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Abstract

Medical and health processes are increasingly dependent on software that plays a critical
safety role in diagnosis, decisions, and device control or functioning. Software is present
in many applications: from the ones embedded in medical systems to the application in-
stalled on PCs for patient management, from protocols that allow communication between
different medical devices to software that assists in diagnosis. The health and safety of
patients (and sometimes doctors) who interact with medical devices depend on the correct
functioning of any medical device and, in particular, on the software running on them. This
is the reason why, in recent years, researchers and industries have focused on creating a
well-defined software life cycle for medical software and on verifying, validating, and test-
ing medical devices, which must be mandatory activities during development, as required
by the certification standards.

This thesis presents several attempts to define methodologies and strategies that may
be used during the development of medical devices. In particular, model-based testing has
proven to be a valid technique that allows easier compliance with the certification standards,
since using formal methods for modeling the system under analysis allows obtaining in
a more rapid and effective way documents and testing the system in a more satisfactory
way. As suggested by the literature, for complex systems, the technique of Combinatorial
Interaction Testing has proved to be suitable for reducing the effort of testing, without
losing effectiveness. In this thesis, these methods have been applied to several case studies,
namely the MVM (a mechanical ventilator that I contributed to develop and test during the
initial phase of the COVID-19 pandemic), the Pill-Box, and the PHD protocol.

Recent software and medical devices also include many components that use artificial
intelligence (AI) to process images and data and produce results. Model-based or combi-
natorial techniques are not always suitable to deal with AI, and so other methods, mainly
based on the robustness analysis of neural networks, must be used in order to validate
AI-based medical software. This thesis presents the concept of robustness w.r.t. external
input perturbations, both for neural network classifiers and estimators and applies them to
real case studies, namely to a classifier for Breast Cancer diagnosis and an estimator of the
pO2 level in blood.
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Chapter 1

Introduction

Many people interact with medical devices every day, from the simplest ones, such as
pillboxes that remind the patients to take their pills on the correct day, to the most complex
ones such as diagnostic X-ray equipments or mechanical ventilators in intensive care
units (ICUs). Some of these devices were traditionally based on mechanical and electrical
components, and all hardware parts were tested to guarantee their correct functioning.
However, with the development of the technologies, the software has increasingly become
a prominent and critical part of these devices and this has led to the definition of new
kinds of medical devices: Programmable Electronic Medical Systems (PEMS). These
safety-critical systems combine hardware and software to implement their functionalities,
which affect people’s health, and, in case of malfunctions, they can seriously compromise
human safety leading to injuries or even death. For this reason, software that controls
or interacts with these devices must be developed through rigorous processes that aim to
ensure its safety, reliability, and quality, and certified.

To certify the quality of medical systems, several standards have been proposed (see
Sect. 2.2), but the majority of them do not deal with the software part of PEMS and limit
only to the hardware part. The only two standards or guidelines that include references to
software are IEC 62304 [5] and the FDA Guidelines [13]. However, in both documents,
only general concepts about the activities that must be performed for each medical software
are given, and no suggestions on the software life cycle to be used or methods for software
validation and verification are presented.

For this reason, this thesis presents and analyzes several approaches compliant with
the regulations and standards for PEMS certification, aiming at improving or assuring the
quality of medical software and systems. The majority of the experiences and experiments
contained in this thesis are based on the Mechanical Ventilator Milano (MVM) case study
(see Chapter 3), which is a mechanical ventilator for intensive care units I contributed to
develop, test, and certify during the first wave of the COVID-19 pandemic in Italy. From
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this experience, several lessons learned and general guidelines for developing medical sys-
tems under emergency, while still maintaining compliance with the certification standards,
have been derived. Further details on these guidelines are reported in Chapter 4.

Model-based testing and model-driven development have proven to be suitable for
complying with the certification standards, since they allow producing documents in a
formal manner, which is easily verifiable, and guarantee the required traceability. In this
thesis, I present the application of formal methods, and in particular of the ASM formalism
using the ASMETA framework [19], to the MVM case study. It has proved to be suitable
for system modeling, validation, verification and automatic code generation. Moreover,
I present how using ASMETA can aid in automatically deriving test cases to be used on
the actual implementation of the ventilator. In order to assure the generalizability of the
results, this thesis presents the application of model-based techniques to other systems,
such as a Pill-Box and the PHD protocol, used for allowing the communication between
medical devices.

A limitation discovered during the application of formal methods, such as ASMETA,
to the analyzed case studies for generating test cases, is the significant amount of tests
and time required for their generation or execution. For this reason, this thesis presents
the concept of Combinatorial Interaction Testing applied to medical software and systems
and a way to compare combinatorial test generators. This aims at choosing the best-fit
generator which produces fewer test cases or limits the time required for the test generation
process, depending on the complexity of the system.

Although certification standards describe which activities must be performed for each
medical software, no complete indication is yet available on how to certify medical systems
containing AI-based components. The only request made by the certifying authorities is
that AI algorithms must show to be at least as safe and effective as another similar legally
marketed, which is not based on AI. For this reason, in this thesis, I propose the concept of
robustness for neural networks (used both as classifiers or estimators) when they are used
in the medical domain. Using this measure, a medical system can be certified by showing
that on the extensive data set used during testing activities, it has proved to be at least as
reliable as other devices already on the market.

1.1 Research questions, objectives, and thesis structure

The goal of this thesis is to apply state-of-the-art methods, or devise and design new ones,
for increasing or assuring the quality of medical software and systems. In the following, I
report the research questions (RQ) I try to answer through the chapters of this thesis.
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RQ1: What is the state-of-the-art in the definition of quality for medical software?
This is shown in Chapter 2 in which the concept of quality for software, the definition of
medical device, some legal aspects about the liability for non-quality medical systems,
and standards and regulations for the certification of medical software are analyzed. In
particular, two documents are presented in detail: the standard IEC 62304 [5] and the FDA
general principles [13]. The former is an international standard, which describes the life
cycle activities of the software development without giving any indication on the method
to be applied. The latter provides the guidelines for the validation and verification of the
medical software.

RQ2: Are there any empirical guidelines for developing medical software? During
the first wave of the COVID-19 pandemic, I contributed together with my research group
and other researchers and practitioners in the development, testing, and certification of a
real medical system, the Mechanical Ventilator Milano (see Chapter 3 for more details
about the device). Chapter 4 presents lessons learned and guidelines derived from this
effort, especially in the context of an emergency.

RQ3: Are ASMs applicable to support the development of software for medical
devices? Chapter 5 presents the ASMETA framework and the set of tools included in
the framework to support the user during the development and the analysis of formal
specifications using ASMs. Furthermore, in order to practically evaluate the applicability
of the ASMETA framework to medical software, in Chapter 6 the application of the
ASMETA framework to real case studies, such as the MVM, a Pill-Box, and the PHD
communication protocol, is reported.

RQ4: Considering that combinatorial testing is often used for reducing the complexity
of testing medical software, is there a way to make the test generation process faster?
In Chapter 7, I present the concept of Combinatorial Interaction Testing (CIT) applied to
safety-critical systems, such as medical software. In particular, the difference between
several test generators, in terms of test suite size and generation time is analyzed, and two
methodologies for reducing the generation time and, in general, the cost of testing are
presented and used for generating test suites for the MVM case study.

RQ5: Are there methods to validate NN-based medical software? Chapter 8 presents
the novel concept of neural network robustness against input alterations, both for classifiers
and estimators. This measure can be used for increasing the confidence in neural network
models used in safety-critical domains. Furthermore, I present ROBY, a tool for automatic
robustness computation for neural network classifiers, and ASAP, a method for reducing
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the time required for this evaluation. Moreover, in Chapter 9 the robustness computation is
performed on two different case studies in the medical domain, namely the breast cancer
classification and the blood PO2 estimation.

This thesis reports the results of an ongoing research activity carried out by scientific
groups I was part of during my Ph.D. Some parts of the presented work have been developed
by co-authors of the papers published, but they are reported in this thesis for completeness
and to ensure that the reader is able to fully understand the content.



Chapter 2

State of the art

In this chapter, I present the main reasons behind the research activities reported in this
thesis. In particular, the concept of quality for software is presented and discussed in
Sect. 2.1, independently from its application in the medical software field. Sect. 2.2
presents the current state of the art in terms of standards and regulations to be followed
for certifying medical software, while Sect. 2.3 defines what can be considered a medical
device. Then, the responsibilities in case of failure related to the non-quality of a medical
system are discussed in Sect. 2.4, based on the current state-of-the-art in the Italian,
European and International regulations. Finally, Sect. 2.5 concludes the chapter.

2.1 Quality of software

ISO defines software quality as the "capability of a software product to conform to its
requirements". To be more specific, in the context of software engineering, the concept of
software quality refers to two related but different aspects:

• Functional quality, or external quality, which reflects how well the software complies
with a given design, usually based on its requirements or specifications. It is generally
decomposed into correctness, reliability, integrity, and usability.

• Structural quality, or internal quality, which depends on how the software meets
non-functional requirements that support the delivery of the functional requirements,
such as re-usability, portability, efficiency, or maintainability.

As reported in the list above, several factors influence the quality of the software as
described, for example, in the McCall’s quality model [129], the following properties
contribute in defining software quality:

• Correctness, i.e., the extent to which a program complies with its specifications;
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• Reliability, i.e., the system’s ability not to fail;

• Integrity, i.e., the protection of the program from unauthorized access;

• Usability, i.e., the ease of the use of the software;

• Re-usability, i.e., the ease of reusing software in a different context;

• Portability, i.e., the effort required to transfer a program from one environment to
another;

• Efficiency, i.e., the way in which the software uses the resources, e.g., processor time
or storage;

• Maintainability, i.e., the measure of the effort required to locate and fix a fault in the
program within its operating environment.

Software quality is motivated by at least two main perspectives: risk management and
cost management. The former, especially in safety-critical contexts, considers the fact
that software errors can cause human fatalities (see Sect. 2.1.1 for some examples in the
context of medical systems) which have been historically caused by poorly designed user
interfaces or direct programming errors. The latter considers that a software product or
service governed by good software quality costs less to maintain, is easier to understand,
and is more cost-effective when it has to be changed in response to pressing business needs.

2.1.1 Examples of non-quality accidents in medical systems

The literature related to the development of medical software and systems reports several
examples of non-quality accidents [118]. Probably, the best-known example is the one of
Therac-25 [119] between 1985 and 1987, a medical electron accelerator that was involved
in six massive radiation overdoses, hundreds of times greater than normal. As a result,
several people died and others were seriously injured. Investigations on device software
have identified several causes for this malfunction, among which there are the following:
(I) the source code was never independently reviewed, (II) the hardware has never been
tested with the final software until the device was assembled at the hospital, (III) several
error messages were not explained in the user manual and no indication about these errors
and possible threats to patient safety was mentioned, (IV) the software set a flag variable
by incrementing it, rather than by setting it to a fixed non-zero value, leading to occasional
arithmetic overflows that cause the software to bypass safety checks, (V) software engineers
had reused software from the Therac-6 and Therac-20, which used hardware interlocks
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that masked their software defects and were not present in Therac-25, (VI) no verification
on the correct behavior of the sensors was performed by the software before operating.

Similar is the case of the therapy planning software created by Multidata Systems
International [57], which miscalculated the appropriate dose of radiation for patients un-
dergoing Cobalt-60 radiation therapy in Panama. Multidata’s software allowed a radiation
therapist to draw on a computer screen the placement of metal shields called “blocks”
designed to protect the healthy tissue of patients from radiations. However, the software
only allowed technicians to use four shielding blocks, and the Panamanian doctors wished
to use five. The doctors discovered that they could trick the software by drawing all five
blocks as a single large block with a hole in the middle. Nevertheless, what the doctors
did not realize is that the Multidata software gave different answers in this configuration
depending on how the hole was drawn: if the hole was drawn in one direction, then the
correct dose of radiation was calculated, but if it was drawn in another directions the
software recommended twice the necessary exposure.

However, not all problems are related only to the software embedded in medical devices.
For example, in [31], the authors report the results of analyses conducted over more than
30 thousand patients from the US, where 1 out of 5 of them reported finding a mistake in
their Electronic Health Records (EHR), sometimes caused by bugs in the IT system, and
40% perceived the mistake as serious. Older and sicker patients were twice as likely to
report a serious error compared with younger and healthier patients, indicating important
safety and quality implications since not being able to identify in time the correct outcome
of a medical exam may lead to serious consequences, which could be easily avoided if the
EHR were correct.

2.2 Standards and regulations for the certification of med-
ical software

Due to the safety-critical nature of medical devices, many institutions have provided
standards or guidelines for their certification. Examples of these organizations are the
IEC (International Electrotechnical Commission), ISO (International Organization for
Standardization), European Union, FDA (Food and Drug Administration), ANSI (Amer-
ican National Standards Institute), UNI (Italian Organization for Standardization), DIN
(German Institute for Standardization), and CEI (Italian Electrotechnical Commission).

In the following, the main standards, norms, and regulations produced by the organiza-
tions listed above are reported:
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• The ISO 13485 [6], approved also by CEI and UNI, describes the requirements on
how to apply the ISO 9001 [11] for quality system management, for design and
development, installation, and maintenance of medical devices. It has been recently
adopted also by FDA, which has harmonized its requirements to those of the ISO
13485 standard.

• The ISO 14971 [7] specifies terminology, principles, and a process for risk man-
agement of medical devices, including software as a medical device and in vitro
diagnostic medical devices. It is recognized both by FDA (for the US region) and by
European certification authorities.

• The European regulation UE 2017/745 [EU2] defines a new device classification
and device scope, stricter oversight of manufacturers by Notified Bodies, the intro-
duction of the “Person Responsible for Regulatory Compliance” (PRRC) and the
economic operator concept, the requirement of UDI marking for devices, Eudamed1

registration, and increased post-market surveillance activities. Being a European
regulation, it is not requested by FDA for the certification in the US.

• The IEC 62304 [5] defines the phases to be followed during the life cycle of medical
device software, depending on the risk classification of the device (see Sect. 2.2.1
for a more detailed description). In general, this is the most used standard, and it is
recognized by almost all medical software certification authorities in the world.

• The IEC 61508-3:2010 [3] defines software requirements for functional safety of
electrical, electronic, or programmable electronic safety-related systems. No formal
requirement to use this standard is given by none of the certification authorities, but
its adoption is strongly advised.

• The IEC 60601-1:2005 [2] contains requirements concerning basic safety and es-
sential performance that are generally applicable to medical electrical equipment.
It is recognized both by FDA (for the US region) and by European certification
authorities.

• The “General Principles of Software Validation” produced by FDA [13] defines
several concepts aiming at guiding the software validation and verification activities,
which are required to be performed throughout the software development life cycle
(see Sect. 2.2.2 for a more detailed description). These guidelines have been proposed
by FDA and, thus, are required only in the United States. However, the principles

1Eudamed is an online database, created by the European Commission, providing a living picture of the
lifecycle of medical devices that are made available in the European Union.



2.2 Standards and regulations for the certification of medical software 9

proposed fit with those of the other main certification standards (e.g., IEC 62304)
which are, instead, required in Europe.

Note that none of these standards or regulations prescribes specific methodologies in
which all required activities must be performed.

2.2.1 IEC 62304: Medical Software Development Life Cycle

The IEC 62304 [5], named "Medical Device Software – Software Life Cycle Process”,
has emerged as the main standard for the management of the software development life
cycle for medical devices, it is adopted by the European Union and the United States,
and approved as an international standard both by IEC and ISO. Moreover, it is adopted
by several committees and institutions, such as the CENELEC (European Committee for
Electrotechnical Standardization), ANSI (American National Standard Institute), FDA
(Food and Drug Administration) of the United States for use in premarket submissions,
SFDA (State Food and Drug Administration) of China and Japan Industry.

The standard defines common guidelines for medical device software life cycle pro-
cesses, but does not impose a specific life cycle model or give guidelines on how the
software should be verified and validated.

The major contribution of the IEC 62304 standard is the definition of three different
safety classes, based on the potential to create an injury to patients by the device:

• Class A: medical software, or software components, that cannot cause injury or
damage to health;

• Class B: medical software, or software components, that can cause non-serious
injury;

• Class C: medical software, or software components, that can cause death or serious
injury.

In particular, the standard classifies as serious injury an injury that "directly or indirectly
is life-threatening, can result in permanent impairment of a body function or permanent
damage to a body structure, or necessitates medical or surgical intervention to prevent
permanent impairment of a body function or permanent damage to a body structure".

Processes and tasks per safety class

The IEC 62304 standard defines the processes and tasks (among those reported in Fig. 2.1)
that are mandatory depending on the class in which the software under development is
classified. In general, the higher the safety class (B and C), the higher the number of
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Fig. 2.1 Activities within and outside the scope of the IEC 62304 standard

additional tasks and the more detailed needs to be the documentation. Tab. 2.1 reports the
activities that are required by each safety class and their mapping on the activities as they
are numbered in the standard.

Software development planning (5.1) The first step of the software development life
cycle consists in defining the life cycle model to be used. In this plan, one should address:
1. the process to be used during the development of the software; 2. the deliverables of
each activity and the tasks to be performed; 3. the traceability system among system
requirements, software requirements, test and risk control activities; 4. the software
configuration and software problem resolution strategy.

Software requirements analysis (5.2) During the software requirements analysis, func-
tional and non-functional requirements are defined. Moreover, it is required to measure the
risk of potential defects in every requirement. At every update, the manufacturer should
verify software requirements to avoid contradiction and ambiguity, and re-evaluate the
risks previously identified.

Software architecture (5.3) During the definition of the software architecture, it is
required to describe the software structure, identify the software elements, specify func-
tional and performance requirements for the software elements, identify software elements
related to risk control, and verify the software architecture with respect to the previously
defined software requirements.
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Table 2.1 IEC 62304 software development process – Activities required by each safety
class

Activity Class A Class B Class C

Software development planning (5.1) X X X
Software requirements analysis (5.2) X X X
Software architecture (5.3) X X
Software detailed design (5.4) X
Software unit implementation (5.5) X X X
Software unit verification (5.5) X X
Software integration (5.6) X X
Software integration testing (5.6) X X
Software system testing (5.7) X X X
Software release (5.8) X X X
Software maintenance process (6) X X X
Software risk management process (7) X X

Software detailed design (5.4) Once the software architecture has been identified, it
should be detailed into software units and, for each unit, a detailed design should be
provided.

Software unit implementation and unit verification (5.5) Each software unit should
be implemented and tested. During the software unit verification, the manufacturer shall
verify the source code w.r.t. the previously produced documents, and the results of the
verification activities shall be systematically documented.

Software integration and integration testing (5.6) During this phase, each software
unit is integrated with the others on the basis of the integration plan and the final system is
verified. As for the unit testing activities, the manufacturer shall systematically document
the results of the verification activities.

Software system testing (5.7) Once the system has been fully integrated, the tests are
performed on the system as a whole, w.r.t. the system requirements. This activity has to be
repeated after each change in the software.

Software release (5.8) When releasing the software, the device manufacturer shall
demonstrate that the software has been correctly and extensively validated and verified. In
case of anomalies, the manufacturer has to document and establish a process to resolve
them.
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Software maintenance process (6) During this activity, the manufacturer shall describe
the procedures used for the maintenance process. These procedures have to be applied
when intervening on the product that is in use.

Software risk management process (7) The last step that the manufacturer must perform
is the analysis of risk. This analysis aims to identify causes that could contribute to an
unsafe situation and should be performed during the whole software life cycle.

2.2.2 FDA Guidelines: General Principles of Software Validation

The Food and Drug Administration is a federal agency of the United States and is responsi-
ble for protecting and promoting public health through the control and supervision of food
safety, tobacco products, dietary supplements, medications, vaccines, biopharmaceuticals,
blood transfusions, medical devices, electromagnetic radiation emitting devices, cosmetics,
animal foods, and veterinary products. In terms of medical software, the General Prin-
ciples of Software Validation [13] defines several concepts that can be used as guidance
for software validation and verification activities, which are required to be performed
throughout the software development life cycle. Moreover, these concepts are not limited
to software considered as a medical device but also to the software used to produce medical
devices and software used in the quality management processes of the manufacturer. In the
following, the main principles reported in the document are listed:

• Validation and verification activities should use as a baseline the software require-
ments specification document;

• Developers should apply a set of methods and techniques for preventing the intro-
duction of defects during the software development process, and not only try testing
the software after it is completely written;

• Software validation activities should be planned early in the development process
and performed during all the software life cycle;

• Software life cycle should contain documents necessary for supporting the software
validation and software engineering tasks;

• Software life cycle should contain verification and validation tasks aimed at guaran-
teeing the correct functioning of the software during its intended use;

• Software validation and verification processes should be defined and controlled
through the use of a plan, and executed using a set of defined procedures;
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• When the software is changed, validation analysis should be conducted not just for
the individual change, but also to determine the impact on the entire software system,
to demonstrate that the change has not altered the system behavior;

• Validation effort and coverage should be based on software complexity and safety
risk. In this way, if the risk increases additional validation activities should be added
to guarantee the coverage of all risks;

• Validation and verification activities should be conducted using the quality assurance
precept of the independence of review to guarantee the quality of software. These
activities should be assigned to staff members that are not involved in the design or
implementation of software;

• No validation principle is mandatory, but the device manufacturer retains ultimate
responsibility for demonstrating that the software has been correctly validated.

Note that the FDA guidelines do not classify medical devices in safety classes and,
therefore, each device manufacturer should perform a combined evaluation using both
these guidelines and the IEC 62304 standard to identify the activities to be performed.

2.3 The definition of "medical device"

All the standards mentioned in the previous section are based on the same definition of
"medical device" and, consequently, of "medical software". In particular, the followings
are considered medical devices:

• any instrument, appliance, software, or substance used alone or in combination with
other devices during one of the activities related to the medical field;

• any software intended by the manufacturer for use specifically for diagnostic or ther-
apeutic purposes, used for assuring the correct functioning of medical instruments;

• any software intended by the manufacturer to be used on human beings for diagnosis,
prevention, control, therapy, or alleviation of a disease;

• any software for diagnosis, control, therapy, mitigation, or compensation for an
injury or handicap;

• any appliance intended to be used as a replacement or modification of the anatomy
or a physiological process.
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Given these definitions, it is clear that the software of a medical device can also be
considered a medical device itself. In the literature, this aspect is generally defined software
as medical device (SaMD). Moreover, electronic devices that integrate software used in
medical processes are normally defined programmable electrical medical systems (PEMS).

2.4 Legal aspects of the liability for non-quality medical
systems

Complying with standards and regulations not only aims to obtain a medical device with
higher quality, but also to avoid legal consequences deriving from a possible malfunction
of the device for the manufacturer. In fact, current guidelines and regulations (see Sect. 2.2
for further details) consider the device manufacturer the one who assumes all the possible
responsibilities and bears any administrative sanctions deriving from any malfunctioning
of the produced medical device.

All the standards require producing a consistent number of documents, and it is justified
by the fact that all these documents can be used at a later time for a re-verification in
case the marketed medical device causes any damage to a human being. Indeed, the
legal consequences deriving from a possible malfunctioning of a medical device for its
manufacturer can be limited or avoided if in the documentation it is clear that:

• The device is not marketed yet;

• The defect causing the damage did not exist when the manufacturer started marketing
its product (so, it is of paramount importance to maintain in the documents all the
references of all the validation tests performed);

• The defect causing the damage cannot be avoided if the manufacturer must comply
with some regulations concerning the application field;

• The defect causing the damage could not have been discovered when the manufac-
turer started marketing its product due to the limited scientific knowledge in the
state-of-the-art at that time;

• The defect causing the damage is not due to the product itself, but entirely to the
product that embedded the produced device.



2.5 Conclusion 15

2.5 Conclusion

In this chapter, the concept of quality for software in a broader way, and in specific
for medical devices, has been presented, and standards and guidelines adopted for the
certification of medical device software have been identified. The standard IEC 62304
identifies the step of the software development life cycle, without reference to a specific life
cycle. Companies that want to certify their software have to map the applied process for
software development with the totality of the clauses of the IEC 62304 standard. Once the
documents are available, they are submitted to the organizations responsible for certifying
the software that evaluate the documentation and provide the certification or request for
changes to fit the presented process with the standards.

This certification process has to be followed by producers not only for getting the
certification and the authorization for marketing the products, but also for assuring the
quality of the produced medical device and for protecting themselves w.r.t. possible
malfunctioning consequences.

The effort of adhering to IEC 62304 and certifying a medical device, together with the
lessons learned from this process are presented, for the MVM case study (see Chapter 3),
in this thesis in Chapter 4.





Part I

MVM: A mechanical ventilator for ICUs





Chapter 3

The MVM case study

In this chapter, one of the main case studies for the research activities discussed in this
thesis is presented. Here, I introduce the Mechanical Ventilator Milano (MVM), which
is a project to which I have contributed during the first phases of the emergency related
to the COVID-19 pandemic in Italy, especially for the process of software testing and
its certification as a medical device. The chapter is based on [14] and is structured as
follows. Sect. 3.1 introduces the history of the MVM device, together with the reasons that
motivated the work on it. Sect. 3.2 reports some of the medical considerations about the
conditions and treatments that are generally performed in patients with COVID-19, while
Sect. 3.3 describes the design of the device. In Sect. 3.4 the functioning of the MVM and
its operating modes are presented, while the hardware and software configuration of the
ventilator is introduced in Sect. 3.5. Finally, Sect. 3.6 and Sect. 3.7, respectively, present
the testing procedures (not limited only to the software components) executed on the final
device and conclude the chapter.

3.1 Introduction

Mechanical ventilators are necessary tools in every modern intensive care unit (ICU). The
type and intensity of ventilation support required by a patient vary over the course of treat-
ment. Therefore, modern mechanical ventilators are versatile and adapt to patient needs.
Commercially available devices control volume, pressure, or gas flow, and the breathing
cycle timing. They support both patients who cannot breathe, and who can still trigger a
mechanical cycle by a spontaneous inspiratory effort [173]. Today’s mechanical ventilators
are complex machines, composed of many specialized components and implementing
several ventilation modes [173, 108, 147].

The exponential growth of COVID-19 cases, especially at the beginning of 2020, put
ICUs all over the world under unprecedented pressure. The drastic increase in demand for
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these devices exceeded the capacity of the existing supply chains, especially in regions
where cross-border supply was disrupted. This created the need for a simpler, but techni-
cally suitable, machine that could be mass-produced on a very large scale and in a short
time frame.

The MVM Collaboration has responded to this need by developing the Mechanical
Ventilator Milano (MVM), a reliable, fail-safe, and easy to operate mechanical ventilator,
built from a small number of readily available and cheap parts.

The design is inspired by the idea proposed by Manley [123] back in 1961, i.e. the pos-
sibility of using the pressure of the gases from the anesthetic machine as the motive power
for a simple apparatus to ventilate the lungs of the patients in the operating theater [87],
but adapting the design by replacing all moving mechanical parts with electromechanical
components, allowing better parameter control and improving robustness and reliability in
the long-term operation, often needed by COVID-19 patients, as also discussed in Sect. 3.2.

The MVM was designed in a collaboration between healthcare professionals and
experimental physicists, benefiting from the medical expertise of the former and the latter’s
technical expertise in designing gas handling systems, with industrial partners (Elemaster,
Italy and Vexos, Canada) who provided access to laboratories and production lines for
both R&D and prototype construction, and IT researchers from academia.

The MVM was certified by the Center for Devices and Radiological Health, U.S. Food
and Drug Administration (FDA) for Emergency Use Authorization in May 20201, in
response to concerns related to the insufficient supply and availability of FDA-approved
ventilators for use in healthcare settings to treat patients during the COVID-19 pandemic,
and received the Health Canada Medical Device Directorate Authorization for Importation
or Sale, under Interim Order for Use in Relation to COVID-19 in September 20202.
Moreover, it has obtained the CE marking at the beginning of May 2021, and thus it can
be used and sold also in Europe. A 10,000-unit production run was recently performed
in Canada (Vexos and JMP Solutions). Moreover, there is an ongoing project that aims
to deliver MVM devices where they are most needed and is currently being sold by an
African Union charity3. The cost of a single unit turned out to be about 10,000 USD, about
five times less than other commercially available mechanical ventilators for ICUs.

The MVM is a mechanical ventilator for adult patients assisted with tracheal tubes,
designed to directly control pressure, while the resulting delivered volume is measured.
Pressure control is widely used in COVID-19 patients, who are susceptible to additional
lung damage from too high pressure or volume [58, 183, 69]. The MVM can be operated in
two modes, pressure-controlled ventilation (PCV), and pressure support ventilation (PSV).

1https://bit.ly/3dcZ6vs
2https://bit.ly/30K3CfX
3https://breathoflifeafrica.org/#MentorProject

https://bit.ly/3dcZ6vs
https://bit.ly/30K3CfX
https://breathoflifeafrica.org/#MentorProject
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In PCV mode, the ventilator controls the timing of the breathing cycle and regulates the
pressure applied to the patient. PCV mode is used in the acute phase of the disease when
the patients are deeply sedated or paralyzed. By delivering mechanical breath with an
exponentially decelerating flow pattern, PCV allows pressures to balance across lung units
during a preset time, resulting in significantly reduced pressures and improved ventilation
distribution. This allows lowering the risk of barotrauma attributable to the high pressures
often required to ventilate these patients [124]. On the other hand, PSV is an assisted
ventilatory mode that is patient-triggered, pressure-limited, and flow-cycled. The main
use of this mode is to wean the patient off mechanical ventilation because it unloads the
work of breathing and allows a gradual decrease in ventilator support until extubation [60].
Further details about the two operating modes are reported in Sect. 3.4.

Invasive mechanical ventilation exposes the patient to risks arising from infections,
pneumothorax, ventilator-associated lung injury, and oxygen toxicity [136], as well as
operator errors. Therefore, the MVM has a sophisticated integrated alarm system, in
accordance with EN 60601-1-8:2007 [2], that monitors the various aspects of the breathing
cycle and alerts the operator when any anomalies arise. In order to make it easier to control
more ventilators, the MVM is directly connected to the hospital alarm system, so that
the medical operators can intervene also when not near the faulty or alarmed ventilator.
Hardware and software are designed to be as straightforward as possible to mitigate the
risk of operator error. In addition, the MVM must be used in association with an oximeter
and a capnometer. The system is designed to comply with the guidelines defined in
ISO 80601-2-12:2020 [10]. The test results demonstrating compliance are discussed in
Sect. 3.6.

3.2 Medical considerations on COVID-19 patients

According to current studies, approximately 5% of patients hospitalized with COVID-19
develop severe lung damage [101, 65]. This condition reflects the pathophysiology of
severe acute respiratory distress syndrome (ARDS). ARDS is a disease characterized by
reduced lung compliance due to loss of surfactant function, collapsed lung areas, and
accumulation of interstitial/alveolar plasma leakage. Computerized Tomography (CT)
scans demonstrate uneven distributions of aerated areas, and dense, consolidated regions
of the lung; the remaining alveolar surface for gas exchange is greatly reduced in adult
patients, a condition termed baby lung [100]. It has been suggested that the clinical
management of COVID-19 patients with severe lung damage should follow the established
guidelines for ARDS subjects [138, 125]. This opinion has been confirmed by a recent
study comparing COVID-19 subjects to patients affected by ARDS due to other causes; the
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physiological differences between ARDS from COVID-19 and other causes were found to
be small [101].

For this reason, the main supportive treatment for patients with ARDS is mechanical
ventilation with supplemental oxygen, currently deemed the most appropriate, following a
discussion that has been ongoing since the syndrome was first described in 1967 [28]. The
tidal volume (Vtidal

4) is a key parameter, with potentially unfavorable effects if incorrectly
set, such as ventilator-induced lung injury. Starting in the 1970s, a Vtidal of 12� 15mL
per kg of predicted body weight (PBW) was recommended by clinicians until, in 2000,
the Acute Respiratory Distress Syndrome Network reported that the length of hospital
stay and mortality could be significantly reduced using a lung-protection strategy. This
strategy includes low Vtidal ventilation (< 8mL per kg of PBW) to avoid over-distension
of the baby lung, a limited plateau pressure (PP)  30cmH2O, and a sufficient positive
end-expiratory pressure (PEEP5)  15cmH2O [62]. PEEP targeting must be tailored to
prevent lung injury due to cyclic alveolar opening and collapse and to improve oxygen
delivery (amount of lung recruited) while avoiding volutrauma (lung over-distension) and
cardiovascular compromise.

In addition to invasive ventilation, a series of therapies were tested in patients affected
by COVID-19 pneumonia: nasal high-flow therapy, continuous positive airway pressure,
and non-invasive ventilation. These strategies have been found to be suitable only in the
mild and early stage of the disease, when they may be effective in stabilizing the clinical
course. The early stage of COVID-19 pneumonia is characterized mainly by vascular
endothelium injury, altered vasoregulation, and hypoxemia due to ventilation-perfusion
mismatch. The majority of the lung is still not affected, which explains the relatively
good pulmonary compliance at this stage and the interstitial edema rather than the alveolar
edema seen on CT scans [125]. For patients with severe cases or who do not respond
well to milder early-stage treatments, COVID-19 pneumonia may develop into ARDS,
requiring treatment with an invasive ventilation device, such as the MVM. The duration of
invasive ventilation treatment can last from a few days to several weeks and depends on
the severity of ARDS and the presence or absence of comorbidities [88].

3.3 Design of the MVM

Fig. 3.1 shows a schematic of the MVM, with typical connections to the patient and to
the oxygen and medical airways. In the following, the design conventions used in the
figure are described. Dashed lines indicate electrical connections, and the solid lines

4The tidal volume is the amount of air a person inhales during a normal breath
5The PEEP is the pressure in the lungs above atmospheric pressure that exists at the end of expiration
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Fig. 3.1 Schematic of the MVM ventilator system (light blue box) with the connection to
the patient

indicate gas connections. Thick black lines represent the breathing circuit, thin red lines
are connections to pressure measurements, and the green line is the gas connection to
drive the pneumatic valve at the end of the expiratory line. The direction of gas flow is
indicated by the blue (inspiratory phase) and red (expiratory phase) arrows. The lines in
gray indicate the breathing circuit relief lines. The beige rectangle represents the main
electronics and control board and the yellow square represents the supervisor board, which
provides a redundant monitor and control.

The gas blender, GB-1, is external to the MVM unit. The breathing circuit and other
items that get in contact with or are near the patient are replaced before each use in order to
assure their sterility. The ventilator receives its air and oxygen supply from the facility and
the operator mechanically sets the fraction of inspired oxygen (FiO2), i.e, the concentration
of oxygen in the gas mixture, on the external gas-blender GB-1. The pressure out of the
gas-blender is monitored by PI-5 and regulated to the appropriate pressure for the MVM
by PR-1. In case of excess pressure at the MVM input, RV-1 relieves excessive air.

The MVM operates by opening the inspiratory valve, V-1, to provide the breathing gas
to the patient at the desired pressure with the expiratory valve, V-2, closed. On command
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Fig. 3.2 A view of the inside of the MVM

from the controller, V-1 is then closed and V-2 is opened to allow the patient to exhale. A
mechanical PEEP valve, RV-2, sets a positive end-expiratory pressure. At the end of the
expiratory phase, V-2 is closed, V-1 is opened and the cycle repeats.

V-1 is a proportional solenoid valve controlled by a loop using the pressure measured
by PI-3. V-2 is a low-impedance pneumatically operated valve and is controlled by a
three-way electrical valve, V-4. To avoid the need for a second source of gas, the pneumatic
control is effected using the MVM input gas regulated to low pressure by PR-2. The RV-3
and V-3 relief valves prevent over-pressure and under-pressure, respectively, in the patient’s
line. The pressure in the expiratory line is measured by two independent indicators, PI-2
on the main control board and PI-6 on the supervisor board. The (unidirectional) flow of
gas to the patient from V-1 is measured by FI-1, while the (bidirectional) flow of gas into
and out of the patient is indicated by PI-1, using the pressure differential developed over
FI-2. The oxygen content of the gas provided to the patient is measured with OS-1, and
shown on the ventilator’s graphical interface. V-5 is a check valve to prevent back-flow
from the patient into the MVM.

F-1 is a bacterial filter ensuring that the air exhausted from the ventilator is free from
bacteria or virus particles and thus safe for doctors and nurses surrounding the patient.
Indeed, this filter prevents the large diffusion of droplets that would otherwise be emitted
in the surroundings, as demonstrated by many flow visualization studies [137, 76, 75], and
could spread COVID-19 (or other viruses).

Fig. 3.2 shows the inside of the stainless steel enclosure of the MVM, with the pneu-
matic control components and the electronics board. Furthermore, the yellow labels on the
electronic components identify them, as in Fig. 3.1.
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Fig. 3.3 Respiratory cycle during PCV ventilation

3.4 MVM operating modes

As anticipated in Sect. 3.1, the MVM is designed to ventilate patients in two different
modes, namely Pressure-Controlled Ventilation (PCV) and Pressure-Support Ventilation
(PSV). The basic concepts of the two ventilation strategies are analyzed below.

3.4.1 Pressure-Controlled Ventilation Mode

PCV is a time-cycled ventilation mode in which the operator sets the inspiratory pressure,
the PEEP, the duration of the inspiratory phase of the breathing cycle, and the number
of breaths per minute. As flow and volume are not directly set, the resultant patient tidal
volume varies, depending on lung compliance and resistance, patient effort, and inspiratory
pressure.

Fig. 3.3 shows the respiratory cycle during PCV ventilation. A new inspiration begins
either after a breathing cycle is completed according to the set respiratory rate (RR), or
if the MVM detects the initiation of a breath by the patient before the cycle is complete
and the inhale trigger criteria are met. The trigger window for a patient-initiated breath
occurs during the expiratory phase of the previous breath. When inspiration begins, the
MVM provides the patient with the set inspiratory pressure (Pinsp) for the set duration of
the inspiratory phase of the breathing cycle. The respiratory rate and the ratio between the
inspiratory and expiratory times (I:E) are the parameters that control the time cycle.
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Fig. 3.4 Respiratory cycle during PSV ventilation

3.4.2 Pressure-Support Ventilation Mode

In PSV mode, the MVM provides pressure to help the patient breathe, while the patient
controls the RR. This mode is not suitable for patients who cannot initiate breathing on
their own. A pressure-support breath is initiated when the MVM detects a sudden pressure
drop, which indicates the start of patient inspiration. Such sudden drops in the pressure
are determined by measuring the changes in the rate at which the pressure is decreasing,
indicated by the downward curvature near the start of the pressure vs. time waveform.

Fig. 3.4 shows the respiratory cycle during PSV ventilation. When a pressure-support
breath is triggered, the MVM increases the pressure to the set Pinsp. Then, when the
patient’s inspiratory flow drops below 30% of its peak, the MVM ends inspiration and
returns pressure to the baseline, allowing exhalation. If the patient does not trigger a breath
within a set apnea-trigger time window, the MVM switches to PCV mode, and an apnea
alarm, which must be reset by the operator, is activated.

3.5 MVM electronics and software

Electronics and software are responsible for controlling valve systems, reading ventilation
parameters (e.g., pressure, flow, and oxygen concentration), generating audible and visual
alarms in hardware (including LEDs, and buzzers), monitoring the correct ventilation, and
interacting with the operator.

Both electronics and software are composed of three main macro-components:

• Graphical user interface (GUI), a touch-screen panel that displays the information
needed to check the respiratory condition, allows parameter setting, and displays
ventilation parameters and alarm settings.

• Controller, which receives operator input from the GUI, communicates with the
valve controllers, serial interfaces, and other sub-components, and sends to them
commands.
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• Supervisor, that monitors the overall behavior of the system and ensures that the
machine runs safely.

3.5.1 Hardware

The MVM operations are managed by an electronic board hosting all the components
required to measure the relevant quantities, drive input and output valves, and activate
visual and audio signals for the operator. The board houses a microcontroller (ESP32), a
Raspberry Pi 4, and the supervisor.

The ESP32 includes a dual-core 240 MHz microcontroller, 0.5 MB of RAM, Wi-Fi,
and Bluetooth connectivity that are deactivated, in order to comply with the regulations
on medical devices connectivity6. The ESP32-based solution is widely used in the IoT
environment, hence it is readily available, and is programmed using an Arduino core. A
USB connection between the ESP32 and the Raspberry Pi enables the transmission of
commands and settings from the GUI to the controller and the read-back of the system
status.

The supervisor board includes a microcontroller that is programmed with the standard
Arduino bootloader to allow firmware updates via an optoisolated serial connection with
the Raspberry Pi. This connection is also used to enable monitoring during the ventilation,
in order to check the safety of each ventilation state.

The power is provided by an external unit, equipped with a battery ensuring 2 hours of
autonomy, that generates two independent 12 V sources. One is regulated with step-down
converters to 3.3 V and 5 V, as required to operate the sensors and the ESP32. The other
one provides power to the valves, to the supervisor, and to the Raspberry Pi. In this way, a
failure of either of the supply lines would still leave a microcontroller active to alert the
operator and to return to a safe state.

Three I2C buses connect the sensors and the microcontrollers. The main I2C bus
connects the pressure sensors PI-1 and PI-2, and the flow-meter FI-1 to the ESP32. Two
ADCs connect to the main bus, digitizing the readings from the FiO2 analog oxygen sensor
and the PI-5 analog pressure sensor, and monitoring internal voltages. The main I2C bus
connects the supervisor to the controller, enabling the watchdog function. A priority bus
connects the PI-3 sensor to the ESP32 and allows it to be polled at frequencies over 1
kHz, as required by the fast proportional–integral–derivative pressure controller, used for
handling the input valve. A third dedicated I2C bus connects the supervisor to the PI-6
sensor and an ADC that monitors the board’s internal voltages. This auxiliary bus ensures
normal supervisor operation in case the main I2C bus freezes.

6For safety reasons, not all the certification standards allow using wireless connections to control medical
devices.
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Fig. 3.5 The high-level MVM software architecture

Fig. 3.6 The MVM GUI

The control boards include ON/OFF valve controls, current-feedback valve controllers,
and visual and audio alarm circuits.

3.5.2 Software

The high-level software architecture, shown in Fig. 3.5, illustrates the communication
among the three software components, namely the controller, the supervisor, and the GUI.

GUI

When the MVM is turned on, the graphical user interface guides the operator through
startup procedures, including setting operating parameters and alarm thresholds and per-
forming hardware and software self-tests, aiming at checking that every component of the
MVM works as expected.

The GUI home screen is divided into three parts, as shown in Fig. 3.6. The central
part displays the three monitored parameter waveforms (airway pressure, inspiratory
tidal volume, and airflow). A side panel displays the current value of other monitored
parameters, alarms, and warnings, while the bottom part is dedicated to parameter setting
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and to the menu buttons. The GUI is written in Python3, using the PyQt5 library, and
runs on a Raspberry Pi, chosen for its wide availability and its computing-power to
power-consumption ratio.

Controller

The controller software, implemented in C++, receives inputs from the GUI and interacts
directly with the hardware, by receiving patient breathing data and issuing commands, and
vice-versa. Its software is divided into four sub-modules:

• the interface allows the communication with the GUI and the supervisor;

• the monitor observes the sensors and the status of the system and triggers alarms;

• the control changes the respiratory phases using a state machine and controls valves;

• the hardware drivers open and close valves and raise visual and audio alarms.

The operation modes are implemented in the controller with a state machine. Fig. 3.7
shows the state machine modeled with the Yakindu Statechart Tool (Itemis AG). It interacts
with the valve controller, opens and closes the expiratory valve V-2, and sets the desired
pressure for the inspiratory valve V-1. The corresponding C++ code has been generated
from the state-chart model and integrated into the controller logic.

The state machine describes the states in which the device can operate and the transi-
tions between them. In particular, the machine starts in the StartUp state and needs to
complete all the SelfTests before operating, either in PCV or PSV mode. The SelfTests
take about ten minutes to complete, assuming the doctor already knows the parameters to
be set for the alarm thresholds and has been using the MVM before.

During the breathing cycle, the MVM controls the valve V-1 to increase the pressure
during the inspiration phase for the prescribed time duration. The actual tidal volume
depends on the patient’s response and on how quickly the regulator reaches the pressure set
point, Pset . To protect the patient, the device must never overshoot this point significantly,
by controlling the pressure peaks. To satisfy these objectives and constraints, the control
algorithm has been designed to reach Pset in a fixed rise time, and without overshooting. For
this reason, the MVM implements a control architecture composed of two nested control
loops, often used in safety-critical industrial products, that allows a simpler controller
tuning, based on first-principle considerations, and ensures sufficient robustness against
disturbances.

Fig. 3.8 shows the controller structure and the simplified parameters used to model
the patient’s lungs, namely linear resistance Rpat , and compliance Cpat . The outer loop
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Fig. 3.7 The Yakindu State Machine for the MVM controller

regulates the pressure at the patient by reading the value given by the PI-2 sensor, read at
300 Hz rate; it is controlled by a simple integrator, whose time constant depends only on
the desired rise time. On the other hand, the inner loop controller is a proportional-integral
regulator that is automatically tuned through patient parameters (Rpat and Cpat) and is fed
back with the pressure at the valve outlet PI-3, read at 1 kHz rate. To be adaptable to every
patient, patient parameters are automatically determined during the first three respiratory
cycles. To ensure patient safety during this phase, the inner controller parameters are
fixed and set to ensure smooth pressure rise in 300-500 ms, over the expected range of
Rpat and Cpat , with an overshoot always lower than 2 mbar. A recursive least-squares
method is used to estimate patient parameters, limiting memory use in the microcontroller.
Then, the identified Rpat and Cpat are used to tune the inner loop and the time constant
of the outer loop to reach a more desirable rise time of about 100 ms. Note that model
parameters, estimated after three respiratory cycles, can be continuously updated and
re-tuned as necessary, upon the doctor’s request.

Supervisor

The supervisor software is implemented in C++ and is responsible for monitoring the
controller, the GUI, and the hardware. In case of errors, it raises alarms if not already
raised by the controller or the GUI, ensuring patient safety. For instance, if the pressure
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Fig. 3.8 Schematics of the pressure controller of the MVM

in the circuit exceeds the maximum allowed value for a given duration, the supervisor
switches off the ventilation and brings the valves into the safe position (valve V-1 closed
and V-2 open), which allows the patient to breathe.

Like the controller, the supervisor has an integrated state machine that models its
behavior. After startup, it waits for the operator to start the self-test procedure. Then, the
supervisor alternates between two operation modes, namely breathing off (the MVM
is ready to work but it is not ventilating) and breathing on (the device is ventilating). To
ensure the patient’s safety, the supervisor can move into a fail-safe state from any state, in
case of errors.

Software certification

As already introduced in Sect. 2.2, every medical device must comply with the IEC
62304:2015 regulation. More details about the process followed, some of the lessons
learned from the certification effort, and guidelines will be reported in Chapter 4.

3.6 Device testing

Taking into account the hardware and software of the MVM as a whole, all standards
require a system testing activity, using different ventilation modes. During this activity,
failures are simulated, and the long-term durability of the device is demonstrated.

3.6.1 Software testing

In order to achieve the software certification and to assure the quality and reliability of the
MVM, a regular software testing process has been carried out together with the software
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Table 3.1 Acceptable ranges for the measured breathing parameters of interest

Parameter Range Units

PP ±(2+(4% o f set value)) cmH2O
PEEP ±(2+(4% o f set BaselineAirwayPressure value)) cmH2O
Vtidal ±(4+(15% o f measured value)) mL
RR ±(0.5+(5% o f set value)) min�1

I : E ±(0.1+(5% o f set value))

development. Indeed, as I will later present in details in Chapter 4, during the development
of the MVM we have followed an agile-like process, in which software development and
software testing, for each software unit, have been performed in parallel. Given that the
most of the participants to the development of the MVM were not software testers, no
particular methodologies (e.g., model-based testing, combinatorial testing, etc.) have been
adopted, but only simple test cases, written by hands and guided by the code coverage have
been used. This complex process lasted for more than two months, considering altogether
the testing activities.

3.6.2 Tests in PCV mode

The test setup that have been used in this phase is equivalent to that described in Fig.
201.102 in the ISO 80601-2-12:2020 reference standard [10]. In particular, the breathing
simulator (IngMar Medical - ASL 5000) is used both as a test lung (with settable compliance
and resistance) and as an independent sensor for pressure, flux, temperature, and oxygen
concentration.

This series of tests refers to the ISO reference standard, Section 201.12 for pressure-
controlled inflation-type testing, Subsection 201.12.1.102, verifying that the values of the
breathing parameters set and measured by the MVM agree within the declared accuracy
range. The only exception is the value of tidal volume Vtidal , which is not set in MVM,
for which the measured value is compared with the value independently measured by the
breathing simulator.

In Tab. 3.1 the acceptable ranges for the measured breathing parameters of interest
are reported. Out of the 21 tests in the ISO standard Table 201.105, only the first 11 have
been performed, as they are the ones involving tidal volumes in the range relevant for
MVM operation (50mLVtidal  500mL). For each condition, the testers ensured that the
breaths resulted in smooth and reproducible time traces, such as the one shown in Fig. 3.9.
Measurements were taken over 30 cycles under steady state conditions. The plateau
pressure (PP) and PEEP were measured in the last 50ms of the inspiratory and expiratory
phases, respectively, while Vtidal was obtained by averaging the MVM measurement over
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Fig. 3.9 Example waveforms from the breathing simulator with the MVM in PCV mode

30 cycles and compared to breathing simulator measurements, averaged over the same
cycles. RR and I:E were calculated from the collected waveforms using custom algorithms,
which has allowed testers to verify that the calculated values agree well with those from
the breathing simulator. When comparing the breathing simulator measurements to the
values set in MVM (or in the case of Vtidal , to the MVM reported value), all breathing
parameters have been found to be within the tolerances given in Tab. 3.1, for all 30 cycles.

3.6.3 Tests in PSV mode

In PSV mode, the patient actively initiates a breathing cycle by producing a decrease in
airway pressure. Then, the ventilator must readily recognize this decrease and provide
airflow support in a way not to stress the patient’s compromised respiratory system. The
MVM must also recognize the patient-driven end of the inspiratory phase and begin the
expiratory phase. To achieve a quick recognition of the patient breathing effort, a trigger
system based on the second derivative of the airway pressure with respect to time was
devised. Its sensitivity is set by varying the threshold on the maximum value of this
parameter.

A typical waveform of the MVM operating in PSV mode is shown in Fig. 3.10. Thanks
to the sensitivity of the trigger, even in the case of a patient’s breathing effort as low
as 2cmH2O, the MVM is able to recognize the effort within 100�200ms and starts the
inspiration by providing the desired pressure support.

3.6.4 Single-fault test condition based on ISO protocols

A medical device, regardless of its software, must be robust even w.r.t. specific single faults
conditions (see Section 201.13.2.101 of the ISO standard [10]). The tested conditions
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Fig. 3.10 Example waveforms from the breathing simulator with the MVM in PSV mode

relate to the disruption, disconnection, or bad connection of the external components,
such as the gas delivery to the patient pathway or the pressure to the patient sensors. The
tests performed ensure that when any one of the fault conditions is triggered, the system
successfully maintains the patient’s breathing parameters in the safety zone and triggers an
alarm. For this kind of testing, the fault conditions are induced manually by disconnecting
external components during the test operation, such as the PI-2 sensor. Once the default
conditions are restored, the ventilator performance is automatically re-established.

3.6.5 Long-term durability tests

As required by the standards, several units were continuously tested for a period of three
months. During this testing, the units met all the criteria defined for correct operation, as
no alarms of any kind were recorded.

3.6.6 Response of the MVM to an increased oxygen concentration

Paragraph 201.12.1.105 of the ISO standard [10] requires evaluating the ventilator’s speed
of response to a change in the FiO2 set point, i.e., the oxygen concentration. This test
involves measuring trise (i.e., the time required for the oxygen concentration in the lung
to rise from 21% to 90% when the input FiO2 is suddenly increased to 100%. This test
has been performed by connecting the MVM to a gas analyzer, which measures oxygen
concentration, and to an adjustable test lung, setting the parameters as in Tab. 3.2 in the
MVM, and starting it in PCV mode with FiO2 at 21%. Once steady-state conditions are
reached, FiO2 is then suddenly increased to 100%. The measured time trise for the oxygen
concentration to reach 90% during the expiratory phase is reported in Table 3.2.
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Table 3.2 Parameters used to test the MVM response to increase in FiO2

Vtidal [mL] I : E RR [min�1] Rpat [cmH2O/(Ls)] Cpat [mL/cmH2O] trise [s]

500 1:2 10 5 20 76
150 1:2 20 20 10 85

3.6.7 Evaluation of bio-compatibility

Bio-compatibility of breathing gas pathways of a brand-new MVM was assessed according
to the ISO 18562-3:2017 guideline [9]. The analyses were carried out using a thermal
desorption unit coupled to gas-chromatography and mass spectrometry detection, in accor-
dance with the ISO 16000-6:2011 guideline [8]. The tests showed that volatile emissions
from a brand-new MVM system are limited to a few chemicals, which mainly belong
to the siloxanes family. The presence of such chemicals was somehow expected, due to
the large use of silicones in biomedical devices. However, all values complied with the
permissible levels suggested by ISO 18562-3:2017 [9] and decreased after one day of use
as they were washed away from medical air.

3.7 Conclusion

The Mechanical Ventilator Milano, a novel intensive therapy mechanical ventilator de-
signed for rapid, large-scale, low-cost production for the COVID-19 pandemic, has been
conceived, designed, prototyped, and tested by a unique international collaboration of
scientists, medical specialists, and industrial partners. Due to its complexity, composition
of both hardware and software (structured as a set of several modules) and the success-
ful process of device certification, it is a complete example of a medical device, which
quality has to be assured. Thus, in the next chapters, I will often use it as a case study for
conducting further experiments.





Chapter 4

The software certification process:
lessons learned and guidelines

In this chapter, lessons learned during the development of the Mechanical Ventilator Milano
(MVM) are presented. Moreover, through validation activities, some empirical guidelines
for the development of medical devices are derived starting from the lessons learned.
These guidelines are proposed to be used under emergencies, but some of them can be
generalized to every software development condition. This chapter is based on [34, 36]
and is structured as follows. Sect. 4.1 introduces the work presented in this chapter, by
highlighting the objective and the research questions that have been used for the definition
of the lessons learned and guidelines. Sect. 4.2 presents the research methodology used by
me and the research team I was part of for the identification of the lessons learned, their
validation and the derivation of guidelines. In Sect. 4.3 and Sect. 4.4 the lessons learned
and guidelines that have been identified are respectively detailed and validated. Finally,
Sect. 4.5 concludes the chapter.

4.1 Introduction

The development of safety-critical devices, especially when they are used in the medical
domain, considers certification as a mandatory step [111, 89, 91] since a software failure or
malfunction can compromise the health of human beings that interact with it. In particular,
as reported in Sect. 2.2, in healthcare, devices must comply with the IEC 62304 [5] standard
and the FDA guidelines [13].

The importance of a well-documented and correct software life cycle in the develop-
ment of medical systems has been discussed in [157] and [115]. Literature confirms that
applying a well-documented life cycle is not limited to just assuring the safety and the
certification of medical devices [175], since adopting frameworks and the good principles
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of software engineering can help developers to compare different medical devices for iden-
tifying gaps between them and improve the capabilities of products [139]. However, one
may argue that using a well-documented and correct life cycle when developing medical
software under emergency (such as for the MVM case study during the COVID-19 pan-
demic – see Chapter 3) is a time-consuming activity that cannot be fully followed. In fact,
the focus on well-documented and regulated frameworks poses some constraints on the
adoption of agile software development techniques or requires the adaptation of selected
agile methods and practices [130]. Nevertheless, in the literature, we can find attempts
to apply agile practices also in medical software development planning, for example, by
integrating the more classical V-model with agile methodologies [131, 128].

In this chapter, I present the experience acquired during the work on the mechanical
ventilator and some of the lessons learned that aim to speed up the development process
while still satisfying the safety standards, even under emergency. By emergency, I mean
producing software under the following constraints: 1. the first hard constraint is time,
meaning that the software device should be produced as soon as possible; 2. the second
hard constraint concerns establishing a development team in a hurry, in an emergent and
voluntary fashion, based on the personal network, heterogeneous under various dimensions,
and composed of people that dedicate their private time to the project, while still continuing
their normal job. In other emergency situations, like hurricanes or earthquakes, there can
be additional constraints like lack of energy power or Internet connection, but this chapter
only presents lessons learned and guidelines derived from the MVM experience, and thus I
limit myself to the limitations observed during the MVM project.

In particular, this chapter tries to answer the following research question: "Are there
any empirical guidelines for developing medical software under emergency?". More
specifically, it can be detailed in the following three aspects:

• Which development process is most appropriate for the development of safety-critical
devices under emergency?

• How can the activities of the development process be performed in order to be
simplified and sped up under emergency, while still maintaining the rigorousness
required by certification standards?

• How to deal with a heterogeneous development team built in an emergent and
voluntary fashion?
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4.2 Research methodology

In this section, I present the research methodology followed during the work presented
in this chapter. It is based on a case-study approach [154] since it is considered the most
appropriate research methodology to study a phenomenon in its natural context, i.e., when
the phenomenon is difficult to study in isolation. Indeed, in the MVM project, it is difficult
to clearly and precisely identify and delimit in a real context the process and the activities
to be followed when producing software devices that are supposed to be compliant with
safety standards under emergency.

Fig. 4.1 Research Methodology

Fig. 4.1 presents an overview of the research methodology. In the following, the three
main steps of the researches presented in this chapter are explained in details.

4.2.1 Data collection and analysis

For identifying lessons learned and guidelines, data has been collected along the various
activities of the software development process, namely during requirements engineering,
architectural design, testing (unit, integration, and validation), implementation, documenta-
tion, and traceability checking. To provide an overview of the project activities that created
the data for this chapter, Table 4.1 summarizes the effort required in terms of (i) activities
performed; (ii) number of people involved in each activity; and (iii) deliverables produced
for documentation – each of these is a Microsoft Word document.

Collected data were heterogeneous: they consist of the various deliverables created for
the certification purpose and stored in a Google Drive shared – among the members of the
certification team – folder, but also of other items created during the project completion,
such as whiteboard sketches, notes (personal or shared within sub-teams), source code,
comments in the code, changes requests, test reports, emails, and so on.



40 The software certification process: lessons learned and guidelines

Table 4.1 Summary of the effort required for each phase

Activity # People Deliverables

System development plan 3 5
Supporting activities 22 12
System requirements 5 1
Software Architecture Design & Risk Management 10 3
Software Requirement Spec. 21 15
Software Detailed Design Impl. 18 N/A
Unit Testing 22 20
Integration Testing 11 2
Validation Testing 9 2

All this data allowed to formulate a set of lessons learned, which are reported in
Sect. 4.3, and to derive from them a set of guidelines, reported in Sect. 4.4.

4.2.2 Validation methodology for the lessons learned

Sect. 4.3.3 presents the validation of the lessons learned. They have been discussed in
three international events, where I and the development team members have been invited
to provide keynotes or invited presentations. Moreover, they have been validated through
lectures for PhD courses and seminars provided in three European universities. Finally,
the largest validation has been executed in the context of two courses for the Italian
engineering society, held in date September 20th 2021 and October 2nd 2021 as virtual
events, which had, overall, 56 attendees. During these courses, participants have responded
to questionnaires aimed at checking the level of agreement and importance of each lesson
learned (see the replication package [35]), by alternating sessions in which they were
provided with new content with validation sessions in which the questionnaires were filled.
In total, 56 complete answers have been analyzed to draw conclusions.

The data collected during the validation of the lessons learned enabled to formulate a
set of guidelines that may help during the development of safety-critical systems under
emergency. In Sect. 4.4, I present the guidelines and show how they have been synthesized
from the lessons learned.

4.2.3 Validation methodology for the guidelines

The guidelines have been validated via questionnaires (see the replication package [35])
and interviews. In particular, validation activities involved experts in the development
of safety-critical systems in healthcare, but also in other domains. Since the validation
process aimed at identifying patterns in the replies, it has been done through identical
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Table 4.2 Experts overview. The column year stands for “Years of experience in the
development of critical software". The IDs with asterisk are experts interviewed.

ID Years Industry/Academia/ Other Role

1 < 1 Open Source Ventilator Team
2 1-3 Industry Mechanical engineer
3* 4-5 Industry CTO
4 >20 Academia Director of Technology
5 <1 Academia Scientist
6 11-20 Academia Assistant professor
7 <1 Academia PhD student
8* <1 Academia Assistant professor
9 4-5 Academia Associate professor
10 <1 Academia PostDoc
11 4-5 Academia PostDoc
12 <1 Academia PostDoc
13 <1 Academia Associate professor
14 >20 Industry CTO
15 <1 Academia Associate professor
16* >20 Industry Program manager/Quality manager
17 1-3 Industry Developer
18 6-10 Industry System/Software architect
19 <1 Industry Developer
20 6-10 Industry Developer
21 11-20 Industry System/Software architect
22 1-3 Academia Assistant professor
23* 4-5 Academia Associate professor
24 1-3 Academia Assistant professor
25 6-10 Industry Developer
26 6-10 Industry System manager
27 11-20 Industry Developer
28 1-3 Industry CTO
29 11-20 Industry CTO
30* 1-3 Industry Developer
31 11-20 Academia Full professor
32* 11-20 Industry System manager
33* >20 High risk systems
34* >20 High risk systems
35 1-3 Academia Assistant professor
36 4-5 Industry Technical expert of software quality
37* 6-10 Industry System/Software architect

copies of the questionnaires that have been distributed to various groups of experts (i.e., (i)
experts in health care safety-critical systems, (ii) experts in safety-critical systems in other
domains, mostly automotive, (iii) experts in agile and safety-critical systems, (iv) experts
involved in the development of the MVM, (v) experts in computer science, and, finally,
(vi) developers of other ventilators under emergency) to grasp different points of view.

Table 4.2 provides an overview of the experts involved in the validation. In total, the
validation effort involved 37 experts, which are practitioners or academics, answering the
questionnaires (21 practitioners and 16 academics), and 9 of them accepted to be contacted
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for a video call interview (7 practitioners and 2 academics) to better understand their
responses and feedbacks. Those experts that performed an interview are highlighted by a *
symbol in Table 4.2.

Our questionnaires mostly contained closed-ended questions, except for an optional
open-ended question at the end of the two groups of questions which was inserted to collect
free comments from the participants. The interviews were driven by the content of the
questionnaires and their responses. For each interview, the main criticalities or stronger
agreements of the specific expert were then discussed in depth. The interviews have been
performed by a minimum of 4 co-authors: one co-author had the role of the driver of the
interview, supported by another and the other two co-authors were mainly responsible for
taking notes. At the end of each interview, the co-authors met to summarize the outcomes
and findings of the interview.

By analyzing the validation results on each guideline, here I discuss the benefits and
risks of each of them and clarify their scope (see Sect. 4.4.3).

4.3 Lessons learned

As presented in Sect. 4.1, during the development of the MVM, several actions and
activities have been carried out to ensure the quality of its software according to the IEC
62304 standard [5]. In this section, I present the process I and the research team I was
part of followed, all the performed activities with their relevant details, and the lessons
learned during them. Some of the activities are useful for the whole development process
(e.g., planning activities and tools definition), while others are more connected to a specific
development phase (e.g., requirement analysis or software design).

4.3.1 Development process

As required by the standards and regulations for medical software (see Section 2.2 for
more details), the first activity to be performed while developing medical software is the
definition of the software development process, together with all supporting activities
aimed at defining processes, task responsibilities, and tools to be used.

Software development planning

First, the device has been classified based on its potential to cause injuries, as required by
the IEC 62304 standard. Starting from the safety classification and taking into account the
activities required by the IEC 62304 standard (which are summarized in Sect. 2.2.1 and in
Fig. 2.1), the MVM as a whole has been classified in class C since death or serious injury
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Fig. 4.2 MVM software development process

is possible. Considering the safety class and the mandatory activities, the team has defined
the development process to be adopted, depicted in Fig. 4.2, which integrates the classical
V-model with agile practices, aiming at improving the rapidity and flexibility of software
development, while still guaranteeing the expected safety of the device.

The list of activities included in the adopted software development process is as follows:

1. Software Development Planning, which regards the entire MVM and maps to activity
5.1 in the standard, including all supporting activities;

2. System requirements and Software architectural design, which refer to the MVM as
a whole and define the desired components, after a risk analysis has been performed;

3. Software requirements analysis and Software detailed design, which are performed
for each of the components previously identified during the architectural design
phase;

4. Software implementation and Unit testing, which are performed for every component
of the MVM;

5. Integration and Validation testing, which are performed by integrating all software
components with the hardware and by testing the system as a whole.

For each phase of the process, the software development plan defines the tasks to be
performed, the inputs necessary for its execution, and the deliverables expected when the
phase is completed. As shown in Fig. 4.2, the adopted process model recalls a V-model,
in which all the activities required by the standard are mapped to process phases. For
each software component, the identified development process allowed the teams to work
iteratively (inner dark circle in Fig. 4.2) to guarantee the conformance among requirements,
architecture, design, and implementation. The integration between the V-model and agile
practices favored flexible responses to changes, due to the need to develop the ventilator as
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quickly as possible, caused by the fact that the work on the MVM was performed during an
emergency. In this way, the MVM team could better parallelize the process in an agile-like
mode and foster a collaborative approach. Moreover, agile practices are considered by
the outer circle in Fig. 4.2 as well: after validation/system testing all the processes can
be re-executed one or more times to integrate solutions to detected problems. At the end
of the day, the MVM team combined various models of software development processes,
namely the V-model with agile practices and model-driven development (mostly for the
state machine component, such as the one reported in Fig. 3.7).

Lesson learned 1: 1. IEC 62304 and V-Model: The development process was
strongly influenced by the IEC 62304 standard, so the V-model, although not
mandated, is the “best fit” with regulatory requirements as it produces the necessary
deliverables required when seeking regulatory approval. 2. Use of agile practices:
However, it was necessary to integrate the V-model with agile practices, to combine
efficiency, quality, maintainability, and flexibility.

Teams definition and meetings planning

During this activity, the teams have been defined, as well as their composition. Seven
subgroups were created ad-hoc during the project, taking into account competencies,
workload, and availability of individuals. For each group, the coordination team identified
a group leader, which was responsible for meeting deadlines and for reporting the progress
to the project coordinator, and an activity to be assigned to each of them. The first
group was in charge of defining the software development plan, supporting activities, and
performing the risk analysis; the second group had the goal to define software requirements;
the software architecture specification was designed by group three, while group four
developed the MVM software. Groups five and six run software unit testing, integration
and system testing, respectively. Finally, another group prepared the operational and
maintenance manual.

Then, the coordinators have defined the structure and schedule of the meetings. The
entire MVM team met daily (including holidays) for 1 hour from 5 PM to 6 PM CET
to check the status of the project and set the goals for the next day. The project leaders
went through the task list (see Fig. 4.3) to check the status of each task and to check if
some obstacles emerged. Moreover, each sub-team had to organize task-specific meetings
to synchronize their work at other times of the day. Because of the lockdown due to
the COVID-19 emergency in Italy, only a few in-person meetings were organized (and
authorized by the special national commissioner). Moreover, since the teams included
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Fig. 4.3 Excerpt of the task list

people (mainly) from Europe and America, only the late afternoons and nights were
suitable for online meetings.

The aspect that made the MVM project particularly challenging was related to the
characteristics of the team. In fact, the teams were multidisciplinary and heterogeneous,
involving people with different backgrounds, including physicians, physicists, electronic
engineers, and computer scientists, and composed of volunteer people motivated by the
social nature of the project and by their passion.

Lesson learned 2: 1. Coordination effort: The project was successful, but there was
a quite huge overhead of coordination, with various calls every day from the morning
to evening. The coordination of the team should not be underestimated. Open-source
software development could be a good development experience from which projects
of this nature can learn. 2. Enlarging team: The experience on the development of
the MVM has confirmed what is reported in the Mythical Man-Month [61]: adding
people is not necessarily a good solution to improve the efficiency and effectiveness
of a team. 3. Commitment and participation: Having responsibilities for each
sub-activity and setting strict intermediate goals have favored commitment and
participation.

Supporting activities

In parallel to the definition of the development process, a set of supporting activities
has been identified: project management, the definition of a change control process, the
definition of the development environment, and the definition of code guidelines. These
activities are related to the production of documents, guidelines, and processes to be used
throughout the software life cycle.

Initially, the teams selected the tools supporting them in project management. The
management team initially had evaluated the use of a project management tool like Jira,
but in the end, decided to use only a combination of more accessible tools, considering
the heterogeneity of the group and the non-expertise of all the members with dedicated
software, like Google Drive, GitHub, Zoom, and Slack. For modeling system requirements
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and system architecture, UML (Unified Modeling Language) has been used, and it turned
out to be understandable also for people not experts in software engineering. We have put
all the documents on Google Drive and the code on GitHub, which provides hosting for
software development and version control using Git. This allowed people from all over the
world to contribute to the development of different parts of the software. This approach
has allowed keeping track of all the changes in the code, which is really useful to manage
and control the software development process. Moreover, GitHub has also been used to
manage issues and to signal addings or fixes to the software. Furthermore, a continuous
integration system has been established using Travis CI1 (Continuous Integration).

For all the activities that foresee a document as output, the team decided to apply
two review steps. The first was performed internally by a designated member of the
team. Once the document was approved, the Design Authority (Elemaster - one of the
companies involved in the MVM production) was in charge of reviewing such documents
and producing the Review Acceptance document containing all the comments. Later, the
comments were addressed and possibly included in a new version that was resubmitted
again to the Design Authority. This process was performed iteratively until the Design
Authority approved the final version of the document.

Considering that several activities of the software development life cycle were supposed
to produce a document as a result, the coordination team needed to produce document
templates. The initial templates for the documents were kindly provided by the Canadian
Nuclear Laboratories (CNL) sub-team, which has great experience in critical software
certification (not in the medical field, though). This greatly helped to speed up the process
from the start. To keep track of the links among requirements in the documents, during
the development of the MVM, a CNL collaborator developed an in-house tool. This tool
reads each document subject to traceability and generates a traceability matrix for the
requirements. The tool has been daily executed to illustrate the existing links and report
missing or faulty links.

Lesson learned 3: 1. Multiplicity of tools: The use of a great variety of tools (one
tool for each particular purpose) even if not integrated and not specific for software
project management, has provided indispensable support to the team. 2. Templates
and review process: Having a partner that provided all the necessary templates and
a clear review process has helped to define which activities should be performed.
3. Use of UML: Standard graphical notations like UML have shown to improve
communication and to be easily usable by non-software experts (very skilled in
other fields, though) too.

1https://travis-ci.org/

https://travis-ci.org/
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4.3.2 Development phases

After having performed the activities described above, which generally refer to the devel-
opment process, we have tackled the activities required by the process presented in Fig. 4.2.
In the following, activities and lessons learned on each phase of the development process
are presented.

System requirements (5.2)

One of the obstacles encountered during the first implementation of the MVM was the
lack of well-defined and traceable system requirements. This caused a lot of confusion
between the developers of different components, and some operations did not meet the
requirements of the standards that regulate the ventilator development.

According to point 5.2 of the IEC 62304 [5] standard, the system requirements analysis
has been performed to define the requirements of the device at a higher level of abstraction.
In this phase, the team has defined functional, performance, safety, and cybersecurity
requirements, the overall structure of the system, environmental conditions, materials, and
human factors. Furthermore, each requirement has been uniquely identified by a number,
which has been used for traceability purposes during the whole software development
process.

Writing complete software requirements has allowed the MVM team to identify con-
ceptual bugs in the first prototype of the ventilator. For example, the MVM team has
discovered that the prototype was faulty because, in case of failure of one of the compo-
nents, the system was not able to put itself in a safe mode, so that the valves are positioned
to allow the patient autonomous breathing. For this reason, the necessity to have an
additional component, namely the supervisor, came out. This required a change of the
initial electronic board with the introduction of a small microcontroller devoted to assuring
the safety of the device.

During the writing of system requirements, reverse engineering some parts of the proto-
type has been useful in order to get a complete and consistent requirement specification of
the device operation. It has been applied when no enough information was available, and
this was the case, for example, for the specification of the alarms. The reverse engineering
process also helped to reveal details useful to specify the duration of a trigger window,
namely the time interval within which spontaneous breathing can be detected (in PCV
mode - see Chapter 3 for more details on the ventilation modes).

Lesson learned 4: 1. Written requirements: Not having written requirements
since the beginning led to various attempts to address the requirements in different
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software components. For this reason, precise system requirements are also very
important in an emergency situation. Having developers referring to the same
written documents without inconsistencies reduces the development time. 2. Reverse
engineering: For systems for which a prototype is available, especially if it is
developed by domain experts, reverse engineering has shown to be a viable solution
to discover the functionalities and configuration parameters to be included in the
requirements of the system. 3. Need of a traceability system: A traceability system
helps developers to trace all the requirements and their changes throughout the
development process.

Software Architecture Design (5.3)

Based on the requirements identified during the System requirements analysis (see Sect. 4.3.2),
the architecture of the MVM has been designed to be composed of three main software and
hardware units, namely Graphical User Interface (GUI), Control Software (Controller), and
Supervisor Software (Supervisor). The overall representation of the Software Architecture
is reported in Fig. 3.5.

The GUI is the software running on the touch screen panel. It displays information
to the doctors like airway pressure, minute volume, positive-end expiratory pressure
(PEEP) for the most recent breath, respiratory rate (RR), and peak inspiratory pressure.
Furthermore, the user can use it to set ventilation and alarm parameters and thresholds.
On the other hand, the controller receives user input from the GUI, e.g., the start/stop
ventilation command. It implements the state machine of the ventilator behavior (see
Fig. 3.7), which has mainly three regions: ventilation off, ventilating in PCV mode, and
ventilating in PSV mode. Based on the current state, it opens/closes the input and output
valves. In addition, the controller is responsible for managing ventilator alarms in case of
errors.

Finally, the supervisor monitors the overall behavior of the system, checks if the
controller, the GUI, and the hardware are working as expected, and, in case of errors, it
raises alarms. Furthermore, the supervisor forces the machine into a safe mode to prevent
patient injuries in the event of errors of the other units during ventilation.

Lesson learned 5: 1. Upfront aspects balancing: As we can learn from software
architecting, it is important to go towards “just-in-time architecture" [144] and to find
a balance between upfront aspects (what is planned before the start of development)
and emerging aspects (what appears as decisions are taken in the course of the
development, e.g. by fixing wrong assumptions or making decisions deliberately
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postponed) [178]. 2. Importance of the architecture: Software architecture is still
important even during emergency development. In fact, the development team has
experimented that without a well-defined architecture (as for the prototype), it was
not clear how software components were supposed to synchronize and exchange
information among them.

Risk management (7)

The IEC 62304 standard requires each component to be classified based on the potential
to cause injuries. Table 4.3 reports the safety class for each of the three components of
the MVM. In particular, both the GUI and the controller are classified as class A software
because their behavior, despite affecting the operation of the machine, does not cause
patient injuries, since safety-critical tasks and decisions are previously approved by the
supervisor. On the other hand, the supervisor is the most critical component, since it both
forces the machine into a safe mode to prevent patient injuries in case of errors during
ventilation and intervenes in case of GUI and controller failures, so it is classified as class
C.

Lesson learned 6: 1. Safety assurance effort: Isolating safety-critical features, by
organizing the system in different components, has allowed the testing team to focus
the safety assurance effort on a limited portion of the system.

Software Requirement Analysis (5.2) & Software detailed design (5.4)

After having identified the components and their safety class, the third activity in the
development process consists of specifying for each software component the requirements
in a separate document, detailing those introduced in the system requirements. The
documents of Software Requirement Analysis and Software detailed design contain different
types of requirements, among which there are functional and capability requirements,
software inputs and outputs, interfaces between software and other components, alarms
and warnings, user interface requirements, and requirements related to system installation

Table 4.3 MVM software units and their safety classifications

Software unit Safety class

GUI A
Controller A
Supervisor C
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Fig. 4.4 Detailed MVM software architecture

and maintenance. In order to increase the understandability, also for team members not
used in reading software requirements, state machines have been widely used to define the
behavior of GUI, Controller, and Supervisor. Alternatively, the teams have used diagrams
and drawings, and in few cases a more powerful tool, such as Yakindu (more in Sect. 4.3.2),
which has allowed to identify both states and events that trigger the change of state. For
each state in every diagram, the MVM team has defined the detailed behavior, the user
inputs, the expected outputs, performance, and failure conditions. Furthermore, for each
software component, the software unit interfaces have been defined, to ensure that the
software subsystem will communicate properly with external components. In Fig. 4.4 a
more detailed architecture of the software components of MVM is reported.

The doctors interact with the User Interface sub-component, and the interaction is
handled by the GUI controller and the Interface component, which manages the connection
with the control software - via a USB serial port - and with the Supervisor - via a UART
interface. The monitor module is used to supervise the interaction with the GUI.

The Control sub-component implements the logic of the Control Software (Controller).
It is in turn composed of two sub-components: the valve controller and the state machine.
The former controls the valves, while the latter controls the transition between operation
modes (i.e., ventilation off, running in PCV mode, and running in PSV mode). The
controller receives user inputs from the GUI, e.g. the start/stop ventilation command.
The vital signs of the patient are checked by the monitor sub-component, and, in case of
errors, ventilator alarms are raised by the controller. The controller also interacts with the
hardware through the Hardware Drivers component to open or close the input and output
valves.

Finally, the Supervisor Software (Supervisor) component gets measurements from the
Hardware Drivers component, monitors both the hardware devices and the patient breath,
and, when needed (e.g., when switching to the safety mode), raises alarms and changes
parameters of the controller and the GUI.
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Table 4.4 Lines of code of the MVM software units

Lines of code
Software unit Prototype Released version Language

GUI 14,347 26,027 Python
Controller 4,653 14,331 C++
Supervisor NA 2,689 C++

Lesson learned 7: 1. Modularity and parallelization: Designing a product in a
modular way has been a successful decision, since, in a distributed project (such
as the one of the MVM) it has allowed different teams to work in parallel on
different parts of the system. 2. State machines for wide interpretability: Using state
machines, for specification and design, has contributed to favoring the discussion
on the adopted solutions, even with people not used to software development, since
graphical representations are easily understandable.

Implementation (5.5)

Due to the necessity of adhering to the certification standard, several parts of the software
which were already available before the re-engineering effort needed to be changed. Ta-
ble 4.4 reports the lines of code of the three main software units (before the re-engineering
effort and at the end).

The GUI unit is written using the PyQT5 framework in Python. It is a set of Python
bindings for Qt5, which allows access to many aspects of modern desktop and mobile
systems2. In addition to the functionalities already present in the prototype, several new
functionalities expected by the software requirement specifications have been added. For
example, many alarms have been changed, in terms of thresholds and behavior. Moreover,
to avoid problems in the communication between GUI and controller, a new protocol
used by the GUI to send/receive messages to/from the controller, and implementing the
guidelines defined in the IEC 61784 standard [4], has been devised.

The majority of the re-engineering activities have been performed over the controller
unit:

• The state machine sub-component has been completely rewritten. The development
team has introduced the use of the Yakindu Statechart tool3 for its implementation,
as shown in Fig. 3.7. In detail, after the startup and the self-test phases, the machine
is put in the ventilation-off mode. From there, it can go either to the PSV or PCV

2More info at: https://pypi.org/project/PyQt5/
3https://www.itemis.com/en/yakindu/state-machine/

https://pypi.org/project/PyQt5/
https://www.itemis.com/en/yakindu/state-machine/
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modes, depending on the choice of the doctor and on the patient’s condition. Inside
these modes, there are other sub-states (including inspiration and expiration). After
having modeled the state machine component, its C++ code has been automatically
generated from the Yakindu model.

• The valve controller sub-component has been modified, accordingly to the hardware
modifications. For example, a new controller tuning method has been implemented.

• The alarms have been updated and adapted since they have to comply with those
that have been added or modified in the GUI code. In particular, all the alarms have
been implemented to comply with the IEC 60601-1-8 [2] and ISO 80601-2-12 [10]
standards.

As previously introduced, in the re-engineered MVM version, the supervisor has been
developed in C++ from scratch, and it required the addition of two different software serial
lines: one used to communicate with the GUI and one with the controller.

Lesson learned 8: 1. Mix of programming languages: Using several programming
languages in a single project is usually discouraged [127]. However, in an emergency
(such as during COVID-19) in which the products have to be delivered as soon as
possible, we have experienced that having more languages allows the inclusion of
more developers and speeds up the implementation process, with only a minimal
effort in the integration of the code. 2. Coding standards and guidelines: Sharing the
coding standards and guidelines (e.g., the importance of comments [149]) with all
the people involved in the implementation phase is of key importance, in particular
with heterogeneous development groups, even during emergency development.
3. Advantages of state machines in implementation: State machines added flexibility
and maintainability since it was very simple to modify them and then regenerate
code, which was directly integrated, through a wrapper, into the hand-written code.

Unit Testing (5.5)

Aiming at introducing CI/CD techniques in the development process, a continuous integra-
tion system on Travis CI has been configured to guarantee that new software implementa-
tions did not compromise the functioning of the already existing code. This way, every
commit made on each component brought forth a new re-execution of all the unit tests. In
fact, the testing activities have been executed in parallel with the implementation, since
every test failure has required corrections in the code, and it has been performed against
the unit software requirement specifications.

As MVM has different components, each written in a different programming language,
its testing has been performed using several testing frameworks. The testing team has



4.3 Lessons learned 53

unit-tested the GUI using PyTestQt4, which has allowed to simulate users by faking clicks
on the buttons and testing that the behavior of the GUI was the one expected. To test the
controller and the supervisor, the hardware has been mocked to emulate the interaction
with it. Controller and supervisor test cases was written using the Catch2 framework5 and
the Trompeloeil mocking library6.

All the testing failures have been tracked using the GitHub issues tracking system, and
this has allowed the testing team to monitor the progress of the fixes in the software.

Lesson learned 9: 1. Testing not only safety-critical components: Defining in ad-
vance the safety classes of all components of the developed system can significantly
increase the speed of testing activities. In fact, medical software safety standards do
not mandate extensive unit testing for class A components. Thus, a good practice is
to design the system in a modular way, isolating all the non-dangerous functions
(i.e., in class A) that testers can limitedly check. 2. Importance of testing: Besides
what is required by standards, testing activities are important when performed for
safety-critical components. This is a consolidated aspect when working with soft-
ware engineers but not for all the people composing heterogeneous teams such as
the MVM ones. 3. Advantages of CI tools in community projects: As MVM has
been a community project, where a lot of people have worked at the same time on
the same system, CI tools have proved to be crucial for maintaining under control
the modifications made by all developers.

Integration (5.6) & Validation Testing (5.7)

During integration and validation testing, hardware and software components have been
incrementally integrated. While developing the MVM, the main challenge has been the
need of having the hardware available, since some of the software components included in
the controller or supervisor require direct interaction with it. This is particularly true for
the final integration steps, while for the first integration phases the HW can be ignored and
just simulated. Thus, final integration testing phases have been performed on-site, only
by the people working in the company that produces the MVM, or by the ones that had a
physical version of the ventilator.

During the development of a medical device that interacts with patients, one should
simulate not only hardware and interaction with the doctors but also the patients. For this
purpose, an active lung simulator (such as the ASL 5000 [78]), or a passive mechanical

4https://pypi.org/project/pytest-qt/
5https://github.com/catchorg/Catch2
6https://github.com/rollbear/trompeloeil

https://pypi.org/project/pytest-qt/
https://github.com/catchorg/Catch2
https://github.com/rollbear/trompeloeil
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one, has been used. The results of the integration testing activities, for each one of the
test cases, have been reported in Integration Test Procedure and Integration Test Report
documents.

With validation testing, the whole system has been tested as a unit, to confirm the
correct behavior of MVM according to the system requirements. This activity must be
performed over a real physical version of MVM, without any hardware simulation, and
simulating patient breath using the ASL 5000 active lung simulator. It has been guided
by the ISO 80601-2-12 standard [10], to prove the basic performance and usability of the
ventilator.

Lesson learned 10: 1. Integration testing for SIMDs: It is particularly challeng-
ing to develop and validate software-in-medical devices (SIMDs) and, in general,
systems that integrate hardware, software, and mechanics by distributed teams.
Often, real hardware is needed for testing the software that is affected or affecting a
piece of hardware. Software-in-the-loop simulation is often a good solution to this
challenge; however, it is not a solution, in general. In fact, simulation requires a
special setting with professional simulation tools and an accurate hardware model.
They are not always readily available, especially in a context in which the hardware
is under development as the software is. Furthermore, as we can learn from robotics,
“Current simulation solutions are not capable of emulating real-world phenomena
in a sufficiently realistic manner. " [92].

4.3.3 Validation of the lessons learned

After having defined the lessons learned (in the following, referred to as LL), their valida-
tion has been performed with a variety of experts (appertaining to the Italian engineering
society) during two seminars, by following these three steps:

1. Additional questions have been asked to investigate the opinions of experts before
presenting lessons learned;

2. The lessons learned have been presented;

3. Each expert evaluated the importance and agreement with the presented lesson
learned.

The percentages of agreement/disagreement with the presented LL are reported in Fig. 4.5a.
The results gathered show that, generally, the participants (strongly) agreed with the LL,
except in a few cases. In particular, some participants disagreed with LL.2.1 (Coordination
effort) and LL.2.2 (Enlarging team). The former because they were skeptical of using
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(a) Agreement with each lesson learned (b) How much is the LL important?

Fig. 4.5 Importance of the lessons learned

open-source software instead of more specific ones, and the latter because they thought
that having as many people as possible would lead to faster results. The opinions received
highlighted that it was confusing to ambiguously talk about teams without clearly dis-
tinguishing between coordination and development teams. LL.3.1 (Multiplicity of tools)
created the most disagreement, mainly because it was not clear the context where different
tools would be used. Many participants did not agree with the use of UML (LL.3.3)
because other visual notations could be used, even if they are not recognized as a standard
in the community. For LL.6.1 (Safety assurance effort) and LL.7.1 (Modularity and paral-
lelization) there were only few disagreements. Finally, for LL8.1, the validation highlights
that the use of multiple programming languages can lead to integration problems.

The behavior of Fig. 4.5a is reflected in Fig. 4.5b. Not surprisingly, for some partici-
pants, lessons learned with disagreement in Fig. 4.5a are also not that important: LL.3.1
(Multiplicity of tools), LL.3.3 (Use of UML), LL.6.1 (Safety assurance effort), and LL.7.1
(Modularity and parallelization). Exceptions are LL.2.1 (Coordination effort) and LL.2.2
(Enlarging team) for which many participants did not agree, although they retain them
important issues. On the opposite, they agree/strongly agree with LL.3.2 (Templates and
review process), but some of the participants do not think that it is important for critical
software development under emergency.

4.4 Guidelines
Exploiting the feedback received during the validation of lessons learned, in this section,
I present the guidelines for developing medical devices under emergency derived from
each lesson learned. For deriving guidelines, lessons learned have been grouped, filtered,
and modified. Table 4.5 reports how the validation activities have been used to obtain the
corresponding guideline.
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Table 4.5 Mapping between lessons learned and guidelines for developing medical software
under emergency

Lessons learned Validation result Guidelines

LL.1.1 IEC 62304 and V-Model
LL.1.2 Use of agile practices

Merge the two lessons learned
LL.1.1 and LL.1.2 into a unique
guideline.

GL1 Plan-driven/predictive and
agile integration

LL.2.1 Coordination effort
LL.2.2 Enlarging team
LL.2.3 Commitment and partici-
pation

Distinction between coordination
team and development team in
terms of responsibilities and ac-
tivities.

GL4 Resources initial estima-
tion
GL5 Coordination team and
plan
GL6 Responsibilities assign-
ment
GL7 Flexible development
teams

LL.3.1 Multiplicity of tools Distinction between tools for co-
ordination and communication of
the coordination team and of de-
velopment teams.

GL8 Inter-team coordination
and communication
GL9 Intra-team coordination
and communication

LL.3.2 Templates and review
process

Clarification of what to do when
existing templates are not avail-
able and a review process is not
already established.

GL2 Review process
GL3 Documentation templates

LL.3.3 Use of UML Generalization to visual/graphical
notation in general

GL11 Use visual and graphical
notations

LL.4.1 Written requirements
LL.4.2 Reverse engineering

Merge the two LLs. GL12 Precise requirements and
reverse engineering

LL.4.3 Need of a traceability
system

Recommendation of a practice
(traceability system) that was not
extensively used during the ini-
tial development of the MVM but
deemed to be important.

GL10 Define a traceability sys-
tem

LL.5.1 Upfront aspects balanc-
ing
LL.5.2 Importance of the archi-
tecture
LL.7.1 Modularity and paral-
lelization

Clarification of how to manage
changes in software architecture
and introduction of communities
of practice as an instrument to
evaluate the impact on architec-
ture and to assess and validate ar-
chitectural decisions.

GL13 Define an architecture up-
front
GL14 Limit the upfront architec-
ture to stable decisions
GL15 Update the architecture
GL16 Exploit communities of
practices

LL.6.1 Safety assurance effort Reformulation of the lesson
learned.

GL17 Isolate safety-critical
parts
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LL.7.2 State machines for wide
interpretability
LL.8.3 Advantages of state ma-
chines in implementation

Identification of the two main
uses of state machines.

GL18 Use state machines in
specifications
GL19 Use state machines for
code generation

LL.8.1 Mix of programming lan-
guages

Specification of some caveats
(e.g., when it does not make in-
tegration difficult).

GL20 Different programming
languages

LL.8.2 Coding standards and
guidelines

Reformulation of the lesson
learned.

GL21 Coding standards and
guidelines

LL.9.1 Testing not only safety-
critical components
LL.9.2 Importance of testing
LL.9.3 Advantages of CI tools in
community projects
LL.10.1 Integration testing for
SIMDs

The lessons learned overlapped in
some way and the research team
has identified the need for a better
organization of them. This led to
the reformulation of the lessons
learned in three more clear guide-
lines.

GL22 Continuous integration
and unit testing
GL23 Focus on testing activities
GL24 Role of emulators

Overall, based on the validation of the lessons learned, in the guidelines, a clear
distinction has been made between the coordination team and the development team.
The former is more structured and stable, while the latter is more agile and dynamic.
Furthermore, the validation of the lessons learned has been used as precise and specific
feedback in the formulation of the guidelines.

As well as for the lessons learned, the guidelines are divided into those referred to
specific phases of the development process and those concerning the process in general.

4.4.1 Development process

GL1 Plan-driven/predictive and agile integration: Integrate plan-driven/predictive
processes with agile practices, to combine rigorousness with efficiency and flexibility. The
integration of different processes allows one to benefit from the good characteristics of both
plan-driven [33] (or predictive [132]) and agile processes. A mix of different development
processes has already been proposed in the literature. For example, the pros and cons
of blending agile and waterfall processes are discussed in [148, 114], while in [131] the
authors integrate agile and the V-model.

GL2 Review process: Define a clear review process to identify the activities that
should be performed. A clear review process allows to speed up the development since
when a review is required before continuing with the next activities, the steps to follow are
already well known and it does not become a bottleneck. It also offers an efficient way to
improve the quality and effectiveness of the development process [109].
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GL3 Documentation templates: Reuse and/or adapt existing templates, when avail-
able, for producing the documentation required by certification standards and processes,
otherwise produce precise templates to be adopted by the entire project. Considering
that saving time is important, especially under emergency, it is better if there are already
established templates that can be reused (for example, given by a collaborating company).
This aspect is usually underestimated, especially for agile-based software development
processes [121] that claim not to produce a lot of structured documentation. However,
for safety-critical software, the regulations require producing a great amount of deliver-
ables that cannot be avoided. If templates are not available, it is recommended to define
them before starting the development process in order to know from the beginning which
information must be reported.

GL4 Resources initial estimation: Estimate the competencies, resources, and com-
mitment of the various team members in the initial phases of the project, since potential
new members should be added in this initial phase. Despite the emergency, in fact, it is
important to invest some time in this upfront activity during the startup phase, as intro-
ducing members during the development process could increase the time-to-market due
to the time required to understand the project. This guideline is confirmed by many other
researchers, such as in [61] and [126].

GL5 Coordination team and plan: Define the coordination team and the coordination
plan of the team upfront and in the startup phase. Despite the emergency, the coordination
team must be ready to work as soon as possible and there must be clear indications for
the development teams. The lack of precise indications could lead to misunderstandings
and increase the time required to complete the project. The same conclusions have been
observed by [134] and [163], in which the importance of coordination teams is highlighted.

GL6 Responsibilities assignment: Assign precise and stable responsibilities to the
members of the coordination team. The coordination team should be as stable as possible
to avoid delays that can easily propagate to the development teams. The importance of
building a coordination team is well known in the literature. In particular, most of the
research works consider the presence of effective leaders who both steer development and
motivate developers crucial to ensure a successful product [120].

GL7 Flexible development teams: Development teams can be created according to
the needs during development and members should be prepared to help in various tasks
according to their availability and competencies. In every iteration or sprint, team members
can be assigned to different tasks. Development teams should work agile and change
should be the norm rather than the exception. Under emergency, there are strong timing
constraints and agility and flexibility within the development team can greatly help. The
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idea of flexible development teams is widely adopted in agile processes, especially when
the software has to be produced for an emergency, e.g. the COVID-19 pandemic [169].

GL8 Inter-team coordination and communication: Define the communication and
coordination instruments, tools, and protocols for inter-team coordination. When working
in different groups, there is the need for clear and stable instruments, tools, and protocols
for communication and coordination among the different teams. Many of the responses
received from the surveys about LL3.2 (see Sect. 4.3), i.e., the lesson learned from
which this guideline derives, complained about the use of multiple tools, instruments, and
protocols. For this reason, the guidelines isolate the inter-team coordination, for which the
coordination mechanisms must be fixed, and the intra-team communication (see GL9 for
further details). Each project may require specific mechanisms for inter-team coordination,
such as the one proposed in [141].

GL9 Intra-team coordination and communication: Delegate to the members of the
development team the selection of instruments and tools for development and intra-team
coordination and communication. Within the development teams, members should be able
to select the development, communication, and coordination instruments and tools they
like. This could be considered counter-intuitive, but it can help in saving a lot of time,
since no training in a specific instrument or tool is necessary for the development team
members. Note that coordination and communication inter-team must be fixed a priori, as
defined by GL8. Guaranteeing a certain grade of autonomy is a well-established principle
in agile-based development teams, even if there are still a lot of challenges to be faced
when implementing autonomous teams [162], mainly related to inter-team tasks.

4.4.2 Development phases

GL10 Define a traceability system: Define upfront and in the startup phase a trace-
ability system for the entire development. Traceability is of key importance in the de-
velopment of safety-critical systems, both for security and certification purposes. Then,
from the initial phases of the project, there is a need for a traceability system for the
entire development. In fact, even under emergency, traceability information can be used to
support the analysis of implications and integration of changes that occur in the system, its
maintenance and evolution, and its testing activities. This guideline is recognized as valid
from several works in the literature, such as [161] and [105].

GL11 Use visual and graphical notations: Use, when possible, visual, graphical,
and easy-to-understand notations (e.g., UML) for communication among team members
with heterogeneous expertise and competencies. The importance and wide interpretability
of graphical notations is universally recognized. This is even more important during an
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emergency, when teams can be composed of members with different backgrounds and
knowledge. In this case, graphical notations might facilitate communication among team
members [71].

GL12 Precise requirements and reverse engineering: Write precise system require-
ments also in an emergency situation. If a prototype exists, use reverse engineering to
extract useful information. Requirements are important to guide the development and
the validation phase. Even if in agile processes is common to skip or not to focus on
requirement specifications, although under emergency, the requirements must be written
in a precise way. This guideline is particularly useful for safety-critical systems since
certification authorities require a set of documents among which there are the requirements.
The necessity of precise (even formal) requirements has been advocated for a long time,
for example, in [142, 20].

GL13 Define an architecture upfront: Define an architecture upfront to allow
different teams to work in parallel on different parts of the system and facilitate integration.
When working under emergency, every aspect that could increase the rapidness of the
development is important. For this reason, a clear identification of components and
interfaces might help development teams in being faster, by working independently and in
parallel. The upfront architecture should be as stable as possible (see GL14), but teams
must be prepared to adapt it in the event of a change in requirements [84].

GL14 Limit the upfront architecture to stable decisions: Limit the upfront archi-
tecture to stable decisions while paying attention to concerns that matter across team
borders. An architecture description can be considered a boundary object between multiple
cross-functional teams: it can be used to create a common understanding across sites while
preserving each team’s identity [178]. For this reason, an upfront architecture should be
limited to stable decisions, and then it should be updated with emerging aspects. The
upfront architecture should include aspects that influence coordination and those interfaces
that are shared among different teams (see GL13).

GL15 Update the architecture: Integrate system architects into teams to capture
emerging aspects during development and update the architecture accordingly. Since the
upfront architecture should be limited to stable aspects, architects, or those team members
playing the role of architects and taking architectural decisions, should capture emerging
aspects during development and update the architecture accordingly [179].

GL16 Exploit communities of practices: Exploit communities of practices to reason
about changes that impact the architecture, and to assess and validate architectural
decisions. In order to reduce assumptions that can become inconsistencies, it is important
to carefully assess decisions before setting them into stone. Community of practices is a
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good instrument to enable architects to reason about changes [178]. They can be effectively
used to solve issues that span over multiple teams [107].

GL17 Isolate safety-critical parts: Isolate safety-critical features in specific compo-
nents or modules to focus the safety assurance effort on a limited portion of the system.
Safety standards often require different levels of attention and different validation activities.
The isolation of safety-critical features in specific components or modules permits limiting
the validation and certification activities, and therefore saving time under emergency devel-
opment. The aim is similar to the well-known practice of using a security kernel with the
desire to isolate and localize all “security-critical" software in one place [155].

GL18 Use state machines in specifications: Use state machines to specify modes
and mode transitions in the requirement specification. State machines are used in various
domains and are good tools for easily communicating complex behaviors, especially when
development teams are heterogeneous. Moreover, if some kind of formal verification is
needed, with state machines (or equivalent methods), it can be easily performed [19].

GL19 Use state machines for code generation: Use, when possible, executable state
machines to specify the main functional logic and the critical part of the system, and
then generate code from them. Based on the MVM experience, the use of executable
state machines promotes modifiability, maintainability, and understandability (see GL18).
In particular, tools like Yakindu SCT7 or other state-machine-based tools can be a good
choice when it comes to developing a critical part of the system, as they allow generating
automatically actual code [37, 44], which can be verified and tested at state-machine-
side [171].

GL20 Different programming languages: Allow the use of different programming
languages to facilitate the inclusion of heterogeneous developers and speed up the im-
plementation process, when this does not create integration problems. When the use of
different programming languages does not create integration problems, e.g. when code
produced with different languages is deployed on different hardware components or when
the communication mechanisms between modules are language-independent, it would
be beneficial to allow development teams to use languages they are familiar with [127].
As explained in LL8.1 in Sect. 4.3, when developing software under emergency, with
heterogeneous development teams, exploiting the competencies that every member has in a
particular programming language can aid in reducing the time required for the completion
of the project.

GL21 Coding standards and guidelines: Adopt coding standards and guidelines
from the beginning. Safety standards often require coding standards and, in general, they
promote the quality of the code. Using coding standards and guidelines can increase

7https://www.itemis.com/en/yakindu/state-machine/
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the readability of the code, which is important for code inspections and static analysis.
Moreover, even under emergency, if the composition of the development teams is het-
erogeneous, defining in advance coding standards and guidelines is useful for preventing
possible errors or hardly-understandable code. The importance of adhering to coding
standards from the beginning is highlighted by many researchers, such as in [52], where
the authors empirically assess their value and suggest not to insert them at a later time as
any modification (aimed at adapting the software to the chosen coding standards) has a
non-zero probability of introducing a fault or triggering a previously concealed one.

GL22 Continuous integration and unit testing: Use CI tools and automated unit
testing in order to continuously integrate the contributions of the various teams, to keep
and promote quality, and to maintain under control the modifications made by all the
developers. CI tools and automatic testing instruments enable various teams to work in
parallel without breaking the code and permit to avoid the big bang integration problem.
The importance of continuous integration is highlighted in [82], where CI tools are claimed
to be effective, since they allow a shorter time between the possible introduction of a bug
in the system and its detection. This is of paramount importance, especially for complex
safety-critical systems developed under emergency and in a distributed way.

GL23 Focus on testing activities: While guaranteeing the quality of the entire system,
testing activities should focus on safety critical components as required by the standard.
Safety critical components are those that require major attention, in terms of quality and
test effort. Parts of the system that are not critical can follow classic quality management
recommendations. Focusing software testing activities on critical components is often used
in practice, especially when companies want to reduce their time-to-market [86]. Anyhow,
testing is important on all components of a safety-critical device, regardless of the safety
classification.

GL24 Role of emulators: When possible, use simulators and/or emulators, but plan for
integration, system, and acceptance testing phase. Simulators and emulators can speed up
development and validation, but are often limited and integration, system, and acceptance
testing cannot be performed using them. This is a well-known aspect of integration testing
for safety-critical systems, such as for trains and ships [80], or automotive [158]. Especially
if the system under development is composed of hardware and software, the testing in
the field activity must be planned and performed in the real environment, with the real
hardware.
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Fig. 4.6 How do you agree/disagree with the GL?

4.4.3 Validation of the guidelines

Validation via questionnaires

After having defined the guidelines, they have been validated using two different ways,
namely through questionnaires and interviews as explained in Sect. 4.4.3. During the
questionnaires, the participants have been asked about their agreement with each guideline,
using a Likert scale (from strongly disagree, to strongly agree). The results of these surveys
are presented in Fig. 4.6. The agreement level for each guideline is generally lower than
the one on the lessons learned (see Fig. 4.5a). This was somehow expected since the
guidelines are given in a more affirmative and prescriptive style. Moreover, this is also
due to the wider experience and expertise of the involved experts during questionnaires
which have been involved in order to collect different points of view. However, in all cases
(except for GL20), the agreement levels remain very positive.

Validation via interviews

To further investigate the results obtained during the questionnaires, some of the partici-
pants have accepted to be interviewed (see Sect. 4.4.3) to examine the reasons for which
they were particularly agreeing or disagreeing with the proposed guidelines. Tab. 4.6 and
Tab. 4.7 summarize the opinions collected in terms of the benefits expected if one follows
the guideline and the risks. Especially for the guidelines with the lower agreement (like
GL20), thanks to the direct interaction with the experts, the summary tables better identify
the limits and circumscribe their intended use. This will enable users of the guidelines
to carefully assess how each guideline should be applied to their project. For instance,
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for GL20 I here report a typical scenario in which it can be followed, i.e., when different
programming languages are used on different hardware components.

Table 4.6 Benefits and risks of the guidelines on the development process

Guideline Benefits Risks

GL1 Plan-
driven/predictive and
agile integration

• It enables to benefit from the
good characteristics of predic-
tive and agile processes.

• It could result in an inefficient
approach if the advantages/disadvan-
tages of both processes are not well
known.

GL2 Review process • It permits to clearly define the
review process to speed up the
development.

• Misidentification of activities if in-
experienced people are in charge of
the review process.

GL3 Documentation tem-
plates

• Precise templates permit to
speed up the development while
guaranteeing quality.
• Reusing templates allows sav-
ing time and building on consol-
idated experience.

• Too specialized templates may not
include all the information required by
certification standards.
• Produce precise template is time-
expensive.

GL4 Resources initial esti-
mation

• Despite the emergency, invest-
ing some time in this upfront ac-
tivity in the startup phase permits
to speed-up the development pro-
cess, as well as reduce risks.

• Sometimes the competencies and re-
sources needed for a project may be
unknown when it is in its initial stage,
or their estimation may be not com-
pletely reliable.

GL5 Coordination team
and plan

• This permits to have a coordi-
nation team ready to work and
have clear indications for the de-
velopment teams.

• Sometimes the project can be not
well defined at the beginning, and thus
it can be difficult to define upfront
who to insert into the coordination
team.

GL6 Responsibilities as-
signment

• Having the coordination team
as stable as possible permits
avoiding delays that can easily
propagate to development teams.

• Some new tasks and responsibility
may emerge during the development.

GL7 Flexible development
teams

• When development teams
work agile, they are ready to deal
with frequent and unavoidable
changes.

• Moving a developer from one task
to another can be difficult, if the de-
veloper is not familiar with the new
one.
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GL8 Inter-team coordina-
tion and communication

• Having clear and stable in-
struments, tools, and protocols
for communication and coordi-
nation among different teams
permits to easily communicate
and focus on development activ-
ities.

• The chosen tools may be not the
optimal ones for all the needs or users.

GL9 Intra-team coordina-
tion and communication

• Allowing development teams
to select the development, com-
munication, and coordination
instruments for the intra-team
work permits them to work in
their comfort zone.

• Some certification standards require
the use of only certified tools during
all activities of the software life cycle.
In these cases, only a limited set of
certified tools should be chosen.
• It can be difficult to retrieve the in-
formation at a later time if no specific
tools are used.
• The freedom to choose the instru-
ments is beneficial in the short term
but can be chaotic in the long term and
in big companies.

Table 4.7 Benefits and risks of the guidelines on the development phases

Guideline Benefits Risks

GL10 Define a trace-
ability system

• It is important to properly man-
age traceability from the initial
phases of the project.

• The traceability system might require tun-
ing and adaptation during the entire devel-
opment.
• When the traceability system is not prop-
erly defined, some people will not follow it,
and it will become useless.

GL11 Use visual and
graphical notations

• Graphical notations might
facilitate the communication
among team members with dif-
ferent background and knowl-
edge.

• Focus modeling on the most important
parts, otherwise the return on investment
may be questionable.

GL12 Precise re-
quirements and
reverse engineering

• Requirements are important to
guide the development and vali-
dation phase.

• Writing precise requirements may require
a lot of time for complex systems.
• If people not experienced in the field are
involved, writing precise requirements up-
front could be difficult.
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GL13 Define an ar-
chitecture upfront

• A clear identification of com-
ponents and interfaces might
help development teams to work
independently and in parallel.

• It can be difficult to define all the com-
ponents upfront since sometimes the need
for a new component emerges during the
development.

GL14 Limit the up-
front architecture to
stable decisions

• An architecture description can
be used to create a common un-
derstanding across sites while
preserving each team’s identity.

• The upfront architecture can become ob-
solete and misaligned with the implementa-
tion.

GL15 Update the ar-
chitecture

• This enables to enrich the up-
front architecture with aspects
emerging during development
and update the architecture ac-
cordingly.

• Development team members should inter-
act with software architects, as some emerg-
ing aspects may be not seen by them.

GL16 Exploit com-
munities of practices

• Community of practices (CoP)
enables architects to reason
about changes and to reduce as-
sumptions that can become in-
consistencies.

• When the CoP is not clearly connected
to the management team, it will become
less effective and will only play the role of
knowledge dissemination.

GL17 Isolate safety-
critical parts

• The isolation of safety-critical
features in specific components
or modules permits to limit the
validation and certification activ-
ities.

• It could result in creating a single point
of failure, which should be avoided.

GL18 Use state ma-
chines in specifica-
tions

• State machines are used in var-
ious domains and are a good in-
strument to easily communicate
complex behaviors.

• In general, only limited parts of a system
can be modeled using state machines.
• Consider the artifact as a living object,
since it will require to be changed during
the development.

GL19 Use state ma-
chines for code gener-
ation

• The use of executable state
machines promotes modifiabil-
ity, maintainability, and under-
standability.

• Some certification standards may require
the use of certified tools for developers, and
generating code from state machines can be
inapplicable in this case.
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GL20 Different pro-
gramming languages

• When the use of different pro-
gramming languages does not
create integration problems, e.g.,
when the code is deployed on
different hardware components,
it would be beneficial to allow
developers to use familiar lan-
guages.
• It allows using a language that
fits better with the specific needs
(e.g, to avoid using C for GUI
programming).

• Some certification standard requires the
certification of the compiler to be used by
developers. In this case, using different pro-
gramming languages should be avoided.
• If coding guidelines are followed, one
should assure that they are available for all
the chosen programming languages.
• Using various programming languages
might also make code review activities
more difficult.

GL21 Coding stan-
dards and guidelines

• Coding standards are often re-
quired by safety standards and,
in general, promote the quality
of the code.

• Following coding standards may slow-up
the development process if developers are
not used to them.

GL22 Continuous in-
tegration and unit
testing

• CI tools and automatic test-
ing instruments enable various
teams to work in parallel with-
out breaking the code, and per-
mit to avoid the big bang integra-
tion problem.

• For complex systems it may be difficult
to initially set up the continuous integration
environment.

GL23 Focus on test-
ing activities

• Safety-critical components are
those that require major atten-
tion. Parts of the system that
are not critical can follow classic
quality management recommen-
dations.

• The usability of a system is affected also
by non-safety-critical components, thus fo-
cusing only on the critical ones may reduce
it.

GL24 Role of emula-
tors

• Simulators and emulators can
speed up development and vali-
dation, but, integration, system,
and acceptance testing are un-
avoidable.

• Simulators may be slightly different from
the real environment (e.g., noises and inter-
ferences can be difficult to be simulated)
and testing using them can be not com-
pletely reliable.

4.5 Conclusions

In this chapter, I presented the reengineering process me and my research team needed
to apply in order to make the MVM safe and fitting to the requirements of the medical
software certification standards (see Sect. 2.2 for more details). This process led us to
derive some lessons learned that can be useful and should be considered before starting
the development of a medical device. To make these lessons learned more applicable,
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this chapter also presents some more prescriptive guidelines, which are given for medical
systems, but can be easily extended to all the safety-critical software.

The most important take-away message from this experience is that injecting all the
activities needed to certify a medical device after it has already been produced is very
difficult and time-consuming. In fact, very often the certification effort is not limited only
to paper work but requires refactoring and reengineering the device in a complex way.
Thus, developing the medical software in a way coherent with the certification standards
from the beginning is always the best choice. Therefore, in the next chapters, I will present
methods (mainly model-based) that can be used from the beginning in order to comply
with the requirements of certification standards and to produce documentation during the
development process.



Part II

Model-based systems engineering for
PEMS





Chapter 5

Abstract State Machines for MBSE

In Chapter 4, I have presented the lessons me and my research team learned during the
development of a real medical device, namely the MVM. From those lessons learned, we
have derived a set of guidelines to be considered for speeding-up the development process,
while still remaining compliant to the standards required for medical software certification.

In the guidelines, I have highlighted the importance of structuring the development
process in a way that traceability is assured, software requirements are specified before
starting the actual software implementation, and formal notations (such as state machines)
are used. For this reason, in this chapter, the use of Model-Based System Engineering
(MBSE) and, in particular, of Abstract State Machines are presented for dealing with the
development and the safety assurance process of PEMS. MBSE methods allow developers
to guarantee a defined level of quality, since verification and validation activities are
straightforward, and, moreover, using a model-based approach allows one to produce
documentation (useful for the certification of medical devices – see Sect. 2.2) in an
easier manner. The work presented in this chapter is based on [19] and [42] and is
structured as follows. Sect. 5.1 introduces the use of MBSE techniques for PEMS. Then,
Sect. 5.2 presents the ASMETA framework, based on Abstract State Machines, which
can be used for performing MBSE activities during the development process of PEMS.
The use and functionalities of the framework during the design time are presented in
Sect. 5.3, while Sect. 5.4 explains how ASMETA can be applied at development-time
for automatically generating code from models. Finally, Sect. 5.5 presents the use of the
ASMETA framework for runtime simulation at operation time, and Sect. 5.6 concludes the
chapter.
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Fig. 5.1 Safety assurance MBSE process during system’s life cycle

5.1 Introduction

Failures of safety-critical systems, such as medical devices, could have potentially large
and catastrophic consequences, such as human hazards or even loss of human life (see
Sect. 2.1.1 for some example) [118]. To ensure safe operation and avoid dangerous
consequences of system failure, medical safety-critical systems need development methods
and processes that lead to provably correct systems. Rigorous development processes
require the use, for example, of formal methods, which can guarantee, thanks to their
mathematical foundation, model preciseness, and properties assurance.

A particular aspect of medical devices is that the use of formal methods can be more
challenging since “system safety” is not only “software safety” but may depend on the
use of the software within its untrusted and unreliable environment, which may include a
possible patient. However, even in these cases, developers and testers should be sure that
the developed systems comply with their specifications. Since this process may be difficult
to be carried out, automatic techniques based on formal models are classically used by
developers.

This approach is commonly referred to in the literature as Model-based systems engi-
neering (MBSE), i.e., the formalized application of modeling to support system require-
ments, design, analysis, verification, and validation activities, beginning in the conceptual
design phase (modeling) and continuing throughout the development and later phases of
the life cycle. Fig. 5.1 outlines this process, showing the three main phases of the Design,
Development, and Operation of a system life cycle. In particular, the following phases are
identified:

• During the design phase, systems models are created, verified, and validated;
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• During the system development phase, models, which have been already validated
and verified, are eventually used to derive correct-by-construction code/artifacts of
the system and/or to check that the developed system conforms to its models;

• During the operation phase, models introduced at design-time are optionally exe-
cuted in tandem with the system to perform analysis at runtime.

Throughout this assurance process, stakeholders and system developers jointly derive and
integrate new evidence and arguments for analysis (D); system requirements and models
can eventually be adapted according to the knowledge collected. Hence, requirements and
models evolve accordingly throughout the system life cycle.

This safety assurance process requires the availability of formal approaches with
specific characteristics in order to cover all the three identified phases: models should
be possibly executable for high-level design validation and enriched with properties
verification mechanisms; models should be operational-based in order to support easily
code generation from them and model-based testing activities; state-based methods are
suitable for co-simulation between model and code and for checking state conformance
between model state and code state at runtime. In principle, different methods and tools
can be used in all the three phases; however, the integrated use of different tools around
the same formal method is much more convenient than having different tools working on
input models with their own languages and writing several translators. For this reason, this
chapter and all the experiments on MBSE presented in this thesis are entirely based on the
ASMETA1 framework, which is introduced and detailed in the following sections.

5.2 The ASMETA framework

This section recalls the origin of the ASMETA project [ASMETA] and the basic concepts
of the ASM method on which it is based. The tools composing the ASMETA framework
will also be presented under the light of the safety assurance process.

The ASMETA project started in 2004 with the goal of overcoming the lack of tools
supporting the ASM formalism. At that time, the formal approach had already shown
to be widely used for the specification and verification of a number of software systems
and in different application domains [56]; however, ASMs were not considered suitable
for practical use, since there was a lack of tools supporting them. The main goal of
the ASMETA project was to develop a textual notation for encoding ASM models, by
exploiting the Model-driven Engineering (MDE) approach [156], to develop an abstract
syntax of a modeling language for ASMs [96] in terms of a metamodel, and to derive from
it a user-facing textual notation to edit ASM models. Then, from the ASM metamodel and

1ttps://asmeta.github.io/

ttps://asmeta.github.io/
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by exploiting the runtime support for models and model transformation facilities of the
open-source Eclipse-based environment, ASMETA has been progressively developed till
now as an Eclipse-based set of tools for ASM model editing, visualization, simulation,
validation, property verification, and model-based testing [25].

In order to support a variety of analysis activities on ASM models, ASMETA is
integrated with different external tools, such as the NuSMV2 model checker for performing
property verification, and SMT solvers (e.g., Yices3) to support correct model refinement
verification and runtime verification. For this purpose, ASMETA mainly supports a
black-box model composition strategy based on semantic mapping, i.e., ASM models are
automatically transformed to be compatible with the input formalism of the target tool, the
analysis is performed by the tool, and then the analysis results are lifted back to the ASM
level.

5.2.1 Background concepts for Abstract State Machines

The computational model at the base of the ASMETA framework is that of the Abstract
State Machines (ASMs) formal method, which was originally introduced by Yuri Gurevich
as Evolving Algebras [102].

ASMs are mainly based on two concepts:

• ASM states, which replace unstructured FSM control states with algebraic structures,
i.e., domains of objects, together with functions and predicates defined on them.

• ASM location, defined as a pair (function-name, list-of-possible-parameter-values),
which represents the ASM concept of the basic object container, and the couple
(location, value) is a memory unit.

Note that, given the two definitions above, an ASM state can be viewed as a set of abstract
memory units.

State transitions are performed by firing transition rules, which represents a modifica-
tion of the interpretation of functions from one state to the next, and therefore they change
the value of specific locations. Location updates are given as assignments of the form
loc := v, where loc is a location and v its new value. They are the basic units of rules
construction and can be combined for building more complex rules. By a limited but pow-
erful set of rule constructors, location updates can be combined to express other forms of
machine actions as: guarded/conditional actions (if-then, switch-case), simultaneous
parallel actions (par and forall), sequential actions (seq), and non-deterministic actions
(choose).

2https://nusmv.fbk.eu/
3https://yices.csl.sri.com/

https://nusmv.fbk.eu/
https://yices.csl.sri.com/
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Functions that are not updated by rule transitions are considered as static. On the other
hand, the functions that are updated are defined as dynamic, and distinguished in monitored
(read by the machine and modified by the environment), controlled (read and written by
the machine), shared (read and written by the machine and its environment).

An ASM computation (or run) is defined as a finite or infinite sequence S0,S1,

. . . ,Sn, . . . of states of the machine, where S0 is the initial state and each Sn+1 is ob-
tained from Sn by firing the set of all transition rules invoked by a unique main rule, which
can be seen as the starting point of the computation.

It is also possible to specify state invariants as first-order logic formulas that must
be true in each computational state. A set of safety assertions can be specified as model
invariants, and a model state is safe if state invariants are always satisfied.

ASMs allow modeling different computational paradigms, from a single agent to dis-
tributed multiple agents. In particular, a multi-agent ASM is a family of pairs (a,ASM(a)),
where each a of a predefined set Agent executes its own machine ASM(a), specifying the
agent’s behavior, and contributes to determine the next state by interacting synchronously
or asynchronously with the other agents.

ASMs offer several advantages over other automata-based formalisms: (1) due to their
pseudo-code format, they can be easily understood by practitioners and can be used for
high-level programming; (2) they offer a precise system specification at any desired level
of abstraction; (3) they are executable models, so they can be co-executed with system
low-level implementations [152]; (4) model refinement (see Sect. 5.3.1 for more details) is
an embedded concept in the ASM formal approach; it allows for facing the complexity
of system specifications by starting with a high-level description and then proceeding
step-by-step by adding further details till a desired level complexity and completeness
has been reached; (5) ASMs support the concept of ASM modularization, i.e., they allow
for defining an ASM without the main firing rule, which facilitates model scalability and
separation of concerns, so tackling the complexity of big systems specification; (6) they
support synch/async multi-agent compositions, which allows for modeling distributed and
decentralized software systems [27].

5.2.2 ASMETA toolset

Fig. 5.2 gives an overview of the ASMETA tools by showing their use to support the
different activities of the safety assurance process, e.g., for medical devices.

At design-time, ASMETA allows for using a number of tools for model editing and
visualization (the modeling language AsmetaL, its editor AsmetaXt and compiler AsmetaC,
and the model visualizer AsmetaVis for graphical visualization of ASM models), model
validation (e.g., interactive or random simulation by the simulator AsmetaS, animation by
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Fig. 5.2 ASMETA tool-set

the animator AsmetaA, scenario construction using the Avalla language, and validation
by the validator AsmetaV), and verification (e.g., static analysis by the model reviewer
AsmetaMA, proof of temporal properties by the model checker AsmetaSMV, proof of correct
model refinement process by AsmRefProver).

At development-time, ASMETA supports automatic code and test case generation from
models (the code generator Asm2C++, the unit test generator ATGT, and the acceptance test
generator AsmetaBDD for complex system scenarios). The code automatically generated
can be used in a variety of embedded systems (e.g., Arduino).

Finally, at operation-time, ASMETA supports runtime simulation (with the simulator
AsmetaS@run.time) and runtime monitoring (using the tool CoMA).

The analysis techniques and associated tooling strategies supported by ASMETA are
described in more detail in the next sections.

5.3 ASMETA @ design-time

System design is the first activity of the MBSE process supported by ASMETA. During
this phase, users can model the desired system using the AsmetaL language and refine
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every model, which can be visualized graphically and analyzed with several tools for
verification and validation.

5.3.1 Modeling

Starting from the functional requirements, ASMETA allows the user to model the system
by using, if needed, model composition and refinement. Furthermore, models can be
visualized through the AsmetaVis tool. As an example, the MVM case study (see Chapter 3
for more details) is used to show the ASMETA functionalities in the following.

Modeling language

System requirements are modeled in ASMETA using the AsmetaL language and the
AsmetaXt editor. Listing 5.1 shows a preliminary example of the abstract AsmetaL model
of the MVM, in which only the PCV mode is implemented (see Chapter 3 for further
details on ventilation modes). The model, identified by a name after the keyword asm, is
structured into four sections:

• The header, where the signature (functions and domains) is declared, and the external
signature is imported (see the description of the modularization technique below);

• The body, where transitions rules, possible concrete domains and derived functions
are defined;

• A main rule, which defines the starting point of the machine;
• The initialization, where a default initial state (among a set of possibile states) is

defined.
As previously described in Sect. 5.1, each AsmetaL rule can be defined by using a set

of rule constructors to express the different machine action paradigms.

Modularization

ASMETA supports the mechanisms of modularization and information-hiding, by exploit-
ing the module notation. In fact, when requirements are complex or when separation of
concerns is desired, users can organize the model in several ASM modules and join them,
by using the import statement (see Listing 5.1), into a single main one (also defined as
machine). The main asm is declared as asm, it imports the other modules and may access
to functions, rules, and domains declared within the sub-modules. Indeed, every ASM
module may contain definitions of domains, functions, invariants, and rules, while the
ASM machine is a module that additionally contains an initial state and the main rule,
representing the starting point of the execution.
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asm MVM0
import StandardLibrary

signature:
// TIMER

enum domain Timer = {
TIMER_INSPIRATION_DURATION_MS,
TIMER_EXPIRATION_DURATION_MS,
TIMER_TRIGGERWINDOWDELAY_MS}

domain MyTime subsetof Integer

// DOMAINS

enum domain States = {STARTUP , SELFTEST ,
VENTILATIONOFF , PCV_INSPIRATION ,
PCV_EXPIRATION , OFF}

enum domain Modes = {PCV}
enum domain ValveStatus = {OPEN , CLOSED}

// FUNCTIONS

dynamic monitored poweroff: Boolean
dynamic monitored startupEnded: Boolean
dynamic monitored selfTestPassed: Boolean
dynamic monitored resume: Boolean
dynamic monitored startVentilation: Boolean
dynamic monitored stopVentilation: Boolean
dynamic monitored mode: Modes
dynamic monitored pawGTMaxPinsp: Boolean
dynamic monitored dropPAW_ITS_PCV: Boolean
dynamic controlled time: MyTime
dynamic controlled stopVentilationRequested: Boolean
dynamic controlled state: States
dynamic controlled iValve: ValveStatus
dynamic controlled oValve: ValveStatus
controlled start: Timer−> MyTime
static durationTIMER_INSPIRATION_DURATION_MS :

MyTime
static durationTIMER_EXPIRATION_DURATION_MS: MyTime
static durationTIMER_TRIGGERWINDOWDELAY_MS :

MyTime
derived expiredTIMER_INSPIRATION_DURATION_MS :

Boolean
derived expiredTIMER_EXPIRATION_DURATION_MS: Boolean
derived expiredTIMER_TRIGGERWINDOWDELAY_MS :

Boolean

definitions:
domain MyTime = {0:600}
function durationTIMER_INSPIRATION_DURATION_MS = 20
function durationTIMER_EXPIRATION_DURATION_MS = 40
function durationTIMER_TRIGGERWINDOWDELAY_MS = 10

function expiredTIMER_INSPIRATION_DURATION_MS = (
time >= start(TIMER_INSPIRATION_DURATION_MS)
+ durationTIMER_INSPIRATION_DURATION_MS)

function expiredTIMER_EXPIRATION_DURATION_MS = (time
>= start(TIMER_EXPIRATION_DURATION_MS) +

durationTIMER_EXPIRATION_DURATION_MS)
function expiredTIMER_TRIGGERWINDOWDELAY_MS = (time

>= start(TIMER_TRIGGERWINDOWDELAY_MS) +
durationTIMER_TRIGGERWINDOWDELAY_MS)

macro rule r_reset_TIMER($t in Timer) = start($t) := time

// RULE DEFINITIONS

rule r_startupEnded = state := SELFTEST

rule r_ventOffRequested = stopVentilationRequested := true

rule r_ventOffPCV = par
state := VENTILATIONOFF
stopVentilationRequested := false

endpar

rule r_ventOffFT = state := VENTILATIONOFF

rule r_turnOff = par
iValve := CLOSED
oValve := OPEN
state := OFF

endpar

rule r_PCVinsp = par
state := PCV_INSPIRATION

iValve := OPEN
r_reset_TIMER[TIMER_INSPIRATION_DURATION_MS]

endpar

rule r_PCVinspOValve = par
r_PCVinsp[]
oValve := CLOSED

endpar

rule r_PCVexp = par
state := PCV_EXPIRATION
oValve := OPEN
r_reset_TIMER[TIMER_EXPIRATION_DURATION_MS]
r_reset_TIMER[TIMER_TRIGGERWINDOWDELAY_MS]

endpar

rule r_PCVexpIValve = par
r_PCVexp[]
iValve := CLOSED

endpar

// MAIN Rule

main rule r_Main = par
time:= time+1
if poweroff then r_turnOff[]

//if stop ventilation is requested and current state is expiration

//go to state VENTILATIONOFF immediately

else
if state=PCV_EXPIRATION and (stopVentilationRequested or

stopVentilation) then
r_ventOffPCV[]

else par
//if ventilation stop is requested and ventilation is on,

store

//the stop request in the function stopVentilationReq.

if stopVentilation then
if state!=PCV_EXPIRATION and state!=STARTUP

and state!=SELFTEST and state!=
VENTILATIONOFF then r_ventOffRequested[]
endif endif

//transition from startup to selftest

if state = STARTUP then
if startupEnded then r_startupEnded[] endif endif

//transition from selftest to ventilation off

if state = SELFTEST then
if (selfTestPassed or resume) then r_ventOffFT[] endif

endif

//start ventilation, in PCV mode

if state = VENTILATIONOFF then
if startVentilation then

if mode = PCV then r_PCVinspOValve[] endif endif
endif

//transition from inspiration to expiration

if state = PCV_INSPIRATION then
if expiredTIMER_INSPIRATION_DURATION_MS

then
if mode = PCV then r_PCVexpIValve[] endif

else if pawGTMaxPinsp then r_PCVexpIValve[] endif
endif endif

if state = PCV_EXPIRATION then
if expiredTIMER_EXPIRATION_DURATION_MS then

r_PCVinspOValve[]
else

if expiredTIMER_TRIGGERWINDOWDELAY_MS
then if dropPAW_ITS_PCV then
r_PCVinspOValve[] endif endif endif endif
endpar endif endif endpar

default init s0:
function time = 0
function state = STARTUP
function iValve = CLOSED
function oValve = OPEN
function stopVentilationRequested = false
function start($t in Timer) = 0

Listing 5.1 AsmetaL specification for the MVM case study

Modeling time with ASMETA

From our experience, of which the work presented in this thesis is an important part,
ASMETA can be effectively used for modeling real-world PEMS. However, many real
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module TimeLibrary
import StandardLibrary
export ∗
signature:

abstract domain Timer
enum domain TimerUnit={NANOSEC,

MILLISEC, SEC, MIN, HOUR}
monitored mCurrTimeNanosecs: Integer
monitored mCurrTimeMillisecs: Integer
monitored mCurrTimeSecs: Integer
monitored mCurrTimeMins: Integer
monitored mCurrTimeHours: Integer
controlled start: Timer−> Integer
controlled duration: Timer −> Integer
controlled timerUnit: Timer −> TimerUnit
derived currentTime : Timer−> Integer
derived expired: Timer −> Boolean

definitions:

function currentTime($t in Timer) = if (timerUnit($t)=NANOSEC) then
mCurrTimeNanosecs
else if (timerUnit($t)=MILLISEC) then mCurrTimeMillisecs
else if (timerUnit($t)=SEC) then mCurrTimeSecs
else if (timerUnit($t)=MIN) then mCurrTimeMins
else if (timerUnit($t)=HOUR) then mCurrTimeHours
endif endif endif endif endif

function expired($t in Timer) = (currentTime($t) >= start($t) + duration($t))

macro rule r_reset_timer($t in Timer) = start($t) :=
currentTime($t)

macro rule r_set_duration($t in Timer, $ms in Integer) =
duration($t) := $ms

macro rule r_set_timer_unit($t in Timer, $unit in TimerUnit) =
timerUnit($t) := $unit

Listing 5.2 ASMETA TimeLibrary

systems, especially those in the safety-critical and medical domains, rely on time con-
straints. For this reason, in the ASMETA framework, the TimeLibrary

4 (see Listing 5.2)
has been introduced. It contains the basic constructs necessary to handle time features
in ASMETA specifications: i) monitored functions to manage the time in different time
units (nanoseconds, milliseconds, seconds, minutes, and hours); ii) an abstract domain
Timer useful to introduce user-defined timers; iii) some functions and rules to operate on
timers, like checking if a desired amount of time is passed, resetting and starting a timer,
and setting the timer duration and time unit. The implemented solution allows users to use
different time units in the same ASM specification, and it guarantees consistency between
them during model simulation. Moreover, this mechanism ensures that in a defined state,
all time functions refer to the same time instant, no matter what time unit is used. A simple
example using the time monitored functions is shown in Listing 5.3, representing a clock
displaying at each step the current hours, minutes, and seconds.

asm simpleClock
import TimeLibrary

signature:
controlled clockHours: Integer
controlled clockMins: Integer
controlled clockSecs: Integer

definitions:
main rule r_main =

par
clockHours:=mCurrTimeHours mod 24
clockMins:=mCurrTimeMins mod 60
clockSecs:=mCurrTimeSecs mod 60

endpar

Listing 5.3 Time example: return current time

Measuring the absolute time is useful but, often, systems require that actions are
executed if a desired amount of time is passed. For this purpose, timers are available in
the TimeLibrary, too. After having declared a timer, users can reset it through the rule
r_reset_timer, change its duration with the rule r_set_duration, or its time unit using
the rule r_set_timer_unit.

4https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.
asm

https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm
https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm
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Refinement

The modeling process of an ASM is usually based on model refinement [54]: the designer
starts with a high-level description of the system and proceeds through a sequence of more
detailed models, each introducing, step-by-step, design decisions and details. In order to
adopt a correct refinement process, at each refinement level, the model must be proved to
be a correct refinement of the more abstract one.

ASMETA supports a special case of 1-n refinement, consisting in adding functions and
rules in a way that one step in the ASM at a higher level can be performed by several steps
in the refined model. Indeed, a refinement is considered correct if any behavior (i.e., run
or sequence of states) in the refined model can be mapped to a run in the abstract model.
To automatically prove the correctness of the model refinement process, users can exploit
the AsmRefProver tool [24], which is based on a Satisfiability Modulo Theories (SMT)
solver. When executing this tool, one can specify two refinement levels and ensure that
an ASM specification ASMi is a correct refinement of a more abstract one ASMi�1. Then,
AsmRefProver confirms whether the refinement is correctly performed with two different
outputs: Initial states are conformant and Generic step is conformant.

Listing 5.4 shows an excerpt of the refinement for the MVM case study (see Listing 5.1)
in which the PSV mode is introduced. Thus, the behavior of the system modeled in
Listing 5.1 is preserved and expanded during the refinement process.

Modeling by refinement allows users to add to the model additional requirements of
increasing complexity only when the developer has gained enough confidence in the basic
behaviors of the modeled system. This can be done by alternating modeling and testing
activities, as presented in [40], with different refinement levels.

Visualization

Model visualization is a good way for people to communicate and get a common un-
derstanding of the modeled system. ASMETA supports model visualization by a visual
notation defined in terms of a set of construction rules and schema that give a graphical
representation of an ASM and its rules [21]. The graphical information is represented in
a visual graph in which nodes represent syntactic elements (like rules, conditions, rule
invocations) or states, while edges represent bindings between syntactic elements or state
transitions. The AsmetaVis tool can perform two types of visualization: basic visualiza-
tion, which shows the syntactic structure of the model and returns a visual tree obtained by
recursively visiting the ASM rules; semantic visualization, which exploits visual patterns
that permit to capture some behavioral information as control states.
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asm MVM1
import ../StandardLibrary
import ../CTLlibrary
import ../LTLlibrary

signature:
// TIMER

enum domain Timer = {TIMER_INSPIRATION_DURATION_MS,
TIMER_EXPIRATION_DURATION_MS,
TIMER_MAX_INSP_TIME_PSV,
TIMER_MIN_EXP_TIME_PSV,
TIMER_TRIGGERWINDOWDELAY_MS,
TIMER_MIN_INSP_TIME_MS}

domain MyTime subsetof Integer

// DOMAINS

enum domain States = {STARTUP , SELFTEST, VENTILATIONOFF,
PCV_INSPIRATION, PCV_EXPIRATION, PSV_INSPIRATION,
PSV_EXPIRATION, OFF}

enum domain Modes = {PCV, PSV}
enum domain ValveStatus = {OPEN, CLOSED}

// FUNCTIONS

dynamic monitored flowDropPSV: Boolean
dynamic monitored dropPAW_ITS_PSV: Boolean
[...]
static durationTIMER_MAX_INSP_TIME_PSV: MyTime
static durationTIMER_MIN_EXP_TIME_PSV: MyTime
static durationTIMER_MIN_INSP_TIME_MS: MyTime
derived expiredTIMER_MAX_INSP_TIME_PSV: Boolean
derived expiredTIMER_MIN_EXP_TIME_PSV: Boolean
derived expiredTIMER_MIN_INSP_TIME_MS: Boolean

definitions:

[...]

rule r_ventOffPSV =
par

state := VENTILATIONOFF
stopVentilationRequested := false

endpar

rule r_PSVinsp = par

state := PSV_INSPIRATION
iValve := OPEN
r_reset_TIMER[TIMER_MAX_INSP_TIME_PSV]
r_reset_TIMER[TIMER_MIN_INSP_TIME_MS]

endpar

rule r_PSVinspOValve =
par

r_PSVinsp[]
oValve := CLOSED
r_reset_TIMER[TIMER_MAX_INSP_TIME_PSV]

endpar

rule r_PSVexp =
par

state := PSV_EXPIRATION
oValve := OPEN
r_reset_TIMER[TIMER_MIN_EXP_TIME_PSV]
r_reset_TIMER[TIMER_TRIGGERWINDOWDELAY_MS

]
endpar

rule r_PSVexpIValve =
par

r_PSVexp[]
iValve := CLOSED

endpar

rule r_PSVexpIValveFromPCV =
par

r_PSVexp[]
iValve := CLOSED

endpar

// MAIN Rule

main rule r_Main =
[...]

default init s0:
function time = 0
function state = STARTUP
function iValve = CLOSED
function oValve = OPEN
function stopVentilationRequested = false
function start($t in Timer) = 0

Listing 5.4 Example of a refined AsmetaL specification for the MVM

5.3.2 Validation and verification

Once the AsmetaL model is available, the user can take advantage of the tools offered by
the ASMETA framework to perform validation and verification activities.

Simulation

Simulation is the first validation activity that allows for checking the AsmetaL model
behavior during its development, and it is supported by the AsmetaS tool [26]. Given
a model, at every step, the simulator computes the update set based on the theoretical
definitions given in [56] and constructs the model run. The simulator supports two types
of simulation: random and interactive. In the former, it automatically assigns values to
monitored functions, randomly choosing their values from their codomains. In the latter,
instead, the user is requested to insert the value of monitored functions and, in case of
input errors, a message invites the user to insert again the function value. Similarly, in the
case of invariant violation or inconsistent updates, the simulation is interrupted, and an
error message is shown in the console.
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Fig. 5.3 Simulator settings in Eclipse preferences

Simulation of ASMETA specification with time features ASMETA supports three
different mechanisms to handle time during simulation if the TimeLibrary is used (see
Sect. 5.3.1):

1. Use java time: the time is read from the machine hosting the simulation;
2. Ask user: the user sets the value for the time at each step as normal monitored

functions;
3. Auto increment: The time is automatically increased at each step by a predefined

value.
The first mechanism allows the user to run the specification without inserting the value

of the functions representing the time because their value is obtained from the Java 8
Date/Time API Instant.now() and automatically assigned to them. However, especially
if the specification requires long time intervals, like hours, or very short time intervals, like
nanoseconds, if the real time is used during the simulation, it may be unfeasible for the user
to check what happens at specific instants of time. In this case, the second mechanism is
most suitable: the user specifies the time unit to which he wants to run the specification and
inserts the desired time value when required. Note that if the specification uses more than
one time function with different time units, the others are automatically derived starting
from the one inserted by the user. Finally, in case the user wants to execute the specification
and automatically increment the time by a predefined value delta at each step, the third
approach can be used. The user has to define the time step and time unit; then the system
automatically increments the time of the chosen delta value at each running step. Even
in this case, if time functions have other time units compared to the one set by the user,
they are automatically derived. The desired mechanism can be set in the ASMETA!
Simulator preferences from the Window menu in Eclipse, as shown in Fig. 5.3.

Animation

The main disadvantage of the simulator is that its interface is only textual, and this some-
times makes it difficult to follow the model computation. For this reason, ASMETA embeds
a model animator, AsmetaA [48], providing the user with complete information about all
locations and using colors, tables, and figures over simple text to convey information about
states and their evolution. This tool helps the user to follow the model computation and
understand how the system state changes at every step.
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Fig. 5.4 Animation of the MVM using AsmetaA

Since the animator runs the simulator in the background, it also supports interactive
and random animation. In the interactive mode, the insertion of input functions is pursued
through different dialog boxes depending on the type of function to be inserted. If the
function value is not in its codomain, the animator keeps asking until an acceptable value is
inserted. In random mode, the monitored function values are automatically and randomly
assigned.

With complex models, running one random step at a time may be tedious; for this
reason, the user can also specify the number of steps to be performed, and the tool performs
the random simulation accordingly. In case of invariant violation, or an inconsistent update,
a message is shown in a dedicated text box and the animation is interrupted. Once the user
has animated the model, the tool allows exporting the model run as a scenario, so that it
can be re-executed whenever desired. Fig. 5.4 shows the animation of the initial steps of
the MVM.

Scenario-based validation

Both AsmetaS and AsmetaA tools require the user to execute the AsmetaL model step by
step, everytime the model has to be validated. Instead, with scenario-based validation,
the user can write a scenario, i.e., a description of external actions and reactions of the
system [67] that can be executed whenever needed to check the model behavior. Typical
uses of scenarios are regression or classical unit testing activities.

The scenarios are written in the Avalla language and executed using the AsmetaV tool.
Each scenario is identified by its name and must load the ASM to be tested. Then, the
user may specify different commands depending on the operation to be performed:

• The set command updates monitored or shared function values that are supplied by
the user as input signals to the system;

• Commands step and step until represent the reaction of the system, which can
execute one single ASM step and one ASM step iteratively until a specified condition
becomes true;
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scenario test1
load MVM0.asm

check iValve = CLOSED;
check expiredTIMER_EXPIRATION_DURATION_MS = false;
check start(TIMER_TRIGGERWINDOWDELAY_MS) = 0;
check start(TIMER_EXPIRATION_DURATION_MS) = 0;
check durationTIMER_INSPIRATION_DURATION_MS = 20;
check durationTIMER_EXPIRATION_DURATION_MS = 40;
check time = 0;
check durationTIMER_TRIGGERWINDOWDELAY_MS = 10;
check expiredTIMER_TRIGGERWINDOWDELAY_MS = false;
check stopVentilationRequested = false;
check start(TIMER_INSPIRATION_DURATION_MS) = 0;
check oValve = OPEN;
check state = STARTUP;
check expiredTIMER_INSPIRATION_DURATION_MS = false;
set poweroff := false;
set startupEnded := false;
set stopVentilation := false;
step
check time = 1;
set poweroff := false;
set startupEnded := false;
set stopVentilation := false;
step

Listing 5.5 Example of Avalla scenario for the MVM case study

• The check command is used to inspect property values in the current state of the
underlying ASM.

Listing 5.5 shows an example of the Avalla scenario for the MVM case study. To simulate
scenarios, AsmetaV exploits the simulator. Moreover, during the simulation, AsmetaV
captures any check violation and, if none occurs, it finishes with a “PASS” verdict (“FAIL”
otherwise). Moreover, the tool collects information about the coverage of the AsmetaL
model. In particular, it keeps track of all the rules that have been called and evaluated, and
it lists them at the end.

Users can exploit modularization even when building scenarios. Indeed, it is possible
to define blocks, i.e., sequences of set, step, and check, that can be recalled using
the execblock when writing other scenarios that foresee the same sequence of Avalla
commands.

Model review

During the definition of a formal model, a developer may introduce some errors that
are not related to a wrong specification of the requirements, but are due to carelessness,
forgetfulness, or limited knowledge of the formal method. For example, a developer may
use a wrong function name, forget to properly guard an update, and so on. A common error
in the development of ASM is inconsistent update, i.e., when a location is simultaneously
updated to two different values by two rules that are executed in parallel [55]. Such kind of
error may occur (especially in complex models) because the developer does not properly
guard all the updates. Other types of errors done using ASMs are overspecifying the model,
i.e., adding model elements that are not needed or writing rules that can never be triggered.
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These types of errors can be captured automatically by performing a static analysis of
the model. This is the aim of the AsmetaMA tool [23], which performs automatic review
of ASM models. It checks the presence of seven types of errors by using suitable meta-
properties specified in CTL and verified using the model checker AsmetaSMV (see the next
subsection for details about AsmetaSMV). In particular, the following meta-properties are
checked:

P1 No inconsistent update is ever performed;
P2 Every conditional rule is complete;
P3 Every rule can eventually fire;
P4 No assignment is always trivial5;
P5 For every domain element e there exists a location which has value e;
P6 Every controlled function can take any value in its co-domain;
P7 Every controlled location is updated and every location is read.

Model checking

ASMETA provides model checking support using the tool AsmetaSMV [22] that translates
an ASM specification into a model of the symbolic model checker NuSMV [73], which
is used to perform the verification. Being NuSMV a finite state model checker, the only
limitation of AsmetaSMV is the finiteness of the number of ASM states: only finite domains
can be used, and adding elements at runtime to a domain is not supported.

When using AsmetaSMV, the user does not need to know how to translate the model into
the NuSMV format: it is possible to specify directly in the ASM model the Computation
Tree Logic (CTL) and Linear Temporal Logic (LTL) properties defined over the ASM
signature. Listing 5.6 shows CTL and LTL properties specified for the MVM study. The
CTL property, for example, checks that when the ventilation is not active, the output valve
is open and the in valve is closed.

In order to better understand the verification results, the tool allows users to simulate
the returned counterexample: a translator takes as input the counterexample given by
NuSMV when a property is not verified and produces an Avalla scenario. Listing 5.7
shows the counterexample of a violation of an LTL property by a faulty version of the
ASM specification of the MVM case study; the corresponding Avalla scenario is reported
in Listing 5.8.

AsmetaSMV can be used to verify the functional correctness of the specified system,
and as a back-end tool for other activities supported in ASMETA, e.g., model review.

5An assignment is trivial in ASM if the location is updated to the value that it already has.
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// When ventilation is off, out valve is open and in valve is closed

CTLSPEC ag(state=MAIN_REGION_VENTILATIONOFF implies (iValve=CLOSED and oValve=OPEN))

// Once turned off, the state doesn’t change anymore

LTLSPEC g(state=OFF implies g(state=OFF))

Listing (5.6) Specification of temporal properties in the AsmetaL model

−− specification G iValve = CLOSED is false
−− as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample

−> State: 1.1 <−
iValve = CLOSED
time = 0
start(TIMER_INSPIRATION_DURATION_MS) = 0
state = MAIN_REGION_STARTUP
poweroff = false
stopVentilationRequested = false
stopVentilation = false
pawGTMaxPinsp = false
start(TIMER_EXPIRATION_DURATION_MS) = 0
dropPAW_ITS_PCV = false
start(TIMER_TRIGGERWINDOWDELAY_MS) = 0
startVentilation = false
resume = false
selfTestPassed = false
startupEnded = false
expiredTIMER_TRIGGERWINDOWDELAY_MS = false
expiredTIMER_INSPIRATION_DURATION_MS = false
expiredTIMER_EXPIRATION_DURATION_MS = false
mode = PCV

−> State: 1.2 <−
time = 1
startupEnded = true
expiredTIMER_TRIGGERWINDOWDELAY_MS = true

−> State: 1.3 <−
time = 2
state = MAIN_REGION_SELFTEST
selfTestPassed = true
startupEnded = false
expiredTIMER_INSPIRATION_DURATION_MS = true

−> State: 1.4 <−
time = 3
state = MAIN_REGION_VENTILATIONOFF
startVentilation = true
selfTestPassed = false

−> State: 1.5 <−
iValve = OPEN
time = 4
start(TIMER_INSPIRATION_DURATION_MS) = 3
state = MAIN_REGION_PCV_R1_INSPIRATION
poweroff = true
startVentilation = false
expiredTIMER_INSPIRATION_DURATION_MS = false
expiredTIMER_EXPIRATION_DURATION_MS = true

−> State: 1.6 <−
iValve = CLOSED
time = 5
state = OFF
poweroff = false
expiredTIMER_INSPIRATION_DURATION_MS = true

−> State: 1.7 <−
[...]

−− Loop starts here
−> State: 1.61 <−

time = 60
−> State: 1.62 <−

Listing (5.7) Counterexample in AsmetaSMV

scenario mvmtest
load MVM_0.asm

check iValve = CLOSED;
check time = 0;
check start(TIMER_INSPIRATION_DURATION_MS) = 0;
check state = MAIN_REGION_STARTUP;
check stopVentilationRequested = false;
check start(TIMER_EXPIRATION_DURATION_MS) = 0;
check start(TIMER_TRIGGERWINDOWDELAY_MS) = 0;
set startVentilation = false;
set resume := false;
set selfTestPassed := false;
set startupEnded := false;
set expiredTIMER_TRIGGERWINDOWDELAY_MS := false;
set expiredTIMER_INSPIRATION_DURATION_MS := false;
set expiredTIMER_EXPIRATION_DURATION_MS := false;
set mode := PCV;
set poweroff := false;
set stopVentilation := false;
set pawGTMaxPinsp := false;
set dropPAW_ITS_PCV := false;
step

check time = 1;
set startupEnded := true;
set expiredTIMER_TRIGGERWINDOWDELAY_MS := true;
step

check time = 2;
check state = MAIN_REGION_SELFTEST;
set selfTestPassed := true;
set startupEnded := false;
set expiredTIMER_INSPIRATION_DURATION_MS := true;
step

check time = 3;
check state = MAIN_REGION_VENTILATIONOFF;
set startVentilation := true;
set selfTestPassed := false;
step

check iValve = OPEN;
check state = MAIN_REGION_PCV_R1_INSPIRATION;
check time = 4;
check start(TIMER_INSPIRATION_DURATION_MS) = 3;
set poweroff := true;
set startVentilation := false;
set expiredTIMER_INSPIRATION_DURATION_MS := false;
set expiredTIMER_EXPIRATION_DURATION_MS := true;
step

check iValve = CLOSEDM
check time = 5;
check state = OFF;
set poweroff := false;
set expiredTIMER_INSPIRATION_DURATION_MS := true;
step

[...]

Listing (5.8) Executable counterexample in
Avalla

5.4 ASMETA @ development-time

Once the AsmetaL model is available and verified, the user can automatically generate
abstract tests, C++ code, and C++ unit tests. This is an important feature of the ASMETA
framework, especially in the context of this thesis, since the derived code preserves all
the properties that have been verified in the ASM model. In this way, if the specification
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has been correctly evaluated, verified and validated, the generated code is correct-by-
construction.

5.4.1 Model-based test generation

Model-based testing [167] is a popular testing approach in which tests are derived, in an
automatic manner, from formal models. The technique is based on the consideration that
the model is an abstract representation of the System Under Test (SUT), from which it is
possible to generate both the test inputs and the expected output (so, tackling the oracle
problem of software testing [30]). Abstract tests are generated starting from the model and
then translated into concrete tests for the SUT. Coverage criteria over the model are used
to define test goals. A typical approach for generating tests that achieve these goals is to
use model checkers [90]: a test goal is translated into a suitable temporal property (called
trap property), whose counterexample (if any) is the test that covers that test goal. More
details on how to apply this approach will be given in Chapter 6.

ASMETA integrates the ATGT tool [95] which allows performing model-based test
generation using the NuSMV model checker. The generation is guided by coverage criteria
defined or adapted for ASMs [94], such as rule coverage, parallel rule coverage, MCDC,
etc. For example, the rule coverage criterion requires that for every transition rule ri there
exists at least one state in a test in which ri fires, and another state in a test in which ri does
not fire. Finally, the abstract tests generated with ATGT can be later translated into concrete
test cases for the specific implementation. Indeed, the test concretization process may be
difficult and needs to be customized for every system under test.

5.4.2 Model-based code generation

According to best practices in model-driven engineering, the implementation of a system
should be obtained from its model through a systematic model-to-code transformation,
since this allows the proved safety properties to be maintained. Thanks to Asm2C++, given
the AsmetaL model of the SUT, the C++ code is automatically generated [50]. This is
done by performing a series of steps:

• the AsmetaL specification is parsed and converted into an instance of the ASMETA
metamodel (AsmM);

• a model-to-text transformation, exploiting Xtext in Eclipse, is applied to translate
the model into C++ code.

This procedure generates two files: header (.h) and source (.cpp). The former contains
the interface of the source file, the translation of the ASM domains declaration and
definition, and functions and rules declaration. The latter contains the rules implementation,
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the functions/domains initialization, and the definitions of the functions. Listing 5.9 reports
an excerpt of the translation in C++ of the MVM specification.

// MVM0.h automatically generated from ASMETA2CODE

#ifndef MVM0_H
#define MVM0_H

#include <string.h>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <list>
#include <boost/tuple/tuple.hpp>
using namespace std;
#define ANY String
#define UNDEF NULL

/∗ DOMAIN DEFINITIONS ∗/

namespace MVM0Namespace{
enum States {STARTUP, SELFTEST, VENTILATIONOFF,

PCV_INSPIRATION, PCV_EXPIRATION, OFF};
enum Modes {PCV};
enum ValveStatus {OPEN, CLOSED};

}
using namespace MVM0;

class MVM0 : public virtual TimeLibrary{

/∗ DOMAIN CONTAINERS ∗/

const set<States> States_elems;
const set<Modes> Modes_elems;
const set<ValveStatus> ValveStatus_elems;

public:
/∗ FUNCTIONS ∗/

bool poweroff[2];
bool startupEnded[2];
bool selfTestPassed[2];
bool resume[2];
bool startVentilation[2];
bool stopVentilation[2];
Modes mode[2];
bool pawGTMaxPinsp[2];
bool dropPAW_ITS_PCV[2];
bool stopVentilationRequested[2];
States state[2];
ValveStatus iValve[2];
ValveStatus oValve[2];
[...]

/∗ RULE DEFINITION ∗/

void r_startupEnded();
void r_ventOffRequested();
void r_ventOffPCV();
void r_ventOffFT();
void r_turnOff();
void r_PCVInsp();
void r_PCVInspOValve();
void r_PCVExp();
void r_PCVExpIValve();
void r_Main();

MVM0();
void initControlledWithMonitored();
void getInputs();
void setOutputs();
void fireUpdateSet();

};

// MVM0.cpp automatically generated from ASM2CODE

#include "MVM0.h"

using namespace MVM0Namespace;

// Conversion of ASM rules in C++ methods

void MVM0::r_startupEnded(){
state[1] = SELFTEST;

}

void MVM0::r_ventOffRequested(){
stopVentilationRequested[1] = true;

}

void MVM0::r_ventOffPCV(){
{ // par

state[1] = VENTILATIONOFF;
stopVentilationRequested[1] = false;

} // endpar

}

void MVM0::r_ventOffFT() {
state[1] = VENTILATIONOFF;

}

void MVM0::r_turnOff() {
{ // par

iValve[1] = CLOSED;
oValve[1] = OPEN;
state[1] = OFF;

} // endpar

}

[...]

void MVM0::r_Main(){
[...]

}

// Function and domain initialization

MVM0::MVM0(){
//Static domain initialization

States_elems:{STARTUP, SELFTEST, VENTILATIONOFF,
PCV_INSPIRATION, PCV_EXPIRATION, OFF;};

Modes_elems:{PCV;};
ValveStatus_elems:{OPEN,CLOSED;};

// Function initialization

state[0] = state[1] = STARTUP;
iValve[0] = iValve[1] = CLOSED;
oValve[0] = oValve[1] = OPEN;
[...]

}

// initialize controlled functions that contains monitored functions

in the init term

void MVM0::initControlledWithMonitored(){
}

// Apply the update set

void MVM0::fireUpdateSet(){
startupEnded[0] = startupEnded[1];
selfTestPassed[0] = selfTestPassed[1];
startVentilation[0] = startVentilation[1];
[...]

}

Listing 5.9 Excerpts of the header and source file automatically generated from the As-
metaL model for the MVM case study

As described in Sect. 5.2.1 an ASM run consists in the execution of the main rule
and, consequently, in the update of the locations. For this reason, in C++ the ASM step is
implemented by two methods:

• r_Main(), that corresponds to the translations of the ASM main rule;
• fireUpdateSet(), which updates the locations to the next state value.



5.4 ASMETA @ development-time 89

Given the translation of an AsmetaL specification in C++, the code generation process can
be easily adapted for a specific platform. ASMETA supports the translation of code in
Arduino format (see Sec. 6.3 for a detailed description of how to derive the MVM code
for Arduino from the AsmetaL model), which is compatible with C++, cheap, and easily
accessible. In particular, once the C++ code has been generated, the user is required to
perform three additional steps:

• HW configuration and integration: the mapping between the ASM functions and the
Arduino input / output pins, and other hardware-specific settings must be defined.
The first draft of the mapping is automatically generated, but user intervention is
required to set all monitored and controlled functions to the correct hardware pins.

• ASM runner generation: Asm2C++ automatically generates a .ino file that contains
the loop() function to run the translation of the ASM on Arduino. It iteratively
executes the following functions: getInputs() — reads data from the input devices
like sensors; mainRule() — contains the behavior described in the AsmetaL model;
fireUpdateSet() — updates the state at the end of each loop; and setOutputs()
— sets the output values like the current state of light-emitting diode (LED).

• Merging all the generated files: all the files previously generated have to be merged
and uploaded on the Arduino board.

5.4.3 Unit test generation

If the C++ code is available (either automatically generated or not) and the user wants to
test it by using a model-based approach, C++ unit tests can be automatically generated
starting from the AsmetaL model [49]. Test generation can be performed by exploiting
two different mechanisms. The first approach consists in running the AsmetaS random
simulation for a defined number of steps specified by the tester, and in translating the
generated state sequence into a C++ unit test. On the contrary, the second approach is
based on translating the abstract tests generated by ATGT (see Sect. 5.4.1) into C++ unit
tests. In both cases, the unit tests can be written using the Boost or Catch2 test frameworks.

An example of the generated unit test is reported in Listing 5.10, if the Boost library
is used. Initially, the test suite is registered by using the BOOST_AUTO_TEST_SUITE(...)
macro. Moreover, the definition of the test suite ends with the macro BOOST_AUTO_TEST_-
END(). Note that each test suite can be composed of one or more test cases, each one
declared using the macro BOOST_AUTO_TEST_CASE(...).

On the other hand, Listing 5.11 shows the same test suite if the Catch2 library is used.
Unlike the code with Boost, Catch2 does not require the start and end of the test suite to be
specified. Every test case is declared with a TEST_CASE(testName,tags) macro.
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BOOST_AUTO_TEST_SUITE(MVM0Test)
BOOST_AUTO_TEST_CASE( my_test_0 ){

// instance of the SUT

MVM0 ventilator;
// state

// set monitored variables

ventilator.poweroff[1] = false;
[...]
BOOST_CHECK(ventilator.state[0]==STARTUP);
// call main rule

ventilator.r_Main();
ventilator.fireUpdateSet();
[...]

}
[...]
BOOST_AUTO_TEST_END();

Listing 5.10 Example of C++ Boost unit
test

#include "catch.hpp"

TEST_CASE( "my_test_0", "my_test_0" ){
// instance of the SUT

MVM0 ventilator;
// state

// set monitored variables

ventilator.poweroff[1] = false;
[...]
REQUIRE(ventilator.state[0]==STARTUP);
// call main rule

ventilator.r_Main();
ventilator.fireUpdateSet();
[...]

}
[...]

Listing 5.11 Example of C++ Catch2 unit
test

5.5 ASMETA @ operation-time

In Sect. 5.3.2 formal validation and verification techniques for ASMETA have been
presented. These techniques aim at identifying and solving problems at design time.
However, the state space of a system under specification is often too large or partially
unknown at design time, such as for PEMS with uncertain behavior of humans in the
loop (either doctors or patients). This aspect makes complete assurance impractical or
even impossible to pursue completely at design time. For this reason, runtime assurance
methods can be useful since they take advantage of the fact that variables that are free at
design time are, instead, bound at runtime; so, as an alternative to verifying the complete
state space, runtime assurance techniques can be focused on checking the current state of a
system.

With ASMETA, the developer can use two types of runtime analysis techniques:
runtime simulation and runtime monitoring. Both approaches consider the model as a
digital twin of the real system and exploit it as oracle of the correct behavior of the system.
In particular, the former exploits the twin execution to prevent misbehavior of the system
in case of unsafe model behavior, while the latter exploits the twin execution to check the
correctness of the system behavior w.r.t. the model behavior. In this thesis, ASMETA is
never applied at operation-time. However, more details on this use of the framework are
available in [19] and an example of its application to PEMS is presented in [51].

5.6 Conclusion

In this chapter, I have presented an overview of the ASMETA model-based analysis
approach and the associated tooling for the safety assurance problem of PEMS, using
ASMs as the underlying analysis formalism and complying with all activities required by
the certification standards (see Sect. 2.2). ASMETA is an active open-source academic
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project. Over the years, it has been improved with new techniques and tools to face the
upcoming new challenging aspects of modern systems. In accordance with the topic of this
thesis, in the next chapter, I will present some application scenarios in which ASMETA
and its tools have been used for the safety assurance of medical systems, such as for a
pill-box, the MVM (previously described in Chapter 3) and the PHD protocol.





Chapter 6

Applying the ASMETA rigorous process
to medical case studies

In this chapter, I present the application of MBSE techniques to real medical systems and
software. In particular, the ASMETA framework (previously introduced in Chapter 5)
is applied for test and code generation, validation, and verification in three different
case studies: the e-Pix medicine reminder, the MVM (see Chapter 3) and the PHD
medical communication protocol. The activities presented aim to be compliant with those
required by the IEC 62304 [5] standard and FDA guidelines [13] for software validation,
as presented in Sect. 2.2 of this thesis.

This chapter is based on the work published in [37, 40, 38, 41, 39] and is structured
as follows. Sect. 6.1 introduces the activities that can be carried out on medical devices
by exploiting the ASMETA framework, while in Sect. 6.2 the case studies on which these
activities are performed are introduced, namely the e-Pix pill box, the MVM, and the
PHD protocol. Then, Sect. 6.3 tackles the problem of generating code from the ASMETA
specification of the systems analyzed, while Sect. 6.4 presents the approach that can
be used to derive tests to be executed on the actual medical system from the ASMETA
specification. Finally, Sect. 6.5 concludes the chapter.

6.1 Introduction

The development of medical software and systems must adhere to certification standards,
in order to ensure the safety and reliability of each device interacting with human beings.
In Sect. 2.2, I have presented the two main standards for medical software, namely IEC
62304 [5] and the FDA guidelines [13]. In general, both documents require the software to
be tested and verified at each development step, and developed through a well-documented
software life cycle. Furthermore, in Chapter 5, I have presented the ASMETA framework
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and the activities that it supports during the development of safety-critical systems. The
idea underlying this chapter is that by using the ASMETA framework and its tools, one
can fulfill the majority of the activities required by certification standards.

In the following, I map the two main documents (IEC 62304 and FDA guidelines) to
the ASM-based development process using the ASMETA framework. Tab. 6.1 reports
the mapping of ASMETA activities to those required by Section 5 of the IEC 62305 [5]
standard, which is focused on the characteristics of the software development process.

Table 6.1 Mapping between IEC 62304 and ASMETA activities

Step Activity description ASMETA mapping

5.1 Define a life cycle model
and plan all procedures.

ASMs provide a precise, iterative, and incremental life-
cycle model, based on model refinement. With ASMs,
developers can perform modeling, validation, verification,
and conformance checking.

5.2 Define and document func-
tional and non-functional
software requirements.

System requirements can be defined using the ASM nota-
tion, a mathematical model that can also be analyzed and
checked before the implementation. However, only func-
tional requirements can be natively modeled with ASM, so
non-functional ones should be analyzed with complemen-
tary techniques.

5.3 Specification of the soft-
ware architecture from
the software requirements,
risk-control activities and
verification.

Verification of software requirements can be carried out
throughout the ASM development process using the prop-
erty verification tool AsmetaSMV. Risk control activities
can be carried out by verifying the required functional
safety properties and performing critical scenario-based
tests written in Avalla.

5.4 Refine the software archi-
tecture into software units.

The software refinement can be obtained by means of the
model refinement mechanism, typical of the ASMETA
approach. The correctness of refinement can be proved by
using the ASMRefProver tool.
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5.5-
5.7

Software implementation
and testing at the unit, inte-
gration, and system levels.

With the ASMETA development process, the actual code
can be obtained using the automatic translator Asm2C++ on
the last step of model refinement. Since verification and
validation activities should be carried out at model-level,
the code obtained with the automatic translator is correct by
construction. However, the developer may change some-
thing in the generated code (since some of the aspects
may not be representable with the ASM formalism), so the
ASM process cannot fully cover these development steps.
Even when the implementation is already available and the
model has been written only for verification and validation
purposes, tests can be derived from the ASM and executed
on the real system.

5.8 Demonstration, by the de-
vice manufacturer, that the
software has been vali-
dated and verified.

If the ASM process is used, the demonstration that the
software has been validated and verified is straightforward,
since V&V activities are continuous activities during the
entire process. Moreover, these activities can be reexecuted
at any time since they are automatically performed on the
ASM models.

The presented mapping shows how all points are covered, at least partially, by activities
composing the ASM-based development lifecycle.

Table 6.2 Mapping between FDA guidelines and ASMETA activities

Guideline description ASMETA mapping

A documented software require-
ments specification should provide
a baseline for both V&V.

In ASM, the software requirements specification is writ-
ten using a formal model (or a chain of models, for
complex systems), that can be used for performing V&V
activities by using the ASMETA tool set.

Developers should use a mixture of
methods and techniques to prevent
and detect software errors.

In ASM, safety properties can be proved at every re-
finement level, using the AsmetaSMV tool. If developers
specify correctly the properties, errors can be easily de-
tected when a property cannot be demonstrated (or it has
been demonstrated to be false). Furthermore, specifica-
tion errors can be revealed even using scenario-based
testing.
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Software V&V should be planned
and conducted during all the soft-
ware life cycle.

The ASMETA V&V process can be applied to each
model, and the activities can be integrated either in the
V model or in the agile software development life cycles.
In particular, it is possible to insert V&V activities in the
modules design, coding, and unit testing phases, both at
the model and code level.

Software V&V processes should
be executed through the use of pro-
cedures.

In ASM, V&V activities are supported by precise proce-
dures defined for each tool of the ASMETA framework.
These activities can be re-executed when needed, since
they are automatically performed.

Software V&V should be re-
established upon any software
change

In ASM, if software changes do not affect the model,
testers must rerun unit tests (which can be generated from
the ASM model) on the changed software and verify if
the behavior is still correct. On the contrary, in case
the software changes have effects on the model, V&V
activities can be executed at the model level.

Validation coverage should be
based on software complexity and
safety risks

Tools embedded into the ASMETA framework allow
producing a report on coverage (in terms of rules) during
validation. This information can be used by the designer
to estimate whether the validation activity is commensu-
rate with the risk associated with the use of the software.

V&V activities should be carried
out using the quality assurance pre-
cept of “independence of review”

This aspect is implicit in ASMETA since V&V activi-
ties are executed with unambiguous mathematical-based
techniques.

The device manufacturer has flexi-
bility in choosing how to apply the
V&V principles contained into the
FDA guidelines

All the ASMETA V&V activities can be executed at
the discretion of the manufacturer, because they can be
executed independently of each other.

On the other hand, the FDA guidelines [13] accept the standard IEC 62304 and push
even further for the integration of software life cycle management and risk management
activities. Tab. 6.2 reports the mapping of ASMETA activities to those required by the
FDA guidelines. As well as for IEC 62304, the FDA guidelines can be easily mapped to
the ASMETA principles and activities.

After having described the mapping between certification standards and the ASMETA
framework, in this chapter, ASMETA and its tools are exploited for modeling, validation,
verification, and test and code generation for medical devices.
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6.2 Case studies

MBSE activities have been applied to a variety of systems, both in the medical domain
and in other domains. However, in this thesis, I present the activities carried out for
three different case studies in the domains of PEMS, namely, MVM, e-Pix and PHD
communication protocol. The first case study has been extensively discussed and presented
in Chapter 3. Thus, in this section, I present the two remaining case studies by giving more
details about their functioning and scope.

6.2.1 The e-Pix case study

Adherence to pharmacological therapy [63] is one of the most well-known problems in
the medical field. In fact, sometimes, patients do not adhere to therapy because they do
not remember to take the medicine, or do not remember if they have already taken it. For
these reasons, some patients may have the need to adopt a system that can help them in
following the prescribed therapy. Recently, pill boxes have been proposed on the market.
They contain pills and divide them according to scheduled doses of medications. The aim
of a pill box is to help the user to prevent/reduce medication errors because once the pills
are in the correct section, the user only has to remember to take them at the right time.

The first versions were simply multi-compartmental boxes, where each compartment
was filled with the corresponding medicine. They may have one section for each day, or,
in the case of the most complicated versions, multiple sections corresponding to different
times of the day. With the introduction of technology in the medical field, even pill boxes
have evolved and are integrated with electronic components in order to provide alerts to
patients when the time of a medicine comes. They are usually provided with a memory,
where the list of pills with the therapy schedules is saved and, at the right time, they notify
the user. Different types of notifications can be used, e.g., sound/light signals, or pop-up
notifications on a smartphone.

The activities discussed in this chapter have been carried out on a pill box, called
e-Pix, developed using Arduino1 that a local company asked to re-engineer. The need for
reengineering comes from the fact that the company wanted to certify its product w.r.t.
the FDA guidelines [13] and IEC regulation [5] and, because of that, needed to be sure it
works properly. In the following, some requirements (even not directly related to software
certification) and properties of the e-Pix device are reported:

• Each compartment of e-Pix contains a unique type of unpackaged pills;

1https://www.arduino.cc/
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{
‘‘patient" : ‘‘patient_name",
‘‘pills" : [

{ ‘‘compartment" : ‘‘compartment_number
",

‘‘name" : ‘‘pillName",
‘‘time_consumption" : [‘‘t1", ‘‘t2",

...],
},
{...}

]
}

Listing 6.1 Example of the JSON file containing the prescriptions

• Each compartment has a sensor capable of signaling the opening of the related
drawer, and a red LED used to indicate which pill has to be taken. The LED turns
on until the patient opens the compartment;

• When the pill time has passed, and the set timeout has expired, the red LED starts to
blink for a defined period of time. In this way, e-Pix attracts the patient’s attention;

• e-Pix has an embedded display that shows log messages;

• If a patient takes the pill but forgets to close the drawer, the red LED starts to blink
for a fixed period of time;

• The prescription file can be loaded into e-Pix by transferring it using the integrated
Bluetooth communication functionalities. The file contains, for each pill, the identi-
fier of the drawer in which it is contained, its name, and the time at which it has to be
taken (expressed as the number of seconds passed since 01/01/1970). An example
of this file is reported in Listing 6.1.

6.2.2 The IEEE 11073 PHD protocol case study

The IEEE 11073-20601 [12] standard defines a communication protocol that allows
personal healthcare devices defined as “Agents”, which are normally portable, energy-
efficient, and have limited computing capacity (such as weighing scales, blood glucose
monitors, and blood pressure monitors), to exchange information with devices with more
computing resources, defined as “Managers” (such as mobile phones, set-top boxes, and
personal computers). The information exchanged is basically measured health data that
can be transmitted to healthcare professionals for different purposes, e.g., for remote health
monitoring or health advising.
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Fig. 6.1 State machine of the IEEE 11073 PHD Manager: input messages are identified by
the prefix Rx and output messages are identified by the prefix Tx (when no input message
is associated to an output, it means that the transition is generated by an internal event.)

The PHD IEEE 11073 standard defines both the data exchange protocol and the
necessary data models to be used during the communication between two devices. The
messages exchanged are called APDUs, are encoded using the ASN.1 format, and should
support at least the MDER (Medical Device Encoding Rules) standard. IEEE 11073
requires communication to have one reliable primary virtual channel and some additional
secondary virtual channels. The message types are divided into four different categories:

• messages used during the association procedure: aare (Association Request), aarq

(Association Response), rlre (Association Release Response), rlrq (Association
Release Request), abrt (Association Abort);

• messages related to the confirmed service mechanism: roiv-* (Remote Operation
Invoke messages): roiv-cmip-confirmed-action, roiv-cmip-confirmed-event-report,
roiv-cmip-confirmed-set; and rors-* (Reception of Response messages): rors-cmip-

confirmed-action, rors-cmip-confirmed-event-report, rors-cmip-get;
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Fig. 6.2 An example sequence of data exchange using the PHD protocol

• messages used when fault or abnormal conditions occur: roer (Reception of Error
Result), rorj (Reception of Reject Result);

• messages related to the unconfirmed service mechanism: roiv-cmip-action, roiv-

cmip-event-report, roiv-cmip-set.
The behavior of the PHD protocol, in the case of a manager device, is described by

the state machine in Fig. 6.1, which is composed of seven states. To better understand the
behavior of the protocol and how a device moves from one state to another, Fig. 6.2 reports
an example scenario of a weighting scale. The weighting scale (which acts as agent) sends
an association request message to the manager containing device configuration information.
Then, the manager checks the received information: if the manager recognizes the agent
configuration (checking config internal state), it sends a response certifying the association
acceptance, and both devices enter the Operating state. Suppose now that the weighting
scale is ready to communicate the measured information: the agent sends the measured
data to the manager using a Confirmed Event Report APDU, and, if the message is received
correctly by the manager, the manager responds with the acknowledgment. Finally, when
the agent has communicated all the measures, it requests to release the association; the
manager responds to this request and both devices now enter the Unassociated state.

6.3 From ASMETA specifications to embedded code

Starting from the ASMETA specifications, Asm2C++ allows users to obtain a C++ code
that can be embedded in the actual device or in Arduino. The main advantage of this
approach is that ASMETA specifications can be validated and verified and, therefore, the
C++ code obtained is correct-by-construction. This approach is based on the following
iterative process:

1. Model the system as an Abstract State Machine;
2. Validate and verify the model;
3. If the model has proved to be correct, then start refining it by adding more details;
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4. Prove that the refinement has been done correctly, such that all the verified properties
are still verified;

5. Repeat the two previous steps until all the relevant aspects have been modeled;
6. When the final model is available, convert it into C++ code.
In the following, the depicted process is applied to two different case studies, namely

the e-Pix and the MVM, from the ASMETA specification to the Arduino code.

6.3.1 The e-Pix case study

In this section, the ASMETA process, from specification to code, is applied to the e-
Pix case study (previously presented in Sect. 6.2.1). For each phase, here I report only
some example. The full specifications, scenarios, and code are available online at https:
//foselab.unibg.it/asmeta/PillboxASM.zip.

Modeling by refinement

As commonly done in the ASM-based development process, the e-Pix has been modeled
starting from a simple model and then applying step-wise refinement. From one refinement
step to the next, some controlled and monitored functions have been added, mainly
representing compartments and time management mechanisms: at level 0 the time is
represented in an abstract way, it is managed through a controlled variable at levels 1 and
2, and with a monitored function at the final level.

In the following, I report the main characteristics of each refinement level and, as an
example, analyze how the switching ON of the red LED when the time of a pill comes has
been modeled.

• Level 0: this level models only a single pill, with a single prescription, and no
compartments. The time is managed by a simple Boolean monitored function
takeThePill, which becomes true when the pill has to be taken. A similar approach
has been used to represent all timeouts (e.g., to manage the change in the color of
the LED), by using another Boolean function timeDiffOver600 (we consider the
timeouts being 10 minutes). The following AsmetaL rules manage the behavior of
the red LED that is turned on when a pill needs to be taken:

https://foselab.unibg.it/asmeta/PillboxASM.zip
https://foselab.unibg.it/asmeta/PillboxASM.zip
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main rule r_Main =
[...]

if redLed = OFF and takeThePill then
r_pillToBeTaken[] endif

if redLed = ON and not timeDiffOver600 and
opened and not openSwitch then

r_pillTaken_compartmentOpened[] endif

[...]

rule r_pillToBeTaken =
par

redLed := ON
outMess := TAKE_PILL

endpar
rule r_pillTaken_compartmentOpened =

par
redLed := OFF
outMess := NONE

endpar

• Level 1: the main addition at this level has been an improvement in time manage-
ment. In fact, the Boolean function has been substituted with the Natural function
systemTime, which is controlled by the system and increased at each machine step.
Other aspects, such as the number of pills, prescriptions, or compartments, remain
unchanged w.r.t. the previous level. To manage the assumption of the pill, a new
Boolean function, requestSatisfied, identifies if the pill has already been taken or not.
This refinement level also adds possible output and log messages, which are taken
from an enumerative domain OutMessages. The following AsmetaL rules manage
the behavior of the red LED that is turned on when a pill has to be taken, depending
on systemTime:

main rule r_Main =
[...]
if redLed = OFF and (time_consumption<=systemTime
and not requestSatisfied) then

r_pillToBeTaken[]
endif
[...]

rule r_pillToBeTaken =
par

if redLed != ON then
compartmentTimer := systemTime endif
redLed := ON
outMess := TAKE_PILL

endpar

• Level 2: the second refinement level introduces three compartments, each with a
single type of pill. Other features are similar to the previous level: a single deadline
is used for each pill, the output and log messages come from the same enumerative
domain OutMessages, the timer systemTime is managed by the system and takes
values in a bounded range. Since many compartments need now to be controlled,
the rules managing the behavior of the red LED, that is switched on when a pill has
to be taken, now change as follows:
main rule r_Main =
[...]
if redLed($compartment) = OFF and

(time_consumption($compartment)<=systemTime and not requestSatisfied($compartment)) then
r_pillToBeTaken[$compartment]

endif
[...]
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rule r_pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then compartmentTimer($compartment) := systemTime endif
redLed($compartment) := ON
if ($compartment=compartment1) then

outMess($compartment) := TAKE_TYLENOL
else if ($compartment=compartment2) then

outMess($compartment) := TAKE_ASPIRINE
else

outMess($compartment) := TAKE_MOMENT
endif endif

endpar

• Level 3: this refinement level includes all the features specified by system require-
ments:

– all three compartments have been modeled;
– the systemTime is monitored from the machine and updated by the environment

(its management can be configured by users as presented in Sect. 5.3.1);
– log and out messages can be any string;
– a list of time prescription (stored in the function time_consumption) can be

assigned to each compartment.

The guard that makes the red LED turn on when it is time to take the pill has
been modified w.r.t. the previous levels because the model now manages more
prescriptions for each pill. Considering time_consumption the list of prescriptions,
the correct item in the sequence, i.e., the current time threshold to be considered,
is selected with the function drugIndex. Therefore, for the compartment d, when
systemTime passes the function time_consumption in position drugIndex(d), the pill
in d should be taken.
main rule r_Main =
[...]

if redLed($compartment) = OFF and
(at(time_consumption($compartment),drugIndex($compartment))<systemTime) then

r_pillToBeTaken[$compartment]
endif
[...]

rule r_pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then
compartmentTimer($compartment) := systemTime endif

redLed($compartment) := ON
outMess($compartment) := "Take�" + name($compartment)

endpar
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Fig. 6.3 Simulation steps with the animator AsmetaA at the last refinement level for the
e-Pix case study

Refinement proof

AsmRefProver can prove the correctness of the model refinement process by exploiting the
Satisfiability Modulo Theories (SMT). It takes as input two different models, representing
two refinement levels of the same system, and allows for ensuring that an ASM specification
is a correct refinement of a more abstract one.

Since AsmRefProver maps refined functions to abstract ones with the same name,
in the e-Pix case study, it has been necessary to introduce some derived functions that
represent predicates over the abstract or refined states. For example, in the first refinement
step, to allow AsmRefProver to prove the correctness of the refinement, two derived
functions have been added:

• takeThePill: indicates if the patient has to take a pill;
• timeDiffOver600: becomes true when the patient has forgotten to take the pill within

a certain time.
Formally, they are defined as follows:
function takeThePill = (time_consumption<=systemTime)
function timeDiffOver600 = (systemTime−compartmentTimer>tenMinutes)

Validation

During validation activities, the user can analyze the ASMETA specification using the
simulator AsmetaS, the animator AsmetaA, and the model advisor AsmetaMA. The animator
is the tool that is generally more used, since it provides a graphical interface which is more
readable to the user during model execution.

Fig. 6.3 reports some of the simulation steps using the animator AsmetaA: after the
system initialization, when the time is controlled by the ASM and only one pill in the
first compartment is available, the red LED turns ON when it is time to take the pill
(systemTime > time_consumption) and turns to BLINKING when the timeout has passed;
then, when the compartment is closed, the red LED turns OFF; in the meantime, the
message outMess shown on the display changes accordingly.
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// Setting−up the initial state

set openSwitch(comp1) := false;
set openSwitch(comp2) := false;
set openSwitch(comp3) := false;

step

check redLed(comp1) = OFF;
check outMess(comp1) = NONE;
check logMess(comp1) = NONE;

// Time to take the pill in comp1

step until systemTime = 2;

check redLed(comp1) = ON;
check outMess(comp1) = TAKE_TYLENOL;
check logMess(comp1) = NONE;

Listing 6.2 Example of Avalla scenario for the e-Pix case study

Scenario-based testing

In the scenario-based testing activity, the behavior of e-Pix has been checked against the
expected one by simulating all possible states and transitions between them. As introduced
in Sect. 5.3.2, the scenarios are written in the Avalla language and executed through the
validator AsmetaV. It checks if, at each step, the machine runs as expected and allows one
to evaluate the coverage of each scenario. In particular, for this case study, it was verified
that the coverage obtained in terms of the rules of the ASM models was 100%. This is an
important result, since it allows users to increase the confidence in the correctness of the
written model.

An excerpt of a scenario for the e-Pix case study is shown in Listing 6.2. Initially, all
the compartments are closed and, after an ASM step, the red LED is off, and no messages
are shown. When the time to take the pill is reached (“step until" command), the state
changes, the red LED turns on, and the message shows which pill the patient has to take.

Property verification

Once the modeler is sufficiently confident that the model correctly reflects the intended
requirements, heavier techniques can be used for property verification. In this case study,
the following four CTL (Computational Tree Logic) properties have been identified:

1. If the pill has to be taken, the red LED must light up;

2. If the patient does not take the pill or the compartment has to be closed, the red light
has to blink;

3. The red light has to change status after 10 minutes if the patient does not take the
pill;
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Table 6.3 The first property in different refinement levels

Ref. step CTL Property

0 ag((takeThePill and redLed = OFF) implies ax(redLed = ON))
1 ag((takeThePill and not requestSatisfied and redLed = OFF) implies ax(redLed

= ON))
2 (forall $d in Compartment with ag((time_consump-

tion($d)<systemTime and not requestSatisfied ($d) and opened($d)
and not(openSwitch($d)) and not(redLed($d)= OFF) and not(systemTime-
compartmentTimer($d)>=tenMinutes)) implies ax(redLed($d)= OFF)))

4. If the patient takes the pill and closes the compartment, the red light turns off.

After having defined the CTL properties, the AsmetaSMV tool translates the ASM
specifications into SMV models, which are verified using the NuSMV2 model checker.

Note that the same property may have a different way of being expressed from a
refinement level to the next one. For example, Tab. 6.3 reports the first property for all
models, while the others are available online in the replication package.

In this case, the presented property is different from one model to the other because
the time has been managed differently: initially, it has been modeled with a monitored
function, then with the function systemTime controlled by the system and increased at each
machine step. Furthermore, another difference is due to the fact that in the last refinement
step shown (step 2), more compartments have been modeled and, for this reason, the
property has been verified over each compartment. Unfortunately, it is not possible to test
the property on Level 3 because the model contains unlimited domains (such as natural
numbers and strings) that are not supported by the NuSMV model checker. In this case,
other model checkers, such as NuXMV should be used. However, the support of ASMETA
for NuXMV is still under development.

C++ code generation

After having modeled, verified, and validated the e-Pix ASMETA specification, its C++
code can be generated by exploiting the Asm2C++ tool. In fact, e-Pix is a prototype of an
Arduino-based medical device and is composed of the following components:

• Arduino Mega 2560;
• 3 reed switches, used to signal the opening of each compartment;
• 3 red LEDs to indicate the state of each compartment;
• 1 LCD to show output messages;
• 1 DS3231 timer module to get the current time;

2http://nusmv.fbk.eu/

http://nusmv.fbk.eu/
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Listing 6.3 Example of the ino file containing the implementation of ASM execution for
e-Pix
#include"pillbox.h"
void setup(){
}

pillbox ePix;

void loop(){
ePix.getInputs();
ePix.r_Main();
ePix.fireUpdateSet();
ePix.setOutputs();

}

• Arduino Bluetooth module, used to allow the communication with external devices
and to receive the JSON file containing the drug prescriptions from the patient’s
smartphone;

• Arduino SD card reader, used to read and write on the SD card storing the JSON
prescription and log files;

• Several potentiometers and resistors;
Asm2C++ generates, from the last ASM refinement level, the following files: I) the ino,

which contains the execution policy to run an ASM on Arduino (see Listing 6.3); II) the
a2c and the hw.cpp files that contain hardware information; III) the h and cpp files, which
contain the translation of the ASM model into C++ code.

The a2c configuration file is used to link each ASM function to the physical pins of
Arduino and is automatically generated. However, user intervention is needed since it is
necessary to fill in the mappings with those corresponding to the hardware configuration
(see Listing 6.4). Finally, Asm2C++ generates the hw.cpp file, which contains the C++ code
used to read the inputs and set the outputs (see Listing 6.5).

6.3.2 The MVM case study

As previously done for the e-Pix case study, in the following, the ASM-based development
process is applied to the MVM case study (see Chapter 3 for further details on the device),
starting from the ASM specification to the C++ code. In this case, even if the real device
was already available, the experiments have been carried out on a prototype, based on
Arduino, that has been developed in order to conduct experiments on mechanical ventilators.
Note that the presented activity has been performed only on a sub-component of the MVM,
namely the controller, which is the most important part for the device functioning since it
manages the passage between ventilation states.
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Listing 6.4 Example of the a2c configuration
file
{

"arduinoVersion": "MEGA2560",
"stepTime": 0,
"bindings": [

{
"mode": "DIGITAL",
"function": "redLed(comp1)",
"pin" : "D1"

},
{

"mode": "DIGITAL",
"function": "redLed(comp2)",
"pin" : "D2"

},

[...]

]
}

Listing 6.5 Example of the hw.cpp file
#include "pillbox.h"
#include <Arduino.h>
void pillbox::getInputs(){

openSwitch[comp1] = (digitalRead(7) == HIGH)
;

[...]
systemTime = analogRead(A1)∗(double)

(1.0/1024.0);
}
void pillbox::setOutputs(){

if(redLed[1][comp1] == OFF)
digitalWrite(1, LOW);

else
digitalWrite(1, HIGH);

if(redLed[2][comp1] == OFF)
digitalWrite(2, LOW);

else
digitalWrite(2, HIGH);

[...]
}

main rule r_Main =
par

if state = STARTUP then r_startup[] endif
if state = SELFTEST then r_selftest[] endif
if state = VENTILATIONOFF then r_ventilationoff[] endif
if state = PCV STATE then r_runPCV[] endif
if state = PSV STATE then r_runPSV[] endif

endpar

Listing 6.6 Main rule for the first refinement level of the MVM

Modeling by refinement

As done for the e-Pix, also the MVM has been modeled starting from a simple model
capturing basic behaviors and then applying step-wise refinement. From one refinement
level to the other, new functionalities have been added.

In the following, I report the main characteristics of each refinement level and some
excerpts from the ASMETA specification representing the newly added functionalities.

• Level 0: this first level introduces the main phases of the MVM functioning. In this
model, at the end of the startup and self-test phases, the ventilator moves into the
ventilation off state. Then, upon user’s request, the device can start ventilating either
in PCV or PSV. The main rule of this model is reported in Listing 6.6. The controller
specifies the transitions among the ventilator states by assigning the corresponding
value to the state variable. The rule to be executed is then chosen, depending on the
state.

• Level 1: this refinement level adds details to the inspiration and expiration phases
in both the PCV and PSV modes. Listings 6.7 and 6.8 show, respectively, the
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refinement of the rules used to perform PCV and PSV ventilation. In this case, both
the rules have been split into two different sub-rules: one for the inspiration and one
for the expiration. During PCV, the transition between inspiration and expiration is
controlled by the duration of each phase decided by the physician (when the timers
timerInspirationDurPCV, in the case of inspiration, and timerExpirationDurPCV, in
the case of expiration, expire). When timerInspirationDurPCV runs out (Listings 6.7
line 12), the controller moves to the PCV expiration phase (line 15). However, if
the physician has set respirationMode to PSV, the MVM starts the expiration in
PSV mode by executing the rule r_PSVStartExp (line 17). If the stop of ventilation
is requested (function stopRequested) during the inspiration phase, the function
stopVentilation is set, and the stop is actually performed only during the expiration
phase (line 9). When the MVM is in PCV expiration, the ventilator moves to PCV
inspiration after timerExpirationDurPCV expires.

On the contrary, during PSV, the transition from inspiration to expiration occurs when
the airflow drops below a defined threshold flowDropPSV (Listings 6.8 at line 13)
and the minimum inspiration time has passed or when the maximum inspiration
time set by the doctor runs out. Instead, the transition from expiration to inspiration
is performed after the expiration of timerMinExpTimePSV (line 21). As for the
PCV mode, the stop of ventilation can be performed only during expiration. In
addition, the physician can change the mode from PSV to PCV without interrupting
ventilation, when in the expiration phase (line 23), if the patient’s condition requires
additional support.

• Level 2: this refinement level introduces the inspiratory pause, the expiratory pause,
and the recruitment maneuver, which can be manually requested by the physi-
cian. Listings 6.9 and 6.10 show how these three functions have been modeled,
respectively, for the PCV and PSV mode. The inspiratory pause is required when
cmdInPause is set (see Listing 6.9 at line 12 and Listing 6.10 at line 11). In this case,
both valves are closed for the entire duration of the pause. The recruitment maneuver
is required when the cmdRm is set (see Listing 6.9 at line 15 and Listing 6.10 at
line 12). When this functionality is enabled, the lungs are filled with oxygen and
medical air, the output valve is closed, and the input valve is opened to allow air to
flow into the alveoli. Finally, the inspiratory pause is required when the cmdExPause
is set (see Listing 6.9 at line 31 and Listing 6.10 at line 27). Furthermore, when the
MVM ventilates in PSV mode, if a new breath is not detected within the expiry of
timerApneaLag (Listing 6.10 at line 35), the ventilator automatically switches to
PCV mode from the inspiration phase. This behavior is needed to avoid apneas.
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rule r_runPCV =
par

if phase = INSPIRATION then r_runPCVInsp[] endif
if phase = EXPIRATION then r_runPCVExp[] endif

endpar

rule r_runPCVInsp =
par

if not stopVentilation then
if stopRequested then stopVentilation := true endif

endif
if expired(timerInspirationDurPCV) then

par
if respirationMode = PCV then

r_PCVStartExp[]
endif
if respirationMode = PSV then

par
state := PSV_STATE
r_PSVStartExp[]

endpar
endif

endpar
endif

endpar

rule r_runPCVExp =
if stopVentilation then r_stopVent[]
else if stopRequested then r_stopVent[]
else if expired(timerExpirationDurPCV) then

r_PCVStartInsp[]
endif endif endif

rule r_PCVStartInsp =
par

phase := EXPIRATION
iValve := CLOSED
oValve := OPEN
r_reset_timer[timerInspirationDurPCV]

endpar

Listing 6.7 PCV management for the sec-
ond level of refinement of the MVM

rule r_runPSV =
par

if phase = INSPIRATION then r_runPSVInsp[] endif
if phase = EXPIRATION then r_runPSVExp[] endif

endpar

rule r_runPSVInsp =
par

if not stopVentilation then
if stopRequested then stopVentilation := true endif

endif
if (expired(timerMinInspTimePSV) and flowDropPSV)

or expired(timerMaxInspTimePSV) then
r_PSVStartExp[]

endif
endpar

rule r_runPSVExp =
if stopVentilation then r_stopVent[]
else if stopRequested then r_stopVent[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV_STATE
r_PCVStartInsp[]

endpar
endif
if respirationMode = PSV then

r_PSVStartInsp[] endif
endpar endif endif endif

rule r_PSVStartInsp =
par

phase := EXPIRATION
iValve := CLOSED
oValve := OPEN
r_reset_timer[timerMinExpTimePSV]
r_reset_timer[timerMaxInspTimePSV]

endpar

Listing 6.8 PSV management for the second
level of refinement of the MVM

• Level 3: this last refinement level introduces the transition from inspiration to ex-
piration and vice versa, when the pressure changes due to spontaneous breathing.
The new behavior has been modeled by extending the rules r_runPCVInsp and
r_runPCVExp as shown in Listing 6.11, and r_runPSVInsp and r_runPSVExp as
shown in Listing 6.12. In this way, when the MVM is in expiration and detects,
after an instant of time (a trigger window here modeled with the timer timerTrig-
gerWindowDelay), a sudden pressure drop below the trigger sensitivity threshold
(monitored function dropPAW_ITS - Listing 6.11 at line 15 and Listing 6.12 at
line 13), the ventilator moves directly to the inspiration phase. On the other hand,
the transition from inspiration to expiration is automatically performed when the
inspiratory pressure goes beyond the maximum threshold set by the doctor (function
pawGTMaxPinsp - Listing 6.11 at line 5 and Listing 6.12 at line 6).
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rule r_runPCV =
par [...]

if phase = INPAUSE then r_runInPause[] endif
if phase = RM then r_runRm[] endif
if phase = EXPAUSE then r_runExPause[] endif

endpar

rule r_runPCVInsp = [...]
if expired(timerInspirationDurPCV) then
par

if respirationMode = PCV then
if cmdInPause then

r_InPause[]
else

if cmdRm then r_rm[]
else r_PCVStartExp[]

endif
endif endif
if respirationMode = PSV then

par
state := PSV_STATE
r_PSVStartExp[]
r_resetApneaBackup[]

endpar
endif

endpar
endif [...]

rule r_runPCVExp = [...]
if expired(timerExpirationDurPCV) then

if cmdExPause then
r_exPause[]

else
r_PCVStartInsp[]

endif
endif
[...]

Listing 6.9 PCV management for the third
level of refinement of the MVM

rule r_runPSV =
par [...]

if phase = INPAUSE then r_runInPause[] endif
if phase = RM then r_runRm[] endif
if phase = EXPAUSE then r_runExPause[] endif

endpar

rule r_runPSVInsp = [...]
if (expired(timerMinInspTimePSV) and flowDropPSV)

or expired(timerMaxInspTimePSV) then
if cmdInPause then r_InPause[]
else if cmdRm then r_rm[]
else r_PSVStartExp[] endif endif
endif [...]

rule r_runPSVExp = [...]
if expired(timerApneaLag) then r_runApnea[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV_STATE
r_PCVStartInsp[]

endpar
endif
if respirationMode = PSV then

if cmdExPause then r_ExPause[] endif
endif

endpar
endif endif [...]

rule r_runApnea =
par

state := PCV_STATE
r_PCVStartInsp[]
apneaBackupMode := true

endpar

Listing 6.10 PSV management for the third
level of refinement of the MVM

Refinement proof

As already explained for the e-Pix case study, the automatic refinement proof has been
carried out using the AsmRefProver tool. While for the e-Pix some internal activity was
managed in a different way from one refinement level to the other, and thus it was necessary
to add derived functions mapping refined behavior on the abstract one, for the MVM this
was not necessary. In fact, refinements have been performed in a way that a specific
function has always been implemented completely at a single refinement level.

Validation

With validation activities, the user can analyze the ASMETA specification using the
simulator AsmetaS, the animator AsmetaA, and the model advisor AsmetaMA. Fig. 6.4
shows some simulation step using the animator AsmetaA. After completing the startup and
self-test, the ventilator is in the ventilation off state. In this case, as expected, the input
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rule r_runPCVInsp =
[...]

if expired(timerInspirationDurPCV) then
[...]

else if pawGTMaxPinsp then
r_PCVStartExp[]

endif endif

rule r_runPCVExp =
[...]

if expired(timerExpirationDurPCV) then
[...]

else if expired(timerTriggerWindowDelay)
and dropPAW_ITS then

r_PCVStartInsp[]
endif endif [...]

Listing 6.11 PCV management for the
fourth refinement level of the MVM

rule r_runPSVInsp =
[...]

if (expired(timerMinInspTimePSV) and flowDropPSV) or
expired(timerMaxInspTimePSV) then
[...]

else if pawGTMaxPinsp then
r_PCVStartExp[]

endif endif

rule r_runPSVExp =
[...]

if expired(timerTriggerWindowDelay)
and dropPAW_ITS then

r_PSVStartInsp[]
else if expired(timerApneaLag) then

[...]

Listing 6.12 PSV management for the fourth
refinement level of the MVM

Fig. 6.4 Simulation steps of the PCV mode with the animator AsmetaA for the MVM case
study

valve is closed and the output valve is opened. When the start ventilation command is sent
to the ventilator, and the PCV mode is selected, the ventilation starts in PCV mode with
the inspiration phase, and the valves are moved to the expected position: the input valve is
opened and the output valve is closed. After the inspiration duration, the ventilator moves
to the expiration phase: the input valve is closed while the output valve is opened.

Scenario-based testing

In the scenario-based testing activity, the behavior of the MVM has been checked against
the expected one by simulating all the possible states and transitions between them. As
introduced in Sect. 5.3.2, the scenarios have been written in the Avalla language and
executed using the validator AsmetaV. This tool checks if, at each step, the machine runs
as expected by using the check commands.
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check state = STARTUP;
set startupEnded := true;
step
check state = SELFTEST;
set selfTestPassed := true;
step
check state = VENTILATIONOFF;
set startVentilation := true;
set respirationMode := PCV;
step
check state = PCV_STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;

check state = PCV_STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;
step
check state = PCV_STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;
step
check state = PCV_STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;

Listing 6.13 Example of Avalla scenario for the MVM case study in PCV mode

An excerpt of a scenario for the MVM case study is shown in Listing 6.13. In this
scenario, after having succeeded in the startup and self test, the MVM starts to ventilate in
PCV mode. The main purpose of the scenario in the example is to verify that the valves
are correctly set during inspiration and expiration.

Property verification

Once the validation and scenario-based testing have been performed, the property veri-
fication activity has been carried out. In this case study, LTL (Linear Temporal Logic)
properties have been used. In particular, through the refinement steps, the properties in
Tab. 6.4 have been written, translated into SMV, and verified. Note that the property
“Valves are never both open or closed at the same time" has ben changed from level 0 and
1 (first row of the table) to the next ones (last row of the table). In fact, after the inspiratory
and expiratory pauses have been introduced, the first property has become too general and
does not hold anymore.

C++ code generation

As in the e-Pix case study, for the MVM case study, the C++ code has been generated
starting from the ASMETA specification thanks to the functionalities offered by the
Asm2C++ tool. The system analyzed is a prototypical version of the real MVM, and it is
built using Arduino with the following components:

• Arduino Uno, which executes the state machine;
• 3 LEDs used to communicate the status of the input and output valves and the apnea

alarm;
• A 1602 LCD display, which shows the current state;
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Table 6.4 Properties verified for the MVM case study

Level Property Description SMV Property

0, 1 Valves are never both open or closed
at the same time.

not f(iValve=oValve)

0, 1,
2, 3

When ventilation is off, the output
valve is open and the input valve is
closed.

g(state=VENTILATIONOFF implies
(iValve=CLOSED and oValve=OPEN))

2, 3 Valves can be both closed when the
MVM is in inspiratory or expiratory
pause.

g(((phase=INPAUSE or phase=EXPAUSE)
and (state = PCV STATE or state = PSV
STATE)) implies (iValve=CLOSED and
oValve=CLOSED))

2, 3 Valves are never both open or closed
outside the inspiratory and expira-
tory pauses.

g((iValve=CLOSED and oValve=CLOSED)
implies ((not ((phase=INSPIRATION or
phase=EXPIRATION or phase=RM) and
(state = PCV STATE or state = PSV
STATE)))) or (not (state = VENTILA-
TIONOFF or state = STARTUP or state =
SELFTEST)))

ASMETA spec
.asm

C++ code
.h & .cpp

HW config
.a2c

HW integration
.cpp

ASM runner
.ino Arduino project

Automatic code
generation

ASM runner
generation

HW
configuration
generation

HW integration

Merge

Fig. 6.5 C++ code generation process

• 9 buttons, which simulate all the monitored functions contained in the ASM, namely
the functions dropPAW_ITS, pawGTMaxPinsp, cmdRm, cmdInPause, cmdExPause,
flowDropPSV, respirationMode, stopRequested, startupEnded, selfTest-
Passed, and startVentilation. They represent both user input and external
breathing events.

The process followed to obtain the code to embed in the Arduino device is depicted in
Fig. 6.5.

Starting from the last model refinement, the Asm2C++ tool generates two different files:
a .h and a .cpp file. They contain the translation of the ASM model as a C++ class, with
its methods corresponding to the ASM rules. An example of the content of the .cpp file
is reported in Listing 6.14, which reports the C++ translation of the two rules used for
managing the PCV inspiration and expiration. Then, Asm2C++ automatically generates an
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[...]
void MVMController::r_runPCVInsp(){

if (!stopVentilation[0]){ ... }
if (expired(timerInspirationDurPCV)){

if ((respirationMode == PCV)){
if (cmdInPause){

r_InPause();
} else if (cmdRm){

r_rm();
} else {

r_PCVStartExp();
}

}
} else if (pawGTMaxPinsp)

r_PCVStartExp();
}

void MVMController::r_runPCVExp(){
if (stopVentilation[0]){

r_stopVent();
} else if (stopRequested){

r_stopVent();
} else if (expired(timerExpirationDurPCV)){

if (cmdExPause){
r_exPause();

}else{
r_PCVStartInsp();

}
} else if (expired(timerTriggerWindowDelay) &

dropPAW_ITS){
r_PCVStartInsp();

}
} [...]

Listing 6.14 Example of the .cpp file for the MVM

{
"arduinoVersion": "UNO",
"stepTime": 0,
"bindings": [

{
"mode": "DIGITALOUT",
"function": "iValve",
"pin": "D8"

},

{
"mode": "DIGITALOUT",
"function": "oValve",
"pin": "D7"

}, {
"mode": "DIGITALIN",
"function": "startupEnded",
"pin": "A5"

},

{
"mode": "DIGITALIN",
"function": "selfTestPassed",
"pin": "A4"

},

[...]

}

Listing 6.15 Example of the .a2c configuration file for the MVM

.a2c file, which is used for binding each ASM function to the physical pins of Arduino. It
must be manually completed by the user, who has to insert the correspondence between
Arduino physical pins, depending on the hardware configuration, and functions defined
in the ASM model. An example of this file is reported in Listing 6.15: input and output
valves are mapped on digital output pins, while the monitored functions are used to set if
the current phase is finished or not (e.g., startupEnded and selfTestPassed) are read using
digital input pins.

After having manually completed the .a2c file with the correct mappings, Asm2C++
generates two additional files: the hw.cpp and the .ino. The former implements the
method related to the reading of inputs, getInputs(), and the one related to the writing
of outputs, setOutputs() (see Listing 6.16). The latter contains the execution policy
allowing one to run the ASM on Arduino. It cyclically performs four operations:

• getInputs(), which reads the inputs through digital and analog pins;
• r_main(), which represents the main rule of the ASM and executes all the rule

allowing the changes of state;
• setOutput(), which sends the output values through the physical Arduino pins to

the output components;



116 Applying the ASMETA rigorous process to medical case studies

#include "MVMController.h"

void MVMController::getInputs(){
startupEnded = (digitalRead(A5) == HIGH);
selfTestPassed = (digitalRead(A4) == HIGH);
[...]

}
void MVMController::setOutputs(){

if (iValve[0] != iValve[1]){
if(iValve == OPEN)

digitalWrite(8, LOW);

else
digitalWrite(8, HIGH);

}
if (oValve[0] != oValve[1]){

if(oValve == OPEN)
digitalWrite(7, LOW);

else
digitalWrite(7, HIGH);

}
[...]

}

Listing 6.16 Extract of the hw.cpp file containing hardware-specific functions

Fig. 6.6 The Arduino version of the MVM

• fireUpdateSet(), which updates the values of controlled functions to be used in
the next state.

The complete simulation, with the code generated by Asm2C++ and uploaded to the
Arduino-based circuit (see Fig. 6.6), has been executed by simulating the patient with
its digital twin based on a simple lung model [66]. A complete simulation example is
available at the following link: https://youtu.be/a3fhqLpYVMI.

6.4 Model-based Testing with ASMETA

In the previous section, I have presented how a system can be developed from scratch,
starting from its ASMETA specification. However, in some cases, the final implementation
of the system may be already available and testers only need a guide on how to test the
system, or simply need a way to automatically generate tests. For this purpose, model-
based testing (MBT) is usually adopted. It consists of writing a formal model of the system
and, then, deriving from it a test suite composed of abstract tests that have to be concretized
in order to be executable on the real system.

https://youtu.be/a3fhqLpYVMI
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As introduced in Sect. 5.4.1, ASMETA integrates the ATGT tool, which performs model-
based test generation by exploiting the NuSMV model checker. In particular, ATGT builds
some test predicates representing particular conditions that must be covered in order to
satisfy the following coverage criteria:

• Basic rule: it requires that for every rule ri there exists at least one test sequence for
which ri fires at least once, and there exists at least one test sequence for which ri

does not fire at least once.

• Complete rule: it requires that for every conditional rule ri, the guard is true in at
least one state of a test sequence and an update performed by ri is not trivial.

• Update rule: it requires that for every function update f := t there exists at least one
test sequence for which the update is performed and it is not trivial.

• Rule guard: it requires that for every rule there exists a test in which the rule does
not fire and the value v of some location that would be updated by the rule to vr is
different from the value it would be updated to in case the rule had fired.

• MCDC: it requires that every guard in every rule is tested according to the (masking)
MCDC criterion.

• Combinatorial interaction: it requires that for every t-tuple of monitored locations
(with limited domain), every combination of their possible values is tested in at least
one state in a test sequence.

• All criteria: it requires all the above criteria.

In the following, I present the application of the model-based testing approach to two
different medical systems, namely, the MVM (in its original version, which is currently
running on the real devices marketed, developed using the Yakindu SCT tool) and the PHD
protocol. In particular, for each case study, I report the phases of modeling, test generation,
test concretization, and test execution with coverage evaluation.

6.4.1 Applying MBT to the MVM case study

As presented in Chapter 3, an important part of the MVM, now used and sold worldwide,
is its controller, which receives operator inputs from the GUI, communicates with valve
controllers, serial interfaces, and other sub-components, and sends them commands. It has
been developed mainly using the Yakindu SCT tool, which allows users to draw the state
machine that represents the behavior of the system and automatically generate the C++
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Fig. 6.7 MBT process for the MVM case study

code. In this section, I present how MBT activities based on the ASMETA framework can
be carried out in order to test the Yakindu implementation of the MVM state machine. The
process workflow is depicted in Fig. 6.7 and is analyzed below.

Modeling and V&V

The modeling activity has been performed as presented in Sect. 6.3.2. All models have
been checked with the V&V activities previously described. Performing exhaustive and
correct V&V is important, since generating tests from a faulty model may lead testers to
think that the implementation is incorrect, while, indeed, it is not.

Test generation

The test generation process is carried out using the ATGT tool. It starts from the ASM speci-
fications, which have been validated and verified, and exploits the NuSMV counterexample
generation.

In this case study, the abstract tests are stored in Avalla format. Furthermore, test
generation has been executed using the monitoring optimization: when a test sequence ts
is generated for a test predicate that has not yet been covered, the algorithms check if ts
accidentally covers other test predicates and skips the other test predicates already covered.
In this way, the test generation process is sped up.

Note that test generation using the model checker can be a time-expensive activity, even
if monitoring is used. For this reason, a timeout has been added: for every test predicate t p
to be covered, the model checker is interrupted if it reaches the timeout before producing a
test, either because the test that covers t p exists but the model checker is unable to find
it, or because t p is unfeasible, i.e., there is no test that covers it and the trap property is
actually true. Unfortunately, ATGT is not able to distinguish the two cases by proving the
unfeasibility of the test predicates.
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Table 6.5 Comparison between different criteria for automatic test cases generation

Criteria #Tps
Timeout 10 minutes Timeout 40 minutes

#Tests #Time- Generation #Tps %Tps #Tests #Time- Generation #Tps %Tps
outs time [min] covered covered outs time [min] covered covered

Basic rule 72 13 29 345 43 60% 24 11 773 61 85%
Complete rule 2 0 0 0 2 100% 0 0 0 2 100%
Rule guard 124 1 60 601 64 52% 1 27 1080 97 78%
Rule update 89 0 52 520 37 42% 0 25 1000 64 72%
MCDC 148 10 55 581 93 63% 9 24 997 124 84%
2-Wise 420 77 0 1 420 100% 73 0 1 420 100%

All criteria 853 101 196 2048 659 77% 107 87 3852 768 90%

Tab. 6.5 reports the comparison in terms of test predicates, number of generated
tests, number of timeouts (or infeasible predicates), generation time, and number of test
predicates covered for each coverage criterion using two different timeouts of 10 and 40
minutes. The results obtained confirm that the higher the timeout, the higher the total
number of covered test predicates (from 77% with timeout 10 minutes to 90% with timeout
40 minutes). The same behavior can be observed for the total number of tests generated
and the generation time. Each coverage criterion, from 10 to 40 minutes of timeout,
increases the number of tps covered except for Complete Rule and 2-Wise. The first does
not generate any tests, because of monitoring optimization, since all tps are already covered
by tests generated with Basic Rule. The second covers all the available tps for both values
of timeout. Furthermore, for 2-Wise, there is a small difference in terms of the number
of tests generated (which is greater with a shorter timeout). This is because of the lower
timeout, fewer tests are generated before trying to cover 2-Wise, so more tps will result
uncovered, and they will need more tests.

Test optimization

After having generated abstract tests, before their concretization, there may be the necessity
to optimize them. Optimizations do not change the semantics of the tests, but improve the
readability and translatability of the abstract tests to the concrete ones. In the experiments
presented in this section, the following optimizations have been applied:

1. Check optimization: it removes unchanged controlled locations. In fact, if a con-
trolled location in state si has not changed w.r.t. state si�1, the corresponding check
is useless and can be removed, if present. For example, in Listing 6.17, the check
command on the location iValve is repeated, so it is possible to remove the second
one (see Listing 6.18).

2. Set optimization: it aims at removing set commands on monitored variables in
state si�1 if they are not actually asked to compute the update set for state si. For
this reason, this optimization is based on automatically processing the scenario and
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Listing 6.17 Original sce-
nario
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Listing 6.18 Check Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...

set respirationMode := PCV; ...
step
check iValve = OPEN; ...

Listing 6.19 Set Opt.
scenario
check apneaAlarm = false;
check iValve = CLOSED; ...
set respirationMode := PCV; ...
step ...

step
check iValve = OPEN;

keeping the set commands only if the values of the set functions are actually used
by the ASM simulator to compute the update set. For example, in Listing 6.18, the
second instance of set respirationMode = PCV is removed in Listing 6.19 since
it is useless.

From the experiments carried out, the average number of check and set commands
per state in the scenarios generated without optimization is, respectively, 37 and 15. By
applying the check optimization technique, the optimized scenarios have an average of
11.22 check per state, while by applying the set optimization the average of set per state
became 3.31. This reduction in commands allows for a consistent reduction in the length
of each test case and, thus, in the time required for testing systems. In addition, having
shorter test cases facilitates the task of pinpointing possible bugs.

Test concretization

To make abstract tests executable in Yakindu, they have been concretized using the
GoogleTest framework. The code that converts scenarios to GoogleTests is available
online at: https://github.com/asmeta/mvm-asmeta/tree/master/mvm-scenario-converter. In
particular, the concretization process consists in the following three consecutive steps:

1. Mapping of ASMETA functions to state machine variables: The first step for tests
concretization is the mapping of ASMETA functions to state machine variables. For
this purpose, a JSON configuration file is automatically generated and filled with all
the functions set or checked in the Avalla scenarios. Then, the mapping has to be
performed manually by the user. For each function, the JSON file contains:

• asmName, which is the name that the function assumes in the ASMETA specifi-
cation;

• cName, i.e., the name of the function in the C++ code;
• commandType, specifying the type of function, chosen between IN_EVENT

(representing events raised by the user), VAR (representing internal fields of the

https://github.com/asmeta/mvm-asmeta/tree/master/mvm-scenario-converter
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[ { "asmName": "startVentilation",
"cName": "startVentilation",
"commandType": "IN_EVENT"

},{ "asmName": "time", "cName": "time",
"commandType": "TBD"

},{ "asmName": "iValve",

"cName": "defaultMock−>getInValveStatus",
"commandType": "OPERATION"

},{ "asmName": "state", "cName": "state",
"commandType": "STATE"

},{ "asmName": "mode", "cName": "mode",
"commandType": "VAR"}]

Listing 6.20 JSON file for function mapping

state machine), OPERATION (representing function interacting with hardware
components), STATE (representing the state of the state machine), and TBD

(the default type, TBD functions are ignored during test concretization, but are
used only in the ASMETA model).

An example of the content of the JSON file is reported in Listin 6.20. The function
startVentilation is IN_EVENT since it is raised by the user. mode is VAR because it
represents an internal field of the state machine, and iValve is an OPERATION func-
tion, because it interacts with hardware components, i.e., the input valve. Functions
used only in the ASMETA model but not in the C++ code (e.g. time) are set to be
ignored (TBD type).

2. Hardware mocking: Considering that the MVM state machine directly interacts
with hardware, during test concretization, it has to be mocked. For this reason,
mocking classes have been written using the same interface as the real classes of
hardware components. Then, the mocking file is automatically included in the test
suite by the scenario concretization process. The complete mocking file for the
MVM case study is available online at https://github.com/asmeta/mvm-asmeta/blob/
master/mvm-scenario-converter/additional_files/mock.c.

3. GoogleTest code generation: After having mocked the hardware and configured the
mapping between ASMETA and C++ files, the concretization can be completed by
generating a GoogleTests test suite. Considering that the MVM has been developed
as a cycle-based state machine, with a cycle duration of 100ms, the translation of the
step Avalla command has been done by replacing it with the Yakindu command
proceed_time(100). The other Avalla commands are concretized as explained in
Tab. 6.6.

Listing 6.21 shows a test concretization example of an Avalla scenario. In particular,
IN_EVENT functions (such as startVentilation) are raised only when they are set
to true in the Avalla scenario, while VAR functions, such as mode, are set in the
GoogleTest test case when there is a corresponding set in the Avalla scenario
and checked when there is a corresponding check in the scenario. OPERATION

https://github.com/asmeta/mvm-asmeta/blob/master/mvm-scenario-converter/additional_files/mock.c
https://github.com/asmeta/mvm-asmeta/blob/master/mvm-scenario-converter/additional_files/mock.c
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set mode := PSV;
set startVentilation := true;
step
check time = 3;
check oValve = CLOSED;
check iValve = OPEN;
check state =

MAIN_REGION_PSV_R1_INSPIRATION;

sm−>setMode(PSV);
sm−>raiseStartVentilation();
runner−>proceed_time(100);

EXPECT_EQ(valveMock−>getOutValveStatus() , CLOSED);
EXPECT_EQ(valveMock−>getInValveStatus() , OPEN);
EXPECT_TRUE(sm−>isStateActive(

MAIN_REGION_PSV_R1_INSPIRATION));

Listing 6.21 Test concretization from an Avalla scenario fragment to a GoogleTest test
case

functions, such as iValve, are converted into method calls. If there is a check in
the Avalla scenario on an OPERATION function, a check is also performed in the
GoogleTest test case. Finally, the STATE function represents the active state of the
machine.

Test execution

Having concretized the abstract tests, they have been used for testing the C++ code of
the MVM controller. Tab. 6.7 reports the incremental coverage, in terms of statements,
branches, and functions, reached by the tests automatically generated using 10 and 40
minutes of timeout. The results obtained confirm the observations made after Tab. 6.5: in-
creasing the timeout leads to an increment of the covered test predicates and, consequently,
of the code coverage. Note that the coverage in Tab. 6.7 increased from one criterion to the
next, except for Complete rule and Rule update, for which no significant test is generated.
This means that no criterion could have been skipped, since all the criteria contribute to
increasing the coverage.

Even when the higher timeout is used, full coverage of the MVM code has not been
obtained. This is reasonable since, starting from the code automatically generated by
Yakindu SCT, many parts of the code are only used by Yakindu itself and cannot be
mapped to external calls. However, the coverage reached in this case is higher than that
reached during the development of the MVM itself. In fact, unit testing of the MVM
controller was not mandatory in order to obtain the safety certification since the component

Table 6.6 Translation rules between Avalla and GoogleTest instructions (sm is the generic
name used to indicate the state machine object in Yakindu)

Function type Set Check

STATE // EXPECT_TRUE(sm->isStateActive([stateName]))
IN_EVENT sm->raise[cName]() //
VAR sm->set[cName]([value]) EXPECT_EQ(sm->get[cName](),[value])
OPERATION [cName]([value]) EXPECT_EQ([cName](),[value])
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Table 6.7 Coverage reached using different timeouts and coverage criteria

Criteria
Timeout 10 minutes Timeout 40 minutes

Statement Cov. Branch Cov. Function Cov. Statement Cov. Branch Cov. Function Cov.

Basic rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Complete rule 65.69% 63.48% 59.46% 80.97% 81.32% 79.05%
Rule guard 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
Rule update 66.19% 63.91% 60.47% 81.48% 81.74% 80.07%
MCDC 70.24% 69.85% 65.54% 81.48% 81.74% 80.07%
2-Wise 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

All criteria 70.24% 69.85% 65.54% 81.98% 82.17% 81.08%

was not classified in class C (see Sect. 2.2.1). For this reason, only a few tests were written
manually, and those obtained with the process described in this section are an important
asset, both for usability testing and integration/system testing that, indeed, is mandatory
for each medical device, regardless of its safety class.

6.4.2 Applying MBT to the PHD protocol case study

In this section, I present how MBT activities based on the ASMETA framework can be car-
ried out in order to test the manager part of Antidote 2.13, an open-source implementation
of the PHD protocol (previously presented in Sect. 6.2.2). The Antidote source code is
written in C and composed of the following source folders: api, asn1, communication, dim,
resources, specializations, trans, and util. In order to focus the testing process solely on
the manager, the functionalities contained in the communication module have been further
split into two folders: agent and manager.

The process workflow is presented in Fig. 6.8. As previously done for the MVM case
study, the ASMETA specification is derived from the system requirements specification.
Then, using the ATGT tool, abstract tests are derived in the Avalla format. Normally,
abstract tests need to be concretized. However, in this case, Antidote can be tested directly
with a test executor capable of interpreting Avalla files, so the test concretization and test
execution phases coincide.

Note that, in this case study, the approach is different from the one presented for the
MVM. In fact, for the MVM a refinement approach has been used for writing models and,
then, the tests have been generated from the last refinement level. Instead, for the PHD
case study, I present an alternative approach called RATE (Refinement And Test Execution),
which is based on alternating refinement, test generation, and test execution in order to
gather, from the coverage reached, information about the parts in the code that are missing
in the model. In this way, by using a gray-box approach, the model can evolve to be more

3https://github.com/signove/antidote

https://github.com/signove/antidote
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Fig. 6.8 MBT process for the PHD case study

adherent to the implementation. Furthermore, this approach can be used when reverse
engineering is needed to derive requirements from the implementation.

Data useful for replicating the results shown in this section are available online at
https://github.com/asmeta/RATE/tree/main/Case_studies/PHD_Protocol.

Modeling

In the following, I present 6 refinement steps that have been made in the case study of the
PHD protocol. For each of them, simulation, animation, scenario-based testing, refinement
proof, and verification activities have been performed, in order to verify the correctness of
the behavior modeled w.r.t. the official specification [12]. The complexity of the refinement
levels increases from one level to the other, as well as the number of rules contained in
each model.

• Level 0 - Main manager transitions: In this first level, only three states have
been modeled: Disassociating, Unassociated, and Operating. The transition from
one state to the next one and the response depend on the current state and the
message received. Listing 6.9 reports a fragment of ASM0 written using the AsmetaL
language. The signature of ASM0 contains three functions: status, transition,
and message. The transition function models the type of request to be sent to
the manager, and is defined as a monitored function since its value can be controller
by external factors or entities, e.g., by the agent. The status function represents the
current state of the manager, while the message represents the response from the
manager. Both functions are defined as controlled, since their value is managed by
the ASM model.

• Level 1 - Remote operation management: In the first level of refinement, messages
used for remote operation management (rx_roiv, rx_rors, rx_rorj) have been
added. Moreover, since not all messages can be used in every state, an invariant

https://github.com/asmeta/RATE/tree/main/Case_studies/PHD_Protocol
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asm PHD0
import StandardLibrary

signature:
// DOMAINS

enum domain Status = {UNASSOCIATED, OPERATING, DISASSOCIATING}
enum domain Transition = {REQ_ASSOC_REL, REQ_ASSOC_ABORT, RX_RLRE, RX_ABRT, RX_AARQ,

RX_AARQ_ACCEPTABLE_AND_KNOWN_CONFIGURATION, RX_AARE,
RX_RLRQ}

enum domain Message = {MSG_NO_RESPONSE, MSG_RX_AARE, MSG_RX_ABRT, MSG_RX_RLRQ,
MSG_RX_RLRE}

// FUNCTIONS

controlled status: Status
monitored transition: Transition
controlled message: Message

definitions:
rule r_Unassociated =

switch transition
case REQ_ASSOC_REL:

par
status := UNASSOCIATED
message := MSG_NO_RESPONSE

endpar
case REQ_ASSOC_ABORT:

[...]
rule r_Operating =
switch transition

[...]
rule r_Disassociating =

switch transition
[...]

main rule r_Main = par
if (status = UNASSOCIATED) then
r_Unassociated[]

endif
if (status = OPERATING) then

r_Operating[]
endif
if (status = DISASSOCIATING) then

r_Disassociating[]
endif

endpar

// INITIAL STATE

default init s0:
function status = UNASSOCIATED

Fig. 6.9 ASMETA specification of ASM0, specifying the main PHD manager transitions

for each state has been added, to guarantee that only messages valid for each state
can be sent by the agent. This is a simplification that allowed testing the system
incrementally, by isolating regular and exceptional behaviors. Listing 6.10 reports
a fragment of ASM1 written in the AsmetaL language, which extends the possible
messages and introduces the invariants.

• Level 2 - PHD configuration management: This level of refinement adds the
states modeling the exchange of configutation between devices working with the
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asm PHD1
import StandardLibrary

signature:
// DOMAINS

[...]
enum domain Transition = {REQ_ASSOC_REL, REQ_ASSOC_ABORT, RX_RLRE, RX_ABRT, RX_AARQ,

RX_AARQ_ACCEPTABLE_AND_KNOWN_CONFIGURATION, RX_AARE, RX_RLRQ, RX_ROIV,
RX_ROER, RX_RORJ}

enum domain Message = {MSG_NO_RESPONSE, MSG_RX_AARE, MSG_RX_ABRT, MSG_RX_RLRQ,
MSG_RX_RLRE, MSG_RX_PRST}

[...]

definitions:
[...]

INVAR (status = DISASSOCIATING) implies (transition = RX_RLRE or transition = REQ_ASSOC_ABORT
or transition = RX_AARQ or transition = RX_AARE or transition = RX_RLRQ
or transition = REQ_ASSOC_REL or transition = RX_ABRT or transition = RX_ROIV
or transition = RX_ROER or transition = RX_RORJ)

INVAR (status = OPERATING) implies (transition = REQ_ASSOC_REL or transition = REQ_ASSOC_ABORT
or transition = RX_AARQ or transition = RX_AARE or transition = RX_RLRQ or transition = RX_RLRE
or transition = RX_ABRT or transition = RX_ROER or transition = RX_RORJ or transition = RX_ROIV)

INVAR (status = UNASSOCIATED) implies (transition = REQ_ASSOC_REL or transition = REQ_ASSOC_ABORT
or transition = RX_AARE or transition = RX_RLRQ or transition = RX_RLRE
or transition = RX_ABRT or transition = RX_AARQ_ACCEPTABLE_AND_KNOWN_CONFIGURATION)

[...]

Fig. 6.10 ASMETA specification of ASM1, introducing the remote operation management

PHD protocol: CheckingConfig and WaitingForConfig. Furthermore, the transitions,
messages, and rules related to the newly added states are modeled by ASM2.

• Level 3 - Error management: All rors messages related to error management
were not yet modeled by the previous level of refinement. Therefore, in the fourth
model ASM3, the rors message and its subtypes (rors-*) have been added. From
the protocol specification, it can be noticed that these messages trigger a relevant
part of the protocol between the states Disassociating and Unassociated, and within
the states Operating, CheckingConfig, and WaitingForConfig. Moreover, this level
of refinement introduces two particular sequences of transitions in the model, which,
according to the protocol specification [12], have to be managed differently:

1. When the manager is in the WaitingForConfig state and receives from the
agent a message rx_roiv_confirmed_event_report, it should move to the
CheckingConfig state. However, the internal handling of this transition is
different depending on whether the state WaitingForConfig was entered, with a
transition from the state Unassociated or from the state CheckingConfig. In
the former case, no configuration similar to the one transmitted by the agent
is present in the manager pool of configurations, and so, additional functions
that ask for configuration attributes are used. In the latter case, a similar
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asm PHD4
import StandardLibrary

signature:
// DOMAINS

[...]
enum domain Transition = {REQ_ASSOC_REL, REQ_ASSOC_ABORT,

RX_AARQ_ACCEPTABLE_AND_KNOWN_CONFIGURATION,
RX_AARQ_ACCEPTABLE_AND_UNKNOWN_CONFIGURATION,
RX_AARQ_UNACCEPTABLE_CONFIGURATION, RX_AARE, RX_RLRQ,
RX_RLRE, RX_ABRT, RX_ROIV_CONFIRMED_EVENT_REPORT, RX_ROIV, RX_ROER, RX_RORJ,
REQ_AGENT_SUPPLIED_UNKNOWN_CONFIGURATION, RX_RORS,
REQ_AGENT_SUPPLIED_KNOWN_CONFIGURATION,
RX_RORS_CONFIRMED_ACTION, RX_RORS_CONFIRMED_SET, RX_RORS_GET, RX_AARQ,
RX_AARQ_INVALID, RX_AARQ_EXTERNAL}

[...]

definitions:
[...]

Fig. 6.11 ASMETA specification of ASM4, introducing protocol and configuration man-
agement

configuration was previously transmitted, and thus the configuration is already
in the memory of the Antidote manager.

2. The behavior of the message rx_roiv_confirmed_event_report, when
causing a loop in the CheckingConfig state, is different if executed right after
another same message that brought the manager from the state WaitingForCon-
fig to the CheckingConfig state. In this case, additional functions handling the
new measurement received from the agent are executed.

• Level 4 - Protocol and configuration management: During connection, an agent
may try to use a wrong protocol-id or with an unknown (or external) configuration,
which is identified with a specific protocol-id value (0xFFFF). For this reason,
as shown in Listing 6.11, ASM4 models the message rx_aarq with two additional
variants, respectively, with an invalid protocol-id and an external protocol-id.

• Level 5 - Invalid messages management: This refinement level removes the
invariants previously defined in order to limit the messages received by the manager
to those valid. In fact, the official IEEE specification [12] of the PHD requires
managers to deal with invalid messages, too, and, when a manager receives a
message that is not defined in its current state, it must reply with an abort message.

• Level 6 - Invalid invoke-id management: One of the aspects that were not yet
captured by the ASM specification was the dependence of the manager’s behavior
based on the invoke_id contained in each APDU. For example, if the manager is in
WaitingForConfig and receives rors-*, roer, or rorj messages, it can produce no
response if invoke_id is valid or an abort otherwise. To manage this particular
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asm PHD6
import StandardLibrary

signature:
// DOMAINS

[...]

// FUNCTIONS

controlled status: Status
monitored transition: Transition
controlled message: Message
monitored invokeIdValid: Boolean
[...]

definitions:
[...]
rule r_Waiting_For_Config =

switch transition
[...]
case RX_ROER:

if invokeIdValid = true then
par

status := WAITING_FOR_CONFIG
message := MSG_NO_RESPONSE

endpar
else

par
status := UNASSOCIATED
message := MSG_RX_ABRT

endpar
endif
[...]

Fig. 6.12 ASMETA specification of ASM4, introducing protocol and configuration man-
agement

behavior, as shown in Listing 6.12, ASM6 has an additional monitored function
invokeIdValid that is combined with the transition function to establish if the
message must be sent with valid or invalid invoke_id.

Test Generation

Starting from the ASM specification, tests have been generated using the criteria presented
in Sect. 6.4 for each refinement level. For the Combinatorial interaction criteria, t = 2 and
t = 3 have been used. However, since 2-Wise and 3-Wise are performed only considering
the monitored functions, only with the last refinement level (which has two monitored
functions), the former is effective, while the latter has not produced any test predicate.
More details on the test sequences obtained, their length and the number of steps are
reported in Tab. 6.8. Furthermore, in order to compare sequences automatically generated
by ATGT and manual testing, manually written Avalla scenarios have also been used.
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Test concretization and execution

As previously mentioned, for the PHD protocol case study, the test executor is able to
deal with Avalla files, so the test concretization and test execution phases coincide. In
particular, at every step, the test executor sends a suitable message to the Manager, checks
the response, and the target state. To perform the test execution, the ProTest tool, originally
presented in [181] and modified for dealing with Avalla files, has been used. It acts as
an agent by interacting with the manager implementation that is executed on the server
side. It builds the messages, sends them to the manager, and checks the conformance of
the response received from it. Moreover, it integrates gcov4 which allows users to evaluate
the coverage of the performed tests, and to check which statements are not covered.

Tab. 6.8 presents the coverage reached for each level of refinement in the PHD case
study with all testing criteria. It can be seen that the code coverage obtained with the
tests generated from ASM0 is very similar for all test generation strategies (around 35%
for statement coverage, 54% for function coverage, and 23% for branch coverage) except
for combinatorial-based methods, since, as mentioned before, no tests are generated by
2-Wise and 3-Wise criteria. In the first step of refinement (ASM1) the coverage increases as
expected, as well as for the one in ASM2, because the ASM models have been improved
by adding remote operation management and configuration management. For the other
refinement levels, from ASM3 to ASM6, the coverage slowly increases since most of the
main aspects of the protocol (which represent the majority of statements and functions in
the Antidote code) were already captured by ASM2. Note that full coverage has not been
reached, even with the last level of refinement ASM6. Analyzing the uncovered statements,
it can be seen that they are mainly related to dead code (such as functions declared with an
empty body or never used), or negative use cases (exceptions), often regarding internal
configurations of the manager.

To evaluate the effectiveness of the proposed approach, manual testing has been per-
formed with manually written Avalla scenarios. The main revealed differences between
manual tests and generated tests are the average sequence length and the number of test
sequences (see Tab. 6.8). In fact, when automatic test generation is used, test predicates
are used to automatically generate test sequences, and a single sequence mainly covers a
single test predicate. On the contrary, with manual tests, the length of test sequences is
higher, but their number is lower: users tend to cover more test predicates in each scenario.

Even if the total number of sequences in manual testing is significantly lower than the
other criteria (in some refinement level also more than 90% lower), the coverage is, in
general, equal or only slightly lower than the automatic test generation with the highest
coverage. On the basis of the outcomes and considering the great effort required for writing

4https://gcovr.com

https://gcovr.com
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Refinement Test generation
strategy

Test sequences Code coverage # Test
predicates# steps

sequences min max total avg statement function branch

ASM0

Basic rule 21 1 4 62 2.95 34.1% 54.3% 22.8% 45
Complete rule 3 1 4 8 2.67 32.6% 51.8% 23.2% 3
Rule update 21 1 4 64 3.05 35.6% 54.3% 23.8% 42
Rule guard 22 1 4 66 3.00 35.6% 54.3% 24.1% 66

MCDC 21 1 4 62 2.95 35.6% 54.3% 24.6% 48
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 24 1 4 71 2.96 35.6% 54.3% 24.1% 204
manual 1 34 34 34 34.00 35.6% 54.3% 27.0% //

ASM1

Basic rule 27 1 4 83 3.07 42.1% 67.1% 27.8% 57
Complete rule 3 1 4 8 2.67 33.2% 53.0% 21.8% 3
Rule update 27 1 4 85 3.15 43.6% 67.1% 29.2% 54
Rule guard 27 1 4 85 3.15 43.6% 67.1% 29.2% 84

MCDC 27 1 4 83 3.07 43.6% 67.1% 25.0% 60
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 31 1 4 95 3.06 43.6% 67.1% 29.2% 258
manual 1 46 46 46 46.00 43.6% 67.1% 29.2% //

ASM2

Basic rule 56 1 4 182 3.25 58.2% 76.8% 37.5% 115
Complete rule 5 1 4 15 3.00 39.5% 55.5% 25.3% 5
Rule update 56 1 5 187 3.34 58.2% 76.2% 31.9% 110
Rule guard 60 1 5 203 3.38 58.2% 76.2% 38.8% 170

MCDC 56 1 4 182 3.25 60.9% 77.4% 39.8% 120
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 68 1 5 230 3.38 58.2% 76.2% 38.8% 520
manual 5 11 33 104 20.80 58.2% 72.2% 39.0% //

ASM3

Basic rule 71 1 4 234 3.30 63.5% 79.9% 42.6% 141
Complete rule 5 1 4 15 3.00 42.3% 61.0% 28.4% 5
Rule update 69 1 5 235 3.41 60.8% 78.7% 41.6% 136
Rule guard 75 1 5 259 3.45 60.8% 78.7% 41.6% 209

MCDC 68 1 4 222 3.26 60.8% 78.7% 41.6% 146
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 86 1 5 298 3.47 60.8% 78.7% 41.6% 637
manual 5 11 38 121 24.20 61.1% 78.7% 42.0% //

ASM4

Basic rule 69 1 4 222 3.22 63.9% 79.9% 43.0% 145
Complete rule 5 1 4 15 3.00 39.8% 57.9% 25.3% 5
Rule update 71 1 5 239 3.37 61.2% 78.7% 41.6% 140
Rule guard 78 1 5 267 3.42 61.2% 78.7% 41.6% 215

MCDC 69 1 4 222 3.22 61.2% 78.7% 42.0% 150
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 88 1 5 301 3.42 61.2% 78.7% 41.6% 655
manual 5 14 38 124 24.80 64.0% 79.9% 43.0% //

ASM5

Basic rule 83 1 4 272 3.28 64.0% 79.9% 43.1% 157
Complete rule 5 1 4 15 3.00 41.4% 59.1% 26.0% 5
Rule update 82 1 5 277 3.38 61.3% 78.7% 42.2% 152
Rule guard 90 1 5 307 3.41 61.3% 78.7% 42.2% 233

MCDC 96 1 4 316 3.29 64.0% 79.9% 43.1% 294
2-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 117 1 5 400 3.42 64.0% 79.9% 43.1% 841
manual 5 15 41 135 27.00 64.0% 79.9% 43.1% //

ASM6

Basic rule 95 1 4 307 3.23 64.2% 79.9% 43.8% 169
Complete rule 5 1 4 15 3.00 40.4% 59.8% 26.6% 5
Rule update 93 1 5 310 3.33 64.2% 79.9% 43.8% 176
Rule guard 103 1 5 347 3.37 64.2% 79.9% 43.8% 257

MCDC 109 1 4 356 3.27 64.2% 79.9% 43.8% 318
2-Wise 28 1 3 61 2.18 35.1% 54.3% 24.8% 44
3-Wise 0 0 0 0 0.00 0.0% 0.0% 0.0% 0

All criteria 134 1 5 446 3.33 64.2% 79.9% 43.8% 969
manual 7 12 41 159 22.71 64.2% 79.9% 43.8% //

Table 6.8 Coverage results for each refinement/test generation strategy applied to the PHD
protocol case study. The coverage values in bold represent the highest coverage reached at
that refinement level.

tests manually, it can be concluded that automatic test generation can substitute the manual
tests since it guarantees the same coverage with lower effort by the user. Moreover, with
manual tests, one can miss covering a specific behavior, make a mistake in test writing, or
in defining the test oracle.
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Finally, the proposed approach has been revealed to be successful, since by applying
MBT guided by coverage information, as presented in this section, several faults have been
found and fixed in a new release of the protocol5:

• The official IEEE 11073-20601 specification requires the use of rx_abrt as response
for the sequence “Unassocciated + req_assoc_abort”. However, the tests gen-
erated from ASM0 have highlighted that the original Antidote implementation used
“no response” instead.

• The sequence “checking_config + rx_aarq ! rx_abrt” caused a transition
mismatch when executing tests derived from ASM1. By checking the code, three
transitions for sub-types of the event rx_aarq_* were implemented, but the case
where the rx_aarq message is received in state checking_config was missing.
This means that the manager did not respond to the message rx_aarq itself. Since
the IEEE specification requires “rx_abrt” as a response when an unexpected mes-
sage is received by the manager, the transition “checking_config + rx_aarq!
unassociated + rx_abrt” has been added to the fixed version of the Antidote
manager state table.

• The sequence “disassociating + rx_rors! unassociated + rx_abrt” caused
a response mismatch when executing tests derived from ASM3. Indeed, the answer
given by the manager was “no response” if a valid invoke-id was provided, but the
IEEE specification always requires “rx_abrt” as response for this message.

• The Antidote manager did not check the invoke-id contained into the “rx_roer” and
“rx_rorj” messages. Indeed, the official IEEE specification requires “rx_abrt” as
a response to these two messages when the invoke-id is invalid, and “no response”
otherwise. The bug has been revealed while executing tests derived from the last
refinement level (ASM6).

In conclusion, the presented approach has allowed testers not only to decrease the effort
required to test complex medical systems such as the PHD protocol, but also to identify
some faults and conformance errors in the open-source Antidote implementation.

6.5 Conclusion

In this chapter, I have presented how the ASMETA framework can be easily applied to
medical systems to increase their quality and reliability. In fact, as explained in Sect. 6.1,

5https://github.com/fmselab/antidote3

https://github.com/fmselab/antidote3
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all activities required by the main standard for medical software certification can be easily
mapped to the activities and functionalities offered by ASMETA.

The main directions in which the ASM-based development process and ASMETA
in general can aid developers are the development of correct-by-construction code and
model-based testing activities.

When there is no existing code, the developer can start modeling the system using
the AsmetaL language. Then, he/she can verify and validate the modeled systems using
several tools embedded in the ASMETA framework (AsmetaS, AsmetaA, AsmetaV, and
AsmetaSMV). Finally, after the model has been verified, the developer can derive the code
for the actual device from the ASM specification using the Asm2C++ tool. This process
has been successfully applied and tested for two different medical case studies, namely
the e-Pix and the MVM. The first is a smart pill box, which has been developed by a
local company and is based on Arduino. By applying the ASMETA-based development
process, we have been able to fully cover all the activities required by medical software
certification authorities: starting from a formal specification, obtained through several
refinements, we have proved the necessary safety properties of the device, and we have
generated automatically the source code to be embedded on the Arduino. The second
device, presented in detail in Chapter 3, is a mechanical ventilator, developed for COVID-
19, I contribute to the developing and certification process. Even if the ASMETA process
has not been applied during the actual development of the product, in this section I have
shown how it could have been, in principle, applied for the development of such a complex
medical device. As for the e-Pix case study, also in this case, starting from the formal
specifications we have been able to obtain a correct-by-construction source code.

On the other hand, when the system code is already available and testers want guidance
in generating test cases, a model-based approach can be chosen. In this case, after the tester
has written the system specification using the AsmetaL language, and performed V&V
activities on it, abstract tests can be derived thanks to the ATGT tool. The obtained tests
can then be concretized and executed against the implementation of the medical system
under test. This process has been applied to the MVM and to the PHD protocol case
study. For the MVM case study, I have shown how one can apply model-based testing
by generating, from the formal specification, test cases that can be concretized as Google
Tests. These tests have been executed against the software which currently runs on the
real MVM in production. In this way, we have been able to increase the code coverage
w.r.t. the one we previously reached during the development of the device. Instead, for
the PHD protocol case study (a protocol allowing the communication between medical
devices) I have presented a different approach, called RATE: starting from the already
existing source code, the ASMETA model has been obtained by identifying which part
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of the source code were not covered. With this approach, by looking which part were
missing in the model and by implementing them in the model in a way compliant to the
system specifications, a failing test represents behaviors wrongly implemented. Finally, by
applying the ASMETA framework under different perspectives, in both cases, the coverage
obtained has been satisfactory and, moreover, the applied process has allowed to discover
bugs or conformance errors.





Chapter 7

Combinatorial testing for complex
PEMS

In the previous chapter, the application of model-based techniques to PEMS case studies
exploiting the ASMETA framework has been presented. However, testers may need to
deal with complex medical systems that have several inputs and outputs, and testing
them extensively may be unfeasible. Moreover, bugs may be revealed only by precise
combinations of a few inputs. For these reasons, this chapter introduces the combinatorial
testing strategy and shows how it can be applied to the MVM (previously presented in
Chapter 3) and PHD protocol (previously analyzed in Chapter 6) case studies, to investigate
how it can contribute in aiding testers while working with highly configurable and complex
systems by reducing the number of test cases.

This chapter is based on the work presented in [46, 47, 44, 45] and is structured as
follows. Sect. 7.1 introduces the general concepts of combinatorial interaction testing,
while Sect. 7.2 explores how it can be applied when sequences of inputs have to be tested
in a combinatorial way. Sect. 7.3 presents a method, a set of heuristics, and a formula
for comparing combinatorial generators when testers have to choose the best one for
the specific application scenario. Finally, Sect. 7.4 tackles the advantages and limits
of parallelizing combinatorial test generation combining multithread with Multi-valued
Decision Diagrams or SMT solvers, and Sect. 7.5 concludes the chapter.

7.1 Introduction

Combinatorial interaction testing (CIT) has been an active area of research for many years
and has proven to be very effective for testing complex systems, especially for those with
several input parameters, such as medical systems.
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Combinatorial testing is based on the idea that not every parameter contributes to every
fault, and most faults are caused by interactions between a relatively small number of pa-
rameters [113]. Studies conducted by NIST from 1999 to 2004 showed that combinatorial
testing is more efficient at detecting faults than conventional methods: it has proved to
have a fault detection equal to exhaustive testing while reducing the test suite size 20 to
700 times. Suppose that you want to test a system with 7 switches that can be either ON or
OFF. If exhaustive testing is used, 27 = 128 test cases are needed. However, if one decides
to test only the interaction between pairs of parameters (strength t = 2), 8 tests are enough.
Furthermore, if constraints restricting input combinations are added to the system under
test, the number of test cases may be even further reduced.

Combinatorial testing can be considered a particular type of model-based testing.
In fact, when working with combinatorial testing, testers need to define a constrained
combinatorial model in which the parameters, their bounds, and the constraints are defined.

Definition 1 (Constrained Combinatorial Model). Let P = {p1, ..., pn} be a set of n
parameters, where every parameter pi assumes values in the domain Di = {vi

1, . . . ,v
i
oi
}. Let

D be the set of all Di, i.e., D = {D1, . . . ,Dn} and C = {c1, ...,cm} be the set of constraints
over the parameters pi and their values vi

j. We say that M = (P,D,C) is a Constrained
Combinatorial Model.

Listing 7.1 shows an example of a constrained combinatorial model written in CTWedge [93]
for the MVM case study (see Chapter 3). In particular, a combinatorial model reports:

• the list of parameters, which represent the inputs, outputs, or configurations of the
system under test. In CTWedge, the parameters can be enumerative, Boolean, or
integer ranges;

• the list of constraints, which are expressed as logical formulas, and limit the possible
configurations.

A test can be valid if and only if it does not violate any constraint; otherwise, it is
defined as invalid. The same concept of validity applies to tuples: a tuple t p is valid (or
feasible or coverable) if there exists a valid test that covers t p. Otherwise, a tuple is invalid
or unfeasible. For example, considering the model in Listing 7.1, the tuple

t p = {NextState = OFF,PowerO f f = f alse}

is not valid since it violates the first constraint. After having defined what a combinatorial
model is and what the validity of a test is, it is possible to define the concept of valid test
suite as follows.

Definition 2 (Valid Test Suite). Let M = (P,D,C) be a constrained combinatorial model.
Given a combinatorial test suite T S, we say that T S is valid if all tests tsi 2 T S are valid,
i.e., they do not violate any constraint in C.
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After having verified that a test suite is valid, it is important to further investigate about
its completeness, meaning that all feasible tuples of values for parameters must be covered.
Formally:

Definition 3 (Complete Test Suite). Let M = (P,D,C) be a constrained combinatorial
model. Given a combinatorial test suite T S and being t the strength for test generation, we
say that T S is complete if any valid duple t p of size t is covered by at least a test in T S.

7.2 Combinatorial sequence testing

Combinatorial testing is generally applied by taking into account the inputs of a system.
However, for event-driven software, the inputs to be considered are events. Moreover,
in such systems, there may be constraints on the events that can be used as input during
testing. For example, a SUT may require that a given event read appears after another
event open, and if a test does not meet this constraint, the test is invalid and cannot be
applied (see Def. 2). These constraints are based on temporal precedences and are not
normally supported by regular combinatorial test generators.

In this section, I present a method that can be applied to generate test sequences
with combinatorial coverage for Finite State Machines (FSMs), which are commonly
used for representing event-driven systems, such as the PHD protocol (previously dis-
cussed in Sect. 6.2.2) [171]. This approach is known as combinatorial sequence testing
(CST) [112] and supports FSMs in the form of Mealy machines, which are a rather general
implementation of FSMs.

7.2.1 Finite State Machines

Finite State Machines (FSMs) are commonly used for modeling event-driven software.
In particular, the most used ones are Mealy machines, since they allow one not only to
manage states and input events, but also output events.

Definition 4 (Mealy machine). A Mealy machine F is a 6-tuple (S,s0,S,L,T,G) in which:
• S is a finite set of states;
• s0 2 S is the initial state of the machine F ;
• S is a finite set that represents the input alphabet;
• L is a finite set representing the output alphabet;
• T : S⇥S! S is the transition function that maps pairs of a state and an input symbol

to the corresponding next state;
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Model MVM

Parameters:

State : {OFF, STARTUP, SELF_TEST, VENTILATION_OFF, PCV_INSP, PCV_EXP, PSV_INSP, PSV_EXP}
NextState : {OFF, STARTUP, SELF_TEST, VENTILATION_OFF, PCV_INSP, PCV_EXP, PSV_INSP,

PSV_EXP}
InValve : {OPEN CLOSE}
OutValve : {OPEN CLOSE}
Mode: {PCV PSV}
PowerOff : Boolean
SelfTestPassed: Boolean
StartupEnded: Boolean
StartVentilation: Boolean
InspTimePassed: Boolean
ExpTimePassed: Boolean
StopVentilation: Boolean
Resume: Boolean

Constraints:

# NextState = OFF <=> PowerOff #
# NextState = SELF_TEST <=> (State = STARTUP AND StartupEnded)#
# SelfTestPassed <=> State = SELF_TEST #
# Resume <=> State = SELF_TEST #
# StartupEnded <=> State = STARTUP #
# (State = SELF_TEST AND (SelfTestPassed OR Resume)) => NextState = VENTILATION_OFF #
# (InValve = OPEN AND OutValve = CLOSE) OR (InValve = CLOSE AND OutValve = OPEN) #
# (InValve = OPEN <=> (State = PSV_INSP OR State = PCV_INSP)) AND (OutValve = OPEN <=> (State

= PSV_EXP OR State = PCV_EXP)) #
# (State = VENTILATION_OFF AND Mode=PCV AND StartVentilation) => NextState = PCV_INSP #
# (State = VENTILATION_OFF AND Mode=PSV AND StartVentilation) => NextState = PSV_INSP #
# (State = PSV_INSP AND Mode=PSV AND InspTimePassed) => NextState = PSV_EXP #
# (State = PCV_INSP AND Mode=PCV AND InspTimePassed) => NextState = PCV_EXP #
# (State = PCV_EXP AND Mode=PCV AND ExpTimePassed) => NextState = PCV_INSP #
# (State = PSV_EXP AND Mode=PSV AND ExpTimePassed) => NextState = PSV_INSP #
# (State = PSV_INSP AND Mode=PCV AND InspTimePassed) => NextState = PCV_EXP #
# (State = PCV_INSP AND Mode=PSV AND InspTimePassed) => NextState = PSV_EXP #
# (State = PCV_EXP AND Mode=PSV AND ExpTimePassed) => NextState = PSV_INSP #
# (State = PSV_EXP AND Mode=PCV AND ExpTimePassed) => NextState = PCV_INSP #
# (StopVentilation => (State = PCV_EXP OR State = PSV_EXP)) => NextState = VENTILATION_OFF #
# (InspTimePassed AND NOT ExpTimePassed) OR (ExpTimePassed AND NOT InspTimePassed) #
# PowerOff <=> (NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
# SelfTestPassed <=> (NOT PowerOff AND NOT StartupEnded AND NOT StartVentilation AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
# StartupEnded <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartVentilation AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
# StartVentilation <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT

InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
# InspTimePassed <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT

StartVentilation AND NOT ExpTimePassed AND NOT StopVentilation AND NOT Resume) #
# ExpTimePassed <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT

StartVentilation AND NOT InspTimePassed AND NOT StopVentilation AND NOT Resume) #
# StopVentilation <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT

StartVentilation AND NOT InspTimePassed AND NOT ExpTimePassed AND NOT Resume) #
# Resume <=> (NOT PowerOff AND NOT SelfTestPassed AND NOT StartupEnded AND NOT StartVentilation

AND NOT InspTimePassed AND NOT ExpTimePassed AND NOT StopVentilation) #

Listing 7.1 Example of a combinatorial model for the MVM case study
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s0start s1 s2

a/0

b/1

c/0

Fig. 7.1 Example of Mealy machine. On the arrows, the pair input/out put is reported

• G : S⇥S! L is the output function that maps pairs of a state and an input symbol
to the corresponding output symbol.

In practice, FSMs and Mealy automata may not be complete. In fact, certain inputs
may not be defined in some states. For this reason, the definition of FSM can be extended
by adding the notion of incompleteness.

Definition 5 (Complete and incomplete FSM). Given an FSM F(S,s0,S,L,T,G) we say
that F is a complete machine iff for all s 2 S and for all e 2 S the transition function T (s,e)
and the output function G(s,e) are defined. On the contrary, we say that F is a incomplete
machine iff there exist a state s 2 S and an event e 2 S for which the transition function
T (s,e) is not defined (neither is G(s,e)).

For example, Fig. 7.1 represents an incomplete machine, because the transition function
T is not defined for the input symbols b and c in the state s0, for the input symbol a in the
state s1, and for the symbols a, b, and c in the state s2.

7.2.2 Combinatorial sequence testing of FSMs

In classical combinatorial testing, testers are interested in covering the interaction among
a fixed set of inputs, each with a given set of possible values. Instead, in combinatorial
sequence testing (CST) [112] of FSMs, it is necessary to focus on covering the interaction
of inputs taken from a unique set (the input alphabet) but provided to the system under test
in different orders.

This difference requires the redefinition of “test” as a sequence of inputs of variable
length. In the proposed approach, a test is a finite sequence of events ts = (e1,e2, . . . ,en)

all belonging to the input alphabet S. Then, a test suite composed of all tests tsi is created
so that the desired combinatorial coverage of the input combinations is reached.

Definition 6 (Combinatorial sequence coverage). We say that a test suite achieves the
t-way combinatorial sequence coverage iff for any tuple of t inputs there exists a test
sequence in which these t inputs occur in any possible order (allowing interleaving extra
inputs among the elements of the tuple).
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As previously explained, most event-driven software can be represented using incom-
plete FSMs since, in some states, some events cannot be fired. This assumption implicitly
defines some constraints on the FSM, meaning that only some test sequences are valid,
while others are not. For this reason, as for a single test case (see Def. 2), the validity of a
test sequence has to be defined.

Definition 7 (Valid test sequence). Given an FSM F(S,S0,S,L,T,G) as per Def. 4, let
ts = (e1,e2, . . . ,en) be a test sequence composed of a sequence of n events. Assume that
tsi is the list of events in ts starting from e1 to ei and s(tsi) is the state reached starting
from the initial state s0 applying all events in tsi. We call ts a valid test sequence if and
only if, for all ei 2 ts, ei can be fired starting from the state s(tsi�1), i.e., T (s(tsi�1),ei)

and G(s(tsi�1),ei) are both defined.

When it comes to the generation of test sequences, the most common approach is the
one that extends classical combinatorial testing algorithms in order to generate SCAs [112].
However, the main limitation of this approach is that all sequences must be composed
of the same number of steps. Instead, in the automata-based approach presented in this
thesis, it is possible to have tests with different lengths. This is a more realistic way to test
systems, since not all user interactions are equal or of the same duration.

Considering that every test is a permutation of events, first, I introduce the concept of
automata representing a t-wise permutation of t events.

Definition 8 (T -wise automaton). Given a permutation p of t events (e1,e2, . . . ,et), the
automaton A built as in Fig. 7.2 is called the t-wise automaton. We call automaton(p)
the function that builds the t-wise automaton that represents the tuple p.

start

⇤
e1

⇤
e2

⇤
et

⇤

Fig. 7.2 Example of an automaton representing the sequence (e1,e2, . . . ,et)

Note that a t-wise automaton A can be used to check whether a sequence ts covers the
tuple represented by A : if ts is accepted by A , then the tuple is covered; otherwise, it is
not.

7.2.3 Algorithm for CST

The automata-based algorithm for CTS is based on the concept of T -wise automaton. In
fact, it is possible to perform logical and mathematical operations between automata: if



7.2 Combinatorial sequence testing 141

Algorithm 1 Algorithm for test generation
Require: I the set of events
Require: t the strength of the tests
Require: N the max number of tuples for each test sequence
Ensure: T S the test suite for CST

T  t-permutations of I
T S /0
i 0
A empty automaton
while T 6= /0 do

p a random element in T
a automaton(p)
if a\A 6= /0 then

A a\A
T  T �{p}
i i+1
if i� N then

ADDTEST(T S,A)
i 0

end if
end if

end while
ADDTEST(T S,A)

procedure ADDTEST(T S,A)
T S T S+ string(A)
A empty automaton

end procedure

we consider the automaton A1 covering the tuple t p1 and the automaton A2 covering the
tuple t p2, their intersection A1\A2 (if not empty) covers both t p1 and t p2.

In this way, the CST problem is solved by Algorithm 1. It implements a one-test-at-
the-time test generator. First, the algorithm builds an empty automaton A, then tries to
randomly add as many t-wise automata as possible. This process is commonly known in
the literature as collecting: multiple t-wise automata are collected in a unique automaton.
When the automaton cannot be modified by adding any other t-wise automaton, any string
that can be derived from A represents a test that covers all the permutations from which
the t-wise automaton is built. In Algorithm 1, this operation is performed by the function
string(A) which returns the shortest string accepted by the automaton A. Note that since
some users may prefer to obtain shorter test sequences and others may prefer longer ones,
when setting the algorithm, the user is required to set the maximum number N of automata
to be collected together.
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However, this standard algorithm may generate invalid test sequences, as no information
about the system and its constraints is considered. Therefore, in the following section,
three different approaches to repair invalid tests are analyzed:

• Reject_not_valid (REJ): if a sequence contains an event that is invalid at the time it
is applied, the whole sequence is rejected.

• Stop_at_error (STP): if a sequence contains an event that is invalid at the time it
is applied, the sequence is executed only until the error is reached. The following
events are not tested.

• Skip_error (SKP): if a sequence contains an event that is invalid at the time it is
applied, the single event is skipped and the following events are executed.

How to generate only valid test sequences

In practice, one may want to generate from the beginning only valid tests without the need
of repairing them. For this reason, Algorithm 1 can be modified as reported in Algorithm 2.
In this new version of the generation algorithm, called CNST, t-wise automata are collected
not starting from an empty automaton, but from the one that accepts only valid sequences
of inputs for the FSM under test (lines 4 and 24). The operation is exemplified in Fig. 7.3.
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(a) Automaton of the system
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(c) Intersection among the two previous automata

Fig. 7.3 Intersection process among automata for the pattern recognition system

If the FSM of the system under test does not accept a given tuple, this means that the
tuple is infeasible (it clashes with the constraints of the system). This screening is done by
the algorithm at line 16: it checks if a tuple t p that cannot be collected with the current
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Algorithm 2 Algorithm for test generation
Require: I the set of events
Require: F the finite state machine
Require: t the strength of the tests
Require: N the max number of tuples for each test sequence
Ensure: T S the test suite for CST

1: T  t-permutations of I
2: T S /0
3: i 0
4: A automaton(F) . init A with the FSM automaton
5: while T 6= /0 do
6: p a random element in T
7: a automaton(p)
8: if a\A 6= /0 then
9: A a\A

10: T  T �{p}
11: i i+1
12: if i� N then
13: ADDTEST(T S,A)
14: i 0
15: end if
16: else if automaton(F)\a = /0 then . p is infeasible
17: T  T �{p}
18: end if
19: end while
20: ADDTEST(T S,A)
21:
22: procedure ADDTEST(T S,A)
23: T S T S+ string(A)
24: A automaton(F) . init A with the FSM automaton
25: end procedure

automaton can instead be collected with the automaton containing only the constraints of
the FSM (automaton(F)). If not, the tuple is infeasible.

Monitoring

To further optimize test generation, a commonly adopted technique is monitoring (pre-
viously introduced in Sect. 6.4.1). It consists in checking if a test generated for a set of
tuples accidentally covers other tuples as well. Algorithm 3 shows how monitoring works:
once a test is generated, all tuples that are not yet covered are checked against the new test.
If a new tuple is accidentally covered, it is discarded. Note that, as previously done for the
t-wise automaton, to check if a tuple is covered by a test, it is possible to verify whether the
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Algorithm 3 Monitoring
1: procedure ADDTEST(T S,A,T )
2: test string(A)
3: for all t 2 T do
4: if isAccepted(test,automaton(t)) then
5: T  T �{t}
6: end if
7: end for
8: T S T S+ test
9: A automaton(F)

10: end procedure

Table 7.1 PHD benchmark characteristics

# Automata per test sequence (N) 10
# Transitions 65
# States 5
# Events 23
# Event pairs 529
# Valid event pairs 484
# Event triples 12,167
# Valid event triples 10,648

automaton representing that tuple accepts the test sequence. One may argue that applying
monitoring could slow down the process. However, while the collecting procedure shown
in Algorithm 2 can be expensive, since it requires the operation of intersection among
automata, the monitoring is generally much faster, since acceptance is easily computed.

7.2.4 Method evaluation

In this section, the proposed approach is evaluated and applied to a real medical case
study: the PHD protocol (see Sect. 6.2.2). More details about the characteristics of
the PHD protocol and on how the CST algorithm has been configured are reported
in Tab. 7.1. Furthermore, the evaluation has been carried out by performing 10 times
each experiment, in order to reduce the possible non-determinism. The average re-
sults, obtained on a computer with 14 GB of RAM and an Intel® Core™ i5-750 CPU,
are reported in Tab. 7.2. The code generating the test sequences is available at https:
//github.com/fmselab/FiniteStateMachineCombinatorial, and has been implemented using
the dk.brics.automaton [135] Java library.

In the following, several aspects about the impact of the proposed approach and its
configuration parameters are discussed in detail.

https://github.com/fmselab/FiniteStateMachineCombinatorial
https://github.com/fmselab/FiniteStateMachineCombinatorial
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Table 7.2 Method evaluation (pairwise testing)
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NO CNST 41 20 11 17 708 41 484 5 51 428.40
NO SKP 45 20 2 15 693 0 270 5 39 135.60
NO REJ 45 19 2 15 701 0 0 0 0 144.24
NO STP 45 20 2 15 692 0 49 2 12 150.80

YES CNST 41 21 15 17 723 41 484 5 51 474.92
YES SKP 45 20 2 15 686 0 271 5 39 185.08
YES REJ 45 18 2 15 695 1 1 1 2 131.00
YES STP 45 18 2 15 701 0 55 3 16 168.05

Sequence generation time with the CNST method

Observing the generation time, it is evident that the CNST method is the slowest, as the
generation of the sequences in accordance with the constraints of the FSM requires more
time than repairing the sequences. In fact, building the intersection among automata is
time-consuming since they must contain the entire system constraints from the beginning
(instead of starting from the empty automaton). However, CNST leads to better results in
terms of coverage, as discussed in the following.

Coverage and valid sequences with CNST method

Table 7.3 reports the result of the coverage reached in the case of the PHD protocol with
the sequences generated by all the methods presented before. The results obtained confirm
that the CNST method, which generates test sequences following the constraints imposed
by the FSM of the system, leads to better (or equal) results than the other reparation
approaches:

• The percentage of valid sequences is higher. With other methods, in many cases,
no valid sequences are produced. In those cases, the user must repair the sequences
(with one of the three proposed approaches - SKP, REJ, or STP) to still perform the
testing activity;

• The overall coverage (event pairs, states, and transitions) is higher or the same for
CNST compared to the one obtained with other methods because all sequences that
are generated by the algorithm can be executed on the system, as they contain only
valid events.
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Table 7.3 Evaluation of the results obtained with different generation methods for the PHD
case study

Method % Valid Seq. % Pairs Cov. % States Cov. % Transitions Cov.

CNST 100.00 100.00 100.00 77.65
SKP 3.92 55.50 100.00 62.94
REJ 2.94 0.86 27.50 5.88
STP 1.96 12.52 75.00 28.24

Note that the value of covered pairs is computed only over the number of feasible ones,
since some of them may not be possible to be covered due to the constraints of the system.

Impact of monitoring

Observing the results in Tab. 7.2, it can be seen that the test suites obtained when using
monitoring and methods that involve the repair of the sequences generally have better or
equal coverage (number of pairs covered) than those that do not use monitoring. This is
reasonable because, without monitoring, the algorithm produces more sequences that can
fail, and, in some cases, when the test sequence is invalid, its execution must be halted
before its termination.

Furthermore, in these experiments, the monitoring optimization has shown not to be
time consuming, as only a little overhead is added in some cases. For this reason, it can be
concluded that the application of monitoring is always a good choice.

Correlation between the number of covered pairs and N

When test sequences need to be repaired, the number of pairs covered by the generated test
suite is influenced by the value chosen for the parameter N (number of automata per batch).
In fact, as shown in Fig. 7.4a, for the SKP repair method, the number of pairs covered has
a growing trend with increasing N. This is justified by the fact that, when long sequences
are generated, more pairs are included in each. Therefore, considering that the events that
cannot be covered are skipped, more pairs are covered by fewer test sequences. On the
other hand, Fig. 7.4b shows that for the STP repair method, the number of covered pairs
has a decreasing trend with the growth of N: having longer sequences means that, when an
invalid event is reached, the execution of the whole sequence is stopped and more events
are not executed. A similar behavior can be observed when using REJ. In contrast, if the
CNST method is chosen, the number of pairs covered remains constant when N varies,
since all pairs in a test sequence always satisfy all constraints. In conclusion, for the SKP
method, a higher N can improve coverage, while for STP and REJ, the shorter the better.
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(a) With the SKP method (b) With the STP method

Fig. 7.4 Number of pairs covered with different values of the parameter N

(a) With the STP method (b) With the CNST method

Fig. 7.5 Sequence generation time [s] with different values for the parameter N

Correlation between generation time and N

Testers may arbitrarily choose the value of N (number of automata to be collected in each
test sequence) depending on the generation and repairment method chosen, but experiments
show that the sequence generation time increases exponentially with the increment of N. In
fact, the intersection of N automata usually requires much more time than the intersection
of N�1 automata, especially when higher values of N are used.

This behavior is reflected by Fig. 7.5a that shows the correlation between generation
time and N when test sequences are generated without taking into account the constraints
(in the example, the STP method is used). Furthermore, even when the CNST method
is used, experiments show that the correlation between N and the generation time is
exponential (see Fig. 7.5b). However, increasing N leads to smaller test suites, as shown
below, so users should decide the value of N taking into account this trade-off.

Comparison between automata-based generation method and SCAs

Common approaches for CST are based on sequence covering arrays (SCAs). In order to
validate the effectiveness of the proposed method, in the following, the proposed approach
is compared with the one using SCAs (using the tool provided by [140]). To gather more
results and investigate the applicability with a strength greater than t = 2, the tests used in
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Table 7.4 Method evaluation (3-wise testing)
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NO CNST 6 1,775 22 10 15 28,076 1,775 10,648 5 65 538.37
NO SKP 6 1,521 22 12 16 25,198 0 7,075 5 65 981.22
NO REJ 6 1,521 21 12 16 25,178 0 0 0 0 827.73
NO STP 6 1,521 22 12 16 25,277 0 1,298 5 42 881.79

YES CNST 6 1,775 23 11 15 28,032 1,775 10,648 5 65 7475.46
YES SKP 6 1,521 21 12 16 25,159 0 7170 5 65 7754.58
YES REJ 6 1,521 21 12 16 25,165 0 0 0 0 7329.89
YES STP 6 1,521 21 11 16 25,194 0 1,263 5 39 7109.64

this section to evaluate the automata-based approach are obtained using 3-wise testing (see
Tab. 7.4).

SCAs generators only perform permutations of n events, thus they do not consider the
constraints of the system. For this reason, in order to compare the results of the approach
proposed with the one generating SCAs, test sequences need to be repaired. Moreover,
since the standard approach with SCAs produces sequences all of the same length (equal
to the number of events considered), test sequences are shorter than those obtained with
the automata-based method presented in this section. These two aspects combine and,
as a consequence, the generation time is shorter when using SCA: computing all the
permutations is less complex than computing the intersection among automata, especially
if it is performed without considering the constraints. Also, repairing test sequences does
not increase the generation time as CNST does.

Tab. 7.5 shows the summary of the comparison between the coverage obtained by the
automata-based method and the one by SCAs (with different repairing procedures). The
results confirm that the former performs better than the latter in every aspect analyzed
(except for the time). The only aspect in which the SCA-based method outperforms
the automata-based one is the percentage of valid sequences (when CNST is not used).
However, this is not an unexpected result since SCAs generate fewer test sequences. All
the results obtained show that the automata-based method is overall better than the SCAs
one, and it is confirmed by the paired t-test[177] with:

• H0: the two methods perform in the same way, in terms of coverage
• a = 0.05
• t = 3.8507
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Table 7.5 Comparison between SCAs and automata-based method (3-wise testing)
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Automata-based CNST 100.00% 100.00% 100.00% 95.29% 98.43%

Automata-based SKP 0.06% 66.77% 100.00% 95.29%
REJ 0.06% 0.07% 25.00% 5.88% 51.10%
STP 0.06% 12.00% 92.50% 62.35%

SCAs SKP 2.17% 26.44% 85.00% 57.65%
REJ 2.17% 0.00% 15.00% 2.35% 29.03%
STP 2.17% 0.15% 50.00% 24.17%

• pvalue = 0.004873
The statistical test ends with pvalue < a , so the null hypothesis can be rejected and, since
the test value t > 0 it is confirmed that the automata-based method performs better than
SCAs. This is an important result, especially when CST is applied to safety-critical devices
(such as in the medical domain), as higher coverage can lead to higher-quality products
and to a greater number of possible bugs revealed.

7.3 Comparing combinatorial test generators

Since combinatorial testing has proven to be very effective in a variety of systems, new
combinatorial test generators are proposed every year. These tools exploit different
algorithms to generate tests. However, if a limited amount of resources is available,
testers may need a measure to define which tool should be preferred for generating tests.
Benchmarking combinatorial test generators in a fair and effective way is a difficult task,
and there is no well-established methodology or environment for generator comparison yet.
In the following, I present some complexity measures for comparing combinatorial models,
a formula for computing the cost of using a specific test generator, and a benchmarking
environment that can be used during the preliminary phases of testing in order to evaluate
the impact of tools on the cost of testing and to guide the choice on the most suitable one.
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7.3.1 Model complexity measures

Each combinatorial model may have different complexity due to multiple parameters and
constraints. Several complexity measures have been proposed in the literature. Among
them, the most used are the following:

• Number of parameters: having more parameters means having more combinations
to check.

• Size: it represents the total number of distinct tests (valid and invalid) that can be
generated, corresponding to the product of the cardinalities of all domains. Having
more possible combinations involves a higher complexity in terms of execution time.

• Number of constraints: more constrained models may need more constraint checks,
which complicate the test generation procedure.

• Number of logical operators in the constraints: CIT models may have many simple
constraints or a few constraints that are composed of several logical operators. Thus,
this definition of model complexity is not limited only to the number of constraints
but considers their complexity as well, computed as the sum of the number of logical
operators.

Besides the measures given above, two more measures that refer only to the semantics
of the models can be used:

• Tuple Validity Ratio: given a strength t, it represents the fraction of valid t-tuples
over the total number of t-tuples. One way to compute the ratio is to enumerate all
the tuples and check if they are valid or not. To check the validity of a tuple, any
constraint or logical solver may be used.

• Test Validity Ratio: it is intended as the fraction of valid tests over the total number
of possible tests. It can be computed by enumerating all tests and checking whether
they are valid or not. In practice, this may require an exponential time with the size
of the problem, and it is not doable for large models. However, the literature reports
a better way that does not require the enumeration of the tests and is based on the
use of Multi-valued Decision Diagrams [97] that can compute the number of valid
models in a very efficient way.

7.3.2 Computing the cost of test generators

In practice, it is not trivial to identify the best generator. In fact, since test generation for
CIT is a multi-objective problem, it must take into account both time and test suite size.
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Indeed, sometimes, generators can generate a lot of tests in less time or generate a small
but still complete test suite in hours of computation.

For this reason, a formula for cost estimation must consider three different parameters,
as proposed by the cost model in [99]:

cost = timetotal = timegen + size · timetest (7.1)

The cost is equal to the total testing time, composed by the timegen used by the generators
to generate test suites and the product between the size of the test suite and the average
timetest required to perform a single test on the SUT. This cost model can be used as a
method to evaluate a tool with respect to another.

Note that testers may need to consider other aspects beside the cost. For example, some
tools may not be able to manage a specific constrained combinatorial model (e.g., because
it uses expressions not supported by the generator, such as relational expressions). In this
case, only the generators capable of handling the model must be considered, and, between
them, the least expensive one should be chosen by the testers.

7.3.3 A benchmarking environment for CIT tools

To allow testers to evaluate combinatorial test generators, the CTWedge environment [93]
has been extended and refactored, to facilitate the addition of new generator tools. In
this way, users can test the available tools against several benchmark examples and define
which is the best for the application scenario.

Benchmarks

In the benchmarking environment integrated into CTWedge, 196 test models have been
collected. Some benchmark models were already embedded in CTWedge as example
models (previously taken from [146, 106, 159, 99, 145]), others have been collected from
the PICT GitHub page 1, and others have been extracted from the collection used in [166].
Note that the scenarios are not referred specifically to the medical software domain, but
their complexity is distributed in a way that conclusions drown from them are applicable
to every application domain.

In order to obtain a fair comparison, all the gathered models that were not written in
the CTWedge language have been translated, both in an automatic and manual manner.
Benchmark models vary greatly in terms of number of variables, number of constraints,
total size, and tuple and test validity ratios. Moreover, even in terms of relevant features

1https://github.com/microsoft/pict

https://github.com/microsoft/pict
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Table 7.6 Summary of the benchmarks features

Feature: # models

Parameters
all with the same cardinality 5
only booleans 4
with also enumeratives 18
with also integers 33

Constraints
without constraints 22
as forbidden tuples 33
in Clausal Normal Form 25
containing relational operators (>,<, etc.) 6

(see Tab. 7.6), models differ significantly. Note that a model can exhibit more than one
feature, while others none of them. By using these benchmarks, and possibly additional
ones, test teams may try the available generators on models that are more similar to the
one of the system to be tested and extract measures useful for defining which tool is the
best fit for the specific application scenario.

How to integrate new CIT generators

To make the integration of new generators into the benchmarking environment easier, the
internal architecture of CTWedge has been deeply refactored (Fig. 7.6), by exploiting
Eclipse extension points, made available by the Eclipse plugin development environment.
The benchmarking framework already integrates the following CIT generators:

• ACTS (Automated Combinatorial Testing for Software), developed by NIST [180].
• CASA (Covering Arrays by Simulated Annealing), which generates combinatorial

test suites using simulated annealing [98];
• CAGen (Covering Array Generation), developed by SBAresearch [172];
• Medici (Multi-valuEd Decision diagrams for Combinatorial Interaction Testing),

developed by University of Bergamo [97];
• PICT (Pairwise Independent Combinatorial Testing), developed by Microsoft. [Microsoft].

However, additional generators may be added using the procedure explained in the follow-
ing.

Each generator must extend the class ICTWedgeTestGenerator, implement the method
getTestSuite(...), and extend the ctwedge.util.ctwedgeGenerators extension
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Fig. 7.6 Refactored architecture of CTWedge for benchmarking integration

point2. The getTestSuite(...) method must return the generated test suite for a
defined model, together with the required generation time.

This way of extending the benchmarking environment allows for a loosely coupled
structure: the benchmarking environment does not need modifications when new generators
are added, since they are automatically discovered by Eclipse as new plugins. For this
reason, each generator must be implemented as an Eclipse plugin managed with Maven. As
an additional requirement, each generator needs to also include a translator from CTWedge
grammar to its own one or, at least, shall support CTWedge as input format.

After having integrated a generator (or chosen an already available one), the benchmark
can be executed by the functionalities in the package ctwedge.generator.benchmarks,
and, in particular, in the class BenchmarkTest. This class exploits the Eclipse extension
point extended by all generators (i.e., ctwedge.util.ctwedgeGenerators) to discover
all generators that have been defined in the environment and check the test suite sizes and
generation times for each generator on each benchmark model.

2More detailed information about how to integrate new generators are available at https://github.com/
fmselab/ctwedge/wiki

https://github.com/fmselab/ctwedge/wiki
https://github.com/fmselab/ctwedge/wiki
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Validation and test suite checking activities

The proposed benchmarking framework provides completeness and validity checks, suit-
able for verifying if a tool generates test suites that violate the properties described in
Sect. 7.1. These APIs are contained in the package ctwedge.util.validation and, in
particular in the SMTTestSuiteValidator class that implements the validation function-
alities by exploiting an SMT solver. Given a test suite TS, the main functionalities offered
by the validation APIs are as follows:

• isValid(), returning whether the test suite satisfies all the constraints contained in
the CIT model;

• howManyTestsAreValid(), which counts how many tests contained in the test
suite are valid;

• isComplete(), which checks the completeness of the test suite by verifying if some
valid combination of parameters is not covered by the test suite;

• howManyTuplesCovers(), returning the number of tuples covered by all the tests
in the test suite.

7.4 Parallelizing combinatorial test generation

Taking into account the cost function for the generation of combinatorial test suites
(Formula 7.1), the cost of choosing a specific tool can be reduced if the test suite size or
generation timegen is reduced. In fact, the time for executing a single test, timetest , depends
on the system to be tested, and it can not be modified by varying the test generator.

Although reducing test suite size may be difficult (since it requires the implementation
of new algorithms, which have to be more effective than IPO-G [116], that has proved to
be the cutting-edge tool), reducing the generation time is easier. For this reason, in this
section, I present two similar approaches that exploit multi-thread, different underlying
representations, and aim to speed up the test generation process. Both approaches are
based on the structure shown in Fig. 7.7 and explained in general in the following. Then, a
specific description of the process, which depends on the internal implementation, is given
in Sect. 7.4.1 and Sect. 7.4.2.

In the multi-threaded approach, all the tuples to be covered are generated, exploiting
the Cartesian product, by a single thread from a CIT model (such as the one of the MVM
case study in Listing 7.1) and stored in a shared buffer with limited capacity (40 tuples in
our experiments, but it can be configured by the user). Then, when the shared buffer is fully
filled, the tuple generation thread stops and waits until a new free slot is available. This
implementation allows avoiding storing all tuples at the same time, and thus guarantees a
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Fig. 7.7 Structure of the tools for multi-thread combinatorial test generation

consistent saving in memory utilization, especially for complex combinatorial models, in
which the number of tuples can be significantly high.

When at least a tuple is available in the tuple buffer, n Test Builder threads (where n can
be automatically selected by the tool depending on the hardware architecture or specified
by the user) start to consume each tuple t pi. The tuples are consumed exploiting several
Test Contexts, which are continuously updated as each tuple is managed by a single Test
Builder thread.

Definition 9 (Test context). Let P = {I,C} be a combinatorial problem, where I = {xi,vi}
is a set of parameters (each xi with the set of possible values vi) and C is the set of
constraints. We call TC = hA,XT Si a test context for a combinatorial problem P, where A
is a list of assignments of some parameters pi to one of their possible values vi, j and XT S is
the structure used for the management of the combinatorial problem P, its constraints, and
the assignments committed to the context so far.

As reported in Def. 9, each test context TC is embedded with a list of assignments
A, that represents a partial test case T , together with the structure containing all the
information about the model (parameters and constraints) and the test itself. The process
that updates a test context is repeated until it is complete, i.e., it represents a complete test
case, that is obtained when the list of assignments A includes all the parameters of the
model. Given a test context TC, a tuple t p can be:

• implied, if all assignments of the tuple t p are already contained in the assignments
A, i.e., the possible partial test case T ;

• compatible, if the tuple t p contains only assignments that are not in conflict with
those of the test context TC, i.e., in the test TC, each parameter contained in the
tuple t p is still not valorized or has an equal value, and t p does not clash with the
constraints of the combinatorial problem;

• uncoverable, if the assignments contained in the tuple t p clash with the constraints
of the combinatorial problem.
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The presented approach is implemented by Algorithm 4, and it is iteratively repeated for
all the tuples and, at the end, a test is extracted from every test context (see Algorithm 5).

Algorithm 4 Tuple consumption procedure
Require: TupBuffer, the buffer containing the tuple already produced and ready to be

consumed
Require: TC, the list of all the test contexts
Require: MC, the CIT model

. Extract the tuple from the tuple buffer
1: t j TupBuffer.extractFirst()

. Try to find a test context that implies the tuple
2: tc f indImplies(TC, t j)
3: if tc is not NULL then
4: t j.setCovered()
5: return
6: end if

. Try to find a test context which is compatible with t j
7: tc f indCompatible(TC, t j)
8: if tc is not NULL then
9: tc.updateTC(t j)

10: t j.setCovered()
11: return
12: end if

. Create a new empty test context
13: tc createTestContext(MC)
14: tc.addConstraints(MC.getConstraintsList())
15: if tc.isCompatible(t j) then
16: tc.updateTC(t j)
17: t j.setCovered()
18: else
19: t j.setUncovered()
20: end if
21: return

7.4.1 pMEDICI: exploiting MDDs for combinatorial test generation

In this section, I present the pMEDICI tool, which implements the structure shown in
Fig. 7.7 by using Multi-valued Decision Diagrams (MDDs) as the underlying structure in
each test context.
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Algorithm 5 Tests collection
Require: TC, the list of all the test contexts
Require: T hreads, the list of all the test builder threads
Require: TupBuilder, the thread building the tuples
Ensure: T S, the vector containing the test cases

. Join all the threads
1: for each thread 2 T hreads do
2: thread. join()
3: end for
4: TupBuilder. join()

. Gather all the tests generated by the test contexts
5: for each tc 2 TC do
6: T S.add(tc.getTest())
7: end for

Background on MDDs

The tool presented in this section exploits decision diagrams, as defined in the following.

Definition 10 (Decision diagram). A decision diagram is a graph that represents a function
f : D! B where D = D1⇥ · · ·⇥ · · ·Dn and B is the Boolean domain, i.e., B = {F,T}.

Typically, a decision diagram is used to evaluate the truth value of a function f when
applied to variables x1, · · · ,xn. If all domains Di are binary, then we use Binary Deci-
sion Diagrams (BDDs) to represent Boolean functions. Multivalued Decision Diagrams
(MDDs), instead, extend BDDs by allowing every variable to have a different domain with
a different number of elements. It is important for each MDD to respect the following
properties:

• only two terminal nodes must be present, which are labeled as F and T;
• every non-terminal node must be labeled by an input variable xi and must have |Di|

outgoing labeled edges, i.e., one per each possible value of the domain;
• every variable must appear only once in the MDD, in any path from the root to a

terminal node;
Given these properties, an MDD can select which values of the domain D are accepted by
the function f (i.e., which values lead to the terminal node T). In fact, if the values x1, . . . ,xn

for the variables in D are selected by f , then f (x1, . . . ,xn) = T , otherwise f (x1, . . . ,xn) = F .
Typically, among MDDs, unary operations can be performed (complement, or a compu-

tation of cardinality that represents the number of all possible paths leading to the terminal
node T). The cardinality value of an MDD can be used to check the consistency between
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P1 P2 P3 T
v1, v2 v3, v4 true, false

Fig. 7.8 Example of MDD for a simple combinatorial model

boolean functions. In fact, if f1(x) and f2(x) are inconsistent, the intersection between the
MDDs representing the two functions is empty, for all the values of x. This is one of the
properties exploited for generating combinatorial test suites with MDDs. Furthermore,
with MDDs, the most classical binary operations such as union, intersection, and difference
can be performed.

In particular, since MDDs can represent logic functions, operations among MDDs are
equivalent to logical operations:

• given an MDD M representing the function f , the complement ¬M represents the
function ¬ f ;

• the union between two MDDs M1[M2 represents the function f1_ f2;
• the intersection between two MDDs M1\M2 represents the function f1^ f2.

How to deal with combinatorial models with MDDs

As previously introduced, MDDs allow for the expression of Boolean functions. Hence, an
MDD can be used to handle the boolean function computing the validity of the assignments
to each parameter in a combinatorial model. In fact, if ignoring the constraints, a combi-
natorial model with n parameters, each one with cardinality pi, can be easily represented
using an MDD MT S with n non-terminal nodes (each one associated with the name of
the corresponding parameter) and with pi outgoing labeled edges for all the parameters
except the last one, which has only one edge connected to the terminal node T - since each
assignment is valid if constraints are ignored. Fig. 7.8 represents an example of MDD
MT S modeling a simple combinatorial model with only three parameters, each with two
possible values and without constraints. Every path from the root to the terminal T is a
syntactically correct assignment of values to the parameters. Thus, from the MDD MT S

all tests that can be derived, i.e., all possible paths from the start to the terminal node, are
valid tests. On the contrary, if also the constraints are considered, some path will lead to
the terminal note F (i.e. those that will violate the constraints).

Every constraint can be represented as a Boolean formula containing the operators
¬,_,^ and the equality between the parameters and their values. Therefore, each constraint
can be represented by an MDD that models its truth function. In particular, the intersection
between the MDD that models the parameters MT S and the MDDs derived from each
constraint is a new MDD that accepts only valid tests that comply with all constraints. For
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Fig. 7.9 MDD structure when a constraint is included

example, Fig. 7.9 shows how the MDD in Fig. 7.8 evolves when the constraint (P3 = true

AND P1 = v2) is included.
Note that when a tuple needs to be added to an MDD, it can be considered as a

“new constraint”, so the operation previously described (intersection between the MDD
representing the tuple and the one representing the system) can be performed. As I will
discuss later in detail, pMEDICI builds the tests incrementally, by collecting suitable tuples
in order to obtain valid tests: the intersection computation is iteratively repeated, in all the
test contexts, for all the tuples.

The pMEDICI tool

pMEDICI3 takes advantage of the concepts previously explained to generate combinatorial
test suites. It integrates mddlib4, by the Consortium for Logical Models and Tools, which is
the only open-source Java library that natively supports MDDs and allows the computation
of logical operations between them.

The structure of the tool is shown in Fig. 7.7, where each Xi is, in this case, the MDD
internal to each test context. Considering the MDD, and the process shown in Algorithm 4,
given a tuple t j to be handled by a test builder thread in pMEDICI:

• if the thread finds a test context tci in which the tuple t j is already implied, t j is
consumed and marked as covered;

• if a thread finds a test context tci in which the tuple t j is compatible, t j is handled
by tci, which updates its MDD structure by computing the intersection between the
current MDD and the one corresponding to the tuple t j. Then, t j is consumed, and
marked as covered;

• if a thread can not find a test context tci in which the tuple t j is compatible or
implied, a new test context is created together with its MDD structure that initially

3pMEDICI is available online at https://github.com/fmselab/ct-tools/tree/main/pMEDICI
4https://github.com/colomoto/mddlib

https://github.com/fmselab/ct-tools/tree/main/pMEDICI
https://github.com/colomoto/mddlib
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contains only the constraints of the combinatorial model. If t j is compatible with the
newly created test context, the tuple is consumed and marked as covered; otherwise,
it means that the tuple is not compatible with the constraints, so it is marked as
uncoverable and skipped.

During the test building procedure, pMEDICI adopts several optimizations:

• Test context selection: the threads building the tests can select the test context
according to some policies (for instance, by giving precedence to those having
some relations with the tuple to be added). In particular, in pMEDICI, test contexts
are ordered in such a way that the first to be considered is the one that has the
highest cardinality of the MDD (number of possible paths from the first parameter
to the true leaf) after the addition of the considered tuple. The experiments carried
out confirmed that this technique allows the tool to create fewer tests with higher
variability. However, ordering the test contexts has proved not to be as time-effective
as expected when working on models with a lot of parameters or constraints, since the
time required for the ordering process overpass that of the test generation algorithm.
For this reason, the optimization can be disabled by the user.

• Test context management: in multi-thread applications, the synchronization of
threads while using shared objects is paramountly important. In the case of pMEDICI,
test contexts are shared between test builder threads, so they need to be handled in
mutual exclusion. However, only write instructions (insertion of a new tuple and
intersection computation) are critical, so pMEDICI can be configured to lock the
test contexts only when writing. Experiments carried out on this optimization have
highlighted that if this optimization is active, the size of the test suites is consistently
reduced. This optimization can be disabled by the user.

• Management of the constraints: test contexts could optimize the storage of con-
straints, or in case there are none, simplify the process. In pMEDICI, MDDs are not
actually used by test contexts if no constraint is present in the combinatorial model.
In that case, only the list of assignments A is updated. In this way, the tool avoids
the computation of the intersection among MDDs (which is the most expensive
operation in terms of time), and this allows saving time.

Limitations

The pMEDICI tool has some limitations that are directly related to the use of MDDs.
Limits are mainly due to constraint management. In fact, pMEDICI is not able to deal with
models containing constraints with:



7.4 Parallelizing combinatorial test generation 161

• Arithmetical operators, such as +, �, · and /;
• Comparisons between parameters, such as p1 = p2 or p1 6= p2;
• Relational expression between parameters, or between a parameter and a value, such

as p1 > 2.
Although in principle MDDs could also deal with arithmetic and variable comparison

by converting the constraints to pure Boolean expressions, in practice it is not easy to be
done and risks generating constraints with exponential length. In addition, using MDDs
requires each constraint in the combinatorial model to be converted in RPN (Reverse Polish
Notation), which may decrease the readability of the models.

Results and comparison with ACTS

In this section, I present the results obtained when generating test suites for the MVM
case study (whose combinatorial model is shown in Listing 7.1) using pMEDICI and
compare them with those obtained with ACTS. Note that it is a rather simple model and
only represents limited features of the system. For example, no numerical configuration
parameters and their bounds are modeled since, as presented before, pMEDICI cannot deal
with constraints containing relational expressions.

Tab. 7.7 shows the results obtained when comparing pMEDICI and ACTS in the MVM
case study. They have been obtained on a PC with Windows 11, Intel i7-3770 with 3.4
GHz, 8 threads, and 32 GB RAM. Note that the results reported in Tab. 7.7 are the average
of 10 executions.

For the analyzed case study, the test suites obtained always have 8 tests in all configura-
tions and for all tools. However, for other combinatorial models, pMEDICI has generally
demostrated to produce larger test suites than ACTS. This is the price of having multiple
threads working on test generation, since more test contexts (and test cases) may be created.
More details about these experiments are available in [47].

On the other hand, pMEDICI always produces test suites in a significantly shorter time
than ACTS. The time reduction, when pMEDICI is used instead of ACTS, is in most cases
greater than 97%. It can be concluded that the use of pMEDICI for complex systems, such
as PEMS, allows for faster test generation and a consistent reduction in the cost of testing.
In this way, more time resources may be available for the testing process and better-quality
devices may be obtained.

In terms of the number of threads, the results obtained show that increasing the number
of threads (up to the limit of the threads supported by the CPU architecture) allows for
decreasing the test suite generation time. Note that other experiments have shown that, on
models with fewer parameters and constraints than the MVM, it is not always a good choice
to increase the number of threads, as having more threads means adding coordination
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Table 7.7 Comparison between pMEDICI and ACTS in the MVM case study

Optimizations
N Threads TC Selection TC Management Size Time [ms]

pMEDICI 1 NO NO 8 178
1 NO YES 8 171
1 YES NO 8 180
1 YES YES 8 175
2 NO NO 8 175
2 NO YES 8 168
2 YES NO 8 173
2 YES YES 8 174
4 NO NO 8 90
4 NO YES 8 84
4 YES NO 8 95
4 YES YES 8 87
8 NO NO 8 78
8 NO YES 8 72
8 YES NO 8 80
8 YES YES 8 76

ACTS 1 - - 8 2939

effort (which may be useless for simple models). More details about these experiments are
available in [47].

Finally, for the MVM case study, the most effective optimization has proven to be
related to text context management. On the other hand, using the test context ordering
does not allow for reaching the same results. In fact, the analyzed model has too many
parameters and constraints, and the effort required to order the test context list overpasses
that of the test generation itself.

7.4.2 KALI: exploiting SMT solvers for combinatorial test generation

In Sect. 7.4.1, I have presented a tool that implements the structure described in Fig. 7.7
and manages the constraints and tests using MDDs. However, despite the overall optimal
performance shown in the experiments performed in the MVM case study, pMEDICI still
has many limitations due to MDDs. For this reason, in this section, I present KALI, which
substitutes the MDD with an SMT solver and allows for managing all types of constraints
and parameters.
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Background on SMT solvers

Satisfiability modulo theories (SMT) are commonly used for generalizing, by using first-
order formulas, Boolean satisfiability (SAT) and several additional features, such as
equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other first-
order theories. These theories are handled by an SMT solver, which is a tool for deciding
the satisfiability (or validity) of formulas in one or more theories. In research, SMT solvers
are used for several tasks, e.g., the extended static checking, predicate abstraction, test
case generation, theorem proving, and bounded model checking over infinite domains, to
mention a few.

Many solvers are available in the literature, such as Yices [81], Z3 [77], SMTInter-
pol [72] and MathSAT5 [74]. All these solvers are capable not only of checking if a
formula is satisfied or not but also of generating a model that satisfies the SMT formula
represented in context. For this reason, SMT solvers are commonly used, as is done in
KALI, for test generation [143]: after having represented all the parameters and constraint
in the SMT context, the model generated by the SMT solver is the valid test we are looking
for.

How to represent CIT models, constraints, tuples, and tests with SMT

In the following, the encoding of parameters, constraints, and tuples in the SMT solver is
described.

• Parameters encoding: When an SMT logical context is defined, the parameters of
a combinatorial problem can be represented as variables in that context. However,
since not all SMT solvers support the same type of variables, the translation from
combinatorial parameters to SMT variables has to be done accordingly to the type:

– Boolean parameters are represented as simple SMT Boolean variables;

– Integer ranges are represented as SMT integer variables. Nevertheless, in
combinatorial problems the concept of “integer" is not defined as in SMT:
only ranges are allowed. For this reason, when converting a range to an SMT
variable, an additional constraint specifying the lower and upper bounds of
the range must be added. For example, if a range is defined in the combina-
torial model as P1 : [0 .. 3], in addition to the P1 integer variable, the
following constraint is added: P1� 0 AND P1 3;

– Enumerative parameters are the most critical ones since not all the SMT solvers
support them. In order to propose a solution that can be adapted to all SMT
solvers, KALI converts each enumeration into a set of SMT Boolean variables
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and adds a set of constraints assuring that only one of the possible Boolean
variables must be true. This process is generally defined as flattening [103].
For example, if an enumeration is defined in the combinatorial model as P2
: {v1 v2 v3}, it is translated into three different SMT Boolean variables
P2v1, P2v2, and P2v3. In addition, the following constraint are added to
the SMT context: P2v1 <=> (not P2v2 and not P2v3), P2v2 <=> (not
P2v1 and not P2v3), and P2v3 <=> (not P2v1 and not P2v2).

• Model constraints: The constraints of a combinatorial problem can easily be
mapped to the SMT constraints, exploiting the previously defined variables. In
particular, a combinatorial model may contain different types of constraints, such as
relational, mathematical, or comparison operators (between parameters or values)
in general propositional formulas. All these types of constraints can be easily
represented with operations between variables and values defined in an SMT context.

• Tuples: Given a tuple t p, it can be represented in the logical context of SMT by
simply adding a new constraint that limits the values of the parameters included in
the tuple to the same values specified. For example, a tuple t p = hP1,v1ihP2,v2i is
translated in the following SMT constraint P1 = v1 AND P2 = v2.

Note that the mapping proposed between combinatorial models and SMT solvers
resolves all the limitations of the approach proposed by pMEDICI in Sect. 7.4.1:

• Arithmetical operators are supported as part of formulas by all SMT solvers;
• The comparison between parameters is translated into a comparison between SMT

variables;
• Relational expressions are supported by all SMT solvers when defining formulas.

For this reason, KALI (like all other tools based on SMT solvers) can deal with all types
of combinatorial model, parameters, and constraints that can be present in a combinatorial
problem.

The KALI tool

The KALI tool takes advantage of the concepts previously explained to generate combina-
torial test suites. It integrates the java-smt library5 and is available at https://github.com/
fmselab/ct-tools/tree/main/KALI/code.

The structure of the tool is shown in Fig. 7.7, where each Xi is, in this case, the logical
SMT context assigned to each test context. Considering the process implemented by KALI
and shown in Algorithm 4, given a tuple t j to be handled by the test builder threads:

5https://github.com/sosy-lab/java-smt

https://github.com/fmselab/ct-tools/tree/main/KALI/code
https://github.com/fmselab/ct-tools/tree/main/KALI/code
https://github.com/sosy-lab/java-smt
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• the function findImplies at line 2 extracts from the list of all test contexts TC the
first test context tc j that already implies the considered tuple t pi, if it is present.
Then, if tc j is found, t pi is consumed and marked as covered;

• the function findCompatible at line 7 extracts from the list of all test contexts TC
the first test context tc j which is compatible with the tuple t pi (i.e., the tuple does
not clash with the assignments already committed to the test context and with the
constraints of the combinatorial model), if it is present. Then, if tc j is found, t pi is
handled by tc j, which updates its internal SMT logical context, consumes t pi, and
marks the tuple as covered;

• if no test context tc j in which the tuple t pi is compatible or implied is found, a
new test context is created. It is initialized by the function createTestContext
(line 13) which builds a new logical context for SMT and creates all the variables and
constraints of the combinatorial problem in tc j. After creating the new test context,
if t pi is compatible with it, the tuple is consumed, added to the context, and marked
as covered; otherwise, it means that the tuple is not compatible with the constraints,
it is marked as uncoverable and skipped, and the empty test context is discarded.

Since KALI shares the same structure as pMEDICI and only substitutes the MDDs with
SMT solvers, during test generation the same optimizations are available. Additionally,
KALI implements a fourth optimization which allows the user to select the order in which
the tuple generator thread generates the tuples. The available ordering options are:

• IN_ORDER_SIZE_DESC (OD), which first generates the tuples starting from the
parameters assuming the highest number of values;

• IN_ORDER_SIZE_ASC (OA), which first generates the tuples starting from the pa-
rameters assuming the lowest number of values;

• RANDOM (RD), which shuffles the list of parameters before starting the tuple genera-
tion process;

• AS_DECLARED (AD), which considers the parameters in the order in which they
are declared within the combinatorial model. This is the same approach used by
pMEDICI.

Results and comparison with pMEDICI and ACTS

After having described KALI, its implementation, and the optimizations that are embedded
in the tool, this section presents the results obtained when applying KALI to the MVM
case study reported in Listing 7.1.

Tab. 7.8 reports these results and the comparison with those obtained with the best
configuration of pMEDICI and ACTS in the MVM case study. They have been obtained
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Table 7.8 Comparison between KALI, pMEDICI, and ACTS on the MVM case study

N Threads Size Time [ms]

KALI 8 8 2082
pMEDICI 8 8 72
ACTS 1 8 2939

on a PC with Windows 11, Intel i7-3770 with 3.4 GHz, 8 threads, and 32 GB RAM. Note
that, like the ones presented for pMEDICI, the results reported in Tab. 7.8 are the average
of 10 executions. Moreover, for KALI, here, I report only the results obtained with the best
configuration possible (the same number of threads as the one supported by the CPU, the
SMTInterpol solver, the ordering optimization for test contexts enabled, the OD parameter
ordering, and locking the test contexts only when needed for writing). Experiments that
have been carried out to identify this configuration are reported in [46].

The results obtained confirm that using multi-thread for the MVM case study allows
for reducing the test suite generation time (KALI is faster than ACTS), and it does not
influence the test suite size. However, in other experiments, KALI has generally shown
to produce larger test suites than ACTS and pMEDICI (see experiments in [46]), and not
to be the best performing even in terms of test suite generation time. Indeed, also in the
MVM case study, using pMEDICI is always the best choice.

The performance of KALI is deeply influenced by the powerful but heavy structure of
the SMT solvers that underlie the tool. In fact, the experiments clearly indicate that using
the approach implemented by KALI comes with a price. However, we can identify two
main advantages w.r.t. other tools and algorithms:

• pMEDICI outperforms KALI, but it cannot handle complex constraints that cannot
be represented in MDDs, as previously reported. In fact, the MVM model reported
in Listing 7.1 is a simplified version of the mechanical ventilator. In practice,
other aspects that parameterize the behavior of the mechanical ventilator should be
included in the combinatorial model. For example, a more realistic model should
include, among others, the following parameters:
InspiratoryPressure: [0 .. 100]
MaxInspPressure : [0 .. 100]

These two parameters represent the inspiratory pressure set by the doctor and the
maximum inspiratory pressure that cannot be exceeded without triggering an alarm.
For this reason, an additional constraint should be added:
# InspiratoryPressure <= MaxInspPressure #
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In this case, pMEDICI could not have been used, since it is not able to deal with
the added constraint, while ACTS or KALI can deal with it. Given its multi-thread
nature, KALI performs better than ACTS on this model.

• ACTS supports a large set of constraints, and it is very efficient. However, ACTS
and similar approaches build the whole test suite by adding a parameter one by
one, and this means that no test is complete until the generation is finished. KALI,
instead, uses a one-test-at-a-time strategy, and after a short period of time, a test
case is already available. This makes approaches like KALI more suitable for online
testing [170], where test execution begins during test generation. In this case, having
tests immediately available can reduce the time required to discover faults and can
drive test generation to improve the fault detection capability.

7.5 Conclusion

In this chapter, I have presented the concepts of Combinatorial Interaction Testing (CIT)
and how this test generation strategy can be applied to medical systems. As reported in the
literature, and proved also in the MVM case study in this chapter, the use of combinatorial
testing can aid testers in decreasing the number of test cases needed to identify the same
number of faults.

CIT is usually used to test systems by varying the input values. However, in this chapter,
I have presented an approach, based on automata, that exploits combinatorial testing in
order to test event-based systems and builds test sequences composed of events that are
sequentially executed. Typical examples of event-based systems in the medical domain are
all protocols that are used for communication among medical devices. Sect. 7.2 reports the
application of the combinatorial automata-based approach for sequence generation to the
PHD protocol case study and demonstrates how it allows for reaching a higher coverage
w.r.t. the one obtained with methods classically adopted for sequence testing based on
SCAs.

Furthermore, the research of a method for benchmarking combinatorial test generators
(now embedded into the CTWedge environment) has permitted identifying a function
defining the cost of adopting a specific test generator instead of another. By considering
this function, in order to reduce the cost of test generation, multi-threaded techniques
have been presented in Sect. 7.4 and implemented in the pMEDICI and KALI tools. The
former uses MDDs for managing constraints and combinatorial models, while the latter
substitutes MDDs with SMT solvers, in order to overcome the limitations of MDDs while
handling particular types of constraints. The results obtained, presented in this chapter,
have shown how the generation time of the test suite can be significantly reduced when
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using KALI or pMEDICI instead of cutting-edge tools such as ACTS on rather complex
medical systems such as the MVM. For this reason, since a consistent saving in time is
obtained, the additional time may be used to further investigate and improve the quality of
the software products.



Part III

Robustness for AI-based medical
software





Chapter 8

Neural network robustness

In the previous chapters, good software engineering principles have been outlined, and
model-based methods have been analyzed to investigate their applicability to PEMS.
However, recent medical software and devices, such as PEMS, are even more dependent
on AI components, which allow the estimation of medical quantities or the diagnosis of
pathologies. Thus, assessing the safety and reliability of these components, such as neural
networks (NNs), used for medical purposes is of paramount importance, as well as trying
to increase their dependability.

Normally, software testing and good software engineering practices (such as those
described in the previous chapters) can be used for regular software if the safety of the
device embedding the software has to be ensured. However, even when considering the
guidelines presented in Chapter 4, having an NN-based system may change the way in
which the activities have to be performed. For example, considering a medical device
embedding a NN, it could be a good choice to isolate it into a separate component,
which does not depend on others, and to test it independently. Anyway, classical testing
approaches used for standard software are not suitable when NNs are present in a system,
because the behavior of a NN can not always be properly forecasted and, moreover, it
may be difficult even to define test goals. Nevertheless, the basic idea behind the testing
remains the same: the software should be robust enough when dealing with not-correct
inputs. Thus, NN-based medical software should be validated as well as regular software,
and, in this chapter, I will present the approaches I devised for this purpose.

This chapter is based on the work published in [15, 17, 16, 18] and is structured
as follows. Sect. 8.1 presents the general state of the art on neural network robustness.
In Sect. 8.2, I present the background concepts on which the proposed definition of
robustness, introduced in Sect. 8.3, is based. In Sect. 8.4, a tool for automatically computing
the robustness of a neural network and a method to minimize the time required for its
computation are presented. Sect. 8.5 presents methods suitable for increasing the robustness
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of a neural network. Finally, Sect. 8.6 presents how robustness relates to medical devices
and their certification, while Sect. 8.7 concludes the chapter.

8.1 State of the art on neural network robustness

Testing machine learning models has recently become a hot topic that has been defined
over several properties, e.g., correctness, robustness, and fairness [182]. However, as
previously introduced, it is difficult to test machine learning applications using software
testing techniques originally designed for code [151]. For this reason, most of the research
work focuses on analyzing behavioral properties (such as robustness) for neural networks
instead of trying to “test” them as done for the code.

Most of the papers regarding the robustness of neural networks focus on the adversarial
examples, i.e., inputs specifically created with the aim of fooling a neural network, resulting
in the misclassification or misinterpretation of a given input. Normally, these inputs are
indistinguishable from the human eye, but can cause the network to fail to correctly
interpret them. A well-known example is the one in Fig. 8.1: if a small noise, not visible
to the human eye, is added to an image of a panda, the neural network used for classifying
the pictures changes its classification into a gibbon. Adversarial examples can be created
using different types of attack, called adversarial attacks, e.g. the fast gradient sign
method attack, which is a white-box attack whose goal is to ensure misclassification. A
common approach in assessing the robustness of a NN w.r.t. adversarial examples is the
one presented in [174] where a theoretical analysis of this type of robustness is given.
The authors propose a method to find the key reasons why an adversarial example can
fool a classifier and consider these oracles during the network training phase to make
it immune to that specific kind of adversarial example. Another typical approach for
evaluating adversarial robustness is the one proposed by [85], where adversarial examples
are simulated by using semi-random noise, which has been shown to generalize adversarial
examples in a simple way.

Note that in some application scenarios, such as in the medical domain, adversarial
examples are unlikely to occur [122] and so different types of robustness should be used.
Moreover, Carlini and Wagner [68] demonstrate that some of the most recent techniques
used to increase the robustness w.r.t. adversarial examples can be easily fooled with other
adversarial generation techniques. Thus, when developing an NN, especially for safety-
critical domains, it is of paramount importance to evaluate and increase the robustness
for plausible alterations as well, depending on the application domain, as proposed in this
chapter.
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Fig. 8.1 Adversarial examples

In the literature, other papers investigating the robustness of neural networks without
considering adversarial examples are available, but none of them proposes a formal defini-
tion of robustness as, instead, is presented in this chapter. For example, a study of CNN
robustness to appearance variability in biomedical images is presented [165]. The authors
introduce a new type of layer, called neighborhood similarity layer (NSL), to improve
the robustness w.r.t. changes in the appearance of objects that are not well represented
by the training data. In [53], CNN-Cert, a general framework capable of certifying the
robustness of general convolutional neural networks, is presented. It is able to deal with
CNNs composed of convolutional layers, max-pooling layers, batch normalization layers,
residual blocks, as well as general activation functions. A methodology similar to that
used in this chapter is used in image manipulation detection [110], but, also in this case, a
formal definition of robustness has not been introduced.

8.2 Background concepts

In this section, basic concepts useful for understanding the idea of neural network robust-
ness are presented.

8.2.1 Types of neural networks typically used in PEMS

Artificial Neural Networks (ANNs) are used in many critical tasks in the medical domain,
among which classification or estimation. For example, Convolutional Neural Networks
(CNNs) can be used to analyze medical images, e.g., coming from medical exams, with the
aim of diagnosing possible diseases. An example of a CNN is shown in Fig. 8.2: through
convolutional and subsampling layers, parts of an input are analyzed to identify relevant
features. On the other hand, Multilayer Perceptrons (MLPs) can be used when a medical
quantity (such as blood oxygen pressure or patterns in the respiration waveforms) needs to
be estimated or predicted. This can happen when no sensor measuring the quantity exists
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Fig. 8.2 Typical structure of a Convolutional Neural Network

O
ut
pu

ts

Output
Layer

Hidden
Layer

Input
Layer

In
pu

ts

Fig. 8.3 Typical structure of a Multilayer Perceptron

or when the quantity needs to be derived from other data. Fig.8.3 shows an example of the
structure of an MLP.

In this chapter, ANNs trained to be used as classifiers, i.e., to assign a label (taken
from a set of possible categories) to an input (e.g., an image, a sound, a text, etc.) or as
estimators are analyzed. If we consider a generic ANN that receives an input t 2 P, where
p is the input space, the two types of neural network can be defined as follows:

Definition 11 (Classifier). A classifier C for inputs t can be seen as a function that assigns
a label l to an input t 2 P, i.e., C(t) = l.

Definition 12 (Estimator). An estimator E for inputs t̄ can be seen as a function that
computes the output o for each t̄ 2 P, i.e., E(t̄) = o.

8.2.2 Accuracy and errors

As previously introduced, in the medical domain, an NN can be used as an estimator or a
classifier. In both cases, the networks’ results are subject to errors or misclassifications. In
general, the lower the error or misclassification, the higher the quality of the NN.

In particular, if the NN is used as a classifier, its quality can be measured in terms of
accuracy:
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Definition 13 (Accuracy). The accuracy of a classifier C w.r.t. a set of inputs P is defined
as the ratio of correctly evaluated inputs in P, i.e.,

acc(C,P) =
|{t 2 P |C(p) = label(p)}|

|P|

where label gives the correct evaluation of an input t.

On the other hand, if the NN is used as an estimator/predictor, the main approaches
to evaluate its performance are Mean Squared Error (MSE) and Mean Absolute Error
(MAE). The former represents the average of the squared difference between the target
value and the value estimated by the model; since it squares the residuals, it penalizes
even small errors, leading to an overestimation of how bad the model is. The latter is
the absolute difference between the target value and the value estimated by the model.
Given this definition, MAE is more robust to outliers and does not penalize errors as much
as MSE [176]. However, since the MAE scale is the same as the data being measured,
its value is absolute, and it is difficult to easily understand the relative error. For this
reason, when analyzing the performance of an estimator, it is better to use Mean Absolute
Percentage Error (MAPE), i.e., the percentage equivalent of MAE.

Definition 14 (MAPE). Considering an input set of size n, where yi is the real value of the
input t and ŷi is the estimated value of the same input, MAPE is defined as follows:

MAPE =
100%

n

n

Â
i=1

kyi� ŷik
yi

NN estimators can be compared using MAPE under nominal conditions (MAPE0),
which is calculated on the test set. Note that the MAPE metric, as warned in [104], is not
applicable in problems where the real value of yi is close to or equal to zero, because it
results in very large numbers.

8.2.3 Alterations

When ANNs are used in practice, normally, they work in an environment that may be
subject to unexpected external factors. For example, if CNNs are used for classifying
medical images, it may happen that the inputs they are given are slightly different from
those we may obtain under nominal conditions. In fact, the camera used for their acquisition
might produce out-of-focus images or with a higher/lower brightness. The same may
happen if an NN is used for estimation: the input signals may be disturbed by unforeseen
electromagnetic interferences.
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Fig. 8.4 Accuracy change when brightness is altered in the inputs given to a CNN for
medical image classification

In particular, it is plausible that given a NN (either used as an estimator/predictor or
as a classifier), by altering an input t, the trustworthiness of the response of the network
will change and it will likely decrease when the alteration level increases. Therefore, the
accuracy of the classifier or MAPE of the estimator also depend on the “quality” of the
inputs used during their training and testing. For example, Fig. 8.4 shows how the accuracy
of a NN classifier diminishes when changing the brightness of the images given as inputs.
How can we define and measure the robustness of a NN used in the medical field when
an alteration occurs, considering that, as presented in Sect. 8.1, the one w.r.t. adversarial
examples is not meaningful while using NNs in healthcare processes? First, here, I define
what can be considered an alteration.

Definition 15 (Alteration). An alteration of type A of an input t is a transformation of t
that mimics the possible effect on t when a problem occurs in reality during its acquisition
or in its elaboration. In the following, I identify with PAl the set of data obtained by altering
all the input data in P with an alteration of type A of level l 2 [LA,UA], where [LA,UA] is
the range of plausible alteration levels of type A.

In some application domains, alterations can occur randomly at any level l 2 [LA,UA],
while, for other types of applications, some alteration levels may be more likely to occur
than others. To reflect this characteristic of alterations, it is possible to define the alteration
probability as follows.

Definition 16 (Alteration Probability). Given an alteration of type A, the probability of the
alteration A, identified as pA, is the probability distribution of the alteration levels having
as support the interval [LA,UA].

The most common examples of probability distributions for alterations are as follows:
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(a) Uniform probability (b) Linear probability

Fig. 8.5 Examples of functions describing the probability pA of an alteration level A

• Uniform probability: all the alteration levels are equally probable, as shown in
Fig. 8.5a and formally defined as:

pA(x) =

8
>><

>>:

1
UA�LA

LA  xUA

0 otherwise

• Linear probability: lower alteration levels are more probable than higher levels, as
shown in Fig. 8.5b. It is formally defined as:

pA(x) =

8
>><

>>:

2
(UA�LA)2 · (UA� x) LA  xUA

0 otherwise

However, other types of probability function can also be used, such as truncated normal
or half-normal distributions, depending on the application domain.

Note that the alteration probability can also be used to specify the “importance” the
user wants to give to a level of alteration. For instance, a uniform probability is more likely
to be used for systems that should be equally resilient to all levels of an alteration within a
given interval. On the other hand, a linear probability can be preferred when the system
is not critical, and it is more important to perform better on lower alterations than on the
higher ones.
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Fig. 8.6 Robustness computation for a classifier where a brightness alteration is applied as
per Fig. 8.4

8.3 The general concept of NN robustness

Having presented in Def. 15 what here is considered an alteration, in the following I
introduce the concept of robustness for NNs, both for estimators and classifiers. In
both cases, the idea is that the quality measure (accuracy for classifiers and MAPE for
estimators) should stay above a defined threshold for the highest number of alteration
intensities possible.

8.3.1 Robustness for classifiers

When it comes to classifiers, as explained above, it is possible to measure their quality
using their accuracy. In particular, given an alteration aA, the robustness of a NN classifier
can be defined as follows.

Definition 17 (Robustness for NN classifiers). Let Q be a threshold representing the
minimum accepted accuracy. The robustness of a classifier C w.r.t. alteration of type A in
the range [LA,UA] (using a set of inputs P) is defined as the percentage of the alteration
values for which the accuracy is greater than Q. Formally:

robA(C,P) =
R UA

LA
H(acc(C,PAi)�Q)di

UA�LA
·100% where H(x) =

(
1, x� 0

0, x < 0

Fig. 8.6 shows the robustness of a classifier w.r.t. brightness alteration with Q = 80%.
In most cases, accurately computing the robustness using this formula (where H is also

known as the Heaviside function) is very difficult. In fact, the accuracy function is not
known a priori and, therefore, should be computed for all alteration levels l in [LA,UA],
which could be many, if not infinite. Moreover, computing the accuracy of the network C
when a single alteration level Al is applied to the set P, requires considerable effort, so a
method is necessary to select suitable alterations to reduce the computation time.
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A naive solution is to uniformly sample in [LA, UA] and compute the accuracy only for
the points sampled. In this case, it is possible to count how many points (nacc) the accuracy
is acceptable, relatively to the total number of points sampled n. Formally:

Definition 18 (Uniform robustness). Given n equi-distributed points SP = {l1, . . . , ln}
sampled in the interval [LA,UA], the uniform robustness is defined as:

robA(C,P) =
nacc

n
·100% =

|{l 2 SP | acc(C,PAl)�Q}|
|SP| ·100% (8.1)

Note that the previous definitions use accuracy to compute the robustness of a classifier.
However, the definitions could be adapted to use recall, precision, or F1-score, depending
on the context.

The limits of the uniform robustness definition

Robustness, as defined in Def. 18, may still require a lot of computational power and time
to be evaluated, especially when the levels to be applied for each alteration are many. In
fact, be n the number of alteration levels to be applied for an alteration A, k the number of
inputs, and tA the time required to apply the alteration A to a single input, the total time
required to perform robustness analysis is:

ttotA = n⇥ k⇥ tA (8.2)

For example, if we consider n = 1000, k = 1000, and tA = 0.1sec, the total time required
to compute the robustness will be approximately 28 hours.

Several approaches can be used to decrease the time required for robustness analysis.
Among them, the easiest and most effective ones are the followings:

• Reduction of the value n, i.e., the number of levels sampled for the alteration A. This
is a viable solution but has some drawbacks, especially when analyzing networks
whose accuracy varies a lot. For example, Fig. 8.7 shows the points evaluated when
uniform sampling of an accuracy function is performed with n = 10. Using Def. 18,
a robustness of robA(C,P) = 100% would be calculated. Nonetheless, the real value
of the robustness corresponding to the analyzed accuracy function is significantly
lower (' 50%).

• Adaptive selection of the points to be sampled (possibly not uniformly), as usually
done for values in software testing. In fact, while testing a regular program, choosing
the correct input parameters and the correct values is challenging because different
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Fig. 8.7 Error in robustness computation using a low number of uniformly distributed
sampled points

inputs or values may lead to different bug discoveries. However, as in software test-
ing, sampling some inputs is required, since exhaustive testing cannot be performed.
This approach will be presented and discussed in Sect. 8.4.2.

Robustness and adversariability

As presented in Sect. 8.1, current research papers on neural network robustness mainly
focus on adversarial robustness. However, in this chapter, only plausible alterations are
considered for computing the robustness of NN classifiers. How does the robustness
proposed in this chapter relate to the one w.r.t. adversarial robustness? In order to
investigate this relation, here I discuss the notion of adversariability, in the case of
classifiers for medical images. Nevertheless, similar considerations can be extended to
other types of neural networks and inputs as well.

Unlike alterations (as defined in Def. 15), the generation of adversarial examples does
not directly provide a measure of the difference between the starting input and the modified
one. Therefore, the definition of adversariability is based on the classical definition of
structural similarity index taken from [64] and defined as follows.

Definition 19 (Structural similarity index). The structural similarity index between the
two images p and q is defined as:

S(p,q) =
(2µpµq + c1)(2spq + c2)

(µ2
p +µ2

q + c1)(s2
p +s2

q + c2)
2 [0,1]
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where µp and µq are the averages of the pixel values in p and q, s2
p and s2

q are the variances
of p and q, spq is the covariance of p and q, c1 and c2 are two constants, and S(p,q) = 1
when p and q are identical.

Let ADVEX(C, p) be the set of all adversarial examples generated by a given technique
for a classifier C and be p an input image. ADVEX(C, p) is empty only if p cannot be
modified in a way to mislead C or the generation technique of ADVEX is not powerful
enough. Every technique can generate many adversarial examples. For example, if an
image is manipulated for obtaining an adversarial example, higher levels of manipulation
will likely lead to other adversarial examples as well. Among all adversarial examples, the
concept of adversariability is defined over the most adversarial one:

Definition 20 (Most adversarial example). Let C be a binary classifier, and p be an correctly
classified image, that is, C(p) = label(p). The most adversarial example is defined as the
most similar image to p that is misclassified (if it exists), formally:

pae = argmax
p02ADVEX(C,p)

S(p, p0)

Note that ADVEX(C, p) may be empty. In this case, we say that pae does not exist.

Using Def. 19 and 20, it is possible to define the adversariability, i.e., the vulnerability
w.r.t. adversarial examples, as follows.

Definition 21 (Adversariability). Let C be a binary classifier and P be a set of inputs. The
adversariability of C is defined as the percentage of input p 2 P correctly evaluated for
which there exists an adversarial example pae, weighted by the similarity index between p
and pae. Formally:

adv(C,P) =
Âp2CE Ŝ(p,pae)

|CE| 2 [0,1]

where Ŝ is equal to the similarity index S if the adversarial example pae exists, 0 otherwise;
and CE = {p 2 P |C(p) = label(p)} is the subset of P of correctly classified inputs.

Higher adversariability values mean that the classifier C is more vulnerable to adver-
sarial examples. Note that adversarial examples pae that are more similar to the original
image p (i.e., those having higher similarity index Ŝ(p,pae)) are those that contribute the
most to the adversariability: indeed, they represent the most insidious cases in which an
imperceptible modification misleads the classification.

8.3.2 Robustness for estimators

When dealing with estimators, their quality is usually measured using MAPE. In fact, it can
be logical to consider that, when an alteration is applied, the MAPE of the estimator will
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(a) Uniform tolerance (b) Linear tolerance

Fig. 8.8 Examples of functions describing the tolerance

change and, in particular, it may increase when the level of the alteration applied increases.
However, different values of MAPE can be more or less acceptable, depending on the
criticality of the task performed by the NN and the precision required by the requirements
of the system. Therefore, the tolerance to the NN error can be defined as follows:

Definition 22 (Tolerance). Let Q be a threshold representing the maximum MAPE value
accepted by the system requirements and MAPEA(x) the error value when an alteration A
of level x is applied to the input data. The desired tolerance for the error MAPEA(x) is a
function TolMAPEA(x) such that:

TolMAPEA(x) = 1 for MAPEA(x) = 0
0 TolMAPEA(x) 1 for 0 < MAPEA(x)Q
TolMAPEA(x) = 0 for MAPEA(x)> Q

The type of tolerance function can be chosen by users depending on the application
domain. In the following, two examples of tolerance functions are described:

• Uniform tolerance: all the different values of MAPEA(x) are tolerated in an equal
way, as shown in Fig. 8.8a. It is formally defined as:

TolMAPEA(x) = H(Q�MAPEA(x))where H(k) =

8
<

:
1, k � 0

0, k < 0

The intuition is that, as long as MAPE is below or equal to the threshold Q, the
tolerance is maximum, otherwise it is 0.
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• Linear tolerance: lower values of MAPEA(x) are more tolerated than higher values,
as shown in Fig. 8.8b. It is formally defined as:

TolMAPEA(x) =
max(Q�MAPEA(x),0)

Q

Given the tolerance function Tol, the alterations A and their probability pA, the robust-
ness for NN estimators is defined as follows.

Definition 23 (Robustness of NN estimators). Let E be an NN estimator under evaluation,
MAPEA(x) be the value of the error done by E when an alteration A of level x is applied
to the input data, pA(x) the probability of the alteration, and TolMAPEA(x) the tolerance
for MAPE values of the selected network. The robustness robA(E) 2 [0,1] of E w.r.t.
alterations of type A in the range [LA,UA] is formally defined as:

robA(E) =
Z UA

LA

TolMAPEA(x) · pA(x) dx ·100% (8.3)

Intuitively, the robustness can be seen as the sum (integral) of all the errors the network
commits when all possible alterations are applied. Alterations are weighted by their
probability and errors by the specified tolerance.

Note that the robustness depends on the type of tolerance and probability chosen. For
example, it is possible to define the following sub-types of robustness:

• UL robustness: It is obtained when uniform probability (any alteration level is
equally likely) and linear tolerance (lower errors are preferable) are chosen. In
particular, the following formula computes the robustness:

robUL
A (E) =

RUA
LA

max(Q�MAPEA(x),0) dx
Q · (UA�LA)

·100%

This definition of robustness evaluates the ratio between the striped red area and the
gray one in Fig. 8.9a. It can be used for systems where, for higher alteration values,
large MAPE values are acceptable, while, for lower alteration values, the smaller the
MAPE, the better.
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• LU robustness: It is obtained when linear probability and uniform tolerance are
chosen. In particular, the following formula computes the robustness:

robLU
A (E) =

RUA
LA

H(Q�MAPEA(x)) · (UA� x) dx
1
2 · (UA�LA)2

·100% =

R
x2[LA,UA]|MAPE(x)<Q

✓
Q · UA� x

UA�LA

◆
dx

1
2
·Q · (UA�LA)

·100%

This definition of robustness evaluates the ratio between the area of the striped red
region and the area of the gray triangle in Fig. 8.9b. The definition is suitable for
systems where it is crucial to respect the threshold Q along the entire alteration
interval [LA,UA], in particular for low (and more likely) levels of alteration.

• UU robustness: It is obtained when uniform probability and uniform tolerance are
used:

robUU
A (E) =

RUA
LA

H(Q�MAPEA(x)) dx
Q · (UA�LA)

·100%

This definition computes the ratio between the lengths of the red and gray lines in
Fig. 8.9c. UU robustness is suitable for systems where it is crucial to respect the
threshold Q throughout the alteration interval [LA,UA], regardless of the probability
of alteration, such as in the case of medical devices.

• LL robustness: It is obtained when linear probability and linear tolerance are used:

robLL
A (E) =

RUA
LA

max(Q�MAPEA(x),0) · (UA� x) dx
1
2
·Q · (UA�LA)2

·100%

Higher levels of alteration, which have a greater impact on the input data, may lead
to higher values of MAPE. However, in some systems, these alteration levels may
be less probable than the lower ones, and users may be less worried about some high
error in very rare cases. Thus, LL robustness is suitable for these kinds of system,
when the user does not want to penalize too much high error values for the highest
alteration levels. Note that it is difficult to provide a graphical interpretation of LL
robustness as done for the other types of robustness.
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Fig. 8.9 Graphical representation of different types of robustness

8.3.3 Properties of the robustness measure

The robustness definition, either for classifiers or estimators, guarantees the following
properties:

1. the robustness of a model M is always between 0 and 1, i.e., 0 robA(M) 1;

2. if a network has always zero error, its robustness is 1, i.e., robA(M) = 1 if 8x 2
[LA,UA], MAPEA(x) = 0 in the case of estimators, or 8x 2 [LA,UA], acc(C,PAi) =

100% in the case of classifiers. Note that the condition is sufficient but not necessary,
i.e., the robustness can also be 1 for systems in which the error is greater than 0 for
some alteration level (e.g., in estimators when uniform tolerance is used and the
error is never greater than Q);

3. if a network has an error always greater than the specified threshold Q, its robustness
is 0: robA(M) = 0 if 8x 2 [LA,UA], MAPEA(x)> Q in the case of estimators, or if
8x 2 [LA,UA], acc(C,PAi)< Q in the case of classifiers.

8.4 Tools and algorithms for robustness estimation of NN
classifiers

As explained in Sect. 8.3, computing the robustness of a NN is a viable technique to
analyze its quality. However, computing this measure may take a long time, especially
in the case of classifiers, since the classification process is normally more expensive than
the estimation one (for example, it may need to deal with pictures instead of numbers).
Moreover, configuring an environment allowing the robustness analysis can be a complex
activity since it requires the definition of alterations, the computation of the robustness
formula, etc. Thus, in the following, I introduce ROBY, a software allowing the automatic
computation of robustness for NN classifiers, and ASAP, a technique aiming at reducing
the time required for robustness estimation, without losing estimation precision.
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8.4.1 ROBY

In this section, I present ROBY, a Python tool for ROBustness analYsis. The tool has
been engineered so that it can be used, with minimal effort, by different users in different
domains and for different types of data when dealing with classifiers. A user must only
specify:

• the location of the test data set;
• a labeling function or a label list, allowing the tool to retrieve the correct classification

of the test input data;
• which alterations have to be applied to input data (either the standard ones provided

by the tool, or custom-made);
• where to run the robustness computation (either locally or on Google Colab).
As a result, ROBY computes the robustness measure for the different alterations

and produces plots that visualize how the accuracy changes when the alterations are
applied. In this way, users may observe which are the most critical alteration levels and
intervene directly on them. ROBY evaluates the robustness as reported in Def. 18. The
tool is available at https://github.com/fmselab/roby and can also be installed using the pip
package manager. Before using ROBY, users must make sure that their system satisfies
some requirement:

• The model must represent a classifier and must be written in a format supported by
Keras, i.e., HDF5 or SavedModel;

• All the inputs in the test data set must be previously labeled and must be expressible
in the np.ndarray format, a rather general format in which images, audio, text, and
video can be represented;

• Each alteration must be expressible as an input modification between a minimum
and maximum threshold.

Fig. 8.10 shows the workflow to follow when using ROBY to analyze the robustness of
an NN classifier. In particular, the following activities need to be performed by the user:

https://github.com/fmselab/roby
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1. Supply a data set, together with the labels (possibly given as a function, labeler,
that is applicable to each input data and gives as output the correct label) and a
model. Data sets and models can be stored either on the local hard drive (if the
robustness computation is performed locally) or on Google Drive (if the computation
is performed on Google Colab);

2. Define the environment that may optionally include, besides the input data together
with their labels and the model, also the pre-processing function;

3. Select suitable alterations among those provided by ROBY or define new ones in
accordance with the domain;

4. Specify the desired threshold Q to be used for computing the robustness;
5. Run ROBY which computes the robustness measure and produces plots showing

how the accuracy of the model changes w.r.t. different levels of alterations.

How to use ROBY in custom domains

Each domain may have different thresholds, alterations, and data-type to be considered.
For this reason, ROBY allows users to define a method to load the data set, a method to
adapt to different data formats, and another method to assign labels to input data. Moreover,
users can define custom alterations and use them to evaluate the robustness of the NN
under analysis with ROBY. These extension points are better detailed below.

• Data loading: ROBY works for ANNs used as classifiers receiving np.ndarray
input data. Users can create a custom testing environment EnvironmentRTest by
giving either the paths for all input data or a list of data already in array format. In
the former case (when paths are given), the user must specify the way to be used
to convert the file data into the np.ndarray format by declaring a reader(file_-
name) function.

• Data labeling: correct labels for input data can be given with a list of all labels or
by using a labeler function. In the former case, the list must be of the same size as
the data set, while in the latter case, the user has to define a function that receives
input data and returns a string representing the real label for the selected input.

• Custom alterations: ROBY has an embedded abstract class Alteration that can
be easily extended to create custom alterations. When extending the abstract class,
the user is requested to implement the functions name(), to return the name of the
alteration, and apply_alteration(data, alteration_level). Given the input
data in np.ndarray, the function apply_alteration returns the data (still in the
same format) with the applied alteration of the desired level. Moreover, ROBY
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Fig. 8.11 Area in which the real accuracy curve between A and B will be likely included,
identified by two parabolas with concavity depth ±â

supports the definition of AlterationSequence, which can be used to represent an
alteration caused by the composition of multiple alterations.

• Pre-processing: In some domains, ANNs could have been trained with data of
shapes, sizes, or formats different from those used for testing. For these reasons,
during the declaration of the testing environment EnvironmentRTest, users can
specify an additional pre-processing function. It is applied to each input data, after
an alteration is applied, before its recognition by the ANN. Typical pre-processing
functions are used when there is the need to remove, e.g., white borders from images,
resize or extract a relevant part from the input, or clip the volume of an audio track.

8.4.2 The ASAP algorithm

In order to tackle the limitations of the uniform sampling approach (previously explained
in Sect. 8.3.1), here I present the ASAP (Adaptive SAmpling by Parabolic estimation)
algorithm to automatically select the points where to evaluate the accuracy. It is based on
the assumption that the best points to select would be those in which the accuracy curve
intersects the threshold Q. However, since the analytical form of the accuracy function is
not known a priori and it is not possible to compute these intersections, users should try to
select points as close as possible to Q. ASAP is based on a parabolic approximation of the
accuracy curve: once the user has computed the accuracy for two alteration levels A and B,
the real accuracy curve between A and B will be included in the area between two parabolas
passing through the points A and B, and having concavity depth respectively +â and �â
(see Fig. 8.11), i.e., with equation y = ax2 +bx+ c with a =±â. If there is an intersection
between the area marked in Fig. 8.11 and the threshold Q, and the distance between A
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Fig. 8.12 Different positions of points during recursive accuracy evaluation

and B is sufficiently large (I will discuss later what can be considered “sufficiently large”),
then the accuracy of the middle point M between A and B has to be computed. After that,
the point M is added to the sample set and the procedure is applied recursively to the
two intervals [A,M] and [M,B]. In this way, the number of points evaluated is adaptively
determined and depends both on the value of the parameter â and on the behavior of the
accuracy function. Intuitively, the higher the value of â, the higher the number of alteration
levels evaluated by the algorithm. For this reason, users should choose the â value based
on the precision required and on the time available for robustness analysis.

Algorithm 6 describes how the approximation method works. It recursively considers
two alteration levels xA and xB in [LA,UA], and evaluates the accuracy of the model in them,
using the function getAccuracy that applies the selected level of alteration (lines 2-3) to
the test set TS.

Then, ASAP checks, by using the function parabIntsct (line 4), whether at least one of
the two parabolas passing for the two points xA and xB intersects the threshold. A sufficient
condition is that the two accuracy values are opposite w.r.t. the threshold Q (see an example
in Fig. 8.12a): this is checked at line 11. If this is not the case, i.e., both accuracy values
are above or below the threshold Q (see examples in Figs. 8.12b-8.12c), the algorithm
computes the parabolas passing for A and B and having concavity depth ±â, using the
parabola function (line 14). Note that given the concavity depth â, the coefficients b and c
must also be calculated. They are obtained by solving the following system of equations
(where a =±â is fixed by the user):

8
<

:
a · xA

2 +b · xA + c = accA

a · xB
2 +b · xB + c = accB

Then, the parabola vertex V (xv,yv) is calculated (line 15). The method verifies that the
parabola is in the area of interest (line 16), by checking that: (i) xv 2 [xA,xB] (first operand
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Algorithm 6 ASAP: Adaptive SAmpling by Parabolic estimation
Require: xA the first alteration level
Require: xB the second alteration level
Require: TS the test set including all the input data (e.g. images)
Require: Q the threshold to be used for robustness analysis
Require: â the concavity depth parameter to be used by ASAP
Require: minStep the minimum step between two alteration levels
Require: C the CNN to be analyzed
Ensure: RES the list of sampled points with their accuracy values

1: procedure EVAL(xA, xB, TS, Q, â, minStep, RES, C)
2: accA getAccuracy(TS,xA,C,RES) . Get the accuracy in A
3: accB getAccuracy(TS,xB,C,RES) . Get the accuracy in B

. Check whether the parabolas with concavity depth ±â intersect Q
4: intersected parabIntsct(xA, accA, xB, accB, â, Q) _ parabIntsct(xA, accA, xB,

accB, -â, Q)
. Estimate accuracy in the two sub-intervals if they are not too close

5: if intersected^ xB� xA � minStep then
6: EVAL(xA, xA+xB

2 , TS, Q, â, minStep, RES, C)
7: EVAL( xA+xB

2 , xB, TS, Q, â, minStep, RES, C)
8: end if
9: end procedure

10: function parabIntsct(xA, accA, xB, accB, a, Q)
. Check whether A and B are opposite w.r.t. Q

11: if (accA�Q) · (accB�Q)< 0 then
12: return true
13: end if

. Compute the parabola and its vertex
14: b,c parabola(xA,accA,xB,accB,a)
15: (xv,yv) = (� b

2·a ,�
b2�4·a·c

4·a )
16: return (xA  xv  xB)^ ((accA�Q) · (yv�Q)< 0)
17: end function

18: function getAccuracy(TS, x, C, RES)
19: if ¬RES.contains(x) then
20: accx ComputeAccuracy(TS,x,C)
21: RES.append(hx,accxi) . Save the obtained results
22: else
23: accx RES.get(x)
24: end if
25: return accx
26: end function

of the conjunction), and (ii) the parabola intersects the threshold Q, i.e., yv is opposite to
accA w.r.t. Q (second operand). This process is repeated for both a = â and a =�â.
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Fig. 8.13 Examples of robustness computation using synthetic functions

Finally, if one of the two parabolas intersects the threshold and the sampled points
are not too close (line 5), the computation is recursively repeated in the intervals [xA,xM]

and [xM,xB] (lines 6-7), where xM is the average alteration level between xA and xB. Note
that the user must choose the value minStep coherently, taking into account possible time
constraints, in order to obtain a correct robustness estimation.

In this way, a set of sampled points is obtained, each with the corresponding accuracy:
RES = {hl1,acc1i, . . . , hln,accni}. Starting from RES, the robustness is computed by
generalizing the formula in Def. 18 as follows:

robA(C,P) =
Ân

j=2 H(acc j�Q) · (l j� l j�1)

UA�LA
·100%

Example of robustness computation using ASAP

Fig. 8.13 reports the effect of ASAP on two different synthetic functions. In particular, in
Fig. 8.13a, the robustness calculation is performed by using uniform sampling with 50
equidistributed alteration levels, and a robustness of 38.8% is obtained, while in Fig. 8.13b
only 15 levels are used by ASAP (with â equal 256) and a robustness of 39.06% is obtained.
Since the curve is generated synthetically, the real robustness can be computed, and it
turned out to be 40.00%. Note that the two results are very close to each other and also
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close to the real robustness. In this particular case, ASAP is able to perform even better
than the normal approach with uniform sampling, despite fewer sampled points being used.

The same behavior can be observed by comparing Fig. 8.13c, where robustness 77.9%
is obtained by uniform sampling with n = 50, with Fig. 8.13d, where ASAP uses only
34 alteration levels (focused in the area near the threshold value instead of uniformly
distributed ones), obtaining a robustness of 81.2%. Note that even in this case the two
results are close and that the real robustness associated with the accuracy plot shown in
Fig. 8.13c and Fig. 8.13d is 80.4%. This shows that ASAP uses fewer alteration levels, so
it saves time but still provides an accurate approximation of the robustness.

Maximum error estimation of the computed robustness

ASAP exploits a parabola-based approximation of the accuracy curve for a neural network,
so the estimation provided may be subject to errors. However, it provides theoretical
guarantees regarding the maximum error that it can make in computing the robustness. To
define this, pairs of two consecutive points p j and p j+1 must be selected from RES, so that
the parabolas passing from them with concavity depth ±â intersect the threshold Q, i.e.,

IP =

8
><

>:
(l j, l j+1)

�����

hl j,acc ji,hl j+1,acc j+1i 2 RES^ 
parabIntsct(l j,acc j, l j+1,acc j+1, â,Q)_
parabIntsct(l j,acc j, l j+1,acc j+1,�â,Q)

!
9
>=

>;

Intuitively, each pair of points p j and p j+1 identifies the points between which at least one
of the two parabolas with concavity depth ±â intersects Q, and, therefore, also the real
accuracy curve may intersect, but ASAP has quit sampling because the two points have
alteration levels sufficiently close w.r.t. to the chosen minStep.

Under the assumption that the user has chosen an appropriate value for â, the error
that ASAP can commit only comes from the intervals identified in IP. This intuition is
formalized by the following theorem.

Theorem 1. Let C be a CNN and A an alteration defined in the range [LA,UA]. Let robA

be the robustness computed for C and A by ASAP using a given â. Let robO
A be the real

robustness value. Under the assumption that â is a suitable parameter, i.e., the real accuracy
curve is included in the areas of two parabolas with concavity depth â (see Fig. 8.11),
the maximum error of the computed robustness has a guaranteed upper bound defined as
follows:

|robA� robO
A | eA with eA =

Â
(l j ,l j+1)2IP

(l j+1� l j)

|UA�LA|
(8.4)
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Proof. The error in robustness computation is due to the cases in which the real curve
crosses the threshold line but ASAP fails to find the exact intersection point. Let’s consider
where this can happen by considering all the sub-intervals [l j, l j+1] of the points in RES:

• if (l j, l j+1) 62 IP, then the parabolas with concavity depth ±â do not intersect the
threshold. Since, by the assumption of the theorem, â is a suitable parameter, the
real curve is included in the computed parabolas, and so it also does not intersect the
threshold. So, no contribution of error in robustness computation comes from these
points.

• if (l j, l j+1) 2 IP, then we can distinguish two cases:
– the two points are opposite w.r.t. the threshold line. So, the real curve intersects

the threshold line, but in an unknown point that does not belong to RES.
– the two points are both below or above the threshold: ASAP ignores the

possible intersection of the real curve with the threshold line since, for ASAP,
the sampled points are close enough.

In both cases, the maximum absolute error is l j+1� l j.
Therefore, the total error in the robustness estimation is given by the sum of errors for all
pairs of points in IP. Hence, the upper bound of the error is as defined in Eq. 8.4.

8.5 How to improve the robustness of a NN

After having analyzed the robustness of a NN one may want to apply techniques allowing
the improvement of the network in terms of its robustness w.r.t. plausible alterations, in
particular in safety-critical systems (as in the PEMS domain) which should be as robust as
possible.

Obviously, the first applicable solution is to create a more complex CNN, which is able
to guarantee higher robustness; however, this solution could be too costly and, moreover,
the designer does not have any hint on how to modify the network in order to increase
its robustness. Therefore, in the following, I consider additions to the training data or
automatic extensions of the network that do not require the intervention of the designer
since they do not require the development of a new NN.

Note that a good technique should not only improve robustness, but also not degrade
the classification of the unaltered input; therefore, while trying to enhance robustness, one
should also check the accuracy of the retrained network.

8.5.1 Data augmentation

Data augmentation is a wide and well-known subject [168], including a suite of techniques
that increase the size and quality of the training data set. Using data augmentation, the
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NN has to be retrained with a new training set composed of the original training set and
additional data that can be created starting from the original ones, so that the network
performance, obtained after the retraining process, is enhanced.

Since data augmentation is proposed here as a method for increasing the robustness of
a NN, the new training set may be created in two different ways, depending on the network
type and on the application domain:

• With recombined data: the idea of this approach is to create new input data (virtual)
by recombining existing ones (real) [79].

• With altered data: the idea behind this approach is that the robustness of a NN w.r.t.
plausible alterations (as per Def. 15) may be increased by adding in the training set a
certain number of inputs that have been altered with the same alterations under test.

Data augmentation has been shown to be very effective in the literature. However, it
requires complete retraining of the whole network, which has been performed using a large
number of input data. Thus, a lot of time should be spent in order to apply this technique.

8.5.2 Incremental learning

Data augmentation contributes to enhancing the robustness performance of a network, but
requires the retraining of the original network with a larger set of inputs, including the
altered ones. Thus, to reduce the training effort and increase the generalization of the
network at the same time, other techniques may be used. In particular, a different approach,
known as incremental learning is suitable in most cases, as it allows one to improve
the performance of the model without retraining the entire network. In the literature, it
is performed whenever new samples are available, by adjusting what has been learned
according to them. This method has been designed to work as an online technique, but in
the analysis presented in this thesis, it has been adapted (as previously suggested by [160])
to be used as an offline approach.

This approach adds knowledge to an existing NN without modifying it in order to
improve its performance. For this reason, a new NN composed of two sub-networks (as
shown in Fig. 8.14) is created: one sub-NN represents the original network, and the other
one the new and non-previously trained network (but still with the same network structure
as the original one). During the retraining phase, only the new sub-network is trained using
the new altered data set; the outputs of the two networks are then used in the loss function
computation and to update the weights in the new sub-network.

In this way, a new network that is capable of classifying new inputs using the support
information provided by the original one is obtained. After the retraining phase, the
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Fig. 8.14 Incremental learning technique

inference of an input vector uses both networks: the final estimation is obtained by
averaging the estimations of both models (the original and the new one). This approach has
the advantage of avoiding the retrain of the whole system but only a part of it, and of using
a limited data set composed of only altered input data. This led to a shorter training time
than the one required for the data augmentation technique. Moreover, the original network
is not modified; this is an advantage, as modifications are sometimes not possible if the
model is read-only or available only as a black box. Furthermore, keeping the original
network unaltered is more likely to maintain the same performance on unaltered data.

8.6 Robustness in medical devices

As introduced in Sect. 2.2, the certification process for medical devices and systems must
follow a set of standards and activities. However, these standards may be difficult to
be applied to AI-based medical software, as their behavior is difficult to be predicted
and tested. Despite this, nowadays, many medical devices based on AI algorithms are
certified by competent authorities [32], but a lack of clarity on the approval of AI/ML-
based medical devices and algorithms characterizes the certification process. From the
information available on the already certified AI-based medical software, it can be noticed
that the FDA approves AI-based medical systems in three cases:

i) AI algorithms have shown to be at least as safe and effective as another similar legally
marketed product (which normally does not rely on AI);

ii) Critical algorithms with high impact on humans are pre-market approved, then the
FDA determines if the device’s safety and effectiveness are supported by satisfactory
scientific evidence;

iii) Novel medical devices which offer adequate safety and effectiveness are approved
after performing a risk-based assessment.

Although no robustness assessment is currently formally required, the companies
producing medical devices embedding AI components may include the robustness results
as part of risk-assessment documentation because they allow evaluating how the model
resists to input perturbations.
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8.7 Conclusion

In this chapter, a general discussion about the robustness of NNs used in the medical
domain, either for classification or estimation, is presented. Previous attempts of evaluating
the robustness of NNs are present in the literature, but they mainly focus on adversarial
robustness. However, in some domains (such as the medical one), adversarial attacks
are unlikely to occur, and, for this reason, other measures should be used in such fields.
Thus, the proposed formulas exploit a quality measure (MAPE in the case of estimators, or
accuracy in the case of classifiers) to evaluate how the network under analysis is able to
tolerate input perturbations without degrading its performance. Moreover, in this chapter,
I have also presented two different methods suitable for increasing the robustness of a
network. They are based on adding data to the training set, or on automatic modifications
of the network without requiring any re-design of the network structure. Note that the
concepts presented are rather general and can be applied even to other domains.

As explained in Sect. 8.6, robustness is one of the candidate solutions for assessing the
quality of PEMS during their certification process. For this reason, in the next chapter, I
will present how these concepts are applied to real-world medical case studies, such as a
system for classifying medical images coming from breast-cancer exams and a system for
estimating the blood pO2 during medical surgeries.



Chapter 9

Applying robustness computation and
improvement to PEMS

In this chapter, the robustness computation presented in Chapter 8 is applied to real medical
case studies. In particular, in Chapter 8, the definition of robustness w.r.t. plausible
alteration has been given for NN estimators and classifiers. Here, I present the use of the
formula and tools previously described in the case of:

• A CNN used as a classifier, for medical images of histological examinations for
breast cancer diagnosis;

• An MLP used as an estimator, to monitor the pO2 level during surgeries.
Both cases can be classified as safety-critical systems and, in particular, they represent (on
their own or in part) examples of PEMS. For this reason, their safety and reliability must
be proven, and the robustness measure can contribute to increasing the confidence in the
correct behavior of the two systems, even in real situations where input may be disturbed
by external factors (see Sect. 8.6 for further details).

This chapter is based on the work published in [15, 17, 18] and is structured as follows.
Sect. 9.1 presents the description of the breast cancer case study, defines the alterations
that have been considered for robustness analysis, presents the robustness results and the
improvements obtained with the application of the methods presented in the previous
chapter. Sect. 9.2 introduces the pO2 estimation case study, presents the alterations
considered for the MLP estimator, and describes the results of the robustness analysis and
improvement processes. Finally, Sect. 9.3 concludes the chapter.
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9.1 The breast cancer case study

In this section, I present the application of the robustness computation and improvement
process to a Convolutional Neural Network (CNN) used to classify images coming from
histological exams for breast cancer diagnosis.

9.1.1 Case study description

Breast cancer (especially invasive ductal carcinoma - IDC) is one of the main causes of
cancer death in women (⇠ 12% in 2019) and one of the most diagnosed cancers (1/3 of
all cancers) [59]. The diagnoses for this disease are made by analyzing images of the
histological features of tissue or cells removed with surgery or biopsy. These images are
collected using a microscope and examined by pathologists to make a decision about the
benignity or malignancy of the suspected cancer. For the analyses presented in this section,
a publicly available data set of histological images [150] has been used: it consists of
162 images of tissues acquired at 40⇥, from which a total of 277,524 labeled patches of
50⇥50 pixels were extracted. Among them, 198,738 are benign samples and 78,786 are
malignant. Fig. 9.1 reports examples of both malignant and benign samples.

For performing this classification, physicians may be aided by automated systems based
on CNNs. The CNN analyzed, in the following referred as C0, is supposed to identify
whether the input image comes from a patient with IDC or not. It has been implemented
using Python and the Keras library. The structure of the chosen CNN has been inspired
by [153] that describes a CNN for breast cancer identification. The first layer in C0 is a
convolutional layer, with 32 filters, and 3⇥3 kernels, followed by a rectified linear unit
(ReLU) activation function. Then, a batch normalization layer, a max-pooling layer, and
a dropout of 0.3 are inserted to prevent overfitting. After these layers, a double couple
of convolutional layers (64 filters, with 3×3 kernels) and ReLU activation functions are
used. To further prevent over-fitting, another batch normalization layer followed by a
max-pooling layer is present. The last block of layers is composed of a fully-connected
layer with ReLU activation, a batch normalization with a drop-out of 0.5, and a sigmoid
classifier.

C0 has 63,106 parameters and its training requires 2h 08m. The available 277,524
input images have been divided as follows: 147,415 images have been used as training
set T RC0 , 63,178 images have been used as validation set VAC0 , while 66,931 images
compose the test set T EC0 . With this subdivision, C0 has achieved an accuracy of 86,46%
on the test set T EC0 .
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(a) Benign examples (b) Malignant examples

Fig. 9.1 Example of images contained in the database used for the analysis

Alterations

In order to investigate the robustness of the CNN C0, the most common alterations that can
occur when working with digital images in the medical sector have been considered:

• Horizontal translation and Vertical translation: these alterations may occur when
microscopic slides are incorrectly placed, or placed in a way that was not captured
by the pictures used to train the network;

• Brightness variation: it may occur when different microscopes, having different
lamps, are used for image acquisition;

• Zoom: images may be acquired using different levels of zoom. In this way, specific
features may have different sizes w.r.t. the one seen during the training of the
network;

• Gaussian noise: it simulates the possible effect of a wrong manipulation of the
microscopic slide (e.g., too much dye has been used for contrast) [70]. During the
robustness analysis, the variance s2 has been altered accordingly with the alteration
level;

• Blur addition: it may occur due to a small movement of the microscope that acquires
the images, causing a loss of focus. For this alteration, a variation of the radius r of
the added blur has been considered;

• JPEG compression: it may occur when images are transferred in a lossy manner.
This alteration has been applied by varying the compression value q.

More details about the lower and upper bound for each alteration (LA and UA) and
the number of uniformly sampled points for each type of alteration (⇥n) are reported in
Tab. 9.1.



200 Applying robustness computation and improvement to PEMS

Table 9.1 Alteration values used for robustness analysis of breast cancer classification

ID Alteration LA UA ⇥n

GN Gaussian noise 0 200 40
JC JPEG Compression 0% 100% 40
VT Vertical translation �4px +4px 40
HT Horizontal translation �4px +4px 40
BA Blur addition 0px 2px 40
BV Brightness variation �50% +50% 40
ZO Zoom 100% 200% 40

Table 9.2 Robustness for the classifier for breast cancer diagnosis

C0 CDA CLDA CIL CLIL
ID Rob. Rob. D Rob. D Rob. D Rob. D

GN 19.5% 100.0% 80.5% 100.0% 80.5% 34.1% 14.6% 34.1% 14.6%
JC 87.8% 97.6% 9.8% 97.6% 9.8% 90.2% 2.4% 90.2% 2.4%
VT 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
HT 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%
BA 63.4% 100.0% 36.6% 100.0% 36.6% 100.0% 36.6% 100.0% 36.6%
BV 17.1% 61.0% 43.9% 87.8% 70.7% 17.1% 0.0% 24.4% 7.3%
ZO 100.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%

AVG 69.7% 94.1% 97.9% 77.3% 78.4%

9.1.2 Robustness evaluation

In this section, I present the results of the robustness evaluation performed with ROBY
(previously presented in Sect. 8.4.1) on the CNN C0 under analysis, using the previously
presented alterations, which are already embedded in the tool.

To evaluate the robustness of C0, a threshold Q = 80% has been chosen. Using the
uniform robustness formula presented in Def. 18 in Chapter 8, ROBY automatically
produces the robustness results as in Tab. 9.2. They confirm the invariance property of
CNNs with respect to geometric transformations [117] (i.e., the classification does not
change when some particular geometric transformations are applied): indeed, C0 has a
robustness of 100% in both translations and zoom. In general, the results show that the
classifier C0 was not robust w.r.t. plausible alterations, since its average robustness is
69.7%.

Fig. 9.2 shows how the accuracy of C0 varies when each alteration is applied. Apart
from the alterations achieving 100% robustness, it can be noticed that some of the other
alterations (e.g., JC) maintain the accuracy value greater than Q for most of their alteration
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(a) HT: Horizontal Translation (px) (b) VT: Vertical Translation (px)

(c) BV: Brightness Variation (%) (d) ZO: Zoom (%)

(e) GN: Gaussian Noise (s2) (f) BA: Blur Addition (r)

(g) JC: JPEG Compression (q)

Fig. 9.2 Accuracy modification using the altered data input over the CNN C0

interval, leading to higher robustness values. For other alterations (e.g., GN), instead, the
accuracy is lower than Q for most of the alteration levels, so the robustness is lower.

9.1.3 Robustness improvement

As presented in Sect. 8.5, once the robustness of a NN has been assessed, one may try to
improve it by using different techniques, mainly based on adding specific inputs to the
training set or adding parallel network components. In this section, the results obtained
with the application of the previously presented techniques are reported.
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(a) BV: Brightness Variation (%) (b) GN: Gaussian Noise (s2)

(c) BA: Blur Addition (r) (d) JC: JPEG Compression (q)

Fig. 9.3 Accuracy modification using the altered data input over the CNN CDA

Data augmentation

Using data augmentation (DA) consists in retraining the entire network using both original
and altered pictures. This process is time-consuming, especially if every alteration needs
to be applied to each input, for all its alteration levels between LA and UA. Based on this
consideration, DA has been applied using only 4 alteration levels for the alterations having
positive and negative values (VT, HT, and BV) and 2 levels for all the other alterations. In
this way, a total of 2,526,281 input images have been obtained.

The new classifier CDA has required 14h 54m to be trained and has reached an accuracy
of 86.57% on the same test set used for the original classifier C0. This result shows that
the accuracy has not increased significantly but, on the contrary, the robustness w.r.t.
alterations has greatly improved (see Tab. 9.2), both in terms of single alteration (e.g., in
the case of Gaussian noise, the robustness has passed from 19.5% to 100.0%) and in terms
of average robustness, which now is 94.1%.

The changes in accuracy obtained by applying the alterations of type A (only for the
alterations that lead to a robustness less than 100% with the original CNN C0) are reported
in Fig. 9.3, as well as the comparison with the original accuracy curves. For most of the
alterations, it is possible to observe that the accuracy improves more for larger alteration
levels than for smaller ones. This may be due to the fact that CNN retraining does not
gain enough additional knowledge from small alterations, while it can learn better larger
alteration values as they are more distinguishable.
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(a) BV: Brightness Variation (%) (b) GN: Gaussian Noise (s2)

(c) BA: Blur Addition (r) (d) JC: JPEG Compression (q)

Fig. 9.4 Accuracy modification using altered data input over the CNN CLDA

Limited data augmentation

The main disadvantage of the DA technique is that the training process is very time-
consuming. Therefore, exploiting the CNNs invariance properties, a “limited" version
(LDA) may be used: it is possible to use augmented images only for the alterations that
lead to a robustness less than 100% on the original classifier C0. In particular, the classifier
CLDA has been obtained by training the original one with images on which only alterations
leading to a robustness less than 100% on C0: BV, GN, BA, and JC. In this way, 2,316,523
images have been obtained.

The new classifier CLDA has required 13h 39m to be trained and has reached an accuracy
of 86.64% on the same test set used for the original classifier C0. This result shows that
the accuracy has not increased significantly, but, on the contrary, the robustness w.r.t.
alterations has greatly improved (see Tab. 9.2), both in terms of single alteration (e.g., in
the case of Gaussian noise, the robustness has passed from 19.5% to 100.0%) and in terms
of average robustness, which now is 97.9%. Furthermore, the performance of CLDA is even
better than that of CDA: this may be due to the fact that the retraining process focuses only
on the weaknesses of the network. The changes in accuracy obtained by applying the
alterations of type A (only for the alterations that lead to a robustness less than 100% with
the original CNN C0) are reported in Fig. 9.3, as well as the comparison with the original
accuracy curves.

Incremental learning

Using offline incremental learning (IL) consists in adding a copy of the original network
in parallel to C0 and training it only using altered input data. In this way, the new network
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(a) BV: Brightness Variation (%) (b) GN: Gaussian Noise (s2)

(c) BA: Blur Addition (r) (d) JC: JPEG Compression (q)

Fig. 9.5 Accuracy modification using the altered data input over the CNN CIL

is composed of two branches: one that is more focused on “original" and unaltered data,
and one that is able to deal with altered inputs. Then, the result of the entire network
CIL =C0||CPar is given by the combination (using a max layer) of the outputs of C0 and
CPar.

The parallel network retraining has been performed using only the 2,315,688 images
obtained by applying the alterations to the original ones in the input set, and no unaltered
data have been used. In particular, as for DA, only 4 alteration levels have been used for
alterations with positive and negative values (VT, HT, and BV) and 2 levels for all other
alterations. The new classifier CIL has required 13h 26m to be trained and has reached an
accuracy of 87.10% on the same test set used for the original classifier C0, which is higher
than those previously obtained.

The robustness results obtained with CIL are reported in Tab. 9.2. For all alterations,
CIL offers better or equal robustness w.r.t. C0, but for GN, JC, and BV the techniques based
on the classic version of data augmentation (DA or LDA) perform better.

The accuracy changes obtained by applying the alterations of type A (only for the
alterations that lead to a robustness less than 100% with the original CNN C0) are reported
in Fig. 9.5, as well as the comparison with the original accuracy curves.

Limited incremental learning

Like the data augmentation technique, incremental learning can be applied in a “limited"
version (LIL). For this purpose, the parallel network has been trained using only the
2,105,930 images obtained by applying the selected alterations (BV, GN, BA, and JC)
leading to a robustness lower than 100% on C0.
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(a) BV: Brightness Variation (%) (b) GN: Gaussian Noise (s2)

(c) BA: Blur Addition (r) (d) JC: JPEG Compression (q)

Fig. 9.6 Accuracy modification using the altered data input over the CNN CLIL

The new classifier CLIL has required 12h 02m to be trained and reached an accuracy
of 86.51% on the same test set used for the original classifier C0, a value lower than
that obtained with the full version of incremental learning. However, limiting the input
alterations in the training set only to those most critical for the CNN (ad for the LDA
technique) allows obtaining better performance than the one achieved with the regular IL
technique (see Tab. 9.2), even if the LDA technique leads to higher robustness in average
and for all alterations. The changes in accuracy obtained by applying the alterations of
type A (only for the alterations that lead to a robustness less than 100% with the original
CNN C0) are reported in Fig. 9.6, as well as the comparison with the original accuracy
curves.

9.1.4 Final considerations

Table 9.31 reports a brief summary of the main relevant information about the four methods
presented in the previous subsections. From these results, the best solution is to retrain the
whole model using the LDA technique because it leads to a very high resulting average
robustness using fewer input images than the standard DA. Nevertheless, in both methods,
the training phase requires a lot of time (also considering that the data set considered
is medium-small). Even the use of the incremental learning technique can lead to an
improvement of the robustness of our CNN and, also in this case, the application of the
limitation technique can slightly improve the performances in terms of both training time
and average robustness.

1Experiments have been run on a server with 264GB of RAM and a Intel® Xeon® E5-2620 CPU.
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Table 9.3 Summary of the main information of all the methods used to improve the
robustness of a CNN

C Input size Train. time Accuracy Avg rob. Adversariability

C0 210,593 2h08m 86.46% 69.7% 0.38
CDA 2,526,281 14h54m 86.57% 94.1% 0.64
CLDA 2,316,523 13h39m 86.64% 97.9% 0.39
CIL 2,315,688 13h26m 87.10% 77.3% N/A
CLIL 2,105,930 12h02m 86.51% 78.4% N/A

In general, the networks obtained with all the methods suitable for increasing the
robustness seem to perform better than the original one, especially for higher alteration
levels. This is reasonable because including an image that is only slightly altered in the
input set does not give enough increase of knowledge to the network to significantly
improve the accuracy at a certain level of alteration.

Adversariability

Tab. 9.3 also reports the summary of the adversariability data for the classifiers C for which
it is possible to compute it. Note that it is not possible to define “the most adversarial
example" as in Def. 20 for networks used with offline incremental learning, since an input
that can be adversarial for a part of the net may be not adversarial for the other.

The computed adversariability does not appear to be correlated with robustness: good
adversariability values are obtained for both C0 and CLDA that are very different in ro-
bustness. This seems to confirm that the testing based on plausible alterations (aiming at
increasing robustness) is complementary to that based on adversarial examples (aiming at
reducing adversariability); however, further experiments with other case studies are needed
to generalize the results.

9.2 The PO2 estimation case study

In this section, I present the application of the robustness computation and improvement
process to a Multilayer Perceptron (MLP) used to estimate the pO2 level in the blood of
patients. The described project has been a collaboration with an industrial partner working
in the field of producing medical devices incorporating AI components.
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Fig. 9.7 Overview of the MLP-based sensor for pO2 estimation

9.2.1 Case study description

In medical practice, constantly evaluating the right value of the partial pressure of oxygen
(pO2) in the blood is very important, especially during surgery or for patients with critical
conditions. Normally, the pO2 level is computed by observing the blood fluorescence. In
fact, when exposed to a bright pulse, the blood responses with a fluorescence that can be
described (or better “approximated”) by a biexponential function defined as follows:

fluorescence(t) = A · (e�B1t� e�B2t) (9.1)

where A, B1, and B2 are parameters that characterize the response, and t is the time
that has passed from the moment in which the light pulse was applied. Note that the
parameters A, B1, and B2 have been demonstrated to depend on the current level of pO2

and on blood temperature. An example of this curve (experimentally taken) is shown in
the center of Fig. 9.7. Using a spotlight to illuminate the blood and a probe to measure
the response to the bright pulse, it is possible to estimate the parameters A, B1, and B2 and
then produce an estimation of the pO2 level. However, finding the best biexponential curve
(i.e., finding the fittest parameter values) is very challenging, and it proved to be unfeasible
by the microcontroller that the industrial partner had chosen to use in the sensor, since the
complexity of the estimation is very high and needed more computational power.

For this reason, the company decided to deploy on the microcontroller an MLP (Mul-
tilayer Perceptron), previously trained for the estimation of pO2. An overview of the
MLP-based sensor is shown in Fig. 9.7.

The deployed MLP takes as input a limited number of blood fluorescence samples
obtained in response to the bright pulse and the blood temperature to estimate the values of
the pO2 at two temperatures: at the current temperature and at 37�C. In particular, the MLP
uses the mean values of the curve computed in the intervals [50,60], [90,110], [190,210],
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[340,360], and [620,640]. The MLP has 6 neurons in the input layer, 12 neurons in the
first hidden layer, 10 neurons in the second hidden layer, and 2 neurons in the output
layer, giving as output the estimation of the pO2 value at the current temperature and the
prediction of pO2 value at 37�C (see Fig. 9.7). Sigmoid activation functions are used by all
neurons. During training, validation, and testing, the company used a data set composed
of 21,650 curves like the one in the center of Fig. 9.7. The curves have been sampled
using 16 different types of probes and 178 different spotlights. For each input sample, the
true values of pO2 at the two temperatures (i.e., current and 37�C) were given by blood
analysis using a precision measurement instrument. As usual in machine learning, 60% of
the data set has been used for the training phase, 20% for the validation phase, and 20%
for the testing phase.

Alterations

In a real scenario, the data to be processed by the MLP can be altered w.r.t. their nominal
shape, as defined by Def. 15. For example, the MLP under analysis has been trained on
data that describe how pO2 changes in time, but in practice, the MLP can be affected in
its estimations by variations in acquisition time, due to clock offsets or to a cut of the
communication between the sensor and the processing unit. For this reason, in this case
study, the industrial partner has asked to consider the following alterations:

• Cut of the curve end: it consists in “cutting” the end of the curve obtained in
response to the spotlight pulse (see Fig. 9.8a). This alteration mimics a real situation
revealed during testing activities by the industrial partner in which a disruption,
failure, or anomalous system behavior leads to a loss of the final part of the curve
during its acquisition. From the analyses conducted by the industrial partner, it has
been noticed that only cuts in the last range significantly affect the prediction of
MLP, i.e., in [620,640]. The alteration is implemented by choosing a t in that range
and setting the response to zero after t.

• Clock offset: it represents the difference of time calculation in different systems
(see Fig. 9.8b). This may happen when the microprocessor of the acquisition system
is not properly configured or there is a delay in signal generation. In the analyses
presented in this section, a maximum offset of 30ms has been used, since it turned
out to be a value that guarantees a clock delay greater than the maximum width of
the intervals considered as input by the analyzed system.

• Cut of the peak: it aims at representing a cut in the peak of the curve, which
simulates saturation events (see Fig. 9.8c). This is a common phenomenon in
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Table 9.4 Alterations values used for robustness analysis of the pO2 estimator

ID Alteration LA UA ⇥ n

CC Cut of the curve end 620 ms 640 ms 21
CO Clock offset 0 ms 30 ms 31
CP Cut of the peak 1300 RFU 4000 RFU 271
AM Amplification (scale) 100 % 200 % 11
AT Attenuation (scale) 50 % 100 % 6
GN Gaussian noise 0 50 51

electronics, where a signal cannot exceed a specific range of values, due to problems
in the acquisition chain or source voltage drops. In these cases, high values of the
curve are set to a threshold instead of their original values. The signals analyzed
for this case study have a maximum amplitude of 4000 RFU (Relative Fluorescence
Units). So, to cover only the relevant and possible values, a cut starting from 1300
RFU to 4000 RFU has been applied.

• Amplification: it simulates the effect of using different probes and spotlights on
the measurement of the same blood sample (see Fig. 9.8d). In fact, from domain
analyses, it has been shown that changing the probes or spotlights (with others made
by different manufacturers) slightly amplifies the response curve, even if the real
pO2 value remains the same. For this reason, in the robustness analysis of the MLP,
amplifications up to 200% of the original amplitude have been tested.

• Attenuation: it represents the opposite of the amplification, i.e., the signal is
attenuated by using different probes and/or spotlights (see Fig. 9.8e). The two
alteration types have been evaluated separately since the industrial partner wanted
to highlight potential differences between the two. For this alteration, attenuation
values up to 50% of the original amplitude have been used.

• Gaussian noise: it simulates the noises that are common for electronic signals (see
Fig. 9.8f). In this case study, Gaussian noise with a standard deviation in the range
between 0 (i.e., the absence of noise) and 50 (i.e., the maximum value leading to an
acceptable and plausible signal-to-noise ratio) has been generated.

More details about the lower and upper bounds for each alteration (LA and UA) and
the number of uniformly sampled points for each type of alteration (⇥n) are reported in
Tab. 9.4
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(a) Cut of the curve end (b) Clock offset (c) Cut of the peak

(d) Amplification (e) Attenuation (f) Gaussian Noise

Fig. 9.8 Typical alteration examples for the pO2 estimation case study

9.2.2 Robustness evaluation

In Def. 23 in Chapter 8, the idea of robustness for NN estimators was presented. It is based
on the choice of probability for each considered alteration and tolerance for the MAPE.
For this reason, the first activity performed was the discussion with the industrial partner
about which type of probability and tolerance functions should have been used in this case
study. The industrial partner has decided to select UU robustness. The choice of uniform
probability is motivated by the fact that, in medical applications, sensors should be robust
against any alteration level, regardless of the probability of the alteration, since even a
very rare alteration level may cause terrible consequences. On the other hand, the choice
of uniform tolerance is motivated by the industrial partner, according to physicians who
consider any error below the selected threshold Q safe for the intended medical practice.
More specifically, the industrial partner, after a careful study, has set the maximum accepted
MAPE Q to 10%, a value that physician experts considered safe.

After having decided on the type of robustness to be computed, Algorithm 7 has been
executed. Analysis is carried out on a model M, for each alteration with uniformly dis-
tributed values in an interval a_levels, each with a probability described by the probability
distribution prob (in this case, the uniform function). Moreover, the tolerance function Tol
(in this case, the uniform function) has to be specified. For each alteration level l (line 1),
the algorithm performs the following instructions:

• Starting from curves_raw, new altered fluorescence curves are generated (line 2), by
applying the defined level l of the alteration;

• For each generated curve, the algorithm extracts the mean values in the five intervals
of interest (line 4);
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Algorithm 7 Algorithm for robustness analysis
Require: curves_raw, the set of fluorescence curves obtained in response to the bright

pulse
Require: targets, the true values of pO2
Require: M, the model trained to estimate pO2 values
Require: alteration, the applied alteration
Require: a_levels, the list of n levels uniformly distributed in the range of the chosen

alteration, i.e., [LA,UA]
Require: prob, the probability distribution of the alteration to be applied
Require: Tol, the desired tolerance function
Require: intervals, the list of intervals on which the mean values have to be computed

(i.e., [50,60], [90,110], [190,210], [340,360], [620,640])
Ensure: rob_res, the computed robustness value

. For each level of alteration
1: for all l 2 a_levels do

. Apply the alteration level to all the input curves
2: alt_curves alteration.apply(curves_raw, l)
3: for all c 2 alt_curves do

. Compute the mean values in the intervals
4: meanValues compMeanValues(c, intervals)

. Compute estimations for altered data
5: pred.add(M.estimate(meanValues))
6: end for

. Compute errors
7: MAPE[l] = compute_mape(pred, targets)
8: end for
9: rob_res ROBUSTNESS(MAPE, prob, Tol, a_levels)

10: return rob_res

• The mean values are used as input for computing the pO2 estimation (line 5);
• The pO2 results are used to compute the MAPE (line 7) for the defined level l of the

alteration;
• After having gathered all the partial MAPE values, the function ROBUSTNESS

(line 9) computes the robustness by solving the integral according to Def. 23.
Tab. 9.5 reports the results obtained by executing Algorithm 7 on the original network.
From the results obtained, it is possible to highlight that some alteration is more critical
than others. In particular, the alteration for which the robustness of the NN estimator should
be improved more is the cut of the curve end (CC). Furthermore, from the comparison
between the robustness of the estimation of pO2 at the current temperature and the one at
37�C, the results show that there are no relevant differences.
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(a) CC - current T (b) CC - 37 �C (c) CO - current T

(d) CO - 37 �C (e) CP - current T (f) CP - 37 �C

(g) AM - current T (h) AM - 37 �C (i) AT - current T

(j) AT - 37 �C (k) GN - current T (l) GN - 37 �C

Fig. 9.9 MAPE variation during robustness analysis

The changes in MAPE obtained when alterations are applied to the test set are reported
in Fig. 9.9, together with the nominal MAPE (MAPE0) and the upper bound Q used to
calculate the robustness.

9.2.3 Robustness improvement

After having calculated the robustness for the pO2 estimator, the industrial partner asked to
find a way (if existing) to improve the robustness of his MLP model, with only minimal
changes in the architecture of the system. As presented in Sect. 8.5, techniques based on
data augmentation or incremental learning may be suitable for this purpose. Thus, in this
section, three different methods are examined: (A) Data augmentation with recombined
data; (B) Data augmentation with altered data; (C) Incremental learning.
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Table 9.5 Robustness w.r.t. alterations for the networks retrained with the three approaches

Original DA-RD DA-AD Incremental learning
Rob [%] Rob [%] D Rob [%] Rob [%] D Rob [%] Rob [%] D Rob [%]

Alteration pO2 pO2 37�C pO2 pO2 37�C pO2 pO2 37�C pO2 pO2 37�C pO2 pO2 37�C pO2 pO2 37�C pO2 pO2 37�C

CC 14.3 14.3 19.1 19.1 4.8 4.8 28.6 28.6 14.3 14.3 14.3 19.1 0.0 4.8
CO 87.1 83.9 87.1 83.9 0.0 0.0 87.1 87.1 0.0 3.2 87.1 87.1 0.0 3.2
CP 82.9 82.6 83.7 83.7 0.8 1.1 83.3 84.1 0.4 1.5 83.7 83.7 0.8 1.1
AM 81.8 72.7 54.5 54.5 -27.3 -18.2 90.9 72.7 9.1 0.0 100.0 100.0 18.2 27.3
AT 66.7 66.7 66.7 66.7 0.0 0.0 100.0 100.0 33.3 33.3 100.0 83.3 33.3 16.4
GN 86.3 80.4 78.4 84.3 -7.9 3.9 78.4 84.3 -7.9 3.9 88.2 84.3 1.9 3.9

AVG 69.8 66.8 64.9 65.4 78.0 76.1 78.9 76.2

Table 9.6 MAPE0 of the original network and the retrained ones

# Training MAPE0 [%]
Model curves pO2 pO2 37�C

Original 12,990 3.70 3.35
DA-RD 14,677 3.08 3.08
DA-AD 19,485 3.11 3.06
IL 6,495 3.32 3.20

Summary data from the analyses are reported in Tab. 9.5 and Tab. 9.6, and are discussed
in more detail in the following.

Data augmentation with recombined data

As explained previously (see Sect. 8.5.1), the use of data augmentation consists in retraining
the entire network using additional data in order to enhance the performance of the NN
estimator. In the case study under analysis, it has been observed that there exist many
curves that, although they represent the same labeled pO2 true value, differ in shape, mainly
due to differences in temperature and types of probes and/or spotlights. For this reason,
the idea at the basis of data augmentation with recombined data (DA-RD) is to create new
input curves in two different ways: by averaging two curves with out-of-range estimation
errors (i.e., higher than 10%), and by averaging a curve with a high estimation error with
one with a low error. In both cases, the curves that have been averaged have the same
target values of pO2. The intent is to capture new intermediate curves with a known true
value of pO2.

With the available data (1141 samples with high estimation error), 546 new data have
been generated by the first method and additional 1141 data with the second one, obtaining
a new data set composed of 1687 samples that have been added to the original data set and
used to retrain the MLP of the industrial partner.

The results in Tab. 9.5 show that the average robustness obtained when applying
DA-RD is lower than the one of the original network, both for the pO2 at the current



214 Applying robustness computation and improvement to PEMS

temperature and at 37�C: the robustness w.r.t. the majority of the alterations slightly
increases (or remains equal), while for the amplification and Gaussian noise alteration it
has significantly decreased. Nevertheless, from the results reported in Tab. 9.6, it can be
seen that this technique has reduced MAPE0, compared to that of the network trained with
the original data.

At the end of the day, this has proven not to be a very good solution, but it was not a
surprise since, by using this technique, no new data that could mimic possible unexpected
alterations were added.

Data augmentation with altered data

The second proposed retraining approach considers the fact that the robustness definition
is given w.r.t. plausible alterations. Therefore, unlike the previous approach, data aug-
mentation can be performed with altered data (DA-AD), using a retraining approach that
explicitly targets alterations and adds altered data during the training phase. However,
as usual, data augmentation may take a long time, so only alteration levels that cause a
variation of MAPE lower than 5% have been used to create new input data. In this way, a
new training data set 1.5 times greater than the original has been obtained.

Tab. 9.6 shows that the use of DA-AD contributes to the decrease in nominal MAPE, so
it improves performance on unaltered data, both for pO2 at current temperature and at 37�C.
Moreover, results in Tab. 9.5 confirm that using DA-AD leads to higher average robustness
(13% more than the one obtained with the original network) and increases the robustness
w.r.t. specific alterations even more than 33% (see AT alteration). Nevertheless, the
retraining process requires more time since it is performed using nearly 7,000 additional
input data. Note that the only alteration for which robustness has decreased is Gaussian
noise during the estimation of pO2 at the current temperature. It can be conjectured that
this is due to the noise that is, by definition, randomly distributed, and so increasing the
robustness w.r.t. this kind of alteration may be very difficult: including in the training set
input data subject to Gaussian noise may lead the network to focus only on the specific
noise instances, while others may be made more difficult to be tolerated.

Incremental learning

DA, in all its different variants, contributes to improving the robustness performance of
a network, but requires retraining of the original network with a larger set of inputs, and
this may require a lot of time. Thus, in order to reduce the learning time and increase
the network generalization at the same time, incremental learning (IL), as presented in
Sect. 8.5.2, has been applied.
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This approach has the advantage of avoiding the retraining of the entire system but
only a part of it, using a limited data set composed of only altered input data. This led to a
shorter training time than the one required for the DA-AD technique, since only the altered
data are used to train the new part.

The results in Tab. 9.5 show that the average robustness obtained when applying IL
is the highest, and more than 13% better than the original network. Also, if one wants
to consider specific alterations, the robustness has increased up to 33%, and no decrease
has been obtained (differently from DA-AD, for which some decrease has been observed).
Note that MAPE0, instead, is slightly higher than the one obtained with DA-AD (see
Tab. 9.6), but still better than the original network one.

These results show that IL can combine the advantages of the original network, i.e.,
focusing only on relevant input features, and those of the data augmentation, i.e., guaran-
teeing higher robustness w.r.t. the standard-trained network.

9.2.4 Final considerations

In the solution proposed to the industrial partner, the user needs to select the probability
of the alterations of interest. Although the probabilities in this case study were known, in
some different application scenarios, they may be unknown, and this can make it difficult
to apply the formula for robustness computation. In these cases, interpreting probability as
a function that describes the “importance” (or weight) of each alteration level is a viable
solution.

From the experiments with the three robustness improvement techniques (see Sect. 9.2.3),
it can be noticed that, for most alterations, the robustness is not 100% even after the ro-
bustness improvement process. This shows that obtaining optimal robustness by simply
retraining may not be possible. In this case, by looking at the final robustness results, the
industrial partner has understood which are the most critical alterations that can still affect
the network and has planned to adopt countermeasures from an electronic point of view.
For example, they have experimented that the impact of Gaussian noise may be reduced by
improving the cables’ shielding or by amplifying the acquired signal so that the noise is
less relevant.

Finally, the industrial partner has detected a significant improvement in the performance
of the NN estimator after the described process and, among all the techniques presented,
has decided to use incremental learning, as it increases robustness and decreases the
nominal MAPE (i.e., MAPE0), while saving time w.r.t. regular data augmentation.
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9.3 Conclusion

In this chapter, the robustness estimation process for both a medical image classifier and
a pO2 estimator has been presented. This process exploits the formulas introduced in
Chapter 8 and applies them to real medical case studies, where domain-specific alterations
are more likely to occur than the most investigated adversarial examples.

In both case studies, robustness computation has allowed improving the performance
of the NN, for both unaltered and altered inputs. In breast cancer classification, after
having applied the robustness analysis and computation, robustness and nominal accuracy
increased. The same results can be observed in the case of the pO2 estimator: applying
methods to increase the robustness has allowed the industrial partner not only to improve
robustness itself in the presence of alterations but also to decrease MAPE0 under nominal
and unaltered conditions.

In conclusion, evaluating and improving robustness has proven to be a good option
when it comes to increasing the quality and reliability of a NN, which is useful not only
when dealing with altered and unforeseeable inputs, but also with “regular" data. This has
been confirmed by the industrial partner, which now includes this evaluation process in its
current pipeline when developing ML-based solutions.



Chapter 10

Conclusions and Future Work

In this thesis, the problem of developing safe and reliable medical software and systems
has been tackled. In particular, starting from the state of the art, empirical guidelines have
been presented. They are derived from the experience acquired in the field during the
development of a real medical device, namely the MVM ventilator, during the first wave
of COVID-19 in Italy. These guidelines propose a software development process based on
a mixture between the classical V-model and more recent agile techniques.

During the course of the proposed development process, producing documentation
and performing V&V activities is paramountly important, as it is required by the device
certification standards, but also because it promotes the quality of the products. In this
thesis, I have presented a method, based on a formal and mathematical notation, that
exploits the ASMETA framework to represent the specifications of the system. After having
verified and validated the abstract specifications, users can exploit them for generating
correct-by-construction code. In this thesis, this technique has been applied to the MVM
case study and to a prototype of a pill box produced by a local company. Moreover,
if the code of the system is already available, abstract specifications can be used for
performing model-based testing on the actual system: test cases are generated starting
from the system’s model, together with their oracle, and applied to the real system. This
technique has been applied to the MVM case study and the IEEE PHD protocol [12]
and has led to an important increase in code coverage and to the discovery of bugs or
conformance faults.

If model-based testing is adopted, testers may not have the time to perform exhaustive
tests (which, sometimes, is not feasible). For this reason, guidance is needed on how to
select test cases. In this thesis, I have presented how testers may apply Combinatorial
Interaction Testing in order to reduce the number of test cases to be performed without
losing in fault detection capability. Moreover, to optimize the test generation process, two
tools for combinatorial test generation have been presented. Experiments reported in this



218 Conclusions and Future Work

thesis on the MVM case study show that, by using them, the time for test suite generators
can be reduced by more than 97%. This is a positive result, since if fewer time is needed
for test generation, more time can be spent on testing execution, and more bugs are likely
to be discovered.

However, model-based testing or code generation from ASM models may not always
be applicable, especially when medical devices embed AI-based components. However,
there is no well-established method for assessing the quality of this kind of medical device.
Even regulations do not succeed in indicating a way to ensure their quality and reliability.
In this thesis, I have proposed the computation of robustness for neural networks. It
evaluates how a NN-based system can resist to input perturbation without changing (under
a reasonable limit) its behavior. This approach has been tested in two different real systems,
i.e., a CNN used for breast cancer diagnosis and an MLP used for the estimation of the
blood pO2 during surgeries. In both cases, the definition of robustness has been shown to
be applicable, and the methods devised to enhance the robustness performance of the NNs
have led to improved results.

Note that all methodologies and techniques presented in this thesis have been devised
to comply with the main standards available for this field, namely IEC 62304 [5] and the
FDA Guidelines [13].

In Chapter 1, I reported five different research questions that have guided the work
presented and that have been addressed in this thesis. In the following, some final consid-
erations and remarks are made about each of them.

• RQ1: State of the art in software quality - In Chapter 2, I have presented
the concept of software quality, which is a broader concept and is not limited
only to medical devices. In practice, software systems are considered to be of
good quality if they comply with their specifications. When it comes to medical
systems, software quality assurance is subject to several steps that developers and
system producers must follow throughout the life cycle. In this case, international
certification standards and regulations (e.g., IEC 62304 [5] and the FDA general
principles [13]) must be fulfilled. In addition, other standards for the specific medical
device should be analyzed.

• RQ2: Guidelines for the development process - In Chapter 4, I have presented
the experience gained during the development of the MVM ventilator. Through this
experience, several lessons learned and guidelines, to be considered especially when
working on a safety-critical system under emergency, have been outlined. The major
contribution of this chapter is the software development process, which includes
both the classical V-Model and agile aspects, in order to combine the flexibility given
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by agile (useful to reduce the time-to-market) with the documentation required both
in the V-model and for medical software certification. Moreover, other aspects are
addressed by the proposed guidelines, e.g., the importance of testing, the need of a
coordination team, the gain structuring the software in different modules, with the
isolation of safety-critical components, etc.

• RQ3: Using ASMs for the development of medical systems - In Chapters 5 and 6,
I have presented, respectively, the ASMETA framework and its application to real
medical case studies, such as MVM, the e-Pix pill box, and the PHD protocol. The
use of ASMETA has allowed the research team to write formal specifications of the
systems under analysis, verify and validate them, and, finally, to obtain executable
source code or unit test cases. Note that ASMETA has been shown to comply with
current regulations on medical software certification (see Sect. 6.1) and to allow users
to fulfill to the majority of the activities required. Moreover, the software quality
(i.e., the compliance with the system specifications) is ensured when deriving source
code from ASM specification, since the verified properties at the model level are
maintained even at code level. Thus, the ASMETA framework allows for obtaining
a correct-by-construction code. Even using ASMETA for model-based testing has
shown to be effective, since it avoids errors that human beings can make while
writing tests manually and has allowed the discovery of several bugs or conformance
faults on both the MVM and PHD protocol.

• RQ4: Using CIT for testing medical software - In Chapter 7, I have presented
the Combinatorial Interaction Testing technique and two tools for generating test
suites achieving the intended combinatorial coverage. This technique has been
proven to be optimal when exhaustive testing cannot be performed, especially for
systems with a high number of inputs and outputs, such as medical systems. In fact,
CIT allows testers to reduce the number of tests to be performed without reducing
the fault detection capability. However, generating this kind of test suites may be
time-expensive, so in this thesis two tools exploiting multi-threading have been
proposed. Through experiments on the MVM case study, the former, pMEDICI,
has been shown to be the best performing, especially in terms of generation time.
However, it cannot deal with relational and other types of complex constraint, so the
KALI tool has been introduced.

• RQ5: How to validate AI-based medical software - In Chapters 8 and 9, I
have presented, respectively, the robustness measure for neural networks and its
application to two different medical case studies, i.e., a CNN used for breast cancer
diagnosis and an MLP used for the estimation of blood pO2 during surgeries. Despite
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international standards and regulations on medical software certification being not
yet updated for AI-based medical devices, certification authorities certify medical
software relying on AI components under certain guarantees that they perform as
good as other devices which do not employ AI. In addition, a risk-assessment activity
is required for them. The proposed robustness measure can be used in the context of
risk assessment, as confirmed by the industrial partner that has participated in the
research activity on MLP for the estimation of blood pO2. Furthermore, measuring
the robustness has been proven to be effective not only for evaluating the performance
of a NN, but also to guide its enhancement through the proposed methodology (based
on data augmentation or incremental learning).

10.1 Future work

The work presented in this thesis can be further extended in several directions. For this
reason, in the following, I report some of the future work that can be investigated and
motivate why they are important for increasing the process of quality assurance of medical
devices:

• During the development of the MVM ventilator (see Chapter 3), one of the main
problems has been the difficulty in testing software that needs to interact with humans
and the external environment without actually having them. This limitation has been
highlighted in this thesis in Chapter 4 and a guideline on it has been reported in
Sect. 4.4.2. Since MVM has proved to be an important and exhaustive case study, it
could be used for further investigation on several techniques. However, a complete
and configurable digital twin [164] should be developed to make MVM software
more easily developed and tested. Note that the usefulness of a digital twin is also
motivated by the work of the community of Models-at-runtime, in which this kind
of twin is also used during the operation of the device. Indeed, it can be exploited
not only for device testing but also to be executed together with the actual system to
check its correct behavior and to forecast possible future critical conditions.

• Additional work may be done on the MVM ventilator (see Chapter 3) in order to
increase its usability. In particular, some of the other ventilators on the market
implement an adaptive ventilation strategy which is used for defining automatically
the ventilation parameters based on patient’s condition. This will allow to reduce
the possible errors made by physicians and to increase the “ventilation comfort” for
patients subject to mechanical ventilation.
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• In Chapters 5 and 6, I have shown how ASMETA (and, in general, the ASM
formalism) can be applied to medical systems to satisfy most of the requirements
of certification standards. However, there is still an important aspect that has not
yet been implemented and managed by the ASMETA framework. In particular, a
common problem in the development of medical software is that the uncertainties of
the system and its environment should be considered [83]. For example, a patient
under mechanical ventilation may change his condition with a known or unknown
probability, the backup battery of a medical system may fail with a known probability,
etc. Thus, ASMETA should be extended with probabilistic features in order to model
and develop systems under some uncertainties.

• In Chapter 8, I have presented the novel concept of robustness that can be used when
dealing with medical software embedding NNs. It has been tested and approved
by an industrial partner on a real system and has been shown to be effective in
evaluating the quality of the estimations or predictions made by a NN. However, in
medical systems, not all errors are the same: telling a patient that he is affected by a
disease when it is not true is not the same as telling him that he is healthy while he
is not. For this reason, additional measures should be considered in order to weight
more errors that are more critical.

• In Chapter 8, I have presented a way to speed up the robustness computation (see
Sect. 8.4.2), which is based on the parabolic approximation of the accuracy curve.
However, the proposed method has been shown to work well under the assumption
that the parameter â is chosen coherently with the system to be analyzed, but there
is no guide available on how to choose its value. For this reason, as future work,
heuristics or more detailed guidance should be defined in order to make the ASAP
approach more usable in practice.
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1. Bombarda, A., Bonfanti, S., and Gargantini, A. (2019a). Developing medical devices
from abstract state machines to embedded systems: A smart pill box case study.
In Software Technology: Methods and Tools, pages 89–103. Springer International
Publishing

Abstract: The development of medical devices is a safety-critical process, because a
failure or a malfunction of the device can cause serious injuries to the patients whom
use it. The application of a rigorous process for their development reduces the risk
of failures since validation and verification activities can be performed in a objective,
reproducible, and documentable manner. In this paper we present an approach
based on the Abstract State Machine (ASM) formal method. Starting from the
model, validation and verification (V&V) techniques can be applied. Furthermore,
by step-wise refinement, a final model can be obtained, which can be automatically
translated to C++ code. The process is applied to the smart pill box case study.
Starting from the ASM model, we generate C++ code for the Arduino platform after
the application of V&V activities. Furthermore, we introduce regulation (IEC62304)
and guidelines (FDA General Principles of Software Validation) that support the
developer in medical software development. In particular, we explain how ASMs
formal process can be compliant with them.

2. Bombarda, A., Bonfanti, S., Gargantini, A., Radavelli, M., Duan, F., and Lei, Y.
(2019b). Combining model refinement and test generation for conformance testing
of the IEEE PHD protocol using abstract state machines. In Testing Software and
Systems, pages 67–85. Springer International Publishing

Abstract: In this paper we propose a new approach to conformance testing based
on Abstract State Machine (ASM) model refinement. It consists in generating test
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sequences from ASM models and checking the conformance between code and
models in multiple iterations. This process is applied at different models, starting
from the more abstract model to the one that is very close to the code. The process
consists of the following steps: (1) model the system as an Abstract State Machine,
(2) generate test sequences based on the ASM model, (3) compute the code coverage
using generated tests, (4) if the coverage is low refine the Abstract State Machine and
return to step 2. We have applied the proposed approach to Antidote, an open-source
implementation of IEEE 11073-20601 Personal Health Device (PHD) protocol
which allows personal healthcare devices to exchange data with other devices such
as small computers and smartphones.

3. Arcaini, P., Bombarda, A., Bonfanti, S., and Gargantini, A. (2020). Dealing with
robustness of convolutional neural networks for image classification. In 2020 IEEE
International Conference On Artificial Intelligence Testing (AITest), pages 7–14

Abstract: SW-based systems depend more and more on AI also for critical tasks. For
instance, the use of machine learning, especially for image recognition, is increasing
ever more. As state-of-the-art, Convolutional Neural Networks (CNNs) are the
most adopted technique for image classification. Although they are proved to have
optimal results, it is not clear what happens when unforeseen modifications during
the image acquisition and elaboration happen. Thus, it is very important to assess
the robustness of a CNN, especially when it is used in a safety critical system, as,
e.g., in the medical domain or in automated driving systems. Most of the analyses
made about the robustness of CNNs are focused on adversarial examples which are
created by exploiting the CNN internal structure; however, these are not the only
problems we can encounter with CNNs and, moreover, they may be unlikely in some
fields. This is why, in this paper, we focus on the robustness analysis when plausible
alterations caused by an error during the acquisition of the input images occur. We
give a novel definition of robustness w.r.t. possible input alterations for a CNN
and we propose a framework to compute it. Moreover, we analyse four methods
(data augmentation, limited data augmentation, network parallelization, and limited
network parallelization) which can be used to improve the robustness of a CNN for
image classification. Analyses are conducted over a data-set of histologic images.

4. Bombarda, A. and Gargantini, A. (2020). An automata-based generation method for
combinatorial sequence testing of finite state machines. In 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE

Abstract: Combinatorial Interaction Testing has been applied to event-driven soft-
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ware systems by using as test suite a set of sequences of inputs in desired combina-
tions. This is generally called combinatorial sequence testing (CST). CST requires
possibly new system models from which tests are generated and new test generation
methods (or an adaptation of the classical ones). Finite State Machines (FSMs) can
easily represent event-based systems where certain inputs are valid only in some
states and such constraints can be represented by the incompleteness of the FSM. In
this paper, we propose an approach to CST where tests are generated from FSMs
which are represented by automata together with test requirements. First, automata
can be used to check if test sequences contain invalid inputs. We propose three
methods to repair tests with invalid inputs. Moreover, we can directly embed into
automata the system constraints over the inputs during generations, to generate only
valid test sequences. We compare our automata-based method with the standard
approach of Sequences Covering Arrays (SCAs) that produces a set of sequences
all with the same length, composed by the permutation of all the events supported
by the system. We found that generating only valid tests from automata provides
several advantages w.r.t. repairing tests and SCAs.

5. Arcaini, P., Bombarda, A., Bonfanti, S., and Gargantini, A. (2021b). ROBY: a tool
for robustness analysis of neural network classifiers. In 2021 14th IEEE Conference
on Software Testing, Verification and Validation (ICST). IEEE

Abstract: Classification using Artificial Neural Networks (ANNs) is widely applied
in critical domains, such as autonomous driving and in the medical practice; therefore,
their validation is extremely important. A common approach consists in assessing the
network robustness, i.e., its ability to correctly classify input data that is particularly
challenging for classification. We recently proposed a robustness definition that
considers input data degraded by alterations that may occur in reality; the approach
was originally devised for image classification in the medical domain. In this paper,
we extend the definition of robustness to any type of input for which some alterations
can be defined. Then, we present ROBY, a tool for ROBustness analYsis of ANNs.
The tool accepts different types of data (images, sounds, text, etc.) stored either
locally or on Google Drive. The user can use some alterations provided by the
tool, or define their own. The robustness computation can be performed either
locally or remotely on Google Colab. The tool has been experimented for robustness
computation of image and sound classifiers, used in the medical and automotive
domains.

6. Abba, A. et al. (2021). The novel mechanical ventilator milano for the COVID-19
pandemic. Physics of Fluids, 33(3):037122
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Abstract: This paper presents the Mechanical Ventilator Milano (MVM), a novel
intensive therapy mechanical ventilator designed for rapid, large-scale, low-cost
production for the COVID-19 pandemic. Free of moving mechanical parts, and re-
quiring only a source of compressed oxygen and medical air to operate, the MVM is
designed to support the long-term invasive ventilation often required for COVID-19
patients, and operates in pressure-regulated ventilation modes, which minimize the
risk of furthering lung trauma. The MVM was extensively tested against ISO stan-
dards in the laboratory using a breathing simulator, with good agreement between
input and measured breathing parameters and performing correctly in response to
fault conditions and stability tests. The MVM has obtained Emergency Use Autho-
rization by U.S. Food and Drug Administration (FDA) for use in healthcare settings
during the COVID-19 pandemic, and Health Canada Medical Device Authorization
for Importation or Sale, under Interim Order for Use in Relation to COVID-19. Fol-
lowing these certifications, mass production is ongoing and distribution is underway
in several countries. The MVM was designed, tested, prepared for certification and
mass produced in the space of a few months by a unique collaboration of respira-
tory healthcare professionals and experimental physicists, working with industrial
partners, and is an excellent ventilator candidate for this pandemic anywhere in the
world.

7. Bombarda, A., Crippa, E., and Gargantini, A. (2021e). An environment for bench-
marking combinatorial test suite generators. In 2021 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE

Abstract: New tools for combinatorial test generation are proposed every year.
However, different generators may have different performances on different models,
in terms of the number of tests produced and generation time, so the choice of
which generator has to be used can be challenging. Classical comparison between
CIT generators considers only the number of tests composing the test suite. Still,
especially when the time dedicated to testing activity is limited, generation time can
be determinant. Thus, we propose a benchmarking framework including 1) a set
of generic benchmark models, 2) an interface to easily integrate new generators, 3)
methods to benchmark each generator against the others and to check validity and
completeness. We have tested the proposed environment using five different genera-
tors (ACTS, CAgen, CASA, Medici, and PICT), comparing the obtained results in
terms of the number of test cases and generation times, errors, completeness, and
validity. Finally, we propose a CIT competition, between combinatorial generators,
based on our framework.
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8. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., and Scandurra,
P. (2021c). The ASMETA approach to safety assurance of software systems. In
Logic, Computation and Rigorous Methods, pages 215–238. Springer International
Publishing

Abstract: Safety-critical systems require development methods and processes that
lead to provably correct systems in order to prevent catastrophic consequences
due to system failure or unsafe operation. The use of models and formal analysis
techniques is highly demanded both at design-time, to guarantee safety and other
desired qualities already at the early stages of the system development, and at
runtime, to address requirements assurance during the system operational stage. In
this paper, we present the modeling features and analysis techniques supported by
ASMETA (ASM mETAmodeling), a set of tools for the Abstract State Machines
formal method. We show how the modeling and analysis approaches in ASMETA
can be used during the design, development, and operation phases of the assurance
process for safety-critical systems, and we illustrate the advantages of integrated use
of tools as that provided by ASMETA.

9. Bombarda, A., Bonfanti, S., Gargantini, A., and Riccobene, E. (2021d). Extending
ASMETA with time features. In Rigorous State-Based Methods, pages 105–111.
Springer International Publishing

Abstract: ASMs and the ASMETA framework can be used to model and analyze
a variety of systems, and many of them rely on time constraints. In this paper, we
present the ASMETA extension to deal with model time features.

10. Arcaini, P., Bombarda, A., Bonfanti, S., and Gargantini, A. (2021a). Efficient com-
putation of robustness of convolutional neural networks. In 2021 IEEE International
Conference On Artificial Intelligence Testing (AITest). IEEE

Abstract: Validation of CNNs is extremely important, especially when they are used
in safety-critical domains. In particular, in the latest years, the focus of validation
has been put on assessing the robustness of CNNs, i.e., their ability to correctly
classify perturbed input data. A way to measure robustness is to check the network
accuracy over many data-sets obtained by altering the input data in different ways,
but this is time and resource-consuming. In this paper, we present ASAP, a method
to efficiently compute the robustness of a CNN, exploiting a parabola-based approxi-
mation which allows to adaptively select only relevant alteration levels. The method
is tested on two different benchmarks (MNIST and breast cancer classification).
Moreover, we compare ASAP with other techniques based on uniform sampling,
numerical integration, and random sampling.
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11. Bombarda, A., Bonfanti, S., Galbiati, C., Gargantini, A., Pelliccione, P., and Ric-
cobene, E. (2021a). Lessons learned from the development of a mechanical ventilator
for COVID-19. In 32nd International Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE

Abstract: During the COVID-19 pandemic, many researchers all over the world
have offered their time and competencies to face the heavy consequences of the
disease. This is the case of a group of physicists, engineers, and physicians that
around the middle of March 2020 started to develop a simplified mechanical lung
ventilator, called MVM (Mechanical Ventilator Milano), to answer the high request
of ventilators for Acute Respiratory Distress Syndrome (ARDS) in intensive care
units. A prototype was ready in around one month. Since medical software malfunc-
tions can lead to injuries or death of patients, before marketing MVM ventilators
and distributing them in hospitals, software certification in accordance with the
IEC 62304 standard was mandatory to guarantee system reliability. The team was
then complemented by computer scientists specifically devoted to this task. The
software reengineering process, which lasted around two months from the end of the
prototype, brought to a strong re-implementation of the device software components,
which involved all the stakeholders in a continuous integration setting. In this paper,
we report the experience of the MVM control SW re-engineering necessary to show
evidence that the SW adheres to the standards and to consequently obtain the certifi-
cation. We share results and lessons learned from this social project, where more
than 100 volunteer researchers worked towards software certification at the extreme
of their strength to get a real device finished in a rush since strongly required to
support physicians in treating COVID-19 patients.

12. Bombarda, A., Bonfanti, S., and Gargantini, A. (2021b). Automatic test generation
with ASMETA for the Mechanical Ventilator Milano controller. In Testing Software
and Systems. Springer International Publishing

Abstract: This paper presents an automatic test cases generation method from
Abstract State Machine specifications. Starting from the ASMETA specification,
the proposed approach applies the following steps: 1. Generation of abstract tests
from a ASMETA model; 2. Optimization of the abstract tests; 3. Concretization
of the abstract tests in GoogleTest; 4. Execution of the concrete tests on C++ code.
We have applied this approach to the Mechanical Ventilator Milano (MVM) project,
which our research group has contributed to develop, test, and certify during the
Covid-19 pandemic.
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13. Bombarda, A., Bonfanti, S., Gargantini, A., and Riccobene, E. (2021c). Developing
a prototype of a mechanical ventilator controller from requirements to code with
asmeta. Electronic Proceedings in Theoretical Computer Science, 349:13–29

Abstract: Rigorous development processes aim to be effective in developing critical
systems, especially if failures can have catastrophic consequences for humans and the
environment. Such processes generally rely on formal methods, which can guarantee,
thanks to their mathematical foundation, model preciseness, and properties assurance.
However, they are rarely adopted in practice. In this paper, we report our experience
in using the Abstract State Machine formal method and the ASMETA framework in
developing a prototype of the control software of the MVM (Mechanical Ventilator
Milano), a mechanical lung ventilator that has been designed, successfully certified,
and deployed during the COVID-19 pandemic. Due to time constraints and lack
of skills, no formal method was applied for the MVM project. However, we here
want to assess the feasibility of developing (part of) the ventilator by using a formal
method-based approach. Our development process starts from a high-level formal
specification of the system to describe the MVM main operation modes. Then,
through a sequence of refined models, all the other requirements are captured, up
to a level in which a C++ implementation of a prototype of the MVM controller
is automatically generated from the model, and tested. Along the process, at each
refinement level, different model validation and verification activities are performed,
and each refined model is proved to be a correct refinement of the previous level. By
means of the MVM case study, we evaluate the effectiveness and usability of our
formal approach.

14. Bombarda, A. and Gargantini, A. (2022b). Parallel test generation for combinatorial
models based on multivalued decision diagrams. In 2022 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), pages
74–81

Abstract: Combinatorial interaction testing (CIT) is a testing technique that has
proved to be effective in finding faults due to the interaction among inputs, and in
reducing the number of test cases. One of the most crucial parts of combinatorial
testing is the test generation for which many tools and algorithms have been pro-
posed in recent years, with different methodologies and performances. However,
generating tests remains a complex procedure that can require a lot of effort (mainly
time). Thus, in this paper, we present the tool pMEDICI which aims to reduce the
test generation time by parallelizing the generation process and exploiting the recent
multithread hardware architectures. It uses Multivalued Decision Diagrams (MDDs)
for representing the constraints and the tuples to be tested and extracts from them the
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t-wise test cases. Our experiments confirm that our tool requires a shorter amount of
time for generating combinatorial test suites, especially for complex models, with a
lot of parameters and constraints.

15. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Gamba, D., and Pedercini,
R. (2022). Robustness assessment and improvement of a neural network for blood
oxygen pressure estimation. In 2022 IEEE Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 312–322

Abstract: Neural networks have been widely applied for performing tasks in critical
domains, such as, for example, the medical domain; their robustness is, therefore,
important to be guaranteed. In this paper, we propose a robustness definition for
neural networks used for regression, by tackling some of the problems of existing
robustness definitions. First of all, by following recent works done for classification
problems, we propose to define the robustness of networks used for regression w.r.t.
alterations of their input data that can happen in reality. Since different alteration
levels are not always equally probable, the robustness definition is parameterized
with the probability distribution of the alterations. The error done by this type of net-
works is quantifiable as the difference between the estimated value and the expected
value; since not all the errors are equally critical, the robustness definition is also
parameterized with a “tolerance” function that specifies how the error is tolerated.
The current work has been motivated by the collaboration with the industrial partner
that has implemented a medical sensor employing a Multilayer Perceptron for the
estimation of the blood oxygen pressure. After having computed the robustness for
the case study, we have successfully applied three techniques to improve the network
robustness: data augmentation with recombined data, data augmentation with altered
data, and incremental learning. All the techniques have proved to contribute to
increasing the robustness, though in different ways.

16. Bombarda, A., Bonfanti, S., Galbiati, C., Gargantini, A., Pelliccione, P., Riccobene,
E., and Wada, M. (2022b). Guidelines for the development of a critical software
under emergency. Information and Software Technology, page 107061

Abstract: During the first wave of the COVID-19 pandemic, an international
and heterogeneous team of scientists collaborated on a social project to produce a
mechanical ventilator for intensive care units (MVM). MVM has been conceived to
be produced and used also in poor countries: it is open-source, no patents, cheap, and
can be produced with materials that are easy to retrieve. The objective of this work
is to extract from the experience of the MVM development and software certification
a set of lessons learned and then guidelines that can help developers to produce
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safety-critical devices in similar emergency situations. We conducted a case study.
We had full access to source code, comments on code, change requests, test reports,
every deliverable (60 in total) produced for the software certification (safety concepts,
requirements specifications, architecture and design, testing activities, etc.), notes,
whiteboard sketches, emails, etc. We validated both lessons learned and guidelines
with experts. We contribute a set of validated lessons learned and a set of validated
guidelines together with a discussion of the benefits and risks of each guideline.
In this work, we share our experience in certifying software for healthcare devices
produced under emergency, i.e. with strict and pressing time constraints and with
the difficulty of establishing a heterogeneous development team made of volunteers.
We believe that the guidelines will help engineers during the development of critical
software under emergency.

Other publications have been submitted or are in the process of submission, but are
still not published.

1. Bombarda, A., Bonfanti, S., Sanctis, M. D., Gargantini, A., Pelliccione, P., Riccobene,
E., and Scandurra, P. (2022d). Towards an evaluation framework for autonomous
systems

Abstract: Despite the active and proficuous research in autonomous and self-
adaptive systems of the last years, an evaluation framework to assess abilities related
to adaption and to provide guidance to make a system smarter is still missing. In this
paper, we perform the first steps towards an evaluation framework for autonomous
systems to (i) make an assessment of a device from the point of its capacity to
adapt and learn over time to handle new and unexpected conditions, (ii) explore and
identify the possible pathways of improvement the smart abilities of a device, (iii)
make a re-assessment when the improvement has been performed.

2. Bombarda, A., Bonfanti, S., Gargantini, A., and Lei, Y. (2022c). RATE: a model-
based testing approach that combines model refinement and test execution

Abstract: In this paper, we present an approach to conformance testing based
on Abstract State Machines (ASMs) that combines model Refinement And Test
Execution (RATE) and its application to three case studies. The RATE approach
consists in generating test sequences from ASMs and checking the conformance
between code and models in multiple iterations. The process follows these steps:
(1) model the system as an Abstract State Machine; (2) validate and verify the model;
(3) generate test sequences automatically from the ASM model; (4) execute the
tests over the implementation and compute the code coverage; (5) if the coverage is
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below the desired threshold, then refine the Abstract State Machine model to add
the uncovered functionalities and return to step 2. We have applied the proposed
approach in three case studies: a Traffic Light Control System (TLCS), the IEEE
11073-20601 Personal Health Device (PHD) protocol, and the Mechanical Ventilator
Milano (MVM). By applying RATE, at each refinement level, we have increased
code coverage and identified some faults or conformance errors for all the case
studies. The fault detection capability of RATE has also been confirmed by mutation
analysis, in which we have highlighted that, in most of cases, the majority of the
mutation can be killed even by the most abstract models.

3. Bombarda, A. and Gargantini, A. (2022a). Multi-thread combinatorial test generation
with smt solvers

Abstract: Combinatorial interaction testing (CIT) is a testing technique that has
proved to be effective in finding faults due to the interaction among inputs, and in
reducing the number of test cases, without losing effectiveness. Several tools have
been proposed in the literature, however, generating tests remains a challenging task.
In this paper, we present a technique for generating combinatorial test suites that
uses a multi-threads architecture and exploits Satisfiability Modulo Theory (SMT)
solvers for representing model parameters constraints, and tuples, and it builds from
SMT solver contexts the desired test suite. This technique is implemented by the
tool KALI. The main advantage of using SMT solvers is that combinatorial models
can contain all kinds of parameters and constraints. For evaluating our approach,
we test the impact of several optimizations, and we compare the performance of
KALI with those of some already existing tools for test generation. Our experiments
confirm that the use of multi-threading is a promising technique, but still requires
some optimization for being more effective than the already available ones.
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