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Abstract

Magneto- and electro- encephalography (MEEG) are two neuroimaging tools ca-
pable of non invasively recording the magnetic field outside the head and the scalp
potential produced by the electric currents that flow inside the brain. Their strong
point is the extremely high temporal resolution which makes them suitable for the
study of functional connectivity, i.e. the quantification of the statistical dependen-
cies among the time courses that describe brain activity. Functional connectivity
is usually estimated from MEEG data with a two-step process: (i) first an estimate
of the time courses associated with brain activity is computed by means of a regu-
larisation method; (ii) then, source space functional connectivity is computed from
the estimated time courses. The most widely used regularisation method to face
this problem is Tikhonov regularisation, also known as Minimum Norm Estimate
(MNE), which requires the setting of a regularisation parameter. Such a parameter
will be used throughout the process and will influence the final connectivity esti-
mate. In the core part of this thesis we will show that the regularisation parameter
providing the best estimate of brain activity does not provide the best possible con-
nectivity estimate. Indeed, a smaller parameter should be set for the latter intent.
This result will be supported by both analytical and numerical proofs.

Our results highlight that the classic two-step approach plus Tikhonov regular-
isation presents two intrinsic drawbacks: (i) the propagation of the errors during
the process, and (ii) a connectivity estimate which is over spread in space, due to
Tikhonov regularisation. In this thesis we will present a one-step approach com-
bined with the `1 regularisation, where source space functional connectivity is di-
rectly estimated from that at sensor space, without a prior estimation of source time
courses. The proposed pipeline overcomes the problems of the classic approach
and outperforms it, indeed, the one-step approach reduces the propagation of the
errors and the `1 regularisation promotes sparsity on the connectivity estimate.

Finally, we will present transfreq, a Python package for the automated com-
putation of the theta-to-alpha transition frequency. A correct estimation of such a
quantity is of utmost importance for the reliability of connectivity studies in both
healthy subjects and patients.
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Introduction

In many real-world situations, from finance to seismology, from astrophysics
to neuroscience, we are interested in quantifying the interactions between the vari-
ables and processes that characterise a specific phenomenon, as it evolves over
time. It is often the case that the phenomenon of interest is not directly observable,
and we can only infer information on it by indirect observations. In such contexts
mathematics comes in our help, indeed, it provides powerful tools for the analysis
of the phenomenon of interest. In this framework, stochastic processes and inverse
problems theories are probably the ones most worth mentioning. The former al-
lows us to model the phenomenon we are considering and offers many tools to
quantify the interactions between the processes that form it. The latter is essential
when dealing with indirect observation of the phenomenon, as it provides methods
to estimate the variables that characterise it from its indirect observations.

Let us consider a phenomenon characterised by the simultaneous activity of N
distinct and interacting processes. From a mathematical viewpoint, at any time t,
the phenomenon can be modelled with a multivariate stochastic process of dimen-
sionN , {X(t)}t∈R = {(X1(t), . . . , XN (t))>}t∈R, whereXj(t), j = 1 . . . , N , are
the N distinct processes. Our aim is to quantify the interactions between all possi-
ble pairs (Xj(t), Xk(t)). However, the stochastic process {X(t)}t∈R is not directly
observable, only indirect observations are available, which are modelled with a
second multivariate stochastic process, {Y(t)}t∈R = {(Y1(t), . . . , YM (t))>}t∈R,
where Yj(t), j = 1 . . . ,M , are M different observations of the phenomenon
at a given time t. The observable and unobservable processes are related by a
mathematical model. In this thesis we will deal with linear relationships, that is
Y(t) = GX(t), where G is the linear model that links the two processes. In appli-
cations, the observable process is typically a measured quantity, thus we introduce a
third multivariate stochastic processes, {N(t)}t∈R = {(N1(t), . . . , NM (t))>}t∈R,
which models the measurement noise. Therefore, the final equation that relates
all the processes is Y(t) = GX(t) + N(t). Inverse problems theory will al-
low us to estimate X(t) from Y(t), while stochastic processes theory will pro-
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Introduction 5

vide us with many metrics to quantify the interactions between all possible pairs
(Xj(t), Xk(t)).

The practical application we will focus on in this thesis is that of brain con-
nectivity. Indeed, studying and analysing the interactions among different brain
regions is of utmost importance in both patients and healthy subjects (De Pasquale
et al., 2010; Stam, 2010). Specifically, here we will focus on functional connec-
tivity, which aims at quantifying the statistical dependencies among the activity in
different brain areas (He et al., 2019). In the last decades many methods for es-
timating brain activity (Baillet et al., 2001; Pascarella and Sorrentino, 2011) and
connectivity (Pereda et al., 2005; Jirsa and McIntosh, 2007; Bastos and Schoffe-
len, 2016; Sakkalis, 2011), have been proposed. The starting point for all these
methods is the recording of brain activity. Different modalities are available: func-
tional Magnetic Resonance Imaging (fMRI) (Huettel et al., 2004), Positron Emis-
sion Tomography (PET) (Bailey et al., 2005), Magnetoencephalography (MEG)
(Hämäläinen et al., 1993) and Electroencephalography (EEG) (Niedermeyer and
da Silva, 2005). In particular, this thesis will focus on Magneto- and Electro-
encephalography (MEEG), which record the magnetic field outside the head and
the scalp potential, respectively. The two great advantages of these techniques are
that (i) they are completely non invasive and (ii) they reach really high temporal
resolution, of the order of milliseconds. We will see that the above mentioned
linear equation, Y(t) = GX(t) + N(t), properly describes the MEEG record-
ings as function of the underlying brain activity. Indeed, the stochastic processes
{X(t)}T−1

t=0 , {Y(t)}T−1
t=0 , {N(t)}T−1

t=0 will model the activity of N distinct sources
within the brain, the measurements of the magnetic field, or scalp potential, in cor-
respondence of theM sensors of the instrument we are using, and the measurement
noise, respectively.

Brain functional connectivity can be studied either at sensor space level, that
means estimating the statistical dependencies among the time courses, {Y(t)}T−1

t=0 ,
associated with the M sensors of the instrument we are using, or at source space
level, that means estimating the statistical dependencies among the time courses
that describe neural activity, {X(t)}T−1

t=0 . The latter approach has the advantages of
reducing the impact of volume conduction and providing results that can be more
easily interpreted in the framework of neuroscientific models (Lai et al., 2018;
Schoffelen and Gross, 2009; Barzegaran and Knyazeva, 2017; Van de Steen et al.,
2019). Source space functional connectivity is usually estimated in a two-step pro-
cess (Schoffelen and Gross, 2019b): (i) first the time courses that describe brain
activity are estimated by solving the MEEG inverse problem; (ii) then functional
connectivity is computed from the estimated time courses. The MEEG inverse



Introduction 6

problem is ill-posed (Hadamard, 1902), therefore to achieve step (i) regularisation
techniques are required, which rely on the choice of one or more regularisation
parameters. Of course, different parameters provide different brain activity esti-
mations and subsequently also different connectivity estimations. It would seem
natural that the parameters providing the best estimate of neural activity also pro-
vide the best estimate of functional connectivity. In this thesis we will show that
this is not the case.

Motivated by some empirical results (Hincapié et al., 2016), the main topic
of this thesis is precisely that of investigating how to properly set the regularisa-
tion parameters when estimating functional connectivity from MEEG data with a
two-step approach. Specifically, we will answer the following question: do the reg-
ularisation parameters providing the best possible estimate of neural activity also
provide the best possible estimate of source space functional connectivity? Indeed,
in Chapter 4 we show the analysis and results published in (Vallarino et al., 2020).
Trough analytical computations, we proved that the answer to the question de-
pends on the regularisation method used to solve the inverse problem. When using
Tikhonov regularisation (Tikhonov, 1943), better known as Minimum Norm Esti-
mate (MNE) (Hämäläinen and Ilmoniemi, 1994b) in the neuroscientific commu-
nity, the parameter providing the best estimate of functional connectivity is always
smaller than a half the one providing the best possible neural activity estimate.
Such results are confirmed in (Vallarino et al., 2021b), as shown in Chapter 5, by
numerical results obtained in a simulation framework that led us to relax some of
the strong hypothesis that were needed in (Vallarino et al., 2021b); however the
results are also supported by an analytical analysis of the problem. Finally, in
Chapter 6, we present some preliminary and fully numerical results, obtained by
simulating more complex and realistic synthetic data. This latter work is being car-
rying on in collaboration with professor Karim Jerbi of the University of Montreal,
Canada.

The choice of focusing on the two-step approach plus Tikhonov regularisation
relies on the fact that it is the most widely used pipeline for connectivity estima-
tion, however it presents two intrinsic drawbacks: (i) the unavoidable errors that are
committed during the first step inevitably propagate to connectivity estimation; (ii)
Tikhonov regularisation has the great advantage of providing a closed formula to
compute the solution, however it promotes smoothness on it, which is not desirable
in the MEEG context as typically only few focal brain areas are active at any time.
These issues may be overcome on the one hand by exploiting the `1 regularisation,
which has precisely the peculiarity of promoting sparsity on the solution, on the
other hand by defining a one-step approach for the estimation of brain functional
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connectivity, that let us to directly estimate source space functional connectivity
from that at sensor space. This will precisely be the key focus of Chapter 7, in
which we will present some preliminary results obtained in collaboration with a
master student of the University of Trento. Specifically, we will show the poten-
tials of combining the two above mentioned modalities, i.e a one-step approach
based on `1 regularisation, with respect to the classic two-step approach.

An optimal estimation of brain functional connectivity is of interest to under-
stand brain functioning in both healthy subjects and patients. In recent years, many
studies proved that the connectivity patterns of patients affected by neurodegener-
ative diseases change during the progression of the disease (Musaeus et al., 2019;
Babiloni et al., 2017; Núñez et al., 2019; Duan et al., 2020). Such results can be
exploited for the early diagnosis of the disease, indeed changes in connectivity
patterns may appear at very early stages of the disease, years before the manifesta-
tion of the symptoms. As we will see in Chapter 3, many connectivity metrics are
defined in the frequency domain. The choice of using frequency domain connec-
tivity metrics is widely used as different frequencies are associated with different
brain states. Conventionally, five frequency bands are defined, namely delta, theta,
alpha, beta, gamma, ranging from low frequencies, around 1 Hz, to high frequen-
cies, around 45 Hz. As an example the alpha band is preponderant during wakeful
relaxation with closed eyes (Foster et al., 2017); in healthy subjects it comprises
frequencies between 8 and 12 Hz, however in neurodegenerative patients it may
manifest a shift toward left. It follows that an imprecise identification of the fre-
quency bands may compromise the results of the connectivity studies. In particular,
a delicate phase is the identification of the transition frequency from theta to alpha
band, as their powers express opposite pathophysiological meaning. The standard
method to compute the transition frequency is that proposed by Klimesch and col-
leagues in (Klimesch, 1999) and it requires two MEEG data, one acquired when
the subject is resting and the other presenting a desynchronisation in the alpha
band. However, this method presents two main drawbacks: (i) it needs the ac-
quisition of two data sets; and (ii) the alpha desynchronisation must be significant
enough to allow a correct identification of the transition frequency. In Chapter 8,
we present the results reported in (Vallarino et al., 2021a). Specifically we present
transfreq, a novel method for the identification of the transition frequency. The
proposed method only requires one resting state data therefore it is applicable in a
wider range of cases. Tranfreq is implemented in an open source Python package
available at https://elisabettavallarino.github.io/transfreq/. The tools is easy to use
therefore it can be of practical use during the analysis of MEEG recordings.

Summarising, in Chapters 1 and 2 we provide a mathematical background that

https://elisabettavallarino.github.io/transfreq/
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will allow a full comprehensions of the topics covered in the thesis. Specifically,
we first give some basic notion on the stochastic processes theory and then on the
inverse problems theory. Chapter 3 is dedicated to the description of brain func-
tioning and provides relevant information on brain functional connectivity and the
metrics for its estimation. In Chapters 4, 5 and 6 we present the results regarding
the two-step estimation of brain functional connectivity. Specifically we first de-
scribe the results presented in (Vallarino et al., 2020) and (Vallarino et al., 2021b),
then we will present some further preliminary results. Chapter 7 is dedicated to
the one-step estimation of brain functional connectivity. Finally, in Chapter 8 the
python package transfreq is presented, as reported in (Vallarino et al., 2021a).



Chapter 1

Mathematical background 1:
Stationary stochastic processes

Stochastic processes theory has countless applications especially when dealing
with time-dependent observations, which is the case of this thesis. Indeed, we will
see that brain activity, sensor level recordings, and measurement noise can be inter-
preted as realisations of multivariate stochastic processes. Along this chapter, we
will see that stochastic processes theory allows us to compute quantities such as the
correlation and the covariance functions that in turn lead to the computation of the
spectral density function. Spectral analysis is one of the most widely used tools for
the analysis of the spectral content of a MEEG recordings. Indeed, communication
between different brain areas is regulated by the synchronisation of their activity at
specific temporal frequencies (Fries, 2005, 2015). For this reason, particular em-
phasis will be given to the estimation of the spectral density function in the case of
finite, discrete an noisy realisation of a stochastic process. Indeed, in experimen-
tal context we deal with discrete realisations of stochastic processes, therefore the
quantities introduced in the first part of this chapter can only be estimated. In par-
ticular, for the spectral density function estimation, two methods will be illustrated,
namely the Whelch’s method (Welch, 1967) and the multitapers method (Thomson,
1982). Finally, among the stochastic processes, we will highlight the multivariate
autoregressive (MVAR) stochastic processes, as they are a valid and widely used
tool to model brain activity (Anzolin and Astolfi, 2018; Haufe and Ewald, 2019;
Liuzzi et al., 2019; Sommariva et al., 2019). Indeed, as we will see, they are easy
to treat and are effective when one need to simulate interactions among different
areas of the brain.

This chapter is organised as follow. In Section 1.1 some basic notion and prop-
erties will be introduced. Section 1.2 is dedicated to the spectral analysis, while

9



1.1 Basic notions and properties 10

in Section 1.3 finite and discrete stochastic processes will be introduced. Finally,
Section 1.4 focuses on the MVAR processes.

1.1 Basic notions and properties

Definition 1.1. Let I be a set and (I,M) a measurable space, a random variable on
the probability space (Ω,F ,P) is a (F ,M)-measurable application X : Ω −→ I.

Definition 1.2. A stochastic process, {X(t)}t∈S , is a time dependent family of
random variables. A multivariate stochastic process of dimensionN , {X(t)}t∈S =
{(X1(t), . . . , XN (t))}t∈S , is a family of N stochastic processes.
Depending on S , the process can be continuous or discrete, and infinite or finite.

In this section we will consider only continuous and infinite stochastic pro-
cesses, i.e. S = R. Moreover, for simplicity, we consider real valued stochastic
processes, however the theory is easily extendable to complex valued processes.

Definition 1.3. Let {X(t)}t∈R be a multivariate stochastic process of dimension
N , at each time point, t, the mean vector is

µ(t) = E[X(t)] = (E[X1(t)], . . . ,E[XN (t)]) ∈ RN , (1.1)

being

E[Xj(t)] =
∫
R
x pXj(t)(x) dx,

where pXj(t) is the probability density function of Xj(t).

Remark 1.4. Note that in general µ(t1) 6= µ(t2), with t1 6= t2.

1.1.1 Covariance function

Definition 1.5. Let {X(t)}t∈R be a multivariate stochastic process of dimension
N . Given two time points, t and t+τ , t, τ ∈ R, the covariance function returns the
covariance between the variablesXj(t) andXk(t+τ), for any j, k ∈ {1, . . . , N},
that is

Cj,k(t, τ) = E[(Xj(t)− µj(t))(Xk(t)− µk(t))] (1.2)

=
∫
R2

(xj − µj(t)) (xk − µk(t+ τ)) pXj(t),Xk(t+τ)(xj , xk) dxjdxk
(1.3)

being pXj(t),Xk(t+τ)(xj , xk) the joint probability function of (Xj(t), Xk(t +
τ)).



1.1 Basic notions and properties 11

Combining all the possible pairs of processes of the multivariate process gives
a family of covariance matrices

CX(t, t+ τ) = E[(X(t)− µ(t))(X(t+ τ)− µ(t+ τ))t] (1.4)

=


C1,1(t, t+ τ) C1,2(t, t+ τ) . . . C1,N (t, t+ τ)
C2,1(t, t+ τ) C2,2(t, t+ τ) . . . C2,N (t, t+ τ)

...
...

. . .
...

CN,1(t, t+ τ) CN,2(t, t+ τ) . . . CN,N (t, t+ τ)

 . (1.5)

The definition of covariance function allows us to introduce the concepts of
strongly and weakly stationary processes.

Definition 1.6. A multivariate stochastic process {X(t)}t∈R is said strongly sta-
tionary if for any t1, ..., tn, {1, . . . , n} ⊆ N, and for any τ ∈ R the joint probability
functions of (X(t1), ...,X(tn)) and (X(t1 + τ), ...,X(tn + τ)) are equal.

Definition 1.7. A multivariate stochastic process {X(t)}t∈R is said weakly sta-
tionary if

i. the second order moment of {X(t)}t∈R is finite for any t, that is

E[(X(t)− µ(t))(X(t)− µ(t))t] <∞ ∀ t ∈ R;

ii. the mean vector does not depend on time, that is

µ(t) = µ ∀ t ∈ R;

iii. the covariance function depends on time delay, but not on time, that is

CX(t1, t1 + τ) = CX(t2, t2 + τ) ∀ t1, t2, τ ∈ R.

From iii., for ease of notation, we can drop the dependence of the covariance func-
tion on time, i.e CX(τ) = CX(t1, t1 + τ).

From now on we will be dealing with weakly stationary stochastic processes
and, for ease of notation, we will refer to them simply as stationary stochastic
processes.

1.1.2 Correlation function

The correlation function quantifies the linear dependency between two vari-
ables as a function of time delay. This quantity is of interest because it can be used,
for instance, to detect causal relations between the variables.
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Definition 1.8. Let {X(t)}t∈R be a stationary stochastic process, for any j, k ∈
{1, . . . , N} the correlation function is defined by

Rj,k(τ) = E[Xj(t)Xk(t+ τ)]. (1.6)

Specifically, if j = k we refer to it as autocorrelation, otherwise as cross-correlation.
Being pXj(t),Xk(t+τ)(xj , xk) the joint probability function of (Xj(t), Xk(t + τ)),
(1.6) reads

Rj,k(τ) =
∫
R2
xjxkpXj(t),Xk(t+τ)(xj , xk) dxjdxk. (1.7)

The family of correlation matrices is

RX(τ) = E[X(t)X(t+ τ)t] (1.8)

=


R1,1(τ) R1,2(τ) . . . R1,N (τ)
R2,1(τ) R2,2(τ) . . . R2,N (τ)

...
...

. . .
...

RN,1(τ) RN,2(τ) . . . RN,N (τ)

 . (1.9)

Observation 1.9. Being µ = (µ1, . . . , µN ) the mean vector of a stationary pro-
cess, for any j, k ∈ {1, . . . , N}, the following hold

i. Ck,j(τ) = Rk,j(τ)− µkµj ,

ii. Rk,j(τ) = Rj,k(−τ).

Note that for zero-mean stochastic processes covariance and correlation func-
tions are equal.

1.2 Cross-spectral density function

The spectral density function can be defined via correlation function, via Fourier
transform and via filtering-squaring-averaging operations. In this section the first
two methods will be described. For the last method we refer the reader to (Bendat
and Piersol, 2011).

1.2.1 Spectral density function via correlation

Definition 1.10. Let {X(t)}t∈R be a stochastic process of dimension N such that∫
R
|Rj,k(τ)|dτ < +∞ ∀j, k ∈ {1, . . . , N}. (1.10)
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The cross-spectral density function is a one parameter family of N ×N matrices,
S(f) whose (j, k)-th element is defined as

Sj,k(f) =
∫
R
Rj,k(τ)e−2πiτfdτ. (1.11)

Note that equation (1.11) is nothing but the Fourier transform of the correlation
function.

Property 1.11. For real valued stochastic processes, the cross–spectral density
matrices are symmetric over frequency and Hermitian, that is

Sj,k(−f) = S∗j,k(f) = Sk,j(f), ∀j, k ∈ {1, . . . , N} (1.12)

Proof. The first equality comes from

Sj,k(−f) =
∫
R
Rj,k(τ)e2πiτfdτ

=
∫
R
Rj,k(τ)e−2πiτfdτ

=
∫
R
Rj,k(τ)e−2πiτfdτ = S∗j,k(f).

On the other hand

Sj,k(−f) =
∫
R
Rj,k(τ)e2πiτfdτ

=
∫
R
Rj,k(−u)e−2πiuf (−du)

=
∫
R
Rk,j(u)e−2πiufdu = Sk,j(f),

Where the last equality comes from Observation 1.9.

From Property 1.12 it follows that Sj,j(f) is a even, real valued function.

1.2.2 Spectral density function via Fourier transform

Definition 1.12. Let {X(t)}t∈R be a stochastic process of dimensionN , the cross-
spectral density function is a one parameter family of N × N matrices whose
(j, k)-th element is defined as

Sj,k(f) = lim
T→+∞

Sj,k(f, T ), (1.13)

being

Sj,k(f, T ) = 1
T
E[X̂j(f)X̂k(f)∗], (1.14)
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where X̂j(f) is the Fourier transform of Xj(t) over the interval [0, T ], defined as

X̂j(f) =
∫ T

0
Xj(t)e−2πiftdt.

Proposition 1.13. The definitions 1.10 and 1.12 are equivalent.

Proof. Consider Sj,k(f, T ) as defined in definition 1.12. It holds

1
T
X̂j(f)X̂k(f)∗ = 1

T

∫ T

0
Xj(α)e−2πifα dα

∫ T

0
Xk(β)e2πifβ dβ

= 1
T

∫ T

0

∫ T

0
Xj(α)Xk(β)e2πif(β−α) dαdβ.

We now implement the variable change τ = β − α (Figure 1.1), thus we have

1
T
X̂j(f)X̂k(f)∗ =

∫ 0

−T

( 1
T

∫ T

−τ
Xj(α)Xk(α+ τ)dα

)
e−2πifτdτ+

+
∫ T

0

( 1
T

∫ T−τ

0
Xj(α)Xk(α+ τ)dα

)
e−2πifτdτ.

T

−T

T

T

T0 0 αα

β τ

Figure 1.1: Graphical sketch of the variable change.
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Applying the expectation on both sides, we get

Sj,k(f, T ) =
∫ 0

−T

( 1
T

∫ T

−τ

[∫∫
R2
xjxkpXj (α),Xk(α+τ)(xj , xk)dxjdxk

]
dα
)
e−2πifτdτ+

+
∫ T

0

( 1
T

∫ T−τ

0

[∫∫
R2
xjxkpXj (α),Xk(α+τ)(xj , xk)dxjdxk

]
dα
)
e−2πifτdτ

=
∫ 0

−T

( 1
T

∫ T

−τ
Rj,k(τ)dα

)
e−2πifτdτ +

∫ T

0

( 1
T

∫ T−τ

0
Rj,k(τ)dα

)
e−2πifτdτ

=
∫ 0

−T

T + τ

T
Rj,k(τ)e−2πifτdτ +

∫ T

0

T − τ
T

Rj,k(τ)e−2πifτdτ

=
∫ T

−T

T − |τ |
T

Rj,k(τ)e−2πifτdτ.

Finally, applying the limit for T →∞, we get, by dominated convergence,

lim
T→∞

E[Sj,k(f, T )] = lim
T→∞

∫ T

−T

T − |τ |
T

Rj,k(τ)e−2πifτdτ

=
∫ +∞

−∞
Rj,k(τ)e−2πifτdτ.

1.3 Finite and discrete realisations of stochastic processes

So far we have been dealing with infinite and continuous stochastic processes,
however in experimental contexts we mainly deal with finite and discrete measures
of a specific event. Such measures can be interpreted either as samples over time
of a continuous and infinite stochastic process or as a realisation of a finite and
discrete stochastic process. For convenience we stick to the first interpretation. We
indicate the set of sample measures by {x(t)}T−1

t=0 , where the lower case is used
to indicate that we are dealing with a specific realisation of a random variable and
t = 0, . . . , T −1 are the time points in which the process has been sampled. In this
case we cannot apply the above definitions of mean, correlation and cross-spectral
density, on the contrary we only are able to estimate them from the data. In this
section we will see how to do it.

Definition 1.14. Let {x(t)}T−1
t=0 be the realisation of a stationary stochastic process

of dimension N .

i. The sample mean vector is defined as

µ̄ = (µ̄1, ..., µ̄N )t, (1.15)
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where

µ̄j = 1
T

T−1∑
t=0

xj(t).

ii. the sample covariance is defined as

C̄j,k(τ) = 1
T − 2− τ

T−1−τ∑
t=0

(xj(t)− µ̄j)(xk(t+ τ)− µ̄k). (1.16)

iii. the sample correlation is defined as

R̄j,k(τ) = 1
T − 1− τ

T−1−τ∑
t=0

xj(t)xk(t+ τ). (1.17)

Note that the assumption of stationarity is crucial, indeed the above quantities
can be reliably estimated because they do not change over time.

As for the cross-spectral density function, its estimation is more challenging.
Many methods have been proposed in literature and they are divided in two main
categories, the non parametric methods and the parametric ones. In the following,
two non parametric methods will be described, for an exhaustive description of all
the methods we refer the reader to (Stoica et al., 2005).

1.3.1 Welch’s method

The first method to be described is the Whelch’s method (Welch, 1967), which
was introduced for the first time in 1967 as a modification of the Bartlett method
(Bartlett, 1950) with the aim of diminishing the variance of the estimate. For the
ease of notation let us first consider a realisation of a univariate stochastic pro-
cess, {x(t)}T−1

t=0 , and then we will extend the method to the multivariate case. The
Welch’s method is schematised as follow:

1. {x(t)}T−1
t=0 is divided into P overlapping segments of length L

x1(t) = X(t) t = 0, ..., L− 1
x2(t) = X(t+D) t = 0, ..., L− 1
...

xM (t) = x(t+ (M − 1)D) t = 0, ..., L− 1,

being D the overlap length and (P − 1)D + L = T ;
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2. each segment is then multiplied by a window function, w(t), to obtain the
sequence {x(p)(t)w(t)}Pp=0, t = 0, . . . , T − 1;

3. then the discrete Fourier transform of each term of the sequence is computed

x̂(p)(n) =
L−1∑
t=0

x(p)(t)w(t)e
−2πi
L

tn, n = 0, ..., L− 1; (1.18)

4. subsequently, the modified periodogram, I(p), are computed

I(p)(fn) = 1
W
|X̂(p)(n)|2, p = 1, ..., P, (1.19)

being

W =
L−1∑
t=0

w(t)2

and
fn = n

L
, n = 0, ..., L2 ;

5. finally, the estimate of the power spectrum is given by

S̃X(fn) = 1
P

P∑
p=1

I(p)(fn). (1.20)

In case of a realisation of a multivariate stochastic process, step 1. to 3. are ap-
plied to each component then the one parameter family of modified periodogram
matrices is computed, being its (j, k)-th element

Imk,j(fn) = 1
W

x̂mk (n)x̂mj (n)∗, m = 1, ...,M. (1.21)

Finally, the (j, k)-th element of the estimate of the one parameter family of cross-
spectral density matrices is

S̃k,j(fn) = 1
P

P∑
p=1

I
(p)
k,j (fn). (1.22)

With respect to Bartlett’s method, Welch’s method introduces the overlap between
consecutive segments, such choice increases the number of periodograms to be
averaged, and thus it reduces the variance of the estimate. The use of a window
function, w(t), is also a novelty and it is introduced to mitigate the spectral leakage
(Jwo et al., 2021). Many different types of window function can be defined; Figure
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Figure 1.2: Representation of the window functions. The three types of Gaussian functions differ for
the value of the standard deviation, σ.

1.2 shows some of the most common ones.

1.3.2 Multitapers method

The multitapers method (Thomson, 1982) was introduced for the first time in
1982 by Thomson. Like Whelch’s method, multitapers method involves a win-
dowing process of the data, however it has the advantages that the windows are not
arbitrary and the frequency resolution is higher. The major difference from Welch’s
method is that the data is not divided into segments and then multiplied by a sin-
gle window function, but rather the whole data is multiplied by a set of window
functions (tapers), the discrete prolate shperoidal sequnces, or Slepian sequences,
in honour of their inventor.
Let {x(t)}T−1

t=0 be the observations of a multivariate stationary stochastic process
of dimension N , the multitapers method can be schematised as follow (Thomson,
2007):

1. first, a time-bandwidth product C0 = TW is set;

2. then, the tapers, w(p)(t), are computed. For a specific choice of C0 there are
P = b2C0c tapers;
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3. subsequently, the Fourier transform of the windowed data is computed

x̂(p)(n) = 1
T
d(p)(n)

T−1∑
t=0

w(p)(t)x(t)e
−2πi
T

tn, (1.23)

where d(p)(n) are proper weights;

4. then, the cross-spectrum of each individual taper is computed, being its
(j, k)-th element

S̃
(p)
j,k (n) = x̂

(p)
j (n)x̂(p)

k (n)∗; (1.24)

5. finally, the multitaper estimate of the cross-power spectrum is the one pa-
rameter family of matrices whose (j, k)-th element is

S̃j,k(n) = 1
P

P∑
p=1

S̃
(p)
j,k (n). (1.25)

For details on how to compute the tapers, set the weights and define C0 see (Thom-
son, 1982).

1.4 MVAR processes

Multivariate autoregressive (MVAR) processes are a particular type of stochas-
tic processes. Their linearity makes it easy to deal with them and therefore they are
widely used to model real world (North, 2003). In this section a brief introduction
to the MVAR precesses will be given as they will be used in Chapter 5 to model
brain activity. For further details see (Lütkepohl, 2005).

Definition 1.15. An MVAR process of order P is a discrete multivariate stochastic
process {X(t)}t∈Z if

X(t) = ν +
P∑
p=1

A(p)X(t− p) + ε(t) ∀t, (1.26)

where A(p) are fixed coefficient matrices, and ε(t) ∈ RN is a white Gaussian
noise process with covariance matrix Σ. Moreover, the MVAR model described by
equation (1.26) is said to be stable if

det

IN −
P∑
p=1

A(p)zp
 6= 0 ∀ z ∈ C s.t. |z| ≤ 1, (1.27)

where IN is the identity matrix of size N .
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Remark 1.16. From equation (1.26) it can be easily seen that the process X(t) is
uniquely determined by the process ε(t) and by the first P time points, X(0), . . . ,
X(P − 1). Indeed, consider for example an MVAR model of order 1 (a similar
proof holds for the general case P > 1 and can be found in (Lütkepohl, 2005));
then for each time point t

X(t) = A(1)X(t− 1) + ε(t)
= A(1)2X(t− 2) + A(1)ε(t− 1) + ε(t)

= A(1)tX(0) +
t−1∑
k=0

A(1)kε(t− k) .

Such a model satisfies the stability condition defined in equation (1.27) if all the
eigenvalues of the coefficient matrix A(1) have modulus less then one, condition
that guarantees the sequence of exponential matrices

{
A(1)k

}
k

to be absolutely
summable.

The coefficient matrices define uniquely the cross-spectral density of the pro-
cess. Indeed, the following proposition holds, where for simplicity we consider a
zero-mean MVAR process (i.e µ = 0)

Proposition 1.17. Let {X(t)}t∈Z be a zero-mean MVAR process of order P , then
the one parameter family of cross-power spectral matrices is

S(f) = H(f)ΣH(f)∗, (1.28)

where H is transfer function defined as

H(f) = (IN −A(f))−1, (1.29)

being A(f) the Fourier transform of the coefficient matrices

A(f) =
p∑
t=1

A(t)e−2πift. (1.30)

According to equation (1.26), if a process X(t) follows an MVAR model, then
at each time point the value of X(t) can be derived as a weighted sum of the values
of the process at the previous P time points, X(t − 1), . . . , X(t − P ), plus a
random perturbation ε(t). In particular, the (i, j)-th elements of the coefficient
matrices, aij(1), . . . , aij(P ), describe how the value of the i-th component of the
process depends on the past of the j-th component. The next chapter is dedicated
to an overview of brain functional connectivity, however we anticipate that when
dealing with MVAR processes different connectivity patterns, with various levels
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of complexity, can be obtained by tuning the off-diagonal values of the coefficient
matrices. Due to their flexibility and simplicity, MVAR models have been used
by various authors in the framework of MEEG functional connectivity estimation
as a benchmark for testing and comparing different connectivity metrics (Anzolin
et al., 2019; Chella et al., 2019; Haufe et al., 2013; Haufe and Ewald, 2019; Liuzzi
et al., 2019; Sommariva et al., 2019; Nolte et al., 2008). Other models have been
proposed to simulate different connectivity patterns, such as coherent sinusoidal
time series (Hincapié et al., 2016), neural mass models (Wendling et al., 2002;
Astolfi et al., 2007) or Kuramoto models (Acebrón et al., 2005; Cabral et al., 2014).
However a comprehensive comparison of all possible generative models is beyond
the scope of this thesis.



Chapter 2

Mathematical background 2:
Inverse problems theory

In this chapter some notions about the inverse problems theory will be given.
This branch of mathematics arises from the need to identify and quantify events
that cannot be directly measured and whose information is only available through
indirect measurements. This is the case of MEEG which measures the magnetic
field outside the head and the scalp potentials produced by the neural currents that
flow inside the brain and that characterise brain activity. Once the mathematical
model that links the event of interest with its indirect observations is defined, by
solving the so called inverse problem associated with such a model, we obtain an
estimate of the event. If the inverse problem is well-posed, solving it is straight-
forward, however in experimental contexts, it is often the case that the inverse
problem is ill-posed. Thus, estimating the event of interest might be challenging
thus specific techniques are required. Regularisation methods are widely used to
solve inverse problems, and they seek for a solution that, at the same time, fits well
the data and have some desired properties such as smoothness or sparsity.

This chapter is organised as follow. In Section 2.1 inverse problems will be
defined. Then, in Section 2.2 the concept of generalised inverse will be defined.
Finally, Section 2.3 is dedicated to the regularisation methods.

2.1 Definition

Let T : X → Y be a linear continuous operator between the Hilbert spaces X
and Y , with bounded range, R(T). Let us consider the following equation

Tx = y, (2.1)

22
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being x ∈ X and y ∈ Y . Solving the inverse problem associated with equation
(2.1) means estimating x given the data y and the operator T. If T is invertible the
problem is easily solvable, however in many applications it is not. In our case, for
instance, we will see that T is not squared and thus is not invertible, however this
is just one of the reasons why the problem is not easily solvable. Indeed, in many
real world problems we deal with ill-posed problems.

Definition 2.1. A problem of the form (2.1) is said to be well-posed in the sense
of Hadamard (Hadamard, 1902) if the solution

i. exists,

ii. is unique,

iii. changes continuously with the initial conditions.

If one of the above conditions is not satisfied the problem is said to be ill-posed.

Observation 2.2. 1. i. is equivalent to the surjectivity of T;

2. ii. is equivalent to the injectivity of T;

3. iii. means that to small variations of the data correspond small variations of
the solution;

4. if T is invertible conditions i. and ii. are guaranteed.

2.2 Generalised inverse

Let us consider an ill-posed inverse problem of the form (2.1). Even though
the conditions of well-posedness are not fulfilled we might be interested in finding
a proper solution. This means, for instance, that if condition i. of Definition 2.1
is not satisfied we might seek for a solution that “almost” satisfies equation (2.1);
or, if condition ii. is not satisfied, we might add additional requirements to find a
unique solution. These translate in the concept of generalised solution (Engl et al.,
1996).

Definition 2.3. Let T : X → Y be a linear continuous operator between the
Hilbert spaces X and Y with closed range, R(T). The generalised solution of
problem (2.1) is equivalently defined as:

a.
x† ∈ S s.t ‖x†‖ ≤ ‖u‖ ∀u ∈ S,
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being
S = {u ∈ S s.t. ‖Tu− y‖ ≤ ‖Tx− y‖ ∀x ∈ S}.

b.
x† = T†y,

where T† is defined as follow. Consider an invertible linear continuous op-
erator T̃ : X → Y , such that T̃|N(T)⊥ = T|N(T)⊥ , being N(·) the kernel,
and ·⊥ the orthogonal space, then T̃ is defined as

T† = PN(T)†T̃−1 : X → Y,

being PN(T)† the orthogonal projection on N(T)†.

Observation 2.4. By ‖·‖ it is meant ‖·‖X or ‖·‖Y being the argument an element
ofX or Y respectively, and they are the norms induced by the inner product defined
in the Hilbert spaces X and Y .

Theorem 2.5. Le T : X −→ X be a linear continuous operator between the
Hilbert spaces X and Y , and let u ∈ X . The following are equivalent.

i. Tu = PR(T)y;

ii. ‖Tu− y‖ ≤ ‖Tx− y‖ ∀x ∈ X;

iii. T∗Tu = Ty, being T∗ the adjoint operator.

2.3 Regularisation methods

Let T : X → Y be a linear continuous operator between the Hilbert spaces
X and Y with non-closed range, R(T). In this case T† does not lead to a good
solution. Indeed, being R(T) non-closed, T† is not bounded, thus there is no
continuous dependence on the data. To overcome such a problem we introduce the
regularisation methods which aim at approximating an ill-posed problem with a
family of neighbouring well-posed problems.

Definition 2.6. Let T : X → Y be a linear continuous operator between the
Hilbert spaces X and Y . The family of operators {Rλ}λ>0, Rλ : Y → X , is said
a regularisation algorithm if:

i. Rλ is linear, continuous, and bounded;

ii. limλ→0 Rλy = T†y ∀y ∈ R(T)⊕R(T)⊥

The parameter λ is said regularisation parameter.
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Let us now consider the problem

T∗Tx = T∗y, (2.2)

which is equivalent to problem (2.1).

Definition 2.7. Let T : X → Y be an operator. The spectrum of T is defined as

σ(T) = {ω ∈ C s.t. ωI−T is not invertible},

being I is the identity operator.

Observation 2.8. IfX = RN ,N ∈ N, then σ(T) = {ω ∈ C s.t. ω is an eigenvalue of T}

Definition 2.9. Let R̃λ : σ(T∗T) ⊆ [0, ‖T‖2] ⊆ R be a continuous operator such
that it is an approximation of the function f(t) = t−1, t ∈ (0,+∞), for λ → 0,
then

x† = R̃λ(T∗T)T∗y (2.3)

is said regularised solution.

Theorem 2.10. Let T : X → Y be a linear continuous operator between the
Hilbert spacesXand Y and consider problem (2.1). Let {R̃λ}λ>0, R̃λ : (0, ‖T‖2]→
R, a family of real value functions. If

i. R̃λ −−−→
λ→0

t−1 ∀t ∈ (0, ‖T‖2],

ii. tR̃λ(t) is uniformly bounded,

then the regularised solution converges to the generalised solution, that is

xλ = R̃λ(T∗T)T∗y −−−→
λ→0

x† = T†y,

with y ∈ R(T†)⊕R(T†)⊥.

Regularisation methods provide a good approximation of the generalised solu-
tion in case of noisy free data. However they are crucial also in the presence of
noise.

Suppose our data is affected by noise with intensity δ, that is

‖y− yδ‖ ≤ δ, (2.4)

where y is the noise free data. Thus the problem reads

yδ = Tx + nδ. (2.5)
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In the case of a linear regularisation algorithm it holds

‖Rλyδ − x†‖ ≤ ‖RλTx† − x†‖+ δ‖Rλ‖. (2.6)

The first term on the right hand side is the approximation error due to the use of Rλ

instead of the generalised inverse and it tends to zero when λ tends to zero. The
second term on the right hand side quantifies the error on the regularised solution,
Rλyδ, due to the presence of noise and it tends to infinity when λ tends to zero.
This implies that for any δ it exists an optimal value of the regularisation parameter
λopt(δ) such that the right hand side of equation (2.6) is a minimum. We can now
define the following.

Definition 2.11. A regularisation algorithm {Rλ}λ>0 is said regular if, for δ → 0

λopt(δ)→ 0 and Rλoptyδ → x†

In the next session we will introduce some regularisation algorithms that are of
interest for the present work.

2.3.1 Truncated Singular Value Decomposition

Definition 2.12. Let T : X → Y be a linear continuous compact operator between
the Hilbert spaces X and Y . Then T∗T is compact, self-adjoint and positive def-
inite. Let {σ2

n}∞n=1 be the eigenvalues of T∗T (that are the same of TT∗),which
are positive and accumulate to zero and let {un}∞n=1 be the corresponding eigen-
functions. Then, the vectors

vn = 1
σ

Tun ∈ Y (2.7)

are the eigenfunctions of TT∗. The set of triplets {σn,un,vn}∞n=1 is the singular
system of T and the following hold:

Tvn = σnun (2.8)

T∗un = σnvn (2.9)

Tx =
∞∑
n=1

σn(x,vn)un, x ∈ X (2.10)

T∗y =
∞∑
n=1

σi(y,un)vn, y ∈ Y. (2.11)

Equations (2.10) and (2.11) are called Singular Value Decomposition (SVD) of T
(Engl et al., 1996).
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IfX = RN and Y = RM and T ∈ RM×N is a matrix, being U = (u>1 , . . . ,u>M ) ∈
RM×M , Σ = diag(σ1, . . . , σM ) ∈ RM×N and V = (v>1 , . . . ,v>N ) ∈ RN×N the
SVD of T can be expressed in compact form as

T = UΣV>, (2.12)

being ·> the transpose operator.

Theorem 2.13. The one-parameter family {Rλ}λ∈N∗ defined by

Rλy =
λ∑
n=1

1
σi

(y,vi)ui (2.13)

is a regular regularisation algorithm.

Definition 2.14. From Theorem 2.13 the truncated SVD (tSVD) solution of prob-
lem (2.5) reads

xλ =
λ∑
n=1

1
σi

(yδ,vi)ui (2.14)

Observation 2.15. In the matrix case the tSVD solution reads

xλ =
λ∑
i=1

1
σi

(u>i yδ)vi, (2.15)

and can also be expressed in terms of the so called filter factors (Hansen, 2005) as

xλ = Wλyδ = VΦ(λ)Σ†U>yδ (2.16a)

=
M∑
i=1

ϕi(λ)u>i yδ

σi
vi λ ∈ {1, . . . ,M} , (2.16b)

where Σ† is the pseudo-inverse of Σ, and the filter factors, Φ(λ) = (ϕ1(λ), . . . , ϕM (λ)),
read

ϕi(λ) =
{

1 if i ≤ λ
0 if i > λ

. (2.17)

Clearly, the choice of the parameter λ is crucial. Many methods have been
proposed to set such a parameter; we will not enter into the details, however let us
say that the key point in the choice of λ is to keep all the components associated
with the higher singular values (Hansen, 2005).



2.3 Regularisation methods 28

2.3.2 Tikhonov regularisation

Tikhonov regularisation method was introduced by Tikhonov in 1943 (Tikhonov,
1943). Tikhonov method introduces two constraints on the solution of the ill-posed
problem (2.1):

i. ‖Tx− y‖ ≤ ε (2.18)

ii. ‖x‖ ≤ E (2.19)

‖Tx−y‖ is the norm of residual (or fidelity term). Condition i. imposes small
entropy, ε, for such a quantity, which means that we seek for a solution that fits
well the data and is a good approximation of the generalised solution. ‖x‖ is the
penalty term. Condition ii. imposes small energy, E, to this term, which means
that we seek for a regular solution, which is a characteristic associated with noise
free data.

Definition 2.16. Let T : X → Y be a linear continuous operator between the
Hilbert spaces X and Y and λ be a positive, real value, the Tikhonov regularised
solution is the minimum of the functional

Φλ : X −→ R
x 7−→ Φλ := ‖Tx− y‖2 + λ‖x‖2.

(2.20)

Thus the solution reads

xλ = arg min
λ

{
‖Tx− y‖2 + λ‖x‖2

}
. (2.21)

The regularisation parameter λ trades off the weight given to the fidelity and
penalty terms. Such a parameter has to be set a-priori; many methods have been
proposed to set such a parameter, each one with its pros and cons (Engl et al., 1996).

Let us now get back to conditions (2.18) and (2.19). A schematic representation
is depicted in Figure 2.1. Two cases can be described. In the first case, among
all the solutions that satisfy condition (2.18) we seek for the one with minimum
energy, that is ‖x‖ = Emin. As shown in Figure 2.1(a) such a solution lies on
boundary of ‖Tx − y‖ ≤ ε, therefore the smaller ε is, the higher ‖x‖ is. In the
second case, among all the solution that satisfy condition (2.19) we seek for the one
with smallest discrepancy, that is ‖Tx − y‖ = εmin. As shown in Figure 2.1(b)
such a solution lies on the boundary of ‖x‖ = E , therefore the smaller E is, the
higher ‖Tx − y‖ is. It is clear that the two conditions cannot be satisfied at the
same time for any value of ε and E.

Definition 2.17. We call compatibility region the set of solutions that satisfy both
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· x† ‖x‖ > Emin

‖Tx− y‖ = ε

‖x‖ = Emin

·

(a)

·
‖Tx− y‖ > εmin

‖Tx− y‖ = εmin

‖x‖ = E

·x†

(b)

Figure 2.1: Schematic representation of the constraints (2.18) and (2.19). (a) Among all the solutions
that satisfy condition (2.18) the one with minimum energy lies on the boundary of ‖Tx − y‖ ≤ ε.
(b) Among all the solution that satisfy condition (2.19) the one with minimum discrepancy lies on
the boundary of ‖x‖ = E.

·
‖Tx− y‖ ≤ ε

‖x‖ ≤ E

x†

Figure 2.2: Schematic representation of the compatibility region.

conditions (2.18) and (2.19)

{x ∈ X : ‖x‖ ≤ E and ‖Tx− y‖ ≤ ε}.

Figure 2.2 shows a graphic interpretation of the compatibility region.

Theorem 2.18. For any y ∈ Y and λ > 0 the Tikhonov functional Φλ(x), has
a unique minimum point xλ ∈ N(T)⊥. Such a point is the solution of the Euler
equation

(T∗T + λI)xλ = T∗y, (2.22)

being I the identity operator. In particular

xλ = (T∗T + λI)−1T∗y. (2.23)

Theorem 2.19. The one-parameter family {Rλ}λ>0 defined by

Rλ = (T∗T + λI)−1T∗ (2.24)

is a regular regularisation algorithm.
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Figure 2.3: Filter factors of tSVD (left) and Tikhonov (right) regularisation methods. In this example
T ∈ R200×200, λtSV D = 100, λTikh = σ2

max · 10−10.

Proposition 2.20. Let {xλ}λ>0 be the family of Tikhonov regularised solutions,
∀y ∈ Y . Then

i. ε(λ) = ‖xλ‖ is weakly increasing and assumes values in (‖y⊥‖, ‖y‖), being
y⊥ = (I − P

R(T))y,

ii. E(λ) = ‖Txλ− y‖ is weakly decreasing and assumes values in (0, ‖T †y‖)
if y ∈ R(T†)⊕R(T†)⊥, or in (0,+∞) if y /∈ R(T†)⊕R(T†)⊥.

Similarly to the tSVD case, also the Tikhonov regularised solution can be ex-
pressed by equations (2.16a) and (2.16b) in terms of the filter factors. In this case
the filter factors read

ϕi(λ) = σ2
i

σ2
i + λ

. (2.25)

Observation 2.21. The filter factors assume values in (0, 1). The role of λ is to
suppress the component associated with the smallest eigenvalues. Indeed, for the
highest eigenvalues λ is negligible with respect to σ2

i therefore the corresponding
filter factor ϕi(λ) is close to 1, whereas on the opposite situation, i.e. for the
smallest eigenvalue, the corresponding filter factor is close to zero. Similarly to
what happen in the tSVD case, λ is set to keep the components associated with the
higher eigenvalues, however, while with tSVD the filters factor only assume values
0 or 1, with Tikhonov regularisation they increase smoothly in within the interval
(0, 1). A visual representation of such a behaviour in the matrix case is depicted
in Figure 2.3.

2.3.3 `1 regularisation

Another widely used regularisation method is the `1 regularisation method.
Differently from Tikhonov method which seeks for a solution with a small `2-
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norm, that is a smooth solution, `1 regularisation promotes sparsity on the solution.
Sparsity is obtained by substituting the `2-norm in the penalty term in (2.20) with
the `1-norm. In order to use the `1-norm we suppose X to be a Banach space
(Schuster et al., 2012). The `1 regularised solution is defined as follow.

Definition 2.22. Let T : X → Y be a linear continuous operator between the
Banach space X and the Hilbert space Y and λ be a positive Let λ be a positive
real value, the `1 regularised solution is the minimum of the functional

Φλ : RN −→ R
x 7−→ Φλ := ‖Tx− y‖22 + λ‖x‖1,

(2.26)

where we stress that ‖ · ‖2 is the `2-norm in the Hilbert space Y , and ‖ · ‖1 is the
`1-norm in the Banach space X . Thus

xλ = arg min
λ

{
‖Tx− y‖22 + λ‖x‖1

}
. (2.27)

In this case, an explicit computation of the solution is not possible and itera-
tive methods have to be used. Such methods are typically defined for the discre-
tised version of problem (2.1), which is always the case in experimental contexts,
where X = RN , Y = RM , and T ∈ RM×N . Here we will focus on the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009),
which is an improved version of the Shrinkage-Thresholding Algorithm (ISTA)
(Daubechies et al., 2004). The next section is precisely dedicated to the definition
of FISTA, however to get to the definition we first need to describe the Proximal
Gradient Method (Combettes and Pesquet, 2011), together with its fast version,
and ISTA.

As a further remark before introducing FISTA, we stress that, as mentioned
above, `1 regularisation promotes sparsity on the solution, whereas Tikhonov reg-
ularisation promotes smoothness. The difference between the two methods is il-
lustrated in Figure 2.4 in a bi-dimensional case. In the `1 case, among all the
solutions with a given `1-norm, the one with smallest entropy lies on the corner of
‖x‖1 = E, that is a solution with null x1 component. Depending on the properties
that are desirable for the solution one may choose to use Tikhonov regularisation or
`1 regularisation, however there are some intrinsic properties that are worth men-
tioning as they may influence the choice. Tikhonov regularisation has the great
advantage of having a closed form solution, easy to compute, however for its com-
putation the matrix TT∗ + λIM needs to be inverted. Such operation might not
be computationally feasible for high dimensional problems. This difficulty can be
overcome with the `1 regularisation method, however using an iterative method
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x1

xλ

·x†

x2

·

(a)

x1

·x†

x2

·xλ

(b)

Figure 2.4: Schematic representation of the difference between `1 (a) and Tikhonov (b) regularisation
methods. While `1 promotes sparsity, Tikhonov promotes smoothness.

can be time consuming and needs to set parameters such as the tolerance and the
maximum number of iteration which add subjectivity to the method.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

Let us first introduce a general general version of problem (2.26), i.e.

Φ : RN −→ R
x 7−→ Φ := f(x) + g(x),

(2.28)

with g : RN → R a non-smooth continuous convex function and f : RN → R
a continuously differentiable convex function. Problem (2.26) is a particular case
of the latter one, when f(x) = ‖Tx − y‖22 and g(x) = λ‖x‖1. The optimisation
model we are now considering reads

arg min
x
{Φ(x)}. (2.29)

Being Φ non-smooth the gradient algorithm cannot be applied to (2.29), however
we recall how it works as it will be useful to explain the next contents. Let us
consider the continuously differentiable convex function f , to which we can apply
the gradient method to find its minimum

arg min
x
{f(x)}. (2.30)

The gradient method (Lemaréchal, 2012) generates a sequence {xk}, where, ah
each iteration, xk moves into the direction of the steepest descend. Given a suitable
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starting point x0 and stepsize tk > 0, a generic point of the sequence is given by

xk = xk−1 − tk∇f(xk−1). (2.31)

Let us now consider a quadratic approximation of f , that is

qt(x,w) := f(w) + 〈x−w,∇f(w)〉+ 1
2t‖x−w‖2. (2.32)

The first two terms of (2.32) are the linearised form of f at a given point w, while
the third term quantifies the error in approximating f(w) with the quadratic form.
Now, by observing that it holds

‖x−w‖2 = ‖x−w + t∇f(w)‖2− t2‖∇f(w)‖2− 2t〈x−w,∇f(w)〉, (2.33)

the quadratic form reads

qt(x,w) = f(w) + 1
2t ‖x−w + t∇f(w)‖2 − t

2 ‖∇f(w)‖2 . (2.34)

It is well known (Polyak, 1987) that the gradient iteration (2.31) can be equivalently
written as

xk = arg min
x
{qtk(x,xk−1)} (2.35)

= arg min
x

{
f(xk−1) + 1

2tk
‖x− xk−1 + t∇f(xk−1)‖2 − tk

2 ‖∇f(xk−1)‖2
}
,

(2.36)

which becomes

xk = arg min
x

{ 1
2tk
‖x− (xk−1 − t∇f(xk−1))‖2

}
, (2.37)

after ignoring the constant terms.

Let us now get back to problem (2.29). By applying the same iterative idea of
(2.37) to (2.29) we get the following iterative scheme

xk = arg min
x

{ 1
2tk
‖x− (xk−1 − t∇f(xk−1))‖2 + g(x)

}
. (2.38)

This scheme can be rewritten in terms of the proximal operator, which is defined
as follow.

Definition 2.23. For any t > 0 and for any convex function g : RN → R the
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proximal operator associated with g is defined as

proxgt (w) := arg min
x

{
g(x) + 1

2t‖x−w‖2
}
, (2.39)

with x, w ∈ RN

By exploiting the proximal operator equation (2.38) reads

xk = proxgtk(xk−1 − tk∇f(xk−1)). (2.40)

Let us now further assume thet f is a continuously differentiable convex func-
tion with Lipschitz continuous gradient with constant L > 0, i.e. for any x, w
∈ RN it holds

‖∇f(x)−∇f(w)‖ ≤ L ‖x−w‖ . (2.41)

The Lipschitz constant, L, can be used to define the stepsize, tk. This is the case
of the Proximal Gradient Method with constant stepsize rule. Such a method is
defined by the following steps

Input: L, a Lipschitz constant of∇f

Step 0. Take x0 ∈ RN , and set tk = 1
L ;

Step k. (with k ≥ 1) compute

xk = proxg1
L

(
xk−1 −

1
L
∇f(xk−1)

)
. (2.42)

The convergence rate of the function values Φ(xk) is provided by the following
theorem.

Theorem 2.24. Let Φ : RN → R be defined as Φ(x) = f(x) + g(x), with
g : RN → R a continuous convex function and g : RN → R a continuously differ-
entiable convex function with Lipschitz continuous gradient with constant L > 0.
For any k ≥ 1 and for any minimiser x∗ ∈ RN of Φ(x) it holds

Φ(xk)− Φ(x∗) ≤
L‖x0 − x∗‖2

2k , (2.43)

being xk defined by equation (2.42) and x0 ∈ RN a suitable starting point.

From this theorem we can state that the order of convergence of the Proximal
Gradient Method is O( 1

k ). Such a convergence rate is improved by its fast version,
i.e. the Fast Proximal Gradient Method. The Fast Proximal Gradient Method main-
tains the same structure of the Proximal Gradient Method, however it introduces an
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auxiliary point, wk, at which the proximal operator is computed and that is defined
by a linear combination of xk−1 and xk−2. The new algorithm is defined by the
following steps.

Input: L, a Lipschitz constant of∇f

Step 0. Take x0 ∈ RN , and set w1 = x0 and t1 = 1

Step k.(with k ≥ 1) Compute

xk = proxg1
L

(
wk −

1
L
∇f(wk)

)
; (2.44)

tk+1 = 1
2 + 1

2

√
1 + 4t2k; (2.45)

wk+1 = xk + tk − 1
tk+1

(xk − xk−1) (2.46)

In this case the order of the convergence rate is O( 1
k2 ), indeed, the following theo-

rem holds.

Theorem 2.25. Let Φ : RN → R be defined as Φ(x) = f(x) + g(x), with
g : RN → R a continuous convex function and g : RN → R a continuously differ-
entiable convex function with Lipschitz continuous gradient with constant L > 0.
For any k ≥ 1 and for any minimiser x∗ ∈ RN of Φ(x) it holds

Φ(xk)− Φ(x∗) ≤
L‖x0 − x∗‖2

(k + 1)2 , (2.47)

being xk defined by equation (2.44) and x0 ∈ RN a suitable starting point.

Let us now get back to problem (2.26), which can be seen as a particular case
of problem (2.28), being f(x) = ‖Tx−y‖22 and g(x) = λ‖x‖1. In this case, f(x)
is a continuously differentiable convex function with gradient

∇f(x) = 2T>(Tx− y), (2.48)

and it is Lipschitz continuous with smallest constant L = 2σmax(T>T), where
σmax(T>T) is the maximum eigenvalue of T>T; while g(x) is a continuous con-
vex non-smooth function. The proximal operator associatoed to g can be analiti-
cally computed and it coincides with the the shrinkage operator.



2.3 Regularisation methods 36

Definition 2.26. Given α > 0, the shrinkage operator is defined as

Tα(x)i = (|xi| − α)+sgn(xi) (2.49)

=


xi − α if xi ≥ α
xi + α if xi ≤ −α
0 otherwise

. (2.50)

Theorem 2.27. Given g : RN → R defined as g(x) := λ‖x‖1, with λ > 0,
the proximal operator associated with g with t > 0 coincides with the shrinkage
operator of threshold α = λt, i.e.

proxgt (x) = Tλt(x). (2.51)

We can now define ISTA as the Proximal Gradient Method applied to problem
(2.26) by using the shrinkage operator and the Lipschitz constantL = σmax(T>T).
ISTA iterative scheme results in:

Input: L = σmax(T>T)

Step 0. Take x0 ∈ RN

Step k. (with k ≥ 1) compute

xk = T λ
L

(
xk−1 −

2
L

T>(Txk−1 − y)
)
. (2.52)

Similarly, we can define FISTA as the Fast Proximal Gradient method applied
to problem (2.26) by using the shrinkage operator and the Lipschitz constant L =
σmax(T>T). FISTA iterative scheme results in:

Input: L = σmax(T>T)

Step 0. Take x0 ∈ RN , and set w1 = x0 and t1 = 1

Step k. (with k ≥ 1) Compute

xk = T λ
L

(
wk −

2
L

T>(Txk−1 − y)
)

; (2.53)

tk+1 = 1
2 + 1

2

√
1 + 4t2k; (2.54)

wk+1 = xk + tk − 1
tk+1

(xk − xk−1) (2.55)



Chapter 3

Brain functional connectivity
from MEEG data

While the study of the brain as a set of specialised units capable of specific
functions remains of utmost importance, in the last decades the study of brain
connectivity has gained more and more attention (Horwitz, 2003). Indeed, un-
derstanding how different brain regions communicate and cooperate may reveal
important information about brain functioning in both healthy subjects and pa-
tients (De Pasquale et al., 2010; Stam, 2010). The underlying principles are that of
segregation and integration of information, which refer to the presence of highly
specialised and interconnected regions in the brain that are able to communicate
between each other. The exchange of information between different brain regions
relies on the electrical currents that flows along the axons of the neurons. Such an
exchange of information is extremely rapid, therefore disposing of devices capable
of capturing the rapid and tiny changes of the electrical currents is crucial. In this
sense, magneto- and electro-encephalograpy (MEEG) are giving a great contribute.
Indeed, they record, on a millisecond scale, the magnetic field outside the head and
the scalp potential, respectively, produced by the neural currents that flow inside
the brain. The general term connectivity refers to different concepts, however in
this chapter we will focus on functional connectivity, which refers to the statistical
dependencies between different brain areas. To this end many statistical metrics
can be defined, which quantify the interactions between the time series of inter-
est. Such metrics can be directly applied to the time series associated with each
of the MEEG sensors or can be applied to the time series that model the activity
at source space level. The latter approach has the advantages of providing more
accurate and interpretable results, however, it requires solving the MEEG inverse
problem in order to estimate the neural activity. From a mathematical viewpoint,
the manipulation of Maxwell’s equations leads us to a linear equation that links the

37
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neural currents that flow inside the brain to the magnetic field and the scalp po-
tential recorded by the MEEG sensors. Solving the MEEG inverse problem means
estimating the time series that generated the MEEG recordings. Such a problem is
ill-posed as the solution is not unique and there is no continuous dependence on the
data, thus a technique needs to be identified to reach a satisfying estimate. After-
wards, from the estimated neural activity, functional connectivity can be estimated
by using the desired connectivity metric.

This chapter is organised as follow. In Section 3.1 some basic notions of brain
functioning will be given. Sections 3.2 and 3.3 are dedicated to the MEEG for-
ward and inverse problems, respectively, while in Section 3.4 some details about
the MEEG devices will be given. Finally, in Section 3.5, the concept of brain con-
nectivity will be introduced, together with some common connectivity metrics and
the standard pipeline for their estimation.

3.1 Basic aspects of brain functioning

The nervous system is a complex structure that allows the control of functions
that enable humans to regulate their internal environment and to react to, or have
interactions with, the external environment. The nervous system is divided into
two main parts: the central nervous system, consisting of the spinal cord and the
encephalon, and the peripheral nervous system, consisting of the sensory and motor
pathways. The structure of interest for MEEG is the encephalon, which is the organ
completely contained in the skull. In adults the encephalon weighs approximately
1 400 grams and is essential for controlling and managing both the physiological
activities of the body and processes such as conscious activity, interactions with
the outside world, memory, thinking and emotions.

The encephalon is divided into brain, brainstem and cerebellum. The brain in
turn consists of diencephalon and telencephalon, the first being positioned in the
core of the brain, the second being external. The telencephalon constitutes 80%
of the volume of the entire central nervous system and is divided into two cerebral
hemispheres (right and left). The hemispheres are connected through the corpus
callosum, which ensure communication and cooperation between the two helves.
The hemispheres are enveloped by the cerebral cortex, a thin layer of grey matter
characterised by countless folds and intended for information processing.

The cortex of each of the two hemispheres is divided into four lobes (frontal,
parietal, occipital, temporal), see Figure 3.1 for their position. Each of these is
responsible for a particular function. As an example, Figure 3.2 shows the motor
and somatosensory cortices, which are located in the precentral gyrus (the final part
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Figure 3.1: Lobes of the brain (Bear et al., 2020). The external part of the brain, i.e. the cortex, is
divided into four lobes (frontal, parietal, occipital, temporal). A ridge is termed gyrus and a groove
is termed sulcus. The lobes are further divided into smaller areas based on their cellular composition
and function, sensory and motor areas are two examples.

Figure 3.2: Visual representation of the somatosensory and motor cortices and their functionalities
(Schott, 1993). The first is related to the impulses related to touch, while the second is related to the
control of voluntary movements.

of the frontal lobe) and the postcentral gyrus (the initial part of the parietal lobe)
respectively. The motor cortex is involved in the planning, control, and execution
of voluntary body movements, while the somatosensory cortex is responsible for
receiving stimuli related to taste, touch, pain and temperature.

The fundamental units of the nervous system are the neurons, cells that transmit
nerve impulses. They consist of: a cell body, which contains the nucleus and
most of the metabolic devices of the cell; dendrites, short, filamentous cytoplasmic
extensions that, together with the cell body, receive stimuli from other cells; and
an axon, a long extension capable of rapidly conducting an electrochemical signal
(Figure 3.3). Neurons are specialised in receiving signals from the internal and
external environment and transmitting the received information to other neurons or
structures in the body (Curtis et al., 1981).

Nerve conduction, i.e. the transmission of information between neurons, is
associated with electrical phenomena. In fact, there is a difference in electrical po-
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Figure 3.3: The neuron and its components (Fountas et al., 2011). The neuron is the cellular unit
that forms brain tissue. It has the role of receiving, elaborating and transmitting nervous impulses:
the dendrites receive the impulses from other cells, the nucleus elaborates the stimulus and sends the
response along the axons towards the axons terminals, which transmit it to other cells.

tential between the outside and inside of the axon, with the inside of the membrane
positively charged with respect to the outside. If the axon is stimulated there is a
very brief reversal of polarity. This reversal of polarity is called nerve impulse and
is precisely associated with the exchange of information between neurons. The
electric currents that flow along the axons are the focus of MEEG, indeed it is well
know that electric currents generate an electric and a magnetic field, and such fields
are the target of MEEG studies, as we will see in the next sections.

3.2 The MEEG forward problem

The MEEG forward problem aims at computing the magnetic field outside the
head and the scalp potential given the electric currents that flow inside the brain.
The starting point for the computation of these two quantities is the quasi-static
approximation of Maxwell’s equations, under the assumption that the magnetic
permeability of brain tissue is that of the vacuum, i.e.

∇ ·E(r, t) = ρ(r,t)
ε0

, (3.1)

∇×E(r, t) = 0 (3.2)

∇ ·B(r, t) = 0 (3.3)

∇×B(r, t) = µ0J(r, t); (3.4)

where E(r, t) and J(r, t) are the electric field and electric current, respectively, at
location r and time t, ρ is the charge density, µ0 is the vacuum magnetic perme-
ability and ε0 is the vacuum electric permittivity (Malmivuo et al., 1995).
From equation (3.2) we note that, under the quasi-static approximation, the electric
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field is irrotational and thus, according to the Poincarè Lemma, it can be expressed
in terms of the electric scalar potential V , i.e.

E(r, t) = −∇V (r, t). (3.5)

The electric current generated by brain activity is the sum of two contributions,
the primary current, Jp, which is directly related to brain activity, and the volume
current, Jv, which is due to the non-null conductivity of the brain, i.e. Jv(r, t) =
σ(r)E(r, t). Thus, the total current reads as

J(r, t) = Jp(r, t) + σ(r)E(r, t) (3.6)

= Jp(r, t)− σ(r)∇V (r, t). (3.7)

Now, computing the divergence of equation (3.4) and recalling that the divergence
of a curl is zero, we obtain

0 = ∇ · J(r, t) = ∇ · Jp(r, t)−∇ · (σ(r)∇V (r, t)) (3.8)

In parallel, from equations (3.3) and (3.4) it follows the Biot-Savart equation (Hämäläinen
et al., 1993)

B(r, t) = µ0
4π

∫
Ω

J(r′, t)×R
R3 dr′, (3.9)

which, by exploiting (3.7), turns into

B(r, t) = µ0
4π

∫
Ω

(Jp(r′, t)− σ(r′)∇′V (r′, t))×R
R3 dr′, (3.10)

where Ω is the head volume, R = r− r′ and R = |R|.

We now have all the ingredients to solve the MEEG forward problems: assum-
ing that we know Jp(r, t), first, we obtain V by solving equation (3.8) and then we
compute B and E by solving equations (3.10) and (3.5).

This problem is typically faced assuming that the head is a piecewise homo-
geneous conductor, i.e. it is made of isotropic contiguous regions {Ωi}i=1,...,J of
conductivity {σi}i=1,...,J , e.g. scalp, skull, cerebrospinal fluid, grey matter and
white region. Under this assumption it can be shown (Hämäläinen et al., 1993) that

B(r, t) = B0(r, t) + µ0
4π
∑
i,j

(σi − σj)
∫
∂Ωi,j

V (r′, t) R
R3 × ni,j(r′)ds′, (3.11)
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and

(σi + σj)V (r, t) = 2σ0V0(r, t)− 1
2π
∑
i,j

(σi− σj)
∫
∂Ωi,j

V (r, t) R
R3 ×ni,j(r′)ds′,

(3.12)
where ∂Ωi,j is the contact surface between regions Ωi and Ωj , ni,j(r′) is the unit
vector normal to the surface ∂Ωi,j at r′ from region i to region j, and

B0(r, t) = µ0
4π

∫
Ω

Jp(r′, t)× R
R3 dv′. (3.13)

V0(r, t) = 1
4πσ0

∫
Ω

Jp(r′, t)× R
R3 dv′. (3.14)

The forward problem can be solved as follow.

i. First, we compute V0 from equation (3.14) and we find V by solving equation
(3.12);

ii. Then, we compute B0 from equation (3.13) and, exploiting V , we compute
B by solving equation (3.11).

The analytical resolution of these equations is doable only for very simple head
geometries, e.g when the head is modelled as a set of nested concentric homoge-
neous spherical shells representing the different tissues. In the other cases numeri-
cal techniques are needed.

Finally, we observe that both the scalp potential V and magnetic field B depend
linearly on the primary current Jp.

3.2.1 The distributed source model and the discretisation of the for-
ward problem

Experimental contexts require the discretisation of the forward problem. This
involves a discretisation of both the volume occupied by the brain and the volume
outside the head.

As for the first one, here we focus on the so called distributed source model.
The brain volume is uniformly divided in N small parcels. If N is sufficiently big
and thus each parcel has a sufficient small area, the activity in each brain parcel
is approximated by a point-like source, henceforth denoted as dipole. The contri-
bution of all the dipoles describes the current Jp. From a mathematical point of
view each dipole is an applied vector whose strength and direction represent the
intensity and orientation of the primary current in the corresponding brain area.
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According to this model the primary current reads

Jp(r, t) =
N∑
k=1

qk(t)δ(r− rk). (3.15)

As for the volume outside the head, it is natural to discretise it in correspon-
dence of the sensors of the instrument we are using. Let us denote the measured
magnetic field or scalp potential as y(t) = (y1(t), . . . , yM (t)), being M the num-
ber of sensors of the instrument. Now, recalling from the previous section, that both
the magnetic field, B, and the scalp potential, V , depend linearly on the primary
current Jp, it holds

y(t) =
N∑
k=1

G(rk(t))qk(t) + n(t), (3.16)

where G(rk) ∈ RM×3 are the leadfield matrices and n(t) is the measurement
noise. The l-th column of G(rk) contains the measurement at sensor level when a
unit current dipole is placed at location rk and oriented along the l-th orthogonal
direction. Here we assume the orientation of the dipoles to be normal to the brain
surface (Lin et al., 2006). In this case the the electric current intensities are scalars
(we refer to them as {qk}k=1,...,N ) and the leadfield matrices are column vectors
(we refer to them as {Gk}k=1,...,N ). Let us now define

x(t) := (q1(t), . . . , qN (t)) (3.17)

and
G := [G1, . . . , GN ] ∈ RM×N , (3.18)

henceforth we will refer to G as to the leadfield matrix. Finally, reassembling
equations (3.17) and (3.18) in to equation (3.16), we get

y(t) = Gx(t) + n(t). (3.19)

3.3 The MEEG inverse problem

The MEEG inverse problem consists of estimating the neural activity given
its corresponding sensor level recordings, that is, given equation (3.19), estimat-
ing x(t) from y(t). Having in mind the notion of well-posedness introduced in
Section 2.1, the MEEG inverse problem is ill-posed as the solution is not unique
and is highly sensitive to small changes in the noisy data. In particular, as for
the non uniqueness, if we approximate the head with a sphere it is well know
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that a radial dipole is magnetically silent, and that, a closed loop dipole is elec-
trically silent (Hämäläinen et al., 1993). Therefore, solving the MEEG inverse
problem is rather challenging and many method as been proposed over the years:
Minimum Norm Estimation (MNE) (Hämäläinen and Ilmoniemi, 1984), Low Res-
olution Brain Electromagnetic Tomography (LORETA) (Pascual-Marqui et al.,
1999), Backus and Gilbert method (Backus and Gilbert, 1968), Weighted Reso-
lution Optimization (WROP) method (de Peralta Menendez et al., 1997), Beam-
formers (Van Veen and Buckley, 1988) and Sequential Monte Carlo Method (Som-
mariva and Sorrentino, 2014) are some examples. In this work the focus will be on
truncated singular value decomposition (tSVD), Minimum Norm Estimate (MNE),
and `1 regularisation method. These are the methods that have been introduced in
Section 2.3, with the only difference that Tikhonov regularisation is known as MNE
in the neuroscientific community.

3.4 MEEG devices

Measuring the tiny changes of the magnetic field produced by the neural cur-
rents requires highly sophisticated devices. Indeed, the magnetic noise level, pro-
duced e.g. by electric motors, elevators, power lines, is several order of magnitude
higher than the biomagnetic signals (Hämäläinen et al., 1993). For this reason
MEG devices are usually placed in magnetically shielded room. An MEG device
consists in a helmet containing up to 500 low-Tc SQUID (low–temperature Super-
conducting QUantum Interface Device) sensors, placed to cover the whole head
(Figure 3.4(a)). In order to detect the tiny changes of the magnetic field the sensors
need to be maintained at cryogenic temperature by, e.g., immersing them in liquid
helium. Typically, in a MEG device two types of sensors device may be found:
magnetometers and gradiometers. The former measure the component of the mag-
netic field perpendicular to the surface of the MEG helmet and they are sensitive to
fields originating from a broad distance. The latter, on the other hand, estimate the
spatial derivative in two orthogonal directions perpendicular to the MEG helmet,
so that their sensitivity decreases faster with distance (Garcés et al., 2017). The
main drawback of using SQUID sensors is that they are placed about two centime-
tres away from the head surface of the subject, moreover, due to the need for liquid
helium, their maintenance is very expensive. The Optically Pumped Magnetome-
ters (OPMs) (Figure 3.4(b)) are meant to overcome such problems. Indeed, with
respect to the SQUID sensors they are closer to the head surface. Moreover OPM
sensors are placed on a wearable helmet, thus they are more robust to motion and
they are more practical either when the subject is asked to perform a task during
the recording session or when dealing with children or patients. Finally, they are



3.5 Brain connectivity 45

(a) (b) (c)

Figure 3.4: (a) SQUID sensor MEG device (König et al., 2007). (b) OPM sensor MEG device (Hill
et al., 2019). (c) EEG device (Jestrović et al., 2014).

cheaper since they do not require to be immersed in liquid helium.

An EEG device (Figure 3.4(c)) consists of a cap covered with up to 256 elec-
trodes that are in direct contact with the head surface. Electrodes have a simple de-
sign consisting of a metal contact surface. The most commonly used electrodes are
chlorided silver discs (Ebner et al., 1999). With respect to MEG, EEG is cheaper
and portable. The time resolution of MEEG and EEG are comparable, however
EEG is more sensitive to the inhomogeneous conductivity of the head tissues, re-
sulting in a lower spatial resolution.

3.5 Brain connectivity

The functional organisation of the brain is characterised by the processes of
segregation and integration of information (Figure 3.5). The former refers to the
fact that the brain is divided into areas dedicated to specific functions. Within these
areas there is a high density of connections, while connections between different
areas have a lower density. On the other hand, the process of integration refers to
information exchange between areas characterised by a high density of connections
(Sporns, 2013). The anatomical and functional connections between different areas
of the brain are organised in such a way that the processes of segregation and
integration are optimal. Conventionally, three different types of connectivity are
defined (Lang et al., 2012; He et al., 2019).

• Anatomical (or structural) connectivity forms the connectome, i.e. that net-
work consisting of all the connections between adjacent neurons and nerve
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Figure 3.5: Schematic representation of the concepts of integration and segregation. The dense
connections among nodes of the same colours represent the process of segregation, while the fewer
connections among nodes of different colours (depicted by the black lines) represent the process of
integration.

fibres. On a short time scale (seconds and minutes) the anatomical connec-
tions are persistent and stable.

• Functional connectivity is defined as the statistical dependence between neu-
ronal activation in separate areas of the brain. This is a statistical concept
based on measures such as correlation, covariance and coherence. Func-
tional connectivity, being measured by statistical quantities, has a strong
temporal dependence.

• Effective connectivity describes the influence that one neuronal system ex-
erts on the other, thus reflecting the causal interactions between the different
active areas of the brain.

The study of anatomical, functional and effective connectivity leads to a better
understanding of all the processes that take place in the brain. Throughout this
thesis we will focus on functional connectivity. Indeed, since brain activity can be
interpreted as the realisation of a multivariate stochastic process, statistical connec-
tivity metrics are a great tool to identify the dependencies among the time courses
that describe the activity of each source. In the next section we will go through
some of the most commonly used connectivity metrics.

3.6 Metrics and computation

With the term connectivity metrics we refer to a wide range of statistical met-
rics that aim at quantifying and explaining the statistical interdependence between
different signals. From an operative point of view, functional connectivity may be
measured at sensor level, where it quantifies the interdependence among the time
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series provided by the MEEG sensors, or at source space level, where it quantifies
the interdependence between the time series associated with different brain areas o
sources.

A large variety of connectivity metrics have been proposed over the years,
which can be used to quantify functional connectivity either in the sensor or in
the source spaces. There are linear and non linear metrics to detect linear and non
linear interactions; there are time based metrics and frequency based metrics; and
still, there are parametric and non parametric metrics (Bastos and Schoffelen, 2016;
Sakkalis, 2011; Pereda et al., 2005). An exhaustive description of all the metrics
is beyond the scope of this thesis. In the following some linear, frequency based
metrics will be described.

3.6.1 Coherence and its derivatives

Definition 3.1. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimension N . For each pair {Xj(t), Xk(t)}, j, k ∈ {1, . . . , N}, the Co-
herency function at frequency f is defined as

COHj,k(f) = S̃j,k(f)√
S̃j,j(f)S̃k,k(f)

, (3.20)

where S̃j,k(f) is the estimated cross-power spectrum between xj(t) and xk(t) as
defined in Section 1.3.
Given the coherency function, the coherence function is defined as its magnitude,
i.e

Γj,k(f) = |S̃j,k(f)|√
S̃j,j(f)S̃k,k(f)

, (3.21)

Coherency ranges from 0 to 1. When Γj,k(f) = 0 the activities of the two
signals {xj(t), xk(t)} at frequency f are linearly independent. On the contrary,
Γj,k(f) = 1 indicates maximum correlation between the signals (Pereda et al.,
2005). It is also worth noticing that coherence is sensitive to both phase and am-
plitude changes in the signals, therefore it may not be altogether clear the weight
of each of such contributions (Lachaux et al., 1999).

One of the main issues that connectivity metrics have to face is volume conduc-
tion, i.e. the transmission of an electric primary current source through biological
tissue. Such a phenomenon is responsible for signal spread at sensor level, that is
the activity of one source may be detected by multiple sensors, resulting in con-
nectivity values that do not reflect the actual connectivity patterns. On the other
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hand, volume conduction, together with intrinsic limitations of the inverse opera-
tors employed to estimate brain activity, is also responsible of spatial blur at source
level. This means that the estimated activity at a given location leaks to other loca-
tions resulting in artificial and spurious interactions between the estimated sources
activity. To overcome these problems Nolte and colleagues (Nolte et al., 2004) sug-
gested to only consider the imaginary part of coherency which necessarily reflects
true interactions.

Definition 3.2. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimension N . For each pair {xj(t), xk(t)}, j, k ∈ {1, . . . , N}, the imagi-
nary part of coherency at frequency f is defined as

imCOHj,k(f) = Im(S̃j,k(f))√
S̃j,j(f)S̃k,k(f)

. (3.22)

3.6.2 Phase Locking Value and its derivatives

Definition 3.3. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimension N . For each pair {xj(t), xk(t)}, j, k ∈ {1, . . . , N}, the Phase
Locking Value (PLV ) at frequency f is defined as

PLVj,k(f) = 1
P

∣∣∣∣∣∣
P∑
p=1

x̂
(p)
j (f)x̂(p)

k (f)∗

|x̂(p)
j (f)||x̂(p)

k f)|

∣∣∣∣∣∣ , (3.23)

where P is the number of segments (or tapers) as defined in Sections 1.3.1 and
1.3.2; and x̂(p) is defined as in equations (1.18) or (1.23), accordingly to the method
used for the computation of the cross-power spectrum (i.e. Welch’s method or
multitapers).

PLV was introduced by Lachaux and colleagues (Lachaux et al., 1999) with
the purpose of quantifying the phase synchronisation of pairs of signals. PLV

ranges from 0 to 1 and it assumes value 0 when there is no phase synchronisation
and value 1 when there is perfect synchronisation.
Similarly to the case of coherency, also PLV came with two variations in order
to suppress zero-lag connectivity associated with volume conduction and source
leakage, namely the imaginary part of PLV (iPLV ) and the corrected imaginary
part of PLV (ciPLV ), defined as follow (Bruña et al., 2018).

Definition 3.4. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimension N . For each pair {xj(t), xk(t)}, j, k ∈ {1, . . . , N}, the iPLV
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at frequency f is defined as

iPLVj,k(f) = 1
P

∣∣∣∣∣∣
P∑
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k (f)∗
)

|x̂(p)
j (f)||x̂(p)

k f)|

∣∣∣∣∣∣ , (3.24)

while the ciPLV at frequency f is defined as

ciPLVj,k(f) =

1
P

∣∣∣∣∣∣∑P
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k
(f)∗

)
|x̂(p)
j (f)||x̂(p)

k
f)|

∣∣∣∣∣∣√√√√√1−

 1
P

∣∣∣∣∣∣∑P
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k
(f)∗

)
|x̂(p)
j (f)||x̂(p)

k
f)|

∣∣∣∣∣∣
2

, (3.25)

where P is the number of segments (or tapers) as defined in sections 1.3.1 and
1.3.2; x̂(p) is defined as in equations (1.18) or (1.23), accordingly to the method
used for the computation of the cross-power spectrum (i.e. Welch’s method or
multitapers); and Im(·) is the imaginary part.

3.6.3 Phase Lag Index and its derivatives

Definition 3.5. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimension N . For each pair {xj(t), xk(t)}, j, k ∈ {1, . . . , N}, the Phase
Lag Index (PLI) at frequency f is defined as

PLIj,k(f) =

∣∣∣∣∣∣ 1
P

P∑
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k (f)∗
)∣∣∣∣∣∣ , (3.26)

where P is the number of segments (or tapers) as defined in sections 1.3.1 and
1.3.2; x̂(p) is defined as in equation (1.18) of (1.23), accordingly to the method
used for the computation of the cross-power spectrum (i.e. Welch’s method or
multitapers); and Im(·) is the imaginary part.

PLI was introduced by Stam and colleagues (Stam et al., 2007) with the aim
of obtaining a reliable estimate of phase synchronisation that is invariant to volume
conduction and source leakage. The PLI ranges from 0 to 1; a value of 0 indicates
either no coupling or a coupling centred around kπ, whereas a value of 1 indicates
perfect coupling at a phase difference different from kπ.
Successively, Vink and colleagues (Vinck et al., 2010) introduced the weighted
PLI (wPLI) to overcome the high sensitivity of the PLI to small perturbation of
the phase around zero due to the noise effects, which turn phase lags into leads and
vice versa.
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Definition 3.6. Let {x(t)}T−1
t=0 be the realisation of a multivariate stochastic pro-

cess of dimensionN . For each pair {xj(t), xk(t)}, j, k ∈ {1, . . . , N}, the weighted
Phase Lag Index (wPLI) at frequency f is defined as

wPLIj,k(f) =

∣∣∣Im (S̃j,k(f)
)∣∣∣

1
P

∑P
p=1

∣∣∣Im (x̂(p)
j (f)x̂(p)

k (f)∗
)∣∣∣ , (3.27)

where P is the number of segments (or tapers) as defined in sections 1.3.1 and
1.3.2; x̂(p) is defined as in equations (1.18) or (1.23), accordingly to the method
used for the computation of the cross-power spectrum (i.e. Welch’s method or
multitapers); and Im(·) is the imaginary part.

As final remark, we must say that all functional connectivity measures can
provide insightful information on brain functioning, however it is good practice
to gather such information with those obtained by other analysis approaches. In-
deed, for instance, it has been demonstrated that features derived from the power
spectrum of the individual sources and features derived from functional connec-
tivity metrics are not independent (Demuru et al., 2020), therefore they have to be
considered together rather than apart.

3.7 The two-step approach and its drawbacks

As mentioned above, functional connectivity can be estimated either at sensor
level or at source space level. However, the latter approach is preferable, as it has
the advantage of reducing the impact of volume conduction and providing more
easily interpretable results (Lai et al., 2018; Schoffelen and Gross, 2009; Barze-
garan and Knyazeva, 2017; Van de Steen et al., 2019).

The general workflow for connectivity estimation at source space level relies
on a two–step process (Schoffelen and Gross, 2019a):

i. First neural activity is estimated by solving the MEEG inverse problem;

ii. Then functional connectivity is computed using a desired metric.

Naturally, the connectivity estimate achieved in the second step will depend on the
inverse method used to estimate the neural activity during the first step and on the
possible parameters that are required to apply the chosen method. Indeed, in the
next chapters we will see that this two-step approach may hide some pitfalls, as,
counter-intuitively, the best possible neural activity estimate may not lead to the
best possible connectivity estimate.



Chapter 4

Analytical results on the two-step
estimation of the cross-power
spectrum

As mentioned at the end of the previous chapter, functional connectivity is usu-
ally estimated in a two-step process: first, an estimate of the source time courses
is obtained using an inverse method; then, frequency-domain connectivity met-
rics are computed from the cross-power spectrum of the reconstructed source time
courses. However, empirical evidence suggests that the two-step approach might
feature an unexpected parameter tuning issue. Indeed, as seen in Chapter 2, usual
regularisation approaches require the selection of a proper regularisation parame-
ter. It would seem natural that the optimal estimate of the cross-power spectrum
can only be attained with the optimal reconstruction of the signal. Yet, in (Hincapié
et al., 2016) the authors have shown that the value of the regularisation parameter
that provides the best reconstruction of the source spectral power does not coincide
with the value that provides the best reconstruction of the source-level functional
connectivity quantified through coherence.

In this chapter we present the results published in (Vallarino et al., 2020). That
is, motivated by the empirical result presented in (Hincapié et al., 2016), we in-
vestigate the following problem: let y(t) be noisy and indirect measurements of a
multivariate stochastic process X(t); let xλ(t) be the reconstruction of the hidden
signal, obtained by means of a regularisation algorithm; finally, assume that the
cross-power spectrum of X(t), SX(f), is estimated from the reconstructed signal
xλ(t); under these conditions, does the optimal regularisation parameter for the
reconstruction of the hidden signal coincide with the optimal regularisation param-
eter for the reconstruction of its cross-power spectrum?

In particular, we will see that the answer is “no” when the regularised solution

51
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is computed via Tikhonov regularisation, thus confirming the empirical results of
(Hincapié et al., 2016). We will also see that the answer is “yes” when the regu-
larised solution is computed via tSVD, thus showing that the answer to the question
actually depends on the choice of the inverse method. In addition, the potential of a
one-step approach relying on a mathematical model directly relating the measured
data to the unknown cross-power spectrum will be shown.

This chapter is organised as follow: in Section 4.1 we provide the general def-
initions and formalise the problem. In Section 4.2 we express the reconstructions
errors in terms of the filter factors and provide an interpretation. Section 4.3 con-
tains the main results of this chapter. In Section 4.4 we compare the filter factors of
the two-step approach with those of a possible one-step approach. In Section 4.5
we show the results of a numerical simulation in which we remove the somewhat
restrictive assumptions that are needed to prove the theorems of Section 4.2. The
results will be discussed in Section 4.6.

4.1 Definition of the problem

Let us consider the MEEG problem (3.19)

y(t) = Gx(t) + n(t),

being y(t) ∈ RM , x(t) ∈ RN and n(t) ∈ RM realisations of the multivariate
stochastic processes Y(t), X(t) and N(t), and G ∈ RM×N a leadfield matrix.
N(t) is the measurement noise process, which is assumed to be a zero-mean Gaus-
sian process independent from X(t). For ease of presentation, we further assume
M ≤ N and G to be a full row rank matrix so that all its singular values are strictly
positive; however, the results below can be easily extended to the general case.

We consider the case where one is interested in reconstructing the cross-power
spectrum of the process X(t), as defined in Definition 1.12 and we consider the
case when the reconstruction of the cross-power spectrum is achieved in a two-
step process as described in Section 3.7 and the estimate is computed with the
Welch’s method (Welch, 1967).
In this work we will focus on tSVD and Tikhonov regularisation. The reason of this
specific choice is as follows: the Tikhonov method is one of the more commonly
employed methods for connectivity estimation in MEEG, and it has been used by
Hincapié and colleagues in the paper that motivated this study (Hincapié et al.,
2016); tSVD is a method which is easy to deal with analytically, and in addition
it will provide a different result than the Tikhonov method, thus showing that the
answer to the main question of this study is method-dependent.

We recall that, by means of Equations (2.16a) and (2.16b), the regularised so-
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lution reads

xλ(t) = Wλy(t) = VΦ(λ)Σ†U>y(t)

=
M∑
i=1

ϕi(λ)u>i y(t)
σi

vi,

being ui and vi the i-th columns of U and V, with G = UΣV>, Σ = diag(σ1, . . . , σM )
and being the i-th component of the filter factors

ϕi(λ) =
{

1 if i ≤ λ
0 if i > λ

λ ∈ {1, . . . ,M} (4.1)

in case of tSVD and

ϕi(λ) = σ2
i

σ2
i + λ

λ ≥ 0. (4.2)

in case of Tikhonov regularisation.
On the other hand, using the Welch’s method, the cross-power spectrum esti-

mate will be given by

Sxλ(f) = 1
PW

P∑
p=1

x̂pλ(f)x̂pλ(f)H , f = 0, . . . , L− 1, (4.3)

being x̂pλ(f) =
∑L−1
t=0 xpλ(t)w(t)e−

2πitf
L and W =

∑L−1
t=0 w(t)2. We stress out the

dependence of the cross-power spectrum on λ.

From now on, for simplicity, we omit the dependence of Φ and ϕi on λ. Also
note that in the two methods the parameter λ assumes values in different sets. In
tSVD λ determines the number of retained SVD components, and therefore as-
sumes integer values in {1, . . . ,M}, where a small λ value means few retained
components and thus an high level of regularisation. In Tikhonov regularisation λ
determines the strength with which each SVD component contributes to the solu-
tion; in this case λ assumes continuous values in [0,+∞) and the higher the value
the higher the degree of regularisation.

For the two mentioned methods, we consider the problem of the optimal choice
of the regularisation parameter λ for the reconstruction of the cross-power spec-
trum. We define optimality through the minimisation of the norm of the discrep-
ancy, specifically we define the two following optimal values for the parameter.

Definition 4.1. Consider the regularised solution (2.16a) and the cross-power spec-
trum estimate (4.3) associated with a realisation of equation (3.19); we define the
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optimal parameter for the reconstruction of x(t)

λ∗x = arg min
λ
εx(λ) with εx(λ) =

∑
t

‖xλ(t)− x(t)‖22 , (4.4)

and the optimal parameter for the reconstruction of Sx(f)

λ∗S = arg min
λ
εS(λ) with εS(λ) =

∑
f

‖Sxλ(f)− Sx(f)‖2F , (4.5)

where ‖ ·‖2 and ‖ ·‖F are the `2-norm and the Frobenius norm, respectively; εx(λ)
and εS(λ) will be called reconstruction errors.

In the following sections we shall answer the following question: does the
optimal regularisation parameter for the reconstruction of x(t), λ∗x, coincide with
the optimal regularisation parameter for the reconstruction of Sx(f), λ∗S?

4.2 Reconstruction errors with filter factors

In this section we aim at deriving an explicit formulation of εx(λ) and εS(λ)
in terms of the filter factors Φ. To this end we observe that from equations (3.19)
and (2.16a) we can derive the following relationship between the true and the re-
constructed signal:

xλ(t) = Rλx(t) + Wλn(t) (4.6)

where Rλ = WλG is the resolution matrix (de Peralta Menendez et al., 1996;
Hansen, 2005).

A similar relationship between the true and the estimated cross-power spectrum
can be derived by substituting equation (4.6) into definition (4.3) and by exploiting
the linearity of the Discrete Fourier Transform:

Sxλ(f) = (Rλ ⊗Rλ)Sx(f) + (Wλ ⊗Wλ)Sn(f) (4.7)

+ (Wλ ⊗Rλ)Sxn(f) + (Rλ ⊗Wλ)Snx(f) , (4.8)

where Sx(f) is the vector obtained by concatenating the columns of the matrix
Sx(f), ⊗ is the Kronecker product, and Sxn(f) is the cross-spectrum between x
and n, i.e., following the notation in equation (4.3), Sxn(f) = 1

PW

∑P
p=1 x̂p(f)n̂p(f)H .

Since X(t) and N(t) are independent, Sxn(f) and Snx(f) are negligible pro-
vided that enough data time-points are available. Hence from Definition 4.1 it
follows

εx(λ) =
∑
t

‖(Rλ − IN ) x(t) + Wλn(t)‖22 (4.9)
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εS(λ) =
∑
f

‖(Rλ ⊗Rλ − IN2)Sx(f) + (Wλ ⊗Wλ)Sn(f)‖22 (4.10)

where IN is the identity matrix of size N ×N .

Proposition 4.2. The reconstruction errors defined in (4.4) and (4.5) are given by:

εx(λ) =
∑

t

N∑
i=M+1

(
v>

i x(t)
)2 +

∑
t

M∑
i=1

[
(ϕi − 1)2 (v>

i x(t)
)2 + ϕ2

i

(
u>

i n(t)
)2

σ2
i

]
(4.11)

and

εS(λ) =
∑

f

∑
i≥M+1 or

j≥M+1

∣∣(vi ⊗ vj)>Sx(f)
∣∣2 +

∑
f

M∑
i,j=1

[
(ϕiϕj − 1)2 ∣∣(vi ⊗ vj)>Sx(f)

∣∣2

+
(
ϕiϕj

σiσj

)2 ∣∣(ui ⊗ uj)>Sn(f)
∣∣2 + 2 (ϕiϕj − 1) ϕiϕj

σiσj
Re
(

(vi ⊗ vj)>Sx(f)(ui ⊗ uj)>Sn(f)
)]

(4.12)

Proof. To prove equation (4.11) we observe that

Wλ = VΦΣ†U> =
M∑
i=1

vi
ϕi
σi

u>i

and

Rλ − IN = VΦΣ†ΣV> − IN =
M∑
i=1

vi(ϕi − 1)v>i −
N∑

i=M+1
viv>i .

Then the thesis follows from equation (4.9) by exploiting the orthonormality of V
and the independence between processes X(t) and N(t).
Analogously, equation (4.12) follows from equation (4.10) by observing

Wλ⊗Wλ = (V⊗V)
(
ΦΣ† ⊗ΦΣ†

)
(U⊗U)> =

M∑
i,j=1

(vi⊗vj)
ϕiϕj
σiσj

(ui⊗uj)>

and

Rλ ⊗Rλ − IN2 = (V⊗V)
(
ΦΣ†Σ⊗ΦΣ†Σ− IN2

)
(V⊗V)>

=
M∑
i,j=1

(vi ⊗ vj)(ϕiϕj − 1)(vi ⊗ vj)> −
∑

i≥M+1 or
j≥M+1

(vi ⊗ vj)(vi ⊗ vj)>
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Remark 4.3. The expression in (4.11) is a classic result in regularisation theory
(Hansen, 2005), in which the reconstruction error is expressed in terms of three dis-
tinct components. The first component is the norm of the projection of the original
signal onto the kernel of G, i.e. the part of the signal that cannot be reconstructed.
The second term is the regularisation error, i.e. the error introduced by regular-
isation itself; indeed, this term vanishes when the value of all the filters is one.
The last term is the perturbation error, i.e. the backprojection of stochastic noise
components onto the reconstructed signal, that regularisation tries to reduce.

Remark 4.4. Expression (4.12) is the analogue of (4.11) for the cross-power spec-
trum estimated with the two-step approach. The reconstruction error εS(λ) here
is made of four distinct components: three of them have the same interpretation
of those appearing in εx(λ); the fourth term is a non-vanishing mixed term, that
depends on both the signal and the noise spectra; as we shall see below, this term
turns out to be negative at least in some special cases.

4.3 The relationship between the optimal regularisation
parameters: two case studies

We will now address the main question posed in the introduction of the cur-
rent chapter: does the optimal regularisation parameter for the reconstruction of
the time-series coincide with the optimal regularisation parameter for the recon-
struction of the cross-power spectrum? As we shall see, the answer depends on the
specific choice of the inverse method, i.e. on the form of the filter factors. Here we
study first the case of tSVD, and then the case of the Tikhonov method.

In order to proceed analytically, in this section we make the further assumption
that both the signal and the noise are white-noise Gaussian processes, with covari-
ance matrices ω2IN and α2IM , respectively. The Gaussian assumption is often not
too far fetched; in MEEG, particularly, it is widely used and, even though perhaps
the data distribution is not exactly Gaussian, the Gaussian assumption is implicit
(when not explicit) in the vast majority of connectivity studies (Nolte et al., 2019).
The white-noise assumption, on the other hand, is stronger, as it implies that there
is no temporal structure in the signal: we will come back to this point in Section
4.6.

4.3.1 Truncated SVD

When tSVD is employed, by substituting the values of the corresponding filter
factors into equations (4.11) and (4.12) we get the following corollary of Proposi-
tion 4.2.
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Corollary 4.5. Consider the tSVD estimate xλ(t) given by equation (2.16b), with
regularisation parameter λ ∈ {1, . . . ,M}. Then

εx(λ) =
∑
t

N∑
i=λ+1

(
v>i x(t)

)2
+
∑
t

λ∑
i=1

(
u>i n(t)

)2

σ2
i

(4.13)

and

εS(λ) =
∑
f

∑
i≥λ+1 or
j≥λ+1

∣∣∣(vi ⊗ vj)>Sx(f)
∣∣∣2 +

∑
f

λ∑
i,j=1

∣∣∣(ui ⊗ uj)>Sn(f)
∣∣∣2

σ2
i σ

2
j

(4.14)

Remark 4.6. When regularisation is accomplished through tSVD, the mixed term
in εS(λ) vanishes; this allows us to compute the optimal regularisation parameter
explicitly.

Theorem 4.7. Let xλ(t) be the tSVD estimate as given by equation (2.16b), with
regularisation parameter λ ∈ {1, . . . ,M}; assume X(t) and N(t) to be white-
noise Gaussian processes with covariance matrices ω2IN and α2IM , respectively.
Then

λ∗x = λ∗S = max
{
λ ∈ {1, . . . ,M} s.t σλ ≥

α

ω

}
(4.15)

Proof. As X(t) and N(t) are white-noise Gaussian processes with covariance ma-
trices ω2IN and α2IM , we have Sx(f) = ω2IN and Sn(f) = α2IM . Provided
that enough data time-points are available1, these imply that

∑
t

(
v>i x(t)

)2
= Tω2 ∑

t

(
u>i n(t)

)2
= Tα2 (4.16)

and ∣∣∣(vi ⊗ vj)>Sx(f)
∣∣∣2 = ω4

∣∣∣v>j vi
∣∣∣2 = ω4δij (4.17)∣∣∣(ui ⊗ uj)>Sn(f)

∣∣∣2 = α4
∣∣∣u>j ui

∣∣∣2 = α4δij (4.18)

where δij is the Kronecker delta. By substituting equalities (4.16)-(4.18) in equa-
tions (4.13) and (4.14) we get

εx(λ) = (N − λ)Tω2 + Tα2
λ∑
i=1

1
σ2
i

1The sufficient number of time points is of course dependent on the size of the problem, and in
particular it grows with the dimensions of the data and of the unknown.
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εS(λ) = (N − λ)Lω4 + Lα4
λ∑
i=1

1
σ4
i

The thesis follows by observing that the increments

εx(λ)− εx(λ− 1) = −Tω2 + Tα2

σ2
λ

and

εS(λ)− εS(λ− 1) = −Lω4 + Lα4

σ4
λ

are non-decreasing functions of λ and thus εx(λ) and εS(λ) have a unique mini-
mum at the biggest λ for which such increments are negative.

4.3.2 Tikhonov method

We now consider the case when regularisation is performed by means of the
standard Tikhonov formula.

Corollary 4.8. Let xλ(t) be the Tikhonov estimate as given by equation (2.16b),
with regularisation parameter λ ≥ 0. Then

εx(λ) =
∑
t

N∑
i=M+1

(
v>i x(t)

)2

+
∑
t

M∑
i=1

[
λ2

(σ2
i + λ)2

(
v>i x(t)

)2
+ σ2

i

(σ2
i + λ)2

(
u>i n(t)

)2
] (4.19)

and

εS(λ) =
∑
f

∑
i≥M+1 or
j≥M+1

∣∣∣(vi ⊗ vj)>Sx(f)
∣∣∣2

+
∑
f

M∑
i,j=1

[( σ2
i σ

2
j

(σ2
i + λ)(σ2

j + λ)
− 1

)2 ∣∣∣(vi ⊗ vj)>Sx(f)
∣∣∣2

+
σ2
i σ

2
j

(σ2
i + λ)2(σ2

j + λ)2

∣∣∣(ui ⊗ uj)>Sn(f)
∣∣∣2

+ 2
(

σ2
i σ

2
j

(σ2
i + λ)(σ2

j + λ)
− 1

)
σiσj

(σ2
i + λ)(σ2

j + λ)
Re
(
(vi ⊗ vj)>Sx(f)(ui ⊗ uj)>Sn(f)

) ]
(4.20)

Again we assume that X(t) and N(t) are white-noise Gaussian processes with
covariance matrices ω2IN and α2IM . Under this assumption equations (4.19) and
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(4.20) become

εx(λ) = T (N −M)ω2 + Tω2
M∑
i=1

λ2

(σ2
i + λ)2 + Tα2

M∑
i=1

σ2
i

(σ2
i + λ)2 (4.21)

and

εS(λ) = L(N −M)ω4 + Lω4
M∑
i=1

(
σ4
i

(σ2
i + λ)2 − 1

)2

+ Lα4
M∑
i=1

σ4
i

(σ2
i + λ)4

+ 2Lω2α2
M∑
i=1

(
σ4
i

(σ2
i + λ)2 − 1

)
σ2
i

(σ2
i + λ)2 ,

(4.22)

where we notice that, as anticipated in the previous section, the fourth addend is
negative; this fact suggests that, to the extent that the other terms are comparable to
those in the corresponding expression for the tSVD (4.14), the reconstruction error
generated by the Tikhonov method is smaller than the one generated by tSVD.

By differentiating equations (4.21) and (4.22) we have

d

dλ
εx(λ) = 2T

(
ω2λ− α2

) M∑
i=1

σ2
i

(σ2
i + λ)3 (4.23)

and

d

dλ
εS(λ) = 4Lω2

M∑
i=1

σ2
i

(σ2
i + λ)5 (α2 + σ2

i ω
2)

·

λ+ σ2
i +

√
σ4
i + σ2

i

α2

ω2

λ+ σ2
i −

√
σ4
i + σ2

i

α2

ω2

 .

(4.24)

We are now able to prove the following theorem.

Theorem 4.9. Let xλ(t) be the Tikhonov estimate as given by equation (2.16b),
with regularisation parameter λ ≥ 0; assume X(t) and N(t) to be white-noise
Gaussian processes with covariance matrices ω2IN and α2IM , respectively. Then

λ∗x = α2

ω2 (4.25)

and
λ∗S <

λ∗x
2 (4.26)

Proof. The first statement simply follows from equation (4.23) by observing that
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z

h(z)

O

h(z)
λ∗x
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σM σ1

h(σM )

h(σ1)

d
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d
dλεS(λ) > 0
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σ2
|

· · ·

λ∗S ?

Figure 4.1: Plot of the function h(z) defined in the proof of Theorem 4.9. h(z) is related to the sign
of the addends at the right hand side of (4.24). If λ < h(σM ) all the addends in (4.24) are negative
therefore εS(λ) is decreasing (green area), whereas if λ > h(σ1) all the addends in (4.24) are
positive therefore εS(λ) is increasing (blue area); it follows that the optimal regularisation parameter
λ∗S lies in the interval [h(σM );h(σ1)]. Moreover, for λ ≥ λ∗

x
2 all the addends in (4.24) are positive

regardless of the singular values, and therefore εS(λ) is increasing; this fact leads to the inequality
λ∗S <

λ∗
x

2

d
dλεx(λ) ≥ 0 if and only if λ ≥ α2

ω2 .
Instead, equation (4.24) implies that d

dλεS(λ) > 0 if

λ > −σ2
i +

√
σ4
i + σ2

i

α2

ω2 . (4.27)

Consider the function h : [0,+∞) 3 z → −z2 +
√
z4 + z2 α2

ω2 . As schematically

shown in Figure 4.1, h is strictly increasing and bounded above by λ∗x
2 = α2

2ω2 . As
a consequence, the condition (4.27) is satisfied if λ ≥ λ∗x

2 , that means εS(λ) is
strictly increasing in [λ

∗
x
2 ,+∞) and thus inequality (4.26) holds.

The main interest of Theorem 4.9 is that it provides a simple relationship be-
tween λ∗S and λ∗x. However, expression (4.24) contains more information about the
values of λ∗S, as stated in the following Theorem.

Theorem 4.10. Under the same hypotheses of Theorem 4.9, the value of λ∗S be-

longs to the interval [h(σM ), h(σ1)], where h(z) = −z2 +
√
z4 + z2 α2

ω2 .
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Proof. As schematically shown in Figure 4.1, when λ > h(σ1), all the addends
in (4.24) are positive and thus d

dλεx(λ) is positive; on the other hand, when λ <
h(σM ) the derivative d

dλεx(λ) is negative as all the addends are negative.

Remark 4.11. Theorem 4.10 also gives information on the limiting behaviour of
λ∗S as λ∗x = α2

ω2 approaches very small or very large values. In the no-noise sce-
nario, when λ∗x ∼ 0, λ∗S grows approximately linearly with λ∗x. The other boundary
is however more interesting. Indeed, when λ∗x → ∞ the extremes of the interval
h(σ1) and h(σM ) grow with the same order of

√
λ∗x. Therefore, when noise gets

larger not only λ∗S is smaller than λ∗x, but it also grows more slowly.

Remark 4.12. Theorems 4.9 and 4.10 imply that, when regularisation is accom-
plished through the Tikhonov method, λ∗x does not depend on the forward matrix
G, while λ∗S does. The fact that λ∗x does not depend on G may appear counter-
intuitive: if the singular values grows, also the effective SNR of the data grow, and
then the regularisation parameter should become smaller. In fact, the regularisa-
tion parameter does become smaller with respect to the data; in other words, this is
the classic behaviour of the optimal regularisation parameter, where we are chang-
ing the SNR by increasing the strength of the exact signal, rather than decreasing
the variance of the noise.

Remark 4.13. When M = N and σ1 = · · · = σM = 1, the forward matrix G
is orthogonal and the inverse problem in equation (3.19) is well-posed. Theorems
4.9 and 4.10 imply that λ∗S and λ∗x are different also under these conditions, as

h(σM ) = h(σ1) = −1 +

√
1 + α2

ω2 <
α2

ω2

Although unrealistic, this case is of particular interest in M/EEG functional con-
nectivity because it corresponds to the ideal case where there is no cross-talk or
source-leakage between sources (Hauk et al., 2019).

Indeed, in this case the resolution matrix is proportional to the identity matrix
(Rλ = (1 + λ)−1 IN ), i.e. the estimate at one location is not influenced by neural
activity at different locations. Our result shows that also in this ideal case the
optimal values of the regularisation parameters are different.

4.4 Beyond the two-step approach: Filter factor for a di-
rect estimation of Sx(f) from Sy(f)

As an alternative to the two-step approach described so far, one may directly
estimate the cross-power spectrum of the unknown Sx(f) from that of the data
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Sy(f). Indeed, from equation (3.19) and from the linearity of the Fourier Trans-
form it follows

Sy(f) = (G⊗G)Sx(f) + Sn(f) , (4.28)

which describes a linear inverse problem.
Analogously to what we did in the previous sections for the forward operator

G, we can introduce the SVD of the forward operator G ⊗G = (U ⊗U)(Σ ⊗
Σ)(V ⊗ V)>, up to reordering the elements of Σ ⊗ Σ and the corresponding
columns of U⊗U and V⊗V. We can then express a one-step regularised estimate
of the cross-spectrum in terms of the SVD and of the filter factors

Sx
λ (f) = (V⊗V) Φ̃(λ) (Σ⊗Σ) † (U⊗U)> Sy(f) (4.29)

=
M∑
i,j

ϕ̃i,j(λ)(ui ⊗ uj)> Sy(f)
σiσj

(vi ⊗ vj) . (4.30)

In particular, if Tikhonov regularisation is employed, the filter factors read

ϕ̃i,j(λ) =
σ2
i σ

2
j

σ2
i σ

2
j + λ

(4.31)

while in tSVD the components such that the product σiσj is below the threshold
defined by λ are filtered out. Instead, in the classic two-step approach the filter
factors for the estimated cross-spectrum are simply given by the product of the
filter factors for the estimated source time-courses, that means each of the singular
value σi and σj is individually filtered, instead of their product σiσj . Indeed, the
cross-spectrum of the regularised estimate xλ(t) in equation (2.16a) is

Sxλ(f) = (V⊗V)
(
ΦΣ† ⊗ΦΣ†

)
(U⊗U)> Sy(f) (4.32)

=
M∑
i,j

ϕi(λ)ϕj(λ)(ui ⊗ uj)> Sy(f)
σiσj

(vi ⊗ vj) . (4.33)

As a comparison in Figures 4.2 and 4.3 we plotted the filter factors ϕ̃i,j(λ)
and ϕi(λ)ϕj(λ) for the tSVD and Tikhonov method. The forward matrix was ob-
tained by randomly selecting (uniform sampling) M = 20 sensors and N = 25
source locations from a standard MEG forward operator based on a realistic, three-
layer boundary element method (BEM) head model, publicly available within the
mne-python software (Gramfort et al., 2014). Such selection of a subset of rows
and columns allows to produce more readable plots than those obtained by using
the whole leadfield, that would be qualitatively similar but with a denser cloud of
points. The specific choice of source and sensor locations does not modify the re-
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Figure 4.2: Filter factors for the tSVD method. On the x-axis the product of the singular values σiσj ,
on the y-axis the corresponding values of the filter factors ϕi(λ)ϕj(λ) for the two-step approach
(left) and ϕ̃i,j(λ) for the one-step approach (right). The three different colours correspond to three
different values of the regularisation parameter, as illustrated in the legend. Please notice that the
filter factors for tSVD are either zero or one, but different colours are plotted at slightly different
levels for the sake of clarity.

sults: we tried several random configurations and they all provided similar plots.
Figure 4.2 and 4.3 highlight the potential advantages of the one-step approach over
the two-step approach. In the case of tSVD, the filter factors of the two-step ap-
proach are zero whenever either i < λ or j < λ, which implies a jittering behaviour
when plotted as a function of the product σiσj . In the one-step approach this issue
is not present, because filtering is applied directly to the product of the singular
values. In the case of the Tikhonov method we observe a similar behaviour, where
in the one-step approach the filter factors increase smoothly when the product σiσj
increases, while in the two-step approach also higher values of such product may
be severely filtered because of the effect of the regularisation parameter on the
individual singular values.

4.5 A numerical simulation

In this section we use a numerical simulation to show what happens when the
rather restrictive assumption of a white Gaussian signal, that was needed to prove
the results in Section 4.3, no longer holds. We exploit the same simulation to show
that in this case the one-step approach described by equation (4.29) enables to es-
timate the cross-power spectrum with a lower reconstruction error. We remark,
however, that this simulation is just an example and is not meant to be a full vali-
dation.

Following Hincapié et al. (Hincapié et al., 2016), we simulated two interacting
oscillatory sources. The first source was placed in the temporal lobe of the left
hemisphere, the second source was placed in the occipital lobe of the right hemi-
sphere at a distance of 11.8 cm from the first one. The time courses of the two
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Figure 4.3: Filter factors for the Tikhonov method. On the x-axis the product of the singular values
σiσj , on the y-axis the corresponding values of the filter factors ϕi(λ)ϕj(λ) for the two-step ap-
proach (left) and ϕ̃i,j(λ) for the one-step approach (right). The three different colours correspond to
three different values of the regularisation parameter, as illustrated in the legend.

sources were simulated with a coherence level of 0.4, as follows: first the base
frequency was set to 12 Hz for both sources; then the instantaneous frequency was
randomly drawn independently around the base frequency, causing fluctuations in
the phase relationship between the two signals. A total number of T = 30, 000
time points was used. The process was repeated until the desired level of coher-
ence (0.4) was attained.

Source time courses were then projected to the sensor level through a forward
operator obtained by downsampling the same MEG leadfield used in the previous
section; the final forward operator has M = 102 sensors (magnetometers) and
N = 274 source points guaranteeing a uniform coverage of the brain. With the
exception of the two oscillatory sources, all other source time courses were set to
zero. White Gaussian noise was added at the sensor level to reach five different
values of Signal-to-Noise Ratio (SNR) defined as

SNR = 10 log10

(∑T−1
t=0 ||Gx(t)||2∑T−1
t=0 ||n(t)||2

)
, (4.34)

where n(t) = σñ(t), being ñ(t) ∼ N (0, IM ), and σ was defined in order to
attain the desired SNR. The values of SNR were evenly selected in the range
[−10dB, 10dB].

For each simulated data we numerically computed the two optimal parameters
λ∗x and λ∗S, as defined in Definition 4.1, for tSVD and for the Tikhonov method.
The optimal values are reported in Table 4.1. For both methods, optimal recon-
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struction of the cross-power spectrum requires less regularisation than optimal re-
construction of the signal. For tSVD this result is qualitatively different from the
white noise case, where we proved that the two optimal parameters are equal; for
the Tikhonov method, on the other hand, the optimal values obey the same inequal-
ity, and the ratio between the optimal values is very similar to the one reported in
(Hincapié et al., 2016). This is expected, since the numerical simulation here was
constructed following the same scheme.

Finally, we numerically computed the optimal regularisation parameter for the
one-step approach defined as

λ̃∗S = arg min
λ
ε̃S(λ) with ε̃S(λ) =

∑
f

‖Sx
λ(f)− Sx(f)‖2F (4.35)

and we compared the reconstruction error reached by the one-step and the two-step
approach when the corresponding optimal regularisation parameters are employed,
i.e. εS(λ∗S) and ε̃S(λ̃∗S). Figure 4.4 shows the reconstruction errors for the cross-
power spectrum for tSVD and Tikhonov method for both the two-step and the one-
step approach as a function of the SNR. The line corresponding to the two-step
approach is always above the one corresponding to the one-step approach, show-
ing that the latter provides a better estimation for the cross-power spectrum.

tSVD Tikhonov
SNR λ∗x λ∗S λ∗x λ∗S λ∗S/λ∗x
-10 7 25 110 9.36 · 10−1 8.5 · 10−3

-5 8 35 35.0 2.93 · 10−1 8.4 · 10−3

0 8 45 9.86 9.53 · 10−2 9.7 · 10−3

5 25 53 3.15 3.00 · 10−2 9.5 · 10−3

10 28 69 1.12 9.40 · 10−3 8.4 · 10−3

Table 4.1: λ∗x and λ∗S for the different values of SNR. In tSVD, the number of retained SVD com-
ponents for the reconstruction of the cross-power spectrum is always higher than for the time-series
reconstruction, showing that less regularisation is needed for the first one. For the Tikhonov method,
λ∗S is always smaller than λ∗x, showing that less regularisation is needed for the cross-power spectrum
reconstruction.

4.6 Discussion

In this chapter we presented the results published in (Vallarino et al., 2020).
Motivated by an analysis pipeline which is largely used for connectivity studies in
the MEEG community, we have considered the problem of whether, in a two-step
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Figure 4.4: Reconstruction errors for the cross-spectrum reconstruction as a function of the SNR for
tSVD (blue) and for the Tikhonov method (red), for the two-step (solid line) and for the one-step
(dotted line) approach. For both methods the one-step approach provides a better reconstruction of
the cross-power spectrum.

approach to the reconstruction of the cross-power spectrum of an unobservable
signal, one should set the regularisation parameter differently than what one would
do for the reconstruction of the signal itself.

First, making use of filter factor analysis, we obtained an explicit expression for
the reconstruction error for the cross-power spectrum under the two-step approach.
This formula is the analogous of the well-known formula for the reconstruction
error in linear inverse problems, and holds in general. Then, under additional hy-
potheses of a white Gaussian signal and white Gaussian noise, we proved that the
optimal values coincide for tSVD, while in the Tikhonov method the optimal value
for the cross-power spectrum is at most half the optimal value for the signal, thus
proving also that the answer actually depends on the inverse method. We specu-
late that such difference may be partly due to the fact that, with white Gaussian
signals, the error in estimating the cross-power spectrum involves the square of the
filter factors; for tSVD, where filter factors can only be 0 or 1, the components
corresponding to the largest singular values will possibly be weighted by a 1, and
when the filter is squared for the cross-spectrum, the largest component will still
be weighted by a 1. For Tikhonov, where filter factors range in the interval [0, 1],
the components corresponding to the largest singular values will be weighted by a
factor lower than one, and when such factor is squared it becomes even smaller;
therefore, in order not to filter excessively the largest components, a smaller regu-
larisation parameter is needed.
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The results of Section 4.3 are in line with the results of (Hincapié et al., 2016),
which showed empirically that the optimal estimate of connectivity is obtained with
a regularisation parameter smaller than the one providing the optimal estimate of
the power spectrum, i.e. of the signal strength. Quantitatively, the recommendation
in (Hincapié et al., 2016) was to use a parameter two orders of magnitude lower,
while our main theorem for the Tikhonov method guarantees λ∗S < λ∗x/2.

Theorems 4.7, 4.9 and 4.10 have been obtained under the somewhat unrealis-
tic assumption that the signal is a white-noise Gaussian process. While this is an
important limitation with respect to the applications, preliminary numerical results
indicate that the optimal value for the cross-spectrum is further reduced by the pres-
ence of a temporal structure in the signal: in the numerical simulation in Section 6
we observed that, with interacting, oscillatory signals, the optimal values in tSVD
no longer coincide, and λ∗S in the Tikhonov method is approximately two orders of
magnitude smaller than λ∗X, in line with the mentioned results in (Hincapié et al.,
2016). In any case, in the next chapters we will see the effect of a more plausible
temporal structure of the input waveforms.

In addition, our results so far only concern the cross-power spectrum; in Chap-
ter 6 we will present some preliminary results on the impact of the regularisation
parameter on the estimated value of connectivity measures, such as Imaginary part
of Coherency, Phase Locking Value and Phase Lag Index.

Finally, as we point out in Section 4.4, our results suggest that the two-step
approach to estimation of the cross-power spectrum, and more in general of brain
functional connectivity, might be sub-optimal. This idea is in line with literature
on the topic (Kiebel et al., 2008; Cheung et al., 2010; Fukushima et al., 2015;
Ossadtchi et al., 2018; Subramaniyam et al., 2017; Tronarp et al., 2018). Indeed,
by looking at the filter factors obtained by the two-step approach, and comparing
them to the filter factors one would get with a one-step approach to estimate the
cross-power spectrum, we expect a better behaviour for this second option. Newly
presented methods such as PSIICOS (Ossadtchi et al., 2018) present one-step ap-
proaches to the estimation of connectivity that benefit from this fact. In Chapter 7 a
deeper analysis of a possible one-step approach and its potential will be presented.



Chapter 5

The impact of spectral complexity
on the two-step estimation of the
cross-power spectrum

The work presented in this chapter is the natural prosecution of the previous
one. Indeed, in Chapter 4 we introduced the issue of optimally choosing the regu-
larisation parameter when estimating the cross-power spectrum from MEG data in
a two-step approach. We presented some analytical results that support the findings
presented in (Hincapié et al., 2016), and we validated them through a simulation.
However, in order to prove those results we assumed few properties that are not re-
alistically satisfied by neural activity. In the current chapter we focus on validating
the results of the previous chapter through more realistic numerical simulations. In
addition we investigate how the spectral properties of the neural activity influence
the parameter providing the best possible estimate of the cross-power spectrum.

Specifically, in this chapter we present the results published in (Vallarino et al.,
2021b). Differently from Chapter 4 we only consider the Tikhonov method (bet-
ter known as Minimum Norm Estimation (MNE) in the MEG world (Hämäläinen
and Ilmoniemi, 1994a)) as it is one of the most commonly used inverse methods in
connectivity studies (Anzolin et al., 2019; Mahjoory et al., 2017; Hincapié et al.,
2017); we study the interplay between the regularisation parameter providing the
reconstructed neural time series minimising the relative error in `2-norm, and the
one that allows the optimal estimate of the cross-power spectrum according to the
normalised Frobenius norm. The conceptual motivation of this problem is illus-
trated in Figure 5.1, which tentatively sketches the result of some investigations in
MEG-based connectivity research, i.e. that the regularisation parameter leading to
the optimal estimate of the neural activity may not lead to the optimal estimate of
the cross-power spectrum and, vice versa (Hincapié et al., 2016; Vallarino et al.,
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Figure 5.1: Schematic representation of the differences between the regularisation parameter provid-
ing the best time series estimate (λx) and the one providing the best cross-power spectrum estimate
(λS). The first one provides an optimal reconstruction of the neural activity, but it may not lead to an
optimal estimate of the cross-power spectrum; vice versa λS provides an optimal reconstruction of
the cross-power spectrum at the expense of a sub-optimal estimate of the time series.

2020).
This chapter focuses on an analysis of the impact of spectral complexity of the

actual neural signal on the value of the two regularisation parameters. Specifically,
we simulated synthetic MEG signals and discuss how the optimal parameter for
the reconstruction of the cross-power spectrum depends on its signal-to-noise ratio
and how this latter quantity is related to the spectral richness of the neural sources.
To this aim, we considered a simulation setting in which the signal is modelled as
a multivariate autoregressive process.

The chapter is organised as is as follows. Section 5.1 introduces the problem
in a formal way. Section 5.2 describes how the synthetic data are simulated and
analysed. Section 5.3 presents the results of the analysis. Our conclusions are
offered in Section 5.4.

5.1 Definition of the problem

Let us consider the MEEG problem (3.19)

y(t) = Gx(t) + n(t),

which can be interpreted as a realisation of the linear model

Y(t) = GX(t) + N(t), (5.1)

being y(t) ∈ RM , x(t) ∈ RN and n(t) ∈ RM realisations of the multivariate
stochastic processes Y(t), X(t) and N(t), and G ∈ RM×N a leadfield matrix.
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N(t) is the measurement noise process, which is assumed to be a white Gaussian
process with zero mean and covariance matrix α2I, i.e. N(t) ∼ N (0, α2I), inde-
pendent from X(t).

We are interested in reconstructing the cross-power spectrum of X(t), as de-
fined in Definition 1.12, and we exploit Welch’s method to its estimation. That is,
recalling Section 1.3.1,

Sx(f) = 1
PW

P∑
p=1

x̂p(f)x̂p(f)H , f = 0, . . . , L− 1, (5.2)

being x̂p(f) =
∑L−1
t=0 xp(t)w(t)e−

2πitf
L and W =

∑L−1
t=0 w(t)2.

It is often the case that the data reaches high dimension, and visual inspection
of the cross-power spectrum is not doable. In such cases a metric that describes
the spectral properties of the signals would be useful. Here we use the spectral
complexity coefficient, defined as follows.

Definition 5.1. Given a realisation x(t) of the process X(t), and the correspond-
ing cross-power spectrum Sx(f), we define the spectral complexity coefficient as
the average of the elements of the upper triangular part of the matrix obtained by
computing the squared `2-norm over the frequencies of Sx

j,k(f), j, k = 1, . . . , N ,
that is

c = 2
N(N + 1)

N∑
j=1

N∑
k=j

∑
f

∣∣∣Sx
j,k(f)

∣∣∣2 . (5.3)

The spectral complexity coefficient assumes small values if the elements of
the cross-power spectrum are flat, that is when time series do not present any pe-
riodic trend and no dependencies among the pairs of time series are present. On
the contrary, it assumes large values if the elements of the cross-power spectrum
are peaked, that is when time series present periodic trends and complex relations
among them. Finally, we observe that in Definition 5.1 only the elements on the
upper triangular part of Sx(f) are considered because Sx(f) is Hermitian.

Let us get back to equation (3.19). Further than an estimate of the hidden data
x(t), an estimate of the cross-power spectrum can be obtained from y(t). Such
estimate can be achieved through a two-step process, as described in Section 3.7:

i. First, a regularised estimate xλ(t) of x(t) is obtained by solving the inverse
problem associated with equation (3.19). Here we consider the Tikhonov



5.1 Definition of the problem 71

regularised solution (Tikhonov et al., 2013) of the problem which is defined
as

xλ(t) = arg min
x(t)

{
‖Gx(t)− y(t)‖22 + λ ‖x(t)‖22

}
; (5.4)

where λ is a proper regularisation parameter and ‖ · ‖2 is the `2-norm.

ii. Then, the corresponding estimate of the cross-power spectrum Sxλ(f) is
computed from the reconstructed time series using Welch’s method.

Remark 5.2. In many applied fields, Tikhonov regularisation with an `2 penalty
term has been outdated by more modern techniques that use sparsity–inducing pe-
nalisation terms such as `1 or `p with 0 < p < 1. Indeed, also in the MEEG
literature there has been considerable effort in developing `1 solutions (Matsuura
and Okabe, 1995; Uutela et al., 1999), and mixed norm solutions (Gramfort et al.,
2012); both these approaches have proved to provide superior performances in
terms of localisation of neural activity. However, these newer methods are seldom
used in connectivity studies, for good reasons: `1 solutions computed indepen-
dently at each time point produce extremely jittering reconstructions, resulting in
highly sparse time courses that are not suitable for computing connectivity met-
rics. Mixed norms, that have been developed precisely to overcome this jittering
problem, are computationally very expensive, and this actually prevents their use
with the large data sets typically involved in connectivity studies.

As we said in Section 3.7, when applying the described two-step process, the
regularisation parameter λ in equation (5.4) has to be set for the computation of
xλ(t). Thus, the problem naturally arises of the choice of such parameter, which
can be set in order to optimally reconstruct either xλ(t) or Sxλ(f). We define
optimality through the minimisation of the normalised norm of the discrepancy
between the true and the reconstructed time series and cross-power spectra as fol-
lows.

Definition 5.3. Given the regularised solution (5.4) and the cross-power spectrum
(5.2), we define the optimal regularisation parameter for the reconstruction of x(t)
as

λ∗x = arg min
λ
εx(λ) with εx(λ) =

∑
t ‖xλ(t)− x(t)‖22∑

t ‖xλ(t)‖22 +
∑
t ‖x(t)‖22

; (5.5)

and the optimal parameter for the reconstruction of Sx(f) as

λ∗S = arg min
λ
εS(λ) with εS(λ) =

∑
f ‖Sxλ(f)− Sx(f)‖2F∑

f ‖Sxλ(f)‖2F +
∑
f ‖Sx(f)‖2F

; (5.6)
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where ‖ · ‖F is the Frobenius norm; εx(λ) and εS(λ) will be called reconstruction
errors.

The reconstruction errors range from 0 to 1 and penalise both a too small and
a too large value of λ. In fact, they assume their maximum value when either λ
is very high and thus xλ(t) is negligible with respect to x(t), or when λ is too
small and thus, vice versa, x(t) is negligible with respect to xλ(t). This definition
may appear overly complex compared to, e.g., a mere `2-norm of the difference;
however, in the presence of sparse data where only few time series are non-zero,
the simple `2-norm would prefer a very high regularisation parameter in order to
minimise the error on the null time series, at the expense of the error on the non-
zero ones; our definition aims to cope with this limitation of the `2-norm. A similar
definition has been introduced in (Chella et al., 2019).

In experimental contexts, where x(t) is not known, the choice of the optimal
regularisation parameter is crucial. This matter is widely discussed in literature
(Thompson et al., 1991; Hanke and Hansen, 1993; Hansen, 1998; Vogel, 2002), and
many criteria have been proposed. Such criteria apply to equation (3.19) and can be
used to set the regularisation parameter λx. A possibility is to set the regularisation
parameter as a function of the signal-to-noise ratio (SNR), which describes the level
of the desired signal with respect to that of the measurement noise; for equation
(5.1) the SNR is defined as follows.

Definition 5.4. Consider the linear model (5.1). We define the signal-to-noise ratio
of X(t) related to such model as

SNRX = 10 log10

(∑
t ‖GX(t)‖22∑
t ‖N(t)‖22

)
. (5.7)

To the best of our knowledge, the choice of the optimal regularisation param-
eter for the reconstruction of the cross-power spectrum has never been related to
the signal-to-noise ratio. This relation will be presented in Section 5.3; however
we first need to relate the cross-power spectrum of the unknown SX(f) with that
of the data SY(f).

By computing the cross-power spectrum of both sides of equation (5.1) and
from the linearity of the Fourier transform it follows that

SY(f) = GSX(f)G> + SN(f), (5.8)

where the mixed terms SXN(f) and SNX(f) are negligible thanks to the inde-
pendence between X(t) and N(t). Just like for equation (5.1), we can define the
signal-to-noise ratio for equation (5.8) as follows.
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Definition 5.5. Consider the linear model (5.8). We define the signal-to-noise ratio
of SX(f) related to such model as

SNRS = 10 log10


∑
f

∥∥∥GSX(f)G>
∥∥∥2

F∑
f ‖SN(f)‖2F

 . (5.9)

This definition is in line with the definition of SNRX for the signal, the main
difference being in the use of the Frobenius norm rather than the `2-norm, moti-
vated by the fact that we are working with matrices rather than vectors.

5.2 Generation and analysis pipeline of the MEG simu-
lated data

In this section we will describe the numerical simulation that led to the main
results of our study. First we describe how we generated the data and, then, we
describe the inverse model and how we numerically computed the optimal regular-
isation parameters.

5.2.1 Data generation

We simulated sensor level MEG recordings by exploiting the linear model
(3.19), thus we needed to set a leadfield matrix, G, and to simulate brain activ-
ity, x(t), and measurement noise, n(t).

As for the leadfield matrix, we used the matrix available in the sample data set
of MNE Python (Gramfort et al., 2014). We selected magnetometers and set a fixed
orientation. For computational reasons, the available source space, containing 1884
sources, was uniformly down-sampled to obtain 274 sources. Thus, our model has
M = 102 sensors and N = 274 dipole sources.

For the generation of brain activity, we simulated Nmod = 10 pairs of active
sources, (z1(t), z2(t))>, with unidirectional coupling from the first to the second;
their time series follow a multivariate autoregressive (MVAR) model of order P =
5(

z1(t)
z2(t)

)
=

P∑
k=1

(
a1,1(k) 0
a2,1(k) a2,2(k)

)(
z1(t− k)
z2(t− k)

)
+
(
ε1(t)
ε2(t)

)
, t = P, . . . , T.

(5.10)
The non-zero elements ai,j(k) of the coefficient matrices were drawn from a nor-
mal distribution of zero mean and standard deviation γ, and T=10000. We retained
only coefficient matrices providing (i) a stable MVAR model (Lütkepohl, 2005)
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and (ii) pairs of signals (z1(t), z2(t))> such that the `2-norm of the strongest one
was less than 3 times the `2-norm of the weakest one. In order to obtain time series
with different spectral complexity coefficients we set γ to Nmod different values
randomly drawn in the interval [0.1, 1]. The values of the spectral complexity co-
efficient of the Nmod simulated time-series are reported in Table 5.1. Finally, the
resulting time series (z1(t), z2(t))> were normalised by the mean of their stan-
dard deviations over time, so that pairs of time series drawn from different models
had similar magnitude. Figure 5.2 shows a sample of the the cross-power spec-
tra among the simulated pairs of time series. The figure shows that for increasing
values of the spectral complexity coefficient the cross-power spectrum of the cor-
responding time series becomes more peaked. Each pair of simulated time series
was then assigned to Nloc = 20 pairs of point like sources randomly chosen in the
source space, so that the ratio of the norms of the corresponding columns of the
leadfield matrix was close to one, i.e. they had similar intensity at sensor level, and
their distance was grater than 7 cm. The remaining N − 2 sources were set to have
null activity.

Source space activity was then projected to sensor level by multiplying the
simulated source activity by the leadfield matrix and white Gaussian noise, n(t),
was added to obtain Nsnr = 6 levels of SNRX evenly spaced in the interval
[−20dB, 5dB].

Summarising, we generated Nmod · Nloc · Nsnr = 1200 different sensor level
configurations. The green box in Figure 5.3 shows a visual representation of the
simulation pipeline.

Table 5.1: The table reports the values of the spectral complexity coefficients, cj , associated with
each simulated MVAR model, mj , j = 1, . . . , Nmod.

Model 1 2 3 4 5 6 7 8 9 10

Spectral complexity
coefficient 1.41 1.96 2.14 3.10 3.44 4.17 4.64 5.67 6.69 8.67

5.2.2 Inverse model

Source space time series were reconstructed using Tikhonov method, i.e min-
imum norm estimate (MNE) (Hämäläinen and Ilmoniemi, 1994a). For each com-
bination of source time series, source locations and SNRX level we computed the
optimal regularisation parameters λ∗x and λ∗S by minimising the reconstruction er-
rors εx(λ) and εS(λ), defined in Definition 5.3. The minimisation procedure was
achieved by using the Matlab built in function fminsearch that implements an
iterative procedure based on the simplex method developed by Lagarias and col-
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Figure 5.2: Real and imaginary part of the cross-power spectra of three simulated time series. Higher
values of spectral complexity correspond to more peaked spectra.

leagues (Lagarias et al., 1998). More in details, λ∗x and λ∗S have been obtained by
applying such procedure to εx(λ) and εS(λ), respectively; in both cases the starting

point of the simplex method was set equal to 10
(
− SNRX

10

)
, which corresponds to the

optimal value of λx in the case of white Gaussian signals (Vallarino et al., 2020).
The blue box in figure 5.3 describes the inverse procedure to obtain an estimate of
the cross-power spectrum and stresses the role of the regularisation parameter in
the two-step process.

5.3 Results

In this section we illustrate the results of our analysis. We will begin with
the description of the analytical dependence between SNRX and SNRS, then we
will highlight how the optimal parameter for the reconstruction of the cross-power
spectrum depends on SNRS and how this implies that the spectral complexity of
the signal is behind such dependence. Finally we will show how the reconstruction
error εS(λ) behaves for different values of the regularisation parameters. As a
byproduct, this analysis also confirms the results of (Vallarino et al., 2020) in the
case of a more complex setting.
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Figure 5.3: Pipeline of the simulation of the data (green box) and of the estimation of the cross-power
spectrum (blue box).

5.3.1 Analytical relation between SNRX and SNRS

From equations (5.7) and (5.9) and reminding that N(t) ∼ N (0, α2I) it fol-
lows that

SNRX = 10 log10

(∑
t ‖GX(t)‖22
MTα2

)
; (5.11)

and

SNRS = 10 log10


∑
f

∥∥∥GSX(f)G>
∥∥∥2

F

MNfα2

 , (5.12)

where T is the number of time points and Nf is the number of frequencies used to
compute the cross-power spectrum. Observe that to derive equation (5.12) we used
the fact that the cross-power spectrum of a white noise Gaussian process of zero
mean and covariance matrix α2I is SN(f) = α2I.

By isolating α2 from equation (5.11) and substituting in equation (5.12) we
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obtain

SNRS = 10 log10

T 2M
∑
f

∥∥∥GSX(f)G>
∥∥∥2

F

Nf
∑
t ‖GX(t)‖42

+ 2SNRX. (5.13)

Equation (5.13) relates the signal-to-noise ratio of X(t) with that of SX(f). It
shows that, for same levels of SNRX, SNRS changes with the spectral complexity
coefficient of the signals. In fact, the higher the spectral complexity coefficient,

the higher the quantity
∥∥∥GSX(f)G>

∥∥∥2

F
. Intuitively, this happens because when

the signal has a higher spectral complexity coefficient its cross-power spectrum is
more peaked and thus it is stronger over the cross-power spectrum of the noise with
respect to a signal with a lower spectral complexity coefficient.

5.3.2 Dependence of λ∗S on SNRS

As described in Section 5.2 we simulated several sensor level configurations,
based on different combinations of spectral complexity coefficients, source loca-
tions and SNRX levels. For each configuration we collected the two optimal pa-
rameters λ∗x and λ∗S and we investigated their dependence on the signal-to-noise-
ratio. In accordance with classic results from inverse theory (Hanke and Hansen,
1993), we found that λ∗x depends on the signal-to-noise ratio. What is novel here is
the relation between λ∗S and both SNRX and SNRS. Indeed for increasing SNRX

less regularisation is needed, but such dependence varies with the MVAR models.
On the other side, the dependence of λ∗S on SNRS is neater and does not depend
on the models. Figure 5.4 shows this result; on the left the regularisation param-
eters for the cross-power spectrum reconstruction versus SNRX are shown, while
on the right the same parameters are shown with respect to SNRS. For the ease of
presentation the figure shows the parameters related to one source location; while
on the left lines corresponding to different MVAR models have different heights,
on the right they overlap.

5.3.3 λ∗S < λ∗x and dependency from the spectral complexity

We also investigated the relation between the two optimal regularisation pa-
rameters. Figure 5.5 shows the ratio λ∗S

λ∗X
versus SNRX for the simulated MVAR

models. The ratio between the two parameters is always smaller than 1
2 , meaning

that λ∗S <
1
2λ
∗
x, as it was analytically proved in Chapter 4 (Vallarino et al., 2020).

Further to this, the figure shows that for increasing spectral complexity coefficients
this ratio gets smaller. This latter result is directly related to equation (5.13). In
fact, for same levels of SNRX, signals with higher spectral complexity have higher
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Figure 5.4: Optimal regularisation parameters for the reconstruction of the cross-power spectrum
(λ∗S) as a function of SNRX (left) and SNRS (right). Different colours correspond to different MVAR
models. On the left, the lines have different heights, while on the right they overlap, meaning that
the dependence of λ∗S on SNRS is neater with respect to SNRX.

SNRS and, thus, need less regularisation.

5.3.4 The reconstruction errors

To show the benefit of using a value of the regularisation parameter different
from λ∗x when estimating the cross-power spectrum, in Figure 5.6 we plotted the re-
construction errors εS(λ) as a function of the regularisation parameter (normalised
by λ∗x) obtained when considering two illustrative realisations of the simulated
sensor data. Specifically, we fixed the locations and time courses of the pair of
interacting sources and we considered the corresponding simulated MEG data for
two levels of SNRX, namely SNRX = −20 dB and SNRX = 5 dB. Similar results
where obtained when considering the other source configurations.

As shown by Figure 5.6, for both the values of SNRX the value of the recon-
struction error significantly decreases when λ∗S is used instead of λ∗x. Specifically
in this simulation, εS(λ) drops from 0.99 to 0.96 when SNRX = −20dB, and from
0.92 to 0.77 when SNRX = 5dB.

Notably, one may observe that the relative reconstruction errors shown in Fig-
ure 5.6 are rather large, being above 90% in the low-SNR case and remaining above
75% even in the high-SNR scenario. We point out that this fact is mainly due to
the combined effect of two factors: first, Tikhonov regularisation tends to produce
reconstructions that are small but non-zero almost everywhere, as it reduces but
does not cancel entirely backprojection of noise; second, in our simulations the
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Figure 5.5: Ratio between the optimal parameters (λ
∗
S
λ∗

x
) as a function of SNRX. Different colours

correspond to MVAR model with different spectral complexities. Dashed lines are the mean of the
ratio over the different sources location, while solid colours correspond to the standard deviation of
the mean.

true activity is zero everywhere but in two points. These two facts inevitably lead
to large relative errors that, however, pleasantly decrease for increasing values of
SNRX.

5.4 Discussion

In this chapter we presented the results published in (Vallarino et al., 2021b),
where we investigated the role of the spectral complexity of a time series, x(t),
in the design of an optimal inverse technique for estimating its cross-power spec-
trum, Sx(f), from indirect measurements of the time series itself. Motivated by
an analysis pipeline widely used for estimating brain functional connectivity from
MEG data, we reconstructed the cross-power spectrum in two steps: first, we esti-
mated the unknown time series by using the Tikhonov method; then we computed
the cross-power spectrum of the reconstructed time series. In the present work, we
used numerical simulations to study how the spectral complexity of x(t) impacts
the value of the regularisation parameter that provides the best reconstruction of
the cross-power spectrum.

As a first analytical result, we related SNRX to SNRS, i.e. the signal-to-noise
ratio of the time series and the signal-to-noise ratio of the corresponding cross-
power spectra. The obtained formula suggests that, for a fixed level of SNRX,
SNRS depends on the spectral complexity of x(t): the higher the spectral com-
plexity coefficient the higher SNRS. Intuitively this happens because a higher value
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Figure 5.6: Reconstruction error εS(λ) for two simulated data mimicking MEG signals with
SNRX = −20dB (lowest considered SNR, left panel) and SNRX = 5dB (highest considered SNR,
right panel). In each panel black and red vertical lines highlight the values of εS(λ) in correspon-
dence of λ∗S and λ∗x, respectively.

of the spectral complexity coefficient corresponds to a more peaked cross-power
spectrum that will emerge over the cross-power spectrum of the noise.

To test the effect of this result on the choice of the Tikhonov regularisation
parameter in a practical scenario, we simulated a large set of MEG data and we
applied the described two-step approach for estimating the cross-power spectrum
of the underlying neural sources. In details, we simulated 1200 synthetic MEG data
with varying SNRX generated by pairs of coupled point-like sources at varying
locations and with different spectral complexities. For each simulated data we
computed the two parameters providing the best estimates of the time series (λ∗x)
and of the cross-power spectrum (λ∗S), defined as the ones minimising the relative
`2-norm of the difference between the true and the reconstructed time series/cross-
power spectrum according to Definition 5.3. As shown by Figure 5.4, the results
of our simulations highlighted a high correlation between the values of λ∗S and of
SNRS.

Eventually, we focused on the relationship between the two parameters λ∗x and
λ∗S, whose ratio is shown in Figure 5.5. The figure points out that this ratio depends
on the spectral complexity of the simulated time series. This fact may be under-
stood in lights of the previous results, as λ∗S depends on SNRS that in turns depends
on the spectral complexity coefficient. Additionally, we found that, for all the sim-
ulated data, λ

∗
S
λ∗x

< 1
2 , in line with the results shown in (Vallarino et al., 2020) for a

simplified model where the neural time series were assumed to be white Gaussian
processes. Moreover, when the spectral complexity coefficient increases (c > 5



5.4 Discussion 81

in our simulations) the ratio between the two parameters approaches 0.01. This
agrees with the results shown in (Hincapié et al., 2016) where, by simulating sinu-
soidal signals, the authors suggested to use for connectivity estimation a parameter
of two orders of magnitude lower. In fact, our numerical results indicate that the
use of λ∗S results in a substantially lower reconstruction error on the cross-power
spectrum, particularly when the data has a high SNR.

The work presented in this chapter focuses on the cross-power spectrum as
a connectivity metric, however, it would be interesting to directly investigate the
behaviour of the Tikhonov regularisation parameters when other metrics. Some
preliminary results will be presented in the next chapter. Finally, the dependence
of λ∗S on SNRS suggests that an analysis of such dependence could be considered
for the definition of a rule for choosing λ∗S in practical scenarios.



Chapter 6

Numerical results on the two-step
estimation of the connectivity
metrics

In the previous chapters we investigated the issue of how to set the regular-
isation parameter to optimally estimate the cross-power spectrum in a two-step
approach when using MNE to estimate the neural activity from MEG data. In-
terestingly, we found that less regularisation is needed to optimally estimate the
cross-power spectrum and that an even smaller regularisation parameter should be
set for increasing spectral complexity of the neural activity. However, the results
of the previous chapters have the limitation of dealing only with the cross-power
spectrum as connectivity metric and the assumptions on the neural activity were not
fully realistic. In this chapter we consider the same problem, i.e. how to optimally
set the regularisation parameter for connectivity estimation, however we widen the
set of connectivity metrics and we simulated more complex neural activity con-
figurations. Moreover, we changed the definition of optimality when defining the
regularisation parameter for functional connectivity estimation. Indeed, such a
definition is not univocal, another common choice to quantify the reliability of the
estimated connectivity metrics, other than the `2-norm, is the area under the curve
(AUC), which is the metric that was used in (Hincapié et al., 2016). Therefore
in this chapter we will employ such a metric. Specifically, we simulated several
MEG sensor level configuration and for each of them we computed the optimal
regularisation parameters for neural activity and connectivity estimation. The re-
sults confirm and strengthen the ones presented in the previous chapters.

This chapter is organised as follow. In Section 6.1 we define the problem. In
Section 6.2 we describe how we simulated the MEG data and the inverse model
that we employed. In Section 6.3 the results are described. Finally, in Section 6.4
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we discuss the results.

6.1 Definition of the problem

Let us consider the MEEG problem (3.19)

y(t) = Gx(t) + n(t),

being y(t) ∈ RM , x(t) ∈ RN and n(t) ∈ RM the sensor level recordings, the brain
activity and the measurement noise, respectively. We are interested in estimating
source space connectivity. To this end, we consider x(t) as a realisation of a multi-
variate stochastic process and we exploit some of the connectivity metrics defined
in Section 3.6. Specifically, we focus on imaginary part of Coherence (imCOH),
corrected imaginary part of Phase Locking Value (ciPLV ) and weighted Phase
Lax Index (wPLI). The rationale behind this choice is that the computation of
such metrics starts from the computation of the cross-power spectrum, which is in
line with the works presented in Chapters 4 and 5. Moreover, these metrics are
modified from their original formulation in order to mitigate the impact on source
leackage ad volume conduction. In parallel, in order to provide a more exhaustive
and complete analysis and to compare the results with the findings presented in
the previous chapters, we also focus on the estimation of the cross-power spectrum
itself, and we exploit the Welch’s method for its computation. That is, recalling
Section 1.3.1,

Sx(f) = 1
PW

P∑
p=1

x̂p(f)x̂p(f)H , f = 0, . . . , L− 1, (6.1)

being x̂p(f) =
∑L−1
t=0 xp(t)w(t)e−

2πitf
L and W =

∑L−1
t=0 w(t)2.

To facilitate the reader we also recall the definitions of the other connectivity met-
rics. imCOH between xj(t) and xk(t) is defined, starting from the cross-power
spectrum, as

imCOHx
j,k(f) =

Im(Sx
j,k(f))√

Sx
j,j(f)Sx

k,k(f)
. (6.2)
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While ciPLV and wPLI are defined, respectively, as

ciPLV x
j,k(f) =

1
P

∣∣∣∣∣∣∑P
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k
(f)∗

)
|x̂(p)
j (f)||x̂(p)

k
f)|

∣∣∣∣∣∣√√√√√1−

 1
P

∣∣∣∣∣∣∑P
p=1

Im
(
x̂

(p)
j (f)x̂(p)

k
(f)∗

)
|x̂(p)
j (f)||x̂(p)

k
f)|

∣∣∣∣∣∣
2

, (6.3)

and

wPLIx
j,k(f) =

∣∣∣Im (Sx
j,k(f)

)∣∣∣
1
P

∑P
p=1

∣∣∣Im (x̂(p)
j (f)x̂(p)

k (f)∗
)∣∣∣ , (6.4)

being x̂p(f) = 1
L

∑L−1
t=0 xp(t)w(t)e−

2πitf
L , Im(·) is the imaginary part, and ∗ the

complex conjugate.
For the ease of notation we will use Cx(f) to refer to each of the above defined
connectivity metrics, indiscriminately.

In this work, we estimated source space connectivity through a two-step pro-
cess, as described in Section 3.7:

i. First, a regularised estimate, xλ(t), of the neural activity, x(t), is obtained by
solving the MEEG inverse problem associated with equation (3.19). Here we
consider the Minimum Norm Estimate (MNE) (Hämäläinen and Ilmoniemi,
1994b), which is defined as

xλ(t) = arg min
x(t)

{
‖Gx(t)− y(t)‖22 + λ‖x(t)‖22

}
; (6.5)

where λ is a proper regularisation parameter and ‖ · ‖2 is the `2-norm.

ii. Then, the corresponding estimate of connectivity, Cxλ(f), is computed from
the estimated time series.

When applying such a two-step process, one needs to set the parameter λ to
estimate the neural activity during the first step. Thus it arises the question of
how to properly set such a parameter. Counter-intuitively, the parameter providing
the optimal estimate of neural activity may not provide the optimal estimate of
connectivity. Such a result has already been shown in the previous chapters when
connectivity is quantified by the cross-power spectrum and the optimal parameters
are defined, barring a normalisation term, as the two values that minimise the `2-
norm of the difference between the actual and estimated neural activity and cross-
power spectrum respective. Here, we define optimality as follow.
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Definition 6.1. Given the the MNE estimate (6.5), we define the optimal regulari-
sation parameter for the reconstruction of x(t) as

λ∗x = arg min
λ

{∑
t

‖xλ(t)− x(t)‖22

}
, (6.6)

and the optimal parameter for connectivity estimation as

λ∗C = arg max
λ∈{λ1,...,λk}

{AUC(Cxλ)} , (6.7)

where {λ1, . . . , λk} is a proper set of parameters, and AUC is the area under the
Receiver Operating Characteristic (ROC) curve, which is computed by plotting the
True Positive Fraction (TPF) versus the False Positive Fraction (FPF) at different
threshold levels.

6.2 Data generation and analysis pipeline

This section is dedicated to the description of the numerical simulation that led
to the results of this work. First, we describe how we generated neural activity
and sensor level recordings, then, we describe the inverse method and how we
numerically computed the optimal regularisation parameters.

6.2.1 Data generation

We exploited the MEG model (3.19) to simulate several MEG recordings. We
used a leadfied matrix, G, available within the MNE Python package (Gramfort
et al., 2014). We selected magnetometers and set a fixed orientation. For com-
putational reasons the available source space, containing 312 273 sources, was
down-sampled. Thus, our model consisted of M=102 sensors and N=6940 dipole
sources.
Brain activity was generated with the following pipeline, which was implemented
in a Python code.

1. We selectedNloc = 50 different pairs of sources (seeds) so that their distance
is grater than 4 cm and that their intensity at source space level is similar.

2. For each pair of seeds we generated NA = 3 different pair of patches,
differing from one other for their extension, which was set equal to A =
2 cm2, 4 cm2, 8 cm2.

3. We generated Nmod = 20 different pairs of time series, generated from as
many MVAR models of order 5, with directional coupling from the first time
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series to the second; and we filtered them in the alpha range, i.e. in 8−12 Hz.
The generated time series were assigned to each pair of patches, so that the
seeds had maximum intensity, while the intensity of the surrounding sources
decreased accordingly to their distance from the seeds.

4. Small perturbation in the frequency domain were introduced to the time se-
ries associated with sources within each pair of patches in order to obtain
Nc = 3 different levels of intra coherence, namely c = 0.2, 0.5, 1.

5. Background activity was assigned to the remaining sources so that the in-
verse signal-to-noise ratio (SNR) between background activity and patches
activity assumed Nγ = 3 different values, namely γ = 0.1, 0.5, 0.9. The
time series of each of such sources followed a univariate AR model of order
5.

6. Finally, the simulated brain activity was projected to sensor level by means of
the leadfield matrix and white Gaussian noise was added to obtain NSNR =
4 different levels of SNR evenly spaced between -20 dB and 5 dB.

As for the MVAR models used to simulate the seed time series at point 4. we
exploited equation (5.10). Whereas, the SNR at point 5. is defined as

SNR =
∑
t

∥∥xin(t)
∥∥2

2∑
t ‖xbg(t)‖

2
2
, (6.8)

where xin(t) is the activity of interest, i.e the patches activity, and xbg(t) is the
background activity. On the other hand, the SNR at point 6. is defined as

SNR =
∑
t ‖x(t)‖22∑
t ‖n(t)‖22

, (6.9)

By combining all the mentioned features we obtained Nloc · NA · Nmod · Nc ·
Nγ · NSNR = 108 000 different sensor level configurations. Figure 6.1 shows a
schematic representation of the simulation pipeline.

6.2.2 Inverse model

Source space activity was estimated using MNE (Hämäläinen and Ilmoniemi,
1994b). For each sensor level configuration we computed the optimal parameters
for neural activity, λ∗x, and connectivity, λ∗C, estimations by exploiting Definitions
6.1 and 6.7, respectively. For the computation of λ∗x we used the minimize function
available within the Python package SciPy (Virtanen et al., 2020). Whereas, for
the computation of λ∗C we selected k = 15 values of parameters, {λ1, . . . , λk},
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Nloc = 50 pairs
of locations

NA = 3 extensions
levels

Nmod = 20 patches
activity

Nc = 3 intra-coherence
levels

Nγ = 3 background
noise intensity

levels

Projection to sensor space: y = Gx(t)

NSNR = 4 sensor
noise intensity

levels

Total number of MEG data

Nloc · NA · Nmod · Nc · Nγ · NSNR =
108 000

Figure 6.1: Pipeline of the simulation of the generated MEG sensor level data

logarithmically spaced between λ∗x ·10−5 and λ∗x ·101. For each of such parameters
we computed the corresponding AUC value, (i.e. AUC(Cxλi ), i = 1, . . . , k). The
AUC was computed by plotting the TPF versus the FPF at 20 different threshold
levels, α,

TPF(α) = TP(α)
Npatch1 ·Npatch2

, (6.10)

FPF(α) = FP(α)
N(N+1)

2 −Npatch1 ·Npatch2
, (6.11)

beingNpatch1 andNpatch2 the number of sources within the simulated patches, thus
Npatch1 ·Npatch2 the number of simulated interactions; N(N+1)

2 the number of pos-
sible interactions between all sources in the source space; TP(α) the true positives,
that is the number of connections between each source within the first patch and
and each source within the second patch whose intensity are above α; and FP(α)
the false positives, that is the number of connections between each source within
the first patch and each source out of the patches whose intensity are above α. The
intensity of each connection is computed as the norm over the frequency within the
alpha band of the corresponding connectivity matrix (i.e

∑
f∈(8,12) Hz |Cxλ(f)|2 ).
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6.3 Results

In this section we will describe the main results. First, we will show the results
from the whole set of simulations. Then, we will show the results for an illustrative
case.

6.3.1 Results on the whole set of simulations

Figure 6.2 shows the effect of the regularisation parameter on connectivity es-
timation in terms of the AUC values. In order to plot the results from all the sim-
ulated MEG configurations together, on the x-axis, we set the ratio between the
tested parameters and the optimal parameter for the neural activity reconstruction,
therefore the red line indicates a tested value of the regularisation parameter equal
to the optimal one for neural activity reconstruction, i.e. λ = λ∗x. For all con-
nectivity metrics the parameter providing the higher mean AUC value is about two
order of magnitude lower than λ∗x. Such a result is in line with that presented by
Hincapiè and colleagues in (Hincapié et al., 2016) and with the results presented in
Chapter 4 and 5.

Figure 6.3 shows the regularisation parameters as a function of the SNR for
all connectivity metric. The parameters are shown via boxplot; the green boxplots
represent λ∗x, while the blue bxplots λ∗C. Accordingly to the previous chapters the
value of the parameters decrease for increasing value of the SNR. We also observe
that the λ∗x boxplots show less variance with respect to λ∗C. This might be due to
the different definition of the parameters, indeed λ∗x assumes values in R+, while
λ∗C assumes values over a discrete set.

6.3.2 Results for an illustrative case

Figure 6.4 shows the improvement of functional connectivity estimation when
λ∗C is used instead of λ∗x. Indeed, for all connectivity metrics, the the connectivity
estimate when λ∗C is used (last column) is much more localised, with respect to the
estimates obtained with λ∗x (middle column); thus, resulting in an estimate that is
closer to the ground truth (first column). This suggests that using an appropriate
parameter does improve functional connectivity reconstruction.

6.4 Discussion

In this chapter we investigated the problem of how to set the regularisation
parameter to estimate functional connectivity in a two-step approach, when MNE
is used to estimate neural activity from MEG recordings. We simulated a large
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Figure 6.2: Bar plots of the mean AUC value for the tested regularisation parameters and for all
connectivity metrics. On the x-axis there is the ratio between the tested parameters and the optimal
parameters for neural activity reconstruction. The red line is in correspondence of λ = λ∗x, while the
black lines represent the standard deviation.

amount of MEG data and for each configuration we computed the optimal param-
eters for neural activity and functional connectivity estimation. We employed four
different connectivity metrics, namely the cross-power spectrum, the imaginary
part of Coherence, the corrected imaginary part of Phase Locking Value and the
weighted Phase Lag index. The results confirm and strengthen the finding pre-
sented in Chapters 4 and 5. Indeed, we found that less regularisation is needed
to estimate brain activity when the final aim is to estimate functional connectiv-
ity, specifically the regularisation parameter providing the best possible estimate o
functional connectivity is abut two orders of magnitude smaller than the one pro-
viding the best possible estimate of brain activity; such a results is in line with the
results presented in (Hincapié et al., 2016). Moreover, through an illustrative ex-
ample we showed that using a smaller parameter provides evident improvements.
Indeed, as shown in Figure 6.4, in the latter case the estimated functional connec-
tivity is much more localised.

The latter results highlights the need of determining a method to properly
choose the regularisation parameter. To this end we are currently working on the
implementation of a learning algorithm that infer the optimal regularisation param-
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Figure 6.3: Values of λ∗x and λ∗C represented via boxplot as a function of SNR. The green boxplots
are related to λ∗x while the blue one to λ∗C.

eter from some features of the MEG recordings. The first step in this direction is to
study the influence of all the different features that we set when we simulated the
MEG data on the regularisation parameter.
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Figure 6.4: Improvements of connectivity estimation when λ∗C is used instead of λ∗x. Each row rep-
resent a different connectivity metric. The first column shows the simulated functional connectivity,
the second column represents the one estimated when λ∗x is set as regularisation parameter, while the
third column represents the one estimated when λ∗C is set as regularisation parameter.



Chapter 7

A one-step approach for the
estimation of the cross power
spectrum: some preliminary
results

In the previous chapters we investigated the issue of properly setting the reg-
ularisation parameter to estimate brain functional connectivity in a two-step ap-
proach, when using Tikhonov regularisation method to estimate the neural activity
from MEEG data. We intentionally focused on a commonly used pipeline in the
neuroscientific community (Schoffelen and Gross, 2019b), but we did not focus
on the drawbacks of the pipeline itself. Indeed, it is worth mentioning two main
drawbacks. The first is that with a two-step approach the unavoidable errors that
are committed when estimating the neural activity during the first step, inevitably
propagate on the functional connectivity estimation. A one-step approach, where
functional connectivity at source space level is directly estimated from that a sen-
sor level might mitigate such an effect. A possible one-step approach has already
been introduce in Chapter 4, where we showed that the Tikhonov filter factors as-
sociated with the linear problem that directly relates the cross-power spectrum at
source space level with that at sensor level present a smoother behaviour that looks
promising. The second drawback is the use of Tikhonov method to solve the in-
verse problem. Such a method has the great advantage of having a closed formula
for the solution of the inverse problem, however the `2-norm in the penalty term
(see Section 2.3) promotes smoothness in the solution, but, when dealing with brain
activity this is not desirable, or rather it is desirable along time, but it is not in space
as at any time typically few sources are active. Such a limitation can be overcome
by employing `1-regularisation which has the peculiarity of promoting sparsity on
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the solution.
It is with these premises that in this chapter we will investigate how a one-step

approach together with `1 regularisation can improve functional connectivity esti-
mation. Specifically we will show some preliminary results obtained by carrying
on two simulations. In details, we simulated two MEEG sensor level configura-
tions and for each of them we compared functional connectivity estimated on the
one hand with the standard two-step approach plus Tikhonov regularisation, on the
other hand with the one-step approach plus `1 regularisation.

This chapter is organised as follow. In Section 7.1 we will describe the one-
step forward problem, while Section 7.2 is dedicated to the inverse problem. In
Section 7.3 we describe how we generated the data. In Section 7.4 we will present
the results. Finally, we will discuss the results in Section 7.5.

7.1 Forward modeling

Let us consider the MEEG problem (3.19)

y(t) = Gx(t) + n(t),

which can be interpreted as a realisation of the linear model

Y(t) = GX(t) + N(t), (7.1)

being y(t) ∈ RM , x(t) ∈ RN and n(t) ∈ RM realisations of the real-valued
multivariate stationary stochastic processes Y(t), X(t) and N(t), and G ∈ RM×N

a leadfield matrix. N(t) is the measurement noise process, which is assumed to be
a white Gaussian process with zero mean and covariance matrix α2I, i.e. N(t) ∼
N (0, α2I), independent from X(t). We are interested in estimating the cross-
power spectrum of X(t), defined, extending Definitions 1.8 and 1.10, as follows.

Definition 7.1. Consider two real-valued multivariate stationary stochastic pro-
cesses, {X(t)}t∈R and {W(t)}t∈R, where X(t) = (X1(t), . . . , XN (t))> ∈ RN

and W(t) = (W1(t), . . . ,WM (t))> ∈ RM . Denoted with RXW(τ) the corre-
sponding correlation function, that is RXW(τ) = E [X(t)W(t+ τ)]>, we assume
RXW
j,k (τ) to be absolutely integrable for all j = 1, . . . , N and k = 1, . . . ,M .

Then, the cross-power spectrum between X(t) and W(t) is a one-parameter fam-
ily of complex-valued matrices SXW(f) ∈ CN×M , whose entries are defined as
the Fourier transform of the corresponding correlation function

SXW
j,k (f) =

∫ +∞

−∞
RXW
j,k (τ)e−2πifτdτ . (7.2)
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Remark 7.2. If we consider W = X in the above definition, we obtain the cross-
power spectrum of the process {X(t)}t∈R, as defined in Definition 1.10; i.e. a
one–parameter family of matrices of size N × N which is denoted as SX(f) :=
SXX(f). Analogously, for the correlation function we return to Definition 1.8, that
is RX(τ) := RXX(τ).

We now resume and extend some concepts that have been introduced in Chap-
ter 4, which are needed for the definition of the one-step linear model.

Proposition 7.3. Consider two real-valued multivariate stationary stochastic pro-
cesses, {X(t)}t∈R and {W(t)}t∈R, of size N and M , respectively. Denoted with
MH the Hermitian transpose of a matrix M, the following properties hold.

(a) SX(f) = SX(f)H ∀f

(b) Given A ∈ RP×N , B ∈ RP×M and defined Z(t) = AX(t) + BW(t), then

SZ(f) = ASX(f)A> + ASXW(f)B> + BSWX(f)A> + BSW(f)B>

(7.3)

(c) If X(t) and W(t) are independent, then SXW(f) = 0.

Proof. (a) Because of the stationarity of {X(t)}t∈R, for all k, j = 1, . . . , N

RX
k,j(τ) = E[Xk(t)Xj(t+ τ)] = E[Xk(t− τ)Xj(t)] = RX

j,k(−τ) .

Thus, the thesis follows from Definition 7.1. Indeed

SX
k,j(f) =

∫ +∞

−∞
RXW
k,j (τ)e2πifτdτ =

∫ +∞

−∞
RXW
j,k (−τ)e−2πifτdτ

=
∫ +∞

−∞
RXW
j,k (τ ′)e−2πifτ ′dτ ′ = SX

j,k(f)

where in the second to last equations we have used the fact that RXW
j,k (τ) ∈

R and set τ ′ = −τ .

(b) From the linearity of the mean it follows that

RZ(τ) = E
[
(AX(t) + BW(t))(AX(t+ τ) + BW(t+ τ))>

]
= ARX(τ)A> + ARXW(τ)B> + BRWX(τ)A> + BRW(τ)B> .

Therefore the thesis follows form Definition 7.1, by exploiting the linearity
of the Fourier Transform.
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(c) Since X(t) and W(t) are independent, RXW(τ) = 0 for all τ . Therefore,
the thesis follows straightforwardly from Definition 7.1.

Let us now get back to equation (7.1)

Y(t) = GX(t) + N(t).

The processes {X(t)}t∈R, {Y(t)}t∈R and {N(t)}t∈R satisfy the hypothesis of
Proposition 7.1, thus it immediately follows that the cross-power spectrum of {Y(t)}t∈R
is

SY(f) = GSX(f)G> + SN(f) . (7.4)

Equation (7.4) defines a linear relationship between the cross-power spectrum
of the observable process {Y(t)}t∈R and that of the unknown process {X(t)}t∈R.
More explicitly, we denote with SX(f) ∈ CN2

, and SY(f),SN(f) ∈ CM2
the

vector obtained by stacking the columns of matrices SX(f), SY(f), and SN(f),
respectively. From Equation (7.4) if follows

SY(f) = G⊗GSX(f) + SN(f) (7.5)

where ⊗ is the Kronecker product.
By splitting real and imaginary parts, Equation (7.5) can be rewritten so to

include only real-valued quantities:(
Re(SY(f))
Im(SY(f))

)
=
(

G⊗G 0
0 G⊗G

)(
Re(SX(f))
Im(SX(f))

)
+
(

Re(SN(f))
Im(SN(f))

)
.

(7.6)
For the ease of notation, let us define

SW(f) :=(Re(SW(f)), Im(SW(f)))> (7.7)

G =
(

G⊗G 0
0 G⊗G

)
(7.8)

so that equation (7.6) can be written in compact form as

SY(f) = GSX(f) + SN(f). (7.9)

Finally, we stress that in MEEG applications the above equations define a linear
relationship between the cross-power spectrum the process that models the MEEG
recordings, SY(f), and that of the process that models brain activity, SX(f), be-
ing SN(f), the cross-power spectrum of the process that models the measurement
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noise.

7.2 Inverse modelling

As mentioned in the introduction of the current chapter, here we are interested
in investigating the potentials of a one-step approach, where the cross-power spec-
trum at source-space level is directly estimated from that at sensor level, together
with the use of `1 regularisation to promote sparsity on the solution. To validate
the proposed method we compared it with the classic two-step approach involv-
ing Tikhonov regularisation. In the next two sections we first recall the two-step
approach, then we describe the one-step approach.

7.2.1 Two-step approach

The two step estimate of the cross-power spectrum is achieved, accordingly to
Section 3.7, as follow.

i. First, a regularised estimate, xλ(t), of the neural activity, x(t), is obtained by
solving the MEEG inverse problem associated with equation (3.19). Here we
consider the Minimum Norm Estimate (MNE) (Hämäläinen and Ilmoniemi,
1994b), which is defined as

xλ(t) = arg min
x(t)

{
‖Gx(t)− y(t)‖22 + λ‖x(t)‖22

}
; (7.10)

where λ is a proper regularisation parameter and ‖ · ‖2 is the `2-norm.

ii. Then the cross-power spectrum, Sxλ(f), is computed from the estimated
time series by exploiting Whelch’s method (Welch, 1967).

In order to compute the regularised estimate of neural activity the parameter λ
needs to be set. Here, among all possible λ > 0, we consider the one that provides
the optimal estimate of neural activity, where optimality is quantified in terms of
the `2-norm of the difference between the estimated and actual neural activity.

Definition 7.4. Given the regularised solution (7.10), we define the optimal regu-
larisation parameter for the reconstruction of x(t) as

λ∗x = arg min
λ
εx(λ) with εx(λ) =

∑
t

‖xλ(t)− x(t)‖22 ; (7.11)

εx(λ) will be called reconstruction error.
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7.2.2 One-step approach

Let us consider a realisation of equation (7.9)

Sy(f) = GSx(f) + Sn(f), (7.12)

where capital letters Y, X and N gave way to small letters y, x and n to indicate
that we are dealing with realisations of the processes that model MEEG recordings,
brain activity and measurement noise respectively. The one-step approach consists
in estimating source space level cross-power spectrum, Sx(f), directly from sensor
level cross-power spectrum, Sy(f), by solving the inverse problem associated with
equation (7.12). To solve such a problem here we use `1 regularisation method, that
is, we solve the minimisation problem

arg min
x
{Φλ(Sx(f))} (7.13)

being

Φλ : R2N2 −→ R
Sx(f) 7−→ ‖GSx(f)− Sy(f)‖22 + λ‖Sx(f)‖1.

(7.14)

We implemented the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
(Beck and Teboulle, 2009) to compute the solution of problem (7.13). More details
on `1 regularisation and FISTA can be found in Section 2.3.3, however in the fol-
lowing we will provide some information on how we implemented the algorithm
in this specific case.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

First of all, for computational reasons the algorithm we implemented finds a
solution to problem (7.13) for a specific frequency. Henceforth, for the ease of
notation, we drop the dependence on frequency of the cross-power spectra, with
the meaning that we are evaluating them at the desired frequency. We implemented
FISTA on matlab based on the paper of Beck and Teboulle (Beck and Teboulle,
2009). The pseudocode of the algorithm is reported in Algorithm 1. To speed up
the computation of Sx

k = (ReSx
k , ImSx

k )> andWk = (ReWk, ImWk)> at lines 4
and 6 we computed the real and imaginary parts separately, that is

ReSx
k = T λ

L

(
ReWk−1 −

2
L

(G⊗G)>((G⊗G)ReWk−1 − ReSy)
)

(7.15)

ImSx
k = T λ

L

(
ImWk−1 −

2
L

(G⊗G)>((G⊗G)ImWk−1 − ImSy)
)
, (7.16)
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and

ReWk = ReSx
k + tk−1 − 1

tk
(ReSx

k − ReSx
k−1), (7.17)

ImWk = ImSx
k + tk−1 − 1

tk
(ImSx

k − ImSx
k−1). (7.18)

We set the maximum number of iterations, K, equal to 10 000, the tolerance ε
equal to 10−5. Accordingly to Section 2.3.3 we set the Lipschitz constant as
L = 2σmax(G>G); to compute the eigenvalues of G>G we observed that it is a
block diagonal matrix thus its eigenvalues correspond to that of the blocks that de-
fine it, i.e (G⊗G)>(G⊗G). Now, the singular values of G⊗G are the products
between all possible pairs of singular values of G, thus, denoted with σM the maxi-
mum singular value of G, the maximum singular value of G⊗G is σ2

M ; and finally
the maximum eigenvalue of (G⊗G)>(G⊗G), which is equal to that of G is σ4

M .
We initialised Sx

0 as a Gaussian random vector of zero mean and standard deviation
1. Finally, we run the algorithm for different values of regularisation parameters,
λ. We recall that the regularisation parameter trades off the importance given to the
penalty and the fidelity terms in equation (7.14); high values of λ generate a too
sparse solution that badly fits the data, on the contrary small values of λ generate a
little sparse solution that overfits the data. To find a reasonable range for the tested
parameters we computed the quantity 2‖G>Sy‖∞ which has been proven to be the
upper bound to find non-null solutions (Gerstoft et al., 2015). Then, we set 15 val-
ues of λ logarithmically spaced between 2‖G>Sy‖∞ ·10−3 and 2‖G>Sy‖∞ ·10−1.

7.3 Data generation and simulation pipeline

We exploited the MEEG linear model (3.19) to generate two MEEG sensor
level recordings, corresponding to two different brain activity configurations. We
used a leadfild matrix available in the sample dataset of MNE Python (Gramfort
et al., 2014). We selected magnetometers and set a fixed orientation. For computa-
tional reasons, the available source space, containing 1884 sources, was uniformly
down-sampled to obtain 274 sources. Thus, our model had M = 102 sensors
and N = 274 dipole sources. For the generation of brain activity, we simulated
two different triplets of sources, (z1(t), z2(t), z3(t))>, whose time series followed
two different multivariate autoregressive (MVAR) models of order P = 5. As for
one brain activity configuration, we imposed unirectional coupling from the first
source to the second, while the third one was uncorrelated. The MVAR model that
we used to simulate such a configuration was
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Algorithm 1: FISTA applied to Sy = GSx + Sn

Input: Sx
0 , Sy, G, L, λ, K, ε

Output: Sx
kend

1 Initialization: t0 = 1,W0 = Sx
0

2 while k < K do
3 k = k + 1

4 Sx
k = T λ

L

(
Wk−1 −

2
L
G>(GWk−1 − Sy)

)
5 tk = 1

2 + 1
2

√
1 + 4t2k−1

6 Wk = Sx
k + tk−1 − 1

tk
(Sx

k − Sx
k−1)

7 e =
‖Sx

k − Sx
k−1‖1

2N2
8 if e < ε then
9 break

10 return Sx
kend

 z1(t)
z2(t)
z3(t)

 =
P∑
k=1

 a1,1(k) 0 0
a2,1(k) a2,2(k) 0

0 0 a3,3(k)


 z1(t− k)
z2(t− k)
z2(t− k)

+

 ε1(t)
ε2(t)
ε3(t)

 ,
t = 0, . . . , T − 1.

(7.19)

For the other brain activity configuration, we imposed unidirectional coupling
from the first source to the second, and from the first to the third. The correspond-
ing MVAR model was

 z1(t)
z2(t)
z3(t)

 =
P∑
k=1

 a1,1(k) 0 0
a2,1(k) a2,2(k) 0
a3,1(k) 0 a3,3(k)


 z1(t− k)
z2(t− k)
z2(t− k)

+

 ε1(t)
ε2(t)
ε3(t)

 ,
t = 0, . . . , T − 1.

(7.20)

The non-zero elements ai,j(k) of the coefficient matrices were drown from a
normal distribution of zero mean and standard deviation 0.9, and T = 10 000.
We retained only (i) coefficient matrices providing a stable MVAR model [88];
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(ii) triplets of signals, (z1(t), z2(t), z3(t))>, such that the `2-norm of the strongest
one was less than 3 times the `2-norm of the weakest one; and (iii) triplet of sig-
nals, (z1(t), z2(t), z3(t))>, such that the non-null out of diagonal elements of the
cross-power spectrum at the frequency at which they peaked were greater then 1/3

of the corresponding diagonal elements. Each triplet of time series was assigned
to a different triplet of sources randomly chosen in the source space so that their
distance was grater than 4 cm, and their intensity at sensor level was similar, that is
the ratios of the norms of the corresponding columns of the leadfield matrix were
close to one. Null activity was assigned to the remaining N − 3 sources. After-
wards, the simulated brain activity was projected to sensor level by multiplying for
the leadfield matrix and white Gaussian noise was added so that the signal-to-noise
ratio was 5 dB.
Starting from the simulated MEEG recordings we then estimated source space
cross-power spectrum by exploiting both the two-step and the one-step approaches.
As for the two-step approach we followed the pipeline described in Section 7.2.1:
(i) first, we estimated the neural activity using Tikhonov method and setting the reg-
ularisation parameter by numerically minimising the reconstruction error, εx(λ),
using the built-in matlab function fminsearch that implements an iterative pro-
cedure based on the simplex method developed by Lagarias and colleagues (La-
garias et al., 1998) and setting the starting point of the simplex method equal to

10
(
− SNRX

10

)
, which corresponds to the optimal value of λx in the case of white

Gaussian signals (Vallarino et al., 2020); (ii) then, from the estimated neural ac-
tivity, we computed the cross-power spectrum. As for the one-step approach, we
first computed the sensor-level cross-power spectrum, then we applied FISTA, as
described in Section 7.2.2, to problem (7.13) setting the frequency as the one at
which the cross-power spectrum of the simulated brain activity peaked. During
both approaches the cross-power spectra were computed by exploiting Welch’s
method (Welch, 1967).

7.4 Results

Figures 7.1 and 7.2 show the real and imaginary parts, respectively, of the sim-
ulated and estimated cross-power spectra, related to the brain activity simulated by
exploiting MVAR model (7.19). All spectra in the figures were computed at the
frequency at which the cross-power spectrum of the simulated brain brain activity
peaked, i.e. the frequency that was used to apply FISTA. In both figures the top row
shows the cross-power spectrum of the simulated data, i.e. the ground truth. The
numbers on the vertices indicate the source numbers; in this case there was direc-
tional coupling from source 1 to source 2, while the third source was uncorrelated.
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The green dots in correspondence of the third source indicate its position. The mid-
dle and bottom lines show the estimated cross-power spectra by using the one-step
and the two-step approaches. In all cases, only connections with intensity in the
top 90% were displayed. As for the cross-power spectrum estimated with the one-
step approach, only the reconstruction obtained with one regularisation parameter
is shown. Such a parameter has been chosen by visual inspection as the one pro-
viding the best estimate. It is clear from the figures that the one-step approach plus
`1 regularisation outperforms the classic two-step approach with Tikhonov regu-
larisation. Indeed the one-step approach correctly identifies source 1 and source 2
and the connection between them, while the two-step approach estimates a cloud
of connections around the true sources.

Figures 7.3 and 7.4 are the analogue of Figures 7.1 and 7.2, when exploiting
MVAR model (7.20). In this case directional coupling from source 1 to source 2
and from source 1 to source 3 was simulated, however, as the first line of the figures,
i.e. the ground truth, shows, also connection between source 2 and 3 was present.
This is due to the fact that being source 2 and 3 led by the same source, they
inevitably show connection between each other, from a statistical viewpoint. This
is due to the fact that we are showing the results related to one specific frequency,
which may not be representative of the coupling configuration. Also in this case
is clear that the one-step approach plus `1 regularisation outperforms the two step
approach plus Tikhonov regularisation. Indeed the one-step approach correctly
reconstruct the locations of the active sources and the connections among them,
while the two-step approach fails.

7.5 Discussion

In this chapter we showed some preliminary results on the potentials of using
a one-step approach to directly estimate the cross-power spectrum of brain activity
from the cross-power spectrum of the corresponding MEEG recordings. Specifi-
cally, we simulated two brain activity configurations and we generated the corre-
sponding sensor level recordings. We then applied the proposed one-step approach
and we compared the estimated cross-power spectra with that obtained by using
the classic two-step approach. From Figures 7.1, 7.2, 7.3 and 7.4 it is evident that
the proposed method outperforms the classic two-step approach. Indeed, in both
cases the one-step approach correctly identifies the active sources and estimates the
connections among them, while the two-step approach estimates several spurious
connections, which make it impossible to individuate the true ones.

The results we showed regarding the one-step approach refer to a specific regu-
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Figure 7.1: Real parts of the simulated cross-power spectra and the ones estimated with the one-
step and two-step approaches. Numbers on the top row indicate the simulated sources, whose time
courses where simulated exploiting MVAR model 7.19, thus directional coupling from source 1 to
source 2 and from source 1 to source 3 was imposed. Only the top 90% connections in absolute
value are displayed. Green dots in correspondence of the third sources show the location of the third
source, which otherwise would not appear in the plot being the intensities of the components of the
cross-power spectrum involving it in the lower 10%.
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MVAR model 1
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Figure 7.2: Imaginary parts of the simulated cross-power spectra and the ones estimated with the
one-step and two-step approaches. Numbers on the top row indicate the simulated sources, whose
time courses where simulated exploiting MVAR model 7.19, thus directional coupling from source
1 to source 2 and from source 1 to source 3 was imposed. Only the top 90% connections in absolute
value are displayed. Green dots in correspondence of the third sources show the location of the third
source, which otherwise would not appear in the plot being the intensities of the components of the
cross-power spectrum involving it in the lower 10%.
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MVAR model 2
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Figure 7.3: Real parts of the simulated cross-power spectra and the ones estimated with the one-
step and two-step approaches. Numbers on the top row indicate the simulated sources, whose time
courses where simulated exploiting MVAR model 7.20, thus directional coupling from source 1 to
source 2, while the third was uncorrelated. Only the top 90% connections in absolute value are
displayed.
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Figure 7.4: Imaginary parts of the simulated cross-power spectra and the ones estimated with the
one-step and two-step approaches. Numbers on the top row indicate the simulated sources, whose
time courses where simulated exploiting MVAR model 7.20, thus directional coupling from source
1 to source 2, while the third was uncorrelated. Only the top 90% connections in absolute value are
displayed.
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larisation parameter, λ, which was selected by visual inspection. That is, we tested
several parameters, and we showed the one that provided the best cross-power
spectrum estimate. The rational behind this choice is that we wanted to compare
the one-step and the two-step approaches at their best performances. In fact, also
the regularisation parameter for the two-step estimate of the cross-power spectrum
was automatically selected as the one providing the best results. Of course, such a
choice is not feasible in experimental contexts, where the ground truth is, of curse,
not available, however it let us to show the potentials of our method. Future works
will investigate the problem of setting the regularisation parameter in experimental
contexts.

Finally we must say that, for computational reason, we had to down-sample the
source space. Thus, our source space contained only 274 sources. Such a number
is small, compared to the dense source spaces that contain up to 30 000 sources,
however it is a reasonable number when compared to studies that divide the brain
into bigger areas and only study connectivity among these areas (Shen et al., 2012;
Mai et al., 2015; Toga et al., 2006).



Chapter 8

Towards applications: the
computation of the theta-to-alpha
transition frequency from resting
state EEG data

In the previous chapters we investigated the problem of optimally estimating
brain functional connectivity from MEEG data. The analysis was conducted both
in analytical and numerical frameworks, employing, for the latter a large number
of simulated data. We mainly focused on the methodological insights of estimating
functional connectivity, however it also worth mentioning that functional connec-
tivity can provide important information about brain functioning in both healthy
subjects and patients. Numerous studies demonstrated that the spectral content of
functional connectivity in the natural frequency bands in patients affected by neu-
rodegenerative diseases is different from that of healthy subjects (Musaeus et al.,
2019; Babiloni et al., 2017; Núñez et al., 2019; Duan et al., 2020). Thus, functional
connectivity analysis might be a powerful tool in the process of diagnosis (Mam-
mone et al., 2018; Morabito et al., 2016). To this end a correct identification of the
natural frequency bands at an individual level is of utmost importance.

In this chapter we will present the results of (Vallarino et al., 2021a), i.e. we
will introduce a novel method for the identification of the theta-to-alpha transition
frequency (TF). Indeed there is evidence that the EEG power in the alpha band
and in the slow-wave frequency bands (e.g. theta and delta) shows a direct and
an inverse correlation with cognitive performances, respectively. However, such
harmonic behaviours often present significant individual differences (Donoghue
et al., 2020) and, moreover, alpha and theta bands, whose power expresses op-
posite pathophysiological meanings, are contiguous. Therefore, at the individual
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level the risk is consistent that part of the alpha power band is included in the
range of the theta power (i.e., 4-8 Hz), thus implying a wrong interpretation of its
(patho)physiological meaning. Establishing TF at an individual level is therefore
of paramount importance in order to avoid misinterpretation of quantitative EEG
(qEEG) data. The availability of a computational tool for the determination of
TF represents a crucial prerequisite for a meaningful usability of frequency-band
power analysis for both research and clinical purposes.

The current standard for TF determination is represented by a more than twenty
years old study performed by Klimesch (Klimesch, 1999). This approach relies on
the fact that event-related de-synchronisation induces a decrease of the alpha power
and an increase of the theta power of the event-related power spectrum, with re-
spect to the power spectrum measured during resting state (Klimesch et al., 1997).
It immediately follows that theta-to-alpha TF can be determined by comparison
between the task-related and the resting state power spectra. Klimesch’s approach
has been successfully used in a number of papers (Singh et al., 2015; Moretti et al.,
2004, 2007; Saad et al., 2018). However, its main drawbacks are that (i) it needs
the acquisition of two data sets, i.e. a resting state and a event-related time series;
and (ii) the task utilised for event-related recording must induce changes in the
power spectrum significant enough to allow the identification of variations in the
alpha and theta power.

This chapter introduces transfreq, a publicly-available Python package imple-
menting a novel algorithm for the automated computation of TF from theta to alpha
band that works even when just resting-state EEG time series are available. This
computational approach relies on the determination of appropriate features associ-
ated with the power spectrum measured at each channel, and on the application
of an unsupervised algorithm that automatically identifies two clusters of EEG
sensors associated with the alpha and theta bands, respectively. In transfreq we
implemented four different strategies for selecting the sensor-level features and the
corresponding clustering algorithms (Saxena et al., 2017). The workflow of these
approaches is illustrated in the case of a test-bed example and validated on both
an open-source data set and time series recorded during an experiment performed
in our laboratory. For most subjects in both data sets transfreq estimate a value
of TF close to that obtained by using Klimesch’s method. Additionally, we show
some typical scenarios in which the classic Klimesch’s method fails in capturing
the correct TF while transfreq still returns plausible estimates.

This chapter is organised as follows. Section 8.1 describes the novel method
and compares it with the standard Klimesch’s approach. Section 8.2 illustrates the
results obtained by applying the method in the case of two data sets. Finally in
Section 8.3 we will discuss the results.
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8.1 Materials and methods

8.1.1 Klimesch’s method

A classic approach to compute theta-to-alpha TF is that proposed by Klimesch
(Klimesch, 1999) and schematically depicted in Figure 8.1A. In detail, Kilmesch’s
method requires two EEG recordings as input, one acquired during a resting-state
condition and one acquired while the subject is performing a task. For both record-
ings and for each of the N EEG sensors, the power spectrum (Vallarino et al.,
2020; Bendat and Piersol, 2011) of the corresponding time series is computed and
normalised by dividing for the norm over all frequencies, i.e., we computed

P̃ taski (f) = P taski (f)∑
f P

task
i (f)

and P̃ resti (f) = P resti (f)∑
f P

rest
i (f) , (8.1)

where P taski (f) and P resti (f) are the power spectra at frequency f of the signal
recorded by the i-th sensor during the task and the resting-state conditions, respec-
tively. Then, the mean over all the EEG channels of the normalised power spectra
in (8.1) is computed to obtain two spectral profiles, namely

Stask(f) = 1
N

N∑
i=1

P̃ taski (f) and Srest(f) = 1
N

N∑
i=1

P̃ resti (f) . (8.2)

Klimesch’s method relies on the fact that Srest usually presents a peak in the alpha
band while, due to task-related alpha de-synchronisation, Stask presents a lower
intensity in the alpha band and a higher intensity in the theta band with respect to
Srest (Klimesch, 1996; Klimesch et al., 1998; Schacter, 1977). TF is thus defined
as the highest frequency before the individual alpha peak (IAP) at which Stask and
Srest intersect. Here, the IAP is defined as the frequency in the range [7, 13] Hz at
which Srest peaks (Babiloni et al., 2004).

8.1.2 Transfreq algorithm

In this chapter we introduce transfreq, a method to automatically compute TF
from theta to alpha band when only resting-state EEG data are available. Transfreq
relies on a rationale similar to that of Klimesch’s method. Namely, TF is defined as
the intersection between two spectral profiles differing in their content within the
alpha and theta bands. However, with respect to Klimesch’s method, such profiles
are computed by exploiting the fact that alpha and theta activities are not uniformly
expressed across the different EEG channels. In fact, some channels present high
alpha activity (typically, channels above the occipital lobe), whereas others show
lower alpha and higher theta activities (typically, channels corresponding to tem-
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poral and frontal brain areas) (Klimesch, 1996; Nunez et al., 2001). Consequently,
two groups of channels can be identified: the first group includes channels char-
acterised by a preponderant alpha activity (this group plays a role analogous to
the one of EEG data measured at rest in Klimesch’s method); the second group in-
cludes channels showing preponderant theta activity and limited alpha activity (this
second group plays a role analogous to the one of the task-evoked EEG recordings
in Klimesch’s method).

The transfreq pipeline is schematically illustrated by Figure 8.1B and Algo-
rithm 2. In detail, for each EEG channel the normalised power spectrum is com-
puted as in equation (8.1), that is

P̃i(f) = Pi(f)∑
f Pi(f) , ∀i ∈ {1, . . . , N}. (8.3)

TF is determined through the following iterative procedure.

(i) Set an initial value for the alpha and theta frequency-bands. Specifically,
the alpha frequency-band is identified as a 2 Hz range centred on the IAP,
which is defined as the frequency where the power spectrum averaged over
all sensors peaks; the theta frequency-band is set equal to [5, 7] Hz, or to
[IAP − 3, IAP − 1] Hz if the previous interval overlaps with the alpha
frequency-band.

(ii) Compute, for each channel, the alpha and theta coefficients by averaging the
normalised power spectrum P̃i over the corresponding frequency band.

(iii) Apply a clustering algorithm to identify two groups of channels based on
the alpha and theta coefficients. The channels in the first group, denoted
as Gθ, will be characterised by low alpha and high theta activities, while
the channels in the second group, Gα, will be characterised by high alpha
and low theta activities. Two spectral profiles are thus obtained through a
weighted average of the power spectra over the two groups, that is

Sθ(f) = 1∑
i∈Gθ w

θ
i

∑
i∈Gθ

wθi P̃i(f) and Sα(f) = 1∑
i∈Gα w

α
i

∑
i∈Gα

wαi P̃i(f),

(8.4)
where wθi and wαi are the theta and alpha coefficients for channel i, respec-
tively.

(iv) Define a first estimate of TF as the highest frequency before the IAP at which
Sθ and Sα intersect.

(v) Use the value of TF computed in (iv) to define new, more accurate, alpha
and theta frequency bands, set equal to [max{IAP −1, TF}, IAP + 1] and
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[TF − 3, TF − 1], respectively. Such a choice guarantees the intervals to
be fully characterised by alpha and theta activation. Indeed, we chose nar-
rower bands with respect to the classic 4 Hz ranges defined in the literature
(Bazanova and Vernon, 2014; Klimesch, 1999) and we impose at least a 1
Hz separation between the intervals.

Steps (ii)-(v) are iterated until a desired level of accuracy is reached, quantified
as the difference between two consecutive estimates of TF. The desired level of
accuracy is set equal to the highest value between 0.1 Hz and the frequency resolu-
tion ∆f . The rationale behind this choice is that 0.1 Hz is an acceptable error when
computing TF. However, if the frequency resolution is lower (i.e ∆f > 0.1 Hz),
setting the desired level of accuracy to 0.1 Hz would be the same as setting it to 0,
which is a too strong requirement; therefore in such cases the level of accuracy is
set equal to the frequency resolution.

We point out that the effectiveness of transfreq depends on the clustering pro-
cedure used to define the two groups of channels Gθ and Gα. In transfreq we have
implemented four different algorithms, described in the next sub-sections.

Algorithm 2: transfreq core algorithm
Input: Resting-state EEG data recorded by N sensors
Output: TF
Compute and normalise sensors power spectra as in Eq. (8.3)
Initialise theta and alpha frequency bands
ε := |TFnew − TFold| = +∞
while ε ≥ toll do

Compute alpha and theta coefficients, wαi , wθi , i = 1, . . . , N
Define channel groups, Gθ and Gα, through a clustering method
Update TF
Update ε
Update theta and alpha frequency bands

Clustering method 1: 1D thresholding

The first clustering method implemented in transfreq is based on the ratio be-
tween the alpha and theta coefficients computed for each channel. In fact, channels
with a low value of such alpha-to-theta ratio are characterised by low alpha and
high theta activities, whereas channels with a high value are characterised by high
alpha and low theta activities. The first group of channels, Gθ, is thus defined by
the four channels showing the lowest values of the alpha-to-theta ratio, while the
second group, Gα, is defined by the four channels showing the highest values of
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Figure 8.1: Comparison between the pipelines of the classic Kilmesch’s method (A) and of transfreq
(B).

the same ratio. A visual representation of this approach on a representative data set
can be seen in Figure 8.2A. In transfreq, the number of channels in each group has
been set equal to 4 after computing and visually inspecting the results for different
values of such a parameter. In fact, the overall behaviour of the algorithm was
similar across the different tested values.
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Clustering method 2: 1D mean-shift

One drawback of the previous approach is the need to heuristically set the num-
ber of channels within the two groups Gα and Gθ. To overcome such a limitation,
we implemented a second clustering approach where the Mean Shift algorithm
(Comaniciu and Meer, 2002) is used to cluster the EEG sensors with respect to
the ratio between the alpha and theta coefficients computed, for each channel, as
described in the previous sub-section. To this end we used the MeanShift func-
tion available within the Python package Scikit Learn (Pedregosa et al., 2011) that
also automatically determines the number of clusters. Gθ is then defined equal to
the cluster containing the channel with the lowest value of the alpha-to-theta ratio,
while Gα is set equal to the cluster containing the channel with the highest value
of the same ratio. A visual representation of this approach on a representative data
set can be seen in Figure 8.2B.
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Figure 8.2: Performance illustration of the 1D clustering approaches thresholding (A) and mean-
shift (B). Both panels show the value of the ratio between alpha and theta coefficients as function
of the EEG sensors. Channels that belong to Gθ and Gα are represented as blue and orange dots,
respectively. In transfreq, the remaining channels (greed dots) are excluded from the subsequent
analysis.

Clustering method 3: 2D k-means

Both approaches described in the previous sub-sections rely on 1-dimensional
clustering techniques that use the ratio between the alpha and theta coefficients as
feature. In the third approach implemented in transfreq we exploited the k-means
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algorithm (Lloyd, 1982) to cluster the EEG sensors by using the alpha and theta
coefficients as two distinct features. To this end, we used the KMeans function
within the Python package Scikit Learn (Pedregosa et al., 2011). The number of
clusters to generate is set equal to 2. Then Gα is defined as the cluster whose
centroid shows the highest value of the alpha coefficient, while the other cluster
defines Gθ. As illustrated in Figure 8.3A, channels belonging to Gα (orange dots)
typically present a higher alpha coefficient and a lower theta coefficient than the
other ones (blue dots).

Clustering method 4: 2D adjusted k-means

The fourth clustering approach implemented in transfreq takes as input the two
sensors groups, Gα and Gθ, computed using the k-means algorithm as described
in the previous sub-section. However, the two groups are now adjusted so that
only sensors showing the highest inter-cluster difference in terms of the alpha and
theta coefficient values are retained. To this end, as illustrated in Figure 8.3B, we
removed from Gα and Gθ all points laying between the two lines that pass through
the centroids and are perpendicular to the segment connecting the two centroids.
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Figure 8.3: Performance illustration of the 2D clustering approaches k-means (A) and adjusted k-
means (B). Both panels show the value of the theta coefficients on the y-axis and that of the alpha
coefficients on the x-axis. Channels that belong to Gθ and Gα are represented as blue and orange
dots, respectively. In transfreq, the remaining channels (green dots) are excluded from the subsequent
analysis.
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8.1.3 Software architecture

The approach described in the previous section is implemented in the publicly
available Python library transfreq (https://elisabettavallarino.github.io/transfreq/).
As shown in Table 8.1, transfreq comprises two modules: a set of three operative
functions, that allow the estimation of TF either with the classic Klimesch’s method
or with our approach, and a set of six functions to visualise the results.

Module 1: operative functions

All the operative functions require in input the power spectra of the recorded
EEG data. These power spectra have to be provided as matrices of size N × F ,
where N is the number of EEG sensors and F is the number of frequencies in
which the power spectra are evaluated.

The function compute transfreq implements the iterative procedure described
in Algorithm 2. Customised estimation of the transition frequency may be ob-
tained through the function compute transfreq manual by providing two prede-
fined groups of channels Gα and Gθ. In this case, TF is computed by looking at
the intersections between the corresponding spectral profiles Sα and Sθ. Both func-
tions return a dedicated dictionary, called tfbox in Table 8.1, that contains: (i) the
results of the clustering procedure, together with the alpha and theta coefficients,
wαi and wθi , associated with each sensor; (ii) the name of the employed algorithm;
(iii) the estimated value of TF.

In order to provide an exhaustive toolbox for computing the theta-to-alpha
TF we also implemented a function for the computation of TF with Klimesch’s
method. Such a function is named compute transfreq Klimesch and only returns
the estimated value of TF.

Module 2: visualisation functions

As shown in Table 8.1, transfreq offers the users two functions to visualise
features of the data provided in input, namely the normalised EEG power spectrum
(function plot psds) and the corresponding alpha and theta coefficients (function
plot coefficients).

Three other functions allow the user to visualise results from each step of our
approach, that is: (i) the alpha and theta coefficients grouped according to the
results of the clustering procedure (function plot clusters); (ii) the correspond-
ing channels group Gα and Gθ located on top of topographical maps (function
plot channels); (iii) the final estimated value of TF on top of the spectral profiles
Sα and Sθ (function plot transfreq). The function plot channels makes use of the

https://elisabettavallarino.github.io/transfreq/
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Python package visbrain (Combrisson et al., 2019), and, in particular, we modified
its function TopoObj to optimise it to our visualisation purpose.

Eventually, the function plot transfreq klimesch is dedicated to plot the value
of TF estimated using the classic Klimesch’s method.

Module 1: Operative functions
Name Description Input
compute transfreq Computation of TF rest PS
compute transfreq manual Computation of TF (customised clusters) rest PS; Gα; Gθ
compute transfreq klimesch Computation of TF (Klimesch’s method) rest PS; task PS

Module 2: Visualisation functions
Name Description Input
plot psds Normalised PS power spectrum rest/task PS
plot coefficients α and θ coefficients or their ratio rest/task PS
plot clusters Computed clusters tfbox
plot channels Gα and Gθ on scalp tfbox; channel locations
plot transfreq TF on top of Sα and Sθ rest PS; tfbox
plot transfreq klimesch TF on top of Srest and Stask rest and task PS; TF value

Table 8.1: Functions implemented within transfreq. The table provides the name of each function
(first column), a short description of their purpose (second column), and the required input variables
(third column). Here, rest PS and task PS stand for resting state and task-related EEG power spec-
trum, respectively; tfbox is a dedicated dictionary output of the operative functions. For some of
the functions, an additional set of optional arguments may be passed by the user, such as predefined
alpha and theta frequency-band, or the clustering approach to be used for defining Gα and Gθ . The
full list of these additional parameters may be found in the package documentation.

8.1.4 Data

We validated transfreq by using two EEG data sets. The first one is an open-
source data set, while the second one is an in-house data set we recorded in our
lab. We used two different data sets to test the robustness of transfreq across data
recorded in different experimental conditions.

Open-source data set

This data set contains EEG data available at OpenNeuro, a free and open plat-
form for sharing neurophysiological data (Gorgolewski et al., 2017), at the acces-
sion number ds003490 (data set DOI doi:10.18112/openneuro.ds003490.v1.1.0).
Data comprise both resting state and stimulus auditory oddball EEG recordings,
sampled at 500 Hz, from 25 Parkinson’s patients and 25 matched controls. For
Parkinson’s patients, two sessions are available, while for healthy controls one ses-
sion is available. More information about this data set can be found in the paper by
Cavanagh and colleagues (Cavanagh et al., 2018). For each subject and for each
session we selected two minutes of recording under stimulation, and one minute
resting state eyes-closed recording.

doi:10.18112/openneuro.ds003490.v1.1.0
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In-house data set for validation

This data set included 80 traces acquired during a previous multicenter study,
namely the Innovative Medicines Initiative PharmaCog project: a European ADNI
study (Galluzzi et al., 2016). This study aimed at investigating multiple biomarkers
in a population with amnesic mild cognitive impairment (MCI), by following sub-
jects for three years or until conversion to dementia. EEG was repeatedly acquired
every 6 months; thus the 80 traces refer to 16 subjects undergoing EEG from one to
7 times. The 16 subjects (8 males, 8 females, age range 55-82 years, mean: 70±6
years; mini-mental state examination score range at first evaluation: 23-30, mean:
26.5±2.13) included 11 who converted to Alzheimer disease dementia during the
follow-up, 2 subjects who convert to frontotemporal dementia, and 3 subjects who
remained in an MCI stage or even reverted to a normal condition.
For the analysis we selected two and a half minutes of resting state eyes-closed
recording and two and a half minutes of resting-state eyes-opened recording, where
data showed a de-synchronisation of the alpha rhythm (Gómez-Ramı́rez et al.,
2017). Both data were recorded with a sampling frequency of 512 Hz.

8.1.5 Data analysis

The recorded time series from both data sets were first pre-processed using
the MNE-Python analysis package (Gramfort et al., 2013). For each subject and
for each condition, the EEG recording was filtered between 2 and 50 Hz, while
bad segments were manually removed and bad channels were interpolated. Then,
data were re-referenced using average reference (Offner, 1950) and Independent
Component Analysis (ICA) (Jutten and Herault, 1991) was applied for artefact
and noise removal. Remaining bad segments were automatically rejected by using
the autoreject Python package (Jas et al., 2017). Finally, the pre-processed EEG
recordings were visually inspected by experts and discarded when they did not
present a visible alpha peak. In this way, in the open-source data set we excluded
the first session of four subjects and both sessions of one subject. In the in-house
data set all sessions involving four subjects were excluded from the analysis.

Power spectra were computed in the 2-30 Hz range with the multitapers method
(Thomson, 1982). With such a method the frequency resolution of the power spec-
tra depends on the time resolution and duration of the EEG recordings. In order to
apply the Klimesch’s method, the spectral profiles under the two conditions (rest
and task) need to have the same frequency resolution. To this end the length of
both recordings was set equal to the length of the shortest one. Average duration
of the EEG recordings from the open source data set was 58 s, while average dura-
tion of the EEG recordings from the in-house data set was 134 s. Afterwards, TF
was computed using both the Klimesch’s method and transfreq. Finally, the results
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obtained with Klimesch’s method were visually inspected by experts and excluded
when the method did not provide reliable results. Exclusion criteria comprised
cases in which the two spectral profiles did not intersect as well as cases in which
the two spectral profiles overlapped. This process led to the exclusion of 19 EEG
recordings from the open-source data set and 14 EEG recordings from the in-house
data set. Therefore, the analysis to validate transfreq was performed on a total of
50 EEG recordings from the open-source data set and 45 from the in-house data
set.

8.2 Results

8.2.1 Transfreq performances on an illustrative example.

We first tested the performances of transfreq when applied to an illustrative
example picked up from the open-source data set. Figure 8.4 and Figure 8.5 show
the results provided by the tool when the four different clustering algorithms were
applied. For all algorithms, the resulting Gα mainly contained channels that lie
over the occipital lobe and showed a higher alpha activity than the channels in Gθ.

When 1D thresholding is used, both Gα and Gθ contain a pre-defined number
of sensors (4 in this case). Instead, the other methods automatically estimate the
size of Gθ and Gα, and thus the two groups may contain a different number of
channels.

While with the 2D k-means Gα and Gθ span all the EEG channels, the 2D
adjusted k-means starts from the two groups defined by using k-means and selects
only the channels showing a high inter-cluster difference. Specifically, as illus-
trated in Figure 8.5, the channels in Gα (Gθ) showed both a high alpha (theta)
activity and a low theta (alpha) activity.

Depending on the selected clustering approach, transfreq may return different
estimates for TF, as illustrated in Figure 8.6. With this subject, the value of TF
estimated by the Klimesch’s method was 7.29 Hz, while transfreq returned 7.38
Hz with 1D thresholding, 7.39 Hz with 1D mean-shift, 7.22 Hz with 2D k-means,
and 7.19 Hz with 2D adjusted k-means.

8.2.2 Validation on the open-source data set

As illustrated in Figure 8.7, for most subjects in the open-source data set, the
difference ∆TF between the TF value estimated by transfreq and by Klimesch’s
method was in absolute value below 1 Hz. Specifically, |∆TF | was lower than 1
Hz for 82% of the subjects when 1D thresholding was employed for clustering,
76% in the case of 1D mean-shift, 82% for 2D k-means, and 88% for 2D adjusted
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A
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Figure 8.4: Location on the scalp of channels inGθ (left column) andGα (right column) for one rep-
resentative subject from the open-source data set. Sensors have been clustered by using 1D thresh-
olding (upper row) or 1D mean-shift (lower row). In each panel, red dots represent the selected
channels and, in the background, the topographical map shows the value of the ratio between alpha
and theta coefficients. For the sensors in Gθ , the size of the dots is proportional to the corresponding
theta coefficient, wθi , while for those in Gα the size is proportional to the alpha coefficient, wαi .

k-means. Figure 8.7 also shows that transfreq mainly estimated a lower value of
TF than Klimesch’s method. Since the lowest values of |∆TF | were obtained by
clustering the EEG channels by means of the 2D adjusted k-means method, this is
suggested as the default approach within transfreq.

8.2.3 Improvements of transfreq over the Klimesch’s method

Klimesch’s method relies on an event-related reduction of the alpha activity
that may not occur in practical scenarios due, for example, to an incorrect execu-
tion of the task. Indeed, as shown in Figure 8.8, for some of the subjects in the
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Figure 8.5: Location on the scalp of channels in Gθ (left column) and Gα (right column) for one
representative subject from the open-source data set. Sensors have been clustered by using 2D k-
means (upper row) or 2D adjusted k-means (lower row). As in Figure 8.4, the red dots depict the
selected channels. In the two panels on the left side, referring to Gθ , the size of the sensors and the
background topographical maps represent the theta coefficient, wθi . Instead, the two panels on the
right side, referring to, Gα, show the alpha coefficients wαi .

considered data sets the spectral profiles Stask and Srest perfectly overlapped and
thus Klimesch’s method failed in computing TF.

On the other hand, some subjects may show an event-related modulation of the
alpha frequency (Haegens et al., 2014). As represented in Figure 8.9, in this case
the shift of the alpha peak in Stask prevented the use of Klimesch’s method because
the two spectral profiles Stask and Srest did not intersect in the range [0, 10] Hz.

Transfreq overcomes such limitations of Klimesch’s method, since it utilises
just resting state recordings, and relies on the selection of specific channels that
actually present the desired features, i.e. channels with a low (high) alpha and a
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Figure 8.6: TFs estimated with Klimesch’s method and with transfreq by means of the four clustering
methods for one representative subject from the open-source data set. In each panel: the blue line
depicts the spectral profile with low alpha and high theta activation, namely Stask in Klimesch’s
method and Sθ in transfreq; the orange line shows the spectral profile with high alpha and low theta
activation, namely Srest in Klimesch’s method and Sα in transfreq; the red vertical line indicates the
estimated value of TF.

high (low) theta activity forGθ (Gα). Indeed, as shown in Figures 8.8 and 8.9, right
panels, in both scenarios previously described transfreq estimated a reliable value
for TF. More in general, a visual inspection of the results revealed that Klimesch’s
method provided an untrustworthy value of TF for 27% of the EEG sessions of the
open-source data set, while with transfreq only 6% of the results were unreliable.
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Figure 8.7: Difference between TFs estimated with Klimesch’s method (TFKlimesch) and with
transfreq (TFtransfreq) over the open-source data set. Each boxplot depicts the results obtained
when a different clustering approach is used to define the channels group Gθ and Gα, namely: 1D
thresholding (Method 1); 1D mean-shift (Method 2); 2D k-means (Method 3); and 2D adjusted
k-means (Method 4).
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Figure 8.8: Example where Klimesch’s method provides unreliable estimate of TF because event-
related, Stask, and resting-state, Srest, spectral profiles overlap. (A) Results obtained with the
Klimesch’s method. (B) Results obtained with transfreq by using 2D adjusted k-means to compute
the spectral profiles Sθ and Sα

8.2.4 Validation on the in-house data set

Figure 8.10 shows that the results obtained by applying transfreq on the in-
house data set are similar to those obtained on the open-source one. Specifically,
transfreq generally returned higher estimates of TF with respect to Klimesch’s
method. However, the absolute value of the difference between the values esti-
mated with the two methods was below 1 Hz for 67% of the subject when 1D
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Figure 8.9: Example where Klimesch’s method cannot be applied because event-related, Stask, and
resting-state, Srest, spectral profiles do not intersect in a reasonable frequency range. (A) Results
obtained with the Klimesch’s method. An event-related shift of the alpha–peak towards higher fre-
quency can be seen in Stask. (B) Results obtained with transfreq by using 2D adjusted k-means to
compute the spectral profiles Sθ and Sα

thresholding was applied, 58% with 1D mean-shift, 73% with 2D k-means, and
62% with 2D adjusted k-means.
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Figure 8.10: Difference between TFs estimated with Klimesch’s method (TFKlimesch) and with
transfreq (TFtransfreq) over the in-house data set. As in Figure 8.7 each boxplot depicts the results
obtained when a different clustering approach is used to defineGθ andGα, namely: 1D thresholding
(Method 1); 1D mean-shift (Method 2); 2D k-means (Method 3); and 2D adjusted k-means (Method
4).
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8.2.5 Proportional bias in estimating TF

We performed a Bland-Altman analysis (Bland and Altman, 1986) to assess
proportional bias in the estimates of TF. Figure 8.11 shows the analysis for the
open-source (panel A) and the in-house data sets (panel B), computed on the TF
values provided by transfreq with adjusted k-means. With the open source data set
no proportional bias was present; to confirm this, we computed a regression line
and the p-value (null hypothesis: slope equal to zero). Differently, the results with
the in-house data set showed a statistically significant (p < 0.001) proportional
bias. Specifically, Figure 8.11B shows that transfreq tends to overestimate TF at
higher frequencies (> 8 Hz).
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Figure 8.11: Bland-Altman plot between Klimesch’s method and transfreq with 2D adjusted k-means
for the open-source (A) and the in-house (B) data sets. Grey plain and dotted lines show mean
bias and corresponding 95% confidence limits, respectively. Proportional bias regression lines are
depicted as blue lines, and the corresponding equations are embedded in the lower-left corner of each
panel together with the coefficient of determination (R2) and the p-value (pval) computed testing the
null hypothesis that the slope is equal to zero.

8.3 Discussion

In this chapter we presented the work published in (Vallarino et al., 2021b).
Specifically, we described transfreq, an open-source Python tool for the computa-
tion of the individual transition frequency from theta to alpha band using only one
resting-state EEG recording.

A classic approach to compute the theta-to-alpha TF is that proposed by Klimesch
(Klimesch, 1999), which requires the power spectrum of two EEG time series, one
recorded while the subject is resting and one while the subject is performing a task.
However, in studies involving e.g. patients affected by neurodegenerative diseases,
the subject may experiment difficulties in performing the required task and thus
the corresponding event-related recording may imply difficult interpretation. On
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the contrary, transfreq uses only resting state data, which reduces the information
at disposal but increases the scenario in which transfreq can be applied.

By comparing with the results obtained with the classic Klimesch’s method
on two independent data sets, we demonstrated that transfreq returns reliable esti-
mates of TF. Indeed, with the best combination of input parameters, the absolute
value of the difference between the value of TF estimated with transfreq and with
Klimesch’s method was below 1 Hz for 88% of the analysed data in the open-
source data set, and for 73% for our in-house data set (throughout this chapter
Klimesch’s method was assumed as ground truth). The differences in the perfor-
mance over the two data sets may be partially due to the noisier nature of the
in-house data set. Moreover, a visual inspection of the estimated values of TF
showed that the cases in which the spectral profiles, Sθ and Sα, obtained with
transfreq intersected ambiguously were considerably less than the cases in which
the hypothesis of Klimesch’s method on Stask and Srest failed.

Among the four approaches implemented in transfreq to realise the clustering
step, the adjusted k-means showed the best performances in the open-source data
set while in the in-house data set the k-means algorithm performed the best. This
is probably due to the fact that these algorithms realise a more accurate selection
of the sensors within the two groups Gθ and Gα.

However, all four approaches tend to overestimate the value of TF with respect
to Klimesch’s method. Specifically, the Band-Altman analysis for the in-house
data set show that this behaviour seems to be more pronounced for higher values
of TF (> 8 Hz). This difference between transfreq and Klimesch’s method is
probably related to the fact that only resting-state data are used in transfreq; as a
consequence also channels in Gθ may present a fingerprint of the alpha activity.

The two data sets considered in this chapter are EEG data. Future studies may
be devoted to investigate a possible extension to MEG data.

Finally, future efforts will be devoted to better compare transfreq and the clas-
sic Klimesch’s method, especially in those scenarios where they return differ-
ent estimates of TF. To this end, future studies will be devoted to correlate both
Klimesch’s and transfreq’s results with clinical variables and biomarkers.
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In this thesis we investigated the problem of optimally estimating brain func-
tional connectivity from magneto/electro-encephalographic (MEEG) data, i.e. from
indirect measurements of the magnetic field outside the head and the scalp potential
produced by the tiny currents that naturally flow inside the brain and that charac-
terise its activity. With the help of stochastic processes theory we were able to
model the time courses associated with sensor level MEEG recordings and brain
activity, and to quantify functional connectivity with a bunch of connectivity met-
rics. Specifically, we focused on connectivity metrics computed in the frequency
domain starting from the cross-power spectrum of the source time courses. On the
other hand, inverse problems theory provided us with different methods to estimate
brain activity time courses from the corresponding MEEG recordings.

First, we focused on a standard pipeline for connectivity estimation, which re-
lies on a two-step process. During the first step the time courses associated with
brain activity are estimated by solving the MEEG inverse problem by means of a
regularisation technique. Then, during the second step connectivity is computed
among the estimated time courses. The regularisation technique employed in the
first step requires to set a regularisation parameter which will, of course, influence
the subsequent connectivity estimation. Motivated by empirical studies (Hincapié
et al., 2016), the core of this thesis was to investigate the role of the regularisa-
tion parameter in the two-step process. Chapters 4, 5 and 6 were dedicated to this.
Specifically, in Chapter 4 we focused on two regularisation techniques, namely
truncated Singular Value Decomposition (tSVD) and Tikhonov regularisation, bet-
ter known as Minimum Norm Estimate (MNE) in the neuroscientific community,
and we analytically compared the regularisation parameters providing the optimal
neural activity, λ∗x, and cross-power spectrum, λ∗S, estimates. By assuming both
brain activity and measurement noise to be realisations of white Gaussian pro-
cesses, we found that, when tSVD is employed, the two parameters coincide (i.e.
λ∗x = λ∗S), whereas, in the case of Tikhonov regularisation, the two parameters are
different, precisely it holds λ∗S < λ∗x

2 , meaning that less regularisation is needed
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for the cross-power spectrum estimation. In Chapter 5, we relaxed the strong hy-
pothesis of white Gaussian process for brain activity, which was essential for the
analytical computations, and we numerically investigated the same problem. Still,
we quantified connectivity through the cross-power spectrum and we focused on
Tikhonov regularisation. We simulated several sensor level MEG configurations
and for each of them we numerically computed the optimal parameters λ∗x and
λ∗S. The results confirmed the findings of Chapter 4. Moreover, by quantifying the
spectral complexity of brain activity by a proper scalar coefficient, we found that
λ∗S gets even smaller for increasing values of such a coefficient. This latter result
was supported by an analytical investigation of the signal-to-noise ratios associ-
ated, on one hand, with the MEG linear model (SNRX), on the other hand, with the
model that directly links the source level with the sensor level cross-power spectra
(SNRS). Indeed, for same values of SNRX, for increasing spectral complexity co-
efficients, SNRS gets smaller, thus less regularisation is needed for the cross-power
spectrum estimation. Finally, in Chapter 6, we still focused on Tikhonov regular-
isation, however we widen the set of connectivity metrics and we simulated more
complex and realistic brain activity configurations; then, we numerically computed
the optimal regularisation parameters. The results confirmed that λ∗C < λ∗x

2 , being
λ∗C the optimal parameter for connectivity estimation.

The two-step approach has the disadvantage that the unavoidable errors com-
mitted in the first step inevitably propagate in the second step. Moreover Tikhonov
regularisation promotes smoothness on the solution which is not desirable in the
MEEG context. To overcame these two problems, in Chapter 7 we proposed a
one-step approach which allows to estimate source space functional connectivity
directly from sensor space connectivity. In addition, we replaced Tikhonov regu-
larisation with `1 regularisation, which promotes sparsity on the solution. Specif-
ically, after defining a new linear model that links source space with sensor level
cross-power spectra, we simulated two MEG configurations and we estimated the
cross-power spectrum by exploiting both the two-step and the one-step approaches.
The results showed that the combination of the one-step approach and `1 regulari-
sation outperforms the classic two-step approach plus Tikhonov regularisation. Of
course, the simulations need to be widened in order to strengthen the results; future
works will be devoted to this.

It is worth mentioning that the regularisation methods employed in both the
two-step and the one-step approaches require to set a proper regularisation param-
eter. In this thesis, working in simulation contexts, we were always able to set
such a parameter to obtain the best possible estimates. However in experimental
settings this is not feasible, therefore there is need to determine a proper criterion
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to set it. This is one of the main open issues of this thesis. Future works will be
devoted to this and they may imply the implementation of a learning algorithm to
automatically infer the regularisation parameter from the MEEG data.

It is also to be noted that this thesis focuses on comparing different pipelines
to estimate functional connectivity and identifying the optimal one. However, it
does not take into account other transversal issues, such as problems related to the
estimation of connectivity metrics from finite data, or the effect of non stationar-
ity of the data, or also the importance of considering the aperiodic components
of the neural signals. These issues have been investigated in a number of papers
(Donoghue et al., 2020; Sommariva et al., 2019) and are not negligible. It would
be interesting to interconnect the results of these papers with the finding presented
in this thesis; future works may be devoted to this. Additionally, we have not
discussed the effect of source leakage on connectivity estimate when the one-step
approach is employed. Indeed, several studies have investigated this problem when
a two-step procedure is used to estimate neural time courses (Anzolin et al., 2019;
Palva et al., 2018; Wang et al., 2018), however it would be interesting to evaluate
the effect of source leakage on a one-step connectivity estimate, and to see whether
the one-step approach might reduce its impact.

In Chapter 8, we presented transfreq, a Python package for the automated com-
putation of the theta-to-alpha transition frequency (TF). A proper estimation of
TF is of utmost importance to correctly define individual frequency bands, and
therefore achieve reliable results during the analysis of MEEG data. Our package
is freely downloadable and provides the scientists with a user-friendly tool. We
proved the performance of our method on both an open source and on an in-house
database and we showed that it is reliable by comparing it with a classic approach,
namely Klimesch’s method. Specifically, with the open-source data set, the abso-
lute value of the difference between the TFs estimated with the two methods was
below 1 Hz for 88% of subjects. With the in-house data set the percentage is 73%,
however this lower value may be due to the noisier nature of the data.

Finally, future works will employ the results and the methods presented in this
thesis in the field of neurodegenerative diseases. Specifically, the objective is to use
features computed from the MEEG power spectra, such as the individual transition
frequency, as well as connectivity networks to characterise different neurodegen-
erative disease, including Alzheimer, Parkinson and sleep disorders, with the final
aim of finding biomarkers for their early detection.
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Garcés P, López-Sanz D, Maestú F, and Pereda E. Choice of magnetometers and
gradiometers after signal space separation. Sensors, 17(12):2926, 2017.
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estimates using cortical orientation constraints. Human brain mapping, 27(1):
1–13, 2006.

Liuzzi L, Quinn A J, O’Neill G C, Woolrich M W, Brookes M J, Hillebrand A,
and Tewarie P. How sensitive are conventional meg functional connectivity met-
rics with sliding windows to detect genuine fluctuations in dynamic functional
connectivity? Frontiers in neuroscience, 13:797, 2019.

Lloyd S. Least squares quantization in PCM. IEEE transactions on information
theory, 28(2):129–137, 1982.

Lütkepohl H. New introduction to multiple time series analysis. Springer Science
& Business Media, 2005.

Mahjoory K, Nikulin V V, Botrel L, Linkenkaer-Hansen K, Fato M M, and Haufe
S. Consistency of EEG source localization and connectivity estimates. Neuroim-
age, 152:590–601, 2017.

Mai J K, Majtanik M, and Paxinos G. Atlas of the human brain. Academic Press,
2015.

Malmivuo J, Plonsey R, et al. Bioelectromagnetism: principles and applications
of bioelectric and biomagnetic fields. Oxford University Press, USA, 1995.

Mammone N, De Salvo S, Bonanno L, Ieracitano C, Marino S, Marra A, Bra-
manti A, and Morabito F C. Brain network analysis of compressive sensed
high-density EEG signals in AD and MCI subjects. IEEE Transactions on In-
dustrial Informatics, 15(1):527–536, 2018.

Matsuura K and Okabe Y. Selective minimum-norm solution of the biomagnetic
inverse problem. IEEE Transactions on Biomedical Engineering, 42(6):608–
615, 1995.



BIBLIOGRAPHY 137

Morabito F C, Campolo M, Ieracitano C, Ebadi J M, Bonanno L, Bramanti A,
Desalvo S, Mammone N, and Bramanti P. Deep convolutional neural networks
for classification of mild cognitive impaired and Alzheimer’s disease patients
from scalp EEG recordings. In 2016 IEEE 2nd International Forum on Research
and Technologies for Society and Industry Leveraging a better tomorrow (RTSI),
pages 1–6. IEEE, 2016.

Moretti D V, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, Ferri R,
Lanuzza B, Miniussi C, Nobili F, et al. Individual analysis of EEG frequency
and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115(2):
299–308, 2004.

Moretti D V, Miniussi C, Frisoni G, Zanetti O, Binetti G, Geroldi C, Galluzzi S, and
Rossini P. Vascular damage and EEG markers in subjects with mild cognitive
impairment. Clinical neurophysiology, 118(8):1866–1876, 2007.

Musaeus C S, Engedal K, Høgh P, Jelic V, Mørup M, Naik M, Oeksengaard A R,
Snaedal J, Wahlund L O, Waldemar G, et al. Oscillatory connectivity as a diag-
nostic marker of dementia due to Alzheimer’s disease. Clinical Neurophysiol-
ogy, 130(10):1889–1899, 2019.

Niedermeyer E and da Silva F L. Electroencephalography: basic principles, clini-
cal applications, and related fields. Lippincott Williams & Wilkins, 2005.

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, and Hallett M. Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clinical
neurophysiology, 115(10):2292–2307, 2004.
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Uutela K, Hämäläinen M, and Somersalo E. Visualization of magnetoencephalo-
graphic data using minimum current estimates. NeuroImage, 10(2):173–180,
1999.

Vallarino E, Sommariva S, Piana M, and Sorrentino A. On the two-step estimation
of the cross-power spectrum for dynamical linear inverse problems. Inverse
Problems, 36(4):045010, 2020.

Vallarino E, Sommariva S, Arnaldi D, Famà F, Piana M, and Nobili F. Transfreq:
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