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Abstract

We consider a second pillar pension fund problem relying on a multi-stage

stochastic asset-liability management (ALM) model which is specified with

an asset universe including money-market, fixed-income, inflation-linked bond

as well as equity and commodity. The current value of liability is determined

under the assumptions of constant pension fund future pension payments

and their current market value (current fund obligation) under assumption

of constant pension fund population by discounting all future pension pay-

ments. Pension payments are random and determined by the evolution of

the population and by inflation. Over a long term horizon discount rates will

also fluctuate and derive the evaluation of the fund liabilities. The pension

manager will seek an optimal investment strategy to fund all liabilities and

generate the surplus.

We present an extension of a scenario tree generation procedure to include

stochastic correlations among asset classes and test whether, as claimed by

several authors, such extension is effective during crises periods, when corre-

lation clustering is commonly claimed to affect the markets and reduce sig-

nificantly the effectiveness of portfolio diversification. We test the sensitivity

of the first-stage implementable decision to alternative assumptions on the

returns’ correlations and their impact on the portfolio terminal distribution

during a crisis period.
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The funding ratio (FR) is the ratio of the portfolio assets to the liabilities.

A pension funds, primary aim is to assess the FR at every decision stage over

time. The pension fund’s manager wishes to have sufficient liquidity and to

control interest and inflation rate risks with a minimum return guarantee.

Asset returns are defined with respect to a risk exposure captured by the

concept of risk capital, recently introduced in modern pension systems and

which is becoming a standard in Institutional ALM and in particular in

pension fund ALM. In this thesis the elements of a real-world case problem

are discuss and results presented over a 10-year horizon with the pension

fund economic and financial constraints.

Focusing on a period, between 2009-2011, of increasing markets’ volatil-

ity, we analyze the effectiveness of a long-term, discrete dynamic investment

strategy under an assumption of stochastic correlation. The method relies on

the definition of a probability space generated through Monte Carlo simula-

tion and the implementation of a scenario generation scheme with a Dynamic

Conditional Correlation (DCC) model. We consider a defied benefit (DB)

pension fund problem: under a DB scheme benefits are defined in terms of

percentage of last year salaries. The liability of pension fund is also called

defined benefit obligation (DBO) under such assumption. stressed funding

condition will arises when assets value decreases and liability value increase.

The analysis of pension funds market perspectives is strictly related with

evolution of the funding ratio. The collected evidence supports the inclu-

sion of stochastic correlation between asset returns during the recent Euro-

pean financial crisis. Over a three year backtesting period which includes the

2009-2011 sovereign crisis, the introduced extension is shown to generate an

effective hedge to positive risk premium.
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Notation and Key Definitions

The following standard notation and key definitions are used throughout the

thesis:

t ∈ T , t = {t0, t1, ..., tn} planning horizon time partition: time increments

from time 0 to the 10 year model horizon

T end of the decision horizon

ω random outcome (uncertainty)

(Ω,F,P) probability space with the triple: Ω the sample space,

F is σ-algebra on the space and P is the probability

measure

E is used for expectation and EFt is E(⋅∣Ft) on Ft will

denote conditional expectation with respect to the

σ-algebra at time t

Nt set of nodes at stage t

n− ancestor of n

a(n) set of ancestors:{n−, n−−, ..., n0}

c(n) children nodes-subtree originating from n

tn time associated with node n

x+i,n amount bought of asset i in node n

x−i,n amount sold of asset i in node n

xi,h,n amount held of i − th asset in node n bought in node h
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x−i,h,n amount sold of i − th asset in node n bought in node h

xi,n amount held of asset i in node n
0
x initial asset position

Ln pension payment at node n

LNETn net pension payment at node n (difference between

pension benefits and any contributions)

Λn defined benefit obligation (DBO) at node n

Φn funding ratio at node n

vi,n value of asset i in node n

ri,n price return of asset i in node n

pn probability in node n

I asset set

ζj statistical risk factors

ern standard random variables at node n

cj,r Choleski elements of the correlation matrix

ci,j,t elements of the dynamic correlation matrix

∆t time increment between two nodes

σj constant volatility

hn shortfall with respect to target at node n

W̃ j target wealth at stage j

Wn portfolio wealth at node n

li/ui lower/upper bounds of the asset i

ps survival probability for pensioners

ba annual pension benefit payment
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Introduction

The review of literature demonstrates that over the past several decades,

financial markets have gone through a soared fluctuation. In particular, the

recent period of sovereign crisis in Europe (2009-2011) has been affected

by the previous conditions in financial markets. The European market was

suffering from an unprecedented reduction in interest rates, increasing default

risk of selected sovereign borrowers and increasing correlation and systematic

risks in the Euro zone. In this situation, the financial institutions such as

pension funds, which had long-term horizon plans, were faced with downside

potential of the financial markets in many countries. Two most important

risks taken by pension funds are investment (underfunded) and longevity

risk. During such periods of market fluctuation, the adoption of dynamic

portfolio optimization strategies for securities exposed to market risk may

play a crucial role.

Recent European sovereign criss, has changed in the relationship among

different markets. Hence, correlations changing among different kind of asset

classes has become a major task for investors. By focusing on market prices,

we propose a numerical approach to incorporate scenario generation with

dynamic conditional correlation (DCC) in a discrete dynamic stochastic pro-

gramming problem and test its effectiveness during the recent crisis. DCC

method has been used in the econometric and financial problems. We cite

15



some of the most relevant contributions [55, 56, 118, 69, 128, 58, 41].

Depending on the specific structure, asset prices are assumed to be driven

by risk factors and correlated benchmark indexes. Therefore, Multistage

Stochastic Programming (MSP) methods provide a powerful paradigm for

decision making under such uncertainty. In financial planning problems, MSP

has been used in several areas as follows: asset-liability management [27, 49,

144, 9], financial engineering applications [82, 144, 29, 122, 53], large financial

institutions problem [19, 103, 47, 143, 28, 99] and dynamic portfolio problems

[27, 119, 143].

The purpose of the current thesis is to assess the underperformance of

ALM models during the financial crisis and how traditionally long-term in-

stitutional investors such as pension fund must cope with the shrinking of

their shorter term budget of risk embedded in regulatory changes, as well as

containing their drawdown during phases of systematic risk such a worst case

scenario. During the crisis period financial institutions such as pension funds

were faced with downside potential of the financial markets. A study by [60]

revealed that 90% of the private-sector defined benefit pension systems in

the UK and US were underfunded. The reason was mostly bad modeling or

the absence of modeling, together with difficult conditions in the financial

markets.

Taking right intermediate decisions for DB pension funds that have long-

term investment horizons and control the liquidity shortfall risk of pension

funds over the short-term horizons will be important to meet long-term tar-

gets. Since managing long-term assets and controlling the pension funds’

risks are relative to the market evidence in the long-run, their assessment

requires long-term simulation and optimization modeling ability. However at

the same time, we have to control the risk of market drop risk and get the

16



right decision for our portfolio allocation in short and medium-term hori-

zons. During the investment horizon, investors may be faced with drawdown

or systematic risk of market. In this case, they have to be able to balance

the returns of portfolio against the discounted liability and also, long-term

investors should improve short-term risk management.

Motivation

In the current research, an effort is made to assess the underperformance of

ALM models during the recent market crisis and the way the traditionally

long term institutional investors must cope with the shrinking of their shorter

term budget of risk embedded in regulatory changes, as well as containing

their drawdown and liquidity shortfall during phases of systematic risk. In

this case, they have to be able to balance the returns of portfolio against the

discounted liability and also, long-term investors should improve intermediate

term risk management. Nowadays also an increase in cross-asset correlations

is a main source of uncertainty for investors. Construction of an optimal

portfolio with a set of constraints requires a forecast of the covariance matrix

of the returns. If the correlations and volatilities are changing dynamically,

then the fund hedge ratio should be adjusted to account for the most recent

information over long horizon.

To cope with this problem, we introduce the time depending stochastic

correlation into the scenario generation model over the long horizon which al-

lows changes in volatilities and correlations among a set of underlying assets.

This approach can identify possible changes in correlation and managing the

risk in a more volatile and correlate investment universe. Therefore, we chal-

lenge the optimal dynamic DB pension funds ALM problem under stochastic

17



correlation with multi-critical targets together with financial and regulatory

constraints and computational procedures that can help us analyze the pen-

sion fund’s investment strategy under different target combination and worst

case scenario as well.

Aims and Contributions

Pension funds are institutional investors whose key objective is to generate

retirement income through effective ALM. In this thesis we consider the

following research objectives:

• Analyze the impact on dynamic ALM strategies of alternative assump-

tion on asset correlations and trade-off between return targets.

• Develop a decision tool based on MSP to study the evolution of the PF

funding ratio under stressed market conditions.

• Extend currently available scenario generation method to incorporate

stochastic dynamics of asset returns correlations.

• Analyze optimal MSP-based hedging policies in presence of stochastic

correlations.

The following may regarded as main contributions of the research work:

• The definition of an optimal ALM strategy during the recent (2009-

2011) crisis in the EU zone in presence of correlation clustering.

• Development of a scenario generation method based on a dynamic con-

ditional correlation model for asset returns.

18



• The benchmarking of alternative optimization approaches (e.g. static vs

multi-period, under constant or stochastic correlation) over 2009-2011

with out-of sample results.

• Scenario based analysis of pension fund funding conditions under alter-

native market assumptions and derivation of an optimal targets convex

combination.

Structure of the Thesis

In the present thesis, the analysis is based on a MSP optimization approach

which integrates an uncertainty scenario generation model of DB pension

fund and investment risk with a realistic representation of the ALM problem.

In the empirical part of the thesis, a dynamic ALM model for the DB pension

funds will be applied to a real-world case study. The case study will be

designed for a large institutional investors in order to identify the optimal

asset allocation over certain planning horizon with inclusion of capital and

liability constraints generated by a DB pension fund.

Following the introductory remarks, the thesis proceeds as follows. In

chapter 1, the institutional ALM with specific features on pension funds,

methodology and modeling issues are presented. Chapter 2 deals with long-

term financial risk and markets’ instability with investment universe, stochas-

tic risk factors, two layer asset simulation structure and decision making.

Chapter 3 discus the dynamic decision approach for institutions with dy-

namic stochastic programming framework and scenario generation. Chapter

4 presents a mathematical modeling for optimal DB pension fund manage-

ment with stochastic correlation and asset returns simulation. Chapter 5

offers an empirical work and case study on DB pension fund and the related

19



results. Finally, chapter 6 concluding remarks.
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Chapter 1

Institutional Asset Liability

Management

Financial activities by financial institutions continually require decisions made

about the resources and allocation of the resources on different uses. The ever

increasing inclination of financial institution to concentration on rates of asset

return and liability and risk control by the institutions has made it necessary

for the managers of institutions to use ALM knowledge in their responsibility.

In order to assist the managers of financial institutions, treasurers, chiefs of

bank branches, ALM experts, ALM combines the new techniques employed

for profiteering and, risk management of trade institutions and makes them

practical.

Institutional investors such as pension funds, insurers and sovereign wealth

funds, due to the longer term nature of their liabilities, represent a poten-

tially major source of long-term financing for illiquid assets. Over the last

decade, these investors have been looking for new sources of long-term, infla-

tion protected returns. Asset allocation trends observed in recent years show

a gradual globalization of portfolios with an increased interest in emerging
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markets and diversification into new asset classes [113].

Investment management is more than asset management. As a matter of

fact, investments relate with the art of managing the whole balance-sheet of

financial institutions where not only assets, but also liabilities and capital

play a role Figure 1.1.

Figure 1.1: Stylized balance-sheet structure

Assets have to be financed by liabilities, and capital is needed to run

the market safely. In particular, ALM is the branch of investment theory

emphasizing the importance of the interaction between assets and liabilities

thus representing a core activity for many-long term institutional investors,

especially pension fund.

The aim of this thesis is to use this knowledge in order to find the best

possible strategy for managing the mismatch between assets and liabilities for

the financial institutions. The asset must be invested over time to achieve

favorable return subject to various uncertainties, policy and legal constraints,

taxes and other requirements do not diversify properly across markets or

across time, particularly in relation to their liability commitments. There are

many motivations for studying asset liability management, including: 1) the

results may be useful to set guidelines for institutions and individual investors

concerning their asset allocation mixes, the models integrate various decisions
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over time with the constraints, preference and uncertainties inherent in the

investment problem and 2) the models consider temporal dependence of asset

and liability commitments, path dependent preferences, short and long term

trade-offs and provide for realistic measurement of risks and their trade-off

with investment returns considering the effects of taxes, transaction cost and

other problem features [145].

There are numerous application areas for ALM including pension fund

[13, 145, 103, 108, 99, 14, 72, 47, 43, 42, 60, 85, 143, 144, 62, 9, 98, 3, 15],

insurance company [18, 143, 144] for the Japanese Yasuda-Kasai Insurance

company, [64, 40, 100, 101, 106, 28, 98, 11, 32] for the P&C insurance through

stochastic programming approaches and banks [87, 38, 98, 10]. In the present

research the main focus is on the defined benefit pension fund investors.

1.1 Literature Review

Asset-liability management is a term whose meaning has evolved and enjoyed

remarkable popularity in recent years. From its origins as an actuarial and

cashflow matching technique, ALM has grown into a conceptual framework

for financial management and a professional activity in its own right. In a

world governed by financial markets and physical commodities, it is vital

to analyze objectively the economic effects of price movements on balance

sheets, earnings growth and enterprise value. Its use began in insurance com-

panies and banks and has now extended to most financial institutions and

corporations. ALM has been defined by American Society of Actuaries (SOA)

(2003) as follows:

”ALM is the practice of managing a business so that decisions and ac-

tions taken with respect to assets and liabilities are coordinated. ALM can
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be defined as the ongoing process of formulating, implementing, monitoring

and revising strategies related to assets and liabilities to achieve an organiza-

tion’s financial objectives, given the organization’s risk tolerances and other

constraints. ALM is relevant to, and critical for, the sound management of

the finances of any organization that invests to meet its future cash flow

needs and capital requirements.”

The sphere of ALM applications has gained a momentum over the past

decade with software developments that have benefited several sectors of the

financial industry dedicated to wealth management [47, 121, 146, 137, 98].

Mathematical models of asset liability management have been extensively

studied by practitioners as well as operations research experts. The literature

starts from the static portfolio optimization model through mean-variance

techniques [92, 93] and developing complex mathematical models [18, 87] to

improve decision making. In a model known as Towers Perrin model [103],

downside risk was used as a risk measure which quantifies the probability and

extent of the shortfall when one exists. Also in a chapter book to Stochas-

tic Optimization Methods in Finance and Energy edited by Bertocchi et

al. [9], Dempster et al. proposed a model for funds design to support in-

vestment products which yield a minimum guaranteed return. [19] on the

other hand analyzed the performance of fixed-mix strategy employing mean-

variance frontier with dynamic multi-period programming strategy based on

costs in the objective function.

[87] developed a model for the Vancouver city saving union. This model

took into account many features including simultaneous consideration of as-

sets and liabilities to meet accounting principles and match the liquidity of

assets and liabilities, transaction costs, uncertainty in deposit withdrawals

and legal and policy constraints. The proposed model allows constraint vi-
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olations through penalty costs in the objective function. The performance

of this model has been compared with that of [16] stochastic decision tree

approach, which lacked flexibility in the capital loss constraints and category

limit constraints and which limited the choice of its solutions. The simula-

tions demonstrated higher risk adjusted returns for the Kusy-Ziemba model.

The Russell Yasuda Kassi model is another model proposed by [18] to

handle the financial planning for a Japanese Insurance company. Through

the model, the different legal and policy constraints, multiple accounts and

multistage planning horizon were successfully handled. They compared the

performance of the model against the old methodology followed by the firm,

mean-variance analysis, and found the returns generated by the allocations

form the model were substantially higher than the mean-variance allocation.

[27] developed a computer-aided asset liability management (CALM) model

which is a generic model for the integrated dynamic management of financial

assets and liabilities. With this model, they handled uncertainties pertaining

to both the assets and liability. [48] developed an ALM model and compared

it with the static decision making framework. He used binary variables to

explicitly model the probability of underfunding at intermediate point as

well as the horizon. The dynamic nature of the model allowed the decision

making to react to the latest economic developments and chose a trade-off

between long term consequences and short term gains. In comparison to

the static models, the ALM model resulted in lower funding cost as well as

lower probability of underfunding. [51] developed a mixed integer stochastic

programming model using variable as in [48]. They extended the use of binary

variables to model conditional constraints in order to allow for investment in

derivatives when the normal asset return fall dramatically so as to prevent

the portfolio form from further decline.
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[141] discussed asset liability management under benchmark and mean-

variance criterion in a jump diffusion market in which the Lévy process was

used to describe the dynamics of risky asset’s price and liability. [88] inves-

tigated on mean-variance asset liability management with endogenous lia-

bilities under multi-period setting. [23] studied the mean-variance asset lia-

bility management considering cointegrated assets and insurance liabilities.

[139] solved analytically the continuous-time mean-variance asset liability

management with endogenous liabilities. [89] focused on multi-period portfo-

lio optimization for asset-liability management with bankrupt control. [139]

considered uncontrolled cash flow into account and solved the multi-period

asset liability management model by adopting the dynamic programming

approach. [90] considered dynamic portfolio technique of risky assets under

uncertain exit time and stochastic market and this work can be extended to

the asset liability management area with modification in terms of liability.

[39] extend stochastic control methodology to addressing an ALM problem

with a classical solution under two different sets of assumptions and jump-

diffusion uncertainty on both assets and liabilities.

A lot of work has been carried out to study the application of ALM in

pension fund management. For instance, [95, 96] has attempted to employ

the ALM problem in a continuous-time framework, and has extended the in-

tertemporal selection analysis to account for the presence of liability in the as-

set allocation policy. He has applied the optimal portfolio selection approach

to the pension funds in 1990. [129] specifically aimed at asset allocation and

retirement decisions for a pension fund. [85] proposed a stochastic program-

ming based model for Dutch pension fund. He constructed a tree scenario by

random sampling, adjusted random sampling and tree fitting approach. [61]

further studied the relative performance of stochastic programming model
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versus fixed models by conducting out of sample tests. They found that the

relative dominance of the stochastic programming (SP) model reduced under

these conditions. This was attributed to the SP models having an advantage

of optimization to future scenarios which were lost when conducting out of

sample tests. They underscored the importance of the scenario generation

procedure in developing a SP ALM model. [70] focused on the management

of a pension fund under mortality risk and financial risk. [73] developed an

ALM model for a Finnish pension Company. [54] also conducted a similar

study for a model developed for a Czech pension fund. [123] attempt to the

case of a time-varying opportunity set of the pension’s asset portfolio. [91]

investigated the mean-variance optimization problem for a single cohort of

workers in an accumulation phase of a defined benefit pension scheme.

As [78] states, the aim of pension fund asset management is to provide

funding for the pension liabilities, but a pension fund sponsor has also a

secondary goal that is the achievement of an earnings spread (i.e. the posi-

tive gap between assets and liabilities). By the same token, [21] argues that

traditional efficient frontier method is not capable enough to maximize the re-

turn of a pension fund. He proposes instead matching pension assets against

pension liabilities, saying: ”match the assets and the liabilities and go to

bed”. [107] also suggest that any attempt to manage pension plan risk must

consider both asset valuation and the risk of interest rate decreases. [126] sug-

gest that pension fund managers should avoid severe underperformances and

asset-liability mismatches every year, in order to follow an appropriate ALM.

The Kodak pension plan [115], for example, implemented an established ALM

system for pensions in 1999, protecting its surplus over the subsequent reces-

sion. The situation repeated itself during the 2008 crash when most pension

plan funding ratios dropped further. Again, systematic risk management via
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ALM models would have largely protected the pension plans. Another exam-

ple of successful application in asset liability management using stochastic

programming model is Tower Perrin-Tillinghast which has been discussed

in [103]. Several institutional applications in asset-liability management are

provided in [145, 146, 144, 9].

Advocates of conservative investments, known as liability-driven invest-

ing (LDI) have proposed a portfolio tilted to fixed income securities, similar

to the portfolio of an insurance company [99]. According to [99], any model

with a fixed correlation and single-period structure, such as the traditional

Markowitz model, will be unlikely to provide much diversification benefits

since the market’s behavior during a crash is very different from the behav-

ior during normal times. [99] suggest that an efficient approach for dealing

with pension-surplus protection is to implement dynamic strategies involving

long-term government bonds (or strips during crises). They termed this strat-

egy as ”DEO” which stand for duration enhancing overlay. [70] investigated

on optimal contribution rate of a stochastic defined benefit pension fund with

a stochastic mortality which is modeled by a jump process. [138] focused on

asset allocation problem for defined contribution pension funds with stochas-

tic income and mortality risk under a multi-period mean-variance framework.

[83] considered optimal savings management for individuals with defined con-

tribution pension plans. [97] addressed integrated risk management for U.S.

defined benefit pensions with models and metrics. He focused on the im-

pact of plan underfunding for the operation of the pension benefit guaranty

corporation.
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1.2 Pension Funds

Pension fund is a financial institution to provide the pension benefits of

retired employees. Pension funds collect retirement savings from workers and

their employers, and invest this money in a wide range of assets. They manage

the money of up to millions of individuals and they have major impact on

the stability of financial markets through their investment behavior.

According to [77], national pension systems are typically represented by a

”multi-pillar” structure, with the sources of retirement income derived from

a mixture of government, employment, and individual savings. They have

divided pensions into three pillars, based primarily on the source of savings:

• State pension

• Occupational pension

• Private pension

The first pillar is public and is financed through government pay-as-you-

go (PAYG) pension structure where current contributions pay for current

benefits, and managed by public institutions. The contributions are divided

between employer and employee and they are a fixed percentage of earned

wages. The second pillar is funded through employer and organized at the

workplace and is fully funded pension fund and most often PAYG structure

as well. This pillar can be separated into defined benefit (DB) and defined

contribution (DC) or hybrid plans. The third pillar, private savings plans

and products for individuals, often tax-advantaged saving. In the current

research, the focus is on the second pillar pension system.
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1.2.1 Occupational Pension Plans

Occupational pension benefits can be generally divided into two different

schemes of the retirement saving built up during occupation: DB and DC

plans. In a DB plan, employer guarantees to provide specific pension benefits

to the employee related to individual salary and length of employment. Pen-

sion fund managers have to make detailed calculations on how much they will

be required to pay out to pensioners. In the DB plan, two systems are distin-

guished: a system based on the final salary and a system based on the average

salary. The second way that pension funds can be organized is through a DC

scheme. In this arrangement, the employee is primarily responsible for saving

for his/her own retirement. In this scheme, the employee sets aside a certain

percentage of his/her salary in a tax-deferred individual account, matched

in part or in full by the employer’s contribution, which also goes into the

individual account. When employee retires, the level of pension benefit is

based on his/her individual account balance and is no longer the employer’s

responsibility. The most common DC plans are 401(k) plans in the private

sector and 403(b) plans in the public and nonprofit sectors [117].

There are several advantages and disadvantages of DB plans for a plan

participant. In fact, DB and DC are completely opposite plan types, the ad-

vantages of a DB plan tend to be the disadvantages of a DC plan and vice

versa. The major advantage of DB is that the post-retirements’ benefits are

fixed in advance by the sponsor and contributions. There are three aspects to

this certainty. First, employees know the amount of annual pension benefits.

Second, in most cases, an annual pension benefit is also indexed for inflation.

Therefore, employees do not have to worry about losing the purchasing power

of their pension benefit to inflation in the many years he/she will continue
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to live after retirement. Third, the retiree in a DB plan does not have to be

worried about the financial implication of longevity. The employee is guar-

anteed pension benefits for as long as he lives. When a DB plan has enough

members, it can use average mortality for long-term financial planning pur-

poses. In this way, a member who lives longer than an average life span does

not have to worry that the plan will run out of financial resources to fund

his longer life span, as it will be balanced out by other members with life

spans shorter than average. In other words, each employee has a guaranteed

lifetime annuity. DB plans are definitely preferred by workers [117].

As [117] states, the main disadvantage of a DB plan is the funding risk

for the plan’s government sponsor. The funding risk refers to both short-

term volatility in pension contribution and long-term uncertainty in required

funding to meet future pension obligation. This funding risk results from

several assumptions built into the calculation of costs related to funding

pension benefits. The first and most important assumption is the assumed

rate of return on the investment. The second risk with regard to the rate of

return is whether it can be realized in the long run. Because the assumed

rate of return is long-term in nature and is based on historical rates of return,

there is always the potential that this assumed rate of return might not be

realized in the future.

1.2.2 Pension Benefit Design

To understand the pension plan management, we need to know what pension

benefits are and how they are determined. Every type of pension provides the

employee with an income after some event has happened. As aforementioned,

DB and DC plans are two extremely different ways to determine benefits. In

this section, we briefly discuss some important types to define the benefit for
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the DB plans [117].

• Normal service benefit

It is called also normal retirement benefit because the benefit can be re-

ceived only when the employee reaches a normal retirement age. The normal

retirement benefit is defined by the following formula:

Final average salary × Years of credited service × Benefit multiplier

Final average salary (FAS) is the average salary over the last few years

prior to a member’s retirement or termination of employment. Years of cred-

ited service are the number of years the retiree or the terminated employee

has worked for one particular employer. Benefit multiplier (BM) means the

percentage of final average salary the retiree can replace in his/her annual

retirement benefit for each year of service. While these three factors appear

straightforward, there are many variations of these factors in actual pension

benefit design (For more details see [117]).

In order to receive the normal retirement benefits, there are three primary

ways to determine the requirement in the public sector: age, years of service,

or a combination of both.

Age: If the requirement for normal retirement is based on age, then the

employee has to reach a certain age.

Year of service: If it is under year of service, an employee can retire at any

age and collect normal retirement benefit as long as she has worked for

a certain number of years.

Under combination of age and years of service: Under combination of

age and years of service, an employee can retire with normal benefit
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as long as her age and years of service add up to a certain number.

This type of rule provides more flexibility for employees in meeting the

requirement for normal pension benefits.

• Early retirement benefit

In addition to normal retirement benefits, some pension plans also allow for

early retirement benefits, which is offered to those who retire before they

meet the requirement for normal benefit.

• Post-employment benefit adjustment

For employees, it is important to know not only what the pension benefit is

at the time of retirement, but also whether such pension benefits will be ad-

justed for cost of living in the future. Without such adjustment, inflation will

gradually erode the purchasing power of pension benefit over time. Because

an average retiree is expected to live for many years after retirement, such

adjustment is a significant benefit related to the normal or early retirement

benefit for the employee.

1.2.3 Aims and Interests in Pension Funds

The key aim of a pension fund is to ensure that it is able to fulfill its promises

to the members over a long-time horizon. The promises consist of the pen-

sion payments derived from the wealth which pensioners have saved up and

which active members are currently accumulating. Therefore, the pension

fund faces the uncertainty of not knowing the total amount it will have to

pay to any particular pensioner between retirement and death. Since the

pension fund relies on the financial markets in order to accumulate and grow

the savings for retirement it is also subject to movements on the financial
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markets. These movements may not be in favour of the investment targets.

These uncertainties combined with the very long-time horizon make the goal

stated above a highly difficult one to achieve (Figure 1.2).

Figure 1.2: General structure of a pension funds’ manager’s view

The perfect pension fund would then also reach this goal in a transparent

and systematic way, ideally also reflecting the individual’s interests and dis-

tributing surplus wealth in a manner that every stakeholder benefits equally.

Today, also more and more moral issues with regard to the actual investments

are raised. Pension funds want to ensure that their wealth is only invested

into morally high standing, long term oriented sustainable investment oppor-

tunities.

In a pension system where the young active members’ and the retired

passive members’ wealth is managed as a fully funded pension fund, several

interests need to be achieved.

Every party involved in the pension fund has particular interests: the pen-

sioners and the active members shortly before retirement are interested in a

34



secure and stable pension which is best achieved by a low risk, conservative

investment strategy. The younger active members are interested in highest

possible returns in order to augment their future pensions. The sponsoring

companies’ interests, finally, lie in minimizing the need of paying supplemen-

tal funds into the pension fund. This could be the case if the pension fund is

in a financial distress situation and cannot fully cover its promised payments.

The task of the pension fund manager is to accomplish the goals of all

parties involved, while observing the legal requirements, achieving a minimal

guaranteed return, and with the additional difficulties of uncertain market

returns, liquidity needs, and demographic trends.

1.3 Methodology & Modeling Issues

A pension fund ALM problem belongs to the general class of financial planing

problems under uncertainty with the following main features:

• a long-term objective;

• several financial and regulatory constraints;

• a complex set of risk drivers affecting the investment portfolio overall

risk exposure.

To tackle this decision problem, consistently with mainstream modeling

approaches, we can adopt either: a discrete modeling framework [105, 27, 47,

9] or a continuous framework [127, 95].

In the present research, the analysis is based on a DSP optimization ap-

proach with discrete time and space setting [145, 143, 144, 9] which integrates

an uncertainty scenario generation model of DB pension fund and investment

risk with a realistic representation of the ALM problem. This work deals with
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relevant criteria for optimal DB pension funds portfolio selection when as-

sets, liabilities, capital efficiency and possibility of portfolio’s shortfall with

respect to the fund’s targets simultaneously considered.

In the empirical part of the thesis a dynamic ALM model for a large insti-

tutional investor has been applied to a case study. The case study is designed

for a DB pension fund in order to identify the optimal asset allocation over

certain planning horizon with inclusion of capital and liability constraints.

Some of the most important modeling issues faced by a pension fund

manager in the determination of the optimal asset allocations over time to

the product maturity have been listed by [47] as follows:

• Stochastic nature of asset returns and liabilities

Both the future asset return and the liability streams are unknown.

Liabilities, in particular, are determined by actuarial events and have

to be matched by the assets. Thus each allocation decision will have to

take into account the liabilities level which, in turn, is directly linked

to the contribution policy requested by the fund.

• Long-term investment horizons

The typical investment horizon is very long. This means that the fund’s

portfolio needs to be rebalanced many times, through a sequence of

”buy, hold and sell” decisions. Therefore, dynamic stochastic optimiza-

tion techniques are needed to take explicitly into account the on-going

rebalancing of the asset-mix.

• Risk of under-funding

There is a very important requirement to monitor and manage the

probability of under-funding for both individual clients and the fund,

that is the confidence level with which the pension fund will be able to
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meet its targets without resort to its guarantor.

• Inflation risk

Inflation is one of the most important risks in pension funds. In fact,

both assets and liabilities of the fund can be impacted by unexpected

inflation shocks over horizon. Assets may suffer because an increasing

of inflation rate normally triggers an interest rate up-shift therefore

negatively hitting the fixed-income nominal assets. Liabilities can also

be under pressure since future salary of pensioners and active members

are inflation sensitive.

• Management constraints

The management of a pension fund is also dictated by a number of

solvency requirements which are put in place by the appropriate regu-

lating authorities. These constraints greatly affect the suggested alloca-

tion and must always be considered. Moreover, since the fund’s portfolio

must be actively managed, the markets’ bid-ask spreads, taxes, policies

and other frictions must also be modeled.

The uncertain variables in the modeling need to be approximated by a

scenario tree with a finite number of states at each time. Important practical

issues such as transaction costs, multiple state variables, market incomplete-

ness due to uncertainty in liability streams that is not spanned by existing se-

curities, taxes and trading limits, regulatory restrictions and corporate policy

requirements can be handled within the stochastic programming framework.

Figure 1.3 illustrates the processes, models and other requirements to con-

struct dynamic ALM strategic with periodic portfolio rebalancing. It should

be noted that knowledge of several independent highly technical disciplines

is required for dynamic ALM strategic in addition to professional domain
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knowledge. Corresponding to the Figure 1.3 shows the system design which

describes the separate - largely automated and implementation part - tasks

which must be undertaken to obtain recommended strategic decisions once

statistical, optimization and implementation part have been specified. Each

of the blocks of the following figure will be treated in detail in a subsequent

chapters of the thesis.

Figure 1.3: Dynamic stochastic optimization for financial planing
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Chapter 2

Long-Term Financial Risk and

Markets’ Instability

The recent markets’ instabilities have started since financial markets crisis in

United States which broke out in 2007 and swept away rapidly across major

financial institutions of United States and Europe. Having spread to giant

financial institutions, the instabilities of the markets turned into a pervasive

crisis in financial markets and culminated in a dramatic decline of stocks

prices and fall of stocks.

According to [62], after the first financial crisis between 2000 and 2003, a

second financial crisis within less than ten years during 2007/2008 swept away

the financial institutions such as pension funds that have long-term invest-

ment horizon across the world. This financial crisis amplified the shock waves

that the previous crisis had sent to pension funds through-out the world. For

many pension funds, the current crisis was far worse than the last one. In

order to prevent deficits in pension funds in the aftermath of the crisis, many

countries implemented some new regulations and applied new management

risk tools, neither of which was efficient. For the long term financial plan-
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ning risk integration is essential because multiple factors affect asset-liability

portfolios at the same time. Without considering integration, the measures

will be incorrect and, subsequently, so also the portfolio management.

Here in the current chapter, the main objective is to cover and introduce

the investment universe of pension funds, stochastic framework of assets re-

turn for the given asset classes, impact of market instability on pension finds’

asset and liability and long-term risk control in a dynamic setting.

2.1 Investment Universe

The financial institutions such as pension funds may invest in several asset

classes. In the analysis, we consider a long-term asset allocation for the pen-

sion fund based on the investment universe including bank account, money-

market with a risk-free short-term interest rate and risk bearing investments

such as government bonds, equity and commodities. Bonds are considered as

riskless assets while stock and commodity markets are risky assets, whereas

the money-market is considered a risk-free investment. For each such in-

vestment opportunity a dedicated statistical model has been developed to

generate future price and return scenarios describing the uncertainty the in-

vestment manager is facing over time and must be input to the optimization

problem.

Table 2.1 illustrates the set of investment classes, benchmark indexes and

the associated risk factors relevant in this study. We have five investment

classes plus bank account and relevant benchmark indexes with associated

risk factors.
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Table 2.1: Market benchmarks and relative risk factors

Investment Class Benchmark Risk factors

Money market Euribor 12 month Inflation rate, economic cycle,

12 month short rate

European Gov. bond JPM Global Emu Euro stock, interest rate,

economic cycle

JPM Global ex-EMU Euro stock, inflation rate

Infl. Linked bond Barclays Infl. Linked Euro stock, interest rate,

inflation rate

Equity MSCI Europe Index Stock risk premium, interest rate

Commodity Dow Jones Comm. Euro stock, economic cycle,

euro bond market

2.1.1 Historical Data

We use delegate total return (TR) indices for the asset classes. A total return

index includes the reinvestment of dividends in the case of stock markets

and the gains or losses of the price variation in the case of bond markets,

respectively. All of the mentioned data sets in this thesis have been collected

at a quarterly frequency through the Data-Stream (DS) source. Furthermore,

for all data sets, the time-specified of past observed market data starts from

January 1999 and ends in December 2015.

2.2 Stochastic Models for Asset Returns

In the financial planning, the major decision of an investor regarding the port-

folio is to choose the allocation between the different asset classes. Hence, one
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of the key elements in a dynamic ALM scheme is a model for the movement

of assets price and return in the market. Furthermore, for the optimization

modeling and scenario generation, we need to know about behavior of our

portfolio over time horizon. Since our portfolio is changing over time and

is exposed to some stochastic factors, we introduce assets return models in

discrete-time with the modelling framework consists of stochastic differential

equations [29].

According to the Figure 2.1, we consider two layers structure, at the first

layer we drive the risk factors for each investment opportunity, then in the

second layer compute the equity risk premium and returns of each asset class

based on first layer of the model have been formulated. Risk factors essentially

Figure 2.1: Structure of statistical risk factors

affect in the long-term financial position of the portfolio return and need to

be consider in the dynamic stochastic optimization modeling. Therefore, for

the given investment universe, we need to identify associated risk factors
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relevant to the set of investment opportunities [105, 27, 37, 5, 47, 42, 29].

Table 2.1 includes the associated risk factors of each investment opportu-

nities indexes relevant in this study. We consider inflation rate and 10 years

Euro interest rate in the risk factor modeling. Inflation and interest rate are

two critically important risk factors for the pension funds. An inflation rate

process is also considered to derive inflation-adjusted pension payments over

the time horizon. In fact, both assets and liabilities can be influenced by

unexpected inflation shocks over the decision horizon.

Apart from inflation and interest rate in the Euro area the following core

risk factors are considered: economic cycle (Gross domestic product (GDP)),

the MSCI Euro equity benchmark and Euro bond market.

We refer here to the risk process as the random process of the financial

factors embodying the risk sources of the problem [37, 29]. We regard sce-

nario approximation as an efficient statistical procedure to approximate in

a discrete framework the probability space (Ω,F,P) and has been discussed

more in details in chapter 4. From the statistical modeling viewpoint, first

layer risk factors ζjn and then second layer asset price return ri,n are computed

with multivariate Gaussian return model with autoregression and exogenous

variables. Generic stochastic difference equation for the risk factors ζjn for all

n ∈ Nt are as follow:

ζjn = µ
j
n + σ

j
√

∆t∑
r≤j
cj,re

r
n (2.1)

In equation (2.1) vector µjn gives stochastic drift of the risk factors at node

n and ∆t defines the time increment between nodes n− and n. Correlation is

introduced directly on the realizations ern of four standard normal variables

through the Choleski elements cj,r of the correlation matrix with normal

distribution N(0,1) and illustrated in Table 4.2.
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Furthermore, the general multivariate Gaussian return formulation of as-

set price returns ri,n and evaluation of assets value vi,n for all n ∈ Nt are

considered as follow:

ri,n = µi,n + σi,tn
√

∆t∑
r

ci,r,tne
r
n (2.2)

vi,n = vi,n−(1 + ri,n) (2.3)

The dedicated stochastic models to each risk factor and asset benchmark

index with more details have been described in chapter 4.

2.3 Market Instability

The periods of worldwide Lehman crisis and also sovereign crisis in Europe

(2009-2011) have affected previous condition in financial markets. In particu-

lar European market was suffering from unprecedented reduction of interest

rates, increasing default risk of selected sovereign borrowers and increasing

correlation and systematic risks in the Euro zone. Therefore, pension funds

both DB and DC plans were hit hard by the market instability [4, 136, 111].

According to a chapter book on Asset-Liability Management for Financial

Institutions edited by [134], the causes of the crisis spawned factors that

impacted asset-liability portfolios and resulted in risk management failures.

The crisis was not caused by one factor alone, and it was not relegated to one

geographical location. The crisis was a systemic worldwide failure. The com-

plex financial system had reached a point of instability and several triggers

caused the system to fail, resulting in extreme draw-downs. Most existing

risk management systems were incapable of handling the resulting factors

individually and especially simultaneously.
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Considering the importance of the crisis and its aftermaths in the pen-

sion funds the present section discusses the key sources of susceptibility for

pension funds during the recent financial crisis. How pension funds’ assets

and liabilities were effected during the market instability and why this can

be controlled in dynamic stochastic framework better than another model

are discuss as follow [4, 136, 111, 86, 2].

2.3.1 Asset & Liability Shocks

The market instability and the ensuing economic and financial crisis have had

a major impact on pension funds’ assets. According to the [4, 136] assets’

shocks during the recent market instability and financial crisis have reduced

the value of assets accumulated to finance retirement by around 20-25% on

average. However, there is a large variability among countries, ranging from

positive but small returns in some countries to falls of over 30% in Ireland

and the United States (see Figure 2.2). This variability is explained in part by

differences in portfolio compositions, as well as the regulatory environment

[114]. Moreover, the increase in unemployment originating from the current

economic conditions will reduce the amount of pensions’ savings, which will

negatively affect the future retirement incomes.

As stated in [4], the crisis is also causing a shift in asset allocation pat-

terns, with investors moving into more conservative investments. Such moves

risk locking in portfolio losses and could also reduce the potential of funds

to generate retirement incomes in future. The fall in the value of assets ac-

cumulated for retirement affects the solvency of pension plan sponsors and

the funding levels of plans providing DB pension funds. The funding levels

of pension funds providing DB pensions have fallen well below 90% in most

OECD countries. As a result, the value of their assets fails to cover their
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Figure 2.2: Pension Fund Returns (Jan-Oct 2008) in Selected OECD Countries

(Source: OECD Global Pension Statistics).

pension liabilities.

[136] reports the changes in the value of liabilities for accounting purposes

for pension plans of corporations in major equity indices as a function of the

changes in the relevant yield curve. In general, accounting liabilities have

dropped in October 2008 as credit markets froze and spread on corporate

debt increased. However, they have rapidly increased since then due to a

sharp drop in interest rates for all yield curves. For instance, short term

U.K. yields decreased by 100-150 bps between August and December 2008

while long term yields decreased by 40-60 bps. Other shocks are channeled

through the income statement of DB pension plans. In general, pension plan

income will be affected by a slowdown in the economy. For instance, rising

unemployment will translate in lower contribution income for the plan which,

in turn, will affect the funding status of a DB plan. Equivalently, the rate

of return on assets is likely to decrease during a recession, also affecting the

funding status of a DB plan. In what to come, how to control of these market
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shocks in dynamic ALM framework has been discussed in more details.

2.3.2 Managing Impact of Market Shocks

As aforementioned, the unexpected market shocks need to be considered

and managed in the ALM modeling. In order to measure and handle the

market instability that impacted pension funds’ asset-liability portfolios, the

following factors are essential to be considered in the framework of the ALM

models:

• Dynamic

• Stochastic

• Risk integrate

• Economic and financial theories

• Scenario tree analysis

During the crisis period, most of the firms used static portfolio optimiza-

tion framework, such as Markowitz mean-variance allocation for the model-

ing, which are short-sighted and when rolled forward lead to radical portfolio

rebalancing unless severely constrained by the portfolio manager’s intuition.

In practice, fund allocations are wealth dependent and face time-varying

investment opportunities, path dependent returns due to cash inflows and

outflows, transactions costs and time or state dependent volatilities. Hence

all conditions necessary for a sequence of myopic static model allocations to

be dynamically optimal are violated. By contrast, the dynamic stochastic

programming models incorporated in the system described on Figure 1.3 au-

tomatically hedge current portfolio allocations against future uncertainties
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in asset returns and liabilities over a longer horizon, leading to more robust

decisions and previews of possible future problems and benefits [47]. By the

same token, [86] argues that the dynamic allows portfolio decisions to be

revisited in the future as financial and economic conditions change.

Also, stochastic in the model allows the prices, rates, and other factors

calculated in the future uncertainty structure to change over time and level

and capture extremes and fat tails. These are essential components in cal-

culating interest rates, credit spreads, prices, etc. Hence these are required

in ALM modeling and managing portfolios in the financial crisis, with the

repricing of instruments based on the uncertainty structure.

Risk integration is essential, because multiple factors affect asset-liability

portfolios at the same time. Without considering integration, the measures

will be incorrect and subsequently, also the portfolio management strategy.

Economic and financial theories, including new ones, address one of the

most important recommendations made by Joseph Stiglitz:

” We need new theories as well as some of the old ones and models need

to be constructed that have dynamic, stochastic, and general equilibrium,

and which include systemic risks.”

The last but not least, the factor required to be considered in the dynamic

ALM modeling is the scenario tree generation. The scenario tree describes

the uncertainty structure or stochastics and dynamics of the factors con-

sidered. The tree will value the uncertainty in interest rates, exchange rates,

equity prices, liquidity requirements, nonperforming assets, contingent liabil-

ities, capital position, etc. The tree maps out the movements of the factors

considered, along with their dependencies. The scenario tree must be built

efficiently. It must be small enough to solve, yet big enough to capture the

stochastics with a good collection of fat-tail scenarios.
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All in all, these factors which was mention and disused about them in

this section are necessary to consider in the ALM framework.

2.4 Long-Term Risk Control in a Dynamic

Setting

Investment performance is enhanced by capturing rebalancing gains when a

portfolio is modified. Rebalancing a portfolio can be considered as an option

to be exercised when adding value to the investors’ performance. Moreover, in

the dynamic setting there is information related to both expected positive and

negative cash-flows which can not be used in a traditional static approach.

There are several reasons for applying the dynamic setting framework to

controlling the risks rather than traditional static approach. Some reasons

such as time consistency and inflation and liquidity risks can not be managed

without a solid dynamic structure and deserve special attention and must be

analyzed in depth. Therefore, in the present section the effort is to set-up

an optimal financial planning approach in dynamic framework to control the

investment risks. To this end, an optimal time decomposition [45] and infla-

tion and liquidity risks have been considered in a dynamic setting framework

over the time span.

2.4.1 Time Consistency

As aforementioned, time consistency is a main property for the dynamic

setting risk control. The possibility of extending the time period is one of

the key element and the most relevant advantage of dynamic optimization

approach. The idea is to have a time-consistent optimal portfolio strategy
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of an investor with an exposed liability stream over long time horizon for a

pension fund and several intermediate steps (after six months, one year, two

years and so on) where the portfolio rebalancing is allowed. This structure is

contain a dynamic optimization setting since the optimal investment decision

at starting point which called Here & Now (H&N) decision, already takes

into account the possibility to adjust the decision several times along the

way depending on the potential market and target evolution. Moreover, the

adoption of a dynamic setting approach allows both the extension of the

decision time horizon and a more accurate short-term modeling of pension

fund variables.

The time span extension of the current thesis is based on a discrete time

and space setting framework [105, 27, 47, 143, 144, 9]. The time set indexed

by t = 0,1, ..., T − 1 corresponds to times at which the funds’ portfolio needs

to be rebalanced, through a sequence of buy, hold and sell decisions and T

is the end of the planning horizon in which no decision is made.

2.4.2 Inflation and Liquidity Risks for Pension Funds

Dynamic setting framework should be preferred to a static approach due

to other two critically important risk-factors, namely inflation and liquidity

shortfall risk.

For the inflation modeling dynamic approach allows simulating inflation

dynamic and modeling real assets class consistently both over time and across

asset classes. Inflation is a key risk factor for the optimization modeling. Both

assets and liabilities can be impacted by unexpected inflation shocks. Assets

can suffer because an inflation increase normally triggers an interest rate

up-shift thus negatively hitting the fixed-income nominal assets. Liability

can also be under pressure since future pensioners are inflation sensitive.
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For these reasons it is of paramount importance to properly and consistently

model inflation risk when projecting both assets and liabilities over time [50].

Liquidity risk is also a key issue for asset allocation decision. It is useful

to understand how much liquidity risk can be born by the specific pension

fund portfolio depending on the duration of its liabilities, the expected future

business and the various regulatory requirements. Also, attaching a certain

degree of liquidity to each and every investible asset class can be useful to

measure the aggregate liquidity of the portfolio and to eventually impose

bounds on the optimization [50].
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Chapter 3

Dynamic Decision Approach

Dynamic decision approach is interdependent decision making that takes

place in an environment that changes over time due to the previous actions

of the decision maker and the events over time. Dynamic decision modeling

is a very challenging task. The multitude of problems, the domain-specificity,

the uncertainty, and the temporal nature of the underlying phenomena all

contribute to the intricacy of the dynamic decision modeling process. The

formulation of dynamic decision models for financial applications generally

require the definition of a risk-reward objective and financial stochastic mod-

els to represent the uncertainty underlying the decision problem. Dynamic

decisions under uncertainty are very common in financial planning and fi-

nancial engineering problems. Most practical decision problems involve un-

certainty and the solution of the optimization problem and the quality of the

resulting strategy will depend critically on the adopted financial model and

its consistency with observed market dynamics.

Based on Bellman’s equations and on the well behaved properties of the

risk neutral formulation, several models have been developed for different

applications such as asset and liability management, portfolio selection, risk
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measures and etc. Indeed, some important works, for instance [18, 27, 109,

143, 9, 131, 29, 67, 68, 120, 124, 32, 26] contained efficient algorithms to solve

these problems.

What follows in the present chapter is to introduce the limits of static

approaches versus dynamic framework, decision criteria, dynamic stochastic

optimization models, scenario generation and tree expansion.

3.1 Limits of Static Approaches

The most well known and likely the most widely used method for the static

approach is the [92] mean-variance model. This approach can be easily im-

plemented in a spreadsheet but the standard implementation of the mean-

variance model is static (one-period) and thus fails to capture the multi-

period nature of the financial problem. Single-period models are generally

unable to respond in an appropriate manner to protect the investor’s wealth

or surplus. Another contributing factor has been the lack of attention to liq-

uidity concerns. Single-period static portfolio models do not properly address

transaction costs or liquidity constraints. Markowitz’s mean-variance analy-

sis has been extended to incorporate multiple periods and market frictions,

[133, 75, 20] but at the cost of greatly increased complexity.

The static approach is not compatible to be applied for the financial

institutions for a number of reasons. First of all, the available information

in the input phase about projected cash-flows for both assets and liabilities

can not be fully utilized. Second, the idea of buying the optimal portfolio

and holding it until the end of a pre-defined time period dose not reflect the

managerial options concretely available to the investment manager who, in

reality, can rebalance the fund’s portfolio if and when necessary. Third, the
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output of the static optimization approach is quite poor since it does not

provide with any clue about the likelihood to meet the true targets over time

horizon [50].

The traditional static approach is not able to consider the dynamic nature

of the liabilities and can not cope with the flow of capital in and out of the

scheme in the form of contributions and benefit payments of the pension

fund. Inflation and Liquidity are two critically important risk factors for

long-term optimization planning of a pension fund and should be explicitly

and consistently modeled in dynamic manner. Last but not least, the time

consistency in dynamic framework and the related possibility of portfolio

rebalancing over time makes to optimization framework more realistic and

effective than traditional static approach.

3.2 Decision Criteria

A fund manager (or managing board) has a double objectives: firstly to man-

age the investment strategies of the fund and secondly to take into account

the guarantees given to all investors. Guarantee for all participants of the

fund must be ensured with a high probability by right investment strate-

gies. However this task is not straightforward, as it requires right decisions

over long-term financial planning and dealing with a stochastic liability and

market uncertainly.

As already mentioned, a complex financial planning for a pension fund can

not be managed based on simplistic target structure. Different performance

indicators, potentially in trade-off with each other, are typically required to

capture the management decision process over the horizon. Dynamic opti-

mization approach is capable to meet these aims with simultaneous optimiza-
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tion of different targets consist of performance measures which can be risk

adjusted at different holding periods over an extended time span. Since there

is not any single perfect indicator to measure performance over horizon, the

particular interest of this thesis is to have three different targets for the short,

medium and long-term investment horizon.

Hence, the performance indicators adopted in this study are the short-

term target of one year, medium-term target of three years and long-term

target of ten years for the fund. Therefore, from a mathematical viewpoint,

we propose in section 4.3.3.2 a MSP which includes a multi-criteria objective

function with several financial and regulatory constraints. The proposed ob-

jective function is a similar approach that proposed in [28] for property and

casualty (P&C) insurance.

3.3 Dynamic Stochastic Optimization

In the current research, dynamic stochastic optimization (also known as dy-

namic stochastic programming) approach used to select allocations that are

optimal with respect to fund liabilities and suitable measures of underfunding

risk for a pension fund management [47, 43, 44, 42]. Dynamic stochastic op-

timization involves simulating economic factors, asset returns and liabilities

forward over a number of scenarios. In order to overcome the portfolio risks,

a dynamic stochastic optimization approach can be implemented following

some main steps. Inputs such as assets, liabilities and constraints are set

over different stages thus allowing a realistic representation of the problem.

Moreover, asset dynamic is modeled through statistical simulations taking

into account various scenarios and their respective implications in term of

investment strategy.
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Dynamic stochastic optimization models cover stochastic processes in

which time plays an essential role [125, 94, 81]. The emphasis is often on

Markov decision processes (also known as probabilistic dynamic program-

ming) and the optimization of stochastic models [137, 130]. In [53] extensions

of time-consistent risk measures are studied within multi-stage stochastic pro-

grams, and a stochastic dual dynamic programming approach is proposed for

their solution. [84] combines model of multi-stage stochastic programming

with a stochastic control framework.

[87] developed a multi-stage stochastic linear programming model for

ALM. Their model includes the uncertainties of institutional, legal, finan-

cial, and bank-related policies. They demonstrate that the ALM model de-

veloped, is theoretically and operationally superior to deterministic program-

ming model (e.g. mean variance, [92]). Some other notable financial planning

applications can be found in [109, 110].

DSP approaches are increasingly being adopted to address different types

of financial planning problems: from the classical ALM problem [27, 49, 144],

large enterprise-wide risk management problems [143], to financial engineer-

ing applications and complex portfolio management problems [82, 144, 9],

modeling the assets and liabilities of insurance products with guarantees

[33, 36, 74, 34, 47, 43, 42, 45].

Several authors highlighted the advantages of multi-stage dynamic stochas-

tic programming in asset and liability modeling (see for example [100, 47, 9]).

According to [142], at each decision date of the DSP the portfolio man-

ager needs to assess the current state of the economy (i.e. interest rates and

market prices), he also needs to assess future fluctuations in interest rates,

market prices and cash flows at possible states of the economy needs to be

incorporated into a investment decision of buying and selling securities, and
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short-term borrowing or lending. At the next decision date the portfolio man-

ager is faced with new information and possible future states that need to

be incorporated into the new investment decision.

The stochastic programming model specifies a sequence of investment

decisions at each of the discrete trading times. At each decision period in the

scenario tree, the investment decision is made given the current state of the

portfolio and a set of possible scenarios at successor states. Thus the current

portfolio composition depends on the previous decisions and the realized

scenarios in the interim. The model will determine an optimal decision at

each state in the scenario tree, given the information available at that state.

Given that there is a multitude of succeeding future states of the economy,

the optimal decision will not depend on clairvoyance, but should anticipate

the future states of the economy [142].

Strategic ALM for the pension fund requires the dynamic formulation of

portfolio rebalancing decisions together with appropriate risk management

in terms of a dynamic stochastic optimization problem. A problem of pen-

sion fund management is dynamic due to the achievement of intermediate

targets as well as changing employments conditions over time (work versus

retirement, etc.) and the time distribution of liabilities and income variations

(salary growth, etc.) forces a dynamic representation of the problem. The se-

quence of actions taken in face of uncertainty and their random consequences

need to be taken into account within a given time frame. Furthermore, the

problem is stochastic because of the effectiveness of any adopted strategy and

the achievement of the targets do depend on a sequence of random events,

such as the evolution of the random processes modeling a set of relevant fi-

nancial markets. The long-term nature of the decision problem, furthermore,

imposes a specific effort in the development of the model of uncertainty [25].

57



Uncertainty is modeled over time using scenarios that approximate the

future. High-performance workstations and PCs are used to enable exact and

approximate algorithms to determine robust decisions that hedge against fu-

ture uncertainty. Then as the uncertainty becomes known period by period,

recourse decisions responding to the new information can be made [137]. In

what follows, we introduce mathematical formulation of stochastic program-

ming with two-stage and multi-stage problems.

3.3.1 Two-Stage Stochastic Problem Formulation

The two-stage stochastic linear program is the problem of finding [132]:

minx∈RnCTx +E[Q(x,ω)]

s.t. Ax = b, x ≥ 0
(3.1)

In problem (3.1), Q(x,ω) is the optimal value of the second stage problem

miny∈Rm qTy

s.t. Tx +Wy = h,x ≥ 0
(3.2)

Here ω ∶= (q, h, T,W ) are the data of the second stage problem and some or

all elements of vector ω are as random. Also, the expectation operator at the

first stage problem (3.1) is taken with respect to the probability distribution

of ω. In a general way two-stage stochastic programming problems can be

written in the following form

minx∈X{f(x) ∶= E[F (x,ω)]} (3.3)

where F (x,ω) is the optimal value of the second stage problem

miny∈g(x,ω)g(x, y,ω) (3.4)
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Here X ⊂ Rn, g ∶ Rn ×Rm ×Ω → R and g ∶ Rn ×Ω → Rm is a multi-function.

In particular, the linear two-stage problem (3.1) and (3.2) can be formulated

in the above form with

g(x, y,ω) ∶= CTx + qT (ω)y

g(x,ω) ∶= {y ∶ T (ω)x +W (ω)y = h(ω), y ≥ 0}

3.3.2 Two-Stage Scenario Based Formulation

Following [132], we introduce concept of nonanticipativity into two-stage

problems structure. Consider the first stage problem (3.3) and assume that

the number of scenarios is finite Ω = {ω1, ω2, ..., ωS} with respective to (posi-

tive) probabilities p1, p1, ..., pS. We relax the first stage problem by replacing

vector x with S vectors, one for each scenario x1, ..., xS. Then we have the

following relaxation of problem (3.3):

minx1,...,xS

S

∑
s=1
psF (xs, ωs)

s.t. xs ∈X, s = 1, ..., S

(3.5)

Such problem can be split into S smaller problems for each scenarios:

minxs∈XF (xs, ωs), s = 1, ..., S (3.6)

The optimal values of problem (3.6) with sum of weighted parameter ps

for s = 1, ..., S is equal to the optimal value of problem (3.5). For instance,

in the case of two-stage linear program, relaxation leads to solving S smaller

problems

minxs≥0,ys≥0 CTxs + q
T
s ys

s.t. Axs = b

Tsxs +Wsys = hs

(3.7)
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First stage decision variables xs in (3.5) are now allowed to depend on a

realization of the random data at the second stage. Hence, problem (3.5) is

not suitable for modeling a two stage decision process. This can be fixed by

introducing the nonanticipativity constraint

(x1, x1, ..., xS) ∈ I (3.8)

where I ∶= {x = (x1, ..., xS) ∶ x1 = ... = xS} is a linear subspace of the nS-

dimensional vector space χ ∶= Rn × ... × Rn. Due to the constraint (3.8), all

realizations xs, s = 1, ..., S, of the first stage decision vector are equal to each

other and they do not depend on the realization of the random data. The

constraint (3.8) can be written in different forms, which can be convenient

in various situations. Problem (3.5) together with the nonanticipativity con-

straint (3.8) can be formulated as follow:

minx1,...,xs

S

∑
s=1
psF (xs, ωs)

s.t. x1 = ... = xs

xs =
S

∑
i=1
pixi

xs ∈X, s = 1, ..., S

(3.9)

Such non-anticipativity constraints are especially important in multi-

stage modeling. The two-stage stochastic programming models can be nat-

urally extended to a multi-stage setting. We discuss formulation of such de-

cision processes in next section for a multi-stage recourse dynamic portfolio

management problem.
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3.3.3 Multi-Stage Recourse Formulation of Dynamic

Portfolio Management

We consider a stochastic programming problem in the form of a multi-stage

stochastic programming in discrete time stage [59, 27, 132]. In the multi-stage

setting, the uncertain data is revealed gradually over time and our decisions

should be adapted to this process. The decision process has the form:

decision(x1) ↝ observation(ω2) ↝ decision(x2) ↝ ...

...↝ observation(ωT ) ↝ decision(xT )

The general instance of a multi-stage stochastic programming with re-

course has been formulated as follows:

minx1∈χ1{f1(x1) +Eω2[minx2∈χ2(f2(x2) + ... +EωT
[minxT ∈χT

fT (xT )])]}

(3.10)

The separable objective function (3.10) is defined by the period function-

als ft(xt) for t = 1,2, ..., T and carries a nested structure consistent with the

underlying tree process while the coefficient tree process depends on ω and

will determine the feasibility region of the problem. The multistage problem

is linear if the objective functions and the constraint functions are linear. In

a general formulation for the linear multi-stage case of problem (3.10) we

have

ft(xt) ∶= c
T
t xt t = 2, ..., T

χ1 ∶= {x1 ∶ A1x1 = b1, x1 ≥ 0},

χ2 ∶= {x2 ∶ B2(ω)x1 +A2(ω)x2 = b2(ω), x2 ≥ 0} a.s.

χt ∶= {xt ∶ {Bt(ω)xt−1 +At(ω)xt = bt(ω) xt ≥ 0} a.s. t = 2, ..., T

(3.11)

61



In (3.12) the first row is the linear case of objective function while the

second row for t = 1 defined as deterministic constraints on the first-stage

decision x1, and for t = 2,3, ..., T constraints defined as stochastic form regions

for the recourse decisions x2, x3, ..., xT . Also, in (3.10) Eωt for t = 2, ..., T is

the conditional expectation with respect to the filtration F1 ∶= {0,Ω} ⊂ F2 ⊂

... ⊂ FT ∶= F, where Ft ∶= σ{ω, t} is the σ-field generated by the history

ωt of the data process ω for t = 2, ..., T and P is a probability measure on

this space. In the multi-stage stochastic problem the here-and-now decision

is taken under full uncertainty and provides an optimal hedging portfolio

strategy with respect to the future possible scenarios. As aforementioned,

every decision of the model (3.10) together with (3.12) have a random impact

on the following stages modeled through the technology matrices B, while

recourse actions are associated with the A matrices.

In multi-stage problem formulation the optimal policy or decision process
0
x ∶= (

0
x1,

0
x2, ..,

0
xT ) has been dependence on the realizations of the vector

data process ω ∶= (ω2, ..., ωT ) in (Ω,F,P), with the sample space defined as

Ω ∶= Ω2 ×Ω3 × ... ×ΩT .

Problem (3.10) may be given a more compact dynamic programming

representation which takes advantage of the structure exhibited by the set of

constraints. For each t = 1, ..., T − 1, we have

minxt[ft(xt) + vt+1(ω
t, xt)]

s.t. Btxt−1 +Atxt = bt

(3.12)

where vt+1 expresses the optimal expected cost for the stages from t + 1

to T , given the decision history xt ∶= (x1, ..., xt) and the realized history of

the random process ωt ∶= (ω1, ..., ωt). Specifically,

vt+1(ω
t, xt) ∶= Eωt+1[minxt+1(ft+1(xt+1) + ... +EωtminxT fT (xT ))] (3.13)
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where the minimizations are taken subject to the appropriate financial

and regulatory constraints.

In real applications, linear combinations of risk-reward measures are be-

coming increasingly popular. Risk can either be specified with respect to a

benchmark measure or with respect to a real-valued risk function. In problem

(3.14) a penalty coefficient is introduced to the risk measure

maxx∈X∑
t

Eωt[R(xt, ωt, t) − γρ(xt, ωt, t)]

s.t. gt(xt, ωt, t) a.s.

(3.14)

For t = 1,2, ..., T suppose Wt(ω,x) is a portfolio managed wealth process

and W̃t(ω,x) stands for a wealth process leading to a relative optimization

problem

minx∈X{∑
t

Eωt[f(Wt, W̃t)]∣gt(xt, ωt, t) ∈ Q a.s.} (3.15)

Correspondingly, at the end of each time period and on the basis of the

current information, a portfolio manager adopts an optimal decision in the

face of the uncertainty that (s)he is now facing. This decision needs to be

feasible with respect to the constraints induced by the future values of the

random data process and is influenced by the current composition of the

portfolio.

3.3.4 Multi-Stage Scenario Based Formulation

A scenario-based formulation is a standard solution technique for a discrete

time state. Suppose that we have a multi-stage formulation with finite num-

ber of scenarios, say S, for the problem data. Assuming that the finite number

of realizations of the stochastic process, ω1, ..., ωT , is concentrated on a finite

number of points, denoted by ω1, ..., ωs. This allows for a derivation of a
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deterministic equivalent formulation on the form

min
S

∑
s=1
ps[f1(x

s
1) + f2(x

s
2) + f3(x

s
3) + ... + fT (x

s
T )]

s.t. A1x1 = b1

Bs
2x1 +A

s
2x

s
2 = b2 a.s.

Bs
3x2 +A

s
3x

s
3 = b3 a.s.

⋱

Bs
TxT−1 +A

s
Tx

s
T = bT a.s.

lt ≤ x
s
t ≤ ut a.s. t = 0,1, ..., T, s = 1, ..., S

(3.16)

where ps is associated probability of each scenario s and xs = (xs1, x
s
2, ..., x

s
T )

denotes the corresponding sequence of decisions. In the problem (3.16), all

parts of the decision vector are allowed to depend on all parts of the random

data. However, the decision xt at stage t, should be allowed to depend on the

data observed up to stage t. However, for the first stage, the decision should

be independent of possible realizations of the data process. At stage t =

1, ..., T the scenarios that have the same history ω[t] cannot be distinguished,

so in order to correct this problem non-anticipativity constraints are included

xst = x
l
t ∀s, l for which ωs[t] = ω

l
[t] t = 0,1, ..., T (3.17)

Problem (3.16) together with the nonanticipativity constraints (3.17) are

equivalent to the original formulation (3.10).

3.4 Scenario Generation

In models of decision making under uncertainty, we are often faced with the

problem of representing the uncertainties in a form suitable for quantitative

models. The uncertainties are expressed in terms of multivariate continuous

64



distributions, or a discrete distribution [76]. [8] argue that during the scenario

tree generation, we do not forecast the future state of a random variable but

try do generate a finite set of realistic possible scenarios.

As [42] state, scenario generation translates a set of continuous stochastic

dynamics into a discrete event tree structure (see Figure 4.1). The scenarios

are arranged in a tree expansion structure and decisions are made at points

where the tree branches. Each of these decisions is optimal with respect to

the all the simulated evolution of the asset returns and liabilities that could

occur after the decision point. At the inception time (root node), ”here &

now” (H&N) decision captures information in the history of the variables up

to that point

The procedure is based on generating a tree over the entire planning

horizon. In the tree scenarios are always randomly generated relying on the

MC simulator by moving stage by stage and within each stage node by node.

Each node in the tree corresponds to a different state of the vector process,

whose elements are risk factors, asset returns and liabilities while a scenario

is a complete path from the root node to the leaves.

We consider the MC approach to generate the scenario and all scenarios

are equally weighted. This means that we consider the probability of any

particular one to inversely proportional to the total number of scenarios at

that point in time.

3.4.1 Tree Expansion

To build the tree, we need to define the expanded tree branching factors,

setting the number of childs for each node (Figure 4.1).

The tree expansion method relies on relatively simple ideas from an eco-

nomic viewpoint, which however prove rather effective in capturing the finan-
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cial risk underlying the problem. Hence, Figure 4.1 illustrates the scenario

tree structure with decision stages where each node is a joint outcome of all

the variables at the corresponding decision stage and each path through the

tree represents a specific scenario.

Figure 3.1: Example of scenario tree structure and nodal partition matrix

The conditional structure of the tree can be conveniently represented

by the trees’ nodal partition matrix, in which each row corresponds to a

scenario and each column to a time-stage. In Figure 4.1, the tree on the left

is associated with the partition matrix on the right.
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Chapter 4

Optimal DB Pension Fund

Management

The purpose of this thesis is precisely to identify the optimal DSP strategy

with dynamic allocation rebalancing rule and multi-critical objective over a

certain time span as a function of the portfolio manager’s targets in a DB

pension plan. In particular, we consider a portfolio optimization problem

which presents financial returns and market risks with a long-term investor

plan under stochastic correlation. In this chapter, we describe the mathemat-

ical formulation of DSP for DB pension fund which will be implement for a

case study in the next chapter. The case study has been designed for a large

institutional investors in order to identify the optimal asset allocation over

certain planning horizon with inclusion of capital and liability constraints

generated by a DB pension fund.
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4.1 Problem Set-up

We consider a 10-year multi-stage dynamic stochastic optimization prob-

lem with scenario generation under stochastic correlation based on European

market standards for a DB pension fund manager facing stochastic liabili-

ties. The optimal problem is formulated as an expected shortfall minimization

with respect to a pension wealth goal. The investment universe includes cash

equivalents, fixed income, equity and commodity as indirect real asset1. For

each such investment opportunity a dedicated statistical model has been im-

plemented to generate future price and return scenarios for describing the

uncertainty that investment manager is facing over time. However this task

is not straightforward, as it requires long-term forecasting for all investment

classes and dealing with a stochastic liabilities and at the same time ability

to assess short, medium and long-term implications coming from allocation

decision. Dynamic stochastic programming is the technique of choice to solve

this kind of the problem.

Numerical results are presented in chapter 5 for specifications of the dy-

namic optimization problem over a long-term horizon with several decision

stages.

4.2 Under-Funding Risk

There is a very important requirement to monitor and manage the probability

of under-funding risk for the fund, that is the confidence level with which the

pension fund will be able to meet its targets. In considering the risks faced by

1Indirect real assets are real assets with historically preserved the real rate of return

which are strongly correlated with inflation, but are not directly linked to inflation (i.e.

commodity and real state).
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a pension fund, we must look at the fund in its entirety. On the liability side,

funds are exposed to interest rates, inflation and mortality [6]. On the asset

side, they face exposure to risk in different markets [24]. Hence they operate

in a multi-factor environment, exposed to a wide range of asset classes and

liabilities which also have varying degrees of correlation amongst themselves.

Because of this, the worst situation for pension funds is falling asset prices

and increasing of funds’ future liabilities [42].

In fact, analyzing the current and projected future status of the fund,

including review of the funding ratio of the plan is an important issue that

can shed more light on the ALM framework. In particular, in the modeling

framework we consider expected shortfall with respect to the fund’s target

levels in order to monitor the fund’s status and probability of liquidity short-

fall to be able to determine the optimal pension fund investment strategy

and fully fund the pension obligation over the long-term.

4.3 Mathematical Instance of Pension Fund

ALM

The mathematical formulation is based on dynamic stochastic optimization

technique with objective function and relative constraints to solve the DB

pension fund dynamic ALM problem. From a mathematical viewpoint, we

focus on multi-stage stochastic optimization problem over a long horizon [12,

145, 27, 52, 143, 144, 71, 47, 44, 42, 45, 9, 29, 35]. And more recently, exploring

ALM alternative modeling and optimization approaches [1, 31, 116].
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4.3.1 Asset Returns Model

An investor’s strategy depends on the random coefficients which must be

derived from the data process simulations along the specified scenario tree.

Furthermore, for the optimization modeling and scenario generation, we need

to know about the behavior of our portfolio over time horizon. Since our

portfolio is changing over time and is exposed to some stochastic factors, we

introduce asset price and returns models in discrete-time with the modelling

framework consisting of a Two-Layers Asset Simulation Model (TLASM).

The model structure is close to the framework originally employed by [29]

with introducing relevant risk factors for DB pension fund and stochastic

correlation among asset indexes.

Alternative asset price return simulation has been introduced by [105]

as cascade simulators and some implementation of CASM (Cascade Asset

Simulation Model) is given in [47, 42, 5]. For short, long term interest rate and

inflation, Cox-Ingersoll-Ross (CIR) dynamics models has been introduced

and implemented by [37, 28, 29]. Also, gaussian economic factor model (EFM)

introduced to capture the dynamics of the whole term structure of bond price

[17, 112, 45].

4.3.1.1 Correlation Model

In a multistage scenario setting when introducing a stochastic correlation

assumption, we need to first employ a dynamic correlation model driven by

a set of random factors and then interface such model with a scenario repre-

sentation of the stochastic programming problem. Stochastic correlation was

introduced as Dynamic Conditional Correlation model by [55] with analyzing

the performance of the model for large covariance matrices. We consider a
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DCC model and then present an approach for scenario tree generation consis-

tent with such assumption. For more details on DCC model and application,

see [55, 56, 118, 69, 128, 58, 41].

Let ri,t be the return of asset i ∈ I at time t ∈ T . We indicate with rt the

return vector with components ri,t. Given r0 and ω ∈ (Ω,F,P) as a generic

random source of risk, for t = 1,2, ..., T we define the stochastic differential

equations for return process as:

rt = rt−dt + µ(t, ω)dt + Γ(t, ω)
√
dte(ω) (4.1)

where µ(t, ω)dt is an instantaneous drift. We assume in section 4.3.1.2 a

generic model for the stochastic mean function and in section 4.3.1.3 ded-

icated for different asset indexes. Let’s focus on Γ(t, ω) and e(ω) where

e ∼ N(0,1). Γ(t, ω) is a random covariance matrix that admits decomposi-

tion Γt = DtCtDt. Where Dt is a diagonal matrix with elements σi,t with

i = 1,2, ...,I, includes the I returns’ conditional standard deviations, or

volatilities in financial terminology which can be defined by any type of a

univariate GARCH process, while Ct ∶= {ci,j,t} includes the time-varying cor-

relation coefficients between asset i and asset j at time t.

The DCC is a natural extension of the GARCH models. In the DCC

model [55] the relationship between conditional correlations and conditional

variance is obtained expressing the returns, ρi,t as

ρi,t = εi,tσi,t where εi,t ∼ N(0,1). (4.2)

At the first stage we assume a Threshold Autoregressive Conditional Het-

eroskedasticity (TARCH) process of the first order for σ2
i,t. [66] and [140]

introduced independently the TARCH models which allows for asymmetric

shocks to volatility. In particular, referring to [57], we define the conditional
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variance σ2
i,t for the TARCH(Q,K,J) model as

σ2
i,t =$ +

Q
∑
q=1
ϕqρ

2
i,t−q +

K
∑
k=1
ψkσ

2
i,t−k +

J
∑
j=1
νjIt−j(ρi,t−j)2 i = 1,2, ...,I (4.3)

where $, ψ, ϕ and ν are deterministic coefficients. The parameters are

estimated through Maximum Likelihood Estimation (MLE) method. The in-

dicator function It−j(⋅), takes value 1 if the residual at time t− j is negative,

and zero otherwise. Positive innovation at time t has an impact on the volatil-

ity at time t+1 equal to ϕ times the ρ2i , while a negative innovation has impact

equal to (ϕ+ν) times the ρ2i . The presence of the leverage effect would imply

that the coefficient ν is positive, that is, that a negative innovation has a

greater impact than a positive innovation. For more details about TARCH

process see [140, 66, 57] and references therein.

According to [57], TARCH volatility process is a way of parametrizing

the sign of the innovation that may influence the volatility in addition to its

magnitude. They indicated that the sign of the innovation has a significant

influence on the volatility of returns and TARCH model implies that a posi-

tive and negative innovation at time t have different impact on the volatility

at time t + 1.

In DCC model [55], the conditional correlation matrix is modeled as

Ct = Q̃t
−0.5

QtQ̃t
−0.5

(4.4)

where Qt = {qij,t} is the conditional covariance matrix and Q̃t is the

diagonal matrix with the square root of the i th diagonal element of the

Qt. Dynamics of Qt can be consider with following the DCC model [55]

assumption as

Qt = (1 − α − β)Q̄ + αεt−1ε
′

t−1 + βQt−1 (4.5)
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where εt ≡ [ε1,t, ε2,t, ..., εI,t]
′

, εi,t = ρi,t/σi,t and Q̄ is the unconditional co-

variance matrix of ε. α and β parameters estimated through MLE function

such that α,β ⩾ 0 and α + β < 1 to ensure positive definiteness and station-

arity, respectively. Qt should be positive definite in order to guarantee that

correlation matrix Ct has ones on the diagonal and all other elements are

in the interval [−1,1]. Accordingly the variance-covariance process dynamics

can be expressed as

Γt =Dt(Q̃t
−0.5

QtQ̃t
−0.5

)Dt. (4.6)

For two assets, the elements of matrix Qt ∈ R2,2 are shown as follow:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q11,t q12,t

q21,t q22,t

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (1−α−β)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q̄11 q̄12

q̄21 q̄22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+α

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ε1,t−1

ε2,t−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ε1,t−1 ε2,t−1]+β

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q11,t−1 q12,t−1

q21,t−1 q22,t−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − α − β)q̄11 + αε21,t−1 + βq11,t−1 (1 − α − β)q̄12 + αε1,t−1ε2,t−1 + βq12,t−1

(1 − α − β)q̄21 + αε2,t−1ε1,t−1 + βq21,t−1 (1 − α − β)q̄22 + αε22,t−1 + βq22,t−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Then we have dynamic correlation matrix Ct = Q̃t
−0.5

QtQ̃t
−0.5

with com-

ponent of c12,t for two assets:

c12,t =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1√
q11,t

0

0 1√
q22,t

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q11,t q12,t

q21,t q22,t

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1√
q11,t

0

0 1√
q22,t

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
q12,t√

q11,t
√
q22,t

q21,t√
q22,t

√
q11,t

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In each time period asset returns ri,t will depend on prior and current

realizations of the risk factors, current correlations, dynamic volatilities and

random events. We define ξi,t = [ri,t, µi,t, σi,t, cij,t] as a set of random variables

of asset i at time t and accordingly ξt ∈ RI as a vector of realization and will

determine the portfolio revisions according to the following scheme:

ξ1, x1 ↝ ξ2, x2 ↝ ...↝ ξT .
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We want to evaluate the optimal strategy allowing time varying volatility

and correlation. Therefore, in the tree process (session 4.3.1.2), we specify

the mean function of σi,t and cij,t to generate the scenarios.

Remarks:

• DCC allows us to model the correlation dynamics between asset classes

such that we can evaluate whether different markets co-moved to a

greater extent during the crisis.

• DCC model is mean reverting as long as α + β < 1 .

• There are some conditions on the parameters α and β to guarantee Γt

to be positive definite. The scalars α and β must satisfy: α ⩾ 0 and

β ⩾ 0 and α + β < 1. In addition C1, the starting value of Ct, has to be

positive definite to guarantee Γt to be positive definite.

4.3.1.2 Tree Generation

The tree generation of the return process scenarios is based on an inter-

face between a Monte Carlo simulator and the methodology adopted to de-

rive the ALM model coefficients: we distinguish accordingly between a dis-

crete, model-based, coefficient tree procces and a core risk process which is

first defined relying on consistent financial assumptions and then approxi-

mated. In figure 4.1, we have example of four scenarios leads to seven nodes

(n1, n2, ..., n7) to describe the random variables. In what follows, we denote

the vector process including the risk factors with ζt and elements ζjt , lead-

ing to a tree process denoted by ζjn, n ∈ Nt, while the coefficient process

for the ALM problem is ri,n which, as shown below, will depend on ζjn and

may include an autoregressive component. Figure 4.1 illustrates the scenario
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tree structure with decision stages where each node is a joint outcome of all

the variables at the corresponding decision stage and each path through the

tree represents a specific scenario. In tree process we consider the correlation

matrix Ct, dynamic volatilities σt and asset return rt, leading to a scenario

generation form denoted by ci,j,tn which is correlation between assets i and j

at time t corresponding to node n, σi,tn dynamic volatility of each asset i at

time t corresponding to node n and ri,n as return of asset i at each node n,

n ∈ Nt.

Figure 4.1: Example of return scenario tree process with stochastic variables

Through the tree approximation, in abstract, we generate a discrete prob-

ability space (Ω,F,P) with associated random events ω whose dynamics will

determine the risk factors and then the coefficient process: in a dynamic

setting every decision is required to be measurable with respect to the cur-

rent σ-algebra: {xt∣Ft}. In the case study we will consider a ALM problem

with asset returns determined by a two-layer economic and financial model,
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popular in literature for long-term financial planning [105, 47, 42, 5, 28, 29].

In the case study we consider a stage partition based on t ∈ T ={0,0.5,1,2,

3,5,7,10} and generate the scenario tree accordingly. The current time will be

denoted by t = 0 which is the beginning of the decision horizon, while T is the

end of the decision horizon. More generally in the tree notation n ∈ Nt denote

the set of nodes at stage t. For t > 0 every n ∈ Nt has a unique ancestor n−

and for t < T a non-empty set of children nodes n+. We denote with tn the

time period associated with node n ∶ tn− tn− will then denote the time length

between node n− and node n. The set of ancestors of node n ∶ n−, n−−, ..., n0

is a(n). The probability distribution P is considered on the leaf nodes of the

scenario tree so that ∑
n∈NT

pn = 1. A scenario is a path from the root to a

leaf node and represents a joint realization of the random variables along the

path to the planning horizon. The price returns ri,n of all assets i ∈ I together

with relevant risk factors ζjn and an equity risk premium λn in node n are

defined in terms of current market values. Following equations (4.1), (4.3),

(4.5) and (4.6) , for t ∈ T , n ∈ Nt we consider the following nodal transitions

along the scenario tree, for each asset i:

ri,n = β
iri,n− + µi,n(tn − tn−) + σi,tn

√
tn − tn−∑

j

ci,j,tnωj,n (4.7)

µi,n = ∑
k≠i
βkrk,n∨a(n) +∑

j

βjζj,n∨a(n) (4.8)

σi,tn =$ +
Q
∑
q=1
ϕqρ

2
i,tn−q +

K
∑
k=1

ψkσi,tn−k +
J
∑
j=1
νjIt−j(ρi,tn−j)2 (4.9)

ci,j,tn =
(1 − α − β)q̄i,j + αεi,n−1εj,n−1 + βqi,j,n−1

√
((1 − α − β)q̄i,i + αε2i,n−1 + βqi,i,n−1)((1 − α − β)q̄j,j + αε

2
j,n−1 + βqj,j,n−1)

(4.10)
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Where σi,tn at each time t corresponding to node n is derived from

TARCH(1,1,1). Model (4.7) implies a sequence of dependencies induced by

correlated random events in the financial market: we assume ωn ∈ N(0, tn −

tn−). The terms σi,tn and ci,j,tn capture the market overall risky conditions:

as mentioned during turbulent times we assist to increasing volatilities but

also, with a severe impact on portfolio diversification to correlation clustering.

We apply the above stochastic model to a recent crisis period in European

financial markets, from 2009 to 2011.

4.3.1.3 Assets Simulation and Scenario Approximation

The pension fund’s optimal decision depends on the set of returns ri,n at

each nodes n in scenario tree approximation for every asset classes. We have

considered four asset classes include: cash equivalents, fixed income, equity

and indirect real asset such as commodities, where each of them carry a

different returns and cash flow structure. The risk factors ζj (j = 1,2,3,4) for

the asset classes are considered: the 12-month interest rate for the Euro area

for short-term deposits in the money market, the 10-year Euro benchmark

interest rate for long-term deposits, the consumer price index inflation rate

in the Euro area, GDP out-put gap and the MSCI Europe equity benchmark.

In equations (4.11 & 4.12), for j = 1,2 dynamic model of the GDP out-put

gap ζ1n and inflation rate ζ2n for all n ∈ Nt are assumed.

ζ1n = β
1
0 + β

1
1ζ

1
n− + β

1
2ζ

1
n−− + σ

1
√

∆t∑
r≥1
c1,re

r
n (4.11)

ζ2n = β
2
0 + β

2
1ζ

2
n− + β

2
2ζ

1
n + β

2
3ζ

1
n− + β

2
4ζ

1
n−− + σ

2
√

∆t∑
r≥2
c2,re

r
n (4.12)

The short-term interest rate ζ3n for the Euro area in the money market
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and the 10-year Euro benchmark interest rate ζ4n for the long-term deposits

have been derived by equations (4.13) and (4.14), respectively.

ζ3n = β
3
0 + β

3
1ζ

2
n + β

3
2ζ

1
n + σ

3
√

∆t∑
r≥3
c3,re

r
n (4.13)

ζ4n = β
4
0 + β

4
1ζ

4
n− + β

4
2ζ

1
n + β

4
3ζ

2
n− + σ

4
√

∆t∑
r≥4
c4,re

r
n (4.14)

The evolution of MSCI Europe equity risk premium λn is determined

via equation (4.15). This is assumed to depend on the long interest rate ζ4n,

the inflation ζ2n, constant volatility σj and random variables en with normal

distribution N(0,1).

λn = β
j
0 + β

j
1ζ

4
n− + β

j
2ζ

2
n− + σ

λ
√

∆ten (4.15)

The set of estimated coefficients and risk factors provides an input to

generate the asset returns scenarios and determines the returns’ evolution

over the decision horizon. The asset returns of each benchmark in each node

n ∈ Nt for scenario generation can now be determined as following formulas

for the different asset classes i ∈ I = {i0, i1, i2, i3, i4, i5}:

Cash equivalents:

• Money market

The evolution of the return of money market r0 is defined by the perfor-

mance of the inflation and GDP out-put gap (see equation 4.13) . The cor-

relation between these variables is positive, hence the yield of money market

increases (decreases) by the higher (lower) rate of inflation and GDP out-put

gap (economic cycle) in the Euro zone.
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Fixed income:

• JPM Global Government Bond EMU

r1,n = β
1
0 + β

1
1r1,n− + β

1
2r4,n + β

1
3ζ

1
n + β

1
4ζ

4
n + σ

1
tn

√
∆t∑

r

c1,r,tne
r
n (4.16)

• JPM Global Government Bond ex-EMU

r2,n = β
2
0 + β

2
1r2,n− + β

2
2r4,n + β

2
3ζ

2
n + σ

2
tn

√
∆t∑

r

c2,r,tne
r
n (4.17)

• Barclays Euro Government Inflation Linked bond

r3,n = β
3
0 + β

3
1ζ

2
n + β

3
2r4,n− + β

3
3ζ

3
n + σ

3
tn

√
∆t∑

r

c3,r,tne
r
n (4.18)

The risk factors that affect on the performance of the fixed incomes’

benchmarks are the inflation rate, economic cycle, interest rate and risk pre-

mium on the equity market. In the statistical models, the estimated coeffi-

cients show the dependence of the government bonds return with the stock

risk premium is negative. Consequently, the returns of the government bonds

increasing (decreasing) by the decrease (increase) in the stock risk premium.

Equity:

• MSCI Europe equity

r4,n = (r0,n− + λn) + σ
4
√

∆ten (4.19)

The equity return is modeled relying on the performance of the equity

risk premium (see equation 4.15) and short-term interest rate in Euro zone.

The risk premium is dependent on the long-term interest rate, inflation rate

and economic cycle.
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Indirect real asset:

• Commodities

r5,n = β
5
0 + β

5
1r4,n + β

5
2r3,n− + β

5
3ζ

1
n− + β

5
4ζ

2
n + σ

5
tn

√
∆t∑

r

c5,r,tne
r
n (4.20)

The commodity return is evaluated by a stable relationship with the GDP

out-put gap, inflation rate, equity market and Euro government inflation

linked bond yields.

The dynamic ALM returns ri,n along the tree are derived for a given input

tree structure through MC simulations. The following algorithm 1 describes

the key steps of the scenario tree generation process:

Algorithm 1 Stylized return scenario generation using stochastic correlation

for j = 1,2,3,4 do

for t ∈ T do

Inputζj0 and βj0, β
j
1, β

j
2, β

j
3 & σj, cj,r

for n ∈ Nt do

Generate risk factors ζjn through eq.s (4.11) to (4.14)

Derive equity risk premium λn via eq. (4.15)

for i = 1,2,3,4,5 do

Estimate dynamic volatility σitn by TARCH process

Derive DCC matrix ci,r,tn

Input βi0, β
i
1, β

i
2, β

i
3, β

i
4 & σitn , ci,r,tn

Compute asset returns ri,n for i = (0,1,2,3,4,5) via eq.s

(4.13) and (4.16) to (4.20)

end for i

end for n

end for t

end for j

80



4.3.1.4 Statistical Assumption and Estimation

The economic and financial risk factors are modelled with parameters and

correlations fitted to quarterly data in a two level asset simulation fashion:

• Level 1: Economic and financial risk factors variables

• Level 2: Equities, commodity and fixed income

The statistical coefficients are estimated through the method of Ordi-

nary Least Squares (OLS) by Gnu Regression, Econometrics and Time-series

Library (gretl) as a statistical package with given quarterly past data.

The estimated coefficients of risk factors βj0, β
j
1, β

j
2, β

j
3 together with the

standard deviations σj of equations (4.11), (4.12), (4.13), (4.14) and (4.15) are

portrayed in Table 4.1. Furthermore, ∆t defines the time increment between

the nodes n− and n. Correlation is introduced directly on the realizations ern

of four standard normal variables through the Choleski elements cj,r of the

correlation matrix with normal distribution N(0,1) and illustrated in Table

4.2.

Table 4.1: Risk factors coefficients and volatilities

β0 β1 β2 β3 Volatility (%)

Out-put gap 0.0006 1.7767 -0.9089 — 1.14

Inflation 0.0030 1.2160 -0.3846 0.01815 0.92

Short rate 0.0092 0.8589 0.3058 — 1.53

Long rate 0.0024 0.8759 0.1621 -0.1507 1.41

Risk premium 0.1717 -3.0922 -4.0528 12.9808 20.07
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Table 4.2: Risk factors correlation matrix

Long rate Inflation Out-put gap Short rate

Long rate 1.0000 0.6775 0.4203 0.8338

Inflation 0.6775 1.0000 0.2336 0.6075

Out-put gap 0.4203 0.2336 1.0000 0.6379

Short rate 0.8338 0.6075 0.6379 1.0000

Furthermore, the estimated returns coefficients βi0, β
i
1, β

i
2, β

i
3, β

i
4 by the

OLS method together with the standard deviations σi of equations (4.16),

(4.17), (4.18), (4.19) and (4.20) are illustrated in table (4.3). Table 4.4 shows

estimated benchmark constant correlation matrix specification for the case

study. We used the constant volatility, σi in case of testing the model under

constant correlation assumption.

Table 4.3: Estimated coefficients for asset return models

β0 β1 β2 β3 β4 Vol. (%)

Bond EMU 0.0437 0.5678 -0.0799 -0.5783 -0.5069 4.18

Bond ex-EMU 0.0344 0.2574 -0.1003 0.2532 — 3.21

Infl. Link. bond 0.0303 -0.2051 -0.0666 0.8330 — 4.65

MSCI Europe — — — — — 19.74

Commodity -0.0362 13.2071 0.0055 0.0665 – 20.98
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Table 4.4: Constant correlation matrix of the benchmarks

EMU ex-EMU Infl. Link. MSCI Commodity

Bond EMU 1.0000 0.4901 0.6649 -0.5252 -0.0262

Bond ex-EMU 0.4901 1.0000 0.2426 -0.5448 -0.3139

Infl. Link. bond 0.6649 0.2426 1.0000 0.1637 0.2170

MSCI -0.5252 -0.5448 0.1637 1.0000 0.5517

Commodity -0.0262 -0.3139 0.2170 0.5517 1.0000

4.3.1.5 Correlation Analysis

An analysis of assets correlations helps us to understand the changing under-

currents between different asset classes during the financial crisis and post

crisis periods. In the layer one of our asset simulation, factors are connected

through multi-variate set-up but they are assumed to have constant correla-

tion. But in the second layer we used DCC assumption for the modeling of

market benchmarks returns. Since correlation clustering changes dynamically

during and after the crisis with introducing stochastic correlation among mar-

ket benchmarks into scenario generation we can consider correlation shocks

that may come from the financial market. Therefore, considering stochastic

correlation assumption is needed in order to approximate return distribution

and drive the optimal ALM solution with more effective strategy.

We have implemented stochastic correlation to analyze relationships for

the entire period from Q1 2009 to find out the impact of correlation break-

down (during the Euro sovereign crisis 2009-2011) on the long-term planning.

Table 4.5 reports the result of time-varying stochastic correlation forecasting

at every year. All other intermediate quarterly periods are not reported to

avoid complicity but have been considered in scenario approximation. Fig-
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ure 4.2 shows correlation clustering of three asset indexes from 2009 to 2011

which has been derived through DCC model. The correlation is fickle among

asset classes during different period. Therefore investors’ strategy seems to be

weaken or simply disappearing during a crisis owing to correlation changing

behavior. Further, the asset return scenario generation ability to fit the ac-

tual market price without considering dynamic stochastic correlation would

be to wither in the risk opacity of the crisis situation.

Figure 4.2: Correlation clustering

4.3.1.6 Results of Scenario Approximation and Model Validation

We consider the historical data from the time series of past market data and

we look at historical back-testing in which asset returns statistical models (see

section 4.3.1) are fitted to the data up to a trading time t and simulate to

some chosen horizon t+T . Accordingly, we can move to the optimization part

by knowing that our statistical models are qualified in back-testing analyses.
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All implementation results have been performed through a set of software

modules combining MATLAB R2014a for simulation and scenario generation

as the development tool (see main MATLAB codes in appendices).

In particular for model validation and forecasting we consider a scenario

tree generated over a 10-year planning horizon, split into non-homogeneous

decision stages t ∈ T = {0,0.5,1,2,3,5,7,10} specified as a discrete time and

stages setting.

We illustrate in the Figure 4.3 a set of output trees generated for rep-

resentative asset index classes based on the introduced scenario generation

with stochastic -right side- versus constant correlation -left side- models. The

scenario tree is generated across time, with the some assessment of the plau-

sibility of our asset scenarios with respect to the observed market dynamic

at each stages up to Q4 2015. The different techniques for scenario genera-

tion are ex-post analyzed on actual market dynamic with the same estimated

coefficients and assumption. We consider the periods of 2009 until 2016 dur-

ing which the crisis, post crisis and recent market situation took place. In

almost all cases, the sample space distribution of the generated scenarios

with stochastic correlation includes actual market returns over the simula-

tion period seen to that date which includes also recent market instability.

The results show in the period of crisis in most of the cases scenario genera-

tion with stochastic correlation performed better to capture the actual value

through the generated scenarios.

All in all, the evidence shows that during and after the crisis periods,

generating scenarios under stochastic correlation approach would have dom-

inated the other model with constant correlation and the ex-post evidence

proves consistent results.
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Figure 4.3: Asset returns scenario generation of investment universe under constant

correlation -left side- and stochastic correlation -right side- (red teregectory is the mean

scenario, green and turquoise tragectories 25% and 75% quantile, blue and megenta tragec-

tories lower and upper boundary of the distribution)
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4.3.2 Liability Model and Funding Condition

The defined benefit obligation (DBO) should be paid as annual payment

to the pensioners at each year. For ease of implementation pension mem-

bers carry constant survival and mortality intensities and we use a simplified

model of the employed liability pricing for the DBO estimation. We assume

pension liabilities determined by actuarial assumptions and scenario depen-

dent wage inflation linked. The funds’ pension payments at node n is:

Ln = p
s
tn

K

∑
k=1

bak(1 + ζ
2
n) n ∈ Nt (4.21)

whereK is a number of pensioners at the fund, tn the reference time of node n,

the annual pension benefit payment to each pensioner denoted by ba and ζ2n is

the inflation rate at node n which has been evaluated by equation (4.12). Also,

for each year has been considered survival probability for pensioners, say ps.

We consider a net pension payments LNETn at node n as the difference between

pension benefits payments and (employer and employee) contributions Cn:

LNETn = Cn −Ln (4.22)

The funds’ discounted DBO at each year is measured by the following for-

mula:

Λn = ∑
m∈Cn

pm(Lm(1 + rl)
−(tm−tn)) (4.23)

where m ∈ Cn indicates the nodes in the sub-tree originating from node n, pm

define the conditional probabilities associated with the subtree originating

from node n and rl is the discounted value. The DBO is directly related to

the Funding Ratio and we focus on the FR dynamic stability as long-term

management target. This is defined as:

Φn =
Wn

Λn

(4.24)
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where Wn is the value of funds’ wealth (total assets) at node n. FR below

1 express a PF underfunding condition and above 1 shows an overfunding

condition.

4.3.3 Optimization Framework

In this section, we describe the framework of optimization with objective

function and relative financial and regulatory constraints. The assets return

must be derived from the stochastic formula of previous section and input to

the following optimization problem.

4.3.3.1 Model Decision Variables

Decisions on trading and holding assets of the fund’s portfolio and borrowing

strategies define the control variables of the problem. In the optimization

problem, the following decision variables are considered: xi,0 is the value of

the position in asset i at t = 0, xi,h,n denotes the value in node n of holdings

in asset i purchased in node h, x+i,n the value of asset i bought in node n and

x−i,h,n is the value of asset i sold in node n which was purchased in node h.

The value of investment in asset i in node n given by xi,n and wealth process

in node n is denoted by Wn.

4.3.3.2 Objective Function

The following objective function (4.25) is based on the trade-off dynamic

tracking minimum guarantee return with consider the short and medium-

term shortfalls hjn (j = 1,2) with respect to targets W̃ j and long-term portfo-

lio wealth. The objective function is subject to several financial and institu-

tional constraints over a certain time horizon to make sure a dynamic ALM

approach is capable of combining long-term allocation with possibility of the
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intermediate term shortfalls control.

maxx∈X{α3 ⋅E(Wn)n∈NT
− (α1 ⋅E(h1n)n∈N 1

t
+ α2 ⋅E(h2n)n∈N 2

t
)} (4.25)

In model (4.25), for all n ∈ Nt and t ∈ T time interval considered given by

T ={0,0.5,1,2,3,5,7,10}. We define the shortfalls for N j
t by

hjn = φ(W
j
n, W̃

j) =max(0, W̃ j −W j
n) j = 1,2 (4.26)

where W̃ j and W j
n are portfolio target and tree values, respectively. In

(4.25) we have∑j αj = 1, αj ∈ (0,1) and E(Wn) represents the (unconditional)

expectation of terminal portfolio values at t = T,n ∈ NT while we denote with

N
j
t , j = 1,2 the j-th target associated stages and accordingly E(hjn), n ∈ N

j
t

will denote the expectations adapted to N j
t .

The αj represent the relative emphasis that fund manager would like to

put on different targets and the value of them can be chosen freely and set

the level of risk aversion. The higher value of αj for j = 1,2, the higher

importance given to the shortfalls and the less to the expected of the final

wealth, and hence the more risk-averse the optimal portfolio allocation will

be and vice versa.

All in all, with considering multi-critical objective function, we are able

to track the targets return and funding ratio of the pension fund over time.

4.3.3.3 Model Constraints

The dynamic ALM problem is maximization of the objective function in

(4.25) under uncertainty subject to an extended set of linear constraints.

Hence, the relative following constraints need to be considered in the DB

pension fund ALM modeling.
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Inventory balance constraints

This set of constraints involves buying, selling, and holding variables for

each asset. They give the quantity invested in each asset at each time over

the horizon. The first-stage decision, or root-node decision also referred to

as the implementable decision of the multi-stage stochastic problem is the

only one under complete uncertainty regarding the markets’ future evolu-

tion. We consider an initial portfolio assets
0
xi prior to rebalancing and xi,0

portfolio holdings in asset i after rebalancing. For n = 0 and i ∈ I where I =

{i0, i1, i2, i3, i4, i5} includes six asset classes and i0 representing an investment

in the money market, thus yielding a maybe very low but positive income.

We distinguish a cash position zn = z+n − z
−
n accounting for the evolution of

liquidity in ALM problem.

xi,0 =
0
xi + x

+
i,0 − x

−
i,0 i ∈ I (4.27)

Moreover, up to the horizon T , we have for t ∈ T and n ∈ Nt where Nt set

of nodes at stage t:

xi,n,n = x
+
i,n i ∈ I (4.28)

x−i,n = ∑
h∈a(n)

x−i,h,n i ∈ I (4.29)

xi,h,n = ∑
h∈a(n)

xi,h,n(1 + ri,n) − x
−
i,n i ∈ I (4.30)

xi,n = ∑
h∈a(n)

xi,h,n + xi,n,n i ∈ I (4.31)

Cash balance constraints

These are the set of constraints of the model which refer respectively to the

first period and the remaining periods before the horizon. The cash balance
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model explains the value movement in the fund and introduces a proper

accounting for cash inflows, outflows and within the fund at each stage. For

n = 0 at time t = 0 we have cash surplus z0 which is affected by investment,

trading strategy and pension payment from the input portfolio at inception

stage. Given an initial cash z̄0 we have

z0 = z̄0 +∑
i∈I

(x−i,0 − x
+
i,0) −L

NET
0 = 0 (4.32)

On subsequent stages for n ∈ Nt and t > 0, we consider the cash flows

generated in each node as follow:

zn = zn−(1 + rn) +∑
i∈I

(x−i,n − x
+
i,n) − z

+
n + z

−
n −L

NET
n = 0 (4.33)

Where positive z+n and negative z−n cash positions with current return on

previous cash account plus the rebalancing decisions x+i,h,n and x−i,h,n together

with the net pension payment LNETn which has to be paid to the pensioners

generate cash flows until end of the horizon.

Policy constraints

These constraints limit the amount invested in an asset to be less than some

proportion of the fund wealth and typically lower l and upper u bounds of

the assets are problem dependent.

Wnli ≤ xi,n ≤ uiWn i ∈ I, n ∈ Nt & 0 ≤ li, ui ≤ 1 (4.34)

Cash account bond:

Wnlz ≤ zn ≤ uzWn n ∈ Nt & 0 ≤ lz, uz ≤ 1 (4.35)

Turnover constraint

The turnover constraint fixed in optimization problem to limit the approxi-

mate change in the fraction of total portfolio wealth invested in some assets
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i at prior stage and current stage be less or equal than some proportion of

the fund wealth and take the form:

∑
i∈I
∑

h∈a(n)
xi,h,n +∑

i∈I
x+i,n ≤ θ∑

i∈I
xi,n−(1 + ri,n)

n ∈ Nt & 0 ≤ θ ≤ 1

(4.36)

Short sale constraints

In this model, short sale constraints restrict the fund strategy to long-only

positions, meaning that all assets holding, buying and selling must be non-

negative

xi,n ≥ 0 i ∈ I, n ∈ Nt (4.37)

x+i,n ≥ 0 i ∈ I, n ∈ Nt (4.38)

x−i,n ≥ 0 i ∈ I, n ∈ Nt (4.39)

Horizon decision

This constraint ensure that is not possible to have new investments at the

horizon. So the portfolio value is determined only by the assets value of the

investments realized in the previous stage and only in case of liquidity short-

fall in order to pay the pension payment at the horizon there is possibility

to sell assets up to covering the pension payment.

x+i,n = 0 i ∈ I, n ∈ NT (4.40)

x−i,n ≤ L
NET
n i ∈ I, n ∈ NT (4.41)

Wealth constraints

These constraints determines the portfolio wealth at each node.
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Total Wealth. The total wealth of the fund at each node n is defined

as the sum of all asset holdings:

Wn = ∑
i

xi,n + zn i ∈ I, n ∈ Nt (4.42)

Expected Final Wealth. This constraint evaluates expected wealth

of the fund at end of the horizon.

E(Wn) = ∑
n

Wnpn n ∈ NT (4.43)

Where the probability of each node denoted by pn.
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Chapter 5

Case Study: A Pension Fund

ALM Problem

In this chapter, we implement the theoretical model of ALM from previous

chapter under some assumptions to real data for a DB pension fund in order

to test their applicability and interpret solutions. The case study is designed

for a DB pension fund’s management in order to identify the optimal asset

allocation over certain planning horizon with inclusion of capital and liabil-

ity constraints. Liabilities are determined under the assumptions of constant

pension fund future pension payments and their current market value (cur-

rent fund obligation) under assumption of constant pension fund population

by discounting all future pension payments. The case study implementation

framework is based on:

1. Financial market analysis modeling using real historical data;

2. Scenario generation and risk assessment;

3. Using optimization problem described in Chapter 4 with the market

scenarios based on the market model under points 1 and 2;
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4. ALM solution analysis and recommended decision.

5.1 Main Assumptions, Methods and Tools

This case study is designed on 10 year linear multistage stochastic program-

ming for a portfolio manager facing stochastic asset returns and liabilities

from the DB pension fund. The investment portfolio under management in-

cludes cash, money market, bonds, equity and commodities. The behavior of

each asset is simulated trough Monte Carlo method over time and generated

quarterly returns using a tree structure. Table 5.1 described the assumption

of time and space specification for scenario tree approximations.

Table 5.1: Scenario tree approximation setting

Decision stages 1 2 3 4 5 6 7 Scenario No.

Stage time structure H&N 6m 1y 2y 3y 5y 7y 10y

Branching structure 4 4 4 4 2 2 2 2048

4 4 4 3 2 2 2 1536

4 4 4 2 2 2 2 1024

4 4 3 2 2 2 2 768

4 4 2 2 2 2 2 512

Moreover, we consider structure of the objective function as described

in Figure (5.1) the trade-off between short, medium and long-term decision

criteria for optimal DB pension fund investment manager.

The formulation of the objective function has been formed as multi-

critical dynamic tracking targets (see equation 4.25) with minimizing the

probability to have shortfalls against the targets’ level and maximizing port-

folio wealth at the horizon with different combination of αj (j = 1,2,3).
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Figure 5.1: Explicit trade-off between short, medium and long-term targets

We solve the multi-stage stochastic problem with defined ambition level

for targets as reported in Table 5.2.

Table 5.2: Targets ambition level

Target Time horizon Ambition level

Short 1st year 4% annual return

Medium 3st year 5% annual return

Long 10st year Maximize return

Furthermore, with regards to the discounted liabilities, the initial portfolio

total reserves is considered amount to e 8,250,000 which leading to 100%

initial pension fund’s funding ratio. Figures 5.2 and 5.3 report respectively

the annual pension payment over 10-year horizon and mean scenario case of

inflation linked pension payment at decision stages which has been considered

in the problem. Pension benefit payments have been paid at decision stages

with considering interest rate between decision stage and the payment year

stage.
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Figure 5.2: Annual pension payment

Figure 5.3: Pension payment at decision stages (mean case scenario)

Lower and upper asset bonds information relates to the various asset al-

location constraints and should be considered in the optimization structure.

Taking into account asset bounds is necessary not only for policy (regula-

tory) restriction as minimum level of diversification or operational limits but

also to avoid too extreme and hardly implementation portfolio changes thus

improving the robustness of the optimization results. The lower and upper

asset bounds are illustrated in Table 5.3. Furthermore, Table 5.3 reports also
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maximum portfolio turnover limit which is considered 50% per every decision

stages thus the overall portfolio changes can not exceed the bound from each

stage to the next one. The portfolio turnover limit allows fairly high but not

excessive asset allocation flexibility over time.

Table 5.3: Bounds constraints

Assets Lower bound Upper bound

Cash 5% 100%

Gov. bonds + MKT 0% 100%

Inf. bond 0% 30%

Equity 0% 20%

Commodity 0% 20%

Portfolio Turnover 50%

The results of maximizing the objective value in equation (4.25) under

the several linear constraints are the output of the solution algorithm. Hence,

the implementation results are generated through a set of software modules

combining MATLAB (R2014a) as the development tool (see main Matlab

codes in appendices), GAMS (24.1.3) as the model generator (see main Gams

codes in appendices) using commercial solver (e.g. MOSEK LP and MLP)

and Excel as the input and output data collection while the operating system

is Windows 8 with an Intel processor (Core i5 - 2.66GHz) and 4GB of RAM.

5.2 ALM Results

We consider an ALM model over the 10-year planning horizon for a DB

pension fund from Q1 2009 and include investment universe according to

the Table 2.1 with financial and regulatory constraints. The input to the
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optimization problem has been generated following the procedure presented

by concentrating on the scenario generation with a number of 2048 scenarios

at the horizon. We analyze the results of the optimal first stage here and now

decision under different issues for both scenario generation with stochastic

versus constant correlation. For this analysis, we run the problem with and

without considering turnover limit constrain and focusing on α1 = 0.5, α2 =

0.3 and α3 = 0.2 target calibration.

5.2.1 Optimal H&N Decision Analysis

We plot in Figures 5.4 and 5.5 the H&N decisions after solving the optimiza-

tion problems under scenario generation with asset return simulation model

under the structure of stochastic mean with both stochastic versus constant

correlation. In Figures 5.4 and 5.5, the H&N decision under stochastic corre-

lation on the left and under constant correlation on the right for both cases

with and without activated turnover constraint are portrayed respectively.

The dynamic ALM model generates an optimal portfolio at time zero con-

sistent with the introduced stochastic correlation with an increasing portion

of investment from risky assets to risk free and riskless assets in the portfolio

compere to the ALM result under constant correlation for both activated and

deactivated turnover constraint.

As it’s happened during a severe Euro sovereign crisis such as the one

recorded in 2009, default events during the market instability will lead port-

folio managers to abandon the risky side of the asset classes. Therefore, we

show in the here and now strategy, the dynamic policy under stochastic cor-

relation technic would be able to heavily penalize speculative assets except

risk free money market and riskless assets such as bonds in order to prevent

default risk in the systematic risk as 2009 European crisis period.
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Figure 5.4: Here and now solution under stochastic varsus constant correlation without

turn over constrant

Figure 5.5: Here and now solution under stochastic varsus constant correlation with

turnover constrant

5.2.2 Historical Backtest

We look at historical backtest in which optimal dynamic ALM asset strategies

under the models with stochastic versus constant correlation are fitted to

actual market returns in the period of European sovereign crisis (2009-2011)

and post crisis (2012). We considered European MSCI equity as a benchmark.

We analyzed and portrayed the performance of historical backtesting with

both deactivated and activated turnover constraint in Figures 5.6 and 5.7,

respectively. As shown in the Figures 5.6 and 5.7, the dynamic strategy with

stochastic correlation yields superior performance over the backtesting period

comparing to other cases (multi-stage under constant correlation, Euro MSCI

equity benchmark and static optimization) in both cases with and without

turnover limit.
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Figure 5.6: Strategies historical backtesting without turnover constraint

Figure 5.7: Strategies historical backtesting with activated turnover constraint
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5.2.3 Strategy Comparison

To complete the comparative analysis between the solution of the optimal

decision planning under stochastic and constant correlation, we evaluated

(from an initial portfolio value of 8250000) the performance of a multi-priod

optimization strategy with stochastic correlation against constant correlation

and static optimization. As it is evident in Figures 5.8 and 5.9, the dynamic

strategy with stochastic correlation yields superior performance in both cases

without and with activated turnover constraint, respectively. The worst cases

scenario of the dynamic optimization with stochastic correlation solutions are

also generating a non-negative wealth at the end of the test period. The worst

case lines display the behavior of the worst possible strategy based on the

generated scenarios.

Figure 5.8: Strategies comparison without turnover constraint
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Figure 5.9: Strategies comparison with activated turnover constraint

5.2.4 Target Function’s Calibration

We presented an extended set of results with different combinations on the

targets by the multi-stage stochastic programming. Different experiments of

optimization results have been carried out by changing the α values in ob-

jective function (4.25). We evaluated the DB pension fund’s strategies with

respect to changes in the relevant short, medium and long term decision cri-

teria in different periods. In the first case of the target trade-off, the emphasis

is assumed to be put only on short term target (α1 = 100%, α2 = 0%, α3 = 0%)

with activated turnover constraint. In this case, the only goal is to minimize

the probability of shortfall of missing the target ambition level after the first

year.

Figure 5.10 illustrates the dynamic asset allocation strategy for the BD

pension fund investor along the average wealth scenario under emphasis on

only short-term target. At time t = 0, an optimal here & now decision rep-
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Figure 5.10: Dynamic asset allocation under stochastic correlation- mean case scenarios

(α1 = 100%, α2 = 0%, α3 = 0%)

resents the best asset allocation to be immediately implemented under full

uncertainty. On the following stages, scenario dependent strategies contribute

to minimize the expected shortfall with respect to the target ambition level.

The probability of the target achievement over the short and medium

term and also long term portfolio return over the 10-year horizon under such

assumption are reported in Figure 5.11. The short target ambition level is

achieved 100% while the likelihood to meet the medium target at the third

year is 76% and portfolio return at the 10 year horizon is 41% of the initial

wealth.

The relevant results of the MSP under only short-term target assumption

are reported in Figures 5.10 and 5.11. What follows is an attempt to a deep

analysis of the trade-off among short and medium-term target achievement

and long-term increasing portfolio wealth to shed more light on the mech-

anism of making intermediate decision with long-time investment horizons
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Figure 5.11: Target achievement probability and long-term portfolio return - mean case

scenario under stochastic correlation (α1 = 100%, α2 = 0%, α3 = 0%)

and the way their risks of shortfall are controlled.

The ALM results are compared to identify the best investment strategy in

terms of probability of meeting the targets ambition levels and consequence

maximizing portfolio wealth with combination of α1, α2 and α3. The optimal

combination of αj is evaluated based on the results of different calibration

of the targets balance. Three particular cases where the target balance is

fully focused on short, medium and long-term respectively together with the

optimal emphasis among the target trade-off with 2048 number of scenario

and under assumption of activated turnover constraint are reporting in Table

5.4.

Table 5.4 summarizes the results of different calibrations, the first row

reports the short-term emphasis with α1 = 100%, α2 = 0% and α3 = 0%

while the second row is based on the medium-term emphasis with α1 = 0%,

α2 = 100%, α3 = 0% and the third row for the long-term target focused case
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with α1 = 0%, α2 = 0%, α3 = 100%. The optimal calibration (α1 = 50%,

α2 = 30%, α3 = 20%) is illustrated on the last row of the Table 5.4 since the

target achievement probability is 100% for the short and 89% medium-term

while the expected portfolio return at horizon is 143% of the initial wealth.

It is remarkable that the optimal target balance is well calibrated compared

to other cases. The problem has been run with different combination of αj to

figure out discrimination of the optimal target trade-off but are not reported

to avoid complexity. Moreover, dynamic asset allocation and dynamic wealth

Figure 5.12: Dynamic asset allocation under stochastic correlation- mean case scenarios

(α1 = 50%, α2 = 30%, α3 = 20%)

of mean scenario for the optimal target balance case have been portrayed

in Figure 5.12. In particular, the portfolio wealth starting from 8,250,000

leads to 100% funding ratio with respect to the discounted liabilities over the

horizon and the value of wealth has been evaluated in mean cases scenario

after paying all the fund’s liabilities over the 10-year horizon.

Figure 5.13 reports the target achievement likelihood and the expected
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portfolio return of the optimal target balance case for the mean case scenario.

Figure 5.13: Target achievement probability and long-term portfolio return - mean case

scenario under stochastic correlation(α1 = 50%, α2 = 30%, α3 = 20%)

All in all, the results show that the trade-off between short, medium

and long-term can favor to meet the higher target achievement and portfolio

return with more sustainable investment strategy. Accordingly, managerial

decision process should be fed by inter-temporal targets’ trade-off analysis

and management incentive plans should be improved in the ALM framework.

5.2.5 H&N Solution as Function of Tree

We present the results for the H&N decision under stochastic correlation

including the impact of a change in the number of scenarios. We analyzed

the optimal H&N solution as a function of the tree structure with different

numbers of scenarios to have an efficient sample space. More specifically, for

each scenario tree (512, 768, 1024, 1536, 2048), the optimization problem

has been solved from randomly generated scenario samples to test the H&N
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solution stability with respect to each problem. As it is evident from Figure

5.14, increasing the number of scenarios leads to a smooth change in the first

stage input strategy, while by increasing the number of scenarios from 1536

to 2048, the decision remains fairly similar.

Figure 5.14: H&N Solution as function of different scenario numbers

5.2.6 Funding Ratio Evaluation

We show in Figure 5.15 the evaluation of the FR stage-by-stage across time

and scenarios under optimal target calibration and stochastic correlation

assumptions. At the end of the first stage (6 month), the FR values in each of

4 nodes is increasing value from left to right. At the end of the second stage

(1 year), increasing 16 nodes, so forth until the sixth stage (7 year) we have

1024 nodes and 2048 nodes at the horizon. The constant red line in each plot

indicates an equilibrium condition of FR equal to 1.

The result reported in Figure 5.15 shows the achievement of a funding

surplus across all scenarios. The ALM solution under stochastic correlation
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refers to ex-ante information with the problem solution leads to full recovery

of a funding surplus consistently with the PF managerial goals. Such surplus

is achieved satisfying risk capital and policy constraints.

Figure 5.15: Funding Ratio (Y axis) at stage nodes (X axis)

5.2.7 Worst Case Scenario Analysis

According to the results reported in the previous section, a well combination

of target balance on objective function raises the portfolio return and mini-

mizes the possible shortfall with respect to the target levels. In this section,

we are analyzing the investment strategy of the DB pension fund manage-

ment under the worst case scenario to show that the dynamic approach leads

to hedging the strategies of the planning horizon. One way to make the op-
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timization model more challenging is to taste the model under the worst

case scenario situation to see how the dynamic ALM model can cope with

such condition. Figures 5.16 and 5.17 illustrate the target achievement like-

lihood with expected portfolio wealth of the optimal target balance case and

dynamic asset allocation under the worst case scenario, respectively.

A different picture arises if the situation of the worst case scenario is

assumed without changing any other assumption. Under these extreme con-

ditions, we analyze the impact on the target achievement likelihood, portfolio

wealth at horizon and the portfolio strategy. According to the Figure 5.16,

the investment policy would keep the portfolio wealth after paying all liabil-

ities still positive at horizon with 96% short and 61% medium-term target

achievement under such a worst situation with big enough scenario tree to

capture the stochastics by a good collection of fat-tail scenarios.

Figure 5.16: Target achievement probability and long-term portfolio return - worst case

scenario under stochastic correlation (α1 = 50%, α2 = 30%, α3 = 20%)

Considering the Figure 5.17 which reports the portfolio investment asset
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allocation with a dramatic decrease of the wealth can affect the pension fund’s

liquidity over a 10-year horizon. The optimal portfolio strategy will keep the

overall fund’s wealth positive until the end of the horizon with a relatively

sustainable target achievement likelihood over the short and medium-term

objectives.

The investment dynamic asset allocation in Figure 5.17 shows that under

such a scenario the portfolio will modify the strategy to maintain a sufficient

liquidity level. Under worst case situation, the portfolio is kept mainly in low-

risk fixed income assets and that equity rebalancing decisions help preserve

sufficient liquidity at first year. Clearly, the worst case situation shifts in

asset allocation patterns. With Such moving into more conservative asset

allocation, the investment risk can be locked in portfolio losses. In such a

case, the primarily goal of an investment manager is to limit any liquidity

shortfall while maximizing the expected portfolio wealth.

Figure 5.17: Dynamic asset allocation - worst case scenarios under stochastic correlation

(α1 = 50%, α2 = 30%, α3 = 20%)
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All in all, compared with the investment strategy with the mean case

scenario in Figure 5.12 the portfolio allocation under the worst case scenario

represents more risk averse decision with and appropriate relevant portfolio

rebalancing over the time. In this case, we can keep the positive portfolio

wealth at the horizon with relatively good intermediate target achievement

probability.
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Chapter 6

Conclusion

As discussed earlier, over the past several decades financial institutions such

as DB pension funds were faced with downside potential of the financial

markets. The recent financial crisis has strongly influenced the performance

of DB pension funds in many countries. Pension funds struggle to cover their

liabilities, having serious trouble maintaining a respectable funding ratio.

Accordingly, we have presented the key elements of a dynamic ALM model,

so as to effectively incorporate how several relevant short and medium-run

risks of the DB PF portfolio over 10-year horizon can be controlled in a bid

to ensure the long-term stability of funding ratio. To this end, we introduced

a strategic level multi-stage stochastic optimization model with considering

the trade-off between the risk of shortfall with respect to the target ambition

levels and the funding ratio in the form of the final expected wealth and

discounted liabilities over the horizon. Inter-temporal trade-off is checked

by weighted parameters for each target to help the decision makers attach

on each one a different importance. This approach can be operationalized

through the multi-stage stochastic programming which allows integrating an

uncertainty scenario model of market and investment risk for pension fund
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with a realistic representation of the dynamic ALM method.

We have presented also a long-term scenario generation approach which

is built on concepts from existing methods, integrating a set of economic

and financial risk factors requirements for a DB pension fund within a two

layer simulation framework. The method has been developed based on the

assumption of scenario approximation using stochastic correlations for ALM

problems, which may lead to a sufficient representation of the randomness

underlying the decision-making process.

Measuring correlations among assets represents a key task for risk man-

agement in financial markets. The introduction of stochastic correlation in

a structure statistical model is a challenging methodological task and this

technique has been tested on actual market dynamic and we report evidence

of its effectiveness compared to the method with constant correlation. Since

correlation clustering changes dynamically during and after the crisis, intro-

ducing stochastic correlation among assets into scenario generation is needed

in order to approximate return distribution and drive the optimal ALM solu-

tion with more effective strategy. We presented effectiveness result of optimal

first stage decision and dynamic portfolio diversification under stochastic cor-

relation versus constant correlation. The numerical evidences support that

relative to constant correlation assumption and one period optimization, the

multi-period approach under stochastic correlation leads to superior hedging

results and the recovery of fully funded PF conditions. The results illustrated

over a 10-year horizon the optimal market risk control depends on correla-

tion dynamics: positive correlation clustering leads to increasing investment

in short-term liquid and riskless instrument. Moreover, a well-balanced em-

phasis on short, medium and long term target function can increase portfolio

wealth and minimize the probability of shortfall with respect to the target
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levels. This well-balance emphasis hold true even if the market situation is

under the worst case scenario. Nevertheless, there is not any standard receipt

to assess the optimal weight for targets since it can depend on the business

cycle as well as on the specific target levels. This motivates the use of a

dynamic ALM tool to assess the optimal investment strategy and the re-

lated well target balance among different targets if and when necessary. This

approach allows a pension fund’s managers who wish to have sufficient liq-

uidity and control interest and inflation rate risks to update their investment

strategies or portfolios selections.

118



Bibliography

[1] Aro, H., & Pennanen, T. (2016). Liability-driven investment in longevity

risk management. In Consigli, G., Kuhn, D., and Brandimarte, P., edi-

tors, International Series in Operations Research and Management Science.

Springer, in print.

[2] Amzallag, A., Kapp, D., & Kok Sorensen, C. (2014). The impact of reg-

ulating occupational pensions in Europe on investment and financial sta-

bility. ECB Occasional Paper, (154).

[3] Andonov, A., Bauer, R., & Cremers, M. (2013). Pension Fund Asset Allo-

cation and Liability Discount Rates: Camouflage and Reckless Risk Taking

by U.S. Public Plans?.

[4] Antolin, P., & Stewart, F. (2009). Private pensions and policy responses

to the financial and economic crisis.

[5] Arbeleche, S., & Dempster, M. A. H. (2003). Econometric modelling for

global asset liability management. Working Paper, Centre for Financial

Research, University of Cambridge, in preparation.

[6] Babel, B., Bomsdorf, E., & Kahlenberg, J. (1955). Future mortality im-

provements in the G7 countries. age, 1965, 1975.

119



[7] Bassanini, F., & Reviglio, E. (2011). Financial Stability, Fiscal Consolida-

tion and Long-Term Investment after the Crisis. OECD Journal: Financial

Market Trends, 2011(1), 31-75.

[8] Bernaschi, M., Briani, M., Papi, M., & Vergni, D. (2007). Scenario-

generation methods for an optimal public debt strategy. Quantitative Fi-

nance, 7(2), 217-229.

[9] Bertocchi, M., Consigli, G., & Dempster, M. A. (2011). Stochastic Opti-

mization Methods in Finance and Energy. Springer.

[10] Bessis, J. (2015). Risk management in banking. John Wiley & Sons.

[11] Birge, J.R. & Louveaux, F. (Eds) (2011). Introduction to Stochastic

Programming. 2nd ed., (Springer: New York).

[12] Birge, Z., & Louveaux, S. (1997). Principles on stochastic programming.

[13] Boender, C., & van Hoogdalem, S. (1998). Defined benefit/defined con-

tribution: een risico-rendement perspectief. Research Memorandum, 1998,

61.

[14] Bogentoft, E., Edwin Romeijn, H., & Uryasev, S. (2001). Asset/liability

management for pension funds using CVaR constraints. The Journal of

Risk Finance, 3(1), 57-71.

[15] Bolla, L., Wittig, H., & Kohler, A. (2016). The liability market value as

benchmark in pension fund performance measurement. Journal of Pension

Economics and Finance, 15(01), 90-111.

[16] Bradley, S. P., & Crane, D. B. (1973). Management of commercial bank

government security portfolios: An optimization approach under uncer-

tainty. Journal of bank research, 4(1), 18-30.

120



[17] Campbell, J. Y. (2000). Asset pricing at the millennium. The Journal

of Finance, 55(4), 1515-1567.

[18] Cariño, D. R., Kent, T., Myers, D. H., Stacy, C., Sylvanus, M., Turner,

A. L., Watanabe, K. and Ziemba, W. T. (1994). The Russel-Yasuda-Kasai

model: An asset-liability model for a Japanese insurance company using

multistage stochastic programming. Interfaces 24(1), 29-49.

[19] Cariño, D. R., & Turner, A. L. (1998). Multi period asset allocation with

derivative assets. Worldwide asset and liability modeling, 10, 182.

[20] Chellathurai, T. & Dravian, T., (2002). Generalized Markowitz mean-

variance principles for multi-period portfolio selection problems. Journal

of the Royal Society.

[21] Chernoff, J. (2003a). Asset liability management back with a twist. Pen-

sions and Investments, 21.

[22] Chernoff, J. (2003b). Revolution in pension investing has begun. Pen-

sions and Investments.

[23] Chiu, M. C., & Wong, H. Y. (2012). Mean-variance asset-liability man-

agement: Cointegrated assets and insurance liability. European Journal of

Operational Research, 223(3), 785-793.

[24] Clark, G. L., Munnell, A. H., & Orszag, J. M. (2006). The Oxford hand-

book of pensions and retirement income (Vol. 13). Oxford University Press

on Demand.

[25] Consigli, G., (2007). Asset-Liability Management for Individual In-

vestors. In Zenios, S. A., & Ziemba, W. T. (Eds.). (2007b). Handbook

121



of Asset and Liability Management: Applications and case studies (Vol.

2). Elsevier.

[26] Consigli, G., Brandimarte, P., & Kuhn, D. (2015). Financial Optimiza-

tion: optimization paradigms and financial planning under uncertainty. Or

Spectrum, 37(3), 553-557.

[27] Consigli, G., & Dempster, M. A. H. (1998). Dynamic stochastic pro-

gramming for asset-liability management. Annals of Operations Research,

81, 131-162.

[28] Consigli, G., di Tria, M., Gaffo, M., Iaquinta, G., Moriggia, V., & Uris-

tani, A. (2011). Dynamic portfolio management for property and casualty

insurance. In Stochastic Optimization Methods in Finance and Energy

(pp. 99-124). Springer New York.

[29] Consigli, G., Iaquinta, G., Moriggia, V., di Tria, M., & Musitelli, D.

(2012). Retirement planning in individual asset-liability management. IMA

Journal of Management Mathematics, 23(4), 365-396.

[30] Consigli, G., Iaquinta, G., & Moriggia, V. (2012). Path-dependent sce-

nario trees for multistage stochastic programmes in finance. Quantitative

Finance, 12(8), 1265-1281.

[31] Consigli, G., Kuhn, D., and Brandimarte, P. (2016). Optimal financial

decision making in finance. In Consigli, G., Kuhn, D., and Brandimarte, P.,

editors, Optimization paradigms and decision making under uncertainty

for financial applications. Springer U.S., in print.

[32] Consigli, G., & Moriggia, V. (2014). Applying stochastic programming

to insurance portfolios stress-testing. Quantitative Finance Letters, 2(1),

7-13.

122



[33] Consiglio, A., Cocco, F., & Zenios, S. A. (2001). Asset and liability

modeling for participating policies with guarantees. Journal of Risk and

Insurance.

[34] Consiglio, A., & De Giovanni, D. (2008). Evaluation of insurance prod-

ucts with guarantee in incomplete markets. Insurance: Mathematics and

Economics, 42(1), 332-342.

[35] Consiglio, A., Tumminello, M., & Zenios, S. A. (2015). Designing and

pricing guarantee options in defined contribution pension plans. Insurance:

Mathematics and Economics, 65, 267-279.

[36] Consiglio, A., & Zenios, S. A. (2003). Model Error in Enterprise-wide

Risk Management: Insurance Policies with Guarantees. Advances in Op-

erational Risk: Firm-wide Issues for Financial Institutions, 179-196.

[37] Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). A theory of the

term structure of interest rates. Econometrica: Journal of the Econometric

Society, 385-407.

[38] Crouhy, M., Galai, D., & Mark, R. (2001). Prototype risk rating system.

Journal of banking & finance, 25(1), 47-95.

[39] Davis, M. H., & Lleo, S. (2015). Jump-diffusion asset-liability manage-

ment via risk-sensitive control. OR Spectrum, 37(3), 655-675.

[40] de Lange P. E., Fleten S-E. & Gaivoronski A. (2003). Modeling financial

reinsurance in the casualty insurance business via stochastic programming.

PhD thesis, Department of Industrial Economics and Technology Manage-

ment, N.T.N.U., Trondheim (NO).

123



[41] D’Ecclesia, R. L. (2017). Time Varying Correlation: a Key Indicator in

Finance. In Consigli G., Stefani S. & Zambruno G., editors, Recent ad-

vances in Commodity and Financial Modeling: Quantitative methods in

Banking, Finance, Insurance, Energy and Commodity markets. Interna-

tional Series in Operations Research and Management Science. Springer,

forthcoming.

[42] Dempster, M. A. H., Germano, M., Medova, E. A., Murphy, J. K., Ryan,

D., & Sandrini, F. (2009). Risk profiling defined benefit pension schemes.

To appear in: Journal of Portfolio Management.

[43] Dempster, M. A., Germano, M., Medova, E. A., Rietbergen, M. I., San-

drini, F., & Scrowston, M. (2006). Managing guarantees. The Journal of

Portfolio Management, 32(2), 51-61.

[44] Dempster, M. A. H., Germano, M., Medova, E. A., Rietbergen, M. I.,

Sandrini, F., & Scrowston, M. (2007). Designing minimum guaranteed re-

turn funds. Quantitative Finance, 7(2), 245-256.

[45] Dempster, M. A., Germano, M., Medova, E. A., Rietbergen, M. I., San-

drini, F., & Scrowston, M. (2011). Designing minimum guaranteed return

funds. In Stochastic Optimization Methods in Finance and Energy (pp.

21-42). Springer New York.

[46] Dempster, M. A. H., & Thompson, R. T. (1999). EVPIbased importance

sampling solution proceduresfor multistage stochastic linear programme-

son parallel MIMD architectures. Annals of Operations Research, 90, 161-

184.

124



[47] Dempster, M. A., Germano, M., Medova, E. A., & Villaverde, M. (2003).

Global asset liability management. British Actuarial Journal, 9(01), 137-

195.

[48] Dert, C. (1995). Asset liability management for pension funds: a mul-

tistage chance constrained programming approach (Doctoral dissertation,

Erasmus School of Economics (ESE)).

[49] Di Domenica, N., Mitra, G., Valente, P., & Birbilis, G. (2007). Stochastic

programming and scenario generation within a simulation framework: an

information systems perspective. Decision Support Systems, 42(4), 2197-

2218.

[50] Di Tria, M., (2014). Relevant Decision Criteria for Optimal Property

and Casualty Portfolio Selection. ESMT Master’s Thesis.

[51] Drijver, S. J., Haneveld, W. K. K., & Vlerk, M. H. (2000). Asset Li-

ability Management modeling using multi-stage mixed-integer Stochastic

Programming. University of Groningen.
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Appendix

ALM-General Algebraic Modeling System (GAMS) main code
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Main Matlab codes of the scenario tree generation
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