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Abstract

Nowadays, data structures which are conceptually infinite, such as streams
or infinite trees, are very common in computer science. When it comes to
their manipulation, one major problem to face is how to finitely represent
and deal with them without incurring in non-terminating behaviours. Regular
corecursion is a solution relying on finite representation of regular data struc-
tures, and detection of cyclic calls. The topics in the thesis revolve around two
enhancements of regular corecursion in different directions. In the first part,
we present Corecursive Featherweight Java (coFJ), an object-oriented calculus
which supports flexible regular corecursion, that is, allows the programmer to
specify the behaviour when a cyclic call is found. In the second part, instead,
we extend regular corecursion beyond regular terms, focusing on the significant
case of stream definitions.
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1
Introduction

Nowadays, applications often deal with data structures which are conceptually
infinite, such as streams or infinite trees. Thus, a relevant problem in the
design of programming languages is how to finitely represent something
which is infinite, and, even harder, how to correctly manipulate such finite
representations to reflect the expected behaviour on the infinite structure.

Well-established solutions to this problem are lazy evaluation and coinductive
data types. In both such approaches, it is possible to represent arbitrary infinite
structures, and to define in the standard inductive way functions which only
require a finite portion of the structure to be examined, such as getting a finite
prefix of a stream. A different approach, originally coming from (coinductive)
logic programming, recently adapted to other programming paradigms, is
regular corecursion, allowing, roughly, to obtain a result even for functions
which conceptually require to examine the whole infinite structure, provided
the latter is regular. The drawback is that non-regular structures cannot be
handled. In this introduction, to provide the research context, we first briefly
illustrate the above mentioned approaches, and then we describe the aims of
the thesis.

lazy evaluation A widely-used solution for the generation and manip-
ulation of conceptually infinite data is lazy evaluation, as supported, e.g., in
Haskell, and most stream libraries offered by mainstream languages, as java.
util.stream. In Haskell, infinite data are obtained as the result of a recursive
function, which is evaluated according to the call-by-need strategy.
For instance, we can declare the following functions

one_two = 1:2:one_two
from n = n:from(n+1)

The calls one_two and from 0 represent the infinite list alternating 1 and 2, and
the list of natural numbers, respectively. Typical recursive functions defined
by pattern-matching (that is, inductively) on lists may work on such infinite
lists as well, thanks to lazy evaluation. More precisely:

• functions which inspect only a finite portion, e.g., take returning a finite
prefix, terminate.

• Functionswhich inspect thewhole structure, like member checkingwhether
an element belongs to the list, or allpos checking that all elements are
positive, or min looking for the minimal element, may diverge; notably,
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6 introduction

member and allpos only terminate in the positive and negative case, re-
spectively, and min never terminates. Note that this happens for all infinite
lists, even those for which the result could be obtained by a finite number
of checks, as one_two.

• Finally, functions which return an infinite list, e.g., incr adding 1 to every
element, can be lazily used as the original one; for instance, take 5 (

incr one_two) terminates.

Finally, note that intuitively ill-formed definitions such as
bad_stream = bad_stream are accepted by the Haskell compiler. Anyway, any
operation which needs to inspect bad_stream is deemed to diverge because
the corresponding stream is undetermined. Unfortunately, it is not decidable
to check, even at runtime, whether the stream returned by a Haskell function
is well-defined, that is, all of its elements can be computed1; indeed, the full
expressive power of Haskell can be used to define streams bymeans of arbitrary
recursive definitions. For similar reasons, it is not decidable to check at runtime
whether the streams returned by two Haskell functions are equal.

coinductive data types Besides standard inductive data structures,
proof assistants generally support the definition of coinductive structures. For
instance, in Agda streams can be implemented by coinductive records. Using
a coinductive record, we represent a data structure through the observations
which can be made on it. For instance, a stream is completely determined by
its head and its tail, which is a stream in turn, as shown below.
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A

An alternative solution is to use the mechanism of thunks. That is, roughly, a
standard (inductive) type can be used, even though the data to be represented
is infinite, where the tail has the type Thunk of suspended computations, used
to simulate laziness. The following is a simplified version2 of the library colists

which are either finite or infinite lists:
data Colist (A : Set) : Set where
[] : Colist A
_::_ : A → Thunk (Colist A) → Colist A

In both cases, it should be noted that the point of view and aim of a proof
assistant are different from that of a programming language. In particular,
functions in Agda are required to be total, and this is ensured by a termination
checker. For this reason:

• recursive functions which only inspect a finite portion can be defined,
provided that enough information is given to the termination checker.

1 This is also known as a productive corecursive definition [14].
2 Omitting sizes which track the depth of data structures.
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• Recursive functions which inspect the whole structure, hence would not
terminate on an infinite list, cannot even be defined; however, they can
be expressed as predicates, that is, as (dependent) types, exactly as data
structures.

• Finally, functions which return an infinite list can be coinductively defined.

To exemplify the second point, the above mentioned member, allpos, and min,
cannot be expressed as functions on Stream or Colist; however, we can turn
them into predicates, as shown below for the first two:

data _member_ {A : Set}(x : A)(xs : Stream A) : Set where
mem-h : x ≡ (Stream.head xs) → x member xs
mem-t : x member (Stream.tl xs) → x member xs

record allpos (xs : Stream Nat) : Set where
coinductive
field
h : (Stream.head xs) > zero
t : allpos (Stream.tail xs)

Note that the predicate member is defined inductively, whereas the predicate
allpos is defined coinductively. It is worth noticing that the predicate min can-
not be defined as a coinductive record in the natural way, since the coinductive
interpretation would not give the expected meaning [13]. We explain this more
in detail later on in the case of logic programming.
In this way, we can reason about the predicate, e.g., we can prove that the

conductive definition of allpos is sound and complete with respect to the
following specification using member:

(xs : Stream Nat) → ({n : Nat} → n member xs → n > 0)

However, we cannot provide an algorithmic procedure that, given a stream
(or a colist), returns the expected result in as many cases as possible, as we
would expect in a programming language.

regular corecursion More recently, a different, in a sense complement-
ary, approach, has been considered, called regular corecursion, which originates
from co-SLD resolution [30, 31, 8], as briefly illustrated below. Let us consider
the Prolog version of the predicates member and allpos.

member([X],X).
member([X|Xs],Y) ← member(Xs,Y)

allpos([]) ←
allpos([X|Xs]) ← X>0, all_pos(Xs)

In standard logic programming terms are defined inductively (that is, are
finite), and predicates are defined inductively as well (that is, as sets of atoms
which have a finite proof tree, or, equivalently, as least fixed points). To handle
infinite structures, in coinductive logic programming (coLP), introduced in [30],
predicates are defined on infinite terms (that is, terms are defined coinductively),
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and can be defined coinductively as well (that is, as set of atoms which have
a possibly infinite proof tree, or, equivalently, as greatest fixed points). In
the example, also infinite lists, such as [1,2,3,4,...], are considered, and
the coinductive interpretation of allpos gives the expected meaning on such
lists. As the reader can note, this is quite similar to defining a coinductive
predicate in Agda. However, what happens at the operational level, hence
in the language implementation, is very different. Indeed, the operational
semantics only handles regular terms, that is, those which can be represented
by equations, such as L ≖ [1,2|L]. The corresponding algorithmic procedure
(co-SLD resolution) is a modification of SLD resolution where, when the same
goal is found the second time, it is considered successful. Hence, in the above
example, the goal all_pos(L) succeeds.
As already noted in Agda, the coinductive interpretation does not always

correspond to the intended meaning; for instance, for the predicate member

the inductive interpretation works on infinite lists as well. Moreover, in some
cases neither the inductive, nor the coinductive interpretation are correct. For
instance, in the following logic program:

min([X],X) ←
min([X|Xs],M) ← min(Xs,M1), M is min(X,M1)

with the purely coinductive interpretation, if l is an infinite list, then the goal
min(l,n) succeeds whenever n is less or equal than all the elements of l. As
mentioned, the same happens in Agda, where the predicate cannot be defined
in a purely coinductive way [13].
In summary, the key idea of regular corecursion is cycle detection, so that

non-termination can be avoided, and an alternative action can be taken. In
the original case of coinductive logic programming, cycle detection means
detecting the same goal (modulo unification), and the alternative action is
simply success.

outline The aim of this thesis is to enhance regular corecursion in two
different directions: on one hand, to make it flexible, that is, to allow the
programmer to specify the alternative action to be taken when a cyclic call is
found; on the other hand, to extend regular corecursion beyond regular terms.

Part I - flexible regular corecursion in coFJ A limitation of
regular corecursion is that it is not flexible enough to correctly express certain
predicates on regular terms, as shown by the above min example. In the logic
paradigm, flexibility can be achieved by adding coclauses, which allow one
to refine the coinductive interpretation, by, roughly, triggering another SLD-
resolution when the same goal is found the second time [18]. When moving
from goals to functions/methods calls, the same problem manifests more
urgently, because a result should always be provided for already encountered
calls. To solve this issue, the programmer should be allowed to specify the
behaviour of recursive functions/methods on cyclic structures. For instance,
in order to get the correct behaviour for function min, the programmer has to
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specify that the head of the list should be returned when detecting a cyclic
call. Language extensions supporting such flexible regular corecursion has
been proposed in the object-oriented [9] and functional [22, 23] paradigms (see
Chapter 8 for more details). However, none of these proposals provides formal
arguments for the correctness of the given operational semantics, by proving
that it is sound with respect to some model of the behaviour of functions (or
predicates) on infinite structures. We want to bridge this gap by providing
solid foundations for a programming paradigm natively supporting cyclic data
structures.

Chapter 2 We discuss preliminary notions on inference systems, present
the framework of generalized inference systems, and the Featherweight Java
calculus, which will be the starting points of our extension.

Chapter 3 We introduce the coFJ calculus and present its abstract

semantics, which will be used as reference semantics, and is given by a gener-
alized inference system which manipulates infinite objects.

Chapter 4 We present the coFJ operational semantics, which, in contrast
to the abstract one, is meant to work on finite cyclic objects, thus making it
algorithmic and executable.

Chapter 5 We introduce a third semantics for coFJ with the aim of
bridging the gap between the abstract and the operational one. The intermedi-
ate semantics manipulates infinite objects, but is based on the framework of
regular corecursion.

Chapter 6 We show some examples of usage of coFJ and discuss several
features of the calculus.

Chapter 7 We prove the soundness of the operational semantics with
respect to the abstract one. This means that a result obtained from the former
can also be obtained from the latter. The proof uses the intermediate semantics
introduced in Chapter 5.

Chapter 8 We discuss related work and outline directions for future
work concerning this part.

Part II - beyond regular terms The second extension to regular
corecursion aims at overcoming the limitations imposed by regular terms. In
this part, our reference language is a simple functional language of numeric
streams, which are an example of infinite data structure relevant for IoT
applications. In the operational semantics, equations representing streams
are extended with other typical stream operators besides the constructor. In
such generalized approach, some non-regular streams can be represented as
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well, as shown by the function nat below which returns the stream of natural
numbers.

nat() = 0:(nat() [+] repeat(1))

where : is the stream constructor, [+] the pointwise addition and repeat(1)

the stream constantly equal to 1.
The calculus is presented in two flavours: in the first version, stream op-

erators allowed in equations are tail and pointwise numeric operators. After
discussing the expressive power of this version, we provide a second one where
equations can also contain an interleaving operator.
In this part, for simplicity, we do not consider the orthogonal feature of

making corecursion flexible, which has been deeply analyzed in the first part.
Instead, we consider two additional features which become very challenging
when additional operators are allowed in equations:well-definedness and equal-
ity of stream definitions.
A well-definedness check is added when a function returning a stream is

invoked, to ensure that the result of the call is actually a stream, in the sense
that the access to an arbitrary index will always succeed. To design a sound
and complete well-definedness check for the first version of the calculus is
rather simple, whereas the version with the interleaving operator requires a
more tricky definition which, however, can still be proved to be sound and
complete through a symbolic computation which mimics the access to an
arbitrary index.
Moreover, for the first version of the calculus, we design an algorithm to

check whether two different stream definitions have the same semantics. This
is important, since cycle detection relies on stream equality, and allowing addi-
tional operators in equations makes much harder to detect that two definitions
denote the same stream.

Chapter 9 We introduce the stream calculus with its operational se-
mantics and show examples of streams that can be defined.

Chapter 10 We introduce the notion of well-definedness, and provide a
sound and complete operational characterization.

Chapter 11 We discuss the expressive power of the calculus and prove
that it is more expressive than polynomial streams. Then, we discuss some
derived operators.

Chapter 12 We extend the calculus with an interleaving operator which
gives a stream whose elements are alternatively those of the arguments.

Chapter 13 We introduce an extended well-definedness check that takes
into account the interleaving operator.
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Chapter 14 We tackle the problem of equality of stream definitions and
provide a sound operational characterization.

Chapter 15 We discuss related work and outline directions for future
work concerning this part.

relationship with published and submitted papers The content
of Part I mainly originates from two papers published at ECOOP 2020 [3] and
FTfJP 2020 [11]. In [3] we focused on the relation between coFJ abstract and
operational semantics, introducing the intermediate one as a tool to prove the
main soundness result. After that, in [11] we studied this latter semantics more
in detail, and found it interesting in itself, since it shows that the mechanism
of cycle detection and the representation of infinite values are independent
issues. Here the discussion is more structured and streamlined than in the
papers, with the intermediate semantics playing a crucial role in the study of
coFJ.
The content of Part II is the result of my last two years of research. In par-

ticular, Chapter 9, concerning the syntax and semantics of the stream calculus,
and Chapter 10, with the preliminary formalization of the well-definedness
check, originate from a paper published at ICTCS 2021 [4], where we presented
the calculus for the first time. Chapter 11, Chapter 12 and Chapter 13, with the
discussion on the expressive power and the enhanced version of the stream cal-
culus and well-definedness check, originate from a paper published at FLOPS
2022 [5] and an extension of the ICTCS’21 paper submitted to the Theoretical
Computer Science journal. Lastly, Chapter 14, concerning the equality check,
originates from a paper published at ICTCS 2022 [5] and its subsequent exten-
sion, which we are going to submit to TCS. With respect to all these papers,
here we present the calculus and its features in their entirety, without space
constraints and in a more streamlined fashion. In particular, our aim in the
thesis is to introduce all the elements of the calculus in an incremental manner,
so that we can study the impact of each enhancement separately.





PART I

Flexible corecursion in COFJ





2
Preliminary notions

In this chapter we present the starting points for defining coFJ: the standard
notions on inference systems [1, 26], their recent generalization to inference

systems with corules [7, 16, 17], and Featherweight Java (FJ) [21], a tiny subset
of Java which has become the reference calculus to investigate properties and
extensions of Java-like languages.

2.1 Generalized inference systems

Assuming a universeU of judgments, an inference systemI is a set of (inference)
rules, which are pairs Pr

c
, with Pr ⊆ U the set of premises, and c ∈ U the

consequence (a.k.a. conclusion). A rule with an empty set of premises is an
axiom. A proof tree (a.k.a. derivation) for a judgment j is a tree whose nodes
are (labelled with) judgments, j is the root, and there is a node 𝑐 with children
Pr only if there is a rule Pr

c
.

The inductive and the coinductive interpretation of I, denoted Ind(I) and
CoInd(I), are the sets of judgments with, respectively, a finite1, and a possibly
infinite proof tree. In set-theoretic terms, let FI : ℘(U) → ℘(U) be defined by
FI (𝑆) = {c | Pr ⊆ 𝑆, [Pr]c ∈ I}. That is, FI (𝑆) is the set of judgments that can
be inferred (in one step) from the judgments in 𝑆 using the inference rules. We
say that a set 𝑆 is closed if FI (𝑆) ⊆ 𝑆 , consistent if 𝑆 ⊆ FI (𝑆), that is, no new
judgments can be inferred from a closed set, and all judgments in a consistent
set can be inferred from the set itself. Then, it can be proved that Ind(I) is the
smallest closed set, and CoInd(I) is the largest consistent set.
Inference systems have been recently generalized [7, 16, 17] as described

below. An inference system with corules, or generalized inference system, is a
pair (I,I𝑐𝑜 ) where I and I𝑐𝑜 are inference systems, whose elements are
called rules and corules, respectively. Corules can only be used in a special way,
as defined in the following.

For a subset 𝑆 of the universe, let I⊓𝑆 denote the inference system obtained
from I by keeping only rules with consequence in 𝑆 . Let (I,I𝑐𝑜 ) be a gen-
eralized inference system. Then, its interpretation Gen(I,I𝑐𝑜 ) is defined by
Gen(I,I𝑐𝑜 ) = CoInd(I⊓Ind(I∪I𝑐𝑜 ) ).
In proof-theoretic terms, Gen(I,I𝑐𝑜 ) is the set of judgments that have a

1 Under the common assumption that sets of premises are finite, otherwise we should say
well-founded.

15



16 preliminary notions

possibly infinite proof tree in I, where all nodes have a finite proof tree in
I∪I𝑐𝑜 , that is, the (standard) inference system consisting of rules and corules.

Note that a finite proof tree inI is a finite proof tree inI∪I𝑐𝑜 as well, hence
the condition is only significant for nodes which are roots of an infinite path in
the proof tree. We illustrate these notions by a simple example. As usual, sets
of rules are expressed by meta-rules with side conditions, and analogously sets
of corules are expressed by meta-corules with side conditions. (Meta-)corules
will be written with thicker lines, to be distinguished from (meta-)rules. The
following inference system defines the minimum element of a list, where 𝜖 is
the empty list, and x : 𝑢 the list with head x and tail 𝑢.

min(x : 𝜖, x)
min(𝑢,𝑦)
min(𝑥 :𝑢, 𝑧) 𝑧 = min(𝑥,𝑦)

The inductive interpretation gives the correct result only on finite lists, since for
infinite lists an infinite proof is clearly needed. However, the coinductive one
fails to be a function. For instance, for 𝐿 the infinite list 2 : 1 : 2 : 1 : 2 : 1 : . . .,
any judgment min(𝐿, 𝑥) with 𝑥 ≤ 1 can be derived, as shown below.

. . .

min(𝐿, 1)
min(1:𝐿, 1)
min(2:1:𝐿, 1)

. . .

min(𝐿, 0)
min(1:𝐿, 0)
min(2:1:𝐿, 0)

By adding a corule (in this case a coaxiom), wrong results are “filtered out”:

min(𝑥 :𝜖, 𝑥)
min(𝑢,𝑦)
min(𝑥 :𝑢, 𝑧) 𝑧 = min(𝑥,𝑦)

min(𝑥 :𝑢, 𝑥)
Indeed, the judgment min(2:1:𝐿, 1) has the infinite proof tree shown above,
and each node has a finite proof tree in the inference system extended by the
corule: . . .

min(𝐿, 1)
min(1:𝐿, 1)
min(2:1:𝐿, 1)

min(1:𝐿, 1)
min(2:1:𝐿, 1)

The judgment min(2:1:𝐿, 0), instead, has the infinite proof tree shown above,
but has no finite proof tree in the inference system extended by the corule.
Indeed, since 0 does not belong to the list, the corule can never be applied. On
the other hand, the judgment min(𝐿, 2) has a finite proof tree with the corule,
but cannot be derived since it has no infinite proof tree. We refer to [7, 16, 17]
for other examples.

Note that the inductive and coinductive interpretation of I are special cases,
notably:

• the inductive interpretation of I is the interpretation of (I,∅)

• the coinductive interpretation ofI is the interpretation of (I, {
∅
c

| c ∈ U}).

In [7, 16, 17] it is shown that this corresponds to taking a fixed point of FI
which is, in general, neither the least, nor the greatest.

Let (I,I𝑐𝑜 ) be a generalized inference system. The bounded coinduction

principle [7, 16, 17], a generalization of the standard coinduction principle, can
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be used to prove completeness of (I,I𝑐𝑜 ) w.r.t. a set S (for “specification”) of
valid judgments.

theorem 2.1 (Bounded coinduction): If the following two conditions hold:

1. S ⊆ Ind(I ∪ I𝑐𝑜 ), that is, each valid judgment has a finite proof tree in
I ∪ I𝑐𝑜 ;

2. S⊆ FI (S), that is, each valid judgment is the consequence of a rule in I
with premises in S

then S ⊆ Gen(I,I𝑐𝑜 ).

The standard coinduction principle can be obtainedwhenI𝑐𝑜 = {∅
c

| c ∈ U};
for this particular case the first condition trivially holds.

2.2 Syntax and semantics of FJ
Featherweight Java (FJ) is a simple calculus modeling the key features of Java-
like languages, firstly proposed in [21]. The syntax and semantics in big-step
style of FJ are shown in Figure 2.1.
We assume infinite sets of class names C, including the special class name

Object, field names f, method names m, and variables x, including the special
variable this. We omit cast since this feature does not add significant issues
for our aims. We adopt a big-step, rather than a small-step style as in the
original FJ definition, since in this way the semantics is directly defined by an
inference system, denoted IFJ in the following, which will be equipped with
corules to support infinite objects. We write cd as metavariable for cd1 . . . cd𝑛 ,
𝑛 ≥ 0, and analogously for other sequences. We sometimes use the wildcard _
when the corresponding metavariable is not relevant.

A sequence of class declarations cd is called a class table. Each class has
a canonical constructor whose parameters match the fields of the class, the
inherited ones first. We assume standard FJ constraints, e.g., no field hiding
and no method overloading. The only variables occurring in method bodies are
parameters (including this). Values are objects, that is, constructor invocations
where arguments are values in turn.

The judgment e⇓v is implicitly parametrized on a fixed class table. In the
rules we use standard FJ auxiliary functions formally defined at the bottom of
Figure 2.1. Notably, fields(C) returns the sequence f1 . . . f𝑛 of the field names2
of class C, in declaration order with the inherited first, and mbody(C,m), for
methodm of class C, the pair of the sequence of parameters and the definition.
Substitution e[e/x], for e and x of the same length, is defined in the customary
manner. Finally, for e = e1 . . . e𝑛 and v = v1 . . . v𝑛 , e⇓v is an abbreviation for
e1⇓v1 . . . e𝑛 ⇓v𝑛 .
Rule (FJ-field) models field access. If the selected field is actually a field

of the receiver’s class, then the corresponding value is returned as result.

2 We omit types since not relevant here. We discuss about type systems for coFJ later.
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cd :: = class C extends C
′ { fd md } class declaration

fd :: = C f; field declaration
md :: = C m(C1 x1, . . . ,C𝑛 x𝑛) {e} method declaration
e ∈ E :: = x | e.f | new C (e) | e.m(e) expression

v ∈ V :: = new C (v) (finite) object

(FJ-field)
e⇓v
e.f⇓v𝑖

v = new C (v1, . . . , v𝑛)
fields(C) = f1 . . . f𝑛
f = f𝑖 , 𝑖 ∈ 1..𝑛

(FJ-new)
e⇓v

new C (e) ⇓new C (v)

(FJ- invk)
e0⇓v0 e⇓v e[v0/this] [v/x] ⇓v

e0.m(e) ⇓v
v0 = new C (_)
mbody(C,m) = (x, e)

fields(Object) = 𝜖

Given class C extends C
′ {C1 f1; . . .C𝑛 f𝑛; md}

fields(C) = fields(C′) f1 . . . f𝑛

mbody(C,m) =
{
(x1 . . . x𝑛, e) if C m(C1 x1, . . . ,C𝑛 x𝑛) {e} ∈ md

mbody(C′,m) otherwise

figure 2.1 FJ syntax and big-step rules
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Rule (FJ-new) models object creation: if the argument expressions e evaluate
to values v, then the result is an object of class C. Rule (FJ- invk) models
method invocation. The receiver and argument expressions are evaluated first.
Then, method look-up is performed, starting from the receiver’s class, by the
auxiliary function mbody. Lastly, the definition e of the method, where this
is replaced by the receiver, and the parameters by the arguments, is evaluated,
and its result is returned.

2.3 Towards infinite objects and codefinitions

We take as running example the following FJ implementation of lists of integers,
equipped with some typical methods: isEmpty tests the emptiness, incr
returns the list where all elements have been incremented by one, allPos
checkswhether all elements are positive, member checkswhether the argument
is in the list, and min returns the minimal element.

class List extends Object {
bool isEmpty() {true}
List incr() {new EmptyList()}
bool allPos() {true}
bool member(int x) {false}

}
class EmptyList extends List { }
class NonEmptyList extends List {
int head; List tail;
bool isEmpty() {false}
List incr() {new NonEmptyList(this.head+1,this.tail.incr())}
bool allPos() {if (this.head<=0) false else this.tail.allPos()}
bool member(int x) {
if (this.head==x) true
else this.tail.member(x)

}
int min() {
if (this.tail.isEmpty()) this.head
else Math.min(this.tail.min(),this.head)

}
}

We used some additional standard constructs, such as conditional and prim-
itive types bool and int with their operations; to avoid to use abstract
methods, List provides the default implementation on empty lists, over-
ridden in NonEmptyList, except for method min which is only defined on
non empty lists.

In FJ programs consist in a sequence of class declarations and an expression
to be evaluated, which corresponds to the body of the mainmethod in full Java.
In this way, we can represent finite lists, for instance, the object

new NonEmptyList(2, new NonEmptyList(1, new EmptyList()))
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which we will abbreviate as [2, 1], represents a list of two elements, and it is
easy to see that all the above method definitions provide the expected meaning
on finite lists.
On the other hand, since the syntactic definition for objects is interpreted,

like the others, inductively, in FJ objects are finite, hence we cannot represent,
e.g., the infinite list of natural numbers [0, 1, 2, 3, . . .], abbreviated as [0..],
or the infinite list [2, 1, 2, 1, 2, 1, . . .], abbreviated as [2, 1]𝜔 . To move from
finite to infinite objects, it is enough to interpret the syntactic definition for
values coinductively, so to obtain infinite terms as well. However, to make the
extension significant, we should be able to generate such infinite objects as
results of expressions, and to appropriately handle them by methods.

To generate infinite objects, e.g., the infinite lists mentioned above, a natural
approach is to consider method definitions as corecursive, that is, to take the
coinductive interpretation of the inference system in Figure 2.1. Consider the
following class:

class ListFactory extends Object {
NonEmptyList from(int x) {new NonEmptyList(x, this.from(x+1)}
NonEmptyList two_one() {new NonEmptyList(2, this.one_two())}
NonEmptyList one_two() {new NonEmptyList(1, this.two_one())}

}

With the standard FJ semantics, given by the inductive interpretation of
the inference system in Figure 2.1, the method invocation new ListFact-
ory().from(0) (abbreviated from0 in the following) has no result, since there
is no finite proof tree for a judgment of shape from0⇓_. Taking the coinductive
interpretation, instead, such call returns as result the infinite list of natural num-
bers [0..], since there is an infinite proof tree for the judgment from0⇓ [0..].
Analogously, the method invocation new ListFactory().two_one() re-
turns [2, 1]𝜔 . Moreover, themethod invocations [0..] .incr() and [2, 1]𝜔 .incr()
correctly return as result the infinite lists [1..] and [3, 2]𝜔 , respectively.

However, in many cases to consider method definitions as corecursive is not
satisfactory, since it leads to non-determinism, as shown for inference systems
in Section 2.1. For instance, for the method invocation [0..] .allPos() both
judgments [0..] .allPos() ⇓ true and [0..] .allPos() ⇓ false are derivable,
and analogously for [2, 1]𝜔 .allPos(). In general, both results can be obtained
for any infinite list of all positive numbers. A similar behavior is exhibited by
method member: given an infinite list 𝐿 which does not contain x, both judg-
ments 𝐿.member(x) ⇓ true and 𝐿.member(x) ⇓ false are derivable. Finally,
for the method invocation [2, 1]𝜔 .min(), any judgment [2, 1]𝜔 .min() ⇓x with
x ≤ 1 can be derived.

To solve this problem, we introduced coFJ, an extension of Featherweight
Java that allows the programmer to control the semantics of corecursive meth-
ods by adding a codefinition3, that is, an alternative method body playing a
special role. Depending on the codefinition, the purely coinductive interpreta-

3 The term “codefinition” is meant to suggest “alternative definition used to handle corecur-
sion”.
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tion is refined, by filtering out some judgments. In the example, to achieve the
expected meaning, the programmer should provide the following codefinitions.

class ListFactory extends Object {
NonEmptyList from(int x) {
new NonEmptyList(x, this.from(x+1)} corec {any}

NonEmptyList one_two() {
new NonEmptyList(1, this.two_one())} corec {any}

NonEmptyList two_one() {
new NonEmptyList(2, this.one_two())} corec {any}

}
class NonEmptyList extends List {
int head; List tail;
bool isEmpty() {false}
List incr() {
new NonEmptyList(this.head+1,this.tail.incr())} corec {any}

bool allPos() {
if (this.head <= 0) false else this.tail.allPos()

} corec {true}
bool member(int x) {
if (this.head == x) true else this.tail.member(x)

} corec {false}
int min() {
if (this.tail.isEmpty()) this.head
else Math.min(this.tail.min(),this.head)

} corec {this.head}
}

For the three methods of ListFactory and for the method incr the codefini-
tion is any. This corresponds to keeping the coinductive interpretation as it is,
as appropriate in these cases since it provides only the expected result. In the
other three methods, instead, the effect of the codefinition is to filter the results
obtained by the coinductive interpretation. The way this is achieved is ex-
plained in the following chapters. Finally, for method isEmpty no codefinition
is added, since the inductive behaviour works on infinite lists as well.





3
COFJ and its abstract semantics

In this chapter we formally introduce coFJ by presenting its abstract semantics.
We call it abstract because it allows reasoning on coFJ at a very high level
of abstraction, as in a denotational semantics. In particular, this semantics
handles possibly infinite objects, and judgments have possibly infinite proof

trees. Moreover, it is non-deterministic, that is, expressions can be evaluated
to more than one value. Throughout the chapter, we will also illustrate how
the previous examples get the expected semantics, and show that, despite its
non-determinism, coFJ is a conservative extension of FJ.

3.1 Formal definition of coFJ

The coFJ syntax and abstract semantics are given in Figure 3.1.
As the reader can note, the only difference with the FJ syntax in Figure 2.1

is that method declarations include, besides a definition e, an optional codefin-
ition e

′, as denoted by the square brackets in the production. Furthermore,
besides this, there is another special variable any, which can only occur in
codefinitions. The codefinition will be used to provide an abstract semantics
through an inference system with corules, where the role of any is to be a
placeholder for an arbitrary value. For simplicity, we require the codefinition
e
′ to be statically restricted to avoid recursive (even indirect) calls to the same
method (we omit the standard formalization). Note that FJ is a (proper) subset
of coFJ: indeed, an FJ class table is a coFJ class table with no codefinitions.
The syntactic definition for values is the same as before, but is now inter-

preted coinductively, as indicated by the symbol ::=co . In this way, infinite
objects are supported. By replacing method parameters by arguments, we
obtain runtime expressions admitting infinite objects as subterms. The setsV
and E of FJ objects and expressions are subsets of Va and Ea, respectively.
The judgment e⇓v, with e ∈ Ea and v ∈ Va, is defined by an inference system
with corules (IFJ,I𝑐𝑜FJ ) where the rules IFJ are those1 of FJ, as in Figure 2.1, and
the corules I𝑐𝑜FJ are instances of two meta-corules.
Corule (abs-co-val) is needed to obtain a value for infinite objects, as

shown below. Corule (abs-co-invk) is analogous to the standard rule for

1 To be precise, meta-rules are the same, with meta-variables e and v ranging on Ea, and
Va, respectively. However, we could have taken this larger universe in FJ as well without
affecting the defined relation.
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cd :: = class C extends C
′ { fd md } class declaration

fd :: = C f; field declaration
md :: = C m(C1 x1, . . . ,C𝑛 x𝑛) {e} [corec {e′}] method declaration with codefinition
e ∈ E :: = x | e.f | new C (e) | e.m(e) expression

v ∈ Va :: =co new C (v) possibly infinite object
e ∈ Ea :: = x | e.f | new C (e) | e.m(e) | v runtime expression

(abs-field)
e⇓v
e.f⇓v𝑖

v = new C (v1, . . . , v𝑛)
fields(C) = f1 ...f𝑛
f = f𝑖 , 𝑖 ∈ 1..𝑛

(abs-new)
e⇓v

new C (e) ⇓new C (v)

(abs-invk)
e0⇓v0 e⇓v e[v0/this] [v/x] ⇓v

e0.m(e) ⇓v
v0 = new C (_)
mbody(C,m) = (x, e) (abs-co-val)

v⇓v

(abs-co-invk)

e0⇓v0 e⇓v e
′ [v0/this] [v/x] [v/any] ⇓vco

e0 .m(e) ⇓vco

v0 = new C (_)
co-mbody(C,m) = (x, e′)

figure 3.1 coFJ syntax and abstract semantics

method invocation, but uses the codefinition, and the variable any can be non-
deterministically substituted with an arbitrary value. The auxiliary function
co-mbody is defined analogously tombody, but it returns the codefinition. Note
that, even when mbody(C,m) is defined, co-mbody(C,m) can be undefined
since no codefinition has been specified. This can be done to force a purely
inductive behaviour for the method.

3.2 Examples

As an example, we illustrate in Figure 3.2 the role of the two corules for the
call new ListFactory().from(0). For brevity, we write abbreviated class
names. Furthermore, from𝑛 stands for the call new ListFactory().from(n)
and [𝑛..] for the infinite object new NonEmptyList(n,new NonEmptyList(n+1,...))).

In the top part of Figure 3.2, we show the infinite proof tree𝑇𝑛 which can be
constructed, for any natural number 𝑛, for the judgment from𝑛 ⇓ [𝑛..] without
the use of corules. We use standard rules (n-val) and (+) to deal with integer
constants and addition.

To derive the judgment in the inference system with corules, each node in
this infinite tree should have a finite proof tree with the corules. Notably, this
should hold for nodes of shape from𝑛 ⇓ [𝑛..], and indeed the finite proof tree
for such nodes is shown in the bottom part of the figure. Note that, in this ex-
ample, the result for the call from𝑛 , that is, the infinite list of natural numbers,
is uniquely determined by the rules, hence the role of the corules is just to
“validate” this result. To this end, the codefinition of the method from is the
special variable any, which, when evaluating the codefinition, can be replaced
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𝑇𝑛=

new LF()⇓new LF()
(abs-new)

𝑛⇓𝑛
(n-val)

𝑛⇓𝑛
(n-val)

𝑇𝑛+1
new NEL(𝑛,new LF().from(𝑛+1)) ⇓ [𝑛..]

(abs-new)

from𝑛 ⇓ [𝑛..]
(abs-invk)

𝑇𝑛+1=
new LF()⇓new LF()

(abs-new)
· · ·

𝑛+1⇓𝑛+1
(+)

𝑛+1⇓𝑛+1
(n-val)

𝑇𝑛+2
new NEL(𝑛+1,new LF().from(𝑛+1+1)) ⇓ [𝑛+1..]

(abs-new)

new LF().from𝑛+1 ⇓ [𝑛+1..]
(abs-invk)

(abs-co-invk)

(abs-new)
new LF()⇓new LF()

(n-val)
𝑛⇓𝑛 (abs-co-val)

[𝑛..] ≡ any[new LF()/this] [[𝑛..]/any] ⇓ [𝑛..]

from𝑛 ⇓ [𝑛..]

figure 3.2 Infinite (top) and finite (bottom) proof trees for from𝑛 ⇓ [𝑛..]

by any value, hence, in particular, by the correct result [𝑛..]. Corule (abs-co-
val) is needed to obtain a finite proof tree for the infinite objects of shape
[𝑛..]. Similar infinite and finite proof trees can be constructed for the judg-
ments new ListFactory().two_one() ⇓ [2, 1]𝜔 , [0..] .incr() ⇓ [1..] and
[2, 1]𝜔 .incr() ⇓ [3, 2]𝜔 , where [2, 1]𝜔 and [3, 2]𝜔 are abbreviations for the val-
ues v1 s.t.v1 = new NonEmptyList(2,new NonEmptyList(1,v1)) and v2
s.t.v2 = new NonEmptyList(3,new NonEmptyList(2,v2)), respectively.

For themethod call [0..] .allPos(), instead, both judgments [0..] .allPos() ⇓
true and [0..] .allPos() ⇓false have an infinite proof tree. However, no fi-
nite proof tree using the codefinition can be constructed for the latter, whereas
this is trivially possible for the former. Analogously, given an infinite list 𝐿
which does not contain x, only the judgment 𝐿.member(x) ⇓false has a finite
proof tree using the codefinition.
Finally, for the method invocation [2, 1]𝜔 .min(), for any v ≤ 1 there is an

infinite proof tree built without corules for the judgment [2, 1]𝜔 .min() ⇓v as
shown in Figure 3.3.
However, only the judgment [2, 1]𝜔 .min() ⇓1 has a finite proof tree using

the codefinition (Figure 3.4). In both figures ellipses are used to omit the
less interesting parts of the proof trees; we use the standard rule ( if-f) for
conditional, and the predefined function Math.min on integers.

3.3 Non-determinism and conservativity
The coFJ abstract semantics is inherently non-deterministic. Indeed, depend-
ing on the codefinition, the non-determinism of the coinductive interpretation
may be kept. For instance, consider the following method declaration:

class C {
C m() { this.m() } corec { any }

}
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𝑇0 𝑇1
[2, 1]𝜔 .min() ⇓v

(abs-invk)
𝑇0=

2⇓2
(n-val)

1⇓1
(n-val)

𝑇0
[1, 2]𝜔 ⇓ [1, 2]𝜔

(abs-new)

[2, 1]𝜔 ⇓ [2, 1]𝜔
(abs-new)

𝑇1=

.

.

.

[2, 1]𝜔 .tail.isEmpty() ⇓false

𝑇2
.
.
.

[2, 1]𝜔 .tail.min() ⇓v

.

.

.

[2, 1]𝜔 .head⇓2
Math.min( [2, 1]𝜔 .tail.min(), [2, 1]𝜔 .head) ⇓v

if [2, 1]𝜔 .tail.isEmpty() then [2, 1]𝜔 .head else Math.min( [2, 1]𝜔 .tail.min(), [2, 1]𝜔 .head) ⇓v
( if-f)

𝑇2=

.

.

.

[1, 2]𝜔 .tail.isEmpty() ⇓false

𝑇1
.
.
.

[1, 2]𝜔 .tail.min() ⇓v

.

.

.

[1, 2]𝜔 .head⇓1
Math.min( [1, 2]𝜔 .tail.min(), [1, 2]𝜔 .head) ⇓v

if [1, 2]𝜔 .tail.isEmpty() then [1, 2]𝜔 .head else Math.min( [1, 2]𝜔 .tail.min(), [1, 2]𝜔 .head) ⇓v
( if-f)

figure 3.3 Infinite proof tree for [2, 1]𝜔 .min() ⇓v with v ≤ 1 (main tree at the
top left corner)

𝑇0

.

.

.

[2, 1]𝜔 .tail.isEmpty() ⇓false

(abs-co-invk)

· · ·
(abs-co-val)

[1, 2]𝜔 ⇓ [1, 2]𝜔
[1, 2]𝜔 .head⇓1

[2, 1]𝜔 .tail.min() ⇓1

.

.

.

[2, 1]𝜔 .head⇓2
Math.min( [2, 1]𝜔 .tail.min(), [2, 1]𝜔 .head) ⇓1

if [2, 1]𝜔 .tail.isEmpty() then [2, 1]𝜔 .head else Math.min( [2, 1]𝜔 .tail.min(), [2, 1]𝜔 .head) ⇓1
( if-f)

[2, 1]𝜔 .min() ⇓1
(abs-invk)

figure 3.4 Finite proof tree with codefinition for [2, 1]𝜔 .min() ⇓1 (𝑇0 as in
Figure 3.3)
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Method m() recursively calls itself. In the abstract semantics, the judgment
new C() .m() ⇓ v can be derived for any value v. In the operational semantics
defined in Chapter 4, such method call evaluates to (x, x : x), that is, the rep-
resentation of undetermined.

However, determinism of FJ evaluation is preserved. Indeed, coFJ abstract
semantics is a conservative extension of FJ semantics, as formally stated below.

theorem 3.1 (Conservativity): If IFJ ⊢e⇓v, then (IFJ,I𝑐𝑜FJ ) ⊢e⇓v′ iff v = v
′.

Proof: Both directions can be easily proved by induction on the definition of
IFJ ⊢e⇓v. For the left-to-right direction, the fact that each syntactic category
has a unique applicable meta-rule is crucial. □

This theorem states that, whichever the codefinitions chosen, coFJ does not
change the semantics of expressions evaluating to some value in FJ. That is,
coFJ abstract semantics allows derivation of new values only for expressions
whose semantics is undefined in standard FJ, as in the examples shown above.
Note also that, if no codefinition is specified, then the coFJ abstract semantics
coincides with the FJ one, because corule (abs-co-invk) cannot be applied,
hence no infinite proof trees can be built for the evaluation of FJ expressions.





4
COFJ operational semantics

In this chapter we introduce coFJ operational semantics. Differently from
the abstract semantics, here methods manipulate finite representations (by
equations) of possibly infinite objects, and their interpretation is defined by an
inductive inference system based on cycle detection. That is, the operational se-
mantics keeps track of pending method calls. Thus, when an already processed
call is found, this does not lead to non-termination as in standard semantics of
recursion, since the cycle is detected, and the corresponding codefinition is
evaluated. This mechanism has been fruitfully employed in other program-
ming paradigms [30, 23, 6], and this operational semantics, being inductive, is
algorithmic and, thus, executable.

4.1 Formal definition

In contrast to the abstract semantics of the previous section, the aim is to
define a semantics which leads to an interpreter for the calculus. To obtain
this, there are two issues to be considered:

1. infinite (regular) objects should be represented in a finite way;

2. infinite (regular) proof trees should be replaced by finite proof trees.

In the following we explain how these issues are handled in the coFJ opera-
tional semantics.
To obtain (1), we use an approach based on capsules [22], which are essen-

tially expressions supporting cyclic references. In our context, capsules are
pairs (e, 𝜎) where e is an FJ expression and 𝜎 is an environment, that is, a
finite mapping from variables into FJ expressions. Moreover, the following
capsule property is satisfied: writing FV(e) for the set of free variables in e,
FV(e) ⊆ dom(𝜎) and, for all x ∈ dom(𝜎), FV(𝜎 (x)) ⊆ dom(𝜎). An FJ source
expression e is represented by the capsule (e,∅), where ∅ denotes the empty
environment. In particular, values are pairs (v, 𝜎) where v is an open FJ object,
that is, an object possibly containing variables. In this way, cyclic objects
can be obtained: for instance, (x, x : new NEL(2, new NEL(1, x))) represents the
infinite regular list [2, 1]𝜔 considered before, with NEL as an abbreviation of
𝑁𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 .

To obtain (2), methods are regularly corecursive. This means that execution
keeps track of the pending method calls, so that, when a call is encountered
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the second time, this is detected1, avoiding non-termination as it would hap-
pen with ordinary recursion. Regular corecursion in coFJ is flexible, since
the behaviour of the method when a cycle is detected is specified by the
codefinition.

Consider, for instance, the method call new ListFactory().two_one();
thanks to regular corecursion, the result is the cyclic object (x, x : new NEL(2, new NEL(1, x))).
Indeed, the operational semantics associates a fresh variable, say, x, to the
initial call, so that, when the same call is encountered the second time, the
association x : x is added in the environment, and the codefinition is evaluated
where any is replaced by x. Hence, (x, x : x) is returned as result, so that the
result of the original call is (x, x : new NEL(2, new NEL(1, x))). The call new
ListFactory().from(0), instead, does not terminate in the operational se-
mantics, since no call is encountered more than once (the resulting infinite
object is non-regular).
Consider now the call [2, 1]𝜔 .allPos(). In this case, when the call is en-

countered the second time, after an intermediate call [1, 2]𝜔 .allPos(), the
result of the evaluation of the codefinition is true, so that the result of the
original call is true as well.2 If the codefinition were any, then the result
would be (x, x : x), that is, undetermined. Note that, if the list is finite, then no
regular corecursion is involved, since the same call cannot occur more than
once; the same holds if the list is cyclic, but contains a non-positive element,
hence the method invocation returns false. The only case requiring regular
corecursion is when the method is invoked on a cyclic list with all positive
elements, as [2, 1]𝜔 .
In the case of [2, 1]𝜔 .min(), when the call is encountered the second time

the result of the evaluation of the codefinition is 2, so that the result of the
intermediate call [1, 2]𝜔 .min() is 1, and this is also the result of the original
call.
To formally express the approach described above, the judgment of the

operational semantics has shape e, 𝜎, 𝜏 ⇓ v, 𝜎 ′ where: (e, 𝜎) is the capsule to
be evaluated; 𝜏 is a call trace, used to keep track of already encountered calls,
that is, an injective map from calls v0.m(v) to (possibly tagged) variables, and
(v, 𝜎 ′) is the capsule result. Variables in the codomain of the call trace have a
tag ck during the checking step for the corresponding call, as detailed below.
The pairs (e, 𝜎) and (v, 𝜎 ′) are assumed to satisfy the capsule property.

We report coFJ syntax in Figure 4.1 for the reader’s convenience, while the
semantic rules are given in Figure 4.2. We denote by 𝜎{x : v} the environment
which gives v on x, and is equal to 𝜎 elsewhere, and analogously for other maps.
Furthermore, we use the following notations, formally defined in Figure 4.3.

• unfold (v, 𝜎) is the unfolding of v in 𝜎 , that is, the corresponding object, if
any.

• 𝜎1⊔𝜎2 is the union of environments, defined if they agree on the common
domain.

1 The semantics detects an already processed call by relying on capsule equivalence (Figure 4.3).
2 To be rigorous, a capsule of shape (true, _).
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cd :: = class C extends C
′ { fd md } class declaration

fd :: = C f; field declaration
md :: = C m(C1 x1, . . . ,C𝑛 x𝑛) {e} [corec {e′}] method declaration with codefinition
e ∈ E :: = x | e.f | new C (e) | e.m(e) expression

v ∈ Va :: =co new C (v) possibly infinite object
e ∈ Ea :: = x | e.f | new C (e) | e.m(e) | v runtime expression

figure 4.1 coFJ syntax

• (v, 𝜎)≈(v′, 𝜎 ′) is the equivalence of capsules. As will be formalized in the
first part of Chapter 7, equivalent capsules denote the same sets of abstract
objects. This equivalence is extended by congruence to expressions, in
particular to calls v0.m(v).

• 𝜏≈𝜎 is obtained by extending 𝜏 up to equivalence in 𝜎 . That is, detection of
already encountered calls is performed up-to equivalence in the current
environment.

When reading the rules, recall that they are expected to preserve the invari-
ant that the result of evaluation (v, 𝜎) satisfies the capsule property, that is, 𝜎
should be defined on all the variables possibly occurring in v.
Rule (val) is needed for objects which are not FJ objects. Rule (field)

is similar to that of FJ except that the capsule (v, 𝜎 ′) must be unfolded to
retrieve the corresponding object. Furthermore, the resulting environment is
that obtained by evaluating the receiver. Rule (new) is analogous to that of FJ.
The resulting environment is the union of those obtained by evaluating the
arguments.
There are four rules for method invocation. In all of them, as in the FJ

rule, the receiver and argument expressions are evaluated first to obtain the
call c = v0.m(v). The environment 𝜎 is the union of those obtained by these
evaluations. Then, the behavior is different depending on whether such call
(meaning a call equivalent to c in 𝜎) has already been processed or not.

Rules ( invk-ok) and ( invk-check) handle3 a call c which is encountered
the first time, as expressed by the side condition c ∉ dom(𝜏≈𝜎 ). In both, the
definition e, where the receiver replaces this and the arguments replace
the parameters, is evaluated. Such evaluation is performed in the call trace 𝜏
updated to associate the call c with an unused variable x (in these two rules “x
fresh” means that x does not occur in the derivations of e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 , for all
𝑖 ∈ 0..𝑛), and produces the capsule (v, 𝜎 ′). Then there are two cases, depending
on whether x ∈ dom(𝜎 ′) holds.

If x ∉ dom(𝜎 ′), then the evaluation of the definition for c has been performed
without evaluating the codefinition (( invk-ok)). That is, the same call has not
been processed, hence the result has been obtained by standard recursion, and
no additional check is needed.

3 The two rules could be merged together, but we prefer to make explicit the difference for
the sake of clarity.
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v ∈ Vop :: = new C (v) | 𝑥 open object
𝜎 :: = x1 : v1 . . . x𝑛 : v𝑛 (𝑛 ≥ 0) environment
c :: = v.m(v) call
𝑡 :: = [ck] optional checking tag
𝜏 :: = c1 :x𝑡11 , . . . , c𝑛 :x𝑡𝑛𝑛 (𝑛 ≥ 0) call trace

(val)
v, 𝜎, 𝜏 ⇓v, 𝜎 (field)

e, 𝜎, 𝜏 ⇓v, 𝜎 ′
e.f, 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′

unfold (v, 𝜎 ′) = new C (v1, . . . , v𝑛)
fields(C) = f1...f𝑛
f = f𝑖 , 𝑖 ∈ 1..𝑛

(new)
e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 ∀𝑖 ∈ 1..𝑛

new C (e1, . . . , e𝑛), 𝜎, 𝜏 ⇓new C (v1, . . . , v𝑛),
⊔

𝑖∈1..𝑛 𝜎
′
𝑖

In all the following rules:

e = e1, . . . , e𝑛
v = v1 . . . v𝑛
c = v0.m(v)
𝜎 =

⊔
𝑖∈0..𝑛 𝜎

′
𝑖

unfold (v0, 𝜎 ′0) = new C (_)

( invk-ok)

e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 ∀𝑖 ∈ 0..𝑛
e[v0/this] [v/x], 𝜎, 𝜏{c :x}⇓v, 𝜎 ′

e0.m(e), 𝜎, 𝜏 ⇓v, 𝜎 ′

c ∉ dom(𝜏≈𝜎 )
x fresh
mbody(C,m) = (x, e)
x ∉ dom(𝜎 ′)

( invk-check)

e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 ∀𝑖 ∈ 0..𝑛
e[v0/this] [v/x], 𝜎, 𝜏{c :x}⇓v, 𝜎 ′
e[v0/this] [v/x], 𝜎 ⊔ 𝜎 ′{x : v}, 𝜏{c :xck}⇓v′, 𝜎 ′′

e0.m(e), 𝜎, 𝜏 ⇓x, 𝜎 ′{x : v}

c ∉ dom(𝜏≈𝜎 )
x fresh
mbody(C,m) = (x, e)
x ∈ dom(𝜎 ′)
(x, 𝜎 ′{x : v})≈(v′, 𝜎 ′′)

(corec)

e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 ∀𝑖 ∈ 0..𝑛
e
′ [v0/this] [v/x] [𝑥/any], 𝜎{x :x}, 𝜏 ⇓v, 𝜎 ′

e0.m(e), 𝜎, 𝜏 ⇓v, 𝜎 ′{x :x}
𝜏≈𝜎 (c) = x

co-mbody(C,m) = (x, e′)

(look-up)
e𝑖 , 𝜎, 𝜏 ⇓v𝑖 , 𝜎 ′𝑖 ∀𝑖 ∈ 0..𝑛

e0.m(e), 𝜎, 𝜏 ⇓x, 𝜎
𝜏≈𝜎 (c) = x

ck

figure 4.2 coFJ operational semantics
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If x ∈ dom(𝜎 ′), instead, then the evaluation of the definition for c required
to evaluate the codefinition (( invk-check)). In this case, an additional check
is required (third premise). That is, e[v0/this] [v/x] is evaluated once more
under the assumption that v is the result of the call. Formally, evaluation takes
place in an environment updated to associate x with v, and the variable x

corresponding to the call is tagged with ck. The capsule result obtained in this
way must be (equivalent to) that obtained by the first evaluation of the body of
the method. In Chapter 6 we discuss in detail the role of this additional check,
showing an example where it is necessary. If the check succeeds, then the
final result is the variable x in the environment updated to associate x with v.
Otherwise, rule ( invk-check) cannot be applied since the last premise does
not hold. For simplicity, we assume the result of c to be undefined in this case;
an additional rule could be added raising a runtime error in case the result is
different from the expected one, as should be done in an implementation.

The remaining rules handle an already encountered call c, that is, 𝜏≈𝜎 (c) is
defined. The behaviour is different depending on whether the corresponding
variable x is tagged or not.

If x is not tagged, then rule (corec) evaluates the codefinition where the
receiver object replaces this, the arguments replace the parameters, and,
furthermore, the variable x found in the call trace replaces any. In addition,
𝜎 is updated to associate x with x. In this way, the semantics keeps track of
the application of rule (corec). Note that, in the second premise of the rule,
the environment 𝜎 in the input capsule is the same as in the output capsule.
This is correct since we assume that the codefinition e

′ is statically restricted
to avoid recursive (even indirect) calls to the same method.

If x is tagged, instead, then we are in a checking step for the corresponding
call. In this case, rule (look-up) simply returns the associated variable for a
call; by definition of the operational semantics, in this case such a variable is
always defined in the environment.

In this rule we can notice the importance of the tag on 𝜏 . Indeed, by keeping
this distinction between calls encountered for the first time and calls to be
checked, we can avoid possible applications of (look-up) instead of (corec).

Figure 4.3 contains the formal definitions of the notations used in the rules.
Note that unfold, being inductively defined, can be undefined, denoted
↑, in presence of unguarded cycles among variables. Capsule equivalence,
instead, is defined coinductively, so that, e.g., (x, x : new C (x)) is equival-
ent to (x, x : new C (new C (x))). Capsule equivalence implicitly subsumes 𝛼-
equivalence of variables whose unfolding is defined, e.g., (x, x : new C (x)) is
equivalent to (𝑦,𝑦 : new C (𝑦)). Instead, 𝛼-equivalence of undetermined vari-
ables is given by an explicit renaming, which should preserve disjointness of
cycles. For instance, (new C (x, 𝑦), (x : 𝑦,𝑦 : x)) is equivalent to (new C (x, x), x : x),
but is not equivalent to (new C (x, 𝑦), (x : x, 𝑦 : 𝑦)). Indeed, in the latter case
x and 𝑦 can be instantiated independently. We will prove in Chapter 7 (The-
orem 7.1) that the relation ≈R, for some 𝜎1, 𝜎2-renaming R, is the operational
counterpart of the fact that two capsules denote the same set of abstract val-
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unfold (v, 𝜎) =
{
new C (v) if v = new C (v)
unfold (𝜎 (v), 𝜎) if v = x

undet (𝜎) = {x ∈ dom(𝜎) | unfold (x, 𝜎) ↑}

For 𝜎1 and 𝜎2 such that 𝜎1 (x) = 𝜎2 (x) for all x ∈ dom(𝜎1) ∩ dom(𝜎2)

(𝜎1⊔𝜎2) (x) =
{
𝜎1 (x) x ∈ dom(𝜎1)
𝜎2 (x) x ∈ dom(𝜎2)

Set
𝜎↔ the least equivalence relation on undet (𝜎) such that x

𝜎↔ 𝑦 if 𝜎 (𝑥) = 𝑦, [x] the
equivalence class of x, and undet↔ (𝜎) the quotient.

A relation R ⊆ undet (𝜎1) × undet (𝜎2) is a 𝜎1, 𝜎2-renaming if it induces a (partial)
bijection from undet↔ (𝜎1), still denoted R, to undet↔ (𝜎2). Given R a 𝜎1, 𝜎2-renaming,

the relation (x, 𝜎1)≈R (x′, 𝜎2) is coinductively defined by:

(x, 𝜎)≈R (x′, 𝜎 ′)
𝑥R𝑥 ′

(v𝑖 , 𝜎)≈R (v′𝑖 , 𝜎 ′) ∀𝑖 ∈ 1..𝑛
(v, 𝜎)≈R (v′, 𝜎 ′)

unfold (v, 𝜎) = new C (v1, .., v𝑛)
unfold (v′, 𝜎 ′) = new C (v′1, .., v′𝑛)

A 𝜎1, 𝜎2-renaming R is strict if, for x, 𝑦 ∈ undet (𝜎1) ∩ undet (𝜎2), [x]R[𝑦] iff x

𝜎1↔ 𝑦

and x

𝜎2↔ 𝑦.
We write (v, 𝜎)≈(v′, 𝜎 ′) if (v, 𝜎)≈R (v′, 𝜎 ′) for some strict R.

𝜏≈𝜎 (c′) = 𝜏 (c) for each c
′ such that (c′, 𝜎)≈(c, 𝜎)

figure 4.3 coFJ auxiliary definitions
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ues. The stronger strictness condition prevents erroneous identification of
objects during evaluation, e.g., (new C (x, 𝑦), (x : x, 𝑦 : 𝑦)) is not equivalent to
(new C (𝑦, x), (𝑦 : 𝑦, 𝑥 : 𝑥)).

4.2 Determinism and conservativity

In contrast to coFJ abstract semantics, but like FJ, coFJ operational semantics
is deterministic.

theorem 4.1 (Determinism): If e, 𝜎, 𝜏1⇓v1, 𝜎1 and e, 𝜎, 𝜏2⇓v2, 𝜎2 hold and
dom(𝜏1) = dom(𝜏2), then (v1, 𝜎1) and (v2, 𝜎2) are equal up-to 𝛼-equivalence.

Proof: The proof is by induction on the derivation for e, 𝜎, 𝜏1 ⇓v1, 𝜎1. The
key point is that, once fixed e, 𝜎 and dom(𝜏1), there is a unique applicable
rule, hence both e, 𝜎, 𝜏1 ⇓ v1, 𝜎1 and e, 𝜎, 𝜏2 ⇓ v2, 𝜎2 are derived by the same
rule. □

As the abstract semantics, the operational semantics is a conservative ex-
tension of the standard FJ semantics. This result follows from soundness with
respect to the abstract semantics in next section, however the direct proof
below provides some useful insight.

theorem 4.2 (Conservativity): If IFJ ⊢e⇓v, then e,∅,∅⇓v, 𝜎 holds iff v = v

and 𝜎 = ∅.

For the proof, we need some auxiliary lemmas and definitions. First, we
note that FJ has the strong determinism property: each expression has at most
one finite proof tree in IFJ .

lemma 4.3 (FJ strong determinism): If IFJ ⊢ e⇓v1 by a proof tree 𝑡1 and
IFJ ⊢e⇓v2 by a proof tree 𝑡2, then 𝑡1 = 𝑡2 and v1 = v2.

Proof: By induction on the definition of e⇓v1. The key point is that each
judgement is the consequence of exactly one rule. □

By relying on strong determinism, it is easy to see that in FJ a proof tree for
an expression cannot contain another node labelled by the same expression.
In other words, if the evaluation of e requires to evaluate e again, then the FJ
semantics is undefined on e, as expected.

lemma 4.4 : A proof tree in IFJ for e⇓v cannot contain any other node e⇓v′,
for any v

′.

Proof: By Lemma 4.3, there is a unique proof tree 𝑡 for the expression e.
Hence, a node e⇓v′ in 𝑡 would be necessarily the root of a subtree of 𝑡 equal
to 𝑡 , that is, it is the root of 𝑡 . □
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definition 4.5 : Let IFJ ⊢ e⇓v. A call trace 𝜏 is disjoint from e⇓v if in its
proof tree4 there are no instances of (FJ- invk)where v0.m(v) ∈ dom(𝜏).

lemma 4.6 : If IFJ ⊢e⇓v, then, for all 𝜏 disjoint from e⇓v, we have e,∅, 𝜏 ⇓
v,∅.

Proof: The proof is by induction on the definition of e⇓v.

(FJ-field) Let 𝜏 be a call trace disjoint from e.f⇓v𝑖 . Since IFJ ⊢e⇓v, with
v = new C (v1, . . . , v𝑛), holds by hypothesis, and 𝜏 is, by definition, also
disjoint from e⇓ v, we get e,∅, 𝜏 ⇓ v,∅ by induction hypothesis. Then,
since unfold (v,∅) = v, we get e.f,∅, 𝜏 ⇓v𝑖 ,∅ by rule (field).

(FJ-new) Let𝜏 be a call trace disjoint from newC (e1, . . . , e𝑛) ⇓newC (v1, . . . , v𝑛).
For all 𝑖 ∈ 1..𝑛, since IFJ ⊢e1⇓v𝑖 holds by hypothesis, and 𝜏 is, by defin-
ition, also disjoint from e𝑖 ⇓ v𝑖 , we get e𝑖 ,∅, 𝜏 ⇓ v𝑖 ,∅ by induction hy-
pothesis. Then, we get new C (e1, . . . , e𝑛),∅, 𝜏 ⇓new C (v1, . . . , v𝑛),∅ by
rule (new).

(FJ-invk) Let 𝜏 be a call trace disjoint from e0.m(e1, . . . , e𝑛) ⇓ v. For all
𝑖 ∈ 0..𝑛, since IFJ ⊢e𝑖 ⇓v𝑖 holds by hypothesis, and 𝜏 is, by definition, also
disjoint from e𝑖 ⇓v𝑖 , we get e𝑖 ,∅, 𝜏 ⇓v𝑖 ,∅ by induction hypothesis. Set
v = v1 . . . v𝑛 and e′ = e[v0/this] [v/x]. By hypothesis, IFJ ⊢e′⇓v and, by
definition, 𝜏 is also disjoint from e

′⇓v; furthermore, by Lemma 4.4, e′ can-
not occur twice in the proof tree for e′⇓v, hence 𝜏{v0.m(v) :x} is disjoint
from e

′⇓v, for any fresh variable x. Then, by induction hypothesis, we
have e′,∅, 𝜏{v0.m(v) :x} ⇓ v,∅, thus we get e0.m(e1, . . . , e𝑛),∅, 𝜏 ⇓ v,∅
by rule ( invk-ok).

□

We can now prove the conservativity result for coFJ operational semantics.

Proof (Theorem 4.2): The right-to-left direction follows from Lemma 4.6,
since ∅ is disjoint from any expression, while the other direction follows
from the right-to-left one and Theorem 4.1. □

For coFJ operational semantics we can prove an additional result, char-
acterizing derivable judgements which produce an empty environment. The
meaning is that all results obtained without using the codefinitions are original
FJ results.

lemma 4.7 : If e,∅, 𝜏 ⇓v,∅ holds, then v is an FJ value v, and IFJ ⊢e⇓v.

4 Unique thanks to Lemma 4.3.



5
COFJ intermediate semantics

In this chapter, we introduce coFJ intermediate semantics, which bridges the
gap between the abstract and the operational one. This semantics is abstract in
the sense that values are interpreted coinductively, which means that objects
are possibly infinite and, moreover, evaluation is non-deterministic. However,
differently from typical coinductive handling of infinite values, it is inductive,
since it relies on detection of cyclic calls. As we will see later in Chapter 7, the
intermediate semantics is crucial in the proof of soundness of the operational
semantics with respect to the abstract one; however, we believe that this
semantics is interesting in itself, as motivated below.

In the abstract semantics (Chapter 3), methods manipulate possibly infinite

objects, e.g., the infinite list of natural numbers, and evaluation is modeled as
a relation between expressions and values, defined by an inference system with

corules [7, 16]. Hence, in particular, the input/output relation denoted by a
method is essentially the coinductive interpretation of its recursive definition,
which however, depending on the codefinition, can be restricted to a smaller
relation.

In the operational semantics (Chapter 4), methods manipulate finite repres-
entations (by equations) of possibly infinite objects, and their interpretation
is defined by an inductive inference system based on cycle detection. That is,
the operational semantics keeps track of pending method calls. Thus, when
an already processed call is found, this does not lead to non-termination as in
standard semantics of recursion, since the cycle is detected, and the corres-
ponding codefinition is evaluated.
Due to its double nature, the intermediate semantics shows that the mech-

anism of cycle detection outlined in previous chapters is orthogonal to the
problem of representation of infinite values, which is of course fundamental
for an executable semantics. Thus, the two issues can be investigated inde-
pendently.

Moreover, we believe this semantics to be the inductive counterpart of the
abstract semantics restricted to regular proof trees, that is, trees with a finite
number of different subtrees. That is, besides being sound with respect to the
abstract semantics as we proved in [3], we conjecture this semantics to be
complete as well.

Whereas we leave such completeness proof to further work, in this chapter
we describe in detail the semantics, and illustrate a key feature to obtain
completeness. This feature is non-determinism in cycle detection, that is, the
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cd :: = class C extends C
′ { fd md } class declaration

fd :: = C f; field declaration
md :: = C m(C1 x1, . . . ,C𝑛 x𝑛) {e} [corec {e′}] method declaration with codefinition
e ∈ E :: = x | e.f | new C (e) | e.m(e) expression

v ∈ Va :: =co new C (v) possibly infinite object
e ∈ Ea :: = x | e.f | new C (e) | e.m(e) | v runtime expression

figure 5.1 coFJ syntax

fact that it does not necessarily happens the first time a cycle is found.

5 . 1 Formal definition

We report coFJ syntax in Figure 5.1 for the reader’s convenience. The rules
for the intermediate semantics are give in Figure 5.2.
The semantic judgment has shape e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′ and, comparing with

e, 𝜎, 𝜏 ⇓v, 𝜎 ′ in the operational semantics, no variables are introduced for calls;
𝜌 and 𝑆 play the role of the ck and non ck part of 𝜏 , respectively, keeping track
of already processed calls. Moreover, 𝜌 directly associates to a call its value to be
used in the checking step, which in𝜎 is associated to the corresponding variable.
Finally, 𝑆 ′ plays the role of 𝜎 ′, tracing the calls for which the codefinition has
been evaluated, hence the checking stepwill be needed. The rules are analogous
to those of Figure 4.2, with the difference that, for an already processed call
c ∈ 𝑆 , either rule ( IN-invk-ok) or rule ( IN-corec) can be applied. In other
words, evaluation of the codefinition is not necessarily triggered when the
first cycle is detected.
By replacing method parameters by arguments, we obtain runtime expres-

sions admitting infinite objects as subterms. The set E of FJ (source) expressions
is a subset of the set Ea of runtime expressions. We shortly denominate call a
method call where the receiver and arguments have been evaluated.

To give more details about this semantics, we have that when a call is found
the first time, it is added to 𝑆 . If, during the evaluation of the corresponding
method body, the same call is found (cyclic call), this is detected thanks to its
presence in 𝑆 , and the codefinition can be evaluated instead.
The set 𝑆 ′ keeps track of calls to be checked, that is, those for which the

codefinition has been evaluated. Indeed, if the evaluation of a method body has
been completed by using the codefinition for cyclic calls, then an association
from the call to the resulting value v is added to 𝜌 , and an additional checking
step is performed. That is, the method body is evaluated once more assuming
v as result for cyclic calls, and v should be obtained in turn.
Rule ( in-val) states that an object evaluates to itself, and is needed for

infinite objects, whereas for finite objects rule ( in-new) would be enough.
Rules ( in-field) and ( in-new) are standard; only note that the set of calls to
be checked in the conclusion is the union of those in the premise(s).
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e ∈ Ea :: = x | e.f | new C (e) | e.m(e) | v runtime expression
c :: = v.m(v) call
𝑆 :: = c1 . . . c𝑛 (𝑛 ≥ 0) set of calls
𝜌 :: = c1:v1 . . . c𝑛 :v𝑛 (𝑛 ≥ 0) environment

( in-val)
v, 𝜌, 𝑆 ⇓IN v,∅

(field)
e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′
e.f, 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′

v = new C (v1, . . . , v𝑛)
fields(C) = f1...f𝑛
f = f𝑖 , 𝑖 ∈ 1..𝑛

( in-new)
e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 ∀𝑖 ∈ 1..𝑛

new C (e1, . . . , e𝑛), 𝜌, 𝑆 ⇓IN new C (v1, . . . , v𝑛),
⋃

𝑖∈1..𝑛 𝑆
′
𝑖

In all the following rules:

e = e1, . . . , e𝑛
v = v1 . . . v𝑛
c = v0.m(v)
v0 = new C (_)

( in-invk-ok)

e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 ∀𝑖 ∈ 0..𝑛
e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′

e0.m(e), 𝜌, 𝑆 ⇓IN v,
⋃

𝑖∈0..𝑛 𝑆
′
𝑖
∪𝑆 ′

c ∉ 𝑆 ′ or c ∈ 𝑆
mbody(C,m)=(x, e)

( in-invk-check)

e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 ∀𝑖 ∈ 0..𝑛
e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′
e[v0/this] [v/x], 𝜌{c :v}, 𝑆 ⇓IN v, 𝑆 ′′

e0.m(e), 𝜌, 𝑆 ⇓IN v,
⋃

𝑖∈0..𝑛 𝑆
′
𝑖
∪ (𝑆 ′ \ {c})

c ∉ 𝑆

mbody(C,m)=(x, e)
c ∈ 𝑆 ′

( in-corec)

e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 ∀𝑖 ∈ 0..𝑛
e
′ [v0/this] [v/x] [u/any], 𝜌, 𝑆 ⇓IN v, 𝑆 ′

e0.m(e), 𝜌, 𝑆 ⇓IN v,
⋃

𝑖∈0..𝑛 𝑆
′
𝑖
∪ 𝑆 ′ ∪ {c}

c ∈ 𝑆
co-mbody(C,m) = (x, e′)
c ∉ dom(𝜌)

( in-look-up)
e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 ∀𝑖 ∈ 0..𝑛
e0.m(e), 𝜌, 𝑆 ⇓IN v,

⋃
𝑖∈0..𝑛 𝑆

′
𝑖

𝜌 (c) = v

figure 5.2 coFJ intermediate semantics
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Analogously to the operational semantics, there are four rules for method
invocation. In all of them the receiver and argument expressions are evaluated
to obtain the call c = v.m(v) (first premise). Then, the behavior is different
depending on whether such call has been already processed.
For a call processed for the first time (c ∉ 𝑆), either rule ( in-invk-ok) or

rule ( in-invk-check) can be applied. In both cases, the call is added to the set
𝑆 , and the method body e, where the receiver replaces this and the arguments
replace the parameters, is evaluated (second premise).

After this, if c ∉ 𝑆 ′, then the codefinition has not been used for such call. That
is, the result has been obtained by standard recursion, and no additional check
is needed, hence rule ( in-invk-ok) is applied. If c ∈ 𝑆 ′, instead, then rule
( in-invk-check) is applied, where an additional check is performed (third
premise). That is, the method body (with the same substitutions) is evaluated
once more under the assumption that v is the result of the call, as modeled by
updating 𝜌 with the association to c of the resulting value. If the same value
is returned, we can conclude that it is the correct result of the evaluation of
the method call. Note that, since the call is now checked, c is removed from
𝑆 ′ in the conclusion of the rule. Otherwise, rule ( in-invk-check) cannot be
applied since the last premise does not hold.
For an already processed call, instead, there are three possibilities.
If c ∈ 𝑆 , then rule ( in-corec) can be applied, which evaluates the codefin-

ition where the receiver object replaces this, the arguments replace the
parameters, and, furthermore, an arbitrary value replaces any. In addition, c is
added to the set of calls to be checked. In this way, the semantics keeps track
of the application of rule ( in-corec).

If c ∈ dom(𝜌), then we are in a checking step for this call. In this case, rule
( in-look-up) can be applied, which simply returns the associated value.

Note that these two rules are mutually exclusive, because, if we are in the
checking step for a call c, that is, c ∈ dom(𝜌), we cannot apply rule ( in-corec),
thanks to the side condition of this rule.
In both cases, rule ( in-invk-ok) can be applied instead. Notably, if c ∈ 𝑆 ,

then either rule ( in-corec) or rule ( in-invk-ok) can be non-deterministically
applied. The latter choicemeans that cycle detection is postponed. Analogously,
if c ∈ dom(𝜌) then either ( in-look-up) or rule ( in-invk-ok) can be non-
deterministically applied.

5 .2 Examples

In this section we discuss examples to show the main feature of the intermedi-
ate semantics, that is, its non-determinism. An example of program is reported
below.

class List extends Object {
bool allPos() {true}
List noRep() { new EmptyList() }

}
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class EmptyList extends List { }

class NonEmptyList extends List {

int head; List tail;

bool allPos() {
if (this.head<=0) false
else this.tail.allPos()

} corec {true}

List noRep() {
let l = this.tail.noRep() in

if (l.member(this.head)) l
else new NonEmptyList(this.head,l)
} corec { new EmptyList() }

}

class ListFactory extends Object {
NonEmptyList oneTwo() {

new NonEmptyList(1,this.twoOne())
} corec {any}
NonEmptyList twoOne() {
new NonEmptyList(2,this.oneTwo())

} corec {any}
}

The structure of the program, the definition of method allPos and the
other auxiliary constructs are analogous to Section 2.3. We recall a few notions
for convenience.
The first three classes provide a standard implementation of lists. We use

abbreviations to denote List objects, e.g.,

new NonEmptyList(1, new NonEmptyList(2, EmptyList))

will be denoted by [1,2].
We used some additional standard constructs, such as conditional and prim-

itive types bool and int; to avoid to use abstract methods, List provides the
default implementation of allPos and noRep on empty lists, overridden in
NonEmptyList.

Class ListFactory defines methods for building infinite lists. For instance,
by invoking oneTwo(), we can build the list containing infinitely many al-
ternating occurences of 1 and 2, abbreviated [1, 2]𝜔 in the following. Indeed,
after an intermediate call twoOne(), the same call oneTwo() is processed, and
( in-corec) can be applied, which in this case returns an arbitrary value u, so
we obtain 1:2:u for the initial call. In the checking step, we should obtain in
turn 1:2:u by evaluating oneTwo() assuming 1:2:𝑢 as result of the cyclic call,
and this only happens for 𝑢 = [1, 2]𝜔 .

Method allPos, checking that all the elements of a list of integers are posit-
ive, shows amore significant use of the codefinition. By invoking [1, 2]𝜔.allPos(),
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( in-invk-check)

( in-val) (let)

( in-invk-ok)

( in-field) (let)

( in-corec)

( in-field) ( in-val)

[2, 1]𝜔 .tail.noRep(),∅, {c12, c21}⇓IN [ ], {c12}
( if-f)

body[[2, 1]𝜔/this],∅, {c12, c21}⇓IN [2], {c12}
[1, 2]𝜔 .tail.noRep(),∅, {c12}⇓IN [2], {c12}

( if-f)

body[[1, 2]𝜔/this],∅, {c12}⇓IN [1, 2], {c12}
T
[1,2]
ck

[1, 2]𝜔 .noRep(),∅,∅⇓IN [1, 2],∅

T
[1,2]
ck =

(let)

( in-invk-ok)

( in-field) (let)

( in-look-up)

( in-field)

[2, 1]𝜔 .tail.noRep(), {c12:[1, 2]}, {c21}⇓IN [1, 2],∅
( if-t)

body[[2, 1]𝜔/this], {c12:[1, 2]}, {c21}⇓IN [1, 2],∅
[1, 2]𝜔 .tail.noRep(), {c12:[1, 2]},∅⇓IN [1, 2],∅

( if-t)

body[[1, 2]𝜔/this], {c12:[1, 2]},∅⇓IN [1, 2],∅

figure 5.3 Proof tree for [1, 2]𝜔 .noRep(),∅,∅⇓IN [1, 2],∅

when the cyclic call is detected, the codefinition returns true, hence the initial
call as well. The checking step assuming true as result is successful.

Note that, as discussed in previous section, rule ( in-corec) is not necessarily
applied when the first cycle is detected. For instance, in the [1, 2]𝜔.allPos()
example, ( in-corec) could be applied for an intermediate call [2, 1]𝜔.allPos().
However, in this example, this non-determinism does not affect the final result.
An interesting method to discuss is noRep(), producing the list obtained

from the receiver by removing duplicates. We assume a let-in construct with
the standard semantics. Again the default implementation is given in List.
By calling [1, 2]𝜔.noRep(), we expect both [1, 2] and [2, 1] to be correct

results. Indeed, both are solutions of the equation corresponding to the re-
cursive definition of the result of the call, and indeed both are derived in
the abstract semantics in Chapter 3. Possible derivations for the two results
in the inductive abstract semantics are shown in Figure 5.3 and Figure 5.4,
respectively.
We write c12 for the call [1, 2]𝜔 .noRep(), and c21 for
[2, 1]𝜔 .noRep(), and body for the body of the method. Moreover, in order to
keep the derivations readable, we focus on the rules for function calls, whereas,
for some others, we only indicate the name of the applied rule, omitting the
instantiations.

In both Figure 5.3 and Figure 5.4, rule ( in-val) evaluates the receiver object
to itself, and the evaluation of the body, where the receiver replaces this, is
performed.
In the first example, rule ( in-corec) is applied when the starting call c12

is found a second time, hence the call to be checked is such initial call, and
we start the derivation by applying rule ( in-invk-check). In this way, the
codefinition is evaluated, and the empty list is returned. Then, rule ( if-f)
builds the list [2], which is turned into [1, 2] by another application of the
same rule. Lastly, the result [1,2] is returned and the checking step can start.
This last phase is performed in the tree T[1,2]ck . Here, the body of the method,
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( in-invk-ok)

( in-val) (let)

( in-invk-check)

( in-field) Taux T
[2,1]
ck

[1, 2]𝜔 .tail.noRep( ),∅, {c12} ⇓IN [2, 1],∅
( if-t)

body[ [1, 2]𝜔/this],∅, {c12} ⇓IN [2, 1],∅
[1, 2]𝜔 .noRep( ),∅,∅⇓IN [2, 1],∅

Taux = (let)

( in-invk-ok)

( in-field) (let)

( in-corec)

( in-field) ( in-val)

[1, 2]𝜔 .tail.noRep( ),∅, {c12, c21} ⇓IN [ ], {c21}
( if-f)

body[ [1, 2]𝜔/this],∅, {c12, c21} ⇓IN [1], {c21}
[2, 1]𝜔 .tail.noRep( ),∅, {c12, c21} ⇓IN [1], {c21}

( if-f)

body[ [2, 1]𝜔/this],∅, {c12, c21} ⇓IN [2, 1], {c21}

T
[2,1]
ck = (let)

( in-invk-ok)

( in-field) (let)

( in-look-up)

( in-field)

[1, 2]𝜔 .tail.noRep( ), {c21:[2, 1] }, {c12} ⇓IN [2, 1],∅
( if-t)

body[ [1, 2]𝜔/this], {c21:[2, 1] }, {c12} ⇓IN [2, 1],∅
[2, 1]𝜔 .tail.noRep( ), {c21:[2, 1] },∅⇓IN [2, 1],∅

( if-t)

body[ [2, 1]𝜔/this], {c21:[2, 1] },∅⇓IN [2, 1],∅

figure 5.4 Proof tree for [1, 2]𝜔 .noRep(),∅,∅⇓IN [2, 1],∅ (main tree at the top)

where the receiver replaces this, is evaluated once more assuming [1,2] as
result for the call c12. The structure of the tree is analogous to that for the
previous body evaluation, until the same call is processed again. Then, rule
( in-look-up) rather than ( in-corec) is applied, and [1, 2] is returned. Finally,
since the two evaluations of the body lead to the same result, the list [1, 2] is
returned in the consequence of rule ( in-invk-check).
In the second example, the call to be checked is c21. Thus, we start the

derivation by applying rule ( in-invk-ok). Then, when c21 is found for the
first time, rule ( in-invk-check) is applied, and c21 is added to the set 𝑆 . In
this way, when the same call is processed for the second time, rule ( in-corec)
is applied, and the codefinition returns the empty list. The difference from
the first example is that now the two rules ( if-f) build [2,1] as result for the
starting call c12. The checking step, performed in T

[2,1]
ck , is analogous to the

one described for Figure 5.3.

5 .3 Discussion
As already discussed, coFJ abstract semantics is far more expressive than the
operational one. Indeed, given the following factory method:
class ListFactory extends Object {
NonEmptyList fromTo(int x) {
new NonEmptyList(x,new ListFactory.fromTo(x+1))
} corec {Any}

}

a method call such as new ListFactory.fromTo(0) evaluates to the infinite
list of natural numbers in the abstract semantics, whereas it is undefined in the
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semantics based on regular corecursion, since no call will be ever processed
twice. Hence, the operational semantics is not complete with respect to the
abstract one, and to bridge this gap we introduced the intermediate semantics.
As we will see later, this latter semantics will be used to prove the soundness
result between the executable semantics and the abstract one (this result will be
discussed in Chapter 7). However, one could wonder whether a semantics based
on regular corecursion can be complete with respect to the regular restriction
of the abstract semantics, that is, with respect to the evaluation judgments
which can be proved by a regular proof tree1. We conjecture, and plan to prove
in further work, that this is true for the abstract inductive semantics described
in this paper. Instead, this is not true for the operational semantics, which, as
appropriate for an executable semantics, is deterministic, in the sense that a
strategy of earlier loop detection is chosen. Referring to the noRep example
before, only the result [1, 2] is obtained, by a proof tree analogous to that
shown in Figure 5.3.
We expect the proof of completeness to rely on the result in [17], which

shows soundness and completeness of an inductive characterization of the
regular interpretation of an inference system, that is, judgments which have a
regular proof tree.
More generally, what discussed in this chapter shows that a semantics

based on regular corecursion (cycle detection) is orthogonal to the problem of
representing infinite values. Indeed, note that non-regular values, such as the
infinite list of natural number [0..], are handled by the intermediate semantics:
for instance, we can safely evaluate the call [0..].member(5) to true, exactly
as it happens with lazy evaluation; however, we cannot generate the list [0..]
as result of a method.

1 That is, a tree with a finite number of different subtrees.
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Advanced examples

This chapter provides some more complex examples to better understand
the operational semantics of coFJ in Chapter 4 and its relationship with the
abstract semantics in Chapter 3.
Examples on listsWe first show an example motivating the additional check-
ing step (third premise) in rule ( invk-check). Essentially, the success of
this check for some capsule result corresponds to the existence of an infinite
tree in the abstract semantics, whereas the fact that this capsule result is ob-
tained by assuming the codefinition as result of the cyclic call (second premise)
corresponds to the existence of a finite tree which uses the codefinition.
Assume to add to our running example of lists of integers a method that

returns the sum of its elements. For infinite regular lists, that is, lists ending
with a cycle, a result should be returned if the cycle has sum 0, for instance
for a list ending with infinitely many 0s, and no result if the cycle has sum
different from 0. This can be achieved as follows.

class List extends Object { ...
int sum() {0}

}
class NonEmptyList extends List { ...

int sum() {this.head + this.tail.sum()} corec {0}
}

It is easy to see that the abstract semantics correctly formalizes the expec-
ted behavior of this function. For instance, an infinite tree for a judgment
[2, 1]𝜔 .sum() ⇓v only exists for v = 2 + 1 + v, and there are no solutions of this
equation, hence there is no result. In the operational semantics, by evaluating
the body assuming the codefinition as result of the cyclic call (second premise
of rule ( invk-check)) the spurious result 3would be returned. This is avoided
by the third premise, which evaluates the method body assuming 3 as result
of the cyclic call. Since we do not get 3 in turn as result, evaluation is stuck, as
expected.

Note that the stuckness situation is detected: the last side-condition of rule
( invk-check) fails, and a dynamic error (not modeled for simplicity, see the
comments to the rule) is raised, likely an exception in an implementation. On
the other hand, computations which never reach (a base case or) an already
encountered call still do not terminate in this operational semantics, exactly
as in the standard one, and the fact that this does not happen should be proved
by suitable techniques, see the Conclusion.

45
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All the examples shown until now have a constant codefinition. We show
now an example where this is not enough. Consider the method remPos()
that removes positive elements. A first attempt at a coFJ definition is the
following:

class NonEmptyList extends List { ...
List remPos() {
if(this.head > 0) this.tail.remPos()
else new NonEmptyList(this.head,this.tail.remPos())}

corec {new EmptyList()}

Is this definition correct? Actually, it provides the expected behavior on finite
lists, and cyclic lists where the cycle contains only positive elements. However,
when the cycle contains at least one non positive element, there is no result. For
instance, consider the method call [0, 1]𝜔 .remPos(). In the abstract semantics,
an infinite tree can be constructed for the judgment [0, 1]𝜔 .remPos() ⇓v only
if v = 0 : v, and this equation clearly only holds for v = [0]𝜔 . However, no
finite tree can be constructed for this judgment using the codefinition. Note
that, in the operational semantics, without the additional check (third premise
of rule ( invk-check)), we would get the spurious result [0]. In order to have
a coFJ definition complete with respect to the expected behavior, we should
provide a different codefinition for lists with infinitely many non-positive
elements.

class NonEmptyList extends List { ...
List remPos() {
if(this.head > 0) this.tail.remPos()
else new NonEmptyList(this.head,this.tail.remPos())}

corec {if (this.allPos() then new EmptyList() else any}

Arithmetic with rational and real numbers All real numbers in the closed
interval {0..1} can be represented by infinite lists [𝑑1, 𝑑2, . . .] of decimal digits;
more precisely, the infinite list [𝑑1, 𝑑2, . . .] represents the real number which
is the limit of the series

∑∞
𝑖=1 10−𝑖𝑑𝑖 .

It is well-known that all rational numbers in {0..1} correspond to either a
terminating or repeating decimal, hence they can be represented by infinite
regular lists of digits, where terminating decimals end with either an infinite
sequence of 0 or an infinite sequence of 9; for instance, the terminating decimal
1
2 can be represented equivalently by either [5, 0, 0, . . .] or [4, 9, 9, . . .], while
the repeating decimal 1

3 is represented by [3, 3, . . .].
Therefore, in coFJ all rational numbers in {0..1} can be effectively repres-

ented with infinite precision at the level of the operational semantics; to this
aim, we can declare a class Number with the two fields digit of type int and
others of type Number: digit contains the leftmost digit, that is, the most
significant, while others refers to the remaining digits, that is, the number
we would obtain by a single left shift (corresponding to multiplication by
10). Since also non-regular values are allowed, in the abstract semantics class
Number can be used to represent also all irrational numbers in {0..1}.

We now show how it is possible to compute in coFJ the addition of rational
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numbers in {0..1} with infinite precision. We first define the method carry
which computes the carry of the addition of two numbers: its result is 0 if the
sum belongs to {0..1}, 1 otherwise.
class Number extends Object { // numbers in {0..1}
int digit; // leftmost digit
Number others; // all other digits

int carry(Number num){ // returns 0 if this+num<=1, 1 otherwise
if (this.digit+num.digit!=9) (this.digit+num.digit)/10
else this.others.carry(num.others)

} corec {0}
}

The two numbers this and num are inspected starting from the most signi-
ficant digits: if their sum is different from 9, then the carry can be computed
without inspecting the other digits, hence the integer division by 10 of the sum
is returned. Corecursion is needed when the sum of the two digits equals 9; in
this case the carry is the same obtained from the addition of this.others
and num.others.
Finally, in the codefinition the carry 0 is returned; indeed, the codefinition

is evaluated only when the sum of the digits for all positions inspected so far
is 9 and the same patterns of digits are encountered for the second time. This
can only happen for pairs of numbers whose addition is [9, 9, . . .], that is, 1,
hence the computed carry must be 0.
In the abstract semantics, when the addition of 𝑛1 and 𝑛2 yields 1, without

the corules it is possible to derive 𝑛1.carry(𝑛2) ⇓ v with an infinite proof
tree for any value v, but thanks to the codefinition all spurious values are
filtered and the only correct value 0 is kept; indeed, if 0 is replaced with any
in the codefinition, then in the operational semantics the value returned by
𝑛1.carry(𝑛2) is undetermined when the addition of𝑛1 and𝑛2 yields 1, whereas
in the abstract semantics any integer is returned for the same case.
Based on method carry, we can define method add which computes the

addition of two numbers, excluding the possible carry in case of overflow.

class Number extends Object { ... // declarations as above
Number add(Number num){ // returns this+num
new Number(
(this.digit+num.digit+this.others.carry(num.others))%10,
this.others.add(num.others))} corec {any}

}

For each position, the corresponding digits of this and num are added to the
carry computed for the other digits (this.others.carry(num.others)),
then the reminder of the division by 10 gives the most significant digit of the
result, whereas the others are obtained by corecursively calling the method
on the remaining digits (this.others.add(num.others)). Since this call is
guarded by a constructor call, the codefinition is any.

Note that, in the abstract semantics, methods carry and add correctly work
also for irrational numbers.



48 advanced examples

Method add above is simple, but has the drawback that the same carries
are computed more times; hence, in the worst case, the time complexity is
quadratic in the period1 of the two involved repeating decimals. To overcome
this issue, we present a more elaborate example where carries are computed
only once for any position; this is achieved by method all_carries below,
which returns the sequence of all carries (hence, a list of binary digits).

Method simple_add corecursively adds all digits without considering car-
ries, while method add, defined on top of simple_add and all_carries,
computes the final result. This new version of add is not recursive and, hence.
does not need a codefinition.

class Number extends Object { ... // declarations as above
Number all_carries(Number num){ // carries for all positions
this.simple_carries(num).complete()

}
Number simple_carries(Number num){ // carries computed

immediately
if(this.digit+num.digit!=9)
new Number((this.digit+num.digit)/10,
this.others.simple_carries(num.others))

else new Number(9,this.others.simple_carries(num.others))
} corec {any}

Number complete(){ // computes missing carries marked with 9
if(this.digit!=9) new Number(this.digit,this.others.complete

())
else this.fill(this.carry_lookahead()).complete()

} corec {any}

Number fill(int dig){ // fills with dig all next missing
carries

if(this.digit!=9) this else new Number(dig,this.others.fill(
dig))

} corec {any}

int carry_lookahead(){ // returns the next computed carry
if(this.digit!=9) this.digit else this.others.carry_lookahead

()
} corec {0}

Number simple_add(Number num){ // addition without carries
new Number((this.digit+num.digit)%10,
this.others.simple_add(num.others))

} corec {any}

Number add(Number num){
this.simple_add(num).simple_add(this.all_carries(num).others)

}

1 Indeed, the worst case scenario is when the carry propagates over all digits because their
sum is always 9, and this can happen only if the two numbers have the same period.
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}

Distances on graphs The last example of this section involves graphs, which
are the paradigmatic example of cyclic data structure. Our aim is to compute the
distance, that is, the minimal length of a path, between two vertexes2. Consider
a graph (𝑉 , adj) where 𝑉 is the set of vertexes and 𝑎𝑑 𝑗 : 𝑉 → ℘(𝑉 ) gives, for
each vertex, the set of the adjacent vertexes. Each vertex has an identifier id
assumed to be unique. We assume a class Nat∞, with subclasses Nat with an
integer field, and Infty with no fields, for naturals and∞ (distance between
unconnected nodes), respectively. Such classes offer methods succ() for the
successor, and min(Nat∞ n) for the minimum, with the expected behaviour
(e.g., succ in class Nat∞ returns∞).
class Vertex extends Object {
Id id; AdjList adjVerts;
Nat∞dist(Id id) {
this.id==id?new Nat(0):this.adjVerts.dist(id).succ()}

corec {new Infty()}
}

class AdjList extends Object { }
class EAdjList extends AdjList {
Nat∞dist(Id id) { new Infty() }

}
class NEAdjList extends AdjList {
Vertex vert; AdjList adjVerts;
Nat∞dist(Id id) {this.vert.dist(id).min(this.adjVerts.dist(id)

)}
}

Clearly, if the destination id and the source node coincide, then the distance
is 0. Otherwise, the distance is obtained by incrementing by one the minimal
distance from an adjacent to id, computed by method dist() of AdjList
called on the adjacency list. The codefinition ofmethod dist() of class Vertex
is needed since, in presence of a cycle,∞ is returned and non-termination is
avoided. The same approach can be adopted for visiting a graph: instead of
keeping trace of already encountered nodes, cycles are implicitly handled by
the loop detection mechanism of coFJ.

2 The example can be easily adapted to weighted paths.





7
Soundness

In this chapter we provide a proof of soundness of the operational semantics
with respect to the abstract one, which roughly means that a value derived
using the rules in Figure 4.2 can also be derived by those in Figure 3.1. However,
this statement needs to be refined, since values in the two semantics are
different: possibly infinite objects in the abstract semantics, and capsules in
the operational semantics.
We define a relation from capsules to abstract objects, formally express

soundness through this relation, and introduce an intermediate semantics to
carry out the proof in two steps.

7 .1 From capsules to infinite objects
Intuitively, given a capsule (v, 𝜎), we get an abstract value by instantiating
variables in v with abstract values, in a way consistent with 𝜎 . To make this
formal, we need some preliminary definitions.
A substitution 𝜃 is a function from variables to abstract values. We denote

by e𝜃 the abstract expression obtained by applying 𝜃 to e. In particular, if e is
an open value v, then v𝜃 is an abstract value. Given an environment 𝜎 and a
substitution 𝜃 , the substitution 𝜎 [𝜃 ] is defined by:

𝜎 [𝜃 ] (x) =
{
𝜎 (x) 𝜃 x ∈ dom(𝜎)
𝜃 (𝑥) x ∉ dom(𝜎)

Then, a solution of 𝜎 is a substitution 𝜃 such that 𝜎 [𝜃 ] = 𝜃 . Let Sol(𝜎) be the
set of solutions of 𝜎 . Finally, if (e, 𝜎) is a capsule, we define the set of abstract
expressions it denotes as ⟦e, 𝜎⟧ = {e𝜃 | 𝜃 ∈ Sol(𝜎)}. Note that ⟦v, 𝜎⟧ ⊆ Va,
for any capsule (v, 𝜎). We now show an operational characterization of the
semantic equality.

theorem 7.1 : ⟦v1, 𝜎1⟧=⟦v2, 𝜎2⟧ iff (v1, 𝜎1)≈R (v2, 𝜎2), for some𝜎1, 𝜎2-renaming R.

To prove this result we need some auxiliary definitions and lemmas. The tree
expansion of a capsule (v, 𝜎) is the possibly infinite open value coinductively
defined as follows:

T (v, 𝜎) =
{
x v = x and unfold (x, 𝜎) ↑
new C (T (v1, 𝜎), . . . , T (v𝑛, 𝜎)) unfold (v, 𝜎) = new C (v1, . . . , v𝑛)

The next proposition shows relations between solutions and tree expansion of
a capsule.
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proposition 7.2 : Let (v, 𝜎) be a capsule and 𝜃 ∈ Sol(𝜎), then

1. if unfold (v, 𝜎) ↑ then v = x and x

𝜎↔ x

2. FV(T (v, 𝜎)) ⊆ {x ∈ dom(𝜎) | x 𝜎↔ x}

3. if 𝑥
𝜎↔ 𝑦 then 𝜃 (𝑥) = 𝜃 (𝑦)

4. if unfold (v, 𝜎) = new C (v1, . . . , v𝑛) then v𝜃 = new C (v1 𝜃, . . . , v𝑛 𝜃 )

5. v𝜃 = T (v, 𝜎) 𝜃

Given a relation R on variables, we will denote by Rop the opposite relation
and by =R the equality of possibly infinite open values up-to R, coinductively
defined by the following rules:

𝑥 =R 𝑦
𝑥R𝑦

𝑡𝑖 =R 𝑠𝑖 ∀𝑖 ∈ 1..𝑛
new C (𝑡1, . . . , 𝑡𝑛) =R new C (𝑠1, . . . , 𝑠𝑛)

It is easy to check that

• R is a 𝜎1, 𝜎2-renaming iff Rop is a 𝜎2, 𝜎1-renaming,
• (v1, 𝜎1)≈R (v2, 𝜎2) iff (v2, 𝜎2)≈Rop(v1, 𝜎1),
• 𝑡1 =R 𝑡2 iff 𝑡2 =Rop 𝑡1.

We have the following lemmas:

lemma 7.3 : (v1, 𝜎1)≈R (v2, 𝜎2) iff T (v1, 𝜎1)=RT (v2, 𝜎2), for each 𝜎1, 𝜎2-renaming R.

Proof: The proof is immediate by coinduction in both directions. □

lemma 7.4 : If T (v1, 𝜎1)=RT (v2, 𝜎2), where R is a 𝜎1, 𝜎2-renaming, then
⟦v1, 𝜎1⟧ = ⟦v2, 𝜎2⟧.

proposition 7.5 : If ⟦v1, 𝜎1⟧ = ⟦v2, 𝜎2⟧ then
1. if unfold (v1, 𝜎1) ↑ then unfold (v2, 𝜎2) ↑,

2. if unfold (v1, 𝜎1) = newC (v1,1, . . . , v1,𝑛) then unfold (v2, 𝜎2) = newC (v2,1, . . . , v2,𝑛)
and, for all 𝑖 ∈ 1..𝑛, ⟦v1,𝑖 , 𝜎1⟧ = ⟦v2,𝑖 , 𝜎2⟧.

lemma 7.6 : If ⟦v1, 𝜎1⟧=⟦v2, 𝜎2⟧ then T (v1, 𝜎1) =R T (v2, 𝜎2), for some 𝜎1, 𝜎2-
renaming R.

Proof (Theorem 7.1): The right-to-left direction follows from Lemma 7.3 and
Lemma 7.4, while the other direction follows from Lemma 7.6 and Lemma 7.3.

□

Since by definition ≈ is equal to ≈R for some R, applying Lemma 7.3 and
Lemma 7.4 we get that if (v1, 𝜎1)≈(v2, 𝜎2) then ⟦v1, 𝜎1⟧ = ⟦v2, 𝜎2⟧. Actually
we can prove a stronger result:

lemma 7.7 : If (v1, 𝜎1)≈R (v2, 𝜎2) for some strict 𝜎1, 𝜎2-renaming R, then, for
each solution 𝜃 ∈ Sol(𝜎1 ∩ 𝜎2), there are 𝜃1 ∈ Sol(𝜎1) and 𝜃2 ∈ Sol(𝜎2) such
that v1 𝜃1 = v2 𝜃2 and, for all x ∈ dom(𝜎1 ∩ 𝜎2), 𝜃1(x) = 𝜃 (x) = 𝜃2(x).
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7 .2 Statement and proof
We can now formally state the soundness result:

theorem 7.8 : If e,∅,∅⇓v, 𝜎 , then, for all v ∈ ⟦v, 𝜎⟧, (IFJ,I𝑐𝑜FJ ) ⊢e⇓v.

This main result is about the evaluation of source expressions, hence both
the environment and the call trace are empty. To carry out the proof we need
to generalize the statement.

theorem 7.9 (Soundness): If e, 𝜎,∅ ⇓ v, 𝜎 ′, then, for all 𝜃 ∈ Sol(𝜎 ′),
(IFJ,I𝑐𝑜FJ ) ⊢e𝜃 ⇓v𝜃 .

To show that this is actually a generalization, set 𝜎1 ≤ 𝜎2 if dom(𝜎1) ⊆
dom(𝜎2), and, for all x ∈ dom(𝜎1), 𝜎1(x) = 𝜎2(x). We use the following lemmas.

lemma 7.10 : If 𝜎1 ≤ 𝜎2, then Sol(𝜎2) ⊆ Sol(𝜎1).

Proof: Let 𝜃 ∈ Sol(𝜎2). Since 𝜎1 ≤ 𝜎2, we have that, for all x ∈ dom(𝜎1),
𝜎1(x) = 𝜎2(x). Hence, 𝜎1 [𝜃 ] (x) = 𝜎1(x) 𝜃 = 𝜎2(x) 𝜃 = 𝜎2 [𝜃 ] (x) = 𝜃 (x). Thus
we get 𝜃 ∈ Sol(𝜎2). □

lemma 7.11 : If e, 𝜎, 𝜏 ⇓v, 𝜎 ′, then 𝜎 ≤ 𝜎 ′.

In the statement of Theorem 7.9, thanks to Lemma 7.11, we know that
𝜎 ≤ 𝜎 ′, hence, by Lemma 7.10, 𝜃 ∈ Sol(𝜎), thus e𝜃 ∈ ⟦e, 𝜎⟧. Theorem 7.9
implies Theorem 7.8, since, when 𝜎 = ∅, e is closed, hence e𝜃 = e, and all
elements in ⟦v, 𝜎 ′⟧ have shape v𝜃 with 𝜃 ∈ Sol(𝜎 ′).

In order to prove Theorem 7.9, we rely on the intermediate semantics defined
in Chapter 5.

By relying on the intermediate semantics, we can prove Theorem 7.9 in two
steps:

1. Firstly we prove that the operational semantics is sound w.r.t. the inter-
mediate semantics (Theorem 7.12).

2. Then, we show that the intermediate semantics is sound w.r.t. the abstract
semantics (Theorem 7.14).

At the beginning of Chapter 4, we mentioned two issues for an operational
semantics: representing infinite objects in a finite way, and replacing infinite
(regular) proof trees by finite proof trees. This proof technique nicely shows
that the two issues are orthogonal: notably, detection of cyclic calls is inde-
pendent from the format of values.

To express the soundness of the operational semantics w.r.t. the intermediate
one, we need to formally relate the two judgments. First of all, a call trace
𝜏 is the disjoint union of two maps 𝜏ck and 𝜏¬ck into tagged and non-tagged
variables, respectively. Then, given an environment 𝜎 , we define the following
sets of (operational) calls:
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• 𝑆𝜏 = dom(𝜏¬ck)
• 𝑆𝜏,𝜎 = dom(𝜎 ◦ 𝜏¬ck), where ◦ is the composition of partial functions
• 𝑆𝜏,𝜎,𝜎

′
= 𝑆𝜏,𝜎

′ \ 𝑆𝜏,𝜎

For 𝑆 set of calls and 𝜃 substitution, we abbreviate the set of abstract calls 𝑆 𝜃 by
𝑆𝜃 . Note that 𝑆𝜏,𝜎𝜃

⊆ 𝑆𝜏
𝜃
and, if 𝜎1 ≤ 𝜎2, then 𝑆

𝜏,𝜎1
𝜃
⊆ 𝑆

𝜏,𝜎2
𝜃

. Finally, 𝜌𝜏
𝜃
(c 𝜃 ) = v

iff v = 𝜃 (𝜏ck(c)).
Then, the soundness result can be stated as follows:

theorem 7.12 (Soundness operational w.r.t. intermediate): If e, 𝜎, 𝜏 ⇓v, 𝜎 ′
then, for all 𝜃 ∈ Sol(𝜎 ′), there exists 𝑆 such that 𝑆𝜏,𝜎,𝜎

′

𝜃
⊆ 𝑆 ⊆ 𝑆

𝜏,𝜎 ′

𝜃
and,

e𝜃, 𝜌𝜏
𝜃
, 𝑆𝜏

𝜃
⇓IN v𝜃, 𝑆 .

In particular, the bounds on 𝑆 ensure that it is empty when 𝜏 = ∅. Hence, if
e, 𝜎,∅⇓v, 𝜎 ′ (hypothesis of Theorem 7.9), then e𝜃,∅,∅⇓IN v𝜃,∅, that is, the
hypothesis of Theorem 7.14 below holds.
The proof of the theorem uses the following corollary of Lemma 7.7.

corollary 7.13 : If (v1, 𝜎1)≈(v2, 𝜎2), 𝜃1∈Sol(𝜎1), 𝜎1 ≤ 𝜎2, then there is
𝜃2 ∈ Sol(𝜎2) such that v1 𝜃1 = v2 𝜃2 and, for all 𝑥 ∈ dom(𝜎1), 𝜃1(𝑥) = 𝜃2(𝑥).
Moreover, if 𝜎1 = 𝜎2, then v1 𝜃1 = v2 𝜃1.

Proof: Immediate from Lemma 7.7, since, if 𝜎1 ≤ 𝜎2 then 𝜎1 ∩ 𝜎2 = 𝜎1, and,
if 𝜎1 = 𝜎2 then 𝜎1 ∩ 𝜎2 = 𝜎1. □

We now state the second step of the proof: the soundness result of the
intermediate semantics with respect to the abstract semantics.

theorem 7.14 (Soundness intermediate w.r.t. abstract): If e,∅,∅⇓IN v,∅,
then (IFJ,I𝑐𝑜FJ ) ⊢e⇓v.

The proof uses the bounded coinduction principle (Theorem 2.1), and re-
quires some lemmas. Recall that IFJ∪I𝑐𝑜FJ ⊢e⇓v means that the judgment e⇓v
has a finite proof tree in the (standard) inference system consisting of FJ rules
and coFJ corules.

lemma 7.15 : If e,∅, 𝑆 ⇓IN v, 𝑆 ′ then IFJ∪I𝑐𝑜FJ ⊢e⇓v holds.

Proof: By induction on the definition of e,∅, 𝑆 ⇓IN v, 𝑆 ′.

(in-val) By hypothesis, we have that v,∅, 𝑆 ⇓IN v,∅. The thesis is imme-
diate by applying rule (abs-co-val).

(in-field) By hypothesis, we have that e,∅, 𝑆 ⇓IN v, 𝑆 ′. By inductive
hypothesis, IFJ∪I𝑐𝑜FJ ⊢e⇓v holds. Thus, we can apply rule (abs-field)
and get the thesis.

(in-new) By hypothesis, we have that e𝑖 ,∅, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 for all 𝑖 ∈ 1..𝑛.

By inductive hypothesis, IFJ∪I𝑐𝑜FJ ⊢e𝑖 ⇓v𝑖 holds for all 𝑖 ∈ 1..𝑛. Thus, we
can apply rule (abs-new) and get the thesis.
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(in-invk-ok)-(in-invk-check) By hypothesis, e𝑖 ,∅, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 holds

for all 𝑖 ∈ 0..𝑛, and e[v0/this] [v/x],∅, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds. By in-
ductive hypothesis, IFJ∪I𝑐𝑜FJ ⊢ e𝑖 ⇓v𝑖 holds for all 𝑖 ∈ 0..𝑛 and and also
IFJ∪I𝑐𝑜FJ ⊢ e[v0/this] [v/x] ⇓v holds. Thus, we can apply rule (abs-
invk) and get the thesis. Note that, in order to get the thesis, the third
premise of rule ( invk-check) has not been used.

(in-corec) By hypothesis, e𝑖 ,∅, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 0..𝑛., and
e
′ [v0/this] [v/x] [𝑢/any],∅, 𝑆 ⇓IN v, 𝑆 ′ holds. By inductive hypothesis,
IFJ∪I𝑐𝑜FJ ⊢e𝑖 ⇓v𝑖 holds for all 𝑖 ∈ 0..𝑛, and alsoIFJ∪I𝑐𝑜FJ ⊢e′ [v0/this] [v/x] [𝑢/any] ⇓v
holds. Thus, we can apply rule (abs-co-invk) and get the thesis.

(in-look-up) This case is empty since to apply the rule it should be
𝜌 ≠ ∅.

□

lemma 7.16 : If e, 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′, and e, 𝜌{c :v}, 𝑆 ⇓IN v, 𝑆 , then 𝑆 ⊆ 𝑆 ′.

lemma 7.17 : If e, 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds, and c ∉ 𝑆 ′, then e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′.

Proof: For brevity, we use 𝑆 in place of 𝑆 ∪ {c}. In rules ( IN-invk-ok),
( IN-invk-check), ( IN-corec) and ( IN-look-up), 𝑆 abbreviates 𝑆 ∪ {c′},
so to distinguish between different calls that could be present in the call trace
at the same time.
By induction on the definition of e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′.

(in-val) By hypothesis, v, 𝜌, 𝑆 ⇓IN v,∅. We can trivially get the thesis by
rule ( IN-val)

(in-field) By hypothesis, e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′, and c ∉ 𝑆 ′. By inductive hypo-
thesis, e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′ holds. Thus, we can apply rule ( IN-field) and get
the thesis.

(in-new) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 , and c ∉ 𝑆 ′𝑖 for all 𝑖 ∈ 1..𝑛. By
inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. Thus, we can
apply rule ( IN-new) and get the thesis.

(in-invk-ok) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 , and c

′ ∉ 𝑆 ′𝑖 for all 𝑖 ∈
0..𝑛. Also by hypothesis, e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds, and
c
′ ∉ 𝑆 ′. By inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆

′
𝑖 holds for all 𝑖 ∈ 0..𝑛

and e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds. Thus, we can apply rule
( IN-invk-ok) and get the thesis.

(in-invk-check) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 , and c
′ ∉ 𝑆 ′𝑖 , hence by

inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds, for all 𝑖 ∈ 0..𝑛. Moreover,
e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds with c′ ∉ 𝑆 ′ (note that it is c ≠
c
′ since the first side condition holds), hence, by inductive hypothesis,
e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′. Finally, e[v0/this] [v/x], 𝜌{c :v}, 𝑆 ⇓IN v, 𝑆 ′′
holds, and, from Lemma 7.16, c′ ∉ 𝑆 ′′, hence, by inductive hypothesis,
e[v0/this] [v/x], 𝜌{c : v}, 𝑆 ⇓IN v, 𝑆 ′′ holds. Thus, we can apply rule
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( IN-invk-check) and get the thesis.
(in-corec) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆

′
𝑖 holds, and c

′ ∉ 𝑆 ′𝑖 for all
𝑖 ∈ 0..𝑛. Also by hypothesis, e′ [v0/this] [v/x] [𝑢/any], 𝜌, 𝑆 ⇓IN v, 𝑆 ′

holds and c
′ ∉ 𝑆 ′. By inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all

𝑖 ∈ 0..𝑛 and e
′ [v0/this] [v/x] [𝑢/any], 𝜌, 𝑆 ⇓IN v,∅ holds. Thus, we can

apply rule ( IN-corec) and get the thesis.
(in-look-up) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆

′
𝑖 holds, and c

′ ∉ 𝑆 ′𝑖 for all
𝑖 ∈ 1..𝑛. By inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds ∀𝑖 ∈ 0..𝑛. Thus,
we can apply rule ( IN-look-up) and get the thesis.

□

lemma 7.18 : If e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′, then the following judgments hold:

1. e, 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′

2. e, 𝜌{c :v′}, 𝑆 ⇓IN v, 𝑆 ′ for any v
′ ∈ Va.

Proof: The proof of both points is by induction on the definition of e, 𝜌, 𝑆 ⇓IN
v, 𝑆 ′. For brevity, we use 𝑆 in place of 𝑆 ∪ {c} and 𝜌 in place of 𝜌{c :v′}. In
rules ( IN-invk-ok), ( IN-invk-check), ( IN-corec) and ( IN-look-up), 𝑆
abbreviates 𝑆 ∪ {c′}, and 𝜌 abbreviates 𝜌{c :v′}, so to distinguish between
different calls that could be present in the environments at the same time.
For the first part we have:

(in-val) By hypothesis, v, 𝜌, 𝑆 ⇓IN v,∅. We can trivially get the thesis by
rule ( IN-val)

(in-field) By hypothesis, e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′ holds. By inductive hypothesis,
e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′ holds. Thus, we get the thesis by applying rule ( IN-field).

(in-new) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. By induct-
ive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. Thus, we get the
thesis by applying rule ( IN-new).

(in-invk-ok) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛, and
e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds. If c = c

′ we immediately get
the thesis. Otherwise, by inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for
all 𝑖 ∈ 1..𝑛, and e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ holds. Thus, we can
apply rule ( IN-invk-ok) and get the thesis.

(in-invk-check) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 holds for all 𝑖 ∈ 1..𝑛,

e[v0/this] [v/x], 𝜌, 𝑆∪{c}⇓IN v, 𝑆 ′, and e[v0/this] [v/x], 𝜌{c :v}, 𝑆 ⇓IN
v, 𝑆 ′′ hold. If c = c

′ we immediately get the thesis. Otherwise, by induct-
ive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛, e[v0/this] [v/x], 𝜌, 𝑆∪
{c} ⇓IN v, 𝑆 ′ and e[v0/this] [v/x], 𝜌{c : v}, 𝑆 ⇓IN v, 𝑆 ′′ hold. Thus, we
can apply rule ( IN-invk-check) and get the thesis.

(in-corec) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 holds for all 𝑖 ∈ 1..𝑛. Also

by hypothesis, e′ [v0/this] [v/x] [𝑢/any], 𝜌, 𝑆 ⇓IN v, 𝑆 ′ holds. If c = c
′,
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that is, if the call we are adding to 𝑆 is actually the one for which the
codefinition is being evaluated, we immediately get the thesis. Otherwise,
by inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆

′
𝑖 holds for all 𝑖 ∈ 1..𝑛 and

e
′ [v0/this] [v/x] [𝑢/any], 𝜌, 𝑆 ⇓IN v, 𝑆 ′ holds. Then, we can apply rule
( IN-corec) and get the thesis.

(in-look-up) By hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆
′
𝑖 holds for all 𝑖 ∈ 1..𝑛. By

inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. Thus, we get
the thesis by applying rule ( IN-look-up).

□

lemma 7.19 : If e, 𝜌{c :v′}, 𝑆 ⇓IN v, 𝑆 ′ and c, 𝜌, 𝑆 ⇓IN v′,∅, then e, 𝜌, 𝑆 ⇓IN v, 𝑆 ′.

Proof: In the proof of this lemma we will use 𝜌 ′ in place of 𝜌{c :v′}. In rules
( IN-invk-ok), ( IN-invk-check), ( IN-corec) and ( IN-look-up), 𝜌 ′ will
be used in place of 𝜌{c′ : v′} so to distinguish between different calls that
could be present in the call trace at the same time.
We proceed by induction on the definition of e, 𝜌 ′, 𝑆 ⇓IN v, 𝑆 ′.

(in-val) By hypothesis, v, 𝜌 ′, 𝑆 ⇓IN v,∅. The thesis trivially holds by
applying rule ( IN-val).

(in-field) By hypothesis, e, 𝜌 ′, 𝑆 ⇓IN v, 𝑆 ′. By inductive hypothesis, e, 𝜌, 𝑆 ⇓IN
v, 𝑆 ′ holds. Thus, we can apply rule ( IN-field) and get the thesis.

(in-new) By hypothesis, e𝑖 , 𝜌 ′, 𝑆 ⇓IN v𝑖 , 𝑆
′ holds for all 𝑖 ∈ 1..𝑛. By in-

ductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. Thus, we can
apply rule ( IN-new) and get the thesis.

(in-invk-ok) By hypothesis, e𝑖 , 𝜌 ′, 𝑆 ⇓IN v𝑖 , 𝑆 ′ holds for all 𝑖 ∈ 0..𝑛. Also
by hypothesis, e[v0/this] [v/x], 𝜌 ′, 𝑆 ∪ {c} ⇓IN v, 𝑆 ′ holds. In order to
use the inductive hypothesis, we apply Lemma 7.18 to the hypothesis
c
′, 𝜌, 𝑆 ⇓IN v′,∅ and obtain c′, 𝜌, 𝑆∪{c}⇓IN v′,∅. By inductive hypothesis,
e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛, and e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN
v, 𝑆 ′ holds. Thus, we can apply rule ( IN-invk-ok) and get the thesis.

(in-invk-check) By hypothesis, e𝑖 , 𝜌 ′, 𝑆 ⇓IN v𝑖 , 𝑆 ′ holds for all 𝑖 ∈ 0..𝑛.
Also by hypothesis, e[v0/this] [v/x], 𝜌 ′, 𝑆∪{c}⇓IN v, 𝑆 ′ and e[v0/this] [v/x], 𝜌 ′{c :
v}, 𝑆 ⇓IN v, 𝑆 ′′ hold. In order to use the inductive hypothesis, we ap-
ply Lemma 7.18 to the hypothesis c′, 𝜌, 𝑆 ⇓IN v

′,∅ and obtain c
′, 𝜌{c :

v}, 𝑆∪{c}⇓IN v′,∅. By inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all
𝑖 ∈ 1..𝑛, e[v0/this] [v/x], 𝜌, 𝑆 ∪ {c}⇓IN v, 𝑆 ′ and e[v0/this] [v/x], 𝜌{c :
v}, 𝑆 ⇓IN v, 𝑆 ′′ hold. Thus, we can apply rule ( IN-invk-check) and get
the thesis.

(in-corec) By hypothesis, e𝑖 , 𝜌 ′, 𝑆 ⇓IN v𝑖 , 𝑆 ′ holds for all 𝑖 ∈ 0..𝑛. Also by
hypothesis, e′ [v0/this] [v/x] [𝑢/any], 𝜌 ′, 𝑆 ⇓IN v, 𝑆 ′ holds. By inductive
hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛 and e′ [v0/this] [v/x] [𝑢/any], 𝜌, 𝑆 ⇓IN
v,∅ holds. Thus, we can apply rule ( IN-corec) and get the thesis.
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(in-look-up) By hypothesis, e𝑖 , 𝜌 ′, 𝑆 ⇓IN v𝑖 , 𝑆 ′ holds for all 𝑖 ∈ 0..𝑛. By
inductive hypothesis, e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′𝑖 holds for all 𝑖 ∈ 1..𝑛. In order to
proceed, we have to distinguish between two cases (recall that c′ =
v
′
0.m
′(v′) and c = v0.m(v)):

• If c′ ≠ c, then 𝜌 ′(c) = 𝜌 (c) = v, hence we get the thesis by applying
rule (look-up).

• If c′ = c, then, since c
′, 𝜌, 𝑆 ⇓IN v

′, 𝑆 ′ holds by hypothesis, and
e𝑖 , 𝜌, 𝑆 ⇓IN v𝑖 , 𝑆 ′ holds by inductive hypothesis for all 𝑖 ∈ 0..𝑛, the
judgment e0.m(e), 𝜌, 𝑆 ⇓IN v′, 𝑆 ′ can still be derived.

□

We can now prove Theorem 7.14.
Proof (Theorem 7.14): We take as specification the set𝐴 = {(e, v) | e,∅,∅⇓IN
v,∅}, and we use bounded coinduction (Theorem 2.1). We have to prove the
following:

boundedness For all (e, v) ∈ 𝐴, IFJ∪I𝑐𝑜FJ ⊢e⇓v holds.
consistency For all (e, v) ∈ 𝐴, there exist a rule in the abstract se-
mantics having e⇓v as consequence, and such that all its premises are
elements of 𝐴.

Boundedness follows immediately from Lemma 7.15. We now prove consist-
ency.

Consider a pair (e, v) ∈ 𝐴, hence we know that e,∅,∅⇓IN v,∅ is derivable.
We proceed by case analysis on the last applied rule in the derivation of this
judgement.

(in-val) We know that e = v = new C (v1, . . . , v𝑛). We choose as candid-
ate rule (abs-new). We have to show that, for all 𝑖 ∈ 1..𝑛, (v𝑖 , v𝑖) ∈ 𝐴,
that is, v𝑖 ,∅,∅ ⇓IN v𝑖 ,∅ holds. We can get the thesis thanks to rule
( IN-val).

(in-field) We know that e = e
′.f and e

′,∅,∅ ⇓IN new C (v1 . . . v𝑛),∅.
We choose as candidate rule (abs-field), with conclusion e

′.f ⇓ v𝑖 .
We have to show that (e′, new C (v1 . . . v𝑣)) ∈ 𝐴, that is, e′,∅,∅ ⇓IN
new C (v1 . . . v𝑣),∅ holds, but this is true by hypothesis.

(in-new) We know that e𝑖 ,∅,∅⇓IN v𝑖 ,∅ holds for all 𝑖 ∈ 1..𝑛. We choose
as candidate rule (abs-new). We have to show that, for all 𝑖 ∈ 1..𝑛,
(e𝑖 , v𝑖) ∈ 𝐴, that is, e𝑖 ,∅,∅⇓IN v𝑖 ,∅ holds, but this is true by hypothesis.

(in-invk-ok) We know that e = e0.m(e), e𝑖 ,∅,∅⇓IN v𝑖 ,∅ holds for all 𝑖 ∈
0..𝑛, c = v0.m(v),mbody(C,m) = (x, e′), and e′ [v0/this] [v/x],∅, {c}⇓IN
v,∅ holds. We choose as candidate rule (abs-invk). We have to show
that, for all 𝑖 ∈ 0..𝑛, (e𝑖 , v𝑖) ∈ 𝐴, and (e′ [v0/this] [v/x], v) ∈ 𝐴. That
is, that the following judgments hold: e𝑖 ,∅,∅⇓IN v𝑖 ,∅ for all 𝑖 ∈ 0..𝑛,
and e

′ [v0/this] [v/x],∅,∅⇓IN v,∅. The judgments in the first set hold
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by hypothesis. The last judgment holds thanks to Lemma 7.17, where
𝑆 ′ = ∅.

(in-invk-check) We know that e = e0.m(e), e𝑖 ,∅,∅⇓IN v𝑖 ,∅ holds for
all 𝑖 ∈ 0..𝑛, c = v0.m(v),mbody(C,m) = (x, e′), and e′ [v0/this] [v/x], {c :
v},∅⇓IN v,∅ holds. We choose as candidate rule (abs-invk). We have
to show that for all 𝑖 ∈ 0..𝑛, (e𝑖 , v𝑖) ∈ 𝐴, and (e′ [v0/this] [v/x], v) ∈ 𝐴.
That is, that the following judgments hold: e𝑖 ,∅,∅⇓IN v𝑖 ,∅ for all 𝑖 ∈ 0..𝑛,
and e

′ [v0/this] [v/x],∅,∅⇓IN v,∅. The judgments in the first set hold
by hypothesis. The last judgment holds thanks to Lemma 7.19, since
from the hypothesis we easily get c,∅,∅⇓IN v,∅.

(in-corec) Empty case since to apply the rule it should be 𝑆 ≠ ∅.
(in-look-up) Empty case since to apply the rule it should be 𝜌 ≠ ∅.

□
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Related and future work

In the first part of the thesis, we focused on making regular corecursion flexible,
which means that the programmer can specify the behaviour in case a cycle is
detected. Language constructs to achieve such flexibility have been proposed
in the logic [2, 6, 18], functional [22, 23], and object-oriented [9, 10] paradigm.

logic paradigm As already mentioned, the idea of regular corecursion
(keeping track of pending function/method calls, so to detect cyclic calls), ori-
ginates from co-SLD resolution [30, 31, 8], which is a sound resolution procedure
based on cycle detection. Namely, it is a modification of SLD resolution where,
when the same goal is found the second time, it is considered successful. In this
way it is possible to define coinductive predicates. Correspondingly, models are
subsets of the complete Herbrand basis, that is, the set of ground atoms built on
arbitrary (finite or infinite) terms, and the declarative semantics is the greatest
fixed point of the monotone function associated with a program. Anyway, in
coinductive logic programming, only standard coinduction is supported. The
notion of finally clause, introduced in [2], allows the programmer to specify
a fact to be resolved when a cycle is detected, instead of simply accepting
the atom. The approach has been refined in [6, 18], by relying on the formal
framework of generalized inference systems. That is, the programmer can
write special clauses corresponding to corules, called coclauses, so that, when
an atom is found for the second time, standard SLD resolution is triggered in
the program enriched by the coclauses.

functional paradigm CoCaml1 [22, 23] is a fully-fledged extension of
OCaml supporting non-well-founded data types and corecursive functions.
CoCaml, as OCaml, allows programmers to declare regular values through
the let-rec construct, and, moreover, detects cyclic calls as in our approach.
However, whereas coFJ immediately evaluates the cyclic call by using the
codefinition, the CoCaml approach is divided in two phases. First, a system
of equations is constructed, associating with each call a variable and partially
evaluating the body of functions, where calls are replaced with associated
variables. Then, the system of equations is given to a solver specified in the
function definition. Solvers can be either pre-defined or written by the pro-
grammer in order to enhance flexibility. An advantage that we see in our
approach is that the programmer has to write the codefinition (standard code)

1 www.cs.cornell.edu/Projects/CoCaml
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rather than working at the meta-level to write a solver, which is in a sense a
fragment of the interpreter. A precise comparison is difficult for the lack of a
simple operational model of the CoCaml mechanism.

object-oriented paradigm An early version of coFJ was proposed in
[9]. At that time, however, the framework of inference systemswith corules was
still to come, so there was no formal model against which to check the given
operational semantics, which, indeed, derived spurious results in some cases, as
illustrated in Chapter 6. The operational semantics provided in Chapter 4 solves
this problem, and is proved to be sound with respect to the abstract semantics.
Moreover, we adopt a simpler representation of cyclic objects through capsules
[22]. A type system has been proposed [10] for the previous version of coFJ
to prevent unsafe use of the ”undetermined” value. We leave to further work
the investigation of typing issues for the approach presented in the thesis.

future work For what concerns the implementation of the coFJ calculus,
as for now we have a prototype2, that implements the abstract semantics on
top of a Prolog meta-interpreter supporting flexible regular corecursion [6,
18]. In this way, the inference system is naturally translated in Prolog3, cyclic
terms are natively supported, and their equality handled by unification. A
fully-fledged interpreter of the operational semantics should directly handle
these issues and, moreover, attempt to do some optimization.
The current approach does not deal with types: an important concern is

to guarantee type soundness, statically ensuring that an undetermined value
never occurs as receiver of field access or method invocation, as investigated
in [10] for the previous coFJ version [9].
Another issue is how to train developers to write codefinitions. Standard

recursion is non-trivial as well for beginners, whereas it becomes quite natural
after understanding its mechanism. For regular corecursion the same holds,
with the additional difficulty of reasoning on infinite structures. Intuitively,
the codefinition can be regarded as a base case to be applied when a loop is
detected. Moreover, again as for standard recursion, this novel programming
style could be integrated with proof techniques to show the correctness of
algorithms on cyclic data structures. Such proofs could be mechanized in proof
assistants, as Agda, that provide built-in support for coinductive definitions
and proofs by coinduction.
Finally, a non-trivial challenge is how to integrate regular corecursion,

requiring to detect "the same call", with the notion of mutable state. Likely,
some immutability constraints will be needed, or a variant of the model where
such a check requires a stateless computation. Another solution is to consider
the check as an assertion that can be disabled if the programmer has verified
the correctness of the method by hand or assisted by a tool.
Such a style could be conveniently integrated with proof assistants, such

as Agda, that provide built-in support for coinductive definitions and proofs

2 https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip
3 A logic program can be seen as an inference system where judgments are atoms.

https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip
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by coinduction, to formally prove the correctness of algorithms on cyclic data
structures.

The semantics of flexible regular corecursion is the operational counterpart
of the abstract one, obtained by considering recursive functions as relations,
and recursive definitions (with codefinition) as inference systems (with cor-
ules). We prove that the operational semantics is sound with respect to that
interpretation. Obviously, completeness does not hold in general, since the
abstract semantics deals with not only cyclic data structures (such as [2, 1]𝜔 ),
but arbitrary non-well-founded structures (such as the list of natural numbers).
Even considering only regular proof trees in the abstract semantics, in some
subtle cases there is more than one admissible result4, whereas the operational
semantics, being deterministic, finds "the first" among such results, as reason-
able in an implementation. Such completeness issues could be investigated in
further work.

4 For instance, the list with no repetitions extracted from [1, 2]𝜔 can be either [1, 2] or [2, 1],
as seen in Chapter 5.
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9
Stream calculus

In this chapter we formally introduce non-regular streams by presenting the
syntax and discussing the rules of the operational semantics. Similarly to coFJ
operational semantics, the behaviour is deterministic, and the aim is to provide
a semi-algorithm. We conclude the chapter by providing many examples.

9.1 Formal definition

Figure 9.1 shows the syntax of the calculus.

fd :: = fd1 . . . fd𝑛 program
fd :: = f(x) = se function declaration
e :: = se | ne | be expression
se :: = x | if be then se1 else se2 | ne:se | seˆ | se1 [nop] se2 | f(e) stream expression
ne :: = x | se(ne) | ne1 nop ne2 | 0 | 1 | 2 | ... numeric expression
be :: = x | true | false | ... boolean expression
nop :: = + | − | ∗ | / numeric operation

figure 9.1 Stream calculus: syntax

A program is a sequence of (mutually recursive) function declarations, for
simplicity assumed to only return streams. Stream expressions are variables,
conditional expressions, expressions built by stream operators, and function
calls. We consider the following stream operators: constructor (prepending a
numeric element), tail (we write seˆ to indicate the tail of the stream expres-
sion se), and pointwise arithmetic operations. Numeric expressions include
the access to the 𝑖-th1 element of a stream. We use fd to denote a sequence
fd1, . . . , fd𝑛 of function declarations, and analogously for other sequences.
The operational semantics, given in Figure 9.2, is based on two key ideas:

1. (some) infinite streams are represented in a finite way

2. evaluation keeps track of already processed function calls

To obtain point (1), an equational system is modeled by an environment

𝜌 mapping a finite set of variables into (open) stream values s, built on top

1 For simplicity, here indexing and numeric expressions coincide, even though indexes are
expected to be natural numbers, while values in streams can range over a larger numeric
domain.
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c :: = f(v) (evaluated) call
v :: = s | n | b value
s :: = x | n:s | sˆ | s1 [nop] s2 (open) stream value
𝑖, n :: = 0 | 1 | 2 | ... index, numeric value
b :: = true | false boolean value
𝜏 :: = c1 ↦→ x1 . . . c𝑛 ↦→ x𝑛 (𝑛 ≥ 0) call trace
𝜌 :: = x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛 (𝑛 ≥ 0) environment

(val)
v, 𝜌, 𝜏 ⇓ (v, 𝜌) (cons)

ne, 𝜌, 𝜏 ⇓ (n, 𝜌) se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
ne:se, 𝜌, 𝜏 ⇓ (n:s, 𝜌 ′) (tail)

se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
seˆ, 𝜌, 𝜏 ⇓ (sˆ, 𝜌 ′)

(nop)
se1, 𝜌, 𝜏 ⇓ (s1, 𝜌1) se2, 𝜌, 𝜏 ⇓ (s2, 𝜌2)

se1 [nop] se2, 𝜌, 𝜏 ⇓ (s1 [nop] s2, 𝜌1 ⊔ 𝜌2)

( if-t)
be, 𝜌, 𝜏 ⇓ (true, 𝜌) se1, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
if be then se1 else se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

( if-f)
be, 𝜌, 𝜏 ⇓ (false, 𝜌) se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
if be then se1 else se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

(args)
e𝑖 , 𝜌, 𝜏 ⇓ (v𝑖 , 𝜌𝑖 ) ∀𝑖 ∈ 1..𝑛 f(v), 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

f(e), 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

e = e1, . . . , e𝑛 not of shape v
v = v1, . . . , v𝑛
𝜌 =

⊔
𝑖∈1..𝑛 𝜌𝑖

( invk)
se[v/x], 𝜌, 𝜏{f(v) ↦→ x}⇓ (s, 𝜌 ′)

f(v), 𝜌, 𝜏 ⇓ (x, 𝜌 ′{x ↦→ s})

f(v) ∉ dom(𝜏≈𝜌 )
x fresh
fbody(f) = (x, se)
wd (𝜌 ′, x, s)

(corec)
f(v), 𝜌, 𝜏 ⇓ (x, 𝜌) 𝜏≈𝜌 (𝑓 (v)) = x

(at)
se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′) ne, 𝜌, 𝜏 ⇓ (𝑖, 𝜌)

se(ne), 𝜌, 𝜏 ⇓ (n, 𝜌) at𝜌 ′ (s, 𝑖) = n

(at-var)
at𝜌 (𝜌 (x), 𝑖) = n

′

at𝜌 (x, 𝑖) = n
′ (at-cons-0)

at𝜌 (n:s, 0) = n

(at-cons-succ)
at𝜌 (s, 𝑖 − 1) = n

′

at𝜌 (n:s, 𝑖) = n
′ 𝑖 > 0

(at-tail)
at𝜌 (s, 𝑖 + 1) = n

at𝜌 (sˆ, 𝑖) = n

(at-nop)
at𝜌 (s1, 𝑖) = n1 at𝜌 (s2, 𝑖) = n2

at𝜌 (s1 [nop] s2, 𝑖) = n1 nop n2

figure 9.2 Stream calculus: operational semantics
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of stream variables, numeric values and the stream operators; consequently,
the result of the evaluation of a stream expression is a pair (s, 𝜌), similarly as
done with capsules [22] to support cyclic references. For instance, (x, x ↦→ n:x)
denotes the stream constantly equal to n.
To obtain point (2) above, evaluation has an additional parameter which

is a call trace similar to the one used in coFJ, that is, a map from function
calls where arguments are values (dubbed calls for short in the following) into
variables.

Altogether, the semantic judgment has shape e, 𝜌, 𝜏 ⇓ (v, 𝜌 ′), where e is
the expression to be evaluated, 𝜌 the current environment defining possibly
cyclic stream values that can occur in e, 𝜏 the call trace, and (v, 𝜌 ′) the result.
The semantic judgments should be indexed by an underlying (fixed) program,
omitted for sake of simplicity. Rules use the following auxiliary definitions:

• 𝜌 ⊔ 𝜌 ′ is the union of two environments, which is well-defined if they
have disjoint domains; 𝜌{x ↦→ s} is the environment which gives s on
x and coincides with 𝜌 elsewhere; we use analogous notations for call
traces.

• se[v/x] is obtained by the parallel substitution of the variables x with the
values v.

• fbody(f) returns the pair of the parameters and the body of the declaration
of f, if any, in the assumed program.

Moreover, the rules are parametric with respect to the well-definedness

and equality judgments, for which different definitions will be discussed in
Chapters 10 and 14:

• wd (𝜌, x, s), that is, by adding the association x ↦→ s to the (well-defined)
environment 𝜌 , we still get a well-defined environment

• v1 ≈𝜌 v2, that is, v1 and v2 are considered equal in the environment 𝜌 .

The well-definedness judgment is used as a runtime check which should
be passed to obtain the result of a method invocation. The equality judgment
is indirectly used since the look-up of a call in the the call trace is performed
modulo equality, that is:

• c ≈𝜌 c
′ iff c = f(v1, . . . , v𝑛), c′ = f(v′1, . . . , v′𝑛) and v𝑖 ≈𝜌 v

′
𝑖 for all 𝑖 ∈ 1..𝑛

• 𝜏≈𝜌 (c) = x if 𝜏 (c′) = x, c′ ≈𝜌 c for some c′

• hence, c ∉ dom(𝜏≈𝜌 ) if there is no c
′ ∈ dom(𝜏) s.t. c ≈𝜌 c

′.

We denote by vars(𝜌) the set of variables occurring in 𝜌 , by fv(𝜌) the set of
its free variables, that is, vars(𝜌) \dom(𝜌), and say that 𝜌 is closed if fv(𝜌) = ∅,
open otherwise, and analogously for a result (v, 𝜌).

Intuitively, a closed result (s, 𝜌) is well-defined if it denotes a unique stream
(infinite sequence of numeric values), and a closed environment 𝜌 is well-
defined if, for each x ∈ dom(𝜌), (x, 𝜌) is well-defined. In other words, the
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corresponding set of equations admits a unique solution. For instance, the envir-
onment {x ↦→ x} is not well-defined, since it is undetermined (any stream sat-
isfies the equation x = x); the environment {x ↦→ x[+]y, y ↦→ 1:y} is not well-
defined as well, since it is undefined (the two equations x = x ↦→ x[+]y, y = 1:y
admit no solutions for 𝑥). Finally, two stream values s and s

′ such that the
results (s, 𝜌) and (s′, 𝜌) are closed and well-defined are considered equal in 𝜌

if the unique solutions of the two results are the same stream.
These notions can be generalized to open results and environments, as-

suming that free variables denote unique streams, as will be formalized in
Chapters 10 and 14.

Rules for values and conditional are straightforward. In rules (cons), (tail)
and (nop), arguments are evaluated, while the stream operator is applied
without any further evaluation; the fact that the tail and pointwise operators
are treated as the stream constructor _:_ is crucial to get results which denote
non-regular streams, as will be illustrated in Section 9.2. However, when non-
constructors are allowed to occur in values, ensuring well-defined results
becomes more challenging, because the usual simple syntactic constraints that
can be safely used for constructors [14] no longer work (see more details in
Chapters 10 and 16).
The rules for function call are based on a mechanism of cycle detection,

analogous to that used in the operational and intermediate semantics of coFJ,
in Chapter 4 and Chapter 5, respectively. There are two main differences. The
first one is that here, for separation of concerns, we are not considering flexible
corecursion. Hence, the result of a cyclic call, rather than an arbitrary value
obtained by evaluating the codefinition, is always the variable associated with
the call in the call trace, see rule (corec) in Figure 9.2, as it happens in coFJ
when the codefinition is any. As a consequence, the additional check that
such value is indeed a solution of the corresponding equation is not needed,
hence there is no analogous of rule ( invk-check) in Figure 4.2. The second
difference is that here rule ( invk) is equipped with a runtime check ensuring
that the result is a well-defined stream.
Moreover, a minor difference is that here rules for function call are given

in a modular way. That is, evaluation of arguments is handled by a separate
rule (args), whereas the following two rules handle (evaluated) calls.
Rule ( invk) is applied when a call is considered for the first time, as ex-

pressed by the first side condition. The body is retrieved by using the auxiliary
function fbody, and evaluated in a call trace where the call has been mapped
into a fresh variable. Then, it is checked that adding the association from such
variable to the result of the evaluation of the body keeps the environment
well-defined. If the check succeeds, then the final result consists of the variable
associated with the call and the updated environment. For simplicity, here
execution is stuck if the check fails; an implementation should raise a runtime
error instead.
Rule (corec) is applied when a call is considered for the second time, as

expressed by the first side condition (note that cycle detection takes place
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f() = g()
𝑔() = 1 : f()

1,∅, {f() ↦→ x, g() ↦→ y}⇓ (1,∅)
(val)

f(),∅, {f() ↦→ x, g() ↦→ y}⇓ (x,∅)
(corec)

1 : f(),∅, {f() ↦→ x, g() ↦→ y}⇓ (1 : x,∅)
(cons)

g(),∅, {f() ↦→ x}⇓ (y, {y ↦→ 1 : x})
( invk)

f(),∅,∅⇓ (x, {x ↦→ y, y ↦→ 1 : x})
( invk)

figure 9.3 Example of derivation

f() = g(2 : f())
𝑔(𝑠) = 1 : 𝑠

2,∅, {f() ↦→ x}⇓ (2,∅)
(val)

f(),∅, {f() ↦→ x}⇓ (x,∅)
(corec)

2 : f(),∅, {f() ↦→ x}⇓ (2 : x,∅)
(cons)

𝑇1

g(2 : f()),∅, {f() ↦→ x}⇓ (y, {y ↦→ 1 : 2 : x})
(args)

f(),∅,∅⇓ (x, {x ↦→ y, y ↦→ 1 : 2 : x})
( invk)

𝑇1 =

1 : 2 : x,∅, {g(2 : x) ↦→ y, f() ↦→ x}⇓ (1 : 2 : x,∅)
(val)

g(2 : x),∅, {f() ↦→ x}⇓ (y, {y ↦→ 1 : 2 : x})
( invk)

figure 9.4 Example of derivation

up to equivalence in the environment). The variable x is returned as result.
However, there is no associated value in the environment yet; in other words,
the result (x, 𝜌) is open at this point. This means that x is undefined until the
environment is updated with the corresponding value in rule ( invk). However,
x can be safely used as long as the evaluation does not require x to be inspected;
for instance, x can be safely passed as an argument to a function call.

For instance, in the program f()=g() g()=1:f() the the judgment f(),∅,∅⇓
(x, 𝜌), with 𝜌 = {x ↦→ y, y ↦→ 1:x}, is derivable; however, while the final res-
ult (x, 𝜌) is closed, the derivation contains also judgments with open results,
as happens for f(),∅, {f() ↦→ x, g() ↦→ y} ⇓ (x,∅) and g(),∅, {f() ↦→ x} ⇓
(y, {y ↦→ 1:x}). The full derivation is displayed in Figure 9.3.
As another example, in the program f()=g(2:f()) g(s)=1:s, the derivation

of the judgment f(),∅,∅⇓ (x, 𝜌) with 𝜌 = {x ↦→ y, y ↦→ 1:2:x} is built from
the derivation of g(2:x),∅, {f() ↦→ x}⇓ (y, {y ↦→ 1:2:x}), corresponding to
the evaluation of g(2:x) where x is an operand of the stream constructor
whose result is passed as argument to the call to g, in spite of the fact that x is
not defined yet. The full derivation is displayed in Figure 9.4.
Finally, rule (at) computes the 𝑖-th element of a stream expression. After

evaluation of the arguments, the numeric result is obtained by the auxiliary
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undef() = (undef() (0)) : undef()

𝑇1 undef(),∅, {undef() ↦→ x}⇓ (x,∅)
(corec)

(undef() (0)) : undef(),∅, {undef() ↦→ x}⇓ (?, ?)
(cons)

undef(),∅,∅⇓ (?, ?)
( invk)

𝑇1 = (at)
undef(),∅, {undef() ↦→ x}⇓ (x,∅)

(corec)
0,∅, {undef() ↦→ x}⇓ (0,∅)

(val)

undef() (0),∅, {undef() ↦→ x}⇓ (?, ?) at∅ (x, 0) =?

figure 9.5 Example of stuck derivation

judgment at𝜌 (s, 𝑖) = n, inductively defined in the bottom part of the figure. If
the stream value is a variable (at-var), then the evaluation is propagated to
the associated stream value in the environment, if any. If, instead, the variable
is free in the environment, then execution is stuck; again, an implementation
should raise a runtime error instead. Figure 9.5 shows an example of stuck
derivation.
If the stream value is built by the constructor, then the result is the first

element of the stream if the index is 0 (at-cons-0); otherwise, the evaluation
is recursively propagated to its tail with the predecessor index (at-cons-
succ). Conversely, if the stream is built by the tail operator (at-tail), then
the evaluation is recursively propagated to the stream argument with the
successor index. Finally, if the stream is built by a pointwise operation (at-
nop), then the evaluation is recursively propagated to the operands with the
same index and then the corresponding arithmetic operation is computed on
the results.

9.2 Examples

First we show some simple examples, to explain how regular corecursion
works. Then we provide some more significant examples.

Consider the following function declarations:

repeat(n) = n:repeat(n)
one_two() = 1:two_one()
two_one() = 2:one_two()

With the standard semantics of recursion, the calls, e.g., repeat(0) and one_two()
lead to non-termination. Thanks to regular corecursion, instead, these calls
terminate, producing as result (x, {x ↦→ 0:x}), and (x, {x ↦→ 1:y, y ↦→ 2:x}),
respectively. Indeed, when initially invoked, the call repeat(0) is added in the
call trace with an associated fresh variable, say x. In this way, when evaluating
the body of the function, the recursive call is detected as cyclic, the variable x
is returned as its result, and, finally, the stream value 0:x is associated in the
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environment with the result x of the initial call. The evaluation of one_two()
is similar, except that another fresh variable y is generated for the intermediate
call two_one(). The formal derivations are given below.

(value) repeat(0),∅, {repeat(0) ↦→ x}⇓ (x,∅)
(corec)

0:repeat(0),∅, {repeat(0) ↦→ x}⇓ (0:x,∅)
(cons)

repeat(0),∅,∅⇓ (x, {x ↦→ 0:x})
( invk)

(value)

(value) one_two(),∅, {one_two() ↦→ x, two_one() ↦→ y}⇓ (x,∅)
(corec)

2 : one_two(),∅, {one_two() ↦→ x, two_one() ↦→ y}⇓ (2 : x,∅)
(cons)

two_one(),∅, {one_two() ↦→ x}⇓ (y, {y ↦→ 2 : x})
( invk)

1 : two_one(),∅, {one_two() ↦→ x}⇓ (1 : y, {y ↦→ 2 : x})
(cons)

one_two(),∅,∅⇓ (x, {x ↦→ 1 : y, y ↦→ 2 : x})
( invk)

For space reasons, we did not report the application of rule (value). In both
derivations, note that rule (corec) is applied, without evaluating the body
once more, when the cyclic call is detected.

The following examples show function definitions whose calls return non-
regular streams, notably, the natural numbers, the natural numbers raised to
the power of a number, the factorials, the powers of a number, the Fibonacci
numbers, and the stream obtained by pointwise increment by one.
nat() = 0:(nat()[+]repeat(1))
nat_to_pow(n) = //nat_to_pow(n)(i)=i^n
if n <= 0 then repeat(1) else nat_to_pow(n-1)[*]nat()

fact() = 1:((nat()[+]repeat(1))[*]fact())
pow(n) = 1:(repeat(n)[*]pow(n)) //pow(n)(i)=n^i
fib() = 0:1:(fib()[+]fib()^)
incr(s) = s[+]repeat(1)

The definition of nat uses regular corecursion, since the recursive call nat()
is cyclic. Hence the call nat() returns (x, {x ↦→ 0:(x[+]y), y ↦→ 1:y}). The
definition of nat_to_pow is a standard inductive one where the argument
strictly decreases in the recursive call. Hence, the call, e.g., nat_to_pow(2),
returns
(x2, {x2 ↦→ x1 [∗]x, x1 ↦→ x0 [∗]x, x0 ↦→ y, y ↦→ 1:y, x ↦→ 0:(x[+]y′), y′ ↦→ 1:y′}).
The definitions of fact, pow, and fib are regularly corecursive. For instance, the
call fact() returns (z, z ↦→ (x[+]y) [∗]𝑧, x ↦→ 0:(x[+]y′), y ↦→ 1 : y, y′ ↦→ 1 : y′).
As another example, the call pow(2) returns (x, 1 : (y[∗]x), y ↦→ 1 : y) and, by
accessing the elements of the stream, we get the desired result. For instance,
pow(2)(3)=23. The definition of incr is non-recursive, hence always converges,
and the call incr(s) returns (x, {x ↦→ s[+]y, y ↦→ 1:y}). The following altern-
ative definition
incr_reg(s) = (s(0)+1):incr_reg(s^)

relies, instead, on regular corecursion. Note the difference: the latter version
can terminate only for regular streams, as in incr_reg(one_two()), since,
eventually, in the recursive call, the expression s^ turns out to denote the
initial stream (see Chapter 14); however, the computation does not terminate
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for non-regular streams, as in incr_reg(nat()), which, however, converges
with incr.

The following function computes the stream of partial sums of the first 𝑖 + 1
elements of a stream 𝑠 , that is, sum(𝑠)(𝑖)= ∑𝑖

𝑘=0 𝑠 (𝑘):

sum(s) = s(0):(s^[+]sum(s))

Such a function is useful for computing streams whose elements approximate
a series with increasing precision; for instance, the following function returns
the stream of partial sums of the first 𝑖 + 1 elements of the Taylor series of the
exponential function:

sum_expn(n) = sum(pow(n)[/]fact())

Function sum_expn calls sum with the argument pow(n)[/]fact() correspond-
ing to the stream of all terms of the Taylor series of the exponential function;
hence, by accessing the 𝑖-th element of the stream, we have the following
approximation of the series:

sum_expn(n)(𝑖)=
∑𝑖

𝑘=0
n
𝑘

𝑘! = 1 + n + n
2

2! +
n
3

3! +
n
4

4! + · · · +
n
𝑖

𝑖!

Lastly, we present a couple of examples showing how it is possible to define
primitive operations provided by IoT platforms for real time analysis of data
streams; we start with aggr(n,s), which allows aggregation (by addition) of
contiguous data in the stream s w.r.t. a frame of length n:

aggr(n,s) = if n<=0 then repeat(0) else s[+]aggr(n-1,s^)

For instance, aggr(3,s) returns the stream s
′ s.t. s′(𝑖) = s(𝑖)+s(𝑖+1)+s(𝑖+2).

From aggr, we can easily define avg(n,s) to compute the stream of average
values of s in the frame of length n:

avg(n,s) = aggr(n,s)[/]repeat(n)



10
Well-definedness check

The operational semantics of the stream calculus given in the previous chapter
is parametric with respect to a well-definedness judgment. In this chapter, we
first provide an abstract definition of well-definedness which formalizes the
intuitive meaning. Then, we show that it is possibile to give an operational
definition, directly leading to an algorithm, which is sound and complete with
respect to the abstract definition (Theorem 10.4).
Intuitively, an environment is well-defined if each variable in its domain

denotes a unique stream. We provide now a formal definition in abstract terms.
Semantically, a stream 𝜎 is an infinite sequence of numeric values, that is, a

function which returns, for each index 𝑖 ≥ 0, the 𝑖-th element 𝜎 (𝑖). Given a
result (s, 𝜌), we get a stream by instantiating variables in s with streams, in
a way consistent with 𝜌 , and evaluating operators. To make this formal, we
need some preliminary definitions.
A substitution 𝜃 is a function from a finite set of variables to streams. We

denote by ⟦s⟧𝜃 the stream obtained by applying𝜃 to s, and evaluating operators,
as formally defined below.

⟦x⟧𝜃 = 𝜃 (x)

(⟦n:s⟧𝜃 ) (𝑖) =
{
n 𝑖 = 0
(⟦s⟧𝜃 ) (𝑖 − 1) 𝑖 ≥ 1

(⟦sˆ⟧𝜃 ) (𝑖) = ⟦s⟧𝜃 (𝑖 + 1) 𝑖 ≥ 0

(⟦s1 [nop] s2⟧𝜃 ) (𝑖) = ⟦s1⟧𝜃 (𝑖) nop ⟦s2⟧𝜃 (𝑖) 𝑖 ≥ 0

Given an environment 𝜌 and a substitution 𝜃 with domain vars(𝜌), the
substitution 𝜌 [𝜃 ] is defined by:

𝜌 [𝜃 ] (x) =
{
⟦𝜌 (x)⟧𝜃 x ∈ dom(𝜌)
𝜃 (𝑥) x ∈ fv(𝜌)

Then, a solution of 𝜌 is a substitution 𝜃 with domain vars(𝜌) such that 𝜌 [𝜃 ] = 𝜃 .
A closed environment 𝜌 is well-defined if it has exactly one solution, de-

noted sol(𝜌). For instance, {x ↦→ 1:x} and {y ↦→ 0:(y[+]x), x ↦→ 1 : x} are
well-defined, since their unique solutions map x to the infinite stream of ones,
and y to the stream of natural numbers, respectively. Instead, for {x ↦→ 1[+]x}
there are no solutions. Lastly, an environment can be undetermined: for in-
stance, any substitution mapping x into an arbitrary stream is a solution of
{x ↦→ x}.

75
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m :: = x1 ↦→ n1 . . . x𝑛 ↦→ n𝑘 (𝑛 ≥ 0) map from variables to natural numbers

(main)
wd𝜌 ′ (x,∅)
wd (𝜌, x, v) 𝜌 ′ = 𝜌{x ↦→ v} (wd-var)

wd𝜌 (𝜌 (x),m{x ↦→ 0})
wd𝜌 (x,m)

x ∉ dom(m)

(wd-corec)
wd𝜌 (x,m)

x ∈ dom(m)
m(𝑥) > 0 (wd-fv)

wd𝜌 (x,m)
x ∉ dom(𝜌)

(wd-cons)
wd𝜌 (s,m+1)
wd𝜌 (n:s,m)

(wd-tail)
wd𝜌 (s,m−1)
wd𝜌 (sˆ,m)

(wd-nop)
wd𝜌 (s1,m) wd𝜌 (s2,m)
wd𝜌 (s1 [nop] s2,m)

figure 10.1 Operational definition of well-defined environments

An open environment 𝜌 is well-defined if, for each 𝜃 with domain fv(𝜌), it
has exactly one solution 𝜃 ′ such that 𝜃 ⊆ 𝜃 ′. For instance, the open environ-
ment {y ↦→ 0:(y[+]x)} is well-defined.
We now consider the non-trivial problem of ensuring that a closed envir-

onment 𝜌 is well-defined; if environments would be allowed to contain only
the stream constructor, then it would suffice to require all non-free variables
to be guarded by the stream constructor [14]. For instance, the environment
{x ↦→ 1:x} satisfies such a syntactic condition, and is well-defined, while, in
the non well-defined environment {x ↦→ x}, the variable x is not guarded by
the constructor.

However, when non constructors as the tail and pointwise operators come
into play, the fact that variables are guarded by the stream constructor no longer
ensures that the environment is well-defined. Let us consider for instance
𝜌 = {x ↦→ 0:xˆ}, corresponding to the definition of the stream

bad_stream = 0:bad_stream^

In this case, 𝜌 is not well-defined since it admits infinite solutions (all streams
starting with 0), although variable x is guarded by the stream constructor.
To ensure that an environment is well-defined a more complex check is

needed: in Figure 10.1 we provide an operational characterization.
The judgment wd (𝜌, x, s) used in the side condition of rule ( invk) holds if

wd𝜌 ′ (x,∅) holds with 𝜌 ′ = 𝜌{x ↦→ s}. The judgment wd𝜌 (s,∅) means that the
result (s, 𝜌) is well-defined. That is, restricting the domain of 𝜌 to the variables
reachable from s (either occurring in s, or, transitively, in values associated
with reachable variables) we get a well-defined environment; thus, wd (𝜌, x, s)
holds if adding the association of s with x preserves the well-definedness of 𝜌 .
The additional argument m in the judgment wd𝜌 (s,m) is a map from vari-

ables to natural numbers. We write m+1 and m−1 for the maps {(x,m(x) + 1) |
x ∈ dom(m)}, and {(x,m(x) − 1) | x ∈ dom(m)}, respectively.
In rule (main), this map is initially empty. In rule (wd-var), a variable x

defined in the environment is added in the map, with initial value 0, the first
time it is found. In rule (wd-corec), when it is found the second time, it is
checked that more constructors than tail operators have been traversed. In
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wd𝜌 (x, {x ↦→ +1})
(wd-corec)

wd𝜌 (y, {x ↦→ +1, y ↦→ +1})
(wd-corec)

wd𝜌 (1:y, {x ↦→ +1, y ↦→ 0})
(wd-cons)

wd𝜌 (y, {x ↦→ +1})
(wd-var)

wd𝜌 (x [+] y, {x ↦→ +1})
(wd-nop)

wd𝜌 (0:(x [+] y), {x ↦→ 0})
(wd-cons)

wd𝜌 (x,∅)
(wd-var)

at𝜌 (0:(x [+] y), 0) = 0
(at-cons-0)

...

at𝜌 (x, 𝑖 − 1) = 𝑖 − 1
(at-var)

at𝜌 (1:y, 0) = 1
(at-cons-0)

...

at𝜌 (y, 𝑖 − 1) = 1
(at-var)

at𝜌 (x [+] y, 𝑖 − 1) = 𝑖
(at-op)

at𝜌 (0:(x [+] y), 𝑖) = 𝑖
(at-cons-succ)

at𝜌 (x, 𝑖) = 𝑖
(at-var)

figure 10.2 Derivations of wd𝜌 (x,∅) and at𝜌 (x, 𝑖) = 𝑖 with
𝜌 = (x, {x ↦→ 0:(x [+] y), 𝑦 ↦→ 1:y})

rule (wd-fv), a free variable is considered well-defined.1 In rules (wd-cons),
(wd-tail), and (wd-nop), the value associated with a variable is incremen-
ted/decremented by one each time a constructor and tail operator are traversed,
respectively.

We show now some examples of derivation of well-definedness and access
to the 𝑖-th element.
In Figure 10.2 we consider the result (x, {x ↦→ 0:(x [+] y), 𝑦 ↦→ 1:y}), ob-

tained by evaluating the call nat() with the program below. Its semantics is
the stream of natural numbers.

repeat(1) = 1:repeat(1)
nat() = 0:(nat()[+]repeat(1))

In Figure 10.3 we consider a more tricky example, that is, the result
(x, {x ↦→ 0:1:(2 : xˆ)ˆ}), whose semantics is the stream 0, 1, 1, 1, . . ..
We show now that well-definedness of a result is a necessary and sufficient

condition for termination of access to an arbitrary index. To formally express
and prove this statement, we introduce some definitions and notations.

First of all, since the numeric value obtained as result is not relevant for the
following technical treatment, for simplicity we will write at𝜌 (s, 𝑖) rather than
at𝜌 (s, 𝑖) = n. We call derivation an either finite or infinite proof tree.

We write wd𝜌 (s′,m′) ⊢ wd𝜌 (s,m) to mean that wd𝜌 (s′,m′) is a premise of a
(meta-)rule where wd𝜌 (s,m) is the consequence, and ⊢★ for the reflexive and
transitive closure of this relation. Moreover, wd𝜌 (x,m′) ⊢★X wd𝜌 (s,m), with
x ∉ X, means that in the path there can be nodes of shape wd𝜌 (y, _) only

1 Indeed, non-well-definedness can only be detected on closed results.
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wd𝜌 (x, {𝑥 ↦→ −1})
(wd-corec)

wd𝜌 (xˆ, {𝑥 ↦→ −2})
(wd-tail)

wd𝜌 (2 : xˆ, {𝑥 ↦→ −1})
(wd-cons)

wd𝜌 ((2 : xˆ)ˆ, {𝑥 ↦→ −2})
(wd-tail)

wd𝜌 (1 : (2 : xˆ)ˆ, {𝑥 ↦→ −1})
(wd-cons)

wd𝜌 (0 : 1 : (2 : xˆ)ˆ, {𝑥 ↦→ 0})
(wd-cons)

wd𝜌 (x,∅)
(wd-var)

...

at𝜌 (x, 𝑖 − 1) = 1
(at-var)

at𝜌 (xˆ, 𝑖 − 2) = 1
(at-tail)

at𝜌 (2 : xˆ, 𝑖 − 1) = 1
(at-cons-succ)

at𝜌 ((2 : xˆ)ˆ, 𝑖 − 2) = 1
(at-tail)

at𝜌 (1 : (2 : xˆ)ˆ, 𝑖 − 1) = 1
(at-cons-succ)

at𝜌 (0 : 1 : (2 : xˆ)ˆ, 𝑖) = 1
(at-cons-succ)

at𝜌 (x, 𝑖) = 1
(at-var)

figure 10.3 Derivations of wd𝜌 (x,∅) and at𝜌 (x, 𝑖) = 1 with
𝜌 = {x ↦→ 0 : 1 : (2 : xˆ)ˆ} and 𝑖 > 1.

for y ∈ X and non-repeated. We use analogous notations for the judgment
at𝜌 (s, 𝑖).

lemma 10.1 :

1. If at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖), then at𝜌 (x, 𝑖′ +𝑘) ⊢★X at𝜌 (s, 𝑖 +𝑘), for each 𝑘 ≥ 0.

2. A judgment wd𝜌 (s,∅) has no derivation iff the following condition holds:
(wd-stuck) wd𝜌 (x,m′) ⊢★X′ wd𝜌 (𝜌 (x),m{x ↦→ 0}) ⊢ wd𝜌 (x,m) ⊢★X wd𝜌 (s,∅)

for some x ∈ dom(𝜌), X′,X, and m
′,m s.t.

x ∉ dom(m),m′ (x) = 𝑘 ≤ 0.

3. The derivation of at𝜌 (s, 𝑗) is infinite iff the following condition holds:
(at-∞) at𝜌 (x, 𝑖 + 𝑘) ⊢★X′ at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖) ⊢

★
X at𝜌 (s, 𝑗)

for some x ∈ dom(𝜌), X′,X, and 𝑖, 𝑘 ≥ 0.

Proof:

1. Immediate by induction on the rules.

2. For each wd𝜌 (s,m) there is exactly one applicable rule, unless in the
case wd𝜌 (x,m) withm(x) ≤ 0. Since vars(s) is a finite set, the derivation
cannot be infinite. Hence, there is no derivation for wd𝜌 (s,∅) iff there is
a finite path from wd𝜌 (s,∅) of judgments on variables in dom(𝜌), and a
(first) repeated variable, that is, of the shape below, where x ∉ dom(m)
and m

′(x) ≤ 0.

wd𝜌 (x,m′)wd𝜌 (x𝑛, _) . . .wd𝜌 (x1, _)wd𝜌 (x,m)wd𝜌 (y𝑚, _) . . .wd𝜌 (y1, _) . . .wd𝜌 (s,∅)

Hence, condition (wf-stuck) holds.

3. For each at𝜌 (s, 𝑖) there is exactly one applicable rule, unless in the case
at𝜌 (x, 𝑖) with x ∉ dom(𝜌). Moreover, since 𝜌 has finite domain, the
derivation at𝜌 (s, 𝑗) is infinite iff there is an infinite path from at𝜌 (s, 𝑗)
of judgments on variables in dom(𝜌), and a (first) repeated variable with
a greater or equal index, hence, thanks to Lemma 10.1-(Item 1), of the
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shape below, where𝑚,𝑛, 𝑘 ≥ 0:

. . . at𝜌 (x𝑛, 𝑖𝑛 + 𝑘) . . . at𝜌 (x1, 𝑖1 + 𝑘)at𝜌 (x, 𝑖 + 𝑘)at𝜌 (x𝑛, 𝑖𝑛) . . .

. . . at𝜌 (x1, 𝑖1)at𝜌 (x, 𝑖)at𝜌 (y𝑚, 𝑗𝑚) . . . at𝜌 (y1, 𝑗1) . . . at𝜌 (s, 𝑗)

That is, condition (at-∞) holds, with X′ = {x1, . . . , x𝑛}, and X =

{y1, . . . , y𝑚}.

□

lemma 10.2 : For x ∈ dom(m), the following conditions are equivalent:

1. at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖) for some 𝑖′, 𝑖

2. wd𝜌 (x,m′) ⊢★X wd𝜌 (s,m) for some m′ such that m′(x) = m(x) + 𝑖 − 𝑖′.

Proof:

1⇒ 2 The proof is by induction on the length of the path in at𝜌 (x, 𝑖′) ⊢★X
at𝜌 (s, 𝑖).

base The length of the path is 0, hencewe have at𝜌 (x, 𝑖) ⊢★∅ at𝜌 (x, 𝑖).
We also have wd𝜌 (x,m) ⊢★∅ wd𝜌 (x,m), and m(x) = m(x) + 𝑖 − 𝑖 , as
requested.

inductive step By cases on the rule applied to derive at𝜌 (s, 𝑖).
((at-var)) We have at𝜌 (y, 𝑖), with y ≠ x since the length of
the path is > 0, and at𝜌 (x, 𝑖′) ⊢★𝜒\{y} at𝜌 (𝜌 (y), 𝑖). Moreover,
we can derive wd𝜌 (y,m) by rule (wf-var), and by inductive
hypothesis we also have wd𝜌 (x,m′) ⊢★𝜒\{y} wd𝜌 (𝜌 (y),m{y ↦→
0}), andm′(x) = m{y ↦→ 0}(x) +𝑖−𝑖′, hence we get the thesis.

(at-cons-0) Empty case, since the derivation for at𝜌 (n:s, 0)
does not contain a node at𝜌 (x, 𝑖′).

(at-cons) We have at𝜌 (n:s, 𝑖), and at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖 − 1).
Moreover, we can derive wd𝜌 (n:s,m) by rule (wf-cons),
and by inductive hypothesis we also have wd𝜌 (x,m′) ⊢★X
wd𝜌 (s,m+1), with m

′(x) = m
+1(x) + (𝑖 − 1) − 𝑖′, hence we get

the thesis.
(at-tail) This case is symmetric to the previous one.
(at-nop) We have at𝜌 (s1 [nop] s2, 𝑖), and either at𝜌 (x, 𝑖′) ⊢★X
at𝜌 (s1, 𝑖), or
at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s2, 𝑖). Assume the first case holds, the other
is analogous. Moreover, we can derive wd𝜌 (s1 [nop] s2,m) by
rule (wd-nop), and by inductive hypothesis we also have
wd𝜌 (x,m′) ⊢★X wd𝜌 (s1,m), with m

′(x) = m(x) + 𝑖 − 𝑖′, hence
we get the thesis.

2⇒ 1 The proof is by induction on the length of the path inwd𝜌 (x,m′) ⊢★
wd𝜌 (s,m).



80 well-definedness check

base The length of the path is 0, hence we have wd𝜌 (x,m) ⊢★∅
wd𝜌 (x,m). We also have, for an arbitrary 𝑖 , at𝜌 (x, 𝑖) ⊢★∅ at𝜌 (x, 𝑖),
and m(x) = m(x) + 𝑖 − 𝑖 , as requested.

inductive step By cases on the rule applied to derive wd𝜌 (s,m).
(wd-var) We have wd𝜌 (y,m), with y ∉ dom(m), y ≠ x since
x ∈ dom(m), and wd𝜌 (x,m′) ⊢★X\{y} wd𝜌 (𝜌 (y),m{y ↦→ 0}).
By inductive hypothesis we have at𝜌 (x, 𝑖′) ⊢★X\{y} at𝜌 (𝜌 (y), 𝑖)
for some 𝑖′, 𝑖 such that m′(x) = m(x) + 𝑖 − 𝑖′. Moreover, since
y ∈ dom(𝜌), at𝜌 (𝜌 (y), 𝑖) ⊢ at𝜌 (y, 𝑖) by rule (at-var), hence
we get at𝜌 (x, 𝑖′) ⊢★𝜒 at𝜌 (y, 𝑖).

(wd-corec) Empty case, since the derivation for wd𝜌 (y,m)
would not contain a node wd𝜌 (x,m).

(wd-fv) Empty case, since the derivation for wd𝜌 (y,m) would
not contain a node wd𝜌 (x,m).

(wd-cons) Wehavewd𝜌 (n:s,m), andwd𝜌 (x,m′) ⊢★X wd𝜌 (s,m
+1).

By inductive hypothesis we have at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖) for
some 𝑖′, 𝑖 such thatm′(x) = m

+1(x)+𝑖−𝑖′. Moreover, at𝜌 (s, 𝑖) ⊢
at𝜌 (n:s, 𝑖+1) by rule (at-cons-succ), hencewe get at𝜌 (x, 𝑖′) ⊢★𝜒
at𝜌 (n:s, 𝑖 + 1) with m

′(x) = m(x) + 𝑖 + 1 − 𝑖′, as requested.
(wd-tail) Wehavewd𝜌 (sˆ,m), andwd𝜌 (x,m′) ⊢★X wd𝜌 (s,m

−1).
By inductive hypothesis we have at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖) for
some 𝑖′, 𝑖 such thatm′(x) = m

−1(x)+𝑖−𝑖′.We can assume 𝑖 > 0
thanks to Lemma 10.1-(Item 1). Hence, at𝜌 (s, 𝑖) ⊢ at𝜌 (n:s, 𝑖−1)
by rule (at-tail), hence we get at𝜌 (x, 𝑖′) ⊢★𝜒 at𝜌 (sˆ, 𝑖−1) with
m
′(x) = m(x) + 𝑖 − 1 − 𝑖′, as requested.

(wd-nop) Wehavewd𝜌 (s1 [nop]s2,m), and eitherwd𝜌 (x,m′) ⊢★X
wd𝜌 (s1,m), orwd𝜌 (x,m′) ⊢★X wd𝜌 (s2,m). Assume the first case
holds, the other is analogous. By inductive hypothesis we
have at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s1, 𝑖), for some 𝑖′, 𝑖 such that m′(x) =
m(x) + 𝑖 − 𝑖′. Moreover, we can derive at𝜌 (s1 [nop] s2, 𝑖) by
rule (at-nop), hence we get the thesis.

□

lemma 10.3 : For x ∉ dom(m), the following conditions are equivalent:

1. at𝜌 (x, 𝑖′) ⊢★X at𝜌 (s, 𝑖) for some 𝑖′, 𝑖

2. wd𝜌 (x,m′) ⊢★X wd𝜌 (s,m) for some m′ such that x ∉ dom(m′).

Proof: Easy variant of the proof of Lemma 10.2. □

theorem 10.4 : wd𝜌 (s,∅) is derivable iff, for all 𝑗 , at𝜌 (s, 𝑗) either has no
derivation or a finite derivation.
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Proof: We prove that at𝜌 (s, 𝑗) has an infinite derivation for some 𝑗 iff
wd𝜌 (s,∅) has no derivation.

⇒ Lemma 10.1-(Item 3), we have that the following condition holds:

(at-∞) at𝜌 (x, 𝑖 + 𝑘) ⊢★X′ at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖) ⊢
★
X at𝜌 (s, 𝑗)

for some x ∈ dom(𝜌), X′,X, and 𝑖, 𝑘 ≥ 0.

Then, starting from the right, Lemma 10.3we havewd𝜌 (x,m) ⊢★X wd𝜌 (s,∅)
for some m such that x ∉ dom(m); by rule (wd-var) we have
wd𝜌 (𝜌 (x),m{x ↦→ 0}) ⊢ wd𝜌 (x,m), and finally by Lemma 10.2 we have:
(wd-stuck) wd𝜌 (x,m′) ⊢★X′ wd𝜌 (𝜌 (x),m{x ↦→ 0}) ⊢ wd𝜌 (x,m) ⊢★X wd𝜌 (s,∅)

for some x ∈ dom(𝜌), X′,X, and m
′,m s.t.

x ∉ dom(m),m′ (x) = 𝑘 ≤ 0.

hence we get the thesis.
⇐ By Lemma 10.1-(Item 2) ,we have that the condition (wd-stuck)
above holds. Then, starting from the left, Lemma 10.2we have at𝜌 (x, 𝑖′) ⊢★X′
at𝜌 (𝜌 (x), 𝑖) for some 𝑖′, 𝑖 such that 𝑖 − 𝑖′ = 𝑘 ≤ 0; by rule (at-var) we
have at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖), and by Lemma 10.3 we have at𝜌 (x, 𝑗 ′) ⊢★X
at𝜌 (s, 𝑗) for some 𝑗 ′, 𝑗 . If 𝑖 = 𝑗 ′+ℎ,ℎ ≥ 0, then by Lemma 10.1-(1) we have

at𝜌 (x, 𝑖 + 𝑘) ⊢★X′ at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖) ⊢
★
X at𝜌 (s, 𝑗 + ℎ)

If 𝑗 ′ = 𝑖 + ℎ, ℎ ≥ 0, then by Lemma 10.1-(Item 1) we have
at𝜌 (x, 𝑖 + 𝑘 + ℎ) ⊢★X′ at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖 + ℎ) ⊢

★
X at𝜌 (s, 𝑗).

In both cases, the derivation of at𝜌 (s, 𝑗) is infinite.

□





11
Expressive power

In this chapter we study the expressive power of the calculus introduced
so far. We first show that the calculus is more expressive than polynomials,
then consider several operators for combining two streams which can be
derived from those of the calculus, and finally prove that interleaving cannot
be expressed in the calculus.

11 . 1 Streams and polynomials
A polynomial 𝑃 (𝑥) over the real numbers naturally represents the stream of
numbers 𝜎𝑃 s.t. 𝜎𝑃 (𝑖) = 𝑃 (𝑖), for each index 𝑖 ≥ 0, where 𝑃 (𝑖) denotes the
evaluation of 𝑃 at 𝑖 .

In the calculus it is possible to encode 𝜎𝑃 for any polynomial 𝑃 (𝑥), by using
the primitive pointwise operators [+] and [*] and the auxiliary functions
repeat, nat and nat_to_powwhose definitions, copied below1 for convenience,
have been first introduced in Section 9.2.

repeat(n) = n:repeat(n)
nat() = 0:(nat()[+][1])
nat_to_pow(n) = if n <= 0 then [1] else nat_to_pow(n-1)[*]nat()

The encoding enc(𝑃 (𝑥)) can be defined by induction on the degree of the
polynomial 𝑃 (𝑥) = 𝑎𝑛𝑥

𝑛 + 𝑎𝑛−1𝑥𝑛−1 + . . . + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0:
enc(𝑎0) =[𝑎0]
enc(𝑎𝑛𝑥𝑛 + 𝑃 ′ (𝑥)) =([𝑎𝑛][*]nat_to_pow(𝑛))[+]enc(𝑃 (𝑥)) with 𝑛 > 0,

degree of 𝑃 ′ (𝑥) < 𝑛

By applying the semantic rules in Figure 9.2 one can prove by induction
on the index 𝑖 that for all natural numbers 𝑛 repeat(𝑛)(𝑖), nat()(𝑖) and
nat_to_pow(𝑛)(𝑖) evaluate2 to 𝑛, 𝑖 and 𝑛𝑖 , respectively. By using these facts
the correctness of the encoding shown above, that is, enc(𝑃 (𝑥)) (𝑖) evaluates
to 𝑃 (𝑖) for all indexes 𝑖 , can be proved by induction on the degree of 𝑃 (𝑥) an
by applying the semantic rules.
Besides the result above, one can show that the expressive power of the

calculus goes beyond polynomial functions; indeed, the stream 𝜎 s.t. 𝜎 (0) = 1
and 𝜎 (𝑖) = 0 for all 𝑖 > 0, defined by 1:[0], cannot be expressed by a poly-
nomial, by virtue of the fundamental theorem of algebra stating that every

1 We recall that [𝑛] is an abbreviation for repeat(𝑛).
2 By assuming that 00 denotes the agreed value 1.
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non-zero polynomial over the real numbers has a finite number of roots. Be-
sides this very simple example, the calculus is able to express more interesting
forms of streams which are not definable with polynomial functions. As a first
example, by using the pointwise operator [/] and by virtue of the encoding
of polynomials shown above, it is possible to define streams expressible with
rational functions, that is, functions of the form 𝑝 (𝑥 )

𝑞 (𝑥 ) , where 𝑝 (𝑥) and 𝑞(𝑥 ) are
polynomials and 𝑞(𝑥) ≠ 0.

Finally, Chapter 9 contains other examples of streams not expressible with
polynomials; for instance fact(), pow(𝑛), for 𝑛 > 1, and fib() cannot be
expressed by any polynomial because their elements grow exponentially with
the index 𝑖 .

11 .2 Other binary operators on streams

The calculus provides only four primitive binary operators for combining
streams, corresponding to the arithmetic operations applied pointwise; how-
ever, other combinators can be derived from them. Consider, for instance, the
following definition:

combine(mask,s1,s2)=(mask[*]s1)[+](([1][-]mask)[*]s2)

Function combine defines a generic operator parametric in a stream of bits
mask which defines for each index 𝑖 which element between s1(𝑖) and s2(𝑖)

has to be considered when combining the two streams s1 and s2: the computed
stream returns s1(𝑖) on index 𝑖 if mask(𝑖)=1, s2(𝑖) otherwise. As an example of
use of combine, it is possible to define the following swap functions swapping
elements of a stream at even and odd indexes:

alt_mask=1:0:alt_mask
swap(s)=combine(alt_mask,s^,0:s)

The tail operator in s^ allows left shifting of one position of the elements of
s; analogously, the stream constructor in 0:s (the value of the first element
is actually irrelevant for the result, since it will be discarded by the combine
function) performs right shifting. Finally, combine with alt_mask keeps the
elements of s^ and 0:s with even and odd index, respectively; therefore, for
all 𝑖 ≥ 0, swap(s)(2𝑖)=s(2𝑖 + 1), while swap(s)(2𝑖 + 1)=s(2𝑖).

zip Zip is a common binary operator used to combine streams: 𝜎1 zip 𝜎2
returns the stream 𝜎 s.t. 𝜎 (𝑖) = (𝜎1(𝑖), 𝜎2(𝑖)) for all indexes 𝑖 . Such an operator
cannot be encoded in the calculus because, for simplicity, only streams of
numbers are supported; anyway, we see no technical difficulties in extending
the calculus with streams of pairs and the zip operator which applies the pair
constructor pointwise to the elements of the streams, similarly as happens for
the arithmetic pointwise operators; the rules for the operational semantics
and the check for well-defined streams would mimic the corresponding rules
(nop) and (wd-nop).
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interleaving Another useful operator to collect data from more streams
is interleaving (also known as zip); here, for simplicity, we consider only its
binary version: the interleaving 𝜎1 ∥ 𝜎2 of two streams 𝜎1, 𝜎2 is the stream 𝜎 s.t.
𝜎 (2𝑖) = 𝜎1(𝑖) and 𝜎 (2𝑖 + 1) = 𝜎2(𝑖) for all indexes 𝑖 . In the rest of this section
we show that such an operator is not expressible in the calculus by studding
the properties of operators on regular streams and their periods. To this aim
we introduce the notion 𝜎ˆ𝑛 , with 𝑛 natural number, for generalized tail: for all
indexes 𝑖 , 𝜎ˆ𝑛 (𝑖) = 𝜎 (𝑖 + 𝑛); the property (𝜎ˆ𝑛)ˆ𝑚 = 𝜎ˆ𝑚+𝑛 = 𝜎ˆ𝑛+𝑚 = (𝜎ˆ𝑚)ˆ𝑛
follows immediately from the definition.

We say that a stream 𝜎 is regular iff there exist 𝑞 ≥ 0, 𝑛 > 0 s.t. 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 .
The period 𝑝 of a regular stream is defined by 𝑝 = min{𝑛 > 0 | ∃𝑞 ≥ 0 𝜎ˆ𝑞+𝑛 =

𝜎ˆ𝑞}; this is always well-defined since we are considering a total order and the
set {𝑛 > 0 | ∃𝑞 ≥ 0 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞} is not empty by definition of regular stream.

remark The definition above captures the intuition that a regular stream
“becomes” cyclic after an initial number 𝑞 ≥ 0 of elements, and that its period
𝑝 corresponds to the length of its smallest cycle; for this reason, a regular
stream can always be defined by a finite set of equations involving only the
stream constructor [15]. The properties that follow concern periods of regular
streams, and do not depend on the length 𝑞 of the initial non-periodic part of
a stream; this explains the existential quantification of 𝑞 in the definition of
period, although there is always a least 𝑞 which correctly individuates where
a stream 𝜎 “becomes” periodic, that is, 𝜎ˆ𝑞 is periodic, and, thus, there exists
𝑛 > 0 s.t. (𝜎ˆ𝑞)ˆ𝑛 = 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 . Clearly, if 𝑞 is the length of the non-periodic
part, then for all 𝑘 ≥ 0, 𝜎ˆ𝑞+𝑘 is still regular with the same period 𝑝 by virtue
of the identity 𝜎ˆ𝑞+𝑘+𝑛 = (𝜎ˆ𝑞+𝑛)ˆ𝑘 = (𝜎ˆ𝑞)ˆ𝑘 = 𝜎ˆ𝑞+𝑘 .

The following propositions show that if a regular stream has period 𝑝 , then
for all 𝑛 > 0 the following fact holds: ∃𝑞 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 if and only if there exists
𝑘 > 0 s.t. 𝑛 = 𝑘 · 𝑝 . This corresponds to the intuition that if 𝜎 is regular with
period 𝑝 , then all cycles in 𝜎 have length 𝑘 · 𝑝 for 𝑘 > 0.

proposition 11.1 : If there exist𝑞 ≥ 0, 𝑛 > 0 s.t.𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 , then𝜎ˆ𝑞+𝑘 ·𝑛 =

𝜎ˆ𝑞 for all 𝑘 > 0.

Proof: The proof proceeds by induction on 𝑘 .

basis: if 𝑘 = 1, then the claim reduces to the hypothesis 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 ;
step: if 𝑘 > 1 then by inductive hypothesis 𝜎ˆ𝑞+(𝑘−1) ·𝑛 = 𝜎ˆ𝑞 , hence
𝜎ˆ𝑞+𝑘 ·𝑛 = 𝜎ˆ𝑞+(𝑘−1) ·𝑛+𝑛 = 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 .

□

lemma 11.2 : If 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 and 𝜎ˆ𝑞+𝑚 = 𝜎ˆ𝑞 , with 𝑞 ≥ 0,𝑚 ≥ 𝑛 > 0, then
𝜎ˆ𝑞+𝑚−𝑛 = 𝜎ˆ𝑞 .

Proof: If 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 , then 𝜎ˆ𝑞+𝑛+𝑚−𝑛 = 𝜎ˆ𝑞+𝑚−𝑛 , hence 𝜎ˆ𝑞+𝑚−𝑛 = 𝜎ˆ𝑞+𝑚 =

𝜎ˆ𝑞 . □
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proposition 11.3 : The following claim holds for all 𝑛 > 0: if there exists
𝑞 ≥ 0 s.t. 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 , then there exists 𝑘 > 0 s.t. 𝑛 = 𝑘 · 𝑝 , with 𝑝 the period
of 𝜎 .

Proof: By virtue of the hypothesis 𝜎ˆ𝑞+𝑛 = 𝜎ˆ𝑞 , 𝜎 is regular, hence its period
𝑝 is well-defined; furthermore, by definition, 𝑝 ≤ 𝑛. If we divide 𝑛 by 𝑝 , then,
by the properties of the integer division, there exist 𝑘 > 0 and 0 ≤ 𝑚 < 𝑝

s.t. 𝑛 = 𝑘 · 𝑝 +𝑚. Then the proof proceeds by proving by induction on 𝑘 the
following claim: for all 𝑘 > 0, if there exists 𝑞 ≥ 0 s.t. 𝜎ˆ𝑞+𝑘 ·𝑝+𝑚 = 𝜎ˆ𝑞 , with
0 ≤ 𝑚 < 𝑝 , and 𝑝 period of 𝜎 , then𝑚 = 0.

basis: if 𝑘 = 1, then 𝜎ˆ𝑞+𝑝+𝑚 = 𝜎ˆ𝑞 ; furthermore, there exists 𝑟 ≥ 0 s.t.
𝜎ˆ𝑟 = 𝜎ˆ𝑟+𝑝 by definition of period, hence 𝜎ˆ𝑞+𝑟+𝑝+𝑚 = 𝜎ˆ𝑞+𝑟 = 𝜎ˆ𝑞+𝑟+𝑝

and, by definition of period, if𝑚 > 0 then 𝑝 ≤ 𝑚, therefore it must be
𝑚 = 0 since𝑚 < 𝑝 by hypothesis;

step: if 𝑘 > 1 then 𝑘 · 𝑝 +𝑚 ≥ 𝑝; by definition of period there exists
𝑟 s.t. 𝜎ˆ𝑟+𝑝 = 𝜎ˆ𝑟 , hence 𝜎ˆ𝑞+𝑟+𝑝 = 𝜎ˆ𝑞+𝑟 ; by hypothesis 𝜎ˆ𝑞+𝑘 ·𝑝+𝑚 =

𝜎ˆ𝑞 , hence 𝜎ˆ𝑞+𝑟+𝑘 ·𝑝+𝑚 = 𝜎ˆ𝑞+𝑟 , then by Lemma 11.2, 𝜎ˆ𝑞+𝑟+𝑘 ·𝑝+𝑚−𝑝 =

𝜎ˆ𝑞+𝑟 , therefore 𝜎ˆ𝑞+𝑟+(𝑘−1) ·𝑝+𝑚 = 𝜎ˆ𝑞+𝑟 and𝑚 = 0 can be concluded by
inductive hypothesis.

□

The next propositions show that the operators of the calculus preserve
regular streams and that there exist specific relations between the periods of
the operands and of the results of the operations. In the rest of the section
we adopt the same syntax of the operators of the calculus for their semantic
interpretation.

proposition 11.4 : The stream constructor and the tail operator preserve
regular streams and their period.

Proof: The proof proceeds by cases on the applied operator.

constructor: let 𝜎1 be regular and 𝜎2 = 𝑚:𝜎1 for some number𝑚. For
all 𝑞 ≥ 0, 𝑛 > 0 if 𝜎1ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 , then the identities 𝜎2ˆ𝑞+1+𝑛 = 𝜎1ˆ𝑞+𝑛 =

𝜎1ˆ𝑞 = 𝜎2ˆ𝑞+1 hold. Symmetrically, if 𝜎2ˆ𝑞+𝑛 = 𝜎2ˆ𝑞 , then the identities
𝜎1ˆ𝑞+𝑛 = 𝜎2ˆ𝑞+1+𝑛 = 𝜎2ˆ𝑞+1 = 𝜎1ˆ𝑞 hold. Therefore {𝑛 > 0 | ∃𝑞 ≥
0 𝜎1ˆ𝑞+𝑛 = 𝜎1ˆ𝑞} = {𝑛 > 0 | ∃𝑞 ≥ 0 𝜎2ˆ𝑞+𝑛 = 𝜎2ˆ𝑞}, hence 𝜎2 is regular
and has the same period as 𝜎1.
tail: let 𝜎1 be regular and 𝜎2 = 𝜎1ˆ. For all 𝑞 ≥ 0, 𝑛 > 0 if 𝜎1ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 ,
then the identities 𝜎2ˆ𝑞+𝑛 = 𝜎1ˆ𝑞+1+𝑛 = 𝜎1ˆ𝑞+1 = 𝜎2ˆ𝑞 hold. Symmet-
rically, if 𝜎2ˆ𝑞+𝑛 = 𝜎2ˆ𝑞 , then the identities 𝜎1ˆ𝑞+1+𝑛 = 𝜎2ˆ𝑞+𝑛 = 𝜎2ˆ𝑞 =

𝜎1ˆ𝑞+1 hold. Therefore {𝑛 > 0 | ∃𝑞 ≥ 0 𝜎1ˆ𝑞+𝑛 = 𝜎1ˆ𝑞} = {𝑛 > 0 | ∃𝑞 ≥
0 𝜎2ˆ𝑞+𝑛 = 𝜎2ˆ𝑞}, hence 𝜎2 is regular and has the same period as 𝜎1.

□
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Given two integers 𝑚 and 𝑛, we denote with lcd (𝑚,𝑛) the least common

multiple of𝑚 and 𝑛, that is, the smallest positive integer s.t. that𝑚 and 𝑛 are
divisors of 𝑘 ; therefore, if𝑚 and 𝑛 are divisors of 𝑘 > 0, then lcd (𝑚,𝑛) ≤ 𝑘 .

proposition 11.5 : The binary pointwise operators preserve regular streams.
In particular, if the period of 𝜎1 and 𝜎2 is 𝑝1 and 𝑝2, respectively, then 𝜎1 [nop]𝜎2
has period 𝑝 which is a divisor of lcd (𝑝1, 𝑝2), that is, there exists 𝑘 > 0 s.t.
𝑘 · 𝑝 = lcd (𝑝1, 𝑝2).

Proof: Let 𝜎1 and 𝜎2 be regular streams with period 𝑝1 and 𝑝2, respect-
ively, with lcd (𝑝1, 𝑝2) = 𝑛; by definition, 𝑝1, 𝑝2 > 0, hence 𝑛 > 0. Let 𝑘1
and 𝑘2 be the positive integers s.t. 𝑛 = 𝑘𝑖 · 𝑝𝑖 for 𝑖 = 1, 2; by definition of
period and Proposition 11.1, there exist 𝑞1, 𝑞2 ≥ 0 s.t. 𝜎𝑖ˆ𝑞𝑖+𝑘𝑖 ·𝑝𝑖 = 𝜎𝑖ˆ𝑞𝑖 , for
𝑖 = 1, 2, hence 𝜎𝑖ˆ𝑞1+𝑞2+𝑛 = 𝜎𝑖ˆ𝑞1+𝑞2 , for 𝑖 = 1, 2. By definition of the bin-
ary pointwise operators, (𝜎1 [nop]𝜎2)ˆ𝑞1+𝑞2+𝑛 = 𝜎1ˆ𝑞1+𝑞2+𝑛 [nop]𝜎2ˆ𝑞1+𝑞2+𝑛 =

𝜎1ˆ𝑞1+𝑞2 [nop]𝜎2ˆ𝑞1+𝑞2 = (𝜎1 [nop]𝜎2)ˆ𝑞1+𝑞2 . This shows that 𝜎1 [nop]𝜎2 is reg-
ular; furthermore, since 𝑛 > 0, by Proposition 11.3 there exists 𝑘 > 0 s.t.
𝑘 · 𝑝 = 𝑛 = lcd (𝑝1, 𝑝2). □

remark There exist cases where the period of 𝜎1 [nop]𝜎2 is strictly less than
lcd (𝑝1, 𝑝2), with 𝑝1 and 𝑝2 periods of 𝜎1 and 𝜎2, respectively. For instance, let
𝜎1 and 𝜎2 be s.t. for all 𝑖 ≥ 0, 𝜎1(2𝑖) = 𝜎2(2𝑖 + 1) =𝑚, 𝜎1(2𝑖 + 1) = 𝜎2(2𝑖) = 𝑛,
with 𝑛 ≠ 𝑚; then, both 𝜎1 and 𝜎2 have period 2, while 𝜎1 [+]𝜎2 has period 1,
because (𝜎1 [+]𝜎2) (𝑖) = 𝑛 +𝑚 for all 𝑖 ≥ 0. Analogous examples can be found
for the other arithmetic operators.
We finally prove that interleaving preserves regular streams as well, but,

except for some particular cases, the period of the result is equal to 2lcd (𝑝1, 𝑝2),
with 𝑝1 and 𝑝2 periods of the operands; this different pattern is at the basis
of the proof below which shows that interleaving is not expressible in the
calculus. Here and in the rest of the paper we use the symbol ∥ to denote
interleaving both at the semantics and syntax level.

lemma 11.6 : For all 𝑛 ≥ 0, (𝜎1 ∥ 𝜎2)ˆ2𝑛 = 𝜎1ˆ𝑛 ∥ 𝜎2ˆ𝑛 and (𝜎1 ∥ 𝜎2)ˆ2𝑛+1 =

𝜎2ˆ𝑛 ∥ 𝜎1ˆ𝑛+1.

Proof: For all 𝑖 ≥ 0, the following identities hold by definition of generalized
tail and interleaving:

• (𝜎1 ∥ 𝜎2)ˆ2𝑛 (2𝑖) = (𝜎1 ∥ 𝜎2) (2 · (𝑖 + 𝑛)) = 𝜎1(𝑖 + 𝑛) = 𝜎1ˆ𝑛 (𝑖) = (𝜎1ˆ𝑛 ∥
𝜎2ˆ𝑛) (2𝑖)

• (𝜎1 ∥ 𝜎2)ˆ2𝑛 (2𝑖 + 1) = (𝜎1 ∥ 𝜎2) (2 · (𝑖 + 𝑛) + 1) = 𝜎2(𝑖 + 𝑛) = 𝜎2ˆ𝑛 (𝑖) =
(𝜎1ˆ𝑛 ∥ 𝜎2ˆ𝑛) (2𝑖 + 1)

• (𝜎1 ∥ 𝜎2)ˆ2𝑛+1(2𝑖) = (𝜎1 ∥ 𝜎2) (2 · (𝑖 + 𝑛) + 1) = 𝜎2(𝑖 + 𝑛) = 𝜎2ˆ𝑛 (𝑖) =
(𝜎2ˆ𝑛 ∥ 𝜎1ˆ𝑛+1) (2𝑖)

• (𝜎1 ∥ 𝜎2)ˆ2𝑛+1(2𝑖+1) = (𝜎1 ∥𝜎2) (2· (𝑖+𝑛+1)) = 𝜎1(𝑖+𝑛+1) = 𝜎1ˆ𝑛+1(𝑖) =
(𝜎2ˆ𝑛 ∥ 𝜎1ˆ𝑛+1) (2𝑖 + 1)
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□

lemma 11.7 : If 𝜎1 ∥ 𝜎2 is regular with period 𝑝 = 2𝑛 + 1 for some 𝑛 ≥ 0, then
there exists 𝑞 ≥ 0 s.t. 𝜎2ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 and 𝜎1ˆ𝑞+𝑛+1 = 𝜎2ˆ𝑞 .

Proof: By definition of period, there exists𝑞 ≥ 0 s.t. (𝜎1 ∥ 𝜎2)ˆ𝑞+𝑝 = (𝜎1 ∥ 𝜎2)ˆ𝑞 ,
hence (𝜎1 ∥ 𝜎2)ˆ2𝑞+𝑝 = (𝜎1 ∥ 𝜎2)ˆ2𝑞 ; by the previous identity and Lemma 11.6
𝜎2ˆ𝑞+𝑛 ∥ 𝜎1ˆ𝑞+𝑛+1 = (𝜎1 ∥ 𝜎2)ˆ2𝑞+2𝑛+1 = (𝜎1 ∥ 𝜎2)ˆ2𝑞 = 𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞 . Hence, for
all 𝑖 ≥ 0

• 𝜎2ˆ𝑞+𝑛 (𝑖) = (𝜎2ˆ𝑞+𝑛 ∥ 𝜎1ˆ𝑞+𝑛+1) (2𝑖) = (𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞) (2𝑖) = 𝜎1ˆ𝑞 (𝑖)
• 𝜎1ˆ𝑞+𝑛+1(𝑖) = (𝜎2ˆ𝑞+𝑛 ∥ 𝜎1ˆ𝑞+𝑛+1) (2𝑖 +1) = (𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞) (2𝑖 +1) = 𝜎2ˆ𝑞 (𝑖)

□

lemma 11.8 : Interleaving preserves regular streams and the period of 𝜎1 ∥𝜎2
is a divisor of 2lcd (𝑝1, 𝑝2), where 𝑝1 and 𝑝2 are the periods of 𝜎1 and 𝜎2,
respectively.

Proof: Let lcd (𝑝1, 𝑝2) = 𝑛; by definition, 𝑝1, 𝑝2 > 0, hence 𝑛 > 0. Let 𝑘1
and 𝑘2 be the positive integers s.t. 𝑛 = 𝑘𝑖 · 𝑝𝑖 for 𝑖 = 1, 2; by definition of
period and Proposition 11.1, there exist 𝑞1, 𝑞2 ≥ 0 s.t. 𝜎𝑖ˆ𝑞𝑖+𝑘𝑖 ·𝑝𝑖 = 𝜎𝑖ˆ𝑞𝑖 , for
𝑖 = 1, 2, hence 𝜎𝑖ˆ𝑞1+𝑞2+𝑛 = 𝜎𝑖ˆ𝑞1+𝑞2 , for 𝑖 = 1, 2. By the previous identities and
Lemma 11.6, (𝜎1 ∥ 𝜎2)ˆ2(𝑞1+𝑞2+𝑛) = 𝜎1ˆ𝑞1+𝑞2+𝑛 ∥𝜎2ˆ𝑞1+𝑞2+𝑛 = 𝜎1ˆ𝑞1+𝑞2 ∥𝜎2ˆ𝑞1+𝑞2 =
(𝜎1 ∥ 𝜎2)ˆ2(𝑞1+𝑞2 ) . Therefore 𝜎1 ∥ 𝜎2 is regular and, by Proposition 11.3, its
period is a divisor of 2𝑛 = 2lcd (𝑝1, 𝑝2).

□

lemma 11.9 : If there exist 𝑛, 𝑞 ≥ 0 s.t.

(1) 𝜎2ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 (2) 𝜎1ˆ𝑞+𝑛+1 = 𝜎2ˆ𝑞

then 𝜎1, 𝜎2 and 𝜎1 ∥ 𝜎2 are all regular with the same period.

Proof: Wefirst show that𝜎1 and𝜎2 are regular. From (1) we derive𝜎2ˆ𝑞+𝑛+𝑛+1 =
𝜎1ˆ𝑞+𝑛+1, hence from (2) 𝜎2ˆ𝑞+2𝑛+1 = 𝜎2ˆ𝑞 ; similarly, from (2) 𝜎1ˆ𝑞+𝑛+1+𝑛 =

𝜎2ˆ𝑞+𝑛 , hence from (1) 𝜎1ˆ𝑞+2𝑛+1 = 𝜎1ˆ𝑞 , therefore both 𝜎1 and 𝜎2 are regular,
and by Proposition 11.3, their periods 𝑝1 and 𝑝2 are divisors of 2𝑛 + 1, and,
hence, are both odd.
We now show that 𝑝1 = 𝑝2; let 𝑞1 ≥ 0, 𝑛1 > 0 s.t. 𝜎1ˆ𝑞1+𝑛1 = 𝜎1ˆ𝑞1 ,

hence 𝜎1ˆ𝑞1+𝑞+𝑛1 = 𝜎1ˆ𝑞1+𝑞 ; from the previous identity and (1) 𝜎2ˆ𝑞1+𝑞+𝑛+𝑛1 =

𝜎1ˆ𝑞1+𝑞+𝑛1 = 𝜎1ˆ𝑞1+𝑞 = 𝜎2ˆ𝑞1+𝑞+𝑛 . Analogously, let𝑞2 ≥ 0,𝑛2 > 0 s.t. 𝜎2ˆ𝑞2+𝑛2 =

𝜎2ˆ𝑞2 , hence 𝜎2ˆ𝑞2+𝑞+𝑛2+2𝑛 = 𝜎2ˆ𝑞2+𝑞+2𝑛; from the previous identity and (1)
𝜎1ˆ𝑞2+𝑞+𝑛+𝑛2 = 𝜎2ˆ𝑞2+𝑞+2𝑛+𝑛2 = 𝜎2ˆ𝑞2+𝑞+2𝑛 = 𝜎1ˆ𝑞2+𝑞+𝑛 . Therefore, {𝑛 > 0 |
∃𝑞 ≥ 0 𝜎1ˆ𝑞+𝑛 = 𝜎1ˆ𝑞} = {𝑛 > 0 | ∃𝑞 ≥ 0 𝜎1ˆ𝑞+𝑛 = 𝜎2ˆ𝑞}, therefore 𝑝1 = 𝑝2,
by definition.
We know determine the period 𝑝 of 𝜎1 ∥ 𝜎2. By identities (1) and (2) and

Lemma 11.6 (𝜎1 ∥ 𝜎2)ˆ2𝑞+2𝑛+1 = 𝜎2ˆ𝑞+𝑛 ∥ 𝜎1ˆ𝑞+𝑛+1 = 𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞 = (𝜎1 ∥ 𝜎2)ˆ2𝑞 ,
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therefore by Proposition 11.3 𝑝 is a divisor of 2𝑛 + 1, hence 𝑝 is odd. Since
lcd (𝑝1, 𝑝2) = 𝑝1 = 𝑝2, by Lemma 11.8, the period 𝑝 of 𝜎1 ∥ 𝜎2 is a divisor
of 2𝑝1 = 2𝑝2, hence 𝑝 is a divisor of 𝑝1 = 𝑝2, since 𝑝 is odd. Furthermore,
there exists𝑚 ≥ 0 s.t. 𝑝 = 2𝑚 + 1 and, by Lemma 11.7, there exists 𝑟 ≥ 0 s.t.
𝜎2ˆ𝑟+𝑚 = 𝜎1ˆ𝑟 and 𝜎1ˆ𝑟+𝑚+1 = 𝜎2ˆ𝑟 , hence, as already proved above, 𝑝1 = 𝑝2
is a divisor of 𝑝 = 2𝑚 + 1. Since 𝑝1 = 𝑝2 is a divisor of 𝑝 and 𝑝 is a divisor of
𝑝1 = 𝑝2, we conclude 𝑝1 = 𝑝2 = 𝑝 . □

remark Lemma 11.9 characterizes all those cases where the period of 𝜎1 ∥𝜎2
is not 2lcd (𝑝1, 𝑝2), with 𝑝𝑖 period of 𝜎𝑖 for 𝑖 = 1, 2. In fact, there are regular
streams satisfying identities (1) and (2) of the lemma for all odd periods; indeed,
for any regular stream 𝜎 with arbitrary period 𝑝 = 2𝑛 + 1, 𝑛 ≥ 0, identities (1)
and (2) are verified for 𝜎1 = 𝜎 and 𝜎2 = 𝜎ˆ𝑛+1. Examples for 𝑝 = 1 are streams
𝜎1, 𝜎2 s.t. 𝜎1 = 𝜎2 = 𝑚:𝜎1 for all numbers 𝑚; more involved examples can
be found for 𝑝 > 1. For instance, 𝜎1 = 1:2:3:𝜎1 and 𝜎2 = 3:1:2:𝜎2 if one
considers 𝑝 = 3.

The following proposition fully characterizes the periods of interleaving of
regular streams.

proposition 11.10 : Let 𝜎1, 𝜎2 be regular with periods 𝑝1, 𝑝2, respectively;
if there exist 𝑛, 𝑞 ≥ 0 s.t. 𝜎2ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 and 𝜎1ˆ𝑞+𝑛+1 = 𝜎2ˆ𝑞 , then 𝜎1 ∥ 𝜎2 has
period 𝑝 = 𝑝1 = 𝑝2, otherwise it has period 𝑝 = 2lcd (𝑝1, 𝑝2).

Proof: If 𝜎2ˆ𝑞+𝑛 = 𝜎1ˆ𝑞 and 𝜎1ˆ𝑞+𝑛+1 = 𝜎2ˆ𝑞 for some 𝑞, 𝑛 ≥ 0, then we con-
clude by Lemma 11.9 𝑝 = 𝑝1 = 𝑝2; otherwise, 𝑝 must be even by Lemma 11.7,
hence there exists𝑚 > 0 s.t. 𝑝 = 2𝑚. By definition of period, there exists𝑞 ≥ 0
s.t. (𝜎1 ∥ 𝜎2)ˆ𝑞+2𝑚 = (𝜎1 ∥ 𝜎2)ˆ𝑞 , hence, (𝜎1 ∥ 𝜎2)ˆ2𝑞+2𝑚 = (𝜎1 ∥ 𝜎2)ˆ2𝑞 . There-
fore, by definition of interleaving and Lemma 11.6 the following identities
hold for all 𝑖 ≥ 0:

• 𝜎1ˆ𝑞+𝑚 (𝑖) = (𝜎1ˆ𝑞+𝑚 ∥𝜎2ˆ𝑞+𝑚) (2𝑖) = (𝜎1 ∥ 𝜎2)ˆ2𝑞+2𝑚 (2𝑖) = (𝜎1 ∥ 𝜎2)ˆ2𝑞 (2𝑖) =
(𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞) (2𝑖) = 𝜎1ˆ𝑞 (𝑖)

• 𝜎2ˆ𝑞+𝑚 (𝑖) = (𝜎1ˆ𝑞+𝑚 ∥ 𝜎2ˆ𝑞+𝑚) (2𝑖 + 1) = (𝜎1 ∥ 𝜎2)ˆ2𝑞+2𝑚 (2𝑖 + 1) =

(𝜎1 ∥ 𝜎2)ˆ2𝑞 (2𝑖 + 1) = (𝜎1ˆ𝑞 ∥ 𝜎2ˆ𝑞) (2𝑖 + 1) = 𝜎2ˆ𝑞 (𝑖)

By the identities above and Proposition 11.3, the periods 𝑝1 and 𝑝2 of 𝜎1 and
𝜎2 are divisors of𝑚 > 0, hence lcd (𝑝1, 𝑝2) ≤ 𝑚, 2lcd (𝑝1, 𝑝2) ≤ 2𝑚 = 𝑝 . By
Lemma 11.8 𝑝 is a divisor of 2lcd (𝑝1, 𝑝2), hence, 𝑝 ≤ 2lcd (𝑝1, 𝑝2), because, by
definition, lcd (𝑝1, 𝑝2) > 0; hence we conclude 𝑝 = 2lcd (𝑝1, 𝑝2). □

We can now prove the main result of this section.
Let vars(s) be the set of variables contained in the stream value s; if x ∈

vars(s), we say that s depends on x iff for all streams 𝜎1, 𝜎2 and substitutions 𝜃
with vars(s) ⊆ dom(𝜃 ), ⟦s⟧𝜃 {x ↦→ 𝜎1} = ⟦s⟧𝜃 {x ↦→ 𝜎2} iff 𝜎1 = 𝜎2.

theorem 11.11 : Let s be a stream value which depends on x ∈ vars(s), 𝜃 a
substitution s.t. vars(s) ⊆ dom(𝜃 ) and 𝜃 (x′) regular for all x′ ∈ vars(s) \ {x};
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then there exists 𝑛 > 0 s.t. if 𝜎 is regular with period 𝑝 multiple of 𝑛, that is,
𝑝 = 𝑘 · 𝑛 for some 𝑘 > 0, then ⟦s⟧𝜃 {x ↦→ 𝜎} is regular with period 𝑝′ which is
a divisor of 𝑝 .

Proof: The proof proceeds by induction on s.

basis: If s is a variable, then it must necessarily be x, otherwise s would
not depend on 𝑥 ; therefore the thesis trivially holds for all 𝑛 > 0 since
by definition ⟦s⟧𝜃 {x ↦→ 𝜎} = (𝜃 {x ↦→ 𝜎})(x) = 𝜎 .

step: we proceed by case analysis on s.

• if s = n:s1 or s = s1ˆ, then by definition, if s depends on x, then the
same holds for s1; furthermore, by definition, ⟦n:s1⟧𝜃 = n:⟦s1⟧𝜃
and ⟦s1ˆ⟧𝜃 = (⟦s1⟧𝜃 )ˆ. By inductive hypothesis, there exists 𝑛 > 0
s.t. if 𝜎 is regular with period 𝑝 = 𝑘 · 𝑛 for some 𝑘 > 0, then
⟦s1⟧𝜃 {x ↦→ 𝜎} is regular with period 𝑝′which is a divisor of 𝑝 . Since
⟦s⟧𝜃 ′ = n:⟦s1⟧𝜃 ′ or ⟦s⟧𝜃 ′ = (⟦s1⟧𝜃 ′)ˆ then by Proposition 11.4
⟦s⟧𝜃 {x ↦→ 𝜎} is regular with the same period 𝑝′ of ⟦s1⟧𝜃 ′.

• if s = s1 op s2, then by definition, if s depends on x, then either
s1 or s2 depends on x; furthermore, by definition, ⟦s1 op s2⟧𝜃 =

⟦s1⟧𝜃 op ⟦s2⟧𝜃 .
If both s1 and s2 depend on x, then, by inductive hypothesis,

there exist 𝑛1, 𝑛2 > 0 s.t. if 𝜎𝑖 is regular with period 𝑝𝑖 = 𝑘𝑖 · 𝑛𝑖 for
some 𝑘𝑖 > 0, then ⟦s𝑖⟧𝜃 {x ↦→ 𝜎𝑖} is regular with period 𝑝′𝑖 which
divides 𝑝𝑖 , for 𝑖 = 1, 2. Let 𝑛 = 𝑛1 · 𝑛2 and 𝜎 a regular stream with
period 𝑝 = 𝑘 · 𝑛 for some 𝑘 > 0; then ⟦s𝑖⟧𝜃 {x ↦→ 𝜎} is regular
with period 𝑝′′𝑖 which divides 𝑝 for 𝑖 = 1, 2. If 𝜃 ′ = 𝜃 {x ↦→ 𝜎},
then by Proposition 11.5 ⟦s1 op s2⟧𝜃 ′ = ⟦s1⟧𝜃 ′ op ⟦s2⟧𝜃 ′ has period
𝑝′ which divides lcd (𝑝′′1 , 𝑝′′2 ); since both 𝑝′′1 and 𝑝′′2 divide 𝑝 , then
lcd (𝑝′′1 , 𝑝′′2 ) divides 𝑝 because positive integers partially ordered
by divisibility are a lattice where lcd is the join. Hence, we can
conclude that 𝑝′ divides 𝑝 by transitivity of divisibility.
If only one stream value between s1 and s2 depends on x, then,

without loss of generality, let us assume that s2 does not depend
on x; hence, by straightforward induction on s2, by the hypotheses
and Proposition 11.4 and Proposition 11.5, one can prove that there
exists a regular stream 𝜎2 s.t. ⟦s2⟧𝜃 {x ↦→ 𝜎1} = 𝜎2 for all streams
𝜎1. Let 𝑝2 be the period of 𝜎2; by inductive hypothesis applied to
s1 we know that there exists 𝑛1 > 0 s.t. if 𝜎1 is regular with period
𝑝1 = 𝑘1 · 𝑛1 for some 𝑘1 > 0, then ⟦s1⟧𝜃 {x ↦→ 𝜎1} is regular with
period 𝑝 which divides 𝑝1. Let 𝑛 = 𝑛1 · 𝑝2 and 𝜎 a regular stream
with period 𝑝′1 = 𝑘 ′1 · 𝑛 for some 𝑘 ′1 > 0; then ⟦s1⟧𝜃 {x ↦→ 𝜎} is
regular with period 𝑝′ which divides 𝑝′1. If 𝜃

′ = 𝜃 {x ↦→ 𝜎}, then by
Proposition 11.5 ⟦s1 op s2⟧𝜃 ′ = ⟦s1⟧𝜃 ′op⟦s2⟧𝜃 ′ has period 𝑝′′ which
divides lcd (𝑝′, 𝑝2); since both 𝑝′ and 𝑝2 divide 𝑝′1, then lcd (𝑝′, 𝑝2)
divides 𝑝′1 because positive integers partially ordered by divisibility
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are a lattice where lcd is the join. Hence, we can conclude that 𝑝′′

divides 𝑝′1 by transitivity of divisibility.

□

From Theorem 11.11 one can deduce that the interleaving operator cannot be
expressed with a stream value, even when operands are restricted to regular
streams, as shown by the following corollary.

corollary 11.12 : Let s be a stream value which depends on x1, x2 ∈ vars(s),
𝜃 a substitution s.t. vars(s) ⊆ dom(𝜃 ) and 𝜃 (x′) regular for all x′ ∈ vars(s) \
{x1, x2}. Let 𝑓 be the binary operator on regular streams defined as follows:
𝑓 (𝜎1, 𝜎2) = ⟦s⟧𝜃 {x1 ↦→ 𝜎1}{x2 ↦→ 𝜎2}, for all regular stream 𝜎1 and 𝜎2; then 𝑓

is not the interleaving operator.

Proof: Let us consider a regular stream 𝜎1 with period 𝑝1; if we apply The-
orem 11.11 to variable x2 and substitution 𝜃 {x1 ↦→ 𝜎1}, then we deduce that
there exists 𝑛 > 0 s.t. if 𝜎2 is regular with period 𝑝2 multiple of 𝑛, then
⟦s⟧𝜃 {x1 ↦→ 𝜎1}{x2 ↦→ 𝜎2} is regular with period 𝑝 which is a divisor of 𝑝2.
Therefore, if 𝜎2 has period 𝑝2 = (𝑝1 + 1) · 𝑛, then the period 𝑝 of 𝑓 (𝜎1, 𝜎2)
divides 𝑝2; furthermore, by Proposition 11.10 the interleaving of 𝜎1 and 𝜎2
has period 𝑝′ = 2lcd (𝑝1, 𝑝2) because 𝑝1 ≠ 𝑝2, therefore 𝑝′ cannot divide 𝑝2
and, hence, 𝑓 (𝜎1, 𝜎2) cannot be the correct result of the interleaving of 𝜎1
and 𝜎2. □

discussion By proving Theorem 11.11 and its corollary, we showed that in
our calculus it is not possible to write a function that mimics the behaviour
of the interleaving operator. However, one may ask whether it is possible to
define a function which exploits regular corecursion to return stream values
of different shape, depending on the values of the parameters, as happens with
the following definition:

interleave(s1,s2) = s1(0):interleave(s2,s1^)

While with the lazy evaluation this function works correctly also for non
regular streams, this is not the case for regular corecursion; for instance, if
nat() returns the stream of natural numbers, as defined in Section 9.2, then in
the calculus interleave(nat(),nat()) diverges simply because in the infinite
sequence nat(),nat()^,nat()^^,. . . there is no stream that occurs at least
twice.





12
Extended calculus

In this chapter we consider an extension of the calculus with an interleaving

operator, which gives a stream whose elements are alternatively those of the
arguments. This latter operator is interesting because, as shown in Chapter 11,
it cannot be derived from the others. After having presented the extended
calculus, we discuss some interesting examples involving the interleaving.
In Figure 12.1 and Figure 12.2 we report the extended calculus.
A binary stream operator is now either a pointwise arithmetic operation or

the interleaving operator (∥). Correspondingly, the rule for the binary operator
has been generalized. Finally, two new rules have been added for the judgment
at𝜌 (s, 𝑖) = n, handling the interleaving operator. Rule (at-∥-even) is used
for even indexes, and propagates the evaluation to the left-hand side stream;
analogously, for odd indexes, rule (at-∥-odd) is applied and the evaluation
propagates the evaluation to the right-hand side stream.

We show some examples of usage of the interleaving operator. The following
function

dup_occ() = 0:1:(dup_occ() || dup_occ())

generates the stream which alternates sequences of occurrences of 0 and 1,
with the number of repetitions of the same number duplicated at each step,
that is,

0:1:0:0:1:1:0:0:0:0: ...

As a more involved and general example, the use of the interleaving operator
allows the following pattern for generating the infinite sequence of numeric
labels obtained by a breadth-first visit of an infinite complete binary tree where
the labels of children are defined in terms of that of their parent.

fd :: = fd1 . . . fd𝑛 program
fd :: = f(x) = se function declaration
e :: = se | ne | be expression
se :: = x | if be then se1 else se2 | ne:se | seˆ | se1 op se2 | f(e) stream expression
ne :: = x | se(ne) | ne1 op ne2 | 0 | 1 | 2 | ... numeric expression
be :: = x | true | false | ... boolean expression
op :: = [nop] | ∥ binary stream operator
nop :: = + | − | ∗ | / arithmetic operation

figure 12 .1 Extended stream calculus: syntax
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c :: = f(v) (evaluated) call
v :: = s | n | b value
s :: = x | n:s | sˆ | s1 op s2 (open) stream value
𝑖, n :: = 0 | 1 | 2 | ... index, numeric value
b :: = true | false boolean value
𝜏 :: = c1 ↦→ x1 . . . c𝑛 ↦→ x𝑛 (𝑛 ≥ 0) call trace
𝜌 :: = x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛 (𝑛 ≥ 0) environment

(val)
v, 𝜌, 𝜏 ⇓ (v, 𝜌)

(cons)
ne, 𝜌, 𝜏 ⇓ (n, 𝜌) se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

ne:se, 𝜌, 𝜏 ⇓ (n:s, 𝜌 ′) (tail)
se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
seˆ, 𝜌, 𝜏 ⇓ (sˆ, 𝜌 ′)

(op)
se1, 𝜌, 𝜏 ⇓ (s1, 𝜌1) se2, 𝜌, 𝜏 ⇓ (s2, 𝜌2)
se1 op se2, 𝜌, 𝜏 ⇓ (s1 op s2, 𝜌1 ⊔ 𝜌2)

( if-t)
be, 𝜌, 𝜏 ⇓ (true, 𝜌) se1, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
if be then se1 else se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

( if-f)
be, 𝜌, 𝜏 ⇓ (false, 𝜌) se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)
if be then se1 else se2, 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

(args)
e𝑖 , 𝜌, 𝜏 ⇓ (v𝑖 , 𝜌𝑖 ) ∀𝑖 ∈ 1..𝑛 f(v), 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

f(e), 𝜌, 𝜏 ⇓ (s, 𝜌 ′)

e = e1, . . . , e𝑛 not of shape v
v = v1, . . . , v𝑛
𝜌 =

⊔
𝑖∈1..𝑛 𝜌𝑖

( invk)
se[v/x], 𝜌, 𝜏{c ↦→ x}⇓ (s, 𝜌 ′)

c, 𝜌, 𝜏 ⇓ (x, 𝜌 ′{x ↦→ s})

c ∉ dom(𝜏≈𝜌 )
x fresh
fbody(f) = (x, se)

(corec)
c, 𝜌, 𝜏 ⇓ (x, 𝜌) 𝜏≈𝜌 (c) = x

(at)
se, 𝜌, 𝜏 ⇓ (s, 𝜌 ′) ne, 𝜌, 𝜏 ⇓ (𝑖, 𝜌)

se(ne), 𝜌, 𝜏 ⇓ (n, 𝜌) at𝜌 ′ (s, 𝑖) = n

(at-var)
at𝜌 (𝜌 (x), 𝑖) = n

′

at𝜌 (x, 𝑖) = n
′ (at-cons-0)

at𝜌 (n:s, 0) = n

(at-cons-succ)
at𝜌 (s, 𝑖 − 1) = n

′

at𝜌 (n:s, 𝑖) = n
′ 𝑖 > 0

(at-tail)
at𝜌 (s, 𝑖 + 1) = n

at𝜌 (sˆ, 𝑖) = n

(at-nop)
at𝜌 (s1, 𝑖) = n1 at𝜌 (s2, 𝑖) = n2

at𝜌 (s1 [nop] s2, 𝑖) = n1 nop n2

(at-∥-even)
at𝜌 (s1, 𝑖) = n

at𝜌 (s1 ∥ s2, 2𝑖) = n

(at-∥-odd)
at𝜌 (s2, 𝑖) = n

at𝜌 (s1 ∥ s2, 2𝑖 + 1) = n

figure 12 .2 Extended stream calculus: operational semantics
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bfs() = 𝑘:(𝑒1 [bfs()]||𝑒2 [bfs()])

In the pattern, 𝑘 denotes the numeric constant labeling the root of the tree,
while 𝑒𝑖 [ ], for 𝑖 = 1, 2, are stream expressions containing one hole and no
occurrences of the interleaving operator; they define the labels of the left and
right children, respectively.

A first example of instantiation is defined by 𝑘 = 0, 𝑒1 [ ] = 𝑒2 [ ] = _[+][1]

to get the non-regular stream depth of depths of nodes: depth(𝑖) = ⌊log2(𝑖+1)⌋
for all 𝑖 ≥ 0. Without the interleaving operator such a stream can be defined if
one introduces pointwise floor and log2 as primitive operators of the calculus.
If we take 𝑘 = 0, 𝑒1 [ ] = _[*][2] and 𝑒2 [ ] =(_[*][2])[+][1], then we

obtain the non-regular stream bin_dec of decodings of binary natural numbers
in increasing order of digits: bin_dec(𝑖) = (𝑖 + 1) mod 2⌊log2 (𝑖+1) ⌋ for all 𝑖 ≥ 0.
Also in this case other primitive pointwise arithmetic operators have to be
introduced to define such a stream without the use of the interleaving operator.
As a final example, we can consider 𝑘 = 0, 𝑒1 [ ] =(_[*][10])[+][2] and

𝑒2 [ ] =(_[*][10])[+][4] to define the non-regular stream of sorted words
built on the two digits 2 and 4:

0:2:4:22:24:42:44:. . .





13
Extended well-definedness check

In this chapter we present a well-definedness check that handles the inter-
leaving operator as well. The introduction of such operator adds a non-trivial
complexity to the calculus, and a more involved algorithm needs to be devised.
After extending the abstract definition with the rules for the interleaving oper-
ator, we discuss a new algorithm for checking well-definedness. The algorithm
requires two steps and mimics the access to an index of the stream. The main
technical result of this chapter is Theorem 13.5, in which we prove that the
enhanced well-definedness check is sound and complete with respect to the
function at.

13 . 1 Extended definition

First of all, the function _⇓𝜃 defined in Chapter 10 is extended to the inter-
leaving operator as follows:

(⟦s1 ∥ s2⟧𝜃 ) (2𝑖) = ⟦s1⟧𝜃 (𝑖) 𝑖 ≥ 0

(⟦s1 ∥ s2⟧𝜃 ) (2𝑖 + 1) = ⟦s2⟧𝜃 (𝑖) 𝑖 ≥ 0

The extended well-definedness check mimics the steps for accessing an
arbitrary index, as the previous version. However, a non-trivial generalization
is needed. Indeed, in this case, checking that a result (𝜌, s) is well-defined
requires two steps:

1. First, a derivation tree needs to be constructed for a judgmentwdy𝜌 (s,∅) { C,
where C is a set of checks, which are pairs (a, b) of rational numbers.

2. Then, the set of checks generated in the first step is analyzed.

We describe now the two steps in more detail.
The judgment wdy𝜌 (s,∅) { C is analogous to that defined in Figure 10.1.

However, in this case, accessing an index 𝑖 on s leads to accessing indexes
which are of shape a · 𝑖 + b, rather than of shape 𝑖 + b, as in functions linear in
𝑖 . The case without interleaving, considered in previous sections, corresponds
to a = 1. The well-definedness check performs a symbolic computation using
a map, m from variables to pairs (a, b) of rational numbers, with 0 < a ≤ 1.
Moreover, the judgment is decorated with the variable y which is the starting
point of the check.
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m :: = x1 ↦→ (a1, b1) . . . x𝑛 ↦→ (a𝑛, b𝑛) map from variables to pairs of numbers

(main)

wdy
𝜌 ′ (y,∅) { C

wd (𝜌, y, v)
𝜌 ′ = 𝜌{y ↦→ v}
⊢OK C

(wd-var)
wdy𝜌 (𝜌 (x),m{x ↦→ (1, 0)}) { C

wdy𝜌 (x,m) { C

x ∉ dom(m)

(wd-corec)
wdy𝜌 (x,m) { {(a, b)}

m(x) = (a, b)

(wd-fv)
wdy𝜌 (x,m) { ∅

x ∉ dom(𝜌) (wd-cons)
wdy𝜌 (s, (id,−1) ·m) { C

wdy𝜌 (n:s,m) { C

(wd-tail)
wdy𝜌 (s, (id, +1) ·m) { C

wdy𝜌 (sˆ,m) { C

(wd-nop)
wdy𝜌 (s1,m) { C1 wdy𝜌 (s2,m) { C2

wdy𝜌 (s1 [nop]s2,m) { C1 ∪ C2

(wd-∥ )
wdy𝜌 (s1, (÷2,÷2) ·m) { C1 wdy𝜌 (s2, (÷2,−1 ÷ 2) ·m) { C2

wdy𝜌 (s1 ∥ s2,m) { C1 ∪ C2

figure 13 . 1 Extended well-definedness check

The rules are presented in Figure 13.1.
Rules(main) is analogous to that in Figure 10.1, with the additional condition

that the checks generated in the premise should be successfully analyzed in
the second step, as will be detailed below. Rules (wd-var), (wd-cons), (wd-
tail), and (wd-nop) are a generalized version of those in Figure 10.1 where,
moreover, checks are collected. Notably, in rule (wd-var), a variable defined
in the environment, when found the first time, is added in the map, with
initial value (1, 0), corresponding to the identity function, and in rules (wd-
cons) and (wd-tail) the first component of the pair is left unchanged, while
the second one is decremented/incremented by one, respectively. We write
(id,−1) ·m for the composition of m with the function which associates with
each (a, b) the pair (a, b − 1), and analogously for (id, +1) ·m.

In rule (wd-∥ ) the two premises deal with even and odd indexes, respectively;
in both cases the first component of the pair is divided by 2, the second
component is divided by 2 as well, but for odd indexes it is first decremented
by one. As in the rules above, checks are collected, and we use analogous
notations.
The key rule is (wd-corec), handling the case when a cyclic reference

associated to a pair (a, b) is found. In this case, a check to be analyzed in the
second step is generated.
The second step of the algorithm analyzes the set of checks generated in

the first step as described below.
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𝑥

𝑦

bisector
b < 0

𝑥

𝑦

bisector
b ≥ 0, a = 1

î = b/(1 − a)

𝑥

𝑦

bisector
b ≥ 0, a < 1

figure 13 .2 Possible cases of linear functions

INPUT: wdy𝜌 (x1,m1) { {(a1, b1)}, . . . ,wdy𝜌 (x𝑛,m𝑛) { {(a𝑛, b𝑛)}
// leaves of the derivation tree
IF b𝑖 < 0 for all ℎ ∈ 1..𝑛 SUCCESS
IF a𝑖 = 1 and b𝑖 ≥ 0 for some ℎ ∈ 1..𝑛 FAIL
for ℎ in 1..𝑛 // a𝑖 < 1 and b𝑖 ≥ 0 for all ℎ ∈ 1..𝑛
𝑖ℎ ← ⌊bℎ/(1 − aℎ)⌋ // bℎ/(1 − aℎ) is the solution of aℎ · 𝑖 + bℎ = 𝑖

𝑗ℎ = start(𝑖ℎ, (aℎ, bℎ),mℎ (y))// starting index needed to obtain 𝑖ℎ
𝑗 = max{ 𝑗ℎ | ℎ ∈ 1..𝑛, 𝑗 ≥ 0}
for 𝑗 in 0.. 𝑗
if a cyclic reference for the same variable and index
is found in the derivation tree of at𝜌 (y, 𝑗) FAIL

SUCCESS

In order to better explain the different cases which may occur when a cyclic
reference is found, recall that the pair (a, b) represents the slope and the offset
of a linear function. When a cyclic reference is found, the cases which could
lead to non-termination are those where a · 𝑖 + b is greater or equal than 𝑖 . To
see when this happens, we can compare the linear function a · 𝑖 + b with the
identity function (the bisector). Since a turns out to be less or equal than 1
but positive, the slope of the linear function is less or equal than that of the
bisector. The possible cases are illustrated in Figure 13.2.
When b < 0, a · 𝑖 + b is strictly less than 𝑖 for all 𝑖 , hence we have success.

When a = 1 and b ≥ 0, a · 𝑖 +b is greater or equal than 𝑖 for all 𝑖 , hence we have
failure. The challenging case is when b ≥ 0 and a < 1. As shown in the picture,
in this case a · 𝑖 + b is greater or equal than 𝑖 only for a finite set of indexes,
namely, those less or equal than the floor of the solution î of a · 𝑖 + b = 𝑖 , that is,
the abscissa of the intersection of the two lines. This means that, if we access
an index 𝑖 ≤ 𝑖 on some variable x, starting from accessing some index 𝑗 on the
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𝑇1 𝑇2

wdx𝜌 ((x [+] [1]) ∥ (x [+] [1]), {x ↦→ (1,−1)}) { {( 12 ,−
1
2 ), (

1
2 ,−1), (1,−1)}

(wd-∥ )

wdx𝜌 (0 : ((x [+] [1]) ∥ (x [+] [1])), {x ↦→ (1, 0)}) { {( 12 ,−
1
2 ), (

1
2 ,−1), (1,−1)}

(wd-cons)

wdx𝜌 (x,∅) { {( 12 ,−
1
2 ), (

1
2 ,−1), (1,−1)}

(wd-var)

𝑇1 =

wdx𝜌 (x, {x ↦→ ( 12 ,−
1
2 )}) { {(

1
2 ,−

1
2 )}

(wd-corec) ...

wdx𝜌 ( [1], {...}) { {(1,−1)}
(wd-cons)

wdx𝜌 (x [+] [1], {x ↦→ ( 12 ,−
1
2 )}) { {(

1
2 ,−

1
2 ), (1,−1)}

(wd-nop)

𝑇2 =

wdx𝜌 (x, {x ↦→ ( 12 ,−1)}) { {(
1
2 ,−1)}

(wd-corec) ...

wdx𝜌 ( [1], {...}) { {(1,−1)}
(wd-cons)

wdx𝜌 (x [+] [1], {x ↦→ ( 12 ,−1)}) { {(
1
2 ,−1), (1,−1)}

(wd-nop)

figure 13 .3 Reduction of wdx𝜌 (x,∅) { {( 12 ,−
1
2 ), (

1
2 ,−1), (1,−1)} with

𝜌 = {x ↦→ 0 : ((x [+] [1]) ∥ (x [+] [1]))}.

initial variable y, then we could access a greater or equal index on x again.
In this case we compute, for each of such solutions 𝑖ℎ , the corresponding

starting index on y. This can be done as follows:

INPUT: 𝑖ℎ, (aℎ, bℎ), (a, b)// wdy𝜌 (xℎ,mℎ) { {(aℎ, bℎ)}
// 𝑖ℎ solution of aℎ · 𝑖 + bℎ = 𝑖

// (a, b) = mℎ (y) slope and offset from starting point of
derivation

a
′ = a

aℎ
, b

′ = b−bℎ
aℎ

//slope and offset from start to first occurrence of xℎ
𝑗ℎ = ⌊ 𝑖ℎ−b

′

a
′ ⌋//initial index needed to reach 𝑖ℎ

13 .2 Examples
We illustrate now the well-definedness check on some examples.

Figure 13.3 shows the derivation tree ofwdx𝜌 (x,∅) { {( 12 ,−
1
2 ), (

1
2 ,−1), (1,−1)}

with 𝜌 = {x ↦→ 0 : ((x [+] [1]) ∥ (x [+] [1]))}, which corresponds
to the stream bfs_level() discussed above. In this first example there is
no need of the second step of the checking algorithm because all cyclic
references fall within case b ≤ 0. We left unspecified the reductions of
wdx𝜌 ( [1], {...}) { {(1,−1)} due to space reasons, but it is easy to see that
for this particular branch the check is trivial.
Figure 13.4 shows the derivation of wdx𝜌 (x,∅) { {( 14 , 1), (

1
4 ,−

1
2 ), (

1
2 ,−

3
2 )}

with 𝜌 = {x ↦→ (𝑥ˆ ∥ x) ∥ 0 : 𝑥}. The represented stream is the one which is
constantly equal to 0, but we still deem this example useful to reason on the
interleaving operator. In the reduction tree at the top of the figure there are
three leaves due to the presence of cyclic references. Two of them generate
trivial set of checks (case b < 0), while in the leftmost one the pair associated
with variable x has shape a < 0 and b > 0. At this point the second step of
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𝑇1 𝑇2

wdx𝜌 ((𝑥ˆ ∥ x) ∥ 0 : 𝑥, {x ↦→ (1, 0)}) { {( 14 , 1), (
1
4 ,−

1
2 ), (

1
2 ,−

3
2 )}

(wd-∥ )

wdx𝜌 (x,∅) { {( 14 , 1), (
1
4 ,−

1
2 ), (

1
2 ,−

3
2 )}

(wd-var)

𝑇1 =

wdx𝜌 (x, {x ↦→ ( 14 , 1)}) { {(
1
4 , 1)}

(wd-corec)

wdx𝜌 (xˆ, {x ↦→ ( 14 , 0)}) { {(
1
4 , 1)}

(wd-tail)

wdx𝜌 (x, {x ↦→ ( 14 ,−
1
2 )}) { {(

1
4 ,−

1
2 )}

(wd-corec)

wdx𝜌 (𝑥ˆ ∥ x, {x ↦→ ( 12 , 0)}) { {(
1
4 , 1), (

1
4 ,−

1
2 )}

(wd-∥ )

𝑇2 =

wdx𝜌 (x, {x ↦→ ( 12 ,−
3
2 )}) { {(

1
2 ,−

3
2 )}

(wd-corec)

wdx𝜌 (0 : 𝑥, {x ↦→ ( 12 ,−
1
2 )}) { {(

1
2 ,−

3
2 )}

(wd-cons)

at𝜌 (0 : 𝑥, 0) = 0
(at-cons-0)

at𝜌 ((𝑥ˆ ∥ x) ∥ 0 : 𝑥, 1) = 0
(at-∥-odd)

at𝜌 (x, 1) = 0
(at-var)

at𝜌 (𝑥ˆ, 0) = 0
(at-tail)

at𝜌 (𝑥ˆ ∥ x, 0) = 0
(at-∥-even)

at𝜌 ((𝑥ˆ ∥ x) ∥ 0 : 𝑥, 0) = 0
(at-∥-even)

at𝜌 (x, 0) = 0
(at-var)

at𝜌 (0 : 𝑥, 0) = 0
(at-cons-0)

at𝜌 ((𝑥ˆ ∥ x) ∥ 0 : 𝑥, 1) = 0
(at-∥-odd)

at𝜌 (x, 1) = 0
(at-var)

figure 13 .4 Reduction of wdx𝜌 (x,∅) { {( 14 , 1), (
1
4 ,−

1
2 ), (

1
2 ,−

3
2 )} with

𝜌 = {x ↦→ (𝑥ˆ ∥ x) ∥ 0 : 𝑥}.
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𝑇1 𝑇2

wdx𝜌 (y ∥ (y ∥ xˆ), {x ↦→ (1, 0)}) { {(1,−1), ( 14 ,
1
4 )}

(wd-∥ )

wdx𝜌 (𝑥, {x ↦→ (1, 2)}) { {(1, 2)}
(wd-corec)

wdx𝜌 (𝑥ˆ, {x ↦→ (1, 1)}) { {(1, 2)}
(wd-tail)

wdx𝜌 (𝑥ˆˆ, {x ↦→ (1, 0)}) { {(1, 2)}
(wd-tail)

wdx𝜌 ((y ∥ (y ∥ xˆ)) [+] 𝑥ˆˆ, {x ↦→ (1, 0)}) { {(1,−1), ( 14 ,
1
4 ), (1, 2)}

(wd-nop)

wdx𝜌 (x,∅) { {(1,−1), ( 14 ,
1
4 ), (1, 2)}

(wd-var)

𝑇1 =

wdx𝜌 (y, {x ↦→ ( 12 ,−1), y ↦→ (1,−1)}) { {(1,−1)}
(wd-corec)

wdx𝜌 (0 : y, {x ↦→ ( 12 , 0), y ↦→ (1, 0)}) { {(1,−1)}
(wd-cons)

wdx𝜌 (y, {x ↦→ ( 12 , 0)}) { {(1,−1)}
(wd-var)

𝑇2 =

wdx𝜌 (y, {x ↦→ ( 14 ,−
5
4 ), y ↦→ (1,−1)}) { {(1,−1)}

(wd-corec)

wdx𝜌 (0 : y, {x ↦→ ( 14 ,−
1
4 ), y ↦→ (1, 0)}) { {(1,−1)}

(wd-cons)

wdx𝜌 (y, {x ↦→ ( 14 ,−
1
4 )}) { {(1,−1)}

(wd-var)

𝑇3

wdx𝜌 (y ∥ xˆ, {x ↦→ ( 12 ,−
1
2 )}) { {(

1
4 ,

1
4 )}

(wd-∥ )

𝑇3 =

wdx𝜌 (x, {x ↦→ ( 14 ,
1
4 )}) { {(

1
4 ,

1
4 )}

(wd-corec)

wdx𝜌 (xˆ, {x ↦→ ( 14 ,−
3
4 )}) { {(

1
4 ,

1
4 )}

(wd-tail)

figure 13 .5 Reduction of wdx𝜌 (x,∅) { {(1,−1), ( 14 ,
1
4 ), (1, 2)} with

𝜌 = {x ↦→ (y ∥ (y ∥ xˆ)) [+] 𝑥ˆˆ, y ↦→ 0 : y}.

the algorithm is triggered to check the pair ( 14 , 1). The calculated solution is
𝑖 = floor (b/(1 − a)) = floor (1/(1 − 1

4 )) = 1, which means that at𝜌 (x, 0) and
at𝜌 (x, 1) need to be calculated, as shown at the bottom of Figure 13.4. The
two reduction trees are pretty straightforward but we would like to point out
that in this example we need to know the value of at𝜌 (x, 1) in order to have
at𝜌 (x, 0). This is an interesting fact because this can only happen with the
interleaving operator, and would lead to not well-defined streams otherwise.

Figure 13.5 shows the reduction of wdx𝜌 (x,∅) { {(1,−1), ( 14 ,
1
4 ), (1, 2)} with

𝜌 = {x ↦→ (y ∥ (y ∥ xˆ)) [+] 𝑥ˆˆ, y ↦→ 0 : y}. This last example shows
the behaviour of the algorithm when dealing with non-well-defined streams.
Indeed, the stream in the environment 𝜌 is of such kind. In the tree at the top
of the figure, the derivation starts with the unfolding of variable x. Then there
is the application of the rule for numeric pointwise operations that propagates
the check to the two subterms. The derivation for the one on the left-hand
side, reported in the subtrees𝑇1 and𝑇2, terminates with two checks to perform
in the second step of the algorithm. For what concerns the subtree for the
term xˆˆ, we have the pair (1, 2) added to the set of check. Due to this fact we
have failure in the second step of the algorithm since this is the case a = 1
and b > 0. The stream is indeed not well-defined since an access to the first
element leads to non-termination, as shown in Figure 13.6.
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at𝜌 (0 : y, 0) = 0
(at-cons-0)

at𝜌 (y, 0) = 0
(at-var)

at𝜌 ((y ∥ (y ∥ xˆ)), 0) = 0
(at-∥-even)

...

at𝜌 (x, 2) = !
(at-var)

at𝜌 (xˆ, 1) = !
(at-tail)

at𝜌 (xˆˆ, 0) = !
(at-tail)

at𝜌 ((y ∥ (y ∥ xˆ)) [+] 𝑥ˆˆ, 0) = !
(at-nop)

at𝜌 (x, 0) = !
(at-var)

figure 13 .6 Failing reduction of at𝜌 (x, 0) with
𝜌 = {x ↦→ (y ∥ (y ∥ xˆ)) [+] 𝑥ˆˆ, y ↦→ 0 : y}.

13 .3 Soundness and completeness of the extended
well-definedness check

We show now that well-definedness of a result is a necessary and sufficient
condition for termination of access to an arbitrary index.
In Chapter 10, this result has been proved for the version of the calculus

as presented in Chapter 9, that is, without interleaving. We show now that
the enhanced definition presented in this chapter is still sound and complete
with respect to function at. To formally express and prove this statement, we
introduce some definitions and notations.
In the following, 𝜌 is a closed environment. First of all, since the numeric

value obtained as result is not relevant for the following technical treatment,
for simplicity we will write at𝜌 (s, 𝑖) rather than at𝜌 (s, 𝑖) = n. Analogously, we
write wd𝜌 (s,m) rather than wdy𝜌 (s,m) { C when the initial variable and the
set of generated checks is not relevant. We call derivation an either finite or
infinite proof tree.

We write wd𝜌 (s′,m′) ⊢ wd𝜌 (s,m) to mean that wd𝜌 (s′,m′) is a premise of a
(meta-)rule where wd𝜌 (s,m) is the consequence, and ⊢★ for the reflexive and
transitive closure of this relation. We use analogous notations for the judgment
at𝜌 (s, 𝑖). Moreover, at𝜌 (x, 𝑖) ⊢★ at𝜌 (s, 𝑗) means that in the path there are no
other nodes of shape at𝜌 (x, _).

lemma 13.1 : The derivation of at𝜌 (s, 𝑗) is infinite iff the following condition
holds:
(at-∞) for some x, {𝑖𝑘 | 𝑘 ≥ 0}:

at𝜌 (x, 𝑖0) ⊢★ at𝜌 (s, 𝑗)
at𝜌 (x, 𝑖𝑘+1) ⊢★ at𝜌 (𝜌 (x), 𝑖𝑘 ) ⊢ at𝜌 (x, 𝑖𝑘 ) for all 𝑘 ≥ 0

lemma 13.2 : If at𝜌 (x, 𝑖′) ⊢★ at𝜌 (s, 𝑖) then,

for all m, wd𝜌 (x,m′) ⊢★ wd𝜌 (s,m) for some m′, and

1. if x ∉ dom(m), then x ∉ dom(m′)

2. if m(x) = (a, b), then m
′(x) = (a′ · a, b′ + b), 𝑖′ = ⌊a′ · 𝑖 + b′⌋
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lemma 13.3 : If wd𝜌 (x,m′) ⊢★ wd𝜌 (s,m), then

• for each 𝑖′′, at𝜌 (x, 𝑖′) ⊢★ at𝜌 (s, 𝑖) for some 𝑖 and 𝑖′ ≥ 𝑖′′

• if m(x) = (a, b), m′(x) = (a′ · a, b′ + b), then 𝑖′ = ⌊a′ · 𝑖 + b′⌋

lemma 13.4 :

If at𝜌 (x, 𝑖′) ⊢★ at𝜌 (s, 𝑖), and s does not contain the interleaving operator, then
at𝜌 (x, 𝑖′ + b) ⊢★ at𝜌 (s, 𝑖 + b), for each b ≥ 0.

theorem 13.5 : Set wdy𝜌 (y,∅) { C.

• If ⊢OK C holds then, for all 𝑗 , the derivation of at𝜌 (y, 𝑗) is finite.
• If ⊢OK C fails then, for some 𝑗 , the derivation of at𝜌 (y, 𝑗) is infinite.

Proof: We consider the following cases.

• b < 0 for all (a, b) ∈ C. We show that, for all 𝑗 , the derivation of at𝜌 (y, 𝑗)
cannot be infinite. Assume by contradiction an infinite derivation path
starting from at𝜌 (y, 𝑗), then, by Lemma 13.1, the following condition
holds:
(at-∞) for some x, {𝑖𝑘 | 𝑘 ≥ 0}:

at𝜌 (x, 𝑖0) ⊢★ at𝜌 (y, 𝑗)
at𝜌 (x, 𝑖𝑘+1) ⊢★ at𝜌 (𝜌 (x), 𝑖𝑘 ) ⊢ at𝜌 (x, 𝑖𝑘 ) for all 𝑘 ≥ 0

Then by Lemma 13.2 we have:

⊢★ wd𝜌 (x,m) ⊢★ wd𝜌 ( 𝑗,∅)
with x ∉ dom(m)

hence by rule (wd-var) wd𝜌 (𝜌 (x),m0) ⊢ wd𝜌 (x,m), withm0 = m{x ↦→ (1, 0)}.
Moreover, for all 𝑘 ≥ 0, if m𝑘 (x) = (a𝑘 , b𝑘 ), by Lemma 13.2 we have:

wd𝜌 (x,m𝑘+1) ⊢★ wd𝜌 (𝜌 (x𝑘 ),m𝑘 ) ⊢ wd𝜌 (x𝑘 ,m𝑘 )
with m𝑘+1(x) = (a𝑘+1, b𝑘+1), 𝑖𝑘+1 = ⌊a𝑘 · 𝑖𝑘 + b𝑘⌋

For all 𝑘 ≥ 0, since b𝑘 < 0, we have 𝑖𝑘+1 < 𝑖𝑘 , hence we should have an
infinite sequence . . . < 𝑖𝑘 . . . < . . . < 𝑖0, which is impossible.

• a = 1 and b ≥ 0 for some (a, b) ∈ C. We show that there exists 𝑗 such
that the derivation of at𝜌 (y, 𝑗) is infinite. Indeed, since wdy𝜌 (y,∅) { C,
we have that wd𝜌 (x,m′) ⊢★ wd𝜌 (𝜌 (x),m{x ↦→ (1, 0)}) ⊢ wd𝜌 (x,m) ⊢★
wd𝜌 (y,∅) with x ∉ dom(m), m′(x) = (1, b) with b ≥ 0. Hence we have
that:

– by Lemma 13.3, at𝜌 (x, 𝑖′) ⊢★ at𝜌 (𝜌 (x), 𝑖)
for some 𝑖′, 𝑖 such that 𝑖′ = ⌊𝑖 + b⌋

– by rule (at-var), at𝜌 (𝜌 (x), 𝑖) ⊢ at𝜌 (x, 𝑖)
– by Lemma 13.3, there exist 𝑗 and 𝑗 ′ ≥ 𝑖 such that at𝜌 (x, 𝑗 ′) ⊢★ at𝜌 (y, 𝑗)
– since a = 1, 𝜌 (x) does not contain the interleaving operator, hence

by Lemma 13.4, since 𝑗 ′ ≥ 𝑖 , we also have at𝜌 (x, 𝑖′′) ⊢★ at𝜌 (𝜌 (x), 𝑗 ′),
hence altogether
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at𝜌 (x, 𝑖′′) ⊢★ at𝜌 (𝜌 (x), 𝑗 ′) ⊢ at𝜌 (x, 𝑗 ′) ⊢★ at𝜌 (y, 𝑗),
with 𝑖′′ = ⌊ 𝑗 ′ + b⌋

Moreover, again by Lemma 13.4, at𝜌 (x, 𝑗 ′ + b + b) ⊢★ at𝜌 (𝜌 (x), 𝑗 ′ + b) as
well, and it is easy to see that there is an infinite derivation for at𝜌 (y, 𝑗).

• aℎ < 1 and bℎ ≥ 0 for all ℎ ∈ 1..𝑛, if C = {(a1, b1), . . . , (a𝑛, b𝑛)}. For all
ℎ ∈ 1..𝑛, set 𝑖ℎ the solution of aℎ ·𝑖+bℎ = 𝑖 , and 𝑗ℎ = start(𝑖ℎ, (aℎ, bℎ),mℎ (y))
the starting index needed to obtain 𝑖ℎ , and 𝑗 = max{ 𝑗ℎ | ℎ ∈ 1..𝑛, 𝑗 ≥ 0}.
We show that there exists 𝑗 such that the derivation of at𝜌 (y, 𝑗) is infin-
ite iff there is a cyclic reference to the same variable and index in the
derivation of at𝜌 (y, 𝑗), and 𝑗 = start(𝑖) for some 𝑖 ≤ 𝑖 .
With the same reasoning of the first case, we have that, if at𝜌 (y, 𝑗)

has an infinite derivation, then we have:

wd𝜌 (𝜌 (x),m0) ⊢ wd𝜌 (x,m) ⊢★ wd𝜌 ( 𝑗,∅),
with x ∉ dom(m),m0 = m{x ↦→ (1, 0)}
for all 𝑘 ≥ 0, if m𝑘 (x) = (a𝑘 , b𝑘 ),
wd𝜌 (x,m𝑘+1) ⊢★ wd𝜌 (𝜌 (x𝑘 ),m𝑘 ) ⊢ wd𝜌 (x𝑘 ,m𝑘 )
with m𝑘+1(x) = (a𝑘+1, b𝑘+1), 𝑖𝑘+1 = ⌊a𝑘 · 𝑖𝑘 + b𝑘⌋

Since, for all 𝑘 ≥ 0, (a𝑘 , b𝑘 ) = (aℎ, bℎ) for some ℎ ∈ 1..𝑛, and aℎ <

1, bℎ ≥ 0, we have that 𝑖𝑘+1 ≥ 𝑖𝑘 can only hold for a finite set of
indexes, those less or equal than some 𝑖ℎ . Hence, in the infinite sequence
. . . , 𝑖𝑘+1, 𝑖𝑘 , . . . , 𝑖0, there is necessarily a repeated index, say, 𝑖 , and this
cyclic reference is found starting from some 𝑗 ≤ 𝑗 .

□





14
Equality of streams

In this chapter we consider the problem of the equality of stream values. As
discussed in the Introduction, and shown in the operational semantics in
Figure 9.2, this issue is relevant not only to provide an equality operator which
can be used by the programmer, but also for cycle detection in calls. After
presenting the formal definition, we discuss some examples of equal streams.
The main technical results of the chapter are:

1. Theorem 14.2, stating that if two streams pass the equality check, then
they are equal in the sense that access to an arbitrary index yields the
same result.

2. Theorem 14.3, which proves a result of partial completeness of the equality.

3. Theorem 14.4 and Theorem 14.16, that prove the existence an effective
algorithm for checking the equality of two streams.

14 . 1 Formal definition

We start with an example to illustrate the issue of detecting equal calls.

ones() = 1:ones()
incr_reg(s) = (s(0)+1) : incr_reg(s^)

Intuitively, the result of incr_reg(ones()) should be the stream consisting
of infinite occurrences of number 2. However, it is easy to see that this is
not the case if cycle detection is based on mere syntactic equality. Indeed, if
incr_reg is called on ones(), that is, on the result (x, x ↦→ 1:x), then incr_reg
is recursively called on (xˆ, x ↦→ 1:x) and cycle detection fails because x and
xˆ are not syntactically equal, even though they denote the same stream. This
leads to non-termination, since rule (corec) will never be applied.

The first step towards amore expressive definition is obtained by considering
equality in the free theory of regular terms, as in [3]. This can be done by a
coinductive definition1 which computes the unfolding of variables by looking
up their associated values in the environment. This allows us to identify
results returned by ones() and altOnes(), where altOnes()= 1:1:altOnes

(). Indeed, in the environment of shape {x ↦→ 1:x, y ↦→ 1:1:y} resulting from

1 As further discussed at the end of this section, for regular terms the coinductive definition
can be turned into an equivalent inductive and algorithmic one.

107
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s :: = x | n:s | sˆ | s1 op s2 (open) stream value
op :: = [nop] | ∥ binary stream operator
𝜌 :: = x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛 (𝑛 ≥ 0) environment

(var-l)
𝜌 (x) ≈𝜌 s

x ≈𝜌 s

(var-r)
s ≈𝜌 𝜌 (x)
s ≈𝜌 x

(var)
x ≈𝜌 x

(cons)
s1 ≈𝜌 s2

n:s1 ≈𝜌 n:s2
(op)

s1 ≈𝜌 s
′
1 s2 ≈𝜌 s

′
2

s1 op s2 ≈𝜌 s
′
1 op s

′
2

(tail-l)
s
′ ≈𝜌 s2

s1ˆ ≈𝜌 s2
Tail𝜌 (s1) = s

′
(tail-r)

s1 ≈𝜌 s
′

s1 ≈𝜌 s2ˆ
Tail𝜌 (s2) = s

′

(tail-cons)
Tail𝜌 (n : s) = s

(var)
Tail𝜌 (𝜌 (x)) = s

Tail𝜌 (x) = s

(tail)
Tail𝜌 (s) = s

′ Tail𝜌 (s′) = s
′′

Tail𝜌 (sˆ) = s
′′

(nop)
Tail𝜌 (s1 [nop]s2) = s1ˆ[nop]s2ˆ

(∥ )
Tail𝜌 (s1 ∥ s2) = s2 ∥ s1ˆ

figure 14.1 Equality check

the evaluation, one can check by unfolding that the values associated with
x and y correspond to the same regular term. However, if one allows other
operators in the equational systems, then the equational theory is no longer
free, therefore equality of regular terms fails to identify the results of ones()
and ones()^ as in the example above.
In order to deal with the tail operator, our solution is based on the key

idea that the equality check performs a partial symbolic evaluation of the tail.
For instance, with this solution the example incr_reg(ones()) is correctly
handled, since the symbolic evaluation of the tail of (x, x ↦→ 1:x) returns
(x, x ↦→ 1:x).
The equality check is formalized by the judgment s1 ≈𝜌 s2, coinductively

defined in Figure 14.1.
In rules (var-l) and (var-r), a variable defined in the environment is equal

to a stream value if the same holds for its associated stream value. In rule
(var), a variable is equal to itself.

In rule (cons), prepending the same element to equal streams gives equal
streams.

In rule (op), two streams defined using the same binary operation are equal
if their arguments are respectively equal.

The most interesting rules are those handling the case when one of the two
sides of the equality is of shape sˆ, which are the only ones applicable when
the other side is not a variable. Indeed, in such case an attempt is made at
computing (a stream value equal to) the tail of s, through the auxiliary function
Tail𝜌 defined in the bottom part of the figure. Function Tail𝜌 is inductively
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...

x ≈𝜌 𝑦ˆˆ
(var-l)

1 : x ≈𝜌 1 : 𝑦ˆˆ
(cons)

Tail𝜌 (yˆ) = 1 : 𝑦ˆˆ
1 : x ≈𝜌 𝑦ˆˆ

(tail-r)

x ≈𝜌 𝑦ˆˆ
(var-l)

Tail𝜌 (2 : 3 : 1 : 𝑦ˆˆ) = 3 : 1 : 𝑦ˆˆ
(cons)

Tail𝜌 (y) = 3 : 1 : 𝑦ˆˆ
(var)

Tail𝜌 (3 : 1 : 𝑦ˆˆ) = 1 : 𝑦ˆˆ
(cons)

Tail𝜌 (yˆ) = 1 : 𝑦ˆˆ
(tail)

figure 14.2 x ≈𝜌 𝑦ˆˆ with 𝜌 = {x ↦→ 1:x, y ↦→ 2 : 3 : 1 : yˆˆ}

defined, and the base cases are: the constructor, rule (tail-cons), where the
result is simply the tail stream, the arithmetic binary operation, rule (tail-
nop), where the tail operator is propagated to substreams, and the interleaving
operator, (tail-∥ ), where the elements of the tail are alternatively those of the
second argument and the tail of the first one. In the other cases, the function
is propagated as expected. In particular, in rule (tail), to obtain the result we
need two subsequent applications of Tail𝜌 , the former getting the tail of the
argument.
The judgment s1 ≈𝜌 s2 is defined by interpreting the rules in Figure 14.1

coinductively, that is, infinite derivations are allowed. Such coinductive defini-
tion is the most natural and abstract for infinite objects such as streams, and is
convenient for all the proofs present in this chapter. However, such approach
does not directly lead to an algorithm, and some additional problems need
to be addressed in order to prove that the coinductive check is an effective
procedure; we discuss all the details about this matter in Section 14.3.
We now illustrate how the equality check works by some examples. The

first one, in Figure 14.2, shows the regular derivation of the equality x ≈𝜌 𝑦ˆˆ
in the environment 𝜌 = {x ↦→ 1:x, y ↦→ 2 : 3 : 1 : yˆˆ}.

At the start of the derivation, one stream is a variable, while the other one
is of shape yˆˆ. In this derivation, we applied rule (var-l) first, and then rule
(tail-r) to get a stream value equal to yˆˆ; we could have applied the rules in
the other order as well. The derivation of Tail𝜌 (yˆ) = 1 : 𝑦ˆˆ is shown in the
bottom part of the figure. The result is computed by applying twice the tail
operator, and unfolding y. Then, in the main derivation tree, rule (cons) is
applied since the first element of both streams is 1. After that, it is easy to see
that there is a regular infinite derivation, denoted by the dots.
In the second example we show how the equality check deals with non-

regular streams. Figure 14.3 shows the regular derivation of x ≈𝜌 y with
𝜌 = {x ↦→ 1:(x [+] x), y ↦→ 1 : ((1 : 𝑦) [+] (1 : 𝑦))ˆ}.
Here, both x and y denote the stream of all powers of 2. The derivation
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...

x ≈𝜌 y Tail𝜌 (1 : y) = y

(var-l)

x ≈𝜌 (1 : 𝑦)ˆ
(tail-r)

x [+] x ≈𝜌 (1 : 𝑦)ˆ [+] (1 : 𝑦)ˆ
(op)

Tail𝜌 ((1 : 𝑦) [+] (1 : 𝑦)) = (1 : 𝑦)ˆ [+] (1 : 𝑦)ˆ
(tail-nop)

x [+] x ≈𝜌 ((1 : 𝑦) [+] (1 : 𝑦))ˆ
(tail-r)

1:(x [+] x) ≈𝜌 1 : ((1 : 𝑦) [+] (1 : 𝑦))ˆ
(cons)

1:(x [+] x) ≈𝜌 y

(var-r)

x ≈𝜌 y
(var-l)

figure 14.3 x ≈𝜌 y with 𝜌 = {x ↦→ 1:(x [+] x), y ↦→ 1 : ((1 : 𝑦) [+] (1 : 𝑦))ˆ}

starts with the unfolding of variables x and y, followed by the application of
rule (cons). Then, the tail of the second component is computed, with the
reduction tree shown as additional premise in rule (tail-r).

After that, the derivation continues by distributing the equality check to the
substreams x and (1 : y)ˆ. At this point, it is easy to see that there is a regular
infinite derivation, after another application of rule (tail-r). For space reasons,
we have omitted the derivation for the right premise of rule (op) which is
equal to the left one.

14 .2 Soundness and (relative) completeness of the
equality check
In this section we prove two important results regarding the equality check.
First we prove that the check is sound (Theorem 14.2), which means that if
we derive that two streams are equal, then they are equal in the sense that
access to an arbitrary index will give the same result. The second result of this
section (Theorem 14.3) proves that the equality check is complete if we restrict
to regular streams.

soundness The soundness of the equality check (Theorem 14.2) relies on
the soundness of the Tail judgment (Theorem 14.1). To the aim of the proof of
Theorem 14.1 we will write "of shape tail or variable" to indicate streams of
the form sˆ or x, respectively. For Theorem 14.2, we introduce the notation
at𝜌 (s, 𝑖)

𝑘
= n, meaning that the proof tree of at𝜌 (s, 𝑖 + 1) = n has depth 𝑘 .

theorem 14.1 : If Tail𝜌 (s) = s
′ then, for all 𝑖 ≥ 0, at𝜌 (sˆ, 𝑖)

𝑘
= n implies

at𝜌 (s′, 𝑖)
𝑘 ′
= n with 𝑘 ′ ≤ 𝑘 ; furthermore, if s′ is of shape tail or variable, then

𝑘 ′ < 𝑘 .

Proof: By induction on the rules defining Tail𝜌 (s) = s
′.
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(tail-cons) This is an axiom with conclusion Tail𝜌 (n:s) = s. We have
to show that, for all 𝑖 ≥ 0, at𝜌 ((n:s)ˆ, 𝑖)

𝑘
= n implies at𝜌 (s, 𝑖)

𝑘 ′
= n with

𝑘 ′ ≤ 𝑘 and 𝑘 ′ < 𝑘 if s is of shape tail or variable; at𝜌 ((n:s)ˆ, 𝑖)
𝑘
= n is

necessarily derived by rule (at-tail) from at𝜌 (n:s, 𝑖 + 1)
𝑘−1
= n which,

in turn, is necessarily derived by rule (at-cons-succ) from at𝜌 (s, 𝑖)
𝑘−2
=

n; since 𝑘 − 2 < 𝑘 the thesis trivially holds.
(var) Tail𝜌 (𝜌 (x)) = s is the premise and Tail𝜌 (x) = s the conclusion. We
have to show that, for all 𝑖 ≥ 0, at𝜌 (xˆ, 𝑖)

𝑘
= n implies at𝜌 (s, 𝑖)

𝑘 ′
= n with

𝑘 ′ ≤ 𝑘 and 𝑘 ′ < 𝑘 if s is of shape tail or variable. Since at𝜌 (xˆ, 𝑖)
𝑘
= n is

necessarily derived by rule (at-tail) from at𝜌 (x, 𝑖 + 1)
𝑘−1
= n which, in

turn, is necessarily derived by rule (at-var) from at𝜌 (𝜌 (x), 𝑖 + 1)
𝑘−2
= n,

by applying rule (at-tail) at𝜌 (𝜌 (x)ˆ, 𝑖)
𝑘−1
= n is derivable; therefore,

by inductive hypothesis we have at𝜌 (s, 𝑖)
𝑘 ′
= n with 𝑘 ′ ≤ 𝑘 − 1; since

𝑘 − 1 < 𝑘 the thesis trivially holds.
(tail) Tail𝜌 (s) = s

′, Tail𝜌 (s′) = s
′′ are the premises, and Tail𝜌 (sˆ) = s

′′

the conclusion. We have to show that, for all 𝑖 ≥ 0, at𝜌 (sˆˆ, 𝑖)
𝑘
= n

implies at𝜌 (s′′, 𝑖)
𝑘 ′′
= n with 𝑘 ′′ ≤ 𝑘 and 𝑘 ′′ < 𝑘 if s′′ is of shape tail

or variable. Since at𝜌 (sˆˆ, 𝑖)
𝑘
= n is necessarily derived by rule (at-

tail) from at𝜌 (sˆ, 𝑖 + 1)
𝑘−1
= n, by inductive hypothesis on the first

premise we have at𝜌 (s′, 𝑖 + 1)
𝑘 ′
= n, with 𝑘 ′ ≤ 𝑘 − 1, and, hence, by

applying rule (at-tail) at𝜌 (s′ˆ, 𝑖)
𝑘 ′+1
= n is derivable with 𝑘 ′ + 1 ≤ 𝑘 .

By inductive hypothesis on the second premise, we have at𝜌 (s′′, 𝑖)
𝑘 ′′
= n,

with 𝑘 ′′ ≤ 𝑘 ′ + 1 ≤ 𝑘 ; furthermore, if s′′ is of shape tail or variable, then,
again by inductive hypothesis on the second premise, 𝑘 ′′ < 𝑘 ′ + 1 ≤ 𝑘 ,
hence 𝑘 ′′ < 𝑘 .

(nop) This is an axiom with conclusion Tail𝜌 (s1 [nop]s2) = s1ˆ[nop]s2ˆ.
Since in this case s1ˆ[nop]s2ˆ cannot be of shape tail or variable, we
only have to show that, for all 𝑖 ≥ 0, at𝜌 ((s1 [nop]s2)ˆ, 𝑖)

𝑘
= n implies

at𝜌 (s1ˆ[nop]s2ˆ, 𝑖)
𝑘 ′
= n with 𝑘 ′ ≤ 𝑘 . Since at𝜌 ((s1 [nop]s2)ˆ, 𝑖)

𝑘
= n is ne-

cessarily derived by rule (at-tail) from at𝜌 (s1 [nop]s2, 𝑖+1)
𝑘−1
= nwhich,

in turn, is necessarily derived by rule (at-nop) from at𝜌 (s1, 𝑖 + 1)
𝑘1
= n1

and at𝜌 (s2, 𝑖 + 1)
𝑘2
= n2, with n1+n2 = n,max(𝑘1, 𝑘2) = 𝑘−2, by applying

rule (at-tail) at𝜌 (s1ˆ, 𝑖)
𝑘1+1
= n1 and at𝜌 (s2ˆ, 𝑖)

𝑘2+1
= n2 are derivable, and,

hence, by applying rule (at-nop) at𝜌 (s1ˆ[nop]s2ˆ, 𝑖)
𝑘 ′
= n is derivable,

with 𝑘 ′ = max(𝑘1 + 1, 𝑘2 + 1) + 1 = max(𝑘1, 𝑘2) + 2 = 𝑘 .
( ∥ ) This is an axiom with conclusion Tail𝜌 (s1 ∥ s2) = s2 ∥ s1ˆ. Since in
this case s2 ∥ s1ˆ cannot be of shape tail or variable, we only have to
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show that, for all 𝑖 ≥ 0, at𝜌 ((s1 ∥ s2)ˆ, 𝑖)
𝑘
= n implies at𝜌 (s2 ∥ s1ˆ, 𝑖)

𝑘 ′
= n

with 𝑘 ′ ≤ 𝑘 . We have that at𝜌 ((s1 ∥ s2)ˆ, 𝑖)
𝑘
= n is necessarily derived by

rule (at-tail) from at𝜌 (s1 ∥ s2, 𝑖 + 1)
𝑘−1
= n; the proof proceeds by case

analysis on the parity of 𝑖:
𝑖 even: at𝜌 (s1 ∥ s2, 𝑖 + 1)

𝑘−1
= n is necessarily derived by rule (at-∥-

odd) from at𝜌 (s2, 𝑖2 )
𝑘−2
= n; hence, by applying rule (at-∥-even) we

have the thesis at𝜌 (s2 ∥ s1ˆ, 𝑖)
𝑘 ′
= n with 𝑘 ′ = 𝑘 − 1 < 𝑘 .

𝑖 odd: at𝜌 (s1 ∥ s2, 𝑖 + 1)
𝑘−1
= n is necessarily derived by rule (at-

∥-even) from at𝜌 (s1, 𝑖+12 )
𝑘−2
= n; hence, by applying rule (at-tail)

at𝜌 (s1ˆ, 𝑖−12 )
𝑘−1
= n and by applying rule (at-∥-odd) we get the thesis

at𝜌 (s2 ∥ s1ˆ, 𝑖)
𝑘 ′
= n with 𝑘 ′ = 𝑘 .

□

theorem 14.2 (Soundness of equality): For all 𝑖 ≥ 0, if at𝜌 (s0, 𝑖) = n,
at𝜌 (s′0, 𝑖) = n

′, and s0 ≈𝜌 s
′
0, then n = n

′.

Proof: Assume that at𝜌 (s0, 𝑖)
𝑘
= n, at𝜌 (s′0, 𝑖)

𝑘 ′
= n

′. The proof is by Noeth-
erian induction on the pairs (𝑘, 𝑘 ′), with the componentwise order, that is,
(𝑘1, 𝑘2) ≤ (𝑘 ′1, 𝑘 ′2) iff 𝑘1 ≤ 𝑘 ′1 and 𝑘2 ≤ 𝑘 ′2.

base We consider the pair (0, 0), that is, the case when the two judg-
ments are derived by the unique axiom (at-cons-0), hence, for 𝑖 = 0.
We have at𝜌 (n:s, 0) = n, and at𝜌 (n′:s′, 0) = n

′. Moreover, we have
n:s ≈𝜌 n

′:s′, which has been necessarily derived by rule (cons), hence
n = n

′.
inductive step We consider pairs (𝑘, 𝑘 ′) where either𝑘 > 0 or𝑘 ′ > 0,
and proceed by case analysis on the rule applied for the root.

(var-l) We have x ≈𝜌 s
′
0 and 𝜌 (x) ≈𝜌 s

′
0. Moreover, we have

at𝜌 (x, 𝑖)
𝑘
= n, at𝜌 (s′0, 𝑖)

𝑘 ′
= n

′ and, since the former judgment has
been necessarily derived by rule (at-var), at𝜌 (𝜌 (x), 𝑖)

𝑘−1
= n. We

can apply the inductive hypothesis and get the thesis.
(var-r) This case is symmetrical to the one above.
(var) We have x ≈𝜌 x. We conclude by the fact that, by definition,
the judgment at𝜌 (s, 𝑖) = n is deterministic, therefore at𝜌 (x, 𝑖) = n1
and at𝜌 (x, 𝑖) = n2 implies n1 = n2.

(cons) We have 𝑚:s ≈𝜌 𝑚:s′ and s ≈𝜌 s
′. Moreover, we have

at𝜌 (𝑚:s, 𝑖) 𝑘
= n, at𝜌 (𝑚:s′, 𝑖) 𝑘 ′

= n
′ and, since 𝑘 > 0 or 𝑘 ′ > 0, we

have that 𝑖 > 0 and that these judgments have been necessarily
derived by rule (at-cons-succ); therefore, at𝜌 (s, 𝑖 − 1) 𝑘−1

= n,
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at𝜌 (s′, 𝑖 − 1)
𝑘 ′−1
= n

′. We can now apply the inductive hypothesis
and get the thesis.

(op) By cases on the binary operator op.
(nop):We have s1 [nop] s2 ≈𝜌 s

′
1 [nop] s′2, s1 ≈𝜌 s

′
1 and s2 ≈𝜌 s

′
2.

Moreover, we have at𝜌 (s1 [nop] s2, 𝑖)
𝑘
= n, at𝜌 (s′1 [nop] s′2, 𝑖)

𝑘 ′
= n
′

and, since these judgments have been necessarily derived by rule

(at-nop), at𝜌 (s1, 𝑖)
𝑘1
= 𝑙 , at𝜌 (s2, 𝑖)

𝑘2
= 𝑚, at𝜌 (s′1, 𝑖)

𝑘 ′1
= 𝑙 ′, at𝜌 (s′2, 𝑖)

𝑘 ′2
=

𝑚′, n = 𝑙 nop𝑚, n′ = 𝑙 ′ nop𝑚′, 𝑘1, 𝑘2 < 𝑘 , 𝑘 ′1, 𝑘
′
2 < 𝑘 ′. We can apply

the inductive hypothesis and get the thesis.
(∥ ): By cases on the parity of 𝑖 .
𝑖 even:We have s1 ∥ s2 ≈𝜌 s

′
1 ∥ s′2 and s1 ≈𝜌 s

′
1. Moreover, we have

at𝜌 (s1 ∥ s2, 𝑖)
𝑘
= n, at𝜌 (s′1 ∥ s′2, 𝑖)

𝑘 ′
= n
′ and, since these judgments

have been necessarily derived by rule (at-∥ -even), at𝜌 (s1, 𝑖2 )
𝑘−1
= 𝑛,

at𝜌 (s′1, 𝑖2 )
𝑘 ′−1
= 𝑛′. We apply the inductive hypothesis and get the

thesis.
𝑖 odd: This case is symmetrical to the one above.

(tail-r) We have s0 ≈𝜌 s1ˆ and s0 ≈𝜌 s
′
1, where Tail𝜌 (s1) = s

′
1. Fur-

thermore, we have at𝜌 (s0, 𝑖)
𝑘1
= n, and, by Theorem 14.1, at𝜌 (s1ˆ, 𝑖)

𝑘2
=

n
′ implies at𝜌 (s′1, 𝑖)

𝑘 ′2
= n
′.

If 𝑘 ′2 < 𝑘2, then we can directly conclude by inductive hypo-
thesis; otherwise, by Theorem 14.1, 𝑘 ′2 = 𝑘2 (hence at𝜌 (s′1, 𝑖)

𝑘2
= n
′)

and s
′
1 is not of shape tail or variable. In this case the proof pro-

ceeds by showing that further backward steps of the derivation
can be obtained only by applying specific rules, to show that the
inductive hypothesis can be applied. Because s

′
1 is not of shape

tail or variable, the only applicable rules for s0 ≈𝜌 s
′
1 are (tail-l),

(var-l), (cons) and (op). Except for (tail-l), for the other rules
the derivation steps that make the inductive hypothesis applic-
able are those already proved for the corresponding cases (var-l),
(cons) and (op), by virtue of the equality 𝑘 ′2 = 𝑘2. For instance,
if s0 is a variable x (rule (var-l)), then we have 𝜌 (x) ≈𝜌 s

′
1; fur-

thermore at𝜌 (𝜌 (x), 𝑖)
𝑘1−1
= n, because at𝜌 (x, 𝑖)

𝑘1
= n is necessarily

derived by (at-var). We can conclude by inductive hypothesis
since (𝑘1 − 1, 𝑘 ′2) < (𝑘1, 𝑘 ′2) = (𝑘1, 𝑘2).

In case of (tail-l) we proceeds similarity as done for (tail-r):
We have s2ˆ ≈𝜌 s

′
1 and s

′
2 ≈𝜌 s

′
1, where Tail𝜌 (s2) = s

′
2. Furthermore,

at𝜌 (s′1, 𝑖)
𝑘 ′2
= n
′, with 𝑘 ′2 = 𝑘2, and, by Theorem 14.1, at𝜌 (s1ˆ, 𝑖)

𝑘1
= n
′

implies at𝜌 (s′1, 𝑖)
𝑘 ′1
= n
′ . If 𝑘 ′1 < 𝑘1, then we can directly conclude by

inductive hypothesis; otherwise, by Theorem 14.1, 𝑘 ′1 = 𝑘1 (hence
at𝜌 (s′2, 𝑖)

𝑘1
= n
′) and s′2 is not of shape tail or variable. If both s

′
1 and
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stuck
0:x ≈𝜌 (0:x) ∥ x

(??)

0:x ≈𝜌 x

(var-r)
x ≈𝜌 x

(var)

x ≈𝜌 (0:x)ˆ
(tail-r)

(0:x) ∥ x ≈𝜌 x ∥ (0:x)ˆ
(op)

Tail𝜌 ((0:x) ∥ x) = x ∥ (0:x)ˆ
(tail-∥ )

Tail𝜌 (x) = x ∥ (0:x)ˆ
(tail-var)

(0:x) ∥ x ≈𝜌 xˆ
(tail-r)

x ≈𝜌 xˆ
(var-l)

figure 14.4 x ≈𝜌 xˆ with 𝜌 = {x ↦→ (0:x) ∥ x}

s
′
2 are not of shape tail or variable s

′
2 ≈𝜌 s

′
1 can only be derived

with rules (cons) and (op); by virtue of the qualities 𝑘 ′1 = 𝑘1 and
𝑘 ′2 = 𝑘2 the inductive hypothesis can be made applicable as already
proved for the corresponding cases.

(tail-l) This case is symmetrical to the one above.

□

Note that the claim of Theorem 14.2 is rather general because it covers also
the case where the stream expressions s0 and s′0 are only partially well-defined.
Consider for instance 0:𝑥 and 0:𝑦 in the environment 𝜌 = 𝑥 ↦→ 𝑥,𝑦 ↦→ 𝑦 .

partial completeness Completeness of the equality check roughly
means that we should be able to prove that two streams are equal by using
the rules in Figure 14.1 whenever they "semantically" correspond to the same
stream. In our calculus, this result does not hold in general since, for instance,
if we consider the equality x ≈𝜌 xˆ in the environment 𝜌 = {x ↦→ (0:x) ∥ x}
we have a stuck derivation (see Figure 14.4) even if x and xˆ both represent the
stream constantly equal to 0 (for space reasons we have omitted the derivation
for Tail𝜌 (0:x) = x). It is easy to see that a similar stuck path in the derivation
is obtained if rule (tail-r) is applied before (var-l).

The following theorem proves a partial result of completeness by restricting
the calculus to only stream built by using variables, the constructor and the tail
operators. This shows that for functions as incr_reg defined at the beginning
of this chapter cycle detection always succeeds.

theorem 14.3 (Relative completeness of equality): Let s0, s′0 and 𝜌 be s.t.
they can only contain variables, the constructor and the tail operators. If for
all 𝑖 ≥ 0 at𝜌 (s0, 𝑖) = at𝜌 (s′0, 𝑖), then s0 ≈𝜌 s

′
0.

Proof: The proof proceeds by conduction on the rules defining s0 ≈𝜌 s
′
0 and

by case analysis on s0 and s
′
0.

case s0 = x By hypothesis, for all 𝑖 ≥ 0 at𝜌 (x, 𝑖) = at𝜌 (s′0, 𝑖) and ne-
cessarily (at-var) has been used, therefore, for all 𝑖 ≥ 0 at𝜌 (𝜌 (x), 𝑖) =
at𝜌 (s′0, 𝑖), hence we conclude by rule (var-l).
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case s
′
0 = x Symmetric to the previous one.

case s0 = s1 ˆ By hypothesis, for all 𝑖 ≥ 0 at𝜌 (s1ˆ, 𝑖) = at𝜌 (s′0, 𝑖); neces-
sarily (at-tail) has been used, therefore, for all 𝑖 ≥ 0 at𝜌 (s1, 𝑖 + 1) =
at𝜌 (s′0, 𝑖), therefore by Theorem 14.4 there exists s′ s.t. Tail𝜌 (s1) = s

′, and
by Theorem 14.1 for all 𝑖 ≥ 0, at𝜌 (s1ˆ, 𝑖) = n implies at𝜌 (s′, 𝑖) = n, hence,
for all 𝑖 ≥ 0 at𝜌 (s′, 𝑖) = at𝜌 (s′0, 𝑖), hence we can conclude by (tail-l).

case s
′
0 = s

′
1 ˆ Symmetric to the previous one.

case s0 = n:s1
s
′
0 = n

′:s′1
By hypothesis, for all 𝑖 ≥ 0 at𝜌 (n:s1, 𝑖) = at𝜌 (n′:s′1, 𝑖);

necessarily (at-cons-0) (when 𝑖 = 0) and (at-cons-succ) (when 𝑖 > 0)
have been used, therefore, n = n

′ and for all 𝑖 ≥ 0 at𝜌 (s1, 𝑖) = at𝜌 (s′1, 𝑖),
hence we conclude by rule (cons).

□

14 .3 Towards an algorithm for equality
In this section our aim is to show that for well-defined streams, derivations
for the coinductive inference system in Figure 14.1 are always regular and the
tail can always be computed symbolically. This is an important step to show
that an algorithm for equality can be driven by the rules in Figure 14.1. To do
so we need to address two separate issues: for well-defined streams prove that
(1) function Tail always terminates and (2) all derivation trees for s0 ≈𝜌 s

′
0 only

involve a finite set of pairs s1 ≈𝜌 s2.
The following theorem proves the first part of our thesis.

theorem 14.4 : For all 𝑖 ≥ 0, if at𝜌 (s0, 𝑖) = n, then there exists s
′ s.t.

Tail𝜌 (s0) = s
′.

Proof: Assume that at𝜌 (s0, 𝑖)
𝑘
= n. The proof is by induction on 𝑘 and case

analysis on the shape of s0.

cases n:s , s1 nop s2 , s1 ∥ s2 In these cases the thesis trivially holds
because the claim can be obtained from the corresponding axioms which
are always applicable.

case x By hypothesis, we have that at𝜌 (x, 𝑖)
𝑘
= n; by rule (at-var)

at𝜌 (𝜌 (x), 𝑖)
𝑘−1
= n is necessarily derived and, by inductive hypothesis,

there exists s′ s.t. Tail𝜌 (𝜌 (x)) = s
′, and from this we have the thesis by

applying rule (var).

case sˆ By hypothesis, we have that at𝜌 (sˆ, 𝑖)
𝑘
= n; by rule (at-tail)

at𝜌 (s, 𝑖 + 1)
𝑘−1
= n is necessarily derived and, by inductive hypothesis,

there exists s′ s.t. Tail𝜌 (s) = s
′ and at𝜌 (s′, 𝑖)

𝑘 ′
= n by Theorem 14.1.

If𝑘 ′ < 𝑘 , then by inductive hypothesis there exists s′′ s.t. Tail𝜌 (s′) = s
′′

and we can conclude the thesis by applying rule (tail). Otherwise,
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(var-maxtails-ax)
V ⊢ max_tails𝜌 (x) = 0

x ∈ V or
x ∉ dom(𝜌)

(var-maxtails)

V ∪ {x} ⊢ max_tails𝜌 (𝜌 (x)) = 𝑘

V ⊢ max_tails𝜌 (x) = 𝑘
x ∉ V

(op -maxtails)

V ⊢ max_tails𝜌 (s1) = 𝑘1 V ⊢ max_tails𝜌 (s2) = 𝑘2

V ⊢ max_tails𝜌 (s1 op s2) = max(𝑘1, 𝑘2)

(cons-maxtails)

V ⊢ max_tails𝜌 (s) = 𝑘

V ⊢ max_tails𝜌 (𝑛:s) = 𝑘
(tail-maxtails)

V ⊢ max_tails𝜌 (s) = 𝑘

V ⊢ max_tails𝜌 (sˆ) = 𝑘 + 1

(var-binops-ax)
V ⊢ bin_ops𝜌 (x) = 0

x ∈ V or
x ∉ dom(𝜌)

(var-binops)

V ∪ {x} ⊢ bin_ops𝜌 (𝜌 (x)) = 𝑘

V ⊢ bin_ops𝜌 (x) = 𝑘
x ∉ V

(op -binops)

V ⊢ bin_ops𝜌 (s1) = 𝑘1 V ⊢ bin_ops𝜌 (s2) = 𝑘2

V ⊢ bin_ops𝜌 (s1 op s2) = 𝑘1 + 𝑘2 + 1

(cons-binops)

V ⊢ bin_ops𝜌 (s) = 𝑘

V ⊢ bin_ops𝜌 (𝑛:s) = 𝑘 + 1 (tail-binops)

V ⊢ bin_ops𝜌 (s) = 𝑘

V ⊢ bin_ops𝜌 (sˆ) = 𝑘

figure 14.5 Auxiliary functions

by Theorem 14.1 s′ is not of shape tail or variable, hence, as already
shown above for those cases, there exists s′′ s.t. Tail𝜌 (s′) = s

′′ since the
corresponding axiom can be always applied, therefore also when 𝑘 ′ ≮ 𝑘

the thesis follows by applying rule (tail).

□

The second step for our aim is to prove that all derivation trees for s0 ≈𝜌 s
′
0

involve only a finite set of pairs s1 ≈𝜌 s2. In this way, we are guaranteed to
never incur into non-termination.

Figure 14.5 shows the definitions of two functions we will use for the proof.
Function max_tails computes the number of tail operators in the definition

of a stream, while bin_ops does the same with the number of binary operators.
Both functions keep track of already processed variables with a set of variables
V to terminate the derivation with the axioms (var-maxtails-ax) and (var-
binops-ax).

The following lemmas are needed for the proof of Theorem 14.16, and require
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Tail𝜌 (s0) = s
′ to be generalized to V ⊢ Tail𝜌 (s0) = s

′, with V set of variables.

(v-tail-cons)
V ⊢ Tail𝜌 (n : s) = s

(v-tail)
V ⊢ Tail𝜌 (s) = s

′ V ⊢ Tail𝜌 (s′) = s
′′

V ⊢ Tail𝜌 (sˆ) = s
′′

(v-var-ax)
V ⊢ Tail𝜌 (x) = x

x ∈ V (v-var)
V ∪ {x} ⊢ Tail𝜌 (𝜌 (x)) = s

V ⊢ Tail𝜌 (x) = s

x ∉ V

(v-nop)
V ⊢ Tail𝜌 (s1 [nop]s2) = s1ˆ[nop]s2ˆ

(v-∥ )
V ⊢ Tail𝜌 (s1 ∥ s2) = s2 ∥ s1ˆ

lemma 14.5 : If V ⊢ Tail𝜌 (s0) = s
′ and V ⊢ max_tails𝜌 (s0) = 𝑘 , then V ⊢

max_tails𝜌 (s′) = 𝑘 ′ and 𝑘 ′ ≤ 𝑘 + 1.

Proof: By induction on the rules defining V ⊢ Tail𝜌 (s0) = s
′.

(v-tails-cons) By hypothesis, we have V ⊢ Tail𝜌 (n : s) = s and V ⊢
max_tails𝜌 (𝑛:s) = 𝑘 . To derive this latter hypothesis we must have
applied rule (cons-maxtails), so we also know that V ⊢ max_tails𝜌 (s) =
𝑘 . The thesis immediately follows from this fact.

(v-tail) By hypothesis, we have V ⊢ Tail𝜌 (sˆ) = s
′′ and V ⊢ max_tails𝜌 (sˆ) =

𝑘 . To derive this latter hypothesis we must have applied rule (tail-
maxtails), so we also know that V ⊢ max_tails𝜌 (s) = 𝑘 − 1; further-
more, by rule (v-tail), V ⊢ Tail𝜌 (s) = s

′, therefore by inductive hy-
pothesis, we know that V ⊢ max_tails𝜌 (s′) = 𝑘 ′ with 𝑘 ′ ≤ 𝑘 . Again,
by rule (v-tail), V ⊢ Tail𝜌 (s′) = s

′′, therefore by inductive hypothesis
V ⊢ max_tails𝜌 (s′′) = 𝑘 ′′ with 𝑘 ′′ ≤ 𝑘 ′ + 1 ≤ 𝑘 + 1, hence we get the
thesis.

(v-var-ax) By hypothesis, we have V ⊢ Tail𝜌 (x) = x with x ∈ V and by
(var-maxtails-ax) V ⊢ max_tails𝜌 (x) = 0, hence the thesis is immedi-
ate.

(v-var) By hypothesis, we have V ⊢ Tail𝜌 (x) = s with x ∉ V and x ∈
dom(𝜌) and V ⊢ max_tails𝜌 (x) = 𝑘 . To derive this latter hypothesis
we must have applied rule (var-maxtails), so we also know that
V ∪ {x} ⊢ max_tails𝜌 (𝜌 (x)) = 𝑘 . By rule (v-var) V ∪ {x} ⊢ Tail𝜌 (𝜌 (x)) =
s therefore by inductive hypothesis, we have V ∪ {x} ⊢ max_tails𝜌 (s) = 𝑘 ′

with 𝑘 ′ ≤ 𝑘 + 1, and, thus, the thesis.
(v-nop) By hypothesis, we have V ⊢ Tail𝜌 (s1 [nop]s2) = s1ˆ[nop]s2ˆ
and V ⊢ max_tails𝜌 (s1 [nop]s2) = 𝑘 . To derive this latter hypothesis
we must have applied rule (op -maxtails), so we also know that V ⊢
max_tails𝜌 (s1) = 𝑘1 and V ⊢ max_tails𝜌 (s2) = 𝑘2 withmax(𝑘1, 𝑘2) = 𝑘 . By
rules (tail-maxtails) and (op -maxtails)wehave V ⊢ max_tails𝜌 (s1ˆ[nop]s2ˆ) =
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max(𝑘1 + 1, 𝑘2 + 1) ≤ max(𝑘1, 𝑘2) + 1 ≤ 𝑘 + 1, hence the thesis.
(v- ∥ ) By hypothesis, we have V ⊢ Tail𝜌 (s1 ∥ s2) = s2 ∥ s1ˆ and V ⊢
max_tails𝜌 (s1 ∥ s2) = 𝑘 . To derive this latter hypothesis we must have ap-
plied rule (op -maxtails), so we also know that V ⊢ max_tails𝜌 (s1) = 𝑘1
and V ⊢ max_tails𝜌 (s2) = 𝑘2 with max(𝑘1, 𝑘2) = 𝑘 . By rules (tail-
maxtails) and (op -maxtails) we have V ⊢ max_tails𝜌 (s2 ∥ s1ˆ) =

max(𝑘2, 𝑘1 + 1) ≤ max(𝑘1, 𝑘2) + 1 ≤ 𝑘 + 1, hence the thesis.

□

lemma 14.6 : If V ⊢ Tail𝜌 (s0) = s
′ and V ⊢ bin_ops𝜌 (s0) = 𝑘 , then V ⊢

bin_ops𝜌 (s′) = 𝑘 ′ and 𝑘 ′ ≤ 𝑘 .

Proof: By induction on the rules defining V ⊢ Tail𝜌 (s0) = s
′.

(v-tails-cons) By hypothesis, we have V ⊢ Tail𝜌 (n : s) = s and V ⊢
bin_ops𝜌 (𝑛:s) = 𝑘 . To derive this latter hypothesis we must have applied
rule (cons-binops), so we also know that V ⊢ bin_ops𝜌 (s) = 𝑘 − 1. The
thesis immediately follows from this fact.

(v-tail) By hypothesis, we have V ⊢ Tail𝜌 (sˆ) = s
′′ and V ⊢ bin_ops𝜌 (sˆ) =

𝑘 . To derive this latter hypothesis we must have applied rule (tail-
binops), so we also know that V ⊢ bin_ops𝜌 (s) = 𝑘 ; furthermore, by
rule (v-tail), V ⊢ Tail𝜌 (s) = s

′, therefore by inductive hypothesis, we
know that V ⊢ bin_ops𝜌 (s′) = 𝑘 ′ with 𝑘 ′ ≤ 𝑘 . Again, by rule (v-tail),
V ⊢ Tail𝜌 (s′) = s

′′, therefore by inductive hypothesis V ⊢ bin_ops𝜌 (s′′) =
𝑘 ′′ with 𝑘 ′′ ≤ 𝑘 ′ ≤ 𝑘 , hence we get the thesis.

(v-var-ax) By hypothesis, we have V ⊢ Tail𝜌 (x) = x with x ∈ V and by
(var-binops-ax) V ⊢ bin_ops𝜌 (x) = 0, hence the thesis is immediate.

(v-var) By hypothesis, we have V ⊢ Tail𝜌 (x) = s with x ∉ V and x ∈
dom(𝜌) and V ⊢ bin_ops𝜌 (x) = 𝑘 . To derive this latter hypothesis we
must have applied rule (var-binops), so we also know that V ∪ {x} ⊢
bin_ops𝜌 (𝜌 (x)) = 𝑘 . By rule (v-var) V ∪ {x} ⊢ Tail𝜌 (𝜌 (x)) = s therefore
by inductive hypothesis, we have V ∪ {x} ⊢ bin_ops𝜌 (s) = 𝑘 ′ with𝑘 ′ ≤ 𝑘 ,
and, thus, the thesis.

(v-nop) By hypothesis, we have V ⊢ Tail𝜌 (s1 [nop]s2) = s1ˆ[nop]s2ˆ and
V ⊢ bin_ops𝜌 (s1 [nop]s2) = 𝑘 . To derive this latter hypothesis we must
have applied rule (op -binops), so we also know that V ⊢ bin_ops𝜌 (s1) =
𝑘1 and V ⊢ bin_ops𝜌 (s2) = 𝑘2 with 𝑘 = 𝑘1+𝑘2+1. By rules (tail-binops)
and (op -binops) we have V ⊢ bin_ops𝜌 (s1ˆ[nop]s2ˆ) = 𝑘1 + 𝑘2 ≤ 𝑘1 +
𝑘2 + 1 = 𝑘 , hence the thesis.

(v- ∥ ) By hypothesis, we have V ⊢ Tail𝜌 (s1 ∥ s2) = s2 ∥ s1ˆ and V ⊢
bin_ops𝜌 (s1 ∥ s2) = 𝑘 . To derive this latter hypothesis we must have ap-
plied rule (op -binops), so we also know that V ⊢ bin_ops𝜌 (s1) = 𝑘1 and
V ⊢ bin_ops𝜌 (s2) = 𝑘2 with 𝑘 = 𝑘1 + 𝑘2 + 1. By rules (tail-binops) and
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(op -binops) we have V ⊢ bin_ops𝜌 (s2 ∥ s1ˆ) = 𝑘1 + 𝑘2 ≤ 𝑘1 + 𝑘2 + 1 = 𝑘 ,
hence the thesis.

□

lemma 14.7 : If Tail𝜌 (x) = s
′ then rule (var) cannot be applied for variable

x in the derivation of Tail𝜌 (𝜌 (x)) = s
′.

Proof: We first observe that for any term s0 there exists a unique applicable
rule for deriving Tail𝜌 (s0) = s

′, therefore there cannot exist two different
derivations for Tail𝜌 (s0) = s

′. From this and the fact that derivations must
be finite (because the definition of Tail𝜌 (s0) = s

′ is inductive) we can deduce
that, for any path in the derivation of Tail𝜌 (𝜌 (x)) = s

′, rule (var) cannot be
applied for the same variable x, otherwise the path would not be finite. □

lemma 14.8 : Let V be a set of variables; if Tail𝜌 (s0) = s
′ is derivable by

applying rule (var) only for variables not in V, then V ⊢ Tail𝜌 (s0) = s
′ is

derivable.

Proof: The proof proceeds by induction on the rules for Tail𝜌 (s0) = s
′; the

only non trivial case is for (var), that is, when s0 = x. By Lemma 14.7 rule
(var) cannot be applied for variable x in the derivation of Tail𝜌 (𝜌 (x)) =
s
′, therefore by inductive hypothesis V ∪ {x} ⊢ Tail𝜌 (s0) = s

′ is derivable,
and, hence, we can conclude V ⊢ Tail𝜌 (x) = s

′ by rule (v-var), because by
hypothesis we have x ∉ V. □

corollary 14.9 : If Tail𝜌 (s0) = s
′ then ∅ ⊢ Tail𝜌 (s0) = s

′.

Proof: A direct consequence of Lemma 14.8. □

corollary 14.10 : If Tail𝜌 (s0) = s
′ and ∅ ⊢ max_tails𝜌 (s0) = 𝑘 , then ∅ ⊢

max_tails𝜌 (s′) = 𝑘 ′ and 𝑘 ′ ≤ 𝑘 + 1.

Proof: Directly from Lemma 14.5 and Lemma 14.8. □

corollary 14.11 : If Tail𝜌 (s0) = s
′ and ∅ ⊢ bin_ops𝜌 (s0) = 𝑘 , then ∅ ⊢

bin_ops𝜌 (s′) = 𝑘 ′ and 𝑘 ′ ≤ 𝑘 .

Proof: Directly from Lemma 14.6 and Lemma 14.8. □

If∅ ⊢ max_tails𝜌 (s) = 𝑘1 and∅ ⊢ bin_ops𝜌 (s) = 𝑘2, then we use the notation
max_tails𝜌 (s) and bin_ops𝜌 (s) to denote 𝑘1 and 𝑘2, respectively, coherently with
the fact that the two judgments define a total function from stream values to
natural numbers for any set of variables V. This follows directly from the fact
that, by definition, for any V and s, there is always a unique applicable rule for
V ⊢ max_tails𝜌 (s) = _ and V ⊢ bin_ops𝜌 (s) = _.
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definition 14.12 : For any s1, s2, 𝜌 , the measure of s1 ≈𝜌 s2, denoted by
𝜇𝜌 (s1, s2), is defined as follows:

𝜇𝜌 (s1, s2) = (𝑘1, 𝑘2) where
𝑘1 = max({max_tails𝜌 (s𝑖) | 𝑖 = 1, 2} ∪ {max_tails𝜌 (𝜌 (x)) | x ∈ dom(𝜌)})
𝑘2 = max({bin_ops𝜌 (s𝑖) | 𝑖 = 1, 2} ∪ {bin_ops𝜌 (𝜌 (x)) | x ∈ dom(𝜌)})

The following theorem shows that the measure of each node s1 ≈𝜌 s2 in
a possibly infinite derivation for s0 ≈𝜌 s

′
0 is bounded by the measure of the

root s0 ≈𝜌 s
′
0, where component-wise order is considered: (𝑘1, 𝑘2) ≤ (𝑘 ′1, 𝑘 ′2)

iff 𝑘1 ≤ 𝑘 ′1 and 𝑘2 ≤ 𝑘 ′2.

theorem 14.13 : If s0 ≈𝜌 s
′
0, then 𝜇𝜌 (s1, s2) ≤ 𝜇𝜌 (s0, s′0) for all s1 ≈𝜌 s2 in

the derivation of s0 ≈𝜌 s
′
0.

Proof: By induction on the length of the path in the derivation from the
root s0 ≈𝜌 s

′
0 to the node s1 ≈𝜌 s2 and by case analysis on the applied rule

for the root. For rules (tail-l) and (tail-r) the claims on Tail𝜌 (s) = s
′ in

Corollary 14.10 and Corollary 14.11 are exploited. □

The following lemma and theorem prove that the set of nodes s0 ≈𝜌 s
′
0 with

measure bounded by a constant is always finite, under the assumption that s0
and s

′
0 are built over a fixed finite set of variables.

lemma 14.14 : Let V be a fixed finite set of variables, 𝜌 an environment, and
𝑘1, 𝑘2 two natural numbers; then the set {s | (max_tails𝜌 (s), bin_ops𝜌 (s)) =
(𝑘1, 𝑘2), s built on V} is finite.

Proof: By general induction over (𝑘1, 𝑘2).

• (𝑘1, 𝑘2) = (0, 0): if s contains at least a tail operator, then by definition
max_tails𝜌 (s) > 0, whereas if it contains at least another operator, then
by definition bin_ops𝜌 (s) > 0, therefore s can only be a variable and the
thesis follows from the hypothesis on V.

• (𝑘1, 𝑘2) > (0, 0): the proof for the inductive step proceeds by case ana-
lysis on the shape of s.

– variable: the set of terms s.t. s is a variable must be finite, again by
hypothesis on V;

– tail: let us consider the set 𝑆1 = {s | (max_tails𝜌 (s), bin_ops𝜌 (s)) =
(𝑘1, 𝑘2), s = s0ˆ, s built on V}; by definition, max_tails𝜌 (s0) = 𝑘1 − 1
and bin_ops𝜌 (s0) = 𝑘2, therefore by generalized inductive hypo-
thesis we deduce that the set of terms {s0 | (max_tails𝜌 (s0), bin_ops𝜌 (s0)) =
(𝑘1 − 1, 𝑘2), s0 built on V} is finite, therefore 𝑆1 is finite as well;

– constructor: let us consider the set 𝑆2 = {s | (max_tails𝜌 (s), bin_ops𝜌 (s)) =
(𝑘1, 𝑘2), s = n:s0, s built on V}; by definition, max_tails𝜌 (s0) = 𝑘1
and bin_ops𝜌 (s0) = 𝑘2 − 1, therefore we deduce that 𝑆2 is finite
similarly as done for the previous case;
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– other binary operators: let us consider the set 𝑆3 = {s | (max_tails𝜌 (s), bin_ops𝜌 (s)) =
(𝑘1, 𝑘2), s = s1 op s2, s built on V}; by definition, max_tails𝜌 (s𝑖) =
𝑘𝑖1 ≤ 𝑘1 and bin_ops𝜌 (s𝑖) = 𝑘𝑖2 < 𝑘2, 𝑖 = 1, 2, therefore by gen-
eralized inductive hypothesis we deduce that the sets of terms
{s𝑖 | (max_tails𝜌 (s𝑖), bin_ops𝜌 (s𝑖)) = (𝑘𝑖1, 𝑘𝑖2), s𝑖 built on V}, are fi-
nite for all (𝑘𝑖1, 𝑘𝑖2) < (𝑘1, 𝑘2), 𝑖 = 1, 2. Since all possible pairs
(𝑘𝑖1, 𝑘𝑖2) are finite because bounded by (𝑘1, 𝑘2) we deduce that the
set of all possible subterms 𝑠1, 𝑠2 of s is finite, therefore 𝑆3 is finite
as well.

We have partitioned the set {s | (max_tails𝜌 (s), bin_ops𝜌 (s)) = (𝑘1, 𝑘2), s built on V}
into four sets depending on the shape of s and proved that all such sets
are finite, therefore we can conclude the claim.

□

theorem 14.15 : Let V be a fixed finite set of variables, 𝜌 an environment, and
𝑘1, 𝑘2 two natural numbers; then the set {s1 ≈𝜌 s2 | 𝜇𝜌 (s1, s2) ≤ (𝑘1, 𝑘2), s1, s2 built on V}
is finite.

Proof: A direct consequence of Lemma 14.14, and of the facts that V, the
domain of 𝜌 and the set {(𝑘 ′1, 𝑘 ′2) | (𝑘 ′1, 𝑘 ′2) ≤ (𝑘1, 𝑘2)} are finite, and the finite
union of finite sets is finite. □

theorem 14.16 : Any derivation for s0 ≈𝜌 s
′
0 involves only a finite set of

pairs s1 ≈𝜌 s2.

Proof: A direct consequence of Theorem 14.13 and Theorem 14.15. □
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Related and future work

In the second part of the thesis, we focused on the paradigmatic example of
streams to enhance regular corecursion in order to overcome the limitations
imposed by regular terms. Moreover, we provided awell-definedness procedure
to guarantee safe access to streams, as well as an algorithm to check stream
equality. Proposals in the existing literature to tackle these problems are
outlined in the following, together with other papers related to streams.

stream calculi In the context of streams, our main sources of inspiration
for the operators considered in the calculus and some examples were the papers
of Rutten [28, 27], where a coinductive calculus of streams of real numbers
is defined, and Hinze [20], where a calculus of generic streams is defined in
a constructive way and implemented in Haskell. The work presented in the
thesis differs from all the approaches mentioned above since, in our case, the
aim is to provide an operational semantics, designed to directly lead to an
implementation. That is, even though streams are infinite objects (terms where
the constructor is the only operator, defined coinductively), evaluation handles
their finite representations, and is defined by an inductive inference system.

beyond regular terms The main disadvantage of regular corecursion
with respect to lazy evaluation is that only regular structures are supported.
For instance, given the function definition from(n)= n : from(n+1), a call
like, e.g., member(10,from(0)) will not terminate in our calculus, since with
call-by-value semantics the subterm from(0) should be evaluated. There have
been a few proposals to allow the manipulation of infinite non-regular values.
Notably, in the context of logic programming, structural resolution [25, 24]
(a.k.a. S-resolution) is a proposed generalization for cases when formulas
computable at infinity are not regular; infinite derivations that cannot be built
in finite time are generated lazily, and only partial answers are shown. In
particular, recent results [12] investigate how it is possible to integrate co-LP
cycle detection into S-resolution, by proposing a comprehensive theory to
provide operational semantics that go beyond loop detection.
Another approach is the work by Courcelle [15], introducing algebraic

trees and equations as generalizations of regular ones. Such proposals share,
even though with different techniques and in a different context, our aim of
extending regular corecursion; on the other hand, the fact that corecursion is
checked is, in our knowledge, a novelty of our work.
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well-definedness of streams The problem of ensuring well-defined
corecursive definitions has been also considered in the context of type the-
ory and proof assistants. We have shown in Chapter 10 that simple guarded
definitions [14] do not work properly in case values are allowed to contain
non constuctors as the tail operator; a more complex approach based on a type
system has been proposed by Sacchini [29] for an extension of the calculus of
constructions which is more expressive than that considered here; however,
as opposed to what happens with the judgment wd defined in Chapter 10,
corecursive calls to the result of an application of tail are never well-typed
even in case of well-defined streams, as happens for the definition of fib as
given in Section 9.2.
D’Angelo et al. presented LOLA [19], a specification language for runtime

monitoring that manipulates streams. The general idea behind the framework
is to generate a set of output streams, starting from a given set of input streams.
Input streams describe the values of the system under observation and output
streams represent errors or reports of the monitor. Stream expressions are
constructed starting from constants, stream variables, function symbols and, in
particular, an operator to define a stream by starting from another one shifted
by an offset; in this case, a default value must be specified because the offset
might lead past the end or before the beginning of the stream. There are a
few differences with respect to our approach, especially due to the fact that,
while we allow streams to be infinite, in LOLA only finite ones are considered.
However, there are some similarities with our work. In this framework, well-
definedness is checked by relying on a dependency graph, which keeps track
of relations between the processed streams. The vertices of this graph are
the streams, while the edges represent the dependencies between them. Each
edge is weighted with a value 𝜔 to point the fact that a stream depends on
another one shifted by 𝜔 positions. Then, the well-definedness constraint
is that each closed-walk inside the graph must have a total weight different
from 0. These syntactic constraints appear to be very similar to the approach
we used for predicate wd, in which we impose the number of occurrences of
the constructor operator to be greater than the number of occurrences of the
tail operator.

future work A first objective for future work is to enrich the language by
adding more data types and constructs, e.g., an if-then-else with a stream of
booleans as condition and two streams in the branches. Additional interesting
operators on streams could be added, such as the filtering ones, which would
greatly increase the expressive power of the calculus. Each new operator
should be thoroughly studied, in order to be dealt with by the well-definedness
and equality checks, as done for the interleaving operator in Chapter 12 and
Chapter 13. Another interesting direction is the design of a static type system
to filter out early errors. Notably, our well-definedness check takes place
at runtime. The introduction of a static check would filter out certain non-
well-defined streams beforehand, thus reducing the overhead on the check at
runtime.
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A possible direction to optimize the semantics could be to handle regular
streams in a special way. Indeed, such kind of streams can be finitely rep-
resented by their first few digits and period, and with just this information
we can compute functions like at in constant time. To achieve this goal, the
semantics should be able to identify regular streams and treat them differently,
for example by applying special rules designed for optimizing performance.





Conclusion
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Conclusion

In this thesis we introduced two extensions of the framework of regular core-
cursion in orthogonal directions.
In the first part we presented coFJ, a Java-like calculus which supports

flexible regular corecursion, by equipping methods with a codefinition to be
evaluated when a cyclic call is found.
The key contributions of this part are the following:

• The design of a novel programming style, smoothly incorporating support
for cyclic data structures and coinductive reasoning in the object-oriented
paradigm.

• The first, in our knowledge, operational model supporting detection of
function/method cyclic calls which is shown to be sound with respect to
an abstract semantics.

• The evidence, thanks to the intermediate semantics, that the issues of
providing a finite representation for (some) infinite objects, and the one
of detecting cyclic calls, are independent.

In the second part of the thesis we presented a stream calculus which
enhances regular corecursion beyond regular terms.

The key contributions of this part are the following:

• The design of a language semantics where equations representing infinite
terms can contain other operators besides the constructor. In this way,
we can define also non-regular streams (like the one of natural num-
bers) without loosing the possibility of inspecting a regular stream in its
entirety.

• The formalization of a well-definedness check for streams, a sound pro-
cedure to filter out ill-formed streams at runtime. Thanks to this, we
achieve a convenient trade-off between expressive power and reliability.

• The formalization of an equality check on streams, useful to achieve two
important objectives: (1) to provide an equality operator which can be
used by the programmer and (2) to detect equal calls in more cases, so to
improve cycle detection.
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16 . 1 Future work
We already discussed future work for both parts of the thesis in Chapter 8 and
Chapter 15. Here we just report some keypoints:

part i

- Provide a fully-fledged implementation of coFJ.
- Guarantee type soundness, statically ensuring that an undetermined value
never occurs as receiver of field access or method invocation.

- Integrate regular corecursion with the notion of mutable state.

part ii

- Investigate additional operators to further increase the expressive power
of the language.

- Design a static type system to prevent runtime errors such as the non-
well-definedness of a stream.

- Reason on optimizations of the semantics when dealing with regular
streams.

Finally, a natural goal for future work is to integrate the two objectives
of the thesis, e.g., by enhancing the stream calculus in Part II with flexible

corecursive definitions, as done with coFJ in Part I. This extension would
give users the possibility to define specific behaviour when a cycle is detected.
For instance, assuming to also allow boolean results for functions, we could
define the predicate allPos, checking that all the elements of a stream are
positive, specifying as result true when a cycle is detected; in this way, e.g.,
allPos(one_two()) would return the correct result.
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