unmanned Traffic Management that can be analyzed to adopt this navigation 

method. Moreover, Unmanned Underwater Systems can also benefit from the use of the 

Sun light polarization pattern up to few meters under the sea level, reducing the need to 

re-emerge to acquire satellite-based navigation data. This solution can be involved in the 

BRAINS Navigation Measurements Sensors unit. 

Swarming capabilities of Unmanned Aerial Systems represent an interesting case-study 

to be analyzed for adequate configurations. Proper Unmanned Traffic Management 

procedures must be developed to regulate the use and the systems of swarms. Chapter 6 

includes the design and test of two configurations of Unmanned Aerial System swarm to 

support emergency conditions and military applications. A swarm of properly equipped 

Unmanned Aerial Systems was designed to contrast the pandemic diffusion for 

monitoring, transport, and liquid spread tasks. Specifically, the monitoring swarm test 

that includes two Unmanned Aerial Systems equipped with visible band cameras was 

reported to compute the social distancing in crowded areas. An error of about 5% was 

obtained for the relative distance between two targets thanks to the use of proper 

stereoscopy technique. The second application involves a swarm used for aircraft self-

protection by ground-based radar detection. The main aim of the activity was the 

identification of the swarm configuration that better electromagnetically obscure a target 

thanks to the on-board installation of Corner Reflectors. The triangular configuration of 

three decoy-units was identified as the minimum configuration that allows to protect the 

target at a reasonable scaled distance of about 7m. 
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A schematic description of the work motivations, methodology and results is reported in 

Fig. 44. 

  

Fig. 44. Schematic description of the work conclusion. 
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