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Summary

Ever since its inception in the early 20th century, Quantum Mechanics has led to
the development of many groundbreaking technologies, such as lasers, semiconduc-
tors, and so on. These technologies, which relied on general ensemble properties of
quantum systems, are usually referred to as part of the “first quantum revolution”.
Today, a second quantum revolution, based on specific properties of single quantum
systems, is underway, and more and more technologies able to generate and ma-
nipulate individual quantum states (and exploit their peculiar quantum properties)
are being developed. One of the applications of these new technologies are quan-
tum metrology and sensing which exploit quantum effects to overcome the limits
of classical systems, achieving higher precisions and better signal-to-noise ratios in
several measurement scenarios. For this reason, the development of new standards
and procedures for the characterization of these new quantum technologies, as well
as the development new quantum-enhanced measurement protocols, are fundamen-
tal tasks for quantum metrology.

In my thesis, I tackle both tasks for single/few photons systems, presenting
several works which focus on state characterization and the development of novel
quantum parameter estimation techniques and quantum measurement protocols,
presenting in each case the theoretical framework together with the experimental
results obtained in the practical implementation. The experiments have been per-
formed exploiting quantum optics setups able to generate, manipulate and detect
single- and entangled-photon states.

The first two works I present are aimed at characterizing single- and entangled-
photon sources. The first work in this context the development of a strategy to
estimate the multi-photon component of a continuous wave heralded single-photon
source, paving the way for a standardization of the characterization of single-photon
sources as one of the key tools of several quantum technologies, some of them even
already stepping foot on the market (e.g. quantum cryptography). The strategy
has been successfully applied in a pilot comparison among a few European national
metrological institutes (INRiM, NPL and PTB).

iii



The second work, instead, concerns the optimal estimation of the amount of non-
classical correlations (i.e. discord and entanglement) within a specific class of two-
photons states, for which I introduce and test experimentally some optimal unbiased
estimators for the aforementioned quantities. There, I show how such estimators
perform better than their nonoptimal counterparts by allowing to achieve the min-
imum uncertainty possible, i.e. the one granted by the saturation of the Quantum
Cramér-Rao bound.

Then, I present two works in which I investigate new quantum measurement
paradigms based on weak measurements, and their possible applications to quan-
tum metrology and other quantum technologies. The first protocol, protective
measurement (PM), allows extracting the expectation value of a quantum observ-
able even from a single detection event, something apparently in sharp contrast
with the very definition of expectation value as a statistical quantity associated
with an ensemble of particles. I show the first experimental implementation of such
protocol, involving a single-photon-based quantum optics setup. I also analyse the
statistical uncertainties of PM, showing the advantage it grants with respect to
“strong” (projective) measurements. Second, I illustrate the theory and the first
experimental implementation of robust weak measurement (RWM), an evolution
of PM. With RWMs one can obtain a reliable estimate of the weak value of an
observable with just a single detection event, instead of averaging over multiple
events like for usual weak value measurements.

Finally, I present the first experimental reconstruction of a pseudo-density oper-
ator (a generalization of the usual density operator), a novel quantum mechanical
tool able to describe temporal and spatial correlations on the same level. Such
formalism is able to provide a satisfactory description of quantum systems even in
situations with which the usual density operator formalism of quantum mechanics
can present some issues, and even give rise to paradoxes . As emblematic exam-
ples, we consider its application to the optical simulation of two physical scenarios:
entangled particles entering an open time-like curve, and black-hole evaporation.
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value of the polarization ⟨Â⟩th = −0.208. Red circles: FWHM of
the corresponding distributions for the state

⃓⃓⃓
17
60π

⟩︂
reported in Fig.

4.10. Material from: ’F. Piacentini et al., Determining the Quantum
Expectation Value by Measuring a Single Photon, Nat. Phys., 2017,
Macmillan Publishers Limited’ . . . . . . . . . . . . . . . . . . . . . 107

4.12 Ratio R in Eq. (4.1.4.9) plotted versus the interaction strength
ξ = g/σ and the H polarization component (cos θ)2 of the single-
photon state |ψ⟩. Magenta surface: R = 1, discriminating the
part where PM is advantageous (above) and disadvantageous (be-
low) with respect to projective measurements. Yellow surface: ratio
R for K = 7. Blue surface: ratio R for K = 100. Material from: ’F.
Piacentini et al., Determining the Quantum Expectation Value by
Measuring a Single Photon, Nat. Phys., 2017, Macmillan Publishers
Limited’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.13 Photon survival probability psur(K = 100) in a PM scheme plotted
versus the interaction strength ξ = g/σ and the H polarization com-
ponent (cos θ)2 of the single-photon state |ψ⟩. Material from: ’F.
Piacentini et al., Determining the Quantum Expectation Value by
Measuring a Single Photon, Nat. Phys., 2017, Macmillan Publishers
Limited’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.14 Analogous of the PM scheme for strong interaction ξ ≫ 1. The first
interaction unit (composed of a birefringent crystal pair, as described
in Sec. 4.1.2) completely separates the H and V polarization com-
ponents which are then projected onto the initial state |ψ⟩ with a
certain probability psur. From the second interaction unit onwards,
the H and V beams coherently recombine in some spots (indicated
by the yellow circle), forming a state with non-zero survival proba-
bility in the subsequent protection stage. This results in a reduction
of the photon losses in the paths close to the expectation value ⟨Â⟩,
granting an advantage with respect to traditional projective mea-
surements even without weak interaction. . . . . . . . . . . . . . . . 112

xv



4.15 Ratio R′ in Eq. (4.1.4.10) plotted versus the interaction strength
ξ = g/σ and the H polarization component (cos θ)2 of the single-
photon state |ψ⟩. Magenta surface: R′ = 1, again discriminating
the part where PM is advantageous (above) and disadvantageous
(below) with respect to PBS measurement. Yellow surface: R′ for
K = 7. Blue surface: R′ for K = 100. Material from: ’F. Piacentini
et al., Determining the Quantum Expectation Value by Measuring a
Single Photon, Nat. Phys., 2017, Macmillan Publishers Limited’ . . 113

4.16 Robust weak value for fixed α and β as a function of the parameter
η. Blue line: N = 1. Red line: N = 2. Green line: N = 3. Magenta
line: N = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.17 Pointer distributions of RWV in the non-ideal regime for {α = 0.62, β = 2.53, N = 7}.
x and y axis: arbitrary units. . . . . . . . . . . . . . . . . . . . . . 119

4.18 Robust weak value for {α = 0.52, β = 0.88} as a function of the pa-
rameter η. Blue line: N = 1. Red line: N = 2. Green line: N = 3.
Magenta line: N = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.19 Experimental setup. PBS: polarizing beam splitter. SMF: single-
mode fibre. WM: weak measurement block. HWP: half-wave plate.
BCs: birefringent crystals units. Pol: polariser. EM-CCD: electron-
multiplying CCD. SPAD: single-photon avalanche diode. . . . . . . 120

4.20 Marginals of the normalized photon counts distributions. Green
lines: extremes and centre of the eigenvalues spectrum. Purple lines:
theoretically expected RWM outcome. Black square: first click of
the run. Results are reported in Table 4.2 . . . . . . . . . . . . . . 124

4.21 RWM for {α = 0.62, β = 2.53} as a function of the parameter η.
Blue line: N = 1. Red line: N = 2. Green line: N = 3. Magenta
line: N = 7. Azure points: experimentally-obtained weak values
with our RWM procedure, reported with the associated uncertainties
(azure vertical bars). . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.22 Robust weak value as a function of the parameter η for {α = 0.52, β = 2.62}.
Blue line: N = 1. Red line: N = 2. Green line: N = 3. Ma-
genta line: N = 7. Azure point: experimentally-obtained weak value
with our RWM procedure, reported with the associated uncertainties
(azure vertical bars). . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.23 Robust weak value as a function of the parameter η for {α = 0.52, β = 0.88}.
Blue line: N = 1. Red line: N = 2. Green line: N = 3. Ma-
genta line: N = 7. Azure point: experimentally-obtained weak value
with our RWM procedure, reported with the associated uncertainties
(azure vertical bars). . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xvi



5.1 OTC circuit (pictorial representation). Qubits Q1 and Q2 are ini-
tially in a singlet state. Qubit Q2 enters a chronology-violating re-
gion (blue shaded box), emerging as qubit Q3. In the chronology-
violating region, qubits Q1 and Q2 must be in a singlet state, and
so are qubits Q1 and Q3. Furthermore, since Q2 and Q3 are, re-
spectively, the past and future copy of the same qubit, they are
also maximally correlated. This situation violates monogamy of en-
tanglement: this is why it cannot be described by ordinary density
operators, while it can be modelled by PDOs. Background photo
taken by Franco Ruggiero. . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Experimental setup. H: half-wave plate. Q: quarter-wave plate.
PBS: polarizing beam splitter. IF: interference filter. SHG: second
harmonic generation. BBO: β-Barium borate. cb C. Marletto et
al., Theoretical description and experimental simulation of quantum
entanglement near open time-like curves via pseudo-density opera-
tors. Nat Commun 10, 182 (2019). https://doi.org/10.1038/
s41467-018-08100-1. . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Pseudo-density operator tomographic reconstruction. Theoretical
R̂123 PDO (a1) compared with the real (a2) and imaginary (a3)
part extracted by quantum state tomography. Below, theoretical
R̂12, R̂13 and R̂23 marginals (plots b1, c1 and d1, respectively) com-
pared with the real (plots b2, c2 and d2) and imaginary (plots b3,
c3 and d3) part of their tomographically-reconstructed counterparts.
Since in our model Im[R̂123]=Im[R̂12]=Im[R̂13]=Im[R̂23]=0, the cor-
responding theoretical plots have been omitted. cb C. Marletto et
al., Theoretical description and experimental simulation of quantum
entanglement near open time-like curves via pseudo-density opera-
tors. Nat Commun 10, 182 (2019). https://doi.org/10.1038/
s41467-018-08100-1. . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvii

https://doi.org/10.1038/s41467-018-08100-1
https://doi.org/10.1038/s41467-018-08100-1
https://doi.org/10.1038/s41467-018-08100-1
https://doi.org/10.1038/s41467-018-08100-1


Chapter 1

Introduction

In this chapter we introduce all the theoretical elements which are necessary for
the comprehension of this thesis. In the first part, we give a general introduction of
quantum mechanics and the emergent field of the new quantum technologies, which
will help us contextualize this work. Then, we thoroughly describe measurements
processes in quantum mechanics with both a direct and an indirect formalism.
The latter will allow us to introduce the concepts of weak measurements and weak
values, and their several practical applications. After that, we introduce some
parameters that are able to characterize entanglement and Quantum Discord. Fi-
nally, we give a review of quantum parameter estimation, focusing, in particular,
on the derivation of the Quantum Cramér-Rao bound and Quantum Van Trees
bound, which define the ultimate uncertainty limit with which a parameter can be
estimated.

1.1 Quantum mechanics: theory and applications
Quantum mechanics (QM) is the fundamental theory of physics, able to give

an exhaustive explanation of all the microscopic phenomena and, in principle, pro-
viding the framework in which all physical theories should be included. The main
differences between QM and classical mechanics are that, in QM, energy, momen-
tum and many other quantities of a bound system are restricted to discrete values
(quantization), quantum objects have characteristics of both wave and particles
(wave-particle duality), there is a fundamental limit to the precision with which we
can know the values for certain pairs of physical quantities, such as position and
momentum (uncertainty principle), specific correlations (e.g. entanglement) exist
among subsystems that cannot be reproduced by classical systems.

Quantum mechanics gradually emerged in the early 20th century, when new
theories were proposed in order to explain some peculiar physical phenomena, such
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as black-body radiation[1], in which Planck hypothesized that atoms could absorb
and emit electromagnetic radiation only in discrete energy packets, and the pho-
toelectric effect[2], in which Einstein argued that all electromagnetic radiation can
be divided into a finite number of localized “points in space”: the energy quanta,
later renamed photons[3]. A few years later, Bohr applied the quantization to the
hydrogen atom[4], thus explaining the behaviour of its spectral lines[5], that did not
find explanation in classical models. Thanks to the effort of many physicists, these
scattered theories started to coalesce into modern quantum mechanics after De
Broglie theorized[6] that particles can exhibit wave characteristics and vice versa in
1923. Building on his approach, Schrödinger deduced his famous equation[7], which
describes the state of a quantum-mechanical system trough the wave-function. Few
years later, Heisenberg formulated the aforementioned uncertainty principle[8], in
which he stated that the more precisely the position of some particle is determined,
the less precisely its momentum can be predicted from initial conditions, and vice
versa. In 1932, von Neumann formulated the rigorous mathematical basis for quan-
tum mechanics in the theory of linear operators on Hilbert spaces[9].

Later, the application of quantum mechanics to field theory led to the birth
of quantum field theory (QFT), a theory capable of unifying three of the four
fundamental interactions of our universe (electromagnetic, weak and strong)[10].
Gravitational interaction, however, is still missing from the picture and the formu-
lation of a quantum theory of gravity is one of the challenges of the century[11].

Today, quantum mechanics is heralding a new technological revolution (see Sec.
1.1.2 for further details), of which we can already see some effects, even in metrology.
In new International System of Units (SI) revision[12], the realizations of many
units of measurements depend on quantum mechanical effects, such as lasers and
atomic transitions for the second[13], Josephson effect and quantum Hall effect for
electrical units[14] and the Kibble balance for the kilogram[15].

1.1.1 Key concepts in quantum mechanics
The specific properties of quantum mechanics, that we have just summarized,

derive from its mathematical formulation, of which we introduce here some key
concepts that will be useful later.

The Postulates of quantum mechanics

Postulate 1. Quantum states
Every physical system is associated with a complex separable Hilbert space H with
inner product. The system is fully described by its vector state, which is a normal-
ized vector in the Hilbert space.
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The simplest physical system, a two-level system, belongs to a bidimensional
Hilbert space H2. If |0⟩ and |1⟩ form an orthonormal basis for H2, then a generic
state vector can be written as:

|ψ⟩ = α |0⟩ + β |1⟩ (1.1.1.1)

where α and β are complex number, normalized such that ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1.
In quantum information theory, such systems are usually called qubits.

Postulate 2. The observables
Every observable quantity A is associated with a linear self-adjoint (Hermitian, i.e.
Â = Â

†) operator Â on H. The ensemble of the possible outcomes of a measurement
of said quantity is given by the eigenvalues spectrum of Â.

The linearity of the operator ensures any non-infinite non-continue operator
can be represented in matricial form, and its hermicity grants that its spectrum
is composed of real eigenvalues. An operator can be represented in any arbitrary
basis, however, it is often convenient to express it in the basis of its eigenstates |α⟩,
defined as:

Â |α⟩ = α |α⟩ (1.1.1.2)
with α being the eigenvalues.

Postulate 3. Probability of a result
If the physical system is in a state |ψ⟩, the probability of having the outcome α after
measuring a quantity A is directly proportional to |⟨α|ψ⟩|2, |α⟩ being the eigenstate
corresponding to the eigenvalue α.

Since the total probability of having any result must be 1:∑︂
α

|⟨α|ψ⟩|2 = 1 (1.1.1.3)

It is possible to define the quantum expectation value of an observable as the
average of its outcomes α weighted on their respective probabilities p(α):

⟨A⟩ =
∑︂
α

αp(α) (1.1.1.4)

Starting from the formula for the mean, it is possible to define the variance:

(∆A)2 = ⟨(A− ⟨A⟩)2⟩ = ⟨A2⟩ − ⟨A⟩2 (1.1.1.5)

Postulate 4. Wave-function collapse
The state of the quantum system after a measurement of the observable A, given
that outcome α occurred, is projected on the eigenstate of α.
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Since the overall experimental outcome probability must be 1 (postulate 3), if
the measurement of A projects the state |ψ⟩ into |α⟩, then all subsequent measure-
ments of A must give the same result with probability 1, provided that the state
did not evolve between subsequent measurements.

Another consequence is that if two operators Â and B̂ commute (
[︂
Â, B̂

]︂
=

ÂB̂ − B̂Â = 0), it is possible to find a common eigenstate basis. This means that
independent measurements of these observables do not influence each other. As an
example, the measurement of an observable A projects the state |ψ⟩ of a system
into the eigenstate |α⟩ of A. A subsequential measurement of B would collapse the
state in |α, β⟩, belonging both to the eigenstate of A and B. Further measurements
of A or B would not bring other results than α and β, respectively. Thus, the
measurement of B does not influence the measurement of A and viceversa. In
contrast, this is not true for non-commuting operators. Their mutual influence
induces an uncertainty (denoted as ∆A and ∆B) whose minimal value is given by
Heisenberg uncertainty principle[8]:

∆A∆B ≥

⃓⃓⃓⟨︂[︂
Â, B̂

]︂⟩︂⃓⃓⃓
2 (1.1.1.6)

Postulate 5. Schrödinger equation
The evolution of a quantum state in a closed system is described by:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ (1.1.1.7)

where Ĥ is the system’s Hamiltonian operator and ℏ the reduced Planck constant.

To know a system Hamiltonian means to know, at least in principle, its dynam-
ics. From the Hamiltonian it is possible to define the time evolution operator Û
such that:

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ (1.1.1.8)
with the following properties:

• Û(t0, t0) = 1

• Û
† = Û

−1 (unitary)

• Û(t, t0) = Û(t, t1)Û(t1, t0) for t < t1 < t0

being 1 the identity. By substituting it into Schrödinger equation, we obtain the
following differential equation for U :

iℏ
∂Û(t, t0)

∂t
= ĤÛ(t, t0) (1.1.1.9)
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In the general case of time-dependent Hamiltonian, Eq. (1.1.1.9) is solved by a
Volterra equation:

Û(t, t0) = 1 − i

ℏ

∫︂ t

−t0
dt1Ĥ(t1)Û(t1, t0) (1.1.1.10)

which is, in turn, solved[16] by the Dyson formula:

Û(t, t0) = T exp
(︃

− i

ℏ

∫︂ t

t0
dτĤ(τ)

)︃
(1.1.1.11)

where T is the temporal order operator:

T [Ĥ(t1), Ĥ(t2)] =
{︄
Ĥ(t1)Ĥ(t2) t2 > t1
Ĥ(t2)Ĥ(t1) t2 < t1

(1.1.1.12)

In the simpler case of time-independent Hamiltonian, Eq. (1.1.1.11) simplifies to:

Û(t, t0) = T exp
(︃

− i

ℏ
(t− t0)Ĥ

)︃
(1.1.1.13)

Postulate 6. Composite systems
The state space of a composite system is described by the tensor product of the state
spaces of the component physical systems. Moreover, if we have a system composed
of n separate subsystems, and each subsystem i is prepared on a state |ψi⟩, then the
joint state is the tensor product |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

This postulate enables us to introduce one of the most counter-intuitive aspects
of quantum mechanics: the entanglement.

Entanglement

For simplicity, we will describe entanglement for a bipartite system, but it can
be easily generalized[17].

Let A and B be two non-interacting systems with associated Hilbert spaces HA

and HB and let H = HA ⊗ HB be the Hilbert space of the composite system, as
per postulate 6. A generic pure state |ψ⟩AB on the composite system is separable
if and only if it can be written as the product of two states |ψ⟩A and |ψ⟩B on the
two systems A and B:

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B (1.1.1.14)
However, not all states are separable. Such states are called entangled. Their non-
separability implies a strong correlation between the two subsystems, so strong
that the measurement of an observable of one subsystem “influences” the result of
a measurement of an observable of the other subsystem. Let us suppose that Alice
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and Bob are the observers for the subsystems A and B, respectively, and that the
state of the composed system is a singlet state of two spin 1/2 particles:

|ψ⟩ = 1√
2

(|↑⟩A ⊗ |↓⟩B + |↓⟩A ⊗ |↑⟩B) (1.1.1.15)

where |↑⟩ and |↓⟩ represent a single particle of spin up and down, respectively.
If Alice measures the z component of the spin on the particle A, she can obtain
two results, with equal probability:

• Alice measures ↑: the system collapses in |↑⟩A ⊗ |↓⟩B;

• Alice measures ↓: the system collapses in |↓⟩A ⊗ |↑⟩B.

Therefore, each subsequent measurement of the z spin component of the particle
B performed by Bob will always provide the result ↑ or ↓, depending on Alice’s
result, meaning that the subsystem B has been altered by a local measurement on
the subsystem A.

The fact that a measurement of one subsystem influences the other even when
they are spatially separated led Einstein, Podolsky and Rosen (EPR) to the for-
mulation of their famous paradox[18], in which they wondered whether QM is a
complete theory or whether it is a statistical approximation of a deterministic the-
ory. In order to find an answer, they introduced the concept of element of reality:
if, without disturbing in any way a system, an observer can predict the value of a
physical quantity without any uncertainty, then there is a element of reality cor-
responding to this quantity (realism hypothesis). Following special relativity, EPR
also formulated the reasonable hypothesis that any non-local action is forbidden
(locality hypothesis). Following this description, a theory is complete only when it
describes any element of reality.

Returning to our example, which follows Bohm’s variant of the original EPR
experiment[19], after her measurement of the z spin component on A, Alice imme-
diately knows the z spin component of particle B, without disturbing B in any way.
Therefore, the z spin component of B is an element of reality, according to EPR
definition. Since the singlet state is invariant under rotations, the same argument
can be made for any other spin component of particle B. However, spin compo-
nents on different axes are incompatible variables in QM (Post. 4, [16]). Therefore,
according to EPR definition, quantum mechanics is not a complete theory, because
it does not allow a prediction of all elements of reality.

Another interesting property of entangled systems is that, before any measure-
ment is performed, the values of some specific observables of the subsystems are
not defined. The measurement of the observable of one of the subsystems, however,
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immediately fixes the value of the correlated subsystem (as seen in the previous ex-
ample), independently of the distance. This phenomenon, which is often called
quantum non-locality, does not imply, however, violation of causality. Following
the previous example, by measuring the z spin, Alice’s outcomes are either ↑ or ↓,
with an associated probability of 1/2 each. The same can be said about Bob, who
may be space-like separated from Alice. While the two outcomes will always be
correlated, without classical communication, Bob has no way to determine whether
Alice has performed a measurement or not, meaning that his result is just a random
spin. Therefore, Alice can not transmit information to Bob by only acting on her
subsystem[20]. Nevertheless, this property of entangled systems and its implica-
tions started an hot debate, from which emerged the development of the so-called
local hidden variable (LHV) theories, i.e. theories which propose the existence of a
deterministic local theory describing nature, where the values of all observables of a
physical system are fixed by some unknown hidden variables. Quantum mechanics,
then, would only be a statistical approximation of this theory, as thermodynamics
is a statistical approximation of classical mechanics.

Bell inequalities Several years after EPR published their article, after a first
failed attempt by von Neumann[9], John Bell suggested an experiment to disprove
the existence of hidden-variable theories. In his article[21], he showed that any real-
istic local hidden variable theory must satisfy certain inequalities, that are violated
by quantum mechanics. Here, we briefly derive one specific Bell inequality: the
CHSH inequality[22], introduced a few years later by John Clauser, Michael Horne,
Abner Shimony, and Richard Holt.

Let us suppose that an observer named Charlie prepares identical sets of two
particles A and B, sending, each time, particle A to Alice and particle B to Bob.
Alice, then, can perform one of two different measurements PQ or PR on her par-
ticle, randomly choosing. In the frame of hidden variable theories, Suppose that
particle A has values Q and R for the properties PQ and PR, respectively, which
can take value +1 or −1. Q and R, then, are elements of reality of particle A.
Similarly, we suppose that Bob can measure, randomly choosing, one of two differ-
ent properties PS or PT , revealing an objective property of particle B. Once again,
S and T can take value +1 or −1.
Measurement timing is arranged so that Alice’s and Bob’s measurements are local,
i.e. they are spacelike-separated. Therefore, the results of one measurement cannot
disturb the results of the other.

Since all variables can either be +1 or −1, we can easily notice that:

QS +RS +RT −QT = (Q+R)S + (R −Q)T = ±2 (1.1.1.16)
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Now, suppose that p(q, r, s, t) is the probability that, before any measurement
is performed, the system is in the state Q = q, R = r, S = s, T = t. Then, we can
write the mean value of QS +RS +RT −QT as:

E(QS+RS+RT −QT ) =
∑︂
qrst

p(q, r, s, t) (qs+ rs+ rt− qt) ≤ 2
∑︂
qrst

p(q, r, s, t) = 2

(1.1.1.17)
where we denoted the classical expectation value as E(·) to differentiate it from the
quantum expectation value (Eq. (1.1.1.4)). For this expectation value, we can also
write:
E(QS +RS +RT −QT ) =

∑︂
qrst

p(q, r, s, t)qs+
∑︂
qrst

p(q, r, s, t)rs+
∑︂
qrst

p(q, r, s, t)rt

−
∑︂
qrst

p(q, r, s, t)qt = E(QS) + E(RS) + E(RT ) − E(QT )

(1.1.1.18)
which, combined, give us the CHSH inequality:

E(QS) + E(RS) + E(RT ) − E(QT ) ≤ 2 (1.1.1.19)

that any realistic local hidden variable theory must satisfy.

It is easy to show that entangled particles violate this inequality. For in-
stance, the measure of quantities Q = (σz)A, R = (σx)A, S = − (σz)B+(σx)B√

2 and

T = (σz)B−(σx)B√
2 , being σx =

(︄
0 1
1 0

)︄
and σz =

(︄
1 0
0 −1

)︄
two Pauli matrices, for the

state |ψ⟩ = |01⟩−|10⟩√
2 yields the result:

⟨QS⟩ + ⟨RS⟩ + ⟨RT ⟩ − ⟨QT ⟩ = 2
√

2 (1.1.1.20)

which clearly violates the CHSH inequality.

The first experimental realization of a Bell inequality experiment respecting the
locality principle has been implemented by Alain Aspect et al. with entangled
photons[23] in 1982, showing a Bell inequalities violation of more than 5 standard
deviations. Since then, a long series of experiments has been performed, all con-
firming the violation of Bell inequalities[24] culminated in two experiments where
any significant additional hypothesis was eliminated[25, 26]. This suggests that at
least one of the assumptions on which Bell inequalities are based (locality and real-
ism) is not correct, meaning that the world is not locally realistic. This, of course,
rules out completely realistic local hidden-variables theories.

Bell inequalities violation also tells us that entanglement is a new resource,
which goes beyond what classical resources can achieve. As we will see in Sec.
1.1.2, a lot of the emerging quantum technologies indeed exploit its properties.
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The density operator

A more general description of a quantum system uses a tool called density
operator or density matrix instead of the state vectors. The two formulations are
mathematically equivalent[27], but the density operator provides a more convenient
language to describe some quantum phenomena. In fact, the density operator was
introduced by von Neumann[28] to describe a system of which we only have a
partial description, thus using a statistical language. Let a quantum system be an
ensemble of systems which can be in a certain number of pure quantum states |ψi⟩
(i being an index) with respective probabilities pi. Then, the density operator of
such system is defined as:

ρ̂ =
∑︂
i

pi |ψi⟩⟨ψi| (1.1.1.21)

The density operator has the following properties:

• Tr(ρ̂) = 1

• ρ̂ is a positive operator (it has non-negative eigenvalues)

The density operator can be represented in a certain orthonormal basis |en⟩:

ρ̂mn =
∑︂
i

pi ⟨em|ψi⟩ ⟨ψi|en⟩ (1.1.1.22)

This representation is called density matrix and depends on the chosen basis.

Purity of a state A simple test can discriminate between ρ̂ being a pure or
mixed state:

Tr
(︂
ρ̂2
)︂{︄ = 1 if pure

< 1 if mixed (1.1.1.23)

As a consequence, the density operator of a pure state is idempotent, i.e. ρ̂2 = ρ̂.

The postulates of quantum mechanics with the density operator Some
of the postulates can be modified in order to accommodate the introduction of the
density operator.

Postulate 1. Quantum states
Every physical system is associated with a complex separable Hilbert space H with
inner product. The system is fully described by its density operator, which is a
positive operator ρ with trace one, acting on the state space of the system. If the
system is in an ensemble of states ρi with respective probabilities pi, then its density
operator is ∑︁i piρi, known as Born rule.
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Postulate 3. Probability of a result
If the physical system is on a state ρ̂ = ∑︁

i pi |ψi⟩⟨ψi|, the probability of having the
outcome α after measuring a quantity A is p(α) = ⟨ψ|ρ̂|ψ⟩.

Postulate 5. von Neumann equation
The evolution of a quantum state in a closed system is described by:

iℏ
∂

∂t
ρ̂(t) =

[︂
Ĥ, ρ̂

]︂
(1.1.1.24)

where Ĥ is the system’s Hamiltonian operator and ℏ the reduced Planck constant.

It is possible to describe the time evolution with the time evolution operator
introduced in (1.1.1.11):

ρ̂(t) = Û(t, t0)ρ̂(t0)Û(t, t0)† (1.1.1.25)

Postulate 6. Composite systems
The state space of a composite system is described by the tensor product of the state
spaces of the component physical systems. Moreover, if we have a system composed
of n separate subsystems, and each subsystem i is prepared on a state ρ̂i, then the
joint state is the tensor product ρ̂1 ⊗ ρ̂2 ⊗ · · · ⊗ ρ̂n.

If a composite system is described by a density operator ρ̂, then its subsystems
can be described by the reduced density operators. Let us consider, for simplicity,
a system composed of two subsystems A and B. If ρ̂AB is the density operator of
the total system, the reduced density operator of the subsystem B is

ρ̂B = TrA
(︂
ρ̂AB

)︂
(1.1.1.26)

where TrA is called partial trace over A and is defined as:

TrA (|ai⟩⟨aj| ⊗ |bk⟩⟨bl|) = TrA (|ai⟩⟨aj|) |bk⟩⟨bl| (1.1.1.27)

with |ai⟩ and |aj⟩ being any two vectors in the space of A and |bk⟩ and |bl⟩ being
any two vectors in the space of B.

Entanglement with density operators The definition of entanglement can
be generalized to mixed states. A generic density operator ρ̂AB on the composite
system is separable if and only if it can be written as a linear convex combination
of tensor product of density matrices

ρ̂ =
∑︂
ij

λij ρ̂
i
A ⊗ ρ̂jB (1.1.1.28)

where λij ≥ 0 and ∑︁ij λij = 1.

Another important property is that, in general, a state ρ̂AB is entangled if and
only if its reduced density operators are not pure[27].
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Entropy and Quantum Discord

As we have seen in the Sec. 1.1.1, quantum states of a composite system can
be divided into entangled and separable states. While entanglement is a strong
non-classical correlation with many interesting properties, separable states are gen-
erally considered as classical. However, it has been shown[29, 30] that even some
separable states contain non-classical correlations, that can be exploited in quan-
tum computation in order to perform tasks exponentially faster than any classical
algorithm. Such non-classicality is measured by the Quantum Discord, which is de-
fined as the discrepancy between the quantum versions of two classically equivalent
expressions for an information theory quantity called mutual information.

The definition of mutual information is based on the concept of entropy in
(quantum) information theory, that can be regarded as a measure of the degree of
“disorder” (or mixedness, in the quantum case) of a physical system[27]. For this
reason, in this section we give a brief overview of the role of entropy in classical and
quantum information theory, from which we will be able to introduce the concept
of Quantum Discord.

Classical case: Shannon entropy In classical information theory, the amount
of information contained in a random variable X is quantified by the Shannon
entropy[27, 31]:

H(X) = −
∑︂
x

px log2 px (1.1.1.29)

where px is the probability of occurrence of the outcome x for X. H can be in-
terpreted as the information gainable upon measuring the random variable X or,
equivalently, as the amount of uncertainty about X before we learn its value[32].
Shannon entropy was introduced as part of Shannon’s noiseless coding theorem[31]
in order to characterize the amount of resources needed to store information, pro-
viding a mathematical limit on how well data can be losslessly compressed onto a
perfectly noiseless channel.

Shannon entropy also allows us to evaluate the correlations between variables.
Let us focus on the case of two random variables X and Y in a bipartite system,
which are quantified by their mutual information. Before defining the mutual in-
formation, however, we introduce an useful quantity, called joint entropy.

The joint entropy H(X, Y ) is a simple extension of Shannon entropy, it is defined
as the Shannon entropy for the joint probability distribution p(x, y):

H(X, Y ) = −
∑︂
x,y

p(x, y) log2 p(x, y) (1.1.1.30)
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and can easily be extended to more variables. The joint entropy measures the total
uncertainty about the pair (X, Y ) and is symmetrical.

Then, we can define the mutual information content of X and Y , which quan-
tifies the amount of information in common between X and Y , as

I(X : Y ) = H(X) +H(Y ) −H(X, Y ) (1.1.1.31)

This definition is clearly symmetrical, i.e. I(X : Y ) = I(Y : X), and can be easily
understood by looking at Fig. 1.1.

Figure 1.1: Individual (H(X), H(Y )), joint (H(X, Y )) and conditional (H(X|Y ),
H(Y |X)) entropies for a bipartite system with mutual information I(X : Y )

Another useful quantity is the conditional entropy, which quantifies the amount
of knowledge that we have on Y given what we know about X or, equivalently, the
uncertainty in measurement of Y when X is known, and is defined as

H(Y |X) = H(X, Y ) −H(X) (1.1.1.32)

This definition is not, in general, symmetrical.

Conditional entropy, allows us, thanks to Bayes’ theorem[32], to reach an equiv-
alent definition for the mutual information

J(X : Y ) = H(X) −H(X|Y ) (1.1.1.33)

where H(X|Y ) is the conditional entropy. Once again, it can be easily understood
by looking at Fig. 1.1.

12



1.1 – Quantum mechanics: theory and applications

Quantum case: von Neumann entropy In quantum systems, Shannon en-
tropy can be generalized by replacing the probability distribution with density op-
erators. This way, we define the entropy of a quantum state ρ̂ as the von Neumann
entropy[27, 33]:

S(ρ̂) = − Tr (ρ̂ log2 ρ̂) (1.1.1.34)
Von Neumann entropy has the following properties[27]:

• S is non-negative and reaches zero if and only if the state is pure;

• in a d-dimensional Hilbert space, S is at most log2 d;

• if a composite system AB is in a pure state, then S(A) = S(B);

• if ρ̂ = ∑︁
i piρi, then

S(
∑︂
i

piρi) = H(pi) +
∑︂
i

piS(ρi) (1.1.1.35)

Let us now consider a bipartite system AB in a quantum state ρ̂AB. Joint
and conditional entropy can be easily defined by analogy with Eq.s (1.1.1.30) and
(1.1.1.32):

S(ρ̂AB) = − Tr (ρ̂AB log2 ρ̂AB) (1.1.1.36)
S(ρ̂B|A) = S(ρ̂AB) − S(ρ̂B) (1.1.1.37)

where ρ̂B|A is the state of the B subsystem given a measurement of A and ρ̂A(B) =
TrB(A)(ρ̂AB) is the reduced density matrix (Sec. 1.1.1) of ρ̂AB for the subsystem
A(B).

The same can be done with the mutual information I, which quantifies the total
amount of correlations:

I(ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρABˆ ) (1.1.1.38)

This definition is symmetrical, like its classical counterpart reported in Eq. (1.1.1.31).

The generalization of the mutual information J(ρ̂) to the quantum case, how-
ever, needs a bit of tinkering, because it involves the outcomes of a measurement,
but quantum measurements are basis dependent and influence the state of the sys-
tem (Sec. 1.2). Given the generalization of the conditional entropy in S(ρ̂B|A),
we define the mutual information JA by minimizing the entropy over all possible
measurements

{︂
Êk

}︂
of A:

JA(ρ̂AB) = H(ρ̂B) − min
{Êk}

∑︂
k

pkH(ρ̂B|k) (1.1.1.39)
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where ρ̂B|k = TrA
(︂
Êk ⊗ 1̂Bρ̂

)︂
/Tr

(︂
Êk ⊗ 1̂Bρ̂

)︂
is the state of B conditioned to the

outcome k of a measurement of A and
{︂
Êk

}︂
is the POVM set (Sec. 1.2.1) for

subsystem A, and pk is the probability of the outcome k of a measurement Êk.
Note that, in contrast with the classical J , this is not, in general, a symmetric
definition, i.e. JA(ρ̂) /= JB(ρ̂). In quantum systems the definition for the mutual
information J is not equivalent to I, and this difference quantifies the Quantum
Discord.

Quantum Discord As previously stated, Quantum Discord is a measure of non-
classical correlations between two subsystems of a quantum system such as, but not
limited to, entanglement. It is defined, for a bipartite system, as the discrepancy
between the two expressions I (Eq. (1.1.1.38)) and J (Eq. (1.1.1.39)) for mutual
information:

DA(ρ̂) = I(ρ̂AB) − JA(ρ̂AB) (1.1.1.40)
which has the following properties:

• D is always non-negative.

• D is not, in general, symmetrical, i.e. DA /= DB.

• A state is said to be completely classically correlated if DA = DB = 0

Non-zero Quantum Discord, then, indicates the presence of non-classical correla-
tions.

1.1.2 New quantum technologies
Quantum technologies are an emerging field of physics and engineering which

relies on quantum mechanics in order to beat classical limits in many practical ap-
plications.

Today, there already are many technologies available to the public that rely on
quantum mechanical effects, such as lasers[34], semiconductor devices and transis-
tors[35] and magnetic resonance imagers[36]. These technologies, based on generic
ensemble properties of quantum mechanical systems, are usually said to belong to
the first quantum revolution in technology. A second quantum revolution based on
specific properties, such as entanglement, of single quantum systems, however, is
underway, promising new practical applications spanning several research fields,
such as telecommunications, computation, metrology and imaging. Let us briefly
describe some of these new technologies.

Quantum computers[27] are devices that can process quantum data, taking ad-
vantage of the properties of quantum mechanics. Whereas classical computers
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encode all data in the bit, a binary digit that can assume either the value 0 or
1, quantum computers employ qubits (”quantum bits”) as basic units of informa-
tion, which can be 0, 1 or a superposition of both. It has been showed that this
difference, together with non-classical correlations such as entanglement, can be
exploited in order to have exponential speed-ups in certain algorithms with respect
to their classical version. For instance, factorization is known to be a hard problem
for classical computers, but is an easy task for quantum computers[37]. This poses
a critical issue in cybersecurity, since it would make anyone possessing a quantum
computer able to break the current encryption standard (RSA), which relies on the
inability of classical computers to factorize a large number in a short time.

Quantum communication[38] concerns the realization of new communication
schemes based on peculiar properties of quantum systems. In particular, it could
provide ”quantum safe” communication techniques, quantum key distribution (QKD)
[39, 40]. Another well known property is quantum teleportation[41, 42]. In QKD,
the cryptographic key is transmitted using quantum light in a way that makes
obvious for both the sender and the receiver to detect an eventual eavesdropper.
In particular, in order to obtain information on the key, the eavesdropper must
perform a measurement on the photon, thus introducing a detectable perturbation
(Postulate 4; Sec. 1.2). Once the key is safely transmitted, the encrypted message
can be sent in a classical channel and, if the key is used only once, this method is in-
herently safe[43]. Today, QKD systems are already available on the market and, for
instance, have been used during the elections in Switzerland and the Football World
Championship, while many nations are implementing a quantum backbone[44], i.e.
a large scale quantum communication network. Quantum teleportation, instead,
is a technique which allows transmitting quantum states without having to physi-
cally transport the underlying particle. This is possible by coupling the state to be
transmitted to a pair of entangled particles shared by sender and receiver. Thanks
to this coupling, by performing a series of measurements and sending the results
to the receiver through a classical channel, the sender makes the receiver able to
obtain a particle in the same state.

Metrology is another field of research which is greatly benefiting from the ad-
vent of quantum technologies. As mentioned before, in the new SI revision[12], the
the realizations of many units of measurements depend on quantum mechanical ef-
fects[13, 14, 15]. For instance, in Quantum Hall Effect[45] the electrical resistance
has been found to be integer or fractional multiples of a fundamental resistance
value RK , which is independent of the device. Since RK only depends on the
Planck constant and the electrical charge, which have exact values, it is also an
exact value that can be used to realize the Ohm. Similarly, Josephson junctions[46]
allow defining the Volt from the quantization of the voltage flux. Beyond that, the
field of quantum metrology studies ways to exploit quantum resources such as, but
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not limited to, entanglement to develop “quantum enhanced” measurement tech-
niques[47, 48, 49] that give better precision than the same measurement performed
in a classical framework. For instance, entangled light can be employed to overcome
the limits of classical imaging, drastically reducing the noise[50, 51].

Today, thanks to the potential of these new quantum technologies, research in
the field of quantum technologies is benefiting from several government programs,
such as the 10-years-long Quantum Technology Flagship of the European Com-
mission. Many large companies have also made multiple investments in quantum
technologies, such as IBM and Google.

1.2 Measurements in quantum mechanics
Measurements play a crucial role in quantum mechanics, as several postulates

deal with them. Because of that, a lot of effort has been given in order to model
and characterize them. In the following sections, we will describe the direct and
the indirect formalisms, from which a new subclass of measurements, called weak
measurements will emerge.

1.2.1 Strong (sharp) direct measurements: projective, POVM
The first class of measurements that we analyse is the one of strong direct

measurements.

Projective measurement

Projective measurements emerge from the postulates 2, 3 and 4 and are the
most intuitive and simple description of a measurement in quantum mechanics.

A projective measurement is defined by an observable A to which is associated
a linear self-adjoint operator Â in the space of the states of the system H. The
spectral decomposition of the operator is

Â =
∑︂
α

aP̂α (1.2.1.1)

where P̂α is the projector on the eigenspace of Â with eigenvalue α defined as

P̂α = |α⟩⟨α| (1.2.1.2)

It is interesting to notice that the structure of the projector is similar to the one
of density operators. In fact, a density operator may be seen as the average of the
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projectors on the states {|ψi⟩} weighted on their respective probabilities.

The possible outcomes of the measurement are the eigenvalues α of the ob-
servable. The probability of obtaining the outcome α by means of a projective
measurement of the state |ψ⟩ (or the corresponding ρ̂) is

p(α) = ⟨ψ|P̂α|ψ⟩ = Tr
(︂
P̂αρ̂

)︂
= |⟨α|ψ⟩|2 (1.2.1.3)

If the outcome is α, the state collapses in the eigenstate

|α⟩ = P̂α |ψ⟩√︂
p(α)

(1.2.1.4)

or its corresponding density operator ρ̂α = |α⟩⟨α|.

For two generic projectors belonging to a complete set of orthogonal projectors,
it holds:

P̂αP̂β = δα,βP̂α (1.2.1.5)

Expectation values

Thanks to the projective measurements, we can give a more detailed definition
of quantum expectation value:

⟨A⟩ = ⟨ψ|A|ψ⟩ = ⟨ψ|
(︄∑︂

α

αP̂α

)︄
|ψ⟩ =

∑︂
α

α ⟨ψ|P̂α|ψ⟩ =
∑︂
α

αp(α) (1.2.1.6)

Or, equivalently:
⟨A⟩ρ = Tr(Aρ̂) (1.2.1.7)

Measurement operators

It is possible to generalize[27] projective measurements in order to take into
account several cases impossible to describe with such formalism. For instance, a
photon passing through a polariser can either be projected onto a new polarization
state or be absorbed. This absorption is not describable by projectors.
In order to introduce the new measurements, two postulates of quantum mechanics
need to be modified.
Postulate 3. Probability of a result (pure states)
Quantum measurements are described by an ensemble of measurement operators{︂
K̂m

}︂
. These operators act on the measurand state space and the index m denotes

one of the possible experimental outcomes.
If the state before the measurement is |ψ⟩, then the probability of the outcome m is

p(m) = ⟨ψ|K̂
†
mK̂m|ψ⟩ (1.2.1.8)
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Or, in the density operator formalism:

Postulate 3. Probability of a result (density operator)
Quantum measurements are described by an ensemble of measurement operators{︂
K̂m

}︂
. These operators act on the measurand state space and the index m denotes

one of the possible experimental outcomes.
If for a state |ψi⟩, the probability of the outcome m is

p(m|i) = ⟨ψi|K̂
†
mK̂m|ψi⟩ = Tr

(︃
K̂

†
mK̂m |ψi⟩⟨ψi|

)︃
(1.2.1.9)

then, if the density operator of the system is ρ̂ = ∑︁
i pi |ψi⟩⟨ψi|,

p(m) =
∑︂
i

pip(m|i) =
∑︂
i

pi Tr
(︃
K̂

†
mK̂m |ψi⟩⟨ψi|

)︃
= Tr

(︃
K̂

†
mK̂mρ̂

)︃
(1.2.1.10)

Thanks to the fact that ∑︁m p(m) = 1, it is easy to show that:
∑︂
m

K̂
†
mK̂m = 1 (1.2.1.11)

Postulate 4. The state after a measurement
The state after a measurement is

K̂m |ψ⟩√︂
⟨ψ|K̂

†
mK̂m|ψ⟩

(1.2.1.12)

or, equivalently

ρ̂m = K̂mρ̂K̂
†
m

Tr
(︃
K̂

†
mK̂mρ̂

)︃ (1.2.1.13)

It is easy to notice that, by evaluating the case K̂m = P̂m, measurement opera-
tors include projective measurements.

POVM

The postulates give us rules to describe the statistics of the measurements and
the state after a measurement. However, in some applications, only the probabil-
ities of the outcomes may be of interest. In those cases, it is possible to use the
POVM (Positive Operator-Valued Measure) formalism. Let us suppose that the
measurement of a system is described by the operators K̂m and that the probability
of the outcome m is p(m) = ⟨ψ|K̂

†
mK̂m|ψ⟩. Then, by defining

Êm = K̂
†
mK̂m (1.2.1.14)
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we know, from both the postulates and linear algebra[52], that Êm is a positive
operator such that ∑︁m Êm = 1 and p(m) = ⟨ψ|Êm|ψ⟩.

The operators Êm are called POVM elements, whereas their ensemble is called
POVM. A POVM is sufficient to determine the probabilities of the different out-
comes.

Projective measurements are a special case of POVM. Since, for projectors be-
longing to a complete set of orthogonal projectors, P̂mP̂n = δm,nP̂m and ∑︁m P̂m = 1
hold for any projector P̂m, all the POVM elements correspond to the projectors,
since Êm = P̂

†
mP̂m = P̂m. Note that this is only true for projective measurements.

1.2.2 Indirect measurements and the von Neumann proto-
col

The direct measurements formalism is a really simple and powerful framework
but it is inadequate to describe real measurements because we do not usually di-
rectly measure the system. Instead, we perform a coupling between the system
and a measurement apparatus (usually called meter) and observe the measurement
effects on the meter. This is similar to what happens in the classical world, where,
for instance, the measurement of the weight of an object is carried out by coupling
it with the measurement apparatus (the balance) and then reading the effect of the
interaction on the needle of the balance (usually called pointer).

In order to keep track of these factors, we introduce the indirect measurements
formalism[53]. This formalism describes the measurement procedure of a system
by introducing a second system (the meter). The interaction between the initial
system and the meter entangles them. Thus, by reading the meter through the
pointer, one can obtain information about the value of the system observable under
test.

Let us start by describing in detail the system S, the meter M and the total
system T , i.e. the one formed by the entanglement of S and M:

System S
The system lives in a Hilbert space HS , in which it is defined the operator Ŝ,
corresponding to the observable S that we want to measure. Its eigenstates
{|si⟩} (with i = 1, 2, · · · , dS; dS = dim HS) form a complete orthonormal
basis for HS .
The Hamiltonian of the system ĤS is usually assumed to vanish.
The projectors on HS are called P̂si

.
For simplicity, we assume that the system is on a generic state σ̂0.
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Meter M
The meter is described as a quantum device living in a Hilbert space HM,
in which the operator M̂ , called pointer variable, is defined. Its eigenstates
{|mk⟩} (with k = 1, 2, · · · , dS; dM = dim HM) are called pointer states.
As per the system, the Hamiltonian of the meter ĤM is assumed to vanish
in most cases.
The projectors on HM are called Π̂mk

.
We assume that the meter is prepared in the initial state

⃓⃓⃓
m(0)

⟩︂
, which may

or may not be an eigenstate of the pointer. Thus, the initial density operator
of the pointer is µ̂0 =

⃓⃓⃓
m(0)

⟩︂⟨︂
m(0)

⃓⃓⃓
.

Total system T
The total system encompasses both the system S and the meter M. Its
Hilbert space is the direct product HT = HS ⊗ HM. The initial state is
τ̂ 0 = σ̂0 ⊗ µ̂0, in which system and meter are assumed to be uncorrelated (not
entangled). The only non-vanishing term in the total Hamiltonian is assumed
to be the interaction one: ĤT = Ĥ int.

The first step of the measurement is the coupling between the system and the
meter, carried out by a unitary temporal evolution operator Û . This procedure
is also known as pre-measurement. The total system evolves from its initial pre-
selected state τ̂ 0 in:

τ̂ 1 = Û τ̂ 0Û
† = Û σ̂0 ⊗ µ̂0Û

† (1.2.2.1)
where, as per (1.1.1.13),

Û = exp
(︃

− i

ℏ

∫︂
dtĤT

)︃
(1.2.2.2)

An easy way to calculate the time evolution is to evolve T when S is in one of its
eigenstates:

Û
(︂
|si⟩ ⊗

⃓⃓⃓
m(0)

⟩︂)︂
= |si⟩ ⊗

⃓⃓⃓
m(i)

⟩︂
(1.2.2.3)

where i = 0, 1, · · · , dS . This shows that the interaction does not change a pure
eigenstate of the system.

As for
⃓⃓⃓
m(0)

⟩︂
,
⃓⃓⃓
m(i)

⟩︂
are not, in general, eigenstates of the meter operator M̂ ,

but normalized superpositions of them. Therefore, they are not mutually orthogo-
nal and they do not form a complete set in HM. Furthermore, a meter state

⃓⃓⃓
m(i)

⟩︂
acts as a kind of marker for the eigenstate |si⟩, as we will see later.

Since Û is a linear operator, we can extend the above time evolution to the case
in which the system initial state is a superposition |s⟩ of its eigenstates:

Û
(︂
|s⟩ ⊗

⃓⃓⃓
m(0)

⟩︂)︂
=

dS∑︂
i=1

|si⟩ ⊗
⃓⃓⃓
m(i)

⟩︂
(1.2.2.4)
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which is not separable anymore. The interaction entangles the system and the me-
ter.

From Eq. (1.2.2.4), we can calculate the evolution of the density operator τ̂ 0:

τ1 = Ûτ0̂Û
† = Û σ̂0 ⊗ µ̂0Û

†

=
∑︂
i,j

(|si⟩ ⊗
⃓⃓⃓
m(i)

⟩︂
⟨si| σ̂0 |sj⟩ ⟨sj| ⊗

⟨︂
m(j)

⃓⃓⃓
)

=
∑︂
i,j

(
⃓⃓⃓
m(i)

⟩︂
P̂si
σ̂0P̂sj

⟨︂
m(j)

⃓⃓⃓
)

(1.2.2.5)

which allows us to obtain the partial state of the system after the interaction,
thanks to the partial trace:

σ̂1 = TrM τ̂ 1 =
∑︂
k

⟨mk|τ̂ 1|mk⟩

=
∑︂
i,j,k

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
P̂si
σ̂0P̂sj

⟨︂
m(j)

⃓⃓⃓
mk

⟩︂
=
∑︂
i,j

(︂
P̂si
σ̂0P̂sj

⟨︂
m(j)

⃓⃓⃓
m(i)

⟩︂)︂ (1.2.2.6)

If there is no overlap between the meter states
⃓⃓⃓
m(i)

⟩︂
and

⃓⃓⃓
m(j)

⟩︂
, then

⟨︂
m(i)

⃓⃓⃓
m(j)

⟩︂
=

δi,j would imply that σ̂1 is diagonal, meaning that this indirect measurement would
be analogous to a projective one. However, in general,

⟨︂
m(i)

⃓⃓⃓
m(j)

⟩︂
/= 0 for i /= j,

because, as it has been previously mentioned, the meter states
⃓⃓⃓
m(i)

⟩︂
are not eigen-

states of M̂ , nor orthogonal with respect to each other. This means that, in general,
the meter states can overlap.

Analogously, we can calculate the meter state after the interaction:

µ̂1 = TrS τ̂ 1 =
∑︂
i

⟨si|τ̂ 1|si⟩ =
∑︂
i

⃓⃓⃓
m(i)

⟩︂
⟨si|σ̂0|si⟩

⟨︂
m(i)

⃓⃓⃓
(1.2.2.7)

with matrix elements

⟨mk|µ̂1|ml⟩ =
∑︂
i

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
⟨si|σ̂0|si⟩

⟨︂
m(i)

⃓⃓⃓
ml

⟩︂
(1.2.2.8)

expressed in terms of the wave-function
⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
. Notice that we can efficiently

distinguish between the different eigenvalues si of Ŝ if and only if there is no overlap
between the wave-functions

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
.
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The read-out

Now we measure the pointer observable M , obtaining the eigenvalue mk of the
operator M̂ using the projector Π̂mk

= |mk⟩⟨mk|:

τ̂ 2 =

(︂
1̂S ⊗ Π̂mk

)︂
τ̂ 1
(︂
1̂S ⊗ Π̂mk

)︂
p(mk|τ̂ 1)

(1.2.2.9)

where p(mk|τ̂ 1) is the probability of obtaining the eigenvalue mk from the state τ̂ 1.

p(mk|τ̂ 1) = Tr
[︂(︂

1̂S ⊗ Π̂mk

)︂
τ̂ 1
]︂

=
∑︂
i

(︃⃓⃓⃓⟨︂
m(i)

⃓⃓⃓
mk

⟩︂⃓⃓⃓2
⟨si|σ̂0|si⟩

)︃
=
∑︂
i

p(mk|m(i))p(si|σ̂0)

(1.2.2.10)

One again we notice that the mk distribution reflects the si one if and only if the
meter wave-functions do not overlap. Let us see what happens to the system after
the read-out of the meter, by performing a partial trace over the meter:

σ̂2 = TrM(τ̂ 2)

= 1
p(mk|τ̂ 1)

TrM
[︂(︂

1̂S ⊗ Π̂mk

)︂
τ̂ 1
(︂
1̂S ⊗ Π̂mk

)︂]︂
= 1
p(mk|τ̂ 1)

⟨mk| Û σ̂0 ⊗ µ̂0Û
†
|mk⟩

= 1
p(mk|τ̂ 1)

⟨mk| Û
⃓⃓⃓
m(0)

⟩︂
σ̂0
⟨︂
m(0)

⃓⃓⃓
Û

†
|mk⟩

= 1
p(mk|τ̂ 1)

K̂kσ̂0K̂
†
k

(1.2.2.11)

where the operators K̂k are the measurement operators that we introduced in sec-
tion 1.2.1. It is easy to see that they act only on HS and are defined as:

K̂k =
⟨︂
mk

⃓⃓⃓
Û
⃓⃓⃓
m(0)

⟩︂
=
∑︂
i

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
|si⟩⟨si|

=
∑︂
i

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂
P̂si

(1.2.2.12)

This means that, by carefully choosing the interaction and the meter, we can use an
indirect measurement to reproduce any measurement operator, including, of course,
projectors and POVMs.
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For completeness, let us calculate the density operator of the meter after the
measurement:

µ̂2 = Π̂mk
µ̂1Π̂mk

p(mk|τ̂ 1)
(1.2.2.13)

It is important to notice that, after the read-out, system and meter are disentangled.

The von Neumann protocol

So far, we have given a general description of the indirect measurement protocol.
A special case of indirect measurement protocol is the von Neumann protocol[9] (not
to be confused with the von Neumann scheme, an alternative name for projective
measurements), which has the advantage of giving a detailed description of the
meter and uses a very specific interaction Hamiltonian. For this reason, the von
Neumann protocol is the one describing most experiments.
Let us describe the total system in detail:

System S
The system retains the same definition as for the general indirect measurement
protocol. For simplicity, however, we assume that the system is on a pure
initial state |s⟩.

Meter M
The meter is described as quantum device living in a continuous Hilbert space
HM .⃓⃓⃓
m(0)

⟩︂
denotes the initial wave-function of the measuring device. It can be

expressed in the position basis as⃓⃓⃓
m(0)

⟩︂
=
∫︂
dq |q⟩

⟨︂
q
⃓⃓⃓
m(0)

⟩︂
=
∫︂
dq |q⟩ϕ0(q) (1.2.2.14)

where q is the position of the measuring needle, i.e. the pointer and ϕ0(q)
is the pointer wave-function. Thus, |q⟩ are called pointer states. They are
eigenstates of Q̂, which is, in turn, called pointer variable. |q⟩ and Q̂ replace,
respectively, |mk⟩ and M̂ from the indirect measurement.
We also assume that the wave-function ϕ0(q) is centred in 0, with variance
σ2:

ϕ0(q) =
[︄

1√
2πσ2

exp
(︄

− q2

2σ2

)︄]︄ 1
2

(1.2.2.15)

meaning that
⟨︂
Q̂
⟩︂

0
= 0.

The Hamiltonian of the meter ĤM is assumed to vanish in most cases.

Total system T
The only non-vanishing term in the total Hamiltonian is assumed to be the
interaction one.
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As mentioned before, von Neumann protocol defines a very specific interaction
Hamiltonian:

Ĥ int = γŜ ⊗ P̂ (1.2.2.16)
where γ is the coupling constant and P̂ is the variable of the meter canonically
conjugated to the pointer Q̂ (

[︂
Q̂, P̂

]︂
= iℏ ). Since we have assumed that the

Hamiltonians of both the system and the meter vanish, the time evolution of the
total system becomes:

Û = exp
(︃

− i

ℏ

∫︂
dtĤT

)︃
= exp

(︃
− i

ℏ

∫︂
dtĤ int

)︃
= exp

(︃
− i

ℏ
gŜ ⊗ P̂

)︃
(1.2.2.17)

where g =
∫︁
dtγ is the effective coupling constant.

In order to calculate the evolution of the total system, let us observe that, since
Q̂ and P̂ are canonically conjugated, a generic operator exp

(︂
i
ℏλP̂

)︂
with λ ∈ R acts

as a translation operator for a wave-function ϕ(q) in the q basis:

exp
(︃
i

ℏ
λP̂

)︃
|ϕ⟩ = exp

(︃
i

ℏ
λP̂

)︃ ∫︂
dq |q⟩ϕ(q) =

∫︂
dq |q⟩ϕ(q + λ) (1.2.2.18)

Therefore, the evolution of the total system T under the time evolution Û for each
of the system eigenvalues si is:

|si⟩
⃓⃓⃓
m(i)

⟩︂
= Û

(︂
|si⟩ ⊗

⃓⃓⃓
m(0)

⟩︂)︂
= exp

(︃
− i

ℏ
gŜ ⊗ P̂

)︃ (︂
|si⟩ ⊗

⃓⃓⃓
m(0)

⟩︂)︂
= |si⟩ ⊗

[︃
exp

(︃
− i

ℏ
gsiP̂

)︃ ∫︂
dq |q⟩ϕ0(q)

]︃
= |si⟩ ⊗

∫︂
dq |q⟩ϕ0(q − gsi)

(1.2.2.19)

which means that for each eigenvalue, the initial state of the meter
⃓⃓⃓
m(0)

⟩︂
evolves

into a state
⃓⃓⃓
m(i)

⟩︂
:

⃓⃓⃓
m(i)

⟩︂
=
∫︂
dq |q⟩

⟨︂
q
⃓⃓⃓
m(i)

⟩︂
=
∫︂
dq |q⟩ϕi(q) =

∫︂
dq |q⟩ϕ0(q − gsi) (1.2.2.20)

or
ϕi(q) = ϕ0(q − gsi) (1.2.2.21)

This means that the interaction translates the initial state of the pointer ϕ0(q),
which was centred around q = 0, in a superposition of ϕi(q) states, which, in turn,
are the initial state translated by gsi. The read-out of the meter, then, allows to
obtain one of the numbers q = gsi, from which one can extract the result of the
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measurement of Ŝ.
This description makes it easy to visualize the meaning of the overlap of the wave-
functions seen in Eq. (1.2.2.6). If the standard deviation σ of the distribution is
much smaller than the effective coupling constant g, then there will be no overlap
between the wave-functions ϕi. Once again, in this case we reproduce the projective
measurement scenario.

Pre- and post-selection

Let us now introduce two important concepts: the pre- and post-selection.

Pre-selection The pre-selection represent the choice of the initial state of an
experiment. A generic incoming state |ψ⟩ can be projected onto a different state
|ψ′⟩ which will be the initial state of the experiment.

Post-selection If pre-selection represents the choice of the initial state, the post-
selection can be seen as a choice of the final state. Let us start by describing it in
the simpler case of direct measurements.

Post-selection in direct measurements Let us suppose to perform two
consecutive non-destructive projective measurements on the system.
We start by preparing the system in the initial pure state |s⟩. Then, we mea-
sure the observable S by obtaining one of its non-degenerate eigenstates |si⟩ (i =
1, 2, · · · , dS) with probability p(si|s) = |⟨si|s⟩|2. Then, we measure the second
observable F and we are only interested in one specific outcome |f⟩. The joint
probability of obtaining |si⟩ in the first measurement and |f⟩ in the second one is:

p(si, f |s) = p(f |si)p(si|s) = |⟨f |si⟩|2|⟨si|s⟩|2 (1.2.2.22)

which leads to the total probability of obtaining f , regardless of the intermediate
result si:

p(f |s) =
∑︂
i

p(si, f |s) =
∑︂
i

|⟨f |si⟩|2|⟨si|s⟩|2 (1.2.2.23)

Thanks to Bayes’ rule, these two probabilities allow us to calculate the probability
of having an outcome si given the pre- and post-selection s and f :

p(si|f, s) = p(si, f |s)
p(f |s) = |⟨f |si⟩|2|⟨si|s⟩|2∑︁

i |⟨f |si⟩|2|⟨si|s⟩|2
(1.2.2.24)

which is known as Aharonov-Bergman-Lebowitz (ABL) rule[54]. From the ABL
rule we can calculate the expectation value of the observable S conditioned to the
outcome f of the post-selection:

⟨Ŝ⟩f =
∑︂
i

sip(si|f, s) =
∑︂
i

si
|⟨f |si⟩|2|⟨si|s⟩|2∑︁
i |⟨f |si⟩|2|⟨si|s⟩|2

(1.2.2.25)
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Post-selection in indirect measurements Since S is not directly mea-
sured in the indirect measurement protocols, we cannot directly derive the ABL
rule. Nevertheless, in the limit of projective measurements (no overlap between the
different meter states), it is possible to retrieve the ABL rule. Let us start from a
generic τ̂ 0 = σ̂0 ⊗ µ̂0 and evolve it with the interaction Û :

τ̂ 1 = Û σ̂0 ⊗ µ̂0Û
† =

∑︂
i,j

(︃⃓⃓⃓
m(i)

⟩︂
P̂si
σ̂0P̂

†
sj

⟨︂
m(i)

⃓⃓⃓)︃
(1.2.2.26)

and post-select by projecting the system onto |f⟩:

τ̂ 2 = (P̂f ⊗ 1M)τ̂ 1(P̂f ⊗ 1M)
p(f |τ1)

=
(P̂f ⊗ 1M)

(︃
Û σ̂0 ⊗ µ̂0Û

†
)︃

(P̂f ⊗ 1M)

p(f |τ1)

=
(P̂f ⊗ 1M)∑︁i,j

(︂⃓⃓⃓
m(i)

⟩︂
P̂si
σ̂0P̂sj

⟨︂
m(j)

⃓⃓⃓)︂
(P̂f ⊗ 1M)

p(f |τ1)

(1.2.2.27)

Then, the total probability of obtaining f regardless of the intermediate result is:

p(si, f |s) = TrT
[︂
(P̂f ⊗ 1)τ̂ 2

]︂
=
∑︂
i,j,k

(⟨si| ⊗ ⟨mk|)(P̂f P̂si
σ̂0P̂sj

P̂f ⊗
⟨︂
m(i)

⃓⃓⃓
m(j)

⟩︂
)(|si⟩ ⊗ |mk⟩)

=
∑︂
i,j,k

{︂[︂
⟨si| P̂f P̂si

σ̂0P̂si
P̂f |si⟩

]︂ [︂
⟨mk| P̂mk

⃓⃓⃓
m(i)

⟩︂ ⟨︂
m(j)

⃓⃓⃓
P̂mk

|mk⟩
]︂}︂

=
∑︂
i,j,k

{[⟨si|f⟩ ⟨f |si⟩ ⟨si| σ̂0 |si⟩ ⟨si|f⟩ ⟨f |si⟩]

×
[︂
⟨mk|mk⟩

⟨︂
mk

⃓⃓⃓
m(i)

⟩︂ ⟨︂
m(j)

⃓⃓⃓
mk

⟩︂
⟨mk|mk⟩

]︂
}

(1.2.2.28)

Since we have asked to be in the projective measurements limit, the different meter
states are separate, so

⟨︂
m(j)

⃓⃓⃓
m(i)

⟩︂
= δi,j:

p(si, f |s) = |⟨f |si⟩|2|⟨si|s⟩|2 (1.2.2.29)

from which follows the ABL rule.

1.2.3 Strong indirect measurements: non-demolition
The indirect measurement formalism allows us to define a special type of mea-

surement, which is called quantum non-demolition (QND) measurement[55]. A
QND measurement of Â is defined as a sequence of precise measurements of Â
through several measurement apparatuses Mi, such that the result of each mea-
surement is completely predictable from the result of the first measurement and,
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eventually, some information about the initial state of the system. In mathematical
terms, let Â be an observable of the system S, which is coupled to the meter Mi

through an interaction Hamiltonian Ĥ int (as in sec. 1.2.2). Between subsequent
measurements, the system evolves following its free Hamiltonian HS .

Most observables cannot be monitored in a QND way. Any measurement of the
observable Â creates a back-action which kicks all its non-commuting observables
Ĉ. In the subsequent free evolution of the system, the contamination of Ĉ may
spread into Â, making the results of future measurements of Â unpredictable. There
is, however, a special class of observables, which can be immune to such feedback;
they are called QND observables. Â is a QND observable if and only if, when the
system is evolving freely in the Heisenberg picture, Â commutes with itself at the
different times of measurement ti:[︂

Â(ti), Â(tj)
]︂

= 0 (1.2.3.1)

If this condition is satisfied ∀ti, tj, then Â is a continuous QND observable. If it is
satisfied only at special times, then Â is called stroboscopic QND observable.
An observable which is conserved under free evolution:

dÂ
dt = − i

ℏ
[︂
HS , Â

]︂
= 0 (1.2.3.2)

where HS is the system Hamiltonian, is automatically a continuous QND variable,
because it satisfies Eq. (1.2.3.1) ∀ti, tj.

One application for QND measurements is monitoring an observable. For in-
stance, let us monitor the QND observable Â through a sequence of perfect QND
measurements at times t0, t1, t2, . . . Since all Â(ti) commute, we can prepare the
system at time t0 in the state |ψ0⟩ which is a simultaneous eigenstate of the observ-
ables

{︂
Â(ti)

}︂
. From the results of this first measurement at t0, we can compute all

the eigenvalues
{︂
Â(ti)

}︂
. Then, if the system evolves freely (i.e. following its free

Hamiltonian HS) the measured eigenvalues will be the computed one. Instead, if
the system is perturbed, this will change the eigenvalues, allowing for a detection
of such perturbation.

1.2.4 Weak measurements and weak values
So far, the measurements that we have described have one element in common:

the state collapses after the measurement. For this reason, they are usually called
strong or sharp measurements. It is, however, possible to generalize them into a
new type of measurements, which do not cause the state of the system to collapse
after the measurements, at the price of obtaining less information about the system.
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These measurements are called weak measurements[53, 56].

Definition

In order to realize a weak measurement one has to:

1. weakly couple the system and the measurement apparatus;

2. perform a strong measurement on the pointer. The collapsed state of the
measurement apparatus is the result of the weak measurement.

A measurement is considered weak if the standard deviation of the result is larger
than the difference between the eigenvalues of the observable that we want to mea-
sure.

Weak measurements in the indirect measurement protocol

As per section 1.2.2, the initial state τ̂ 0 = σ̂0 ⊗ µ̂0 is the direct product of the
initial density operator of the system and the meter, i.e., respectively, σ̂0 and µ̂0 =⃓⃓⃓
m(0)

⟩︂⟨︂
m(0)

⃓⃓⃓
. After the interaction Û , the total system is in the state τ̂ 1 = Û τ̂ 0Û

†.
For weak measurements, we assume that the interaction is described as in the von
Neumann protocol (sec. 1.2.2):

Û = exp
(︃

− i

ℏ
gŜ ⊗ P̂

)︃
(1.2.4.1)

with g being the effective coupling constant between the measurand observable Ŝ
and the variable P̂ canonically conjugated to the pointer Q̂. In contrast with the
von Neumann protocol, P̂ and Q̂ are assumed to be generic operators.

For weak coupling (g → 0), we can expand the exponential:

Û = exp
(︃

− i

ℏ
ξ̂
)︃

= 1 − i

ℏ
ξ̂ − 1

2ℏ2 ξ̂
2 + O(ξ̂3) (1.2.4.2)

where ξ̂ = gŜ ⊗ P̂ . Therefore:

τ̂ 1 = Û τ̂ 0Û
†

≈
(︃
1 − i

ℏ
ξ̂ − 1

2ℏ2 ξ̂
2
)︃
τ̂ 0

(︃
1 + i

ℏ
ξ̂ − 1

2ℏ2 ξ̂
2
)︃

≈ τ̂ 0 + i

ℏ
[︂
τ̂ 0, ξ̂

]︂
− 1

2ℏ2

(︃
ξ̂

2
τ̂ 0 + τ̂ 0ξ̂

2
− 2ξ̂τ̂ 0ξ̂

)︃
= τ̂ 0 + i

ℏ
[︂
τ̂ 0, ξ̂

]︂
− 1

2ℏ2

[︂[︂
τ̂ 0, ξ̂

]︂
, ξ̂
]︂ (1.2.4.3)
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Using the following simplifying assumptions

⟨P̂ ⟩0 = TrM
(︂
µ̂0P̂

)︂
= 0 (1.2.4.4)

⟨P̂
2
⟩0 = TrM

(︃
µ̂0P̂

2
)︃
/= 0 (1.2.4.5)

the system density operator becomes

σ̂1 = TrM τ̂ 1 ≈ σ̂0 − 1
2ℏ2 g

2 ⟨P̂
2
⟩0

[︂[︂
σ̂0, Ŝ

]︂
, Ŝ
]︂

(1.2.4.6)

with elements

⟨si|σ̂1|sj⟩ ≈ ⟨si|σ̂0|sj⟩
[︃
1 − 1

2ℏg
2 ⟨P 2̂⟩0 (si − sj)2

]︃
(1.2.4.7)

so, the correction to the initial density matrix is of the second order in the interac-
tion strength g. A direct comparison with Eq. (1.2.2.6) shows that:

⟨︂
m(i)

⃓⃓⃓
m(j)

⟩︂
≈ 1 − 1

2ℏg
2 ⟨P 2̂⟩0 (si − sj)2 (1.2.4.8)

This means that there is a superposition of the meter states in weak measurements,
therefore weak measurements are not able to efficiently distinguish the eigenvalues
si.

The meter final state is, in the same approximation:

µ̂1 = TrS(τ̂ 1) ≈ µ̂0 + i

ℏ
g ⟨Ŝ⟩0

[︂
µ̂0, P̂

]︂
− 1

2ℏg
2 ⟨Ŝ⟩0

[︂[︂
µ̂0, P̂

]︂
, P̂
]︂

(1.2.4.9)

After the measurement, the mean value of the pointer Q̂, assuming ⟨Q̂⟩0 = 0, will
be

⟨Q̂⟩1 = g ⟨Ŝ⟩0 + O(g2) (1.2.4.10)
This kind of relationship between mean values of system and pointer is typical of
weak measurements[53].

Weak measurements in the von Neumann protocol

Weak measurements are a natural extension of the von Neumann protocol mod-
elling strong measurements. In fact, all the results in sec. 1.2.2 are general and
still hold for the weak measurements case.

Remember that, in the von Neumann protocol, we want to measure the pointer
which is associated to a continuous observable Q̂ and states |q⟩ in a continuous
Hilbert space HM. By assuming that ⟨Q⟩0 vanishes for the initial state and that
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the initial state is normally distributed around q = 0, we get the initial wave-
function of the pointer:

φ0(q) =
[︄

1√
2πσ2

exp
(︄

− q2

2σ2

)︄]︄ 1
2

(1.2.4.11)

Then, by assuming Hint = γŜ ⊗ P̂ , the initial wave-function is transformed into a
superposition of states φi(q):

φi(q) = φ0(q − gsi) (1.2.4.12)

which are translations of the initial state by the quantity gsi.

In order for the measurement to weak, the standard deviation σ of the wave-
functions φi must be much greater than the distance g∆si between the eigenvalues.
In this way, there will be an overlap between the wave-functions and the greater the
variance, the greater the overlap. In contrast, a small variance completely separates
the wave-functions, generating strong measurements. For this reason, it is possible
to see the weak measurements as a generalization of the strong measurements.

Weak values: definition and applications

A new property of the system called weak value[57] emerges if we post-select
the system after a weak interaction.
Let Ŝ be an Hermitian operator on the system S and let |s⟩ and |f⟩ be two states
on the Hilbert space HS of the system. Let

⃓⃓⃓
m(0)

⟩︂
be the initial state of the meter.

Let us suppose to perform a weak measurement on a particle on the state |s⟩ by
using the interaction Hamiltonian Ĥ int = γŜ ⊗ P̂ . Then, we post-select the final
state of the system |f⟩. The amplitude of obtaining the outcome |f⟩ is

⟨f |Û |s⟩ (1.2.4.13)

with Û = exp
(︂
− i

ℏ
∫︁
dtĤ int

)︂
. The post-selection only selects particles which are

in the state |f⟩ after the interaction, therefore it can be modelled as a set of two
projections:

P̂0 = |f⟩⟨f | ⊗ 1M

P̂1 =
∑︂
i /=0

|fi⟩⟨fi| ⊗ 1M
(1.2.4.14)

where {|fi⟩} is a basis of HS and |f⟩ = |f0⟩. If we only consider the outcome 0, the
state after the pre-selection, weak interaction and post-selection chain is

|f⟩⟨f | exp
(︃

− i

ℏ
gŜ ⊗ P̂

)︃
|s⟩ ⊗

⃓⃓⃓
m(0)

⟩︂
(1.2.4.15)
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which can be approximated, for g
σ

≪ 1, to:

|f⟩⟨f | exp
(︃

− i

ℏ
gŜ ⊗ P̂

)︃
|s⟩ ⊗

⃓⃓⃓
m(0)

⟩︂
≈ |f⟩⟨f |

(︃
1 − i

ℏ
gŜ ⊗ P̂

)︃
|s⟩ ⊗

⃓⃓⃓
m(0)

⟩︂
≈ |f⟩ ⟨f |s⟩

(︃
1 − i

ℏ
g ⟨Ŝ⟩w P̂

)︃ ⃓⃓⃓
m(0)

⟩︂
≈ |f⟩ ⟨f |s⟩ exp

(︃
− i

ℏ
g ⟨Ŝ⟩w P̂

)︃ ⃓⃓⃓
m(0)

⟩︂
(1.2.4.16)

where
⟨Ŝ⟩w = ⟨f |Ŝ|s⟩

⟨f |s⟩
(1.2.4.17)

is the weak value of S. It is easy to see that the weak value is not bounded to the
eigenvalues spectrum. Values outside the eigenvalues spectrum are called anoma-
lous.

The meter wavefunction, which was centred around q = 0, has evolved into

φf =
⟨︂
q
⃓⃓⃓
m(f)

⟩︂
= φ0

(︂
q − g ⟨Ŝ⟩w

)︂
(1.2.4.18)

The weak value is a measurable property of the system and its nature has been
largely debated (see [53, 56, 58, 59, 60, 61, 62, 63, 64, 65] and many others). For
instance, some pondered whether weak values are a statistical artefact[60, 65], while
others demonstrated a deep connection with contextuality [62, 63]. Nevertheless,
several practical application of weak values have been discovered, as we will see in
the following sections.

Properties

Unbounded If we use post-selection, it is easy to see that the pointer distri-
bution could be centred onto a value very far from any of the eigenvalues of Â.
For instance, take two qubits:

|s⟩ = cos(θ) |H⟩ + sin(θ) |V ⟩
|f⟩ = cos(φ) |H⟩ + sin(φ) |V ⟩

(1.2.4.19)

for pre- and post-selection. The measurand is the polarization:

Ŝ = |H⟩⟨H| − |V ⟩⟨V | (1.2.4.20)

It is easy to see that:
⟨S⟩w = cos(θ + φ)

cos(θ − φ) (1.2.4.21)
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with
⟨f |s⟩ = cos(θ − φ) (1.2.4.22)

The weak value is not bounded between -1 and 1, but it can go way beyond. For
instance, take θ = −0.41 rad and φ = 1.16 rad. For such angles, ⟨S⟩w ≈ 420
and it is possible to go even further! This amplification is due to the fact that the
more the two states are orthogonal, the smaller will be their inner product and,
therefore, the larger will be the weak value. However, a smaller ⟨f |s⟩ also implies
a smaller probability of success for the post-selection (p(f |s) = |⟨f |s⟩|2). In our
example, p ≈ 3 ∗ 10−6.

Figure 1.2: Values of | ⟨S⟩w| and the probability of success of the post-selection
p(f |s) as a function of φ for a fixed θ = −0.41rad. The weak value and the
probability of success peak at the same angle φ.

Complex weak values The weak value ⟨S⟩w could assume complex values.
It is easy to show[66] that the real part of the weak value shifts the expectation
value of the pointer position Q̂, whereas the imaginary part shifts the expectation
value of its momentum P̂ .

Applications

Signal amplification As we have seen (sec. 1.2.4), it is possible to obtain
an arbitrarily large weak value | ⟨Ŝ⟩w| by choosing a |f⟩ quasi-orthogonal to |s⟩.
Therefore, it is possible to use weak values to amplify small signals through Eq.
(1.2.4.18). Such amplification has been first implemented in an experiment by
Hosten and Kwiat[67], who managed to measure distances of the order of one tenth
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of a nanometre thanks to a four orders of magnitude amplification. Subsequent
experiments demonstrated the ability to measure down to 400 frad of deflection[68]
and showed gains in the signal-to-noise ratio (SNR), thanks to the robustness of
the amplification techniques with respect to various technical noise sources[69, 70,
71, 72, 73, 74]. Yet, the cost of such amplifications is a reduced data acquisition
rate, due to the low success probability of the post-selection in high amplification
regimes (e.g. Fig. 1.2). Thus, an important metrological question is whether the
amplification effect can overcome the corresponding low post-selection success prob-
ability to provide an estimation at a precision surpassing optimal techniques (i.e.
techniques that reach the ultimate bound on uncertainty provided by the quantum
Cramér-Rao bound, see Sec. 1.4).

It can, indeed, be showed[75, 76, 77, 78, 79, 80] that, with the same amount
of initial resources, the amplification effect does not carry an higher precision with
respect to conventional techniques. Nevertheless, this also means that, in spite of
lower collection rate, due to the post-selection, parameter estimation in amplifica-
tion techniques shows similar sensitivity to optimal estimation methods with the
same amount of initial resources.

As we have seen, then, the amplification technique has two important properties:

• an equivalent sensitivity to optimal estimation methods, in spite of the losses
due to the post-selection;

• robustness with respect to technical noise.

The first property can be exploited, for instance, by recycling techniques[81, 82],
in which the “discarded” outcomes of the post-selection are, instead, recycled and
reused. Thanks to the virtual increase of the initial resources induced by the re-
cycling, such techniques show an higher measurement precision with respect to
classical and non-recycling weak values techniques[83]. The second property, in-
stead, allows us to amplify the signal without amplifying certain types of unrelated
technical noise backgrounds. Thus, both properties are of great metrological in-
terest and can even be combined in order to achieve an high precision even with
relatively modest laboratory equipment[84].

Direct measurement of the wave-function Weak values allow performing
a direct measurement of the wave-function[85]. Up until the introduction of weak
values, such measurement was believed to be impossible, and the wave-function was
only obtainable via indirect procedures (such as tomography).
Let us suppose that we want to measure the spatial wave-function ψ(x) = ⟨x|s⟩ for
the state |s⟩. Let Ŝ be the projector P̂x = |x⟩⟨x| and we post-select on a momentum
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eigenstate |p⟩. Then

⟨Ŝ⟩w = ⟨P̂x⟩w = ⟨p|x⟩ ⟨x|s⟩
⟨p|s⟩

=
exp

(︂
i
ℏpx

)︂
ψ(x)

ψ̃(p)
(1.2.4.23)

where ψ̃(p) is the momentum wave-function. If p = 0:

ψ(x) = k ⟨P̂x⟩w (1.2.4.24)

where k can be obtained via normalization.

Measurement of non-commuting observables In some cases, weak values
allow us to perform measurements on two non-commuting observables[86, 87, 88,
89]. To understand how this is possible, let us star by define joint e sequential
measurements of weak values.
Take two observables Â and B̂. To measure their weak value, we realize two different
couplings gx and gy with two different momentums P̂ x and P̂ y. The weak values
are defined as ⟨X̂⟩ = gx ⟨Â⟩w and ⟨Ŷ ⟩ = gy ⟨B̂⟩w. Now we can distinguish between
two cases:

• joint weak measurements
Joint measurements allow us to realize the measurement of two observables
on two entangled particles at the same time. In this case, by measuring the
covariance of the pointers X and Y , we obtain

⟨X̂Ŷ ⟩ = 1
4gxgyRe

[︂
⟨ÂB̂ + B̂Â⟩w + 2 ⟨Â⟩∗

w ⟨B̂⟩w
]︂

(1.2.4.25)

where ⟨ÂB̂ + B̂Â⟩w is the joint weak value.

• sequential weak measurements
In a sequential measurement, a first measurement of an observable A is fol-
lowed by a second measurement of an observable B and so on. Limiting us
to two measurements and using the interactions described for joint measure-
ments, we can reach a similar result:

⟨X̂Ŷ ⟩ = 1
2gxgyRe

[︂
⟨ÂB̂⟩w + ⟨Â⟩∗

w ⟨B̂⟩w
]︂

(1.2.4.26)

where ⟨ÂB̂⟩w is the sequential weak value.

Therefore, the real part of the sequential (Re
[︂

⟨ÂB̂⟩w
]︂
) or joint (Re

[︂
⟨ÂB̂ + B̂Â⟩w

]︂
)

weak values of two non-commuting ensembles can be evaluated by measuring ⟨X̂Ŷ ⟩
and from the independent extraction of the weak values ⟨Â⟩w and ⟨B̂⟩w.
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1.3 Parameters to characterize entanglement and
discord

In Sec. 1.1.1 and 1.1.2 we discussed the importance of entanglement in modern
quantum technologies. In quantum communication, for instance, only a maximally
entangled state can teleport a qubit. Non-maximally entangled states, however,
can still provide an asymptotically faithful teleportation at some rate, provided
that sender and receiver share many copies of the same entangled state. This is
possible thanks to a protocol called entanglement distillation[17, 90], which allows
“distilling” maximally entangled pairs from multiple copies of non-maximally en-
tangled ones. In order to find out how many copies are needed it is, then, important
to characterize the amount of entanglement in those states[90, 91]. To do so, one
may reconstruct the physical state via a process called quantum state tomogra-
phy[92], but that requires a lot of measurements, especially for higher dimensions.
For this reason, many methods have been implemented, such as Bell tests[22], vis-
ibility experiments[93], parameters which estimate the entanglement[17], etc. In
this section, we focus on such parameters, explaining first the characteristics that
they should have and, then, introducing the parameters that we will use in the rest
of the thesis. For simplicity, we will restrict ourselves to the bipartite case ρ̂ = ρ̂AB.

1.3.1 Properties of an entanglement measure
Many of the first measures of entanglement (such as those in [90, 91]) arose

from optimization of some protocols. However, any function of the quantum state
can be an entanglement measure, provided that it possesses two properties[17]:

• monotonicity

• vanishing on separable states.

Let us describe them in detail.

Monotonicity

The first, and most important, property is the monotonicity under LOCC (Lo-
cal Operations and Classical Communication) operations, i.e. local operations on
both photons with possible classical communication[91, 94]. Mathematically, the
monotonicity property can be formulated as follows:

For any LOCC operation P (ρ̂) and function E(ρ̂) of the quantum state:

E(P (ρ̂)) ≤ E(ρ̂) (1.3.1.1)
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This means that entanglement cannot increase under local operations and classical
communication.

Vanishing on separable states

Entanglement vanishes on separable states. This means that a function of the
quantum state E(ρ̂) can be considered a valid parameter to characterize the entan-
glement if E(ρ̂sep) = 0 for any separable state ρ̂sep.

Since every separable state can be converted to any other separable state by
LOCC, it can be showed[95] that any function E possessing the monotonicity prop-
erty is constant on separable states. This also ensures that E must be minimal on
separable states, because any separable state can be obtained by LOCC from any
other state. Thus, in order to have this property, we only need to set this constant
to zero.

Notice also that these two properties, combined, impose E to be a non-negative
function[17].

Other properties

While the two properties above are the only two required for entanglement
measures, there are many others which can be useful. Here is a brief overview of
the principal ones.

Normalization The normalization property requires that the entanglement mea-
sure returns, for maximally entangled states, the number of entangled pairs. In our
simple case of bipartite entanglement:

E(ρ̂ent) = 1 (1.3.1.2)

This property can only be applied to entangled pairs or states consisting of several
entangled pairs, and it cannot be generalized to multipartite entangled states, due
to the non-existence of a maximally entangled state in that case[17].

Asymptotic continuity It is possible to introduce some sort of continuity for
the parameter function. This takes the form[95, 96, 97]

∥ρ̂− σ̂∥1 → 0 =⇒ |E(α̂) − E(σ̂)| → 0 (1.3.1.3)

for states ρ̂ and σ̂ acting on the same Hilbert space and ∥X∥1 = Tr |X| = Tr
√
X†X

being the 1-norm. This property is useful in estimating transition rates[17].
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Convexity Finally, convexity is a property displayed by many entanglement mea-
sures, e.g. entanglement of formation and negativity[17]. It can be expressed as

E

(︄∑︂
i

piρ̂i

)︄
≤
∑︂
i

piE(ρ̂i) (1.3.1.4)

We can now introduce some specific entanglement measures. We focus on en-
tanglement of formation, concurrence, negativity and log-negativity, four simple
parameters with different characteristics. Then, for what concerns the Quantum
Discord estimation, we introduce the Quantum Geometric Discord, not qualified as
an entanglement measure since it is not monotone with entanglement.

1.3.2 Entanglement of formation
One of the most basic entanglement measures is the entanglement of formation

EF , which quantifies the resources needed to create a given entangled state[91]. For
a pure state |ψ⟩ of a pair of subsystems A and B, the entanglement of formation is
defined as

EF (|ψ⟩) = S (TrA [|ψ⟩⟨ψ|]) = S (TrB [|ψ⟩⟨ψ|]) (1.3.2.1)
being S the von Neumann entropy (Eq. (1.1.1.34)). This can be extended to
mixtures of entangled states according to

EF (ρ̂) = min
∑︂
i

µiE (|ψi⟩⟨ψi|) (1.3.2.2)

taking the minimum over all possible decompositions

ρ̂ =
∑︂
i

µi |ψi⟩⟨ψi| (1.3.2.3)

The entanglement of formation is an entanglement monotone and vanishes for
separable states. Thus, it is a valid entanglement measure. EF also has the following
properties:

• EF is normalized;

• EF is a convex function of ρ̂.

The importance of the entanglement of formation comes from the fact that it
provides an upper bound for distillable entanglement[91], i.e. the maximal number
of maximally entangled states per copy that can be distilled from many copies of
a given state ρ̂ by using LOCC operations. However, it is difficult to evaluate this
quantity, in general, for mixtures of entangled states. The search for an explicit
form led to the introduction of another parameter for the specific case of two-qubit
states: the Concurrence[98].

37



Introduction

1.3.3 Concurrence
Concurrence[98, 99, 100, 101, 102] is a scalar function which quantifies the

amount of entanglement in the density matrix ρ̂ of a bipartite system, and is defined
as:

C(ρ̂) = max (0, λ1 − λ2 − λ3 − λ4) (1.3.3.1)
being λi the eigenvalues of the hermitian matrix

R̂ =
√︃√︂

ρ̂ρ̃
√︂
ρ̂ (1.3.3.2)

in descending order, where

ρ̃ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y) (1.3.3.3)

and σ̂y is the Pauli matrix
(︄

0 −i
i 0

)︄
.

Concurrence is monotone in the entanglement and vanishes for separable states
hence it is a valid entanglement measure. Furthermore, it has the following prop-
erties:

• C is normalized;

• C is a convex function of ρ̂.

Its importance stems from the fact that it allows calculating the entanglement
of formation for any two-qubits state as[98]

EF (ρ̂) = H ′

⎛⎝1 +
√︂

1 − C2(ρ̂
2

⎞⎠ (1.3.3.4)

with
H ′(x) = −x log2 x− (1 − x) log2(1 − x) (1.3.3.5)

being the binary entropy.

1.3.4 Negativity
Negativity[101, 103] is defined as

N (ρ̂) =

⃦⃦⃦
ρ̂TA

⃦⃦⃦
1

− 1
2 (1.3.4.1)

where ρ̂TA is the partial transpose[104] of ρ̂ with respect to A.
An equivalent definition is

N (ρ̂) =
∑︂
i

|λi| − λi
2 (1.3.4.2)
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where λi are the eigenvalues of ρ̂TA .

Negativity is monotone in the entanglement and vanishes for separable states
and, thus, it qualifies as an entanglement measure. Furthermore, Negativity has
the following properties:

• N is normalized;

• N is a convex function of ρ̂.
As it only involves a trace norm and partial transpose, the negativity is an easy

to compute entanglement measure, in contrast with Concurrence and entanglement
of formation, which require to compute an optimization. Its importance, however,
comes from the fact that it bounds the extent to which a single copy of the state ρ̂
can be exploited for quantum teleportation[103].

1.3.5 Log-Negativity
A possible definition for the Log-Negativity is

L(ρ̂) = log2

⃦⃦⃦
ρ̂TA

⃦⃦⃦
1

(1.3.5.1)

which is closely related to the Negativity
L(ρ̂) = log2(2N (ρ̂) + 1) (1.3.5.2)

As per the Negativity, Log-Negativity[103] is monotone in the entanglement and
vanishes for separable states. It also retains the normalization property.

As per EF , Log-Negativity bounds the the amount of distillable entanglement
contained in the state ρ̂[17].

1.3.6 Quantum Geometric Discord
We have previously (Sec. 1.1.1) introduced Quantum Discord as a measure of

non-classical correlations in a multipartite quantum system, including correlations
which are due to quantum effects not related to entanglement. Such definition,
however, is difficult to compute, a task that has been shown to be an NP-complete
problem[105]. Therefore, we introduce a geometrical approximation called Quan-
tum Geometric Discord (QGD)[106], which is defined as the minimum distance
between the state ρ̂ and the closest zero-Discord state χ̂.

GD(2)
A (ρ̂) = min

χ̂∈Ω0
Tr (ρ̂− χ̂)2 (1.3.6.1)

where Ω0 is the set of zero-discord states.

The QGD has the following properties:
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• GD is non-negative;

• GD reaches zero for classically correlated states.

Anyway, unlike our previous parameters, it is not monotone in the entanglement
(exactly like quantum discord), hence it cannot be used as an entanglement mea-
sure.

1.4 Quantum parameter estimation
The goal of the estimation theory[107] is to determine a fixed unknown pa-

rameter θ (the estimand), which characterizes the population of measured data X
through a probability density function (PDF) f(x|θ). We call estimator the func-
tion θ̂(X) which estimates the value of the parameter θ from the measured data X.
Since X can be described as a random variable, the same holds for the estimator θ̂.
Estimators are not, in general, invariant under a parameter transformation[108].

A good estimator should be:

• consistent: ∀ε > 0, limn→∞ p
(︂⃓⃓⃓
θ̂ − θ

⃓⃓⃓
> ε

)︂
= 0 meaning that, by increasing

the number of measurements n, the estimator converges to the estimand.

• robust: not too much sensitive to deviations of the actual PDF from the
theoretically-expected one.

• efficient: smallest possible uncertainty associated with the estimated value.

We must pay a bit of attention to the uncertainty: the variance is defined around
the mean value and, therefore, is of little use for biased estimators, i.e. estimators
with average not equal to the estimand. In its stead, it is useful to introduce the
mean square error (MSE):

MSE(θ̂) = E(θ̂ − θ)2 = V ar(θ̂) + b2(θ̂, θ) (1.4.0.1)

where V ar(θ̂) is the variance of θ̂ and b(θ̂, θ) = E(θ̂)−θ is the bias of the estimator
θ̂ (E(·) denotes the statistical average). Being defined on the random variable
(θ̂ − θ), the MSE takes into account the bias and allows a comparison among the
estimators. An estimator is said to be more efficient than another if it has a lower
MSE. It is useful, then, to introduce the relative efficiency of θ̂1 with respect to
θ̂2 for the same number of measurements, defined as:

eff(θ̂1|θ̂2) =
1

MSE(θ̂2)
1

MSE(θ̂2)
= MSE(θ̂2)
MSE(θ̂1)

⎧⎪⎪⎨⎪⎪⎩
> 1 θ̂1 is more efficient
= 1 same efficiency
< 1 θ̂2 is more efficient

(1.4.0.2)
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The search for the most efficient estimator, i.e. the one which minimizes the
MSE, can be carried out in two different ways. The first - and most common
- one is the unbiased parameter estimation, which focuses on estimators without
bias (b(θ̂, θ) = 0), optimizing the variance (equal to the MSE in this case) to
reach the lowest MSE. The other method, called biased parameter estimation,
optimizes both the bias and the variance in order to achieve the least possible
MSE. For simplicity, in the following sections, we introduce both methods for the
single parameter case.

1.4.1 Unbiased parameter estimation
Unbiased parameter estimation focuses on estimators whose average converges

to the estimand θ without any bias. In this case, the MSE is equal to the variance,
which has a lower limit given by the Cramér-Rao bound[109, 110] (CRB). It is
useful to introduce them in the classical form first.

Classical case: Fisher Information and Cramér-Rao bound

The Cramér-Rao bound expresses a lower bound on the variance of unbiased
estimators for a certain parameter. For a generic parameter θ and n measurements
of X, it is defined as:

V ar(θ̂) ≥ 1
nI(θ) (1.4.1.1)

meaning that the variance of an estimator of parameter θ cannot go below the
reciprocal of the product of the number of measurements n and the Fisher Infor-
mation[111] I(θ), which, in turn, is defined as:

I(θ) =
∫︂
dxf(x|θ)

(︄
∂ ln f(x|θ)

∂θ

)︄2

=
∫︂
dx

1
f(x|θ)

(︄
∂f(x|θ)
∂θ

)︄2

(1.4.1.2)

and measures the amount of information that an observable random variable X
carries about the unknown parameter θ upon which the probability of X depends
following the PDF f(x|θ) (usually called likelihood function). Thus, we can see the
Fisher information as the curvature of log f(x|θ), often called log-likelihood func-
tion. An high (low) Fisher information therefore indicates that its maximum is
sharp (shallow) with respect to variations of θ. This provides an intuitive inter-
pretation of the Fisher information, which increases when the likelihood is more
sharply distributed around θ.

The Cramér-Rao bound allows us to improve our definition of efficiency, by di-
rectly comparing the variance of the unbiased estimator θ̂ to the bound: eff(θ̂) =
I−1(θ)
V ar(θ̂) . Thus, the most efficient estimator is the one which saturates the bound and
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has unitary efficiency. This estimator is said to be efficient or optimal and it is
often dubbed as minimal variance unbiased (MVU) estimator. The CRB, however,
does not provide a method to obtain the optimal estimator, nor a guarantee that
it exists. Nevertheless, the CRB guarantees that if an optimal estimator exists, it
is unique.

One method to achieve the optimal estimator is called maximum likelihood
method[112], which searches for the parameter which maximizes the likelihood
function over the parameter space. For particular statistical models and choices
of parametrization, this method is known to provide an asymptotically efficient
estimator[112, 113, 114].

Quantum case

In order to extend the Fisher Information and the Cramér-Rao bound to the
quantum case, the statistical model of our system becomes an ensemble of quan-
tum states ρθ (we drop the hat from the density operator in order to avoid any
confusion) which depends on a parameter θ. The parameter θ is not, in general,
a quantum observable, and our aim is to estimate it through the measurement of
some observable on ρθ. The estimator θ̂ is a self-adjoint operator, which describes
a quantum measurement followed by classical data processing.

Quantum Fisher Information In order to extract the Fisher Information in
this new case, we need to obtain the PDF and introduce a new operator[114]. We
can obtain the PDF by defining the measurement as an element of a POVM set
{Ex} such that

∫︁
xEx = 1, this way, f(x|θ) = Tr (Exθ). The next step is the

introduction of the Symmetric Logarithmic Derivative (SLD) Lθ as the self-adjoint
operator satisfying

Lθρθ + ρθLθ
2 = ∂ρθ

∂θ
(1.4.1.3)

from which follows ∂θf(x|θ) = Tr (∂θρθEx) = Re [Tr (ρθExLθ)]. The Fisher Infor-
mation is then rewritten as[114]

I(θ) =
∫︂
dx

Re [Tr (ρθExLθ)]2

Tr (ρθEx)
(1.4.1.4)

This formula establishes the precision classical bound for a fixed quantum mea-
surement (POVM element). However, in order to calculate the ultimate bound on
precision, we have to maximize the Fisher Information over the possible quantum
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measurements[114]:

I(θ) ≤
∫︂
dx

⃓⃓⃓⃓
⃓⃓Tr (ρθExLθ)√︂

Tr (ρθEx)

⃓⃓⃓⃓
⃓⃓
2

=
∫︂
dx

⃓⃓⃓⃓
⃓⃓Tr

⎡⎣ √
ρθ

√
Ex√︂

Tr (ρθEx)

√︂
ExLθ

√
ρθ

⎤⎦⃓⃓⃓⃓⃓⃓
2

≤
∫︂
dxTr (ExLθρθLθ)

= Tr (LθρθLθ)
= Tr

(︂
ρθL

2
θ

)︂

(1.4.1.5)

Thus, the Fisher Information I(θ) of any quantum measurement is upper-bounded
by the so-called Quantum Fisher Information H(θ):

I(θ) ≤ H(θ) = Tr
(︂
ρθL

2
θ

)︂
(1.4.1.6)

Quantum Cramér-Rao bound The Quantum Fisher Information allows defin-
ing the Quantum Cramér-Rao bound

V ar(θ) ≥ 1
nH(θ) (1.4.1.7)

which provides a more general uncertainty bound, because it does not depend on
the measurement, nor on the geometrical structure of the model. Note, however,
that the maximization in Eq. (1.4.1.5) can be obtained only by assuming that the
whole information on the estimand θ comes from the set of possible quantum states
of the system, i.e. the measurement strategy aimed at estimating the parameter
does not depend on its value. There are cases in which this assumption does not
hold. In those cases, alternative approaches are needed[115, 116, 117].

An optimal quantum measurement for the estimation of θ, then, corresponds to
the POVM with a Fisher information equal to the Quantum Fisher information. It
is possible[114] to find an explicit form for the optimal estimator for the optimal
POVM. This estimator, however, is not as straightforward as the maximum likeli-
hood one to calculate, nor to understand what it actually represents in the physical
system. For this reason, a common employed strategy is to identify the family of
measurement which are available, and then to maximize the Fisher information
over all such measurements[115].

1.4.2 Biased parameter estimation
As we have seen in the previous section, the (Quantum) Cramér-Rao bound

is a powerful tool, which allows putting a constraint on the variance of unbiased
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estimators. It does not, however, guarantee the existence of a MVU estimator. In
fact, there are cases in which there are no MVU estimators, or where the MVU es-
timator provides unreliable estimations. This is the case, for instance, of inferring
the odds ratio from n Bernoulli trials[118]. Furthermore, it can be showed[108, 118,
119] that introducing a small bias may allow reaching a lower MSE with respect
to the one achievable by optimal unbiased estimators. More generally, Bayesian
estimation[108] does not require the unbiasedness assumption about the estimator,
so long as we place a prior on the parameter space. For these reasons, much effort
has been put into generalizing the Fisher Information and the Cramér-Rao bound
to the case of biased estimation.

In the following sections we introduce the basics of biased estimation: first, we
present an extension of the Cramér-Rao bound to estimators with a generic bias,
then we introduce the more general case of Bayesian estimation, from which we will
derive the more general Van Trees bound[120].

Extending the Cramér-Rao bound

For an estimator θ̂ with a generic bias b(θ̂, θ), the Cramér-Rao bound can be
easily generalized[118, 120] into:

V ar(θ̂) ≥

(︂
1 + b′(θ̂, θ)

)︂2

nI(θ) (1.4.2.1)

leading to a MSE

MSE(θ̂) ≥

(︂
1 + b′(θ̂, θ)

)︂2

nI(θ) + b(θ̂, θ)2 (1.4.2.2)

where b′(θ̂, θ) = ∂b(θ̂,θ)
∂θ

.

Thanks to the dependence of both therms on the bias function, we can achieve a
lower MSE with respect to the unbiased case by carefully tuning our bias function.
To better understand this, let us focus on the simple case of a linear Gaussian model
of which we know the MVU estimator θ̂a and restrict ourselves to the subclass of
estimators with a linear bias b(θ̂, θ) = mθ, for which it is easy to show[118] that
the biased Cramér-Rao bound can be achieved by the estimator

θ̂b = (1 +m)θ̂a (1.4.2.3)

where m will be chosen in order to minimize the MSE which, in turn, is

MSE(θ̂b) = (1 +m)2V ar(θ̂a) +m2θ2 (1.4.2.4)
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Clearly, for −1 ≤ m < 0, there is a trade-off between the reduction of the
variance and the increase of the bias (Fig. 1.3). Thus, we need to find a value
mopt of m which minimizes the overall MSE. This can be done by studying the first
derivative of the MSE, obtaining:

mopt = − 1
1 + θ2/V ar(θ̂a)

(1.4.2.5)

which, unfortunately, depends on the unknown estimand θ. Nevertheless, it is
possible to find an optimal m in the cases in which the variance is constant or
depends on θ[118, 119].

Figure 1.3: Trade-off between variance and bias to reduce the MSE. The variance
component is (1 +m)2V ar(θ̂a). The bias component is m2θ2. MSE axis: arbitrary
units.

The extension to the quantum case is trivial, as it only requires to substitute
the Fisher Information in Eq. (1.4.2.1) with the Quantum Fisher Information.

Notice that, again, the bound does not guarantee that the estimator exists.

Bayesian estimation: the Van Trees inequality

A more general approach is the one of the Bayesian estimation, in which we
assume to have a probability density π(θ), representing an a priori knowledge of
the estimand[120], and drop the request of unbiasedness. In this case, we can define
an average MSE as

MSE(θ) =
∫︂

dx
∫︂

dθ π(θ)
[︂
θ̂(x) − θ

]︂2
(1.4.2.6)

45



Introduction

which is the MSE averaged over the prior information.

In the classical case, the MSE has a lower bound given by the Van Trees in-
equality[120, 121], a generalization of the CRB which has the form

MSE(θ) ≥ 1
nZI

(1.4.2.7)

where

ZI =
∫︂

dx
∫︂

dθ p(x, θ)
[︄
∂ log p(x, θ)

∂θ

]︄2

=
∫︂

dθ π(θ)I(θ) +
∫︂

dθ π(θ)
[︄
∂ log π(θ)

∂θ

]︄2

= Eπ [I(θ)] + I(π(θ))
(1.4.2.8)

is the generalized Fisher information, which is the sum of two terms. The first
term is the average of the Fisher information over the a priori distribution, while
the second term is the Fisher information of the a priori distribution itself. Here,
p(x, θ) = f(x|θ)π(θ) and Eπ(·) represents the average over the a priori information
π(θ).

The generalization to the quantum case requires to substitute the Fisher infor-
mation I with the Quantum Fisher information H into Eq. (1.4.2.8):

ZH = Eπ [H(θ)] + I(π(θ)) (1.4.2.9)

from which can be derived the Quantum Van Trees bound

MSE(θ) ≥ 1
ZH

(1.4.2.10)

The (Quantum) Van Trees bound, then, generalizes the (Quantum) Cramér-
Rao bound taking into account possible a priori information on the system, at the
cost of dropping the unbiasedness assumption. While it can be shown that, in the
asymptotic limit, the a priori distribution is no longer relevant[115], the injection
of this a priori information brings benefits for small data sets, for which the Van
Trees inequality may provide a lower bound with respect to the Cramér-Rao one.
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Chapter 2

Single- and entangled-photons
sources

Research on single and entangled photon sources (i.e., sources whose light emis-
sion is composed of just photons or entangled photon pairs, respectively) is of crucial
importance for experiments on the foundations of quantum mechanics as well as
for the new quantum technologies (Sec. 1.1.2). For instance, some quantum key
distribution (QKD) protocols demand single photons travelling over a channel and
more than one photon potentially compromise the security of the communication,
allowing an eavesdropper to gain information without being noticed[122]. In this
chapter, we describe the main methods to generate single- and entangled-photons,
focusing, in particular, on parametric down-conversion.

2.1 The ideal single-photon source
An ideal single-photon source (SPS) should have the following properties:
• deterministic behaviour : single photons can be emitted arbitrarily by the user

with 100% probability and with the highest possible repetition rate;

• indistinguishability between the photons emitted at different times;

• zero multi-photon component.
Similar requirements about deterministic behaviour and indistinguishability can
also be made for an entangled-photons source (EPS).

Although such devices are still far from being realized, much effort and many
different ideas have been invested in these sources and their improvement, resulting
in the birth of several different specific on-purpose SPS and EPS prototypes, each
focusing on improving the feature(s) needed for the related tasks. Such photons
sources can be split in two families: deterministic and probabilistic sources.
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2.2 Deterministic SPSs: single emitters
In this section we give a brief description of deterministic sources, which in-

clude quantum dots[123, 124, 125] and defects in nanodiamonds[124, 126]. Such
sources are ideally able of emitting on demand single- and, in some cases, entangled-
photons. The trade-off, however, is a reduced indistinguishability.

2.2.1 Quantum dots
Quantum dots are a central topic in nanotechnologies. They are nanoscale semi-

conductors with a small band-gap, embedded in a large band-gap host crystal. The
small size of quantum dots results in a discrete energy structure, which allows us
to create an exciton (i.e. a electron-hole pair) on demand by exciting an electron
of the quantum dot valence band into the conductance band of the host crystal.
Such exciton is usually obtained through illumination by an ultraviolet laser (sat-
urating the single system through photon-absorption) or by electrical means. The
recombination of the electron-hole pair, then, results in a single-photon emission.

Although photoluminescence emits over all the solid angle, it is possible to col-
lect the emitted photons with a high efficiency (nearly 80%) thanks to confined
microcavities. Such cavities also allows for collection of the emitted photons into a
single spatial mode and for achieving a high repetition rate, thanks to the Purcell
effect[127].

QDs can also be exploited in order to generate entangled-photons. One simple
way[128] would be to exploit a simple scheme involving a quantum dot SPS and a
beam splitter: two subsequent single-photons are produced with the same polar-
ization. The first one is delayed and rotated of 90◦, so that the two photons enter a
beam splitter (BS) at the same time and with orthogonal polarization. When the
two output photons go out of the BS from two different ports, they are known to be
entangled in polarization[129]. Another way to generate entangled-photons would
be to generate a biexciton by creating two electron-hole pairs. The subsequent
decay into the ground state of the biexciton causes the emission of two entangled
photons[130].

Although being a deterministic SPS, quantum dots also may have in their emis-
sion a small multi-photon component. Furthermore, they need to be operated at
cryogenic temperature and their photon emission is not completely indistinguish-
able.
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2.2.2 Defects in (nano)diamonds
Diamonds contain hundreds of known optically active defects, a few of which

have been investigated for single-photon generation. For this purpose, one of the
most studied defect is the nitrogen-vacancy (NV) centre. A NV centre consists of a
substitutional nitrogen atom (N) next to a missing carbon atom (vacancy V) in the
diamond lattice. The resulting energy level structure has been found to be of great
interest for magnetic field detection[131], implementation of qubits[132] and single-
photons generation, as they allow for fluorescence when excited by optical[133] or
electrical stimulation[134], which can be exploited in order to create a deterministic
SPS.

Excitation of the energy levels of the NV centre in a (nano)diamond allows us
to generate single-photons with a count rate up to 106 − 107[135, 136] photons per
second and can achieve a low multi-photon component and a very high radiative
efficiency even at room temperature[137]. Indistinguishability, however, is very low,
due to the broad emission spectrum[137].

2.3 Probabilistic sources: heralded single-photon
sources

While promising, the deterministic SPSs are still less efficient than the proba-
bilistic SPSs. In the following sections we will introduce some probabilistic SPSs,
focusing, in particular, on the ones based on the second-order nonlinear optics
phenomenon called parametric down-conversion (PDC).

2.3.1 General introduction
Probabilistic single-photon sources usually exploit the properties of a second-

or third-order nonlinear optical medium. [34, 138]

In order to understand the nonlinearity, it is useful to introduce the energy of
a classical electromagnetic field within a non-magnetic medium:

H =
∫︂
d3r

1
2µ0

B⃗
2(r⃗, t) +

∫︂
d3r

∫︂ D⃗(r⃗,t)

0
E⃗(r⃗, t) · dD⃗(r⃗, t) (2.3.1.1)

where E⃗ is the electric field, B⃗ the magnetic flux density, D⃗ the electric displace-
ment. The electric displacement is defined as:

D⃗(r⃗, t) = ε0E⃗(r⃗, t) + P⃗ (r⃗, t) (2.3.1.2)
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where P⃗ is the polarization induced in the medium. For a non-dispersive medium,
or when the effective frequencies of the field are not too close to the resonance
frequencies of the medium, the induced polarization can be expanded in a power
series in E⃗:

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl · · · (2.3.1.3)

where χ(n) is the electric susceptibility tensor of rank n+ 1.

Let us focus on the second order term:

P
(2)
i = χ

(2)
ijkEjEk (2.3.1.4)

The second order nonlinear response can also be rewritten in a more compact form
by observing that the fields Ej and Ek can be permuted without changing the
polarization[139]. This way, the 27 elements of the χ(2) tensor can be reduced to a
18-elements matrix dij called nonlinear optical coefficient tensor :

⎛⎜⎝P
(2)
x

P (2)
y

P (2)
z

⎞⎟⎠ =

⎛⎜⎝d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ExEx
EyEy
EzEz
2EyEz
2EzEx
2ExEy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.3.1.5)

Usually, the nonlinear susceptibilities have small magnitude, meaning that they
are negligible for weak electric field amplitudes. In contrast, when the electric field
is large, the nonlinear terms give rise to several interesting phenomena[34, 124,
139]. Here we briefly describe some of the most common nonlinear effects.

Second-order nonlinear phenomena

If the medium is excited by waves at angular frequencies ω1 and ω2 with am-
plitudes E1 and E2, respectively, then the second-order nonlinear polarization (i.e.
the second term of Eq. (2.3.1.3)) will be:

P
(2)
i = χ(2)E1E2

1
2 [cos(ω1 + ω2)t+ cos(ω1 − ω2)t] (2.3.1.6)

which tells us that the second-order nonlinear response generates an oscillating
polarization at the sum and difference frequencies of the input fields. These phe-
nomena take the names of sum frequency mixing (SFM) and difference frequency
mixing when ωsum = ω1 + ω2 and ωdiff = ω1 − ω2 are produced, respectively. In
the special case of ω1 = ω2, the sum frequency doubles the input frequency and the
effect is called second harmonic generation (SHG) or frequency doubling.
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Figure 2.1: Diagram for sum frequency mixing

Another important second-order nonlinear phenomenon is spontaneous para-
metric down-conversion (SPDC). SPDC is a quantum phenomenon which can be
seen as a reverse of SFM. It is a process in which a photon from a pump beam
interacting with a second-order nonlinear crystal is spontaneously converted in two
correlated photons, usually called signal and idler, under conservation of energy
and momentum.

Figure 2.2: Diagram for PDC. ω0: pump frequency. ω1: signal frequency. ω2: idler
frequency.

Today, PDC is one of the most widely used techniques for generating single
(and entangled) photons, because it is well understood, simple to implement and
produces photons in well defined modes at high rates. We will give a more detailed
description of PDC in Sec. 2.3.2.

Third-order nonlinear phenomena

Similarly to the second-order phenomena, in a medium excited by three in-
coming waves of frequencies ω1, ω2 and ω3, the third-order nonlinear response
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generates an oscillating polarization at the sum and difference frequencies of the
input fields. The outputs are ωsum = ω1 + ω2 + ω3 for sum frequency mixing
and ωdiff = ω1 + ω2 − ω3 for difference frequency mixing. In the special case of
ω1 = ω2 = ω3, the sum frequency triples the input frequency and the effect is called
third harmonic generation (THG).

Third order phenomena also allow for a phenomenon analogous to SPDC: the
spontaneous four-wave mixing (SFWM). SFWM is a process in which the absorp-
tion of two photons from two intense pump fields at frequencies ω1 and ω2 causes
the emission of two correlated photons ω3 and ω4 usually called signal and idler,
under conservation of energy and momentum.

Figure 2.3: Diagram for four wave mixing. ω1 and ω2: pump frequencies. ω3: signal
frequency. ω4: idler frequency.

Third-order phenomena are usually observed in isotropic materials, such as silica
glass, in which the second-order term vanishes due to symmetry constraints. As
such, they are particularly suited for fibre applications.

2.3.2 Spontaneous parametric down-conversion
In this section, we focus on the aforementioned phenomenon of spontaneous

parametric down-conversion (SPDC). First, we will introduce the general theory of
PDC, then, see its applications in single-photon and entangled photons sources.

General theory

Recalling sec. 2.3.1, PDC is a second-order nonlinear non-classical phenomenon
in which one incident photon of frequency ω0 and wave vector k⃗0 in a nonlinear
crystal is converted into two lower-frequency photons, known as signal and idler.
In general, such photons have different frequencies ω1, ω2 and wave vectors k⃗1,
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k⃗2, under conservation of the four-momentum, which imposes the so-called phase-
matching conditions:

ω0 = ω1 + ω2

k⃗0 = k⃗1 + k⃗2
(2.3.2.1)

Figure 2.4: The phase-matching conditions.

We can distinguish three types of PDC:

• Type-I PDC, in which signal and idler share the same polarization, which is
orthogonal to the pump field;

• Type-II PDC, in which signal and idler polarizations are orthogonal;

• Type-0 PDC, in which pump, signal and idler fields are coplanar and share
the same polarization.

Methods of achieving the phase-matching condition for these different types of PDC
are described in the next sections of this chapter.

Quantum mechanical description The Hamiltonian for single-mode PDC can
be written in the following form:

Ĥ =
2∑︂
i=0

ℏωi
(︃
n̂i + 1

2

)︃
+ ℏg

[︂
â†

1â
†
2â0 + h.c.

]︂
(2.3.2.2)

where âi(â†
i ) are the annihilation (creation) operators for the photon i and g is the

real-mode coupling constant, which contains χ(2). Subscript 0, 1, 2 refer, respec-
tively, to pump, signal and idler.

Since PDC is a nonlinear phenomenon, only a small fraction (10−12 to 10−5)
of the pump photons gets down-converted[140]. Therefore, the pump field should
be intense, meaning that the pump mode â0 can be described classically as a field
of complex amplitude a0 = v0e

−iω0t. This only holds when the depletion of the
pump field is negligible, i.e. when ⟨n̂1(t)⟩ ≪ |v0|2 and ⟨n̂2(t)⟩ ≪ |v0|2. With this
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approximation, usually called parametric approximation, the Hamiltonian only has
two quantized fields modes, corresponding to the signal and idler photons:

Ĥ =
2∑︂
i=0

ℏωi
(︃
n̂i + 1

2

)︃
+ ℏg

[︂
â†

1â
†
2v0e

−iω0t + h.c.
]︂

(2.3.2.3)

for which n̂1 − n̂2 is a constant of motion:[︂
n̂1 − n̂2, Ĥ

]︂
= 0 (2.3.2.4)

meaning that signal and idler photons are always created together.

In order to solve the Heisenberg equations of motions, it is useful to introduce
the operators Âi = âi(t)e−iωit for i = 1, 2. This way, they take the form:

dÂ1(t)
dt = i

ℏ
[︂
Ĥ, Â1

]︂
= −igv0Â

†
2

dÂ2(t)
dt = i

ℏ
[︂
Ĥ, Â2

]︂
= −igv0Â

†
1

(2.3.2.5)

By differentiating a second time and defining v0 = |v0|eiθ and ζ = g|v0|, we obtain:

d2Â1(t)
dt2 = ζ2Â

†
1

d2Â2(t)
dt2 = ζ2Â

†
2

(2.3.2.6)

The general solutions are:

Â1(t) = Â1(0) cosh(ζt) − ieiθÂ
†
2(0) sinh(ζt)

Â2(t) = Â2(0) cosh(ζt) − ieiθÂ
†
1(0) sinh(ζt)

(2.3.2.7)

This result allows us to extract the photon statistics, by calculating the expectation
value of the number operator n̂i = â†

i âi with respect to the initial state of the
signal and idler modes, that, for spontaneous PDC, is the two-mode vacuum state
|vac⟩12 = |0⟩1 ⊗ |0⟩2. Remembering that Âi(0) |vac⟩12 = 0, the expectation value of
signal and idler photon number is:

⟨n̂1(t)⟩ = ⟨n̂2(t)⟩ = sinh2 (ζt) (2.3.2.8)

The average number of down-converted photons grows quadratically in time as long
as ζt ≪ 1, which is a typical working condition if we take t as the propagation time
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through the nonlinear crystal, which is usually very short.
The cross-correlation of the photon number fluctuations is given by:

⟨n̂1n̂2⟩ =
⟨︃
Â

†
1(t)Â

†
2(t)Â1(t)Â2(t)

⟩︃
= ⟨

[︃(︃
cÂ

†
2(0) + ie−iθsÂ1(0)

)︃(︃
cÂ

†
1(0) + ie−iθsÂ2(0)

)︃]︃
×
[︃(︃
cÂ2(0) − ieiθsÂ

†
1(0)

)︃(︃
cÂ1 − ieiθsÂ

†
2(0)

)︃]︃
⟩

= s2c2 + s4 ⟨vac|12 Â1(0)Â2(0)Â†
1(0)Â†

2(0) |vac⟩12

= ⟨n̂1⟩ (1 + 2 ⟨n̂1⟩) (2.3.2.9)

where s = sinh(ζt) and c = cosh(ζt). This expression violates Schwartz inequality,
an important evidence of non-classical behaviour[34].

Multimodal treatment of SPDC Even if the sum of the signal and idler fre-
quencies is fixed by the phase-matching conditions, each signal and idler photon
can have a certain frequency bandwidth. This can be described by a more general
Hamiltonian that we restrict, for ease of notation, only to the propagation direction
z

ĤI(t) = ℏg
∫︂ L/2

−L/2
dz
∫︂∫︂∫︂

dω0dω1dω2e
−i(ω0−ω1−ω2)tei(k0−k1−k2)zv0a

†
k1ω1a

†
k2ω2 + h.c.

(2.3.2.10)
where k0 and ω0 are the wave-vector and frequency of the classical monochromatic
pump of vector amplitude v0. The integral length is taken over the active region L
of the nonlinear medium. We can use this Hamiltonian to evolve an initial vacuum
state |ψ(0)⟩ = |vac⟩12 in the Schrödinger picture:

|ψ⟩12 = exp
[︃
− i

ℏ

∫︂ t

0
dt′ĤI(t′)

]︃
|vac⟩12 (2.3.2.11)

by assuming the production of only one photon pair, we can expand the exponential,
finding:

|ψ(t)⟩ = |0⟩1 |0⟩2 + N
∫︂ t

0
dt′
∫︂ L/2

−L/2
dz
∫︂∫︂∫︂

dω0dω1dω2e
−i(ω0−ω1−ω2)t′ei(k0−k1−k2)z

× v0a
†
k1ω1a

†
k2ω2 |0⟩1 |0⟩2

(2.3.2.12)
where N is the product of several constants. Performing the integration over z and
letting the creation operators act, we obtain

|ψ(t)⟩ = |0⟩1 |0⟩2 + N ′
∫︂ t

0
dt′
∫︂∫︂∫︂

dω0dω1dω2e
−i(ω0−ω1−ω2)t′

× L
sin

[︂
L∆k

2

]︂
L∆k

2
v0 |k1ω1⟩ |k2ω2⟩

(2.3.2.13)
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where ∆k = k0 −k1 −k2 and, again, N ′ is the product of several constants. Finally,
integration over t[124] yields the delta function δ(ω0 − ω1 − ω2), which depicts the
energy conservation. Afterwards, a subsequent integration of ω0 gives us the result

|ψ(t)⟩ = |0⟩1 |0⟩2 + N ′′
∫︂∫︂

dω1dω2L
sin

[︂
L∆k

2

]︂
L∆k

2
v0 |k1ω1⟩ |k2ω2⟩ (2.3.2.14)

where N ′′ is the product of several constants and which is maxed when ∆k = k0 −
k1 − k2 = 0, i.e. when momentum is conserved and phase-matching conditions are
fulfilled. From this expression it clearly emerges that wave-vectors and frequencies
are not fixed, but strictly correlated, meaning that the two photons are entangled
in frequency and momentum.

Bulk crystal SPDC: birefringent phase-matching The majority of PDC
sources has been realized in bulk crystals, i.e., standard nonlinear crystals with-
out poling or embedded waveguides. In this paragraph, we describe how phase-
matching can be achieved in such crystals.

To generate SPDC, we have to respect the phase-matching conditions(2.3.2.1):

ω0 = ω1 + ω2

k⃗0 = k⃗1 + k⃗2
(2.3.2.15)

where the wave-vectors k⃗i depend on the frequencies ωi by a dispersion relation
which, for birefringent crystals, is[141, 142]

k⃗i = ni(ρi, φi)
ωi
c
ŝi (2.3.2.16)

where i = 0, 1, 2; ni is the refraction index for the i-th single photon in its respec-
tive polarization and propagation direction ŝi and c is the speed of light. Here and
in the rest of this paragraph, the hat indicates an unit vector. In the laboratory
reference frame (Fig. 2.5), ρ0 is the angle between ŝ0 and the Z axis, φ0 is the
azimuthal angle between the X axis and ŝ0 in the X − Y plane. For the down-
converted photons, ρi indicates the angle between ŝi and ŝ0, while φi is a rotation
on the ŝ0 normal plane.

Equation (2.3.2.16) show how the wavelength of down-converted photons vari-
ates following the variation of the exit angles.

The relative directions of wave vectors can be either collinear (scalar phase-
matching) or non-collinear (vector phase-matching). In this second case, the phase-
matching conditions can only be fulfilled in anisotropic crystals, in which fields of

56



2.3 – Probabilistic sources: heralded single-photon sources

Figure 2.5: View of the crystal in the laboratory reference frame in a typical config-
uration. In this picture, the plane X − Z (corresponding to φ0 = 0 is the plane of
the page). This choice can always be made in uniaxial crystals. In biaxial crystals,
this choice can be made only if the crystal axes C1, C2 and the pump beam are on
the same plane. In this case, the azimuthal angles φ1 and φ2 are measured within
the plane X − Z.

different polarizations experience different refractive indices. For instance, in uni-
axial crystals, we can define the plane containing the optical axis and the pump
wave vector as the principal plane. A light beam polarized orthogonally to that
plane is called ordinary (o-beam), a beam polarized within the plane, instead, is
called extraordinary (e-beam). The refractive index no for o-beams is independent
of the field orientation in the crystal, whereas the refractive index ne for e-beams
does. This difference is known as birefringence. An uniaxial crystal is defined pos-
itive if no ≤ ne and negative otherwise.

Birefringent crystals allow us to reach phase-matching conditions in different
beam configurations. We call Type-I phase-matching the cases in which signal and
idler photons have the same polarization, which is orthogonal to the one of the
pump beam:

k⃗0(o) = k⃗1(e) + k⃗2(e) (positive crystals) (2.3.2.17)
k⃗0(e) = k⃗1(o) + k⃗2(o) (negative crystals) (2.3.2.18)
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In this case, 3D phase-matching conditions tell us that signal and idler photons exit
the crystal in the opposite sides of two concentric cones centred on the propagation
axis of the pump beam. Proper spatial and frequency filters allow us to select such
pairs of photons and send them to the appropriate optical paths.

Figure 2.6: Type-I SPDC: photons from the pump beam (blue) are converted into
signal and idler photons emerging from the crystal along different directions (red
and green). The possible directions form an ensemble of concentric cones.

We call Type-II phase-matching, instead, the cases in which signal and idler
photons have orthogonal polarizations (one of which is the same as the pump beam):

k⃗0(o) = k⃗1(e) + k⃗2(o) (positive crystals) (2.3.2.19)
k⃗0(o) = k⃗1(o) + k⃗2(e) (positive crystals) (2.3.2.20)
k⃗0(e) = k⃗1(e) + k⃗2(o) (negative crystals) (2.3.2.21)
k⃗0(e) = k⃗1(o) + k⃗2(o) (negative crystals) (2.3.2.22)

This means that the photons are emitted on two cones, one for the ordinary wave
(o) and one for the extraordinary wave (e) (Fig 2.7a), of orthogonal polarizations.
Thus, at the intersections between two cones of photons at the same wavelength
there will be ambiguity about the polarization of the incoming photons (Fig. 2.7b),
which can be written as: ⃓⃓⃓

ψ+
⟩︂

= 1
2 (|V ⟩1 |H⟩2 + |H⟩1 |V ⟩2) (2.3.2.23)

which is an entangled state.

Type-0 phase matching, instead, cannot generally be implemented in bulk crys-
tals, but it is often achieved through periodically-poled crystals.

Periodically-poled crystal SPDC: quasi-phase-matching Quasi-phase-matching
(QPM)[124, 143] is a way to achieve efficient energy transfer between interacting
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(a) Non-collinear Type-II SPDC: the two
photons emerge distributed on two intersect-
ing cones thanks to the crystal birefringence. (b) It is impossible to determine from which

cone a photon in the intersections is coming.
Therefore, the intersections between the e-
o-cone can be used as a source of photons
entangled in polarization.

Figure 2.7: Type-II SPDC

waves in nonlinear media. Such result is achieved thanks to a spatial modulation
of the nonlinear properties along the propagation direction, usually implemented
by periodically alternating the orientation of the crystal domain. The interacting
fields propagate with different phase velocities inside the crystal, but the sign of
the nonlinear susceptibility is changed every time the phase mismatch reaches π.
This way, the fields never interfere destructively, creating a step-wise growth in the
output power along the crystal length.

In order to understand this phenomenon, let us write the longitudinal varying
nonlinear susceptibility d(z) as a Fourier series

d(z) = dbulk
∑︂
m

Fm exp (−ikmz) (2.3.2.24)

where dbulk is the nonlinear coefficient of the bulk material, Fm are the Fourier
coefficients, km = 2πm/Λ is the grating vector of the m-th Fourier component and
Λ is the poling periodicity.
Now, we assume that only one Fourier component is phase-matched, therefore we
only have one significant contribution to the PDC process. This assumption allows
us to obtain an expression for the field E1 after a length L[124]:

E1 ∝ LdQ
sin

(︂
∆kQL

2

)︂
(︂
∆kQL

2

)︂ (2.3.2.25)
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where dQ is the effective nonlinear coefficient in QPM. In our case, we can model the
effective nonlinear coefficient as a square-wave modulation from −dbulk to +dbulk:

dQ = 2dbulk
sin (πD)
mπ

(2.3.2.26)

where D = l
Λ , usually called duty factor, is the ratio between the length l of a single

reversed domain and the period Λ. The order of the QPM is given by m. As the
efficiency is proportional to 1/m2, a low-order QPM is usually desired. However,
since Λ = wπm/k, lowering the order m has the downside of reducing the period
Λ.

Figure 2.8: First-order QPM. The period Λ1 is twice as long as the coherence length
Lc = π/∆k.

The largest nonlinear coefficient for QPM is obtained for a first-order process
(m = 1, Fig. 2.8) with duty cycle D = 0.5:

dQ = 2
π
dbulk (2.3.2.27)

meaning that whenever we perform a QPM, we reduce effective nonlinearity by at
least a factor 2/π with respect to the value for birefringent phase-matching in the
bulk medium.

Due to quasi-phase-matching, the effective wave-vector mismatch (see Eq. (2.3.2.14))
becomes

∆kQ = k0 − k1 − k2 − km = ∆kbulk − km (2.3.2.28)
This means that QPM allows us to reach a fully phase-matched interaction even
when the wave-vector mismatch is non-zero in the bulk material, thanks to the
grating vector km, which is independent of material properties and easily tunable
during fabrication[124]. Furthermore, the phase-matching can be tuned by using
the temperature dependence of the refractive index n, which implies the temper-
ature dependence of the wave vectors (see Eq. 2.3.2.16). Since the poling period
Λ depends on the thermal expansion of the medium, also the grating vector km
displays a temperature dependency. For each type of medium, the refractive in-
dex with respect to temperature and wavelength can be easily derived thanks to
Sellmeier equations[144] (see, for instance, [145]).
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2.3 – Probabilistic sources: heralded single-photon sources

Heralded single-photon sources with SPDC

First introduced by Klysko[146], heralded single-photon sources (HSPSs) are
probabilistic sources, which usually employ Type-0 and Type-I SPDC to generate
time-correlated pairs of photons. The detection of one photon heralds the presence
of of its twin, allowing it to be exploited for the task we want to perform.

In Type-I SPDC, the constraints posed by the phase-matching conditions present
both an advantage and a disadvantage. While the highly directional emission is
generally useful, we have limited control on the inherent dispersion of transparent
materials, putting some constraints on the wavelengths that a given crystal can
produce. In Type-0 PDC, instead, we can produce a crystal tailored to the specific
wavelengths that we want to produce, at the price of collinear emission.

Regardless of the phase-matching type, these are probabilistic sources, a feature
that inherently limits our control over the system. In order to overcome this issue,
we can use a pulsed pump or a continuous pump with some special electronics.
With a pulsed pump, the production of the two photons is limited to each pulse.
This way, by tuning the repetition rate of such pulses, we achieve a better control
of the system. Usually, pulsed pumps are generated by a mode-locked laser[147],
which has a pulse duration of the order of the a hundred femtoseconds, very close
to the SPDC coherence time. When working with continuous pumps, instead, one
can employ dedicated electronics which accept an heralding signal only at a specific
time interval (Sec. 3.1.2). Note, however, that this does not influence the emission
rate.

Entangled-photon sources with SPDC

SPDC allows us to generate photons pairs entangled in polarization. Here we
describe some methods.

As, previously described, in Type-II SPDC, signal and idler are emitted in
two intersecting cones, and with orthogonal polarizations.. After a proper time-
compensation, at the two intersections between the cones (Fig. 2.7a), it is impossi-
ble to distinguish whether the photon belongs to the e- or o-cone. Thus, the state
of two photons belonging to the intersection regions is

|ψ⟩ = 1√
2
(︂
|HV ⟩ + eiθ |V H⟩

)︂
(2.3.2.29)

Being θ the relative phase between ordinary and extraordinary polarized light.

In degenerate Type-I SPDC, instead, signal and idler have the same wavelength
and parallel polarization. Suppose, without loss of generality, that the photons are
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produced in horizontal |H⟩ polarization. Then, if we rotate the polarization of one
of the two photons by 90◦, and then combine them in a beam splitter and only
select the events in which the two photons separate into the two output ports, the
resultant two-photons polarization state is[129]

|ψ⟩ = 1√
2

(|HV ⟩ + |V H⟩) (2.3.2.30)

which is an entangled state. Unfortunately, the post-selection procedure is proba-
bilistic, with a success probability of 0.5.

Another method to generate entangled photons by exploiting Type-I SPDC is
to use two Type-I crystals oriented with perpendicular optical axes[148], i.e. one
on the plane X-Y and the other on the plane Y-Z, Z being the beam direction.
This can be realized either way in optical condensers[149] or with two thin crys-
tals in contact[150]. When they are illuminated by a pump beam in the state
|+⟩ = 1/

√
2 (|H⟩ + |V ⟩), signal and idler photons are emitted either by the first

or the second crystal in horizontal or vertical polarization, respectively. If the two
crystals are sufficiently thin, the two cones in which photons are emitted are in-
distinguishable, therefore, the polarization state of the emitted photons is in the
superposition

|ψ⟩ = 1√
2
(︂
|HH⟩ + eiθ |V V ⟩

)︂
(2.3.2.31)

θ being a phase between the two terms.

There are many other methods to exploit SPDC to produce entangled states
(e.g. Type-II SPDC in a Mach-Zender interferometer[151]). In this thesis, however,
we will only exploit the one we described for Type-II SPDC in bulk crystals.
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Chapter 3

Characterization of quantum
resources for technological and
scientific applications

Part of the work described in this chapter has been previously published in [152]
and [153].

Quantum mechanics has a pivotal role in modern metrology, science and indus-
try (Chap. 1). In particular, the growth of quantum technologies, that exploits
quantum resources such as entanglement or squeezing, prompt the development of
characterization and standardization methods. The necessity of precise character-
ization of the used resources in SPSs is also fundamental in research experiments,
as the ones we will present in Chap. 4. Therefore, the characterization of quantum
resources is becoming an important metrological task. In this chapter, we focus on
the characterization of single- and entangled photons sources.

First, we present a strategy to characterize the multi-photon component of a
single-photon source (SPS) at telecom wavelength (1550 nm)[152]. The multi-
photon component in SPSs emission is one of the key parameters of such devices
(Sec. 2.1) and its characterization is a crucial metrological task, both for fundamen-
tal research and for commercial implementations (e.g. quantum communication,
in which the difference between one or two photons makes the difference between
secure and insecure communication).

Second, we present a method allowing to estimate the amount of entanglement
and discord between two photons[153]. The ability to estimate non-classical aspects
in two-qubit systems is relevant not only for experiments on quantum mechanics
foundations, but also for quantum information technologies.
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3.1 Single-photon sources characterization
In this section we describe a joint effort among three metrological institutes

(INRiM, NPL and PTB) to provide a robust procedure suited for the characteri-
zation of the multi-photon emission of extremely faint light continuous wave (CW)
heralded SPS (HSPS). First, we introduce the parameter that characterizes the
multi-photon component of a generic SPS. Second, we present the particular SPS
prototype under test and, finally, the results obtained in a pilot study (involving
three different metrological institutes) in which a strategy for the estimation of the
aforementioned parameter has been applied to our HSPS prototype.

3.1.1 The second-order autocorrelation function g(2)(τ)
The multi-photon component is usually evaluated through the second-order au-

tocorrelation function g(2)(τ)[34] introduced by Glauber[154] in 1963.

Classical case

In the classical case, the second-order autocorrelation is defined as

g(2)(τ) = ⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩
⟨E∗(t)E(t)⟩ ⟨E∗(t+ τ)E(t+ τ)⟩ = ⟨I(t)I(t+ τ)⟩

⟨I(t)⟩ ⟨I(t+ τ)⟩ (3.1.1.1)

where E(t) and I(t) represent, respectively, the electric field and the intensity at
the time t. The symmetry of the definition implies g(2)(τ) = g(2) (−τ).
Since the variance of the intensity is defined as ∆I2 = ⟨I2⟩− ⟨I⟩2, the second-order
autocorrelation can be rewritten, for the time distance τ = 0, as

g(2)(0) = ∆I2

⟨I⟩2 + 1 (3.1.1.2)

which is always greater than 1, since ∆I2 ≥ 0. There are no upper bounds.

To evaluate the τ > 0 case, we observe that the Schwartz inequality implies:

⟨I(t)I(t+ τ)⟩2 ≤ ⟨I(t)2⟩ ⟨I(t+ τ)2⟩ (3.1.1.3)

Furthermore, for ergodic or stationary systems, we know that ⟨I(t)⟩ = ⟨I(t+ τ)⟩,
therefore:

⟨I(t)I(t+ τ)⟩ ≤ ⟨I(t)2⟩ (3.1.1.4)
which leads to

g(2)(τ) ≥ g(2)(0) (3.1.1.5)
The second-order autocorrelation for a time distance τ > 0 is always equal or
greater than the one at τ = 0 in the classical case (blue curve in Fig. 3.1).
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Quantum case

By quantizing the electric field, Eq. (3.1.1.1) becomes:

g(2)(0) = ⟨n̂(n̂− 1)⟩
⟨n̂⟩2 (3.1.1.6)

where n̂ is the number operator of the incoming photons. If the input state is a
Fock state |n⟩ (n being the number of photons), the correlation becomes:

g(2)(0) = n(n− 1)
n2 < 1 (3.1.1.7)

So, quantum sources have a second-order autocorrelation g(2)(τ) < 1, which reaches
g(2)(0) = 0 for SPSs (n = 1) (orange curve in Fig. 3.1).

Coherent sources

It can be shown[34] that coherent sources, such as the laser, have a poissonian
behaviour. Therefore, ∆n2 = ⟨n̂⟩, with ∆n2 being the variance of the photon
number. After a small manipulation, substituting this into Eq. (3.1.1.6), we obtain

g(2)(0) = ⟨n̂(n̂− 1)⟩
⟨n̂⟩2 = ∆n2 + ⟨n̂⟩2 − ⟨n̂⟩

⟨n̂⟩2 = 1 (3.1.1.8)

Therefore, the second-order autocorrelation for coherent sources is always equal to
1 (green curve in Fig. 3.1).

Measuring g(2)(τ)

The Hanbury-Brown and Twiss interferometer[155] (HBT, Fig. 3.2) is conven-
tionally used to measure the g(2)(τ)[34]. In this device, initially introduced in radio
astronomy, incoming light encounters a 50 : 50 beam splitter, followed by two
single-photon detectors. Coincidence electronics allows us to count the number of
coincidences between a photon on the first detector at time t and a photon on the
second detector at time t+τ . So, the second-order autocorrelation can be evaluated
as:

g(2)(τ) = ⟨n1(t)n2(t+ τ)⟩
⟨n1(t)⟩ ⟨n2(t+ τ)⟩ (3.1.1.9)

3.1.2 Low-noise CW 1550 nm SPS prototype and g(2)(0)
measurement devices

In this subsection we present the prototype of a low-noise CW HSPS with an
extremely low level of background and multi-photon component[156] and the HBTs
that we will use to characterize its multi-photon component.
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Figure 3.1: g(2) as a function of the normalized delay over the coherence time τ/τc,
i.e. the time interval over which appreciable amplitude and phase correlations of
the light vibrations of an optical field in a specific point in space persist[34]. The
blue curve describes an example of thermal (classical) source. The green curve
describes coherent light, as, for instance, the laser. The orange curve describes an
example of (quantum) single-photon source.

Figure 3.2: Experimental implementation of the HBT experiment. Incoming light
is split and detected by the detectors D1 and D2. The output of one of the detectors
can be delayed before going to the coincidence electronics.

In our prototype (section 1 of Fig. 3.3), a CW laser (λ = 532 nm) pumps a
10 mm × 1 mm × 10 mm periodically-poled lithium niobate (PPLN) crystal, pro-
ducing non-degenerate Type-0 SPDC (Sec. 2.3.2). We tune the system in order to
have signal and idler photons at λs = 1550 nm and λi = 810 nm, respectively. A
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3.1 – Single-photon sources characterization

Figure 3.3: Experimental Setup. (1) SPS prototype. (2) HBT interferometers.
PPLN: periodically-poled lithium niobate. FC: fibre coupler. SMF: single-mode
fibre. λ/4: quarter-wave fibre paddle. λ/2: half-wave fibre paddle. OS: op-
tical shutter. FPGA: field programmable gate array. FBS: fibre beam split-
ter. HBT: Hanbury-Brown and Twiss interferometer. Coinc: time-tagging co-
incidence electronics. cb E. Rebufello et al., Towards a standard procedure
for the measurement of the multi-photon component in a CW telecom heralded
single-photon source, Metrologia 56 (2019) 025004, https://doi.org/10.1088/
1681-7575/ab022e

dichroic mirror separates the two photons.
The idler photon is sent to an interference filter (IF), centred at 810 nm and with
a full width at half maximum (FWHM) of 10 nm, then, it is fibre-coupler and sent
to a silicon single-photon avalanche diode (Si-SPAD). Successful detection of the
idler photon heralds the arrival of the signal photon on the correlated branch.
The signal photon is addressed to a 30 nm FWHM IF centred at 1550 nm, and cou-
pled to a 20 m long single-mode optical fibre (SMF) connected to an electro-optical
shutter (OS) operated by a fast pulse generator controlled by a field programmable
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gate array (FPGA). The OS is a ultra-high-speed 2 × 2 polarization-dependent op-
tical switch, based on a LiNbO3 Mach-Zender interferometer.

When receiving a heralding signal, the FPGA triggers a fast pulse generator
with 50 ps rise-time, whose signal opens the OS channel A for a time interval
∆tswitch = 7 ns corresponding to the passage of the signal photon. Then, the OS
switches back to channel B for a tunable ’sleep’ time tdead ≃ 11 µs before accepting
a new heralding. This way, we can tune the single-photons emission rate in order
to avoid dead time issues with the detectors, by granting a minimum time between
subsequent photons. Since, as we will see in the following, our infrared detectors
have a dead time of 10 µs, we choose tdead ≃ 11 µs.

HBT interferometers

The output of our source (channel A) is then sent to the devices involved in our
multi-photon component characterization experiment (second part of Fig. 3.3). In
our experiment, this is done by means of a 50 : 50 fibre beam splitter (FBS) whose
outputs are sent to two HBT interferometers, one belonging to INRiM and one to
a guest national metrology institute (PTB or NPL). This configuration allows us
to perform simultaneous data collection, avoiding any mismatch due to eventual
drifts in the SPS output over time.

Every HBT is composed of two InGaAs-InP SPADs, either gated by the same
FPGA signal which goes to the OS or free-running. Their outputs are sent to
appropriate coincidence electronics. These are the configurations:

• INRiM: two calibrated MPD gated SPADs (30 ns detection window); Hydra-
Harp 400 + time-to-amplitude converter (TAC);

• NPL: one id210 (gated, 25 ns) and one id230 (free-running); HydraHarp 400;

• PTB: one id210 (gated, 25 ns) and one id201 (gated, 50 ns); PicoHarp 300.

Let us take a closer look to the typical temporal histogram of one of the INRiM
HBT SPADs (fig. 3.4). We can distinguish three different regions, corresponding
to:

• N (Her) = true heralded photon counts;

• N (Bkg) = counts due to unheralded background photons passing through the
optical switch;

• N (Dark) = dark counts of the detector.
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Figure 3.4: Histogram of the detections acquired in one run by one of the INRiM
HBT gated SPADs (30 ns detection window). We can clearly see the true heralded
photons (Her), background photons (Bkg) and dark counts (Dark). The green
shaded area indicates the dark counts forbidding the SPAD to detect a photon
from the HSPS (Null). cb E. Rebufello et al., Towards a standard procedure
for the measurement of the multi-photon component in a CW telecom heralded
single-photon source, Metrologia 56 (2019) 025004, https://doi.org/10.1088/
1681-7575/ab022e

Therefore, the total number of counts of the detector can be written as:

N (Tot) = N (Her) +N (Bkg) +N (Dark) (3.1.2.1)

It is possible, then, to define the total photon detection probability P
(Ph)
i for the

detector i of each HBT (i = 1, 2):

P
(Ph)
i = N

(Ph)
i

N
(Trig)
i

= N
(Her)
i +N

(Bkg)
i

N
(Trig)
i

= N
(Tot)
i −N

(Dark)
i

N
(Trig)
i

(3.1.2.2)

where N (Trig)
i is the total number of trigger signals from the FPGA.

Analogously, we can define the dark count probability as P (Dark)
i = N

(Dark)
i

N
(T rig)
i

, so

that the overall detection probability will be P
(Tot)
i = P

(Ph)
i + P

(Dark)
i . Opera-

tively, the number N (Ph)
i can be extracted as the difference between the counts of
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the photon peak region (N (Peak)
i , integrated on a 10ns time window) and the dark

count belonging to a corresponding number of time bins in the dark counts region
(N (Dark=Peak)

i ): N (Ph)
i = N

(Peak)
i −N

(Dark=Peak)
i . Having extracted N (Ph)

i , it is easy
to compute the number of dark counts: N (Dark)

i = N
(Tot)
i −N

(Ph)
i .

By carefully tuning the sleep time of the FPGA, in case of gated SPADs we can
always have both detectors ready for each accepted heralding, like with dark-count-
free detectors, therefore N (Trig)

1 = N
(Trig)
2 = N (Trig). With free-running detectors,

instead, N (Trig) only represents the number of heralding signals accepted by the
FPGA and, unless dark counts are negligible (like in our case), a dead-time correc-
tion must be introduced.

3.1.3 A metrological procedure to determine the multi-
photon component of a single-photon source

In order to evaluate the multi-photon component of our SPS, we want to esti-
mate the second-order autocorrelation function g(2)(τ = 0). For low total detection
probabilities (P (Tot)

i ≪ 1), the second-order autocorrelation function can be ap-
proximated by the parameter α[157]:

α = P
(Ph;Ph)
12

P
(Ph)
1 P

(Ph)
2

≃ g(2)(0) (3.1.3.1)

where P (Ph;Ph)
12 is the probability of having a coincidence photon count between the

two HBT SPADs (dark counts subtracted). Since the probability of having more
than one heralded photon within a 1 ns time interval (a generous estimate of the
detector jitter time) is below 10−9, the coincidence probability can be written as

P
(Ph;Ph)
12 = P

(Tot;Tot)
12 − P

(Tot)
1 P

(Dark)
2 − P

(Dark)
1 P

(Tot)
2 + P

(Dark)
1 P

(Dark)
2 (3.1.3.2)

Where thee total coincidence probability is defined as P (Tot;Tot)
12 = N(Coinc)

N(T rig) , with
N (Coinc) being the number of coincidence events between the two detectors.

Following Eq. (3.1.3.2), Eq. (3.1.3.1) can be rearranged as

α =
P

(Tot;Tot)
12 − P

(Tot)
1 P

(Tot)
2

(︂
Q

(Dark)
1 +Q

(Dark)
2 −Q

(Dark)
1 Q

(Dark)
2

)︂
(︂
P

(Tot)
1

(︂
1 −Q

(Dark)
1

)︂)︂ (︂
P

(Tot)
2

(︂
1 −Q

(Dark)
2

)︂)︂ (3.1.3.3)

where Q(Dark)
i = N

(Dark)
i

N
(T ot)
i

is the dark counts ratio on the i-th detector.
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Null events influence on the estimation of α

The α parameter evaluation may be further refined by observing fig. 3.4: the
portion of dark counts on the left of the photon peak (green shaded area) occurs
before the arrival of the heralded photons. Therefore, such events forbid the SPAD
to detect the heralded photons. Hence, we name them null events.

Null events N (Null)
i (i = 1,2), in principle, must be taken into special con-

sideration when evaluating the α parameter, by removing them from the valid
trigger events and from the SPAD counts. Then, the true valid trigger counts,
dark counts and total counts will be, respectively: N ′(T rig)

i = N (Trig) − N
(Null)
i ,

N ′(Dark)
i = N (Dark) −N

(Null)
i and N ′(T ot)

i = N (Tot) −N
(Null)
i .

Starting from Eq. (3.1.3.1), the new formula for the parameter α will then be:

α = P ′(P h;P h)
12

P ′(P h)
1 P ′(P h)

2
(3.1.3.4)

Now, let us observe that, by introducing the coefficient qi = N(T rig)(︂
N(T rig)−N(Null)

i

)︂ , we can

write the single-photon detection probabilities as P ′(P h)
i = qiP

(Ph)
i . Analogously, we

can derive the relation P ′(P h;P h)
12 = q1q2P

Ph;Ph
12 for the coincidence count probability.

Substituting it into the formula for the α parameter we obtain

α = P ′(P h;P h)
12

P ′(P h)
1 P ′(P h)

2
= q1q2P

(Ph;Ph)
12

q1P
(Ph)
1 q2P

(Ph)
2

= P
(Ph;Ph)
12

P
(Ph)
1 P

(Ph)
2

(3.1.3.5)

which shows that these null events do not affect α. For this reason, we do not
perform null events correction for the estimation of α.

Measurement procedures

In our experiment we perform two direct comparisons: one between INRiM and
NPL and one between INRiM and PTB, in which both institutes perform simul-
taneous measurements. Let us now thoroughly analyse the different measurement
procedures that we employ in this comparison.

INRiM INRiM’s HBT comprises a 50 : 50 FBS and two calibrated MPD single-
photon counters based on InGaAs/InP gated SPADs, with a 30ns detection win-
dow. Their outputs, together with the FPGA gating signal, are addressed to a time-
tagger (HydraHarp400) with a 2.5ps time-bin resolution and to a time-to-amplitude
converter (TAC), in order to evaluate single counts and coincidence counts sepa-
rately. This way, each acquisition can host both the single- and two-photon counts.
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In order to avoid missing any coincidence, coincidence windows of both the time-
tagger and the TAC are set to 100 ns.

Recalling Eq. (3.1.3.3)

α =
P

(Tot;Tot)
12 − P

(Tot)
1 P

(Tot)
2

(︂
Q

(Dark)
1 +Q

(Dark)
2 −Q

(Dark)
1 Q

(Dark)
2

)︂
(︂
P

(Tot)
1

(︂
1 −Q

(Dark)
1

)︂)︂ (︂
P

(Tot)
2

(︂
1 −Q

(Dark)
2

)︂)︂
the total detector and coincidence probabilities are obtained from the TAC counts

(indicated by the ∼ symbol), acquired in 40 100s sets: P (Tot)
i =

⟨︂
Ñ

(T ot)
i

⟩︂
⟨︂
Ñ

(T rig)
i

⟩︂ , where

the ⟨Ñ⟩ are mean values over these repeated acquisitions. The dark count ratios,
instead, are extracted from the multi-channel analyser (MCA) histograms of the
two detectors forming the HBT integrating all the counts registered by the time-
tagger within the whole acquisition time: Q(Dark)

i = N
(Dark)
i

N
(T ot)
i

.

NPL and PTB NPL HBT hosts a 50 : 50 FBS and two ID Quantique detectors:
a gated InGaAs/InP SPAD (ID210, with a 25 ns detection window) and a low-noise
free-running InGaAs/InP SPAD (ID230). Their outputs, together with the FPGA
gating signal, are addressed to a HydraHarp400 time-tagger. For the comparison,
we opted to perform three measurements:

1. a 1000 s acquisition using the FPGA as external clock and feeding the Hy-
draHarp400 with the two detector outputs;

2. a 2000 s acquisition in which the ID210 acts as the external clock and the
ID230 is the only input of the time-tagger;

3. a second 1000 s acquisition, with the same settings as the first one.

This method allows us to make a time-correlated evaluation of the HBT coinci-
dences, while minimizing the eventual temporal fluctuations and drifts. Since one
of the detectors of the HBT is free-running, we set a larger time window of 200 ns
on the time-tagger, in order not to loose any significant event.

PTB HBT, instead, hosts a 50 : 50 FBS and two ID Quantique gated infrared
detectors (one ID210 and one ID201, with, respectively, 25 ns and 50 ns detection
windows). The time-tagging system, however, is a PicoHarp300, which hosts only
one input channel, plus an external clock. Such time-tagger makes it impossible
to evaluate simultaneously the single- and two-photon counts, therefore, we opt for
the same method described for NPL HBT. In the first and last run, both detec-
tors are evaluated at once, by feeding both outputs of the detectors to the single
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PicoHarp300 input channel, by adding a proper delay to one of the two outputs.
In the central run, the ID210 acts as external clock for the ID201. Since the sum
of both SPADs detection windows is around 75 ns, we set a 100 ns window in the
time-tagging electronics.

In both HBTs, the total single count probabilities are evaluated as P (Tot)
i =

N
(T ot)
i

N
(T rig)
S

, where N (Trig)
S is the number of FPGA valid gates for the two single-photon

events acquisitions. The two-photon count probability, instead, is P
(Tot;Tot)
12 =

N(Coinc)

N
(T rig)
C

, where N (Trig)
S is the number of FPGA valid gates for the two-photon events

acquisitions. The dark counts ratios estimation is the same as the one described
for INRiM.

Results

Session α (INRiM) α (NPL) α (PTB)
INRiM-NPL 0.013 ± 0.008 0.02 ± 0.02 -
INRiM-PTB 0.016 ± 0.006 - 0.04 ± 0.05

Table 3.1: Experimental results obtained within the pilot comparison. Coverage
factor: k = 1.

Table 3.1 hosts the results obtained by INRiM, NPL and PTB during the differ-
ent measurement session of the g(2)(0) of the HSPS. As we can see, all measurements
are in agreement between each other even with a coverage factor k = 1.

Uncertainty budgets

In this section, we thoroughly analyse the uncertainty contributions to the es-
timation of the parameter α.

INRiM Three elements contribute to the INRiM uncertainty budget (Tabs. 3.2,
3.3):

• u(P )(α): uncertainty derived from the double and single total photon count
probabilities (P (Tot;Tot)

12 and P
(Tot)
i ), given by the TAC counts;

• u(Qi)(α): uncertainty derived from the dark counts fraction Q
(Dark)
i of each

SPAD, evaluated from the HydraHarp400 histograms.
The first contribution is evaluated as

u(P )(α) =

⌜⃓⃓⃓
⎷ 3∑︂
l,m=0

Cl,m

(︄
∂α

∂Ñ l

)︄(︄
∂α

∂Ñm

)︄
u
(︂
Ñ l

)︂
u
(︂
Ñm

)︂
(3.1.3.6)
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Cl,m = ⟨Ñ lÑm⟩ − ⟨Ñ l⟩ ⟨Ñm⟩
u(Ñ l)u(Ñm)

(3.1.3.7)

where Ñ0 = Ñ
(Trig), Ñ i = Ñ

(Tot)
i (i = 1, 2), Ñ3 = Ñ

(Coinc) and u(Ñk) being
the uncertainty on the average ⟨Ñk⟩. The measured correlation coefficients Ci,j
(i, j = 0, · · · , 3) among the Ñ i are reported in Tab. 3.4.

Evaluating the second and third contributions (uQi
(α)) by merely extracting

them from the HydraHarp400 histograms would lead to an overestimation of the
total uncertainty u(α). Therefore, we need a better strategy. Knowing that
Q

(Dark)
i = N

(Dark)
i

N
(T ot)
i

= 1 − Ñ
(P h)
i

Ñ
(T ot)
i

, we can write:

u2(Q(Dark)
i ) =

⎛⎝ 1
Ñ

(Tot)
i

⎞⎠2

u2(Ñ (Ph)
i ) +

⎛⎝ Ñ
(Ph)
i

(Ñ (Tot)
i )2

⎞⎠2

u2(Ñ (Tot)
i )

− 2
⎛⎝ 1
Ñ

(Tot)
i

⎞⎠⎛⎝ Ñ
(Ph)
i

(Ñ (Tot)
i )2

⎞⎠(︃ ⟨Ñ (Tot)
i Ñ

(Ph)
i ⟩ − ⟨Ñ (Tot)

i ⟩ ⟨Ñ (Ph)
i ⟩

)︃
(3.1.3.8)

Since Ñ (Tot)
i = Ñ

(Ph)
i + Ñ

(Dark)
i , it is easy to see that(︃

⟨Ñ (Tot)
i Ñ

(Ph)
i ⟩ − ⟨Ñ (Tot)

i ⟩ ⟨Ñ (Ph)
i ⟩

)︃
= u2(Ñ (Ph)

i ) ≤ u2(Ñ (Tot)
i ) (3.1.3.9)

therefore

u(Q(Dark)
i ) ≤ Q

(Dark)
i

Ñ
(Tot)
i

u(Ñ (Tot)
i ) (3.1.3.10)

which provides us an upper bound for the uncertainty contributions:

u(Qi)(α) =
⃓⃓⃓⃓
⃓ ∂α

∂Q
(Dark)
i

⃓⃓⃓⃓
⃓u(Q(Dark)

i ) (3.1.3.11)

Since no correlation exists among these three contribution, the total uncertainty
on α can be expressed as:

u(α) =
√︂
u2

(Q1)(α) + u2
(Q2)(α) + u2

(P )(α) (3.1.3.12)

NPL and PTB Since they share the acquisition method, NPL and PTB mea-
surement uncertainties are evaluated in the same way:

u(α) =

⌜⃓⃓⎷ 6∑︂
l=0

(︄
∂α

∂Nl

)︄2

u2(Nl) (3.1.3.13)
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Quantity Unc. Sens. Coeff Unc. Contr.
Q

(Dark)
1 0.05604 0.00008 1.0461 0.00010

Q
(Dark)
2 0.05607 0.00008 1.0462 0.00010

Ñ
(Trig) 6.0133 × 106 2.6 × 103 2.242 × 10−8 0.00006

Ñ
(Tot)
1 18261 31 7.382 × 10−6 0.0002

Ñ
(Tot)
2 19396 32 6.950 × 10−6 0.0002

Ñ
(Coinc) 7.1 0.4 0.01905 0.008
α 0.013 0.008

Table 3.2: INRiM uncertainty budget related to the INRiM-NPL measurement
session. Coverage factor: k = 1. Unc.: uncertainty. Sens. Coeff.: sensitivity
coefficient. Unc. Contr.: contribution to the global uncertainty on α.

Quantity Unc. Sens. Coeff. Unc. Contr.
Q

(Dark)
1 0.04525 0.00008 1.0302 0.00008

Q
(Dark)
2 0.04875 0.00009 1.0340 0.00009

Ñ
(Trig) 6.1885 × 106 2.4 × 103 1.898 × 10−8 0.00005

Ñ
(Tot)
1 22490 41 5.223 × 10−6 0.0002

Ñ
(Tot)
2 23407 42 5.018 × 10−6 0.0002

Ñ
(Coinc) 9.1 0.5 0.01294 0.006
α 0.016 0.006

Table 3.3: INRiM uncertainty budget related to the INRiM-PTB measurement
session. Coverage factor: k = 1.

with N0 = N
(Trig)
S , Ni = N

(Tot)
i and N2+i = N

(Dark)
i (i = 1, 2), N5 = N

(Trig)
C and

N6 = N (Coinc).

Since both NPL and PTB did not have repeated measurements, we had to
provide a sensible upper bound to the uncertainties, by means of physical and sta-
tistical considerations on the source and measurement device. Since the dark counts
of the detectors are known to follow a Poissonian distribution and the distribution
of a multi-mode PDC is almost indistinguishable from a Poissonian distribution,
we can assume the fluctuations of the Nj quantities to be Poissonian. Therefore,
we assign the value u(Nj) = ζ

√︂
Nj to the uncertainties related to the quantities

Nj, being ζ a coefficient which takes into account the eventual super-poissonian
behaviour of the system. In our case we opted for a conservative ζ = 2, because of
some unexpected fluctuations in the CW pump power. NPL and PTB uncertainty
budgets are reported in Tabs. 3.5 and 3.6, respectively.
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INRiM-NPL INRiM-PTB
C0,1 0.326 0.857
C0,2 0.445 0.891
C0,3 0.269 0.133
C1,2 0.650 0.824
C1,3 0.00261 −0.000155
C2,3 −0.000909 0.00161

Table 3.4: Correlation coefficients related to the INRiM measurements in both
sessions.

Quantity Unc. Sens. Coeff. Unc. Contr.
N

(Trig)
S 1.20348 × 108 ζ · 1.1 × 104 1.042 × 10−9 ζ · 0.00002
N

(Tot)
1 304900 ζ · 600 1.726 × 10−7 ζ · 0.00010

N
(Tot)
2 283300 ζ · 600 1.003 × 10−7 ζ · 0.00005

N
(Dark)
1 3100 600 3.256 × 10−6 0.00018

N
(Dark)
2 9600 100 3.590 × 10−6 0.0004

N
(Trig)
C 1.20184 × 108 ζ · 1.1 × 104 5.218 × 10−10 ζ · 0.00001

N (Coinc) 43 ζ · 7 0.00146 ζ · 0.010
α 0.02 0.02

Table 3.5: NPL uncertainty budget related to the INRiM-NPL measurement ses-
sion. Coverage factor: k = 1. We set ζ = 2.

3.1.4 Conclusion
In this section we illustrated a strategy to evaluate the multi-photon compo-

nent of a CW HSPS and applied it to a low-noise prototype fibre HSPS at 1550
nm. Then, we showed the results of a pilot comparison, carried out with differ-
ent measurement setups and data collection methodologies; these results are all
in agreement with each other within the experimental uncertainties, even with a
coverage factor k = 1, certifying the flexibility, reliability and robustness of our
strategy.

We believe that our proposed strategy, which is adaptable to a large variety
of detectors and coincidence electronics, may pave the way to a standardization
of the characterization of single-photon sources, one of the most important tasks
of present and future quantum metrology for the widespread diffusion of incoming
quantum technologies.

76



3.2 – Optimal measurement of Entanglement and Discord in two-photon states

Quantity Unc. Sens. Coeff. Unc. Contr.
N

(Trig)
S 1.23807 × 108 ζ · 1.1 × 104 1.031 × 10−8 ζ · 0.00011
N

(Tot)
1 453500 ζ · 700 1.140 × 10−6 ζ · 0.0008

N
(Tot)
2 474200 ζ · 700 4.4884 × 10−7 ζ · 0.0004

N
(Dark)
1 50700 300 2.390 × 10−6 0.0006

N
(Dark)
2 140800 400 2.888 × 10−6 0.0011

N
(Trig)
C 1.23733 × 108 ζ · 1.1 × 104 5.158 × 10−10 ζ · 0.00006

N (Coinc) 690 ζ · 30 0.0009224 ζ · 0.03
α 0.04 0.05

Table 3.6: PTB uncertainty budget related to the INRiM-PTB measurement ses-
sion. Coverage factor: k = 1. We set ζ = 2.

3.2 Optimal measurement of Entanglement and
Discord in two-photon states

In this section we focus on the problem of evaluating the amount of entangle-
ment (Sec. 1.1.1) and Quantum Discord (Sec. 1.1.1) in two-photon states generated
by entangled-photon sources (Sec. 2.3.2). A robust way to perform such evalua-
tion would be to completely reconstruct the quantum state of the two photons,
via a process called quantum tomography (Sec. 3.2.3). Unfortunately, while this
reconstruction technique provides all the information on the physical system under
analysis, it is also a demanding procedure due the high number of measurements
required on identical copies of the system, especially for large Hilbert spaces. Fur-
thermore, being based on optimization algorithms, tomography does not allow to
perform a direct estimation of the uncertainty associated with the reconstructed
density matrix, nor the reconstructed density matrix provides an immediate quan-
tification of the amount of entanglement or Quantum Discord, that need to be
quantified with some parameters (Sec. 1.3). For these reasons, several methods
have been proposed to speed up the evaluation, such as Bell tests[22], visibility
experiments[93], etc.
There are, however, more efficient ways to estimate the amount of entanglement
and Quantum Discord in a multipartite system when one has a small a-priori in-
formation on the state under investigation. We decide to focus on the estimation
of some of the parameters which characterize the entanglement and Quantum Dis-
cord. In the following sections, we introduce a set of unbiased estimators for a
selection of parameters able to characterize entanglement and Discord for a specific
class of two-qubit states. Then, we present an experiment in which we measure
such estimators as well as the uncertainties associated with them, comparing them
with the theoretical predictions.
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3.2.1 Parameters estimators
In this section, we introduce two unbiased estimators, one optimal and one

non-optimal, for four parameters of interest: Concurrence (Sec. 1.3.3), Negativity
(Sec. 1.3.4), Log-Negativity (Sec. 1.3.5) and Quantum Geometric Discord (Sec.
1.3.6). We only focus on unbiased estimation because we assume a simple “prepare
and measure” experiment, in which we have no a priori knowledge of the produced
state, except the family of states to which it belongs.

We define our estimators for the specific family of states that we are going to
test. These are the quantum states whose density matrix can be expressed in the
following form:

ρ̂ = (1 − p)

⎛⎜⎜⎜⎝
0 0 0 0
0 q 0 0
0 0 1 − q 0
0 0 0 0

⎞⎟⎟⎟⎠+ p

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0
0 q −

√︂
q(1 − q) 0

0 −
√︂
q(1 − q) 1 − q 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ (3.2.1.1)

where p and q are unknown variables in the interval [0, 1]. This density matrix
describes a wide range of states, from the maximally entangled singlet state (p = 1,
q = 1/2) to a completely decoherent mixture (p = 0, q = 1/2). These are typical
quantum states involved in several real-world scenarios in which entangled states
(such as the ones produced by Type-II SPDC) are exposed to decoherence, due to
coupling with the environment, which degrades the quantum resources available for
the task we want to execute. Thus, their characterization plays an important role
for the scientific and industrial community.

Let us now define the unbiased estimators for each entanglement parameter
and their corresponding theoretical minimal uncertainty, thanks to the Quantum
Cramér-Rao bound (QCRB), introduced in Sec. 1.4.1. These definitions were
reached by trying different combinations of measurable parameters for our system.
In particular, we focused on the coincidence probabilities for the four possible com-
bination of measured diagonal polarizations.

Negativity estimators

For our family of states, the Negativity becomes:

N = 2p
√︂
q(1 − q) (3.2.1.2)

From which we can calculate the QCRB for estimating the Negativity with a single
measurement:

QCRBN = 1 − N 2 (3.2.1.3)
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thus, the optimal estimation of Negativity has an associated uncertainty:

uncN =

√︂
QCRBN√

n
=

√
1 − N 2
√
n

(3.2.1.4)

where n is the number of repeated measurements.
First, we define a non-optimal estimator εN1 as

εN1 = 1 − 4P (++) (3.2.1.5)

where P (X) is the probability of the coincidence event X and the symbol +(−)
indicates projection onto the state |+(−)⟩ = |H⟩+(−)|V ⟩√

2 , |H⟩ and |V ⟩ being the
horizontal and vertical polarization, respectively. The probability of finding a pair
of photons both with diagonal polarization is calculated as:

P (++) = N(++)/(N(++) +N(+−) +N(−+) +N(−−)) (3.2.1.6)

where N is the number of detected photon pairs.
The theoretical minimum uncertainty associated with the non-optimal estimator

εN1 is

uncεN1 =

√︂
−(N 2 + 2N − 3)

√
n

(3.2.1.7)

Second, we define the optimal estimator εN2 as

εN2 = P (+−) + P (−+) − P (++) − P (−−) (3.2.1.8)

which has a theoretical minimum uncertainty equal to the one set by the saturation
of the QCRB (Eq. (3.2.1.4)).

Log-Negativity estimators

As previously described, the Log-Negativity is the base-2 logarithm of the Neg-
ativity. Therefore, we can easily derive its expression for our family of states:

L = log2(2p
√︂
q(1 − q) + 1) (3.2.1.9)

and the corresponding QCRB:

QCRBL = −2−L(2L − 2)
log2(2)

(3.2.1.10)

Similarly, we define the non-optimal and optimal estimators εL1 and εL2 as the
base-2 logarithm of their corresponding Negativity estimators:

εL1 = log2

[︃
1 − 4

(︃
P (++) − 1

4

)︃]︃
(3.2.1.11)

εL2 = log2 [1 − (P (+−) + P (−+) − P (++) − P (−−))] (3.2.1.12)
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with associated uncertainties

uncεL1 =

⌜⃓⃓⎷−4−L(4−L − 4)
log2(2)

1√
n

(3.2.1.13)

uncεL2 =

⌜⃓⃓⎷−2−L(2L − 2)
log2(2)

1√
n

(3.2.1.14)

where n is the number of measurements. The second estimator εL2 saturates the
QCRB.

Concurrence estimators

For our family of states, the Concurrence becomes:

C = 2p
√︂
q(1 − q) (3.2.1.15)

which is identical to the expression for the Negativity (Eq. (3.2.1.2)). Therefore,
we can exploit the QCRB and the estimators introduced for the Negativity to
evaluate the Concurrence. Note, however, that the equivalence between Negativity
and Concurrence only holds for our specific family of states, and is not true in
general.

Quantum Geometric Discord estimators

Since our states are symmetric under exchange of subsystems, the two definitions
of Quantum Discord are equivalent, i.e. DA = DB = D. Therefore, the QGD for
our family of states is:

GD = 2p2(1 − q)q (3.2.1.16)
that can be rearranged as a function of the Negativity:

GD = N 2

2 (3.2.1.17)

Again, this result, which ties QGD and Negativity, is only true for our family of
states and not in general. From the Negativity QCRB, we can calculate the QGD
one:

QCRBGD = 2(1 − 2GD)GD (3.2.1.18)
The non-optimal estimator εGD1 and the optimal estimator εGD2 also follow from
the Negativity ones:

εGD1 = 1
2(1 − 4P (++))2 (3.2.1.19)

εGD2 = 1
2(P (+−) + P (−+) − P (++) − P (−−))2 (3.2.1.20)
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with associated theoretical uncertainties:

uncεGD1 =
√︂

−2GD(2GD + 2
√

2
√

GD − 3) 1√
n

(3.2.1.21)

uncεGD2 =
√︂

2(1 − 2GD)GD 1√
n

(3.2.1.22)

where n is the number of measurements. The second one saturates the QCRB.

3.2.2 Experimental apparatus

Figure 3.5: Experimental apparatus. SHG: second harmonic generator. BBO: β-
Barium Borate non-linear crystal. QWP: quarter wave plate. HWP: half wave
plate. PBS: polarising beam splitter. IF: interference filters. SPAD: single-photon
avalanche diode. cb S. Virzì et al., Optimal estimation of entanglement and
discord in two-qubit states, Scientific Reports 9, 3030 (2019) https://doi.org/
10.1038/s41598-019-39334-8

In order to reproduce the states in Eq. (3.2.1.1), we exploit the phenomenon of
Type-II spontaneous parametric down conversion (SPDC) (Sec. 2.3.2), producing
two-photon polarization-entangled states.

The first part of the setup (region 1 of Fig. 3.5) is our source of biphoton
states. A Ti:Sapphire mode-locked laser, emitting pulses with duration of 150 fs
at a wavelength centred on 808 nm, pumps a second harmonic generation (SHG)
crystal, which produces a 404 nm pulsed beam. Such beam pumps a 0.5 mm long β-
barium borate (BBO) non-linear crystal, in which type-II SPDC occurs, generating
photon pairs. We spatially select the photons belonging to the intersection region
of the two cones with two irises, and address them to two 0.25 mm thick BBO
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crystals with the optical axis rotated of 90◦ with respect to the one of the PDC
crystal on the orthogonal plane to the propagation direction. This crystals allow
us to compensate the temporal delay between the horizontally- and the vertically-
polarized photons induced by the birefringence within the SPDC crystal. This way,
we produce a state:

|ψφ⟩ = |HV ⟩ + eiφ |V H⟩√
2

(3.2.2.1)

where H and V represent, respectively, the horizontal and vertical polarization
components and φ is the relative phase between the ordinary and extraordinary
polarized light. By performing a fine tilting of one of the two crystals, we can tune
the parameter φ to a chosen value (0, in our case).

Decoherence can be induced by introducing, in one of the two paths, a 2.7 mm
thick birefringent calcite crystal with the optical axis orthogonal to the propagation
direction, introducing temporal walk-off without modifying the photons spatial de-
gree of freedom.

The second part of the setup (region 2) is a quantum tomography apparatus,
in which each path is equipped with a quarter wave plate (QWP), a half wave
plate (HWP) and a polarizing beam splitter (PBS). Together, they allow us to
project each photon onto any polarisation state belonging to the surface of the
Bloch sphere[27].

The third part of the setup (region 3) is dedicated to photon detection. In each
path, an interference filter (IF) centred on 808 nm spectrally selects the photons.
One filter has a 3 nm FWHM, while the other a 20 nm FWHM. The filtered
photons, then, are fibre coupled and sent to a Silicon single-photon avalanche diode
(SPAD) for the detection. A dedicated time-tagging system performs temporal
post-selection on photon counts.

3.2.3 State reconstruction
Our setup is able to produce either pure singlet states |ψ−⟩ or completely deco-

herent states ρmix:

ρth|ψ−⟩ =

⎛⎜⎜⎜⎝
0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

⎞⎟⎟⎟⎠ ρthmix =

⎛⎜⎜⎜⎝
0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0

⎞⎟⎟⎟⎠ (3.2.3.1)

States with different amounts of decoherence described in Eq. (3.2.1.1) are re-
produced by realizing a statistical mixture of our data in post-processing. The
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procedure consists of performing all the measurements required by our four estima-
tors for both the singlet and the completely decoherent state, with an appropriate
redundancy. Then, in post-processing, we mix the results in different percentages,
in order to simulate several states, each with a different amount of decoherence.

The first step of our data analysis, however, is to evaluate the quality of the
produced states. To do so, we need to reconstruct the quantum state. Such re-
construction is performed through quantum state tomography[92, 158], a process
which allows to completely characterize, through a set of measurements mapping
the whole Bloch sphere, the density matrix of the system under investigation. In
our case, we measure all 36 combinations of the following six states, which corre-
spond to the three mutually unbiased bases constituting the three orthogonal axes
of the Bloch sphere:

|H⟩
|V ⟩

|+⟩ = 1√
2

(|H⟩ + |V ⟩)

|−⟩ = 1√
2

(|H⟩ − |V ⟩)

|R⟩ = 1√
2

(|H⟩ + i |V ⟩)

|L⟩ = 1√
2

(|H⟩ − i |V ⟩)

(3.2.3.2)

This allows us to reconstruct the 15 Stokes parameters which characterize the po-
larization state of a bipartite system through a minimization algorithm[92]. From
them, then, we extract the reconstructed density matrix (Fig. 3.6).

In order to evaluate the distance between theoretical and reconstructed states,
we calculate Uhlmann’s Fidelity (App. A):

F = Tr
(︃√︂√

ρexpρth
√
ρexp

)︃
(3.2.3.3)

where ρexp and ρth are, respectively, the reconstructed and theoretical density ma-
trix. From the reconstruction (Fig. 3.6), we obtain the values Fψ− = 0.975 and
Fρmix

= 0.985, certifying the compatibility between our experimental states and
the theoretical ones.

3.2.4 Results
Fig. 3.7 shows the results of our work. There, we plot the experimental points

for each estimator as a function of the mixing parameter p, which ranges between
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Figure 3.6: Real (left) and imaginary (right) part of the tomographically recon-
structed density matrix for the singlet, maximally-entangled state (top) and the
completely decoherent mixture (bottom). cb S. Virzì et al., Optimal estimation
of entanglement and discord in two-qubit states, Scientific Reports 9, 3030 (2019)
https://doi.org/10.1038/s41598-019-39334-8

0 (completely decoherent mixture) and 1 (maximally entangled state).

The effective value of p of each point is evaluated by exploiting the tomographi-
cal reconstruction of the density matrix of the corresponding quantum state. Each
point is the result of the average of 10 independent estimations on different data
sets. The uncertainty bars are obtained by propagating the standard deviation
of the measurement results statistical distribution. Therefore, they represent the
uncertainty of a single estimation.

As for p, the parameter q is obtained from the tomographical reconstruction of
the density matrices of the physical systems involved in the experiment.
The theoretical value of the estimand parameter is represented by a dotted line,
while the theoretical values for the Cramér-Rao bound and the theoretical uncer-
tainty of the non-optimal estimator are represented by the continuous and dashed
curves, respectively.

Our results (Fig. 3.7) show a good agreement between theory and experiment
for each estimator, both for the value and the associated statistical uncertainty. In
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Figure 3.7: Results for Negativity and Concurrence (blue), Log-Negativity (orange)
and Quantum Geometric Discord (green) with respect to p. Left: non-optimal esti-
mators. Right: optimal estimators. Dashed lines: theoretical values of the quantity
to estimate. Dotted lines: theoretical uncertainty for non-optimal estimators. Solid
curve: theoretical uncertainty from the quantum Cramér-Rao bound. cb S. Virzì
et al., Optimal estimation of entanglement and discord in two-qubit states, Scien-
tific Reports 9, 3030 (2019) https://doi.org/10.1038/s41598-019-39334-8

the case of optimal estimators, this demonstrates the saturation of the Quantum
Cramér-Rao bound. Furthermore, it is possible to notice an important reduction
of uncertainties between optimal and non-optimal estimators, a clear confirmation
of the difference between optimal and non-optimal measurements.
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3.2.5 Conclusion
In this section, we proposed six unbiased estimators for the evaluation of some

parameters which quantify the amount of entanglement (Negativity, Concurrence
and Log-Negativity) and Discord (Quantum Geometric Discord) for a restricted
family of states of particular interest in the filed of quantum information and quan-
tum technologies. We calculated their theoretical minimum uncertainties, showing
that three of them are optimal, i.e. they saturate the quantum Cramér-Rao bound.
Then, we experimentally tested our prediction, finding a good agreement between
theoretical expectations and experimental results. In particular, we demonstrated
that our optimal estimators reach the ultimate theoretical precision limit on unbi-
ased estimators represented by the QCRB. The agreement between the uncertainty
bars and the theoretical curves for the non-optimal estimators is a further consis-
tency test between theory and experiment.

Other interesting and unexpected results are the identity between the estima-
tors of Negativity and Concurrence and the monotone relation between the ones
of Negativity and Quantum Geometric Discord, for our family of quantum states.
The direct relations between the estimators and, consequently, between the QCRB,
implies that, for our family of quantum states, knowledge of the optimal estimator
and the associated QCRB for Negativity allows for an immediate derivation of such
quantities also for Log-Negativity, Concurrence and Quantum Geometric Discord.

Possible extensions of this work may explore the possibilities given by biased
estimation, in order to define biased estimators able to achieve a lower bound on
the mean square error, and estimators for other parameters that characterize en-
tanglement and Discord.

For the above reasons, we believe that these results will pave the way to a diffuse
use of these estimators in quantifying resources for quantum technologies, one of
the most important issues of this field.
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Chapter 4

Novel weak-interaction-based
measurement protocols

Part of the work described in this chapter has been previously published in [159,
160, 161, 162, 163, 164, 165].

Weak measurements and weak values are one of the most promising research
tools in quantum mechanics (Sec. 1.2.4). In particular, their properties allow for
applications both in fundamental science (e.g. direct measurements of the wave-
function, measurement of non-commuting observables onto the same quantum sys-
tem - Sec. 1.2.4) and metrology (e.g. tiny parameters amplification techniques -
Sec. 1.2.4). For this reason, research on new weak-interaction-based measurement
protocols is a task of utmost importance in quantum metrology and quantum me-
chanics foundations investigation.

In the first part of this section, we present a first example of a measurement
protocol that can be regarded as a step beyond weak measurements: protective
measurement (PM)[159, 160, 161, 162, 165]. One disruptive feature of PMs is that
they allow us to extract the expectation value of a quantum observable, a statis-
tical property of an ensemble of quantum systems, even from a single experiment
on a single particle. We will show the first experimental implementation of PM,
and a theoretical analysis of the statistical uncertainties achievable with such pro-
tocol, showing the advantage it presents with respect to traditional measurement
protocols based on “strong” (projective) measurements, which consists in a strong
reduction of the statistical uncertainty, with possible applications, for instance, in
test of unknown state preparations.

In the second part, then, we present an iterative weak-interaction-based mea-
surement protocol called robust weak measurement (RWM)[163, 164], which can be
regarded as an extension of PMs to general weak values. We will show that, with
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RWMs, one can obtain a reliable estimate of the weak value of an observable from
just a single detection event, instead of averaging over multiple events like for usual
weak value measurements. This is already a conceptual paradigm shift, since weak
values have always been considered as quantities arising from a statistical ensem-
ble of event, a feature that has covered a primary role in the decades-long debate
on their quantum (or classical) intrinsic nature. When considering the advantages
that the detection of a (anomalous) weak value brings in metrological contexts (Sec.
1.2.4), the metrological usefulness of this protocol, which allows extracting a weak
value even from single detection events, becomes clear.

4.1 Protective measurements
The expectation value of an observable (Sec. 1.2.1) is defined as the average of

its eigenvalues, weighted on their respective probabilities. Therefore, it has always
been considered a statistical property of an ensemble of quantum systems. In this
chapter, we show the first implementation of a protective measurement[166, 167],
a novel measurement protocol combining weak measurements with a sort of “pro-
tection mechanism” preserving the quantum state coherence. Although originally
introduced as an argument supporting the reality of the wavefunction[166], PMs
present many other fascinating features, e.g. the possibility to extract the expec-
tation value of a quantum observable even from a single detection event. In the
following sections, we define traditional (projective) and protective measurements,
and present the results obtained in a single-photon experiment able to implement
both measurement protocols. Then, we perform a theoretical analysis of the statis-
tical uncertainties for both procedures, showing that PM has a significant advantage
over projective measurements in terms of precision.

4.1.1 Theory and properties
In this section, we describe two methods to measure the expectation value of

an observable A with the von Neumann protocol (Sec. 1.2.2): the traditional one,
based on projective measurements, and protective measurements. First, following
our usual description, let us define the system S, the meter M and the total system
T :

• System S
The system lives in a Hilbert space HS in which it is defined the measurand
operator Â corresponding to the observable of interest A. By decomposing it
in the Â eigenbasis {|ai⟩}, the initial state of the system can be described as

|ψ⟩ =
∑︂
i

αi |ai⟩ (4.1.1.1)
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• Meter M
The meter M has a continuous pointer value described by an operator Q̂
whose initial wavefunction is supposed to follow the normal distribution:

ϕ0(x) = ⟨x|ϕ0⟩ = 1
4
√

2πσ2
exp

(︄
−(x− x0)2

4σ2

)︄
(4.1.1.2)

• Total system T
The only non-vanishing term in the total Hamiltonian is assumed to be the
interaction one:

Ĥ int = gÂ⊗ P̂ (4.1.1.3)
with P̂ being the canonically conjugated operator to the pointer Q̂.

The associated time evolution operator is

Û = exp
(︃

− i

ℏ
gÂ⊗ P̂

)︃
(4.1.1.4)

With this coupling, we can obtain the expectation value of A in two different ways.
The first one is the traditional (projective) method, in which the expectation value
is extracted from the statistics obtained from repeated projective measurements of
an ensemble of identically-prepared particles in the state |ψ⟩. The second method,
instead, exploits the PM protocol, which allows us to directly extract the expecta-
tion value from a single measurement of a particle in the state |ψ⟩.

Projective measurements

After a von Neumann coupling, the total system T evolves in the state∑︂
i

αi |ai⟩ |φ(x− gai)⟩ (4.1.1.5)

For strong coupling (g/σ ≫ 1), the eigenstates of A are completely spatially sepa-
rated and, therefore, distinguishable. Hence, the expectation value can be evaluated
as

⟨Â⟩ =
∑︂
i

|αi|2ai =
∑︁
i aiNi∑︁
iNi

(4.1.1.6)

where Ni is the number of count events obtained for the eigenvalue ai. This is a
well known technique, first experimentally implemented in 1922 by W. Stern and
O. Gerlach[168] for spin measurements.
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Protective measurements

Initially introduced as procedure to measure the wavefunction[166], PM is a
protocol in which we add a mechanism to protect the quantum state of the system
during the (weak) measurement procedure, preserving the state from the (eventu-
ally small) decoherence due to the von Neumann interaction.

This protection can be carried out either by means of an adiabatic potential
(passive protection), when the state is in a non-degenerate energy eigenstate[166],
or by quantum Zeno effect (QZE, active protection)[169], which consists in pro-
jecting the state after each interaction onto the initial state (or, more generally, by
projecting onto the initial state in the subspace in which the evolution Hamiltonian
is acting). From the quantum information perspective, we can think of this as a
protocol in which Alice produces a known state and transmits it to Bob together
with a proper protection, which Bob implements as a black box.

Regardless of the protection, we can describe PM with a standard von Neumann
measurement where, instead of an instantaneous interaction, we perform a long and
adiabatic one, described by the coupling g = g(t). The interaction Hamiltonian, in
this case is

Ĥ
′
int = g(t)Â⊗ P̂ (4.1.1.7)

where the interaction g(t) = 1/T is activated for a period of time T and smoothly
goes to zero before and after. For a smooth enough g(t), we obtain the adiabatic
limit, in which the state |ψ⟩ of the system cannot change, thanks to the protection.
For bounded P̂ , in the limit T → ∞, the interaction Hamiltonian goes to zero while
the state |ψ⟩ remains unchanged. The energy of the eigenstate, then, shifts by an
infinitesimal amount given by first-order perturbation theory[166]:

δE = ⟨Ĥ
′
int⟩ = ⟨Â⟩ P̂

T
(4.1.1.8)

From Eq. 1.1.1.11 we can calculate the time evolution associated to Ĥ
′
int in the

limit T → ∞:

Û = lim
T→∞

exp
(︄

− i

ℏ

∫︂ ∞

−∞
dt

⟨Â⟩ P̂
T

)︄
= exp

(︃
− i

ℏ
⟨Â⟩ P̂

)︃
(4.1.1.9)

which results in a shift of the pointer wavefunction equal to the expectation value
⟨Â⟩.

An equivalent protection mechanism, used in our case, employs a series of K
instantaneous weak interactions, described by the coupling constant g. By applying
an active protection, realized by the projector

Π̂ψ = |ψ⟩⟨ψ| (4.1.1.10)
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the system evolves, for each step, of

|ψ⟩ ⟨ψ|Û |ψ⟩ ⊗ |φ(x)⟩ = |ψ⟩ ⊗
⃓⃓⃓
φ(x− g ⟨Â⟩)

⟩︂
(4.1.1.11)

since, for a small g,

⟨ψ|exp
(︃

− i

ℏ
gÂ⊗ P̂

)︃
|ψ⟩ ≈ ⟨ψ|

(︃
1 − i

ℏ
gÂ⊗ P̂

)︃
|ψ⟩ = 1 − i

ℏ
g ⟨Â⟩ P̂ (4.1.1.12)

So, for weak couplings, the protection causes, for each step, a shift in the meter
wavefunction which is directly proportional to the expectation value ⟨Â⟩. Fur-
thermore, in the g ≪ 1 limit, the decoherence induced on the initial state by the
interaction Û is so small that the state survival probability after the projection
Π̂ψ is close to 1. Thus, the projection “protects” the particle, restoring its initial
state without risk of destroying it. As an example of application, let us consider a
quantum mint, that should produce a certain state, whose faithfulness one has to
check. Then, one can construct the protection on the basis of the expected state
and check if the average value is correct.

Protective measurements, then, allow us to estimate, for each particle undergo-
ing them, directly the expectation value, so far only believed to be statistically ob-
tainable from an ensemble of identical particles. Furthermore, it can be showed[166]
that, by performing protective measurement of expectation values of projection op-
erators on small regions of space of volume V , the outcome will be V ⟨ψ|ψ⟩, meaning
that PMs can measure a stationary wavefunction. Thus, PM can provide new per-
spectives in the hot debate[170, 171, 172, 173] about the ontic or epistemic nature
of the wavefunction, i.e. on whether the wavefunction has an objective, physical
existence, or it only provides knowledge of a phenomenon, respectively.

4.1.2 Protective measurements in the lab
Protective measurements of polarization

In our experiment, we want to measure the expectation value of the polarization
of single photons. The polarization operator is

Â = |H⟩⟨H| − |V ⟩⟨V | (4.1.2.1)

while the initial state is in the linearly-polarized state

|ψ⟩ = cos(θ) |H⟩ + sin(θ) |V ⟩ (4.1.2.2)

and the initial pointer wavefunction is the one in Eq. (4.1.1.2), where x is the
photon position along one of the axes of the transverse plane with respect to the
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photon propagation direction (z axis).

Our implementation consists of a series of K weak von Neumann couplings, in
which the horizontal component of the polarization Π̂H = |H⟩⟨H| is weakly coupled
to the transverse momentum P of the photon via a thin birefringent crystal (with
coupling strength g/σ ≪ 1). This is mathematically equivalent to a von Neumann
coupling of strength g/2 between the pointer and the polarization operator Â. Each
weak von Neumann coupling is followed by the protection Π̂ψ in the protected case.

Let us now analyse the difference between projective and protective measure-
ments in this case.

Projective case Without protection, the K von Neumann interactions (Eq.
(4.1.1.4)) result in a strong interaction with strength g′ = Kg, after which the
system evolves in the state

αH |H⟩ |φ(x− a)⟩ − αV |V ⟩ |φ(x+ a)⟩ (4.1.2.3)

being a = g′/2, and αH(V ) = +1(−1) is the eigenvalue corresponding to the H(V )
polarization.

The resulting strong interaction completely separates the spatial components of
the two polarizations (Fig. 4.1), as in a Stern-Gerlach experiment[168] (Fig. 4.1).
Hence, the expectation value can be evaluated as

⟨Â⟩ = NH −NV

NH +NV

(4.1.2.4)

where Nx is the the number of counts in the region corresponding to the polarization
x.

Protective case The introduction of the protection Π̂ψ, instead, induces a shift of
the pointer proportional to the expectation value of the polarization (Eq. (4.1.1.11),
Fig. 4.2). Therefore, the expectation value of the polarization can be extracted by
the formula

⟨Â⟩ = x− x0

a
(4.1.2.5)

with x0 = xH+xV

2 , being xH (xV ) the centre of the horizontally-(vertically-)polarised
photon distribution in the unprotected case.

In contrast with the unprotected case, in which the expectation value can only
be extracted statistically by measuring an ensemble of identical photons, in the
PM picture each photon carries information about the expectation value, allowing
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Figure 4.1: Projective case. The two polarization components are completely sep-
arated. The expectation value is evaluated as the weighted average of the events.
(Despite only one polarization component is deviated, we chose to define a centre
as the point in the middle between the centre of the two distributions.)

to extract it even by a single experiment on a single photon (Fig. 4.2). This is
a revolutionary feature, apparently in contrast with the definition of expectation
value, i.e. an intrinsically statistical quantity.

Experimental setup

Our setup (Fig. 4.3) is divided in three parts. The first part is dedicated to
production of heralded single photons. A mode-locked laser with a second har-
monic at 398 nm and a 76 MHz repetition rate pumps a 10 × 10 × 5 mm LiIO3
non-linear crystal in which Type-I PDC (Sec. 2.3.2) produces signal-idler photon
pairs. The idler photons (920 nm) are filtered by an interference filter (IF) cen-
tred at 702 nm and with a FWHM of 10 nm, and coupled to a single-mode fibre
(SMF) and then addressed to a Silicon Single-Photon Avalanche Diode (SPAD),
heralding the presence of the correlated signal photons (702 nm). The signal pho-
tons, instead, are filtered with an IF centred at 702 nm and with a FWHM of 10
nm, fibre coupled and addressed to the second part of the setup, where the PM
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Figure 4.2: Protective case: the photons fall all in the same region, whose position
is proportional to the expectation value.

takes place. We estimated the quality of our single-photon emission with a HBT
interferometer (Sec. 3.1.1), obtaining a value of α = 0.13 ± 0.01 without any back-
ground or dark count subtraction, testifying the quality of our single photon source.

The second part is the optical path, where the signal photon, decoupled and
collimated with a spatial mode close to a Gaussian, is pre-selected in the polariza-
tion state |ψ⟩ by means of a calcite polariser followed by a half-wave plate. Then,
the photon interacts with K = 7 weak interaction units, each composed of two
birefringent crystals. In each unit, the first 2 mm long birefringent calcite crystal
has an extraordinary (e) optical axis lying in the x - z plane, having an angle of
π/4 with respect to the z direction. This generates displacement of the beam in the
transverse direction x. The second (1.1 mm) calcite crystal has the optical e-axis
oriented along the y-axis, compensating the phase and time decoherence induced
by the first crystal. The combined effect of all the 7 units allows for complete
separation of orthogonal polarizations. The protection of the quantum state is
implemented exploiting the quantum Zeno effect, realized by inserting a polariser
after each weak interaction unit. The polariser projects the state outgoing the von
Neumann interaction into the same polarization of the initial state |ψ⟩, cancelling
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Figure 4.3: Experimental setup. Material from: ’F. Piacentini et al., Determining
the Quantum Expectation Value by Measuring a Single Photon, Nat. Phys., 2017,
Nature Research’

the (tiny) decoherence induced by the birefringent crystals.

At the end of the optical path, the photons are detected by a 2D spatial-resolving
single-photon detector prototype, i.e. a two-dimensional array of 32x32 “smart pix-
els”, each hosting a SPAD detector with dedicated front-end electronics[174]. The
SPAD array is gated with a 6 ns detection window by the detection of the idler
photon (920 nm). An optional tomography apparatus (Sec. 3.2.3), comprising a
half-wave plate, a quarter-wave plate and a polariser, can be inserted before the
SPAD array to reconstruct the density matrix of the state emerging from the mea-
surement procedure.

We chose the number of units K = 7 from practical considerations approximat-
ing the ideal case of large K: because of losses originating from optical elements
imperfections and the detector characteristics, a larger K would result in a low
signal-to-noise ratio at the detector.

4.1.3 Results
We acquire data sets for three different states: the state |+⟩ = 1√

2(|H⟩ + |V ⟩),
which should be subjected to the maximum decoherence, and two intermediate
states

⃓⃓⃓
17
60π

⟩︂
= cos

(︂
17
60π

)︂
|H⟩ + sin

(︂
17
60π

)︂
|V ⟩ and

⃓⃓⃓
π
8

⟩︂
= cos

(︂
π
8

)︂
|H⟩ + sin

(︂
π
8

)︂
|V ⟩.
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For each state, we perform a first acquisition with |ψ⟩ = |H⟩ or |ψ⟩ = |V ⟩ and only
the crystals in the optical path, which allows us to calibrate the system. Then, we
perform acquisitions for the state under test both in the unprotected (only crys-
tals) and protected (crystals + polarisers) case. Last, we perform an acquisition
with only polarisers plus one with a free optical path, in order to compensate for
unwanted polariser deviations of the beam.

PM output state verification

In order to verify the correct execution of the PM protocol and its difference
with respect to projective measurements, we perform a tomographic reconstruction
of the states at the end of the system. Obviously, we expect two very different
states at the end of the two measurement procedures. In the protected case, the
protection should be able to preserve the initial polarization state ρ̂in, therefore,
the final state is ρ̂prot = ρ̂in, whereas in the unprotected case the shifts of one
polarization component cause decoherence on ρ̂in, and we expect a final state ρ̂dec:

ρ̂in =
(︄

cos2(θ) − sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)︄
(4.1.3.1)

ρ̂dec =

⎛⎜⎜⎝ cos2(θ) − sin(θ) cos(θ) exp
(︃

− g′2

(2σ)2

)︃
sin(θ) cos(θ) exp

(︃
− g′2

(2σ)2

)︃
sin2(θ)

⎞⎟⎟⎠ (4.1.3.2)

g′ can be obtained as g′ = ⟨xH⟩ − ⟨xV ⟩, being ⟨xI⟩ the average positions of pho-
tons in the polarization I on the horizontal axis (see next section), while σ is the
average of the distribution widths obtained by Gaussian fits of our acquisitions. In
our experiment, g′ = 11.56 ± 0.07 px (pixels) and σ = 4.17 ± 0.02 px.

Let us now analyse the reconstruction results for each state. We will denote
the reconstructed density matrices as ρ̂recPM and ρ̂recPj for protective and projective
measurements, respectively:

|+⟩ state The Fidelity (App. A) between the theoretical protected state and the
reconstructed one ρ̂recPM (Fig. 4.4b) is:

F (ρ̂recPM , ρ̂in) = 0.999 (4.1.3.3)

with a purity (Sec. 1.1.1) of
P (ρ̂recPM) = 0.998 (4.1.3.4)

the protection, then, preserved the state and its purity. This confirms that the
protection “freezes” the evolution of the initial state, as we described in Sec. 4.1.1.
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We can also compare the reconstructed decoherent state ρ̂recPJ (Fig. 4.4a) with
the decoherent theoretical one:

F (ρ̂recPJ , ρ̂dec) = 0.998 (4.1.3.5)

which fits well the theoretical predictions.

We also compute the purity of ρ̂recPJ :

P (ρ̂recPJ) = 0.504 (4.1.3.6)

which tells us that, as expected, without protection the induced decoherence piles
up step by step, lowering the purity of the state.

Finally, a comparison between the two reconstructed states

F (ρ̂recPJ , ρ̂recPM) = 0.720 (4.1.3.7)

tells us that the decoherence made the two states incompatible. This, combined
with the previous results, tells us that PM protects the initial state, while, instead,
in projective measurements, the combined effect of the 7 von Neumann interactions
degrades the state to the point that it is incompatible with the initial state and the
protected one.
⃓⃓⃓

17
60π

⟩︂
state As before, we compare the reconstructed protected state ρ̂recPM (Fig.

4.5b) with the theoretical one and analyse its purity:

F (ρ̂recPM , ρ̂in) = 0.996 P (ρ̂recPM) = 0.992 (4.1.3.8)

Again confirming that the protection preserves the state and its purity.

Then, we compare the reconstructed decoherent state ρ̂recPJ (Fig. 4.5a) with the
theoretical decoherent one and compute its purity:

F (ρ̂recPJ , ρ̂dec) = 0.999 P (ρ̂recPJ) = 0.520 (4.1.3.9)

again confirming our prediction and showing the action of the decoherence on the
purity.

At last, the comparison between the two reconstructed states

F (ρ̂recPJ , ρ̂recPM) = 0.751 (4.1.3.10)

tells us, again, that the decoherence made the two states incompatible.
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(a) Decoherent state

(b) Protected state

Figure 4.4: Reconstructed density matrices for the protected and unprotected states
with |ψ⟩ = |+⟩.

⃓⃓⃓
π
8

⟩︂
state Once again, we perform the comparison described above in this inter-

esting case of an highly unbalanced state. The purity of the reconstructed protected
state ρ̂recPM (Fig. 4.6b) and its Fidelity with respect to the initial state are

F (ρ̂recPM) = 0.992 P (ρ̂recPM) = 0.992 (4.1.3.11)

certifying again the preserving action of the protection. The lower fidelity is caused
by the fact that the two polarization components, in this case, are not perfectly
balanced as in the previous one.

The purity of the reconstructed decoherent state ρ̂recPJ (Fig. 4.6a) and its Fidelity
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(a) Decoherent state

(b) Protected state

Figure 4.5: Reconstructed density matrices for protected and unprotected states
with |ψ⟩ =

⃓⃓⃓
17
60π

⟩︂
.

with respect to the theoretical decoherent state, instead, are

F (ρ̂recPJ , ρdec) = 0.999 P (ρ̂recPJ) = 0.789 (4.1.3.12)

again confirming our previous observations. Once again, the higher purity is due
to the higher unbalance between the H and V polarization components.

At last, the Fidelity between the two reconstructed states

F (ρ̂recPJ , ρ̂recPM) = 0.894 (4.1.3.13)

once again confirms that the decoherence made the two states incompatible. Again,
the higher Fidelity is due to the higher unbalance between the two polarization
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components.

(a) Decoherent state

(b) Protected state

Figure 4.6: Reconstructed density matrices for protected and unprotected states
with |ψ⟩ =

⃓⃓⃓
π
8

⟩︂
.

We conclude, then, that the protection mechanism has indeed protected the
initial state from the decoherence induced by the K von Neumann couplings. These
results certify the correct execution of the PM protocol, allowing us to proceed with
the analysis of the expectation values.

Expectation values analysis

Let us now move to the core of the experiment: the evaluation of the expecta-
tion values of the polarization.
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First of all, we need to clean our raw data (Fig. 4.7). In the first step, we com-
pare each pixel with the average of its nearest neighbours, rejecting it if its value is
greater than such average multiplied by a properly chosen coefficient (ranging from
1.6 to 1.8). This allows us to exclude the so-called “hot-pixels” of the SPAD array,
i.e. pixels hosting a SPAD presenting an abnormal dark count rate (even several
orders of magnitude above the normal level). Such pixels, obviously impossible to
physically remove from the array, would otherwise lead to a highly inaccurate and
unreliable measurement. Then, we perform a linear regression with a fit function
consisting of one or two Gaussians (depending on the case) plus a common bias.
The fit results allow us to “fill” the gaps in output matrix caused by the hot-pixel
rejection.

Figure 4.7: Raw data sample from one acquisition: we distinguish the signal (the
Gaussian distribution) and the so-called “hot-pixels”, i.e. the pixels with an abnor-
mal dark count rate.
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From the linear regression of the acquisition for the states |H⟩ and |V ⟩, we
extract the centres xH and xV of the photon distributions corresponding to the
horizontally- and vertically-polarized photons, respectively. Remembering Fig.s
4.1 and 4.2, these are the points corresponding to the Â eigenvalues ±1. Averaging
over multiple acquisitions, we obtain both their value and their respective associated
uncertainties σxH

and σxV
. Then, we define the centre, in which ⟨Â⟩ = 0, as

x0 = xH + xV
2 (4.1.3.14)

and the distance between the centre and one of the two extremes as

a = xH − xV
2 (4.1.3.15)

with an associated uncertainty of

σa = σx0 =

√︂
σ2
xH

+ σ2
xV

2 (4.1.3.16)

Let us now analyse the evaluation of the expectation values with both measure-
ment procedures.

Projective measurement In the unprotected case, the one realizing the tradi-
tional projective measurement, we extract the expectation value with the formula
in Eq. (4.1.2.4). Thus, we need to know how many detected photons have given
as measurement result the eigenvalue 1(−1), i.e. how many photons have fallen
in the SPAD array regions corresponding to the H(V ) polarization component.
This is carried out by dividing the acquired image (Fig. 4.8) in two regions with
a cut corresponding to x0, rounded up to its closest pixel (red line in Fig. 4.8).
This way, counts in the left(right) region are associated with the polarization V (H).

To evaluate dark and background counts contributions N (dark)
V and N

(dark)
H , we

perform two other cuts (horizontal white lines), which allow us to separate the
regions of interest (regions 3 and 4 in Fig. 4.8) from the ones (regions 1, 2, 5 and
6) in which we only have dark and background counts. By averaging the counts in
regions 1 and 5(2 and 6), we obtain an estimate of dark and background counts for
each pixel in the region with polarization V (H), which we multiply for the number
of pixels in region 3(4), obtaining: N (dark)

V (N (dark)
H ). Thus, by subtracting them,

we obtain the expectation value of the polarization Â:

⟨Â⟩ = NH −NV −N
(dark)
H +N

(dark)
V

NH +NV −N
(dark)
H −N

(dark)
V

(4.1.3.17)
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which has an associated uncertainty

σ⟨Â⟩ =

⌜⃓⃓⃓
⎷ 4∑︂
k=1

(︄
∂Â

∂Nk

)︄2

σ2
Nk

(4.1.3.18)

with N1 = NV , N2 = NH , N3 = N
(dark)
V , N4 = N

(dark)
H . The uncertainties on

the number of dark and background counts σ
N

(dark)
V

and σ
N

(dark)
H

are evaluated by

assuming a poissonian behaviour (i.e. σ
N

(dark)
V (H)

=
√︃
N

(dark)
V (H) ), while the uncertainties

on the number of photons in the two regions are evaluated as

σNH
=
√︂
NH + (cH NH)2 + (cV NV )2 (4.1.3.19)

σNV
=
√︂
NV + (cH NH)2 + (cV NV )2 (4.1.3.20)

The two coefficients c(H)V come from an ad hoc evaluation, based on how regions
3 and 4 are identified, of the influence of the distribution tails (small, but still
relevant) on the number of photon counts due to the fact that the two distributions
are separated, but not completely.

Protective measurements In the protected case, we define the region of interest
with the same method as before (horizontal white lines in Fig. 4.9). Dark and
background counts subtraction is carried out by a conservative method, in which
we search for the minimum of pixel counts and subtract such value from every
pixel. In this case, each photon carries information about the expectation value.
Following Eq. (4.1.2.5):

⟨Â⟩ = x− x0

a
(4.1.3.21)

we can extract it from every pixel (px) and then average these results, weighting
on the number of counts:

⟨Â⟩ = 1∑︁
pxNpx

∑︂
px

Npx
xpx − x0

a
(4.1.3.22)

The uncertainties are evaluated as:

σA =
⎡⎣⎛⎝∑︁{px}(Apx − ⟨Â⟩)2Npx∑︁

{px} Npx

⎞⎠
+
(︄

1
x′
H + x′

V

+ ⟨Â⟩
x′
H − x′

V

)︄2

σ2
x′

H

+
(︄

1
x′
H + x′

V

− ⟨Â⟩
x′
H − x′

V

)︄2

σ2
x′

V

⎤⎦1/2

(4.1.3.23)
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1 2

3 4

5 6

Figure 4.8: Example of the procedure for the state
⃓⃓⃓

17
60π

⟩︂
. Here, x0 = 16.25 ± 0.04,

therefore, the cut (red line) divides the graphics in two regions, one at x ≤ 16 (V
polarization) and the other at x > 16 (H polarization). For each region, we perform
two additional cuts (white lines) to separate the regions of interest (3 and 4) for
the regions in which we only have dark and background counts (1, 2, 5, 6).

where the first term is the standard deviation of the mean, while second and
third terms are the uncertainties on parameters x′

H = xH + xpol − xvoid and x′
V =

xH + xpol − xvoid, being xvoid and xpol the positions of the beam in the acquisition
with a free optical path and with only the polarisers inserted, respectively. This
way, we compensate for the deviation induced by the polarisers. The variances of
such parameters are σ2

x′
H(V )

= σ2
xH(V )

+ σ2
xpol

+ σ2
xvoid

.

The results obtained for the measurements of the three states |+⟩,
⃓⃓⃓

17
60π

⟩︂
e
⃓⃓⃓
π
8

⟩︂
with and without protection are summarized in Fig. 4.10. In the unprotected
case (Fig. 4.10, left column), the photon counts accumulate around the positions
x = ±a. The expectation values, extracted with the methodology related to the
usual projective measurement framework, are all in good agreement with the the-
oretical expectations.

In the protected case, instead (Fig. 4.10, right column), we notice that all the
photons accumulate a specific position, corresponding to x = a ⟨Â⟩. The expec-
tation values extracted with the two procedures are in excellent agreement with
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Figure 4.9: Example of region of interest for a protected
⃓⃓⃓

17
60π

⟩︂
state.

each other within the experimental uncertainties, as well as with the theoretical
predictions for the polarization states tested. This means that, with protective
measurements, each single photon carries information about the expectation value
of its polarisation, granting the possibility of extracting such value even in a one-
shot experiment with just a single photon.

This is further confirmed by Fig. 4.11, in which we present typical photon detec-
tion maps for the state

⃓⃓⃓
17
60π

⟩︂
for a small number of detected photons, obtained by

extracting the first detection events from each data set. Despite the non-negligible
dark count level of our non-ideal SPAD array, we notice that the photons fall in
the two regions around x = ±a in the unprotected case (Fig. 4.11a) and close to
the position corresponding to ⟨Â⟩ in the protected case (Fig. 4.11b).

Furthermore, we can calculate the expectation value of the first detection event
in the protected case (white pixel in Fig. 4.11b), obtaining the value ⟨Â⟩ = −0.3 ± 0.3,
where the uncertainty is estimated from the width of the photon counts distribu-
tion presented in Fig. 4.10, this result is in agreement with the theoretical value of
⟨Â⟩ = −0.208. This is a final, clear demonstration of the capability of extracting
the expectation value from just few detection events (even one, in the ideal case)
of protective measurements.
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⃓⃓⃓
17
60π

⟩︂
unprotected state

⟨Â⟩ = −0.21(2) ( ⟨Â⟩th = −0.208)

⃓⃓⃓
17
60π

⟩︂
protected state

⟨Â⟩ = −0.19(2) ( ⟨Â⟩th = −0.208)

|+⟩ unprotected state
⟨Â⟩ = −0.03(4) ( ⟨Â⟩th = 0)

|+⟩ protected state
⟨Â⟩ = 0.0012(14) ( ⟨Â⟩th = 0)

⃓⃓⃓
π
8

⟩︂
unprotected state

⟨Â⟩ = 0.72(2) ( ⟨Â⟩th = 0.707)

⃓⃓⃓
π
8

⟩︂
protected state

⟨Â⟩ = 0.72(2) ( ⟨Â⟩th = 0.707)

Figure 4.10: Contour plots of the photon counts distributions obtained for the
unprotected (left) and protected state (right) and corresponding expectation values.
First row images: material from: ’F. Piacentini et al., Determining the Quantum
Expectation Value by Measuring a Single Photon, Nat. Phys., 2017, Macmillan
Publishers Limited’
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(a) Unprotected case (14 detection events). (b) Protected case (17 detection events).

Figure 4.11: Results for the input state
⃓⃓⃓

17
60π

⟩︂
obtained from a small number of

detected photons. The first detection event is marked in white. Yellow dashed
line: position corresponding to the theoretical expectation value of the polarization
⟨Â⟩th = −0.208. Red circles: FWHM of the corresponding distributions for the
state

⃓⃓⃓
17
60π

⟩︂
reported in Fig. 4.10. Material from: ’F. Piacentini et al., Determining

the Quantum Expectation Value by Measuring a Single Photon, Nat. Phys., 2017,
Macmillan Publishers Limited’

4.1.4 Comparison between protective and projective mea-
surements

In this section we illustrate in detail the theory behind the protective measure-
ment technique, in order to understand whether this new measurement protocol
carries an advantage over traditional quantum measurements. To do so, let us
analyse in depth both measurement protocols.

PM theoretical framework

Our implementation of PM consists of a sequence of identical interactions, cor-
responding to the unitary transformation Û = exp

(︂
− i

ℏgΠ̂H ⊗ P̂
)︂
, each followed by

a QZE-based protection realized by the projector Π̂ψ = |ψ⟩⟨ψ|.

After K interaction-protection steps, the non-normalized output state is

|Ψout⟩ =
(︂
Π̂ψU

)︂K
|Ψin⟩ =

(︂
⟨V |Π̂ψ|V ⟩1x + ⟨H|Π̂ψ|H⟩e−igP̂

)︂K
|Ψin⟩ (4.1.4.1)

where our initial state is |Ψin⟩ = |ψ⟩ ⊗ |fx⟩, with |ψ⟩ = cos(θ) |H⟩ + sin(θ) |V ⟩ and
|fx⟩ =

∫︁
dxf(x) |x⟩, where f(x) = (2πσ2)

1
4 exp

(︂
− x2

4σ2

)︂
. 1x is the identity.
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Thus, the survival probability of a photon after K steps is

psur(K) = Tr (|Ψout⟩⟨Ψout|) (4.1.4.2)

while the probability of finding a single protected photon in a specific position x1
is

FK(x1) = psur(K)−1 Tr (|x1⟩⟨x1|Ψout⟩⟨Ψout|)

=
(︄

K∑︂
k=0

(︄
K

k

)︄
⟨V |Π̂ψ|V ⟩k⟨H|Π̂ψ|H⟩K−kf(x1 − kg)

)︄2 (4.1.4.3)

which leads us to the uncertainty on the position:

u(x) =
√︂
ε(x2) − ε(x)2 (4.1.4.4)

with ε(xn) =
∫︁

dx xnFK(x).

By noticing that there exists a relation between expectation value ⟨Â⟩ and the
average position ε(x), we can obtain the uncertainty on ⟨Â⟩. In particular, we
notice that polarization V corresponds to ⟨Â⟩ = −1 and to the position ε(x) = 0
(since the polarization V is not deviated), while the polarization H corresponds
to ⟨Â⟩ = 1 and to the position ε(x) = Kg (since every interaction shifts the
polarization H of g). Therefore, the uncertainty on ⟨Â⟩ given by the detection of
a single photon can be easily obtained by rescaling the spatial uncertainty u(x):

u( ⟨Â⟩) = u(x) 2
Kg

(4.1.4.5)

Comparison with the traditional (projective) measurement

Let us now compare the performance of the PM technique with the traditional
one, which involves a single strong (projective) measurement realized, for instance,
by a polarizing beam splitter (PBS). Measuring the polarization Â of M photons in
the polarization |ψ⟩ with a PBS, the probability of observing m H-polarized (and
M −m V-polarized) photons is binomial[175] in the parameter cos2(θ). Therefore,
the estimator of Â is A = 2m

M
− 1 with associated uncertainty:

uPBS( ⟨Â⟩) =
√︂

⟨A2⟩ − ⟨A⟩2 = | sin(2θ)|√
M

(4.1.4.6)

Then, in case of one detected photon (M = 1), the uncertainty becomes uPBS( ⟨Â⟩) =
| sin(2θ)|. It is easy to show that this estimator saturates the quantum Cramér-Rao
bound (Eq. 1.4.1.7). First, we re-parametrize the state |ψ⟩ by defining α = ⟨A⟩,
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obtaining |ψ1⟩ =
√︂

1+α
2 |H⟩ +

√︂
1−α

2 |V ⟩ (i.e. cos θ =
√︂

1+α
2 ). Thus, the quantum

Fisher information is

I(α) = Tr
[︃
ρ̂αL̂

2
α

]︃
= 2

2∑︂
a,b=1

| ⟨ψa|∂αρ̂α|ψb⟩|2

αa + αb
(4.1.4.7)

where ρ̂α = |ψ1⟩⟨ψ1|, being {|ψ1⟩ , |ψ2⟩} an eigenbasis of Â and α1 and α2 the
eigenvalues of ρ̂α. For our |ψ1⟩, we obtain I(α) = 1

(1−α)(1+α) = sin (2θ)−2, which
leads to the QCRB:

u( ⟨A⟩) ≥
√︄

1
MI(α) = |sin(2θ)|√

M
(4.1.4.8)

which is saturated by uPBS. We also notice that, in contrast with our practical
implementation of PM, the projective one does not suffer losses in the ideal case.
Since this measurement does not assume previous information on the system, we
do not calculate the Van Trees bound.

In order to provide a fair comparison between projective measurements and
PMs, we need to consider the same amount of initial photons. In PMs, we con-
sidered the uncertainty associated to the detection of one protected single-photon.
Since not every photon survives the protection procedure, we need, in average,
1/psur initial photons to have one protected photon arriving to our detector. There-
fore, we set M = 1/psur in the PBS measurement case and define the ratio:

R = uPBS( ⟨Â⟩)
u( ⟨Â⟩)

(4.1.4.9)

We notice that this ratio is independent of the number of detected photons. In
fact, if we detect N photons in the protective case, the uncertainty scales as N −1/2.
Then, for a fair comparison, the number of initial photons in the PBS case should
be M = N /psur(K), corresponding to a (N /psur(K))1/2, proving our point.

The ratio R is plotted in Fig. 4.12. We note that PM almost always outper-
forms projective measurements, becoming disadvantageous only for extremely weak
interactions (e.g., for K = 100, ξ = g/σ = 0.02 and |ψ⟩ = |+⟩, we have R = 0.996).
In our case of K = 7 interaction, we can reach an impressive advantage R ∼ 3
for ξ ∼ 1. This advantage grows with the number of steps and, for K = 100 in-
teractions, we get the surprising R ∼ 8.5 advantage for ξ ∼ 0.4 (almost one order
of magnitude). For higher interaction strength, the ratio is reduced to R ∼ 1.6
(R ∼ 4) for K = 7(100), which still makes PM better in terms of uncertainty.

This surprising result tells us that PM outperforms an optimal measurement,
i.e. a measurement which saturates the QCRB. This happens because when we
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Figure 4.12: RatioR in Eq. (4.1.4.9) plotted versus the interaction strength ξ = g/σ
and the H polarization component (cos θ)2 of the single-photon state |ψ⟩. Magenta
surface: R = 1, discriminating the part where PM is advantageous (above) and
disadvantageous (below) with respect to projective measurements. Yellow surface:
ratio R for K = 7. Blue surface: ratio R for K = 100. Material from: ’F. Piacentini
et al., Determining the Quantum Expectation Value by Measuring a Single Photon,
Nat. Phys., 2017, Macmillan Publishers Limited’

calculate the QCRB we make the implicit assumption that the measurement ap-
paratus does not depend on the parameter to be estimated[115]. Our protection
scheme, however, exploits the state preparation procedure, making PM inherently
parameter dependent and, therefore, not limited by the QCRB. Attempts to find a
bound for PM have been made in [176].

R can also be seen as a quantity which identifies the necessary amount of re-
sources needed to achieve the same level of precision with the two measurement
techniques. In particular, the initial amount of photons needed with a projective
measurement to achieve a certain precision is R2 the one needed by PM (this derives
from uPBS( ⟨Â⟩) ∝ 1/

√
M). This advantage can be extremely useful for quantum

systems when states produced have “great value” (i.e. are hard to produce). Note,
however, that the resources are not exactly identical: in PMs each photon passes
through K polarisers, while in projective measurements they are sensed only by a
single polariser.

The high efficiency of the PM technique comes from the surprisingly high sur-
vival probability of the protected photon, as showed in Fig. 4.13, in which one can
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appreciate that, with K = 100 interactions and ξ ∼ 0.4, we have psur > 0.57.

Figure 4.13: Photon survival probability psur(K = 100) in a PM scheme plotted
versus the interaction strength ξ = g/σ and the H polarization component (cos θ)2

of the single-photon state |ψ⟩. Material from: ’F. Piacentini et al., Determining
the Quantum Expectation Value by Measuring a Single Photon, Nat. Phys., 2017,
Macmillan Publishers Limited’

We note, however, an high survival probability, psur > 0.23, even for strong in-
teractions (ξ = 6), where the PMs approximation does not hold anymore. We can
understand this by looking at Fig. 4.14 in which we see that the relative probability
of losing a photon in a protection step, because of unsuccessful selection measure-
ment, decreases with the single photon advancing in the sequence since photons
are more likely on the “right path”. This “natural selection” recalls genetic algo-
rithms[177]. In particular, we can see each interaction as a mutation, followed by
a crossover (the coherent recombination) and the selection, carried by the protec-
tion. This “genetic quantum measurement” protocol has been further investigated
in [176].

Furthermore, we can investigate the scaling of the uncertainty in PMs versus
the initial resources, by considering the number of photon-projection interactions
instead of the number of initial photons. To do so, we consider a situation in which
we perform the detection of a photon at each projection stage. Our initial resources
in this case, then, are the K initial photons, each individually interacting with only
one of the K identical polarisers. This way, we can define the ratio

R′ = u′
PBS( ⟨Â⟩)
u( ⟨Â⟩)

(4.1.4.10)
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Figure 4.14: Analogous of the PM scheme for strong interaction ξ ≫ 1. The
first interaction unit (composed of a birefringent crystal pair, as described in Sec.
4.1.2) completely separates the H and V polarization components which are then
projected onto the initial state |ψ⟩ with a certain probability psur. From the second
interaction unit onwards, the H and V beams coherently recombine in some spots
(indicated by the yellow circle), forming a state with non-zero survival probability
in the subsequent protection stage. This results in a reduction of the photon losses
in the paths close to the expectation value ⟨Â⟩, granting an advantage with respect
to traditional projective measurements even without weak interaction.

between the uncertainty u( ⟨Â⟩) associated with a single detected photon in a PM
with K stages, and the uncertainty u′

PBS( ⟨Â⟩) associated with the projective mea-
surement carried on M = K photons. From Fig. 4.15 we note that the value of
R′ associated with strong interactions (ξ ≫ 1) does not depend on K. This means
that the PM uncertainty in (Fig. 4.15) scales with the number of interactions as
1/

√
K, which is the same scaling of the projective measurement exploiting M = K

initial photons. Furthermore, being maxR′ ∼ 1.5, we understand that PMs with
a single detected photon (which, on average, corresponds to 1/psur initial photons)
and projective measurements exploiting K (instead of M = 1/psur) photons pro-
vide almost the same uncertainty. The advantage of PM, then, comes from the fact
that its related uncertainty scales as 1/

√
K, instead of 1/

√
M =

√︂
psur(K), since

1/psur < K.

The above considerations about the advantage of PM with respect to projec-
tive measurement have been made in the ideal case, neglecting all losses except for
the ones due to the protection. In the specific case of our experiment, the optical
losses greatly reduce the advantage we discussed so far. These, however, are just
present technological limitations, which can be overcome by introducing more effi-
cient optical components or by implementing this measurement in atomic or solid
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Figure 4.15: Ratio R′ in Eq. (4.1.4.10) plotted versus the interaction strength
ξ = g/σ and the H polarization component (cos θ)2 of the single-photon state |ψ⟩.
Magenta surface: R′ = 1, again discriminating the part where PM is advantageous
(above) and disadvantageous (below) with respect to PBS measurement. Yellow
surface: R′ for K = 7. Blue surface: R′ for K = 100. Material from: ’F. Piacentini
et al., Determining the Quantum Expectation Value by Measuring a Single Photon,
Nat. Phys., 2017, Macmillan Publishers Limited’

state quantum system, where losses are typically lower than the ones experienced
in optics experiments.

4.1.5 Conclusions
Protective measurements are a groundbreaking new measurement paradigm in

which Alice sends Bob a state and a “protection” and in which Bob obtains a mea-
surement of the expectation value of an observable by exploiting such resources.
We described the first experimental implementation of protective measurements,
showing that they can indeed extract the expectation value of an observable, a
quantity so far considered purely statistical, even with just one measurement on a
single (protected) particle. The results we obtained with this protocol were all in
agreement with the values obtained with the traditional (projective) measurements,
as well as with the theoretically-expected ones.

We also verified one fundamental property of protective measurement, i.e. that
the protection procedure preserves the coherence of the initial state, as certified by
the high Fidelities between the initial state and the reconstructed protected state.
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Finally, we theoretically demonstrated how protective measurements outper-
form the projective ones, even allowing for an uncertainty reduction of almost one
order of magnitude for K = 100 interaction-protection stages. This advantage may
lead to significant applications, for instance, when testing an unknown state prepa-
ration procedure in which the produced states have “great value” (i.e., they are
difficult to produce).

Our results do not only represent an important metrological advancement, but
may also shed important insights on the foundations of quantum mechanics, espe-
cially in the hot debate about the ontic or epistemic nature of the wavefunction[170,
171, 172, 173]. Possible future extensions of this work regard a calculation of the
effective bound on the uncertainty and an investigation of the strong measurement
regime.

4.2 Robust weak measurements
Weak values (Sec. 1.2.4) are one of the most interesting new quantum measure-

ment paradigms, with several important applications both in fundamental physics
and metrology. In spite of that, weak values are still controversial. Since they rely
on a weak coupling, weak values can only be observed after averaging over a very
large number of readings of the pointer variable. The legitimacy of this statistical
analysis has, however, been questioned (Sec. 1.2.4), since weak values also rely
on post-selection, a non-standard experimental practice. In an attempt to shine
some light on this matter, we introduce the robust weak measurements (RWMs),
a natural evolution of PMs. In particular, RWMs are an iterative measurement
protocol in which even a single reading of the measuring device provides a reliable
estimate of a weak value, even for anomalous weak values, i.e. the ones lying out-
side the eigenvalue spectrum of the measured observable. While the post-selection
still has a crucial role, with RWM the anomalous outcome no longer arises from a
statistical analysis. In the following section, we will theoretically introduce RWMs
and describe a quantum optics experiment able to implement them, presenting the
obtained results.

4.2.1 Theory
RWM allows extracting in a single shot the weak value of an observable A.

In order to describe them, let us first define, following our usual description, the
system S, the meter M and the total system T :

• System S
The system is defined as in PMs (Sec. 4.1.1). By decomposing it in the
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eigenbasis |ai⟩ of Â, the initial state of the system can be described as

|ψ⟩ =
∑︂
i

αi |ai⟩ (4.2.1.1)

• Meter M
The meter M has a continuous pointer value described by an operator Q̂
whose initial wavefunction is supposed to follow the normal distribution:

fx(x) = 1√︂
σ

√
2π

exp
(︄

− x2

4σ2

)︄
(4.2.1.2)

• Total system T
As per PMs (Sec. 4.1.1), the only non-vanishing term in the total Hamiltonian
is assumed to be the interaction one:

Ĥ int = gÂ⊗ P̂ (4.2.1.3)

with P̂ being the canonically conjugated operator to the pointer Q̂.

Within this framework, we follow a procedure similar to the one described for PMs,
i.e. an iterative protocol in which the photon is pre- and post-selected before and
after every weak coupling with the measuring device. We also note that perform-
ing N steps of this procedure is equivalent to coupling N particles of a pre- and
post-selected system with a single measurement device, a procedure first described
in [178].

Intuitively, one may think that each step of RWM procedure generates a shift
on the pointer which is proportional to the weak value ⟨A⟩w. However, real world
couplings g/σ > 0 have been showed to affect the state evolution, making the weak
value less anomalous[179, 180]. Therefore, before proceeding with the experiment,
we need study such effects on our polarization-based implementation of this iterative
weak value measurement protocol.

Robust weak measurement of polarization

In our experiment, we want to measure (anomalous) weak values of the polar-
ization observable

Â = |H⟩⟨H| − |V ⟩⟨V | (4.2.1.4)
with a N -steps RWM protocol, i.e., a series of N weak couplings, each sandwiched
between pre- and post-selections.
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In order to provide a mathematical description of RWM, let us define the pre-
selected (|ψα⟩) and post-selected (|ψβ⟩) states:

|ψα⟩ = cosα |H⟩ + sinα |V ⟩ (4.2.1.5)
|ψβ⟩ = cos β |H⟩ + sin β |V ⟩ (4.2.1.6)

Thus, the pre-(post-)selection process can be described by the projectors Π̂α(β) =⃓⃓⃓
ψα(β)

⟩︂⟨︂
ψα(β)

⃓⃓⃓
and the effective interaction Hamiltonian by

Ĥ int = gÂ⊗ P̂ (4.2.1.7)

which is realized, as in Sec. 4.1.2, by a birefringent crystal with an interaction
Hamiltonian Ĥ ′

int = 2gΠ̂H ⊗ P̂ , being Π̂H = |H⟩⟨H| the projector onto the horizon-
tal component of the polarization. The two formulations only differ by a translation.

Lastly, we introduce the rotation operator R̂, which is defined as

R̂ |ψβ⟩ = |ψα⟩ (4.2.1.8)

and, since we’re dealing with linearly-polarized states, can be experimentally im-
plemented with a half-wave plate, which allows us to perform any rotation on the
linear polarization plane.

Now, we can define the RWM protocol as a succession of N “interaction blocks”
Û , each consisting in a pre-selection Π̂α = |ψα⟩⟨ψα| followed by a weak interac-
tion Û = exp

(︂
− i

ℏĤ
′
int

)︂
, a post-selection Π̂β = |ψβ⟩⟨ψβ| and the rotation R̂, which

transforms the post-selected state |ψβ⟩ in |ψα⟩, in order to avoid losses due to the
pre-selection process. This interaction block, then, has the following mathematical
expression

Û = R̂Π̂βÛΠ̂α (4.2.1.9)
which allows us to write the state after N interactions as

|Ψout⟩ = Û
N

|ψα⟩ ⊗ |fx⟩ =
∑︂
k

(︄
N

k

)︄
Zk
He

−i2gkP̂ZN−k
V |ψα⟩ ⊗ |fx⟩ (4.2.1.10)

being ZH(V ) = ⟨ψβ|Π̂H(V )|ψα⟩.

Thus, the probability of finding a photon in the position x after a RWM mea-
surement of N steps is

FN(x, α, β,N) = |(⟨x0| ⊗ ⟨ψα|) |Ψout⟩|2 =
⃓⃓⃓⃓
⃓
N∑︂
k=0

(︄
N

k

)︄
Zk
HZ

N−k
V fx(x− 2kg)

⃓⃓⃓⃓
⃓
2

(4.2.1.11)
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Integrating FN , we get the survival probability

psur(α, β,N) =
∫︂
dxFN(x, α, β,N)

=
N∑︂
k=0

N∑︂
k′=0

(︄
N

k

)︄(︄
N

k′

)︄
Zk+k′

H Z2N−k−k′

V exp
[︄
− g2

2σ2 (k − k′)2
]︄ (4.2.1.12)

and, finally, the expectation value of the pointer position

⟨x⟩ =
∫︂
dx x

FN(x, α, β,N)
psur(α, β,N)

= 1
psur(α, β,N)

N∑︂
k=0

N∑︂
k′=0

(︄
N

k

)︄(︄
N

k′

)︄
Zk+k′

H Z2N−k−k′

V (g(k + k′)) ×

× exp
(︄

− g2

2σ2 (k − k′)2
)︄ (4.2.1.13)

and the standard deviation of the pointer

σx =
√︂

⟨x2⟩ − ⟨x⟩2 (4.2.1.14)

= 1
psur(α, β,N)

N∑︂
k=0

N∑︂
k′=0

(︄
N

k

)︄(︄
N

k′

)︄
Zk+k′

H Z2N−k−k′

V σ2×

× exp
(︄

− g2

2σ2 (k − k′)2
)︄

(4.2.1.15)

In this framework, the weak value is defined as

⟨A⟩w = ⟨x⟩
Ng

− 1 (4.2.1.16)

with an associated standard deviation of

σ⟨A⟩w
= σx
Ng

(4.2.1.17)

From Eq.s (4.2.1.16) and (4.2.1.13), we notice that weak values obtained through
RWMs not only depend upon the pre- and post-selected state, but also on the
number of steps N and the g/σ parameter, reaching the correct value for g/σ → 0.
Moreover, this effect is eventually perfectly predictable and can be corrected. In
fact, for anomalous weak values, the RWM outcome shrinks as the interaction
strength g/σ increases (an effect already observed for weak values in[179, 180]).
This effect does not scale linearly with the number of steps, as can be clearly ap-
preciated in Fig. 4.16a, in which we can see the predicted weak value as a function
of the interaction parameter η = exp

(︂
− g2

2σ2

)︂
, with η = 1 being the ideal adiabatic
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case. This happens because, as η deviates from the ideal case, the post-selection
causes distortions of the pointer distribution (examples in Fig. 4.17). These dis-
tortions start as a shrinking of the pointer width for η ∼ 1 (Fig. 4.17a), but, as η
decreases, they deform the pointer into multilobate structures (as in Fig. 4.17b).
Furthermore, both these effects grow stronger as the anomaly (i.e. the distance
between the theoretical weak value ⟨Â⟩w = ⟨ψα|Â|ψβ⟩ / ⟨ψα|ψβ⟩ and the closest
eigenvalue of Â) increases, as can be appreciated by comparing the two plots in
Fig. 4.16.

(a) {α = 0.62, β = 2.53} case. (b) {α = 0.52, β = 2.63} case.

Figure 4.16: Robust weak value for fixed α and β as a function of the parameter
η. Blue line: N = 1. Red line: N = 2. Green line: N = 3. Magenta line: N = 7.

In the non-anomalous regime, instead, we notice that the weak value slightly
enlarges as η parts from the ideal case. This is the case, for instance, of Fig 4.18,
where we fixed α = 0.52 and β = 0.88. The pointer distribution, in this case, only
experiences a widening of its width on the x axis as η decreases.

For these reasons, we need to carefully take into account the influence of each
parameter on each weak value we want to measure. In the next section, we illustrate
our experimental RWM implementation.

4.2.2 Experiment
Setup

Our experimental setup is shown in Fig. 4.19. Our photons source (section (a)
of Fig. 4.19) is composed by a 76 MHz mode-locked laser whose second harmonic
(398 nm) pumps a 10 × 10 × 5 mm LiIO3 crystal, in which Type-I SPDC takes
place. The signal photons are spectrally filtered by an IF centred at 702 nm and
with a FWHM of 10 nm, and coupled to a single-mode fibre. At the end of the
single-mode fibre, the photons are collimated in a Gaussian mode with width σ,

118



4.2 – Robust weak measurements

(a) η = 0.986, we notice a shrinking of the
pointer width on the x axis.

(b) η = 0.952, we observe a large, multilo-
bate pointer spatial distribution.

Figure 4.17: Pointer distributions of RWV in the non-ideal regime for
{α = 0.62, β = 2.53, N = 7}. x and y axis: arbitrary units.

Figure 4.18: Robust weak value for {α = 0.52, β = 0.88} as a function of the pa-
rameter η. Blue line: N = 1. Red line: N = 2. Green line: N = 3. Magenta line:
N = 7.

as defined in Eq. (4.2.1.2) and sent to the free-space path where the robust weak
measurement experiment occurs. The idler photons are spectrally filtered by an IF
centred at 920 nm and with a FWHM of 10 nm, fibre coupled, and sent to a SPAD,
whose output helps us monitor any eventual fluctuations in the source intensity.
Photons produced this way are in a multi-thermal distribution with a mean photon
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Figure 4.19: Experimental setup. PBS: polarizing beam splitter. SMF: single-mode
fibre. WM: weak measurement block. HWP: half-wave plate. BCs: birefringent
crystals units. Pol: polariser. EM-CCD: electron-multiplying CCD. SPAD: single-
photon avalanche diode.

number per pulse ≪ 1. This guarantees a short coherence time (∼ 150 fs), which
allows avoiding self-interference effects due to internal reflections in the many op-
tical elements needed for our RWM.

In the RWM path, a polarizing beam splitter filters any residual polarization
component. Then, the signal photons interact with N = 7 consecutive identical
weak measurement blocks (WM), each of them implementing the three weak mea-
surement phases, i.e. pre-selection, weak coupling and post-selection. The photon
enters in a linear polarization, either thanks to the PBS or to the post-selection of
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the previous block. The pre-selection stage consists in a half-wave plate, rotating
the photon polarization to the desired |ψα⟩ polarization. The weak interaction is
realized by a pair of birefringent crystals, which create a slight displacement on the
x axis between the H and V polarization components. In each pair, the crystal
roles are the same described in 4.1.2 for PMs, generating here a displacement of
g = 0.575 ± 0.007 px (note that here we define g in a different way and we use
a different set of crystals and detector with respect to PM). The post-selection is
executed by a polariser, projecting the photons in the state |ψβ⟩. This configuration
is equivalent to the one described in Sec. 4.2.1. Finally, photons are detected by a
2D spatially-resolving electron-multiplying CCD (EM-CCD) device, able to work
both in linear analog regime and in photon counting regime[181].

We choose to employ this specific 2D photon detector instead of the one used
for PM (Sec. 4.1.2) because the low photon survival probability in the anomalous
weak value regime limits us to a signal-to-noise which is too small for the SPAD
camera.

4.2.3 Results
We decide to acquire data sets for four different parameters sets, shown in Tab.

4.1. For each of these sets, the number of steps is N = 7 and the interaction
strength is the aforementioned g = 0.575 ± 0.007 px.

α (rad) β (rad) σ (px)
(a) 0.62 2.53 3.30
(b) 0.62 2.53 1.80
(c) 0.52 2.62 1.66
(d) 0.52 0.88 1.78

Table 4.1: Parameters of the measurement setup.

For each set, we perform a first acquisition with |ψα⟩ = |H⟩ and |ψα⟩ = |V ⟩ and
only the crystals in the optical path, to calibrate the system. Then, we perform an
acquisition with |ψα⟩ and |ψβ⟩ in the desired state and all polarisers and wave-plates
in the optical path. Last, we perform an acquisition with only the polarisers and
wave-plates and one with a free optical path, to compensate the deviations induced
by those optics.

Weak values extraction

Let us now look at the analysis techniques we employed to evaluate the RWMs
of the polarization.
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In contrast with the previously-exploited SPAD array (Sec. 4.1.3), our EM-CCD
does not have hot pixels. Therefore, we only need to perform a linear regression of
the data in order to determine and remove the dark counts. In the rare event of
pixels outside the region of interest, we opted to remove them with a mask.

After that, we extract the centres xH , xV , xpol and xvoid of the distributions
obtained with the input states |H⟩ and |V ⟩, with only polarisers and wave-plates,
and with a free optical path, respectively. Such values and their uncertainties are
obtained by averaging linear regressions of multiple acquisitions. In this case, each
photon carries information about the weak value, which can be extracted from the
formula

⟨Â⟩w = 2(x− xpol + xvoid) − xV − xH
xH − xV

(4.2.3.1)

where x is the position in which the photon has been detected. We can, then,
extract ⟨Â⟩w directly from a single photon detection. The associated uncertainty
is evaluated as

σ⟨Â⟩ =

⌜⃓⃓⃓
⎷σ2

px + σ2
angles +

5∑︂
i=1

⃓⃓⃓⃓
⃓∂ ⟨Â⟩
∂xi

⃓⃓⃓⃓
⃓
2

σ2
xi

(4.2.3.2)

where x1 = x, x2 = xH , x3 = xV , x4 = xpol and x5 = xvoid.
σpx is the type-B uncertainty due to the discretization of the EM-CCD camera used
for the experiment. We estimate it to be the size of half a pixel of the EM-CCD,
and then we propagate it through the subsequent formulas extracting the weak
value.
σangles is the type-B uncertainty associated with the sensitivity of the rotating stages
hosting the polarisers and the half-wave plates determining α and β. It is taken as
1 degree (a good estimation of the precision we can reach in setting these angles,
considering the 2 degrees resolution of the rotators used).

The uncertainties σxi
of xi are evaluated as the statistical uncertainties in the

case of xpol and xvoid, and as:

σx =
√︃
σ2
x,stat + σ2

inhom + ⟨Â⟩2
w,th σ

2
g + σ2

threshold (4.2.3.3)

σxH(V ) =
√︂
σ2
xH(V ),stat + σ2

inhom + σ2
g (4.2.3.4)

for x, xH and xV . ⟨Â⟩w,th is the theoretically-expected RWM result for our param-
eters.
σxi,stat indicates the statistical uncertainty on xi.
σinhom is the type-B contribution accounting for the inhomogeneities within the
birefringent crystals, causing distortion and broadening on the final photon dis-
tributions. To estimate it, for each case a-d we take the V distribution (the one
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theoretically unaffected by the birefringence in our setup) and extract its average
value and the centre of the Gaussian fit, evaluating the discrepancies between them
and choosing such value as type-B uncertainty.
σg is the type-B contribution related to the determination of the coupling constant
g between quantum state and measurement device. To obtain this, we evaluate g
for each crystal pair, and then calculate the uncertainty on the obtained g values.
σthreshold is the type-B contribution accounting for the threshold chosen to discrim-
inate between signal photons and noise (unwanted background photons and dark
counts). It is estimated as some confidence level on the threshold applied.

# 1 2 3 4 5 6 7 8
α (rad) β (rad) σ (px) η ⟨Â⟩w,th ⟨Â⟩w,exp ⟨Â⟩1P

w σ⟨Â⟩1P
w

(a) 0.62 2.53 3.30 0.985 2.67 2.66 ± 0.12 3.1 ± 0.7 0.7
(b) 0.62 2.53 1.80 0.952 1.40 1.50 ± 0.10 1.6 ± 0.6 0.7
(c) 0.52 2.62 1.66 0.945 1.64 1.58 ± 0.07 2.0 ± 0.5 0.4
(d) 0.52 0.88 1.78 0.949 0.19 0.14 ± 0.05 -0.4 ± 0.7 0.6

Table 4.2: Results for the four cases under test. Columns 1-5: preparation param-
eters α, β, σ and η and the corresponding theoretical RWV ⟨Â⟩w,th. Column 6:
experimental values results. Column 7: results for a single-detection experiment.
Column 8: theoretical prediction of the uncertainty for the single-detection exper-
iment.

Column 6 of Tab. 4.2 and Fig. 4.20 host our results for the four different pa-
rameter configurations. As we can see, all measurements are in agreement with the
theoretical predictions, even with a coverage factor k = 1. This means that, with
RWM, each single photon carries information about the weak value of its polarisa-
tion, granting the possibility of extracting such value even in a one-shot experiment
with just a single photon.

Furthermore, we can calculate the RWM outcome of the first detection event
(black boxes in Fig. 4.20), obtaining the values in column 7 of Tab. 4.2, where
the uncertainty corresponds to the width of the final pointer wavefunction in the
x-direction and is estimated from the standard deviation of the pointer (as in Eq.
(4.2.1.17)), calculated for the parameters α, β and the initial width of the pointer
σ. These values are all in agreement with our theoretical expectations and their
uncertainties are close to the ones theoretically predicted. This is a further demon-
stration that RWMs allow us to extract a (anomalous) weak value even from one
single detection event, an impossible task in usual weak value estimation proce-
dures.
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Figure 4.20: Marginals of the normalized photon counts distributions. Green lines:
extremes and centre of the eigenvalues spectrum. Purple lines: theoretically ex-
pected RWM outcome. Black square: first click of the run. Results are reported in
Table 4.2

.

Let us now analyse more in detail these results.

Cases a and b

Fig. 4.21 reports the behaviour of the anomalous weak value, obtained from
Eq. (4.2.1.16), for the parameters α = 0.62, β = 2.53, as a function of the pa-
rameter η for different numbers of steps N (already showed in Fig. 4.16a) and
our experimental points, noticing a good agreement even with a coverage factor
k = 1, confirming the connection between the shrinking of the weak value and the
interaction strength predicted by our model.

We also notice that case b shows a trilobate structure (Fig. 4.20b), as we
predicted in Sec. 4.2.1 and Fig. 4.17. In this case, the evaluation of the statistical
uncertainties has been carried out with the Monte Carlo method[182].
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Figure 4.21: RWM for {α = 0.62, β = 2.53} as a function of the parameter η. Blue
line: N = 1. Red line: N = 2. Green line: N = 3. Magenta line: N = 7. Azure
points: experimentally-obtained weak values with our RWM procedure, reported
with the associated uncertainties (azure vertical bars).

Case c

In Fig. 4.22 we report the behaviour of the anomalous weak value as a function
of the parameter η for different numbers of steps N and α = 0.52, β = 2.63 (already
showed in Fig. 4.16a). We notice a good agreement between our experimental value
and the theoretical magenta curve even for a coverage factor k = 1.

Figure 4.22: Robust weak value as a function of the parameter η for
{α = 0.52, β = 2.62}. Blue line: N = 1. Red line: N = 2. Green line: N = 3.
Magenta line: N = 7. Azure point: experimentally-obtained weak value with our
RWM procedure, reported with the associated uncertainties (azure vertical bars).

Furthermore, by looking at Fig. 4.20c, we notice that, despite having a similar
η with respect to case b (Fig. 4.20b), the pointer distribution does not exhibit a
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multilobate structure, a direct evidence of the dependency of the intensity of the
distortion with respect to the anomaly of the weak value.

Case d

In Fig. 4.23 we report the behaviour of the non-anomalous weak value for the
parameters α = 0.52, β = 0.88, as a function of the parameter η for different num-
bers of steps N (already showed in Fig. 4.18). We notice, again, a good agreement
between theory and experiment even with a coverage factor k = 1.

Figure 4.23: Robust weak value as a function of the parameter η for
{α = 0.52, β = 0.88}. Blue line: N = 1. Red line: N = 2. Green line: N = 3.
Magenta line: N = 7. Azure point: experimentally-obtained weak value with our
RWM procedure, reported with the associated uncertainties (azure vertical bars).

We have, thus, demonstrated, for the first time, the capability of extracting the
weak value from even one detection event of RWM, a huge novelty with respect
to the traditional weak value measurement procedures, which require averaging
over a very large number of readings of the pointer variable. Furthermore, our
experimental data fit the theoretical model for RWM, confirming our predictions
about the “shrinking” effect and the distortion of the pointer distribution.

4.2.4 Conclusions
Robust weak measurements are a novel measurement protocol which exploits

repeated couplings with the same pointer to directly extract the weak value even
from a single detection event. We described the first experimental implementa-
tion of RWM, demonstrating how they allow us to extract the weak value of an
observable even from a single measurement on a single particle, even in case of
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anomalous weak values, i.e. the ones lying outside the measured observable eigen-
value spectrum. Our experimental results are all in agreement with the theoretical
predictions within a coverage factor k = 1, certifying the reliability of our quantum
optical implementation of RWM. We believe that our analysis will offer a deeper
understanding of the meaning of weak values, stressing their non-statistical, single-
particle nature, and of the nature of the anomalous ones.

Furthermore, the unprecedented measurement capability of RWMs, able to ex-
tract single-shot (anomalous) weak values, will surely pave the way for future prac-
tical applications to quantum metrology and other quantum technologies.
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Chapter 5

Novel quantum mechanical tools
and related reconstruction
techniques

Part of the work described in this chapter has been previously published in [183]
and [184].

In this chapter, we introduce the theoretical concept and illustrate the recon-
struction technique for the pseudo-density operator (PDO), an extension of the
traditional density matrix formalism able to describe spatial and temporal corre-
lations on an equal footing. Such a tool can be used to model physical scenarios
that the usual density operator cannot cope with. For instance, situations were
we have to add some “ad hoc” nonlinearity in the evolution of quantum systems
(something in contrast with the linearity of traditional quantum mechanics). We
will then show the first reconstruction of a PDO, obtained in a quantum optics
experiment simulating the behaviour of a three qubit system impossible to describe
with traditional quantum mechanical tools (i.e. density matrices). Since PDOs
cannot be obtained by usual tomographical techniques, our results mark a relevant
milestone both for the physics and metrology communities.

5.1 Beyond the density operator: the pseudo-
density operator

In quantum theory, the complete specification of the state of a physical system is
given at any one time by its density operator, and the initial conditions; the density
operator of a composite system contains all the possible spatial correlations among
its subsystems. Such operator, however, cannot describe temporal correlations
among systems measured at multiple times, even though relativity[185, 186], has
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revealed that many distinctions between space and time are not as fundamental as
we previously thought. This prompts the question of whether it could be possible to
eliminate this asymmetry between spatial and temporal correlation, by introducing
a more general formalism. For this reason, several attempts to generalize quantum
theory and, in particular, the density operator, have been made[187, 188]. We focus
on the pseudo-density operator[189], a generalization of the density operator which
treats space and time indiscriminately. As we will see in the following sections,
this new formalism allows describing many physical phenomena involving space-
time correlations, such as black holes and closed (open) time-like curves, which
traditional quantum mechanical formalism finds difficult to describe.

5.1.1 Pseudo-density operator: definition and properties
A density operator (Sec. 1.1.1) can be viewed as a collection of all possible

statistics ensuing from measurements of observables on a system of interest. For a
n-qubit system, for instance, we can write a general density operator as[27, 189]:

ρ̂n = 1
2n

3∑︂
i1=0

· · ·
3∑︂

in=0
⟨
n⨂︂
j=1

σ̂ij ⟩
n⨂︂
j=1

σ̂ij (5.1.1.1)

where

σ̂0 = 1 =
(︄

1 0
0 1

)︄
σ̂1 = X̂ =

(︄
0 1
1 0

)︄

σ̂2 = Ŷ =
(︄

0 −i
i 0

)︄
σ̂3 = Ẑ =

(︄
1 0
0 −1

)︄ (5.1.1.2)

⟨⨂︁n
j=1 σ̂ij ⟩ is the expectation value of the product of the outcomes of measurements

of the n operators σ̂ij .

PDOs generalise these operators into covering statistics that pertain to the time
domain. In this case, then, the tensor product combines both space-like or time-like
separated systems. Then, the general PDO for n qubits is defined as:

R̂n = 1
2n

3∑︂
i1=0

· · ·
3∑︂

in=0
⟨{σ̂ij }nj=1⟩

n⨂︂
j=1

σ̂ij (5.1.1.3)

which differs from the expression for the density operator (Eq. (5.1.1.1)) be-
cause ⟨{σ̂ij }nj=1⟩ now denotes the expected value given by the outcomes of a set
of independently-performed (i.e. not influenced by the outcome of the other mea-
surement events) Pauli measurements, which, in contrast with the usual density
operator, can be performed at different times on the same particle. PDO, thus,
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generalizes the traditional density operator formalism to describe space-time cor-
relations.

PDO shares the following properties[189] with the density operator:

• R̂ is Hermitian (R̂ = R̂
†);

• Tr R̂ = 1.

Furthermore, we can define the reduced PDOs of a system in the same way we do
for the density operator formalism (Sec. 1.1.1), e.g., given a the PDO R̂AB defined
over two systems A and B, we can obtain the PDO for the system A with the
partial trace R̂A = TrB R̂AB.

Differences appear, however, when considering time correlations. Let us, for
instance, imagine a physical system composed of a single qubit initially in the
maximally mixed state (R̂ = 1/2) which can be measured at two different time
instants t1 and t2, with no time evolution between them. Each measurement can
be performed in any of the three Pauli operators X̂, Ŷ and Ẑ. We can represent
such state with the following PDO:

R̂12 = 1
4{112 + X̂1X̂2 + Ŷ 1Ŷ 2 + Ẑ1Ẑ2} (5.1.1.4)

where 1 and 2 indicate t1 and t2, respectively. It is simple to show that R̂12 has at
least one negative eigenvalue, therefore it is not positive and, as a consequence, it
is not a density operator. Interestingly, the reduced PDOs of such systems are

R̂1(2) = Tr2(1) R̂12 = 1
2 (5.1.1.5)

which correspond to the density operators of a maximally-mixed state. So the
marginals of this generalised operator are actually both perfectly allowed density
operators, but the overall time-correlated PDO describing such a bipartite state is
not.

Being able to naturally merge spatial and temporal correlations, PDOs are
suited to describe a wide class of physical phenomena which involve predictions of
space-time correlations violating the standard properties of quantum theory, such
as superpositions of different space-time geometries in quantum gravity, resulting
in superposing different causal orders [190]; or the physics of black holes [191]. This
makes them an innovative and precious tool, because the aforementioned physical
scenarios can not be described by the density matrix formalism without generating
paradoxes to be reconciled, eventually, by adding nonlinear terms in the quantum
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state evolution (something in sharp contrast with the linearity of quantum mechan-
ics shown in Chapter 1). Therefore, the development of a technique allowing for
PDO reconstruction is a high-profile metrological challenge, very likely to produce
a major impact on fundamental science. In the next sections, we describe the re-
construction technique for a three-qubit PDO and briefly show the results obtained
applying it to two quantum optical systems simulating the behaviour of the two
physical systems mentioned above: entanglement near open time-like curves and
the black hole information loss paradox.

5.1.2 Case 1: reconcile the black hole information loss para-
dox

One of the most interesting properties of black holes[192] is the Hawking radi-
ation[193], i.e. black-body radiation spontaneously emitted by black holes, which
is due to the steady conversion of quantum vacuum fluctuations into pairs of par-
ticles, one of which escapes at infinity while the other is trapped inside the black
hole horizon. This radiation reduces the mass of black holes and is therefore also
known as black hole evaporation.

The possibility of black hole evaporation, however, poses a problem from the
quantum mechanical perspective[194, 195, 196, 197], as well as other cosmological
aspects[198, 199, 200, 201]. This happens because, if the process is unitary (as
prescribed by quantum theory), then entanglement must be created between the
exterior and the interior of the black hole as particle pairs are generated through the
process of Hawking radiation [202, 203, 204, 205]. In an elementary model of evap-
oration based on a finite number of qubits, we should presumably, at some point,
reach a situation in which all the qubits left inside the black hole are maximally en-
tangled with the qubits outside of it, assuming thermal radiation has been emitted.
As the black hole continues to evaporate, then, Hawking radiation would imply the
generation of even more entanglement between the interior and the exterior of the
black hole. However this cannot be further, since qubits already maximally entan-
gled cannot be entangled with anything else. This fact, that a system cannot be
maximally entangled to more than one other system, is known as the monogamy
of entanglement principle [17, 206]. To solve this contradiction, known as black
hole information loss paradox [207], we either have to drop the unitary description
of black hole evaporation, or allow the violation of the monogamy of entanglement
[208]. PDO formalism allows describing the latter.
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Black hole evaporation and PDO

Following the Schwarzschild metric[209], that describes space-time in the pres-
ence of a non-rotating black hole[210], crossing the horizon for a particle is equiv-
alent to swapping the signatures of the spatial and temporal components of the
metric [211]. Now, if we think of a typical quantum phase factor ei(kx−ωt), the
change of the sign of space and time simply corresponds to complex conjugation of
the phase factor. In this sense, the effect on the density operator of an in-falling
quantum system should be described by the operation of transposition (which swaps
the off-diagonal elements and therefore implements the complex conjugation). How-
ever, transposition is a positive, but not completely positive, operation. This means
that, if we perform transpose on just one of two entangled systems, the overall state
may not end up being a valid density operator but it is, however, a valid PDO.
In particular, we can describe the process of one particle of an entangled pair in
the state |ϕ+⟩ = 1√

2(|00⟩ + |11⟩) with the partial transpose 1 ⊗ T̂ . The outcome
of such operation is the state R̂bh, described in Eq. (5.1.1.4), which can be used
to describe the state of a pair of qubits, with one of them falling into the black hole.

The PDO formalism, then, allows modelling the process of black hole evapora-
tion. Suppose to have a maximally-entangled state created just above the event
horizon of a black hole, as in the process of Hawking radiation. One of the par-
ticles (Q2), falls onto the black hole. This process creates time-like correlations
between Q2 and the other particle (Q3), described by the state R̂

bh, as defined
above. When Q2 becomes entangled with another particle (Q1), this leads to a
three-qubit entangled pseudo-state, which can be written as

R̂123 = 1
8{1123 − Σ12 + Σ23 − Σ13)} (5.1.2.1)

where Σij = XiXjIk +YiYjIk +ZiZjIk. The reduced states are R̂12 = 1
4(112 − Σ12),

R̂13 = 1
4(113 − Σ13), and R̂23 = 1

4(123 + Σ23). Now we can see that Q2 and Q3
are maximally correlated (in time), while Q1 and Q3, as well as Q1 and Q2, are
maximally entangled (in space). Therefore, correlations described by PDOs need
not obey the principle of monogamy of entanglement. We conjecture this PDO
could be used to describe the elementary step involved in the black hole evaporation.

5.1.3 Case 2: entangled particles in an open time-like curve
Einstein’s general relativity (GR)[186, 212, 213] allows for particular solutions

which involve time travel. This is the case, for instance, of closed time-like curves
(CTCs)[214], which allow observers to travel backwards in time and, possibly, even
to interact with their former selves. However, these solutions have been argued to
be unphysical in classical general relativity, because they lead to paradoxes, such
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as the grandfather’s paradox [215, 216]. Somebody even invokes a chronology-
protection principle to rule out their existence in physical reality [192]. Possible
solutions to these paradoxes come from merging general relativity with quantum
theory, by considering the dynamics of a quantum object in proximity of CTCs
[217, 218, 219]. While this approach seems to resolve the classical paradoxes, it
requires the dynamical evolution on each of the qubit copies to be non-linear[217].
Because of non-linearity, CTCs can be used to perform perfect discrimination of
non-orthogonal states and other tasks that violate quantum theory [220, 221, 222,
223, 224]. This nonlinear evolution has also been experimentally simulated [225].

In open time-like curves (OTCs), instead, the observer travels backwards in
time, avoiding any contact with his former self. Interestingly, even in this case
there can be violations of basic properties of entanglement. In fact, if we consider
a time-travelling qubit Q2 which is initially maximally entangled with another,
chronology respecting qubit Q1, in the chronology-violating region, we have that
the qubit Q1 is both maximally entangled with Q2 and with its future copy Q3,
thus violating the monogamy of entanglement[224, 226]. In the usual description,
based on traditional density operators, the monogamy of entanglement is preserved
at the expenses of introducing a nonlinear evolution. PDOs, instead, allow us to
provide a consistent description for the three-qubit system within the chronology
violating region, while maintaining the violation of the monogamy of entanglement
without giving up on linearity.

In particular, we can describe an OTC with a model (Fig. 5.1) in which a
maximally entangled pair of qubits (Q1 and Q2) is created in the distant past
of the region of space-time that contains the OTC; qubit Q2 is then sent into
the OTC. The copy which emerges from the OTC is represented by a third qubit
(Q3). In the distant past and the distant future, the state of the qubits is just a
maximally entangled pair. However, in the chronology-violating region, Q1 has to
be maximally entangled both with the qubit that emerges from the OTC (Q3) and
with the qubit entering it (Q2). This can be described by the PDO:

R̂123 = 1
8{1123 − Σ12 + Σ23 − Σ13)} (5.1.3.1)

The two reduced states R̂12 = 1
4(112 − Σ12) and R̂13 = 1

4(113 − Σ13) are two den-
sity operators, representing each a maximally entangled pair, while the marginal
R̂23 = 1

4(123 + Σ23) is, instead, a PDO describing the (maximal) temporal correla-
tions between qubits Q2 and Q3 (and not a proper physical state, like the ones
corresponding to R̂12 and R̂13). R̂123, then, describes a system of three qubits
which are maximally anti-correlated in every basis, which is also unphysical. This
description can be easily generalized in order to allow any unitary transformation
on the qubit entering the OTC. As per the black holes case, this shows again that
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the PDO describes correlations that need not obey the entanglement monogamy,
thus being a viable tool to linearly describe an OTC. We also note that, from the
mathematical point of view, the structure of this PDO is equal to the one describing
the black hole case (Eq. (5.1.2.1)).

Figure 5.1: OTC circuit (pictorial representation). Qubits Q1 and Q2 are initially
in a singlet state. Qubit Q2 enters a chronology-violating region (blue shaded box),
emerging as qubit Q3. In the chronology-violating region, qubits Q1 and Q2 must
be in a singlet state, and so are qubits Q1 and Q3. Furthermore, since Q2 and
Q3 are, respectively, the past and future copy of the same qubit, they are also
maximally correlated. This situation violates monogamy of entanglement: this is
why it cannot be described by ordinary density operators, while it can be modelled
by PDOs. Background photo taken by Franco Ruggiero.

5.1.4 PDO reconstruction techniques
In order to reconstruct the PDOs described by Eq.s (5.1.2.1) and (5.1.3.1), we

perform a quantum-optical experiment simulating the behaviour of the three qubits
of these systems, and we reconstruct all the statistics contained in the related PDOs,
by constructing different sub-ensembles of entangled pairs of photons (A and B),
on which different measurements are realised. In our system, photon A can be
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measured at two different times (t1 and t2) while photon B can only be measured
once at time t1. Then, photon A measured at two different times represents qubits
Q2 and Q3, while photon B represents qubit Q1. Note that the simulation consists
of reproducing all the statistics belonging to the OTC/black hole physical scenario
by performing the relevant measurements on different sub-ensembles - the quantum
systems in each of these sub-ensembles obeying quantum theory.

Let us now describe our experimental setup.

Setup

Figure 5.2: Experimental setup. H: half-wave plate. Q: quarter-wave plate.
PBS: polarizing beam splitter. IF: interference filter. SHG: second harmonic
generation. BBO: β-Barium borate. cb C. Marletto et al., Theoretical de-
scription and experimental simulation of quantum entanglement near open time-
like curves via pseudo-density operators. Nat Commun 10, 182 (2019). https:
//doi.org/10.1038/s41467-018-08100-1.

In the first part of our setup we produce maximally-entangled states. A CW
laser at 532 nm pumps a Ti:Sapphire crystal in an optical cavity, generating a
mode-locked laser at 808 nm with a 76 MHz repetition rate. The pulsed laser is
frequency-doubled by second harmonic generation (SHG) and then injected into
a 0.5 mm thick β-Barium borate (BBO) crystal, where degenerate non-collinear
type-II SPDC occurs (Sec. 2.3.2). We spatially select the photons belonging to
the intersections of the two SPDC cones with two irises, and properly compensate
the temporal delay between the horizontally- and the vertically-polarized photons
induced by the birefringence within the SPDC crystal by adding two 0.25 mm thick
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BBO crystals with the optical axis rotated of 90◦ with respect to the one of the
SPDC crystal (as already described in Sec. 3.2.2). This way, we generate the (max-
imally entangled) singlet state |ψ−⟩ = 1√

2 (|HV ⟩ − |V H⟩).

The second part of our setup is, instead, the one in which the PDO reconstruc-
tion is performed. To be able to evaluate both spatial and temporal correlations,
in photon A path, two polarization measurements occur in cascade (Q1 and Q2),
each carried by a half-wave plate (H) and a quarter-wave plate (Q) followed by a
polarizing beam splitter (PBS). Between the two measurements, a half-wave plate
and quarter-wave plate are put in order to compensate the polarization projection
occurred in Q1. Photon B, instead, undergoes a single polarization measurement
(Q3) performed by the same H+Q+PBS unit used for Q1 and Q2.

After these measurements, photons A and B are filtered by bandpass interference
filters (centred at λ = 808 nm, with a 20 nm FWHM on path A and a 3 nm FWHM
on path B) and coupled to multi-mode optical fibres connected to Si-SPADs, whose
outputs are sent to coincidence electronics.

PDO reconstruction and entanglement monogamy violation

To perform the reconstruction of the PDO we realise different measurements
on different sub-ensembles, collecting the 3-fold and the 2-fold correlations on the
two photons. We need, however, to properly “choose” the measurements to be
performed in order to form a minimum quorum allowing for a full reconstruc-
tion[227] of R̂123. This is needed because, in our experimental simulation, it would
be impossible to perform a standard three-qubit quantum tomography (Sec. 3.2.3)
procedure able to reconstruct R̂123, since a measurement of the photon A at t1 (Q2)
would influence the subsequent measurement at time t2 (Q3), in contrast with the
very definition of PDO. For this reason, we restrict ourselves to a sub-sample of
the standard three-qubit tomographic measurements quorum, in which we measure
only commuting observables in subsequent measurements on photon A (i.e. for Q2
and Q3). This way, we are able to avoid the issues derived from the measurement
temporal ordering.

In particular, we can describe the PDO reconstruction procedure in four steps:

1. Prepare an ensemble where we measure the whole set {X̂, Ŷ , Ẑ} on photon
A at time t1 (Q2) followed by measurements of the same observables at time
t2 (Q3) (including all cross-correlations between different observables). This
provides the full reconstruction of the reduced time-correlated pseudo-state
R̂23 = 1

4(I + Σ23).
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2. Prepare an ensemble and measure the whole set {X̂, Ŷ , Ẑ} on photon A and
on photon B at time t1 (Q2 and Q1) - this provides the space-correlated state
R̂12.

3. Prepare an ensemble and measure the whole set {X̂, Ŷ , Ẑ} on photon B at
time t1 (Q1) and on photon A at time t2 (Q3) - this provides the space-
correlated state R̂12.

4. Prepare an ensemble and measure the whole set {X̂, Ŷ , Ẑ} on photon A and
on photon B at time t1 (Q2 and Q1), followed by a measurement on photon
A at time t2 (Q3) identical to the one occurred at time t1. This provides the
three-point correlations which we expect, from the definition of R̂123, to be
all zero.

Fig. 5.3 reports the tomographic reconstruction of R̂123, as well as the ones of
its marginals R̂12, R̂13, R̂23, compared with the theoretical expectations. Unfortu-
nately, we can only compute the Fidelity (App. A) between theoretically-predicted
and experimentally-reconstructed PDO marginals R̂12 and R̂13, which are the only
reconstructions corresponding to physical density operators. The fidelities for these
two marginals are, respectively, F12 = 0.964 and F13 = 0.963, certifying an excellent
agreement between theory and experiment.

This procedure also highlights an interesting property. As we have previously
seen, the reduced PDO of some subsystem can be obtained as the a partial trace
of the total system PDO, for instance, in our case R̂13 = Tr2 R̂123. R̂13 cannot,
however, be experimentally reconstructed by using the measurements obtained for
the three-point correlations and then averaging over the results of the measure-
ments on Q2. This is because the trace over a temporal degree of freedom is not
equivalent to averaging with respect to all possible values of the observables that
can be measured at that time. Indeed, Tr(P̂ R̂123) where P̂ is a generic projector
could be negative, so that it cannot be generally interpreted as a probability. This
is a general property of PDOs: they are not always positive operators because the
subsystems do not always represent spatially-correlated subsystems, but they can,
instead, as in the case of qubits Q2 and Q3, represent time-like separated systems.
The full tomographic reconstruction of a PDO is, therefore, different from recon-
structing a standard density operator, as we have seen above.

This experiment also allows us to show that R̂123 accounts for a phenomenon
that would be considered paradoxical in the density operator framework, i.e. the
violation of entanglement monogamy among the three qubits of our system. On
the other hand, PDO formalism allows describing situations, as the aforementioned
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Figure 5.3: Pseudo-density operator tomographic reconstruction. Theoretical R̂123
PDO (a1) compared with the real (a2) and imaginary (a3) part extracted by quan-
tum state tomography. Below, theoretical R̂12, R̂13 and R̂23 marginals (plots
b1, c1 and d1, respectively) compared with the real (plots b2, c2 and d2) and
imaginary (plots b3, c3 and d3) part of their tomographically-reconstructed coun-
terparts. Since in our model Im[R̂123]=Im[R̂12]=Im[R̂13]=Im[R̂23]=0, the corre-
sponding theoretical plots have been omitted. cb C. Marletto et al., The-
oretical description and experimental simulation of quantum entanglement near
open time-like curves via pseudo-density operators. Nat Commun 10, 182 (2019).
https://doi.org/10.1038/s41467-018-08100-1.

139

https://doi.org/10.1038/s41467-018-08100-1


Novel quantum mechanical tools and related reconstruction techniques

black hole and OTC ones, where the entanglement is developed among more par-
ticles in situations where different times are involved. A simple way to test such
violation is to use the violation of Bell’s inequalities (Sec. 1.1.1). More specifically,
by setting Cij = Tr

(︂
R̂ijB̂ij

)︂
, where B̂ij =

√
2(X̂ iẐj + ẐiX̂j) is the observable that

is used in the CHSH inequality (Sec. 1.1.1 - Eq. 1.1.1.19) tests on qubits i, j, we
can define entanglement monogamy as[206]:

Cmk + Cnk ≤ 4 (5.1.4.1)

i.e., quantum states of three qubits m,n, k cannot violate Bell’s inequalities in more
than one pair of qubits.

In our case, we theoretically expect such violation, since R̂12 and R̂13 describe
each a maximally entangled pair, C12 = 2

√
2 = C13, and the same is also true for

R̂12 and R̂23, given that the latter also describes perfect correlations in all basis
(C12 = 2

√
2 = C23).

Experimentally, we can reconstruct the statistics from a CHSH test on the
photon A at times t1 and t2, and on the photons A and B at time t1, to show the
predicted violation of monogamy. To this end, we evaluate the CHSH inequality
on qubits Q2 and Q3, that is, on photon A at times t1 and t2 (temporal domain),
obtaining the value Cexp

23 = 2.84 ± 0.02, in perfect agreement with the predicted
violation. Then, we measure the CHSH on photons B and A at time t1 (qubits
Q1 and Q2, spatial domain), achieving Cexp

12 = 2.69 ± 0.02, a good violation of the
classical bound. From these results, it follows:

Cexp
12 + Cexp

23 = 5.52 ± 0.03 (5.1.4.2)

demonstrating a 160 standard deviations violation of the entanglement monogamy
bound (Eq. (5.1.4.1)).

C13, instead, must be extracted from the reconstructed PDO marginal R̂13 be-
cause, in our simulation setup, a direct CHSH inequality measurement for Q1 and
Q3 would be possible only leaving Q2 untouched, thus forbidding the possibility
of measuring C12. The extracted CHSH value is Crec

13 = 2.73, which allows us to
compute the remaining monogamy violations:

Cexp
12 + Crec

13 = 5.42 ± 0.07 (5.1.4.3)
Cexp

23 + Crec
13 = 5.55 ± 0.07 (5.1.4.4)

where we evaluated the uncertainty on Crec
13 as the 99% confidence interval on

the experimental data. These results, then, show that the usual paradoxes due
to violations of entanglement monogamy do not arise in this formalism, as the
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PDO can accommodate and describe correlations that violate monogamy, thus
demonstrating how such violation can naturally emerge in the proposed frameworks
of black holes evaporation and open time-like curves.

5.2 Conclusions
In this section we proposed a strategy to efficiently simulate and reconstruct a

pseudo-density operator, a generalization of the traditional density operator, and
applied such procedure to two cases of physical interest that the traditional den-
sity operator formalism fails to properly describe, namely, the evaporation of black
holes and open time-like curves. The results of the simulation are in good agree-
ment with theoretical predictions and allow us to verify the predicted violation of
entanglement monogamy, thus proving that the usual paradoxes due to such vio-
lation within the density operator framework do not arise with the PDO formalism.

Thus, PDO allows us to provide an alternative description of the evaporation
of black holes and open time-like curves which preserves linearity of quantum evo-
lution. More in general, PDO represents a general formalism able to describe
measurements in quantum mechanics in a way allowing new insights and able to
cope situations where the usual formalism meets difficulties. We believe, then,
that PDOs can lead to a theory that retains linearity of quantum mechanics in a
more general sense, while relaxing certain assumptions about the states of physical
systems (e.g. entanglement monogamy) for certain specific situations. For this
reason, our first PDO reconstruction marks a relevant milestone both in physics
and metrology, paving the way to future applications to other interesting physical
scenarios involving both temporal and spatial correlations.
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Chapter 6

Conclusions

In this dissertation, I presented the most relevant projects I have been involved
with during my PhD. The common thread is the development of a quantum metrol-
ogy at single/few photons level. My studies concerned, in particular, single- and
two-photon states characterization, the realization of new quantum-enhanced mea-
surement paradigms and the study of physical systems needing a quantum me-
chanical description beyond the traditional density operator formalism. First, I
illustrated a strategy to evaluate the multi-photon component of a CW heralded
single-photon source, and successfully applied it to a low-noise fibre heralded single-
photon source prototype within a pilot comparison among three European national
metrology institutes (INRiM, NPL, PTB). The good agreement of the comparison
results certified the flexibility, reliability and robustness of such strategy, which
we believe may pave the way to a much needed standardization of single-photon
sources characterization procedure.

Then, I presented some estimators for the evaluation of key parameters for
quantifying the amount of non-classical correlations (i.e. entanglement and dis-
cord) in a family of bipartite states of particular interest for nowadays quantum
technologies. Our results showed that, for each parameter, we found the optimal
unbiased estimators, i.e. the ones saturating the quantum Cramér-Rao bound and,
thus, achieving the ultimate theoretical precision limit on the unbiased estimation
of such parameters. We believe that these estimators will be extremely important
for resources quantification in quantum technologies.

Both these results were also preparatory for the characterization of the resources
that we employed in the following experiments, which were aimed to the develop-
ment of novel weak-interaction-based measurement protocols and to the reconstruc-
tion of a three-qubit pseudo-density operator, a recently-introduced extension of the
usual density operator formalism.
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The first measurement protocol I presented was Protective Measurement (of
which we realized the first experimental implementation), a groundbreaking new
measurement paradigm combining weak interaction and a mechanism “protecting”
the state coherence. Protective measurement allows us not only to extract the ex-
pectation value of a quantum observable even from a single experiment on a single
particle, something apparently in contrast with the very definition of expectation
value, but also to largely outperform traditional projection-based protocols in terms
of precision.

Then, I introduced the natural evolution of such protocol, called Robust Weak
Measurement, and showed the experimental results obtained in their first realiza-
tion. Somehow in analogy with protective measurements, robust weak measure-
ments allow extracting the weak value of an observable even from a single detec-
tion event, something completely unprecedented in the weak values framework,
traditionally estimated by averaging on multiple detection events due to identically
prepared and measured particles. Our results will definitely have implications in
the field of quantum metrology, in which weak values already play an important role.

The last work I presented, instead, is the first experimental reconstruction of a
pseudo-density operator, an extension of the traditional density operator formalism
able to describe spatial and temporal correlations on an equal footing. We applied
this tool in an experimental simulation of two cases of physical interest that tradi-
tional density operators fail to properly describe, namely, the evaporation of black
holes and open time-like curves, obtaining a good agreement between experimen-
tal results and theoretical predictions. We believe that our strategy to efficiently
simulate and reconstruct a pseudo-density operator will pave the way to future ap-
plications of such formalism to other interesting physical scenarios involving both
temporal and spatial correlations, where the usual density operator might even give
rise to (apparent) paradoxes.

Possible continuations of these works are the extension of the optimal entan-
glement estimation experiment to the biased case, finding estimators able to reach
the Van Trees bound, and a further study of iterative measurement protocols (like
our implementation of protective measurement) in the strong interaction regime.
Furthermore, protective measurements offer the challenging task of finding a bound
on their uncertainty, since the usual Quantum Cramér-Rao bound does not hold in
this case. Finally, another intriguing possibility is the extension of PDO formalism
to other interesting physical scenarios involving time correlations, which we may
simulate in our laboratories.

In conclusion, all the works illustrated in my dissertation can be regarded as
crucial tasks in nowadays quantum metrology, and the results obtained in my PhD
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could become relevant milestones in this field as well as for other quantum tech-
nologies, further promoting the (already running) second quantum revolution.
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Chapter 7

Scientific output

7.1 Published works
Articles published in peer reviewed journals:

• F. Piacentini et al. Determining the quantum expectation value by measuring
a single photon. In: Nature Physics 13.12 (Dec. 2017), pp. 1191–1194.[160]

• C. Marletto et al. Theoretical description and experimental simulation of
quantum entanglement near open time-like curves via pseudo-density opera-
tors. In: Nature Communications 10.1 (Jan. 2019), 182.[184]

• E. Rebufello et al. Towards a standard procedure for the measurement of the
multi-photon component in a CW telecom heralded single-photon source. In:
Metrologia 56.2 (Feb. 2019), 025004.[152]

• S. Virzì et al. Optimal estimation of entanglement and discord in two-qubit
states. In: Scientific Reports 9.1 (Feb. 2019), 3030.[153]

• C. Marletto et al. Non-Monogamy of Spatio-Temporal Correlations and the
Black Hole Information Loss Paradox. In: Entropy 22.2 (Feb. 2020), 228.[183]

Proceedings:

• F. Piacentini et al. Quantum Measurements in weak coupling regime: from
Sequential weak values to Protective measurements. In: Conference on Lasers
and Electro-Optics. Optical Society of America, 2018, FF1B.6.[159]

• F. Piacentini et al. Protective measurements: extracting the expectation
value by measuring a single particle. In: Quantum Technologies 2018. Vol.
10674. International Society for Optics and Photonics. SPIE, 2018, pp.
75–82.[161]
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• E. Rebufello et al. Quantum weak-interaction-based measurement: from se-
quential weak measurement to protective measurement. In: Quantum Com-
munications and Quantum Imaging XVI. Vol. 10771. International Society
for Optics and Photonics. SPIE, 2018, pp. 149–164.[165]

• E. Rebufello et al. Experimental realization of robust weak measurements.
In: Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology
II. Vol. 11296. International Society for Optics and Photonics. SPIE, 2020,
pp. 302–308[164]

Papers still under peer review:

• E. Rebufello et al. Anomalous weak values via a single photon detection.
Submitted (2020)[163]

Book chapters:

• E. Rebufello. Io resto a casa: Un gioco da tavolo. In: Virus Ex-Machina -
Scritti metascientifici al tempo del Coronavirus. Mimesis Edizioni, 2020.[228]

7.2 International conferences and summer schools
International conferences:

• Quantum Technology International Conference (QTech) 2018 in Paris (France),
5/9/2018 - 7/9/2018. Oral presentation: Determining the quantum expecta-
tion value by measuring a single photon.

• Quantum 2019 - From Foundations of Quantum Mechanics to Quantum Infor-
mation and Quantum Metrology & Sensing in Torino, 26/5/2019 - 31/5/2019.
Poster presented: Quantum entanglement near open time-like curves: theory
and experimental simulation.

• Time Machine Factory (TMF) 2019 in Torino, 22/9/2019 - 25/9/2019. Poster
presented: Quantum entanglement near open time-like curves: theory and
experimental simulation.

• Single Photon Workshop (SPW) 2019 in Milano, 22/10/2019 - 25/10/2019.
Poster presented: Pseudo-density operator reconstruction: the open time-like
curve case.

Summer schools:

• Quantum devices for non-classical light generation and manipulation (Qlight)
2019 in Erice (TP), 30/9/2019 - 4/10/2019. Poster presented: Towards a
standard procedure for the measurement of the multi-photon component in a
CW telecom heralded single-photon source.
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7.3 Training activities
Courses attended during the PhD:
• A Machine Epistemology, 20h, Soft skill

• Computer ethics, 20h, Soft skill

• Development and management of data-acquisition systems, 25h, Hard skill

• Experimental modelling: construction of models from experimental data, 33h,
Hard skill

• Forensic Metrology (didattica di eccellenza), 20h, Hard skill

• Introduction to quantum optics and quantum information, 20h, Hard skill

• Magnetism in materials and magnetic measurements, 20h, Hard skill

• Time management, 2h, Soft skill

• Chemo-dynamical evolution of the Milky Way, 12h, Hard skill

• COMSOL Day 2018, 8h, Hard skill

• Quantum Communication, 16h, Hard skill

• Search and characterization for extrasolar planets, 16h, Hard skill

• The future of scholarly communication in Europe, 7h, Hard skill
Courses attended during the third edition of the Percorso Formativo 24 CFU

a.a. 2019-2020 (DM 616 of 10/8/2017) organized by CIFIS Piemonte (Università
degli Studi di Torino, Politecnico di Torino, Università del Piemonte Orientale):

• Philosophical Anthropology, 6 CFU

• Teaching Models and Strategies, Instruction Technology and Educational Re-
search, 6 CFU

• Psychology of the affective and relational aspects in managing the class group,
6 CFU

• Pedagogy of the educational relationship for secondary school, 6 CFU

7.4 Prizes and rewards
• Best poster award at PhD Day 2019 (Metrology PhD, XXXIII cycle)

• Best poster award at PhD Day 2018 (Metrology PhD, XXXIII cycle)
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Appendix A

Uhlmann’s Fidelity

Uhlmann’s Fidelity (Fidelity in the main text) is a measure of how much two
quantum states are close to each other. The Fidelity, defined as the maximum of
|⟨ψ|φ⟩| over all purifications |ψ⟩ and |φ⟩ of two density operators ρ̂ and σ̂, is:

F (ρ̂, σ̂) = Tr
√︂√

σ̂ρ̂
√
σ̂ (A.0.0.1)

and has the following properties:
• F is invariant under unitary transformations:

F (Û ρ̂Û †
, Û σ̂Û

†) = F (ρ̂, σ̂) (A.0.0.2)

• F is symmetric
F (ρ̂, σ̂) = F (σ̂, ρ̂) (A.0.0.3)

The Fidelity is very widespread both in the experimental field, where it is em-
ployed to characterize the states experimentally obtained, and in the theoretical
field, thanks to its ties with Bures metric and Bures angle[33], which defines an
infinitesimal distance between density matrix operators defining quantum states
and a statistical distance between quantum states, respectively.

In the special case of bidimensional states, it is possible to obtain a simpler ex-
plicit formula for the Fidelity[33], thanks to the following property of 2x2 matrices:
∀ 2x2 matrix M :

M2 −M TrM + detM = 0 (A.0.0.4)
which implies:

(TrM)2 = TrM2 + 2 detM (A.0.0.5)

Therefore, with M =
√︂√

σ̂ρ̂
√
σ̂, we find:

F 2(ρ̂, σ̂) = (TrM)2 = Tr(ρ̂σ̂) + 2
√︂

det ρ̂ det σ̂ (A.0.0.6)
which is easier to compute, since it does not contain square roots of operators.
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