
Policy and Security Configuration
Management in Distributed Systems

Simone Mutti
Ph.D. course in Mechatronics, Information Technology,

New Technologies and Mathematical Methods
XXVII Cycle

Advisor: Prof. Stefano Paraboschi
Department of Management, Information and Production Engineering

Università degli Studi di Bergamo, Italy

Università degli Studi di Bergamo, Italy
Department of Engineering and Applied Sciences

February, 2015

Contents

1 Introduction 9
1.1 Document Structure . 10
1.2 Publications arising from this thesis 11
1.3 Acknowledgments . 12

I Security Management in ICT Systems 13

1 Introduction 15
1.1 Vision and Solution Overview . 17
1.2 Contribution to the PoSecCo project 20

2 Policy based Security Management 23
2.1 Functional System metamodel . 24

2.1.1 The Business Layer . 26
2.1.2 The IT Layer . 27
2.1.3 The Infrastructure layer 28

2.2 Security metamodel . 30
2.2.1 Business Security metamodel 30
2.2.2 IT layer Security metamodel 32
2.2.3 Configuration metamodel 43

2.3 Model specialization . 46

3 Policy analysis and harmonization 51
3.1 State of the Art . 52

3.1.1 Policy Harmonization checking 52
3.2 Checking techniques . 58

3.2.1 Standard DL reasoner . 58
3.2.2 Ad-hoc reasoning methods 58
3.2.3 Rule based inferencing . 61

3.3 Reasoning patterns . 62
3.3.1 Property verification rules 63
3.3.2 Violation detection rules 65
3.3.3 Custom module pattern 66

3.4 Types of check . 67
3.4.1 Structural Checks . 67

3

4 CONTENTS

3.4.2 Consistency Checks . 69

3.4.3 Separation of Duty Checks 83

3.5 Policy Incompatibility . 85

3.6 Policy Minimization . 87

3.7 Separation of Duty . 88

3.8 Implementation and Experiment 89

3.8.1 Experimental results . 91

4 Policy Minimization 97

4.1 Model . 99

4.1.1 Conflict resolution strategies 104

4.2 Redundancy . 106

4.3 Implementation . 110

4.3.1 MIPP to Weighted SAT 110

4.3.2 Heuristic Algorithm for MIPP 111

4.3.3 MPP to Weighted SAT 112

4.3.4 Heuristic Algorithm for MPP 113

4.4 Experimental Results . 114

5 Policy Refinement 119

5.1 Overall workflow . 119

5.2 Enrichment of IT Policies . 121

5.2.1 Enrichment process and enrichment modules 123

5.2.2 Types of enrichment techniques 124

5.3 Relation with harmonization modules 128

5.4 Relation with refinement modules 133

5.4.1 Enrichment of IT Policies 134

5.5 Refinement of IT Policies . 135

5.5.1 Select, Create and Connect (SCC) 135

5.5.2 Select and Construct (SC) 138

6 Software for the IT Policy language 143

6.1 Requirements . 144

6.2 Architecture . 145

6.2.1 Source Code . 147

6.2.2 Input/Output ITPolicy Tool 149

6.3 Editor . 149

6.4 Harmonization . 151

6.5 Refinement . 153

6.5.1 Enrichment . 154

6.6 Additional functionalities . 155

6.6.1 Quality of access control policies 155

CONTENTS 5

II Security Management in Mobile Systems 157

1 Introduction 159

1.1 Rationale of the approach . 160

2 Android Security Architecture 161

2.1 SEAndroid . 162

2.2 Threat Model . 163

2.2.1 Example . 164

3 SELinux Policy Model 167

3.1 Model specification . 167

3.2 Requirements . 170

3.3 Policy Module Language . 174

3.3.1 Correctness . 176

4 Mapping Android Permissions 179

5 Implementation 183

5.1 Changes to SELinux . 184

5.2 Changes to Android . 185

5.2.1 Update SELinux policy 185

5.2.2 Update seapp contexts . 185

5.2.3 Update mac permissions.xml 186

5.3 Performance . 186

5.3.1 Installation time . 186

5.3.2 Runtime . 188

6 Related Work 191

7 Conclusions 193

A Comparison with other proposals 195

A.1 XACML . 195

A.2 PCIM . 197

A.3 KAoS . 200

A.4 Summary of the analysis . 200

B Model specialization example 203

B.1 Model specialization for Operating Systems 203

B.2 Model specialization for Database 204

B.2.1 DatabaseInterface . 205

B.2.2 DBMS . 205

B.2.3 Database and SQLDatabase 205

B.2.4 SQLDataObject, SQLTable, SQLTableColumn and SQLView206

6 CONTENTS

C Policy Incompatibility 207
C.1 Policy Incompatibility SWRL Rules 207
C.2 Preprocessing Algorithms . 208
C.3 Permission-Based and Object-Based SoD 208
C.4 Optimization . 210

D Technology 213
D.1 Eclipse . 213
D.2 Web Ontology Language . 214

D.2.1 OWL API . 215
D.2.2 Reasoner . 215
D.2.3 Semantic Web Rule Language 216
D.2.4 Simple Protocol And RDF Query Language - Description

Logic . 216

E Refinement Modules 219

F Enrichment Modules 223
F.1 NeOn ToolKit . 226
abstract

“It is paradoxical, yet true, to say, that the more we know, the more
ignorant we become in the absolute sense, for it is only through
enlightenment that we become conscious of our limitations. Precisely
one of the most gratifying results of intellectual evolution is the
continuous opening up of new and greater prospects.”

-Nikola Tesla

7

1
Introduction

The evolution of information systems sees a continuously increasing need of flex-
ible and sophisticated approaches for the management of security requirements.
On one hand, systems are increasingly more integrated and present interfaces
for the invocation of services accessible through network connections. On the
other hand, system administrators have the responsibility to guarantee that this
integration and the consequent exposure of internal resources does not introduce
vulnerabilities. The need to prove that the system correctly manages the secu-
rity requirements is not only motivated by the increased exposure, but also by
the need to show compliance with respect to the many regulations promulgated
by governments and commercial bodies.

Given the critical role of security, concerns arise about the correctness of
the policy. It is not possible anymore to rely on the security designer to have
a guarantee that the policy correctly represents how the system should protect
the access to resources. Tools are needed to support the analysis of the security
policies, and a crucial element that signals problems in the policies is represented
by the presence of conflicts, i.e., contradictions or ambiguities in the policy
specification, which may lead to anomalies in the application of the policy.

The integrated management of security policies promises to produce signif-
icant benefits in this area. In a way similar to the evolution seen in the area
of software development and database design, the model-driven engineering of
security leads to the specification of security requirements at an abstract level,
with the subsequent refinement of the abstract model toward a concrete im-
plementation. It is then guaranteed that, when the high-level representation
of the security requirements is correct, the security configuration of the sys-
tem satisfies the requirements. The application of this approach requires the
implementation of a rich collection of tools supporting, for each of the many

9

10 CHAPTER 1. INTRODUCTION

components in the system, the refinement from the high-level representation of
security requirements to the concrete security configuration. A significant in-
vestment in research and development is needed to realize this vision, in order
to manage the heterogeneous collection of devices and security services that in-
formation and communication technology offers to system administrator. Still,
this large investment promises to produce adequate returns, considering the
importance that the correct management of security requirements presents in
modern information systems.

A crucial advantage of the model-driven approach described above is the
possibility of an early identification of anomalies in the security policy. Security
policies in real system often exhibit conflicts, i.e., inconsistencies in the policy
that can lead to an incorrect realization of the security requirements, and re-
dundancies, i.e., elements of the policy that are dominated by other elements,
increasing the cost of security management without providing benefits to the
users or applications. The availability of a high-level and complete representa-
tion of the security policies supports the construction of services for the analysis
of the policies able to identify these anomalies and possibly suggest corrections.

1.1 Document Structure

The document is organized in two parts. Part I describes a set of approaches and
tools that have been designed in order to create an environment for the design
and management of security policies that follows the approach proposed by the
European project PoSecCo (http://www.posecco.eu). The author’s contribu-
tions to the PoSecCo project are manifolds. They range from the definitions of
the metamodel to the policy analysis.

However, due to the complexity of the project, this document also includes
contributions developed by other partner1, in collaboration with the author, in
order to give the reader the opportunity to understand the overall scenario and
to better comprehend the work done by the author.

• Chapter 1 introduces the overall scenario, the current limitations and the
vision proposed by the PoSecCo project to overcome these limitations.

• Chapter 2 presents the metamodel that has been designed for the rep-
resentation of the security policy. The IT metamodel will be used as a
foundation for the realization of the tools, and in the PoSecCo policy
chain it represents the abstraction level that connects the representation
of security requirements at the Business level to the configuration at the
Infrastructure level.

• Chapter 3 discusses three policy properties: Policy Incompatibility (given a
set of authorizations A, check whether exist pairs of authorizations (a1,a2)
such that a1 and a2 apply to the same request and have opposite sign),

1The contributions coming from PoSecCo partner, included in this document will be duly
highlighted.

1.2. PUBLICATIONS ARISING FROM THIS THESIS 11

Policy Minimization (given a set of authorizations A, check whether a
subset of those authorizations R exists that is dominated by other au-
thorizations), and Separation Of Duty Satisfiability (given a set of autho-
rizations A, check whether they satisfy a set of Separation of Duty (SoD)
constraints).

• Chapter 4 presents a formalization of the redundancy problem in access
control policies that considers three different ways in which a security
administrator can act on a policy containing redundancy.

• Chapter 5 describes the techniques for creating the policy chain with spe-
cific focus on the enrichment of the IT level and refinement from IT level
to Infrastructure level.

• Chapter 6 describes the design principles of the IT Policy Tool, which
has been designed for the creation of the security policy at the IT level.
The IT Policy Tool supports the creation and the maintenance of the IT
Policy and is implemented as an Eclipse plug-in and deployed as a RAP
Application.

Part II describes the work done regarding policy management in the are of
mobile systems

• Chapter 1 and Chapter 2 provides an overview of the Android security
architecture, describing the role of the MAC model introduced by SEAn-
droid, and the threat to third-party apps that the policy modules want to
mitigate;

• Chapter 3 presents a model of SELinux policies, used to formalize the
requirements that policy modules have to satisfy;

• Chapter 4 illustrates how the use of appPolicyModules can improve the
support of Android permissions;

• Chapter 5 describes the performance results;

• Chapter 6 provides a comparison with previous work in the area;

• Chapter 7 draws a few concluding remarks.

1.2 Publications arising from this thesis

This Section presents a list of the published and submitted papers that have
arisen from the work in the thesis.

Papers in Proceedings of International Conferences and Workshops:

• Enrico Bacis, Simone Mutti, and Stefano Paraboschi. ”AppPolicyMod-
ules: Mandatory Access Control for Third-Party Apps.” in 10th ACM
Symposium on Information, Computer and Communications Security (ASI-
ACCS 2015) [Part II]

12 CHAPTER 1. INTRODUCTION

• Marco Guarnieri, Eros Magri, Simone Mutti, and Stefano Paraboschi.
”On the notion of redundancy in access control policies.” in 18th ACM
Symposium on Access Control Models and Technologies (SACMAT 2013)
[Chapter 4]

• Mario Arrigoni Neri, Marco Guarnieri, Eros Magri, Simone Mutti, and
Stefano Paraboschi. ”Conflict detection in security policies using seman-
tic web technology.” in 1st International IEEE-AESS Conference in Eu-
rope about Space and Satellite Telecommunications - Security and Privacy
Special Track (ESTEL 2012) [Chapter 3]

• Marco Guarnieri, Eros Magri, and Simone Mutti. ”Automated manage-
ment and analysis of security policies using eclipse.” in 7th Italian Work-
shop on Eclipse Technologies (Eclipse-IT 2012) [Chapter 3 and Chapter
6]

• Simone Mutti, Mario Arrigoni Neri, and Stefano Paraboschi. ”An Eclipse
plug-in for specifying security policies in modern information systems.” in
6th Italian Workshop on Eclipse Technologies (Eclipse-IT 2011) [Chapter
2 and Chapter 6]

Short Papers in Proceedings of International Conferences and Workshops:

• Mario Arrigoni Neri, Marco Guarnieri, Eros Magri, Simone Mutti, and
Stefano Paraboschi. ”A Model-driven Approach for Securing Software
Architectures.” in 10th International Conference on Security and Cryp-
tography (SECRYPT 2013) [Chapter 2]

Chapters in Books:

• Cataldo Basile, Matteo Maria Casalino, Simone Mutti and Stefano Para-
boschi. ”Detection of conflicts in security policies.” Computer and Infor-
mation Security Handbook (Morgan Kaufmann Series in Computer Secu-
rity) [Chapter 2 and 3]

Under submission at the time of writing:

• Simone Mutti, Enrico Bacis, and Stefano Paraboschi. ”SeSQLite: Security
Enhanced SQLite.” in 24th USENIX Security Symposium (USENIX 2015)
[Part II]

1.3 Acknowledgments

The research leading to the results documented in this thesis was supervised
by the Prof. Stefano Paraboschi (Università degli Studi di Bergamo) and has
received funding from the European Community’s Seventh Framework Pro-
gramme within the 7FP and H2020, respectively, under grant agreements 257129
and 644579, by the Italian Ministry of Research within the PRIN projects “PEP-
PER” and “GenData 2020”, and by a Google Research Award (Winter 2014).

Part I

Security Management in
ICT Systems

13

1
Introduction

The Future Internet (FI) market of services can cover various degrees of stan-
dardized and individualized offerings: Commodity services are standardized, off-
the-shelf services, typically billed for on an ’as-used’ basis and with little means
for customization (e.g., email, spam filtering or simple financial accounting ser-
vices). Specific customer needs are addressed by highly customized services that
address particular functional or non-functional requirements. Both standardized
and custom business services will require service providers to operate IT, appli-
cation and infrastructure services with multi-customer functionality, that is, the
capability to serve multiple customers with appropriate data segregation [65].

Future Internet (FI) applications will be static or dynamic compositions
of services of different kinds and layers, ranging from low-level infrastructure
services for data storage or bandwidth up to high-level IT services that support
common business processes such as invoicing or enterprise resource planning.
The technical composition of such services is accompanied by a multitude of
contractual, binding agreements between service providers and consumers, on
functional and non-functional aspects.

Figure 1.1 shows the viewpoint of one particular service provider that of-
fers a couple of business services to its customers. A business service in that
context can be understood as a commercial or non-commercial offering, which
bundles a set of IT services. Business services are the basis for contractual
agreements, and are subject to auditing standards such as the ”Statement on
Auditing Standards No. 70: Service Organizations” (SAS70) [AICPA]. Busi-
ness services do not only cover business to business services, but also services
offered to end-users. Business services focus on the real-world problem domain
and its related terminology and processes, as opposed to the technology focus of
lower-level services. IT services support one or more business processes, such as

15

16 CHAPTER 1. INTRODUCTION

Figure 1.1: Architecture of FI applications from the viewpoint of a service
provider.

human capital management. They are perceived by customers and users as self-
contained, single, coherent entities [ITILv2] and are realized as orchestrations of
technical application services which provide a single, specific functionality. The
operation of application services relies on underlying infrastructure services that
provide resources such as network bandwidth, application servers or data stores.

Service providers in such FI application scenarios have the freedom to inte-
grate and mix services of all kinds for their specific offerings, according to their
particular competencies and customer segments. As such, numerous combina-
tions of insourced and outsourced services can be employed by future market
participants, in its extremes ranging from service providers that operate entire
service landscapes by themselves, to service providers that re-brand and re-sell
IT services of suppliers.

The adoption and success of outsourcing in general and for FI applications
in particular depends crucially on the market actors’ capabilities to pursue and
align two interdependent goals: (a) The implementation of each stakeholder’s
security requirements and compliance with all regulatory requirements, herewith
establishing consumer trust in FI applications and (b) the profitable manage-
ment and operation of its services.

Achieving and maintaining the required security level and providing the
necessary evidence to customers, regulatory bodies and internal stakeholders in
a cost-efficient manner is hindered by various issues:

• the multitude of security stakeholders with individual requirements;

• the increasing number and complexity of regulatory requirements that is
multiplied by the number of countries a service provider and its customers
are active in;

1.1. VISION AND SOLUTION OVERVIEW 17

• overlaps or conflicts among high-level policies and enforcing security con-
figuration settings of the various application and infrastructure services;

• the steady evolution and change of regulatory requirements, technology
components and business relationships.

Even today, where most organizations operate the bigger share of the ser-
vice landscape themselves, above issues lead to cost-intensive and error-prone
security processes in which high-level policies are formulated and maintained
in prose and manually translated into lower-level, service-specific configuration
settings [22]. These processes have a well-known impact on the trustworthiness
of IT infrastructures, many times confirmed by studies such as from the NSA,
which found that ’inappropriate or incorrect security configurations (most often
caused by configuration errors at the local base level) were responsible for 80
percent of Air Force vulnerabilities’ [70, 91,94].

Such studies show that a correct configuration of compositions of application
or infrastructure services is at least as important as the application security of
the individual services. Besides creating exploitable security vulnerabilities, in-
correct security configuration may have a significant impact on the availability of
individual services and as such the overarching business services which are typ-
ically bound to corresponding service level agreements. Additional complexity
arises in FI application scenarios, where larger shares of the service landscapes
are outsourced. The process of breaking high-level requirements down to low-
level settings spans across organizational boundaries, and service providers need
to ensure that the outsourcing service providers properly reflect the policies that
result from its own customers. A service provider must therefore check that a
contractual agreement with an outsourcing service provider covers all its own
customers’ requirements.

1.1 Vision and Solution Overview

PoSecCo’s vision is to establish and maintain a consistent, transparent, sustain-
able and traceable link between high-level, business-driven security and compli-
ance requirements on one side and low-level technical configuration settings of
individual services on the other side.

Such an end-to-end link shall be maintained in operating conditions, i.e.
considering constant evolution that result in changes of two kinds:

• New or changing security and compliance requirements as a result of,
for instance, new business service offerings, new customers or suppliers,
changing security needs of existing customers or new legal regulations and
security standards;

• Landscape changes as a result of, for instance, ordinary administration
tasks that change configuration settings or changes of application and in-
frastructure services in the course of purchase, in- or outsourcing decisions.

18 CHAPTER 1. INTRODUCTION

PoSecCo maintains this end-to-end link by automated means where possible
and offers decision support where human interaction is inevitable. To deal with
these two kinds of changes, PoSecCo simultaneously thrives for a (i) top-down,
policy-driven approach and a (ii) bottom-up, landscape-driven approach:

First, the top-down approach takes as input the various laws, regulations, best
practices and standards for security and compliance, captures them by policies
that are more detailed, prose descriptions of security and compliance objectives
and translates them into IT policies which relate the high-level requirements to
the actual IT landscape and infrastructure.

Second, the bottom-up approach builds on top of common Change and Con-
figuration Management (CCM) and Audit software, whose industry adoption
is steadily growing and which offers a common configuration interface for the
various application and infrastructure services that compose FI applications
- herewith extending the service-oriented architecture (SOA) concept of ser-
vices being self-contained components with defined business interfaces towards
defined configuration interfaces on the basis of, for instance, the OASIS Web
Services Resource Framework [44].

Example 1. By way of illustration, ’protect stored cardholder data’ is a high-
level business policy, defined by the PCI DSS (Payment Card Industry Data
Security Standards) [35]. It states an objective in a declarative manner. The
abstract business policy can be mapped to a set of declarative IT policies such
as ’make the credit card database inaccessible from the Internet’. This IT policy
can be mapped to the configuration ’block at the firewall all traffic between the
Internet and the credit card database’, which is imperative but abstract because
no firewall can interpret this instruction. Settings are finally obtained by trans-
lating the configuration into a language that can be understood and executed by
an actual firewall.

PoSecCo solely relies on such configuration interfaces to read and write con-
figurations - in particular, the changing of source code and rebuilding of a service
is not a feasible option during operation time and as such out of the scope of
PoSecCo. Whereas CCM software is used to (a) update representations of the
actual landscape and (b) create change requests for configuration corrections
of productive services, PoSecCo relies on common Audit software to (c) audit
the productive landscape with help of standardized, comparable checklists and
checks.

The establishment and maintenance of an end-to-end link between abstract
requirements and technical configuration settings requires business service providers
to perform the following three activities (see Figure 1.2):

1) Following the top-down approach: The capturing and harmonization of
all stakeholders’ policies to obtain a conflict-free set of IT policies.

This analytical activity involves various internal security stakeholders that
firstly capture the relevant business policies and secondly transform these into
formal descriptions of IT policies that allow reasoning about policy dependencies
and particularly conflicts.

1.1. VISION AND SOLUTION OVERVIEW 19

Figure 1.2: PoSecCo concepts and scope.

2) Following the bottom-up approach: The monitoring and audit of the
operative service landscape and the configuration settings of its elements.

Currently, these actions are performed manually, resulting in error-prone and
inefficient processes. As one result, PoSecCo turns these actions into automated
processes where possible, and, thus, avoiding some of the risks for errors and
increasing the overall efficiency.

As a prerequisite, the creation and maintenance of the service landscape
model is required. A service landscape model is an abstraction of the set of all
services and their compliance-relevant functionality. The structural service land-
scape model founds on simple inventory lists as maintained in CCM software and
which describe component versions, patch levels, etc. as well as simple compo-
nent dependencies such as the network topology. As such simple enumerations
do not represent logical dependencies between the services that result from their
composition in the context of specific business service offering. They need to
be enriched with semantic, compliance-relevant information resulting from their
usage context. Process mining and process modeling techniques will support the
creation and update of such semantically enriched, behavioral service landscape
models, herewith reducing manual efforts. In addition to landscape models,
configurations abstract the active configuration settings of all relevant services.
All models, structural and behavioral descriptions of service landscapes, and
configurations will be the basis of the policy refinement activity.

The audit of operative landscapes shall happen through various means:
Firstly, through the comparison of actual and desired configurations and sec-
ondly through the generation of standardized audit checklists and checks that
may be processed by common Audit software and Vulnerability Scanners.

20 CHAPTER 1. INTRODUCTION

However, current languages lack some expressiveness with regard to the as-
sessment of misconfigurations as well as automated corrections and focus on the
audit of single services instead of entire landscapes. As it is hardly possible
to keep actual settings and desired configurations synchronized, the assessment
provides decision support for the selection of an appropriate remediation strat-
egy.

3) Results of the previous activities are used in the refinement activity, which
is an iterative process that transforms declarative IT policies into a consistent
set of desired configurations that may serve as input for the generation and
deployment of actual settings through CCM software.

The refinement of policies towards a deployable configuration relies on the
description of the actual landscape (the service landscape model, created and
updated during landscape monitoring), which supports the decision process by
eliminating unfeasible configuration alternatives (reality check) and as such re-
ducing the overall space of all possible configuration options.

The establishment and maintenance of an end-to-end link between high-level
requirements and low-level settings through above-mentioned activities depends
on the interaction and contribution of many different stakeholders within and
outside a service provider’s organization. Several of their tasks are hardly au-
tomatable (e.g., the identification and formalized capturing of policies that result
from internal or external requirements, or the final decision on and approval of
a given set of policy enforcing configurations). For that reason, PoSecCo aims
to support the stakeholders’ interaction and decision making processes by the
analysis and development of suitable organizational processes and structures as
well as models that investigate the costs of policy management in FI application
scenarios.

1.2 Contribution to the PoSecCo project

Due to the complexity of the PoSecCo project and the involvement of several
partner, in the following the author identifies the boundaries of his contributions
(as already mentioned the other partner’s contributions will be briefly presented
in order to give to the reader an overall view of the entire project):

• The Functional System metamodel will be briefly presented and was de-
veloped by Politecnico di Torino and Bern University of Applied Science;

• The Business Security metamodel will be briefly presented and was devel-
oped by IBM and University of Innsbruck;

• The IT Security metamodel will be extensively presented and was devel-
oped by Università degli Studi di Bergamo;

• The Configuration metamodel will be presented and was developed by Bern
University of Applied Science, Politecnico di Torino, Università degli Studi
di Bergamo and SAP;

1.2. CONTRIBUTION TO THE POSECCO PROJECT 21

• The Policy analysis and harmonization and Policy minimization will be
presented and was developed both theoretically and practically (i.e., IT
Policy tool) by Università degli Studi di Bergamo;

• The Policy Refinement and Policy Enrichment process will be presented
and was developed by Università degli Studi di Bergamo. This document
only includes the approaches used in the topological independent scenario.
The topological dependent scenario was developed by the Politecnico di
Torino but will not be presented in this document.

2
Policy based Security Management

A crucial aspect for the evolution of security management is a better integra-
tion in security policy management. Configuring such a policy for a specific
system in isolation is not trivial, but it is not at all problematic, since we can
benefit from sophisticated access control models that have been developed for
a variety of systems, from relational database management systems to applica-
tion servers. The integration and harmonization of security policies specified
in different systems at different levels are undoubtedly a much harder obstacle.
Three clear integration perspectives can be identified:

• Conceptual integration: security policies have to be described at different
levels of abstraction, from the business level to the concrete configuration
of modules and devices. Separate models are required for the different
levels, as shown by software engineering practice in many areas. Also,
there is the need for support in the translation of the high-level policy
to a more concrete specification. A precise description of the correspon-
dence between the policies at different levels allows for a more effective
and efficient verification of the compliance of the concrete policy with the
high-level security requirements. In addition, a structure with different
abstraction levels greatly facilitates the maintenance of a security policy.

• Vertical integration: the structure of a modern information system presents
several components that can be represented in a vertical stack: physical
hardware, virtual hardware, operating system, network, DBMS, applica-
tion server, application. Security policies can be supported at each of
these layers, and they are typically defined independently, but there exists
the possibility for an integration process, which can lead to a greater level
of security and flexibility.

23

24 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

• Horizontal integration: Compared to the classical scenarios considered in
access control, where a policy is assumed to be enforced by a specific
reference monitor, modern information systems present a variety of com-
putational devices cooperating in the response to a specific user request.
Components of the computational infrastructure can be owned by inde-
pendent parties. In these scenarios, the management of security policies
requires to carefully define models and mechanisms able to map a security
requirement to a coordinated policy enforced by such varied parties. This
aspect is particularly difficult when few hypotheses can be made about
the specific security management functionality supported by the service
providers.

The PoSecCo project plans to investigate these three aspects. Conceptual
integration will rely on the design of metamodels structured with three levels:
Business, IT, and Infrastructure. Vertical integration will specifically focus on
the harmonization between access control and network configuration. Horizontal
integration will be tackled in a Future Internet scenario, where applications are
realized integrating the services of a variety of providers. A common objective
will be the detection and resolution of conflicts in the policies.

2.1 Functional System metamodel

The Policy based security management paradigm is emerging on the security
scene, because it decouples the security requirements, expressed using Service
Level Agreements (SLA), proofs of compliance with a variety of high-level di-
rectives, from the mechanisms that will actually enforce them and the environ-
ment where resources to protect and security mechanisms are displaced. The
translation process, named policy refinement, is manually performed by security
administrators. Today, policy refinement asks administrators a huge investment
in term of needed effort, but due to its complexity, this investment is not repaid
with a good security level. According to recent studies, a significant number of
system vulnerabilities, as well as actual security breaches, are due to inappro-
priate security configurations [42,98,99].

Many decisions need to be made when refining a policy to configurations.
Due to the nature of policy enforcement and conflict analysis tasks, that do not
depend only on the chosen policy, these decisions are affected by the environment
where the policy will be enforced. Analogously, to perform discrepancy analysis
a clear picture of the underlying system is needed. For example, by knowing that
two virtual machines are on the same physical host, an administrator may decide
not to configure a secure channel, or by knowing that there is a reverse proxy in
front of a web server he may decide to configure authentication functionalities
and terminate the secure connections at the proxy. Many more examples can be
made to illustrate the dependence of the policy refinement and conflict analysis
on the landscape.

The representation of the landscape must be expressive enough to enable
automatic refinement activities, to recognize policy-enabled elements and iden-

2.1. FUNCTIONAL SYSTEM METAMODEL 25

Business layer

IT layer

Infrastructure layer

Business layer

IT layer

Infrastructure
layer

Business layer

IT layer

Infrastructure layer

Business policy

IT policy

Security
configuration

Functional System meta-model Security meta-model

Figure 2.1: PoSecCo architecture.

tify their security capabilities in order to decide which need to be configured.
Additionally, as evident from previous example, it is also necessary to know
the topological arrangement of resources and security mechanisms. Since poli-
cies are often stated as having the data to protect in mind, a valid landscape
description must be able to convey information about the data (used, stored,
exchanged, etc.).

Since an excessive amount of information cannot be requested from adminis-
trators, PoSecCo relies on a CMDB to provide details about the infrastructure.
Still, an appropriate level of description needs to be identified to limit the ef-
fort. This is the main reason why PoSecCo decided to develop a new landscape
meta-model instead of using the Common Information Model. However, the
availability of a metamodel does not exclude the possibility of having different
model specializations that may be defined by external parties in order to model
concepts useful for their scenarios.

The Functional System metamodel (see Figure 2.1) is vertically organized
according to the three PoSecCo abstractions: business, IT and infrastructure
layer. Going from business to infrastructure layer, the level of detail on the
landscape increases both at the organization and technological level, while the
terminology moves from a business-oriented to a technical vocabulary. These
abstractions are horizontally connected to the corresponding policy abstractions,
the business policy, the IT policy, and, at the infrastructure layer, both the
logical associations and the configurations.

We present here a brief description of the content of each layer:

• Business layer contains the description of the business services, the busi-

26 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.2: The Business abstraction layer.

ness processes and the institutions, along with other business oriented
concepts;

• IT layer, gathers all the classes that are used to describe an IT service
choreographically, describing the interaction between all the components,
which are represented by abstract resources which expose different in-
terfaces. Moreover, in order to satisfy the service providers’ needs, we
introduce a set of classes that can be used to describe the different im-
plementations of each service that can be offered to a customer, which
constitute a service provider catalog;

• Infrastructure layer, bundles the classes necessary to describe networked
ICT systems and software which run actual service implementation sold to
the customers. The networks topology of these systems can be described
resorting to the node class which can be used to represent any type of
physical or virtual network node (e.g., computer, router, switch). Then
it contains the description of all the software components used to provide
the different services and running on nodes. Moreover, this layer contains
classes necessary to describe the functionality and security configuration
of each hardware or software component in details, e.g. authentication
logging or filtering capabilities. Finally the location where the ICT system
are located is represented by the location class, which can be used to
identify different country-related regulations.

2.1.1 The Business Layer

For a complete description of the business layer of the metamodel, depicted in
Figure 2.2, we refer to the Deliverable [59]. In this section we recall only a few
classes, which are used in the rest of this document.

The Institution class represents an organizational unit. It can be used to
describe either a customer that buys services from a service provider, or a sup-
plier that delivers services to the service provider, e.g., an outsourcing provider
for IT services (that contributes in terms of business functionality to the service

2.1. FUNCTIONAL SYSTEM METAMODEL 27

Figure 2.3: The IT abstraction layer.

provider’s own offering) or infrastructure services (e.g, application platforms,
storage, bandwidth).

The Role represents an actor within an institution. Several roles may be
arranged hierarchically and assigned to an Institution.

The BusinessInformation class is used to represent any type of information at
business level and can be associated to Institutions or Roles, in order to specify
access rights. Several BusinessInformations may be associated to represent
complex information types.

The BusinessProcess class can be used to represent interactions between
Institution and/or Role instances. Several BusinessProcesses may be correlated
hierarchically or describing interactions, they may involve a set of roles and
process a set of BusinessInformation objects.

2.1.2 The IT Layer

The main class of the IT layer (see Figure 2.3) is the ITServiceModel. A ser-
vice model is an abstract description of an IT Service that supports one or
more business processes (defined in the Business Layer see Section 2.1.1). This
is modeled with the relation realizes. An IT Service is characterized by its
interfaces and implemented by abstract software components.

An Interface is a point of interaction, exposed by a resource that may con-
tribute in providing an IT service and used by customers via business processes
or by other IT services. The functionality associated to an interface is actu-
ally provided by a resource model (class ITResourceModel), which represents an
abstract (software) component.

The interfaces provided by an ITServiceModel are described using the IT-
InterfaceModel class and attached using the composes relation. Each of these
interfaces is exposed using the exposes relation by an ITResourceModel, which
represents an abstract description of a service component.

The communication relationships between abstract service components
are described with the class Link. Each service interface (ITInterfaceModel)
exposed by a component (ITResourceModel) can be linked to another compo-
nent using this class. This result is achieved using the relations source, between
the classes Link and ITResource, and target between the classes Link and ITIn-
terfaceModel. Using ITResourceModel and Link, we can describe the relations
among abstract software components, thereby defining their usage hierarchy

28 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

(i.e., the choreography).
Resource interaction is not only considered (and modeled) for functional

elements of an IT service (i.e., elements that contribute to the original purpose
of the service consumed by a customer) but also for management elements of
the IT infrastructure. Such elements (e.g., the administration console of an
application server) result from an implementation choice of the service provider,
e.g., the decision of deploying a functional IT resource X in the application
server Y. Even though management interfaces are primarily used by the service
provider and as such transparent to the consumer, they are an important part
of a service provider’s security policy, and they are also communicated and
guaranteed to the consumer as part of SLAs or other contractual agreements.
Only representing both kinds of interactions inside the IT layer allows specifying
PoSecCo’s security policies for them. Looking at the metamodel (see Figure
2.3), the support of both functional and non-functional service interaction is
visible from the 0..1 cardinality between ITInterfaceModel and ITServiceModel:
functional interfaces and resources are referenced by the ITServiceModel, since
they are known and provide recognizable added-value to the customer, whereas
non-functional, management interfaces and resources are not referenced.

The DataModel class represents any piece of data which is handled by
an ITResourceModel (attached using the operates-on relation) or transmitted
through a Link (described using the transports relation). The DataModel class
has a self relation hierarchy which can be used to describe complex datatypes
which aggregate several piece of data (e.g., a person description can be com-
posed by its name, address, etc.). Instances of the class DataModel can be linked
via the represents relationship to the BusinessInformation in the Business Layer
(see Section 2.1.1).

2.1.3 The Infrastructure layer

Figure 2.4 displays the portion of the Functional System metamodel correspond-
ing to the Infrastructure Layer.

A central concept in the Infrastructure Layer is the ITResource. This class
represents a wide and heterogeneous collection of software that is directly or
indirectly involved in the delivery of IT services. The complex relationships
between the different software components, can be described with the self rela-
tion hierarchy. The provides relation from the class Institution in the Business
Layer (see Section 2.1.1) names the organization which is responsible to run the
ITResource. This can be the service provider itself or one of its suppliers.

For each ITResource, we can model capabilities being supported by this soft-
ware component. The class Capability denotes a security capability supported
by an ITResource, e.g., the capability of communicating via SSL/TLS, the ca-
pability of enforcing authorization policies, or the capability of encrypting data
at rest. As such, the class is of particular importance for the policy refine-
ment process, as it indicates whether a given ITResource can act as a potential
policy enforcement point, and as such can be presented to a decision maker
who must select the preferred, to-be-implemented enforcement mechanism on

2.1. FUNCTIONAL SYSTEM METAMODEL 29

Figure 2.4: The Infrastructure layer.

the basis of different evaluation criteria. In many cases, a capability must be
supported not only by one ITResource but by several ones in order to be con-
sidered as a alternative mechanism. The use of SSL/TLS, for instance, can
only be considered as an alternative mechanism for ensuring the confidentiality
of a given communication channel if all communication partners support these
protocols in compatible versions, e.g., a Browser and a Web server both sup-
porting TLS v1.0. Furthermore, the class Capability represents the link between
the infrastructure described in the functional system model, and the security
configurations that are part of the security model. Once a capability has been
selected to become implemented, security configuration settings that activate
and configure this capability must be created and deployed into all affected
ITResources. If a security manager decides, for instance, the use of TLS v1.0
for securing HTTP communication between a Web client and server, the Web
server must be configured to only use TLS with a set of intended cipher suites
(and to ignore the different versions of SSL), and must be equipped with an
appropriate certificate. The generation of security configuration for a selected
Capability and its deployment by means of CMS software finalizes the policy
chain.

Each instance of ITResource is executed on a Node. This is represented
via the relation runs-on. The Node class represents either a virtual or physical
network node running some resources. Virtual nodes are described using the
subclass VirtualNode and physical nodes using the subclass PhysicalNode.

A connection between two nodes is represented using the Channel class.
This class maps any type of connection, including wired, wireless and virtual
connections from/to virtual interfaces. The actual endpoints of a channel are
described using the ITInterface class. In this way, the model is able to describe
physical/virtual nodes that resort to physical/virtual network interfaces (e.g.,
Ethernet interface cards) to connect to each other.

A network is composed of Node instances. Since the Network is a subclass of
Node, we can define nested networks (or subnets) and we can assign interfaces

30 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

to a network. In this way we can, for example, define the “internet” network
and its interfaces, abstracting its internal complexity.

With the class ITResource, we can describe all deployed and configured
software components that belong to an IT service implementation for a single
customer (ITService) using the relation providedBy. The ITResource represents
the implementation of an abstract ITResourceModel from the IT Layer (see
Section 2.1.2), which is attached to it by the relation implements.

An instance of the class ITService describes a service implemented for one
customer modeled by the uses relation to the Institution. It exposes ITInter-
faces, linked by the homonymous relation. The ITInterface class represents an
implementation of the ITInterfaceModel class in the IT Layer.

The class Data provides details about the representation of data, allowing
the aggregation of complex data structures via the self relation hierarchy. It
implements the corresponding class DataModel of the IT layer, which in turn
is linked to ITResourceModel and to Link. Information about the storage loca-
tion and type is required to configure the enforcement of various policies, e.g.,
the enforcement of AC policies by means of database authorizations, or the
enforcement of data protection policies by means of WS-Security.

2.2 Security metamodel

According to the abstraction levels defined in the Functional System metamodel
also the policy related concept will be organized according to the same levels
and related to the element of the landscape metamodel that they involve using
the following formats:

• Business policy describes the security requirements, which the service
provider must guarantee, in a declarative human readable format;

• IT policy maps the required behavior of the IT services, ignoring topologi-
cal details. It uses a formal model since it must be automatically processed
by the refinement engine;

• Security configurations are imperative policies detailing the implementa-
tion of an IT security policy by an enforcement mechanism, e.g., firewall,
routers or authentication servers. They are topologically aware as they
consider all the nodes of the network connecting the service components.

2.2.1 Business Security metamodel

The Business Security metamodel is illustrated in Figure 2.5.
Security Requirements are the central component of this model. Each re-

quirement can be composed of sub-requirements through the relation “realizes”
allowing to build an arbitrary dependency-tree. Any requirement may be de-
rived from a Source being either another requirement, a law, a policy or some
other origin (e.g., a service level agreement with business partner). Taking the

2.2. SECURITY METAMODEL 31

Figure 2.5: Business Security metamodel.

derived-from-relation into account it might seem that the realization-relation
would not be needed at all. But that’s only so at first glance. Many re-
quirements especially at a more technical level are depending on various other
requirements, they might not be directly derived from. For instance the re-
quirement “Ensure availability of customer database” additionally depends on
“Provide timely backups for customer database” which itself is derived from the
requirement “Implement a data backup plan”. With both relations present, it is
possible to develop a very expressive model not only considering hierarchical de-
pendencies of requirements but also allowing connections between requirements
with regard to contents. Another difference between those two connections is
also evident: derived requirements might need to be revalidated if the super-
ordinate requirement is changed, i.e., loosening the superordinate requirement
may make one or more subordinates unneeded.

Further every requirement is related to one or more Stakeholders holding
various functions. This relation does not only consider certain kinds of re-
sponsibilities but additionally allows interested parties (e.g., customers, media,
competitors) to be related with certain requirements.

Tags are used to provide another way of organizing requirements apart from
the relations “realizes” and “derived from”. By tagging requirements it is pos-
sible to build up any number of orthogonal arrangements. With this feature at
hand it becomes possible to completely adopt the structure of arbitrary stan-
dards without interfering with the structure needed to actually manage security
requirements. In a special sense, tags can provide shortcuts to a set of require-
ments that otherwise would not be directly related via protection targets or
some inter-requirement relations. The great benefit from tagging is the way in
which this technique allows users to successively enhance requirement catego-
rizations through addition of new tags without the need to change major parts
of the model.

The metamodel includes Security Risks but does not provide any additional
concepts related to risk management. This approach has been chosen to keep the
model as simple as possible while still being able to incorporate threat scenarios

32 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.6: IT level Security metamodel.

often considered together with requirements. However, threats are not the main
focus of this meta model and are therefore treated only as additional source for
classification of security requirements (e.g., find requirements addressing human
errors or technical shortcomings).

2.2.2 IT layer Security metamodel

The IT layer Security meta-model supports the representation of authentication
and access control properties. Figure 2.6 shows a graphical representation of
the complete model. The model is structured in parts, where each part contains
all the entities describing one aspect of the model.

The IT metamodel consists of six related blocks, each focused on a specific
aspect of the security policy.

• the Principal meta-model is used to describe the organization of identities,
how users are structured into groups and how roles are assigned to users;

• the Security rule meta-model describes a taxonomy of authorization and
authentication rules, together with some basic properties of the rules them-
selves;

• the Authorization privilege meta-model is used to describe the structure
of privileges that are specified for system authorizations;

• the Authentication property meta-model is used to describe the structure
of properties that are associated with authentication rules;

2.2. SECURITY METAMODEL 33

• the Resource meta-model describes the structure of the static, dynamic
and communication resources that are associated with the privileges in
the authorizations and with the authentication properties.

• the Security domain meta-model contains the entity that denotes the con-
cept of security domain, supporting the realization of policies.

An important feature that is not explicited in the graphical representation
of the metamodel is the possibility for each of the entities in the metamodel
to be involved in a many-to-many relationship with the Security Requirement
entity at the Business level. This relationship is critical for the explicit repre-
sentation of the connections among the representations at the different levels.
Similar relationships will be introduced in the Infrastructure metamodel to de-
scribe which are the connections between the IT policy and its realization at
the Infrastructure level.

In the remainder of this section we briefly describe each class in each model
block, as well as the fundamental relationships between them.

Furthermore, the metamodel is enriched by the support for ontologies. A
significant advantage offered by ontologies is the possibility of checking the con-
sistency of the model instances, going well beyond what can be offered by clas-
sical modeling tools. Ontologies support a variety of functions, using several
approaches.

The proposed model will be compared in Appendix A with previous solu-
tions. The analysis shows that the proposed model has a greater expressive
power than other solutions. There are a few aspects that characterize other
models, like the flexible representation of conditions of XACML, which have
been omitted due to the obstacles they would have imposed in the realization
of the harmonization services.

Principal metamodel The classes in this model are ITPrincipal, ITIdentity,
ITGroupId, ITSingleId, ITAuthzRole. The goal of the model is to describe all
the elements that can appear as beneficiaries of authorizations or be involved
in an authentication rule. A variety of IT concepts can be represented by this
portion of the meta-model. The beneficiary can be a real person, or it can be an
account on a system, or it can be a group of identities, or it can be a role. This
variety of concepts matches with the variety of configurations that are observed
in real IT systems. Figure 2.7 shows the structure of this portion of the IT level
meta-model.

ITPrincipal ITPrincipal is the root of the hierarchy of entities that support
the representations of principals. It is an abstraction of whoever person
or whichever entity can be the beneficiary of an authorization or authen-
tication rule; for negative authorizations, the principal is the party who
is forbidden from receiving a specific privilege. It has two subclasses:
ITIdentity and ITAuthzRole. It is an abstract class, then no instance is
associated with it that is not associated with one of the children entities;

34 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

ITIdentity ITIdentity is the root of a hierarchical user classification. In gen-
eral, a principal can correspond to any user or to any specific organi-
zational unit that corresponds to a group of identities. Properties that
describe the configuration of authentication services will mostly be asso-
ciated with this class. This association will specify how possession of an
ITIdentity can be proved. For instance, we may have identities that are
proved by providing a correct password. In other cases, identities can be
proved by presenting a certificate and successfully passing a challenge/re-
sponse step where access to the private key associated with a certificate
is verified;

ITGroupId An instance of ITGroupId is a specialization of the ITIdentity
concept and denotes (directly or indirectly) a collection of lower level iden-
tities. Groups are organized in a taxonomy via the contains relationship
to instances of ITIdentity. This means that a group can contain one or
more groups as well as one or more specific identities;

ITSingleId Each instance of ITSingleId corresponds to a single identity in the
system. An ITSingleId could have been considered as a particular kind
of ITGroupId, containing a single identity. It was preferred to model
the single identities as a separate class because modern access control
models permit the distinction between single and group identities. This
choice offers a more precise description and an easier mapping to the
configuration. This is also consistent with security best practices, which
force the use of explicit user identifiers always leading to a specific person,
in order to be able to assign a concrete responsibility for every action on
the system. ITSingleId instances can also represent legal entities;

ITAuthzRole The ITAuthzRole entity offers a variety of interpretations, adapt-
able to the specific features of the access control models implemented in
the functional system metamodel. ITAuthzRole instances can correspond
to “organizational roles”, to “collections of privileges”, and to “accounts”.

Figure 2.7: Principal Meta-model.

2.2. SECURITY METAMODEL 35

There is no clear line of separation between these different interpretations
in the scenarios is going to consider, thus it is considered appropriate to
keep a single IT level concept for the representation of this variety of sit-
uations. The critical feature that characterizes the model is that roles are
separated from the representation of the real identities and the rigid or-
ganization described under the identity hierarchy. We can shortly analyze
the interpretations considered above.

• Organizational role: this is the use of the ITAuthzRole entity that
better corresponds to the BusinessRole entity appearing at the Busi-
ness level in the Functional system metamodel. The representation
provided at the IT level is more concrete and specifies the collection
of privileges that have to be available to the members of an orga-
nization that have the responsibility to execute a specific function.
Note that the model does not support a direct connection between
the BusinessRole and ITAuthzRole entities. The connection is medi-
ated by the use of a Security Requirement that specifies the security
requirements associated with a specific role. The assumption here
is that typically the roles will have to be “enacted” before they can
be used, and the use of the concept at run-time will be strictly con-
nected with the idea of a “session”. Systems may put restrictions on
the number of roles that can be used at the same time (e.g., in SQL
there is the restriction that only one role at a time can be active in a
session, and each SQL statement has to be executed within the con-
text of a session). The concept of session is crucial for the run-time
evaluation of the Access Control restrictions, but this is not required
for PoSecCo, which deals only with the static configuration of the
policy and does not consider its enforcement.

• Collection of privileges: An ITAuthzRole instance is the container
for a set of privileges that have to be assigned to an active party in
the system. This is similar to the organizational role, except that
no restriction is imposed on the dynamics, and potentially many col-
lections of privileges can be given to a user and exercised at the
same time. Historically, the concept of role in RBAC models was
associated with the first interpretation, but currently the emphasis
has shifted to the “security management” aspects, rather than the
run-time aspects, and the interpretation of a role as a collection of
privileges is probably today the most common one. At the IT level
in PoSecCo there is no need to distinguish between the two inter-
pretations. This interpretation is expected to be the basis for the
realization of harmonization services that support the specification
of separation of duty constraints.

• SystemAccount: An instance of ITAuthzRole can represent an ac-
count available on a system (Application/DBMS/OS). The advan-
tage of putting this concept within ITAuthzRole is the possibility to

36 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.8: Security rule Meta-model.

manage as authorizations the assignment to identities of the privi-
lege of activating a specific account in a system. This is a specific
aspect that has to be considered in PoSecCo, because the security
policy has to look at a complex infrastructure. Common access con-
trol models refer to a single component and do not have this need,
as they essentially combine the concept of user with the concept of
account on the system. This is an aspect that supports the defini-
tion of models where authentication is managed by a specific node
in the network, and all the other nodes in the network belonging to
the same security domain “trust” the decisions of the authentica-
tion servers. The verification that a user asking to access a system
has successfully completed the authentication can be realized in a
number of ways, e.g., with tokens or signed assertions. The designer
can choose to consider the specific solution used to communicate the
positive outcome of authentication as an internal aspect;

Security rule metamodel The security rule meta-model contains classes
ITPolicySet, ITPolicy, ITTarget, ITSecurityRule,ITRoleAuthorization, ITSys-
temAuthorization, and ITAuthenticationRule. Figure 2.8 shows the structure
of the portion of the IT level meta-model describing security rules and policies.

ITPolicySet A policy set represents a collection of ITPolicy elements. The
motivation for the introduction of the policy set is to offer a level of ag-
gregation of policies that supports the integrated representation of the
business requirements. This approach corresponds to the solution used
in XACML, that offers these two levels of aggregation. A property that
characterizes the ITPolicySet is the conflict resolution algorithm that has
to be used to manage conflicts in the policies;

ITPolicy A policy consists of a set of authorizations. It is associated with a
target that specifies restrictions valid over all the authorizations in the
policy. This entity supports the organization of security associations in
sets that contribute to the description of a specific policy goal. This

2.2. SECURITY METAMODEL 37

entity also permits the specification of the conflict resolution algorithm
used, since the policy can contain both positive and negative rules;

ITTarget The target permits to specify for each policy a set of restrictions that
have to be applied to all the authorizations in the policy. The target can
specify restriction over the principal and the privilege/resource managed
by the authorizations in the policy;

ITSecurityRule The ITSecurityRule entity is an abstract class that permits
the representation of rules that specify the structure of authorization and
authentication. Instances of the entity apply to principals and are possibly
tracked to be granted by a specific person. The choice of the ITSingleId
as the endpoint of the relationship is consistent with the security princi-
ple that the realization of auditing requires to keep track of the specific
identity of the person behind each administrative operation; the explicit
representation of the user responsible for a security rule is supported by
some access control models, like in relational DBMSs.

Three different specializations of ITSecurityRule are foreseen: ITRoleAu-
thorization, ITSystemAuthorization, and ITAuthenticationCondition. IT-
SecurityRules have a sign, so there is a total partitioning in Positive IT-
SecurityRules and Negative ITSecurityRules. The choice of the conflict
resolution algorithm occurs at the level of policies and policy sets. In
general, there is the interesting option to enforce a model where negative
authorizations (prohibitions) can only be defined as exceptions to previ-
ously defined positive authorizations, but this property requires support
in the harmonization phase.

Optionally an authorization can be marked with a “grant option”, which
means that the assignee can assign the same authorization to another user.
The SQL access control model offers this capability; in an environment
describing the security management of a complex infrastructure, there are
significant opportunities for the use of this feature;

ITRoleAuthorization ITRoleAuthorizations represent the authorization to
enable a role. An ITRoleAuthorization permits to specify which princi-
pals are associated with a role. Negative ITRoleAuthorizations require a
particular interpretation, supported by the ontology, possibly with adap-
tations to the specific scenario. For instance, the support for separation
of duty can rely on the introduction of negative ITRoleAuthorizations
that specify the incompatibility between two different roles. It is then
the responsibility of the harmonization phase to verify the consistentcy
(for static separation of duty) of the policy wrt the specified constraint.
The idea of having explicit role authorizations was presented in the orig-
inal proposals for RBAC models. The XACML profile for RBAC uses
the same approach, with two suggested kinds of XACML rules. Roles are
disjoint from identities and they cannot belong to groups. The hierarchy
among roles can be represented by a set of authorizations, but it should be

38 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.9: Privilege Meta-model.

clear that the containment relationship has a semantics that differs from
that characterizing the definition of ITRoleAuthorizations;

ITSystemAuthorization ITSystemAuthorizations correspond to the classi-
cal authorizations/rules of most access control models. Authorizations
are often considered as <subject,resource,action> triples. The model pro-
posed relies on a different approach, where an authorization associates
a subject (the principal) with a privilege. The privilege is described in
the next section. This choice increases the flexibility, because it can be
immediately used to describe resourceless privileges, like the “auditing”,
“shutdown”, or “backup” privileges that appear in operating systems and
DBMSs access control model, not associated with a specific resource. The
sign is associated with the authorization and no hybrid authorization is
possible, that is, a system authorization cannot mix positive and negative
privileges;

ITAuthenticationRule The ITAuthenticationRule entity permits to specify
the configuration of authentication for a given principal and with respect
to the access to a given resource. The authentication rule will typically
have as target a resource that natively supports authentication services
(e.g., an ITResourceModel that corresponds to nodes with direct access
to operating systems). Authentication rules can also specify restrictions
on the way authentication has to be supported when accessing the com-
munication channel (ITLink entity) specified as a target. The choice of
presenting at the same level is not common in the representation of access
control models, where typically the emphasis is on the precise description
of authorizations, but it is consistent with the architecture of the CIM
model and other solutions that focus on the description of the concrete
security configuration of an information system;

Privilege metamodel The meta-model consists of entities ITPrivilege and
ITAction. Figure 2.9 shows the structure of the portion of the IT level meta-
model describing the two entities.

ITPrivilege An ITPrivilege instance represents the right of performing some
action. In access control models there is commonly a distinction between
privileges, which are resourceless, and access rights, which appear in the
DACL of a resource. In these models, a privilege with no resource is
interpreted as a generic privilege and indicates some system level action.

2.2. SECURITY METAMODEL 39

Figure 2.10: Authentication property Meta-model.

For example “log access” can be granted in those models without the
reference to a specific resource. The PoSecCo metamodel assumes that all
the privileges, associated with a resource or not, correspond to instances
of the ITPrivilege entity;

ITObjectPrivilege This entity is a specialization of ITPrivilege and it denotes
all the privileges associated with a specific resource. Classical authoriza-
tions are often denoted as the elements of an ACL. These will correspond
to instances of this entity, where the object associated with the ACL is
the object which each instance refers to;

ITAction An ITAction instance represents a generic business or technical ac-
tion. Internally, the action may present a set of privileges (as in common
ACLs). The structure of the action is strictly related with the character-
istics of the underlying access control system. At the IT level it is possible
to use rather descriptive actions, that will be made concrete in the refine-
ment when producing the configuration. Dependencies can be modeled
among the privileges (e.g., a rule may specify that an IT level “update”
privilege requires an IT level “read” privilege), with the use of ontologies;

Authentication property metamodel The meta-model consists of entities
ITAuthcFeature and ITAuthcOption. Figure 2.10 shows the structure of the
portion of the IT level meta-model describing the two entities.

ITAuthcFeature The entity permits the description of properties that the
authentication service has to satisfy. By way of the authentication rule
the property can be associated with a subject. In many cases it is expected
that the principal will be a large group of users, since in most cases the
authentication properties do not need very fine granularity and general
restrictions applying to categories of users are normally sufficient. The
authentication option may specify additional details about certificates,
like, e.g., where is the repository of the trusted root authorities;

ITAuthcOption The entity ITAuthcOption permits to specify the configu-
ration options of the authentication features, illustrating the admissible
values for each parameter. The definition of the values is part of the on-
tology and offers a level of flexibility, in order to adapt to the specific
options that are needed in the different landscapes where the model will
be used. The relationship with an ITSecurityObject permits to specify

40 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.11: Resource Meta-model.

references to elements of the landscape that are needed for the realization
of the authentication service. For instance, an LDAP server can be used
to store the credentials of the users accessing the application. The LDAP
server will be referenced by an instance of ITAuthcOption that details the
structure of the authentication rule for the application.

An advantage of the introduction of this entity rather than putting all this
information within ITAuthcFeature is that the structure for authentica-
tions becomes symmetric to the structure used for system authorizations.
It also offers greater expressive power and more flexibility than what would
be offered by a single entity.

Resource meta-model The Resource meta-model consists of entities ITSecu-
rityObject, ITInterfaceModel, ITResourceModel, Link, ITServiceModel, Data-
Model, ITProtectedData, ITEncryptedData, and ITSignedData. Figure 2.11
shows the structure of the portion of the IT level metamodel describing the
structure of resources. Entities imported from the Functional System Model
have a different color.

ITSecurityObject The class is an abstraction of all the IT level entities in the
functional meta-model that can be the target of an authorization. The
PoSecCo environment sees a large variety of resources to manage. The
advantage of the introduction of the abstract class is that a single regular
format can be used for the representation of access control privileges over
different kinds of resource. The main distinction within resources is be-
tween static resources, active resources, and network links. The first two
kinds match the classification of access control models, which are typically
distinguished in “classical” access control models (e.g., OS, DBMS) and
access control models for services and object-oriented systems (e.g., Java,
Application servers), which describe privileges for software modules. This
separation is justified by the separation between services and data that

2.2. SECURITY METAMODEL 41

appears in the IT level Functional System metamodel. The representa-
tion as a target of authorizations of network links is one of the crucial
innovations of PoSecCo;

ITInterfaceModel The entity is imported in the IT level Security metamodel
from the IT level Functional System metamodel. It describes any active
resource that can be the target of an authorization. This entity is used
in the representation of authorizations specifically designed for a Service
Oriented Architecture. If we look at a classical OS, a program is stored in
a file, and the user can be authorized to execute it, with two alternative
modes in terms of privileges (executing the process in the user environment
and exploiting the privileges associated with it, or using a special “setuid”
mode that applies in the execution of the service the privileges of the
owner of the program). For these scenarios, there is the possibility to
describe the authorizations using a specific privilege over a static resource.
For the services considered in a SOA environment, both with a WS-*
or RESTful invocation paradigm, the use of a different kind of resource
appears appropriate, as it better captures the nature of the protected
resource and the required support;

ITResourceModel This entity is also imported from the IT level Functional
System metamodel. The entity describes at the IT level the nodes and
software modules used to implement a service. Authorization and au-
thentication rules that reach this entity will produce in the refinement a
number of concrete authorization and authentication restrictions that will
be supported by the access control services offered by the element that will
represent in the landscape the ITResourceModel instance. If the IT Policy
mostly consists of authorization and authentication rules that derive from
an analysis of what the system will be able to directly support, it can be
expected that most of the rules will use ITResourceModel instances as a
target;

Link This entity is imported from the IT level Functional System metamodel.
The Link entity is reported in the metamodel to specify authentication
and authorization rules that involve a network channel. A Web applica-
tion may have requirements that specify that the network communication
between the clients and the application has to use a specific set of proto-
cols (e.g., SSL, with mutual authentication based on X.509 certificates and
RSA-1024 signatures), with a set of protocols that have to be excluded.
These requirements correspond to positive and negative authentication
rules that use as resource the instances of the Link entity that represent
the connections used by the clients to access the application;

ITServiceModel This is also an entity that appears in the IT level Functional
System metamodel. The ITServiceModel entity provides an abstract rep-
resentation of a collection of fine-grained services that are represented by
the ITInterfaceModel entity. This resource can then be used as a target

42 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.12: Security domain Meta-model.

for authorization and authentication rules that specify permissions and re-
strictions on the access to the collection of service interfaces characterizing
an application;

DataModel This entity is also imported from the IT level Functional System
metamodel. It describes a variety of static resources, like a file or a di-
rectory in a file system, an attribute or a view or a table in a relational
database, or a specific piece of information in a business application;

ITProtectedData This specialization of Data has the goal of managing pro-
tection requirements that have been defined at the Business level. The
class is specialized in the two classes described below.The hierarchy is not
exclusive, as the same piece of data can be both the subject of confiden-
tiality and integrity requirements;

ITEncryptedData This further specialization of ITProtectedData is intro-
duced to specify the encryption properties of the information that is sub-
ject to encryption requirements, when stored or in transit;

ITSignedData This specialization of ITProtectedData permits to specify the
signature details for information that has to satisfy integrity requirements;

Security domain meta-model The metamodel consists of a single entity,
ITSecurityDomain. Figure 2.12 shows the structure of the portion of the IT
level metamodel describing the single entity.

ITSecurityDomain The entity has the goal of describing at the IT level the
existence of separate security domains. Security domains have a relation-
ship with principals and with resources. Security domains may charac-
terize principals and make explicit their location or the organization the
principal belongs to. A security domain for resources may organize re-
sources depending on the application domain. In an application, there
may be customers that require that their data are physically segregated
from the data of other applications. The definition of these constraints
depends on the availability of a special representation of the security do-
main;

2.2. SECURITY METAMODEL 43

2.2.3 Configuration metamodel

The Configuration metamodel is on one hand an extension of the Functional Sys-
tem metamodel and details capabilities of software components together with
their configurations in form of settings or rules. On the other hand the Config-
uration metamodel is the lowest level of the policy chain which links business
requirements on the highest level over IT policies down to configurations of
single components. The configuration metamodel therefore represents the link
between the Infrastructure layer of the Functional System metamodel and the
policies of the policy chain.

The development of the Configuration metamodel has been based on existing
standards, like CIM and CIM Policy. The Configuration metamodel combines
the approach of configurations settings in CIM with the rule based configurations
from the CIM Policy Model, as such allowing the modeling of a broader range
of configurations from arbitrary hierarchies of key/value pairs to complex rule
sets with Boolean conditions and different actions.

Similar to the Common Information Model (CIM), in the context of this
document, a capability denotes any kind of common functionality that can be
provided by a software component. We focus on an extensible set of security ca-
pabilities that fits the selected security domains of the PoSecCo project: Access
control and Communication protection. A security capability describes secu-
rity abilities and/or potential for use (e.g., the capability of communicating via
SSL/TLS, the capability of encrypting data or the capability of enforcing au-
thentication and authorization policies). The concept of a security capability
tied to an IT Resource is crucial and has a particular importance for the policy
refinement process, as it indicates whether a given IT Resource can act as a
potential enforcement mechanism to satisfy a given IT policy. Beside the secu-
rity capabilities, we define also a set of supporting capabilities, like Routing or
Logging, which serve as input for the policy refinement process.

On the basis of a general Configuration metamodel, we could specify several
configuration specializations for the following capabilities fitting the selected
security domains:

• Data Protection;

• Authentication;

• Authorization;

• Filtering.

In the following sections we will provide a brief introduction about the con-
figuration specializations of (a) Data Protection, (b) Authentication and (c)
Authorization. We refer to [14] for a complete explanation about Filtering con-
figuration.

Figure 2.13 sketches the high-level elements of the Configuration metamodel.

44 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.13: High-level of the Configuration metamodel.

ITResource An ITResource, known as the central concept in the Infrastruc-
ture Layer (see Section 2.1.3 represents a piece of software that is directly or
indirectly involved in the delivery of IT services. For each ITResource, we can
assign the capabilities being supported by this software component with the
help of the relation provides.

Each ITResource can have zero or more Configurations which are assigned
to exactly one capability. The assignment of configurations to an ITResource
is done by means of the relation HasConfigurations. The association class with
the same name allows the qualification of different types of configurations for
an ITResource instance in the model. It can be used to represent the current
configuration of an ITResource and the golden configuration as a result of the
policy refinement process, at the same time.

Capability A Capability denotes any kind of (security) functionality that can
be provided, e.g., filtering, authorization, authentication). In PoSecCo, mainly
common security functionalities will be considered, i.e., capabilities that are
typically supported by a class of software products. A further description of the
Capability class and its subclass hierarchy can be found in Section 3.

Configuration A Configuration corresponds to abstract configuration set-
tings, which are independent from a given vendor or product. The abstract
class Configuration can be subclassed by configurations dedicated to deliver the

2.2. SECURITY METAMODEL 45

Figure 2.14: Configuration Specializations.

different capabilities, e.g., class AuthorizationConfiguration (shown in Figure 9
Configuration Hierarchy) to describe settings for access control.

To ensure the identification of the affected infrastructure element for a given
configuration, each Configuration is assigned by the relation HasConfiguration
to exactly one ITResource.

We distinguish three kinds of configuration, which are all product- and
vendor-independent (see Figure 2.14)

• EventLogConfiguration;

• SettingData;

• RuleSetConfiguration.

The EventLogConfiguration provides information where the event logs and
traces are located and describe the format of the event logs and their semantics.
This kind of configuration reflects normally the current landscape configuration
and is used to access logs for process mining or to collect audit evidences.

SettingData describes configurations as key/value pairs in arbitrary hierar-
chical structures. In general this representation can be used to specify to PEPs
where it is located the PDP in charge for making the decisions it has to enforce.

The RuleSetConfigurations are the preferred type of configuration within
PoSecCo and it will be used to assign a configuration (i.e., a policy) to a PDP.
This kind of configurations is the expected outcome of the policy refinement pro-
cess, that is, a rule set is the representation of a policy at landscape configuration
layer of the Functional System metamodel, the lowest abstraction layer within
PoSecCo. Each RuleSetConfiguration consists of a set of ConfigurationRules.

46 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

Figure 2.15: Hierarchy of ResolutionStrategy.

A ConfigurationRule is enforced by ConfigurationActions (association en-
forces) and can use a set of ConfigurationConditions. A ConfigurationCondition
is a Boolean predicate, which allows the expression of complex conditions using
AND- and OR-connections. Several ConfigurationConditions can be assigned to
the ConfigurationRule via the association matches. More complex configuration
rules can be modeled using the self relation SubCondition of the class Config-
urationCondition. The association class with the same name has the attribute
isNegated that indicates when a subcondition is used negated or unnegated.

A ConfigurationCondition can refer to elements of the infrastructure layer of
the Functional System model, like the ITInterface or Data. This is modeled by
the association refersTo between ConfigurationCondition and the placeholder
FunctionalMetaModelClass. The refersTo association permits to identify, which
element in the Functional System metamodel is actually affected by a rule.

Practically, two additional cases need to be considered when describing a
policy using a set of rules: what happens if no rules apply and what to do when
more than one rule applies. The latter is often named policy conflict.

With the association HasDefaultAction a default ConfigurationAction is
linked to the RuleSetConfiguration in order to specify what to do when no
rule can be applied. If more than one ConfigurationRule can be applied, the
ResolutionStrategy assigned to the RuleSetConfigurations via the association
resolvesConflictsUsing is used to solve the conflict. We predefine the most com-
mon resolution strategies (see Figure 2.15). The presented specializations of the
class ResolutionStrategy can be further refined and extended when needed.

2.3 Model specialization

Once the metamodel is defined at every level, it is necessary to refine it to an
“actual” model, which can be used to describe the services to be handled. We
decided to impose some constraints to the process that defines a model starting
from the metamodel in order to avoid that changing or extending the landscape
models will affect the refinement process. These constraints will assure that

2.3. MODEL SPECIALIZATION 47

c1

c�1 c��1

c���1 c
(iv)
1

c2

c�2 c��2

c���2

c3

c�3

M

M

Figure 2.16: Graphical representation of metamodel and model classes.

extending the models will not impose changes in the refinement algorithms and
in their implementations in the PoSecCo prototypes.

First of all, all the classes of the models will be subclasses of metamodel
classes. Formally, given the set of classes of the metamodel:

C = {c1, . . . , ct}
any class of the model will be a subclass of exactly one element of C, therefore
the set of classes of the model will be defined as:

C = {c′1, . . . , c(n1)
1 , c2, . . . , c

(n2)
2 , . . . }

where c
(n)
i is subclass of ci. Figure 2.16 depicts this concept. For example, by

subclassing the class node, which represents a generic network node, in M, we
can define the class firewall in M.

Then, associations between classes in the models are possible only if a rela-
tionship exists between the superclasses in the metamodel. Formally, given the
set of relationships of the metamodel, defined as:

R = {(c1, c2, r1), . . . , (c1, c2, rn), (c2, c4, r3), . . . }

where (ci, cj , rn) is a relationship between ci and cj , a relationship (c
(k)
i , c

(l)
j , r

(m)
n)

exists in the set of relationships of the model

R = {(c′1, c′′2 , r′1), . . . , (c
(k)
i , c

(l)
j , r

(m)
n)}

if and only if an element (ci, cj , rn) exists in R. where rmn is a specialization of
the relationship rn. This situation is illustrated in Figure 2.17.

Model specialization for File System

An OperatingSystem can host FileSystems that consist of LogicalFiles. The
homonymous relationship hosts is hereby a refinement of the more general self
relationship hierarchy of class ITResource.

A FileSystem can be further specialized indicating:

48 CHAPTER 2. POLICY BASED SECURITY MANAGEMENT

c1

c2 c3 c4

r1

r2

r3

r4

c�1

c�2
c��2 c�3 c4 c��3

r�1r��1

r�2

r�3

r�4

r��3

r��4

M M

Figure 2.17: Graphical representation of metamodel and model relationships.

Figure 2.18: Example Model Operating System

• its FileSystemType, e.g. ”NTFS” or ”S5”;

• its Root, the path name or other information defining the root of the
FileSystem;

• its EncryptionMethod, a string indicating the algorithm or tool used to
encrypt the FileSystem.

A LogicalFile is a named collection of data or represents a directory. It is
located within the context of a FileSystem described by the relationship stores,
which subclasses the self relationship of class ITResource. The class LogicalFile
is abstract and can be subclassed by DataFile and Directory.

A LogicalFile can be further specialized indicating:

2.3. MODEL SPECIALIZATION 49

• its Name, a unique identifier (such as a full path name) within the FileSys-
tem it belongs to;

• its parameters, like ”Readable” or ”Writable” indicating that the file can
be read or written;

• its EncryptionMethod, a free form string indicating the algorithm or tool
used to encrypt it.

A Directory is a type of file that logically groups the directories and files ’con-
tained’ in it, and provides path information for the grouped files. The grouping
of LogicalFiles is described by the relationship contains, also a specialization of
the self relationship hierarchy of ITResource.

A DataFile is a type of LogicalFile that is a named collection of data. It
can be linked to the Data by the relationship stores, a specialization of the
operates on relationship between ITResource and Data. This relationship links
the concept of Data to the physical placement of this information in a FileSystem
on a piece of hardware.

We can assign the following capabilities (subclasses of class Capability) to
the FileSystem, DataFile and Directory:

• Authorization;

• DataProtection.

In Figure 2.18, an example system is modeled. On a PC that runs Windows
7 as operating system and on the NTFS file system on drive D: a data file is
stored that contains credit card information. Appendix B introduces several
examples about model specialization.

3
Policy analysis and harmonization

A crucial advantage of the model-driven approach, i.e., the specification of se-
curity requirements at an abstract level, with the subsequent refinement of the
abstract model toward a concrete implementation, is the possibility of an early
identification of anomalies in the security policy. Security policies in real sys-
tem often exhibit conflicts, i.e., inconsistencies in the policy that can lead to
an incorrect realization of the security requirements, and redundancies, i.e., el-
ements of the policy that are dominated by other elements, increasing the cost
of security management without providing benefits to the users or applications.

Although security administrators can handle manually simple access control
policies (e.g., ACLs), the manual approach cannot scale well with bigger policies.
For instance, maintaining and modifying complex ACLs is not an easy task,
because it may be difficult to identify all the possible side effects of a change
in the policy. Another problem of bigger ACLs is that they usually contain
redundancies [82], which introduce further complexity in the policies, which
leads to higher management costs and less efficient behaviours of access control
mechanisms. Removing redundancies can also improve the efficiency of the
access control mechanism [46].

Although some current access control languages, e.g. XACML, implements
techniques that automatically solve conflicts between rules in the policy at run-
time using a particular criterion, anomalies detection at compile-time can pro-
vide a valuable help to security administrators, because it is difficult for them to
clearly understand what the results of the run-time conflict resolution algorithm
will be, at least in complex policies, and this can lead to unexpected problems
and misconfigurations. Due to these needs the identification of conflicts and
redundancies in policies has been the subject of a significant amount of research
in the last years.

51

52 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Specifically, Semantic Web and ontology management technology [53] today
offers a variety of interesting solutions. In the recent past, the application of
logical models to the analysis of security policies required to use logical tools
that had no clear integration with common information system tools; security
administrators in most cases administrators were unfamiliar to them and they
perceived the risk of limited scalability [100]. Modern Semantic Web tools are
instead well integrated with existing XML and Web technology, are used in
many scenarios to efficiently obtain solutions for several optimization problems,
and for this reason are often already familiar to administrators. The familiarity
of computer science practitioners with Semantic Web tools is likely going to
increase, as the diffusion of these tools is currently increasing [41].

Semantic Web technology has made available an extensive collection of tools.
Several approaches can be adopted, relying on different tools, with different
profiles in terms of abstractness and efficiency. In general, tools and approaches
are available that offer a simple and direct representation of the policy, but
may present scalability problems when applied to complex analysis tasks, and
other tools may require greater effort in the representation of the problem, but
offer scalability and support the analysis of complex properties in large-scale
scenarios.

This section will present a variety of approaches that will confirm that the
use of Semantic Web technology for policy analysis can bring great advantages
in the identification and resolution of conflicts.

3.1 State of the Art

The following Section reviews some existing work of interest in policy harmo-
nization and reasoning. The state of the art in policy harmonization checking is
presented, illustrating the research performed in specification, management and
analysis of access control policies with existing reasoning techniques. Concern-
ing specification, different approaches for representation of positive and negative
authorizations and obligations as well as static and dynamic segregation of du-
ties constrains are included.

3.1.1 Policy Harmonization checking

Kolovski [66] presents an in-depth analysis of several works on the specifica-
tion, management and analysis of access control policies by means of logical
formalisms.

The main purpose of policy analysis includes verification of conflicts, modal-
ity conflicts, but also “controlled system or application” specific conflicts such
as separation of duty. Therefore, a complete approach to policy harmonization
must cover both.

The survey done by Kolovski in [66] covers both language proposals that
have formal semantics and therefore that provide algorithms for policy analysis
out of the box, and formalizations of already existing policy languages, such

3.1. STATE OF THE ART 53

as WS-Policy, XACML, XrML and ODRL, that provide a formal semantics
and analysis services previously unavailable for the particular language. In
2.1.1 different ways are summarized to exploit semantic web reasoning tools
for policy analysis of the main used policy models, which are RBAC or ABAC
based. In 2.1.2 other logical formalisms are presented to model and analyze
policies, keeping in mind that policies representations must be as expressive as
possible to fit the global requirements of the controlled system.

Semantic web reasoning
The idea of adapting security models to take advantage of consolidated and

efficient reasoning from semantic web tools is well studied in literature. However,
semantic web technologies are often used one at a time; our approach, instead,
is based on the consideration that different technologies (DL reasoning, rule
engines and SPARQL querying) should be used in an organic and organized
framework.

Finin et al. [40] use OWL [80] to formalise Role Based Access Control
(RBAC) [101]. They propose two approaches, in the first one they represent
roles as classes and the role hierarchy is expressed by means of subclassing,
while in the second one they represent roles as values and the role hierarchy
is expressed by means of the superRole property. They also express static and
dynamic separation of duty constraints, in the first approach by means of the
owl:disjointWith property, while in the second approach they express the con-
straints by means of N3 rules [13]. Their approach can be used also to express
attribute-based access control.

Zhao et al. [120] model RBAC using the description logic language ALCQ.
They represent roles as classes and the role hierarchy is expressed by means of
subclass relations. They also represent static and dynamic SoD using disjoint
axioms. They allow also the representation of role cardinality constraints.

Heilili et al. [50] presents an OWL-based approach to RBAC that considers
also negative authorizations, which represent the denial of covering a partic-
ular role. They represent roles as classes, and the role hierarchy is expressed
using subclassing. They also analyze further modality conflicts due to negative
authorizations and how to detect them with reasoning.

In [68, 69] Kolovski et al. show how the WS-Policy language [117] can be
mapped to OWL and how standard OWL reasoners can be used to check the
conformance of policies and to analyse them. They map policy assertions and
alternatives to OWL classes while they map web service requests to individuals.
They analyze how operations of Merge and Intersection can be represented
using OWL and default rules, and how to tackle the issue of the Open World
Assumption.

The work of Cirio et al. [25] aims at representing RBAC and ABAC using
semantic web technologies. They combine the two approaches, obtaining a new
access control model that enables dynamic assignments of roles to users, taking
into account also the values of the attributes. They model roles using OWL
classes and they model constraints using SPARQL queries that are stored in
OWL annotations.

Reasoning on huge security policies is time consuming and thus Cadenhead

54 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

et al. [21] propose a technique to do efficient reasoning on OWL ontologies.
Their approach is based on a distributed knowledge base with one TBox and
several ABoxes, to diminish the number of symbols in the actual knowledge base
with the result of improving performance.

Kolovski et al. in [67] tackle the fact that complex XACML policies are
hard to understand and evaluate manually, thus automated tools are needed.
To do this they propose to map XACML to Description Logic, this allows them
to use off-the-shelf DL reasoners. To capture the behaviour of XACML they
use a Defeasible Description Logic [116]. They identify several reasoning ser-
vices on policies: Policy Comparison, Policy Verification, Incompatibility check,
Redundancy check and querying.

Other logical models
We will consider simple or pure access control policy models as ”snapshot”

access control policy models and more complex ones that take into account
temporal statements, such as the number of previous by authorized accesses or
even the evolution of the underlying application due to the access themselves,
will be called ” stateful flexible access control policies”.

Pure access control policy Such a policy specification language encodes
high level statements into a function from access requests to authorization de-
cisions. This is a way to evaluate action requests to produce a decision taking
into account information necessary from the underlying application.

The main notions attached to the analysis of a policy are its consistency
its termination, its completeness. Consistency means that no more than one
decision is deduced from a request. Completeness means that at least one deci-
sion is deduced from a request. Termination means that, eventually after several
requests, an answer is obtained. Some formalisms allow also to compare policies.

In [114] Tschantz and Krishnamurthi clearly expose reasonability properties
of access control policy languages, whatever the type of language, which can
either be based on logics (restricting First Order Logic or augmenting Datalog)
or be a custom language such as XACML or EPAL. The latter behave by rule
evaluation without any dependence on a theorem proving capabilities. They
define precisely the notion of policy language and the main properties of such
a language: determinism and totality, which can be mapped respectively to
consistency and completeness. They define also a safe policy language with
respect to inclusion of requests, and policy combinations through monotonicity
of combinators. One request is included in another one when it contains less
information than the other, and safety of the language means that an included
request does not get more permissions than the including request .

If a FOL based language is always safe, Tschantz shows than one must
restrain CoreXACML by withdrawing “explicit denial”, so that the resulting
language is safe.

Logic based languages Datalog (often Datalog with constraints) is the foun-
dation of many access-control languages and related frameworks [11,28,72,95].

3.1. STATE OF THE ART 55

FOL (first order logic) based languages have been created by minimizing
the restrictions on them so that they can be decidable and therefore assure
consistency and completeness of described policies. Among the FOL based pol-
icy languages, Halpern and Weissman have created Lithium and L5, as defined
in [48]. Both are safe as subsets of a safe language. L5 has independent com-
position property but is less expressive than Lithium, which does not have this
property. These languages have a foundational approach and well defined com-
plexity results. They have been created to be decidable. However, their bases
in pure first-order logic imposes on the policy author the burden of specifying
complete definitions (so that every request has a decision), since one is not able
to have default decision policies.

Free Variable Tableaux method Concerning conflict detection in standard
policy languages such as XACML with RBAC profile, Kamoda et al. in [63] pro-
pose a conflict and redundantcy policy detection based on free variable tableaux.
Policies are translated into first order logic and all kinds of conflicting policies
/ redundant policies can be detected with the same algorithm. The method not
only detects conflicts, but also provides information to detect redundant rules.
This work generalizes the work performed in [62], where Kamoda et al. for-
malise a logical representation of access control policies for Web Services, which
support the description of roles, authorizations and obligations, both positive
and negative and the representation of several constraints, such as time con-
straints, Separation of duty and Chinese Wall. Several kinds of conflicts are
supported, like modality conflicts, conflicts caused by propagation and action
composition, Separation of duty conflicts and time constraint conflicts. Previ-
ously Massacci [77] had also proposed a decision method based on tableaux to
detect consistency of a policy. He had defined a logic to express RBAC policies
and a decision method to verify automatically the consistency and/or logical
consequences of policies. He described also how to implement separation of
duty in this logical framework.

Rewriting based rule systems Authorization decisions can be computed
by a set of rewrite rules that transform the input terms, representing access
requests, into authorization terms. In order to take the raw computational
power of term rewriting and to enhance the agility of the policy specification
language, one uses strategies to explicitly control the rule application order.
The policy specification and its environment are described as terms built over
one single signature. The requests are a subset of ground terms. The result
returned by a policy can be a ground term containing further information and
not only a constant “permit” or “deny”. The strategy allows to finely specify
the evaluation of the policy rules, therefore the expressivity of the policy can be
quite high compared to other logical models. Rewriting system formalisms allow
also to properly define consistency, confluence and completeness. Moreover,
composition operators of policies are properly defined, not “only over the set
of decisions”, but on the rules and rewrite strategy defined to derive them.

56 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Didactic explanations are contained for example in [34].

The work of Armando et al. [6] proposes a symbolic framework to improve
automated analysis techniques for the management of access-control policies
expressed in ARBAC (Administrative RBAC). In [5] Armando et al. propose
to apply their approaches in the Health sector and the access control for personal
health records (PHR).

Standard Deontic Logic Cholvy and Cuppens [23] represent security poli-
cies using Standard Deontic Logic, where actions can be allowed, forbidden,
obligatory or waived. In order to decide consistency of policies, they trans-
late them into a set of first order formulae and then the problem of checking
consistency can be reduced to a problem of consequence finding.

Lupu et al. [76] focus on conflict detection and resolution in authorization
and obligation policies. They identify two kinds of conflicts. The first ones are
modality conflicts, which are caused by positive and negative authorizations or
obligations on the same target and subject/action. To repair modality conflicts
several techniques exist, such as negative takes precedence, explicit priorities,
more specific takes precedence or distance functions. The second kind of con-
flicts are application specific conflicts, such as Separation of Duty, which need
meta-polices in order to be expressed and repaired.

Kagal et al. [60] propose Rein, which is a unifying framework that aims at
allowing users to express security policies in several languages and to integrate
them in the framework. A common representation of policy languages is useful
because in this way reasoning services can run on different policies. Rein uses
metapolicies to detect and solve conflicts.

Chomicki et al. [24] define the Policy Definition Language (PDL) to ex-
press policies with the Event- Condition- Action paradigm. Their language can
describe also action constraints, which are sets of actions that cannot occur to-
gether. They then provide a technique to translate PDL policies and constraints
in logic programs using non recursive Horn logic. They provide a way to identify
and solve conflicts in PDL policies simply checking consistency of the resulting
logic programs.
They also identify two ways of solving conflicts, deleting actions or deleting
events. Computing the maximal action cancellation set is P-TIME, whereas
computing the maximal event cancellation set is NP-TIME.

Adaptive access control policy In [12] Becker and Nanz present a logic for
specifying policies where access requests can have effects on the authorization
state. It leads to more expressive policies that take the history of access requests
into account. They present a sound and complete proof system for reasoning
about sequences of access requests. This gives rise to a goal-oriented algorithm
for finding minimal sequences that lead to a specified target authorization state.

In [33] Dougherty et al. propose a new mathematical model of policies, their
environments, and the interactions between them. Influenced by this work, Ban-
dara et al. [26] built a framework to model system behaviour joined to models

3.1. STATE OF THE ART 57

of policy enforcement. On the other hand, because the enforcement of an obli-
gation policy changes the state of a system, in addition to modelling the policy
specification, it is useful to model system behaviour itself when developing a
formal technique for analyzing policies with both modalities: authorization and
obligation. Craven, Bandara et al. ([26] for example) use a formalism based
on the standard Event Calculus to model both authorization/obligation spec-
ifications together with system behaviour. Event Calculus (EC) is a formal
language for representing and reasoning about dynamic (event-based) systems
which supports a representation of time independent event. EC supports deduc-
tive, inductive and abductive reasoning. From EC representations, the authors
specify rules to detect both modality conflicts and application specific conflicts,
such as separation of duty. Using abductive reasoning techniques, they can
provide explanations on how conflicts might arise.

Security policy enforcement Very few authors approach the problem of
enforcing security. This is a very ambitious goal, because it poses some serious
issues at the infrastructure layer. So, most of these works limit their attention
to some higher level abstraction.

The work of Ferrini et al. [39] aims at extending XACML [83] with reason-
ing capabilities in order to support RBAC and separation of duty constraints.
They use OWL because it offers reasoning capability off-the-shelf, using stan-
dard Description Logic (DL) reasoners. They propose an extension to the
XACML architecture in order to manage semantic functions. They formalize
RBAC using a role-as-value approach and their framework supports the rep-
resentation of both static and dynamic separation of duty constraints, using
the owl:disjointWith property. They enforce DSoD constraints only at runtime
when a specific XACML request happens, adding to the ontology the needed
axioms, extracted from the request, to check the separation. To evaluate the
constraints they check the ontology consistency.

Basin et al. [9] present an architecture that provides the capability of en-
forcing SoD constraints on workflows considering SoD enforcement as a service.
They use RBAC and the Separation of Duty algebra, defined by Li et al. in [73],
to model SoD on workflows. Their approach has some advantages over solutions
that do not consider SoD enforcements as a service:

• it facilitates the separation of concerns,

• it is well suited to work with legacy systems,

• it looses the coupling between workflow engine and repositories.

Basin et al. [10] tackle the fact that access control is important to secure IT
systems, but it usually makes harder achieving business goals. They define a
formalization of workflows and access control constraints using CSP and consider
static SoD constraints, dynamic SoD constraints and dynamic binding of duty
constraints. They formalize the concept of obstruction, which is a deadlock in a
system caused by the access control enforcement. They define the Enforcement
Process Existence Problem which tries to find an obstruction free enforcement

58 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

mechanism. They show that this problem is NP-hard, but it can be solved in
P-TIME using heuristics.

3.2 Checking techniques

3.2.1 Standard DL reasoner

The standard reasoner is one of the core elements of an ontology based system.
Starting from the information contained in the ontology, it is able to perform
several tasks. In general, it is able to check the consistency and validity of
the ontology, classify its information, answer queries, and generate inferences,
using a variety of techniques deriving from the work of the Artificial Intelligence
community and enriching existing information.

In particular, standard DL reasoning performed w.r.t. a formal ontology
can check complex consistency constraints in the model. Such constraints are
different from the usual ones from database and UML-like systems. For example,
using DL-based languages, like OWL (Web Ontology Language) and DAML-
OIL1, we can express:

• constraints on properties, domains, and ranges;

• definitions of concepts (classes) in terms of relationships with other ele-
ments;

• boolean operations on classes; in the simplest case, they allow for the
representation of complete, total, and partial refinements.

One of the main differences between DL based schema definitions and UML
or ER ones concerns the constraints on property domains and ranges. Properties
can be defined in a general way and their behavior in terms of range type
can be precisely described while refining the ontology concepts. This promotes
the definition and reuse of high level properties, without losing the ability to
force precise typing. For example an “abstraction-of ” property can be used to
support the traceability of the refinement process, by connecting one element
with another one that represents the same node at a lower level. Generally
speaking, such a property will be able to connect almost any element in the
model. However, some homogeneity must be guaranteed on the types of element
connected by an abstraction-of link. In this case we can describe at a lower level
axioms like, for example, IT level machines must be refined only in some types
of resource (physical servers and virtual machines). Such a description goes
beyond classical property domains and range definitions.

3.2.2 Ad-hoc reasoning methods

Standard Description Logics reasoners can answer complex questions and can
verify structural and non structural constraints. Furthermore, Description Log-

1http://www.daml.org/2001/03/daml+oil-index

3.2. CHECKING TECHNIQUES 59

Figure 3.1: A simple consistency constraint

ics based language expressiveness often exceeds classical solutions (like UML
for design and SQL for data storage models). This permits the description and
verification of more complex structural constraints.

However, DL systems, as well as Semantic Web tools in general, are de-
signed and implemented with a focus on knowledge management services, such
as knowledge integration, schema matching and instance retrieval. Such a spe-
cialization poses some limitations on the use of pure Description Logics reason-
ing in scenarios like the one of PoSecCo, in which reasoning must be carried out
on a well defined and complete description of a closed system.

In particular, some characteristics of a typical knowledge management ori-
ented description that can be critical and must be carefully considered during
the adoption in PoSecCo are:

Closed World Assumption (CWA) reasoning is a generally accepted re-
quirement in model driven systems. Conversely, DL reasoners usually work
under the Open World Assumption (OWA). This means that the facts as-
serted in the model (e.g., about the layout topology or the authorization
policies) are not assumed to be complete. Obviously, this can become a
problem if model characteristics are described in terms of the existence of
some properties or some relationships between model elements.

Reasoning on complex property paths (e.g., commutativity of non trivial
graphs) rapidly leads to the undecidability of the formal logics the lan-
guage is based on. Checking the closure of complex paths is beyond the
expressive power of classical database systems too, but unfortunately it is
sometimes necessary to check structural constraints. This is the case, for
example, for the consistency loop in Figure 3.1 stating that

a privilege of executing an action must be assigned to a resource
that runs on a system compatible with the action type.

60 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Unique Name Assumption (UNA) is a commonly accepted assumption in
most model driven tools. It consists in assuming that different names will
always denote different elements in the model. This is usually not true in
Description Logics reasoners, because of the essential nature of knowledge
integration problems. In fact, in the Semantic Web scenario, different
authors may describe the same entities (both shared conceptualizations
and physical objects) assigning a new name, generally in the form of a
URI, defined independently from other Semantic Web users.

In order to solve these issues, classical DL reasoning must be integrated and
completed by adding a set of specific reasoning modules.

Application-level closure
The first and probably simplest point to address is the necessity to use both

Open World Assumption and Closed World Assumption reasoning in the same
system. In general, and in the PoSecCo system in particular, reasoning can be
used for at least two tasks:

Schema reasoning operates on the ontological level of the semantic model.
This level comprises the schema (T-box in Description Logics terminol-
ogy) and optionally a very limited number of fundamental instances. The
reasoning at this level boils down mostly to consistency checks and concept
classification. In this scenario, the Open World Assumption is very well
suited to drive consequences (theorems) that are correct for any possible
model of the schema.

Instance level reasoning involves both schema axioms (as background knowl-
edge) and the individuals used to express actual models at the extensional
level. Constraint checking is a typical reasoning task at this level, as well
as semantic model completion through the derivation of implicit properties
between specific instances. At this level a more database-styled semantics
can be used, which interprets the instance level assertions with a closed
world semantics.

In order to integrate the two semantics, some metadata must be added at
the ontology level to describe which properties must be interpreted under CWA
at the extensional level. In other words, a set C of properties (or roles in
Description Logics terminology) must be kept, which will be “closed” before
any reasoning can be performed. This means that the compatible models that
are extensions of the explicit model represented by the user cannot contain links
of type R that are not explicitly included by the user and that cannot be derived
(proved to exist) starting from the original model.

For each property R in C, LinksR is the set of all the predicates of type R
(that is, all the RDF triples having R as predicate). LinksR must be extracted.
After that:

1. an axiom is added, stating that the individuals that are not listed as a
source in any predicate in LinksR must have no R links to any individual;

3.2. CHECKING TECHNIQUES 61

2. a new axiom is added for each individual i that appears as a source in
LinksR. The axiom states that i can be connected through R to an
individual j if and only if j is an R-successor of i in LinksR.

A similar solution can be adopted to obtain the Unique Name Assumption
semantics. The Unique Name Assumption can be considered a sort of Closed
World Assumption applied to the “same-as” relationship; in fact, no individual
can be considered as representing the same object if it is not explicitly stated
in the model or it can be proved starting from the model itself. However, if we
assume that no individual equivalence can be derived from the model, an even
simpler solution can be implemented by stating explicitly a “different-from”
property between all the possible couples of individuals.

3.2.3 Rule based inferencing

Rule inference reasoning is widely used in knowledge management systems. Re-
cently some combinations of theorem proving systems (like Description Logics
ones) and rule inference systems have been proposed to address some limitations
of decidable theorem proving systems.

Semantic Web Rule Language (SWRL) is the W3C standard proposal for
integrating rule-based inferencing into systems that represent knowledge as a
set of RDF triples and introducing some limitations to the use of the rules, in
order to preserve joint system decidability.

In the PoSecCo scenario, the main advantage of combining rules and classical
theorem proving systems is the support for complex property chains. In fact,
even if some OWL2 profiles introduce the support for property (a.k.a role in
DL terminology) chaining, this can be not sufficient to express some complex
topological properties. For example, the simple consistency loop shown in Figure
3.1 involves six different properties and requires that a loop must exist for each
toDo link between a ResourcePrivilege and an Action. The existence of such
a loop is not enforceable at the schema level using only Description Logics
axioms. Furthermore, as a general outcome of the adoption of the Open World
Assumption, even if we could enforce the existence of the loops, we would not
be able to require that such loops are explicitly stated into the assertional part
of the semantic model (A-box).

At the opposite end, due to decidability issues (DL safe rules) the rule based
component of the language operates in a sort of Closed World Assumption
(CWA) limited to the nodes. This means that a forward chaining rule can
be triggered by any property derived by the reasoning, but involving only nodes
that are explicitly named in the A-box. Then, we can operate only on nodes
and properties explicitly stated in the semantic model.

Furthermore, rules can freely combine as antecedents triple patterns to cap-
ture complex topological structures, and this solves the lack of complex property
chains of Description Logics. This means that we can check for loops, or for the
absence of loops, by adding custom rules to the PoSecCo ontology.

62 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

However, SWRL safe rules can consume only positive knowledge, so they can
be used to directly detect errors that consist in the existence of some structure
in the ontology, that is the existence of a loop. However, if the property that
we want to detect involves the non existence of some links, an application-level
closure is required. So we have to distinguish between two kinds of rule:

Error detection rules apply when a misconfiguration or an error in the model
is detectable by checking positive knowledge. In this case a SWRL rule can
directly check such a configuration and mark a node as “misconfigured”,
both by classifying it as an instance of a technical concept (Misconfigured)
or, even more directly, by making it and the whole model unsound by
adding it to a non satisfiable concept (like owl:Nothing). In this case the
adoption of rule based inferencing can perform the error detection task
without any impact at the DL and application level.

Property checking rules apply if the error condition consists in the lack of
some links. For example, the link shown in Figure 3.4 represents a manda-
tory situation; if the loop cannot be closed, then a misconfiguration must
be revealed. Since inference rules cannot be triggered by the non exis-
tence of a link, the rule will detect the correct configuration and will mark
the node or the link as “correct”. After role execution terminates, a cus-
tom application level reasoner will check that all the suitable links and
nodes have been marked and verified, if any element is not checked, then
a misconfiguration error will be detected.

As an example, the following rule can check if the system on which an action
is defined holds an ActionType incompatible with the one of the action itself:

Action(?a), onSystem(?a, ?s), holds(?s, ?t1), hasType(?a, ?t2), incompatibleWith(?t1, ?t2)→
⊥(?a)

In the same scenario, the following property checking rule verifies that the
action is supported by the system. For simplicity the action is classified as
“Ok”, while in practice a more complete representation will be necessary to
enable multiple criteria verification.

Action(?a), onSystem(?a, ?s), holds(?s, ?t), hasType(?a, ?t)→ Ok(?a)

After that, the custom reasoner can use the verification result to query for
all the actions that are not marked as Ok.

3.3 Reasoning patterns

As told in the previous section, there is not a unique reasoning technique that
can solve the harmonization problems in all the cases. However, each technique
can be useful in some situations and can provide simple and effective solutions
to some subproblems.

3.3. REASONING PATTERNS 63

In spite of the large variety of possible configurations, we can identify some
recurrent patterns in verification processes. In this section we will introduce
four recurrent patterns, which represent reference scenarios during the design
of verification tools. The tools should be flexible enough to model each harmo-
nization module as a very simple workflow, that is the orchestration of atomic
verification steps.

Simple SAT

Figure 3.2: Simple satisfiability pattern

Often simple Description Logics reasoning is enough to take evidence of some
problems in policy models, like in the simple scenario in figure 3.2. Description
Logics reasoning is dedicated to the verification of semantic constraints and to
derive all the entailment of the model.

If the constraint violations are detectable under the Open World Assumption
a reasoner can be an efficient and simple support for their recognition. This
specifically applies to most of the structural checks, as described in section 3.4.

3.3.1 Property verification rules

Description Logics axioms can describe quite complex properties on the in-
tended models, however the corresponding logic can lack the necessary power
to describe complex constraints defined on paths of properties (property chains)
and requiring the commutativity of some subgraphs (namely the agreement op-
erator). In this perspective Description Logics are advocated to be asymmetric,
in the sense that they provide much more expressiveness in concept definition
and less expressiveness in property constraints. This typically results in prob-
lems while describing topological related properties.

In such cases the user is typically able to describe the constraints via one or
few desired configurations. This ends up with the need for a mechanism for:

1. detecting arbitrary interconnected patterns in the model; each detected
pattern checks the subgraph as correct w.r.t. the specific constraint;

2. highlight all the violations of the desired constraints, through the differ-
ence between all the involved subgraphs and the validated ones.

64 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Figure 3.3: Property verification rules pattern

So, we can apply the pattern from figure 3.3; here the original model is
enriched by one or more inference rules (typically SWRL rules), which add some
validation flags to the nodes that match the subgraph. In the second stage a
query (or more generally a verification module) performs a sort of closure by
extracting all the unchecked relevant nodes.

Figure 3.4: An example for property verification rules pattern

Figure 3.4 provides a very simple example of the application of the property
verification pattern. In this example we want to verify that each Action must
be involved in a commutative subgraph in which it is relevant to a System that
is compatible with its SystemAction classification. The simple verification rule
that verifies the action element is shown in Listing 3.1.

type (?x , Action) , type (?y , SystemAction) , type (? z , System) ,
action (?x , ? y) , belongTo (?y , ? z) ,system (?x , ? z)
−>
type (?x , Correct)

Listing 3.1: Verification rule

We can notice that, if the reasoner is available during rule execution, from
our reference ontology (and thanks to property domains and range definition)

3.3. REASONING PATTERNS 65

the types of involved nodes can be inferred and this results in the simplification
of rule deduction.

3.3.2 Violation detection rules

Sometimes it is easier to define misconfigurations than the correct desired prop-
erty. Assuming again that the expressive power of a Description Logics reasoner
is not sufficient for our goals, we can slightly modify the previous pattern to use
subgraphs topology to directly detect conflicts or misconfigurations.

Figure 3.5: Violation detection rules pattern

The violation detection rules pattern, shown in figure 3.5, is slightly simpler
than the property verification one and probably more efficient. The improve-
ment involves both the stages of the workflow and it is due to three considera-
tions:

1. statistically, in real scenarios we foresee that the number of misconfigura-
tions will be dramatically smaller than the correct subgraphs. This results
in less fires of enrichment rules.

2. we are not required to execute closure, since the decorations introduced by
the rules are directly revealable as misconfigurations. So the query in the
second stage will not require to evaluate all the interested nodes. Another
effect of this consideration is that the query will be usually very simple,
and it will simply extract all the marked nodes.

3. just like in the verification pattern, the first stage rules can highlight mis-
configured nodes by classifying them under a technical concept. However,
in this case we can simply define such a technical concept to be unsatisfi-
able; in this way we can even replace the second stage query with a simple
satisfiability check, which will reveal inconsistencies for each marked node.

Figure 3.6 presents a very simple property that we can check with the mis-
configuration detection rule from Listing 3.2.

on(?p , ? r e s) , toDO(?p , ?action) , system (? action , ? sys1)
,onSystem(? res , ? sys2) , d i f f e rentFrom (? sys , ? sys2)
−>
type (?p , Error)

Listing 3.2: Error detection rule

66 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Figure 3.6: An example of violation detection rules pattern

The constraint is very similar to the one from the previous section, but now
we want to check that all the systems on which the privilege is granted on are
compatible with the Action. The two verifications are equivalent only if

1. the ontology defines all the properties to be functional and serial (on the
correspondent domains);

2. we have no missing links in the model (ABox), since SWRL rules are
applied under the Closed World Assumption.

3.3.3 Custom module pattern

In the most complex cases the first phase of harmonization process cannot be
reduced to model enrichment via forward chaining inference rules. Some highly
specialized elaborations are required to prepare the model for classic Description
Logics reasoning.

After the model preparation different techniques for harmonization can be
followed, including SPARQL queries and Description Logics reasoning.

A very common application of this pattern is the reduction of Closed World
reasoning to Open World reasoning as shown in figure 3.7. Generally speaking,
the Closed World Assumption can be reduced to the Open World Assumption
by adding closure axioms, given that the reference logics allows for nominals or
the definition of concepts (classes) by instance enumeration. This means that we

3.4. TYPES OF CHECK 67

Figure 3.7: Custom module pattern

can obtain a Closed World Assumption reasoning service using an Open World
Assumption reasoner. The converse is not true in the general case.

So, every time we have positive constraints, that is constraints that requires
the existence of some individuals or some relationships between individuals, we
can use an ad hoc closure module that adds closure axioms to the model before
passing it to a classic Description Logics reasoner.

3.4 Types of check

3.4.1 Structural Checks

The ontological representation of the ITSecurity meta-model permits to define
several models. However, some models cannot be considered correct from a
structural point of view, because they break some semantic constraints that can
not be expressed using only the ontology. Structural checks aim at verifing if
the policy under analysis is structurally incorrect. Policies that do not pass
structural checks represent wrong policies, and thus they do not represent a
useful information. In the following we will present two methods in order to
perform structural checks.

Structural Checks on resource privilege The aim of this check is to verify
if a resource privilege is consistent. We want to check if the resource assigned
to the privilege is in the same system on which the action allowed in privilege
can act.

on(? resPr iv , ? r e s) , onSystem(? res , ? sy s t1) ,
system (? action , ? sy s t2) ,toDo(? resPr iv , ?action)
−> SameAs (? syst1 , ? sy s t2)

Listing 3.3: Structural Check

The query that implements the check is presented in Listing 3.3. The as-
sumption behind the right behaviour of the query is the Unique Name Assump-
tion (UNA) on the System class, and thus each individual of the System class
must be explicitly declared as DifferentFrom the others. In this way, when we
have a resource privilege that is related to an action on a first system and a
resource on a second one, the reasoner infers that the two systems are the same,
in conflict with the UNA, and thus it identifies an inconsistency in the ontology.

68 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Structural Checks on hierarchy The PoSecCo ontology allows the repre-
sentations of several kinds of hierarchies, i.e. the hierarchy of principals, the
hierarchy of identities, the hierarchy of roles, a containment hierarchy of re-
sources and an abstraction hierarchy of resources. These hierarchies represent
partially ordered sets, built upon the set of all roles, principals or resources. We
can, thus, define the ≤ relation over all hierarchies in such a way:

• for the hierarchy of principals and roles the partial order relation is rep-
resented by the relation canActAs because if a canActAs b then a ≥ b,

• for the hierarchy of roles the partial ordered relation is represented by the
relation canBe, because if a canBe b then a ≥ b,

• for the hierarchy of identities the partial order relation is represented by
the relation contains, because if a contains b then a ≥ b,

• for the containment hierarchy of resources the partial order relation is rep-
resented by the relation containsResource, because if a containsResource b
then a ≥ b,

• for the abstraction hierarchy of resources the partial order relation is rep-
resented by the relation abstractionOf , because if a abstractionOf b then
a ≥ b.

The fact that these hierarchies are partial orders means that they can not
contains cycles. These checks can be done using the rules in Listing 3.4, assumed
that the UNA is valid for principals and resources and the transitive closure is
computed on all the partial order relations. The relation PosetError : Thing →
Thing is created in order to keep trace of this kind of error.

canActAs(? p1 , ? p2) ,canActAs(? p2 , ? p1) ,
DifferentFrom (? p1 , ? p2)

−> posetError (? p1 , ? p2)

canBe(? r1 , ? r2) , canBe(? r2 , ? r1) −> posetError (? r1 , ? r2)

contains (? id1 , ? id2) , contains (? id2 , ? id1) −>
posetError (? id1 , ? id2)

containsResources (? r1 , ? r2) ,
containsResources (? r2 , ? r1) −> posetError (? r1 , ? r2)

abstractionOf (? r1 , ? r2) , abstractionOf (? r2 , ? r1) −>
posetError (? r1 , ? r2)

Listing 3.4: Partial orders checks

3.4. TYPES OF CHECK 69

3.4.2 Consistency Checks

A crucial advantage of the use of Semantic Web technology is the possibility of
an early identification of anomalies in the security policy. Security policies in real
systems often exhibit conflicts, i.e., inconsistencies in the policy that can lead
to an incorrect realization of the security requirements, and redundancies. The
availability of a high-level and complete representation of the security policies
supports the construction of services for the analysis of the policies able to
identify these anomalies and possibly suggest corrections. In the following we
will see several approach in order to identify inconsistencies:

• Consistency Checks on Actions;

• Consistency Checks on Requirements;

• Consistency Checks on containsResource property (as requirements);

• Consistency Checks on containsResource property (as conflicts);

• Consistency Checks on authorizations.

Consistency Checks on Actions Consistency between actions can be seen
as a sort of separation of duty, but related to actions instead of roles. The idea
is to check that a principal can not hold two Actions, on the same resource, that
belong to two SystemActions that are explicitly declared in conflict.
In order to do this we have introduced two object properties ConflictWith :
SystemAction→ SystemAction, which represents conflicts between SystemAc-
tions that cannot be hold concurrently by a principal, and ConsistentWith :
SystemAction→ SystemAction, which represent the consistency between two
SystemActions. ConsistentWith is derived by means of SWRL rules.
We have also introduced the constraint that ConflictWith∩ConsistentWith =
∅. The ConflictWith property must be stated explicitly in the ontology, while
the values for the ConsistentWith property can be inferred using the two SWRL
rules presented in Listing 3.5.

action (? a1 , ? ac t i on1) , action (? a2 , ? ac t i on2) ,
grantedTo (? auth1 , ? p r i n c i p a l) ,

grantedTo (? auth2 , ? p r i n c i p a l) , on(? p1 , ? r1) , on(? p2 , ? r2) ,
privilege (? auth1 , ?p1) ,

privilege (? auth2 , ?p2) , toDo(? p1 , ?a1) , toDo(? p2 , ?a2) ,
SameAs (? r1 , ? r2)

−> consistentWith (? act ion1 , ? ac t i on2)

Listing 3.5: Consistency on actions

When there is a problem in the consistency of actions the reasoner detects
it, because the properties ConflictWith and ConsistentWith are not disjoint
anymore, violating the constraint expressed before and thus making the ontology
inconsistent.

To correctly handle the hierarchy of resources the property abstractionOf
must be transitive or the SWRL rule in Listing 3.6 must be used.

70 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

abstractionOf (? r1 , ? r2) , abstractionOf (? r2 , ? r3) −>
abstractionOf (? r1 , ? r3)

Listing 3.6: abstractionOf transitive closure

Using the SWRL rules presented above the hierarchy of Principals is ig-
nored. In order to consider also this hierarchy, another transitive property must
be added to the ontology, canActAs : Principal → Principal. It represents a
sort of transitive closure on the hierarchy of Principals, and it tells, for each
principal, what are the other principals he can act as.

The rules presented in Listing 3.7 initialize the reasoning process, which is
kept on automatically by the reasoner, because canActAs is a transitive prop-
erty.

Principal (?p) −> canActAs(?p , ? p)
contains (? group , ? id) −> canActAs(? id , ? group)
canHaveRole(? id , ? r o l e) −> canActAs(? id , ? r o l e)
canBe(? ro l e1 , ? r o l e 2) −> canActAs(? ro l e1 , ? r o l e 2)

Listing 3.7: canActAs transitive property

Now the rules that detect conflicts can be modified as in Listing 3.8.

action (? a1 , ? ac t i on1) , action (? a2 , ? ac t i on2) ,
grantedTo (? auth1 , ? p r i n c i p a l 2) ,

grantedTo (? auth2 , ? p r i n c i p a l 1) ,
canActAs(? p r i n c i pa l 1 , ? p r i n c i p a l 2) , on(? p1 , ? r1) ,

on(? p2 , ? r2) , privilege (? auth1 , ?p1) , privilege (? auth2 , ?p2) ,
toDo(? p1 , ? a1) ,

toDo(? p2 , ?a2) , SameAs (? r1 , ? r2)
−> consistentWith (? act ion1 , ? ac t i on2)

Listing 3.8: Consistency on actions, considering Principal hierachy

Consistency Checks on Requirements In order to define prerequisites on
actions (e.g., in order to do a Write on a resource we must have the permission
to do Read on the same resource), we have introduced the relation requires :
Action → Action. The requires property is transitive (otherwise the rule in
Listing 3.9 can be used to compute the transitive closure).

r e qu i r e s (? act ion1 , ? ac t i on2) , r e qu i r e s (? act ion2 , ? ac t i on3) −>
r e qu i r e s (? act ion1 , ? ac t i on3)

Listing 3.9: requires transitive closure

To keep trace of conflicts, the class principalResourcePair has been created
in the ontology. This class represents the reification of a pair of a Principal and
aResource. It is involved in two properties, requiresAction : principalResourcePair →
SystemAction, which represents pending requirements, and satisfy :
principalResourcePair → SystemAction, which represents the satisfied re-
quirements. The consistency check can be done in three steps:

3.4. TYPES OF CHECK 71

1. First we compute, for each pair in principalResourcePair, the require-
ments, using the SWRL rule in Listing 3.10.

PositiveSystemAuthorization (? posAuth1) , action (? a1 ,
? ac t i on1) ,

grantedTo (? posAuth1 , ? p r i n c i p a l) , on(? p1 , ? r1) ,
principalInPair (? pair , ? p r i n c i p a l) , privilege (? posAuth1 ,

?p1) ,
r e qu i r e s (? act ion1 , ? ac t i on2) , resourceInPair (? pair ,

? r1) , toDo(? p1 , ?a1)
−>
requiresAction (? pair , ? ac t i on2)

Listing 3.10: First step of requirements evaluation

2. In the second step we compute, for each pair in principalResourcePair, all
the satisfied requirements, using the rules in Listing 3.11. Using the prop-
erty canActAs the requirements computation can span over the Principal
hierarchy graph.

PositiveSystemAuthorization (? posAuth1) , action (? a1 ,
? ac t i on1) ,

grantedTo (? posAuth1 , ? p r i n c i p a l 1) ,
canActAs(? p r i n c i pa l , ? p r i n c i p a l 1) ,

on(? p1 , ? r1) , principalInPair (? pair , ? p r i n c i p a l) ,
privilege (? posAuth1 , ?p1) , requiresAction (? pair ,

? ac t i on1) ,
resourceInPair (? pair , ? r1) , toDo(? p1 , ?a1)
−>
sat is fy (? pair , ? ac t i on1)

Listing 3.11: Second step of requirements evaluation

3. In the third step we can compute all the unsatisfied requirements simply
making a difference between requiresAction and satisfy, as shown in the
SPARQL 1.1 query in Listing 3.12.

PREFIX pos ont :
<http ://www. posecco . eu/ on t o l o g i e s / pos ont#>

PREFIX rd f :
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ? pa i r
FROM <http ://www. posecco . eu/ on t o l o g i e s / pos ont . owl>

WHERE {
? pa i r rd f : type pos ont : p r i n c ipa lRe sou r c ePa i r .
? pa i r pos ont : requiresAction ? ac t i on1 .

NOT EXISTS { ? pa i r pos ont : sat is fy
? ac t i on1 . }

}
Listing 3.12: Third step of requirements evaluation

72 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

For this check, the main contributor to performance issues is the class
principalResourcePair, because, while the other classes depend strictly on the
policy and the security domain to represent, in the worst case principalResourcePair ≡
Principal×Resource. Thus a good choice of the pairs to represent in the ontol-
ogy can give an improvement to the performance. Given the ontology, before the
execution of the three steps described above, we can execute some Java code in
order to create a greedy optimized set of individuals of the principalResourcePair
class. The idea is to create some temporary groups and resources in order to
minimize the number of pairs. This can be done visiting the policy representa-
tion in the memory of the Eclipse plugin.

The optimization can be one of the following:

• Given a group g and action act, if there exists in the policy the authoriza-
tion ai : grantedTo(ai, ui) ∧ privilege(ai, pi) ∧ on(pi, r) ∧ toDo(pi, aci) ∧
action(aci, act) such that contains(g, ui)∀ui ∈ g, we can delete from
the ontology all the authorizations ai and create a new authorization
a such that grantedTo(a, g) ∧ privilege(a, p) ∧ on(p, r) ∧ toDo(p, ac) ∧
action(ac, act). In this way we moved the authorization from the single
members of the group to the group itself. This process can be done itera-
tively, until it reaches a fixed point, when we can stop (the fact that the
hierarchy of principal is a poset means that the process will always reach
a fixed point). At the end of this process we can create all the individ-
uals in principalResourcePair. For all the PositiveSystemAuthorization
instances we can create a pair of a Principal, the grantor of the autho-
rization, and a resource, the resource on which the ResourcePrivilege is
given. Although this is a conservative optimization, it can improve the
performance.

• For each resource r and action act, the module creates a temporary group g
that contains all the users u1, . . . , un such that ∃a ∈ PositiveSystemAuthorization :
grantedTo(a, ui)∧privilege(a, p)∧on(p, r)∧ toDo(p, ac)∧action(ac, act).
In this way we can have, for each resource, a temporary group that
contains all the principals that are allowed to execute a specific system
action on it. Then we delete, for each user in the temporary group
g, the authorizations that have the resource privilege to do the Sys-
temAction act. After this we create a new authorization a such that
grantedTo(a, g)∧ privilege(a, p)∧ on(p, r)∧ toDo(p, ac)∧ action(ac, act).
In this way we move the authorization from the single individuals to the
temporary group just created. This process can be done iteratively, until
it reaches a fixed point, when we can stop. At the end of this process
we can create all the individuals in principalResourcePair. For all the
PositiveSystemAuthorization instances we can create a pair of a Principal,
the grantor of the authorization, and a resource, the resource on which the
ResourcePrivilege is given. This is a less conservative optimization than
the first one and can be too strict. A possible solution is to use a branch
and bound approach. We execute the optimization as illustrated before,

3.4. TYPES OF CHECK 73

then we execute the reasoning, thus for the pairs that have unsatisfied re-
quirements and involve a temporary group as principal, we execute a new
reasoning phase, without considering the temporary group. In this way
we can have a big improvement if in the first phase all the requirements
are satisfied.

Consistency Checks on containsResource property (as requirements)
The ontology allows the representation of the fact that a Resource can be
contained in another one, such as a folder that contains a file. This fact is rep-
resented by means of the transitive property containsResources : Resource→
Resource.

In order to check the consistency of this property, a separated check is needed
because the semantics of the containsResource property is slightly different
from the one of the abstractionOf property. As an example, in order to do
a ’write’ on a file, where ’write’ is a SystemAction, we must have ’access’ to
the folder that contains the file, where also ’access’ is a SystemAction, thus the
containsResource property cannot be considered as the abstractionOf property
because it can involve a different SystemAction on the container resource.

In order to manage this semantics we have introduced in the ontology the
relation actionNeededOnContainer : Resource→ SystemAction, which, for a
given Resource gives back the SystemAction that a Principal must hold on the
container in order to do anything on the resource.
The example presented before can be mapped in this way: we have two re-
sources, file and folder
Resource(′file′), Resource(′folder′), such that containsResource(′folder′,′ file′)
and
actionNeededOnContainer(′file′,′ access′). The assumption is, despite the
principal has an authorization on the contained resource, the authorization on
the container must be given explicitly.

The schema of the check is, then, quite similar to the one used for the check
on requirements, because the consistency on the containsResource property can
be seen as a requirement. We thus add two properties requiresActionOnContainer :
principalResourcePair → SystemAction, which represents pending require-
ments on the container, and satisfyOnContainer : principalResourcePair →
SystemAction, which represents the satisfied requirements on the container.

The consistency check can be done in three steps:

1. First we compute, for each pair in principalResourcePair, the container
requirements, using the SWRL rule in Listing 3.13.

containsResources (? r1 , ? r2) ,
PositiveSystemAuthorization (? auth) ,

grantedTo (? auth , ? pr inc) , privilege (? auth , ? pr iv) ,
on(? pr iv , ? r2) ,

actionNeededOnContainer (? r2 , ? sy sac t) ,
resourceInPair (? pair , ? r2) ,

principalInPair (? pair , ? pr inc)

74 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

−>
requiresActionOnContainer (? pair , ? sy sac t)

Listing 3.13: First step of containment requirements evaluation

2. In the second step we compute, for each pair in principalResourcePair, all
the satisfied requirements, using the rules in Listing 3.14. Using the prop-
erty canActAs the requirements computation can span over the Principal
hierarchy graph.

PositiveSystemAuthorization (? posAuth1) , action (? a1 ,
? ac t i on1) ,

grantedTo (? posAuth1 ,
? p r i n c i p a l 1) ,canActAs(? p r i n c i pa l , ? p r i n c i p a l 1) ,

on(? p1 , ? r2) , containsResource (? r2 , ? r1) ,
principalInPair (? pair , ? p r i n c i p a l) , privilege (? posAuth1 ,

?p1) ,
requiresActionOnContainer (? pair , ? ac t i on1) ,
resourceInPair (? pair , ? r1) , toDo(? p1 , ?a1)
−>
satisfyOnContainer (? pair , ? ac t i on1)

Listing 3.14: Second step of requirements evaluation

3. In the third step we can compute all the unsatisfied requirements sim-
ply making a differentiation between requiresActionOnContainer and
satisfyOnContainer, as shown in the SPARQL 1.1 query in Listing 3.15.

PREFIX pos ont :
<http ://www. posecco . eu/ on t o l o g i e s / pos ont#>

PREFIX rd f :
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ? pa i r
FROM

<http ://www. posecco . eu/ on t o l o g i e s / pos ont . owl>
WHERE {
? pa i r rd f : type pos ont : p r i n c ipa lRe sou r c ePa i r .

? pa i r pos ont : requiresActionOnContainer
? ac t i on1 .

NOT EXISTS { ? pa i r
pos ont : satisfyOnContainer ? ac t i on1 .
}

}

Listing 3.15: Third step of requirements evaluation

The optimization step is the same as the one for the check on requirements
consistency.

3.4. TYPES OF CHECK 75

Consistency Check on the containsResource property (as conflicts)
is another check that aims to control if the authorizations on resources involved
in the containsResource relation are in conflict or not. Previously, we presented
a way to solve the problem as a requirement, thus expecting that the authoriza-
tion on the container must be explicitly given in order to hold an authorization
on the contained resource; in this section we present another way to solve the
problem, considering that if we have an authorization on the contained resource
we also have implicitly an authorization to do the needed action on the con-
tainer, if not explicitly specified otherwise. If we have the authorization to do
a ’write’ on the file, we have, implicitly, also the authorization to do ’access’
on the folder that contains the file. The conflict exists only if we have also a
negative authorization to do ’access’ on the folder.

We can thus reuse the pairOfAuthorizations class, in which the positive
authorization is always the explicit authorization on the contained resource and
the negative one is the explicit authorization that forbids the needed action on
the contained resource. In any other case the conflict does not exist.

Also here we can have several situations:

• If the negative authorization and positive authorization are granted to the
same principal, then the negative one wins, as shown in Listing 3.16.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p2 , ? a2) ,
action (? a2 , ? ac t i on2) , on(? p1 , ? r1) , on(? p2 , ? r2) ,
actionNeededOnContainer (? r1 , ? ac t i on2) ,

containsResources (? r2 , ? r1) ,
SameAs(? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? ac t i on2) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.16: Conflict on containsResources, negative authorization wins

• If the positive authorization is given at the more specialized level, then
the positive authorization wins, as shown in Listing 3.17.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,
containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p2 , ? a2) ,

76 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

action (? a2 , ? ac t i on2) , on(? p1 , ? r1) , on(? p2 , ? r2) ,
actionNeededOnContainer (? r1 , ? ac t i on2) ,

containsResources (? r2 , ? r1) ,
DifferentFrom (? pr1 , ? pr2) , canActAs(? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?posAuth) ,
involvingAction (? pair , ? ac t i on2) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.17: Conflict on containsResources, positive authorization wins

• If the negative authorization is given at the more specialized level, then
the negative authorization wins, as shown in Listing 3.18.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p2 , ? a2) ,
action (? a2 , ? ac t i on2) , on(? p1 , ? r1) , on(? p2 , ? r2) ,
actionNeededOnContainer (? r1 , ? ac t i on2) ,

containsResources (? r2 , ? r1) ,
DifferentFrom (? pr1 , ? pr2) , canActAs(? pr2 , ? pr1)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? ac t i on2) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.18: Conflict on containsResources, more specialized
authorization wins

Consistency Checks on authorizations Consistency on authorizations
aims at checking that it does not exist any pair of System authorization that
can create conflicts on the hierarchy of Principals.

To keep trace of conflicts we have created the class pairOfAuthorizations in
the ontology. This class represents the reification of a pair of aNegativeAuthorization
and a PositiveAuthorization. At the end of the check, if the pair is involved
in a conflict it contains also the list of the actions and resources involved in
a conflict. The assumption behind the check is that exists an individual that
represents each pair of authorizations, and that for principals the Unique Name
Assumption is valid.

Figure 3.8 shows a quite complete example of inconsistency. We have a pos-
itive authorization auth 1 that grants the right to execute action 1 on resource
1. However auth 2 disallows the user the right to execute action 2 on a higher

3.4. TYPES OF CHECK 77

Figure 3.8: An example of an inconsistency on authorizations

level abstraction of the same resource. Since we know from the action model
that action 2 is a prerequisite to execute action 1, we conclude that the two
authorizations are incompatible.

This example involves different fragments of the ontology:

authorization ontology describes the signs of the involved authorizations,
and the fact that they are granted to the same individual;

cross levels traceability is necessary because the inconsistency involves ele-
ments at different levels of abstraction (the resources in this example);

action ontology provides the knowledge about action types dependencies.

Three different hierarchies are involved in this check: the hierarchy of re-
sources, the hierarchy of roles and the hierarchy of identities. At first time we
suppose that we can ignore the resource hierarchy. Thus we need an order of spe-
cialization to identify which principal is the more specialized. This information
is expressed by the canActAs relation because, for construction, a canActAs b
means that a is more specialised than b. The only special case is if a and b are
the same individual.

We can thus have two different situations :

• If the conflict is on two principals a and b such that a = b, than the conflict
is solved in favour of the negative authorization. This is done using the
rule presented in Listing 3.19.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

78 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,
action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r) ,

on(? p2 , ? r) ,
SameAs(? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? action) , onResource (? pair , ? r)

Listing 3.19: Conflict evaluation, same principal and no resources
hierarchy

• If the conflict is on two principals a and b such that a canActAs b, then
the conflict is solved in favour of the authorization held by a. This is done
using the rules presented in Listing 3.20.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ? negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,
action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r) ,

on(? p2 , ? r) ,
canActAs(? pr1 , ? pr2) ,DifferentFrom (? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?posAuth) ,
involvingAction (? pair , ? action) , onResource (? pair , ? r)

Listing 3.20: Conflict evaluation, two principals in the hierarchy and no
resource hierarchy

Now if we consider also the resource hierarchy, we can have three additional
situations:

• If the conflict is on two principals a and b such that a = b and two resources
r1 and r2 such that r1 abstractionOf r2, then the conflict is solved in
favour of the authorization involving r2 because is more specific. This is
done using the rule presented in Listing 3.21.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) ,grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,

3.4. TYPES OF CHECK 79

privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,
toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,

action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r1) ,
on(? p2 , ? r2) ,

SameAs(? pr1 , ? pr2) , abstractionOf (? r1 , ? r2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? action) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.21: Conflict evaluation, same principal and resource hierarchy

• If the conflict is on two principals pr1 and pr2 such that pr1 canActAs pr2
and on two resources r1 and r2 such that r2 abstractionOf r1, then
the conflict is solved in favour of the authorization involving pr1 and r1
because both are the specialized side.
This is done using the rule presented in Listing 3.22.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,
action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r1) ,

on(? p2 , ? r2) ,
canActAs(? pr1 , ? pr2) , abstractionOf (? r2 , ? r1) ,

DifferentFrom (? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?posAuth) ,
involvingAction (? pair , ? action) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.22: Conflict evaluation, principals and resources are coherent

• If the conflict is on two principals pr1 and pr2 such that pr2 canActAs pr1
and on two resources r1 and r2 such that r1 abstractionOf r2, then
the conflict is solved in favour of the authorization involving pr2 and r2
because both are the specialized side.
This is done using the rule presented in Listing 3.23.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) ,grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,

80 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r1) ,
on(? p2 , ? r2) ,

canActAs(? pr2 , ? pr1) , abstractionOf (? r1 , ? r2) ,
DifferentFrom (? pr1 , ? pr2)

−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? action) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.23: Conflict evaluation, principals and resources are consistent

• If the conflict is on two principals pr1 and pr2 such that pr1 canActAs pr2
and on two resources r1 and r2 such that r1 abstractionOf r2, we have
the case in which there is a problem of variance and counter variance
between the two hierarchies. In this case the principal hierarchy dominates
the resource hierarchy and thus the conflict is solved in favour of the
authorization that involves pr1, as shown in the rule in Listing 3.24.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,
privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,

toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,
action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r1) ,

on(? p2 , ? r2) ,
canActAs(? pr1 , ? pr2) ,

abstractionOf (? r1 , ? r2) ,DifferentFrom (? pr1 , ? pr2)
−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?posAuth) ,
involvingAction (? pair , ? action) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.24: Conflict evaluation, hierarchy conflict (r1 abstractionOf r2)

• If the conflict is on two principals pr1 and pr2 such that pr2 canActAs pr1
and on two resources r1 and r2 such that r2 abstractionOf r1, we have
the case in which there is a problem of variance and counter variance
between the two hierarchies. In this case the principal hierarchy dominates
the resource hierarchy and thus the conflict is solved in favour of the
authorization that involves pr2, as shown in the rule in Listing 3.25.

PositiveSystemAuthorization (? posAuth) ,
NegativeSystemAuthorization (? negAuth) ,

grantedTo (? posAuth , ? pr1) , grantedTo (? negAuth , ? pr2) ,
containsAuthorization (? pair , ?negAuth) ,

containsAuthorization (? pair , ?posAuth) ,

3.4. TYPES OF CHECK 81

privilege (? posAuth , ? p1) , privilege (? negAuth , ? p2) ,
toDo(? p1 , ? a1) , toDo(? p2 , ? a2) ,

action (? a1 , ? action) , action (? a2 , ? action) , on(? p1 , ? r1) ,
on(? p2 , ? r2) ,

canActAs(? pr2 , ? pr1) ,
abstractionOf (? r2 , ? r1) ,DifferentFrom (? pr1 , ? pr2)

−>
solvedAuthorizationConflict (? pa i r) ,

harmonizedAuthorization (? pair , ?negAuth) ,
involvingAction (? pair , ? action) ,

onResource (? pair , ? r1) ,onResource (? pair , ? r2)

Listing 3.25: Conflict evaluation, hierarchy conflict (r2 abstractionOf r1)

The optimization phase can be done by diminishing the number of autho-
rizations that exist in the ontology. In order to do this, an approach that
removes redundant authorizations can be adopted. We can do the following
optimization:

1. For a given group g, a given system action action and a resource r,
if ∀i ∈ contains(g, i) a SystemAuthorization exists sysauthi such that
grantedTo(sysauthi, i)∧privilege(sysauthi, pi)∧on(pi, r)∧toDo(pi, aci)∧
action(aci, action), then we can delete all the authorizations sysauthi and
create a new authorization sysauth such that grantedTo(sysauth, g) ∧
privilege(sysauth, p) ∧ on(p, r) ∧ toDo(p, ac) ∧ action(ac, action). In this
way we move the authorization from the identities to the group.

2. For a given role role, a given system action action and a resource r, if ∀i ∈
canHaveRole(i, role) a SystemAuthorization exists sysauthi such that
grantedTo(sysauthi, i)∧privilege(sysauthi, pi)∧on(pi, r)∧toDo(pi, aci)∧
action(aci, action), then we can delete all the authorizations sysauthi and
create a new authorization sysauth such that grantedTo(sysauth, role)∧
privilege(sysauth, p) ∧ on(p, r) ∧ toDo(p, ac) ∧ action(ac, action). In this
way we move the authorization from the identities to the role.

3. For a given role role, a given system action action and a resource r,
if ∀i ∈ canBe(role, i) a SystemAuthorization exists sysauthi such that
grantedTo(sysauthi, i)∧privilege(sysauthi, pi)∧on(pi, r)∧toDo(pi, aci)∧
action(aci, action), then we can delete all the authorizations sysauthi and
create a new authorization sysauth such that grantedTo(sysauth, role)∧
privilege(sysauth, p) ∧ on(p, r) ∧ toDo(p, ac) ∧ action(ac, action). In this
way we move the authorization from the low level roles to the high level
role.

These optimizations can be done iteratively, until they reach a fixed point, i.e.,
a point after that another iteration of the optimizations cannot diminish the
number of authorizations in the ontology.

A less conservative kind of optimization can be done creating temporary
groups and roles, which group together principals that have the authorization

82 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

to do the same action on the same resource in order to delete the single autho-
rizations creating a new temporary one, using a branch and bound approach.

Redundancy Checks

One of the problems in policy management is the presence of redundant autho-
rizations. A redundant authorization (respectively authentication) is an autho-
rization (authentication) that is dominated by other authorizations (authenti-
cations) and that does not contribute to the policy, i.e., its removal would not
modify the behavior of the system.

The goal of redundancy analysis is to detect if a policy (or an authorization)
is dominated by any other policy (authorization). A policy p1 is dominated by
a policy p2 if and only if:

1. p1 and p2 have the same sign (allow or deny); in such a situation if both
the policies apply no conflict arises;

2. p1 is a specialization of p2 with respect to all the available dimensions.
This guarantees that p2 applies in any situation in which p1 does.

We define the property dominate: SystemAuthorization→ SystemAuthoriza-
tion to represent the case in which all the domains associated with an autho-
rization contain the domains associated with another authorization. To identify
these cases, we use the following SWRL rule:

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) ,

canActAs(? pr2 , ? pr1) , containsResource+(?r2 , ? r1) ,
DifferentFrom (? a1 , ? a2) −> dominates (? a1 , ? a2)

We can define that auth1 is redundant with respect to auth2, if auth2 dom-
inates auth1, and the signs of auth1 and auth2 are the same, otherwise the
pair of authorizations is not removable. We have thus defined the property
implies : SystemAuthorization → SystemAuthorization and the symmet-
ric property unRemovable : SystemAuthorization → SystemAuthorization.
Then, we define the following SWRL rules to classify the pairs of authorizations
involved in the dominates property:

dominates (? a1 , ? a2) , sign (? a1 , ? s) , sign (? a2 , ? s) −>
implies (? a1 , ? a2)

dominates (? a1 , ? a2) , sign (? a1 , ? s1) , sign (? a2 , ? s2) ,
DifferentFrom (? s1 , ? s2) −> unRemovable(? a1 , ? a2)

Redundant authorizations are those authorizations that are redundant at
least with respect to another authorization, and are not involved in any instance
of the unRemovable property. In this way only authorizations that are not
involved in a conflict are considered redundant. This is a safe approach, because
a redundant authorization involved in one or more conflicts can have an impact
on the policy, depending on how the conflicts are solved. The safe removable
authorizations can be detected using the following SPARQL query:

3.4. TYPES OF CHECK 83

PREFIX rbac :
<http ://www. posecco . eu/ on t o l o g i e s / a c c e s s c on t r o l#>

SELECT ? auth2 WHERE { ? auth1 rbac : imp l i e s ? auth2 .
NOT EXISTS { ? auth2 rbac : unRemovable ? auth3 . } }

Since SPARQL queries are evaluated under the closed world assumption,
they can query the result of the execution of the SWRL rules, returning to
the security administrator in a direct way the list of authorizations that are
redundant and can be removed, whereas classic DL instance retrieval should
not be able to detect missing explicit relations.

3.4.3 Separation of Duty Checks

Separation of duty checks are those checks that aim at enforcing the static
separation of duty between roles. A SoD constraint between role r1 and r2

can be expressed using a negative role authorization rauth such that enabled-
Role(rauth, r1) and grantedTo(rauth, r2) and sign(rauth,−). Before analyzing a
policy to detect SoD conflicts we execute a normalization step, which replaces
all the role authorizations between roles with semantically equivalent roleHier-
archy properties in order to simplify the analysis. A role authorization that
assigns a role r2 to a role r1 is equivalent, for SoD satisfiability analysis, to a
super-role relation between r1 and r2 and, thus, to roleHierarchy(r1, r2).

Separation of duty constraints have to be enforced both at role hierarchy
level, in this way we directly prevent that a role r1 is declared super-role of
another role r2 such that r1 and r2 are in a SoD constraint, and at user hierarchy
level, to avoid that to a user are assigned, directly or indirectly, two roles r1

and r2 that are involved in a SoD constraint. In order to keep track of all
SoD conflicts on Roles, we have defined a class SoDConflictOnRole v Role.
Separation of duty constraints on the role hierarchy can be expressed adding to
the ontology the following set of axioms:

∀auth ∈ RoleAuthorization : sign(auth,−), grantedTo(auth, r1),

enabledRole(auth, r2)

SoDConflictOnRole ≡ ∃canBe+ .{r1} u ∃canBe+ .{r2}
We can thus enforce the SoD at role hierarchy level simply adding the axiom
SoDConflictOnRole v ⊥ to the ontology.

In a similar way to what we have done for the identification of SoD conflicts
at role hierarchy level, we defined a class SoDConflictOnId v Identity that keeps
track of the conflicts on the user hierarchy. We express SoD constraints using
the following axioms:

∀auth ∈ RoleAuthorization : sign(auth,−), grantedTo(auth, r1),

enabledRole(auth, r2)

SoDConflictOnId ≡ ∃canHaveRole+ .{r1} u ∃canHaveRole+ .{r2}
and to enforce the SoD constraints we simply have to add to the ontology the
axiom SoDConflictOnId v ⊥.

84 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Permission-Based and Object-Based SoD Checks A first way to handle
Permission-based and Object-based SoD constraints is by extending the ontology
with new axioms. For Permission-based SoD we defined a new property canDo :
Principal → Action that is equivalent to grantedTo−1 ◦ toDo. To keep track
of the conflicts, we have defined a new class PSoDConflict v Principal and
in order to identify the actions involved in constraints we defined the property
PermBasedSod : Action → Action. We express SoD constraints using the
following axioms:

∀a1, a2 ∈ Action : PermBasedSod(a1, a2)

PSoDConflict ≡ ∃canDo.{a1} u ∃canDo.{a2}

and to enforce the SoD, we simply have to add to the ontology the axiom
PSoDConflict v ⊥. In the same way we can define the Object-based SoD.
In DL formulas we write canActOn : Principal → Resource, canActOn ≡
grantedTo−1 ◦ on, ObjBasedSod : Resource→ Resource,
RSoDConflict v Principal. In order to enforce the Object-based SoD, we add
to the ontology the following set of axioms:

∀res1, res2 ∈ Resource : ObjBasedSod(res1, res2)

RSoDConflict ≡ ∃canActOn.{res1} u ∃canActOn.{res2}
RSoDConflict v ⊥

However, this approach has two drawbacks:

1. it adds complexity to the ontology;

2. it represents all these SoD constraints in a redundant way, because the only
difference between all of them is the hierarchy on which the constraint is
applied.

A second approach is to implement Permission-based and Object-based SoD
constraints using an ad-hoc role hierarchy and, thus, representing them as Role-
based SoD. Thus, we can define, for each pair composed by an action a ∈ Actions
and a resource res ∈ Resource, a new role ra,res that represents a high level
role. Each role ra,res ∈ Role has assigned to it only a SystemAuthorization,
which allows it to do the action a on the resource res. Then, we define for
each action a ∈ Actions a role ra, and for each resource res ∈ Resources a
role rres. These roles are low level roles; they do not have any authorization
assigned to them, but they are used to express the SoD constraints. In order to
create the adequate relationships between high level and low level roles, we add
the following axioms to the ontology:

∀res ∈ Resource, ∀a ∈ Actions :

roleHierarchy(ra,res, rres)

roleHierarchy(ra,res, ra)

3.5. POLICY INCOMPATIBILITY 85

These axioms create a low level of abstract roles, parameterized only on the
action or on the resource, that are sub-roles of high level roles. This second
level aggregates the roles on a resource and action basis. Now, we can simply
express Permission-based SoD and Object-based SoD using the axioms presented
for Role-Based SoD, but considering only low level roles, respectively the ones
associated with actions or with resources. For instance, in order to express SoD
between two resources res1 and res2, we can create a negative role authorization
rauth such that grantedTo(rauth, rres1) and enabledRole(rauth, rres2), whereas
to express the SoD between two actions a1 and a2 we can create a negative role
authorization rauth such that grantedTo(rauth, ra1) and enabledRole(rauth, ra2).

3.5 Policy Incompatibility

Given a policy that contains a set A = {a1, . . . , an} of SystemAuthorizations, we
define: 1. pi the set of Principals the authorization ai is granted to, directly or
indirectly, 2. act the Action associated with the authorization ai, 3. ri the set of
Resources to which the enabled permission can be applied, directly or indirectly.
An inconsistency in the policy may arise when exists, at least, ai, aj ∈ A, such
that sign(ai) 6= sign(aj) ∧ pi ∩ pj 6= ∅ ∧ acti = actj ∧ ri ∩ rj 6= ∅.

This kind of conflicts is usually called Modality conflict and arises when
principals are authorized to do an action a on a resource r by a positive autho-
rization, and forbidden to do the same action a on the resource r by a negative
authorization. In this case the two authorizations are said to be incompatible.

The management of Modality conflicts first requires to detect them. Then,
when a conflict is detected, a choice has to be made about how the conflict can
be solved, deciding between the positive and negative authorization which is the
one that is going to hold.

We note that it is usually impractical to simply remove the “weaker” au-
thorization and to replace the policy with one that does not present modality
conflicts. Even in a scenario like the one considered in this paper where the
containment structure of principals, actions, and resources is static, this step
may lead to an excessive growth of the policy. The common approach consists
in identifying a criterion to use in the resolution of conflicts, and applying it
every time a modality conflict is detected.

In the literature and in systems, several criteria have been proposed and im-
plemented to solve this kind of conflict [76]. A simple criterion is the “Denials
take precedence”, which states that, in case of conflicts, the Negative Authoriza-
tion always wins. A more flexible criterion is the “Most specific Wins”, which
states that, when one authorization dominates the other, the more specific wins.
While several works already present techniques to formalize and compose modal-
ity conflicts, such as [62], [23] and [76], no approaches are known to us that use
ontologies and Semantic Web Tools detect this kind of inconsistencies and to
solve them using the “Most specific Wins” criterion.

For simplicity we introduce the property canActAs to take into account the
different ways a principal can activate the profile of another principal. can-

86 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

ActAs: Principal → Principal is a transitive and reflexive property such that
containedIn v canActAs, canBe+ v canActAs and canHaveRole v canActAs.
canActAs(p1, p2) means that p1 is more specific than p2.

We have also introduced the property winVs: SystemAuthorization → Sys-
temAuthorization which can be used to express if the Authorization p1 wins
against p2 (i.e., if p1 is a specialization in all the components). In our approach
we consider the Unique Name Assumption (UNA).

We can detect modality conflicts and compose them following the “Most
specific wins” criterion, using SWRL rules like the following:

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) ,
sign (? a1 , ? s1) , on(? a2 , ? r2) , toDo(? a2 , ? act) ,
grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
containsResource+(?r2 , ? r1) , canActAs(? pr2 , ? pr1) ,
DifferentFrom (? s1 , ? s2) −> winsVs (? a2 , ? a1)

When the conflict involves two policies that have the same specificity level,
we apply the “Denials take precedence” criterion, with the following rule:

PositiveAuthorization (? a1) , SystemAuthorization (? a1) ,
on(? a1 , ? r) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr) ,
NegativeAuthorization (? a2) , SystemAuthorization (? a2) ,
on(? a2 , ? r) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr) −>
winsVs (? a2 , ? a1)

However, not all the conflicts can be solved using these criteria, because in
some conflicts we can not find a policy that is more specific than the other one
(e.g., one has a high level in the resources and the other in the principals).

To detect these cases, which we assume have to be notified to the security
administrator responsible for the design of the policy, we defined a new symmet-
ric property unsolvableConflict : SystemAuthorization → SystemAuthorization,
which contains all the pairs of policies involved in conflicts that are not solvable
using the “Most specific wins” criterion. Unsolvable conflicts are detected by
means of SWRL rules like the following one, an extended presentation of the
SWRL rules managing this service appears in Appendix C.1:

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) ,
sign (? a1 , ? s1) , on(? a2 , ? r2) , toDo(? a2 , ? act) ,
grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
containsResource+(?r2 , ? r1) , canActAs(? pr1 , ? pr2) ,
DifferentFrom (? s1 , ? s2) −> unsolvableConflict (? a1 , ? a2)

The Policy Incompatibility service produces three sets of policies: 1. a set
of authorizations that does not contain any conflict, 2. a set of conflicting au-
thorizations, in which all the conflicts have been solved, 3. a set of unsolved
conflicts, which should be fixed by security administrators.

On the set of solved conflicts, namely the union of the first and second set,
we can apply the others services presented in the following sections.

3.6. POLICY MINIMIZATION 87

3.6 Policy Minimization

Access Control policies usually contain a large number of authorizations, created
by security administrators. One of the problems in policy management is the
presence of redundant authorizations. A redundant authorization is an autho-
rization that is dominated by other authorizations and that does not contribute
to the policy, i.e., its removal would not modify the behavior of the system.

Given two authorizations a1 and a2 with same action and sign, and called
pi (respectively ri) the principals (respectively resources) associated, directly
or indirectly, with ai. If p2 ⊆ p1 and r2 ⊆ r1 and a2 is not involved in any
conflict with other authorizations, then a2 is redundant with respect to a1, and
can be safely removed from the policy without modifying the behaviour of the
system. The Policy Minimization function offers to security administrators a
way to detect redundant authorizations.

We define the property dominate: SystemAuthorization→ SystemAuthoriza-
tion to represent the case in which all the domains associated with an autho-
rization contain the domains associated with another authorization. To identify
these cases, we use the following SWRL rule:

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) ,
canActAs(? pr2 , ? pr1) , containsResource+(?r2 , ? r1) ,
DifferentFrom (? a1 , ? a2) −> dominates (? a1 , ? a2)

We can define that auth1 is redundant with respect to auth2, if auth2 dom-
inates auth1, and the signs of auth1 and auth2 are the same, otherwise the
pair of authorizations is not removable. We have thus defined the property
implies : SystemAuthorization → SystemAuthorization and the symmet-
ric property unRemovable : SystemAuthorization → SystemAuthorization.
Then, we define the following SWRL rules to classify the pairs of authorizations
involved in the dominates property:

dominates (? a1 , ? a2) , sign (? a1 , ? s) , sign (? a2 , ? s) −>
implies (? a1 , ? a2)

dominates (? a1 , ? a2) , sign (? a1 , ? s1) , sign (? a2 , ? s2) ,
DifferentFrom (? s1 , ? s2) −> unRemovable(? a1 , ? a2)

Redundant authorizations are those authorizations that are redundant at
least with respect to another authorization, and are not involved in any instance
of the unRemovable property. In this way only authorizations that are not
involved in a conflict are considered redundant. This is a safe approach, because
a redundant authorization involved in one or more conflicts can have an impact
on the policy, depending on how the conflicts are solved. The safe removable
authorizations can be detected using the following SPARQL query:

PREFIX rbac :
<http ://www. posecco . eu/ on t o l o g i e s / a c c e s s c on t r o l#>

SELECT ? auth2 WHERE { ? auth1 rbac : imp l i e s ? auth2 .
NOT EXISTS { ? auth2 rbac : unRemovable ? auth3 . } }

88 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

Since SPARQL queries are evaluated under the closed world assumption,
they can query the result of the execution of the SWRL rules, returning to
the security administrator in a direct way the list of authorizations that are
redundant and can be removed, whereas classic DL instance retrieval should
not be able to detect missing explicit relations.

3.7 Separation of Duty

A common class of constraints represented in security policies is Separation
of Duty (SoD). These constraints follow the common best practice for which
sensitive combinations of permissions should not be held by the same individual
in order to avoid the violation of business rules. Role Based Access Control
is particularly well-suited to express this kind of constraints because the role
hierarchy allows an easy mapping of real world business rules to the access
control model.

In the following, we primarily consider Role-based Static SoD. Given two
roles r1 and r2, the Static SoD between these two roles means that it must not
exist a user u who can be assigned both r1 and r2.

We focus on the Static SoD, but the model can be immediately extended to
support also Dynamic SoD constraints, where it is required to check that a user
does not concurrently activate conflicting roles (it is sufficient to assume that
the model provides the concept of active role). The aim of the SoD Satisfia-
bility service is to check whether a set of authorizations satisfies a set of SoD
constraints.

In our model the roles are represented as individuals of the class AuthzRole,
and the role hierarchy is expressed using the property roleHierarchy and the user
role assignment relation is represented using the RoleAuthorizations introduced
in Section 2.2.2, which allow a user to enable a specific role.

A SoD constraint between role r1 and r2 can be expressed using a negative
role authorization rauth such that enabledRole(rauth, r1) and grantedTo(rauth, r2)
and sign(rauth,−). Before analyzing a policy to detect SoD conflicts we execute
a normalization step, which replaces all the role authorizations between roles
with semantically equivalent roleHierarchy properties in order to simplify the
analysis. A role authorization that assigns a role r2 to a role r1 is equivalent,
for SoD satisfiability analysis, to a super-role relation between r1 and r2 and,
thus, to roleHierarchy(r1, r2).

Separation of duty constraints have to be enforced both at role hierarchy
level, in this way we directly prevent that a role r1 is declared super-role of
another role r2 such that r1 and r2 are in a SoD constraint, and at user hierarchy
level, to avoid that to a user are assigned, directly or indirectly, two roles r1 and
r2 that are involved in a SoD constraint.

In order to keep track of all SoD conflicts on Roles, we have defined a class
SoDConflictOnRole v Role. Separation of duty constraints on the role hierarchy
can be expressed adding to the ontology the following set of axioms:

3.8. IMPLEMENTATION AND EXPERIMENT 89

∀auth ∈ RoleAuthorization : sign(auth,−), grantedTo(auth, r1),

enabledRole(auth, r2)

SoDConflictOnRole ≡ ∃canBe+ .{r1} u ∃canBe+ .{r2}

We can thus enforce the SoD at role hierarchy level simply adding the axiom
SoDConflictOnRole v ⊥ to the ontology.

In a similar way to what we have done for the identification of SoD conflicts
at role hierarchy level, we defined a class SoDConflictOnId v Identity that keeps
track of the conflicts on the user hierarchy. We express SoD constraints using
the following axioms:

∀auth ∈ RoleAuthorization : sign(auth,−), grantedTo(auth, r1),

enabledRole(auth, r2)

SoDConflictOnId ≡ ∃canHaveRole+ .{r1} u ∃canHaveRole+ .{r2}

and to enforce the SoD constraints we simply have to add to the ontology the
axiom SoDConflictOnId v ⊥. Appendix C.4 presents a pruning algorithm that
can be used to improve the performance of the Separation of Duty satisfiability
service.

Our approach can be easily extended to handle other kinds of SoD con-
straints, such as Permission-based SoD (which requires that no user is allowed
to do both actions a1 and a2) or Object-based SoD (which requires that no user
can access both resources res1 and res2), as shown in Appendix C.3.

Using a similar approach, we can implement the Policy Incompatibility ser-
vice using the SoD Satisfiability service. We only need a preprocessing step.
The preprocessing algorithm is presented in Algorithm 5 in Appendix C.2. It
takes as input the set of roles R, the set of System authorizations SA, the set
of Role authorizations RA, and the role hierarchy RH. The algorithm, for each
System authorization sysauth, creates a pair of roles, related to the action a
and resource r associated with sysauth. Then, it creates two new system au-
thorizations in order to grant to the just created roles the positive and negative
authorizations to do the action a on the resource r. Finally, it removes the au-
thorization sysauth and replaces it with adequate role authorizations in order
to preserve the semantics of the policy.

3.8 Implementation and Experiment

We implemented a prototype for the evaluation of the behavior of the techniques
presented in this paper. The prototype consists of three Java modules that
invoke the services of the Semantic Web tools to manage Policy Incompatibility,
Policy Minimization, and Separation of Duty. The prototype uses the API
provided by the OWL API library [51] to access both the ontology and the

90 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

SWRL rules. Since there are no freely available large datasets of real security
policies, we chose to test our prototype against policies built according to an
interpretation of the data in bibliographic databases. We used randomly selected
subsets of PubMed Central2 (PMC), well known in the medical sciences, and
DBLP3, well known in the computer science community.

Each of them provides a rich set of attributes and relationships that represent
real and extensive social networks. PMC has rich information about journals,
with a description of editorships and the funding of papers. DBLP has a rich
description of conferences. The two databases support different experiments.

We created instances of principals in the following way: (a) for each author
or editor, we add a SingleIdentity, (b) for each group of authors that have
written a paper together, we create a Group containing the identities, (c) for
each group of editors of a conference or a journal, we create a Group containing
the identities, (d) for each journal issue (and conference for the DBLP case), we
create an “editor” Role and an “author” Role. We then created the following
authorizations with identities as principals: (a) for each paper author we create
the authorizations to read and write the paper and the negative authorization
to review the paper, (b) for each editor of the issue of the journal containing the
paper we add the authorizations to read and review the paper and the negative
authorization to write the paper, (c) for each author that receives funding from
the same grant that funded the paper, we add a negative authorization to review
the paper and an authorization to read the paper. We then have authorizations
with groups as principals: (d) for each group containing all the authors belonging
to the institution to which the author is affiliated, we add the authorization to
read the paper, (e) for each member of the editorial board of the journal that
published the paper we add the authorizations to read and review the paper and
the negative authorization to write the paper, (f) for the group of authors of the
paper, we add the authorizations to read and write the paper and the negative
authorization to review the paper (these are redundant authorizations), (g) for
the group of editors of the paper we add the authorizations to read and review
the paper and the negative authorization to write the paper (these are also
redundant authorizations).

With this model we are able to create a rich set of authorizations that has a
clear motivation and is associated with the structure of a concrete application.
The conflicts detected would correspond to anomalies that relate with possible
conflicts of interest.

We have run Policy Incompatibility and Policy Minimization services on
random samples of the PMC dataset, while we have run the Separation of Duty
satisfiability service on random samples of the DBLP dataset, enforcing SoD
constraints on author and editor roles for the same conference/journal issue. To
better evaluate the performance of our technique, we used two different reasoners
to enforce the Separation of Duty : HermiT [104] and Pellet [107]. HermiT is
based on a novel hypertableaux calculus, which provides a particularly efficient

2http://www.ncbi.nlm.nih.gov/pmc/
3http://dblp.uni-trier.de/

3.8. IMPLEMENTATION AND EXPERIMENT 91

reasoning. Pellet is based on the tableaux algorithms developed for expressive
DL.

3.8.1 Experimental results

Experiments have been run on a PC with two Intel Xeon 2.0GHz/L3-4MB
processors, 8GB RAM, four 1-Tbyte disks and Linux operating system. The
results of the experiments are reported in the following graphs. Each observation
is the average of the execution of ten runs.

The first set of experiments aimed at evaluating how the performance of
the Policy Incompatibility service evolves with the increase in the number of
authorizations. Figure 3.9(a) reports the observed performance. It is clear that
this solution is applicable for policies with a relatively small number of autho-
rizations. For large policies, the simplicity in the definition of the verification
rules is associated with a large computational cost.

The second set of experiments aimed at evaluating the response time of the
Policy Minimization service with the increase of the number of authorizations.
Figure 3.9(b) reports the results of these experiments, which exhibit response
times for the same policies that are significantly larger than those observed in
the previous experiments. The specific testcase is characterized by a large num-
ber of redundant authorizations and in general the analysis required for the
identification of redundant rules requires to produce a large number of deriva-
tions. As presented in [81], policies are often unnecessarily complicated due to
redundancies and for the cases typically considered in these analyses the num-
ber of authorizations is relatively small and this makes the approach presented
in Section 3.6 acceptable. However, for the largest policies considered in our
experiments, a significant benefit can be obtained from the use of tools, like the
reasoners able to efficiently process DL structures, which require a different and
more complicated representation of the problem.

The third experiment aimed at evaluating the performance of the Separation
of Duty service, considering the use of two reasoners. We were also interested in
analyzing the behaviour of the pruning phase, to verify its impact on the per-
formance. As depicted in Figure 3.9(c), both HermiT and Pellet offer adequate
performance for up to 3000 role authorizations. HermiT offered better perfor-
mance and we restricted the analysis of the performance for larger configurations
only to HermiT.

In Figure 3.9(d) we can see how the performance evolves with the increase
of the number of role authorizations. Even for extremely large policies (more
than 35,000 role authorizations), the response times remain adequate for the
profile of the security design activity, which operates in sessions that have long
duration.

The optimization based on pruning described in Section 3.7 proves to be
able to offer a significant contribution. Figure 3.9(e) shows the ratio between
the time saved by the optimization and the time spent to execute the pruning
phase. We omit to analyze the curve in detail; we synthetically observe that the

92 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

(a) Policy Incompatibility performance.

(b) Policy Minimization performance.

3.8. IMPLEMENTATION AND EXPERIMENT 93

(c) Separation of Duty analysis performance.

(d) Separation of Duty analysis performance.

94 CHAPTER 3. POLICY ANALYSIS AND HARMONIZATION

(e) Ratio between the overall gained time and the time spent to do the pruning phase.

(f) Policy Incompatibility as Separation of Duty.

3.8. IMPLEMENTATION AND EXPERIMENT 95

ratio remains always above 30 and reaches values near to 200, offering robust
support to the utility of this optimization.

As discussed in Section 3.7, the approach used for the management of Sep-
aration of Duty constraints can be adapted to solve the Policy Incompatibility
problem. Figure 3.9(f) reports the performance observed using this approach,
offering a remarkable performance increase compared to the normal approach
depicted in Figure 3.9(a).

4
Policy Minimization

Access control policies used in real systems are often unnecessarily large due to
redundancy. Since the size of the policy is one of the main factors that determine
the cost of managing the security configuration of a system, minimizing the size
of a policy can ease the management of the policy itself and can reduce the
cost of the management process. Furthermore the size of a policy influences the
performance of the access control system, and thus minimizing the size of the
policy can improve the access control system performance [74,119].

Although redundancy seems a natural and quite simple concept, providing
a formal definition of it in case of access control policies is not trivial for several
reasons. One of the reasons is that we may have to deal with conflicts between
authorizations that may influence the result of our redundancy detection pro-
cess. Another reason is that at a certain point during our redundancy detection
process we may consider as redundant a subset of the authorizations in the
policy, and the choice of the authorizations to effectively tag as redundant may
influence the redundancy of the others. In the following, we are going to survey
several definitions of redundancy that were presented in the literature. Al-Shaer
et al. in [1–3] define a rule r as redundant iff there are other rules that produce
the same actions as r, such that the removal of r does not affect the security
policy. A similar definition can be found in the work of Kolovski et al. [67],
which defines a policy element as redundant if its removal does not change the
final behavior of the policy. Also Liu et al. [74] and Yuan et al. [119] agree with
the definition of redundancy given above by saying that a rule is redundant iff
its removal does not influence at all the behavior of the security policy. All
these authors give a very similar definition of redundancy (which we call basic
definition in the following) and we can consider all the definitions as equivalent
to saying that an authorization (or a rule) is redundant iff it does not affect

97

98 CHAPTER 4. POLICY MINIMIZATION

the behavior of the access control mechanisms (i.e., its presence or absence in a
policy passes unnoticed). The main problem of this definition is that, although
it is very simple and intuitive, it often lacks in precision and flexibility: the
definition of behavior of a policy is usually not specified in a formal way and
it is only defined in terms of a specific and concrete access control system. Hu
et al. [57] try to overcome this problem by providing a more formal definition,
saying that a rule r is redundant in case the authorization space (which is a
collection of access requests to which a policy element is applicable) derived
from the policy that contains r is the same as the one derived from the policy
without r.

Although the definition given above seems clear, it presents subtle side-
effects that we show with a simple example. Let P be a policy composed by
the authorizations a1, a2, a3 where a1 produces exactly the same effect as the
combination of authorizations a2 and a3.

A first problem is that the basic definition of redundancy is not invariant
w.r.t. the decisions of our redundancy-removal process. This fact means that
a rule may be considered redundant at a certain point in time during the
redundancy-removal process, and lose this property at a later time. For in-
stance, if we consider the policy P , the redundant authorizations are a1, a2, a3

(i.e., the complete policy), but if we remove authorization a3, then a1 is not
redundant anymore. This means that we cannot safely remove sets of redun-
dant authorizations and the definition cannot be applied looking only at the
starting policy state. The definition of redundancy should take into account all
the decisions taken during the redundancy-removal process.

Furthermore, by iteratively removing authorizations that satisfy the basic
definition, we usually do not obtain a unique solution. Rather, we can ob-
tain several equivalent policies with different number of authorizations. For
instance, in our example both policies {a1} and {a2, a3} are equivalent and
redundancy-free, but they have different size. The fact that the basic definition
of redundancy does not take into account the number of authorizations in the
final policy can be surprising, since the main motivation behind the develop-
ment of redundancy detection techniques is the improvement of access control
mechanisms’ performance, which primarily depends on the size of the access
control policies. This aspect of the redundancy problem is important, because
an effective redundancy-removal process should always aim at computing the
minimum redundancy-free version of the given policy, not limiting the goal to
the identification of one of the redundancy-free versions.

An underlying assumption in all the previous definitions is that the only
way on which we can act on a policy is by removing redundant authorizations.
This assumption introduces some limitations in the search for performance im-
provements. For instance, if P is a policy with 6 authorizations, there may exist
another policy P ′ that is equivalent to P but it contains only 4 authorizations
that were not in P . In this case, we should prefer P ′ over P because it can lead
to an improvement in system performance. We consider as another aspect of the
redundancy problem the computation of the policy that models the behavior of
the system with the minimum number of authorizations.

4.1. MODEL 99

It is then obvious that the basic definition of redundancy is not enough for
handling this issue effectively. There is the need of one or more definitions for
several aspects of the redundancy problem that take into account the size of
the resulting policy, and the dependency between actions performed at different
steps of the redundancy-removal process.

In this Chapter we present a formalization of the redundancy problem in
access control policies that considers three different ways in which a security
administrator can act on a policy containing redundancy. In the first approach,
the administrator can compute an equivalent policy that does not contain re-
dundancy anymore, i.e., she computes an irreducible policy. However, given a
certain policy there usually are several irreducible versions of the same policy.
Given the fact that the number of authorizations of the policy is one of the ma-
jor factors that influence the management cost of the policy itself, in the second
approach the security administrator identifies among the irreducible policies ob-
tained by the original policy one with the minimum number of authorizations,
which is the minimum irreducible policy. With the third approach, the security
administrator may be interested in computing the representation of the access
control system with the minimum number of authorizations, i.e., the minimum
policy.

4.1 Model

Due to the complexity of the minimization problem in the following we will use
a simplified version of the IT Security metamodel presented in Section 2.2.2
containing the following entities:

• Principals: represent users and groups of principals. Each Principal may
contain one or more other Principals and this fact is represented by the
function contains:Principal→2Principal. The function contains+:
Principal→2Principal is the transitive closure of contains.

• Actions: represent the actions that users can execute. Each Action may
be composed by one or more Actions and this fact is represented by the
function composed :Action→2Action. The function composed+:
Action→2Action is the transitive closure of composed.

• Resources: represent the resources on which users can act. Each Re-
source may contain one or more Resources and this fact is represented by
the function containsResources:Resource→2Resource. The function con-
tainsResources+:Resource→2Resource is the transitive closure of contain-
sResources.

An instance M of our model is a list of Principals, Actions and Resources
with the associated functions1. �P , �A and �R are partial orders defined
over Principals, Actions and Resources respectively. For instance, given two

1The hierarchies defined in M must be acyclic.

100 CHAPTER 4. POLICY MINIMIZATION

Figure 4.1: Targets Hierarchy.

principals p1 and p2 we say that p1 �P p2 iff p1 ∈contains+(p2) ∪ {p2}. The
definition of �A and �R can be obtained in a similar way (the fact that �P ,
�A and �R are partial orders is enforced by the fact that the hierarchies over
Principals, Actions and Resources are acyclic). We say that an element of one of
the hierarchies inM is primitive iff it is a leaf of the hierarchy (e.g., a principal
p is a primitive element iff contains(p) = ∅).

We assume that the assignment of permissions to users can be derived from
the system, e.g. in Role-Based Access Control (RBAC) [101] the user-permission
assignment matrix can be directly computed from the user-role assignment and
the role-permission assignment matrices.

The basic element about which we can express access control decisions is
called a Target, and it is defined in the following way:

Definition 1. Target: a target consists of a Principal p, an Action a and a
Resource r. We represent a target as a triple < p, a, r >. We say that a target
< p, a, r > is primitive iff p, a and r are primitive elements.

Given two targets t1 =< p1, a1, r1 > and t2 =< p2, a2, r2 >, we say that t1
implies t2, denoted by t1 �T t2, iff p1 �P p2 ∧ a1 �A a2 ∧ r1 �R r2. The partial
order �T defines the Target Hierarchy THM, shown in Figure 4.1. Primitive
targets are the leafs of the hierarchy.

Security administrators can define access rights on the targets by means of
authorizations, which are defined in the following way:

Definition 2. Authorization: An authorization consists of a triple composed
by a set of Principals P , a set of Actions A and a set of Resources R. Each
authorization has a sign s that can be + or −. It is used in order to state,

4.1. MODEL 101

respectively, whether an authorization is positive (i.e., it grants the permission
to do something) or negative (i.e., it denies the permission to do something).
We graphically represent an authorization in the following way: < s, P,A,R >.

An authorization auth =< s, P,A,R > defined over the model M is asso-
ciated in an unique way to a set of Targets Tauth = P × A × R on which the
authorization acts. Without loss of generality, we can express access control
decisions only in terms of primitive targets (and thus we consider only primitive
targets when we compute the set Tauth). Given an authorization, the following
functions can be used in order to obtain the elements contained in it:

• principals:Authorization→2Principal retrieves the set of Principals involved
in the authorization,

• actions:Authorization→2Action retrieves the set of Actions involved in the
authorization,

• resources:Authorization→2Resource retrieves the set of Resources involved
in the authorization,

• sign:Authorization→ {+,−} retrieves the sign of the authorization.

Given a set of authorizations ∆ and an authorization a ∈ ∆, the region defined
by a over ∆ is R∆

a = {a′ ∈ ∆|Ta ∩ Ta′ = ∅}. The region of an authorization
a contains all the authorizations that may interact with a. We can define a
hierarchy over authorizations in the following way: given two authorizations
auth1 and auth2, we say that auth1 is dominated by auth2, i.e., auth1 � auth2,
iff Tauth1

⊆ Tauth2
.

Example 2. Figure 4.2 shows a graphical representation of a set of authoriza-
tions applied over a set of targets. This example will be used in the next sections
as running example. The graph is composed by two different components (a) the
authorizations, represented by squares labeled with a sign, and (b) the targets,
represented by circles (this set of targets represent a part of the target hierarchy
shown in Figure 4.1). Edges between authorizations represent the � ordering
relation, whereas edges between targets represent the �T ordering relation. In
this representation, given an authorization auth the set Tauth is defined by all
the nodes in the target hierarchy reachable from the node representing auth. For
instance, if we consider the authorization A2 then TA2 is the set {T0, T1, T6}.
The region defined by the authorization A2 is {A1, A2, A3, A4}.

Let auth be an authorization. auth specifies an access control decision on
the targets on which it can act (represented by the sign sign(auth)), and we
represent this fact by saying that auth assigns a label sign(auth) to the targets
in Tauth. We represent the basic access control decision by means of the concept
of Privilege, which represents a Target labeled with a sign s, defined in the
following way:

102 CHAPTER 4. POLICY MINIMIZATION

Figure 4.2: Graphical representation of authorizations

Definition 3. Privilege: A privilege consists of a target t =< p, a, r > and a
sign s ∈ {+,−} (inherited from an authorization). We graphically represent a
privilege in the following way: < s, p, a, r >. If the sign s is + then the privilege
represents the fact that the Principal p is allowed to do the Action a on the
Resource r. On the contrary, if the sign s is − then the privilege represents the
fact that the Principal p is not allowed to do the Action a on the Resource r.
We say that a privilege < s, p, a, r > is primitive, i.e., it does not imply other
privileges, iff the target < p, a, r > is primitive.

Given a privilege the following functions can be used in order to obtain the
elements of the model contained in it:

• principal :Privilege→Principal retrieves the Principal involved in the priv-
ilege,

• action:Privilege→Action retrieves the Action involved in the privilege,

• resource:Privilege→Resource retrieves the Resource involved in the privi-
lege,

• sign:Privilege→ {+,−} retrieves the sign of the privilege.

Each authorization auth, thus, grants a set of privileges (i.e., a set of labeled
targets). More formally, we say that each authorization auth associates a sign s
to the targets in the set Tauth. The procedure shown in Algorithm 1 can be used
to compute the set of privileges associated with an authorization. We denote
the set of privileges associated with the authorization auth as privileges(auth).

Due to the fact that authorizations and privileges have a sign, we may have
conflicts between different authorizations and privileges in the same policy P .

4.1. MODEL 103

Algorithm 1: privileges procedure for authorizations
Input : Authorization auth
Output: Privileges
begin

Privileges = ∅;
for p ∈ principals(auth), a ∈ actions(auth), r ∈ resources(auth) do

for p′ ∈ contains+ (p)
⋃{p}, a′ ∈ composed+ (a)

⋃{a},
r′ ∈ containsResources(r)⋃{r} do

if contains(p′) = ∅ ∧ composed(a′) = ∅ ∧ containsResources(r′) = ∅ then
Privileges = Privileges

⋃{< sign(auth), p′, a′, r′ >};

Several approaches have been proposed in the literature for the solution of con-
flicts between authorizations [?,16,76]. Our approach is not tied to any particu-
lar conflict resolution strategy, indeed it can be used with any conflict resolution
strategy that satisfies certain requirements, explained in detail in Section 4.1.1.
Let M be a model, let PM, AM and RM be the set of principals, actions and
resources associated with the model, and let ∆ be the set of all possible autho-
rizations that can be defined overM. We represent a conflict resolution strategy
as a function ψ : PM × AM × RM × P(∆) → ∆ ∪ {⊥} that takes as input a
target < p, a, r > and a set of authorizations A and returns the authorization
in A that determines the privilege granted by the set A w.r.t. the < p, a, r >
(if no authorization in ∆ can be applied to < p, a, r > then ψ returns ⊥).

Let ∆ be a set of authorizations, we denote with privileges(∆, ψ) the set of
privileges granted by ∆ w.r.t. the conflict resolution strategy ψ. In this case
privileges(∆, ψ) can be computed by using the procedure shown in Algorithm
2 that returns the set of labeled targets associated with ∆ w.r.t. the strategy
ψ. Given a set of authorizations ∆, a conflict resolution strategy ψ and an
authorization auth, we say that ∆ dominates auth w.r.t. ψ, denoted by auth �
∆, iff privileges(auth) ⊆ privileges(∆, ψ).

Algorithm 2: privileges procedure for sets of authorizations
Input : Set of authorizations ∆, Conflict resolution strategy ψ
Output: Privileges
begin

Privileges = ∅;
for auth ∈ ∆ do

for p ∈ principals(auth), a ∈ actions(auth), r ∈ resources(auth) do
for p′ ∈ contains+ (p)

⋃{p}, a′ ∈ composed+ (a)
⋃{a},

r′ ∈ containsResources(r)⋃{r} do
if contains(p′) = ∅ ∧ composed(a′) = ∅ ∧ containsResources(r′) = ∅
then

a = ψ(p′, a′, r′,∆);

Privileges = Privileges
⋃{< sign(a), p′, a′, r′ >};

Definition 4. Policy: A policy consists of a set of authorizations ∆ and a
conflict resolution strategy ψ. We represent a policy as a pair < ∆, ψ >.

104 CHAPTER 4. POLICY MINIMIZATION

Let P =< ∆, ψ > be a policy, we denote with P ′ ⊂ P a policy P ′ =< ∆′, ψ′ >
such that ∆′ ⊂ ∆ and ψ′ = ψ.

Each policy is identified by its behaviour, which is defined in the following
way:

Definition 5. Behaviour of a Policy: the behaviour of a policy P is the set
of privileges granted, directly or indirectly, by the policy.

The behaviour of a policy P can be computed using the function privileges
presented in Algorithm 2, thus we can check whether two different policies are
equivalent by checking whether they enable the same set of privileges. The
behaviour of the policy models how the real access control system behaves.
Given the fact that the same behaviour can be modeled by means of several
different policies, the equivalence relation between policies is defined in the
following way:

Definition 6. Equivalence of Policies: Two policies
P =< ∆, ψ > and P ′ =< ∆′, ψ′ > are equivalent, P ≡ P ′, iff they have the
same behaviour, i.e., iff privileges(∆, ψ) = privileges(∆′, ψ′).

Let P be a policy defined over the model M. There exists always a policy
P ′ expressed only in terms of primitive elements ofM which is equivalent to P
and such that |P | = |P ′|. In order to obtain P ′ we can proceed in the following
way: we define an authorization < s, Pr′, A′, R′ >∈ P ′ for each authorization
< s, Pr,A,R >∈ P where Pr′, A′ and R′ contains only the primitive elements
that can be derived from the elements in Pr, A, and R respectively. The
fact that P ≡ P ′ follows trivially from the definition of equivalence and from
the privilege procedure. In the following we can thus consider, without loss of
generality, policies expressed only in terms of primitive elements.

4.1.1 Conflict resolution strategies

Let M be a model, let PM, AM and RM be the set of principals, actions
and resources associated with the model and let ∆ be the set of all possible
authorizations that can be defined over M.

A conflict resolution strategy is a function ψ : PM × AM × RM × P(∆) →
∆∪{⊥}. ψ takes as input a set of authorizations ∆ and a target < p, a, r >, and
it returns as output the authorization auth ∈ ∆ that is applied over < p, a, r >
according to the strategy (if no authorization in ∆ can be applied to < p, a, r >
then ψ returns ⊥).

A conflict resolution strategy ψ may satisfy one or more of the following
properties:

• Polynomiality: we say that ψ is polynomial (in the size of ∆ and of
the target hierarchy) iff there is an algorithm that implements ψ which is
in P,

4.1. MODEL 105

• Completeness: we say that ψ is complete iff for any possible set of
authorizations ∆ and for any target t =< p, a, r > if ∃auth ∈ ∆ :<
p, a, r >∈ Tauth then ψ(p, a, r,∆) 6=⊥,

• Monotonicity: we say that ψ is monotone iff for any possible set
of authorizations ∆ and for any target t =< p, a, r > then ψ(p, a, r,∆) =
ψ(p, a, r,∆∪{auth}) holds for any authorization auth such that< p, a, r >6∈
Tauth. A monotone conflict resolution strategy is one that produces a re-
sult that depends only on the authorizations in ∆ that are related with
< p, a, r > (i.e., adding unrelevant authorizations do not change the out-
come of the strategy).

We say that ψ is a valid conflict resolution strategy for our framework, iff ψ
satisfies the three properties above.

For instance, we can represent the Denial takes precedence strategy in the
following way:

ψDTP (p, a, r,∆) =



ai if < +, p, a, r >∈ privileges(ai)∧
6 ∃aj ∈ ∆ \ {ai} :

< −, p, a, r >∈ privileges(aj)

ai if < −, p, a, r >∈ privileges(ai)

⊥ otherwise

It is easy to see that the Denial takes precedence strategy satisfies all the re-
quirements stated above.

Example 3. If we consider only the authorizations A5 and A6 of Figure 4.2,
we can define the sets (a) TA5 = {T3, T4, T7}, and (b) TA6 = {T4, T5, T8}.
We can notice that there is an intersection between TA5 and TA6, and the two
authorizations have a different sign. The application of the strategy Denial takes
precedence means that for the target T4 (i.e., the intersection) will be applied
the authorization A6, the negative one.

The Most Specific Wins strategy can be represented by the following function
ψMSW :

ψMSW (p, a, r,∆) =



ai if < p, a, r >∈ Tai∧
6 ∃aj ∈ ∆ \ {ai} :

(< p, a, r >∈ Taj ∧ aj � ai)
⊥ if ∃ai, aj ∈ ∆ :< p, a, r >∈ Tai
∧ < p, a, r >∈ Taj∧
ai 6� aj ∧ aj 6� ai

⊥ otherwise

It is easy to see that ψMSW is not complete because it may return ⊥ also in
case there are authorizations in ∆ that can be applied to the target < p, a, r >
but these authorizations are not comparable.

106 CHAPTER 4. POLICY MINIMIZATION

Example 4. If we consider only the authorizations A2 and A3 of Figure 4.2,
we can define the sets (a) TA2 = {T0, T1, T6}, and (b) TA3 = {T0}. We can
notice that A3 � A2 because TA3 ⊆ TA2. For instance, for the target T0 we can
apply two authorizations A2 and A3. The Most Specific Wins strategy chooses
to apply the authorization A3 because it is more specific than A2.

Although our framework is independent from a specific conflict resolution
strategy, for concreteness in the the running example and in Section 4.4 we con-
sider the conflict resolution strategy ψ that applies the Most Specific Wins and
Denial takes precedence criteria. This strategy can be modeled in the following
way:

ψ(p, a, r,∆) =

{
ψMSW (p, a, r,∆) if ψMSW (p, a, r,∆) 6=⊥
ψDTP (p, a, r,∆) otherwise

ψ satisfies all the requirements stated above.

4.2 Redundancy

Sometimes real policies contain redundancy [81], for several reasons caused by
the evolution of security policies during time. Although the concept of redun-
dancy is easy to understand, defining it formally is not trivial, especially, as in
our case, when we consider conflicts.

A simple definition of redundancy may be the following: “Given a policy P ,
we can define an authorization auth as redundant when it does not add any-
thing to the behaviour of P .”. The process of removing redundancy is called
redundancy-removal process. The problem of this definition is that redundancy
is not invariant, i.e., it depends on the sequences of decisions taken during the
redundancy-removal process. Indeed, by solving a conflict between authoriza-
tions or by removing an authorization from the policy, we may change the set of
authorizations that are redundant. As a consequence, the sequence of decisions
taken during the redundancy-removal process in order to achieve a redundancy-
free equivalent policy, may lead to significantly different results in terms of size
of the final policy.

In the following we try to formalize the redundancy problem. The proof of
all the theorems are given in the appendix.

We start by defining the concept of redundancy condition, which refines the
definition given above.

Definition 7. Redundancy Condition: An authorization auth ∈ P satisfies
the redundancy condition w.r.t. the policy P =< ∆, ψ > iff ∀ < p, a, r >∈
Tauth :
sign(ψ(p, a, r, R∆

auth \ {auth})) = sign(ψ(p, a, r, R∆
auth)) ∧

ψ(p, a, r, R∆
auth \ {auth}) 6=⊥.

In other words, auth satisfies the redundancy condition w.r.t. P iff its pres-
ence or absence does not influence the access control decision for any possible
target < p, a, r > on which it can act.

4.2. REDUNDANCY 107

Example 5. For instance, authorization A2 in Figure 4.2 satisfies the redun-
dancy condition. The set TA2 contains the targets T0, T1 and T6 and for each
of these targets the presence of A2 does not influence the behavior of the policy.
Hence, we can safely remove A2.

Given a policy P , we can remove one by one all the authorizations that
satisfy the redundancy condition without changing the behaviour of the policy.
However, by removing authorizations from P we may change the redundancy
condition for other authorizations. We model this phenomenon with the concept
of sequence of reductions.

Definition 8. Sequence of Reductions (SoR): let P0 be a policy, and let
P1, . . . , Pn be a sequence of policies. The sequence P0, P1, . . . , Pn is a sequence
of reductions iff it satisfies the following requirements:

• Pn ⊂ Pn−1 ⊂ . . . ⊂ P1 ⊂ P0,

• for each i ∈ {1, . . . , n}, Pi+1 = Pi \ {γi} and γi is an authorization that
satisfies the redundancy condition w.r.t. Pi,

• there are no authorizations in Pn that satisfy the redundancy condition
w.r.t. Pn.

We say that P0 is the begin of the sequence, and that Pn is the end of the
sequence. We say that the reduction from Pi to Pi+1 is a step in the sequence.

Due to the fact that the authorization removed at each step satisfies the
redundancy condition, the behaviour of the policy does not change along the
sequence of reduction, as stated in Theorem 1.

Theorem 1. Let P0, . . . , Pn be a sequence of reductions. All the policies in the
sequence have the same behaviour, i.e., they are equivalent.

An interesting property of SoRs is that once we reach a point Pi in a sequence
P0, . . . , Pn then all the authorizations that satisfy the redundancy condition at
Pi satisfy the redundancy condition also at the following steps of the sequence, as
stated in Theorem 2. This means that, although the choice of the authorization
to remove may influence the final outcome, the order in which we remove these
authorizations does not influence the result (i.e., what influences the size of the
final policy is only Γ = {γ0, . . . , γn−1} and not the order in the SoR in which
we remove authorizations that satisfy the redundancy condition).

Theorem 2. Let P0, P1, . . . , Pn be a sequence of reductions. Let auth ∈ P0 be
an authorization such that there exists a value j ∈ {1, . . . , n} for which ∀j′ < j :
auth ∈ Pj′ and auth satisfies the redundancy condition w.r.t. Pj. In this case
auth satisfies the redundancy condition w.r.t. all Pi ∪ {auth} where j < i ≤ n.

Another important property of SoRs is stated in Theorem 3. The theorem
says that whenever there are two equivalent policies P and P ′ such that P ′ is
a subset of P , then there is always at least a sequence of reductions that starts

108 CHAPTER 4. POLICY MINIMIZATION

from P and passes through P ′. This means that we can reduce the problem of
finding a redundancy-free version of a policy P to the one of finding an adequate
SoR starting from P .

Theorem 3. Let P be a security policy and let P ′ ⊂ P be another policy such
that P and P ′ are equivalent. There is always at least one sequence of reductions
of the form P, . . . , P ′, . . . , Pn.

We can now define the concept of redundancy-free policy, called irreducible
policy, in the following way:

Definition 9. Irreducible Policy (IP): A policy P is an irreducible version
of the policy P ′ iff it does not contain any authorization that satisfies the redun-
dancy condition w.r.t. P and P ⊆ P ′. This is equivalent to say that there is a
sequence of reductions from P ′ to P , i.e., P ′, . . . , P .

From Theorem 3 follows that in case we reach a policy P in a SoR such that
there are no authorizations satisfying the redundancy condition w.r.t. P , then
we can soundly say that an equivalent policy P ′ ⊂ P does not exist. Hence given
a policy P , we can compute an equivalent irreducible version P ′ in a simple,
although sometimes inefficient, way. Initially let P ′ = P , then we iterate over
all the authorizations in P ′, and we check for each authorization a ∈ P ′ whether
it satisfies the redundancy condition w.r.t. P ′ or not, if this is the case then we
remove the authorization (i.e., P ′ = P ′ \ {a}). We iterate the above procedure
until no more authorizations satisfy the redundancy condition. It is easy to see
that this algorithm is polynomial w.r.t. the number of authorizations in P .

Checking whether a certain policy P is irreducible or not is the Irreducible
Policy Problem (IPP) and it can be solved in P-TIME, as demonstrated by
Theorem 4.

Definition 10. Irreducible Policy Problem: Given a policy P , checking
whether P is irreducible is called Irreducible Policy Problem (IPP).

Theorem 4. The IPP is in P.

Example 6. Figure 4.3(a) shows an irreducible version of the policy in Fig-
ure 4.2. The new policy was obtained by removing the authorization A2 which
satisfies the redundancy condition, as shown in Example 5.

Given a policy P , several different irreducible versions of it may exist. In
order to improve the performance of access control mechanisms, a possible so-
lution is to compute the irreducible version of P with the minimum number of
authorizations. We call this policy a Minimum Irreducible Policy.

Definition 11. Minimum Irreducible Policy (MIP): A policy P is a min-
imum irreducible version of the policy P ′ iff a policy P ′′ does not exist such that
P ′′ is irreducible, P ′′ is equivalent to P ′, |P ′′| < |P |, P ⊆ P ′ and P ′′ ⊆ P ′. In
an equivalent way, we can say that P is a minimum irreducible version of the
policy P ′ iff P is the end of the longest SoR that can be computed starting from
P ′.

4.2. REDUNDANCY 109

The problem of checking whether a certain policy P is a minimum irreducible
policy with respect to the original policy P ′ is called Minimum Irreducible Policy
Problem.

Definition 12. Minimum Irreducible Policy Problem: Given two policies
P and P ′, checking whether P is a minimum irreducible policy with respect to
P ′ is called Minimum Irreducible Policy Problem (MIPP).

We are more interested in the the problem of finding a minimum irreducible
version of a given policy P (which is the search problem associated with the
MIPP). Since the associated decision problem is coNP-complete, the search
problem is NP-hard.

Theorem 5. The MIPP is coNP-complete.

Example 7. Although in Example 5, we have shown a redundancy-free version
of the policy in Figure 4.2, the resulting policy (obtained by removing A2) was
not the minimum irreducible one. Indeed a smaller irreducible policy can be
computed by removing A3 and A4 instead of A2. This policy, shown in Figure
4.3(b), is the minimum irreducible one, since no smaller irreducible policies
exist.

Given the fact that the behaviour of an access control system may be mod-
eled by means of different equivalent policies, security administrators may be
interested in computing the policy with the minimum number of authorizations
that models the system, i.e., the minimum policy.

Definition 13. Minimum Policy (MP): A policy P is said to be minimum
iff an equivalent policy P ′ does not exist such that |P ′| < |P |.

Given a policy P we can compute an irreducible policy P ′ equivalent to P
by removing authorizations that satisfy the redundancy condition. However, in
order to compute the minimum policy P ′′ we may have to define new autho-
rizations that do not exist in P or remove authorizations in P with the only
constraint that the resulting policy P ′′ must have the same behaviour as the
original one. The problem of checking whether a policy is minimum or not can
be defined in the following way:

Definition 14. Minimum Policy Problem: Given a policy P , checking
whether P is minimum is called Minimum Policy Problem (MPP).

Theorem 6. The MPP is coNP-complete.

We are more interested in the the problem of computing a minimum version
P ′ of a given policy P (which is the search problem associated with the MPP).
Since the associated decision problem is coNP-complete, the search problem
is NP-hard. It is worth pointing out that depending on the given policy P ,
the search problems associated with MIPP and MPP may do not have a unique
solution, i.e., there may be several different minimum irreducible and minimum
versions of the same policy P (all with the same size).

110 CHAPTER 4. POLICY MINIMIZATION

(a) IP (b) MIP (c) MP

Figure 4.3: Redundancy-free policies

Example 8. Although the policy computed in Example 7, is the minimum ir-
reducible policy, a smaller policy exists and it is shown in Figure 4.3(c)2. This
policy is the minimum policy.

4.3 Implementation

In this section, we present techniques for solving the MIPP and MPP problems.
We ignore the IPP because several algorithms were proposed in the literature
to solve this problem [8,57,67,74,119] (and also because any solution for MIPP
is a solution for IPP). In the following we show how MIPP and MPP can be
mapped on the Weighted SAT problem. The Weighted SAT problem is an
extension of the SAT problem, and it is defined as follows:

Definition 15. Weighted SAT: Given a set of variables U and a collection
C of clauses over U , computing, in case it exists, the truth assignment t : U →
{0, 1} which satisfies C and minimizes a certain cost function

∑
ui∈U ′ ki ∗ ui,

where U ′ ⊆ U and ki ∈ <, is called the Weighted Satisfiability Problem.

Section 4.3.1 presents how the MIPP can be mapped to the Weighted SAT
problem, whereas in Section 4.3.2 we present a heuristic technique for solving
MIPP. In Section 4.3.3 we present how the MPP can be mapped to the Weighted
SAT problem. In Section 4.3.4 we present an algorithm that uses a heuristic
approach to solve MPP. Section 4.4 presents some experimental results.

4.3.1 MIPP to Weighted SAT

We can map the MIPP to the Weighted SAT problem, and we can use efficient
SAT -solvers in order to identify the minimum irreducible version of the input
policy. Let P =< ∆, ψ > be the input policy, we want to produce a policy

2We assume that the parent node is equal to the union of its children.

4.3. IMPLEMENTATION 111

P ′ =< ∆′, ψ > such that ∆′ ⊆ ∆ and P ′ is a minimum irreducible version of
P . We denote with G the set privileges(∆, ψ).

We define a variable ai for each authorization ai ∈ ∆. Due to the fact
that the correspondence between variables and authorizations is clear, in the
following we switch freely between the two notations (e.g., sometimes ai may
refer to an authorization and sometimes it may refer to the variable associated
with that authorization). For simplicity’s sake, we do not present formulae in
CNF (this is not a problem because it is always possible to translate a formula
to an equivalent one in CNF).

The cost function min
∑
ai∈∆ ai aims at minimizing the number of autho-

rizations in the resulting policy (and thus it guarantees that the resulting policy
is the minimal irreducible one).

We still have to handle conflicts and the conflict resolution strategy in our
Weighted SAT instance. Our approach considers a general conflict resolution
strategy ψ. Let t =< p, a, r > be a target defined in our model, we denote with
Kt the set containing all the authorizations that act on the target t (i.e., Kt =
{ai ∈ ∆|t ∈ Tai}). Given a target t =< p, a, r > and a privilege p =< s, p, a, r >
we define C(p) in following way:

C(p) =
∨

X∈P(Kt)∧sign(ψ(p,a,r,X))=sign(p)

(
∧
ai∈X

ai ∧
∧

ai∈Kj\X
¬ai)

For each privilege pj ∈ G we add a constraint in the form C(pj), this con-
straint enumerates all the possible combinations of authorizations that effec-
tively grant the privilege pj . By enforcing these constraints we ensure that the
behavior of the resulting policy is equivalent to the behaviour of P . An autho-
rization ai ∈ ∆ is in ∆′ iff the variable associated with ai is set to one in the
result of the Weighted SAT problem. It is easy to see that the result of the
Weighted SAT problem produces a Minimum Irreducible Policy.

4.3.2 Heuristic Algorithm for MIPP

As described above the MIPP is a coNP-complete problem. Hence, in this
Section we propose a heuristic algorithm that allows to find, in an efficient way,
an irreducible policy close to one of the exact solutions.

Our approach, shown in Algorithm 3, is based on an iterative process. Let
P =< ∆, ψ > be the initial policy. At each iteration, the algorithm iterates
over the authorizations and for each authorization a computes its region R∆

a

by means of the computeRegion procedure. Then the algorithm checks whether
the authorization satisfies the redundancy condition w.r.t. P by means of the
isRemovable procedure, which takes as input (a) the selected authorization,
(b) the region, and (c) the resolution strategy. If the authorization a satisfies
the redundancy condition, then the algorithm removes it from the policy. The
algorithm ends when no more authorizations satisfy the redundancy condition
w.r.t. P ; this means that the algorithm has reached a fixed point, and from
Theorem 3 further reductions are not possible.

112 CHAPTER 4. POLICY MINIMIZATION

Algorithm 3: Heuristic Algorithm for MIPP
Input : Policy P , Conflict Resolution Strategy CRS
Output: MIP P
begin

bool removed;
repeat

removed = false;
for a ∈ P do

List region = computeRegion(a, P);
if isRemovable(a, region, CRS) then

P.removeAuthorization(a);
removed = true;

until removed;

In order to improve the performance of the algorithm, we can optimize the
computeRegion and the isRemovable procedures, by taking into account a spe-
cific conflict resolution strategy. For instance, if we consider the conflict reso-
lution strategy presented in Section 4.1.1 we can tune both procedures in the
following way. Let a be an authorization and P be the policy, the computeRe-
gion procedure can produce a restricted region R′a = Aa ∪Da ∪ Ia where Aa is
the set of direct ancestors of a (i.e., Aa = {a′ ∈ ∆|a � a′ ∧
6 ∃a′′ ∈ ∆ \ {a, a′} : (a � a′′ ∧ a′′ � a′)}), Da is the set of direct descendants of
a (i.e., Da = {a′ ∈ ∆|a′ � a ∧
6 ∃a′′ ∈ ∆ \ {a, a′} : (a′′ � a∧a′ � a′′)}) and Ia is the set of most specific autho-
rizations that have an intersection (at the target level) with a (i.e., Ia = {a′ ∈
∆|a′ 6� a∧ a 6� a′ ∧Ta ∩Ta′ 6= ∅∧ 6 ∃a′′ ∈ P \ {a, a′} : (a′′ � a′ ∧Ta ∩Ta′′ 6= ∅)}).
The region R′a is a subset of the region Ra and usually R′a is quite smaller than
Ra. In the same way we can improve the performance of the isRemovable pro-
cedure by leveraging the characteristics of the conflict resolution strategy, e.g,
first we may check whether the Most Specific Wins criterion can be applied;
if this is the case, then we need only to find the most specific authorization,
otherwise we know that if at least one negative authorization is in the region,
then the sign of the resulting authorization will be − otherwise +.

4.3.3 MPP to Weighted SAT

In order to obtain an exact solution to the MPP problem, we can map it to the
Weighted SAT problem, and we can use efficient SAT -solvers in order to identify
the minimum version of the input policy. Let P =< ∆, ψ > be the input policy,
we want to produce a policy P ′ =< ∆′, ψ > where P ′ is a minimum version of
P . We denote with G the set privileges(∆, ψ). Let k be |G| and n be |∆|.

We define the following variables:
• auth1, . . . , authn where each authi represents an authorization,
• pi,j for each i ∈ [1, n], j ∈ [1, k]. Each variable pi,j represents the fact that

the privilege pj ∈ G is assigned to the authorization ai,
The cost function min

∑
j∈[1,n] authj aims at minimizing the number of

authorizations in the resulting policy. We define the following clauses that aim

4.3. IMPLEMENTATION 113

Algorithm 4: Heuristic Algorithm for MPP
Input : Policy P =< ∆, ψ >
Output: Policy P ′ =< ∆′, ψ >
begin

∆′ = ∅;
Pr = privileges(∆, ψ);
List pList = new List(Pr);
while pList 6= ∅ do

p = pList[0];
pList = pList.remove(p);
added = false;

for a ∈ P ′ do
if isCompatible(p, a, Pr) then

added = true;
T = privileges(a);
if p 6∈ T then

principals(a) = principals(a) ∪ principal(p);
actions(a) = actions(a) ∪ action(p);
resources(a) = resources(a) ∪ resource(p);
break;

if !added then
a =< {principal(p)}, {action(p)}, {resource(p)} >;

∆′ = ∆′ ∪ {a};

at ensuring that the resulting policy is equivalent to the initial policy:

• For each privilege pj we define a clause in the form
∨
i∈[1,n] pi,j . The clause

aims at enforcing the fact that the privilege has to be assigned to at least
one authorization.

• For each authorization authi we define the clauses in the form ¬pi,j∨authi
for each j ∈ [1, k], which enforce the fact that if one of the privileges is
assigned to an authorization, then the variable associated with the autho-
rization is enabled.

• For each pair of privileges pl and pm such that pl 6= pm and sign(pl) 6=
sign(pm) and
privileges({<{principal(pl), principal(pm)} ,{action(pl),
action(pm)} ,{resource(pl),resource(pm)} >}) 6⊆ Z we define the clauses
in the form pi,l ∨ pi,m for each i ∈ [1, n] that enforce the fact that two
incompatible privileges cannot be assigned to the same authorization.

The resulting policy P ′ is obtained by creating the authorizations authi
where i ∈ [1, n] to which at least one privilege has been assigned to.

4.3.4 Heuristic Algorithm for MPP

We defined a heuristic algorithm, shown in Algorithm 4, which iteratively tries
to build the minimum policy by adding a privilege at a time. First the algo-
rithm computes the set of privileges granted by the policy P given as input.
The algorithm tries to group together compatible privileges. In order to do this
it iterates over the privileges, and at each iteration it tries to add the current
privilege to the already existing authorizations. If no compatible authorization

114 CHAPTER 4. POLICY MINIMIZATION

Original Size Final Size Delta Time %

43 22 25.58%
70 29 10.19%
88 25 3.78%
151 47 60.74%
184 58 58.86%
219 76 83.08%
253 92 90.64%
295 98 96.88%
360 112 99.19%
451 149 99.49%

Table 4.1: Comparison between the two MIPP methods

exists, it creates a new authorization. The isCompatible procedure takes as in-
put a privilege p, an authorization a and the set of privileges Pr granted by the
original policy and checks whether a and p can be merged or not, i.e., isCompat-
ible(p,a,Pr) = privileges({<principal(p)∪ principals(a), action(p)∪ actions(a),
resource(p)∪ resources(a) >}) ⊆ Pr∧sign(p) = sign(a).

4.4 Experimental Results

We implemented a prototype for the evaluation of the performance of the tech-
niques presented in this paper. The prototype consists of a Java module that
invokes the implementation of the four approaches presented above. The exact
solutions use the SAT4J3 SAT solver. Since there are no freely available large
datasets of real security policies, we chose to test our prototype against poli-
cies built according to an interpretation of the data in bibliographic databases.
We used randomly selected subsets of PubMed Central4 (PMC) which provides
a rich set of attributes and relationships that represent a real and extensive
social network. It has rich information about journals, with a description of
editorships and the funding of papers.

Given a random sample of the PMC database, we built an instance of our
model in the following way: (a) for each author or editor, we create a principal,
(b) for each group of authors that have written a paper together, we create
a principal containing the principals associated with the authors, (c) for each
group of editors of a conference or a journal, we create a principal containing the
principals associated with the groups (d) we defined three different actions read,
write and review. We then created the following authorizations: (a) for each
paper author we create the authorizations to read and write the paper and the
negative authorization to review the paper, (b) for each editor of the issue of the
journal containing the paper we add the authorizations to read and review the

3http://www.sat4j.org - Sat4j library for Java
4http://www.ncbi.nlm.nih.gov/pmc/

4.4. EXPERIMENTAL RESULTS 115

Original Size Final Size Delta Time %

6 4 93.67%
12 4 83.94%
19 4 76.70%
23 8 99.86%
28 9 99.95%
32 10 99.98%
45 11 99.99%
62 13 99.99%

Table 4.2: Comparison between the two MPP methods

paper and the negative authorization to write the paper, (c) for each author that
receives funding from the same grant that funded the paper, we add a negative
authorization to review the paper and an authorization to read the paper, (d) for
each group representing the institution to which the author is affiliated, we add
the authorization to read the paper, (e) for each group representing the editorial
board of the journal that published the paper we add the authorizations to
read and review the paper and the negative authorization to write the paper.
Experiments have been run on a PC with two Intel Xeon 2.0GHz/L3-4MB
processors, 12GB RAM, four 1-Tbyte disks and Linux operating system. Each
observation is the average of the execution of ten runs.

The results of the exact approach for the MIPP problem are shown in Figure
4.4(a), whereas the performance of the heuristic algorithm are shown in Figure
4.4(b). Table 4.1 shows a detailed comparison between the results of the two
approaches. The heuristic approach is always able to identify the exact solution
and the savings in execution time range from 3.78% to 99.49%.

The results of the exact approach for the MPP problem are shown in Figure
4.4(c), whereas the performance of the heuristic algorithm are shown in Figure
4.4(c). Table 4.2 shows a detailed comparison between the results of the two
approaches. Also in this case the heuristic approach is always able to identify the
exact solution and the savings in execution time range from 76.70% to 99.99%.
However the MIPP exact solution scales better than the MPP one.

Empirical results show that both heuristic algorithms could be a good ap-
proximation of the exact ones. They allow the analysis of real policies with a
good precision and with good response time. Figure 4.4(e) and Figure 4.4(f)
compare the performance of the two heuristic algorithms, both in terms of exe-
cution time and reduction. The execution time of the two algorithms is very sim-
ilar with policy with a size lower than 5000 authorizations. After that threshold
the MIPP algorithm performs better. On the other hand, the MPP algorithm
allows to compute smaller policies than the MIPP. The MPP allows to obtain a
policy which is usually 20% smaller than the policies resulting from the MIPP,
but its execution may take more time.

116 CHAPTER 4. POLICY MINIMIZATION

(a) SAT MIPP.

(b) Heuristic MIPP.

4.4. EXPERIMENTAL RESULTS 117

(c) SAT MPP.

(d) Heuristic MPP.

118 CHAPTER 4. POLICY MINIMIZATION

(e) Time Comparison.

(f) Size Comparison.

5
Policy Refinement

The Policy Refinement is the process that translates the policy pu into an equiv-
alent policy pl represented at a lower abstraction layer. In this context, “pu
equivalent to pl” means that the enforcement of pl (the policy at the lower
level) guarantees the enforcement of pu (the policy at the higher level).

Therefore, a set of high-level business requirement can be refined to a set
of configurations for the security controls available in the network/distributed
system (where there are the resources) to protect, that, once deployed, satisfy
the requirements.

5.1 Overall workflow

Figure 5.1 shows the the workflow for the generation from IT policies of abstract
authentication and authorization configurations. It is composed by the following
steps:

• Retrieve the IT Policy and the landscape

• Determine the Enrichment Type

• Enrich the IT Policy

• Choose and Apply a Refinement Strategy

• Generate the Abstract Configurations

Process the IT Policy and the landscape. The first step is to retrieve the
IT Policy and the landscape from the PoSecCo repository. Internal repre-
sentations of the IT Policy and Landscape descriptions are created. The

119

120 CHAPTER 5. POLICY REFINEMENT

Refinement

Enrichment

Landscape IT Policy

Enriched
IT Policy

Abstract
Configurations

Process IT Policy and
landscape description

Determine
Enrichment type

Enrichment

Choose
Refinement strategy

Generate
Abstract Configuration

Figure 5.1: Application Configuration Service general workflow.

formats of these representations support the evaluation of queries against
these descriptions.

Determine Enrichment Type. The IT Policy refers to entities that may cor-
respond to one or more entities in the landscape as represented at the IT
level in the PoSecCo Repository. Each entity may be specialized (i.e., en-
riched) according to its profile, as described in the landscape or as provided
by the security designer in the interaction with the tool supporting this
phase. For instance, ITInterfaceModels may correspond to one or more
ITInterfaces in the landscape. Each ITInterface in the landscape has a
particular type (HTTPMethod for web applications, WebServiceOpera-
tion for web services and EJBMethod for Enterprise Java Bean applica-
tions). In the same way, an ITResourceModel instance may correspond
to several ITResources, and one of them can be an instance of a family
of systems (e.g., DBMSs), associated with a specific version (e.g., MySQL
5.4).

Enrichment of Entities. This step covers the actual enrichment of the IT
Policy. For the management of the access control policy, we assume that
each ITSecurityRule within the IT Policy is decomposed and further en-
riched.

The authentication and authorization subjects, which are instances of IT-
Principal, are enriched to entities that are in use by authentication in-
formation providers. These providers include LDAP Directory Servers,
Windows Authentication and Linux Pluggable Authentication Modules.
In the enrichment process, human intervention is required to map IT Pol-
icy subjects to entities stored in authentication sources and to provide the
location of the authentication providers. For the enrichment of interface

5.2. ENRICHMENT OF IT POLICIES 121

objects, we consider those ITInterfaceModels that refer to one or more
ITInterfaces in the landscape. For instance, in the generation of access
control policies for J2EE application servers the relative path of the IT-
Interface corresponding to the ITResource deployed on the J2EE server
needs to be computed by traversing the landscape model.

Security rules describe the authentication and authorization configuration
of the system. An important component is the definition of ITActions,
which the IT Policy refers to. ITActions will be enriched with concrete
actions that can be performed on real systems. For example, an ITAction
such as ‘access’ may be mapped to HTTP methods such as ‘GET’ and
‘POST’.

Consider Candidate Solutions and Choose. This phase represents the ap-
plication of the technical refinement strategies, as discussed above. De-
pending on the type of element, a variety of approaches will be used. We
foresee approaches that are automated, or manual or a combination of
both. In Section 3 and in [92], we performed an analysis on end-user
scenarios. Based on this analysis, we identified that the translation of
IT Policies into abstract access control configurations (for operating sys-
tem, DBMSs, Web servers and Web application servers) does not yield
a large number of alternative configurations. Hence, we expect a man-
ual approach for selecting an authorization configuration out of a set of
alternatives. This is in contrast to network policies. The processing of
the network policy will instead rely on the evaluation of a potentially
large number of alternative configurations, with the need to apply a selec-
tion criterium to choose the “optimal” configuration among all those that
would be able to satisfy the design requirements.

Generate Abstract Configurations. The outcome of the earlier step is used
to compose the configuration rules of an abstract authorization configu-
ration and an abstract authentication configuration, respectively. All the
configuration rules in an abstract configuration correspond to one appli-
cation/ITResource on which the abstract configuration can be deployed.
Thus, when composing abstract configurations, configuration rules are
grouped by the application/ITResource on which the rules are to be de-
ployed.

5.2 Enrichment of IT Policies

The enrichment process is responsible for the introduction of new details in the
description of security policies and the related IT resources. Introducing new
details means adding elements to the original ontology. It can be implemented
in different ways, according to different requirements.

The enrichment capabilities of the PoSecCo system are built upon a set
of basic and primary techniques. These techniques cover the main enrichment

122 CHAPTER 5. POLICY REFINEMENT

Figure 5.2: Functional schema of the enrichment engine. It selects and executes
each module from the knowledge base, obtaining an enriched model ready for
refinement

strategies and techniques for a quite general set of resources and the correspond-
ing access control policies. For example we can define specific enrichment for
databases or for some web servers.

If an application requires a more detailed description of specific types of re-
source and security policies, or when new vendor specific information is needed,
the PoSecCo administrator must be able to add new knowledge and to define
new ways to enrich the PoSecCo model for the new scenario. In order to sup-
port this level of flexibility the enrichment process in PoSecCo is designed in a
modular way. Enrichment is guided by the enrichment engine. The enrichment
engine is a sort of virtual machine that observes the current status of the se-
mantic model at the IT level, and evaluates if one of the enrichment strategies
is applicable. If one or more strategies are applicable, the enrichment engine ex-
ecutes it in an automatic or in an interactive way. The fundamental element of
the knowledge base used by enrichment engine is called the enrichment module
and is the technical implementation of one enrichment strategy.

So an enrichment module is a complete and self-contained description of the

5.2. ENRICHMENT OF IT POLICIES 123

actions to be carried out to execute a specific enrichment and it must provide:

• the description of the situations in which the specific enrichment can be
executed;

• a way to identify the candidate targets of the enrichment, taken from the
set of individuals in the model;

• the description of the operations to be executed to perform the enrichment;

• the definition of the interaction with the user required during enrichment.

In this section we will present common characteristics of enrichment mod-
ules, with a practical overview of the different enrichment approaches we use in
PoSecCo. We present possible classifications of enrichment modules according
to the effects they have on the IT level ontological model and to the level of
interaction they have with the user of the PoSecCo tool. Finally we go in some
details about the structure of each module, that is the way in which the module
can be enabled, recognized as applicable on a specific set of nodes, executed and
evaluated.

5.2.1 Enrichment process and enrichment modules

The enrichment process is built up of several enrichment steps. Each step adds
a single element or a set of strongly interconnected elements to the ontology.

The actual execution of the whole enrichment is not rigidly defined as in a
classic BPM scenario. There is no unique or predefined sequence of actions to
be performed in order to obtain a refinable IT level description. Furthermore,
in some situations the user can continue enrichment of some fragment of an IT
model even after it becomes complete enough to enable refinement. This is the
case, for example, of scenarios in which further non mandatory details about IT
level resource structure can enable more efficient refinement strategies, which
could not be executed on less refined versions of the model.

For these reasons, refinement usually proceeds in a user-determined order.
Each enrichment module implements an enrichment and the actual sequence of
actions is determined in an interactive way, by highlighting for the user the set
of possible enrichment steps to be performed.

From the functional point of view, the general structure of an enrichment
module passes through the following steps:

1. evaluate all the individuals in the IT level, and identifies all the nodes that
are ready to be processed;

2. optionally, the user is asked to select the node he wants to enrich;

3. one or more automatic actions are executed to actually perform the desired
elaboration;

4. the results of the enrichment phase are reported to the user.

124 CHAPTER 5. POLICY REFINEMENT

So, the general structure of an enrichment module is composed of at least
two parts, corresponding to steps 1 and 3:

1. an individual selection component. This can be in the form of a query like
object, used to retrieve individuals. In most cases it can be a SPARQL
query or a SPARQL-DL query with only one variable in the SELECT
clause. Another possibility is to express the characteristics of the desired
individuals via an ad hoc concept definition C. This will be used in an
instance retrieval reasoning task to retrieve all the individuals suitable for
enrichment

2. an action. This is a deduction step that adds new knowledge to the on-
tology. In most cases a deduction step executes custom Java code or an
inference rule (like an SWRL rule) on the item or the items selected in
the previous step.

5.2.2 Types of enrichment techniques

Depending of the kind of element that the enrichment step adds to the ontol-
ogy we can have different types of enrichment techniques: existing individual
classification, property enrichment and individual creation.

Existing individual classification In the simplest case, the detail in onto-
logical model can be extended by specifying the actual type of some resource.
Generally speaking, both the FSM ontology and IT policy ontology include
one or more taxonomies, for example, the resource hierarchy and the IT action
hierarchy.

resource hierarchy is used to classify elements like web servers and databases
into families, from an abstract level down to a vendor-specific level. As
the type of the resource becomes more specific, more characteristics are
available for refinement.

action hierarchy starts from the generic actions a principal can execute on
a generic resource. These are specialized down to the specific actions
for a specific resource. As an example, the SELECT action, which can
be executed only on database resources, is a specialization of the generic
READ action.

Figure 5.3 shows a very simple case of enrichment via resource classification.
In this scenario the document db node is known to be an instance of Databas-
eServer. However, like most classes in the IT resource taxonomy, DatabaseServer
is a generic class, that is, all of its instances may be further refined to a more
specific class. In this example the refinement engine can guide the user to select
the right vendor specific implementation, in this case OracleServer. This choice
can be delegated to the user or it can be taken by the system, if, at design time,
we are able to specify some sufficient conditions to be classified to the specific
class, and, in addition, we have all the required details about the resource to

5.2. ENRICHMENT OF IT POLICIES 125

Figure 5.3: A simple example of classifying an existing database server individ-
ual

be classified. Enrichment by classification is a fundamental building block of
ontological reasoning services and should be considered as an in-line enrichment.
This means that, it is automatically triggered when the PoSecCo tool queries
the semantic model to retrieve specific instances of the subclass.

Individual creation Creating new individuals is a possible way to enrich an
existing ontology. It is necessary, if directly enriching the entity would cause
a contradiction. For example, adding a property to an entity might violate an
ontology constraint like property functionality. In these cases the creation of a
new individual can be the only possible way to express the required enriched
properties.

So, it is natural that this solution is quite similar to the approach used
for policy refinement. In fact, in policy refinement the structure of the con-
sumed IT policy and the structure of the produced abstract configuration are
very different. They represent completely different elements according to the
PoSecCo metamodel, and it is trivially verifiable that the identification of the
two elements can make the whole model inconsistent.

Figure 5.4 shows a very simple application of the individual creation ap-
proach to the database scenario introduced above. The new created individual,
namely refined document db, is connected to the original individual through the
property enrichmentOf. This allows tracing of the enrichment chains, mainly

Figure 5.4: Creation of a new individual to represent enriched resource

126 CHAPTER 5. POLICY REFINEMENT

Figure 5.5: Enrichment can consist of drawing new relations between existing
nodes

for auditing purposes, and can be used to prevent multiple refinements of the
same individual.

Property creation After an element of a PoSecCo model is enriched it is
usually in need of further details. Details can concern addresses, configurations
or other metadata that may be inapplicable at a higher abstraction level.

The introduction of new metadata is a very important way to introduce new
details. It can consist of the introduction of new literals or in the definition of
new relations between different nodes. In fact, to remain within the decidable
fragments of the OWL language, a strict distinction between properties and
relations is required:

object properties can be used to connect different individuals and represents
binary relations. We will refer to object properties as relations for the sake
of clarity;

datatype properties are intended to connect individuals to literals, that is,
to strings or other serializable values, including numbers, dates and other
commonly used datatypes. We will refer to datatype properties as proper-
ties when no confusion arises.

Figure 5.5 shows an example of property creation through the object prop-
erty named runsOn. From the domain ontology (on the left-hand side of the
figure) we know that Database Servers run on Hosts. Since document db is al-
ready classified as a Database Server the system can guide the user through the
selection of the host it is running on.

If the ontology not only defines the property as being applicable to the
specific type of node, but also specifies the property range, the PoSecCo tool is
able to assist the user in selecting an appropriate property filler, by restricting
the choices to the individuals already classified into the class of the property
range.

We can distinguish between two different kinds of property creation enrich-
ment:

strong property enrichment is available when a property is mandatory for
the type of nodes we are evaluating. Such a mandatory constraint can be

5.2. ENRICHMENT OF IT POLICIES 127

expressed by defining a minimum cardinality restriction on the property,
that is a necessary condition (a.k.a. a superclass) for belonging to the
class of the individual.

For example, we can say that every DatabaseServer must run on exactly
one host:

DatabaseServer v ∃=1runsOn

If the property enrichment is strong and the individual does not specify
a value for the property, the PoSecCo tool will ask the user to define the
value of the property as a mandatory enrichment step 1.

weak property enrichment is possible when no cardinality or existential re-
striction is available for the property. The user can be allowed to add a
new filler for the relation (or equivalently the value for the property), but
he is not forced to do so.

In the general case, but especially for weak property enrichments, it is a
best practice to always define a maximum cardinality for every property
(or relation) involved in enrichment. Maximal cardinality can be used to
block the system and to avoid the request for another filler (or value) when
the maximum number of fillers has already been reached.

The property creation technique requires the choice of the filler from the
list of eligible nodes, or the entry of the specific value for the property. For
these reasons it is unlikely to be fully automated, and is usually executed in an
interactive way.

Property specialization Similarly to the individual classification case, prop-
erties can be enriched by specifying either a more specific sub-property, or a more
specific sub-relation which holds between two nodes.

In the most general scenario we have:

• an individual x, which is classified as an instance of concept (class) C2;

• concept C2 is a specialization of the concept C1 (for example, x started
as an instance of C1, and was classified as an instance of C2 in a previous
individual classification enrichment step);

• we already know that R(x, y) (that is x is connected to y through relation
R);

• we have a set of sub-properties of R, named R1 . . . Rn.

1please note that, for the purposes of ontology consistency checking, the lack of knowledge
about a mandatory property (or equivalently a mandatory relation) is not a cause of incon-
sistency due to the Open World Assumption (OWA). Nevertheless the A-box of the PoSecCo
models is usually assumed to be complete, so the enrichment step is mandatory

128 CHAPTER 5. POLICY REFINEMENT

Figure 5.6: Specification of an existing relation between existing nodes

In this case the user can be asked to choose a refinement S ∈ {R1 . . . Rn}
of R and to add a link S(x, y) instead of R(x, y). All the elaborations which
consume an R link will continue to work after this substitution, since the R link
is trivially derived from the S one due to the owl:subpropertyOf axiom.

Property specialization suffers the same limitations as previous approaches,
with the additional limitation that the conditions of mandatory refinement are
not easy to express in plain Description Logics.

A possible approach to cover some very limited cases is to restrict the cardi-
nalities and use existential qualifications to prove the more specific type of the
property:

• > v ∃≤1R
2 states that R is functional (so all its subproperties will be

functional)

• Ri v R defines a property hierarchy to be navigated

• C2 v ∃S represents the fact that all the instances of C2, which may be
instances of C1 if we assume that C2 v C1, must have at least one S
relation.

With this kind of representation, if we have an individual that already has an
R-image, and assuming the closure of the example model, it is quite simple to
show that we can prove that S(x, y) holds.

Figure 5.6 shows a simple example of enrichment, in which we can guide
the user through the enrichment of the connectedTo link between two nodes
into a more detailed type of link. According to the syntax used above, Figure
5.6 instantiates existing relation specification where x = node1, y = node2,
R = connected to and S = directly connected to.

5.3 Relation with harmonization modules

As already stated in previous sections, enrichment modules can vary substan-
tially in the kind of interaction with the user they require and the level of
autonomy they are granted for automatic model enrichment. User interaction

2> concept denotes the full domain of disclosure, so any axiom in the form > v C states
that C holds for all the individuals in the model

5.3. RELATION WITH HARMONIZATION MODULES 129

ranges from guided manual enrichment to fully automatic enrichment which is
invisible to the user.

In all of the cases, with the exception of full automatic enrichment, the
system is asked to validate the resulting model. This is especially true in the
case of user proposals. In fact, ontology driven model editing can avoid local
and quite trivial semantic errors during the enrichment process. At the base
level ontology editing support guider the user in defining correct properties
between existing individuals. This can be easily achieved by allowing the user
to select only the properties defined for the type of source node (using property
domains) and to select the target individual from the classes compatible with the
property (using property ranges in the simplest case, or by interpreting OWL
restrictions). The user interface can be instructed to present to the user only the
possibilities that respect constraints on the types of individuals. However these
constraints must be evaluated locally on the specific fragment of the model, like
the specific triple the user is adding to the knowledge base.

Nevertheless, even semi-automatic enrichment may be checked. In fact, each
enrichment step can be considered as the execution of a complex rule. Each mod-
ule extracts the suitable individuals, asks the user to select target individuals
from the identified set, and adds some new knowledge about the individual, by
introducing new nodes (as in the individual creation technique) or adding new
properties to existing individuals.

However, each module is necessarily designed on the basis of local structures.
Its applicability, and therefore the results of its application, is expressed in
terms of a query or of a concept that covers only the structure of the nodes
close to the candidate target. After the execution of the enrichment we can
evaluate the global effect of the modification on the whole model. So, after
both manual and semi-automatic enrichment steps, a global evaluation must be
carried out to ensure, at the base level, that no inconsistency was introduced
during enrichment.

In the general case only a small fragment of possible conflicts and modeling
errors can be discovered by straightforward terminological reasoning. In these
cases the inline reasoner is sufficient to highlight the problem. A good support
for this scenario is the explanation capability [27,61]. Explanation consists of ex-
tracting a trace of the proof of a theorem, e.g., a subsumption, or of highlighting
the axioms involved in a clash when an inconsistency is detected. Explanation
is widely supported in modern description logics reasoners. If the execution
of an enrichment step generates an inconsistency, the PoSecCo tools are able
to retrieve conflicting axioms. If the inconsistency was not present before en-
richment at least one of the axioms introduced by the enrichment module will
be included in the explanation set. So, the tool can report to the user a quite
detailed description of the cause of the inconsistency. The user can then discard
the sub-model added in the last enrichment step or he can use free ontological
guided editing support to change the other fragments of the model to resolve
the inconsistency.

This scenario depicts the enrichment process as an activity that can mas-
sively impact different fragments of the ontology. It is our opinion that, in order

130 CHAPTER 5. POLICY REFINEMENT

Figure 5.7: Harmonization condition for pre- and post- enrichment consistency

to make the process governable, and to keep it under the control of the user,
re-tractability of the last enrichment step is the best approach. It guarantees
that the enrichment process proceeds in a tree-shaped manner, exploring differ-
ent possibilities but avoiding situations where a choice taken w.r.t. a specific
fragment of the model can interfere with other enrichments guided by different
criteria.

Unfortunately, only a small part of possible errors in the model can be eval-
uated by general reasoning tasks. Description Logics reasoner can only reveal
terminological errors, that is, they are able to guarantee that the model satisfies
general structural characteristics of the domain, precisely those characteristics
we are able to describe in T-box axioms. However, many modeling errors in-
volve complex structures in the model. In PoSecCo the detection, and, pos-
sibly, the resolution, of complex errors beyond purely terminological errors, is
achieved through harmonization modules. Harmonization modules come in dif-
ferent shapes, according to different harmonization techniques and, more specif-
ically, according to the sequence of manipulations to be done in order to check
the specific harmonization property.

Some harmonizations make sense only after a refinement step. This is espe-
cially true when we use the individual creation approach to enrichment. The
introduction of a new individual to represent the more detailed version of the
original one provides the basis for enrichment tracing. On one hand, The user
can navigate through chains of enrichmentOf properties to see all the interme-
diate steps that connect the higher level description to the most detailed one,

5.3. RELATION WITH HARMONIZATION MODULES 131

Figure 5.8: Property verification rule pattern

which is ready to be refined into abstract configurations. On the other hand,
consistency between the description of views of the same resource at different
levels of detail poses some issues. Figure 5.7 shows a simple case related to the
enrichment of a database server. It is obvious that the enriched version of the
server must run on the same host as its original description.

In this case harmonization consists of checking that the chain runsOn− ◦
enrichmentOf ◦ runsOn closes in a circle. This is a special case of the property
verification rule, which is one of the classic cases of types of harmonizationas as
classified in D 2.4 [?].

A property verification rule is composed of two steps, as shown in Figure
5.8:

1. A rule ”R” (usually a SWRL rule) is used to add verification flags to all
the nodes connected in the circle. After the execution of this rule, if the
subgraph satisfies the desired structural constraints, one or more elements
will be flagged as ”correct”. In our example oracleDatabaseServer should
be the target to be checked and the rule may be in the form:

type (?x , Server) , enrichmentOf (?x , ? x1) ,
runsOn (? x1 , ? h) , runsOn (x , h)
−>
type (?x , Correct)

Listing 5.1: Enrichment harmonization rule for closed circles

and

type (?x , Server) , not enrichmentOf (?x , [])
−>
type (?x , Correct)

Listing 5.2: Enrichment harmonization rule for simple cases

The two rules, if executed together, mark as correct the servers that either
are hosted on the same host as their abstract versions, or that are not the
refinement of other nodes. This creates the so called ”checked model.

2. A query ”Q” is executed on the checked model to retrieve all the nodes
that should be marked as ”correct”, but are not. In our case the query,
in the form of a SPARQL SELECT, may be as follows:

132 CHAPTER 5. POLICY REFINEMENT

SELECT ?x
WHERE {
?x a : Server
{OPTIONAL {?x a ?y}
FILTER ?y=: Correct
}
FILTER (!BOUND(? y))
}

Listing 5.3: Enrichment harmonization rule

IT level harmonization can be necessary for both resource enrichment and
policy enrichment. In fact, the addition of more details to abstract policies can
result in modality conflicts between different policies, which were not revealed
at a higher level of abstraction. In these cases, conflict resolution strategies
must be taken into account in the rule part of the harmonization module.

Figure 5.9: Simple modality conflict scenario

Figure 5.9 represents a classic case of modality conflict, which can be high-
lighted and possibly resolved using another harmonization pattern: Violation
detection rules [92]. The two privileges have different modalities (signs), and,
due to the dependency between the two kinds of actions, they describe a con-
tradictory policy. The important point in the context of enrichment is that
some details, e.g., the link between privilege2 and action2 in Figure 5.9 can be
introduced by an enrichment step, so this kind of harmonization scenario can
be integrated into enrichment just like the other cases introduced above in this
section.

5.4. RELATION WITH REFINEMENT MODULES 133

Another important case is the refinement of action types. Assume that a
user group or a role is allowed to execute a generic read action on a server. In the
enrichment phase the server is enriched to be a database server. In this case an
enrichment module can suggest that the user should specify the nature of read
in terms of the database specific ontology fragment. In this scenario the user
is probably guided through the enrichment by allowing the selection of known
specializations of the read action that are related to the database resource type
model. However, the PoSecCo user is allowed to override system suggestions,
and select another kind of action, like an UPDATE, which is consistent w.r.t.
the resource type, but not w.r.t. action specialization, or READ FILE, which
is consistent w.r.t. action specialization but not w.r.t resource type. In this
case, and in similar cases, a specialized harmonization module can interpret
the model defined by the user and highlight the inconsistency. However, this
harmonization module makes sense only as an evaluation of the execution of the
specific enrichment module.

In order to solve this problem, some specialized harmonization modules must
be logically associated with the enrichment modules they depend upon.

5.4 Relation with refinement modules

As said before, user interactive enrichment modules are similar to refinement
modules from the structural point of view. Like the refinement scenario, the
enrichment strategy can follow the Select, Create and Connect (SCC) approach.
An enrichment strategy is an n-tuple < Q,R > where:

Q = {N1, N2, ..., Nk} represents the set of candidate nodes for the enrichment
process;

R = {R1, R2, ..., Rm} represents the set of SWRL rules that allow the introduc-
tion of new properties and, optionally, new enriched nodes.

Compared to refinement strategies (see below), enrichment is simpler due
to the use of the same terminology (or ontology) to represent both the original
high level abstract description and the enriched one. Despite this difference, we
can apply the same techniques we introduced for policy refinement, using the
property enrichmentOf instead of the property implements.

Finally, we have to consider the interaction between enrichment and refine-
ment phases.

Figure 5.10 shows an abstract view of the whole workflow. Enrichment works
inside the IT level, and the enriched objects can first be harmonized, and later
refined. Harmonization occurs inside the IT level, either at the same level of
abstraction, or between different levels of abstraction. Refinement, on the other
hand, bridges the gap between the business level, the IT level and the landscape
level, the later of which contains the abstract configurations.

Enrichment is a sort of refinement inside the IT level. In order to keep
a strict separation between the phases depicted in figure 5.10, only the most

134 CHAPTER 5. POLICY REFINEMENT

Figure 5.10: Abstract representation of the refinement process.

enriched elements can be used as a source for the refinement phase. Even if it
is technically possible to further enrich an already refined entry at the IT level,
this practice can lead to confusing and difficult to maintain models.

This semantics is enforced by further constraining the execution of refine-
ment rules. In fact, in order to guarantee the desired behavior, the refinement
engine should be aware of the status of the enrichment process, and should
be able to ignore abstract nodes, and operate only on the fully enriched ones.
Thus,the IT-level nodes suitable for refinement to abstract configurations (see
Section 2.2.2) must fulfill these conditions:

1. the individual has all the properties and all the characteristics required
for refinement;

2. furthermore, no individual is defined that represents a more concrete and
enriched version of the same entity.

The second condition can be enforced by adding the rule that no incoming
property of type refinementOf involves the candidate node.

5.4.1 Enrichment of IT Policies

IT policies that describe authorization and authentication rules have to be en-
riched, using the techniques described above, before it is possible to refine them
to technology-specific abstract configurations for Database Management Sys-
tems, File Systems and Web Applications. The enrichment of IT policies that
contain authorization or authentication rules happens in two phases. The first

5.5. REFINEMENT OF IT POLICIES 135

phase, also called the first level of enrichment, enriches the IT Policy with fur-
ther technology independent IT-level concepts. More specifically, it allows us to
represent, in an abstract way, respectively authorization actions, authentication
methods and authentication conditions.

In the second level of the enrichment process, an IT policy is augmented with
technology specific information. This phase is realized by importing enrichment
ontologies that are specific to the target system’s technology and type of policy
(e.g. authentication or authorization).

5.5 Refinement of IT Policies

Before starting with the description of the refinement process, we have to in-
troduce the object property implements. This property connects an authoriza-
tion/authentication at the IT level to its representation at the Abstract Config-
uration level. This object property will allow to maintain a link among elements
belonging to different levels in the overall architecture.

We define two different approaches for the refinement of the IT policies. The
approaches are general and can be used both for authentication and authoriza-
tion, for OS, DBMS, and Web Application Server. Each approach is based on
the use of ontologies and related technologies (e.g., SWRL, SPARQL). The first
approach is called Select, Create and Connect (SCC), the second approach is
called Select and Construct (SC).

5.5.1 Select, Create and Connect (SCC)

A refinement strategy is a triple < Q,N,R > where:

Q = {N1, N2, ..., Nk} represents the set of candidates nodes for the refinement
process;

N = {C1, C2, ..., Cn} represents the set of concepts that belong to the Abstract
Configuration;

R = {R1, R2, ..., Rm} represents the set of SWRL rules that allow to infer the
links among nodes.

The IT Policy refinement starts by selecting candidate nodes which are ele-
ments of the IT Policy. Candidate nodes can be selected manually by the user
through a GUI or by querying the IT Policy ontology. An example of a query
to retrieve the candidate nodes would be a selection of all elements that are
not linked to an Abstract Configuration through an ‘implements’-relationship.
The concepts of the Abstract Configuration are the entities of the configuration
metamodel defined in Section 2.2.3. The SWRL rules are ad-hoc and created
by the designer of the PoSecCo tool.

We will describe this method with the help of a concrete example. For
the example, we consider the ITPolicy presented in WD1.8 [36]: only system

136 CHAPTER 5. POLICY REFINEMENT

Figure 5.11: Ontological representation of the authorization.

administrator shall access to OS-level configuration file on Unix server (ITP60).
Figure 5.11 shows the ontological representation of the authorization, already
enriched (the example only considers the positive authorization that gives to
administrators the privilege to access the configuration file; the “only” part,
managed by a negative authorization, is not considered).

The first step of the SCC method is to Select the candidate nodes for the
refinement process. To do this, we use the object property implements. If an
authorization/authentication element has one (or more than one) implements
property, it can be considered refined, otherwise it is a candidate node for the re-
finement process. In order to select all these nodes, the process uses a SPARQL-
DL query that provides as result a list of elements already enriched and ready
for the refinement process. Listing 5.4 shows an example of the query.

SELECT ?p

WHERE{

?p a:ITSecurityRule

OPTIONAL {?x :implements ?p}

FILTER (! bound(?x))

}

Listing 5.4: SPARQL query that allows to retrieve all nodes ready for the
refinement process.

5.5. REFINEMENT OF IT POLICIES 137

Figure 5.12: Output generated by the Create phase

This query returns all the ITRoleAuthorization, ITSystemAuthorization and
ITAuthenticationRule individuals that are not refined. In the example, we as-
sume that the query returns the individual SP Sys Admin-Access-ConfigFile.

The second step allows to Create technical nodes. This step is mandatory
if we want to use SWRL, because, in order to maintain the safety, SWRL rules
cannot create new nodes. To overcome this limitation, we have to use custom
Java modules that insert into the ontology a set of new nodes, and add the
generates object property. Figure 5.12 shows the result of this step.

The third step Connect is used to link the nodes created in the previous
step. This connection is done with the use of the following SWRL rule.

ITSystemAuthorization (?auth),

DataModel (?cF),

authzOn (?auth , ?cF),

generates (?auth , ?res),

rdf:type(?res , ITResourceSelectionCondition),

generates (?auth , ?cR),

rdf:type(?cR, ConfigurationRule),

generates (?auth , ?cOnG),

rdf:type(?cR, ConfigurationOnGroups),

generates (?auth , ?aP),

rdf:type(?aP, AllowPrivilge),

=>

implies (?cR , ?auth),

matches (?cR , ?cOnG),

matches (?cR , ?res),

enforces (?cR, ?aP)

Listing 5.5: SWRL rule that allows to infer links among nodes.

Figure 5.13 shows the result of the execution of the SWRL rule.

To summarize, the approach integrates Java modules for the creation of
nodes that will be the basis for the individuals in the abstract configuration,
overcoming in this way the limitations of SPARQL and SWRL, but at the same
time using these languages for the benefits they offer in the identification of the
nodes that have to be processed and for the management of the connections
among nodes that are consistent with the semantics of the refinement.

138 CHAPTER 5. POLICY REFINEMENT

Figure 5.13: Output generated by the Connect phase

5.5.2 Select and Construct (SC)

This second approach avoids the use of Java modules in the Create phase and
only relies on the use of SPARQL-DL and SPARQL. A refinement strategy is a
couple < Q,CQ > where:

Q = {N1, N2, ..., Nk} represents the set of candidates nodes for the refinement
process;

N = {CQ1, CQ2, ..., CQn} represents a set of parametric construct SPARQL
queries.

Like in the description of the previous approach, we will explain this method
with the use of the following ITPolicy described in WD1.8 [36]: Only Admin-
istrators shall be able to logon to Unix servers (ITP50). Figure 5.14 shows the
ontological representation of this ITPolicy.

The first step of this approach is the same as the previous one. With the
use of a SPARQL-DL query, we Select all the nodes ready for the refinement
process. Listing 5.6 shows the query.

SELECT ?p

WHERE{

?p a:ITSecurityRule

OPTIONAL{ ?x :implements ?p}

FILTER (!bound (?x))

}

Listing 5.6: SPARQL query that allows to retrieve all the nodes ready for the
refinement process.

5.5. REFINEMENT OF IT POLICIES 139

Figure 5.14: Ontological representation of the ITPolicy ITP50.

We assume that the result of this query in this example is the individual
Admin Logon UnixServer, which does not have an implements property with
other elements.

The second step of this method is to Construct the new nodes and link them.
This can be done with the use of two SPARQL queries. Listing 5.7 and Listing
5.8 show the query that allow to create new nodes.

CONSTRUCT{

_:C rdf:type :ConfigurationRule;

:implements ?x -> :SP_App_Admin -Logon -UnixServer;

:matches _:RES;

:matches _:GR;

_:RES rdf:type ITResourceSelectionCondition;

_:GR rdf:type ConditionOnGroups;

:name ?r.

}

WHERE {

:SP_App_Admin -Logon -UnixServer a :ITAuthenticationRule;

:grantedTo ?r.

?r a ITAuthRole.

}

Listing 5.7: SPARQL query that permits to Construct new nodes

140 CHAPTER 5. POLICY REFINEMENT

CONSTRUCT{

?c :enforces ?priv

?priv a AllowPrivilege;

:action ?action.

}

WHERE {

?c :implements :SP_App_Admin -Logon -UnixServer;

:enforces ?priv

:SP_App_Admin -Logon -UnixServer privilege ?p.

?p :actions ?action.

}

Listing 5.8: SPARQL query that infers the links among the new nodes.

Figure 5.15: New nodes generated by the Construct phase

Figure 5.16: Output generated by the Construct phase

Both the methods described above can be used for the refinement of autho-
rization and authentication rules. The second approach permits to refine an
ITPolicy with the use of only Semantic Web tools. Instead, the first approach

5.5. REFINEMENT OF IT POLICIES 141

has to use custom Java modules in order to introduce new nodes and this in-
troduces a component that is not as transparent and easy to implement as pure
Semantic Web tools.

6
Software for the IT Policy language

The application of the model-driven approach to the security requirements re-
quires the implementation of a rich collection of tools supporting, for each of
the many components in the system, the refinement from the high-level repre-
sentation of security requirements to the concrete security configuration.

To support the user (i.e., Security Administrator) in this scenario we have
developed the PoSecCo ITPolicy Tool [86] that can be used to define access
control policies, to check the absence of structural errors and to reason about
the model in order to identify conflicts and inconsistencies. Furthermore, the
tool can derive and deploy, in a semi-automated way, the concrete security
configuration of the system (e.g., OS, DBMS).

However, to drive the tool in the derivation process (i.e., refinement) there
is the need to increase knowledge on the security configuration in the model
relying on Semantic Web technology, and specifically on an enrichment of the
model with the use of OWL (Ontology Web Language).

The use of OWL within the definition of the model will bring significant
benefits, especially in terms of partial automatization of the process of model
verification and refinement. In fact, thanks to the use of OWL, model implemen-
tation can be done in part automatically. We use the Web Ontology Language
(OWL), which is a family of knowledge representation languages based on De-
scription Logic (DL) with a representation in RDF, to define our model and to
describe access control policies

We then use Semantic Web technology, namely OWL-DL [79], SWRL [54],
SPARQL [97] and other technology, commonly used in the model driven ap-
proach, to provide security administrators with the following functionalities:

1. Editing;

143

144 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

2. Harmonization;

3. Refinement and Enrichment.

This Chapter presents the main design principles that have been used in the
construction of the Eclipse plug-in ITPolicy Tool that implements the aspects
described in Sections 2, 3 and 5.

6.1 Requirements

The consideration of the role of the IT Policy Tool in PoSecCo leads to the iden-
tification of a number of requirements, presented below and briefly commented
on how they are met by the solution presented in the next sections.

ITP-R01 The IT Policy Tool is coordinated with the other tools,
preceding and following it in the workflow. The IT Policy Tool
receives input from the Business Policies and the IT Functional level. The
relationships with these tools have been clearly specified. The structure of
the IT Policy Tool has also been designed taking into account the design
of the Infrastructure meta-model.

ITP-R02 The IT Policy supports the use cases related with the IT
level. The analysis above shows the relationship between the IT Policy
Tool and the PoSecCo use cases.

ITP-R03 The IT Policy Tool provides a graphical representation of
the IT policy. The elements in the IT Policy can be represented in a
graphical user interface (GUI) to facilitate both the user in the design
phase of the IT Policy and the auditors in the design of the controls.

ITP-R04 The IT Policy Tool helps the user in the design of the IT
Policy. The IT Policy Tool offers a rich editing and exploration support
for the design of the IT Policy.

ITP-R05 The IT Policy Tool produces an IT Policy that can be inte-
grated with other environments. A translation to XACML has been
designed for the authorizations in the PoSecCo IT Policy, in order to fa-
cilitate the integration with other environments and their policy analysis
tools.

ITP-R06 The IT Policy Tool delivers the possibility to build an on-
tological representation of the IT Policy. The IT Policy Tool is
enriched by the support for ontologies. A significant advantage offered
by ontologies is the possibility of checking the consistency of the model
instances, going well beyond what can be offered by classical modeling
tools.

6.2. ARCHITECTURE 145

ITP-R07 The IT Policy Tool provides the functionalities to intro-
duce preliminary audit. The IT Policy can offer the functionalities,
through the use of ontologies and also the reasoning, to implement some
preliminary audit.

ITP-R08 The IT Policy Tool provides the interface to communicate
with the PoSecCo repository. The IT Policy Tool offers the function-
alities to retrieve and store both the IT Policy and other artifacts (for
instance the ontology) in the PoSecCo repository.

ITP-R09 The IT Policy Tool offers to the user the capability to in-
troduce and mantain a direct link between different elements
within different levels of the PoSecCo architecture. The IT Pol-
icy Tool offers the functionalities to create a direct link both between the
IT Policy and the Business requirements and between the IT Policy and
the Landscape. This is a critical requirement for the PoSecCo refinement
chain.

ITP-R10 The IT Policy Tool provides the functionalities to enrich
the ontology with specific information about the environment
where the policy is applied. The IT Policy Tool allows the user to
use external tools, like Protégé, to add specific information about the
environment where the IT Policy will be applied.

6.2 Architecture

We introduce here the main design principles that followed in the construction
of the PoSecCo IT Policy Tool, an Eclipse plugin that supports the definition of
IT Policies. The pattern used in the development of the tool is the Iterative and
incremental development. The basic idea behind this method is to develop a
system through repeated cycles (iterative) and in smaller portions at a time (in-
cremental), allowing software developers to take advantage of what was learned
during development of earlier parts or versions of the system. Learning comes
from both the development and use of the system, where possible key steps
in the process start with a simple implementation of a subset of the software
requirements and iteratively enhance the evolving versions until the full sys-
tem is implemented. At each iteration, design modifications are made and new
functional capabilities are added.

The ITPolicy Tool aims at allowing security administrators to define, manage
and analyze security policies [45,86] through several refinement steps. We have
chosen to implement it on the basis of the Eclipse framework for four main
reasons:

1. Eclipse is now one of the de-facto standards in terms of IDEs and has sev-
eral plugins related to model driven engineering. The Eclipse framework
is flexible enough to support the ITPolicy Tool requirements,

146 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

View

Controller

Model

Peripheral
modules

Shared
modules

Peripheral
modules
Peripheral
modules

Shared
modules
Shared
modules

Figure 6.1: Architecture of the Tool

2. it provides several useful characteristics that ease the definition of the GUI
of the tool,

3. it can be easily integrated with Semantic Web tools by using the OWLAPI,
Jena libraries (for an exhaustive explanation of the technology used, see
Appendix D),

4. by defining a new extension point, it lets us define an extensible and flexible
way to handle the integration and customization of new services in the
architecture.

Figure 6.1 represents the abstract architecture of the tool. The pattern used
to develop this level is the Model-View-Controller (MVC).

• Controller module. The Controller module represents the core of the
entire plugin. It instantiates each module at start time, receives the com-
mand from the user (through the View module) and executes the related
action on the data.

• Model module. The Model module permits to maintain a dynamic rep-
resentation of the IT Policy. The model is a collection of Java classes that
keep updated the information about the IT Policy.

• View module. The View module provides the functionalities to show the
information on the screen.

Furthermore, there are two other modules:

• Peripheral module. It is also known as Functional module because it
implements a specific functionality (e.g., Harmonization, Enrichment).

• Shared module. It provides functionalities that are common to several
modules.

6.2. ARCHITECTURE 147

6.2.1 Source Code

The source code of the ITPolicy Tool is available on the ITPolicy Tool web site
1, In order to give an overview on the size and complexity of the implementa-
tive effort for the ITPolicy Tool, Table 6.1 provides a “qualitative” description
through the use of several metrics. The metrics selected are the following:

• NOP: Number Of Packages

• NOC: Number Of Classes

• TLOC: Total Lines of Code

• NOM: Number of Methods

• VG: McCabe Cyclomatic Complexity

1http://cs.unibg.it/posecco/source.html

148 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

P
ro

je
c
t

N
a
m

e
N

O
P

N
O

C
T

L
O

C
N

O
M

V
G

eu
.p

os
ec

co
.b

u
si

n
es

sr
eq

u
ir

em
en

t
5

6
5
3
8

3
3

1
.1

7
5

eu
.p

os
ec

co
.e

n
ri

ch
m

en
t.

co
re

1
2

2
7

3
1
8
4

2
2
5

1
.3

9
1

eu
.p

os
ec

co
.e

n
ri

ch
m

en
t.

la
n

d
sc

ap
e

8
1
0

6
2
9

4
4

1
.4

8
1

eu
.p

os
ec

co
.i

m
p

or
tfi

le
s

1
3

2
3
0

3
1
.6

0
8

eu
.p

os
ec

co
.i

m
p

or
to

n
to

lo
gy

2
6

3
2
2

1
6

1
.8

5
eu

.p
os

ec
co

.i
tf

u
n

ct
io

n
al

m
et

am
o
d

el
6

7
4
2
4

2
4

1
.5

1
6

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.c
or

e
8

4
8

7
9
0
4

5
8
0

1
.5

6
8

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.i
n
te

ra
ct

iv
e.

a
u

th
en

ti
ca

ti
o
n

ch
ec

k
1

1
5
5

1
1
.1

2
eu

.p
os

ec
co

.i
th

ar
m

on
iz

at
io

n
.i

n
te

ra
ct

iv
e.

cy
cl

ec
h
ec

k
1

4
1
8
8

4
1
.3

7
5

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.m
o
d

al
it

y.
co

n
fl

ic
t

4
1
2

2
2
3
2

1
4

1
.6

4
3

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.r
ed

u
n

d
a
n

cy
1

2
7
8
2

1
1

1
.6

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.r
ep

ai
r

2
5

3
4
9

1
2

2
.1

3
2

eu
.p

os
ec

co
.i

th
ar

m
on

iz
at

io
n

.s
o
d

1
1

1
2
2

4
1
.2

5
eu

.p
os

ec
co

.i
to

n
to

lo
gy

4
5

1
8
4
4

8
5

1
.7

6
4

eu
.p

os
ec

co
.i

tp
ol

ic
y
to

ol
3
1

1
0
0

1
6
7
6
7

8
3
5

2
.1

6
4

eu
.p

os
ec

co
.i

tp
ol

ic
y
to

ol
.c

on
su

m
er

2
3

6
4

7
0
.9

2
3

eu
.p

os
ec

co
.i

tp
ol

ic
y
to

ol
.p

u
b

li
sh

er
1

2
4
9

6
1
.0

6
7

eu
.p

os
ec

co
.i

ts
ea

rc
h

3
5

5
8
2

2
0

1
.5

7
6

eu
.p

os
ec

co
.i

ts
ec

u
ri

ty
m

et
am

o
d

el
5

1
6

5
5
1
0

2
7
1

2
.2

eu
.p

os
ec

co
.m

ov
e

5
1
2
8

4
1
7
5
1

2
0
8
4

3
.0

0
9

eu
.p

os
ec

co
.n

eo
n
to

ol
k
it

.m
an

ag
er

3
4

3
8
7

1
4

1
.7

8
6

eu
.p

os
ec

co
.p

el
le

t
3

4
1
0
7
1

1
2

1
.4

5
3

eu
.p

os
ec

co
.r

efi
n

em
en

t.
co

re
1
5

2
9

4
3
2
6

2
4
2

1
.6

2
9

T
ot

al
1
2
4

4
2
8

8
9
3
1
0

4
5
4
7

-

T
a
b

le
6
.1

:
M

et
ri

cs

6.3. EDITOR 149

6.2.2 Input/Output ITPolicy Tool

Due to the fact that all the artifacts produced by the PoSecCo tools (e.g.,
CoSerMas, SDSS) have to be stored in MoVE, the ITPolicy Tool provides a
complete set of functionalities to retrieve and store artifacts in MoVE. More
specifically, the ITPolicy Tool can receives as input (a) XMI files, (b) OWL files
and (c) XML files, all of them in agreement with the IT layer Security meta-
model. Furthermore, the ITPolicy tool can produce as output artifacts in (a)
XMI format and (b) OWL format.

6.3 Editor

In order to fulfill the requirements ITP-R01, ITP-R02 related to the editing
phase described in Section 6.1, the ITPolicy Tool delivers several functionalities
provided by different components.

• a main window to display and edit ITPolicy description files. The tool
assigns a different tab panel in the window to every concept from the
metamodel. This set of tabs provides the user with a high level guide
through the model, always offering direct access to the main components
of the model. The selection of a tab opens a form that permits to enter
values for each of the properties of the corresponding entity. Instances of
each class can be described in a homogeneous way by the same form used
for entering its properties. The plug-in has many forms (see Figure 6.2
for an example), in particular there is a form for each class of the model
described in [93] and in Section 2.2.2. These forms allow to maintain a
high usability of the tool.

• a navigation tool, that organizes resources in a finer taxonomy according
to the specific top level concept selected by the user in the main window.
The classification proposed to the user is driven by the ontology itself. This
makes the tool quite flexible and automatically adaptable to changes in
the ontology. The tool can be applied to any fragment of the metamodel.

• a search service, that offers the possibility to the user to search a specific
element in the ITPolicy and the related element (e.g., business security
requirements).

• a set of task buttons, published in the main toolbar, that offer direct
access to functions like the creation of the OWL ontology starting from
an instance of the security policy or the activation of the reasoning-based
checking (i.e., harmonization).

150 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

F
ig

u
re

6
.2

:
C

o
m

p
o
n

en
ts

o
f

th
e

T
o
o
l

6.4. HARMONIZATION 151

Another functionality provided by the ITPolicy Tool is the possibility to
link the ITPolicy elements to (a) the Business Security requirements, (b) the
Functional System model and (c) the Abstract Configuration, in order to create
the Policy chain and then store all of this data in MoVE [105]. MoVE is the
central repository for models and for the ontologies used in PoSecCo. Due to the
fact that the link between the ITPolicy and the Abstract Configuration is built
automatically through the refinement phase, the user must build, manually, the
links among the ITPolicy and other layers (i.e., Business Security requirements,
Functional System model). In order to aid the user in the building of links
among meta-models, the ITPolicy Tool provides two views allowing the user to
easily choose the elements, respectively business security requirements and IT
functional elements, to link with a specific ITPolicy.

6.4 Harmonization

One of the main functionalities provided by the ITPolicy Tool is the Harmo-
nization phase described in Section 3. This phase allows the tool to prevent,
detect and correct possible inconsistencies in the policies. Inconsistencies can
represent misconfigurations, conflicts between different policies or simply subop-
timal or redundant descriptions of the intended constraints [88]. Harmonization
is focused on the following aspects:

• verification of the correctness of each policy with respect to the PoSecCo
policy ontology;

• detection of possible inconsistencies between contradictory policies at a
given level of abstraction;

• detection of possible inconsistencies between an abstract policy and a pol-
icy that refines it at a lower level of details;

• identification of redundant policies in the same policy set.

According to the architecture presented in Section 6.2, the peripheral mod-
ules in charge to provide these functionalities are the following:

Interactive modules: these modules implement several interactive reasoning
services which are executed during the editing phase of the ITPolicy. They
are used to detect missing individuals in the ontology or to identify ax-
ioms that introduce structural violations in the ontology. These modules
are implemented by using Semantic Web technologies, primarily by using
SPARQL-DL due to its graph matching capabilities.

eu.posecco.itharmonization.interactive.checkMissingITElement
implements a reasoning service that checks whether a certain ITAuthenti-
cationRule exists or not. This functionality aids the user during the editing
phase of the ITPolicy. We know that authorization and authentication are
strictly related. For instance, it makes no sense define authorizations for

152 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

a user on a system without an authentication that allows the user to lo-
gon on the system, and respectively define authentications for a user on a
system without adding authorizations. Thus, in order to avoid this issue,
the ITPolicy Tool provides the functionality to check the presence of an
authentication when the user inserts an authorization.

eu.posecco.itharmonization.interactive.checkStructuralConstraints
implements several interactive reasoning services that prevent the creation
of structural inconsistencies (e.g., cycles in the group hierarchy, in the role
hierarchy and in the security object hierarchy).

Standard reasoning modules: these modules can be used to detect anoma-
lies and inconsistencies in the IT policy under development. In this way
the ITPolicy Tool can report them to the user, and let him modify the
model according to the analysis’ results, in order to remove inconsisten-
cies. These modules are implemented using Semantic Web technologies,
i.e., the IT policy is represented as an OWL ontology and the reasoning
services are expressed by means of Semantic Web tools, e.g., OWL-DL,
SWRL and SPARQL-DL.

eu.posecco.itharmonization.modalityconflict is the component
that implements the Policy Incompatibility reasoning service, which can
be used to detect authorizations that are incompatible; e.g., it can detect
if in the IT-Model there is an authorization that gives to a user the permis-
sion to execute a certain action and another authorization that removes
from the same user the permission to execute the same action. It defines
the PolicyIncompatibility extension for the ITReasoningService extension
point. Three versions of the service exist: the first two versions implement
the service by means of OWL-DL reasoning (the first one uses Hermit as
reasoner whereas the second one uses Pellet) and the last one implements
the service by means of SWRL rules.

eu.posecco.itharmonization.redundancy is the component that
implements the Redundancy Detection reasoning service which can be
used to detect redundancies in the IT-Model, i.e., the model may con-
tain authorizations that are implied by other authorizations and thus can
be removed. It defines the RedundancyDetection extension for the Rea-
soningService extension point. The reasoning service is implemented by
means of SWRL rules and SPARQL-DL queries.

eu.posecco.itharmonization.sod is the component that implements
the SoD Conflict Detection reasoning service which can detect authoriza-
tions that break Separation of Duty constraints expressed in the IT policy.
It defines the SoDConflictDetection extension for the ReasoningService ex-
tension point. The reasoning service is implemented by using OWL-DL
reasoning. Two versions of the service exist: the first one uses Hermit as
reasoner, whereas the second one uses Pellet.

Repair module: This module implements the repair services that can provide
the user with semi-automated repair capabilities. A repair service takes

6.5. REFINEMENT 153

as input a list of IFix objects, which is the result of the execution of a
reasoning service, and it computes a list of repair options that can be
applied to the IT policy in order to remove the detected problems.

eu.posecco.itharmonization.repair implements two repair ser-
vices, an automated one and a semi-automated one. The repair strategies
implemented in both services are simple. In case the inconsistency is due
to a Redundancy issue, the repair service removes the redundant autho-
rizations. In case the inconsistency is due to a Separation of Duty issue,
the repair service removes one of the role authorizations or role hierarchy
axioms that cause the SoD. In case the inconsistency is due to a Modal-
ity Conflict, the repair service removes one of the system authorizations
causing the conflict.

Furthermore, a shared module among all the components described above is
the Harmonization core. It is the component that contains all the functional-
ities shared by the reasoning services. It contains the classes that manage the
ontology by using the OWL-API Java library (enriched by the use of SWRL
and SPARQL-DL). It allows the definition of an ontological representation of
the IT Policy. OWL-API through OWLDataFactory objects permits to instan-
tiate all classes, properties and axioms of the ontology. This component is a
dependency of the reasoning service components presented above, because all
these components use core functionalities. The dedicated functionalities of a
specific reasoning service, e.g., a particular reasoner or a set of SWRL rules, are
included only in the specific component.

6.5 Refinement

As described in Section 2 the IT layer Security meta-model supports the rep-
resentation of authentication and access control policies. It introduces several
concepts that offer a high degree of flexibility and modularity. Furthermore, an
important characteristic of the IT layer Security metamodel is the integration
with ontologies, which increase the expressive power of the model and permit to
support both the evolution of the scenario and the realization of sophisticated
checks (e.g., consistency). Furthermore, ontologies enrich concepts and provide
a more detailed explanation of the concepts themselves. The use of ontologies
is the foundation of the refinement (and enrichment) process.

As for the harmonization process, the policy refinement process is executed
by orchestrating a set of refinement modules. Each refinement module can iden-
tify the set of model elements readily available for refinement and produce a new
description fragment that describes abstract configurations. In order to man-
age, in a flexible way, the refinement process we have decided to adopt the same
approach described in the harmonization process, thus we have implemented
the refinement process with the use of extension points (see Appendix E for an
exhaustive explanation).

154 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

The peripheral module in charge to provide these functionalities is the fol-
lowing:

Refinement module: This module implements the refinement service. The
refinement service takes as input the enriched ontology, which is the result
of the enrichment process, and it performs the transformation from the
enriched IT Level to Abstract Configuration level.

eu.posecco.refinement.core implements the refinement service. It
is composed by several modules, each dedicated to a specific target system
(e.g., DBMS, OS). It defines the following extensions (both for authentica-
tion and authorization) (a) DBMSRefinementModule and (b)OSRefinementModule
for the RefinementModule extension point (see Appendix E for an exhaus-
tive explanation). The service is implemented by the use of Jena for the
ontology management.

6.5.1 Enrichment

The enrichment of IT policies that contain authorization or authentication rules
is realized by importing enrichment ontologies that are specific to the target sys-
tem’s technology and type of policy (e.g., authentication or authorization) [102].
The ITPolicy Tool implements several enrichment modules that are executed
during the enrichment process. They are used to introduce additional informa-
tion. As for harmonization and refinement, the import of enrichment ontology
is based on the use of extension points. The tool defines an extension point,
called Enrichment, that allows other plugins to contribute with new enrichment
modules.

The peripheral module in charge to provide these functionalities is the fol-
lowing:

Enrichment modules: This module implements the enrichment service. The
enrichment service takes as input the ontological representation of the
IT Policy and, through the import of additional ontologies, generates an
enriched ontology containing information about authorization and authen-
tication and the target system.

[eu.posecco.enrichment.core] implements the enrichment service.
As for the refinement service, it is composed by several modules, each ded-
icated to a specific target system (e.g., DBMS, OS). For instance, it defines
the following extensions (both for authentication and authorization): (a)
DBEnrichmentModule (for MySQL 5.*) and (b)OSEnrichmentModule (for
CentOS 5.*) for the EnrichmentModule extension point (see Appendix F
for an exhaustive explanation). In order to aid the user in the import of
the enrichment ontology, the module provides the functionality to use a
custom wizard for each enrichment ontology.

6.6. ADDITIONAL FUNCTIONALITIES 155

6.6 Additional functionalities

In addition to the main functionalities described above, the IT Policy Tool pro-
vides additional functionalities, such as the possibility to convert automatically
the artifacts from the XMI format to OWL format and viceversa. Furthermore,
an interesting functionality provided by the ITPolicy Tool is also the possibility
to perform various kinds of analyses, like cost-driven analysis, on the basis of
the IT Policy defined by the user. The theoretical foundation of these analyses
are based on the work described in [64].

6.6.1 Quality of access control policies

The user through the IT layer Security meta-model can define authentication
and authorization. An additional feature provided by the meta-model is the
possibility to define role authorizations, thus assigning users to roles and then
defining permissions on roles. As we know there are two general approaches to
define roles: top-down and bottom-up. In the construction of an RBAC system
both approaches are used. The IT Policy Tool provides the possibility to define
roles through both approaches, in particular the user can define manually the
roles (top-down approach) and then define the respective role-to-permission and
user-to-role assignment. Otherwise, the IT Policy Tool provides the function-
ality to use the bottom-up approach. Starting from an IT Policy defined by
the user, the tool can build the user-permission assignement (through a “fac-
torization” of all policies) and then build a solution, with the use of heuristic
algorithms able to solve the Role Mining Problem (RMP).

156 CHAPTER 6. SOFTWARE FOR THE IT POLICY LANGUAGE

F
ig

u
re

6
.3

:
C

o
m

p
o
n
en

ts
o
f

th
e

IT
P

o
li

cy
T

o
o
l

Part II

Security Management in
Mobile Systems

157

1
Introduction

Mobile operating systems play a central role in the evolution of Information and
Communication Technologies. One of the clearest trends of the past few years
has been the adoption by users of mobile portable devices, replacing personal
computers as the reference platform for the delivery of many ICT resources
and services. The rapid success and wide deployment of mobile operating sys-
tems has also introduced a number of challenging security requirements, making
explicit the need for an improvement of security technology.

The mobile scenario is indeed characterized by two mutually reinforcing
aspects. On one hand, mobile devices are high-value targets, since they offer a
direct financial incentive in the use of the credit that can be associated with the
device or in the abuse of the available payment services (e.g., Google Wallet,
telephone credit and mobile banking) [85, 118]. In addition, mobile devices
permit the recovery of large collections of personal information and are the
target of choice if an adversary wants to monitor the location and behavior of
an individual. On the other hand, the system presents a high exposure, with
users of modern mobile devices continuously adding new apps to their devices,
to support a large variety of functions (we follow the common convention and
use the term app to denote applications for a mobile operating system).

The risks are then greater and different from those of classical operating
systems. The frequent installation of external code creates an important threat.
The design of security solutions for mobile operating systems has to consider a
careful balance between, on one side, the need for users to easily extend with
unpredictable apps the set of functions of the system and, on the other side, the
need for the system to be protected from potentially malicious apps.

It is to note that the greatest threats derive from apps that are offered
through delivery channels that are alternative to the “official” app markets (e.g.,

159

160 CHAPTER 1. INTRODUCTION

[121]), whose number of app installations is increasing rapidly, pointing out the
need of wider security layers. Apps in official markets, instead, are verified by the
market owner and the ones detected as misbehaving are promptly removed from
the market. The correct management of the app market is crucial, nevertheless it
is not able by itself to fully mitigate the security concerns. The mobile operating
systems have to provide a line of defense internal to the device against apps that,
due to malicious intent or the presence of flaws in system components or other
apps, may let an adversary abuse the system.

1.1 Rationale of the approach

The approach that we propose follows the principles of the Android security
model, which aims at isolating from each other the apps that are executed by
the system. Each app is confined within an assigned domain and interaction
between the elements of the system is managed by a privileged component, which
enforces the restrictions specified by a policy. The approach presented in the
paper aims at strengthening this barrier, introducing an additional mechanism
to guarantee that apps are isolated and cannot manipulate the behavior of other
apps. The additional mechanism is obtained with an adaptation of the services
of a Mandatory Access Control (MAC) model, which enriches the Discretionary
Access Control (DAC) services native to the Linux kernel.

MAC models are commonly perceived as offering a significant contribution to
the security of systems. However, one drawback of MAC models is represented
by policy management which is a especially critical in complex systems such as
Android, where each OEM tries to customize the MAC policy for its own devices.
Samsung KNOX is the most well-known example. Policy customization provides
benefits in terms of security, but it inevitably leads to policy fragmentation. Our
work tries to do a step ahead in the policy standardization defining a set of entry
points which can be used by both OEMs and developers in order to extend, under
specific constraints, the MAC policy to fulfill their own security requirements
and subsequently try to mitigate the policy fragmentation problem.

Apps can only become known to the system when the owner asks for their
installation. The MAC policy has then to be dynamic, with the ability to
react to the installation and deletion of apps, which requires modularity and
the capability to incrementally update the security policy, with a policy module
associated with an app. We use the term appPolicyModule to characterize it
(when space is limited, like in table headers, we may use the acronym APM).
The support for appPolicyModules allows app developers to benefit from the
presence of a MAC model, letting them define security policies that increase the
protection the app can get against attacks coming from other apps, which may
try to manipulate the app and exploit its vulnerabilities.

2
Android Security Architecture

The Android security model shows a direct correspondence with the overall An-
droid architecture, which is organized in three layers (from bottom to top): (a)
an underlying Linux kernel, (b) a middleware framework, and (c) an upper ap-
plication layer. The Linux kernel in the lowest layer provides low-level services
and device drivers to other layers and it differs from a traditional Linux ker-
nel, because it aims at running in an embedded environment and does not have
all the features of a traditional Linux distribution. The second layer, the mid-
dleware framework, is composed of native Android libraries, runtime modules
(e.g., the Dalvik Virtual Machine and the alternative Android Runtime ART)
and an application support framework. The third layer is composed by apps.
Apps are divided into two categories: (i) pre-installed apps (e.g., Web browser,
phone dialer) and (ii) third-party apps installed by the user. In the paper we
focus on the consideration of third-party apps, since the pre-installed ones are
already covered by the system policy. Each app can be structured as distinct
app components. There are four different types of app component: (a) Activ-
ities, typically each screen shown to a user is represented by a single Activity
component ; (b) Services, provide the background functionalities; (c) Content
Providers used to share data among applications; and (d) Broadcast Receivers
receive event notifications both from the system and from other applications.

Android provides distinct security mechanisms at the distinct layers. The
Linux security model based on user identifiers (uid) and group identifiers (gid)
operates at the lowest layer, with each app receiving a dedicated uid and gid.
The granularity of this access control model is at the level of files and processes,
reusing all the features of the classical DAC model of Unix/Linux, with a com-
pact acl that describes for each resource the operations permitted respectively
to the owner, members of the resource group, and every user of the system.

161

162 CHAPTER 2. ANDROID SECURITY ARCHITECTURE

Applications
Home, Phone, Contacts, Browser, ...

Application Framework
Activities, Location, Notifications, Packages,

Resources, Content Providers, ...

Libraries
Webkit, SQLite, SSL,

OpenGL, ...

Runtime
Android Runtime (ART) or

Dalvik VM, Core libs

Linux Kernel
USB, Wifi, Display, Camera, IPC, Audio, ...

Figure 2.1: Overall representation of Android architecture.

At the application layer, Android uses fine-grained permissions to allow apps
or components to interact with other apps/components or critical resources.
The Android Permission Framework contains a rich and structured collection
of privileges, in the 4.4.4 version more than 200, focused on the management of
the large variety of resources that are offered by the operating system to apps.
The access control model assumes that apps specify in their manifest the set of
privileges that will be required for their execution. At installation time, users of
Android devices have to explicitly accept the request for privileges by the app;
in case the user does not accept the app request, the app is not installed.

2.1 SEAndroid

Recently, the SEAndroid initiative [109] has led to a significant extension of the
security services, with the integration of Security Enhanced Linux (SELinux)
[78] into the Android operating system. The goal of SEAndroid is to build a
mandatory access control (MAC) model in Android using SELinux to enforce
kernel-level MAC, introducing a set of middleware MAC extensions to the An-
droid Permission Framework. SELinux originally started as the Flux Advanced
Security Kernel (FLASK) [71] development by the Utah University Flux team
and the US Department of Defense. The development was enhanced by the
NSA and released as open source software. SELinux policies are expressed at
the level of security context (also known as security label or just label). SELinux
requires a security context to be associated with every process (or subject) and
object, which is used to decide whether access is allowed or not as defined by the
policy. Every request a process generates to access a resource will be accepted
only if it is authorized by both the classical DAC access control service and by

2.2. THREAT MODEL 163

the SELinux policy. The advantage of SELinux compared to the DAC model
are its flexibility (the design of Linux assumes a root user that has full access to
DAC-protected resources) and the fact that process and resource labels can be
assigned and updated in a way that is specified at system level by the SELinux
policy (in the DAC model owners are able to fully control the resources).

The middleware MAC extension chosen to bridge the gap between SELinux
and the Android permission framework is called install-time MAC [109] (several
middleware MACs have been developed, but only the install-time MAC has been
integrated into the AOSP). This mechanism allows to check an app against a
MAC policy (i.e., mac permissions.xml). The integration of this middleware
MAC ensures that the policy checks are unbypassable and always applied when
apps are installed and when they are loaded during system startup.

The current design of SEAndroid aims at protecting core system resources
from possible flaws in the implementation of security in the Android Permission
Framework or at the DAC level. The exploitation of vulnerabilities becomes
harder due to the constraints on privilege escalation that are introduced by
SELinux. Unfortunately, the current use of SELinux in Android aims at pro-
tecting the system components and trusted apps from abuses by third-party
apps. All the third-party apps fall within a single untrusted app domain and
an app interested in getting protection from other apps or from internal vul-
nerabilities can only rely on Android permissions and the Linux DAC support.
This is a significant limitation, since apps can get a concrete benefit from the
specification of their own policy.

2.2 Threat Model

In Android each app receives a dedicated uid and gid at install-time. These
identifiers are used to set the user and the group owner of the resources installed
by the app in the default data directory, which is /data/data/“package name”.
By default, the apps databases, settings, and all other data go there. Since
user data for an application also resides in /data/data/“package name”, it is
important that only that application has access to that particular folder. This
confinement of the data folders permits to enforce a strict isolation from other
applications. In Android this isolation is only enforced at DAC level, but this
is not enough to protect the app and its own resources by other apps with root
privileges. Android, by default, comes with a restricted set of permissions for its
user and the installed applications (i.e., no root privileges). Despite this, apps
can gain root privileges in two ways and use it to provide desirable additional
features for users, but a malicious app may also abuse it to bypass Android’s
security measures.

On one hand many benign apps require root privileges to accomplish their
job. For example, Titanium Backup [112] is one of Google Play’s best-selling
apps and it needs root privileges to backup system and user applications along
with their data. In this scenario, the user typically flashes a recovery console on
the device which has the permission to write on the system partition and from

164 CHAPTER 2. ANDROID SECURITY ARCHITECTURE

there she installs an app such as SuperSU or Superuser in order to gain and
manage root privileges. After that, the user can give root privileges to other
applications. According to Google, users install non-malicious rooting apps by
a ratio of 671 per million in 2014 (increased by 38% compared to the 491 per
million in 2013 [75]). Moreover, there are successful community-ROMs, such as
CyanogenMod with over 10 million installations, that provide root access to the
user by default. Here, the user is aware of the fact that some apps act as root
in the system and have access to everything, however she does not know how
these privileges are used and she has to trust the app.

On the other hand, a malware could exploit a bug in a system component and
gain root privileges to freely access the whole system in order to steal personal
information or perform fraudulent actions. In this scenario the user is unaware
of the fact that an app acts as root. Over the years Android has been attacked
by threatening malware apps such as DroidDreamLight, which affected 30,000-
120,000 users in May 2011 [7]. Recently the app towelroot has been released
which, exploiting the CVE-2014-3153 bug of Linux kernel, permits to “root the
device” without the need to flash a recovery console, and gives root privileges
potentially to all apps. This bug affects all Android versions up to 4.4.4 and thus
represents a significant threat in the current DAC-only protection of private app
resources.

Our proposal provides a solution to both scenarios through the use of app-
PolicyModules defined by the app and attached to the SELinux system policy.

2.2.1 Example

Hereinafter, we define a running example that we use as a proof of concept of our
solution. Dolphin Browser [32] is considered one of the most successful mobile
browsers for Android1 with over 100 million downloads. It uses the Webkit en-
gine and provides several features such as gesture browsing and browsing boost.
We use it to show how the threat model defined in the previous section affects
the current DAC-only security isolation of a real app and its private data. In
Section 3.2 we use this example to identify the requirements and then we will il-
lustrate how the use of a dedicated appPolicyModule can provide better security
for its private data. The Android permissions requested by the app are:

android.permission -group.NETWORK

android.permission -group.ACCOUNTS

android.permission -group.LOCATION

android.permission -group.MICROPHONE

android.permission -group.CAMERA

Listing 2.1: SWRL rule that allows to infer links among nodes.

1At the time of writing Chrome is the most used mobile browser for Android devices;
however, due to the fact that Chrome is included in the Gapps, it does not belong to the
untrusted app domain but to the isolated app domain, thus it is not considered as a third-
party app. The same discussion and threat model presented for Dolphin Browser is also
valid for Google Chrome for Android. Moreover, all the passwords that the user saved in the
Desktop version of Google Chrome using the same login details are available in the Android
database.

2.2. THREAT MODEL 165

Many browsers include a password manager component that stores confiden-
tial information such as usernames and passwords. The common strategy used
by almost all the mobile browsers we have analyzed is to keep the credentials
in a SQLite database. Following Google’s best practices for developing secure
apps, the password database is saved in the app data folder, which should be
accessible only to the app itself. Another best practice (not used by Dolphin
browser) to provide additional protection for sensitive data, is to encrypt local
files using a key that is not directly accessible to the application. For example, a
key can be placed in a KeyStore and protected with a user password that is not
stored on the device. While this does not protect data from a root compromise
that can monitor the user inputting the password, it can provide protection for
a lost device without file system encryption.

Some of the browsers we have analyzed (e.g., Google Chrome) store the pass-
words in plaintext in the database, while others use some form of encryption
(e.g., Dolphin Browser, Firefox). The decision to keep the passwords in plain-
text can appear as a weakness, but even when the information is stored in an
encrypted form, if the data needs to be recovered automatically by the app with-
out the need of additional information not stored on the device (e.g., a master
password known only by the user), a malware could use the same resources used
by the legitimate application to retrieve the information.

There are a number of ways one can obtain the Java code back from the
APK in order to study the app behavior, to replicate it and to extract the
encrypted information. To encrypt the passwords, Dolphin Browser used to
adopt a static key, which was obtainable by simply looking at the decompiled
bytecode. Newer versions of the browser derive the key from the android id
of the device, generated during the first boot, whose use is encouraged by the
Android Developers community to generate device-specific passwords.

We were able to obtain the decrypted passwords from the password.db de-
compiling the app and studying its behavior. In the same way, a malware that
managed to obtain root privileges can access the database and decrypt all the
user credentials.

3
SELinux Policy Model

SELinux uses a closed policy model, denying every access request that is not
explicitly permitted. The SELinux policy is defined using rules, which produce
a set of authorizations. The SELinux model is quite rich and offers a number of
features that increase its expressive power and flexibility. For instance, SELinux
is able to manage a Multi-Level Security model, with the representation of
sensitivity labels and categories. These features are used in some systems that
rely on SELinux (e.g., Samsung Knox), but they are not currently used in AOSP,
which is our reference platform. We then propose a simpler model that allows
us to better characterize our approach.

3.1 Model specification

The model uses names with an “av” prefix, like avType instead of “type”,
to provide a more precise definition. In the remainder of the paper, we will
sometimes used the simpler terms (i.e., type instead of avType) when we see no
ambiguity in their use. The “av” prefix stands for “access vector” and is used
in SELinux to characterize the rules defining the policy, called AV Rules. The
basic elements of this model are:

avType: represents an identifier that can be used to describe both the subject
and the target of an authorization; an avType denotes a security domain
or the profile of a process or resource in the system; the avType is used
to build labels for processes and resources.

avClass: represents the kind of resource (e.g., file, process) that will be the
target of an authorization; an implementation of SELinux in a system will

167

168 CHAPTER 3. SELINUX POLICY MODEL

have to provide in its setup a set of avClasses consistent with the variety
of resources that the system is able to manage.

avPermission: represents the possible actions a source can apply on a target
of a specific avClass, specified in the setup of SELinux; every avClass
cl has its own set of avPermissions, represented by cl.permissions (e.g.,
file.permissions = {read,write, execute, . . .}).

In order to give a formal representation of the SELinux policy, we introduce
the concept of avAuthorization.

Definition 16. Given a set T of avTypes, a set C of avClasses, and a set P of
avPermissions, an avAuthorization a is a quadruple 〈 source, target, class,
action 〉, where:

source ∈ T represents the process (the security principal of the authorization);

target ∈ T is associated with the object that is accessed by the source;

class ∈ C denotes the type of resource that is accessed in the operation;

action ∈ {P∩class.permissions} is the specific avPermission, which has to be
compatible with the avClass.

Each avAuthorization describes a specific request that is permitted in the system.

Example 9. Consider an app whose process is associated with the avType
myapp that wants to read a file both in the internal and external sdcard. The
required avAuthorizations are as follows: 〈 myapp, sdcard internal, file, read 〉,
〈 myapp, sdcard external, file, read 〉.

Definition 17. An avAuthzPolicy is a set of avAuthorizations.

The avAuthzPolicy is derived from the specification of a collection of avRules.
avRules can be positive or negative, support the use of patterns for the specifi-
cation of sources and targets, and may use avAttributes.

Definition 18. An avAttribute is an identifier that can be used in the con-
struction of avRules. It can be used to support the definition of collections of
avAuthorizations. The collection of avAttribute identifiers in a system must be
separate from the domain of avTypes.

Definition 19. Given a set T of avTypes, a set C of avClasses, a set A of avAt-
tributes, and a set P of avPermissions, an avRule is a quintuple 〈 ruleType,
ruleSource, ruleTarget, ruleClass, ruleAction 〉, where:

ruleType is either allow or neverallow;1

1SELinux also supports the auditallow and dontaudit rules, which describe the configura-
tion of the auditing services. The model we describe can be easily extended to manage these
services.

3.1. MODEL SPECIFICATION 169

ruleSource is a pattern, structured in two parts: (a) a set of positive elements
pi ∈ T ∪A, and (b) an optional set of negative elements ni ∈ T ∪A;

ruleTarget is a pattern, with the same structure as the ruleSource;

ruleClass is a set of avClasses, i.e., each ci ∈ C, denoting the types of resource
that are considered by the avRule;

ruleAction is a set of avPermissions, where we assume that each aj ∈ ∩ici.permissions,
i.e., all the elements have to be compatible with all the avClasses specified
in the avRule.

Each avRule can be represented in a textual form, listing the five compo-
nents following the order above. The textual notation for patterns keeps all the
elements within curly braces, preceding the set of negative elements with a “-”
character; a colon separates the ruleTarget from the ruleClass.

Example 10. In order to group the common avAuthorizations granted to myapp
it is possible to create the avAttribute sdcard and assign it to the sdcard internal
and sdcard external (through the use of typeattribute, defined below). Then, the
avAuthorizations defined in Example 9 can be derived by the following avRule:
〈 allow, myapp, sdcard, file, read 〉.

The avRules provide a higher-level representation of avAuthorizations. Ev-
ery allow avRule is managed with an expansion of the sets associated with the
source, target, class, and action. In general, a cartesian product is computed
of all the elements in the positive part. The negative portion of each pattern
is used to specify exceptions in the consideration of the positive portion of the
pattern.

Example 11. In order to provide myapp the avAuthorizations needed to create
and write files and directories labeled with an avType that has the avAttribute
sdcard, defined in Example 10, with the exception of the avType sdcard internal,
the required avRule is as follows: 〈 myapp,
{ sdcard -sdcard internal }, { file dir }, { create write } 〉.

An element that has a strong impact on the derivation of the low-level avAu-
thzPolicy is the definition of the association between avTypes and avAttributes.

Definition 20. The typeattribute statement associates an avType with one
or more avAttributes. The syntax of typeattribute appears in Table 3.1. The
interpretation is that the avType will be associated with all the privileges that
have been granted to the avAttribute.

Definition 21. An avRulePolicy is a set of avRules and typeattribute state-
ments.

The avAuthzPolicy is obtained by a compilation of the avRulePolicy. The
compilation is executed by the checkpolicy tool, with a sequence of three steps:

170 CHAPTER 3. SELINUX POLICY MODEL

(a) the typeattribute statements are processed, creating new avRules for ev-
ery avRule where the avAttribute appears, replacing the avAttribute with the
avTypes; (b) all the allow rules are expanded, producing a set of avAuthoriza-
tions; (c) all the neverallow rules are expanded and the policy is checked for the
presence of conflicts: if even one avAuthorization produced by the expansion
of neverallow rules matches an avAuthorization produced by allow rules, the
compilation stops and an empty policy is produced.

3.2 Requirements

Analyzing the introduction of appPolicyModules in the management of per-app
security, we need to consider the different cases that emerge from the combina-
tion of the system policy and an appPolicyModule. From the model presented
above, we note that every avAuthorization defined in an SELinux policy has
a source avType and a target avType. These types may be defined in either
the system policy or the appPolicyModule. We then have four types of avAu-
thorization, depending on the origin of the source and target domains. Each
configuration is associated with a specific requirement that must be satisfied by
appPolicyModules.

Each requirement will be described and formalized using a simple formaliza-
tion that expresses each requirement as a constraint on the relationship between
the system avAuthzPolicy AV , derived from the system avRulePolicy S, and
the avAuthzPolicy AV ′, obtained after the integration of an appPolicyModule
M with S. We will show in Section 3.3 that our proposed language and re-
strictions for the appPolicyModules satisfy all the requirements. We assume
that there is an avType that describes the domain of safe-to-use resources and
actions, called untrusted app, which protects system resources from the abuse
of third-party apps (this is the name actually used in the current SEAndroid
policy).

An example referring to the Dolphin Browser app will also be presented for
every requirement, to clarify the impact in the design of the policy. To denote
the type of avAuthorization, we use a compact notation where S and A represent
respectively the system and appPolicyModule origin of the avType, with this
structure: source → target.

Req1 (S→S), No impact on the system policy: the app must not
change the system policy and can only impact on processes and resources asso-
ciated with the app itself.

An appPolicyModule is intended to extend the system policy and to be
managed by the same software modules that manage the system policy. Since
third-party apps can not be trusted a priori, it is imperative that the provided
appPolicyModule must not be able to have an impact on privileges where source
and target are system types.

More formally, AV must be contained into AV ′ and all the avAuthorizations
appearing in AV ′ −AV have to present as source or target avTypes defined in
M (a set represented by notation M.newAvTypes).

3.2. REQUIREMENTS 171

AV’AV

M2.dolphin_app
M2

system_file

system

file.write

OK
(Req3)

ERR
(Req2)

file.write M1 ERR
(Req1)

Legend: type (source / target) class.permission

authorization

netdomain

untrusted_app domain

OK
(Req4)

file.write

M3

M3.dolphin_app M3.incognito

file.read,write file.read

M3.history_file

M4M4.dolphin_app

file.read,writefile.read,write

M4.dwnld_file M4.pass_filefile.read

Figure 3.1: Examples of both compliant and non-compliant modules to illustrate
requirements.

I.e., AV ⊆ AV ′ ∧ ∀a ∈(AV ′ \AV) →
a.source∈M.newAvTypes ∨ a.target∈M.newAvTypes

Example 12 (Figure 3.1, M1). The APM associated with Dolphin Browser
can specify access privileges only on its own resources, such as its own password
database, but must not be able to specify authorizations on system resources.
Without this restriction the appPolicyModule could provide unstrusted app write
access to the type platform app data file and corrupt the system resources, or
enhance the privileges of system resources that the app can access, creating un-
predictable vulnerabilities. Consider the appPolicyModule M1 in Figure 3.1. The
module defines an authorization that modifies the behavior of the system policy
because netdomain should not have write access to files labeled as system file.
Thus M1 will not be installed due to the violation of Req1.

172 CHAPTER 3. SELINUX POLICY MODEL

Req2 (A→S), No escalation: the app cannot specify a policy that pro-
vides to its types more privileges than those available to untrusted app.

New domains declared in an appPolicyModule must always operate within
the boundaries defined by the system policy as acceptable for the execution of
apps. When a new application is installed, its domain has to be created “under”
the untrusted app domain, so the system policy can flexibly define the maximum
allowed privileges for third-party apps.

More formally, all the avAuthorizations introduced by the appPolicyModule
M that have an avType t belonging to the avTypes defined by M as a source
will be contained in the set of avAuthorizations that have the system-defined
untrusted app avType as source.

I.e., ∀ a′ ∈ (AV ′ \AV) |
a′.source∈M.newAvTypes ∧ a′.target6∈M.newAvTypes →
∃a ∈ AV |

(a.source = untrusted app ∧ a′.target = a.target∧
a′.class = a.class ∧ a′.action = a.action)

The constraint forces the avAuthzPolicy to assign to all the types introduced
by the appPolicyModule a set of authorizations that corresponds to privileges
available to the untrusted app avType. Then, each privilege must have the same
class and action of a privilege already assigned to untrusted app.

Example 13 (Figure 3.1, M2). As highlighted by appPolicyModule M2 in Figure
3.1, appPolicyModules can only request a subset of the privileges granted to the
untrusted app domain. The APM M2 tries to give M2.dolphin app the privilege
of writing files labeled as system file, that is not granted to the untrusted app
domain. Thus M2 will not be installed due to the violation of Req2.

Req3 (A→A), Flexible internal structure: apps may provide many
functionalities and use different services (e.g., geolocalization, social networks).
The appPolicyModule has to provide the flexibility of defining multiple domains
with different privileges so that the app, according to the functionality in use,
may switch to the one that represents the “least privilege” domain needed to
accomplish the job, in order to limit potential vulnerabilities deriving from
internal flaws.

Greater flexibility derives from the possibility to freely manage privileges
for internal types over internal resources, building a MAC model that remains
completely under the control of the app.

More formally, there can exist a pair of new avTypes t and t′ introduced by
M such that in AV ′ \AV t receives a privilege that t′ does not have.

I.e., if ∃t∈M.newAvTypes∧t′ ∈M.newAvTypes∧
a ∈ AV ′ ∧ a.source= t 6→
∃a′ ∈ AV ′ | a′.source= t′ ∧ a.target= a′.target∧
a.class= a′.class∧a.action= a′.action

3.2. REQUIREMENTS 173

Example 14 (Figure 3.1, M3). Dolphin Browser provides the anonymous surf-
ing (incognito) mode, which allows the user to surf the web without storing
permanently the history and the cookies, and in general aiming at leaving no
trace in persistent memory of the navigation session. In order to enhance its
security and protect the user even from possible app flaws, the appPolicyModule
could specify a switch of context (i.e., it may change the SELinux domain asso-
ciated with its process) when the user enters the incognito mode. In Figure 3.1
the APM M3 specifies that the domain M3.dolphin app can read and write files
labeled as M3.history file, while the domain M3.incognito, used during anony-
mous surfing, drops the privilege of writing the files, preventing the leakage of
resources that may leave a trace of the navigation session.

Req4 (S→A), Protection from external threats: users of mobile de-
vices may unconsciously install malware apps from untrusted sources that, ex-
ploiting some security vulnerabilities, could compromise the entire system or
other apps (e.g., steal user information). To mitigate the risk, an appPolicy-
Module should provide a common way to isolate the app’s critical resources.
The use of MAC support offers protection even against threats coming from the
system itself, like a malicious app that abuses root privileges.

The app can protect its resources from other apps, specifying its own types
and defining in a flexible way which system components may or may not access
the domains introduced by the APM. This requirement depends on the ability
of the MAC model to let app types be protected against system-level elements,
an aspect that SELinux supports and not available in classical multi-level sys-
tems, which assume a rigid hierarchical structure. Indeed, in the SELinux policy
model every privilege has to be explicitly authorized and new avTypes are not
accessible by system avTypes unless a dedicated rule is introduced in the app-
PolicyModule.

More formally, the appPolicyModule M can introduce an avAuthorization
that gives to an avType introduced by M a privilege that is not necessarily
available to a type in the system policy.

I.e., if ∃ t ∈M.newAvTypes∧a ∈ AV ′∧ a.source= t 6→
∃a′ ∈ AV |a′.source6∈M.newAvTypes∧a.target = a′.target∧
a.class= a′.class∧a.action= a′.action.

Example 15 (Figure 3.1, M4). The Dolphin browser can grant to the system
type the privilege to read the dwnld file files, used to label the downloaded files,
while it prevents the access to the pass file files used to label the password file.

There are other environments where SELinux is used, like the Redhat Fe-
dora distribution of Linux, that already supports SELinux modules, but the
requirements presented above do not apply to them. The reason is that the
trust assumptions are different. The modules used in Redhat Fedora permit
to structure the security policy, they are trusted and free to revise in arbitrary
ways the system policy. Modules in Android are not trusted and it is mandatory
that they cannot be used to introduce vulnerabilities in the system.

174 CHAPTER 3. SELINUX POLICY MODEL

Additional requirements, not associated with a formal treatment, have also
to be considered.

• Not all the developers have the knowledge or are interested to secure
their apps with SELinux, so in order not to impede the development they
have to experience the same development and installation process, with no
impact on their activities. This requirement will be considered in Chapter
4.

• In order to facilitate the deployment, the solution has to be compatible
with the implementation of SELinux offered by SEAndroid. This is con-
sidered in Chapter 5.

3.3 Policy Module Language

We now present the concrete structure of appPolicyModules. We introduce
the subset of the SELinux statements used in their definition and describe the
additional statements that will be automatically added to the appPolicyModule
by a pre-processor. A critical design requirement is the compatibility with the
SELinux implementation available today, which facilitates the adoption of the
proposed approach.

Each module presents a head and a body (see right side Figure 4.1). The
head describes all the identifiers that the appPolicyModule reuses from the
system policy. This is represented by the require statement. In case a name
appears that is not known to the system, the compilation fails.

The body of the appPolicyModule can make use of the following SELinux
statements: typebounds, type, attribute, typeattribute, allow, neverallow, and
typetransition. These statements are the only ones that can be used in the
definition of the appPolicyModule. The syntax for these statements is succinctly
presented in Table 3.1.

The typebounds statement permits to specify that the collection of privileges
of the bounded avType has to fall within the boundaries of another avType.
The typebounds statement will raise an exception when an allow rule introduces
a privilege for a bounded type in the source that does not match an existing
rule for the bounding type.

type dolphin_app;

type dolphin_app_incognito;

typebounds untrusted_app dolphin_app , dolphin_app_incognito;

allow dolphin_app app_data_file:file {read write };

allow dolphin_app_incognito app_data_file:file {read};

Listing 3.1: Example of use of typebounds. In the system policy there is a rule
allow untrusted app app data file:file {read write};

The evaluation of compatibility takes into account the presence of other
typebounds statements in the target, considering as correct the use in the target
of an avType that is bounded by the type appearing in the higher-level rule. In

3.3. POLICY MODULE LANGUAGE 175

the example in Listing 3.1, the verification by typebounds is satisfied, because
both the allow rules use in the target an avType that is considered compatible
with the untrusted app type. It is useful to emphasize that the typebounds
statement does not assign the authorizations to the bounded domain, it only
sets its upper bound. This is a core principle in our scenario, where policy
writers are outside of the trust domain of the core system resources.

The type statement permits to introduce new avTypes. To avoid name con-
flicts between types defined in different modules, the pre-processing adds a prefix
that derives from the app name to every identifier (we omit in the examples the
representation of this step). If it does not already appear in the module, the
pre-processing step will add a typebounds statement for every introduced type
that will constrain the authorizations referring to types in the system policy to
lie within the untrusted app type. The attribute statement declares an identi-
fier that can be used to define rules. SELinux policies make extensive use of
avAttributes to provide a structure to policies. No constraint needs to be in-
troduced on the definition of new attributes. Attributes produce an effect on
the policy when they are used in the typeattribute statement, which has been
presented above. The pre-processing checks that every type id used in a typeat-
tribute statement must be defined inside the appPolicyModule. Without this
constraint, a module could violate Req1 and Req2, compromising the system pol-
icy and possibly performing an escalation of privileges, by assigning attributes
to the untrusted app type. The allow and neverallow statements permit to cre-
ate avRules. The pre-processing checks that all the avRules present as a source
or target one of the avTypes and avAttributes introduced by the module.

Finally, the typetransition statement permits to describe the admissible tran-
sitions between avTypes at runtime. We introduce the constraint, checked by
the pre-processor, that the avType defined as first parameter has to be an av-
Type defined in the module. The type transition statement is used to perform
object and domain transitions.

• An object transition occurs when an object needs to be relabeled (i.e., a
file label is changed).

• A domain transition occurs when a process with one avType (we call it
transition-startpoint) switches to another avType (we call it transition-
endpoint), enacting different avAuthorizations from the original ones. An
app could define different domains with limited avAuthorizations and use
them when performing specific actions. We note that for a domain tran-
sition to succeed, we must grant three different avAuthorizations to the
transition-startpoint type.

With respect to object transitions, there is no need to further constrain them,
because the process domain must have the corresponding avAuthorizations to
be able to create objects with the new label. With respect to domain transitions,
when a type transition is authorized and the transition-startpoint type is given
the three additional authorizations, the transition-startpoint type is actually
able to benefit from all the authorizations that have the transition-endpoint as

176 CHAPTER 3. SELINUX POLICY MODEL

Table 3.1: Simplified SELinux syntax used in APMs.

Statement Syntax
attribute attribute attribute id ’;’
type type type id (’,’ attribute id)* ’;’

typeattribute
typeattribute type id attribute id

(’,’ attribute id)* ’;’

typebounds
typebounds bounding bounded

(’,’ bounded)* ’;’

typetransition
type transition type id type id ’:’

’{’class id+’}’ type id ’;’

allow
allow ’{’pattern+ (’-’pattern)* ’}’

’{’pattern+ (’-’pattern)* ’}’
’{’class id+’}’ ’{’perm id+’}’ ’;’

neverallow
neverallow ’{’pattern+ (’-’pattern)* ’}’

’{’pattern+ (’-’pattern)* ’}’
’{’class id+’}’ ’{’perm id+’}’ ’;’

The element pattern=(type id—attribute id) is not included in the SELinux
statements; we use it here to provide a more readable description of the
syntax.

the source. This is a potential risk in the definition of the policy, because the
typebounds statement does not extend its evaluation to the consideration of the
types that are reachable through type transitions. The current AOSP system
policy does not give to untrusted app any type transition privilege, and at the
moment there is no danger, but to avoid any risk we enforce the constraint
to accept in the appPolicyModule only type transitions that have a transition-
endpoint bounded within untrusted app.

3.3.1 Correctness

We want to show that the appPolicyModules will satisfy the four requirements
described in Section 3.2.

With respect to Req1 (S→S), No impact on the system policy, we note that
the appPolicyModule statements do not have an impact on the system policy,
because all the allow and neverallow statements have to specify as source or
target a new avType, guaranteed to be outside of the system policy.

The correctness with respect to Req2 (A→S), No escalation is guaranteed
through the use of the typebounds statements associated with all the avTypes
that appear as source in the allow statements. It is to note that the neveral-
low rules do not have to be considered here, because they may only cause the
rejection of the appPolicyModule by the compiler, but they cannot lead to the
escalation of privileges for the new avTypes. The consideration by the com-
piler of the typebounds statements indeed verifies that each allow rule r′ in the
appPolicyModule that refers to system types has a corresponding allow rule r

3.3. POLICY MODULE LANGUAGE 177

associated with untrusted app.
The respect of Req3 and Req4 can be demonstrated with a simple example

of an appPolicyModule that shows the desired behavior. Requirement Req3
(A→A), Flexible internal structure is satisfied by the example in Listing 3.1,
which shows two new avTypes dolphin app and dolphin app incognito, associ-
ated with distinct privileges.

Requirement Req4 (S→A), Protection from external threats is supported by
the same example: without an explicit rule giving permission, a process as-
sociated with untrusted app is not authorized to access files associated with
dolphin app.

4
Mapping Android Permissions

The introduction of appPolicyModules improves the definition and enforcement
of the security requirements associated with each app. However, in the approach
presented in the previous section, we assumed that the extension to the MAC
policy has to be defined by the developer, who knows the service provided
by the app and its source code. Due to the size of the community, we can
expect that many app developers will either be unfamiliar with the SELinux
syntax and semantics, or know SELinux but not want to use it, avoiding the
introduction of strict security boundaries to the app beyond those associated
with untrusted app. There is also the risk generated by the presence in devices
of a variety of versions of the system policy and the need to guarantee that the
appPolicyModule is compatible with it.

However, we observe that the app developers that can be expected to be
most interested in using the services of the MAC model are expert developers
responsible for the construction of critical apps (e.g., apps for secure encrypted
communication, or for key management, or for the access to financial and bank-
ing services). This community is possibly small, but their role is extremely
critical. They can be expected to overcome the obstacles to the use of appPoli-
cyModules. In addition, the deployment of the policy modularity services opens
the door to a number of other services. We consider here how it is possible to use
them to enforce a stricter model on the management of Android permissions,
relying on the automatic generation of appModulePolicies, solving all the issues
identified above.

Looking at the workflow to build an app, developers are already familiar with
the definition of security requirements in the AndroidManifest.xml, through the
use of the tag uses-permission. In fact, in order to access system resources (e.g.,
access to the user’s current location) the app has to explicitly request the associ-

179

180 CHAPTER 4. MAPPING ANDROID PERMISSIONS

module dolphin 1.0.0;
require {
type untrusted_app;
attribute domain;
attribute appdomain;
attribute netdomain; }
type dolphin_app;
typebounds dolphin_app untrusted_app;
typeattribute dolphin_app, domain;
typeattribute dolphin_app appdomain;
typeattribute dolphin_app netdomain;

<uses-permission android:name=
 android.permission-group.NETWORK />
<uses-permission android:name=
 android.permission-group.ACCOUNTS />
<uses-permission android:name=
 android.permission-group.LOCATION />
<uses-permission android:name=
 android.permission-group.MICROPHONE />
<uses-permission android:name=
 android.permission-group.CAMERA />

AndroidManifest.xml appPolicyModule

H
E
A
D

B
O
D
Y

Figure 4.1: Generation of the Dolphin browser appPolicyModule starting from
the permissions in the app manifest.

ated Android permissions (e.g., android.permission-group.LOCATION), which
correspond
both to a set of concrete actions at the OS level and to a set of avPermissions
granted at the SELinux level (e.g., open, read on files and directories). The
system already offers both a high-level representation and a low-level represen-
tation of the privileges needed to access a resource, but they are not integrated
and what happens, in the absence of policy modularity, is that the app is as-
sociated with the untrusted app domain, which is allowed to use all the actions
that correspond to the access to all the resources that are invokable by apps,
essentially using for protection only Android permissions. The integration of se-
curity policies at the Android permission and MAC levels offers a more robust
enforcement of the app policy.

This can be realized introducing a mechanism that bridges the gap between
different levels, through the analysis of the high-level policy (i.e., the permissions
asked by the app within the Android Permission Framework) and the automatic
generation of an appPolicyModule that maps those Android permissions to a
corresponding collection of SELinux statements. The generator starts from the
representation of the app security requirements expressed in the AndroidMan-
ifest.xml, builds a logical model of the structure of the appPolicyModule, and
it finally produces the concrete implementation of the appPolicyModule and
verifies that all the security restrictions are satisfied.

A necessary step in the construction of the mechanism is the identification
of a mapping between policies at the distinct levels. The Android Permission
Framework contains more than 200 permissions and most of them present a
mapping between the Android permission and a dedicated SELinux domain,
already specified in the system policy. The current system policy does not cover
all the permissions; e.g., the downloads, calendar, and media content resources
are associated with the single platform app data file type. We expect this as-
pect to be manageable with a revision of the policy. However, there is a number
of Android permissions that can only be partially supported by this mecha-

181

nism due to current limitations in the security mechanisms provided by internal
components (e.g., SQLite).

To summarize, it is already possible to capture most Android permissions
in a precise way and some of them with some leeway, leading in all cases to a
significant reduction in the size of the MAC domain compared to what would
otherwise be associated with an app. We provide in Figure 4.1 an example of the
appPolicyModule that would be generated for the Dolphin browser described in
Section 2.2.1. We note that every app will have to be associated with the do-
main and appdomain attributes, which provide all the basic privileges required
to let an app execute in the system. The head of the module will then have to
introduce the require declarations that specify this attribute, together with the
untrusted app type and the netdomain attribute. The body of the module intro-
duces the dolphin app type, the typebounds and all the MAC privileges required
to access the network and other resources/services. Due to the current SELinux
policy structure the access to the ACCOUNTS, LOCATION MICROPHONE
and CAMERA services are mitigated by the system server. The system server
is the core of the Android system which manages most of the framework ser-
vices. The access to the requested services is granted by the system server to
the appdomain type and through the use of the rule typeattribute dolphin app
appdomain the dolphin app type inherits these privileges.

In general, with the availability of appPolicyModules, the system could
evolve from a scenario where each app is given at installation time access at
the SELinux layer to the whole untrusted app domain, to a scenario where each
app is associated with the portion of untrusted app domain that is really needed
for its execution, with a better support of the classical “least-privilege” security
principle.

5
Implementation

The work done by Smalley et al. in [109] represents the basis for our work. We
have introduced a set of extensions in order to enrich the current implementation
and manage appPolicyModules. We now provide a description of the challenges
to enable the concrete use of appPolicyModules in Android. The system has
been implemented with an open source license, extending the current version
4.4.4 of the AOSP (link omitted for the anonymity constraints); adaptation to
Android L is planned as soon as it will be released.

The current SELinux implementation for Android spans different levels of
the Android stack. At the Application Framework level, the SELinux class pro-
vides access to the centralized Java Native Interface (JNI) bindings for SELinux
interaction. The android os SELinux.cpp file represents the JNI bridge. At the
Libraries level, the SELinux implementation consists of the libsepol and lib-
selinux libraries. The former provides an API for the manipulation of SELinux
binary policies. The latter provides the APIs to get and set process and file
security contexts and to obtain security policy decisions.

The first challenges to the integration of appPolicyModules in Android ap-
peared in the adaptation of the current SELinux libraries and in the addition
of the libraries needed to build, link and check the appPolicyModules. These
libraries are part of the full SELinux environment and are included in the ma-
jor Linux distributions, but the activation of policy modules in SELinux for
Android required more than a simple cross-compilation.

183

184 CHAPTER 5. IMPLEMENTATION

load_policy Security
Server AVC

SELinux filesystem

SELinuxMMAC

semodulepre-processing

seapp_contexts

kernel space
user space

PackageManager
Service

INSTALL_APPMODULE

1) mac_permissions.xml

Checkseapp

CheckMMAC

2)

libsemanage

appPolicyModule 3)

Modified component AppPolicyModule component

APK

PolicyModuleInstall
Receiver

Figure 5.1: appPolicyModule Architecture.

5.1 Changes to SELinux

The work we did at the SELinux level can be structured into four major activ-
ities.

First, the libselinux library was modified with the introduction of additional
features needed by the libsemanage library, such as the selinux-config.c module.
We modified the checkpolicy tool in order to build automatically the binary
policy at version 26 (standard SELinux implementations support version 29 of
the binary policy). In the current SEAndroid implementation the binary policy
version range is between 15 and 26. This constraint is enforced by the load policy
method when a policy reload is triggered.

Second, the libsemanage library, which provides APIs for the manipulation
of SELinux binary policies and binary policy modules, was adapted to fulfill
the new requirements. Due to the differences in scenario, architecture and
requirements, some functions, such as the genhomedircon service, were disabled.
The genhomedircon service is used to generate file context configuration entries
for user home directories based on their default roles and is run when building
the policy. However, in Android, though there is the possibility to create several
users for a single device, they do not have a home directory.

Third, the source code of the semodule executable was extended in order
to correctly interact with the modified version of the libsemanage library. The
semodule tool is used to manage SELinux policy modules, including installation,
upgrade, listing and removal of modules. The semodule tool may also be used
to force a rebuild of the policy from the module repository and/or to force a
reload of the policy without performing any other transaction.

Figure 5.1 shows an abstract representation of the complete architecture
introduced in order to manage the appPolicyModules. Fourth, in addition to
the modifications on the set of SELinux libraries, to meet the requirements
introduced in Section 2 a pre-processing phase was introduced. This phase

5.2. CHANGES TO ANDROID 185

supports the creation of constraints introduced in Section 3. Thanks to the
modularity provided by SELinux, we were able to implement the pre-processing
phase reusing several SELinux components.

5.2 Changes to Android

The second set of challenges concerns the app installation process, which starts
from the APK file that contains the app. The PackageManagerService class
provides the APIs that actually manage app installation, uninstallation, and up-
date. The PackageManagerService component provides the functions to parse
the APK file and to assign the SELinux label to the app. The label is retrieved
by the SELinuxMMAC class from the mac permissions.xml file. The file maps
the app certificate to a SELinux label. In the current AOSP version, all third-
party apps are assigned to the default stanza of the mac permissions.xml file,
regardless of their certificate. To address this limitation and assign to the app
the right SELinux type, we introduced a new install service, named Policy-
ModuleInstallReceiver. This service is triggered by an Intent and manages the
installation workflow of an appPolicyModule. The workflow is structured as
follows:

1. trigger the installation of the policy module, update the SELinux policy
and check its correctness;

2. update the seapp contexts file used to label app processes and app package
directories;

3. update the mac permissions.xml file used by SELinuxMMAC to retrieve
the type to assign to the app. This file is used in conjunction with
seapp contexts.

5.2.1 Update SELinux policy

The use of the PolicyModuleInstallReceiver service requires to broadcast an
intent.action.INSTALL APPMODULE intent. When the service receives the
intent it performs a JNI call to the libsemanage library, which validates (i.e., pre-
processing phase), links, expands the module (i.e., semodule tool) and triggers
the reload of the binary policy.

5.2.2 Update seapp contexts

In order to meet the requirements Req3 and Req4 described in Section 3.2 the
app processes and the app package directories have to be labeled accordingly
to the appPolicyModule. In the current AOSP implementation the security
context assigned to app processes, respectively app package directories, is re-
trieved from the seapp context file by the selinux android setcontext, respec-
tively selinux android setfilecon2.

186 CHAPTER 5. IMPLEMENTATION

In order to manage the addition of new entries in the seapp contexts file
the checkseapp utility was extended. Currently, checkseapp is used during the
AOSP build process to validate the seapp contexts file against policy. The ex-
tension permits to dynamically manage the addition/removal of an entry in the
seapp contexts according to the domains defined in the appPolicyModule.

To allow AOSP components such as Zygote to spawn applications in the
correct domain, an update of the mac permissions.xml is needed.

5.2.3 Update mac permissions.xml

This file is used to configure the install MMAC policy. More specifically this
file is used in conjunction with the seapp contexts file in order to determine
the seinfo label to assign to the app. The seinfo value is subsequently used to
determine the SELinux security context for the app process and its /data/data
directory based on the seapp contexts configuration.

The information needed to build a stanza for the mac permissions.xml file are
(i) the app’s X.509 certificate and (ii) the seinfo label. The stanza is built on the
fly by the checkMMAC Java class retrieving the information directly from the
parsed apk and the entry added to the seapp contexts file. After stanza creation,
an update is triggered to insert and refresh the whole mac permissions.xml file.
This is needed in order to let SELinuxMMAC retrieve the right seinfo label for
the new app.

5.3 Performance

As it was clearly expressed in the design of SEAndroid [109], it is necessary to
have a minimal overhead in terms of performance, both at app installation time
and during regular system runtime. We executed a series of experiments for the
evaluation of the performance impact of the techniques presented in this paper.
Experiments have been run on a Nexus 7 2013 aosp flo userdebug 4.4.2 r2. The
Android runtime used was ART.

5.3.1 Installation time

We evaluated the performance overhead of our approach at app installation
time, due to the fact that the process to install an app was extended in order to
manage appPolicyModules. Two different approaches were developed; the first
one is consistent with the approach used for SELinux in Fedora. When a new
module is ready to be installed, the libsemanage tool creates a new version of
the policy and re-installs all the old modules plus the new one. If the new policy
passes the checking step, then the new policy is stored into the system, otherwise
a rollback occurs. This approach introduces a non negligible overhead, because
it requires to reconsider the whole policy every time a new module is added to
the system. This option is natural for SELinux in Fedora, because the modules
are created by trusted entities and they are free to modify the system policy,

5.3. PERFORMANCE 187

1 20 40 60 80 100
modules

0

1

2

3

4

5

6
in

st
al

l t
im

e
[s

]
recompilation
incremental

Figure 5.2: Installation time: comparison between the full recompilation and
the incremental approach.

with a number of types in the existing binary representation that may have to
be updated. As we have already discussed, the requirements associated with
the use of appPolicyModules in Android are different, because in our scenario
an appPolicyModule cannot modify the system policy (Req1 in Section 3.2). In
addition to the security benefit, this requirement also leads to a simplification
of the management of policy modules, because the re-installation of the system
policy and all the other modules is not needed. This permits to provide an
“incremental” solution, with a significant reduction in the appPolicyModule
installation time.

The graph in Figure 5.2 describes the time observed in a scenario where
the current system policy has been extended with 100 modules, adding the
modules one by one. The tests were run 100 times. Each element in the graph
describes the range of measured values and the average. The observations in the
upper part of the graph show that as the number of modules increases, the re-
compilation approach shows a significant increase in the compilation time, due
to the fact that at each step the policy becomes larger and its full recompilation
more expensive. The incremental approach instead shows a constant response
time, with no observable impact deriving from the increase in the size of the
overall policy. The average installation time for the incremental approach, which
is the one to use, is near to 0.2 s, compatible with the requirements of real
systems.

188 CHAPTER 5. IMPLEMENTATION

5.3.2 Runtime

We evaluated the performance overhead of our approach at runtime, considering
two scenarios with different binary policy sizes.

Table 5.1: Binary policies used in the tests.

policy #rules size

sepolicy 1319 73KB

sepolicy +1000 APMs 35319 631KB

For runtime analysis we used two well known benchmark apps: (i) An-
TuTu [4] by AnTuTu Labs and (ii) Benchmark by Softweg [110]. Under both
benchmarks, we ensured that the same number of apps/services were loaded
and running.

Table 5.2: AntuTu Benchmark (100 iterations), higher values are better

sepolicy
sepolicy

+1000 APMs

svm 1130.467 1132.867

smt 3334.533 3341.400

database 630.600 631.333

sram 1534.840 1538.533

float 1938.600 1939.200

snand 1159.320 1159.400

memory 1121.280 1120.800

integer 2285.933 2284.133

AnTuTu Benchmark is a popular Android utility for benchmarking devices.
As it was explained in [109], the overhead introduced by SELinux is very limited
and it only affects sdwrite, sdread and database I/O tests. The tests performed
by Smalley et al. take into account a “static” policy. In our scenario the policy
size is not static, but it changes at each installation and can potentially become
quite large. However, experimental results highlight how the policy size does not
affect the system performance. Table 5.2 shows the results of the benchmark.
The impact of the larger policy is not detectable by the experiments.

Table 5.3 shows the results provided by Benchmark app developed by Soft-
weg. Similarly to the results obtained by AnTuTu, SELinux does not affect
CPU and graphics scores. For the filesystem and sdcard tests, the overhead
introduced by the increased size of the policy is negligible. As highlighted by
the create and delete tests, the time taken to create or delete 1000 empty files
increased by less than 1 percent. As explained by Smalley et al. [109] the create

5.3. PERFORMANCE 189

Table 5.3: Softweg Benchmark (100 iterations): for the Total File System score,
higher values are better

sepolicy
sepolicy

+1000 APMs

Create 250 empty files 1.222 s 1.230 s

Create 1000 empty files 0.302 s 0.303 s

Delete 250 empty files 0.351 s 0.351 s

Delete 1000 empty files 0.130 s 0.130 s

Total file system score 342.835 341.158

and delete tests can be viewed as a worst case, since the overhead of managing
the security context is not amortized over any real usage of the file.

6
Related Work

In the past few years a strong interest has been dedicated to the investigation of
Android security. Several solutions have been proposed to increase the security
of the system and to protect the apps and system components from a variety
of threats. The central role of the proposal by Smalley et al. [109] has already
been discussed. We summarize here other important contributions in the area.

Apex [87] allows the user to apply fine-grained control on the permissions re-
quested by applications at installation time. QUIRE [29] provides a lightweight
provenance system that prevents a special kind of privilege escalation attacks
(i.e., the confused deputy attack). TaintDroid, proposed in [37] by Enck et al.,
provides functions to detect the unauthorized leakage of sensitive data. Taint-
Droid uses dynamic taint analysis (i.e., taint tracking) to monitor the exchange
of sensitive information among third-party apps. While this solution try to
identify the information leakage, our proposal goes one step further impeding
the leakage at the SELinux level.

Kirin [38] is an extension to Android’s application installer. The main secu-
rity goal of Kirin is to mitigate malware contained within a single application.
Kirin checks the permissions requested by applications at install-time. It denies
the installation of an application if the permissions requested by the applica-
tion encompass a set of permissions that violates a given system centric policy.
However, due to its static nature, Kirin has to consider all potential commu-
nication links over the unprotected interfaces. This will stop any application
from being installed, since applications can potentially establish arbitrary com-
munication links over the unprotected interfaces. Paranoid Android (PA) [96]
implements a virus scanner and a dynamic taint analysis system. It permits
to detect viruses and runtime attacks exploiting memory errors such as buffer
overflows. PA has the capability to check control flows thereby being able to

191

192 CHAPTER 6. RELATED WORK

address privilege escalation attacks. However, PA requires the execution trace
to be stored in secure storage (in order to prevent malicious modification) and
impacts the performance of the device, since the execution trace has to be con-
tinuously transmitted to a remote analysis server that replays and analyses the
execution trace. All of these proposals represent important security enhance-
ments, but they all address access control at only one level of the Android stack.
Other solutions, such as FlaskDroid [20], TrustDroid [19] and XManDroid [18]
show greater similarity to our work.

FlaskDroid [20] is a security architecture for the Android OS that instan-
tiates different security solutions. It is inspired by the concepts of the Flask
architecture and is based on SEAndroid. FlaskDroid provides mandatory ac-
cess control on both Android’s middleware and kernel layers. This represents an
enhancement in terms of the isolation that is provided between separate com-
ponents, but the two MAC levels are not coordinated and largely use booleans
in the SELinux policy. In the current SEAndroid implementation, the use of
booleans inside the policy is strongly discouraged, for two main reasons: (i)
it could introduce compatibility problems, and (ii) it could undermine the de-
fault security goals being enforced via SELinux in AOSP itself. Compared to
our proposal, the focus of Flaskdroid is the security of system modules and the
security of third-party apps is not supported. Flaskdroid does not permit to
dynamically add policy modules without a recompilation of the entire policy.

TrustDroid [19] and XManDroid [18] provide mandatory access control at
both the middleware layer and at the kernel layer. At the kernel layer, they rely
upon TOMOYO Linux [49], a path-based MAC framework. TOMOYO supports
policy updates at runtime, but the security model of SELinux is more flexible
and supports richer policies.

RootGuard [103] is an enhanced root-management system which monitors
system calls, to detect the abnormal behavior of apps (i.e., malware) with root
privileges. It is composed by three components (i) SuperuserEx, (ii) Policy
storage database, and (iii) Kernel module, which span the different levels of
the Android architecture. The SuperuserEx is built on top of the open source
Superuser app, the Policy storage database is used to store the RootGuard policy
and the Kernel module introduces a set of hooks in order to intercept system
calls. This implementation is similar to the one used by SELinux, but all the
SELinux code is already in the mainline Linux kernel and provides a more robust
solution.

7
Conclusions

Security is correctly perceived, both by technical experts and customers, as a
crucial property of mobile operating systems. The integration of SELinux into
Android is a significant step toward the realization of more robust and more
flexible security services. The attention that has been dedicated in the SEAn-
droid initiative toward the protection of system components is understandable
and consistent with the high priority associated with the protection of core
privileged resources. Our approach is the natural extension of that work, which
demonstrated a successful deployment, toward a more detailed consideration of
the presence of apps.

The document shows that the potential for the application of policy modules
associated with each app is quite extensive, supporting scenarios where develop-
ers define their own app policy, and scenarios where policies are automatically
generated to improve the enforcement of privileges and the isolation of apps.
The extensive level of reuse of SELinux constructs that characterizes the lan-
guage for the appPolicyModules demonstrates the flexibility of SELinux and
facilitates the deployment of the proposed solution. An analysis of the evolu-
tion of the official SEAndroid project confirms that appPolicyModules identify
a concrete need and that Android is evolving in this direction.

193

A
Comparison with other proposals

A comparison between the metamodel presented in Section 2.2.2 with the most
important proposals for policy languages available today is discussed in the
following. It is interesting to evaluate the differences, as they help explain
where is the innovation in the IT Security metamodel. It is also useful to
provide a justification for the elements where the alternatives available in the
literature and in the market offer greater expressive power. For brevity’s sake,
in this Section the word metamodel will be used to identify the IT Security
metamodel.

A.1 XACML

The basic structural model underlying the XACML [89] language is presented
in Figure A.1. It is possible to clearly identify a correspondence between the
IT Policy metamodel and the XACML model. There are natural correspon-
dences between entities that present identical name in both models: PolicySet
collects instances of Policy entities in both cases. The XACML Rule entity
corresponds to a generalization of the ITSystemAuthorization and ITRoleAu-
thorization entities in the metamodel. The XACML Effect entity is represented
in the metamodel as an attribute of the ITSecurityAssociation entity, supporting
the specification of positive and negative authorizations. The XACML Target
entity presents a strong relationship with the metamodel Target entity; there is
a difference in the way it is managed, as in XACML the target can be associated
with instances of entities PolicySet, Policy, and Rule, whereas in the IT meta-
model the Target entity is only associated with the metamodel Policy entity. In
terms of expressive power the two structures are equivalent. In both models the

195

196 APPENDIX A. COMPARISON WITH OTHER PROPOSALS

Figure A.1: XACML Language Model

Target entity supports the specification of restrictions on the elements that will
be involved in a specific policy or rule. The XACML model offers a rich integra-
tion with a language like XPath and offers a number of predefined predicates,
whereas in the metamodel support is offered for the representation of regular
expressions on the properties of the entities involved in a Policy. XACML in
general offers also a Condition entity that does not have a direct correspondent
in the metamodel.

The limitation on the support for conditions in the metamodel represents
the most significant limitation of this proposal compared to XACML. The mo-
tivation for this difference is the obstacles that would be introduced in the
high-level analysis of the IT Policy from the integration with a rich and expres-
sive declarative language for the representation of constraints. The choice of a
rich integration with XPath works well for XACML, which has been designed
to be the target of the representation of policies that a Policy Decision Point
(PDP) can then understand and process. In that case, a sophisticated analysis
of the structure of each policy and the relationships with the elements of the
landscape have a lower priority than the ability to support a flexible Attribute-
based Access Control paradigm. For the project, it is instead crucial to support
a clear correspondence between elements appearing at different abstraction lev-
els. It is also important to support advanced reasoning functions, that are the

A.2. PCIM 197

main ingredient for the realization of harmonization services, operating within
the IT level and across the distinct levels. These functions are difficult to inte-
grate with a flexible language, because the support for flexible conditions would
create significant obstacles to the efficient and robust identification of entities,
a prerequisite for the concrete verification of policy correctness.

On the other hand, the metamodel offers several features that are not present
in XACML. There are aspects that go beyond the specific representation of au-
thorizations, like the representation of authentication conditions and the spec-
ification of channel protection, all beyond the expressive power of XACML.
For the representation of the specific features of authorizations, the metamodel
offers a richer and more structured characterization of the subjects, with the hi-
erarchy associated with the metamodel ITPrincipal entity. Also, the metamodel
offers a clear distinction between role authorizations and system authorizations,
supporting in a direct way the representation of Role-Based Access control mod-
els, which are supported in XACML only relying on a profile that requires to
adapt the basic structure of XACML to the representation of the two kinds of
authorizations.

A.2 PCIM

The PCIM initiative [15,30] has the goal of providing a standard for the represen-
tation of policies in a format well integrated with the structure of the Common
Information Model (CIM) proposal. The CIM model is considered an important
reference, as it represents the most used solution for the description of the land-
scape of systems in a way that aims to be platform- and vendor-independent.
Specializations of the CIM proposed by the different vendors unfortunately limit
the degree of interoperability that is actually provided.

The PCIM model has as central component the representation of policies as
collections of condition-action rules. The rules, in a way similar to the meta-
model and to XACML, are organized into policies and policy sets. The con-
ditions are boolean expressions over predicates. Predicates express conditions
on properties of the CIM schema, or can use variables specified and updated in
the actions of rules. Conditions can also express time restrictions. Figure A.2
shows the overall structure of policies and policy sets. Figure A.3 shows the
policy condition model. PCIM offers an XML representation.

A specific attention has been paid to the support for the representation of
access control. The specification relies on the use of a number of rules, which
can either describe authentication or authorization restrictions. The model was
one input to the design of the metamodel. The first component of this proposal
is represented in Figure A.4.

The model presents several concepts that appear in the metamodel. A few
relationships among entities are represented in a different way in the two models
(e.g., the identities are directly related with the system supporting the identi-
ty/account, whereas in the metamodel we assume to represent this relationship
introducing an authentication rule). The different structure does not lead to a

198 APPENDIX A. COMPARISON WITH OTHER PROPOSALS

CommonName: string

PolicyKeywords: string[]

Policy (Abstract)

ManagedElement (Abstract)

(from Core)

PolicyComponent

*
*

Dependency
*
*

PolicySet (Abstract)

See Policy Sets

PolicyActionStructure

ActionOrder: uint16

*

PolicyConditionStructure

 GroupNumber: uint16

 ConditionNegated: boolean

*

PolicySetComponent

Priority: uint16

PolicyCondition (Abstract)

See Policy Conditions

PolicyAction (Abstract)

See Policy Actions

*

*

*
*

PolicySetAppliesToElement

*

*

Figure A.2: PCIM: the general policy model.

PolicyRule

CreationClassName: string[key]

PolicyRuleName: string[key]

ConditionListType: uint16 {Enum} = 1

RuleUsage: string

Priority: uint16 {D}

Mandatory: boolean {D}

SequencedActions: uint16 {Enum} = 3

ExecutionStrategy: uint16 {Enum}

CreationClassName: string[key]

PolicyGroupName: string[key]

PolicyGroup

PolicySet (Abstract)

See Policy Sets

PolicyCondition (Abstract)

See Policy Conditions

PolicyAction (Abstract)

See Policy Actions

PolicyActionInPolicyRule

PolicyConditionInPolicyRule

 GroupNumber: uint16

 ConditionNegated: boolean

See Policy Conditions

PolicyTimePeriodCondition

*

*

*

*

AuthenticationRule

PolicyRuleInPolicyGroup {D}

*

*

PolicyRuleValidityPeriod {D}

*

PolicyGroupInPolicyGroup {D}

*

*

*

See AuthorizationRule

AuthorizationRule {E}

PrivilegePropagationRule {E}

System

(Abstract, from Core) 1

PolicyGroupInSystem

*w

PolicyRuleInSystem

1

*w

Figure A.3: PCIM: policy condition model.

A.2. PCIM 199

Figure A.4: CIM access control profile, security principals

change in expressive power.
In Figure A.5 the structure of authentication rules is described. This struc-

ture presents a clear correspondence with the structure of the authentication
rules of the metamodel.

The structures in Figure A.6 describe three different alternatives that can
be used to describe in the CIM model classical authorizations. The presence of
three different alternatives derives from the expressivity of CIM and its redun-
dancy. Several entities and a variety of structures can be used, depending on the
specific solution, but in all cases the structure is consistent with the expressiv-
ity of the metamodel. The three solutions depicted in the Figure adopt distinct
approaches, but it is interesting to observe that all the representations are com-
patible with the metamodel and expressible in a more natural and conceptual
way in it. The specific advantage offered by the metamodel is the absence of this
redundancy, which leads to a clearer approach for the definition of the security
policy of a scenario. In turn, this leads to better and more effective support
by the tools, which otherwise would have to cover a larger number of varieties
with less precision. The correspondence is even more direct considering that the
CIM model described here does not offer the representation of the conditions
that are part of the PCIM model. The conditions of the PCIM model show
an expressivity greater than the one available in the metamodel, but this lim-
itation is justified by the same considerations that have been expressed when
evaluating the XACML language, i.e., the need in the metamodel to offer the
possibility to translate with (semi-)automatic tools the IT level policy toward
the abstract configuration, with the need to avoid the use of a computationally
complete language in the representation of the IT policy.

200 APPENDIX A. COMPARISON WITH OTHER PROPOSALS

Figure A.5: CIM access control profile, authentication

A.3 KAoS

The last comparison is with the KAoS proposal. The main features of this model
have been analyzed in Work Document WD2.2. We can consider the graphical
representation of the model that characterizes KAoS, presented in Figure A.7.
Comparing the KAoS model with the metamodel, it clearly appears that some of
the features of the KAoS model are not supported in the metamodel. These are
features that are of interest for the design of privacy management solutions and
for some advanced applications of security, but do not have today a significant
impact in the scenarios that metamodel is going to focus on. For instance,
obligations are a first class citizen of the KAoS model, but they are not part of
the metamodel. The motivation is that the metamodel considers Future Internet
scenarios in an industrial setting, and today these systems do not support those
functions. Apart from the support of obligations, the KAoS schema and the
metamodel schema present strong similarities.

A.4 Summary of the analysis

The analysis of existing policy languages has produced at the start of the design
valuable information that was taken into account in the design of the meta-
model. The analysis of the models designed for other policy languages shows
that all the interesting features that are significant for the design of a modern
policy language are present in the proposal discussed in Section 2.2.2. There
are some features that are limited compared to other proposals, like the support
for flexible predicates and the representation and management of obligations,
but the motivations presented justify their absence. On the other hand, on

A.4. SUMMARY OF THE ANALYSIS 201

(a) Authorized Privilege (b) Role-centric Authorization

(c) Authorization Rule

Figure A.6: CIM access control profile, authorization

several measures the metamodel shows to be a solution more adequate for the
requirements of the project and in general for the conceptual representation of
policies in modern information systems. The metamodel offers a greater scope,
supports the integrated representation of security requirements on applications
and network connections, gives flexibility in the representation of authorization
and authentication rules, and has a native integration with the services of Se-
mantic Web tools. All these reasons justify the development of a novel policy
language.

202 APPENDIX A. COMPARISON WITH OTHER PROPOSALS

Figure A.7: KAoS Policy model [115]

B
Model specialization example

B.1 Model specialization for Operating Systems

This section describes the PoSecCo metamodel specialization for Operating Sys-
tems (OS) which extends the functional system model from Sections 2.1.1 to
2.1.3 adhering to the constraints outlined in Section 2.3.

Operating Systems are defined in Common Information Model (CIM) [31]
as

An OperatingSystem is software/firmware that makes a Comput-
erSystem’s hardware usable, and implements and/or manages the
resources, file systems, processes, user interfaces, services ... avail-
able on the ComputerSystem.

For the PoSecCo Functional System Model, we want to focus on the Op-
erating System that is currently executed on a system (Node). At most one
Operating System can execute at any time on a system (that is a physical node
or a physical machine), but it is possible that not always the same OS is running
on a given system, e.g. dual or multi boot systems.

The class OperatingSystem is a subclass of class ITResource, or more specific
of ApplicationContainer. As such, it has the relationship runs on to the class
Node that describes the operation system that is currently executed on this
node. At any time, at most one OS is executed on a node. The operating
system provides the basis to run all other kinds of ITResources on a system and
is therefore the lowest component of the ITResource hierarchy which is needed
to provide a given ITService.

The class OperatingSystem is subclassed by the different groups of operating

203

204 APPENDIX B. MODEL SPECIALIZATION EXAMPLE

Figure B.1: Operating System Meta Model

systems, like Windows and Unix. More specializations are possible, e.g. to
distinguish the different Unix dialects or to model other types of OS.

An instance of OperatingSystem can be further characterized indicating:

• its CPEName, a unique software identifier inheritated from class ITRe-
source subsuming information about the vendor, product name, release
and patch level;

• its OS type (an integer indicating the type of operating system as proposed
in the CIM class CIM OperatingSystem).

We can assign the following capabilities (subclasses of class Capability) to
the OperatingSystem:

• Authentication;

• Authorization;

• DataProtection;

• Auditing.

B.2 Model specialization for Database

This section describes the PoSecCo metamodel specialization for database man-
agement systems (DBMS), with a particular focus on relational databases based
on SQL, standardized by ISO/IEC 9075. The specialization shall permit the
generation of security-related configurations for DBMS, in particular access con-
trol rules based on the GRANT statement offered by SQL’s Data Control Lan-
guage (DCL). The required subclasses of the core meta-model are depicted in
Figure B.2, and will be explained in the remainder of the section.

B.2. MODEL SPECIALIZATION FOR DATABASE 205

Figure B.2: Database Meta-Model

B.2.1 DatabaseInterface

The class DatabaseInterface extends the core meta-model class ITInterface. It
describes a remote interface to a DBMS, the actual database is hereby identified
by the attribute databaseName, which is the unique identifier of a database
within a given DBMS. Please note that DatabaseInterface has not been defined
as subclass of WebInterface, since database connection strings (well-known from,
for instance, JDBC) do not adhere to the RFC-defined format. Examples for
database interfaces are JDBC, ODBC, or ADO.NET.

B.2.2 DBMS

The class DBMS extends the core meta-model class ITResource, and can be used
to represent any kind of DBMS, regardless of whether it is based on a relational,
object-oriented or object-relational model. The underlying model is determined
by the kind of Database linked to the DBMS via the association hosts. This
association refines the generic association operates-on, and can be used to link
one or multiple databases (with, e.g., individual schemas) to a DBMS.

B.2.3 Database and SQLDatabase

The abstract class Database extends Data, and comprises the attribute database-
Name, which is a unique identifier of a database within its DBMS. For the time
being, only one subclass has been foreseen, SQLDatabase, herewith covering the
majority of DBMS in production use. In the scope of PoSecCo, a SQLDatabase
can be seen as a composition of sensitive SQLDataObjects, herewith refining the
generic self-reference hierarchy defined for Data.

206 APPENDIX B. MODEL SPECIALIZATION EXAMPLE

B.2.4 SQLDataObject, SQLTable, SQLTableColumn and
SQLView

SQLDataObject and its three subclasses SQLTable, SQLTableColumn, and SQLView
are subclasses of Data, and are referenced by above-introduced class SQL-
Database. The three non-abstract subclasses SQLTable, SQLTableColumn, and
SQLView allow the identification of single tables, columns in a table, or “virtual”
tables obtained as result of a SQL query within a given database, information
required to both control access to relational data, and to protect the confi-
dentiality or integrity of database content by means of cryptographic functions.
The enforcement of respective IT policies does not seem to require, at this point,
further details about the complexity of relational data models (e.g., SQL data
types used, or information about table keys).

The SQL statement GRANT has the following syntax, object name hereby
denotes the sensitive information to be protected, e.g., a database table as
identified by SQLTable:

GRANT privilege name ON object name TO user name — PUBLIC —
role name [WITH GRANT OPTION];

C
Policy Incompatibility

C.1 Policy Incompatibility SWRL Rules

The following SWRL rules can be used to detect modality conflicts and compose
them following the “Most specific wins” criterion:

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) , sign (? a1 , ? s1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
containsResource+(?r2 , ? r1) , canActAs(? pr2 , ? pr1) ,
DifferentFrom (? s1 , ? s2) −> winsVs (? a2 , ? a1)

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr) , sign (? a1 , ? s1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr) , sign (? a2 , ? s2) ,
containsResource+(?r2 , ? r1) , DifferentFrom (? s1 , ? s2) −>
winsVs (? a2 , ? a1)

on(? a1 , ? r) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) , sign (? a1 , ? s1) ,
on(? a2 , ? r) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
canActAs(? pr2 , ? pr1) , DifferentFrom (? s1 , ? s2) −> winsVs (? a2 , ? a1)

Listing C.1: SWRL rule that allows to infer links among nodes.

When the conflict involves two policies that have the same specificity level,
we apply the “Denials take precedence” criterion, with the following rule:

SystemAuthorization (? a1) , PositiveAuthorization (? a1) , on(? a1 , ? r) ,
toDo(? a1 , ? act) , grantedTo (? a1 , ? pr) , SystemAuthorization (? a2) ,
NegativeAuthorization (? a2) , on(? a2 , ? r) , toDo(? a2 , ? act) ,
grantedTo (? a2 , ? pr) −> winsVs (? a2 , ? a1)

Listing C.2: SWRL rule that allows to infer links among nodes.

Some conflicts cannot be solved automatically, and, thus, to detect these
conflicts, which should be solved directly by the security team, we defined the
following SWRL rules:

207

208 APPENDIX C. POLICY INCOMPATIBILITY

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) , sign (? a1 , ? s1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
containsResource+(?r2 , ? r1) , canActAs(? pr1 , ? pr2) ,
DifferentFrom (? s1 , ? s2) −> unsolvableConflict (? a1 , ? a2)

on(? a1 , ? r1) , toDo(? a1 , ? act) , grantedTo (? a1 , ? pr1) , sign (? a1 , ? s1) ,
on(? a2 , ? r2) , toDo(? a2 , ? act) , grantedTo (? a2 , ? pr2) , sign (? a2 , ? s2) ,
containsResource+(?r1 , ? r2) , canActAs(? pr2 , ? pr1) ,
DifferentFrom (? s1 , ? s2) −> unsolvableConflict (? a1 , ? a2)

Listing C.3: SWRL rule that allows to infer links among nodes.

C.2 Preprocessing Algorithms
The preprocessing algorithm is presented in Algorithm 5. It takes as input the
set of roles R, the set of system authorizations SA, the set of role authorizations
RA, and the role hierarchy RH. The algorithm, for each system authorization
sysauth, creates a pair of roles, related to the action a and the resource r
associated with sysauth. Then, it creates two new system authorizations in
order to grant to the just created roles the positive and negative authorizations
to do the action a on the resource r. Then, it removes the authorization sysauth
and finally replaces it with adequate role authorizations in order to preserve
the semantics of the policy. It uses the preprocessHierarchy function, shown
in Algorithm 6, which, recursively, goes deeper in the resource hierarchy and
creates the adequate roles.

C.3 Permission-Based and Object-Based SoD

A first way to handle Permission-based and Object-based SoD constraints is
by extending the ontology with new axioms. For Permission-based SoD we
defined a new property canDo : Principal → Action that is equivalent to
grantedTo−1 ◦ toDo. To keep track of the conflicts, we have defined a new class
PSoDConflict v Principal and in order to identify the actions involved in
constraints we defined the property PermBasedSod : Action → Action. We
express SoD constraints using the following axioms:

∀a1, a2 ∈ Action : PermBasedSod(a1, a2)

PSoDConflict ≡ ∃canDo.{a1} u ∃canDo.{a2}

and to enforce the SoD, we simply have to add to the ontology the axiom
PSoDConflict v ⊥. In the same way we can define the Object-based SoD.
In DL formulas we write canActOn : Principal → Resource, canActOn ≡
grantedTo−1 ◦ on, ObjBasedSod : Resource→ Resource,
RSoDConflict v Principal. In order to enforce the Object-based SoD, we add

C.3. PERMISSION-BASED AND OBJECT-BASED SOD 209

Algorithm 5: Preprocessing procedure
Input : R, SA, RA, RH
Output: R, SA, RA, RH
begin

for sysauth ∈ SA do
s = sign(sysauth);
r = createNewRole();
if r 6∈ R then

R = R
⋃
{r};

SystemAuthorization sa;
grantedTo(sa) = r;
on(sa) = on(sysauth);
toDo(sa) = toDo(sysauth);
sign(sa) = s;
SA = SA

⋃
{sa};

if s = + then

s′ = −;

else

s′ = +;

r′ = createRole(p, s′);
if r′ 6∈ R then

R = R
⋃
{r′};

SystemAuthorization sa′;
grantedTo(sa′) = r′;
on(sa′) = on(sysauth);

toDo(sa′) = toDo(sysauth);

sign(sa′) = s′;
SA = SA

⋃
{sa′};

cannotBe = cannotBe
⋃
{(r, r′)}

⋃
{(r′, r)};

preprocessHierarchy(on(sysauth), r, r′, toDo(sysauth), R, SA,RA,RH);

RoleAuthorization ra;
enableRole(ra) = r;
grantedTo(ra) = grantedTo(sysauth);
grantor(ra) = grantor(sysauth);
RA = RA

⋃
{ra};

SA = SA − {sysauth};

Algorithm 6: Preprocess Hierarchy procedure
Input : res ∈ Resources, r1, r2 ∈ R, s ∈ {+,−},action ∈ Actions,R, SA, RA, RH
Output: R, SA, RA
begin

for res′ ∈ contains(res) do
r = createNewRole();
if r 6∈ R then

R = R
⋃
{r};

SystemAuthorization sa;
grantedTo(sa) = r;

on(sa) = res′;
toDo(sa) = a;
sign(sa) = s;
roleHierarchy = roleHierarchy

⋃
{(r1, r)};

SA = SA
⋃
{sa};

if s = + then

s′ = −;

else

s′ = +;

r′ = createNewRole();

if r′ 6∈ R then

R = R
⋃
{r′};

SystemAuthorization sa′;
grantedTo(sa′) = r′;
on(sa′) = res′;
toDo(sa′) = a;

sign(sa′) = s′;
roleHierarchy = roleHierarchy

⋃
{(r2, r′)};

SA = SA
⋃
{sa′};

cannotBe = cannotBe
⋃
{(r, r′)}

⋃
{(r′, r)};

preprocessHierarchy(res′, r, r′, a, R, SA,RA,RH);

RoleAuthorization ra;
enableRole(ra) = r;
grantedTo(ra) = grantedTo(sysauth);
grantor(ra) = grantor(sysauth);
RA = RA

⋃
{ra};

SA = SA − {sysauth};

210 APPENDIX C. POLICY INCOMPATIBILITY

to the ontology the following set of axioms:

∀res1, res2 ∈ Resource : ObjBasedSod(res1, res2)

RSoDConflict ≡ ∃canActOn.{res1} u ∃canActOn.{res2}
RSoDConflict v ⊥

However, this approach has two drawbacks: (1) it adds complexity to the
ontology, (2) it represents all these SoD constraints in a redundant way, because
the only difference between all of them is the hierarchy on which the constraint
is applied. A second approach is to implement Permission-based and Object-
based SoD constraints using an ad-hoc role hierarchy and, thus, representing
them as Role-based SoD. Thus, we can define, for each pair composed by an
action a ∈ Actions and a resource res ∈ Resource, a new role ra,res that
represents a high level role. Each role ra,res ∈ Role has assigned to it only
a SystemAuthorization, which allows it to do the action a on the resource
res. Then, we define for each action a ∈ Actions a role ra, and for each
resource res ∈ Resources a role rres. These roles are low level roles; they do
not have any authorization assigned to them, but they are used to express the
SoD constraints. In order to create the adequate relationships between high
level and low level roles, we add the following axioms to the ontology:

∀res ∈ Resource, ∀a ∈ Actions :

roleHierarchy(ra,res, rres)

roleHierarchy(ra,res, ra)

These axioms create a low level of abstract roles, parameterized only on the
action or on the resource, that are sub-roles of high level roles. This second
level aggregates the roles on a resource and action basis. Now, we can simply
express Permission-based SoD and Object-based SoD using the axioms presented
for Role-Based SoD, but considering only low level roles, respectively the ones
associated with actions or with resources. For instance, in order to express SoD
between two resources res1 and res2, we can create a negative role authorization
rauth such that grantedTo(rauth, rres1) and enabledRole(rauth, rres2), whereas
to express the SoD between two actions a1 and a2 we can create a negative role
authorization rauth such that grantedTo(rauth, ra1) and enabledRole(rauth, ra2).

C.4 Optimization

The reasoning phase can be made more efficient if we adequately prune the
model, removing from it all authorizations, identities and roles that cannot be
involved in any SoD conflict. The pruning procedure is presented in Algorithm
7. It takes as input the sets of identities, roles and role authorizations and
prunes the individuals that cannot be involved in any SoD constraint. The
function contained+ (id) returns the set of groups in which the id is contained,

C.4. OPTIMIZATION 211

directly or indirectly.

Algorithm 7: Pruning procedure
Input : R, RA, ID
Output : R, RA, ID
begin

for id ∈ ID do
if 6 ∃ra ∈ RA : grantedTo(ra) = id then

ID = ID − {id};
grantedTo = grantedTo − {(x, y) : y = id};

for r ∈ R do
if 6 ∃(x, t) ∈ roleHierarchy : y = r then

if 6 ∃ra ∈ RA : enabledRole(ra) = r then
R = R − {r};
RA = RA − {auth ∈ RA : enabledRole(auth) = r};

for auth ∈ RA do
r = enabledRole(auth);
id = grantedTo(auth);
containedIn = {i ∈ ID : contained + (id) = i};
if 6 ∃id2 ∈ ID : ((id2 ∈ containedIn ∨ id 6= id2) ∧ ∃ra ∈ RA : grantedTo(ra) =
id2 ∧ enabledRole(ra) 6= r) then

ID = ID − {id};
RA = RA − {auth};

The pruning removes the identities without any authorization, the roles that
are not assigned in any role authorization, and the redundant role authoriza-
tions. The pruning phase can substantially improve the performance of the
reasoning phase, and, thus, adding a pruning phase before the reasoning leads
to lower global analysis time and better performance.

D
Technology

Here we will show an overview of the technologies used in the develoment of
the IT Policy Tool, implemented as an Eclipse plug-in. The tool supports the
import/export of the IT Policy in several formats, such as: XMI [90] and XML
[17]. Furthermore the current version of the tool supports the generation of
an OWL representation of the IT Policy and permits a quick invocation of the
reasoner over the produced ontology. The plug-in also offers, through the use of
Protégé [111], functionalities to manipulate and edit the OWL representation
in order to enrich the IT Policy ontology.

D.1 Eclipse

Eclipse [43] is the most significant open source application development frame-
work, offering a high degree of flexibility and supporting the extension of its
functionality through the implementation of plugins. The Eclipse platform en-
courages the reuse of the functions of other plugins and modules of the Eclipse
framework, speeding up and improving the quality of the development process.
The choice of an Eclipse plugin to support the creation of the IT Policies is due
to the fact that the services that Eclipse offers to support the construction of a
large software system can be immediately adapted to the design of a complex IT
Policy. In both scenarios, there is the need to offer rich editing and exploration
support over information that describes a multiplicity of instances that follow
a prescribed syntax and have a number of relationships among them. Eclipse
offers a common plugin interface to facilitate the integration among different
plugins (see Figure D.1).

213

214 APPENDIX D. TECHNOLOGY

Eclipse Platform

Platform Runtime

Workbench

JFace

SWT

Workspace

Help

Team

Figure D.1: Eclipse plugin interface.

The components of the Eclipse Platform are: a Platform Runtime; a low
level widget toolkit called Standard Widget Toolkit (SWT); a UI toolkit called
JFace that provides helper classes for developing UI features with the SWT
faster; a Workbench implementation that provides the look and feel and there-
fore the UI personality of the Eclipse Platform; a Workspace that consists of one
or more top-level projects, where each project maps to a corresponding user-
specified directory in the file system; a Team support that allows a project in
the workspace to be placed under version and configuration management with
an associated team repository; a Help mechanism that allows tools to define
and contribute documentation to one or more online books.

D.2 Web Ontology Language

The Web Ontology Language (OWL) [79] is a formal language for representing
ontologies in the Semantic Web. Ontologies can be defined as the information
about categories of objects and how they are interrelated. OWL can not only
represent objects, but also information about these objects (RDF annotation
properties). OWL, which today is a World Wide Web Consortium (W3C) stan-
dard, was developed by the W3C Web Ontology Working Group. The language
is influenced by representation languages such as XML and RDF, OIL and
DAML+OIL, as well as by Description Logics and frames. OWL supports the
specification and use of ontologies that consist of terms representing individuals,
classes of individuals, properties, and axioms that assert con-
straints over them.

The use of OWL to define policies has several very important advantages

D.2. WEB ONTOLOGY LANGUAGE 215

that become critical in distributed environments involving coordination across
multiple organizations. First, most policy languages define con-
straints over classes of targets, objects, actions and other constraints (e.g., loca-
tion). A substantial part of the development of a policy is often devoted to the
precise specification of these classes. This is especially important if the policy is
shared between multiple organizations that must adhere to or enforce the policy
even though they have their own native schemas or data models for the domain
in question. The second advantage is that OWL’s grounding in logic facilitates
the translation of policies expressed in OWL to other formalisms, either for
analysis or for execution.

The IT Policy Tool, for the reasons above, provides functionaliies to manage
ontologies. It increases the expressive power of the model and supports sophis-
ticated correctness verification. This integration is possible through the use of
the OWL API library [52], which offers a complete set of interface to manage
the ontologies. OWL API is based on the OWL DL language. Furthermore,
thanks to the great extensibility of the OWL API we can add modules to pro-
vide specific services, for instance SPARQL-DL [108] to query the ontology and
SWRL [54] to define semantic rules on the ontology.

D.2.1 OWL API

The integration with the tools managing the ontological aspects is implemented
within the plug-in through the latest version of OWL API [52]. OWL API has
been designed to meet the needs of programmers developing OWL based appli-
cations, OWL editors and OWL reasoners. It is a high level API that is closely
aligned with the OWL 2 specification. It includes first class change support,
general purpose reasoner interfaces, validators for the various OWL profiles,
and support for parsing and serializing ontologies in a variety of syntaxes. The
API also has a flexible design that allows third parties to provide alternative
implementations for all the major components.

The current version of OWL API provides a suite of interfaces along with
a reference implementation that facilitates the use of OWL in a wide variety
of applications. At its core, the OWL API consists of a set of interfaces for
inspecting, manipulating and reasoning with OWL ontologies. The OWL API
supports loading and saving ontologies in a variety of syntaxes. However, none of
the model interfaces in the API reflect, or are biased to any particular concrete
syntax or model. For example, unlike other APIs such as Jena [56], or the
Protégé 3.X API, the representation of class expressions and axioms is not at
the level of RDF triples. Indeed, the design of the OWL API is directly based
on the OWL 2 Structural Specification [84].

D.2.2 Reasoner

A key benefit of the OWL representation is the ability to support reasoning.
Reasoners are used to check the consistency of ontologies, check to see whether
the signature of an ontology contains unsatisfiable classes, compute class and

216 APPENDIX D. TECHNOLOGY

property hierarchies, and check to see if axioms are entailed by an ontology.
The OWL API has various interfaces to support the interaction with OWL
reasoners. A reasoner is a key component for working with OWL ontologies. In
fact, virtually all querying of an OWL ontology (and its imports closure) should
be done using a reasoner. This is because knowledge in an ontology might
not be explicit and a reasoner is required to deduce implicit knowledge so that
the correct query results are obtained. At the time of this writing, FaCT++
[113], HermiT [58], Pellet [106], and Racer Pro [47] reasoners provide OWL API
wrappers. In the PoSecCo IT Policy Tool we use HermiT as reasoner. HermiT
is a publicly-available OWL reasoner based on a ”hypertableau” calculus, which
provides more efficient reasoning than many other algorithms. This performance
gain is important for PoSecCo, which may have to manage policies containing
a large number of elements.

D.2.3 Semantic Web Rule Language

Semantic Web Rule Language (SWRL) [55] was designed to be the rule lan-
guage of the Semantic Web. SWRL is based on a combination of the OWL
DL and OWL Lite sublanguages of the Web Ontology Language (OWL) the
Unary/Binary Datalog sublanguages of the Rule Markup Language. SWRL al-
lows users to write Hornlike rules expressed in terms of OWL concepts to reason
about OWL individuals. The rules can be used to infer new knowledge from
the existing OWL knowledge bases. The SWRL Specification does not impose
restrictions on how reasoning should be performed with SWRL rules. In this
way, SWRL provides a convenient starting point for integrating rule systems to
work with the Semantic Web.

SWRL rules are written as antecedent / consequent pairs. In SWRL ter-
minology, the antecedent is referred to as the rule body and the consequent is
referred to as the head. The head and body consist of a conjunction of one or
more atoms. The intended meaning is consistent with the classical semantics
that characterizes most rule paradigms: whenever the conditions specified in
the antecedent hold, then the conditions specified in the consequent must also
hold. Thanks to the introduction of these rules, the verification process of the
model can be automated. The use of SWRL offers interesting opportunities in
the PoSecCo context and is well supported by the reasoners.

D.2.4 Simple Protocol And RDF Query Language - De-
scription Logic

Another common extension to DL engines is the ability to execute queries
against the semantic model. Simple Protocol And RDF Query Language - De-
scription Logic (SPARQL-DL) [108] is a graph-matching query language. Given
a data source D, a query consists of a pattern which is matched against D, and
the values obtained from this matching are processed to give the answer. The
data source D to be queried can be composed of multiple sources. SPARQL-
DL is a distinct subset of the most famous Simple Protocol And RDF Query

D.2. WEB ONTOLOGY LANGUAGE 217

Language (SPARQL) [97].
SPARQL-DL supports two different types of queries: ASK and SELECT.

An ASK-query returns a Boolean result whereas a SELECT-query returns all
possible bindings of the provided variables. As within SPARQL, the DISTINCT
keyword removes automatically all redundant bindings within the result set.

E
Refinement Modules

As for the policy enrichment, the policy refinement process is executed by or-
chestrating a set of refinement modules. Each refinement module can identify
the set of model elements readily available for refinement and produce a new
description fragment that describes abstract configurations. In order to manage,
in a flexible way, the refinement process we have decided to adopt the same ap-
proach of policy enrichment, thus we have implemented the refinement process
with the use of an extension point.

<element name="module">

<complexType>

<attribute name="systemType" use="required">

<simpleType>

<restriction base="string">

<enumeration value="DBMS"></enumeration>

<enumeration value="OS"></enumeration>

. . .

</restriction>

</simpleType>

</attribute>

<attribute name="elementType" use="required">

<simpleType>

<restriction base="string">

<enumeration value="ITSystemAuthorization"></enumeration>

<enumeration value="ITRoleAuthorization"></enumeration>

<enumeration value="ITAuthenticationRule"></enumeration>

. . .

</restriction>

</simpleType>

</attribute>

<attribute name="class" type="string" use="required">

<annotation>

219

220 APPENDIX E. REFINEMENT MODULES

<appinfo>

<meta.attribute kind="java" basedOn=":eu.posecco.refinement.

core.IRefinementModule"/>

</appinfo>

</annotation>

</attribute>

<attribute name="name" type="string" use="required" />

</complexType>

</element>

Listing E.1: Definition of Refinement Extension Point

The extension point, whose definition is presented in Listing E.1, has four
attributes:

1. name represents the name of the refinement module,

2. class represents the class that implements the refinement module for the
specific IT element,

3. elementType represents the type of the IT element (e.g., ITSystemAutho-
rization, ITRoleAuthorization),

4. systemType represents the type of the concrete system involved in the
policy (e.g., DBMS, OS)

Figure E.1 shows an example of the implementation of a refinement mod-
ule for DBMS (systemType attribute) involved in ITSystemAuthorizations (el-
ementType attribute).

221

F
ig

u
re

E
.1

:
D

efi
n

it
io

n
o
f

a
R

efi
n

em
en

t
ex

te
n

si
o
n

.

F
Enrichment Modules

The Policy Enrichment plug-in implements several enrichment modules which
are executed during the enrichment process. They are used to introduce addi-
tional information as described in Section 5. In general, the enrichment process
is led by the CPE name attribute of the class ITResource related to the IT
element. The Policy Enrichment defines an extension point, called Enrichment,
that allows other plugins to contribute with new enrichment modules.

<element name="module">

<complexType>

<attribute name="name" type="string" />

<attribute name="CPEName" type="string" use="required">

<annotation>

<documentation>

The CPE of the element enriched by the module.

</documentation>

</annotation>

</attribute>

<attribute name="ontologyIRI" type="string" use="required">

<annotation>

<documentation>

The IRI of the ontology used in the EM.

</documentation>

</annotation>

</attribute>

<attribute name="wizard" type="string">

<annotation>

<documentation>

The dedicated wizard for the EM.

</documentation>

<appinfo>

<meta.attribute kind="java"

basedOn="eu.posecco.enrichment.core.wizard.EnrichmentModuleWizard:"/>

223

224 APPENDIX F. ENRICHMENT MODULES

</appinfo>

</annotation>

</attribute>

</complexType>

</element>

Listing F.1: Definition of Enrichment Extension Point

The extension point, whose definition is presented in Listing F.1, has four
attributes:

1. name represents the name of the enrichment module,

2. CPEName represents the CPE name of the element which has to be en-
riched,

3. ontologyIRI represents the enrichment ontology IRI,

4. wizard represents the class that implements a dedicated wizard in order
to help the user, in the addition to concepts belong to the enrichment
ontology.

As described before, the plug-in that wants to contribute with new func-
tionalities has to define an extension satisfying the extension point. Figure F.1
shows an example of the implementation of the extension point.

225

F
ig

u
re

F
.1

:
D

efi
n

it
io

n
o
f

a
n

E
n

ri
ch

m
en

t
ex

te
n

si
o
n

.

226 APPENDIX F. ENRICHMENT MODULES

F.1 NeOn ToolKit

In order to aid the user in the import of the enrichment ontology, the Policy En-
richment provides the functionality to use a custom wizard for each enrichment
ontology. Furthermore, the tool provides the functionality to edit manually
the enriched ontology through the use of the NeOn ToolKit. It is the ontol-
ogy engineering environment originally developed as part of the NeOn project
1 from FP6, it is composed of a set of Eclipse plugins to support, among other
interesting things, ontology-guided model description.

Figure F.2: NeOn toolkit used to model IT policies

Figure F.2 shows a fragment of IT Policy edited with the NeOn toolkit.
NeOn toolkit offers to the user forms for the querying and insertion of elements
in the enrichment ontology that depend on an automatic analysis of the structure
of the ontology itself, without the need to build an ad-hoc software module for
each enrichment option.

1http://www.neon-project.org

Bibliography

[1] E.S. Al-Shaer and H.H. Hamed. Firewall policy advisor for anomaly de-
tection and rule editing. In Proc. of IEEE/IFIP Integrated Management,
2003.

[2] E.S. Al-Shaer and H.H. Hamed. Discovery of policy anomalies in dis-
tributed firewalls. In Proc. of IEEE Infocom, 2004.

[3] E.S. Al-Shaer and H.H. Hamed. Modeling and management of firewall
policies. IEEE Transactions on Network and Service Management, 1(1),
2004.

[4] AnTuTu labs. AnTuTu Benchmark. https://play.google.com/store/

apps/details?id=com.antutu.ABenchMark .

[5] A. Armando, R. Carbone, and S. Ranise. Automated analysis of semantic-
aware access control policies: a logic-based approach. In Proceedings of
the Fifth IEEE International Conference on Semantic Computing (ICSC).
IEEE, 2011.

[6] Alessandro Armando and Silvio Ranise. Automated symbolic analysis of
arbac-policies. In Jorge Cuellar, Javier Lopez, Gilles Barthe, and Alexan-
der Pretschner, editors, Security and Trust Management, volume 6710 of
Lecture Notes in Computer Science, pages 17–34. Springer Berlin / Hei-
delberg, 2011.

[7] Mark Balanza, Kervin Alintanahin, Oscar Abendan, Julius Dizon, and
Bernadette Caraig. Droiddreamlight lurks behind legitimate android apps.
In Malicious and Unwanted Software (MALWARE), 2011 6th Interna-
tional Conference on, pages 73–78. IEEE, 2011.

[8] C. Basile, A. Cappadonia, and A. Lioy. Network-level access control policy
analysis and transformation. Networking, IEEE/ACM Transactions on,
(99), 2011.

[9] David Basin, Samuel J. Burri, and Günter Karjoth. Separation of duties
as a service. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’11, pages 423–429,
New York, NY, USA, 2011. ACM.

227

228 BIBLIOGRAPHY

[10] David A. Basin, Samuel J. Burri, and Günter Karjoth. Obstruction-free
authorization enforcement: Aligning security with business objectives. In
CSF, pages 99–113, 2011.

[11] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management,
applied to electronic health records. In IEEE Computer Security Founda-
tions Workshop, 2004.

[12] Moritz Becker and Sebastian Nanz. A logic for state-modifying autho-
rization policies. In Joachim Biskup and Javier López, editors, Computer
Security ESORICS 2007, volume 4734 of Lecture Notes in Computer Sci-
ence, pages 203–218. Springer Berlin / Heidelberg, 2007.

[13] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web tutorial using
n3. In Twelfth International World Wide Web Conference, 2003.

[14] Annett Laube BFH, Guillaume Gagnerot BFH, Henrik Plate SAP,
Gerhard Hassenstein BFH, Matteo Casalino SAP, Stefano Paraboschi,
Cataldo Basile, and Theodoor Scholte. D3. 3-configuration meta-model.
2012.

[15] Bob Moore and Ed Ellesson and John Strassner and Andrea Westerinen.
Policy core information model. Internet Engineering Task Force RFC
3060, February 2001.

[16] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for
composing access control policies. ACM TISSEC, 5(1), 2002.

[17] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (xml) 1.0 (fifth edition).
World Wide Web Consortium, Recommendation REC-xml-20081126,
November 2008.

[18] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,
Ahmad-Reza Sadeghi, and Bhargava Shastry. Towards taming privilege-
escalation attacks on android. In 19th Annual Network & Distributed
System Security Symposium (NDSS), volume 17, pages 18–25, 2012.

[19] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-
Reza Sadeghi, and Bhargava Shastry. Practical and lightweight domain
isolation on android. In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices. ACM, 2011.

[20] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and
fine-grained mandatory access control on android for diverse security and
privacy policies. In 22nd USENIX Security Symposium. USENIX, 2013.

[21] T. Cadenhead, M. Kantarcioglu, and B. Thuraisingham. Scalable and
efficient reasoning for enforcing role-based access control. Data and Ap-
plications Security and Privacy XXIV, pages 209–224, 2010.

BIBLIOGRAPHY 229

[22] Huoping Chen, Youssif B Al-Nashif, Guangzhi Qu, and Salim Hariri. Self-
configuration of network security. In Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007. 11th IEEE International, pages
97–97. IEEE, 2007.

[23] L. Cholvy and F. Cuppens. Analyzing consistency of security policies.
In Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on,
pages 103–112. IEEE, 1997.

[24] Jan Chomicki, Jorge Lobo, and Shamim Naqvi. A logic programming
approach to conflict resolution in policy management. In 7th Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning (KR’2000), pages 121–132. Morgan Kaufman, 2000.

[25] Lorenzo Cirio, Isabel F. Cruz, and Roberto Tamassia. A role and at-
tribute based access control system using semantic web technologies. In
Proceedings of the 2007 OTM Confederated international conference on
On the move to meaningful internet systems - Volume Part II, OTM’07,
pages 1256–1266, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, and
Arosha Bandara. Expressive policy analysis with enhanced system dynam-
icity. In Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, ASIACCS ’09, pages 239–250,
New York, NY, USA, 2009. ACM.

[27] Xi Deng, Volker Haarslev, and Nematollaah Shiri. Resolution based ex-
planations for reasoning in the description logic alc. In IN: PROCEED-
INGS OF THE CANADIAN SEMANTIC WEB WORKING SYMPO-
SIUM, pages 55–61. Springer, 2006.

[28] J. DeTreville. Binder: a logic-based security language. In IEEE Sympo-
sium on Security and Privacy, pages 95–103, 2002.

[29] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S.
Wallach. Quire: Lightweight provenance for smart phone operating sys-
tems. In Proceedings of the 20th USENIX Conference on Security, pages
23–23, Berkeley, CA, USA, 2011. USENIX Association.

[30] Distributed Management Task Force (DMTF). Cim policy model white
paper. DMTF Technical Report DSP0108, June 2003.

[31] DMTF Distributed Management Task Force. Common Information Model
(CIM). Online: http://dmtf.org/standards/cim.

[32] Dolphin Browser. Dolphin Browser for Android. https://play.google.
com/store/apps/details?id=mobi.mgeek.TunnyBrowser .

230 BIBLIOGRAPHY

[33] Daniel Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In Ulrich Furbach
and Natarajan Shankar, editors, Automated Reasoning, volume 4130 of
Lecture Notes in Computer Science, pages 632–646. Springer Berlin / Hei-
delberg, 2006.

[34] Daniel Dougherty, Claude Kirchner, Hélène Kirchner, and Anderson San-
tana de Oliveira. Modular access control via strategic rewriting. In
Joachim Biskup and Javier López, editors, Computer Security ESORICS
2007, volume 4734 of Lecture Notes in Computer Science, pages 578–593.
Springer Berlin / Heidelberg, 2007.

[35] PCI DSS. Pci security standards council, payment card industry (pci)
data security standard. URL: http://www. pcisecuritystandards. org.

[36] Olivier Bettan (ed). WD1.8 – Development Environment and test-bed for
coordinating prototyping. Working document, PoSecCo, 2012.

[37] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones. In
OSDI, volume 10, 2010.

[38] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight
mobile phone application certification. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 235–245.
ACM, 2009.

[39] R. Ferrini and E. Bertino. Supporting rbac with xacml+ owl. In Proceed-
ings of the 14th ACM symposium on Access control models and technolo-
gies, pages 145–154. ACM, 2009.

[40] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and
B. Thuraisingham. R owl bac: representing role based access control in
owl. In Proceedings of the 13th ACM symposium on Access control models
and technologies, pages 73–82. ACM, 2008.

[41] Simon N Foley and William M Fitzgerald. Management of security policy
configuration using a semantic threat graph approach. Journal of Com-
puter Security, 19(3):567–605, 2011.

[42] Center for Strategic and International Studies. Securing cyberspace for
the 44th presidency, December 2008.

[43] Eclipse Foundation. Eclipse classic. http://www.eclipse.org/.

[44] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, Ian Robinson, and
Igor Sedukhin. Web services resource 1.2 (ws-resource). OASIS, April,
2006.

BIBLIOGRAPHY 231

[45] M. Guarnieri, E. Magri, and S. Mutti. Automated management and anal-
ysis of security policies using Eclipse. In Proc. of the Eclipse-IT 2012.

[46] Marco Guarnieri, Mario Arrigoni Neri, Eros Magri, and Simone Mutti.
On the notion of redundancy in access control policies. In Proceedings
of the 18th ACM symposium on Access control models and technologies,
pages 161–172. ACM, 2013.

[47] Volker Haarslev and Ralf Möller. Racer: A core inference engine for the
Semantic Web. In York Sure and Oscar Corcho, editors, Proceedings of
the 2nd International Workshop on Evaluation of Ontology-based Tools
(EON2003), Sanibel Island, Florida, USA, Oct 20, volume 87 of CEUR
Workshop Proceedings. CEUR-WS.org, 2003.

[48] Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason
about policies. ACM Trans. Inf. Syst. Secur., 11(4):21:1–21:41, July 2008.

[49] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. Task oriented man-
agement obviates your onus on linux. In Linux Conference, volume 3,
2004.

[50] N. Heilili, Y. Chen, C. Zhao, Z. Luo, and Z. Lin. An owl-based approach
for rbac with negative authorization. Knowledge Science, Engineering and
Management, pages 164–175, 2006.

[51] M. Horridge and S. Bechhofer. The owl api: A java api for owl ontologies.
Semantic Web, 2(1):11–21, 2011.

[52] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
Working with OWL 2 Ontologies. In Rinke Hoekstra and Peter F. Patel-
Schneider, editors, OWLED, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[53] Ian Horrocks and Peter F Patel-Schneider. Reducing owl entailment to
description logic satisfiability. In The Semantic Web-ISWC 2003, pages
17–29. Springer, 2003.

[54] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A semantic web rule language
combining OWL and ruleML. W3C member submission, World Wide
Web Consortium, http://www.w3.org/Submission/SWRL/, 2004.

[55] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. Swrl: A semantic web rule language com-
bining owl and ruleml. W3c member submission, World Wide Web Con-
sortium, 2004.

[56] hp. Jena - A Semantic Web Framework for Java. available:
http://jena.sourceforge.net/index.html, 2002.

232 BIBLIOGRAPHY

[57] H. Hu, G. Ahn, and K. Kulkarni. Anomaly discovery and resolution in
web access control policies. In Proc. of SACMAT ’11. ACM.

[58] University of Oxford Information Systems Group. HermiT reasoner. http:
//www.hermit-reasoner.com/.

[59] Klaus Julisch. D2. 1 a framework for business level policies. 2011.

[60] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Using seman-
tic web technologies for policy management on the web. In PROCEED-
INGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, volume 21, page 1337. Menlo Park, CA; Cambridge, MA; Lon-
don; AAAI Press; MIT Press; 1999, 2006.

[61] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.
Finding all justifications of owl dl entailments. In Karl Aberer, Key-
Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon,
Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, vol-
ume 4825 of Lecture Notes in Computer Science, pages 267–280. Springer
Berlin Heidelberg, 2007.

[62] Hiroaki Kamoda and Krysia Broda. Policy conflict analysis using free
variable tableaux for access control in web services environments. In In
Policy Management for the Web Workshop, pages 5–12, 2005.

[63] Hiroaki Kamoda, Masaki Yamaoka, Shigeyuki Matsuda, Krysia Broda,
and Morris Sloman. Access control policy analysis using free variable
tableaux. Information and Media Technologies, 1(2):1155–1169, 2006.

[64] Günter Karjoth. D5.1 - Decision Types and Frameworks. PoSecCo Deliv-
erable, PoSecCo Consortium, 2012.

[65] Martin Hans Knahl. A conceptual framework for the integration of it in-
frastructure management, it service management and it governance. Pro-
ceedings of the world academy of science, engineering and technology, 40,
2009.

[66] V. Kolovski. Logic-based access control policy specification and manage-
ment.

[67] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access control
policies. In Proceedings of the 16th international conference on World
Wide Web, pages 677–686. ACM, 2007.

[68] Vladimir Kolovski and Bijan Parsia. Ws-policy and beyond: Application
of owl defaults to web service policies, 2005.

BIBLIOGRAPHY 233

[69] Vladimir Kolovski, Bijan Parsia, Yarden Katz, and James Hendler. Rep-
resenting web service policies in owl-dl. In Yolanda Gil, Enrico Motta,
V. Benjamins, and Mark Musen, editors, The Semantic Web ISWC
2005, volume 3729 of Lecture Notes in Computer Science, pages 461–475.
Springer Berlin / Heidelberg, 2005.

[70] James R Langevin, Michael T McCaul, Scott Charney, and Harry
Raduege. Securing cyberspace for the 44th presidency. Technical report,
DTIC Document, 2008.

[71] Jay Lepreau, Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler,
and David Andersen. The flask security architecture: System support for
diverse security policies, 2006.

[72] Ninghui Li and John Mitchell. Datalog with constraints: A foundation for
trust management languages. In Veronica Dahl and Philip Wadler, editors,
Practical Aspects of Declarative Languages, volume 2562 of Lecture Notes
in Computer Science, pages 58–73. Springer Berlin / Heidelberg, 2003.

[73] Ninghui Li and Qihua Wang. Beyond separation of duty: An algebra
for specifying high-level security policies. J. ACM, 55:12:1–12:46, August
2008.

[74] A. Liu and M. Gouda. Complete redundancy detection in firewalls. In
Data and Applications Security XIX, volume 3654. 2005.

[75] Adrian Ludwig. Android - practical security from the ground up, October
2013. http://goo.gl/z0RIwu .

[76] E.C. Lupu and M. Sloman. Conflicts in policy-based distributed systems
management. Software Engineering, IEEE Transactions on, 25(6):852–
869, 1999.

[77] Fabio Massacci. Reasoning about security: A logic and a decision method
for role-based access control. In Proceedings of the First International
Joint Conference on Qualitative and Quantitative Practical Reasoning,
pages 421–435, London, UK, 1997. Springer-Verlag.

[78] Frank Mayer, Karl MacMillan, and David Caplan. SELinux by Exam-
ple: Using Security Enhanced Linux (Prentice Hall Open Source Software
Development Series). Prentice Hall PTR, NJ, USA, 2006.

[79] Deborah L. Mcguinness and Frank van Harmelen. OWL web ontology
language overview. W3C recommendation, W3C, February 2004.

[80] D.L. McGuinness, F. Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10:2004–03, 2004.

[81] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo.
Mining roles with multiple objectives. ACM TISSEC 2010.

234 BIBLIOGRAPHY

[82] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa
Bertino, Seraphin Calo, and Jorge Lobo. Mining roles with multiple objec-
tives. ACM Transactions on Information and System Security (TISSEC),
13(4):36, 2010.

[83] T. Moses et al. Extensible access control markup language (xacml) version
2.0. Oasis Standard, 200502, 2005.

[84] Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, Conrad Bock, Achille
Fokoue, Peter Haase, Rinke Hoekstra, Ian Horrocks, Alan Ruttenberg,
Uli Sattler, and Mike Smith. OWL 2 web ontology language: Structural
specification and functional-style syntax. Last call working draft, W3C,
2008.

[85] Collin Mulliner, William Robertson, and Engin Kirda. Virtualswindle:
An automated attack against in-app billing on android. In Proceedings of
the 9th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’14, pages 459–470, New York, NY, USA, 2014. ACM.

[86] S. Mutti, M. Arrigoni Neri, and S. Paraboschi. An Eclipse plug-in for
specifying security policies in modern information systems. In Proc. of
the Eclipse-IT 2011.

[87] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extend-
ing android permission model and enforcement with user-defined runtime
constraints. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pages 328–332. ACM, 2010.

[88] Mario Arrigoni Neri, Marco Guarnieri, Eros Magri, Simone Mutti, and
Stefano Paraboschi. Conflict detection in security policies using semantic
web technology. In Satellite Telecommunications (ESTEL), 2012 IEEE
First AESS European Conference on, pages 1–6. IEEE, 2012.

[89] Oasis. XACML Profile for Role-Based Access Control (RBAC), 2004.

[90] OMG. XML Metadata Interchange, 2011.

[91] David Oppenheimer. The importance of understanding distributed system
configuration. In Proceedings of the 2003 Conference on Human Factors
in Computer Systems workshop, 2003.

[92] Stefano Paraboschi, Mario Arrigoni Neri, Simone Mutti, Marco Guarnieri,
Eros Magri, Marie-Noelle Lepareaux, Beatriz Gallego-Nicasio Crespo, and
Aldo Basile. D2. 4–policy harmonization and reasoning. 2012.

[93] Stefano Paraboschi, Mario Arrigoni Neri, Simone Mutti, Giuseppe Psaila,
Paolo Salvaneschi, Mario Verdicchio, and Aldo Basile. D2. 5–it policy
meta-model and language (final). 2013.

BIBLIOGRAPHY 235

[94] David A Patterson et al. A simple way to estimate the cost of downtime.
In LISA, volume 2, pages 185–188, 2002.

[95] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based trust-
management system. In Masami Hagiya and Philip Wadler, editors, Func-
tional and Logic Programming, volume 3945 of Lecture Notes in Computer
Science, pages 130–145. Springer Berlin / Heidelberg, 2006.

[96] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Her-
bert Bos. Paranoid android: versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security Applications Confer-
ence, pages 347–356. ACM, 2010.

[97] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. Technical report, W3C, January 2008.

[98] 2009 Data Breach Investigations Report. Data breach investigations re-
port 2009.

[99] UK Security Breach Investigations Report. Uk security breach investiga-
tions report 2010.

[100] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control:
Policies, models, and mechanisms. In Foundations of Security Analysis
and Design, pages 137–196. Springer, 2001.

[101] R.S. Sandhu. Role-based access control. Advances in computers, 46:237–
286, 1998.

[102] Theodoor Scholte. D3. 5-models to refine the it policy at service level.
PoSecCo Deliverable, PoSecCo Consortium, 2012.

[103] Yuru Shao, Xiapu Luo, and Chenxiong Qian. Rootguard: Protecting
rooted android phones. Computer, 47(6):32–40, 2014.

[104] R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly-efficient owl
reasoner. In OWLED, 2008.

[105] Christian Sillaber. D2.3 -Software for a Model-Driven Policy Design.
PoSecCo Deliverable, PoSecCo Consortium, 2012.

[106] Sirin, B Parsia, BC Grau, A Kalyanpur, and Y Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5:51–53, June 2007.

[107] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet:
A practical owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

[108] Evren Sirin and Bijan Parsia. Sparql-dl: Sparql query for owl-dl. In Chris-
tine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, Proceedings
of the OWLED 2007 Workshop on OWL: Experiences and Directions,
Innsbruck, Austria, June 6-7, 2007, volume 258 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2007.

236 BIBLIOGRAPHY

[109] Stephen Smalley and Robert Craig. Security enhanced (se) android:
Bringing flexible mac to android. In Network and Distributed System
Security Symposium (NDSS 13), 2013.

[110] Softweg. Benchmark. https://play.google.com/store/apps/

details?id=softweg.hw.performance .

[111] Stanford University. Protege, 2011.

[112] Titanium Track. Titanium Backup. https://play.google.com/store/

apps/details?id=com.keramidas.TitaniumBackup .

[113] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence,
pages 292–297. Springer, 2006.

[114] Michael Carl Tschantz and Shriram Krishnamurthi. Towards reasonabil-
ity properties for access-control policy languages. In Proceedings of the
eleventh ACM symposium on Access control models and technologies, SAC-
MAT ’06, pages 160–169, New York, NY, USA, 2006. ACM.

[115] A. Uszok and J. Bradshaw. Kaos ontologies. http://ontology.ihmc.

us/ontology.html.

[116] K. Wang, D. Billington, J. Blee, and G. Antoniou. Combining description
logic and defeasible logic for the semantic web. Rules and Rule Markup
Languages for the Semantic Web, pages 170–181, 2004.

[117] WS-Policy. Web services policy framework. http://www.106.ibm.com/

developerworks/library/specification/ws-polfram/.

[118] Chao Yang, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Detecting
money-stealing apps in alternative android markets. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 1034–1036, New York, NY, USA, 2012. ACM.

[119] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mohapatra. FIRE-
MAN: a toolkit for firewall modeling and analysis. In Proc. of IEEE S&P,
2006.

[120] C. Zhao, N.M. Heilili, S. Liu, and Z. Lin. Representation and reasoning
on rbac: A description logic approach. Theoretical Aspects of Computing–
ICTAC 2005, pages 381–393, 2005.

[121] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of
my market: Detecting malicious apps in official and alternative android
markets. In NDSS, 2012.

