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Abstract

The term structure of interest rates plays a fundamental role as an indicator of
economy and market trends, as well as a supporting tool for macroeconomic strategies,
investment choices or hedging practices. Therefore, the availability of proper techniques
to model and predict its dynamics is of crucial importance for players in the financial
markets.

Along this path, the dissertation initially examined the reliability of parametric
and neural network models to fit and predict the term structure of interest rates in
emerging markets, focusing on the Brazilian, Russian, Indian, Chines and South African
(BRICS) bond markets. The focus on the BRICS is straightforward: the dynamics of
their term structures make tricky the application of consolidated yield curve models.
In this respect, BRICS yield curve act as stress testers.

The study then examined how to apply the above cited models to energy derivatives,
focusing the attention on the Natural Gas and Electricity futures, motivated by the
existence of similarity. The research was carried out using ad hoc routines, such
as the R package "DeRezende.Ferreira", developed by the candidate and now freely
downloadable at the Comprehensive R Archive Network (CRAN) repository1, as well
as by means of code written in MatLab 2021a - 2022a and Python (3.10.10) using the
open-source Keras (2.4.3) library with TensorFlow (2.4.0) as backend.

The dissertation consists of four chapters based on published and/or under submis-
sion materials. Chapter 1 is an excerpt of the paper

• Castello, O.; Resta, M. Modeling the Yield Curve of BRICS Countries: Parametric
vs. Machine Learning Techniques. Risks 2022

The work firstly offers a comprehensive analysis of the BRICS bond market and
then investigates and compares the abilities of the parametric Five–Factor De Rezende–
Ferreira model and Feed–Forward Neural Networks to fit the yield curves. Chapter 2 is
again focused on the BRICS market but investigates a methodology to identify optimal

1https://cran.r-project.org/web/packages/DeRezende.Ferreira/index.html

https://cran.r-project.org/web/packages/DeRezende.Ferreira/index.html
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time–varying parameters for parametric yield curve models. The work then investigates
the ability of this method both for in–sample fitting and out–of–sample prediction.
Various forecasting methods are examined: the Univariate Autoregressive process
AR(1), the TBATS and the Autoregressive Integrated Moving Average (ARIMA)
combined to Nonlinear Autoregressive Neural Networks (NAR–NN). Chapter 3 studies
the term structure dynamics in the Natural Gas futures market. This chapter represents
an extension of the paper

• Castello, O., Resta, M. (2022). Modeling and Forecasting Natural Gas Futures
Prices Dynamics: An Integrated Approach. In: Corazza, M., Perna, C., Pizzi, C.,
Sibillo, M. (eds) Mathematical and Statistical Methods for Actuarial Sciences
and Finance. MAF 2022.

After showing that the natural gas and bond markets share similar stylized facts,
we exploit these findings to examine whether techniques conventionally employed on
the bonds market can be effectively used also for accurate in–sample fitting and out–
of–sample forecast. We worked at first in–sample and we compared the performance of
three models: the Four–Factor Dynamic Nelson–Siegel–Svensson (4F-DNSS), the Five–
Factor Dynamic De Rezende–Ferreira (5F–DRF) and the B–Spline. Then, we turned the
attention on forecasting, and explored the effectiveness of a hybrid methodology relying
on the joint use of 4F–DNSS, 5F–DRF and B–Splines with Nonlinear Autoregressive
Neural Networks (NAR–NNs). Empirical study was carried on using the Dutch Title
Transfer Facility (TTF) daily futures prices in the period from January 2011 to June
2022 which included also recent market turmoil to validate the overall effectiveness of
the framework.

Chapter 4 analyzes the predictability of the electricity futures prices term structure
with Artificial Neural Networks. Prices time series and futures curves are characterized
by high volatility which is a direct consequence of an inelastic demand and of the
non–storable nature of the underlying commodity. We analyzed the forecasting power
of several neural network models, including Nonlinear Autoregressive (NAR–NNs),
NAR with Exogenous Inputs (NARX–NNs), Long Short–Term Memory (LSTM–NNs)
and Encoder–Decoder Long Short–Term Memory Neural Networks (ED–LSTM–NNs).
We carried out an extensive study of the models predictive capabilities using both the
univariate and multivariate setting. Additionally, we explored whether incorporating
various exogenous components such as Carbon Emission Certificates (CO2) spot prices,
as well as Natural Gas and Coal futures prices can lead to improvements of the models
performances. The data of the European Energy Exchange (EEX) power market were
adopted to test the models. Chapter 4 concludes.
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Chapter 1

Modeling the Yield Curve of
BRICS Countries: Parametric vs.
Machine Learning Techniques

1.1 Introduction

The term structure of interest rates, whose graphical representation is given by the
yield curve, describes the relationship between market interest rates and different times
to maturity, and provides an ex–ante measure of the investor’s return in a fixed income
market (Saunders and Cornett, 2014). Besides, the yield curve contains fundamental
information to analyze the economic and financial situation of a country, which can
be interpreted in terms of market expectations of monetary policy, economic activity
and inflation over short, medium and long–term horizons; for this reason it is often
employed to support macroeconomic strategies. Modeling it is therefore fundamental
for financial economists and risk managers to define hedging and pricing strategies, as
well as to get an effective assessment of portfolio risk (Pereda, 2009). Furthermore,
yield curves can also provide valuable information as input for financial stability, and
banking supervision. Besides, once a nominal yield curve is computed, a term structure
of real interest rates and break-even inflation rates can be derived.

When estimating yield curves, an important challenge is that they should reflect as
many as possible relevant movements in the underlying term structure of interest rates.
In the past decades an extensive literature has been developed accordingly: models
based on stochastic processes (Hess, 2020), methods relying on splines (Filipović, 2009),
factor models (Diebold and Rudenbusch, 2017) and techniques based on machine
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learning algorithms (Lopez De Prado, 2018), to cite more relevant research strands.
Shifting our attention to practical applications, Chakroun and Abid (2014), Ullah
and Bari (2018) pinpointed that the great majority of the works focuses on developed
countries, mostly the United States and the Eurozone and, on the contrary, relatively
lower attention has been paid to emergent markets, despite their growing economic
and political weight.

This (relative) lack of contributions on emerging economies is potentially trouble-
some, as the yield curve of those countries usually exhibits a very volatile behaviour
with frequent and marked humps, in contrast to more developed countries whose yield
curves are less sensitive. This rationale inspired our study, focused on the group of
countries referred by the acronym BRICS (Brazil, Russia, India, China and, since 2010,
South Africa) which are actually under the magnifying lens of financial investors as
drivers of the globalization process of financial markets (Stuart, 2020). The BRICS
countries, in fact, have experienced several years of rapid expansion in trade and
economic growth: they currently account for nearly a quarter of the world economy.
Furthermore, BRICS have set up the New Development Bank (NDB) where those
countries address the group’s economic challenges with combined resources. All these
elements make the BRICS countries important players in the current pattern of global
investment, because they are both the major recipients of foreign direct investments and
increasingly important for outward investors. This, in turn, can have deep impact on
the exposure to country risk: the economic, political and social contexts can eventually
cause losses to foreign investors. After all, BRICS countries inspired many research
strands Bekiros and Avdoulas (2020), de Boyrie and Pavlova (2016), Zeb and Rashid
(2019), Salisu et al. (2021); however, with the exception of El-Shagi and Jiang (2019)
and Caldeira et al. (2020), to the best of our knowledge, there aren’t other works
analyzing altogether BRICS yield curves and at the same time investigating on them
the interpolation capabilities of various techniques. Such an investigation can be useful
under various viewpoints: many central banks use to interpolate yield curves to assess
monetary policy measures; in addition such models have an economic interpretation and
they can be useful for measuring risk in fixed income portfolios. With this motivation,
our paper tried to test whether modeling based on either the parametric or machine
learning approach can ensure a streamlined in–sample fitting also for these new world
players. To such aim, we compared two alternative methods, the Dynamic Five Factor
parametric model (5F–DRF) (De Rezende and Ferreira, 2013) and the multilayer
Feed–Forward Neural Network (FFNNs). The models were chosen among the most
performing ones (both parametric and non–parametric). Focusing on the in–sample
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rather than on the out–of–sample fit was supported by the existing literature, see
for instance (R.R. Wahlstrom et al., 2021), and (Prasanna and Sowmya, 2017) that
specifically refer to in–sample fitting of the yield curve. Moreover, as our work examines
for the first time the yield curve of all the BRICS at once, it cannot be granted that
methods of consolidated use for other countries can adapt so well also to our data,
especially in presence of sudden spikes. Working in–sample is therefore nothing but
the first step to identify whether those models work well also on emerging countries
and which of them is the best model in this task. Answering to those questions, in
turn, will allow to better address the forecasting issue for future research.

The 5F–DRF belongs to the factor models family (Diebold and Rudenbusch, 2017)
which through the past decade have gained wide popularity: its five parameter structure
can fit complex curves dynamics, i.e., curves with multiple inflection points. This is
a desirable feature as the BRICS exhibit yield curves with humps which are difficult
to approximate with more parsimonious models. Moreover, towards this direction,
we also worked on the parameters estimation of the 5F–DRF model, introducing a
two–step procedure that significantly improves the overall performance of the method,
assuring higher model flexibility and better fitting performances also in presence of
market turbulence, which is the core issue where often parametric models fail. With
regard to machine learning techniques, on the other hand, we focused on Artificial
Neural Networks (ANNs) and, in particular, on FFNNs (Dey, 2016). Thanks to their
ability to bring out knowledge from large and not necessarily homogeneous data sets
(Di Franco and Santurro, 2020), they have found successful application in a wide variety
of fields, including economics and finance (Lopez De Prado, 2018). The rationale for
using FFNNs resides in their flexibility and field–proven ability to replicate yield curves
dynamics and stylized facts, as testified by recent works of Rosadi et al. (2011), Vela
(2013), Posthaus (2019) and Suimon et al. (2020). The FFNNs capability to manage
the ex-ante uncertainty turns out to be of paramount importance within the BRICS
bond market where FFNNs are asked to identify the functional form of the yield curve
as well as to overcome the limitations of parametric models in presence of multiple
humps. Furthermore, the possibility of customizing FFNNs settings for each country,
in order to achieve improvements in their fitting ability for all markets is without any
doubt an advantage of using this technique.

In short, our work will try to address the following instances. (i) We try to offer a
comprehensive view of the yield curves of the BRICS countries through techniques of
consolidate use on developed countries markets. (ii) Applying them on the BRICS,
that is a set of five emerging countries, in our opinion, should give proof that the
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results are general and not data–dependent. (iii) An in–depth study of the fitting
abilities of those techniques on BRICS yield curves, would also help to better address
the forecasting issue for future research.

The remainder of the paper is organized as follows. Section 1.2 provides a brief
description of both the De Rezende–Ferreira model and the neural architecture employed
in our simulation; Section 1.3 contains the results and their discussion; Section 1.4
concludes and offers some suggestions for further research.

1.2 Methodology

1.2.1 The Five Factor De Rezende–Ferreira Model

The De Rezende–Ferreira model assumes to estimate the value RF of the zero–
coupon spot rate depending on a 5-parameter vector β and a two dimension array τ

to model the set of humps observable on the yield curve dynamics:

RF (t,mk,β,τ ) = β0 +β1

(
1− e−mk/τ1

mk/τ1

)
+β2

(
1− e−mk/τ2

mk/τ2

)
+

+β3

(
1− e−mk/τ1

mk/τ1
− e−mk/τ1

)
+β4

(
1− e−mk/τ2

mk/τ2
− e−mk/τ2

)
+ ϵmk

,

where t is the estimation time, mk is the maturity over a set of N possible val-
ues m1,m2, . . . , mN that can be both fractions and multiples of the year, β =
(β0,β1,β2,β3,β4)′ and τ = (τ1 τ2)′ are the parameters and decay terms vectors, respec-
tively. In particular, β0 represents the impact of the long–term component which is
constant for every maturity; β1 and β2 are the weights associated to the short–term
components, β3 and β4 are the weights of the medium–term components. Additionally,
τ1 and τ2 control the convergence speed of the exponential components and determines
the maturity at which the medium–term components reach their maximum. By con-
struction, there is a trade-off between the values of τ1, τ2 and the effectiveness of the
model at long/short term maturities. Big values of τj (j = 1,2), in fact, result in a slow
decay and ensure a better fit at long maturities but not in the short term if marked
curvatures are present; conversely small values of τj (j = 1,2) get a quick decay and
hence a better fit at short maturities, but not in the long run. Finally, ϵmk

is the error
term for all the maturities mk,k = 1, . . . ,N , with:

ϵmk
∼ N (0, σ2

k) ∀mk, cov(ϵmj , ϵmk
) = 0 ∀j,k = 1, . . . ,N
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In our study we used a slight modification of the model discussed in De Rezende
and Ferreira (2008). We consider the decay components as time–varying parameters
and we run a two–step estimation procedure that at each time t finds the optimal pair
(τ̂∗

1t, τ̂∗
2t) as the one associated to the lowest Root Mean Square Error (RMSE). This

optimal pair is then employed to get β̂∗(t) = (β̂∗
0t, β̂

∗
1t, β̂

∗
2t, β̂

∗
3t, β̂

∗
4t)

′ . In contrast to an
a priori selection of decay terms, this procedure provides the model with the highest
adaptive capability, that is a very desirable feature to use in such a turbulent context
like that of the BRICS markets.

For an easier understanding, on following we describe the main steps of the proce-
dure.

1. For each market we define the sets Ωj = {mj,k}k=1,...,Nj
of maturities mj,k with

j = 1,2 and Nj equal to the sets cardinality. In particular, m1,1 is the lower
bound of Ω1 (m1,L) and corresponds to the first available maturity of the market,
while the upper bound m1,U is, at the same time, the lower bound of Ω2, that
is m1,U = m2,L and it is equal to the straddling maturity between the short
and medium–term period. Finally, the upper bound of Ω2 (m2,U ) is the longest
observed maturity. In our study we set m2,U = 30 years, as in general there
aren’t any bonds traded for longer maturities in the analyzed markets. Values in
Ω1 and Ω2 ranges between corresponding lower/upper values by proper step sizes
∆1 and ∆2. As the step size can affect the overall performance of the procedure,
we tried various step sizes in the range [0.25, 0.75] for ∆1 and [0.25, 1] for ∆2.
After extensive simulations we set ∆1 = 0.75 and ∆2 = 1.

2. For each maturity mj,k in the sets Ω1 and Ω2 we estimated the parameters τ1(t)
and τ2(t) that maximize the medium term component:

[τj(t)(1− e−mj,k/τj(t))/mj,k]− e−mj,k/τj(t) k = 1, . . . ,Nj

In this way we get as many curves as the number of maturities.

3. For each time t in the time horizon of length T and for every maturity mj,k,k =
1, . . . ,N , keep τ1(t) constant and vary τ2(t) to estimate by OLS different array
sets β̂(t); choose then the set β̂∗(t) associated to the lowest Sum of Squared
Residuals (SSR):

SSR(t) =
N∑

k=1
[y(t,mk)− R̂F (t,mk, β̂(t),τ (t))]2 t= 1, . . . ,T
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with y(t,mk) and R̂F (t,mk, β̂(t),τ (t)) being the observed and fitted spot rates
respectively.

4. Repeat Step 3 for all τ1(t) so that there are as many sets of optimal parameters
β̂∗(t) as the τ1 values. Then, select the set with the lowest SSR and fit the yield
curve at the desired time t:

τ̂ ∗(t) = arg min
[τ1(t), τ2(t)] ∈ (Ω1×Ω2)


N∑

k=1
[y(t,mk)− R̂F (t,mk,τ (t), β̂∗(t))]2


5. Repeat Steps 3–4 for each time t (t= 1, . . . ,T ), to get the set of T yield curves

fitting and the related time series for all the model parameters.

1.2.2 Feed Forward Neural Networks

Feed Forward Neural Networks (FFNNs) are non–linear regression tools which do
not require any a priori assumption about the functional form or statistical properties
of the data set under examination and can be used to identify and model nonlinearity
in the data (Hornik et al., 1989). They are made of information processing units (nodes
or neurons) arranged into one or more interconnected layers.

Figure 1.1 shows a graphic representation of an artificial neuron: each input vector
x = (x1, . . . ,xn)′ is processed by a linear combiner (Σ) through the use of a weight
vector w = (w1, . . . ,wn)′ , and hence transformed with the aid of a proper activation
function (usually the sigmoid). At this stage a bias value can be inserted to delay the
triggering of the activation function.

x1 w1

x2 w2 Σ Φ(·)

Activation
function

zj

Output

...
xn wn

Bias
b

Weights

Inputs

Figure 1.1 – Representation of a node with n input features

Nodes are grouped in three types of layers: the Input layer with nodes supplying
the input features to next layers consisting of one or more Hidden layers which, in
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contrast to Input/Output layers, are not in direct contact with either the network
input or the output. The response value (zj) is sent either to another hidden layer (if
any) or to the Output layer that is the neurons layer which generates the final response
of the network.

In order to obtain the desired output, the network must undergo a learning process
which identifies the optimal weights configuration (Wilamowski and Irwin, 2011):
increasing or decreasing the weights values by means of proper learning algorithms
changes the strength of nodes connections and directly affects the network capability to
learn the input space features. The FFNN makes use of a supervised learning algorithm:
information and correct target results are available and presented to the network which
tries to define the optimal weights configuration, so that the network response is
as close as possible to the correct output. In detail, we used the Backpropagation
Algorithm—BPA (Rumelhart et al., 1986). This is an iterative procedure through a
certain number of cycles (epochs), each including two phases: a forward stage with
the network, initialized at random, generating the output signals (responses), and a
backward phase. In the latter the network responses are compared to the target values,
the error is back–propagated from the output layer through the hidden ones towards
the inputs, and then used to update the networks coefficients to reduce the error at
the end of the next forward phase. The process goes on until the optimal combination
of weights that minimizes a loss function (e.g., the Mean Squared Error—MSE) is
determined according to the gradient descent criterion, so that the estimated output
values are the closest to the target output.

1.3 Empirical Analysis

1.3.1 Data

Our dataset consists of daily returns for government zero–coupon bonds (ZCB) of
the BRICS countries, as summarized in Table 1.1, where for each country we provided
the Start and the End of the observation period, the overall number of observations
and the dataset source, that is either TRD (Thomson Reuters Datastream) or CBR
(The Central Bank of the Russian Federation).

As previously said, different maturities could be used to represent the yield curve,
depending on the liquidity conditions and availability of information of the analyzed
market: for example Diebold and Li (2006) examined maturities from 3 to 120 months
(US), while De Rezende and Ferreira (2008) focused on maturities in the range 1 to
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60 months (Brazil), and Caldeira et al. (2010) from 1 to 33 months (Brazil). In this
work we considered maturities from 3 months (i.e., 0.25 of the year) to 30 years.

Table 1.1 – Dataset description

Country
Period No of

SourceStart End Observations

Brazil 30/09/2011 30/12/2020 2128 TRD
Russia 04/01/2003 30/12/2020 4578 CBR
India 14/02/2012 30/12/2020 2185 TRD
China 24/01/2005 30/12/2020 3818 TRD

South Africa 18/02/2011 30/12/2020 2472 TRD

Combining the available maturities with the observed time we obtained a tensor
whose number of rows is equal to the number of analyzed days and with the number
of columns equal to the number of maturities. In this way, for each maturity it is
possible to observe the evolution of the spot rates time-series: Figure 1.2a provides an
example on the Chinese market with the maturity set at 2, 7 and 15 years respectively;
moreover for each day it is possible to extract the yield curve varying the maturities:
in Figure 1.2b we give an example on the Chinese market with t set to 24/01/2005,
09/07/2007, 23/10/2014 and 30/12/2020.

(a) (b)

Figure 1.2 – Behaviour of the daily rates for maturities 2, 7 and 15 years for China in
the period 24/01/2005 – 30/12/2020 (a), and yield curve shapes for China (b) observed in
t=24.01.2005; 09.07.2007; 23.10.2014 and 30.12.2020, respectively.
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A closer look to Figure 1.2a suggests the presence of spikes in the yield curve at
various maturities. Such variability is confirmed if we turn to Figure 1.2b, which offers
a snapshot inside how many different behaviours (flat, normal, inverted) the yield curve
can show depending on the time assumed as observation point.

Furthermore, varying both t and m for each country it is also possible to build a
3D surface chart as shown in Figure 1.3 for all the BRICS, where the x-axis reports
the time t, the y-axis shows the maturity m expressed in fractions (multiples) of the
year and the z-axis the observed level of the interest rate at each time t and for each
maturity m.

Looking at the shapes of the yield surfaces in Figure 1.3 suggest that they are the
result of quite different instances, that is they have been affected not only by external
conditions such as the global crisis or the drop in the commodities demand, but also by
internal drivers, such as policy decisions, unemployment and recession in general. In
the case of Brazil, (Figure 1.3a), for instance, pronounced spikes are observable since
2015, when the country began to be interested by a crippling two–year recession (in
2015 and 2016) which was only partially recovered in next years. The booms and busts
of the yield surface after 2017 bear witness of the uncertainty dominating the market
in those years. In the case of Russia (Figure 1.3b), on the other hand, the highest
turbulence in the yield surface corresponds to the period between 2014 and 2016, when
the Russian economy suffered from a currency crisis caused by the collapse of oil prices
and the country’s engagement in the conflict in Ukraine. In the case of India (Figure
1.3c), instead, the mostly flat surface is due to the persistence of economic regression
during the whole 2010s. Notably, we can observe an inverted shape of the yield surface
corresponding to the period 2012–2014, when India underwent the worst slowdown of
the decade in the manufacturing and mining sectors, both of which labour intensive
crucial sectors for the growth of other sectors. Conversely, at the end of 2020 the
surface turned to a normal behaviour, with lowest (higher) interest rates associated
to lower (higher) maturities; how much this stage is solid will depend on the country
capability in replying to ongoing inflation of fuel, food prices as well as rising urban
unemployment. Similar considerations can be extended to the discussion of the yield
surface of South Africa in Figure 1.3e: in the period 2011–2015, the surface is extremely
flat, in connection to higher turbulence in the markets. In this period, in fact, like
all economies dependent on commodity prices, the South African economy has been
exposed to two highly correlated external shocks: the slowdown in Chinese demand for
commodities, which has become the leading destination for South African exports in
recent years and the ensuing decline in iron ore. Finally, if we turn the attention to
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Figure 1.3d, we can observe that highest variability corresponds to the period from
June 2007 to September 2010, when the Chinese financial market faced the Global
Financial Crisis, while the flattening of the surface in the following years is due partly
to the trade war with the USA and partly to central government driving the country’s
transition towards an economy led by consumption and services, rather than one driven
by exports and investment.

(a) Brazil (b) Russia

(c) India (d) China

(e) South Africa

Figure 1.3 – Zero-Coupon yield surfaces of the BRICS countries in the monitored period

Overall, we can preliminary conclude that BRICS countries offer the ground for
testing the effectiveness of fitting methods in presence of sensitively varying conditions.
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For each country data we then run simulations with the 5F–DRF according to
the guidelines given in Section 1.2.1, while for what is concerning the FFNN, the
final output was obtained partitioning the countries market data into training (70%),
validation (15%) and testing (15%) sets. We defined the number of input, hidden
and output neurons depending on the analyzed country; in particular, the quantity of
I/O nodes corresponds to the number of available maturities. Regarding the number
of intermediate layers and nodes, as there is no a precise rule to select their best
combination and the choice is data–dependent (Lantz, 2019), we followed a trial and
error approach analyzing different configurations (i.e., with one or more hidden layers).
The best performance in terms of determination coefficient R2 was obtained with the
network architectures summarized in Table 1.2 for each BRICS country.

Table 1.2 – Number of layers and neurons for each BRICS country assuring the best fitting
performances.

Country Hidden Layer Input/Output Nodes Hidden Nodes

Brazil 1 12 9
Russia 1 12 13
India 1 18 10
China 1 14 11

South Africa 1 16 12

All the FFNNs were trained with the backpropagation learning rule; the learning
process was cut after 1000 epochs, i.e., after presenting each training set to the network
1000 times. The fitting accuracy of both models was evaluated comparing the Mean
Square Error (MSE) and Root Mean Square Error (RMSE) of both the 5F–DRF model
and the FFNN.

1.3.2 Comparison of the 5F-DRF and FFNN Models Fitting
Performances

In this section we present the results of the empirical estimation of the term
structure. The analysis was carried out using R 4.0.4 and a freshly-new R package
(Castello and Resta, 2019) with estimation routines implementing the 5F-DRF model,
while the MATLAB R2021a (9.10.0) Neural Network Toolbox was employed to run
the FFNNs. All the code is available for download in the Zenodo repository (https:
//zenodo.org/record/5814658 (accessed on January 3, 2022)).

https://zenodo.org/record/5814658
https://zenodo.org/record/5814658
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Table 1.3 shows the average estimated parameters values for the time–varying
5F–DRF.

Table 1.3 – Average estimated parameters values for the time–varying 5F–DRF model

Brazil Russia India China South Africa

β0 11.8010 8.7710 6.0058 2.5294 9.4784
β1 200.3699 -0.2674 -4084.0492 662.6816 15.8301
β2 -203.2936 -2.5483 4085.0426 -663.1078 -19.2812
β3 4.3508 0.5273 -86.0267 31.5497 10.0752
β4 4.8412 0.3619 -81.2562 37.91.29 20.9306
τ1 0.8246 1.079 1.9792 2.5018 2.4239
τ2 3.5799 6.1704 10.376 11.4936 9.2533

The estimated values emphasise the different role played in the yield curve of
BRICS by short/medium and long term components. The value of Brazilian β0, which
addresses the long–term effect, is greater than those of Russia and South Africa by 35%
and 24%, and by 96% and 366% than those of India and China, respectively. Clearly,
these values reflect the different perception of long–term expectation in the observed
countries. Again, if we turn to parameters associated to short term components of
the yield curve (β1 and β2), we observe that they differ significantly from one country
to another: the scale of values is in the (negative) tenths for Russia, in the dozens
for South Africa, in the hundreds for Brazil and China with alternate signs, in the
thousands for India. Although so different in scale, values for Brazil, India and China
when compared to corresponding β0 , β3 and β4 highlight the importance of short–term
expectation in the yield curve of those countries. This aspect is more shaded in the
case of South Africa and ever more so for Russia. Mid–term parameters (β3 and β4)
are in turn different in scales in various BRICS countries, with higher values associated
to India and China, and lower values corresponding to Russia. Overall the estimated
values point out how, despite BRICS are often referred as a compact group of countries,
the underlying financial and economic drivers substantially differ and they are reflected
in the behaviour of the yield curve.

Moving to the results comparison, we obtained a very accurate fit with both the
models, as it can be seen in Figure 1.4, showing the average yield curve against the
average fitted ones generated by both the 5F–DRF and the FFNN.
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(a) (b)

(c) (d)

(e)

Figure 1.4 – Average observable yield curve against average yield curves generated by the
5F-DRF (red) and FFNN (blue) models in the BRICS market.
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At first sight it seems not possible to distinguish the average observable curve from
the fit provided by both the 5F–DRF and the FFNN. Besides, a common feature for
the two methods seems the capability to fit curves with quite different shapes as well
as in different variation ranges. Indeed, despite the fact that all the curves appear to
share similar shapes, that is increasing as function of the maturity, the slope of the
average yield curve of South Africa in Figure 1.4e grows faster than in other cases. This
curve, in fact, varies in a range of five percentage points while the range of variation of
the other yield curve is much smaller. Conversely, the average yield curve of India, in
Figure 1.4c is the flattest one with a range of variation of only 1.2 percentage points.
Moreover, both the methods were able to capture different variation ranges: in the
interval [9,11] for Brazil, [6,9] for Russia, [7,8.2] for India, [2.5,4] for China and [6,11]
for South Africa. Our first conclusion is that the analysis of the average yield curves
does not provide sufficient evidence to uncover which is the best fitting method. Indeed,
the lesson learned from this first exploration into the results is that both methods
work very well in keeping very different behaviors. In Figure 1.5, in fact, we offer a
direct comparison on the average observable yield curve of the BRICS countries where
it is possible to look at the difference in both the variation range and the shape of
the curves, as we have already highlighted in the above rows. This feature makes the
fitting capabilities of the two methods even more valuable because they were able to
capture the dynamics of all the curves, despite the difference in both the maturity
spectrum and the steepness of the curve.

(a) (b)

Figure 1.5 – Plot of the BRICS average observable yield curves (a) and a zoomed-in area
(b) which covers the maturity spectrum common to all the examined countries.

In search of more clues, we then turned to analyze the average residuals that are
shown in Figure 1.6.
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(a) (b)

(c) (d)

(e)

Figure 1.6 – Comparison of average residuals curves generated by 5F–DRF and FFNN.

The average residuals are very close to 0 for all the BRICS countries: the range
of variation is between ±2 × 10−3 for Brazil and Russia while for India, China and
South Africa it lies between ±2×10−2. These results highlight how both models are
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characterized by excellent average fitting capabilities. However FFNNs residuals are
lower at least by a factor of 100 compared to those of the 5F–DRF model which are
characterized by higher oscillations. Taking for example the case of China at the
maturity 1 and 30, for m = 1, the errors are equal to 1.3×10−3 and −3.7×10−7 for
the 5F–DRF and FFNNs respectively, and equal to 7.7×10−4 and −1.2×10−6 for m
= 30.

Table 1.4 – Main statistics for MSE and RMSE associated to 5F-DRF and FFNN models
applied to the BRICS countries.

MSE RMSE
5F-DRF FFNN 5F-DRF FFNN

B
ra

zi
l

Mean 1.0511×10−5 7.6401×10−7 2.5536×10−3 6.9986×10−4

SD 6.3678×10−5 2.6374×10−6 1.9980×10−3 5.2378×10−4

Min 1.4523×10−8 7.6170×10−9 1.2051×10−4 8.7275×10−5

Max 2.8513×10−3 1.0155×10−4 5.3398×10−2 1.0077×10−2

R
us

si
a

Mean 6.8143×10−5 2.3630×10−8 6.1318×10−3 1.2773×10−4

SD 1.5740×10−4 5.8504×10−8 5.5273×10−3 8.5538×10−5

Min 4.5277×10−7 6.5816×10−10 6.7288×10−4 2.5655×10−5

Max 1.8731×10−3 1.8621×10−6 4.3279×10−2 1.3646×10−3

In
di

a

Mean 3.3058×10−4 1.0865×10−6 1.3763×10−2 2.6338×10−4

SD 5.6081×10−4 4.8029×10−5 1.0789×10−2 1.0087×10−3

Min 5.3692×10−7 7.1060×10−10 7.3275×10−4 2.6657×10−5

Max 8.6687×10−3 2.1984×10−3 9.3106×10−2 4.6887×10−2

C
hi

na

Mean 7.1533×10−4 6.7902×10−8 1.4338×10−2 1.7081×10−4

SD 3.0070×10−3 4.1125×10−7 2.2551×10−2 1.9681×10−4

Min 4.5227×10−8 2.0021×10−10 2.1267×10−4 1.4149×10−5

Max 6.3573×10−2 1.6570×10−5 2.5214×10−1 4.0706×10−3

S.
A

fr
ic

a Mean 3.3058×10−4 1.0865×10−6 1.3763×10−2 2.6338×10−4

SD 5.6081×10−4 4.8029×10−5 1.0789×10−2 1.0087×10−3

Min 5.3692×10−7 7.1060×10−10 7.3275×10−4 2.6657×10−5

Max 8.6687×10−3 2.1984×10−3 9.3106×10−2 4.6887×10−2
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To evaluate and compare the models fitting abilities we also calculated the MSE
and RMSE for the observed yield curves for each maturity, reporting main statistics in
Table 1.4.

The results on the one hand show that both models are characterized by very low
values of the MSE. This confirms that on average they both are able to fit the wide
variety of shapes exhibited by the yield curves. On the other hand, the results clearly
underline the superior fitting abilities of FFNNs on the 5F–DRF model.

(a) (b)

(c) (d)

(e)

Figure 1.7 – Surface of daily residuals for the yield curve obtained with the 5F–DRF in the
BRICS bond market of Brazil (a), Russia (b), India (c), China (d), South Africa (e).
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Further evidence of the higher fitting abilities of FFNNs is given in the 3D plots
shown in Figures 1.7 and 1.8 which represent the residuals surface generated by the
5F–DRF and FFNN models respectively, obtained varying both the time t (x–axis) and
the maturity m (y–axis). For the FFNN the error surface also includes a zoomed-in
area to highlight the residuals magnitude otherwise unobservable at the same scale
used to monitor the errors behaviour in the 5F–DRF.

In principle, we can conclude that both models provided very good fitting perfor-
mances. The residuals did not exhibit systematic behaviour, i.e., neither incorrect
zeroing or cyclical behaviour caused by wrongly specified models; they took absolute
values of very small magnitude with fairly rare spikes mainly concentrated on periods
characterized by greater market volatility. In this regard, the error surface of both
models contains additional clues leading us to the following conclusions:

• (a) FFNNs perform better than the 5F–DRF model for in sample fitting of the
yield curve of the BRICS countries.

• (b) The reason of (a) is in a better adaptability of the FFNN to both internal
and external shocks.

The surface generated by the parametric model (5F–DRF), in fact, highlights
that more pronounced residuals values are associated to higher market turbulence, as
discussed analyzing the yield curve surfaces in Figure 1.3. This is, for instance, the case
of Russia, with maximum values in the error surface of the 5F–DRF corresponding to
the period between 2014 and 2016. Again, if we turn the attention to Figure 1.7d, we
can observe that maxima in the error surface correspond to the period from June 2007
to September 2010, when the China was struggling with the Global Financial Crisis.
In the case of India (see Figure 1.7c), instead, we can observe that the whole error
surface is disseminated by spikes, mainly concentrated at lower maturities. This clearly
indicate an underestimation (overestimation) of the observable values; as a matter of
fact, the behaviour of the Indian yield curve at various maturities was a bit trickier to
fit than for other countries in the sample: the economic regression probably affected
the volatility of financial markets. Similar remarks hold also for South Africa and
its error surface in Figure 1.7e: error peaks raised at the maximum level once again
in connection to higher turbulence in the markets. The lone voice in this roundup
comes from Brazil, with a flat error surface for the 5F–DRF as it can be seen in Figure
1.7a, and more pronounced spikes (however not exceeding the range ±0.001) in the
zoomed–in area of Figure 1.8a, during the period 2015–2018.
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(a) (b)

(c) (d)

(e)

Figure 1.8 – Surface of daily residuals for the yield curve obtained with the FFNN in the
BRICS bond market. As the error surface is very flat, the inset shows a zoomed–in area
highlighting the error fluctuations otherwise not visible at the same scale employed to visualize
the error surface of the 5F–DRF. From top to bottom and from left to right, (a) is associated
to Brazil, (b) to Russia, (c) to India, (d) to China, (e) to South Africa.
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In general, we can conclude that 5F–DRF model suffers for underestimation (overes-
timation) issue when used to interpolate curves with pronounced oscillations at certain
maturities. These are common for parametric model, and even the use of a more
efficient parameters estimation can only reduce the error but not at the levels provided
by non–linear black box technique like the FFNN. At the same time, in fact, FFNNs
provided evidence of being a more flexible tool for in–sample fit of the term structure
of interest rates: the residuals generated by the FFNNs are considerably lower, than
those of the 5F–DRF and less influenced by the market turbulence in every analyzed
situation. They therefore denote a greater ability to replicate almost all the patterns
exhibited by the term structure curve, even in cases of strong market fluctuations or
downturn.

1.4 Conclusion

Motivated by the important role played by the term structure of interest rates we
investigated and compared the in–sample fitting abilities of two distinct methods, the
Five Factor De Rezende–Ferreira (5F–DRF) model and Feed–Forward Neural Networks
(FFNNs) when applied to the data of BRICS countries. For the parametric approach
we discussed the use of time–varying decay terms to ensure more flexible parameters
and hence get higher interpolating performances. Focusing on in–sample rather than
out of sample was not limited, in our opinion, as bond prices reflect market participants’
views on interest rate levels in a forward–looking way.

The results may be analyzed under two reading keys. First, we offered a com-
prehensive study of the BRICS yield curves all at once. In this respect, we outlined
how despite BRICS countries are often viewed as a compact set, this is not true, as
reflected by the different behaviour of related yield curves. This aspect was accurately
kept by the 5F–DRF model, as it can be seen by looking at the average values of
estimated parameters: the values, in fact, highlight the different weight associated to
short/mid and long–term components of the yield curve. Second, we highlighted very
high in–sample fitting capabilities of both the models for all the examined countries.
Nevertheless although the 5F–DRF is the most flexible model in the Nelson–Siegel
Family and these features have been further enhanced by way of time–varying param-
eters, the empirical evidence has clearly shown the superior capability of FFNN in
interpolating the behaviour of the yield curve; this was also confirmed by comparing
the average behaviour of monitored and interpolated yield curves as well as examining
the average residuals and the residual surface of both the 5F–DRF and the FFNN. In
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fact, the FFNN perfectly adapted to all the typical yield curve shapes, even to the
most twisted ones with multiple inflection points like in the Indian and Russian case.
Moreover FFNNs efficiently replicated all the features of the examined term structures,
being flexible enough to overcome the common limitations of parametric models in
presence of booms and busts. The greater ability of the FFNN was confirmed by the
MSE and RMSE associated to the fit, with values ranging, in the worst case, between
±0.02 for the 5F–DRF and between ±0.0002 for the FFNN. Another advantage of
FFNNs was related to the estimation process which is less time–consuming than for
the 5F–DRF, because it requires a lower amount of parameters during the network
calibration process. The possibility of customizing FFNNs settings for each country, in
order to achieve improvements in their fitting ability for all markets was without any
doubt an additional advantage of using this technique.

Based on the arguments set out above, we therefore conclude that the FFNN is
a better and flexible tool for the in–sample fit of the yield curve in all the BRICS
markets. Nevertheless we do not underestimate some limitations of our approach and
mainly the fact that we performed in–sample fitting. To such aim, future plans include
the extension of our conclusions by comparing models performance out–of–sample and
a deepest investigation of the potential of our procedure to estimate time–varying
parameters in the 5F–DRF compared to alternative solutions discussed in the more
recent literature on parametric models.



Chapter 2

Optimal time varying parameters in
yield curve modeling and
forecasting: A simulation study on
BRICS countries

2.1 Introduction

As widely known, the term structure of interest rates depicts the relationship
between different times to maturity and the market remuneration rate (interest rate).
Its graphical companion is the yield curve, that plots the interest rates of bonds with
equal credit quality at different maturities: its shape and time changes are conventionally
considered a key indicator for the economic outlook of a country (Chadha et al., 2014).
The yield curve can be used to represent either spot rates, that is the yield associated to
a zero-coupon bond from now to maturity, or forward rates, that is the yield of a zero–
coupon bond between two future dates. Indeed, the yield curve plays a valuable role as
alerting tool for inflation, possible recession or upturn of the economy (Gürkaynak and
Wright, 2012) and it can show several shapes depending on market volatility; due to
this pivotal role, various models have been suggested to analyze, model and predict it.

Actually the most popular models are those in the so–called Nelson–Siegel (NS)
family, pioneered by Nelson and Siegel (1987) and since then by Bliss (1996) who
discussed an extension with an additional decay parameter, Svensson (1994) with a
four–factor model including a further curvature term and De Rezende and Ferreira
(2008) introducing a five–factor model with two slope terms instead then only one.
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A dynamic version of the NS model was then suggested by Diebold and Li (2006)
who considered parameters as time–varying latent factors to achieve a more effective
forecasting of the yield curve. Further attempts to increase the flexibility of NS models
are described in Koopman et al. (2007), who examined time–varying factors loading
and volatility, Christensen et al. (2007, 2009) who introduced the new class of Affine
Arbitrage–free Dynamic Nelson–Siegel models and in Ullah (2017) who discussed time–
varying asymmetric volatility. The fitting and forecasting abilities of NS models have
been also studied in De Pooter et al. (2010) and Fernandes and Vieira (2019) whose
models also include the interaction between the yield curve and the economic system.

For what it concerns empirical studies, there is a plenty of works dealing with the
use of parametric models both for in–sample fitting and out–of–sample forecasting of
the yield curve: Linton et al. (2001) analyzed the U.S. bond market, Chou et al. (2009)
compared the modeling performances of different parametric models for Taiwan Govern-
ment Bonds, Hoffmaister et al. (2010) examined a dynamic parametric representation
of the Central and Eastern European Countries yield curves, Kang (2012) forecasted
the term structure of Korean Government bond yields with various types of dynamic
parametric models, Lorenčič (2016) and Nagy (2020) analyzed the estimation abilities
of parametric models on the Austrian and the Hungarian term structures with missing
data, respectively. Finally, Luo et al. (2021) fitted and predicted U.S. Treasury yield
curves using the Dynamic Nelson–Siegel Model with random level shift parameters,
while Umar et al. (2022) applied NS models to the countries in the Group of Seven
to investigate the risk transmission mechanism. The overwhelming majority of the
above studies focused on economies with enhanced resilience to economic downturns
and relatively stable term structure dynamics, i.e. absence of spikes or drops in the
level of interest rates. In this respect it makes sense to use models based on constant
decay–terms and thus sub–optimal parameters for yield curve estimation and fore-
casting. However, such an approach may lead to inconsistent results when applied to
structures that show a volatile behavior with frequent trend inversions, jumps and/or
falls, like those observed in emerging markets.

Our work nests in the above debate and investigates the use of parametric models
characterized by optimal time–varying decay factors and parameters for in–sample
fitting and out–of–sample forecasting within emerging markets. The rationale arises
because various studies highlighted that those markets are more sensitive to both
endogenous and exogenous shocks (Chiţu et al., 2018, Bhattarai et al., 2021). In our
opinion, the use of optimal decay terms and parameters endows these models with
necessary flexibility to manage the challenging dynamics characterizing these markets.
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Existing contributions related to emerging economies so far were oriented either to
model (e.g. Zoricic and Orsag, 2013, Petousis and Barr, 2016, Chouikh et al., 2017,
Lartey and Li, 2018, Lartey et al., 2019, Ertan et al., 2020) or to predict (e.g. Caldeira
et al., 2016, Poghosyan and Poghosyan, 2019) the term structure of single countries.
However, this approach has an evident drawback since it is not necessary true that the
methodology which is appropriate for a country is still good for other ones.

In the light of the above, the scope of our research is twofold: on the one hand
we discuss the use of optimal factors and parameters for models in the Nelson–Siegel
Family and test their capabilities outside the comfort zone of developed and stable
markets; while on the other we provide a comprehensive study focused on in–sample
modeling at first, and then on out–of–sample predictions in order to asses the overall
effectiveness of the proposed methodology.

In this respect, our paper contributes in several ways. First, within the dynamic
framework discussed in Diebold and Li (2006), we use both the Three Factor Dynamic
Nelson–Siegel (3F–DNS) and the Five Factor Dynamic De Rezende–Ferreira (5F–DRF)
models and we discuss an estimation technique based on time–varying decay factors
that leads to significant enhancements of both models fitting abilities. Furthermore
we focus on the forecasting issue following an alternative approach to direct spot
rates prediction: we run day–ahead predictions of the models parameters and we then
derive the corresponding yield curve using various forecasting methods: the Univariate
Autoregressive process AR(1), Trigonometric Seasonal Box–Cox Transformation with
ARMA residuals Trend and Seasonal Components (TBATS) and the Autoregressive
Integrated Moving Average (ARIMA) that we combined to a Nonlinear Autoregressive
Neural Network (NAR–NN). To the best of our knowledge, this study is the first to test
the potentials of TBATS and ARIMA–NARNN models with the purpose of forecasting
the term structure of interest rates. Additionally, we manage those methods as Local
Data Generating Processes, that is we calibrate the models using a quite limited range
of values which are next to the prediction period. In this way we give greater emphasis
to the information content of the period close to that of forecast. This approach allows
to considerably reduce the volatility of predictions which may result from the use of
considerable amounts of data given the characteristics of emerging markets. Finally, we
conduct our analysis on a pool of 5 countries, that is Brazil, Russia, India, China and
South Africa, considering a wide time span of at least 10 years of daily observations
thus including global schocks and the most recent financial crises. This offers a breeding
ground for the stress–testing of the proposed framework.
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The remainder of the paper is organized as follows. Section 2.2 describes materials
and models and its divided into three parts: a section presenting the data employed in
the simulation; a part introducing the 3F–DNS and 5F–DRF models and after that
the approach followed to estimate each models parameters. In Section 2.3 we then
discuss the fitting results, while Section 2.4 discusses the forecasting of the BRICS
yield curves. Section 2.5 closes the paper with final remarks and outlooks to address
further research.

2.2 Materials and Models

2.2.1 Data

The data set in use consists of daily spot rates for the government zero–coupon
bonds (ZCB) of Brazil, Russia, India, China and South Africa, i.e. the so–called BRICS.
We examined maturities in the range from 3 months (i.e. 0.25 of the year) to 30 years.
The data were collected from Thomson Reuters Datastream (TRD) and the Central
Bank of the Russian Federation (CBR). The observation period, is not homogeneous
for the examined countries; starting points are 09/2011 for Brazil, 01/2003 for Russia,
02/2012 for India, 01/2005 for China and 02/2011 for South Africa; on the contrary,
the ending period, 09/2022, is common to all markets. As a consequence, the sample
period ranges between a minimum of 10 and a maximum of 19 years, depending on
the examined market, for an overall amount of 2557 observations for Brazil, 4995 for
Russia, 2631 for India, 4234 for China and 2908 for South Africa.

The time span was chosen to include critical situations such as global shocks and
events like the Subprime Mortgage crisis of 2007–2009 and the consequent Great
Recession, the 2015–2016 Chinese stock market crisis as well as the oil and pandemic
turmoil of 2020 and the more recent geopolitical crisis of 2022 induced by the conflict
in Ukraine. Those events had a significant impact on BRICS securities market, as
resulting from the behavior of the yield curve, provided in Figure 2.1 where we plot
the term structures 3D surface for each market obtained varying both the time (on
x–axis) and the maturity (on the y–axis). The Euro Zone (EU) term structure surface
is also shown for benchmarking purposes. Given the same historical time frame and
market events, it can be noted that the EU surface is flatter and less volatile.
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(a) Brazil (b) Russia

(c) India (d) China

(e) South Africa (f) Euro Zone

Figure 2.1 – From top to bottom in clockwise sense, the yield curve surface for Brazil (a),
Russia (b), India (c), China (d), South Africa (e) and Euro Zone (f). Time is represented on
the x–axis, while the tenor (expressed in fractions or multiples of the year) is on the y–axis
and the yield on the z–axis.

Furthermore, the 3D surface plot makes possible to highlight all the yield curve
shapes occurring in the period that is almost all typical patterns: the normal trend,
upward sloping and concave, indicating a quite stable economic outlook; the flat
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behavior, with short–term rates similar to medium and long–term ones, indicating a
possible slowdown of the economic system; the inverted curve, with short–term rates
higher than long–term ones, usually interpreted as a signal for recession; and the
S-shaped curve characterized by sudden and marked multiple changes in the slope and
curvature.

Examining, for instance, the Russian bond market shown in Figure 2.1(b), it is
possible to observe the absence of structural changes and shocks from mid–2003 up
to early 2008, as well as from 2010 to 2014 and, more recently, from 2016 till 2020,
with average yield values at different maturities in the range 4.88% - 8.44% and curve
shapes mostly upward or flat. However, these conditions are broken by unstable periods
characterized by greater volatility and the presence of relevant jumps for all maturities,
as it can be also seen in Figure 2.2 (a).

(a) (b)

Figure 2.2 – The left panel (a): Plot of the Russian daily rates setting the maturity to 1,
3, and 10 years. The right panel (b): Yield curve shapes extracted from the Russian term
structure 3D surface in (b). Time is represented on the x–axis, while the tenor (expressed in
fractions or multiples of the year) is on the y–axis and the yield on the z–axis.

The plot shows three slices of the yield surface of Figure 2.1(b), i.e. three time
series extracted at the maturities 1, 3 and 10 years. In all the three cases it is possible
to highlight instability patterns. The first one occurred in the period June 2008 – May
2010, a kind of follow–up of the recession due to the Subprime crisis, with a growth of
approximately 11% on short–term rates and 7% – 9% for longer maturities.

Furthermore, other two unstable situations occurred in the period November 2014 –
July 2015 and, more recently, from January 2022 to June 2022, with rates increments
in the range 7% – 12% and 4% – 8% respectively across all maturities. This spiky
behavior sinks its roots in both the 2014 and 2022 crisis which opposed the Russian
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Federation and the Western countries and brought to economic and trade sanctions,
combined to the weakening of the Russian National currency. In both the occasions, the
Central Bank of the Russian Federation increased interest rates and adopted policies
like inflation targeting and the floating exchange rate regime to support the banking
sector and the national currency against external shocks. Such periods of political and
economic tension led, as a consequence, to extreme yield curves behaviour. This is
evident from Figure 2.2 (b). Here we illustrate yield curves at various times highlighting
in red the flat and the inverted behavior that occurred in correspondence of the above
described events.

Considering, ceteris paribus, the Euro Zone case illustrated in Figure 2.1 (f) and
2.3, it is possible to pinpoint that spot rates across the maturity spectrum are less
volatile and that the level of spot rates is 3 to 10 times lower: peaks do not exceed the
5% threshold or in some occasion are even negative. These facts indicate an overall
higher resistance to exogenous shocks due to higher confidence of the markets and its
participants in the macro–economic and financial structure and stability of the EU.

Figure 2.3 – Euro Zone daily rates setting the maturity to 1, 3, and 10 years.

In the light of all the above, it clearly emerges that economic and geopolitical crises
exert significant pressure on bond markets of emerging countries which seem to be less
"immune" to shocks than more developed economies.

As financial turmoils are frequent events in emerging markets, we can reasonally
extend to other markets in the sample the remarks discussed in the case of Russia.
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2.2.2 Models

In this subsection we describe the three and five–factor parametric models employed
in our study.

The Nelson–Siegel model (3F–NS) is a parsimonious three–factor parametric model
which has proved to capture a wide range of monotonic, humped and S–type yield
curve shapes (De Pooter, 2007).

Let us consider a Zero–Coupon Bond (ZCB) and denote by y(t,m) the observable
rate at time t = 1,2, . . . ,T , where T is the number of available observations, and
maturity m ∈M = (m1,m2, . . . ,mN )′ representing either a fraction or a multiple of the
year, with N being the maximum number of examined maturities. Following Nelson
and Siegel (1987), the interpolated spot value at time t can be represented via the
parametric function:

NS(t,m,β,λ) = β0 +β1

(
1− e−λm

λm

)
+β2

(
1− e−λm

λm
− e−λm

)
+ηm (2.1)

where β = (β0,β1,β2)′ is the parameters vector whose components represent, respec-
tively, the impact of the constant long–term component (β0) that moves the curve
up or down; the contribution of the short–term component (β1) controlling the curve
slope, and the effect of the medium–term component (β2), ruling out the magnitude
and direction of the yield curve curvature. The model includes also a decay term λ

which controls the convergence speed of the exponential components and determines
the position of the peak of the medium–term element, while ηm ∼ N (0, σ2

m) is the
normally distributed error term with cov(ηr,ηs) = 0, for all r,s=m1, . . . ,mN , r ̸= s.

A proper calibration of β and λ makes possible an effective replication of a wide
variety of yield curve shapes. Parameters estimation is the result of a two–step
procedure, where grid search methods (Nelson and Siegel, 1987, Muthoni et al., 2015)
identify the value of λ that maximizes the medium–term component, varying the
maturity. For each λ the vector of parameters β̂ is then estimated through an OLS
regression choosing in the end the values λ∗ and β̂∗ associated to the highest coefficient
of determination.

Later, De Rezende and Ferreira (2008) introduced a five–factor variant (5F–RF)
aimed at increasing the flexibility of previous models with additional parameters
and decay factors to capture a wider variety of trends. The 5F–RF model, in fact,
extends (2.1) including additional short and medium–term components characterized
by different decaying factors, to ensure a faster decaying rate and to increase the fitting
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ability of yield curve shapes in presence of multiple short–term maxima/minima:

RF (t,m,β,τ ) = β0 +β1

(
1− e−m/τ1

m/τ1

)
+β2

(
1− e−m/τ2

m/τ2

)
+

+β3

(
1− e−m/τ1

m/τ1
− e−m/τ1

)
+β4

(
1− e−m/τ2

m/τ2
− e−m/τ2

)
+ηm

(2.2)

where β = (β0,β1,β2,β3,β4)′ and τ = (τ1, τ2)′ are the 5–dimension parameters vector
and the decay terms vector, respectively. The estimation of both τ and β is based on
a two–step procedure that at first identifies the optimal decay parameters τ̂1, and τ̂2 in
the space Ω of admissible values, by minimizing the Root Mean Square Error (RMSE):

τ̂ = (τ̂1 , τ̂2)′ = arg min
(τ1, τ2) ∈ Ω

 1
N

N∑
n=1

√√√√ 1
T

T∑
t=1

[y(t,mn)− R̂F (t,mn,τ , β̂t)]2
 (2.3)

where N is the overall number of examined maturities, and T is the number of available
observations. Once obtained the optimal vector τ̂ , the estimation of the parameters
vector β̂ takes place by applying the OLS regression for each time t.

2.2.3 Optimal Parameters Estimation

As seen in the previous section, the parameters λ and τ = (τ1, τ2)′ play a fundamental
role in the 3F–NS and 5F–RF models respectively, because they drive the decay rate of
the exponential components controlling the trend dynamics of the fitted yield curves.
The choice of λ and τ generates a trade–off in the fitting accuracy at both the left and
right–handed tails of the yield curve. In fact, small values of λ (big values of τ1, τ2)
lead to a slow decay of the curve, and hence assure a better fit at longer maturities, but
the same is not true at short maturities, especially in presence of sudden and marked
curvatures. Conversely, higher values of λ (small values of τ1, τ2) result in a quick decay
and hence a better fit at short maturities, with an accuracy loss in the long run.

Managing the decay parameters is therefore of paramount importance, as testified
by the solutions suggested in the literature. A common approach consists in setting
them to the value that maximises the curvature factor at the maturity m where humps
or basins are empirically observed. For example, working on U.S. Treasury data,
Diebold and Li (2006) and De Pooter (2007) set λ̂= 0.0609 (m= 30 months), while
Diebold et al. (2006) assumed λ̂= 0.077 (m= 23.3 months). Moreover, Muvingi and
Kwinjo (2014) assumed λ̂= 0.25 (m= 7 months) for the Bank of Zimbabwe certificates,
while De Rezende and Ferreira (2008), based on ID-PRE Swap data of the Brazilian
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market, set τ̂1 and τ̂2 at the best of the estimated values according to (2.3). This latter
approach simplifies the numerical optimization process as it linearizes the estimation
process of the model with the use of the least-squares regression; in addition, it seems
to reach a good compromise between the long and short–run accuracy issues. However
assuming constant decay terms is in conflict with the evidence that the term structure
of interest rates may show time changes of different intensity in terms of both slope
and curvature as observed for all the BRICS (see Figure 2.1): an a priori selection
of either λ or τ can therefore lead to non–optimal estimations, weakening the models
fitting ability.

For the above reasons, we adopted a different approach, and we considered the decay
components as time–varying parameters as well. We applied a two–step estimation
procedure to determine the proper values λ∗(t), τ∗

1 (t), τ∗
2 (t) and β̂

∗(t) such that the
complete sets of parameters in both the three and five factor cases (herein after named
3F–DNS and 5F–DRF respectively) are at the best for each time t. For the 3F-DNS
model, the algorithm works as follows

Step 1: For each market define the set M = {mk}k=1,...,N of maturities mk with N equal
to the sets cardinality. In particular, m1 = mL is the lower bound of M and
corresponds to the first available maturity in the market, while the upper bound
mU is the longest observed maturity. Values in M ranges between corresponding
lower/upper values by proper step size ∆.

Step 2: For each mk ∈ M with k = 1, . . . ,N , estimate at time t the value λ∗
k(t) that

maximizes the curvature term component:

1− e−λ(t)mk

λ(t)mk
− e−λ(t)mk , k = 1, . . . ,N

In this way, at each time t it is possible to associate the array λ̂(t) = {λ∗
k(t)}k=1,...,N .

Step 3: For each time t= 1, . . . ,T :

i) use the array λ̂(t) found in Step 2 to estimate the parameters vector β̂(t)
via the OLS regression;

ii) choose the vector β̂
∗(t) associated to the lowest value of the Sum of Squared

Residuals (SSR):

SSR(t) =
N∑

k=1
[y(t,mk)− D̂NS(t,mk, β̂(t),λ∗

k(t)]2
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iii) repeat steps (i) – (ii) for each time t (t= 1, . . . ,T ) to get the time series of
the parameter λ∗(t).

For what it concerns the 5F–DRF model the estimation procedure is similar to that
discussed for the 3F-DNS, although a bit more tricky, due to the presence of two decay
factors (τ1 and τ2) at each time instead that only one. In this case, the procedure
works as follows:

Step 1: For each market define the set M j = {mj,k}k=1,...,Nj
of maturities mj,k with

j = 1,2 and Nj equal to the sets cardinality; m1,1 = m1,L represents the lower
bound of M1 and corresponds to the first available maturity of the market, while
the upper bound m1,U is, at the same time, the lower bound of M2 (m1,U =m2,L)
and it is equal to the straddling maturity between the short and medium–term
period. Finally, the upper bound of M2 (m2,U ) is the longest observed maturity.
As above, values in M1 and M2 range between corresponding lower/upper values
by proper step sizes ∆1 and ∆2.

Step 2: For each mj,k ∈ M j with k = 1, . . . ,Nj and j = 1,2 estimate the vectors τ̂1(t)
and τ̂2(t) that maximize the curvature term components:

1− e−mj,k/τj(t)

mj,k/τj(t)
− e−mj,k/τj(t), k = 1, . . . ,N

Step 3: For every t= 1, . . . ,T :

i) for each component of τ̂1, vary the components of τ̂2 to estimate by OLS
regression different array sets β̂(t) choosing the one with the lowest Sum of
Squared Residuals (SSR) computed as the squared difference between the
observed and estimated rates:

SSR(t) =
N∑

n=1
[y(t,mk)− D̂RF (t,mk, β̂(t),τ (t))]2

Clearly there are as many sets of optimal parameters as the number of τ̂1

components;

ii) choose the optimal set of parameters β̂
∗(t) associated to the lowest SSR.

iii) repeat steps (i) – (ii) for each time t (t = 1, . . . ,T ) to get the time series
parameters of both τ∗

1 (t) and τ∗
2 (t).
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2.3 Discussion of the fitting results

The study was carried on using the routines of the R package DeRezende.Ferreira
(Castello and Resta, 2019), developed by the authors and freely available at the
Comprehensive R Archive Network (CRAN) repository (https://cran.r-project.org/
web/packages/DeRezende.Ferreira/index.html).

2.3.1 Estimation results for the decay factors

To highlight the advantages of optimal time-varying decay parameters, Table 2.1
for the 3F–DNS and Table 2.2 for the 5F–DRF compare for each country the Average
Coefficient of Determination (R2) obtained according to three distinct approaches: (i)
employing the optimal values computed through our estimation procedure; (ii) using
constant decay terms as suggested in Diebold and Li (2006) and in De Rezende and
Ferreira (2008) for the three and five factor models, respectively; (iii) using constant
parameters equal to the optimal decay parameters average values.

Table 2.1 – Comparison of the average R2 in the 3F–DNS model associated to the estimation
of λ. When referring to the average λ value, this latter is given within round brackets.

R2

Country Optimal λ∗(t) Values
Constant Value

λ = 0.0609
Average Value of λ∗(t)

Brazil 0.9899 0.9784 0.9779 (λ = 0.6847)

Russia 0.9909 0.9474 0.9556 (λ = 0.5049)

India 0.9738 0.9540 0.9419 (λ = 0.4616)

China 0.9819 0.9094 0.9707 (λ = 0.2190)

South Africa 0.9959 0.9607 0.9518 (λ = 0.2539)

The choice of optimal decay terms (second column in Tables 2.1 and 2.2) increase
the degree of fitting accuracy of both models for every BRICS country: the R2 values
of the 3F-DNS model are on average 3.90% better than those obtained with constant λ
(the lowest increase is 1.18% for Brazil and the highest is 7.97% for China). Furthermore
the results with our technique are also higher than those obtained with λ average
values: the appreciation of the R2 ranges from 1.15% for China to 4.63% for South
Africa. Similar remarks hold also when we turn on Table 2.2 which considers the

https://cran.r-project.org/web/packages/DeRezende.Ferreira/index.html
https://cran.r-project.org/web/packages/DeRezende.Ferreira/index.html
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5F-DRF model. In this case the average improvement with respect to keep τ1 and τ2

constant is 1.58%, with the minimum (+0.05%) for South Africa and the maximum
(+4.61%) for Russia. In addition, when comparing the results in columns 1 and 3 we
observe that time–varying parameters τ1(t) and τ2(t) result in higher R2 values with
an average increase of +1.56%; the minimum increase (+0.06%) is associated to South
Africa and the highest (+4.61%) is recorded for Russia.

Table 2.2 – Comparison of the average R2 for the 5F–DRF model using optimal τ ∗
1 (t), τ ∗

2 (t)
values (second column), constant values (third column) and average values (fourth column).
Average values of τ1 and τ2 are given within brackets

.
R2

Country
Optimal

τ ∗
1 (t) and τ ∗

2 (t) Values
Constant Values

Average Values of

τ ∗
1 (t) and τ ∗

2 (t)

Brazil 0.9999
0.9779

(τ1 = 1.115 τ2 = 4.182)

0.9779

(τ1 = 0.775 τ2 = 3.561)

Russia 0.9997
0.9556

(τ1 = 0.976 τ2 = 13.941)

0.9556

(τ1 = 1.073 τ2 = 6.022)

India 0.9971
0.9896

(τ1 = 1.394 τ2 = 5.855)

0.9907

(τ1 = 1.841 τ2 = 10.338)

China 0.9982
0.9957

(τ1 = 3.067 τ2 = 14.777)

0.9958

(τ1 = 2.620 τ2 = 11.799)

South Africa 0.9999
0.9994

(τ1 = 1.812 τ2 = 14.220)

0.9993

(τ1 = 2.416 τ2 = 9.220)

To gain a better intuition of these results in Figures 2.4 – 2.5 we compared the
average MSE generated by each model according to the approaches (i) to (iii).
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Figure 2.4 – MSE generated using time–variant λ (red), constant λ (blue) and average λ
(green).

Figure 2.5 – MSE generated using time–variant τ (red), constant τ (blue) and average τ
(green).
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We can preliminary state that time–variant λ and τ bring additional flexibility to
the examined models, with the improvement of the fitting as confirmed by lower error
values. On the contrary, constant λ (τ1, τ2) values make harder the fitting especially
with much cumbersome curves like those of the BRICS markets.

2.3.2 In–Sample fitting performance analysis

The results of the comparison between the three and five factor models are firstly
presented in terms of average fitted spot rates per maturity, plotted in Figure 2.6 for
each country and model.

Overall, the 3F–DNS (blue) and 5F–DRF (red) estimated curves are almost perfectly
matching to the observed (black) ones. The 3F–DNS model, however, exhibits some
overestimation issues in correspondence of the medium–term maturities as can be seen
in the Russian and Chinese cases with the estimated curve lying slightly above the
observed one, and underestimation in the long term which are particularly evident in
the Indian, Chinese and South African markets with the blue curve going under the
observed one; on the contrary when using the 5F–DRF model a slight over (under)–
estimation is present in the middle (final) section of the curve only in the case of the
Indian market.

Figure 2.6 – Comparison of average observable yield curves (black) with average yield
estimates obtained with the 3F-DNS (blue) and 5F-DRF (red) models.
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We have also calculated the Average Squared Error, given as the difference between
the observed and fitted average yield curve values. Both models performed very well:
error values span from a minimum of 7.01×10−5 (Brazil) to a maximum of 1.02×10−3

(South Africa) for the 3F-DNS model, and from a minimum of 2.15 × 10−7 (Russia) to
a maximum of 6.80×10−5 (India) for the 5F-DRF model.

Furthermore we compared the values of some well–known goodness of fit indicators:
R2, MSE and RMSE whose main statistics are shown in Table 2.3. The R2 was
obtained as the result of the parameters estimation process via the Ordinary Least–
Squares (OLS) method. Using the residuals generated by the OLS we computed the
MSE and RMSE metrics for each yield curve as well, hence obtaining the related
time series which are plotted in Appendix 2.8. In order to give a more granular view
of the models performances, we determined the average MSE and RMSE generated
by the 3F–DNS and 5F–DRF models at each maturity for every country summarizing
the results in Table 2.4.

Both models generated quite low error values; nevertheless, deepening the analysis
and looking at the error metrics time series of Figure 2.8 the 3F–DNS model presents
higher error peaks in all the examined countries, mainly during turbulent periods.
This is probably due to the well–known difficulties of the 3F–DNS model to fit more
dynamic behavior (De Pooter, 2007), i.e. twisted and/or humped shapes.

Based on the data of Table 2.3 and Table 2.4 we show that the five factor model
generated the lowest MSE and RMSE values, achieving a significant improvement
over the 3F–DNS model as well: in fact for each country we can observe a reduction
of the MSE ranging between a minimum of 84.34% and a maximum of 98.99% for
China and Brazil, respectively; if we consider the average results for each country and
maturity we detect a reduction of the MSE by a factor of 10 to 1000.

Overall, the 3F–DNS and 5F–DRF models ensured satisfying fitting and they
were able to preserve the shapes avoiding unreasonable under/over estimations. The
five–factor model, however, produced more accurate approximations of the observed
curves in almost four countries out of five.

In the light of the above results it is possible to state that both models with time–
varying parameters are adequate tools for yield curve modeling even when applied to
developing countries whose bond market has more complex dynamics. However, the 5F-
DRF performs better since it benefits of improved flexibility due to both time–variant
decay terms and additional slope and curvature parameters.
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Table 2.3 – Comparison of R2, MSE and RMSE for the 3F-DNS and 5F-DRF models.
For each model and country Mean, Standard Deviation (SD), Minimum (Min) and
Maximum (Max) value of the metrics are reported.

R2 MSE RMSE

3F-DNS 5F-DRF 3F-DNS 5F-DRF 3F-DNS 5F-DRF

B
ra

zi
l

Mean 0.98988 0.99991 1.4355×10−3 1.4486×10−5 2.8805×10−2 2.9619×10−3

SD 0.04979 0.00062 2.6952×10−3 6.2670×10−5 2.4619×10−2 2.3908×10−3

Min 0.14671 0.97458 1.1615×10−6 1.4523×10−8 1.0778×10−3 1.2051×10−4

Max 0.99999 1 4.2524×10−2 2.8513×10−3 2.0621×10−1 5.3398×10−2

R
us

si
a

Mean 0.99088 0.99965 2.3245×10−3 6.6275×10−5 3.3847×10−2 6.0255×10−3

SD 0.03863 0.00249 6.9326×10−3 1.5886×10−4 3.4338×10−2 5.4749×10−3

Min 0.26261 0.93522 1.9335×10−6 4.5277×10−7 1.3905×10−3 6.7288×10−4

Max 0.99999 1 1.3340×10−1 2.7742×10−3 3.6524×10−1 5.2671×10−2

In
di

a

Mean 0.97376 0.99714 2.6349×10−3 3.3138×10−4 4.4275×10−2 1.4651×10−2

SD 0.04678 0.00876 3.4680×10−3 5.5550×10−4 2.5978×10−2 1.0806×10−2

Min 0.29763 0.71665 9.4046×10−6 5.3692×10−7 3.0667×10−3 7.3275×10−4

Max 0.99994 1 4.4733×10−2 8.6687×10−3 2.1150×10−1 9.3106×10−2

C
hi

na

Mean 0.98186 0.99815 4.1556×10−3 6.5080×10−4 5.1737×10−2 1.3578×10−2

SD 0.03201 0.00761 7.8732×10−3 2.8618×10−3 3.8461×10−2 2.1599×10−2

Min 0.22041 0.79261 6.5712×10−6 4.5227×10−8 2.5634×10−3 2.1267×10−4

Max 0.99997 1 1.4055×10−1 6.3573×10−2 3.7489×10−1 2.5214×10−1

So
ut

h
A

fr
ic

a

Mean 0.99594 0.99988 1.5003×10−2 1.9223×10−4 8.8286×10−2 9.8688×10−3

SD 0.00494 0.00123 5.3505×10−2 1.5302×10−3 8.4921×10−2 9.7402×10−3

Min 0.92787 0.94945 2.7715×10−6 2.4612×10−7 1.6648×10−3 4.9611×10−4

Max 0.99999 1 1.1823 6.1278×10−2 1.0873 2.4754×10−1
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2.4 Forecasting the BRICS Term Structure

2.4.1 Competing models

In addition to in–sample fitting, a term structure model should also provide effective
out–of–sample prediction capabilities of the yield curve, we therefore investigated the
models predictive abilities.

We carried out the task in a kind of indirect way: instead of directly predicting
spot rates we forecasted the building blocks of the yield curve, that is parameters and
decay terms. We used various techniques to model and predict the time series of β̂, λ̂,
τ̂ : the Univariate Autoregressive AR(1) model, the Trigonometric seasonal Box–Cox
Transformation with ARMA residuals Trend and Seasonal components (TBATS), and a
combination of Autoregressive Integrated Moving Average and Nonlinear Autoregressive
Neural Network (ARIMA–NARNN). We then estimated spot rates at the time t+h

and maturity m ∈M = (m1,m2, . . . ,mN )′:

ŷDNS(t+h|t) = β̂0,t+h|t + β̂1,t+h|t

1− e−λ̂t+h|t m

λ̂t+h|tm

+ β̂2,t+h|t

1− e−λ̂t+h|t m

λ̂t+h|tm
− e−λ̂t+h|t m

 ,
(2.4)

for the three factor model, and

ŷDRF (t+h|t) = β̂0,t+h|t + β̂1,t+h|t

1− e−m/τ̂1,t+h|t

m/τ̂1,t+h|t

+ β̂2,t+h|t

1− e−m/τ̂2,t+h|t

m/τ̂2,t+h|t

+

+ β̂3,t+h|t

1− e−m/τ̂1,t+h|t

m/τ̂1,t+h|t
− e−m/τ̂1,t+h|t

+

+ β̂4,t+h|t

1− e−m/τ̂2,t+h|t

m/τ̂1,t+h|t
− e−m/τ̂2,t+h|t

 ,
(2.5)

for the five factor model.
When using the AR(1) process to predict the parameters in (2.4) and (2.5) we have:

xk,t+h = α0 +α1xk,t + εk,t (2.6)
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where xk,t+h(xk,t) is the variable to model, i.e. either β, λ or τ1, τ2, while α0 is the
coefficient of the zero degree term; α1 is the coefficient of the autoregressive term and
εt is a white noise error term with E(εk,t) = 0 and V ar(εk,t) = σ2

k.
In a similar fashion, when using the TBATS, we have:

x
(ω)
k,t+h = lt +ϕbt +

T∑
j=1

s
(i)
t+h−ηj

+dt+h (2.7)

where x(ω)
k,t+h is the Box–Cox transformation of the observations xk,t+h with the Box–

Cox parameter ω; lt and bt represent, respectively, the local level and the short–run
trend at time t; ϕ is the dampening parameter for the trend; s(i)

t+h is the ith seasonal
component while ηj is the seasonal period; and dt+h is the prediction error modeled as
an ARMA(p,q) process.

Finally, the combination of the ARIMA(p,d,q) process and NAR–NN is aimed to
provide more flexibility in forecasting the parameters. In fact, the ARIMA(p,d,q) is
used to predict each models coefficient βk which is expressed as a linear function of
both its past observations and past residual error terms (or random shocks):

xk,t+h = α0 +
p∑

j=1
αjxk,t+h−j +

q∑
i=1

γiεk,t+h−i (2.8)

with xk,t+h as above, α0 being the intercept, αj and γi the autoregressive and moving
average coefficients respectively, and εk,t a white noise process.

On the other hand, the NAR–NN is used to forecast the future values of the decay
terms λ and τ according to the:

xk,t+h = ωk,0 +
n∑

i=1
ωk,i Λ

αi,0 +
m∑

j=1
αi,jxk,t+h−j

+ εk,t (2.9)

where m is the number of lagged input values xk,t+h−j ; αi,j is the connection weight
between the input unit j and the closest hidden unit i; Λ represents the activation
function; ωk,i is the connection weight between the hidden unit i and the output unit
k; while αi,0 and ωk,0 are the bias used to optimize the working point of the neurons
in the hidden and output units respectively; finally εk,t represents the error term.
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Relatively to the ARIMA model, we followed the Box–Jenkins (Box et al., 2016)
and Hyndman–Khandakar (Hyndman and Khandakar, 2008) method to determine
the most appropriate (p,d,q) specification. For what concerns the development of the
NAR–NNs architecture (i.e. the time delays, number of nodes, hidden layers, activation
functions etc.) we followed a trial and error approach due to the absence of specific
rules (Lantz, 2019).

2.4.2 Methodology and Performance evaluation

From a practical viewpoint, parameters and hence yield curves prediction was
performed on a daily basis in the period June 2022 – September 2022, for an overall
number of 50 predicted days for each BRICS country using the sliding window method.
Specifically, we chose a quite limited range of values close to the forecasting period on
which the models are firstly calibrated and then used for one–step–ahead predictions.
After each forecast the window is shifted and updated with a new value in order to
predict the next one. The advantage of this approach consists in giving priority to
the information content of the period close to that of forecasts since it is intended to
deeply influence the events of the near future, thus incorporating the autocorrelation
features of the series into the model.

To investigate the predictive performance of the candidate models, we evaluated the
statistical accuracy of the forecasts with the Mean Square Forecasting Error (MSFE)
and the Mean Absolute Percentage Error (MAPE) performance metrics:

MSFE = 1
n

n∑
j=1

(yt+h − ŷt+h)2 (2.10)

MAPE = 100
n

n∑
j=1

∣∣∣∣∣yt+h − ŷt+h

yt+h

∣∣∣∣∣ (2.11)

where yt+h is the observed value in t+h and ŷt+h the related forecast.
Main results are summarized in Table 2.5 for each country and method. Furthermore,

in Figure 2.7 we compare the average observed yield curves to the average forecasted
ones for each country, model and method.
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Table 2.5 – Average MSFE and MAPE (%) metrics obtained with different competing
methods.

Brazil Russia India China S. Africa

3F-DNS 5F-DRF 3F-DNS 5F-DRF 3F-DNS 5F-DRF 3F-DNS 5F-DRF 3F-DNS 5F-DRF

M
SF

E

AR(1) 0.0635 0.2106 0.0081 0.4775 0.0059 0.1344 0.0034 0.1699 0.0448 0.2298

TBATS 0.0673 0.4058 0.0240 0.3628 0.0091 0.2235 0.0043 2.1228 0.1675 0.3714

ARIMA-NARNN 0.1374 0.1449 0.0161 0.3702 0.0062 0.2873 0.0035 0.2439 2.4051 0.1902

M
A

P
E AR(1) 1.5564 2.5550 0.8015 5.5957 0.8808 3.0490 1.9111 11.4933 1.6075 3.7369

TBATS 1.5757 3.2530 1.3838 5.1773 1.0227 4.2622 2.0728 32.4487 2.5632 4.0259

ARIMA-NARNN 2.0695 1.9699 1.1545 5.0771 0.8872 4.7553 1.9255 9.6457 11.6353 3.2622

Data in Table 2.5 can be interpreted in at least two ways. On the one hand, it
is possible to detected the most effective forecasting method within each parametric
model and market; on the other hand, for each market it is possible to determine which
combination of parametric model/forecasting method delivered the overall best results.

Looking at the results of the MAPE indicator over the whole forecasting window
we can clearly see the dominance of the 3F–DNS model, which produced overall the
best performance delivering accurate predictions over the entire maturity spectrum
and across all the countries, with an average accuracy of over 98%.

For what is concerning the 5F–DRF model, the presence of further slope and
curvature terms, so important to ensure higher in-sample fitting performances, didn’t
assure any advantage to the models predictive power with respect to the 3F–DNS.
Nevertheless, the 5F–DRF model can effectively replicate the average trends of the
BRICS curves; moreover, the small error measures jointly with 95% level of predictive
precision makes the 5F–DRF an ideal alternative to the three factor model in every
considered market despite the high variability of the parameters.

Going into details and considering the 3F–DNS model, the AR(1) process ensured
the best result within all the countries achieving 98.65% of average forecasting accuracy;
then comes TBATS with 98,28% and ARIMA–NARNN with 96.47%. Moving to the 5F–
DRF model, AR(1) and TBATS achieved the 94.71% and 90.16% predictive accuracy,
respectively, while the best result was obtained with the ARIMA–NARNN combination
with 95.10% precision. The latter result was attained due to the ability of the neural
network to better handle the nonlinear behavior of the decay terms.

Turning our attention to the forecasting combinations and cross–checking the
tabulated results, it is possible to highlight that the best predictions were systematically
provided by the 3F–DNS–AR(1) combination in every considered country, with an
overall average MAPE improvement of 24,52 % with respect to its direct competitors
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(3F–DNS–TBATS and 3F–DNS–ARIMA–NARNN), and of 68,26 % with respect to
the methods used within the 5F–DRF model.

Figure 2.7 – For each BRICS country (in column) the graph compares yield curves forecasted
with different techniques for the 3F-DNS and 5F-DRF models.
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Summarizing the results, it is possible to state that the proposed framework makes
it possible to predict with high precision and reliability the challenging dynamics
characterising BRICS yield curves avoiding the need to resort to constant decay terms
unlike most of similar research. Moreover, the comparison between the two models
revealed the existence of a fitting–forecast trade–off: depending on the need, it is
possible to opt for the 3F–DNS which ensures more accurate yield curves predictions,
but slightly less precise in–sample–fitting; or rely on the 5F-DRF which ensures better
fitting abilities but less accurate spot rates predictions.

2.5 Conclusion

In this paper we analyzed a methodology aimed at identifying optimal time–varying
parameters for the Three Factor Dynamic Nelson–Siegel (3F–DNS) and the Five
Factor Dynamic De Rezende–Ferreira (5F–DRF) models. We tested the modeling and
predictive abilities of the proposed framework outside the comfort zone of western
economies, that is we focused our attention on BRICS countries. Within the estimation
phase we highlighted the advantages of using optimal time–varying decay terms over
the constant alternatives. With regard to the predictive process, we moved within the
Diebold–Li dynamic framework and employed AR(1), TBATS and a combination of
ARIMA–NARNN as Local Data Generating Processes to predict models parameters,
and hence yield curves, as an alternative approach to direct interest rates forecasting.

According to the in–sample fitting results, we first found that the use of time–varying
decay terms allowed to outperform the results obtained keeping λ and τ constant or
averaging them and ensure the desired flexibility to manage anomalies and extreme
dynamics characterizing BRICS markets. Additionally, we showed that both models
performed well in–sample as they can describe and replicate the main trends and shapes
of BRICS yield curves. However, the 5F–DRF model with multiple decay parameters
and additional slope and curvature factors assures improved fitting results. On the
contrary the 3F–DNS model generates significantly larger errors due to its well known
limitations in approximating the short and long term maturities as well as curves with
more inflexion points.

Relatively to the models out–of sample performances, we obtained satisfying results
with an average predictive accuracy of over 95%. Overall, the out–of–sample predictions
of the 3F–DNS–AR(1) model turned out to be more accurate with lower errors in every
market, so that we concluded that not necessarily a richer parametrization ensures also
better predictive abilities. The results obtained herein confirm the relevant predictive
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power of our approach also within emerging economies without the need to resort to
constant decay terms.

The analysis conducted in this paper can be extended in different ways. First of
all alternative estimation approaches (e.g. the Maximum Likelihood, Kalman Filter
or Machine Learning methods) can be tested, thus avoiding the a priori selection of
the decay terms. Eventually, a refined version of the models which integrates financial
and macroeconomic factors (e.g. monetary policy, inflation, economic growth) can be
considered for the BRICS bond market. Finally it would be interesting to test the
proposed framework in different markets (e.g. commodity, derivatives, forex) or for
different financial instruments (e.g. corporate bonds, credit default swaps). Actually
all these topics represent a part of our ongoing research.
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2.6 Appendix

Figure 2.8 – For each BRICS country (in column) the graph compares MSE (first line) and
RMSE (second line) time series generated by the 3F-DNS and 5F-DRF models.



Chapter 3

Modeling and Forecasting Natural
Gas Futures Prices Dynamics: An
Integrated Approach

3.1 Introduction

During recent decades, the liberalization and financialization wave (Cheng and
Xiong, 2014, Creti and Nguyen, 2015) generated a rise in the importance of energy
commodities as an alternative asset class within the global market. Futures markets
played a fundamental role in the financialization process of energy commodities,
indirectly fostered by markets increasing liquidity. In fact, the trading volume of
energy futures is constantly expanding, and the increase in the exchange volumes in the
Asia–Pacific (APAC) region is the main driver, with a share of 74% (Futures Industry
Association (FIA), 2022) of the worldwide trading activity in 2021. Furthermore,
increasing returns and inflation have fuelled futures markets’ expansion. Consider, for
instance, the Euro area: the size of the energy derivatives market increased by 30% in
the period January–June 2022, with over 1700 firms involved (Furtuna et al., 2022).

In this framework, the availability of proper techniques to model and predict
energy futures term structure dynamics is of crucial importance, especially for Western
European countries that, in light of unprecedented events such as the COVID-19
pandemic and the more recent Russia–Ukraine war, have to face new challenges to
calibrate their policy priorities. As stated in Pascual and Zambetakis (2016), in fact,
the European Union is not only one of the major global energy consumers, but it is
highly reliant on Russia for imported gas which is, therefore, an important pawn in
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determining related energy policies. Moreover, as highlighted in Bordoff and O’Sullivan
(2023), the events of the past years have dramatically revealed the many ways in which
the energy transition and geopolitics are entangled, and, as predicted in Bartuska et al.
(2019) during the previous Russia–Ukraine crisis in 2014, natural gas has assumed a
pivotal role in the geopolitics of energy security in Europe, and it is now the second
largest energy commodity behind oil, and the second fastest rising source of energy
demand after renewables (Snam, 2020). Acquiring proper knowledge of the term
structure of the natural gas (NG) futures market is therefore helpful in reducing the
exposure to price volatility and to assess proper energy policies in light of its key role
in the decarbonization process and in the transition to sustainable development based
on a highly efficient renewable energy system (Chen et al., 2019, Guidolin and Alpcan,
2019).

In this perspective, based on the role of energy futures as a hedging tool and
indicator of markets trends, we analyzed the term structure of the NG futures market.
The scope of this paper is twofold. First, we are interested in testing whether models
conventionally employed on the bonds market can be also effective for in-sample fitting
in the case of NG futures. Second, moving to the forecasting issue, we investigate
the effectiveness of a technique combining yield curve models and machine learning.
In detail, we used B-spline (Schoenberg, 1946), four-factor dynamic Nelson–Siegel–
Svensson (4F-DNSS) (Svensson, 1994), and five-factor dynamic De Rezende–Ferreira
(5F-DRF) (De Rezende and Ferreira, 2008) models for in-sample fitting and a hybrid
method that combines the above three techniques to a Nonlinear Autoregressive Neural
Network (NAR-NN) for out-of-sample forecasting of NG futures curves. Furthermore,
the NAR-NN is also used in the discussion of the results as a benchmark for day-ahead
predictions for the futures price time series.

The choice of the fitting models has various motivations: they make a parsimonious
use of parameters, being, therefore, easy to handle; in addition, working with fixed-
income assets, these models showed a notable ability to replicate the term structure
dynamics (Svensson, 1994, Lin, 2002, Koopman et al., 2007, De Pooter, 2007, Caldeira
et al., 2010, De Rezende and Ferreira, 2013, Muthoni et al., 2015, Chouikh et al., 2017,
Ullah and Bari, 2018, Faria and Almeida, 2018, Nunes et al., 2019, Nagy, 2020, Mineo
et al., 2020). Therefore, provided the similarity with the NG futures market in terms of
the varying maturity of the data structure, we tested to what extent the above models
can be reliable on the energy markets too. Furthermore, NAR-NNs, with their ease of
configuration, gave proof of their ability on both one and multi-step ahead forecasts of
time series (Guo and Xue, 2014, Baruník and Malinská, 2016, Ruiz et al., 2016, Zhou
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et al., 2018, Aliberti et al., 2019, Benrhmach et al., 2020, Di Franco and Santurro,
2020, Butler et al., 2021, Chi, 2021, Xu and Zhang, 2021, Blanchard and Samanta,
2020, Xu and Zhang, 2022), managing highly noisy and volatile data.

So far, the existing literature has mostly focused on the relations between NG and
other commodities or securities (see, for instance, Emery and Liu, 2002, Brown and
Yücel, 2008, Brigida, 2014, Etienne et al., 2016, Gatfaoui, 2016, Zhang et al., 2017,
Li et al., 2017, Ji et al., 2018, Behmiri et al., 2019, Tiwari et al., 2019), as well as
on modeling price volatility (e.g., Suenaga et al., 2008, Lv and Shan, 2013, van Goor
and Scholtens, 2014, Saltik et al., 2016, Fałdziński et al., 2021, Lu et al., 2022, Liang
et al., 2022, Guo et al., 2023), demand and supply (e.g., Szoplik, 2015, Khan, 2015,
Shaikh and Ji, 2016, Panapakidis and Dagoumas, 2017, Shaikh et al., 2017, Chen
et al., 2018, Ö zmen et al., 2018, Hribar et al., 2019, Su et al., 2019), spot prices (e.g.,
Mu, 2007, Panella et al., 2012, Salehnia et al., 2013, Mason and N.A. Wilmot, 2014,
Jin and Kim, 2015, Čeperić et al., 2017, Dolatabadi et al., 2018, Berrisch and Ziel,
2020, Kwas and Rubaszek, 2021, Li et al., 2021, Wang et al., 2021, Pei et al., 2023) or
futures prices of individual contracts (e.g., Borovkova and Mahakena, 2015, Jana and
Ghosh, 2022, Li and Song, 2023). Relatively less attention has been paid to NG futures
prices term structure modeling and forecasting and only a few studies have partly
tackled the issues we are dealing with. For example, Chiarella et al. (2009) proposed a
two-factor regime-switching volatility model enhanced with the Markov chain Monte
Carlo estimation method to model the forward price curve; Almansour (2016) studied
futures curve dynamics with an extension of the Gibson and Schwartz (1990) two-factor
model in a regime-switching framework; Leonhardt et al. (2017) used a geometric
multi-factor model to deal with cointegration of the term structure, regime switching,
and seasonality of futures prices. Furthermore, Karstanje et al. (2017) studied futures
prices comovements of the most traded commodities with a factor approach relying
on the Diebold and Li (2006) model; Jablonowski and Schicks (2017) introduced a
three-factor model based on Heath et al. (1992) to describe the relationship between
gas term structure and temperature forecasts. Finally, Tang et al. (2019) developed a
predictive method based on artificial neural networks and analyzed the impact of Google
search data and internet news sentiment on the model’s forecasting ability, Li (2019)
investigated the abilities of GARCH-type discrete-time models and different Poisson
jump-diffusion models to fit NG futures data, while Horváth et al. (2020) analyzed
the forward curves of 24 different commodities with several polynomial interpolation
techniques and provided a comparative study of the predictive abilities of methods
based on functional autoregressive processes, Diebold and Li, and naïve approaches.
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In light of the above, our study bring to the related literature some contributions
that can be summarized as follows. First, we analyzed the stylized facts bridging NG
futures and government securities markets to endorse the use of yield curve models
in the former. Second, we used parametric yield curve models for in-sample fitting
in the NG futures market, and third, we discussed a hybrid scheme with NAR-NNs
for day-ahead predictions. With this aim, we used a dataset of daily prices which
spans various market conditions to validate the adequacy of the framework under very
different situations.

The remainder of the paper is organized as follows: Section 3.2 analyzes the features
and main stylized facts of the data set; Section 3.3 presents the methodologies in use for
modeling and forecasting, respectively; Section 3.4 discusses the main results; Section
3.5 concludes the paper.

3.2 Data

We considered the dataset of daily settlement prices, quoted in €/MWh, of the
Mc1–Mc12 natural gas futures contracts expiring in 1 to 12 month(s). The data
cover the period from 20 January 2011 to 13 June 2022 for an overall number of 2916
observations. The daily futures prices were obtained from the Dutch Title Transfer
Facility (TTF), the virtual trading hub which is the leading European gas trading
platform (Heather, 2021), with the highest level of liquidity and highest share of trade.
In 2020, the TTF overtook, for the first time, the world’s biggest NG market, Henry
Hub, in terms of trading volume and open interest, and reached a new record in 2021,
with approximately 1.94 million contracts (Intercontinental Exchange, 2021).

Figure 3.1 displays the three–dimensional surface plot of NG futures curve data for
the whole period, while the inset highlights the dynamics of the term structure for the
period 20 January 2011–27 April 2021, which is visually flattened because of the severe
rise in price level that occurred in 2021–2022. In this temporal frame, states of stability
alternated with turbulence; significant upward and downward shifts of the price level
at all of the maturities can be observed in various periods, such as between mid-2014
and early 2016, when the global economy faced one of the largest oil price declines due
to the global economic slowdown and the surge in production from American shale
producers and OPEC members.

A similar situation was replicated twice later: in 2017–2018, when OPEC agreed to
cut oil production leading to an increase in the oil price and hence of the natural gas
price, and in 2020–2021, with the most significant reduction in the NG price over the
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whole time span, due to the combined effect of the pandemic and the Russia–Saudi
Arabia price war—the oil price dropped down to around 10 $ per barrel, while WTI oil
futures price were traded at −37.63 $ per barrel for the first time in history, causing
the NG price to slide to 4.5 €/MWh on the European market.

Figure 3.1 – 3D surface plot of the term structure of natural gas futures prices: the x-axis
shows the time expressed in days, the y-axis represents the maturities from 1 month (Mc1) to
12 months (Mc12), and the z-axis the price of the contracts in Euros. The data spans 2916
trading days, from 20 January 2011 to 13 June 2022. The inset shows a zoomed-in area with
the markets dynamics in the period 20 January 2011–27 April 2021 otherwise flattened.

More recently, in the period mid 2021–mid 2022, we observed a turmoil in the NG
market caused by several interconnected factors: (i) the surging energy demand driven
by the global economic recovery after the pandemic and by the hottest summer of
the last century (Copernicus Climate Change Service (C3S), 2022); (ii) low levels of
gas storage, with underground storage facilities less than 77% full throughout 2021
and less than 57% in December 2021 (Gas Infrastructure Europe (GIE), 2022); (iii)
a shortage of traditional energy resources due to the investment contraction in the
hydrocarbon sector and poor renewable performance caused by extreme weather events;
(iv) scarce delivery of liquid natural gas (LNG) to the EU market from the Middle
East and North America alongside the increase in demand and price in the APAC
region; (v) the worsening of the Russia–West relations in connection to sanctions also
in the energy sector.
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In summary, the observation period poses a rich set of dynamics in the NG term
structure, with futures curves assuming a great variety of shapes: upward sloping
(contango), downward sloping (backwardation), as well as inverted or humped/multi-
humped, that is, conditions all observable in the government bonds market, thus
justifying the extension to the NG market of the framework and the methods discussed
in Diebold and Li (2006). We, therefore, argue that stylized facts in the bonds and in
the NG futures market are similar. To examine these properties, in Table 3.1 we present
the main descriptive statistics of futures prices and of the daily volatility (σdaily) of
futures prices series for each NG futures contract calculated as the absolute value of
price returns, following Bessembinder et al. (1996).

Table 3.1 – Descriptive statistics of prices and daily volatility for each natural gas futures
contract. For the price, we reported the mean, the standard deviation (SD), the minimum
(Min), and the maximum (Max) values, while for the daily volatility (σdaily) we examined the
mean and the median.

Price σdaily

Maturity Mean SD Min Max Mean Median

Mc1 24.951 20.928 3.509 227.201 2.031 1.167
Mc2 25.244 20.764 4.058 217.293 1.870 1.088
Mc3 25.369 20.170 4.618 210.804 1.743 1.000
Mc4 25.288 19.095 5.406 206.905 1.688 0.942
Mc5 25.170 18.327 7.082 200.902 1.611 0.923
Mc6 24.923 17.376 7.921 199.052 1.557 0.913
Mc7 24.690 16.645 9.194 179.233 1.507 0.906
Mc8 24.605 16.410 10.692 171.752 1.449 0.894
Mc9 24.527 16.078 11.130 154.291 1.405 0.848

Mc10 24.394 15.544 10.828 149.990 1.368 0.806
Mc11 24.190 14.733 10.801 143.515 1.329 0.797
Mc12 23.979 13.750 10.739 130.742 1.299 0.771

The results suggest that the average futures curve has a downward sloping trend
and a slight hump in the short term (see Figure 3.2 (a) for the visual inspection), with
average prices ranging between a maximum of 25.37 €/MWh at maturity Mc3 and a
minimum of 23.98 €/MWh for Mc12. At first glance, the empirical evidence seem to
be in contrast to the feature of the increasing average yield curve characterizing the
bond market. Nevertheless, if we consider the period from January 2011 to September
2021, excluding the most acute phase of the 2021–2022 downturn, and we plot again
the corresponding average futures curve in that resized time frame (Figure 3.2 (b)),
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then the shape is consistent with the increasing and concave curve which is typical of
bond markets.

We can, therefore, argue that the discrepancy originally highlighted in Figure 3.2
(a), considering the whole observation period, is probably due to record-breaking
fluctuations of the TTF futures prices between December 2021 and May 2022, with
price peaks reaching over 200 €/MWh for short and mid-term maturities: the all-time
record of 227 €/MWh was reached on 7 March 2022, that means an average increase
of 945% over the same period of 2021 and of 127% over the previous month.

(a) (b)

Figure 3.2 – Plot of the behavior of the average futures curves in the period January 2011–
June 2022 (a) and in the resized period January 2011–September 2021 (b)

It is then reasonable to assume that this breaking trend is temporary, reflecting
market players concerns in the short to medium–term. As soon as the crisis is overcome
and the NG sector restores secure and stable supply chain and storage, the curve
presumably should turn to contango again, in analogy to the average spot yield curve
behavior.

Furthermore, we can observe a trade-off between the volatility and the maturity:
price volatility (daily volatility) is higher for contracts at shorter maturities and
decreases for contracts with longer expiration dates; in fact, the standard deviation
given in column three of Table 3.1 (mean given in column six) spans from a maximum
value of 20.93 (2.03) at maturity Mc1 to a minimum value of 13.75 (1.29) for the maturity
Mc12, with an average decrease of 4.0%. This is consistent with the phenomenon
known as the Samuelson hypothesis (Samuelson, 1973), observed on the bond market
as well, i.e., futures price volatility is a decreasing function of the time to maturity. To
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prove this assertion, we followed Duong and Kalev (2008), Jaeck and Lautier (2014)
and ran the Jonckheere–Terpstra test (JT test) (Jonckheere, 1954, Terpstra, 1952)
for ordered differences among classes to verify whether the medians of the time series
of daily volatilities across maturity are decreasingly ordered. At first, we verified
whether the σdaily series at each maturity presents homogeneous statistical features by
computing the Jarque–Bera test for normality, the Ljung–Box test for autocorrelation,
as well as the augmented Dickey–Fuller test for stationarity. The results, summarized
in Table 3.2, indicate that the σdaily time series are not normally distributed, they are
autocorrelated, and they do not contain unit roots.

Table 3.2 – Results of the Jarque–Bera test for normality (JB test), the Ljung–Box test
for autocorrelation (LB test), and the augmented Dickey–Fuller test for stationarity (ADF
test) computed on the daily volatility (σdaily). The symbol * is used to denote the rejection of
the null hypothesis H0 (data are normally distributed in the JB test; the series exhibits no
autocorrelation in the LB tests; data series are not stationary in the ADF test) at the 1%
significance level.

σdaily

Maturity JB Test LB Test ADF Test

Mc1 1.87×105 * 4.07×103 * −9.628 *
Mc2 2.35×105 * 4.23×103 * −9.376 *
Mc3 3.65×105 * 3.98×103 * −9.131 *
Mc4 8.67×105 * 3.53×103 * −8.068 *
Mc5 7.79×105 * 3.91×103 * −8.485 *
Mc6 8.12×105 * 4.21×103 * −8.728 *
Mc7 6.19×105 * 4.48×103 * −8.144 *
Mc8 7.13×105 * 4.78×103 * −7.911 *
Mc9 7.75×105 * 5.24×103 * −8.204 *

Mc10 7.59×105 * 5.11×103 * −8.088 *
Mc11 8.23×105 * 4.92×103 * −7.952 *
Mc12 1.49×106 * 4.51×103 * −7.238 *

We then ran the JT test with the null hypothesis H0 that the median values of the
volatility series are the same at all maturities, against the alternative H1, with at least
one strictly decreasing inequality:

H0 : σ̃12 = σ̃11 = . . .= σ̃1

H1 : σ̃12 ≤ σ̃11 ≤ . . .≤ σ̃1
(3.1)
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where σ̃i, i= 1 . . .12, represents the median of the daily volatility time series at maturity
i. The result of the JT Test, with the Z statistic equal to 2.59×108 and a p–value of
2×10−16, allow to reject the H0 hypothesis at 1% significance level, thus supporting
the Samuelson Hypothesis.

Another stylized fact shared with the yield curve in the government bond market
is the great variety of shapes exhibited by the NG futures curves. Figure 3.3 shows
five slices extracted from the 3D surface plot, representing the main trends observed
on the NG market in different periods.

Figure 3.3 – Plot of the main futures curves shapes observed on the market at various times
t = 8 February 2012, 19 September 2012, 1 December 2016, 22 July 2019, and 25 August
2021. Time is represented on the x-axis, while maturities and prices (€/MWh) are on the
y-axis and z-axis, respectively.

On 8 February 2012, for instance, curve A was normal, i.e., slightly increasing for
longer maturities; on 19 September 2012 and 1 December 2016, the term structure
(see B and C) was almost flat; on 22 July 2019, the increasing and slightly humped
curve D is associated with the market in contango; on 25 August 2021, the market
is in backwardation, as testified by the decreasing futures curve behavior at longer
maturities (see E).

Overall, we can preliminarily conclude that the information-rich content and the
similarities highlighted in the previous sections make the NG futures market a fruitful
ground for testing models usually employed to fit and forecast the behavior in the
government bond market.
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3.3 Modeling Approach

3.3.1 Parametric Factor Models

The four-factor dynamic Nelson–Siegel–Svensson (4F-DNSS) and the five-factor
dynamic De Rezende–Ferreira (5F-DRF) are the most flexible exponential parametric
models in the so-called Nelson–Siegel class. They are characterized by an improved
fitting ability with respect to the three-factor Nelson–Siegel (Nelson and Siegel, 1987)
model in which they have their roots, that makes them suitable to describe and
replicate the overwhelming majority of yield curves trends and dynamics, including
humps/basins, in the range of short and long-term maturities.

Let us indicate by p(t) the N × 1 vector of observed gas futures prices available
at maturity m ∈M = (m1,m2, . . . ,mN )′ , where N is the maximum maturity length in
months, and consider a time horizon of length t, t= 1, . . . ,T expressed in days. The
price dynamic is described by:

p(t) = F (t)β +η(t). (3.2)

The variables in (3.2) deserve some further explanation. We start with F , which is
an (N ×T )×k matrix of factor loadings, with k = 4 or k = 5, depending on the model,
that is, 4F-DNSS or 5F-DRF. The generic m-th row is either in the form:

FDNSS
m (t) =

[
1 τ1

1−e−m/τ1
m τ1

1−e−m/τ1
m − e−m/τ1 τ2

1−e−m/τ2
m − e−m/τ2

]
, (3.3)

in the 4F-DNSS model, i.e., when k = 4, or:

FDRF
m (t) =

[
1 τ1

1−e−m/τ1
m τ2

1−e−m/τ2
m τ1

1−e−m/τ1
m − e−m/τ1 τ2

1−e−m/τ2
m − e−m/τ2

]
,

(3.4)
in the 5F-DRF model, i.e., when k = 5; here, τ1 and τ2 are the decay terms which
regulate the exponential components’ decaying speed.

Three elements characterize the F matrix, that is, the factor loadings, i.e., the
building blocks of futures curves. The first element, and also the first component in
both (3.3) and (3.4) is the level that represents the long-term component, constant for
every maturity. The second element, occupying position 2 in (3.3) and positions 2 and
3 in (3.4) is τi(1− e−m/τi)/m, i= 1,2, is the slope of the futures curve. It is a proxy
of the short-term component, as it starts at 1 and quickly converges monotonically
to zero. Finally, the third element is [τj(1 − e−m/τj )/m] − e−m/τj , j = 1,2, we find
it in positions 3 and 4 in (3.3) and in positions 4 and 5 in (3.4), and it represents
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the curvature of the futures curve. It is a proxy of the medium-term component of
the futures curve as it begins at zero, reaches the maximum value at medium-term
maturities, and monotonically returns to zero at long-term maturities. The models
presented in (3.3) and (3.4) consider different combinations of the above elements:
the 4F-DNSS uses a single slope and two curvature components, while the 5F-DRF
introduces an additional slope element. Figure 3.4 shows the behavior of the factor
loadings in the case of the 4F-DNSS (a) and 5F-DRF (b) models.

(a) (b)

Figure 3.4 – 4F–DNSS (a) and 5F–DRF (b) factor loadings at different time to maturity.
In (a) and (b) we indicate the average values of τ1 and τ2 determined during the estimation
process and used for the daily fits.

Turning to β, we have β = [β0 β1 β2 β3]′ in the 4F–DNSS model, and β =
[β0 β1 β2 β3 β4]′ in the 5F–DRF model. Each element represents the weight associated
to the corresponding factor loading, hence, changes in the vector β components impact
the level, slope and curvature of the NG futures function and thus its shape. As a
result, all the futures curve shapes can be replicated by a proper weights calibration
and combination with the corresponding loadings. Finally, η(t) ∼ N (0,Σ) represents
the error terms vector, assumed normally distributed with zero mean vector and
variance-covariance matrix Σ.

For what is concerning the estimation process of β, we applied an approach organized
into two stages. At first, following Castello and Resta (2022), we identified for each
time t the optimal combination [τ̂1(t), τ̂2(t)], and hence β̂(t), as the weights vector
associated with the lowest root mean square error (RMSE). Then, we determined the
average values of τ̂j (j = 1,2) to derive the optimal estimate of β̂∗(t) for each available
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day. In this way the model maintains a high adaptive capability and gains in stably
estimated parameters.

3.3.2 B–Spline interpolation method

B–Spline (Schoenberg, 1946, Curry and Schoenberg, 1947, 1966) is a powerful
modeling tool to fit observable data without strong functional form assumptions. The
B–Spline function is:

f(x) =
k+d−2∑

i=1
πiBi,d(x), (3.5)

where πi (i= 1, . . . ,k+d−2) are the spline coefficients and Bi,d(x), d≥ 1 are B–Spline
basis functions. Those, in turn, are fully determined once set the order d≥ 1 and the
sequence of nondecreasing real values ξ1 ≤ ξ2 ≤ . . . ≤ ξk, acting as control points or
knots. To have well–defined B–Spline of order d and degree d−1 covering the whole
span of knots, the sequence of knots is extended as following:

ξ1, . . . , ξ1︸ ︷︷ ︸
k-1 times

, ξ1, ξ2, . . . , ξk, ξk, . . . , ξk︸ ︷︷ ︸
k-1 times

.

The i–th B–Spline basis of order d is then recursively defined, for d > 1, as:

Bi,d(x) = δi,d(x)Bi,d−1(x)+ [1− δi+1,d(x)]Bi+1,d−1(x), (3.6)

with:

Bi,1(x) =

1, if ξi ≤ x≤ ξi+1

0, otherwise
, (3.7)

and:

δi,d(x) =


x− ξi

ξi+d−1 − ξi
, ξi ̸= ξi+d−1

0, otherwise
. (3.8)

In practical applications, the choice of the number k of knots is of paramount
importance: too many (too few) knots, in fact, can result in overfitting (underfitting)
issues. In general, the problem is addressed by the use of priors, enforcing smoothness
across the coefficients πi: in general, the closer the consecutive πi are to each other,
the smoother the resulting B-spline is, with lower local variability.

In our study, we selected seven knot points, with three overlapping knots, and
we partitioned the maturity domain [1, 12], that is, from 1 to 12 months, into four
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sub-periods, that is, from 1 to 3, 3 to 6.5, 6.5 to 10.5, and 10.5 to 12. This implies that
the fitted futures curves are divided into four segments, each approximated by a set of
piecewise basis functions of the same degree, as shown in Figure 3.5 where we overlay
an NG futures curve taken as an example from the dataset and the corresponding
basis functions used to approximate it. Cubic B-spline functions were used and the
conditions were such as to assure continuity of the slope (curve segments have the same
first derivative at joint, i.e., the corresponding function is of class C 1) and curvature
(curve segments with same second derivative at joint, i.e., functions belonging to C 2)
were applied at each knot, except to those overlapping; here, the B-spline is of class
C 0, that is, curve segments are connected at the joint.

Figure 3.5 – The plot shows an example of the NG futures curve (blue line), the corresponding
4–order basis polynomial functions (dashed lines), and the ξ1, . . . , ξ7 knots.

The estimation of the vector of parameters π(t) was performed for each time t,
t= 1, . . . ,T , with the least squares method minimizing the sum of the weighted squared
residuals (WSSE):

WSSE(π(t)) =
N∑

j=1
ω(mj , t)[p(mj , t)−f(mj , t)]2. (3.9)
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where ω(mj , t) is the error weight at maturity mj and time t; p(mj , t) is the NG futures
price observed at maturity mj and time t; while f(mj , t) represents the point on the
B-spline curve at maturity mj and time t.

3.3.3 Nonlinear Autoregressive Neural Network (NAR–NN)

An Artificial Neural Network is a system aimed at simulating the human nervous
system. It is characterised by a computational scheme which is not programmed but
trained by a machine learning algorithm. Thanks to the ability in identifying nonlinear
relationships in the data, it can approximate any differentiable function (Reed and
Marks, 1999) and it is recognized as a universal approximator (Hornik et al., 1989).

In this work we explored the potential of Nonlinear Autoregressive Neural Networks
(NAR–NNs) which belong to the class of Dynamic Recurrent Neural Networks. The
model portrays a nonlinear relationship between the current xm,t value of the observed
univariate time series, that is NG futures prices at maturity m∈M = (m1,m2, . . . ,mN )′

at time t, and h past values or feedback delays for each t= 1 +h, . . . ,T , capturing the
autoregressive properties:

xm,t = g(xm,t−1,xm,t−2, · · · ,xm,t−h)+ ϵm,t, (3.10)

where g(·) represents an unknown nonlinear transfer function that the network tries to
approximate, while ϵm,t stands for the approximation error at maturity m and time t.

The NAR–NN is made by interconnected processing units, called nodes or neurons
(Rosenblatt, 1958), arranged in sequential and fully connected layers: the input layer,
one or more hidden layers and the output layer.

The network operates in two phases: the open loop phase, during which the network
is created and trained, and the closed loop phase, during which predictions are made.
In the open loop, the network aims at identifying the appropriate transfer function
to form a correct mapping between inputs and target values even in the presence of
nonlinear dynamics, based on a pure feed-forward architecture. In particular, given the
{xm,t}T

t=1 time series, the network creates a vector of T −h historical target values,
each of which is associated with the vector (defined input pattern) of h previous target
values xm,t−j , j = 1, . . . ,h. Each input pattern is used as the input to the network. Its
elements are multiplied by an assigned weight θi,j (j = 1, . . . ,h) and sent to the closest
hidden layer. Then, each hidden node i sums the incoming weighted signals with a
bias value θi,0, according to:
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φi,t = θi,0 +
h∑

j=1
θi,j xm,t−j . (3.11)

The resulting value φi,t is processed via the activation function Λχ(·) that applies
a transformation (either sigmoid or linear) and activates (deactivates) the network
hidden neurons. If the value φi,t exceeds a given threshold χ, then the hidden node
generates a response signal which is broadcast either to the nodes of the next hidden
layer(s), if there are any, or to the node of the output layer, where it is processed
through an activation function ψ(·) (usually linear), generating the networks final
response x̂m,t:

x̂m,t = ψ

(
γ0 +

n∑
i=1

γiΛχ (φi,t)
)
, (3.12)

where γi is the weight assigned to the connection between the hidden unit i and the
output unit; and γ0 represents the bias used to optimize the working point of the
neuron in the output unit.

During the training process, to improve the performance and obtain the closest
response to the target values the network determines the best vector ν∗ of weights and
bias by means of a learning algorithm that minimizes the error function:

Err(ν) =
T∑

t=1+h

(xm,t − x̂m,t)2, (3.13)

After the training phase, the neural network is converted into a closed loop network
and, for t > T , the (xm,t−1,xm,t−2, . . . , xm,t−h+1, xm,t−h) original lagged values are
used to generate the first prediction x̂m,t. The forecasted value is fed back to the
tap delay line in the input layer and added to form the new set (x̂m,t,xm,t−1,xm,t−2,

. . . , xm,t−h+1), which produces the next forecast x̂m,t+1. Based on such a recursive
approach, new forecasted values update the previous set of lagged values to make new
predictions (x̂m,t+q) in the next step q.

We examined various network architecture layouts and we chose the optimal one
according to a trial and error approach; in our case, the best solution turned out
to be an NAR-NN made by one hidden layer. We set the number of hidden nodes
and feedback delays in the ranges of [8, 10] and [3, 9], respectively, depending on the
4F-DNSS or 5F-DRF model and the parameter’s time series. We used the logistic
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sigmoid activation function for the hidden nodes:

Λχ(φi,t) = 1
1+ e−φi,t

, (3.14)

and a linear activation function for the output nodes.
The training and the learning of the network generally uses the available input

data partitioned into training (70%), validation (15%) and testing (15%) set. The
supervised learning process was carried out implementing the Levenberg–Marquardt
Back Propagation learning algorithm (LMBP) (Levenberg, 1944, Marquardt, 1963b)
with the weights update rule:

∆νk = −
(
JT (νk−1)J(νk−1)+µI

)−1
JT (νk−1) ek−1. (3.15)

where J is the Jacobian matrix of the network errors with respect to the weights and
biases; µ represents the damping factor; I is the Identity matrix; while ek−1 represents
the vector of the training errors at step k− 1. In the initial phase, the algorithm
initializes random weights and calculates the value of the error function; then, the
LMBP sets a large µ and update weights moving in the steepest–descent direction. If
the update fails to reduce the error, then µ is raised; otherwise, if the error decreases,
the damping factor is reduced. Generally, the training process stops when either the
maximum number of training cycles or the maximum training time is reached; or when
a specific level of accuracy is attained.

3.4 Empirical Study

We present and discuss the results of the estimation of the NG futures prices
carried out with 4F–DNSS, 5F–DRF and B–Splines, and then we evaluate the term
structure forecasts obtained with the hybrid scheme combining the above models with
the NAR–NN.

3.4.1 Goodness–Of–Fit

In this stage we tested the fitting abilities of the above mentioned methods using
the whole dataset. The observation period spans from 20 January 2011 to 13 June
2022.
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Table 3.3 lists average descriptive statistics of the fitted prices for each available
maturity. The interpretation is twofold: a first reading key concerns the models
performances, while another relates to the models ability to replicate stylized facts.

By comparison with the descriptive statistics summarized in Table 3.1, all the
models achieve similar outcomes, faithfully mimicking the observed prices with negligible
differences at each maturity. Nevertheless, the B-spline model performed better than
the other methods. The B-spline model was 90.41% (83.61%) more effective than
the 4F-DNSS (5F-DRF) model, in terms of the average mean squared error (MSE)
performance metric.

Furthermore, the analysis revealed that all the methods were able to replicate the
main stylized facts of the price series: the average curves are humped and slightly
decreasing like the observable one, the volatility decreases at longer maturities, the
curve at shorter maturities is more volatile than at medium and long ones. Additionally,
the MSE and RMSE metrics are very low, confirming the models’ ability to replicate
very accurately, on average, prices’ time series at each maturity. To support this
argument, Figure 3.6 displays the observed and fitted futures curves and the residuals
for three different times: 5 August 2014, characterized by an upward sloping curve;
24 November 2021, featuring an inverted S-shaped trend; and 13 June 2022, where a
humped curve was observed. The above dates were chosen as representative of the
most difficult curve shapes. At a visual inspection, we note a high degree of accuracy
for all the shapes. Moreover, despite the use of constant decaying parameters, both
the 4F-DNSS and 5F-DRF models seem to be flexible enough to deal with challenging
curve dynamics. Nevertheless, the B-spline generated better approximations, which
overlap the observed trends in every case and outperform the parametric models, which
encountered some difficulties, especially in fitting curves with multiple inflection points.

For an in-depth view of the in-sample outcomes, Table 3.4 shows the performance
metrics computed on the models’ residuals generated during the estimation process,
while Figure 3.7 presents a 2D visualization of the mean absolute error (MAE) metric
generated by the 4F-DNSS, 5F-DRF, and B-spline models.
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The B-spline model gives overall superior results, with the lowest errors in the whole
fitting horizon and peaks of limited magnitude in the range [0.0038, 2.8780]. Clusters
of peaks, i.e., departures from the observed values, can be observed at the extremes of
the time series. These clusters reflect pronounced market volatility associated with
specific historical events.

Figure 3.6 – The first column shows the observed and fitted futures curves with the 4F-DNSS
(blue), 5F-DRF (red), and B-spline (green) models; the related residuals curves are shown on
the right-hand side. The days chosen are representative of the most difficult dynamics of the
futures curves.
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Table 3.4 – Main MSE and RMSE statistics for the 4F-DNSS, 5F-DRF and B–Spline models.
For each indicator and model we report the Mean, the Standard Deviation (SD), the Minimum
(Min) and the Maximum (Max) values.

MSE RMSE

4F–DNSS 5F–DRF B–Spline 4F–DNSS 5F–DRF B–Spline

Mean 1.3586 8.0050×10−1 1.3978×10−1 5.8370×10−1 3.9148×10−1 1.4050×10−1

SD 6.5667 4.5393 9.5190×10−1 1.0091 8.0460×10−1 3.4653×10−1

Min 3.9908×10−3 3.2177×10−4 2.5177×10−5 6.3173×10−2 1.7938×10−2 5.0177×10−3

Max 98.9464 83.6844 17.4452 9.9472 9.14792 4.17675

Figure 3.7 – MAE time series obtained with the 4F-DNSS (blue), 5F-DRF (red) and B-Spline
(green) models in the Natural Gas futures market.

In summary, the results confirm the adequacy of the techniques to model NG
futures curves, as they are able to effectively replicate all the features and dynamics of
the market.

3.4.2 Out–of–sample forecasting

We applied NAR-NNs to perform both direct and indirect out-of-sample forecasts
on the NG futures price term structure. In the former, the neural network was used to
predict prices time series; in the latter, in the way shown by Diebold and Li (2006) we
used the neural network to predict the vector of parameters of the 4F–DNSS, 5F–DRF
and B–Spline models deriving futures prices at each forecasting horizon in a second
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time. The implementation was carried out with the narnet function of the Deep
Learning Toolbox of MATLAB R2022a.

The forecasting process was organized into four main stages. First, we collected
time series of the models estimated parameters and time series of futures prices, each
to be used as input to the neural network. Then, we set up the NAR–NNs based on
the features of each collected time series. Next, using the expanding window approach,
we performed one–day–ahead forecasts of the parameters as well as of the prices time
series for 21 working days in the period 16 May 2022–13 June 2022: the forecasting
period is short but very turbulent, with a variety of behaviors of the future curves. We
hence derived the forecasted NG futures curves from the predicted models parameters.
Finally, we evaluated the effectiveness of the proposed approach exploiting the the
Mean Absolute Percentage Error (MAPE)

MAPE = 100
T

T∑
t=1

1
M

M∑
m=1

∣∣∣∣∣pt+h,m − p̂t+h,m

pt+h,m

∣∣∣∣∣, (3.16)

and the Mean Squared Forecast Error (MSFE)

MSFE = 1
T

T∑
t=1

1
M

M∑
m=1

(pt+h,m − p̂t+h,m)2, (3.17)

as performance metrics and we reported them in Table 3.5.

Table 3.5 – Average MAPE (%) and MSFE to test models forecasting accuracy.

4F–DNSS/NAR–NN 5F–DRF/NAR–NN B–Spline/NAR–NN NAR–NN

MAPE 6.1309 7.6939 2.7562 2.7619

MSFE 43.4550 85.4639 9.2254 9.4914

Based on Table 3.5 all the candidate methods achieved satisfying results, ensuring
a prediction accuracy ranging on average between 92.3 % and 97.2 %. Looking at
the results, however, it is possible to create a rank on models performance with the
5F–DRF/NAR-NN at the 4-th place with the highest MAPE, the 4F–DNSS/NAR–NN
at the 3-rd place, the NAR–NNs gains the second place, while the top position is taken
by the B–Spline/NAR–NN.

A better understanding of the results can be gained with an example: Figure 3.8 (a)
and (b) compare futures curves observed on June 7 and 13, 2022 with those predicted
according to the proposed methodology; 3.8 (c) and (d) show the average forecasted
curves along with the average RMSFE generated by the models for each maturity,
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respectively. At first sight, the approaches generated accurate parameters and curves
forecasts, with predicted futures prices being enough close to the observed ones for
each available maturity, without notable spikes or outliers.

(a) (b)

(c) (d)

Figure 3.8 – Comparison of day-ahead forecasts in some worst cases (a,b). Average
predictions (c) and average RMSFE (d) generated by the 4F-DNSS (blue), 5F-DRF (red),
B-spline (green), and NAR-NNs (violet) models.

Nevertheless, it is worth highlighting some differences among the models in terms
of smoothness and accuracy. In fact, factor models combined with neural networks
produced smooth curves which, however, struggle to follow the shapes of the obser-
vations; on the contrary, those of the B-spline/NAR-NN and NAR-NNs appear more
rough, although they follow the original futures curves trends more faithfully.
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The curves predicted by means of B-spline/NAR-NN and NAR-NN alone are
systematically closer to the observable ones at all the maturities than those obtained
with either the 4F-DNSS/NAR-NN or 5F-DRF/NAR-NN models. These models, in
fact, are characterized by higher error rates for every maturity, as testified by the
RMSFE, with futures prices significantly under/overpredicted. Furthermore, although
the 5F-DRF model exhibited superior in-sample fitting performance compared to
that of 4F-DNSS, however, the same did not happen with the forecast. In fact,
the 4F-DNSS/NAR-NN combination showed a consistent improvement of predictive
performance (+20%) compared to the 5F-DRF/NAR-NN, whose predictions were
characterized by larger errors across all the maturity spectrum.

Overall, the reason for the weaker performances of both the factor models can be
probably found in the volatility of the β observed along the forecasting period, since
those models carry out a single approximation of the whole futures curve, which is
therefore very challenging to manage and predict even with the aid of a flexible tool
such as the neural network. On the contrary, with the B-spline/NAR-NN combination
it is possible to capture the dynamics of futures curves, thanks to the local piecewise
approximation.

To conclude, empirical evidence proved the effectiveness of the proposed framework
for both modeling and predictive analysis, delivering, in the end, results which are
very close to the true values, even under extreme conditions such as those affecting
the NG futures market in the period 2021–2022. Among all the models, the B-spline
model emerged as the best model for in-sample fitting. Furthermore, its joint use
with NAR-NNs made this the best model also for out-of-sample day-ahead predictions
within the NG futures market.

3.5 Conclusion

In this chapter we addressed the problem of modeling and predicting futures
prices term structure in the natural gas (NG) market. With this aim, we proposed
a framework based on the use of interest rate models, given the similarities between
the NG futures and fixed-income markets, and machine learning techniques as well. In
particular, we used two models in the Nelson–Siegel family for fitting purposes, i.e., the
four-factor dynamic Nelson–Siegel–Svensson (4F-DNSS) and the five-factor dynamic De
Rezende–Ferreira (5F-DRF), as well as B-spline, investigating their ability to replicate
trends and dynamics of the NG futures market. Moreover, for the estimation procedure
of the factor models we discussed a methodology based on time-varying parameters
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and fixed decay terms to ensure both high interpolating performances and parameter
stability for the predictive process. Relative to the out-of-sample forecasting process,
we conducted day-ahead predictions by means of Nonlinear Autoregressive Neural
Networks (NAR-NNs) used in two ways: in the first case, we used them to predict
model parameters’ time series and then derive the prices, while in the second case we
used NAR-NNs to directly predict prices’ time series.

We provided empirical evidence of the ability of the suggested framework to achieve
very satisfying results for both in-sample fitting and forecasting purposes within the NG
futures market, even under extreme conditions, such as geopolitical turmoils and huge
price jumps. The 4F-DNSS, 5F-DRF, and B-spline models demonstrated high levels of
flexibility as well as adaptability to a wide variety of dynamics and trends characterizing
the NG futures term structure, which resulted in very small magnitudes of the error
metrics. Nevertheless, the B-spline model performed substantially better than the
parametric models, especially in representing the medial and final parts of futures
curves, properly replicating all the observed curve shapes, even the ones with multiple
inflection points. Furthermore, the predictive performance clearly demonstrated the
consistency of the implemented forecasting strategy. In this way, our results highlight
that the hybrid B-spline/NAR-NN method is the preferable approach for day-ahead
forecasting as it provides the lowest errors, outperforming both the 4F-DNSS/NAR-NN
and 5F-DRF/NAR-NN combinations as well as the NAR-NN directly employed on the
data.

The satisfying results obtained herein lay the groundwork for further experimental
investigations oriented to the use of more sophisticated machine learning techniques,
as well as for further research to enhance fitting and prediction of NG futures prices.
In fact, all of these topics represent a part of our ongoing research.



Chapter 4

Univariate and Multivariate
Electricity Futures Curve
Forecasting using Artificial Neural
Network Models

4.1 Introduction

Electricity is an essential source of energy in modern societies, playing a pivotal
role in powering various segments of the economy such as the residential, commercial,
industrial, and transport sectors. Therefore, changes in its prices and availability can
exert deep, beneficial – as well as potentially devastating – knock-on effects on the
social and economic fabric, affecting the development prospects of countries.

Exogenous events such as climate change, green economy policies, deregulation,
as well as the geopolitical crises of recent times, have exerted a significant impact on
world energy markets, particularly the electricity market, increasing uncertainty and
causing huge price volatility with sudden spikes and drops in price levels (da Silva and
Horta, 2019, Ghosh et al., 2021).

The primary reason for the sensitivity of the price of electricity to exogenous events
lies in specific features that distinguish it from any other energy commodity, namely,
the characteristics of “non–storability” and inelasticity of demand. These facts make it
complex to manage the influence on prices of sudden changes in supply and demand
due to exogenous shocks, consequently exposing market participants to significant risk
in power prices.
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In light of this, risk management plays a key role in mitigating the negative
consequences deriving from excessive exposure to market price volatility, and derivative
instruments such as futures are one of the most widespread financial instruments used
to achieve this objective.

Electricity futures traded on financial markets have different maturities, and all
together form the so called Term Structure of Futures Prices. The term structure
describes the relationship between the settlement prices of futures contracts and
different expiration dates, with the futures curve being its graphical representation.
The analysis of its evolution over time gives an idea of the markets supply and demand
dynamics, as well as practitioners expectations about the markets behaviour and the
potential development direction.

Setting aside speculative purposes, electricity futures contracts are used by the
counterparties with the principal objective of reducing their risk exposure. Power
producers, in particular, will take short positions on futures contracts to lock in a
guaranteed price, thereby hedging against any downward movements in the spot price
and decreasing the volatility of their revenues. Consumers and power retailers, for
their part, will take long positions, taking advantage of the different electricity delivery
periods in contracts (from a few days to weeks, a season, or a whole year), to buy/sell
the good at a fixed price, thereby reducing the risk of encountering sudden price spikes.

All this leads to greater stability in price and supply, with direct benefits on both
the social fabric and the economy in terms of development and competitiveness. In this
respect obtaining reliable forecasts of the futures curves dynamics and trends becomes
of paramount importance in many scenarios and for different market players.

To date, there is a significant amount of research studies around electricity spot price
modeling and forecasting. Extensive reviews of the state–of–the–art have been provided
in Weron (2014), Fanelli et al. (2016), Nowotarski and Weron (2018), Yang et al. (2020),
Deschatre et al. (2021), Lago et al. (2021), Olivares et al. (2022). According to Weron
(2014) the most widely used approaches use statistical/econometric methods (Conejo
et al., 2005, Tan et al., 2010, Voronin et al., 2013, Raviv et al., 2015, Zhao et al.,
2017, Ziel and Weron, 2018, Kumar et al., 2018), Machine Learning (ML) (Peng et al.,
2018, Zhou et al., 2019, Jahangir et al., 2020, Yang and Schell, 2021, Yang et al., 2022,
Olivares et al., 2022, Tschora et al., 2022, Su et al., 2022), probabilistic and hybrid
techniques (Dong et al., 2011, Gonzalez et al., 2012a, Wan et al., 2014, Dudek, 2016,
Rafiei et al., 2017, Kuo and Huang, 2018, Ziel and Steinert, 2018, Kostrzewski and
Kostrzewska, 2019, Zhang et al., 2019, Cheng et al., 2019, Zhang et al., 2020b,a, de
Marcos et al., 2020, Kavitha and Kalpana, 2023), as well as fundamental (Eydeland
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and Wolyniec, 2002, Karakatsani and Bunn, 2008, Coulon and Howison, 2009, Gonzalez
et al., 2012b, Dillig et al., 2016, Ribeiro et al., 2020, Maciejowska et al., 2021, Kanamura
and Bunn, 2022) or reduced–form models (Higgs and Worthington, 2008, Borovkova
and Schmeck, 2017, Pircalabu and Benth, 2017, Xiong and Mamon, 2019, Apergis
et al., 2019, Deng et al., 2020, Oduor, 2022).

However, research around predicting futures prices dynamics is relatively more
limited and less diversified. Most of the literature focuses mainly on deriving futures
prices from spot prices with various pricing techniques based on stochastic processes,
rather than on direct price prediction. To cite main research stream structural methods
(Füss et al., 2015, Kallabis et al., 2016) model electricity price dynamics considering
the influence of fundamental drivers (e.g. demand, loads, weather conditions); while
reduced–form methods (Koekebakker and Ollmar, 2005, Benth and Koekebakker, 2008,
Itoh and Kobayashi, 2010, Barth and Benth, 2014, Islyaev and Date, 2015, Biagini et al.,
2015, Fanelli et al., 2016, Gudkov and Ignatieva, 2021, Mehrdoust and Noorani, 2021,
Najafi et al., 2023), explain price dynamics based on their main statistical features.
Relatively to ML techniques, to date their predictive abilities within electricity futures
markets haven’t been extensively analyzed like for spot markets. To the best of the
authors knowledge, except Yu et al. (2008), Zhang and Shi (2009) and Nascimento et al.
(2019), there are no other published papers exploring the potentials of computational
intelligence methods to forecast directly electricity futures prices and/or the entire
term structure.

Attempting to contribute to this research strand, this study develops a framework
based on Dynamic Recurrent Neural Network (RNN) models to tackle the issue of
predicting the Electricity Futures Prices Term Structure dynamics. In particular we
make use and evaluate the Nonlinear Autoregressive Neural Networks (NAR–NNs),
Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX–NNs), Long
Short–Term Memory Neural Networks (LSTM–NNs) and Encoder–Decoder Long
Short–Term Memory Neural Networks (ED–LSTM–NNs) for day–ahead predictions of
the electricity futures curve. Furthermore, aimed at verifying whether incorporating
relevant exogenous influence factors can lead to improvements in the models forecasting
power, a setting based on the multivariate forecasting approach is also explored. The
purpose of our work is therefore twofold: we asses the potentials of the models to
produce robust electricity futures curves predictions using, on the one hand side, only
the autoregressive dynamics of the target series that form the futures curve; while
on the other we consider the latter information jointly with the information content
contained in the more closely related covariates.
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The main contribution of this work to the existing literature can be summarized as
follows:

(i) we conducted day–ahead forecasts of electricity futures prices term structure by
means of Dynamic Recurrent Neural Networks;

(ii) albeit some ANN models have been used in previous researches, to the best of our
knowledge this study is the first to utilize NAR–NNs, NARX–NNs, LSTM–NNs
and ED–LSTM–NNs neural networks using both the univariate and multivariate
prediction methods.

(iii) we extend the idea behind fundamental models to neural networks by incorporat-
ing different time–dependent exogenous input features in order to enhance neural
networks predictive abilities.

(iv) to stress–test the models performances, we collected daily data from March 2017
to September 2022 and tested the proposed framework over both stable and
extremely volatile periods.

The remainder of the paper is organized as follows. Section 4.2 discusses the RNN
models in use; Section 4.3 analyzes the data set; Section 4.4 presents the empirical
findings and discusses the main results; Section 4.5 concludes.

4.2 Recurrent Neural Networks–Based Models

Recurrent Neural Networks (RNNs) are a class of deep neural networks conceived
for processing sequential or time series data for predictions. They key features of RNNs
are the loop–based architecture and memory mechanisms which enables the network
to store past information, learn sequences and/or long–term dependencies of the data,
and utilize this knowledge to improve the performance of the network on current and
future outputs of the sequence.

In this section we present and discuss three types of RNNs that have gained wide
success for univariate and multivariate forecasting of time–series. In particular we focus
our attention on Nonlinear–Autoregressive (NAR–NNs), Nonlinear–Autoregressive with
Exogenous Inputs (NARX–NNs), Long Short–Term Memory (LSTM–NNs) as well as
Encoder–Decoder Long Short–Term Memory Neural Networks (EDLSTM–NNs).
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4.2.1 Nonlinear Autoregressive Neural Networks

The Nonlinear Autoregressive Neural Network (NAR–NN) and the Nonlinear
Autoregressive Neural Network with Exogenous variables (NARX–NN) belong to the
class of Recurrent Neural Networks employed for one and multi-step ahead forecasts
of time series data. They are conceived as a nonlinear generalization of the classical
linear Autoregressive (AR) model, aimed at managing nonlinear processes.

Given the univariate time series {xt}T
t=1, the NAR–NN predicts the future value

at time t based exclusively on its d past endogenous values (feedback delays) used as
regressors:

xt = f(xt−1,xt−2, · · · ,xt−d), (4.1)

where f(·) represents an unknown nonlinear transfer function that the network tries to
approximate while xt−k (k = 1, . . . ,d) are the endogenous lagged input signals.

With regard to the NARX–NN model, it represents a modified version of the above
NAR–NN and it allows to take advantage from the inclusion of information from
exogenous inputs. The NARX–NN predicts the future value of the univariate series
{xt}T

t=1 at time t using both the d past endogenous values of the xt series and the h
lagged values of the exogenous series {yt}N

t=1:

xt = g(xt−1,xt−2, · · · ,xt−d,yt−1,yt−2, · · · ,yt−h), (4.2)

where xt−k (k = 1, . . . ,d) is the same as above, g(·) is an unknown nonlinear transfer
function, while yt−j (j = 1, . . . ,h) represents the exogenous lagged input observations.

The NAR–NN and NARX–NN models are characterized by a fully–connected
Multilayer Feed–Forward Network architecture in which interconnected information
processing elements (neurons) are grouped in multiple sequential layers, namely the
Input Layer which propagates the input features to the adjacent Hidden Layer; one
or more Hidden Layers representing the computational step between the Input and
Output layers where the network tries to learn and recognize complex patterns in the
data by means of nonlinear transformations of the inputs; and the final Output Layer
which leads to the predicted value x̂t. Additionally the networks contains a re–feeding
mechanism which allows the use of predicted values as inputs for future forecasts. The
structure of the NAR–NN and NARX–NN models is demonstrated in Figure 4.1.
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(a)

(b)

Figure 4.1 – Topology of the NAR–NN (a) and NARX–NN (b) models.

The optimal topology, i.e. the number of hidden layers, neurons, feedback delays,
activation functions, depends on the problem domain and it is usually carried out by
means of trial and error approach by comparing different network configurations, taking
also into consideration the bias/variance tradeoff. Once set, the network undergoes the
training and learning process in an open loop where lagged input series are made up only
of observed data. In this phase, adopting the Supervised Learning strategy networks
parameters are calibrated by means of the back–propagation method combined with
an optimization algorithm, such that the overall networks error is minimized. Different
learning algorithms can be used to optimize the loss function, the choice depends on
factors like computational time, error goals, or the amount of training data, weights and
biases. The Levenberg–Marquardt Backpropagation Algorithm (LMBP) (Levenberg,
1944, Marquardt, 1963a) is one of the most widely used learning rules in NAR–NNs
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and NARX–NNs as it inherits the advantages of the steepest descent method (in terms
of stability) and of the Gauss–Newton algorithm (in terms of speed), hence ensuring
robustness, fast convergence rate and quicker training speed (Wilamowski and Irwin,
2011). In the end, the configuration that provides the best performance is chosen. After
the training the network is turned into a Closed Loop network and is used to execute
one/multistep–ahead predictions. During this process the predicted values are fed back
towards the input layer to serve as new input signals for successive predictions.

From a mathematical viewpoint, the relationship between xt and the endoge-
nous/exogenous feedback delays that replaces the function f(·) is given by

xk,t+h = ωk,0 +
n∑

i=1
ωk,i Λ

αi,0 +
d∑

j=1
αi,jxk,t+h−j

+ εk,t (4.3)

for the NAR–NN, or

xk,t+h = ωk,0 +
n∑

i=1
ωk,i Λ

αi,0 +
d∑

j=1

(
αi,jxk,t+h−j +γi,jyk,t+h−j

)+ εk,t (4.4)

for the NARX–NN; here, in either model d is the number of lagged endogenous
(xk,t+h−j) and/or exogenous (yk,t+h−j) input units fed to each hidden neuron i; Λ is an
activation function that applies a specific transformation to the weighted sum of inputs
and biases, and is responsible for the activation or the deactivation of the networks
neurons; αi,j and γi,j represent the neuron weight of the connection between the input
unit j and the hidden unit i; ωk,i is the weight of the connection between the hidden
unit i and the output unit k; αi,0 and ωk,0 are the bias used to optimize the working
point of the neurons in the hidden and output units respectively; finally εk,t represents
the error term.

4.2.2 Long Short–Term Memory Network

The Long Short–Term Memory Neural Network (LSTM–NN) is a type of RNN
developed by Hochreiter and Schmidhuber (1997). It is capable of learning both short
and long–term nonlinear dependencies in sequential data and retain relevant information
over a long–term period, thus overcoming the RNNs problem of vanishing/exploding
gradients which hampers their ability to learn long data sequences.
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The LSTM–NN is characterized by a chain–like architecture with a linked sequence
of repeating modules known as cells (or memory units): Figure 4.2 presents the
structure of a LSTM–NN cell.

(a)

Figure 4.2 – Schematic representation of the LSTM memory unit.

The cell has a gating mechanism that allow the creation of long temporal relation-
ships. Each cell contains three types of gates, namely the Forget gate, the Input gate
and the Output gate which direct/regulate information flow within the LSTM unit
deciding which information should be remembered and which instead ignored.

In detail, the Forget gate has the task to determine whether the information from
the previous time step has to be remembered or can be ignored. In particular, the gate
receives the hidden state ht−1 and the current input value xt as inputs and process
them via the logistic function which returns values between 0 and 1. If the result is 0
then the information is completely discarded, otherwise it is retained. The output of
the Forget gate is described by

ft = σ
(
Wfht−1 +Wfxt + bf

)
, (4.5)

σ(θ) = 1
1+ e−θ

, (4.6)

where σ(θ) is the logistic activation function, while Wf and bf represent the weight
matrix and connection bias, respectively.

On the other hand, the Input gate determines which new information must be kept
and added to update the current cell state. The gate receives the hidden state ht−1

and the current value xt and process them via both the logistic and tanh functions.
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The latter generates a vector of new candidate values while the sigmoid output decides
which information will be retained from the tanh output. The new information to
update the current cell state is obtained combining the result of the two functions with
the information retained from the previous cell state (ct−1). The computation steps
are explained on following

it = σ (Wiht−1 +Wixt + bi) , (4.7)

c̃t = tanh(Wc̃ht−1 +Wc̃xt + bc̃) , (4.8)

ct = ft ⊙ ct−1 + i⊙ c̃t, (4.9)

tanh(θ) = eθ − e−θ

eθ + e−θ
, (4.10)

Here it represents the input threshold at time t, c̃t is the temporary cell state at time
t, tanh(·) is the hyperbolic tangent activation function, ct is the final cell state at time
t, ⊙ is the Hadamard product, while Wi, Wc̃, bi and bc̃ are as before.

Finally, the Output gate calculates the value of the new hidden state ht, i.e. the cell
output. This is achieved firstly by passing the values of the current input and previous
hidden state through the sigmoid function. Then the obtained output is combined
with the output of the tanh function thus determining which part of the information
encoded in the updated cell state will be used as output:

ot = σ (Woht−1 +Woxt + bo) , (4.11)

ht = ot ⊙ tanh(ct), (4.12)

where ot is the output value of the gate at time t, Wo and bo are as before while ht is
the LSTM cell output signal at time t.

4.2.3 Encoder–Decoder LSTM model

The Encoder–Decoder LSTM neural network (Sutskever et al., 2014) represents
a combinatorial architecture based on the principles of Encoder–Decoder and LSTM
networks used for solving the problem of mapping sequences to sequences characterized
by variable dimensionality (Brownlee, 2018).
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The network consists of three main components: the encoder and the decoder
subnetworks and an intermediate fixed–length context vector. Internally, the encoder
and decoder are made by one or multiple layers of LSTM cells representing their
structural blocks. The topology of the Encoder–Decoder LSTM neural network is
shown in Figure 4.3.

Figure 4.3 – Encoder–Decoder LSTM Architecture.

The encoder operating principle is based on the LSTM network method of learning
the long–term dependencies described in Subsection 4.2.2. Given a variable–length vec-
tor x= (x1, . . . ,xn) as the input sequence to the model, each LSTM unit in the encoder
sequentially processes the incoming data, retains relevant features, and propagates the
information forward through the sequence chain. In the final step, the encoder squeezes
and encodes the information into a fixed–length context vector, that is, the final cell
(c) and hidden state (h) vectors, which in turn become the input to the decoder. At
this stage, the decoder is initialised with the (c) and (h) vectors jointly with the last
input value and starts the recursive generation of the output sequence ẑ = (ẑ1, . . . , ẑk)
one time step at a time, using the obtained output as input for successive updates.

4.3 Data

Our dataset consists of daily settlement prices of electricity futures contracts. The
contracts are quoted in €/MWh and traded on the European Energy Exchange (EEX),
which represents Europe’s leading marketplace for energy and commodity products. We
considered contracts with seven different maturities: from 1 up to 6 month representing
the short to medium term contracts and we labeled them Ec1–Ec6; furthermore we
also considered 1 year to expiration, interpreted as the long–term contract, and we
labeled it by Ec12. The total number of observation values is 1399 covering the period
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from March 3, 2017 up to September 15, 2022. Such a wide time–span ensures a
considerable amount of data containing different stable and spiky periods with futures
curves exhibiting frequent temporary reversals. This enables us to verify and validate
the effectiveness and robustness of the proposed framework under different market
conditions.

In Appendix, Figure 4.8 illustrates the evolution of the prices time series of the
seven futures contracts together with their first differences. In between January 2021
and September 2022 it is possible to observe an unprecedented increase of both price
levels and volatility across all the given maturities mainly driven by the recent global
COVID–19 pandemic and the new Russia–West confrontation (Khudoley, 2022) that
caused acute global supply chain and energy shortage issues. Table 4.1 provides the
descriptive statistics of the electricity futures prices dataset and their first differences,
and include the following measures: Mean, Standard Deviation (SD), Median, Minimum
(Min), Maximum (Max), Skewness and Kurtosis.

Table 4.1 – Descriptive statistics of futures prices and their logarithmic transformation for
each maturity.

Price Log Price

Maturity Mean SD Median Min Max Mean SD Median Min Max Skew Kurtosis

Ec1 99.36 104.75 55.52 21.39 581.90 1.7×10−3 3.3×10−2 3.8×10−4 -0.26 0.33 1.77 30.79

Ec2 102.41 110.56 56.56 25.25 738.65 1.8×10−3 3.7×10−2 5.9×10−4 -0.30 0.33 0.27 17.54

Ec3 103.70 111.59 58.50 27.72 793.75 1.9×10−3 3.8×10−2 6.9×10−4 -0.32 0.36 8.2×10−3 20.01

Ec4 103.54 111.91 59.02 32.06 804.47 1.8×10−3 3.9×10−2 1.2×10−3 -0.32 0.33 -0.32 20.96

Ec5 102.18 108.91 59.70 35.35 801.14 1.7×10−3 4.0×10−2 9.0×10−4 -0.47 0.33 -1.21 29.46

Ec6 100.28 104.89 60.93 35.69 732.41 1.7×10−3 3.6×10−2 1.2×10−3 -0.33 0.28 -0.25 17.05

Ec12 86.88 78.43 58.78 41.25 624.58 1.6×10−3 2.8×10−2 1.6×10−3 -0.59 0.19 -7.19 154.84

The data confirm high volatility in each price series; huge positive spikes can be
observed for all maturities in the period of greater markets turmoil, with record high
peaks going over 700 €/MWh on average; by comparing the latter outcome with the
average values calculated using the Min e Median columns of the price series of Table
4.1, it turns out that it is 23 times larger than the lowest price level and 12 times larger
than the average median value.

Moving to the returns series and analyzing their distribution, results show significant
departure from Normality. The Ec1, Ec2, Ec3 series are characterized by positive
skewness; on the contrary, results for Ec4, Ec5, Ec6, Ec12 indicate a leptokurtic
left–skewed distribution with greater probability of negative outlying returns.
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Furthermore, we have collected the data of multiple influence assets which relevantly
affect electricity futures price dynamics. For this task we have chosen the Natural Gas
(NG) and Coal futures prices, as well as the spot price series of the Carbon Emission
Certificates (CO2). These variables were treated as time–dependent exogenous features
and used in conjunction with the electricity futures prices as inputs to neural networks
within the multivariate forecasting process. The datasets of the exogenous variables
were sourced from Thomson Reuters Datastream. In Appendix, Figure 4.9 shows
the temporal evolution of electricity prices at each maturity along with the related
exogenous variables. To ensure uniformity with the data structure of electricity futures,
all the considered exogenous series are made up of daily values covering the same time
horizon, from March 3, 2017 up to September 15, 2022. Moreover, for the NG and
Coal futures contracts we selected the same maturities as well which we labeled as
NGc1, NGc2, NGc3, NGc4, NGc5, NGc6, NGc12 and as Cc1, Cc2, Cc3, Cc4, Cc5, Cc6,
Cc12 respectively; relatively to the CO2 spot contract we labeled it as COc1.

The choice of these variables is motivated by the relevant degree of correlation
with electricity futures prices. This means that highly likely they do embed useful
information about the movements of electricity prices and represent at the same time
its driving forces. For measure the strength of the relationship occurring between the
considered datasets, we calculated the Pearson correlation coefficient (ρ) between each
electricity futures price series with the related counterparty in the NG, Coal and CO2

datasets, illustrating the obtained results in Table 4.2

Table 4.2 – Correlation between each electricity futures price series and the related price
series of Natural Gas (first column), Coal (second column) and CO2 (last column) contracts.

Maturity ρElecNG ρElecCoal ρElecCO2

Ec1 0.35 0.30 0.014
Ec2 0.74 0.50 0.14
Ec3 0.75 0.49 0.15
Ec4 0.70 0.49 0.14
Ec5 0.71 0.48 0.11
Ec6 0.69 0.43 0.18

Ec12 0.64 0.34 0.22

It can be seen that electricity futures are significantly affected by all the influence
factors; the strongest positive correlation is shared with the NG data, with an average
value of over 0.65.
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4.4 Empirical Evaluation

4.4.1 Experiment Setup

The purpose of this study is to explore the capabilities of the RNN models introduced
in Section 4.2 to make stable and robust predictions of electricity futures curves. The
model comparison is performed on the basis of a forecasting process carried out following
two alternative settings. Figure 4.4 shows the designed forecasting process synthesized
in the graphic form of a flowchart.

Figure 4.4 – Workflow of the proposed forecasting framework.

As a first approach, we used the univariate electricity futures price prediction
process (UEFPP). For this task the NAR–NN, the univariate LSTM–NN (U–LSTM–
NN) and the Univariate Encoder–Decoder LSTM–NN (U–EDLSTM–NN) models were
implemented to predict prices at each maturity based only on its past data readings,
that is using only the information content of its own past values. From a mathematical
viewpoint this is given by

Eci,t = f(Eci,t−1,Eci,t−2, . . . ,Eci,t−k), i= 1,2,3,4,5,6,12. (4.13)

where Eci,t is the predicted price value, while Eci,t−k are the k past values of the i-th
maturity representing the networks input vector.
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Relatively to the second approach, futures curves prediction was carried out using
the multivariate prediction process (MEFPP): we used the NARX–NN, Multivariate
LSTM (M–LSTM–NN) and Multivariate Encoder–Decoder LSTM (M–EDLSTM–NN)
methods to predict prices of each maturity individually, based on both its historical
data and that of the exogenous covariates described in Section 4.3. The MEFPP
strategy can be mathematically expressed as

Eci,t = f(Eci,t−k,NGci,t−k,Cci,t−k,COc1,t−k), i= 1,2,3,4,5,6,12 (4.14)

where NGci,t−k, Cci,t−k and COc1,t−k represent the k past values of the Natural Gas
and Coal futures prices time series at maturity i and CO2 spot price series respectively.

Moreover, given the unprecedented turmoil on energy markets observed during last
years, we decided to divide the whole dataset into two subperiods and conduct both
the UEFPP and MEFPP on two distinct test sets to validate their predictive power.
The first subperiod, with the related Test Set 1, was chosen as the more stable and
less volatile one, while the second subperiod, with the related Test Set 2, as the one
characterized by price spikes and overall higher variance.

Test Set 1 ranges from September 16, 2019 to July 8, 2020 while Test Set 2 covers
the period from November 22, 2021 to September 9, 2022; each set is made up of 204
daily futures prices. Tables 4.3 and 4.4 provide descriptive statistics of the two test
sets. It is possible to observe that the level of prices across the spectrum of maturities
and the standard deviation of Test Set 2 are, at least, 6 and 10 times higher compared
to Test Set 1, respectively.

Table 4.3 – Descriptive statistics of electricity futures prices for Test Set 1.

Maturity Ec1 Ec2 Ec3 Ec4 Ec5 Ec6 Ec12

Mean 38.98 41.93 44.49 46.51 47.54 47.92 51.81
SD 10.85 10.92 10.83 10.46 8.59 5.92 4.99

Min 21.39 25.25 27.72 32.06 35.35 35.69 42.96
Max 56.75 61.00 63.53 66.35 68.55 65.82 62.12
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Table 4.4 – Descriptive statistics of electricity futures prices for Test Set 2.

Maturity Ec1 Ec2 Ec3 Ec4 Ec5 Ec6 Ec12

Mean 317.78 329.09 330.20 326.84 317.66 312.33 243.68
SD 109.94 126.26 132.64 142.28 143.76 134.68 106.15

Min 201.49 189.07 182.00 162.37 128.94 121.92 122.20
Max 581.90 738.65 793.75 804.47 801.14 732.41 624.58

For either test set in both the UEFPP and MEFPP settings, each maturities price
prediction was conducted on a daily basis using the sliding window method, for an
overall number of 408 predicted days.

As pointed out in Kim et al. (2020) there is no rule of thumb for networks topology
and hyperparameter optimization. We therefore carried out a trial and error approach
and examined various models settings considering different combinations for feedback
delays, activation functions, number of nodes, cells, hidden layers and learning al-
gorithms. Relatively to the NAR–NN and NARX–NN methods a good compromise
was found selecting one hidden layer, 5 delays, and 10 hidden neurons for NAR–NN
and 15 for NARX–NN; additionally, for both models the sigmoid (linear) activation
function was used for the hidden (output) neurons while the Levenberg–Marquardt
Backpropagation learning rule was chosen for networks training and learning. With
regard to the LSTM–NN and ED–LSTM–NN in both the univariate and multivariate
settings, the best solution turned out to be: 1 layer with 200 units for the LSTM–NN
and 1 layer with 100 units in both the encoder and decoder; both models were trained
in a supervised learning fashion for 1000 epochs using the Adaptive Moment Estimation
(ADAM) optimization algorithm (Kingma and Ba, 2015). The code for the implemen-
tation of the proposed methodology and models was developed in MATLAB R2022a
for what concerns the NAR–NN and NARX–NN methods, and in Python (3.10.10)
using the open–source Keras (2.4.3) library (Chollet et al., 2015) with TensorFlow
(2.4.0) as backend for the LSTM–NN and ED–LSTM-NN models.

Additionally, given the stochastic nature of ANNs models, we run thirty repeated
forecasts (cycles) and considered the mean of the forecasted results as the final models
result. This approach allows to ensure robust results and reduce the randomness of
the forecasts.
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4.4.2 Results discussion

To comprehensively evaluate the predictive accuracy of the proposed models, this
paper employs two widely used performance indicators, namely the Root Mean Squared
Forecasting Error (RMSFE) and the Mean Absolute Percentage Error (MAPE). In
Table 4.5 we report the evaluation metrics implemented in this research along with their
formulas, where yt+h and ŷt+h represent the observed and predicted values respectively,
n denotes the sample size.

Table 4.5 – Forecasting Performance metrics.

Metric Definition Equation

RMSFE Mean Squared Forecasting Error RMSFE =
√

1
n

∑n
j=1(yt+h − ŷt+h)2

MAPE Mean Absolute Percentage Error MAPE = 100
n

∑n
j=1

∣∣∣∣yt+h−ŷt+h

yt+h

∣∣∣∣
The out–of–sample forecasting results of the implemented framework are firstly

presented in Table 4.6, highlighting in bold the best performing method. For each test
set and model we summarized the Mean, the Standard Deviation (SD), the Minimum
and the Maximum of the RMSFE and MAPE accuracy metrics.

An analysis of the obtained results indicates that all the implemented techniques
exhibit a highly satisfactory performance, ensuring an average MAPE score greater
than 95% within Test Set 1 and greater than 91% within Test Set 2, thereby acting as
good predictive techniques.

Considering Test Set 1, it is possible to establish that the NAR–NN model sig-
nificantly outperforms the other competing methods reporting the best RMSFE and
MAPE scores, followed by the U–ED–LSTM–NN, NARX–NN, and M–LSTM–NN
models, which exhibit quite close results. More specifically, considering, for instance,
the MAPE metric the NAR–NN, U–ED–LSTM–NN, NARX–NN, and M–LSTM–NN
models achieved 98.04%, 97.77%, 97.62%, and 97.36% predictive accuracies, respec-
tively. Moreover, the M–ED–LSTM–NN and U–LSTM–NN models reported the lowest
accuracy measures of 96.51% and 95.51%, respectively.

In this context, it can be noted that the incorporation of exogenous influencing
factors provides a relevant boost only to the LSTM–NN performance. In fact, the
M–LSTM–NN specification reduced the RMSFE score by 32%.
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Table 4.6 – Average MSFE and MAPE (%) metrics obtained with different competing
methods.

RMSFE MAPE (%)
Method Mean SD Min Max Mean SD Min Max

T
es

t
Se

t
1

NAR–NN 1.24 0.23 0.74 1.41 1.96 0.47 1.08 2.55
U–LSTM–NN 2.18 0.39 1.33 2.43 4.49 1.08 2.26 5.56
U–ED–LSTM–NN 1.31 0.32 0.71 1.75 2.23 0.67 1.14 3.18
NARX–NN 1.43 0.31 0.74 1.67 2.38 0.62 1.16 3.00
M–LSTM–NN 1.49 0.28 0.99 1.92 2.64 0.71 1.59 3.87
M–ED–LSTM–NN 1.92 0.94 1.20 3.84 3.49 2.02 1.82 7.51

T
es

t
Se

t
2

NAR–NN 48.12 16.20 20.12 66.74 8.01 2.19 3.50 10.09
U–LSTM–NN 23.86 4.87 16.77 28.37 4.95 0.94 3.51 5.80
U–ED–LSTM–NN 24.35 4.86 16.49 29.91 4.96 1.08 2.74 5.90
NARX–NN 46.70 10.60 30.35 57.75 8.85 1.53 5.60 10.35
M–LSTM–NN 25.66 3.40 20.74 29.47 5.33 0.84 3.48 5.87
M–ED–LSTM–NN 31.93 10.26 17.59 47.18 7.07 2.82 3.25 11.25

With regard to Test Set 2, the U–LSTM–NN and U–ED–LSTM–NN models ensured
the best performances (almost at par) in the day-ahead predictions, with 95.05% and
95.04% precision, respectively; furthermore, these models showed an almost halved
RMSFE score with respect to the NAR–NN and NARX–NN models. Such results are
achieved because the U–LSTM–NN and U–ED–LSTM–NN models enhance memory
abilities which enables them to capture and store nonlinear patterns embedded in
past futures price data. In the third place, we find the M–LSTM–NN model with
94.67% accuracy, followed by the M–ED–LSTM–NN model with 92.93% accuracy.
Relatively to the NAR–NN model, which was the best in Test Set 1, it generated a
poorer performance: the predictive precision decreased from 98.04% (Test Set 1) to
91.99% (Test Set 2), while the RMSFE increased by 38 times with respect to the score
achieved in Test Set 1. A similar deterioration of the metrics is also observed for the
NARX–NN model.

Notably, although the U–ED–LSTM–NN model outperformed the M–LSTM–NN
model in terms of the MAPE, the latter is characterised by a lower variability of the
results, indicating more stable predictions.

Another noteworthy aspect is that the addition of exogenous features does not
bring meaningful improvements to the model families; nevertheless, the M–LSTM–NN
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and M–ED–LSTM–NN models delivered better results in terms of both the RMSFE
and MAPE indicators with respect to the NAR–NN and NARX–NN models.

Finally, it can be summarised and pointed out that the use of such test sets makes
it possible to highlight the fact that LSTM–based models, in addition to performing
well in stable market conditions, are also able to guarantee the maintenance of the
initial performances even in extreme conditions, such as those characterising Test Set
2, without being particularly affected by turmoil. In fact, in the face of a significant
increase in the price level across the maturity spectrum by at least 6 times, the reduction
in predictive accuracy is maintained in the range of 0.46% – 3.58%, which remains
above 93%. However, the NAR–NN model that performed better in first test set was
unable to maintain its predictive power in the most unstable period.

The performance comparison of the univariate and multivariate models is further-
more shown in Figure 4.5 and 4.6 where we illustrate for each maturity in either test
set, the models day–ahead forecasting results, and in Figure 4.7 where we display for
each test set the average actual and predicted futures curves. Based on the visual
analysis of the graphs, the following conclusions can be drawn: (i) all the models
forecast trends are enough close to the observed trends and do not exhibit unreasonable
spikes or drops; (ii) considering the price time series, NAR–NN and NARX–NN models
tend to exhibit a more erratic behavior with respect to other methods; furthermore
when peak values occur, the univariate and multivariate LSTM based models show a
smoother overall behavior.

Overall, we can conclude that the proposed framework is able to achieve satisfying
and stable predictive results within both stable as well as volatile market conditions,
thus confirming the adequacy and usefulness of the implemented deep learning models
for predicting electricity futures curves.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5 – Models point forecasts of the price series of the Ec1 (a), Ec2 (b), Ec3 (c), Ec4
(d), Ec5 (e), Ec6 (f) and Ec12 (g) futures contracts within Test Set 1.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.6 – Models point forecasts of the price series of the Ec1 (a), Ec2 (b), Ec3 (c), Ec4
(d), Ec5 (e), Ec6 (f) and Ec12 (g) futures contracts within Test Set 2.
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(a)

(b)

Figure 4.7 – Comparison of the Test Set 1 (a) and Test Set 2 (b) average observed futures
curves with the average forecasted ones with different neural network models.

4.5 Conclusion

In this paper, we provided a univariate and multivariate deep learning framework
for predicting the term structure of electricity futures prices using Recurrent Neural
Networks (RNNs). Specifically, our approach utilized the NAR–NN, NARX–NN,
univariate/multivariate LSTM–NN and univariate/multivariate ED–LSTM–NN models
to capture the nonlinear temporal relationship of the data as well as complex hidden
correlation features with various exogenous factors. The feasibility of the approach
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was investigated using two different time spans, that is a stable period and a period of
global instability characterized by higher volatility and price peaks which were used as
test sets to analyse and compare the models point forecasts accuracy.

The verification experiment showed that the proposed methods can effectively
manage trends and dynamics characterizing electricity futures curves and thus provide
their effective day–ahead predictions with high levels of accuracy. The comparative
analysis indicate that the NAR–NN model performed best only within the more stable
period. The LSTM–based models, on the other hand side, exhibited good performances
in Test Set 1 and, more important, superior and stable results in Test Set 2. Moreover,
the use of two distinct test sets allowed to validate the overall reliability and stability
of the proposed framework. Despite the good results which have been obtained up to
now, there exists room for improvements. Futures research may include the testing of
alternative model configurations and combinations as well as examining the impact of
different exogenous variables. Actually all these topics represent a part of our ongoing
research.
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4.6 Appendix

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.8 – Time series of daily closing prices (blue) and returns (grey) on the Ec1 (a),
Ec2 (b), Ec3 (c), Ec4 (d), Ec5 (e), Ec6 (f) and Ec12 (g) futures contracts.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.9 – Time series of Electricity (dark blue), Natural Gas (light blue), Coal (black)
futures prices and Carbon Certificate Emissions (CO2) spot prices (red). The related maturities
are indicated in each plots legend.



Conclusion

This dissertation examined parametric and non-parametric techniques to model
and forecast the yield curve in the BRICS bond market as well as futures curves in
the Natural Gas and Electricity derivatives markets. The contribution of the thesis is
threefold. First, we introduced a technique to determine optimal time–varying decay
factors and parameters in parametric models very suitable to manage the yield curve of
emerging economies, with a focus on BRICS. Our aim was firstly to endow the existing
models with greater flexibility to manage the challenging dynamics observed on these
markets. Furthermore, we tested the ability of the improved methods to deliver reliable
predictions, under various market conditions, when combined to AR(1), TBATS and
ARIMA–NARNN used as local data generating process. We showed that the proposed
framework allowed not only a significant improvement of models fitting power, but also
make stable and accurate yield curve forecasts.

In a second moment we turned the attention on the Natural Gas futures market
and we provided evidence of similarity patterns with fixed–income markets in terms
of curves structure and statistical features. The findings allowed to formulate a novel
ensemble approach for fitting and forecasting of futures curves trends by using the
Four-Factor Dynamic Nelson-Siegel-Svensson (4F-DNSS), the Five-Factor Dynamic
De Rezende-Ferreira (5F-DRF), the B-Spline and the NAR-NN models. All models
demonstrated high degree of flexibility and adaptability to a wide variety of situations
characterizing the market. Nevertheless, the B–Spline achieved undoubtedly highest
results properly replicating all the observed curve shapes. Furthermore, we highlighted
that the joint use of B–Splines and NAR–NN is the preferable approach for day–ahead
forecasting.

We ended the dissertation with a focus on electricity futures curves. We examined
a battery of Dynamic Recurrent Neural Networks: NAR–NN, NARX–NN, LSTM–NN
and ED–LSTM–NN using both univariate and multivariate settings with and without
exogenous variables aimed to identify the most appropriate forecasting strategy. The
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predictive power of the models was investigated using two different test sets which
demonstrated the reliable accuracy and the robustness of the methodology.

Overall we can draw some conclusions:

1. Existing parametric models can benefit of dynamic adjustment of parameters
that make them more reliable both in sample and out of sample when applied to
turbulent markets.

2. There are similarity patterns between the fixed–income and the Natural Gas
futures markets that make it straightforward to apply on the latter improved
parametrics models. Additionally, we highlight that combining parametric models
to machine learning generates considerable better results in forecasting.

3. The spiky nature of electricity prices is well integrated by the Dynamic Recurrent
Neural Networks.
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