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Abstract

In the artificial intelligence community there is a growing consensus that real
world data is naturally represented as graphs because they can easily incorpo-
rate complexity at several levels, e.g. hierarchies or time dependencies. In this
context, this thesis studies two main branches for structured data.

In the first part we explore how state-of-the-art machine learning methods can
be extended to graph modeled data provided that one is able to represent
graphs in vector spaces. Such extensions can be applied to analyze several
kinds of real-world data and tackle different problems. Here we study the
following problems: a) understand the relational nature and evolution of web-
sites which belong to different categories (e-commerce, academic (p.a.) and
encyclopedic (forum)); b) model tennis players’ scores based on different game
surfaces and tournaments in order to predict matches results; c) analyze preter-
m-infants motion patterns able to characterize possible neuro degenerative
disorders and d) build an academic collaboration recommender system able
to model academic groups and individual research interest while suggesting
possible researchers to connect with, topics of interest and representative pub-
lications to external users.

In the second part we focus on graph inference methods from data which
present two main challenges: missing data and non-stationary time depen-
dency. In particular, we study the problem of inferring Gaussian Graphical
Models in the following settings: a) inference of Gaussian Graphical Models
when data are missing or latent in the context of multiclass or temporal net-
work inference and b) inference of time-varying Gaussian Graphical Models
when data is multivariate and non-stationary. Such methods have a natural
application in the composition of an optimized stock market portfolio.
Overall this work sheds light on how to acknowledge the intrinsic structure
of data with the aim of building statistical models that are able to capture the
actual complexity of the real world.
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Introduction

Real world complex systems (both natural ad artificial) are naturally described
by graphs, that is data structures able to incorporate complexity at different lev-
els, e.g. hierarchies or time dependencies. In general terms, a graph is simply a
set of entities (i.e., nodes), connected by a collection of interactions (i.e., edges).
For example, a social network might be represented as a graph in which nodes
identify users and edges define mutual friendship relationships. Urban traffic
networks model nodes as the intersections between roads and the edges mean
that the road sections by which the two intersections can be connected directly
(Figure 1). In the biological domain, transcriptional regulatory networks de-
scribe the regulatory interactions between genes: here, nodes correspond to
individual genes and an edge is drawn from gene A to gene B if A positively
or negatively regulates gene B.

Graph structures are a powerful tool that allows to focus on relationships be-
tween points (rather than the attributes of individual points), as well as model
complex systems in its most general sense. Indeed, the same graph formalism
can be used to represent social networks, interactions between drugs and pro-
teins, the interactions between road intersections in a traffic network or the
web pages on the World Wide Web to name just a few examples.

In the last decades, graph data quantity and quality considerably increased,
which has led researchers to develop sophisticated and general machine learn-
ing analysis, representation and modeling techniques capable of exploiting the
data to its almost full potential.

Before dealing in depth with machine learning methods for graphs, we give
some introductory definitions.

Definition 1 A homogeneous graph G = (V,E) is defined by a set of nodes V =
{v1,..., vy } and a set of edges E between nodes. We denote an edge going from node
u € Vtonodev € Vas (u,v) € E. Graphs can be represented through the adjacency

matrix A € RIVIXIVI A = (ai,]-)l.‘;':l, where,

1, if(v,vj) €E
ﬂi,]' = .

0, otherwise
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Figure 1: Luxembourg road network [218]. Nodes represent intersections between
roads and the edges are connections between two intersections. Larger-sized
and lighter-coloured nodes correspond to nodes with higher degree central-
ity values.

If the graph is undirected (i.e. edge directions do not matter), the adjacency matrix
A is symmetric, but if the graph is directed, meaning that edge directions matter, A
is not necessarily symmetric.

Beyond the distinction between undirected and directed graphs, we also
consider graphs that have multiple types of nodes and edges.

Definition 2 A Heterogeneous Information Network (HIN) is defined as a net-
work G=(V,E,T) in which each node v € V and each edge e € E are associated with
their type functions p(v) : V. — Ty and A(e) : E — T respectively. Ty and Tg
denote the sets of object and relation types, where |Ty| + |Tg| > 2.

Definition 3 A Multilayer graphs is a network made up by multiple layers, each
of which represents a given operation mode, social circle, or temporal instance. In a
multilayer network every node is assumed to belong to every layer, and each layer
corresponds to a unique relation, representing the intra-layer edge type for that layer.
Moreover, inter-layer connect the same node across layers. Figure 2 describes a mul-
tilayer network, in which layers identify the temporal evolution of mutual friendship
relationships in a social network.

In many cases, nodes and/or edges in a graph have attributes or features
information associated with (e.g., keywords counts or topic distributions in
networks semantically connecting documents retrieved from the Web). Most
often these are node-level attributes that we represent using a real-valued ma-
trix X € RVl where d € Z. is the dimension of each feature vector.
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Figure 2: Schematic representation of a multilayer social network, where layers iden-
tify temporal instances of mutual friendship relationships (i.e. intra-layer red
solid edges) between the same set of users in the social framework. Inter-
layer blue dotted edges connect users to themselves across timestamps.

Machine Learning on Complex Networks

Machine learning models are statistical models that learn from data in order to
solve particular tasks and are categorized according to the task they try to solve
[122]. In particular, depending on the availability of labeled data, machine
learning models are divided into the following categories:

* Supervised learning models use a training set to learn the desired out-
put. This training dataset includes inputs and correct outputs, which
allow the model to learn over time. The algorithm measures its accu-
racy through the loss function, adjusting until the error has been suffi-
ciently minimized. Supervised learning models can be subdivided into
two types of problems, i.e. classification and regression:

— classification models accurately learn to assign test data into specific
discrete categories.

- regression models are used to understand the relationship between
dependent and independent variables.

* Unsupervised learning models aim to analyze or cluster set of unlabeled
data. These models discover hidden patterns or data clusters without
the need for human intervention.

* Semi-supervise learning models are used when a small number of labeled
examples and a large number of unlabeled examples are involved. Semi-
supervised learning problems are challenging as neither supervised nor
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unsupervised learning algorithms are able to make effective use of the
mixtures of labeled and unlabeled data. As such, specific semi-supervised
learning algorithms are required.

When dealing with graphs some additional attention must be taken into ac-
count, since the data structure tends to blur boundaries between usual ma-
chine learning categories. In the following sections we aim to describe main
machine learning tasks and algorithms on graph data.

Node Classification

When dealing with large graphs, such as those that arise in the context of on-
line social networks, a subset of nodes may be labeled. These labels can have
several meanings ranging from demographic values to beliefs, or other char-
acteristics of the nodes (users). A core problem is to use this information to
extend the labeling so that all nodes are assigned a label (or labels). Such a
problem is known as node classification.

Node classification is perhaps the most popular machine learning task on
graph data, especially in recent years [259].

Examples of node classification beyond social networks for example include
classifying the topic of documents based on hyperlink or citation graphs [139].
Node classification appears to be a direct variation of standard supervised clas-
sification, but actually they differ in one fundamental aspect: nodes in a graph
are not independent and identically distributed (i.i.d.). Supervised machine
learning models are usually built on the assumption that observed data are
statistically independent of each other since, if not, we should also take depen-
dencies into account during the modeling phase. As a guarantee of sufficient
generalization capability for the machine learning model, we also assume that
observed data are identically distributed. When dealing with graphs, node
classification does not respect this assumption. Nodes of a graph are intercon-
nected and most successful node classification algorithms explicitly leverage
these connections.

Most recent node classification models are built upon node representation
learning models which, in turn, seek to find similar representations to nodes
who share overlapping or similar neighborhoods[84, 108, 201]. Therefore, when
building node classification models, we are more interested in modelling node
relationships than treating nodes as independent data points.

Link Prediction

Suppose we are given an incomplete graph G = (V, Erin ), meaning that we
are provided with the full set of nodes V and an incomplete set of edges
Eirain € E, where E is the true underlying set of edges in the graph G. The
problem of inferring missing relationships (i.e. E \ Eyin) among nodes is called
link prediction. It is one of the most popular machine learning tasks with graph
data and has countless real-world applications, including recommendation sys-
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tems in e-commerce or social platforms [119, 155, 264] and reconstruction of
protein-protein interaction (PPI) networks [148].

Link prediction complexity strongly depends on the typology of graph we
deal with. Indeed, in homogeneous networks, characterized by single types of
nodes and edges, graph heuristic based on neighborhood intersections can be
leveraged in order predict the existence of a link between two nodes [160]. Nev-
ertheless, when graphs are equipped with several types of nodes and edges,
e.g. knowledge graphs, alternative techniques [84, 190], for instance based on
metapaths, are required in order to accomplish the task.

Link prediction is a machine learning task on graph data that overcomes
the dichotomy supervised-unsupervised learning. Indeed, there are cases in
which link prediction can be faced as a completely supervised learning prob-
lem, specifically when only node attributes are exploited to infer the presence
or absence of edges. In other cases, when node attributes are not available
and we can only leverage graph topology, link prediction is closer to a semi-
supervised learning problem since we look at all the graph to obtain suitable
node and/or edge representations, whose thresholded similarity values can be
used to predict missing edges [145].

Community detection

Many real-world complex networks exhibit a community structure, i.e. the or-
ganization of vertices in clusters, with many edges joining vertices of the same
cluster and comparatively few edges joining vertices of different clusters. Such
clusters, or communities, can be considered as fairly independent compart-
ments of a graph, playing a similar role like, e.g., the tissues or the organs in
the human body. Community detection is an applied area in complex networks
community [95], in which algorithms are defined in order to detect clusters of
nodes on graphs. Such algorithms are completely unsupervised, differently
from the previous ones. Real-world applications of community detection in-
clude uncovering functional modules in genetic networks [4], detecting com-
munities of users in social platforms [33] and uncovering fraudulent groups of
users in transaction networks [195].

Probabilistic Network Inference

The understanding of complex phenomena is a problem that arises in many
applicative fields, such as finance, social science, medicine and biology [92,
125, 132]. Examples of complex phenomena are the evolution of a disease, the
self regulation of the financial market, or, the change in social response to po-
litical decisions. All these phenomena can be looked at as systems composed
of smaller entities that may or may not act independently. Often, the study of
complex systems is fragmented in simpler tasks. One could look for the set of
meaningful entities that are responsible for a specific state of the system (e.g.,
identifying the genes responsible for the development of a specific cancer), or,
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one could learn how to predict the behaviour of the system given the obser-
vations of its entities (e.g., given a set of gene expressions predict the disease
subtype affecting the patient). Nonetheless, these tasks are typically guided
by prior knowledge and provide a simple and interpretable solution that, in
turn, explains only a small portion of the phenomenon. Therefore, we could
say that we are not understanding the system as a whole but we are simply
describing some specific aspects of it. On the contrary, fully understanding a
phenomenon entails a comprehension of the dynamic of interactions among
entities as well as how these interactions relate to different statuses. Hence, in
the presence of an explicit relationship between interacting entities and status,
the understanding of the phenomenon can be simplified to the observing and
learning over time how the entities that are part of the system contribute to a
certain effect by interacting with each other.

The most suitable mathematical model for the abstract representation of en-
tities and their interactions is a graph or network, that provides a compact
representation of entities as nodes and their connections as edges. In the ideal
case the graph model is known a priori, but often it needs to be inferred. The
inference can be performed with a variety of different approaches. In this sec-
tion we put ourselves in a machine learning setting: we observe the behaviour
of (possibly a subset of) the entities within the system and we infer the best
approximation of their connections under the form of a graph [100, 147]. Such
approach is known as probabilistic network inference or graphical model se-
lection.

Network inference can be performed through different strategies, typically
based on different theoretical assumptions on the meaning of the edges. Here,
we consider Markov Random Fields (MRFs) a set of statistical models that con-
sider the connections between entities to describe conditional dependence. To
this aim, entities are modelled by random variables that are assumed to follow
a proper joint probability distribution.

The inference of a MRF on D variables becomes challenging when we are
dealing with large scale data sets, i.e., we have thousands of variables in play.
Indeed, it consists in a combinatorial problem of identifying the correct net-

work structure in a search space of possibly 225 edges. Thus, a reliable in-
ference requires a large number of samples that are D-dimensional vectors of
observations. Nonetheless, typically, the required sample size is not available,
therefore the number of variables is much higher than the number of samples
(N < D). The leading strategy to cope with this issue is to assume that just
a reduced number of interactions are actually meaningful to the phenomenon
under study and, therefore, constrain the problem and reduce the search space.
In particular, we exploit regularised methods that impose a sparse prior on
the problem [100, 171]. The sparse assumption eases the computational bur-
den allowing us to find an approximate solution. At the same time, given the
restricted set of resulting edges, it also improves interpretability of the graph.
While being fundamental for identifiability, regularisation can be also lever-
aged to extend graphical models in order to consider more complex scenarios
as multiple classes, longitudinal data, multi-level networks, latent variables
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and many other possible conditions [54, 61, 74, 102, 109]. Throughout this the-
sis we will handle only methods for the inference of MRFs based on a sparse
prior that recur to further regularisation strategies to cope with complex set-
tings.

Regularised methods for the inference of complex MRFs have been proposed
in the last few years in the context of continuous data (i.e., the variables are
assumed jointly Gaussian). In literature the so-called Gaussian Graphical Mod-
els (GGMs) have been considered in the presence of multi-class data [74, 109],
temporal data [102, 112], multi-level networks [61], latent variables [54] and
many others. Here, we mainly focus on temporal graphical models inferred
from multivariate time-series under different settings as they allow to study
an evolving system by modelling the underlying changes of the entities con-
nections. We argue that considering the temporal component is fundamental in
order to being truly able to understand a system. Indeed, as a system evolves
the interactions among the variables of which is composed may change as well.
Therefore, inferring its underlying structure in a unique steady state could be
limiting for the detection of variability patterns. Note that, in reality there are
systems for which the most suitable model is a unique structure that remains
stable over time. Nonetheless, here, we want to focus on non—stationary Sys-
tems whose understanding is bound to the observation of their evolution. This
is particularly evident in some applications, such as biology, where the inter-
est could be to understand the response of the system to perturbation [179].To
this aim, [112] proposed a regularised extension of a method for the inference
of stationary GGMSs, the Graphical Lasso (GL) [100]. Such extension allows for
the inference of networks at discrete time points connected through a specific
dynamical behaviour. This method assumes Markovianity, i.e., each time point
is dependent on the previous one. To force such dependency, it employs a
temporal consistency function that yields network structures close in time to
be similar. This method was shown to improve inference with respect to static
methods as it allows to consider the global evolution of the system thus provid-
ing a more sound and stable inference of the underlying network. Moreover,
it allows to study evolving patterns that are impossible to detect otherwise.
Nonetheless, while being extremely powerful, we point out two aspects as
drawbacks of such model:

¢ It does not consider the presence of missing data [154] which influence
how the observable entities are perceived and, hence, which interactions
are learned [64];

¢ Data are assumed to be identically distributed across time points [112],
meaning that the time series is stationary. Nonetheless, many real world
examples, such as financial markets, involve variables that change over
time showing possible trends.

The first aspect may perturb the final results and thus, entails the need of
inserting missing data assumptions in the inference process to avoid misrepre-
sentations [172]. The second aspect does not allow us to use standard methods
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for the inference of time-varying networks and therefore raises the problem of
clustering equally distributed observations before inferring probabilistic rela-
tionships among variables.

Contributions

In this thesis, we propose major contributions within the two macro areas
described above, i.e. extending state-of-the-art machine learning methods to
graph modeled data and filling the aforementioned gaps in probabilistic net-
work inference methods. More specifically, we propose four adaptations of
machine learning algorithms to graph-modelled data, i.e.:

* we leverage topological graph representations to understand the rela-
tional nature and evolution of web-sites which belong to different cate-
gories (e-commerce, academic (p.a.) and encyclopedic (forum));

¢ we define network-based features able to model tennis players scores
on different game surfaces and tournaments in order to predict matches
results;

* we leverage probabilistic models based on network statistics to suitably
represent preterm-infants motion patterns in order characterize possible
neuro degenerative disorders;

* we leverage recently defined heterogeneous graph neural networks to
build an interactive academic collaboration recommender system. Our
aim is to model academic groups and individual research interests while
suggesting possible researchers to connect with, topics of interest and
representative publications to external users.

Furthermore, we propose two inference method approaches within the net-
work inference framework that attempt to overcome issues related with real
data. Specifically,

* we propose possible extensions of the temporal network inference with
Gaussian assumption in the case of missing data which may either present
missing random values or variables that are consistently never measured,
and that we define as latent. To solve these two problems we devised two
different strategies, one builds on the Expectation Maximisation method
and the second on the marginalisation of the latent variables effect. Fi-
nally, we show a case in which by exploiting partial prior knowledge
on the latent variables, we can obtain results that go in the direction of
multi-level networks;

¢ we provide a general coupled statistical model for the inference of graphs
that is flexible to diverse consistency types and possible non-Markovian
dependencies. Such method infers a graphical model from non-stationary
multivariate time series under complex temporal dependency patterns.
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Assuming that we do not know such patterns a priori, we also provide
automatic identification techniques.

Overall this work sheds light on how to acknowledge the intrinsic structure
of data with the aim of building statistical models that are able to capture the
actual complexity of the real world.

Outline

The present thesis is structured in two main parts.

1. In the first one, we provide a comprehensive description of the state-
of-the-art methods for complex network representations, mainly used
as inputs to machine learning models on graph data. We list and de-
scribe some of the most studied and used network measurements in
Chapter 2 . In Chapter 3 we describe random walk- and deep learning-
based methods for learning representations of homogeneous and het-
erogeneous graphs. In Chapter 4 we present the original contribution
of this thesis. In particular, in Section 4.1 we provide an extension of
a state-of-the-art method for testing and questioning the overall ubiqui-
tous presence of scale-free networks in real-world complex systems. In
Section 4.2 and Section 4.3, we describe applications of classical networks
representation learning in two different scenarios, i.e. tennis tournaments
and preterm infants motion analysis. Finally, in Section 4.4, we propose
a preliminary analysis of a heterogeneous information network, i.e. the
collaboration network of the MaLGa academic research group.

2. In the second part we describe the context and contributions about reg-
ularized network inference. Chapter 5 presents the steady-state regu-
larised inference methods under the Gaussian distribution assumptions.
Chapter 6 focuses on contributions on the concept of missing data in
Gaussian Graphical Models, both at random or latent, and on the study
of temporal Gaussian Graphical Models when data is non-stationary.


https://malga.unige.it/

Notation

Unless explicitly specified, we denote with bold upper-case letters G,V,E
and A graphs, sets of vertices and edges, and adjacency matrices respectively.
With denote probability distributions as p, unless otherwise specified. Uni-
dimensional vectors are represented as with bold Iwer-case letters x and with
upper case letters X 2-dimensional matrices.

The entries of vectors and matrices are denoted by x[i|] (or equivalently x;)
and X[ij] (or equivalently X[i, j] and X; ;) respectively. When we want to select
an entire dimension we put a colon, e.g., if we have a 2- dimensional matrix
and we want to take the i-th row we write X[i,:]. If we want to select all but
one row we will write X[—i,:]. Given a set of indices I, = {1,...,j} we de-
note the squared sub-matrix obtained by selecting the corresponding rows and
columns as X[A]. Similarly we denote the sub-matrix obtained by selecting the
rows in the set I4 and the columns in the set Iz by X[AB]. We will denote the
cardinality of the set Iy with |B|. With ST, we denote the cone of positive def-
inite matrices, similarly ¥ denotes the cone of positive semi-definite matrices.
It is equivalent to say that XS X = 0, similarly XS? is equal to X = 0. With
(-,-)i we denote the scalar product between two vectors.
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PART I

Representation of Complex Networks

This part of the document covers a detailed presentation of the
state-of-the-art methods for complex network representations. First,
we describe some of the most studied and used network measure-
ments. Then, we describe random walk- and deep learning-based
methods for representing homogeneous and heterogeneous graphs.
We conclude the first part of thesis presenting original contribu-
tions about applications of machine learning algorithms to real-
world complex data.



Topological Features Representation
of Complex Networks

2.1 Introduction

Nowadays, complex networks are pervasive in real world applications ranging
from sociology [225] to biology [227]. One of the main reasons behind complex
networks popularity is their flexibility and generality for representing virtually
any natural structure.

Several investigations in complex network involve the representation of the
structure of interest as a network (interchangeably called graph), followed by an
analysis of the topological features of the obtained representation performed
in terms of a set of informative measurements.

Such analysis is usually aimed to accomplish the following three tasks:

¢ the topological characterization of the studied structures [71];

¢ the identification of different categories of (sub)structures or nodes, which
is directly related to the area of machine learning [17, 93];

¢ the selection of a plausible random graph model able to describe the
empirical structure and its evolution [17, 135].

All of the above mentioned tasks imply the same crucial question of how
to choose the most appropriate measurements able to best either describe or
discriminate network topologies. Such a choice should reflect the specific ap-
plication, nevertheless no formal procedure is available for identifying the best
measurements. There is an huge set of topological measurements, showing
high level of correlation and then redundancy. Statistical approaches to decor-
relation (e.g., principal component analysis [1]) can help select and enhance mea-
surements, but are not guaranteed to produce optimal results. Furthermore,
one has to rely on her knowledge of the problem and available measurements
in order to select a suitable set of features to be considered. For such reasons,
it is of paramount importance to have a good knowledge not only of the most
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(a) (b)

Figure 3: Examples of undirected (a) and directed graphs (b).

representative measurements, but also of their respective properties and inter-
pretation.

OUTLINE In the remainder of the chapter, we describe some important node-
level features and statistics, and discuss how these can be generalized to graph-
level statistics. The main goal of the chapter is to introduce various heuristics,
which are often used as features in traditional machine learning algorithms
applied to graphs.

2.2 Topological Measurements

In a given network G, we denote V the set of nodes (or vertices), E the set of
edges (or links) and A € R!VI*IV| the binary adjacency matrix. The number of
nodes is n = |V| and the number of edges is m = |E|.

Nodes in V are denoted v; for i = 1,...,n and edges are denoted as the pair
(Ui,”()]‘) for i,j = 1,...,1’1.

For undirected graphs (Figure 3 (a)), two vertices v; and v; are said to be adja-
cent or neighbors if the corresponding entry in the adjacency matrix a;; = a;; = 1.
For directed graphs (Figure 3 (b)), the corresponding concepts are those of pre-
decessor and successor: if a;; = 1 then v; is a predecessor of v; and v; is a
successor of v;. The neighborhood of a vertex v;, denoted N (v;), corresponds to
the set of nodes adjacent to v;.

2.2.1  Node-level Statistics

We now describe some notable topological measurements of complex networks
that could be used as features in a machine learning model for either node
classification, node clustering or regression.

DEGREE This nodal measure d,,, i.e. the degree of node v;, corresponds to
the number of edges attached to v;, equivalently defined as the cardinality of

13
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N (v;). For undirected networks, the degree d,. can be formally defined using
the adjacency matrix:

do, = ) aij= ) aj. (2)

U]'EV ’U]‘EV

For directed networks, we need to distinguish between incoming and outgo-
ing links and then between in-degree (dy'), and out-degree (d3"") of a node v;:

dy =Y aj, (3)
U]‘GV

gt =y ajj. (4)
U]'EV

In this case, we define the total degree, or more in general degree, of a node v;
as dy, = di 4 dom.

In general, the degree of a node is an essential statistic to consider, and it
is often one of the most informative features in traditional machine learning
models applied to node-level tasks [35] or generative model selection [182].

DISTANCE A path between two non-adjacent nodes v; and v; is defined as a
sequence of edges Poio; = (vi,9k,),- -, (0k,, v;), with [ > 1, connecting v; and
v;. Then, a shortest path between two non-adjacent nodes v; and v; is defined
as a path sp; ; which has minimum length, i.e. contains a minimum number of
edges. The distance d(v;,v;) between two nodes v; and v; corresponds to the
length of the shortest path between them [106].

NODE CENTRALITY Node degree simply measures how many neighbors a
node has, but this is not necessarily sufficient to measure the importance of a
node in a graph.

In many cases we can benefit from additional measures of node importance.
To obtain a more powerful measure of importance, we can consider various
measures of what is known as node centrality, which can form useful features
in a wide variety of tasks.

e the betweenness centrality of a node v;, b.(v;), measures the extent to which
v; lies between other nodes in the network and can be computed as the
percentage of shortest paths that pass through the node. The between-
ness centrality of node v; can be computed as

by = Y T (5)

vj, ok €V\{v;} Toj,0,

where Uv/,vk(vi) and To,,0; denote the number of shortest paths between
nodes v; and vy passing through node v; and the number of shortest
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paths between nodes v; and v respectively.

Nodes with high betweenness centrality occupy critical roles in the net-
work topology, since they usually have a network position that allow
them to work as an interface between tightly-knit groups.

* The nodal measure closeness centrality of v;, c.(v;), is the inverse of the
sum of distances between the node of interest v; and all the other nodes
in the network v; € V\{v;}. It quantifies how close a node is from the
rest of the network, in average:

1
Z d(vl’/U]).

v;€V\{v;}

(6)

ce(v;) =

CLUSTERING COEFFICIENT One way to characterize the presence of loops
of order three in a node neighborhood A (i) in an undirected network is
through the clustering coefficient [256].

Let d(v;) be the degree of node v;, meaning the cardinality of N (v;), and I, the
number of connected nodes in NV (v;), then the clustering coefficient of node v;
is defined as:

21,
d(v;)(d(v;) — 1)’

where WM represents the total number of possible existing links among

the neighbors of v;. As one can easily see, the clustering coefficient C,, mea-
sures the tendency of a node neighbors to be connected to each other.

A general definition of clustering coefficient in directed networks is given in
following paragraphs, where we introduce the notion of graphlet which allows
us to generalize the notion of degree and clustering coefficient.

Cvi - (7)

GRAPHLET AND GRAPHETTE DEGREE VECTORS  Graphlets [207], are small,
connected, non-isomorphic, induced subgraphs of a larger graph G. Graphlets
generalize the notion of degree. Indeed, given a node v; of an undirected net-
work G, the degree measures the number of edges attached to v;. Note that
an edge is the only graphlet with two nodes; henceforth, we call this graphlet
Go (see Figure 4). Note that we can apply the same measurement to other
graphlets as well as Gop. Thus, in addition to applying this measurement to an
edge, i.e. graphlet Gy, we apply it to the 29 graphlets Gy, Go,...,Gy9 presented
in Figure 2 as well. When computing such occurrences it is important to take
into consideration topological issues deriving from the exact position of the
node in the graphlet.

To better understand such phenomenon, we give the following definition:

An isomorphism 1 from graph G to graph H is a bijection from V(G) to V(H)
such that (v, w) € E(G) if and only if ((v), p(w)) € E(H). An automorphism
is an isomorphism from a graph G to itself. The set of automorphisms of a
graph G equipped with the function composition operation forms a group de-
noted Aut(G). Then, for every v € V(G), we can define the automorphism orbit
of vas n(v) = {w € V(G) | w = ¢(v) for some ¢ € Aut(G)}. In Figure
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2-nodes 3-nodes G 4-nodes
graphlets graphlets . graphlets
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Figure 4: Automorphism orbits for the thirty 2, 3, 4, and 5-node undirected graphlets.
In a graphlet G;, nodes belonging to the same orbit are of the same colour.
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Figure 5: Automorphism orbits for the 14 2 and 3-node directed graphlets. In a
graphlet G;, nodes belonging to the same orbit are of the same colour.

4 are depicted undirected graphlets Gy, ..., Gog decomposed into their auto-
morphism orbits (identified by the node colours). Hence, for every node v in
a network G we can count how many times it appears in each of the 72 or-
bits thus obtaining a 72-dimensional representation of v. Such representation
is called graphlet degree vector (GDV)[206]. GDV generalizes not only the notion
of node degree but also the notion of clustering coefficient (i.e., the normalized
occurrences of graphlet Gy).

Directed graphlets[221] are defined similarly to undirected graphlets but we
need to take into consideration edge orientations. This fact has the conse-
quence to considerably increase the number of graphlets and corresponding
automorphism orbits (see Figure 5), making the algorithms for calculating the
occurrences of such substructures more complex [14, 221].

In literature, several algorithms for enumerating and counting node orbits in

16



2.2 TOPOLOGICAL MEASUREMENTS

Random-walk sample of blue verified FB pages Log-log plot of degree density function
mutual like network P

Figure 6: The left panel shows a random-walk sample of a large real-world network.
Nodes represent blue verified Facebook pages [218] and edges are mutual
likes among them. Light coloured and big-sized nodes correspond to high
degree nodes. On the contrary, dark coloured and small-sized nodes have
few connections. On the right panel, the log — log plot of the original degree
distribution is compared to the log — log plot of the degree distribution of
an Erdés-Renyi random graph instance. The original network and the model
realization share the number of nodes and the average degree.

directed and undirected networks are defined[15, 129, 143, 221]. Typically these
algorithms are based on the simple observation that more complex graphlets
are built upon the combination of simpler graphlets (this is also the reason
why usually only graphlets of size up to 6 are considered) and use combinato-
rial equations to connect their occurrences.

Recent generalizations of the notion of undirected graphlets, i.e. graphettes
[118], obtained by considering also disconnected induced subgraphs allow to
speed up the computation of orbit frequencies in undirected networks while
also allowing to extend the analysis to graphettes of size up to 8.

2.2.2  Graph-level Statistics

In the previous section we reviewed some topological measurements at the
node-level. However there are cases in which we need to classify or cluster
structures rather than nodes (e.g. the classification of microbiome trees in a
case-control study). In this scenario graph-level statistics are best suited to ac-
complish the task.

In the next paragraphs we describe some notable graph measurements which
often are defined as an average of node-level or random walk-based statistics.

DEGREE AND GRAPHLET DEGREE DISTRIBUTION (GDD) Consider an undi-
rected network G. The degree distribution measures, for each natural number k,
the number of nodes of degree k. In other words, for each value of k, it gives
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(a) Original Network X
(c) Randomized Networks

(b) Motif

Figure 7: Example of motifs in a toy network. Looking at the original network (a) it is
clear that the “squared” subgraph (b) (Gs in Figure 4) is over represented in
the original network w.r.t. randomized versions of it (c).

the number of nodes attached to k graphlets Gy (Figure 4). Similarly, for every
graphlet G; with i € {1,...,29}, we can count the number of nodes touching
G; at a node belonging to a particular orbit. Thus, we obtain 73 distributions
analogous to the degree distribution, which are called the graphlet degree distri-
bution (GDD).

Analogously, we can define the GDD for directed networks, whose in- and
out-degree distributions correspond to the first two distributions in the GDD.

It is empirically observed that most real-world networks exhibit heavy tails
in the (in- and out-) degree distribution [21] (Section 4.1). More specifically,
real-world networks are often claimed to be scale free [23], meaning that the
degree distribution follows a power-law [16], a pattern with broad implica-
tions for the structure (e.g. emergence of hubs [22, 137]) and dynamics (e.g.
robustness to cascading failures [25, 85]) of complex systems (see Figure 6 for
a real-world example). Testing if the tail of a real-world network degree dis-
tribution is plausibly approximable through a discrete power-law distribution
is often used as a primary test in generative random graph model selection
[182]. Indeed, such an observation would allow to exclude as likely generative
models, for instance, Erdés-Renyi [87] random graph models whose degree
distribution follows a Poisson distribution, as shown in Figure 6.
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MOTIFMOTIFS CONCENTRATIONS CONCENTRATIONS Network motifs are
recurring, significant patterns of interconnections [176]. Network motifs are
substructures that recur much more frequently in a real network than in an en-
semble of randomized networks, as shown in Figure 7. For this reason, motifs
detection strongly depends on the assumption of a plausible generative ran-
dom graph model whose real network is a realization. Indeed, such a random
graph model allows us to generate randomized versions of the real network
G and compare a specific detected motif concentration in G to the average
concentration of such a motif in randomized graphs.

Exact methods for computing motif concentrations in undirected and directed
networks are analogous to the graphlets enumeration methods. However, only
for undirected networks, random walk-based algorithms to approximate motif
concentrations in large complex networks have been defined in literature [36,
59, 116]. Such methods rely on suitably defined generalized random walks
able to sample frequent subgraphs and approximate their concentration in the
original network through the average of such subgraphs concentrations in the
sampled graphs. One of the main assumption on which random walk-based
approximation algorithms rely is the irreducibility [215] of the Markov Chain
associated to the random walk. This is true for any random walk defined on a
connected undirected graph, but, in general, it is not valid for Markov Chains
associated to random walks defined on connected directed graphs.

AVERAGE SHORTEST PATH LENGTH AND DIAMETER  The average shortest
path length asp(G) is defined as the normalized average distance among all
connected pairs of nodes. Equivalently:

asp(G) = n(nl_) Y. d(vi,v)), (8)
v;, 0 EViF#]

where d(v;,v;) is the distance between nodes v; and v; and is set to 0 if v; and
v; are not connected in G.
The behavior of the average shortest path length as a function of the number
of nodes 1 of a random graph model indicates whether the model shows the
small-world property [256]. More specifically, if asp(G) scales as O(In(n)) then
G can be plausibly considered as a realization from a small-world random graph
model [187].

The diameter D(G) of a connected network G is defined as the longest of all
the calculated shortest paths in G. Equivalently,

D(G) = max{d(v;,v;) | v;,v; € V,i # j,v; and v; are connected }. (9)

AVERAGE CLUSTERING COFFICIENT For undirected networks, the average
clustering coefficient, C(GF) is defined as the average of each node clustering
coefficient C,,, for v; € V. Equivalently,

C(G) = % Y Co. (10)
v;ieEV

High values of such measure, similarly to small values of the average shortest
path length, is an indicator of the emergence of the small-world property [175].
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2.3 Conclusion

In the previous sections, we presented a number of traditional approaches to
learning over graphs. We saw how graph statistics can extract feature informa-
tion for machine learning tasks.

However, the node and graph-level statistics are sub-optimal features due to
the fact that they require handcrafted statistics and measures. As we observed,
these hand-engineered features can be hard even to approximate, leading to a
time-consuming and expensive process.

In the following chapters we focus on an alternative approach to learning over
graphs: graph representation learning. Instead of extracting hand-engineered fea-
tures, we will seek to learn representations that encode structural information
about the network.
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Node Representation Learning

In this chapter of the thesis we focus on methods for learning node embeddings,
which allow to encode nodes as low-dimensional vectors that incorporate both
information on their topological roles in the graph and the geometric structure
of their neighborhoods. In practice, we want to learn a low-dimensional latent
space into which geometrically near projected nodes correspond to proximal
nodes in the original graph.

3.1 Introduction

Traditional machine learning approaches on graphs rely on precomputed heuris-
tics to extract features encoding topological information (see Chapter 2). Nev-
ertheless, the last decades have seen an increasing interest in approaches that
learn to encode network structure and node/link semantics into low-dimensional
embeddings. A schematic representation of node embeddings learning is pre-
sented in Figure 8.

Let G = (V,E) a graph and V and E represent nodes and edges of the graph
respectively. A node embedding method maps nodes into a low-dimensional
latent space (RY) such that d < |V|.

d-dimensional
latent space

Figure 8: Schematic description of nodes representation learning on a toy network.
Neighbors in the original graph are mapped in geometrically close points in
the learned d-dimensional latent space.
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3.2 RANDOM WALK BASED METHODS

Node embedding methods preserve different properties of nodes and edges

in graphs such as node proximities. We define first-order and second-order
proximities since higher order proximities can be similarly obtained.
Nodes that are connected by an edge have a first-order proximity. The second-
order proximity of two nodes involve the degree of overlap of their neighbor-
hoods, meaning that nodes sharing more neighbors are considered to be more
similar to each other.

Node embedding methods can be categorized into four categories: factoriza-
tion based [5, 51, 193], random walk based, deep learning based and graph neural
networks (GNN) based methods. Below, we review only random walk based
and GNN based methods while discussing their extensions to heterogeneous
graphs.

3.2 Random Walk based Methods

The main concept that random walk based methods utilize is generating ran-
dom walks for each node in the graph to capture the structure of the graph
and output similar node embedding vectors for nodes that occur in the same
random walks.

A random walk is defined as a sequence of nodes vy, ..., v, that starts at node
vo, (vi,vi+1) € E and [ is the length of the walk. Given v; in the sequence, next
node v;;1 is chosen based on some probability distribution. In the following
sections we describe details about two random walk based embeddings, i.e.
DeepWalk [201] and Node2vec [108].

3.2.1  DeepWalk and Nodezvec

DeepWalk [201] and Node2vec [108] are methods based on the notable word2vec
embedding [174] which is frequently used in text mining tasks. Here, the as-
sumption is that that words co-occurring in the same sentence several times
have a similar meaning. Node2vec and DeepWalk translate this assumption
into graph data by assuming that nodes co-occurring in many random walks
have to be similar. Therefore, as a consequence such methods generate similar
node embedding vectors for neighboring nodes.

Both methods leverage on a similar algorithm, which is composed by two dis-
tinct parts:

1. random walks generation. DeepWalk selects the next node in the random
walk uniformly at random from the neighbors of the previous node.
Differently, Node2vec defines a biased scheme for sampling consecu-
tive nodes in the random walk. More precisely, given the random walk
V9,01, . ..,0; we select v, 41 in the sequence based on the following proba-
bility distribution
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3.2 RANDOM WALK BASED METHODS

Dot i (0;,0:04) € E

V4 4 1

p(vilvig) = “ (vii11) (11)
0, otherwise

where Z is a normalization constant and &, , is defined as

%, if d(vi—1,vi41) =0
Aoy = N1, if d(viq,0i11)

=1 (12)
%, if d(vi_l,viH) =2
where d(v;_1,v;11) is the distance between nodes v;_; and v;;1 and p
and g are hyperparameters guiding the direction of the random walk.
More precisely, if p is large a global exploration of the graph G is en-
couraged while, on the contrary, larger values of g bias the walk to a
local exploration thus increasing the probability of visiting already seen
nodes. Through the use of such parameters, the random walks gener-
ated by Node2vec model are a combination of breadth-first search (BFS)
and depth-first-search (DES) [89].

. SkipGram model training. In the second part of the algorithm the gener-
ated random walks are used to train a SkipGram model [174] aimed at
obtaining the embedding vectors z(v;) € R? for every v; € V.

SkipGram learns a language model, which maximizes the probability of
sequences of words that exist in a training corpus. The objective function
used in a SkipGram model for node representation is:

max ) log(p(N (v)|z(v:))), (13)

v, €V

where N (v;) is the neighborhood of node v; sampled from the random
walks.

Optimization of Equation 13 involves two distinct assumptions in order
to make it tractable:

* We assume that the likelihood of observing a neighbor is indepen-
dent of observing any other neighbor given the representation of
the central node, i.e.:

pN(@)lz(w) = T plojlz(v). (14)

U/'GN(U,‘)

¢ We further assume that a central node and its neighbors have a sym-
metric effect on each other in the latent space R?. Accordingly, we
model each term in the product defined in Equation 14 as a softmax
function parametrized by a dot product of their representations:

oile(o)) — exp z(v;) - exp(z(v;)) .
P( ]‘ ( l)) Z expz(v)-exp(z(vi))' ( 5)

veV
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Figure 9: Heterogeneous graph representation of an academic network. Nodes iden-
tify authors, papers and venues. Relations among nodes correspond to: co-
authorship (researcher-researcher), writes (researcher-paper), cites (paper-

paper), published (paper-venue).

Since the dot product between two vectors measures their similar-
ity, by maximizing the softmax function for neighboring nodes, the
inferred node representations for neighboring nodes tend to be sim-
ilar. Computing the normalization constant at the denominator of
the conditional probability in Equation 15 is time consuming since
it involves the computation of a large number of dot products, es-
pecially if the network G is very large. For such reason, DeepWalk
and Node2vec approximate it using hierarchical softmax [201] and
negative sampling [108],respectively.

The above mentioned random walk based methods for nodes representa-
tion learning are specifically designed for homogeneous networks, meaning
networks equipped with a single type of nodes and edges. This is due to the
fact that the random walks generated by DeepWalk and Node2ved models do
not sample nodes based on either node or edge types. However, it is often
the case that the network under analysis is heterogeneous [238], i.e. a network
equipped with multiple types of nodes and edges connecting them. A typi-
cal example of heterogeneous network is represented by academic networks
(see Figure 9), which are systems able to describe academic collaborations at
different levels of complexity. Representation of such networks poses the prob-
lem of preserving node semantics and proximities together in the learnt latent
space. In the next section we formally introduce heterogeneous informations
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3.2 RANDOM WALK BASED METHODS 25

networks (HIN), extend the notion of random walks to metapaths and describe
a metapath based method for node representation learning in HINs.

3.2.2 HINs and metapath2vec

A Heterogeneous Information Network (HIN) [238] is defined as a network G=(V,E,T)
in which each node v € V and each edge e € E are associated with their type
functions p(v) : V— Ty and A(e) : E — Tg respectively. Ty and Tg denote
the sets of object and relation types, where |Ty| + |Tg| > 2.

As depicted in Figure 9, we can represent an academic collaboration network
with authors (A), papers (P) and venues (V) as nodes, wherein edges indicate
the co-authorship (A-A), write (A-P), cite (P-P), publish (P-V) relationships.
Within this framework, we can formalize the problem of HIN representation
learning as follows.

Given a heterogeneous information network G, we want to learn a latent low-
dimensional representation Z € RIVIXd with d < |V|, able to preserve nodes
proximity and relationship semantics.

To such extent, it is of paramount importance being able to suitably define
nodes proximity in a HIN and thus nodes heterogeneous neighborhood.

To model the heterogeneous neighborhood of a node, metapathzvec [84] intro-
duces the heterogeneous SkipGram model. Such a model differs from the clas-
sical SkipGram model (Section 3.2.1) by introducing metapath based random
walks in heterogeneous networks to incorporate the heterogeneous network
structures into the model. More precisely, a metapath scheme P is defined as

a path represented by V; iR V2 By B Vi, where R=RjoRy0---0R; 4
identifies the composite relation between node types V; and V.

For instance, in Figure 9, a metapath “APPA” represents two authors co-cited
respective papers. We can leverage metapath to define type-specific random

walks. Indeed, given a HIN G, and a metapath scheme P : V; ﬁ) )% &>

R . :
... =%V, the transition probability at step i is defined as:

m, lf (Ul‘+],vzt-) E E, ]/l(vl‘_;,_l) - t+ ].
p(via]o, P) = 4 o, if (vig1,07) € E, p(0is1) #t+17 (16)
0, if (viy1,0!) ¢ E
where v} € V; and N;11(v!) denotes the Vi;1-type neighborhood of node v!.
Frequencies computed through metapath based random walks can be then

used to infer a heterogeneous SkipGram model by the optimization of the
following loss function

max ), ), ), log(p(mlv,z)), (17)

veEV teTy ny EM (z])

which is analogous to the DeepWalk and Node2vec loss function apart from
the sum over node types.



3.3 GRAPH NEURAL NETWORKS

Such representation is demonstrated to capture both the semantic and struc-
tural correlations between different types of nodes [239].

3.3 Graph Neural Networks

The previous node embedding approaches we discussed in Section 3.2 use
a shallow embedding approach to generate representations of nodes, i.e. we
simply optimize a unique embedding vector for each node. In this section, we
turn our focus to more complex models, namely graph neural networks, which
are general models aimed at extending the deep learning framework to graph
data. Basically, we want to infer node representations that capture both the
structure of the graph, as well as any supplementary feature information on
nodes.

One simple approach to define a deep neural network over graphs would be
to consider a sequence of non linear transformations of the adjacency matrix.
The issue with this approach is that it shows a strong dependency on the
ordering of nodes in the adjacency matrix A. Equivalently, such a model is
not permutation invariant, which is a substantial premise to design neural
networks over graphs. More formally, any function f that takes an adjacency
matrix A as input should satisfy one of the two following conditions:

1. f(S4ASI) = f(A). (permutation invariance);
2. f(S4ASI) =S,f(A) (permutation equivariance),

for every permutation matrix S,. Ensuring invariance or equivariance is a key
challenge when we learn over graphs and it is one of the main reasons that
justify the introduction of graph neural networks (GNN).

The basic GNN model can be motivated as a form of neural message passing
in which vector messages are exchanged between nodes and updated using
neural networks [104]. In the rest of this section, we will describe the neural
message passing framework by which, given a graph G = (V, E) along with a
matrix of node features X € RP*/Vl, we can generate node embeddings z, € RY
foru e V.

3.3.1 Neural Message Passing

For every node i the graph u € V, at each iteration k, a hidden embedding

hg,k) is updated according to a function that aggregates messages from the
neighborhood of u (see Figure 10). Formally,

n*Y) — UPDATE(h{"), AGGREGATE({n{") : v € N'(u)}) (18)
— UPDATE(h{?,m{¥)), 19)
(20)
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Figure 10: Schematic representation of neighbors messages aggregation by a single
node. The model aggregates messages from one node neighbors, and in
turn, the messages coming from these neighbors are based on information
aggregated from their respective neighborhoods, and so on.

where UPDATE and AGGREGATE are differentiable functions and mﬁ\kfz is the
aggregated message diffused to node u.
The AGGREGATE function takes in input the set of embeddings of nodes in

N (u) and generates a message mﬁ\kfz, which is then fed to the UPDATE func-
tion together with the hidden embedding of node u at the previous iteration,
hg,k), in order to generate the updated embedding h,gk+1).

At each iteration, every node aggregates information from its neighborhood,
and at next iterations each node embedding contains more and more informa-
tion collected from farther nodes in the graph. More precisely, after the first
iteration (k = 1), every node embedding contains information from its 1-hop
neighborhood, i.e., every node embedding contains information about the fea-
tures of its first-order proximal nodes; after the second iteration (k = 2) every
node embedding contains information from its second-order proximal nodes;
and in general, after k iterations every node embedding contains information
about its k-hop neighborhood.

Each node embedding hl(lk) encodes two types of information:

e structural information: for instance, after k iterations, hE,k) might collect

information about k-hop neighbors degree;

¢ features information: hgk) encodes information about all the features in

the k-hop neighborhood of u. in many cases, nodes are equipped with
rich sets of features x, € R’ (e.g. textual features in documents cor-
pora, functional features in chemical compounds networks and so and so
forth.). However, when node features are not available, several options
can be adopted in order to equip nodes with topological features. For
example, nodes could be instantiated with vectors of features described
in Section 2.2 or with representations obtained by training a random
walk-based model (Section 3.2.1). Another popular approach is to use
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3.3 GRAPH NEURAL NETWORKS

identity features, where we associate each node with a one-hot indicator
feature, which uniquely identifies that node. Nevertheless, this last ap-
proach makes the model transductive and incapable of generalizing to
unseen nodes.

In order to be able to implement the GNN framework defined in Equation
18, we must define concrete instantiations to the UPDATE and AGGREGATE
functions. The most basic GNN framework [222] is defined as

ne = a(WY‘“)hSZ" +WE Y n + b<’<+1>>, (21)
veN (u)

where w§"+1),w§k“) S R4 xd® are trainable parameters, p*+D) e R4 is

the bias term and ¢ is an element-wise non linearity (e.g. a ReLU function).
Such a model can achieve high performance [115] but generalizations and im-
provements of both the AGGREGATE and UPDATE functions are available in
state-of-the-art.

3.3.2 AGGREGATE Functions

The most basic aggregation function is to take the sum of neighboring embed-
dings as shown in Equation 21. Such an approach may lead to high sensitivity
to the presence of hubs in the graph G, leading to numerical instability and
problems during optimization [139]. One way to avoid this issue is to simply
normalize the aggregation operation by the degrees of the nodes involved

Ly
k) veN (u)
my/ ) = 7|N(u)| . (22)

In [139], authors propose another normalization factor, i.e. a symmetric nor-
malization

mi, = Y L% (23)
N Sy VIN@IN ()]

which they show to be very effective to mitigate the effects of high degree
nodes in the graph.

Even if neighborhood normalization can be a useful tool to improve GNN per-
formance, more sophisticated operations have been defined in order to exploit
AGGREGATE functions potential. It is worth noting that the neighborhood ag-
gregation operation is fundamentally a set function. This fact is essential since
there is no natural ordering of nodes neighbors, and any aggregation function
we define must thus be permutation invariant.

Based on the theory of permutation invariant neural networks, in [268] it is
shown that any permutation invariant function that maps a set of embeddings
to a single embedding can be approximated to an arbitrary accuracy by a
model defined as follows:

my(,) = MLP¢< %‘2 )MLPg(hU)>, (24)
ve u
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where MLP;, MLPy are multi-layer perceptrons parametrized by ¢ and 0 re-
spectively. In Equation 24, we employ a sum of the embeddings after applying
the first MLP, however, other aggregate functions, such as element-wise maxi-
mum, can be adopted [114, 208].

The model defined in Equation 24, achieves permutation invariance by rely-
ing on a sum, mean, or element-wise max to reduce the set of embeddings to
a single vector. Nevertheless, other pooling approaches adopt completely dif-
ferent strategies to obtain universal approximators. More specifically, Janossy
pooling [183] uses a permutation sensitive function and average the result over
many possible permutations. Formally, let 7r € I1 be a permutation that maps
the set {hy, : v € N(u)} to the sequence (hﬂ(m)"'"hﬂ(vww)\))' the Janossy
pooling performs neighborhood aggregation by

Z pG(hﬂ(vl)’ e h”(v,wu)))> ’ (25)

mell

1

where I1 is a set of permutations and py is a parametric permutation sensitive
function, e.g. a LSTM architecture [130] operating on sequences.

It is clear that if the set IT in Equation 25 is equal to the set of all possible
permutations, then the function defined in Equation 25 defines a universal
approximator. Nevertheless, considering all possible permutations is usually
intractable, thus, in practice, Janossy pooling employs one of two approaches

[183]

¢ random sampling of a subset of possible permutations during each ap-
plication of the AGGREGATE function and sum over the random subset;

* employ a predefined ordering (e.g. according to the degree) of the nodes
in the neighborhood set.

NEIGHBORHOOD ATTENTION More general forms of set aggregation can
be improved by exploiting attention mechanisms [18], closely related to trans-
former architectures [81, 247, 263] which are mainly used in NLP systems. Ba-
sically, we want to assign an attention weight to each neighbor, which is used to
weigh its influence during the aggregation step. For instance, the Graph Atten-
tion Network (GAT) model [248] uses attention weights to define a weighted
sum of the neighbors:

m'S\I;)(ll) = Z “gfz))hg)k)/ (26)
veN (u)

where at iteration k, aﬁf?, denotes attention on neighbor v and hz(,k) denotes the

neighbor embedding at the k-th layer.
Typical examples of attention weights are defined as

exp <aT| |[Wh,, Whv]>
Kyp = ’ (27)

Y. exp <aTH[Whu,th]>
weN (u)
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Figure 11: A schematic representation of multi-head attention mechanism (with H = 3
heads) by node u on its neighborhood. Different arrow styles and colors

denote parallel attention computations. The aggregated features from each

head are concatenated or averaged to obtain h£k+1) .

where a is a trainable attention vector and ||[-, -] represents the common vec-
tor concatenation operation. It is also common to include a LeakyReLU non
linearity [247] within the attention weight defined in Equation 27, i.e.

exp (LeakyReLU (aT] |[Why, Whv]> >
(28)

Kyp =

Y. exp (LeakyReLU (aT| |[Why,, th]>>
weN (u)

Further mechanisms, such as multi-head attention mechanisms [247], can help
stabilize the learning process. More specifically, multi-head attention mecha-
nisms are defined as H independent attention mechanisms that execute the
transformation of either Equation 27 or Equation 28, and then their messages
are concatenated, resulting in the following output aggregate message (as
shown in Figure 11):

mi, =1L Y aliwtIn, (2)

u,v

veEN (u)

3.3.3 UPDATE Functions

GNN message passing involves two key steps: aggregation and updating, and
the UPDATE operator plays an equally important role in defining the power
the GNN model as the AGGREGATE operator. In this section, we turn our
attention to more generalizations of the UPDATE operator.
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One common issue to most basic GNN models is known as over-smoothing
[115]. More specifically, it is empirically and theoretically proved that after sev-
eral iterations basic neural message passing (e.g. GraphSAGE [139]), we lose lo-
cal neighborood information on node representations and the representations
for all the nodes in the graph can become very similar to one another. One
possible intuition about over-smoothing in GNNSs is that in some cases infor-
mation aggregated (i.e. my/(,)) from node neighbors during message passing

begins to dominate the updated node representations (i.e. hg,k)). In order to mit-
igate over-smoothing effects, several improved UPDATE operators have been
defined. In particular, vectors concatenation (or skip connections) are very use-
ful to preserve information from previous rounds of message passing during
the update step. One of the simplest skip-conncections is defined as

B = || [UPDATBpose (), mi) ) ), 1), (30)

where UPDATE,¢ is any basic UPDATE operator as the one defined in Equa-
tion 21. Here, we attempt to separate the information coming from the neigh-
bors from the current representation of each node when updating its represen-
tation.

Other forms of skip-connections have been introduced [205] to alleviate the
over-smoothing issue in GNNs, while also improving the numerical stability
of optimization.

GNN message passing algorithm can be seen as a system in which an ag-
gregation function receives an observation from the neighbors, which is then
used to update the hidden state of each node. This simple observation allows
us to apply methods used to update the hidden state of RNN architectures
based on observations. For instance, gated recurrent units (GRU) [153] can be
used to update node representations

Y = GRUKYE, mi ), (31)

where GRU [63] is a gating mechanism similar to a long short-term memory
(LSTM) architecture with a forget gate.

In general, any update function defined for RNNs can be employed in the
context of GNNSs, by simply replacing the hidden state argument of the RNN
update function with the node hidden state and the observation vector with
the message aggregated from the local neighborhood.

3.3.4 Heterogeneous GNNs

Heterogeneous graphs (Section 3.2.2) have been commonly used for modeling
complex systems, in which entities of different types interact with each other
in several ways. Some instances of such systems include academic graphs [269],
Facebook entity graph and LinkedIn economic graph.

One of the classical paradigms to mine heterogeneous graphs is to define and
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use metapaths to model heterogeneous structures, such as metapath2vec (Sec-
tion 3.2.2) [84]. Recently, due to GNNs success, there are several attempts to
adopt GNNs to learn with heterogeneous networks [223, 255, 265]. One of
the first attempts to generalize homogeneous GNNs framework to heteroge-
neous networks is to extend classical graph convolutional networks [139] to
knowledge graphs. More specifically, given a HIN G = (V,E, T), we define
the following propagation model [223]

1
niY = a( YOy —whRl +wg’<)h£{‘>>, (32)

r€TE veNT (u) Cur

where N7 (u) is the relation r-specific neighborhood of node u and ¢, is a
problem-specific normalization constant that can either be learned or chosen in
advance (e.. ¢y = |[N"(u)|). Intuitively, Equation 32 accumulates transformed
feature vectors of neighboring nodes through a normalized sum. Unlike reg-
ular GCNs, we introduce relation-specific transformations, i.e. depending on
the type and direction of an edge.

Even if the model proposed in Equation 32 has demonstrated good perfor-
mances in several tasks such as link prediction and node classification [223],
recent improvements leveraging neighborhood attention (Section 3.3.2) [255]
have been proposed. In particular, different metapaths in heterogeneous graphs
may extract diverse semantic information and how to select the most meaning-
ful metapaths and fuse the semantic information for the specific task is a hot
topic in the research community [152, 226]. Heterogeneous node-level attention
[255] is then introduced to learn the importance of metapath based neighbors
for each node in a heterogeneous graph and aggregate the representation of
these meaningful neighbors to form a node embedding. More formally, given
a relation r € Tg, we define the following relation-specific node-level attention

P (e(arinl))

Kyp' = ’ (33)
T exp (0<aﬂl[hu,hw]>>
(u)

weN”

where o denotes a non linearity, and a, denotes a trainable vector identify-
ing the node-level attention vector for relation r.
The heterogeneous node-level attention mechanism defined in Equation 33
can be further improved by modelling relation semantics together with node
semantics. More specifically, The Relation-aware Heterogeneous Graph Neural
Network [265] graph convolution module is meant to propagate information
on each relation-specific graph separately and learn node representation spec-
ified to the corresponding relation. Moreover, by integrating a cross-relation
message passing module, interactions of node representations across different
relations are improved. In this framework, the semantic representations of re-
lations are explicitly learned layer by layer to guide the node representation
learning process to facilitate downstream tasks and are finally semantically
aggregated into a compact representation based on the learned relation repre-
sentations.
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Despite the optimal performances achieved by the aforementioned works, these
face several issues:

1. they require the design of customized metapaths for each type of hetero-
geneous graphs, thus further requiring domain expert efforts;

2. they either simply assume that different types of nodes/edges share the
same feature and representation space or learn separate weights for ei-
ther node type or edge type alone, making them insufficient to capture
heterogeneous graphs complexity;

3. they ignore the dynamic nature of heterogeneous graphs.

For this reason, Heterogeneous Graph Transformers (HGT) have been recently
introduced [131]. Instead of parameterizing each type of edge, the heteroge-
neous mutual attention in HGT is defined by breaking down each edge e = (u,v)
based on its meta relation triplet, i.e., ((u),A(e), u(v)). As a result, nodes and
edges of different types are allowed to maintain their specific representation
spaces while letting nodes of different types still interact and aggregate mes-
sages without being restricted by their distribution gaps.

Even if HGT does not require to manually design metapaths, the proposed
attention mechanism can automatically and implicitly learn and extract meta-
paths that are important for different downstream tasks. Finally, to handle
graph dynamics, the HGT model architecture is equipped with the relative tem-
poral encoding (RTE) strategy. Instead of slicing the input graph into different
timestamps, all the edges are considered to happen in different times as a
whole, and RTE strategy is designed to model structural temporal dependen-
cies with any duration length, and even with unseen and future timestamps.
RTE enables HGT to automatically learn the temporal dependency and evolu-
tion of heterogeneous graphs by end-to-end training.

3.4 Conclusion

In this chapter we provided background on nodes representation learning
methods in homogeneous networks and provided a description of state-of-the-
art extensions of such methods to heterogeneous information networks. In par-
ticular, we showed how random walk based methods such as DeepWalk and
Nodezvec leverage network topology to obtain shallow embeddings to gener-
ate representations of nodes. Further we saw how deep learning framework
can be extended to graph data through graph neural networks. We showed
that such architectures, i.e. GNNs, provide more complex representations of
nodes which may be then used to accomplish inductive learning downstream
tasks. In particular, we described recent architectures which implement com-
plex mechanisms, such as neighborhood attention, able to characterize local ge-
ometry of networks. Parallel to this, we described nodes representation learn-
ing in HINs. In particular, we saw how random walk based methods, such
as metapath2vec, offer node representations able to capture node semantics
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and how recent Heterogeneous Graph Neural Network models overcome the
customization of metapaths and learn relation-specific node-level attention
weights in order to model complexity in HINS.



Contributions

This chapter describes the original contribution of this thesis. In particular, in
Section 4.1 we provide an extension of a state-of-the-art method for testing
and questioning the overall ubiquitous presence of scale-free networks in real-
world complex systems. In Section 4.2 and Section 4.3, we describe applications
of classical networks representation learning in two different scenarios, i.e. ten-
nis tournaments and preterm infants motion analysis. Finally, in Section 4.4,
we propose a preliminary analysis of a heterogeneous information network,
i.e. the collaboration network of the MaLGa' academic research group.

4.1 Statistical Testing of Empirical Power-Law Dis-
tributions

Part of this section is present in the following publication: Garbarino, Davide,
Tozzo, Veronica, Vian, Andrea, & Barla, Annalisa (2020, September). A robust method
for statistical testing of empirical power-law distributions. In International Workshop
on Algorithms and Models for the Web-Graph (pp. 145-157). Springer, Cham.

The World-Wide-Web is a complex system naturally represented by a di-
rected network of documents (nodes) connected through hyperlinks (edges).
In this section, we focus on one of the most relevant topological properties
that characterize the network, i.e. being scale-free. A directed network is scale-
free if its in-degree and out-degree distributions have an approximate and
asymptotic power-law behavior. If we consider the Web as a whole, it presents
empirical evidence of such property. On the other hand, when we restrict the
study of the degree distributions to specific sub-categories of websites, there is
no longer strong evidence for it. For this reason, many works questioned the
almost universal ubiquity of the scale-free property. Moreover, existing statisti-
cal methods to test whether an empirical degree distribution follows a power
law suffer from large sample sizes and/or noisy data.

1 https://malga.unige.it/
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Here, we propose an extension of a state-of-the-art method that overcomes
such problems by applying a Monte Carlo sub-sampling procedure on the
graphs. We show on synthetic experiments that even small variations of true
power-law distributed data causes the state-of-the-art method to reject the hy-
pothesis, while the proposed method is more sound and stable under such
variations.

Lastly, we perform a study on 3 websites showing that indeed, depending
on their category, some accept and some refuse the hypothesis of being power-
law. We argue that our method could be used to better characterize topological
properties deriving from different generative principles: central or peripheral.

4.1.1  Introduction

The World-Wide-Web (WWW) encodes associative links among a large amount
of pages. Its structure has grown without any central control, thus make it
approximable to the result of a random process, where pages link to each
other following local probabilistic rules.

Such probabilistic rules are defined through statistical properties of Web graph
features. In particular, several investigations show that the WWW is scale-free
[8, 22, 50] i.e., both the distributions of incoming and outgoing links are well-
approximated by a discrete power law [188]. This can be traced to the fact that
the vast majority of documents in the Web have relatively few outgoing and
incoming links, but few pages still have enormous number of links that skew
the mean of the empirical distribution far above the median.

Nonetheless, when analyzing specific portions of the Web, i.e. websites, the
scale-free property seems to be less evident especially for specific categories
(e.. university homepages) [199, 236]. Note that, differently from what is com-
monly done in literature [199], we consider websites as closed sub-systems of
the Web whose temporal evolution is independent of the system they evolved
into.

In this work, we are interested in developing a method able to assess if data
from empirical observations follow a power-law. Indeed, testing power laws
on empirical data is usually hard due to the large fluctuations that are present
in the tail of the distribution.

One of the most commonly used statistical test is the Kolmogorov-Smirnov
[67]. This method focuses on the center of the distribution, making it not suit-
able for testing heavy-tailed distributions. In [67] the authors make strong use
of this test by performing a bootstrap procedure that is optimal in small sam-
ple size regimes. Indeed, as the sample size grows, the power of the statistical
test increases, thus leading to higher rate of rejections of the null hypothesis.
Moreover, even in presence of small sample sizes, adding a low amount of
noise may cause the test to reject.

As in real-world, noisy or large samples are the common scenario, here, we
propose an alternative testing pipeline that leverages on the Anderson Darling
test [13] and Monte Carlo sub-sampling. Our pipeline is able to cope with the
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power of the test problem by reducing the sample size while maintaining the
original degree distribution behavior.

We show synthetic experiments in which the state-of-the-art method fails
under small variations or large sample sizes of input data. In all these cases,
our method is proved to be more stable under variations and it can be shown
that provides results with a better confidence. Lastly, we present case studies
on 3 websites representative of different generative processes. These case stud-
ies present interesting results showing that indeed, closed sub-portion of the
Web do not necessarily follow a power-law distribution. And, they seem to
point in the direction that the more the generative process is centralized the
less the degree distribution can be associated to a power law decay.

4.1.2 Discrete power-law distribution: definition, fit and statis-
tical test

The discrete power-law distribution is defined as

1
p(dy = x) =~ mx%/ (34)

where d, is the random variable representing the degree of a node v, x, is
a fixed lower bound on the values x, « is a scaling parameter, and (Xin, &) =

[e0]

Y. x~*is the Hurwitz-zeta function [117].
X=Xmin

The parameter x,,;, is particularly important, as often the degree distribu-
tion of a network follows a power law only for degrees x greater than a lower
bound. A network is said to be scale-free if the tail of its in-degree and out-
degree distributions obeys to a discrete power law decay. In practice, this en-
tails that we have a non-null probability to observe nodes with a degree much
greater than average (hubs).

4.1.3 Maximum Likelihood Estimation

The parameters x,,, and « of an empirical power-law distribution need to be
estimated from data. Given as input a vector x € IN" representing the degrees
of n nodes of a graph, we need to perform two different procedures to estimate
these two parameters, as described by the pseudo-code in Algorithm 1.

ESTIMATE OF X,i, First, we pick & as the value that minimizes the differ-
ence between the empirical degree distribution and the fitted power-law model
where x,,;, = £ [67, 68].

In order to minimize such difference, we need to select a suitable distance.
One of the most common is the Kolmogorov-Smirnov (KS) statistic, which is
defined as the supremum norm of the difference between two distribution
functions (CDFs) of the empirical data and the best-fit model [166]. Although
the KS statistic is widely used, it presents some drawbacks in the detection of
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Algorithm 1 Power-law fitting

=

Input: degrees vector of length n

2: distances = [ ]
3: for x € {min(degrees), ..., max(degrees)} do
4 if len(unique(degrees) > x) <25 then
5: break
6: end if
7: a < power_law_fit(degrees, X, = x)
8:  d < Anderson-Darling(degrees, x, a)
9:  distances.append(d)
10: end for
11: X < argmin distances

X
12: & < power_law_fit(degrees, X, = %)
13 d Anderson-Darling(degrees, £, &)
14: return %, &,cf

heavy-tailed distributions since, being based on the CDF, it mainly penalizes
fluctuations in the center of the empirical distribution. A more reliable distance
for the comparison of heavy-tailed distributions is the Anderson-Darling (AD)
statistic as it puts more importance to the extreme values of the CDFs [13].
For this reason, we will recur to this statistic in the rest of the paper. The AD
distance is defined as

P

T R Y

i=1

ln Fxmin:x<xi) + ln(l - Fxnzin:x(xn+1*i)) ’

where 7 is the sample size and Fy,, — is the power-law CDF.

Note that, if we select a £ > x,,;,,, we are reducing the size of our training
data, and our model will suffer from the statistical fluctuations in the tail of the
empirical distribution. On the other hand, if £ < x,, the maximum likelihood
estimate of the scaling parameter & may be severely biased.

ESTIMATE OF &  Given the lower bound x,,;,, we estimate the scaling param-
eter & by means of maximum likelihood, which provides consistent estimates
in the limit of large sample sizes [75].

In the discrete case, a good approximation of the true scaling parameter can
be reached mostly in the x,,;, > 6 regime [67]. And it can be computed as:

n x: -1
i=1 Xmin — 2
4.1.3.1  Goodness-of-fit test

Once & and £ have been estimated, we need to assess if observed data are
plausibly sampled from the related power-law distribution. To such extent, we
perform a goodness-of-fit (GoF) test procedure [169].
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Algorithm 2 Power-law testing

~

: Input: degrees vector of length n, £, &, d
: distances = [ ]
:fori=1,...,Mdo
Nygi1 = count(degrees > %)
forj=1,...,ndo:
b < bernoulli_sample (1, /n)
if b is 1 then
si[k] = power_law_sample(%, &)
else
si[j] < uniform_sample(degrees < %)
end if
end for
w;, x; <— power_law_fit(s)
d < Anderson-Darling(s, x;, a;)
distances.append(d)
16: end for
17: p-value = count(distances > d)/M
18: return p-value

Juny

e ® Y T R RN

T e s T
g1 R RN BQ

A goodness-of-fit test measures how well a statistical model fits into a set
of observations. Given the statistical model under testing, a GoF makes use of
a statistic that evaluates the discrepancy between the observed values and the
expected value of the model. By definition, a statistic is a function which does
not depend on the parameters of the model. The output of the GoF procedure
is a p-value corresponding to the probability that the statistic is greater than
its realization on the observed data.

Note that, since we estimate the model parameters from data we do not
know the distribution of the statistic. Thus, we perform a semi-parametric
bootstrap approach to estimate such distribution empirically[67, 237].

In particular, we fixed as statistic the Anderson-Darling distance and we
perform a procedure described in Algorithm 2. Given n samples, we indicate
with ny,; the amount of samples that are greater than . Bootstrap is then
performed by simulating 7,,;; examples from a power law with parameters &
and £, and for the remaining sample size n — ny,;; we sample degrees from the
empirical data that are smaller than £. We repeat this procedure M times. The
value of M depends on the desired significance of the p-value. Typically, if we
want a p-value that approximates its true value with an error smaller than e,
then M = é.

Given the M simulated data sets, we fit to each of them its own power-law
model and compute the AD distance. This provides the empirical distribution
of the AD statistic that we use to compute the associated p-value, defined as
the fraction of synthetic distances larger than the observed one.
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Figure 12: On the left, the empirical probability density functions of true power-
law data (black line) and noisy power-law data (pink). On the right, the
Anderson-Darling test on both samples. Little variations from an exact
power-law sample lead to reject the null hypothesis.
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Figure 13: On the left, the empirical probability density function of true power law
data. On the right, the Anderson-Darling test. Large sample size (5 x 10°)
leads to reject the null hypothesis.

If p is large (relatively to a fixed significance level, e.g. 0.1), we cannot re-
ject the null hypothesis. Then, possibly, the difference between the empirical
and theoretical distributions may be attributed to statistical fluctuations. Dif-
ferently, if p is smaller than the significance level, we say that the empirical
data are not power law.

4.1.4 Problems of goodness-of-fit on empirical data

Testing whether empirical data are power-law distributed is a hard task. This is
due to the following reasons: a) the probability of rejecting the null hypothesis
grows with sample size; and, as a consequence b) the procedure is too sensitive
to even minimal amount of noise. Little attention has been put on these issues,
but we argue that they are crucial as they heavily affect the final response of
the statistical test.

In particular, both problems can be addressed by considering the power of the
test, which, fixed a significance level, is defined as the probability of correctly
rejecting the null hypothesis. Such probability increases accordingly to the
sample size, hence, when the number of nodes 7 is large, we tend to reject the
null hypothesis even in cases of true power-law distributed data (as the power
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Figure 14: Schematic representation of the proposed pipeline.

of the test is very close to 1). Indeed, by performing bootstrap, we simulate
nearly exact power-law samples, which induce the Anderson-Darling test to
be very sensitive to even minimal fluctuations in the observed distribution.

In Figure 12 and 13, we show two synthetic experiments where such test
fails, in particular:

1. we generated n = 10° samples from a discrete power-law distribution
with parameters x,,;, = 7 and a« = 2.7. We perturbed the data by adding
one occurrence to the last 13 degrees in the extreme tail (see Figure 12
left panel for the true and perturbed data);

2. we generated n = 5 x 10° samples from a discrete power-law distribution
with parameters x,,;, =2 and a = 2.7.

We applied the procedure in Section 2 on both datasets, with M = 200 and
significance level set to 0.1. Results are shown on the right side of Figure 12
and 13. In Figure 12, the empirical probability density functions of the two
samples are indistinguishable from each other except in the extreme tail, where
little divergences can be traced. Thus, it becomes evident that for large sample
sizes the test is very sensitive even to little fluctuations in the observed sample.
Also, with example (b) we show that even perfect power-law samples induce
the test to fail when the sample size is too large (Figure 13).

Both examples show that the high power of the Anderson-Darling test in
large sample size regimes constitutes a drawback of the previously introduced
method [67]. Since it is never the case that an observed degree distribution is
exactly drawn from a discrete power law, we propose a variation of the method
in Section 2 that aims at testing the goodness of fit of heavy tail distributions.

4.1.5 Monte Carlo approach

Our proposal is based on the idea of performing iterative Monte Carlo (MC)
sub-samplings of different length on the original degree sequence. We argue
that with this sub-sampling scheme we can reduce the sample size without
modifying the trend of the original degree distribution and possibly obtain a
more reliable test.

The global scheme of the procedure is provided in Figure 14. In particular,
we define a set of lengths, {I1,..., L.}, for each length we perform r cor-
responding MC samplings. For each sample, we fit a power-law distribution
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and assess its plausibility exploiting Algorithm 1 and Algorithm 2and, thus,
obtaining a sequence of p-values of the Anderson-Darling test of length r. We
consider, as final output of the procedure, the mean of all p-values sequences
for all different lengths and the related standard deviation.

To the best of our knowledge, it is not usual to exploit MC sub-sampling
to test for power-law decay in the degree distribution. In fact, performing MC
does not allow to exactly estimate the parameters of the power-law distribu-
tion, indeed, to each sub-sample may correspond a different set of parameters.
Nonetheless, we do not use MC as a fitting method but rather to say if a net-
work is plausible to asymptotically satisfying the scale-free property. We argue
that using MC as a way to obtain suitable sub-samples of smaller sample size
would provide better understanding of the degree sequence behavior while
overcoming the drawbacks induced by large sample sizes.

4.1.5.1 Instantiation of parameters

In order to apply the Monte Carlo approach we need to fix different values,
specifically I, lsax, ¥ and the significance level.

The problem of selecting adequate lengths for the MC sub-samples is not
trivial. On the one hand, a too small sub-sample would lead to very different
degree sequences due to the large fluctuations present in the original network,
while, on the other hand, lengths close to the original degree sequence would
lead to higher rates of rejection of the power-law hypothesis. Then, we arbi-
trarily decided to set Iy at n/2 which is half the length of the observed data.
As for l4x, we fix it to n as in case of true power-law samples we want to
being able to obtain a high p-value, while in case of noisy data, considering
one length equal to the original size does not particularly affect the resulting
mean p-value.

The value of r affects the robustness of the final result, the more repetitions
the better approximation of the true p-value. Nonetheless, its value depends on
constraints deriving from computational power. Thus, we leave the definition
of such value to the user.

We fixed the significance level at 0.1 for the rejection of the null hypothesis.
This is a conservative choice implying that the power law hypothesis is ruled
out if there is a probability of 1 in 10 or less that data sampled from the true
model agree with the model as the empirical data.

Lastly, we fixed the maximal possible x,,;, to be least 25 observations less
than the maximal observed degree. This is due to limit the chances of fitting a
power-law distribution on too few observations.

4.1.6  Experimental results

In order to evaluate the performance of the proposed pipeline, we perform four
experiments and compare the results with the state-of-the-art method. In the
rest of the narration we will refer to the state-of-the-art method as Bootstrap
and to our method as Monte Carlo + Bootstrap.
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Test type Erd6s-Renyi Barabasi-Albert
75000 150000 75000 150000 300000
Bootstrap 0.00 + 0.00 + 0.85 + 0.75 + 0.78 +
0.00 0.00 0.24 0.27 0.18
MC+Boostrap 0.00 = 0.00 + 0.85 + 0.69 + 0.71 +
0.00 0.00 0.06 0.16 0.15

Table 1: Results to assess the goodness of the proposed testing pipeline in cases of
scale-free graphs (Barabasi-Albert) or not (Erdés-Renyi), in terms of mean p-
value and standard deviation on 10 repetitions of the test for different sample
sizes.

All the simulations are performed in Python. We used the package powerlaw
[12] for fitting power-law distributions to empirical data and compute the AD
distances. We provide all the notebooks used for the experiments of this paper
in a GitHub repository?. For all experiments, we fixed 30 lengths of Monte
Carlo re-sampling in the interval [}, 7] and for each of this length we get r = 10
re-samplings.

4.1.6.1  Validation of the proposed method on different graph models

In the first experiment we aim at verifying if Monte Carlo + Bootstrap is com-
parable to just Bootstrap when considering two cases at varying sample sizes:

1. Erd6s-Renyi models of size {75 x 103,15 x 10*}, we expect both methods
to refuse the null hypothesis as the degree distribution of this model
is known to follow a binomial distribution [88]. Thus, we use this as
base test to assess the probability of correctly rejecting the power-law
hypothesis.

2. Barabasi-Albert models of size {75 x 103,15 x 10%,3 x 10°}, we expect
both methods to have high p-values as the degree distribution follows a
power law [25]. We use this experiment to provide proof of the soundness
of the method in presence of true power-law data.

Each experiment listed above is repeated 10 times to estimate the mean and
standard deviation of p-values. Results are reported in Table 1 where we
observe that our approach (Monte Carlo + Bootstrap) always reject the null
hypothesis in the Erd&s-Renyi case as the Bootstrap method, while in the
Barabasi-Albert case we always provide p-values with a smaller variance.

4.1.6.2  Robustness to noise

We now want to assess that our method is indeed more robust under increas-
ing noise in the input empirical distribution. We simulated from a discrete
power law with parameters « = 2.3 and x,,;, = 1, a sample of size n = 10°. For

2 https://github.com/DaviGarba/netanalytics
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Figure 15: Results in terms of p-values for the two testing pipelines as the input data
present an increasing level of noisy observations.

different levels of noise in the set 7 € {10,40,70,100}, we perturbed the power
law observation by adding 7 values uniformly sampled from the original ob-
servation.

Figure 15 shows that the proposed methods is in mean always better than
the simple bootstrap approach while also providing a smaller variance. Also,
it never reject the null-hypothesis in cases in which the noise is small while
sometimes it rejects it in presence of high amount of noise (100 added ob-
servations). Differently from the Bootstrap approach that, depending on the
simulated sample, sometimes rejects it even in presence of zero noise.

4.1.6.3 Benchmark on University of Notre Dame website

We exploit a widely studied example of empirical data that is assumed to fol-
low a power-law distribution [8, 21, 181], i.e. the web graph of the University
of Notre Dame website. This graph, in 1999, has been studied in order to ob-
tain information regarding the topology of the Web. In [8], the authors found
that the in-degree and out-degree distributions of the graph underlying the hy-
perlink structure of the domain nd.edu were well approximated by power-law
distributions with scaling parameters 2.7 and 2.1 respectively. We downloaded
the hyperlink graph from http://snap.stanford.edu/ [149]; the crawl consists
of 325729 documents and 1497134 links. We tested the Monte Carlo + Boot-
strap approach against the Bootstrap approach as the empirical data are noisy
and we want to provide further validation of our testing procedure on the
in-degree distribution of the network.

We performed r = 5 MC re-samplings for different sizes equally spaced
in the interval [162864,325729]. Monte Carlo + Bootstrap results in a mean
p-value of 0.15, meaning that there is no strong evidence against the power-
law hypothesis for the in-degree distribution. Differently, when applying the
Bootstrap method we observed a p-value equal to 0.00, which would lead us
to reject the null hypothesis.

As in literature many have argued the power-law nature of this graph, this
allows us to conclude that our testing procedure is more robust and thus can
be applied on real-world data with higher reliability.
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Figure 16: Log-log plots of the empirical distributions of the considered case studies.

4.1.6.4 Website analysis

We now want to exploit our procedure in real scenarios to seek for evidence
of differences in the degree distributions deriving from different generative
processes. We considered three different websites that we deemed representa-
tive of different strategies of content creation: e-commerce, academic and free
encyclopedia. The first category is typically characterized by a strong central
control in the design and evolution of the information architecture and content
generation. Conversely, the last category is completely user-guided and its evo-
lution is, thus, likely to be random. We argue that the academic category, as
well as other website of complex institutions, should be a trade-off between the
two, as usually many contributors have access to writing and adding content
with a mild central control.
We consider the following websites:

1. Goop, the website of a wellness and lifestyle company; we crawled the en-
tire website using the open source framework Scrapy?, during the crawl
we restricted to the domains goop.com and shop.goop. com;

2. Stanford, the website of Stanford University. We downloaded a crawl
performed in 2002 available at http://snap.stanford.edu/;

3. Wikipedia (ES), the website of the free spanish encyclopedia. We down-
loaded a crawl of 2013 at http:/ /law.di.unimi.it/index.php [42, 43].

Table 2 describes the characteristics of the three considered websites, in terms
of category, number of nodes and number of edges. Table 2 also reports the
mean p-values obtained with Monte Carlo + Bootstrap on the in-degree dis-
tributions. Results seems to validate our hypothesis about an inverse correla-
tion between the centrality of the content generative process and the scale-free

property.

4.1.7 Discussion

In this section, we proposed a method for hypothesis testing of power-law
distributions in empirical data that overcomes issues related to the power of

3 https:/ /scrapy.org/
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Name ‘ Urnl Website type No. Nodes No. Edges | p-value

Goop goop.com E-commerce  100.482 731.259 0.00 +£0.00
Stanford stanford.edu Academic 281.903 2.312.497 | 0.01 £0.00
Wikipedia(ES) | es.wikipedia.org Encyclopedia 972.933 23.041.488 | 0.74 £0.21

Table 2: Analyzed websites with the related information about number of nodes, num-
ber of edges and category.

the test. In particular, our method mediates the effect of possibly noisy data
through Monte-Carlo sub-samplings of the empirical distribution. We verified
that the proposed method retains the ability of assessing if observations are
indeed plausibly sampled from a power law, under different sample sizes and
level of noise. Indeed, the method is more reliable than the state-of-the art
on synthetic data. To further assess the reliability of our approach we also
provide a real-world example, specifically the University of Notre Dame web-
site, which is a well studied dataset and it is considered to be scale-free. Our
method does indeed provide a p-value higher than the significance level, dif-
ferently from the state-of-the-art method that rejects the null hypothesis.

This allowed us to use our method to test different websites corresponding
to different content generative processes. From our first insights, we observed
that different content generation strategies may induce a different connectivity
structure of the hyperlink graph.

For future research we intend to increase the number of real networks stud-
ied and consider current websites related to different generative processes to
provide a more comprehensive understanding of specific sub-categories of the
Web.

Future research directions may also involve the use of random walks instead
of Monte Carlo as a sub-sampling technique on graphs [27, 159] and the com-
parison with other estimators of power laws in empirical data [214].

To conclude, our pipeline is an attempt to perform statistical testing while
considering its limits both theoretical and due to noisiness of data. We argue
that this is fundamental to reliably test assumptions on real-world examples.
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4.2 Predicting Tennis Match Outcomes with Net-
work Analysis and ML

Part of this section is present in the following publication: Bayram, Firas, Gar-
barino, Davide, & Barla, Annalisa (2021, January). Predicting Tennis Match Out-
comes with Network Analysis and Machine Learning. In International Conference on
Current Trends in Theory and Practice of Informatics (pp. 505-518). Springer, Cham.

Singles tennis is one of the most popular individual sports in the world.
Many researchers have embarked on a wide range of approaches to model a
tennis match, using probabilistic modeling, or applying machine learning mod-
els to predict the outcome of matches. In this section, we propose a novel ap-
proach based on network analysis to infer a surface-specific and time-varying
score for professional tennis players and use it in addition to players’ statistics
of previous matches to represent tennis match data. Using the resulting fea-
tures, we apply advanced machine learning paradigms such as Multi-Output
Regression and Learning Using Privileged Information, and compare the re-
sults with standard machine learning approaches. The models are trained and
tested on more than 83,000 men’s singles tennis matches between the years
1991 and 2020. Evaluating the results shows the proposed methods provide
more accurate predictions of tennis match outcome than classical approaches
and outperform the existing methods in the literature and the current state-of-
the-art models in tennis.

4.2.1 Introduction

4.2.1.1  Motivation

The sports industry is one of the fastest growing business sectors in the world.
According to the Business Research Company, the global sports market reached
a value of nearly $488 billion in 2018, having grown at an annual growth rate
of more than 4% since 2014, and is expected to reach almost $614 billion by
2022. As we live in the age of data and analytics, this steady growth rate for
the sports market size has motivated many researchers to conduct studies on
sports data analytics where in sport competitions a result can convey a great
deal on different aspects involved in sports like the volume of fans retention,
television contracts or sponsorship deals. Essentially, sports data analytics is
exploited by either the sports teams directly or by sports gambling stocks. One
primary technique of predictive analytics is to build machine learning mod-
els to generate predictions for upcoming events and matches using historical
player data and statistics.

Several leading male tennis professionals like Roger Federer, Novak Djokovic
and Andy Murray have realized the importance of data analytics in tennis, so
they introduced data analytics specialists into their teams to help them better
prepare for tournaments. They scrutinize and analyze their opponents’ key
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skills and tactics to make use of those insights to avail themselves of the op-
portunity to boost their chances of winning matches. Accurate prediction of
the outcome of tennis matches has an impact on advising players of their odds
so they can adjust their plans according to the forecast of the match.

4.2.1.2 Related Work

Complex network techniques have been applied to represent the network of
tennis matches [83]. The majority of approaches were to rank the players in
tennis history taking into account a global view of the player’s performance
throughout his career and compare it to the existing system that ATP is cur-
rently following, which is to rank tennis players based on the immediate past
52 weeks. The most notable work on tennis network modeling was done by
Radicchi [209] where the author determined the best players on specific play-
ing surface and proposed a ranking algorithm Prestige Score, that is analogous
to PageRank score [48], to quantify the importance of tennis players and con-
cluded that the prestige score is more accurate and has higher predictive power
than ranking schemes adopted in professional tennis. Michieli [173] applied
multiple ranking algorithms to see how active tennis players have improved
their overall prestige over the recent years and compared the results of the
ranking methods used with the ATP Ranking and identified Jimmy Connors as
the best player in history up to 2017. Breznik [47] identified the best left and
right-handed players in tennis history by applying network analytic methods
and the PageRank algorithm.

For tennis match prediction, most existing approaches to tennis prediction
apply statistical models to tennis matches, starting from the hierarchical struc-
ture of the sport’s scoring system under the assumption that points in ten-
nis are independently and identically distributed or i.i.d, Klaassen and Mag-
nus [140] show that the assumption is false but they find that deviations from
ii.d. are small and hence the i.i.d. assumption provides a reasonable approxi-
mation. O’'Malley [192] and, Klaassen and Magnus [141], are illustrative exam-
ples of such models. Knottenbelt et al [142]improved the hierarchical model
that is based on the probability of winning an individual point by exploit-
ing statistics from matches played against common opponents. In recent years,
machine learning models have been utilized to predict the winner of a tennis
match by representing the match and the player by a set of features instead
of a single value, player’s features are derived from historical match statistics.
Ma et al[162] applied logistic regression model on 16 variables representing
player skills and performance, player characteristics and match characteristics.
Sipko and Knottenbelt [229] have extracted more detailed set of features and
applied logistic regression and artificial neural network to predict the outcome
of a tennis match, their best model ANN resulted in a log loss of 0.6111. Peters
and Murray [202] addressed the effects of surface type and the variation of
player skills through time by using free parameters to represent the skills of
players and the characteristics of court surfaces.

Here, we define a new method based on network analysis to extract a new
feature that represent the player’s skill on each surface considering the varia-
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weight
Winner »  Loser

Figure 17: A single tennis match represented in a directed graph representation

tion of his performance over time which is believed to have a big effect on the
match outcome. We also make use of the match statistics directly in the pre-
diction through applying advanced ML paradigms instead of only following
the historical averaging process that was done in the literature. This project
uses data obtained from the ATP official website which is the main resource
for historical data of tennis matches since 1968. Each match is represented by
49 features including, for instance, player’s age and ranking, the number of
aces, double faults and 1% serve percentage.

4.2.2  Network Modeling and Surface-Specific Score

In this section, we describe the method followed to extract the surface-specific
score.

4.2.2.1  Network of Tennis Matches

We mapped tennis matches into a weighted and directed graph: edges are
directed from winner to loser and they are weighted according to the stage
and type of tournament as shown in Fig. 17. The ATP has four tiers of events—
Grand Slams, Masters 1000, ATP 500 and ATP 250. With the four Grand Slams
awarding the most points, 2000. The numbers in each tournament category
represent how many points the winner receives. For clarity, we simplified the
numbers that we used to assign weights to the edges to hold the proportion
between the values as follows: ATP 250/500 : 1, Masters 1000: 2, ATP Finals: 3,
Grand Slams: 4. In case of multiple links of the same direction exist between
the players, the weights are summed up.

4.2.2.2  Surface-specific score

It is evident in tennis that players’ performances are affected by the court
surface, Barnet and Pollard [26] showed that the type of surfaces favors those
players who are best suited to this particular surface. The dataset in hand does
not include any information about players’ skills on each surface. Therefore, in
order to quantify the latter, we subset the graph based on surface and all prior
tennis matches, we compute several centrality measures for each player and,
by means of PCA, we evaluate a surface-specific score. Centrality measures are
a widely used analysis mechanism to reveal important elements of complex
networks [76]. Note that all the used measures are normalized.
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Out-In-degree-difference Centrality: The in-degree of a player v (d'")
is the sum of the edge weights of his losing matches, while out-degree
(d5") is the sum of the edge weights of his winning matches. The Out-In-
degree-difference centrality measure (CM1) of each node is computed as
the difference between its in-degree and out-degree.

Hubs Centrality: The hub score of a node estimates how many highly
authoritative nodes this node is pointing to; in the tennis players network,
Michieli [173] demonstrated that good hubs are often associated with
successful players because they have won against a wide range of players
while the authorities are modest players with long careers.

PageRank Centrality: PageRank centrality [194] is a spectral centrality
measure. The algorithm assigns a centrality score based on its neighbors
score. PageRank acknowledges that not all wins are equal, wins over
strong opponents weigh more than beating mediocre players. PageRank
score of player i is computed as following:

d

wi; Ok
Pizﬁ+<1—d)2jpj(4 (k;)

k; + T) (35)

Where d = 0.15 is the damping factor, N is the number of players, wj; is
the edge weight between nodes i and j, k; and P; are the out-degree and
PageRank value of the node j, respectively and J is a function to correct
the sinks (nodes with outdegree zero).

Finally, to estimate the surface-specific score, we followed Algorithm 3, based
on the Principal Component Analysis (PCA) technique.

Algorithm 3 Surface-Specific Score Extraction Algorithm

=

L2 XN T B RN

. Input: Graph of matches on specific surface G'*), Centrality measure functions C
: Output: Vector of surface-specific scores y(®)
. for For each node i in graph y‘*) do

for For each function c in C do
CM(c) = C(1i)
y($) (i) = PCA(CM)

end for

end for
return y (%)

We refer to the resulting first principal component scores as surface-score.
These values can be interpreted as time-varying surface-specific scores. Table. 3
and Table. 4 show the top 5 scores on Clay and Hard surfaces respectively, as
of June 2020.
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4.2.3 Tennis Match Representation

In this section, we discuss how we processed the raw data to generate the
features that, in addition to the surface-specific score, are used as input to the
ML models.

4.2.3.1 Player’s Features

There are two types of features in our dataset with respect to their availability
time. Unlike some features which are available before the start of the match,
such as the age and rank of the players, the statistics are only available after
the end of the match. Therefore, player’s skills are estimated by taking the
average of the statistics of his historical matches for an upcoming match.

4.2.3.2 Labelling - Experimental Design

The raw data classifies the players as a winner and loser, whereas before the
match takes place, we only have players labelled as Player 1 and Player 2. Thus,
we randomly sampled the data and assigned Player 1 to be a winner or loser.
The match outcome for match 7 can be defined as following:

1, if Player 1 is the winner.
Yu = { y (36)

0, if Player 1 is the loser.
4.2.3.3 Symmetric Representation

Inspired by Sipko and Knottenbelt [229], and O’Malley [38], to achieve the
symmetry of model’s prediction outcome regardless of the random labeling

discussed in the previous section.We took the difference between the players’

features of the same characteristic in order to obtain identical results even if we
swap the labelling of Player 1 and Player 2. Also, in this way, even supposing
that we reverse the labels of Player 1 and Player 2 we are going to get the
same feature values but with different sign, and different target class. This
would also help us avoid any bias to the same feature of both players due to
assigning different weight of a feature for Player 1 than Player 2 by the model.
For example, the model might give a higher weight for Player 1 rank than to

Player Surface-score Player Surface-score
Rafael Nadal 0.539565 Roger Federer 0.627906
Novak Djokovic | 0.262964 Novak Djokovic | 0.566555
Roger Federer 0.252947 Rafael Nadal 0.375329
David Ferrer 0.206311 Andy Murray 0.320519
Guillermo Vilas | 0.150491 Andre Agassi 0.23004

Table 3: Top 5 scores on Clay, as of Table 4: Top 5 scores on Hard, as of
June 2020 June 2020
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Player 2 rank. Using the difference of variables to extract the features halves
the number of dimensions of the dataset. The difference of the variables is
calculated based on the labeling criterion defined in Equ. 36 as follows:

FEATURE; = STAT, 1 — STAT; » (37)

4.2.4 Machine Learning Methods

We think of a tennis match as a vector x; composed of P input features. The
corresponding match outcome y; may be a win 1 or a loss 0.

As for the supervised classification methods, we resorted to four methods.
Here we briefly describe the approaches and how we used them to predict the
tennis match outcome.

RF Random Forests Random Forests is an ensemble technique that com-
bines bagging and random feature sub-spacing. Random Forests algo-
rithm constructs a large collection of classification or regression ensem-
bles of independent decision trees (forests) and aggregates their predic-
tions by averaging [38].

LR Logistic Regression Logistic regression exploits the logistic sigmoid func-
tion as loss function to estimate the probability of the sample being as-
signed to one of the two possible classes [121].

LUPI Learning Using Privileged Information Learning Using Privileged In-

formation, or Support Vector Machine using Privileged Information (SVM+),

has been first proposed by Vapnik and Vashist [246]. LUPI is an advanced
learning paradigm that uses additional (privileged) information that is
available only for the training examples and not available for test exam-
ples. This additional information (prior knowledge) can be exploited to
build better models and improve the results. In tennis, and sports in gen-
eral, the match statistics are only available in the training examples as
they are collected during the match and the final stats sheet is published
after the end of the match. On the other hand, for the testing examples,
we only have the match characteristics and players’ profiles, thus we uti-
lized LUPI paradigm to leverage the match statistics that are considered
to be as additional information we have for the training examples to im-
prove the performance of the learning method. In LUPI framework, we
are given the training triplets:

{(xlle/yl)/"-/(xi’l/x:;/yi’l)}/ xi E X/ x? e X*I yl e {0/1}/ Z:
1,2,...,n

where X is the space of match features vector x, x* represents the match
statistics vector that belongs to the correcting space X* (the space of priv-
ileged information) and y; is the labels vector. Supporting the learning
process by incorporating the match statistics in the model can capture the
complexity of the training examples by discovering hidden patterns be-
tween the players that cannot be discovered in the original features space
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X. There are many examples in the tennis world where Player 1 has bet-
ter estimates than Player 2- this is going to be reflected by positive match
features and SVM might map the match data point x to the winning side
of the margin in space X. But still, if Player 1 struggles against Player
2 under specific conditions or due to his play style, this is going to be
evident in the statistics of the matches between the two players, hence
the additional information x* that belongs to the same point x might
fall in the losing side of the margin in space X*. Therefore, the match
statistics can facilitate the learning process by tightening or relaxing the
SVM constraints to improve the predictions by including the privileged
information that we have about the training matches.

Multi-Target Regression Multi-target regression, also known as multi-
output regression [44], is an advanced machine learning paradigm that
involves predicting simultaneously two or more numerical output vari-
ables given the same input features. We utilized MTR approach to predict
the statistics of the players in the match and then consequently predict
the winner of the match applying classification model. Fig. 18 shows the
workflow diagram of implementing the MTR paradigm to predict the
winner of the tennis match. The workflow diagram shows that the MTR
phase works as a ‘black box” to the match outcome prediction since it will
only help the classification model better predict the winner of the match
and the MTR prediction accuracy in itself is irrelevant to the final eval-
uation of our learning classification task. The most common approach
to deal with multi-target regression problems is problem transformation by
transforming the multi-target problem into multiple independent single-
target problems each one solved by fitting a regressor to make a single-
output regression for each target. The other approach is algorithm adap-
tation methods that modify a single-output method to simultaneously
support multi-output problems, this is usually done by modeling the de-
pendencies among these targets.

We briefly describe four different approaches to MTR that we adopted in
our classification pipeline:

MTSR Multi Single-Target Regressors: we decompose the problem to d

single-target regression problems by fitting a random forest regres-
sor to independently predict each target [44].

MTR-RC Regressor Chains: RC [232] is a problem transfer method and is built

on the idea of linking chains of regressors and stacking predictions
to other models of the chain as additional features. The training
procedure of RC involves selecting a chain that is represented by an
ordered set of target variables C = {y1,y> ...y, }. To predict the first
target value y;, we trained a random forest regressor on the origi-
nal input vector X of the training dataset. Then, for the subsequent
targets y; where j € {2,...,d} we perform transformation on the
training dataset to consist of the union of the original input vector
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Figure 18: Multi-output Regression Workflow Diagram

X and the actual value of the previous targets in the chain yx; in
the original training dataset.

MTR-RF Multi-Target Random Forest Regressor: this method [46, 150] is an
extension of the single-target random forest regressor; the only dif-
ference is the modification of the calculation of the impurity mea-
sure of a node as the sum of squared error over the multi-target
value.

MTR-TSF Multi-Target Regression Via Target Specific Features: this method,
proposed by Wang et al [253], deals with the multi-target regres-
sion (MTR) tasks by learning target specific features (TSF). The
method assigns a cluster index to each match features vector X;
using hierarchical clustering algorithm. The index is then added
to expand the feature space Xexp = X U Xjndex- Target specific fea-
tures are learned by querying a corresponding dependent similar-
ity matrix, generated by a classification and regression tree boosting
method (CART-boosting)[58]. The transformed training dataset for
the jth match statistics target Y; is constructed by finding the union

l/j] =XU Xindex U XTSF-

4.2.5 Experiments

The experiments were conducted on a node hosted on DLTM#, the node is
equipped with an Intel Xeon CPU with 27x2.3 GHz, 64 GB RAM.

4.2.5.1 Dataset splitting

For the standard ML models, the training dataset consists of 62,141 tennis
matches between the years 1991 and 2011, and 21,083 matches between 2012
and 2020 for testing, that makes up approximately 75:25 ratio. For the ad-
vanced ML paradigms and because of their complexity, we reduced the dataset
size to consist of 39,033 tennis matches between the years 2001 and 2014 for
training dataset, and 13,011 matches between 2015 and 2020 for testing, that
also makes up approximately 75:25 ratio. For each dataset, we used the tennis
matches played in the last three years of the training set for validation.

4 https://www.dltm.it/
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This way of dividing the tennis dataset by complete years is widely adopted
in the literature. The main reason is to maintain the temporal order of tennis
matches. Shuffling the data randomly would result in testing the model on
older matches than the ones used for training, which is not legitimate. For ex-
ample, it would be futile to predict the winner of a tennis match played in 2006
using machine learning model trained on data that include tennis matches
played in 2016. Moreover, ATP has a fixed calendar of certain tournaments
played in specific weeks of the season. Splitting the matches by complete years
allows us to have match samples of each tournament over the different dataset
splits. In other words, we have match examples of each tournament distributed
in the training, validation and test sets, which makes the learning process more
feasible.

4.2.5.2  Classical Machine Learning Models Results

Before fitting our model to make the final predictions, we perform feature
selection step using sequential backward selection method to select the best
features of the dataset. Since the approach requires setting the number of fea-
tures to be selected a priori, we tuned this parameter and evaluated the per-
formance of the selected subset of the features using the validation set. For RF
model, the optimal number of features is 6, while for LR model, the feature
selection approach resulted in no improvement in the accuracy while evaluat-
ing on the validation set. Table. 5 compares the results of RF and LR models
when evaluated on the testing set using accuracy and log loss classification
as metrics. Tehe Random Forests algorithm outperformed logistic regression
when implemented with feature selection step and without. When comparing
the prediction results between the two algorithms using various classification
metrics, random forest with feature selection resulted in higher prediction ac-
curacy, and also improved the uncertainty of the predictions measured by the
log-loss.

Model Log-Loss | Accuracy
RF without FS | 0.6095 0.6681
RF with FS 0.5996* 0.6729%
LR 0.6110 0.6663

Table 5: Random forests with and without feature selection (RF with FS and RF with-
out FS respectively) and logistic regression results in terms of Log-Loss and
Accuracy.

To inspect the impact of the surface-score feature on the prediction results,
we used the Shapley Value [161] as shown in Fig. 19. To calculate Shapley Val-
ues of each feature in the set, a model is trained with that feature present, and
another model is trained with the feature withheld. Then, predictions from the
two models are compared on the current input. We see that the RANK vari-
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Figure 19: Average impacts (in absolute terms) of features on model output magni-
tude, WSP is winning on serve percentage, WRP is winning on return per-
centage

Table 6: Accuracy results of SVM+ with different kernels. SVM, random forest and
logistic regression are applied on the original features

Decision Space | Correcting Space Kernel Original Features
Kernel Linear RBF | Sigmoid | SVM | RF-OF | LR-OF
RBF 0.66159 | 0.6612 | 0.6622* 0.655
Linear 0.64822 | 0.64927 | 0.6561 | 0.64768 | 0.657 | 0.654
Sigmoid 0.6526 | 0.6503 0.6607 0.6305

able is the most important feature in making the predictions, then SURFACE-
SCORE feature that we inferred based on network analysis.

4.2.5.3 SVM and SVM+ Results

Table. 6 provides a summary of the accuracy results of applying SVM+ us-
ing different kernel function combinations in decision and correcting spaces.
We also report the accuracy results of the classical SVM algorithm using the
corresponding kernel functions. Since we have used different years range as
discussed in Section 4.2.5.1, and for the sake of comparing, we applied the clas-
sical machine learning models on the same dataset. The standard ML models,
RF and LR, are trained on the original features of the dataset without using
the match statistics, named RF-OF and LR-OF respectively. We can see the im-
provement in the models” performance when leveraging the match statistics
as privileged information to correct the decision function. Also, considering
a RBF kernel has provided the highest accuracy percentage using both SVM
and SVM+ models. Furthermore, the models in LUPI framework have supe-
rior predicting performance when compared to RF and LR. SVM+ improved
the classification accuracy results of both models.

4.2.5.4 Multi-Output Regression Results

To predict the statistics of the match, we fitted several multi-output regression
models and used the mean squared error metric to evaluate the performance of
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each model. Table. 7 reports the predictive results for both regression and clas-
sification phases for the different models. We can notice the big impact of the
output of the regression phase on the final classification predictions. Improv-
ing the mean squared error of the MTR models by 10~3 leads to obtain higher
accuracy results by 1.5%. Comparing the performance of the different MTR ap-
proaches, we can see that the models which consider the dependency between
the features have better results than the ones that neglect it. This supports the
hypothesis that tennis match statistics are correlated and modeling this rela-
tionship between the features is a powerful technique that should be followed
to achieve higher prediction accuracy. Specifically, multi-target regression via
specific target features (MTR-TSF) has had the best regression performance.
Consequently as a result, the classifier that was built on the MTR-TSF predic-
tions as an input has the highest accuracy results compared with the other
MTR models.

Table 7: Regression and classification results of multi-target regression via specific
target features (MTR-TSF), multi single-target regression (MTSR), multi-
target regression via regressor chain (MTR-RC), Multi-Target Random Forest
Regressor(MTR-RF), random forest on the original features (RF-OF), and Lo-
gistic regression on the original feature (LR-OF)

Regression Phase
Classification Phase
Mean Squared Error for Each Target
Approach | M-ACES | M-DFS | M-W1S | M-W2S | M-WSP | M-WSG Accuracy
MTR-TSF 26.63 8.29 0.0191 | 0.0281 | 0.0162 0.0610 0.666*

MTSR 27.60 8.71 0.0204 | 0.0297 | 0.0173 0.0647 0.65
MTR-RC 26.39 8.34 0.020 0.0295 | 0.0173 0.0665 0.65
MTR-RF 27.27 8.54 0.198 0.0291 | 0.0168 0.0631 0.649

RF-OF - 0.657

LR-OF - 0.654

4.2.6  Conclusions

4.2.6.1  Contribution

In this section, we utilized network analysis techniques and applied advanced
machine learning paradigms to improve the current state-of-the-art approaches
to predict the winner of a tennis match. We developed a novel method by rep-
resenting the tennis matches as a network to infer a time-varying and surface-
specific score that evaluate the player’s performance on a specific court surface
at a certain time point. We made use of the extracted score to enhance our
dataset and added it to the features set that contains estimations of players’
qualities based on the historical matches. We demonstrated that the extracted
score has a relevant influence on the prediction results and was ranked as the
second most important feature in making predictions of our classification task.
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We made use of advanced machine learning paradigms (LUPI and MTR)
which resulted in more accurate results when compared to the classical ma-
chine learning models. By using these advanced methods, we improved the
prediction accuracy results of the classification task by 1.5%. We do emphasize
that the proposed methods can outperform the current state-of-the-art models,
and can be even generalized to other sports that have a similar data structure,
i.e.,, where the match statistics are only available for training and not available
for testing. The advanced paradigms leverage the match statistics directly in
making predictions instead of solely using statistics estimators (for example
historical average) as per usual when applying the classical machine learning
models.

4.2.6.2  Limitations

Implementing the advanced machine learning paradigm is associated with
additional cost and complexity. This cost in both the resources and the execu-
tion time slows down the optimization and hyperparameters tuning process
to select the best model that produces the optimal performance and results.
Building the kernel matrices for LUPI, and generating the dependent similar-
ity matrix for MTR-TSEF, are the most time-consuming and costly phases of the
models.

4.2.6.3  Future Work

The limitations of the approaches described in the previous section prompt us
to think about models that are memory and run-time efficient. Online learn-
ing would be a natural candidate. In online learning paradigm, the model is
quickly updated to produce the best model as the data arrive in a sequential
order. Thus, there is no need to re-train the model whenever a new data point
arrives which is too expensive. Online learning is an option worth exploring
in predicting tennis match outcomes as it has a rich literature.

Our dataset only includes the totals of winning points on serve and return.
In fact, there is a plenty of other aspects in the game of tennis that differenti-
ate between the players” qualities and skills. Acquiring more statistics, such as
winners and unforced errors records, head-to-head results on a specific surface,
or success rate in winning points at the net, can improve the models” perfor-
mance. It would also be useful to model the non-numerical factors and convert
them into numbers to include them in the dataset, such as the player’s current
form or favoring specific events which can play a part in helping predict the
winner of the match.
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4.3 Attributed Graphettes-based Preterm Infants
Motion Analysis

Part of this section is present in the following publication: Garbarino, Davide,
Moro, Matteo, Tacchino, Chiara, Moretti, Paolo, Casadio, Maura, Odone, Francesca,
& Barla, Annalisa (2021, November). Attributed Graphettes-Based Preterm Infants
Motion Analysis. In International Conference on Complex Networks and Their Appli-
cations (pp. 82-93). Springer, Cham.

The study of preterm infants neuro-motor status can be performed by ana-
lyzing infants’ spontaneous movements. Nowadays, available automatic meth-
ods for assessing infants motion patterns are still limited. We present a novel
pipeline for the characterization of infants’ spontaneous movements, which
given RGB videos leverages on network analysis and NLP. First, we describe
a body configuration for each frame considering landmark points on infants
bodies as nodes of a network and connecting them depending on their proxim-
ity. Each configuration can be described by means of attributed graphettes. We
identify each attributed graphette by a string, thus allowing to study videos
as texts, i.e. sequences of strings. This allows us exploiting NLP methods as
topic modelling to obtain interpretable representations. We analyze topics to
describe both global and local differences in infants with normal and abnor-
mal motion patters. We find encouraging correspondences between our results
and evaluations performed by expert physicians.

4.3.1 Introduction

The analysis of preterm infants motion is a crucial and complex task. The
World Health Organization (WHO) [258] has highlighted that among preterm
infants (i.e., infants born before 37 completed weeks of gestation), there is a
5-15% chance of developing motor alterations caused by permanent lesions of
the developing brain [30] that commonly involve areas of the brain intended
for control of movements. An early diagnosis of abnormal motion patterns
would allow the start of early rehabilitation treatments, increasing the chances
of recovery. In this direction, due to the increase of preterm survival rate in
high-income countries [11], a lot of effort has been made to find an automatic
and reliable way to characterize and analyze preterm infants neuro-motor sta-
tus based on the characterization of infants” spontaneous movements [127].
An accurate quantitative analysis of human motion is usually performed
with wearable sensors, markers and motion capture systems [70, 170]. Unfor-
tunately, markers and sensors placed on the body skin are cumbersome and
they can affect the naturalness of the motion [52], especially in infants [127].
For these reasons, recently, marker-less techniques for human motion analysis
based on computer vision have been studied [70, 8o] and applied to the analy-
sis of infants motion [3, 6, 53, 101]. These techniques have the potential to solve
or reduce some of the issues of marker-based approaches, as they allow for a
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more natural person-friendly interaction, they are non invasive and not expen-
sive. Furthermore, they can be adopted to characterize motor configurations
not easily detectable with markers.

We approach the problem of representing spontaneous movements sequences
of preterm infants by studying it as a temporal network analysis problem.
More precisely, we map each frame of a video to a 5-node graph whose nodes
are landmark points and edges are inserted based on the distance of the land-
mark points on the image plane. As far as we know, this is an original ap-
proach, never used before.

We model the networks as sequences of 5-nodes attributed graphettes [118], de-
fined as not necessarily connected, non-isomorphic induced subgraphs of a

larger graph, whose nodes are equipped with attributes.

We want to exploit this modelling choice in order to obtain an interpretable,
low-dimensional representation of each video, able to convey information about
the local dynamics of each infant. In this sense, in [156] authors present a work

in which they define a representation of a large social network by using meth-
ods of topic modelling [9]. Specifically, In [156] authors build topic models

(that they call structural topics) upon graphettes occurrences in node neigh-
borhoods by using anonymous walks to approximate their concentrations in

the network. Such topic models, in which graphettes are actually encoded as

words of a text that is the network, allow to overcome the only description

of networks through graphettes concentrations [207] by including the distri-
bution on graphettes themselves. This allows us to obtain a representation of

the network as a mixture of structural topics which in turn are outlined as a

mixture of graphettes. In our problem, we leverage on the method described

in [156], instantiated with a Latent Dirichlet Allocation [40] model, to identify
local motion patterns able to characterize infants” spontaneous movements.
This method allow us to highlight insightful differences between the classes

of infants with normal (N) and abnormal (Ab) motion patterns. In particular,
the motion of infants in Ab class is better characterized by highly symmetric

configurations and lower variability. On the contrary, infants in N class are

characterized by less symmetric configurations and higher motion variability.

4.3.2 Materials and Methods

4.3.2.1 Dataset

Data acquisition was performed 3 months after an infant’s birth and involved
118 preterm infants (one video for each infant, 78 females, born at 29 + 2 weeks
and weighting 1150 & 303g). The acquisition setup was composed by a single
RGB camera (Canon Legria HF R37, acquiring at 25 frames per second with
a resolution of 1080x1920 pixels) placed on a support above a treatment table.
We excluded from the analysis those portions of videos where interventions of
the operators occluded part of the scene or where the infants were crying.
Among the 118 infants included in this study, 53 had a clinical diagnosis of
neuro-motor disorders, presenting a wide spectrum of motor disorders inten-
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sities but only a minority with major impairments. The neuro-motor assess-
ments performed 30 months after the video recording were based on different
clinical evaluations and tests, including the Bayley test [31] for the majority of
the infants and Magnetic Resonance Imaging (MRI) at birth. The study and the
consent form signed by parents were approved by the Giannina Gaslini Hos-
pital Institutional Review Board on 20/06/2013 (protocol number: IGGPMo1).

4.3.2.2  Pre-processing: landmark points detection and filtering

In our setting, we use as nodes of the networks representation a set of mean-
ingful landmark points detected on infant bodies. To this aim, we rely on a
deep model for semantic features detection, DeepLabCut (DLC) [167], suit-
ably trained to detect nose (N), left hand (LH), right hand (RH), left foot (LF)
and right foot (RF). From our dataset, we randomly select 10 frames from
100 videos and we manually label the points of interest. Among the different
deep architectures provided in DLC, we select a ResNet-50 [123] pretrained
on Imagenet [79] and with a final deconvolutional layer to extract spatial den-
sity probability maps associated with each landmark point. The architecture is
trained with the parameters suggested in [167]. We adopt our trained model
to extract the positions of the five landmark points in all the frames for each
infant’s video, as shown in Figure 20. For each video, the outputs of the model
are {(xf,y!,c")}L_,, with I = {N, LH, RH, LF, RF}. The /—th point in the t—th
frame is identified by its position (x!,y!) and likelihood ¢}, a number in the in-
terval [0, 1]. The coordinates obtained are then filtered in order to improve the

HEE

Figure 20: Examples of detected landmarks in the image plane. Images cropped for
visualization purpose.

stability across time of the estimated points and discard mispredictions. Focus-
ing on cf, we are able to quantify the uncertainty behind the detection of each
point in each frame. We consider as wrongly detected points with ¢/ < 0.75.
Then, in order to recognize other possible mispredictions, we drop points cor-
responding to high peaks in the speed profile of each coordinate. We discard
points with these characteristics and, if the information loss lasts less then
2 seconds (50 frames), we interpolate the trajectories in order to reconstruct
the information. Finally we smooth the resulting signals with a low-pass filter
(Butterworth, 4th order, 10 Hz cut-off frequency).

4.3.2.3 Networks definition

For each video, we build a temporal sequence of networks (one per frame) de-
scribing the relation among the landmark points of interest in the image plane,

61



4.3 ATTRIBUTED GRAPHETTES-BASED PRETERM INFANTS MOTION ANALYSIS

used as nodes, that are connected through edges depending on their relative
proximity. More specifically, edges are obtained by computing the Euclidean
distance between every pair of landmark points in all the images composing
our dataset. For each infant, all the computed distances are normalized by the
maximum distance across the whole video in the image plane between the
nose and the virtual middle point between the feet. Distances normalization
compensates for possible differences both in the size of infants’ body and in
the distances between the camera and the acquisition plane. We use the nor-
malized distances distribution to identify which points are close to or far from
each other at each timepoint.

In order to privilege sparser networks for the ease of analysis, we assume
to be unlikely for two landmark points to be often close to each other. There-
fore, we state that if the distance between two landmark points is greater than
the 25th quartile of the corresponding empirical distribution, then they are far
from each other, and we do not connect them with an edge. Conversely, we link
two nodes with an edge if their normalized Euclidean distance is lower than
the 25th quartile of the corresponding empirical distribution. This assumption
allows us to define a binary temporal network for each infant in the dataset:
Figure 21 shows the first 10 configurations of an infant’s sequence represented
by their adjacency matrix. The choice of the threshold is driven by the neces-
sity for sparsity yet arbitrary. Possible alternatives will be further explored in

future works.
o 1 2 3 4 5 6 7 8 9

Time (frames)

Figure 21: Ten consecutive layers of an infant network represented as a sequence of
adjacency matrices.

Each layer in an infant network represents a configuration at a specific time-
point (frame) and it is defined as a 5-node graph, which we exchangeably call
attributed graphette or configuration. In the remainder of the paper, we leverage
this representation to describe infants motion in an unsupervised fashion.

4.3.2.4 Attributed graphettes-based representation

Each temporal network built for each infant and defined in Section 4.3.2.3 can
be represented as a sequence of configurations describing infants motion pat-
terns. More formally, the ¢-th layer, corresponding to the ¢-th frame, of a tempo-
ral network G is represented by a graph ¢; = (V, E, L), where V = {1,2,3,4,5}
is the set of nodes, E; is the set of edges and L = {N,RH,LH, RF, LF} is the
set of node attributes. It is important to note that at each timepoint ¢, the
map assigning a node n € V to a label | € L is a bijection. Furthermore
|E¢| € {0,...,10}, thus allowing for the presence of not connected subgraphs
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in every infant video. Such subgraphs are called graphettes [118], defined as not
necessarily connected, non-isomorphic induced subgraphs of a larger graph.
Similarly to graphlets [207] and motifs [176], graphettes are a suitable tool
to give a local and global description of large complex networks. Indeed, by
computing node-level graphettes concentrations in a network we are able to
describe local wiring patterns [244] and, at the same time, by aggregating this
local information, we get a global description of the network based on the
occurrences of these substructures [207]. It is usually a hard task to develop
exhaustive graphettes enumeration algorithms, especially when dealing with
attributed graphettes, as they are much larger in number than those without
attributes [82]. Nevertheless, we exploit the work of [118] and the nature of
our problem to define an exhaustive enumeration algorithm.

ATTRIBUTED GRAPHETTES ENUMERATION ALGORITHM Knowing that the
number of possible configurations representing one frame is limited to 2%, we
generate all the possible 5-nodes attributed graphettes and represent them
with the upper triangle of their adjacency matrix unravelled into a bit vector.
Each bit vector is then associated to a word, i.e., a string composed by the letter
g and an integer number ranging from 0 to 1023. A practical example of this
process is shown in Figure 22.

O/;\O NOOO®
— 10 — |111oo1oooo1 | —
110
0 0D
010

00
00

Figure 22: Canonical representation of one instance of a 5-node attributed graphette.

Given an infant video G, we sequentially associate each frame t of the video
with an attributed graphette, represented by the corresponding string g,. For
instance, the attributed graphette 0000000000 corresponds to the string go. A
network is then defined as an ordered sequence of elements from the set
{80, ---,81023}, whose length is equal to the number of frames of the corre-
sponding video. Indeed, G results as a collection of configuration names that
we treat as text, resorting to Natural Language Processing (NLP) methods for
text representation in order to enumerate attributed graphettes and describe
infants motion in terms of their occurrences.

In this regard, the Bag-Of-Words (BOW) [105] model is a histogram repre-
sentation that transforms any text into fixed-length vectors by counting how
many times each word appears in. This vectorization process is performed by
tixing or inferring a vocabulary, which is contained in or equal to the set of all
words found in the documents. In our case, the vocabulary of all configura-
tions appearing in the dataset consists of 650 attributed graphettes. Therefore,
after fitting a BOW model, every infant’s network turns out to be a vector of
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size 1 x 650. Figure 23 (left panel) offers a visual representation of a video as
a BOW vector.

In order to identify those configurations that are discriminative for networks
in the dataset, we need to normalize raw counts in BOW vectors properly. For
this purpose, we leverage on Term Frequency - Inverse Document Frequency
(tf-idf), a common algorithm to transform word counts into meaningful real
numbers [219]. More specifically, given a configuration g, and a network G,
tf-idf measures the originality of g, by comparing the number of times g,
appears in G (i.e. term frequency) to the number of networks g, appears in (i.e.
document frequency).

To reduce the dimensionality of these representations, we set a threshold
on the minimum and maximum document frequency of configurations. In
the tf-idf case, we also retain the ability of weighting graphettes based on
their commonality in the dataset. Figure 23 (right panel) illustrates a tf-idf
transform (with minimum and maximum document frequencies set to 45%
and 70% respectively) of a network in the infants dataset.

Latent Dirichlet Allocation Even if tf-idf approach provides an arbitrary

amount of reduction in description length, it does not reveal any informa-
tion on intra-networks distribution over all attributed graphettes. To overcome
this limitation, we resort to topic modeling [9] to define an interpretable low-
dimensional representation of videos, able to describe the distribution of at-
tributed graphettes for each infant and also able to give local information on
the dynamic of infants by considering co-occurrences of configurations.
Topic models [9] are probabilistic generative models for large collections of
textual data (i.e., text corpora). A notable topic model is Latent Dirichlet Allo-
cation (LDA) [40] defined as a 3-level hierarchical Bayesian model, in which
every item in a corpus is modelled as a mixture over an underlying set of
topics, which are, in turn, described by a probability distribution over words.
Topic probabilities offer an explicit low-dimensional representation of texts
which has been recently adopted to analyse large social networks [156]. In the
remainder of the paper we adopt an LDA representation of infant networks
built upon the tf-idf transformations of attributed graphette counts.

8 AEIN g21 7..8] 52g192 O
A > 928 - lg}
1!9 2 %jn Lng134
4 @ g”g192 g65
g|97g644 g 8216 18 g 1 9 3 5 4 5
g544g0g545 o g704m 242832

Figure 23: BOW (left) and tf-idf (right) word cloud visualization of an infant’s temporal
network. The size of configuration names is proportional to their weights in
the corresponding representation. Note that the configuration g512 is either
very frequent or rare in the collection of infants networks and therefore it
has weight equal to 0 in the tf-idf representation.

64



4.3 ATTRIBUTED GRAPHETTES-BASED PRETERM INFANTS MOTION ANALYSIS

075
070
065
080
055
050
045
040
035
030
025
020

075
070
065

055
050

Average Intrinsic Topic Coharence Measure

045

Awerage ITCM with minimum dacument frequency .01

075

Average [TCM with minimum dacument frequency 0.10

75 A¥erage [TCH with minimum document frequency 0.18

e~ Maxdf 06

Max df 0.65
- Maxdf 0.7
—&— Max df 0.75

070

x dF 0.6
x df 0.65
i df 0.7
x df 0.75

070
065
060
055
050
045
040
035
030
035

"

e

lax df 0.6
tax df 0.65
lax df 0.7
lax df 0.75

zz=zz

2 3 4 5 [ 7

Awerage ITCM with minimum dacument frequency 0.27

020

2 3 1 5 [] H

#Awerage ITCM with minimum dacument frequency 0.36

e
-
e

2 3 L) 5 [ 7

average ITCM with minimum dacument frequency 0.45

015
070
065

055
050
045

040 040 040
035 035 o 06 035
ax df 0.65 030

-
030
lax df 0.7 > Max
e
2

025

5555
zz=zz
zz=zz
§i§%

lax df 0.75 02

MEXER:
MEXER:

020

3 4 5 [ 7

Number of topics

Figure 24: Average ITCM evaluated for number of topics (NoT) ranging in
{2,3,4,5,6,7} and for different values of maximum and minimum docu-
ment frequencies in the tf-idf representation. As shown in the bottom right
corner, the optimal choice is NoT = 5, maximum df equal to 70% and min-
imum df equal to 45%.

DATA AUGMENTATION Typically, in order to obtain reliable and stable top-
ics, LDA needs to be trained on a large amount of data. Our dataset is com-
posed of 118 infants (65 with normal and 53 with abnormal motion patterns)
which is too small to infer meaningful topics from LDA. Then, in order to aug-
ment the dataset, we simulate videos from the two classes (i.e., infants with
normal (N) and abnormal (Ab) motion patterns) until we obtain a balanced
dataset of 1130 videos (118 original videos, 500 and 512 simulated videos from
the classes N and Ab, respectively). Simulated networks are composed of 10710
consecutive configurations, which is the average number of frames composing
original infants videos. We simulate temporal networks by leveraging normal-
ized bigrams (i.e., couples of adjacent configurations) counts from the original
dataset. More specifically, given a temporal network G we compute bigram
frequencies and associate every configuration g, with a vector vy, = (bf;)%}
where bf; corresponds to the normalized frequency of the bigram (gx g,(;)) in
G, gn(i) identifying the i-th configuration in the vocabulary. Thus, for every
infant, we obtain a matrix Xg (650 x 650) describing an infant-specific condi-
tional distribution over configurations. We generate networks by first picking
at random an infant from a chosen class and a starting configuration, then we
iteratively sample configurations from the probability distribution identified
by XG.

NUMBER OF TOPICS SELECTION  One of the most crucial LDA hyperparam-
eters that needs to be tuned is the number of topics. In literature, many metrics
have been defined in order to find an optimal number of topics [40, 216]. We
focus on the maximization of the Intrinsic Topic Coherence Measure (ITCM) [177],
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which is a metric based on the co-occurrence of words within the documents
being modeled. For every topic p, ITCM is defined as

M m—1 1
ITCM(p, V") = ¥ Y log M, (38)
m=2 h=1 f(vh)

where VP = (v’f, .. .,vﬁ,l) is a list of the M most probable configurations in

the topic p, df (Uﬁz,vz ) is the number of documents where the configurations
pair v}, and v} appear together in, and df(v}) is the document frequency of
the configuration v}. For each topic, co-occurrence frequencies of the M most
probable configurations (df (v}, v}) in Equation (38)) are computed within
fixed-size temporal windows for every network. We consider M = 10 and
a temporal window size equal to 110 frames. We select an optimal number of
topics (NoT) by studying how ITCM varies as NoT ranges in {2,3,4,5,6,7}
when applying LDA to the tf-idf transform of the augmented dataset for
different settings of maximum and minimum document frequencies. Maxi-
mum and minimum document frequencies values are chosen based on the
original dataset statistics. More specifically, minimum document frequencies
range in {1%, 10%, 18%, 27%, 36%, 45%} where 1% corresponds to 1 infant in
the original dataset and 45% correspond to the total amount of infants with
abnormal motion patterns. Similarly, maximum document frequencies range
in {60%, 65%,70%,75%} where we set 60% as lower bound as we assume
that every configuration appearing in more than half of the infants is non-
discriminative. As shown in Figure 24, we obtain that an optimal ITCM is
reached at NoT = 5, maximum and minimum document frequency equal to
70% and 45%, respectively.

4.3.3 Results: topics analysis

By fitting LDA with such hyperparameters to the augmented infants dataset
we obtain 5 topics describing local motion patterns as a result of the ITCM
maximization. Figure 25 shows the topics summarized by their 5 most prob-
able configurations. Topic-specific most probable configurations differ from
each other only by few edges and also appear as little modifications of a basic
configuration. This is evident by looking at the first 2 most probable configura-
tions in Figure 25. For instance Topic 2 is well summarized by the configuration
in which the only present edges are the ones which connect a hand with the
corresponding foot, meaning LH-LF and RH-RF. Indeed the 2 most probable
configurations appear as slight deviations from this basic configuration.

Then, we study topic proportions for every network in the original dataset
in order to look for differences between the networks representation of infants
with normal and abnormal motion patterns. Topic proportions of networks
provide us with a global description of infants movement. Indeed, for each
network in the dataset, larger mixture components correspond to topics whose
most probable configurations are peculiar to the corresponding infant’s mo-
tion sequence. Furthermore, topic proportions are suitable to be interpreted as

66



4.3 ATTRIBUTED GRAPHETTES-BASED PRETERM INFANTS MOTION ANALYSIS

probabilistic assignments to clusters, which are identified by the correspond-
ing topics.

We perform class-specific topic proportions analysis, as reported in Table 8.
In particular, for each network in the dataset, we observe the largest mixture
component in its topic representation, that tells us the confidence in assigning
the network itself to the corresponding topic. Once assigned the infants to
the corresponding prevalent topic, we compute intra-topic, class-specific mean,
minimum and maximum probability assignments. We claim that such statistics
are good descriptors of the variety of intra-class motion. Also, for each topic,
we compute the concentrations of infants in N and Ab classes assigned to
it. Differences in such concentrations would indicate different global motion
patterns between the two classes. Furthermore, for each topic, we evaluate the
mean global symmetry and density of the 5 most probable configurations as
well as the mean symmetry of hands and feet neighborhood. In general, from
Table 8 we can observe that:

1. no significant differences are detected in the concentrations of infants
assigned to each topic.

2. Infants with normal motion patterns are more uniformly distributed
among the 5 different topics meaning that they present a higher vari-
ability in terms of motion patterns.

3. Infants with abnormal motion patterns are well represented in Topic o
and Topic 4 (considering the minimum and the mean probability assign-
ments respectively).

%

s kO

Topic 0 Topic 1 Topic'2 Topic 3 Topic 4
g254 8223 (g80 1828 = 81995198 e g197304
go4 890 “ 30 g640 2
g545)8864 g10 8 8 g7 22k
g255 . o 826 g70 B192
g

A IS X Y L

Figure 25: Visual representation of the five obtained topics described by their 5 most
probable configurations: the top 2 are depicted as graphs whereas the last
3 are synthetized by their encoding. The size of a configuration encoding is
proportional to its weight in topic-configurations probability distribution.
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Table 8: Results of topic analysis. For each topic, we report statistics on: Intra-class as-

signment probability (mean, minimum, maximum, and concentrations), Sym-
metry (global, hands, and feet), and Density of the 5 most probable configu-
rations.
Intra-class probability Symmetry Density
class N class Ab
Mean | Min | Max | Conc | Mean | Min | Max | Conc | Global | Hands | Feet

To | 0.59 0.34 | 0.9 0.15 | 0.67 06 |091 |0.15 | 0.94 0.95 0.78 | 0.62
T1 | 0.8 041 | 1.0 | 0.28 | 0.74 042 | 1.0 | 0.28 | 0.94 0.87 0.60 | 0.28
T2 | 0.73 0.46 | 1.0 0.17 | 0.74 0.36 | 1.0 0.13 | 0.90 0.80 0.75 | 0.34
T3 | 0.6 0.4 |0.99 | 023 |o0.71 0.33 | 0.93 | 0.17 | 0.80 0.50 0.58 | 0.34
Tg | 0.7 0.44 | 0.98 | 0.17 | 0.82 047 | 1.0 | 0.26 | 0.92 0.20 0.68 | 0.24

4.3.4 Discussion and conclusions

The class-specific topic proportions analysis associates each infant to a predom-
inant topic. The structural features that we computed (symmetry and density)
attempt to reflect some qualitative aspects considered by experts physician dur-
ing the motor evaluation [170]. Considering the results highlighted in Table 8,
we can comment that:

1. the higher variability associated with infants with normal motion pat-

terns is also a qualitative aspect that it is usually considered by expert
physicians during their evaluations [170].

. Infants with abnormal motion patterns are well represented by Topic o

since the minimum probability is higher (0.60) with respect to the other
cases. Topic o is also characterized by dense configurations and with a
higher level of symmetry. Also in this case we have a correspondence be-
tween our results and the visual evaluation of expert physicians because
abnormal movements are characterized by a higher symmetry.

Topic 4 is one of the two most frequent topic in infants with abnormal
motion patterns and with the highest mean assignment probability. As
for Topic o, we can notice highly symmetric configurations. In this case
the symmetry is quite entirely concentrated on feet connections.

For future works we plan to include more infants in the study and to refine
the network representation detecting more landmark points on infants” bodies.
By increasing configurations size, we expect to gain enough information to
consolidate the analysis and investigate possible discriminative properties of
the identified topics.
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Year

Field of study

Figure 26: Academic Collaboration Knowledge Graph representation. Nodes repre-
sent authors, papers, fields of study, topics, venues and years of publica-
tion. Relationships among nodes identify different triplets as described in

the top-right box of the figure.

4.4 Interactive recommendation in Academic Col-

laboration Networks.

Part of this section will appear in the following publication (to be submitted):

Garbarino, Davide, Giampaoli, Daniele, Cuneo, Marina, Paniati, Giorgia, Vian, An-
drea, & Barla, Annalisa (ongoing). Interactive recommendation in Academic Collabo-
ration Networks. In the Special Section on “Emerging Trends and Advances in Graph-
based Methods and Applications”, IEEE Transactions on Emerging Topics in Comput-

ing.

It is known that collaboration between authors leads to a positive impact on
research. This section aims to provide a preliminary analysis of the complex
structure of a heterogeneous information network among researchers of the
Machine Learning Genoa Center (MaLGa). We aim to examine the academic
collaboration knowledge graph created starting from the data of the papers
published by the MaLGa members during the period 1986—2022. We apply
the main Network Analysis and Machine Learning techniques to describe the
relational structure of the group of researchers and its evolution over time. As
a concluding experiment, an attempt is made to classify papers based on the

MaLGa research unit researchers belong to.

writes
accepted-by
has-topic
interested-in
published-in
published-with
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4.4 INTERACTIVE RECOMMENDATION IN ACADEMIC COLLABORATION NETWORKS.

4.4.1 Introduction

Research centers are constantly monitored to evaluate scientific production,
scientific collaboration between researchers, and the degree of openness com-
pared to other national and international research centers [96]. Indeed, in re-
cent years there has been an increase in scientific collaboration between re-
searchers [126, 144], resulting in complex interactions involving actors work-
ing in the same disciplinary field, but also, and above all, actors from differ-
ent fields of study. Collaboration could be analysed through co-authorship in
scientific publications, as shown by several studies [91, 128, 220]. Neverthe-
less, recent advances in Heterogeneous Information Network (HIN) analysis
[269] allow us to consider Academic Collaboration Networks as complex sys-
tems involving several types of entities (e.g. authors, papers, venues and fields
of study) and several types of relationships among them (e.g. co-authorship,
author-writes-paper, paper-accepted by-venue and so on and so forth).

Being able to represent a collaboration knowledge graph in such a way that se-
mantics complexity is preserved may allow to perform tasks and consequently
define usable systems able make the academic community even more con-
nected. More specifically, heterogeneity in collaboration knowledge graphs
may be leveraged to represent research groups (or more in general universities)
by different perspectives (see Figure 26) and this would allow to recommend
people, works or, more in general, research topics characterizing the group to
external users (e.g. students looking for scholarships, or authors looking for
collaboration on specific topics). To this end, Heterogeneous Graph Neural
Networks (Section 3.3.4) [223, 255, 265] are a suitable tool that allow to repre-
sent nodes and edges of HINs by preserving their semantics while performing
specified downstream tasks during optimization. In this framework, we would
like to define a social recommendation inductive learning problem. Specifically, so-
cial recommendation aims to recommend relationships, in a network (either
homogeneous or heterogeneous), to nodes which are not present in the sys-
tem. This problem has been studied in depth for homogeneous networks [160,
165, 270], for which the goal translates into link prediction since there is only
one type of nodes and edges, and for multiplex networks [245], in which nodes
and relationships of different types appear at different layers.

Heterogeneous Graph Neural Networks have been widely exploited in social
recommendation tasks [19, 250, 271] with some limitations. More specifically,

1. as pointed out in [131], academic collaboration networks are dynamic,
meaning that they change over time. In particular, researchers-specific
research interests evolve in time depending on many complex and usu-
ally latent factors. Thus, a social recommendation system must be able
to incorporate this dynamic into researcher representations in order to
make meaningful recommendations. However, present Heterogeneous
GNN architectures hardly handle representations changing over time;

2. in academic collaboration networks, the nodes relating to textual features
(i.e., research interests and keywords extracted from the papers, the lat-
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ter used as features of the papers nodes) play a fundamental role. The
automatic extraction of keywords and the consequent representation is
a complex task for various reasons. First of all, there exist NLP archi-
tectures (e.g. BERT [81]) that are able to extract keywords from different
types of texts (for instance biomedical corpora [186]) but, to the best of
our knowledge, there is no architecture trained on data science-related
texts in the literature. Since data science is a highly multidisciplinary
discipline, this problem is strongly exacerbated in our context. Further-
more, there is a semantic hierarchy underlying keywords. For example,
supervised learning and machine learning are considered two distinct
keywords belonging to the same context by current architectures, but the
fact that machine learning is a much broader concept than supervised
learning is not considered. Learning an ontology would then be an es-
sential tool for social recommendation based on users specific research
interests.

The work presented here is aimed to overcome the above mentioned issues re-
lated to social recommendation in academic collaboration networks by special-
izing the discussion of the topic to a case study;, i.e. the collaboration network
of the Machine Learning Genoa Center.

We are not able to offer a complete and concluded discussion of the work as
it is in its early stages. However, given the relevance of the application with
the arguments presented in this thesis, it seemed interesting to us to include a
discussion of the work, albeit partial.

4.4.2 the MaLGa center and dataset description

The Machine Learning Genoa Center (MaLGa)> is a joint research center be-
tween computer science and mathematics. Its activities span a wide range of
diverse but connected topics, including Computer Vision, Computational Har-
monic Analysis, Data Science, Statistical Learning and Optimization.

MaLGa approach to research is highly interdisciplinary. Beyond pure re-
search, knowledge transfer towards technological and industrial applications
is a main objective of the center. Part of MaLGa mission are educational ac-
tivities in machine learning and related topics, including scholarly-oriented
teaching and professional training.

The MaLGa center is subdivided into four research units:

¢ LCSL unit: the Laboratory for Computational and Statistical Learning
(LCSL) focuses on the development of efficient and reliable machine
learning algorithms blending tools from statistics, optimization, and reg-
ularization theory and data science applications;

¢ MLV unit: the Machine Learning and Vision (MLV) unit investigates
different nuances of visual perception in artificial intelligence systems,

5 https://malga.unige.it/


https://malga.unige.it/

4.4 INTERACTIVE RECOMMENDATION IN ACADEMIC COLLABORATION NETWORKS. 72

where computer vision and machine learning are combined to obtain
robust data-driven methods addressing a variety of problems. In partic-
ular, MLV unit studies and develops methods for scene understanding,
motion analysis, and action recognition, with applications to assisted liv-
ing, human-machine interaction, and robotics;

¢ CHarML unit: the Computational Harmonic Analysis and Machine Learn-
ing (CHarML) unit focuses on connections among harmonic analysis, in-
verse problems, PDE and machine learning.

¢ PiMLB unit: the Physics informed Machine Learning for biological Be-
havior (PiMLB) unit blends physics, machine learning and biological be-
havior to ask how organisms acquire and process complex sensory infor-
mation from their fluid environment to guide behavior.

The MaLGa center is currently composed by 59 researchers, comprising facul-
ties, post-docs and Phd students. We collect data of the papers published by
the MaLGa members during the period 1986-2022. Among a total number of
609 publications, we extract 311 papers equipped with keywords (obtained by
venue keywords and the ones specified by authors) and labeled with a MaLGa
unit class encoding (meaning a discrete label ranging from 1 to 4).

We build a heterogeneous MaLGa collaboration network as the one schemati-
cally described in Figure 26. In the MaLGa collaboration network nodes repre-
sent:

* authors (A), meaning MaLGa members and co-authors;
¢ papers (P) published by MaLGa members together with co-authors. For
each paper we consider three types of node:

— topics (T) identified by keywords collected from the venue the paper
was published in and from the keywords attached by the authors;

— the year (Y) of publication;
— the venue (V) in which the paper was published.

¢ we link to each author several field of study (F) nodes, representing the
collection of keywords from her/his works.

In the next section we present some analysis of the MaLGa collaboration
graph to support the fact that the temporal information in textual data is a
component that must be taken into account in order to model properly re-
search interests.

4.4.3 Analysis of MaLGa keywords

In Figure 27 we schematically describe weighted keywords appearing in MaLGa
published works at selected timepoints.

In 1986 the main interest concerns applications of data science to vision-related
problems. In 1993, MaLGa members start to focus also on theoretical machine
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Figure 27: Wordcloud representation of research MaLGa interests at different time-
points. The size of each word appearing in each panels is proportional to
its frequency in published works in that timepoint.

learning, classification problems and image processing. Starting from 2002,
kernel and regularization methods become objects of interest in many pub-
lications. In more recent years, research interests begin to revolve around deep
learning and graph data.

Such observations are further supported by the type of venue which accepted
MaLGa works. Figure 28 describes the proportion of the total works presented
at venues at different years. More recent years present an interdisciplinary sce-
nario and this is mainly due to the fact that people having different scientific
background recently entered the MaLGa center contributing with domain ex-
pertise and heterogeneous research interest.

4.4.4 DPapers classification as a proof of concept

In order to test the representational power of Heterogeneous GNN architec-
tures and the meaningfulness of relationships defined in the Knowledge Graph
in Figure 26, we set up a nodes classification problem on paper nodes based
on research unit labels, i.e. LCSL, CHarML, MLV and PiMLB (Section 4.4.2).
The classification problem is extremely unbalanced. Indeed we have 80 papers
in CHarML class, 162 papers in LCSL class, 61 papers in MLV group and 8 pa-
pers in PIMLB group. Such differences are due to the fact that data collection
is still ongoing, conformations of groups change in time and PiMLB is a newly
born research unit.

We tackle the classification problem by leveraging a 2-layer Relation-aware
Heterogeneous Graph Neural Network [265] followed by a single-layer per-
ceptron as the output layer. We split the 311 papers in the collected dataset
into training, validation and test set each composed by 251, 28 nd 32 papers
respectively. We instantiate MaLGa collaboration network nodes with a 256-
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Figure 28: Pie charts representing venues that accepted MalL.Ga works at different
timepoints. Last decades show a more heterogeneous and numerous set
of venues due to the fact that several researchers joined the MaLGa center
bringing in various expertise and interdisciplinary interests.

dimensional vector obtained by training different metapath2vec models based
on specified metapaths:

e APVPA, which finds similar representations for authors publishing pa-
pers at the same venue;

e AFA, which relates authors who have similar research interests. A PCA
visualization of such representation is presented in Figure 29.

EXPERIMENTAL SETUP The Relation-aware Heterogeneous Graph Neural
Network model is optimized via the Adam [138] optimizer with the cosine
annealing learning rate scheduler [157] and we use dropout [233] to prevent
over-fitting. Since the proposed approach additionally captures the character-
istics of relations, we set the hidden dimension of relation representation to
64. We set the number of heads in the multi-head attention mechanism to 8
and we train the model in a full-batch manner since it is a small-scale dataset.
We implement the two-layer R-HGNN with PyTorch [197] and Deep Graph
Library (DGL) [254].

RESULTS AND DISCUSSION  We evaluate the multi-label classification prob-
lem through the accuracy metric (i.e. the number of correct predictions divided
by the total number of examples) and the macro f1 score (i.e. the averaging of
the precision and recall scores of individual classes). Macro-averaging the f1
score is a suitable approach in case of imbalanced classes because it weighs
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Figure 29: MaLGa researchers PCA visualization based on the metapath AFA. Big-
ger sized nodes correspond to MaLGa faculties, while other nodes are co-
authors or other MaLGa members. Even if some ground truth similarities
are actually recovered by the model, still the poor quality of textual infor-
mation (i.e. the field of study node), does not allow to detect meaningful
connections.

each of the classes equally and is not influenced by the number of examples
of each class. Figure 30 shows the results obtained in the papers classification
problem.

Although the performance of the classifier is good, the representation of pa-
pers does not seem to capture the commonality between the keywords charac-
terizing them. This is quite evident from the Figure 31 in which papers appear
to cluster more based on co-authorship semantics than similarity of their key-
words.

As discussed in Section 4.4.3, for future works, a refined search and temporal
analysis of keywords is required in order to really capture the complexity of
the heterogeneous collaboration network.
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ACCURACY MACRO f1
TRAINING 0.9960 0.9968
VALIDATION 1.0000 1.0000
TEST 0.9688 0.9701

Figure 30: Results of papers classification problem in terms of accuracy and macro f1
score. the results are encouraging in the sense that, although the data is
poor, the representation obtained is able to discriminate the papers on the
basis of macro research areas.

100 . e CHARML

- ’ e lLcsi

- MLV
1 . « PIMLB
¥ s i
[ ]
50
LY L4
»
7 ¢ >
- ' 4
-« ) :
0 - = 9'¢
' e ] » ot ° ~»
oty
! ok s S |
° ’.
4 L J - °
-50 ‘
L s & ’ » °
o
. &
.." [ ]

-100

Figure 31: TSNE visualization of papers vector representation labeled by the true re-
search unit they belong to as described in the legend.
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PART II

Time-varying Gaussian Graphical
Models

This second part of the thesis contains a description of the context
and contributions about regularized network inference. Chapter 5
presents the steady-state regularised inference methods under the
Gaussian distribution assumptions. Chapter 6 focuses on contribu-
tions on the concept of missing data in Gaussian Graphical Models,
both at random or latent, and on the study of temporal Gaussian
Graphical Models when data is non-stationary.



Regularized Markov Models

Markov Random Fields (MRFs) model conditional probability dependencies
between variables. Consider the following example: given two genes A and B
they are linked if, given the profiles of all other genes across all the subjects, the
levels of genes A are still predictive for the gene B and vice versa. Therefore,
a connection in a MRFs has a stronger meaning than correlation. MRFs are
widely used in many applications as a mathematical abstraction of a system
that allows to straightforwardly study its properties. Among the methods for
the inference of MRFs from data we restrict our focus on those based on the
assumption of sparsity, i.e., in high-dimensional contexts the connections that
explain the state of the system are few with respect to the total number of
possible edges between the variables. Guided by this prior, the inference of
the graph depends on the probability distribution assumed on the data. In
this thesis we will analyse one probability distribution: Gaussian, that allow to
model continuous variables.

OUTLINE In this chapter we briefly introduce the concept of Markov Ran-
dom Fields (Section ref). In Section 5.2 we explain how generalized linear
models can be used to infer MRFs starting from those exponential family dis-
tributions that have linear sufficient statistics. In Section 5.3 we introduce the
problem of penalised network inference. In Sections 5.4 we present Gaussian
Graphical Models and in Section 5.5 their state-of-the-art extensions that con-
sider time. We conclude in Section 5.5 with a brief summary of the chapter.

5.1 Markov Random Fields

MRFs are a set of models that belong to the wider set of probabilistic graphical
models, which, beyond MREF, includes Bayesian Networks, factor graphs and chain
graphs [69, 98, 147]. Probabilistic graphical models allows a graph to express
the conditional dependence structure between random variables, i.e., they de-
fine a joint probability distribution on a set of variables.
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5.1 MARKOV RANDOM FIELDS

Figure 32: Example of a graphical model where the node X, is independent from the
nodes Xj, X5, and X4 given the other nodes. The dashed edge represents
the edge we condition away by considering the note Xs.

Consider a graph G = (V,E) where V= {1,...,D} and E = {(i,j) | i,j €
V} C V x V. The set V has a bijective correspondence to the set of variables
{X1,...,Xp} representing entities of the system in analysis. Then, a MRF is a
probabilistic model that factorises according to a graph G in such a way that
the conditional dependencies between the variables Xj, ..., Xp can be directly
read from the edges E. Consider the graph in Figure 32. Here, the nodes X, and
Xj are independent given the node X3, as no connections between them exists.
If the node X3 was not considered in the inference, we could not condition
its presence away and thus, an edge between X; and X; would appear in the
graph (dashed edge).

Definition 4 (Markov Random Field) A Markov Random Field (MRF) is an undi-
rected (possibly cyclic) graph over a set of random variables that satisfies the Markov

property.
The Markov properties are:

Definition 5 Pairwise Markov property] Given two non-adjacent nodes u and v they
are conditionally independent given all other variables: u 1L v|V\ {u,v}.

Definition 6 (Local Markov property) A variable u is conditionally independent
of all other variables given its neighbours denoted by N'(u) : u 1L V\ N (u)|N (u).

Definition 7 (Global Markov property) Any two sets of variables A and B are
conditionally independent given a separating set S that contains all the paths connect-
ing the nodes in A and B: A 1L B|S.

The properties grow in strength, however they are equivalent in the case of a
positive probability [147].

5.1.1 Gibbs Random Fields

Definition 8 (Clique) A clique C is a subset of vertices V of a graph G such that
all the possible couples of nodes in the subset are adjacent, i.e., the corresponding sub-
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2-nodes clique

3-nodes clique

Figure 33: Example of 2-nodes and 3-nodes: small fully connected sub-graphs in an
undirected graph of 5 nodes.

graph Gy is complete (see Figure 33 for a visual representation). A clique is maximal
if it is not properly contained within any other clique.

The graph G completely defines a probability distribution pg over the vari-
ables Xj,...,Xp. In order to see this more clearly we recall the Hammersley-
Clifford theorem [69], that states that when the probability pg is strictly posi-
tive, a MRF is equal to a Gibbs random field. Therefore, it can be represented
as a sum of functions on the graph’s cliques. Given the graph G we can rep-
resent the related joint distribution pg over the variables Xj, ..., Xp as the
product of compatibility functions that depend only on the subset of variables
corresponding to its cliques. Let C be the set of cliques of the graph G and let
{¢pc(Xc),C € C} be a set of clique-wise sufficient statistics that depends on
the probability assumed on the data then, any distribution within the graphi-
cal model family represented by the graph G, takes the form [69, 251]

pG(Xi,...,Xp) < exp ( Y. 9C¢C(XC)) (39)
ceC
Then, given the set C of cliques of the graph, an MRF is a collection of
distributions that factorises as

PG(XL---/XD> = % Hexp (9(:(])(:()((:)) (40)
ceC

where A is a log-normalisation constant chosen to ensure that the distribu-

tion sums up to 1 [251]. Note that the use of all cliques may be a redundant

definition but allows for easier computation while not yielding to loss of gen-

erality [251]. Often, it may be useful to use the direct factorisation of the joint

probability, defined as

pa(X1,..., Xp) = [ [ p(Xo| Xn(0)) (41)

veEV

where N (v) is the set of variables in the neighbourhood of the variable v.
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5.2 MARKOV RANDOM FIELDS AND THE EXPONENTIAL FAMILIES

5.2 Markov Random Fields and the Exponential
Families

Exponential families can naturally be interpreted as probabilistic graphical
models and more specifically Markov Random Fields. This is due to the fact
that exponential families are represented as the summation of weighted func-
tions similarly to the form in Equation 39.

5.2.1 Exponential Families

Exponential families are a very flexible family of distributions that includes
many of the most known distribution such as Bernoulli, Gaussian, Multino-
mial, Dirichlet, Gamma, Poisson and Beta.

Definition 9 (Exponential family) Given a sample space X° on which it is defined
a measure v and random vector (X1, ..., Xp) € XP we define a collection of functions
¢ = (po : XP — R)uer called sufficient statistics to which we associate their
exponential parameters 0 = (0, )oc7. Then, the associated exponential family is defined
as the following parameterised collection of density functions

po = (Xy,...,Xpl|0) = exp (0,4)()()) +h(X)— A(G)) (42)

where h(X) is a function of only the samples and A(0) is the log-normalisation func-
tion that ensures the probability to be properly normalised and it is defined a

A() = 1og [ exp ((6,9()) ) v(ax). @)
-

By fixing the sufficient statistics ¢ we identify a particular type of exponential
family (e.g., Poisson or Bernoulli). By also fixing the exponential parameters 6
we define a specific member of such family (i.e., a specific probability distribu-
tion).

5.2.2 Exponential-family based Graphical Models

It is possible to reason in terms of MRFs for any exponential family distribu-
tion [251, 260, 261]. This representation is particularly suited when the suffi-
cient statistics are linear in the variables as it allows to obtain a straightforward
inference algorithm. Suppose we are given a univariate exponential family dis-
tribution

p(X) = exp (<e,¢<x>> T h(X) - D(@)) (44)

with log normalisation function D(8).
Consider a D-dimensional random vector X = (X3, ..., Xp) and an undirected
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graph G = (V,E) over D variables. Suppose now that the distribution on
the variable X, given the rest of the nodes X_, has the form in Equation
40 with sufficient statistics {¢(Xs)}scpr(o)- Then such distribution is a linear
combination of k-th order products of univariate functions

p(X1,...,Xpl0) = exp (295¢(XU) + Zv ev Z OosP(Xs)

seN(v)

+ Z Z 905253¢<X2)¢(X3)

veV 52,536./\[(71) (45)

+Y ) 9052.,5k1£[¢ (Xs;) +h( XU)—A(G)).

VEV 53,...,5.EN (v) j=2
Then, under the assumptions:

1. the joint distribution factorise according to a graph G which has clique
factors of size at most k;

2. the node-conditional distribution follows an exponential family;

the conditional and joint distributions are given by Equation 44 and 45 re-
spectively [34, 69, 251, 260, 261].
This strictly connects exponential family with MRFs as the exponential param-
eters are nothing else but the connections of cliques of different size in the

graph.

When the joint distribution has factors of size at most two (k = 2) and
the. sufficient statistics are linear functions ¢(X,) = X, than the conditional
distribution is a generalized linear model [185] with conditional distribution
of the form

p(Xy|X_p) = exp <9UXU + Z Ops X Xs + h(Xy) — D(X_v,9)> (46)
seN (v)

and joint distribution

p(Xy,...,Xpl0) = exp <290XU + Z Ops X Xs + Zh(XU) — A(9)>. (47)

(v,s)€E Xo

5.3 Network Inference

Network inference or graphical model selection aims at selecting the most
probable graph from observations of the variables. It arises in lots of appli-
cations when the underlying graph structure of variables is not known [24].
Suppose to have D random variables denoted Xj, ..., Xp of which we can ob-
serve N samples X € XN*P where X[i,:] = (X[il],...,X[iD]) fori=1,...,N.
We aim at inferring the set E of edges of the graph G = (V, E), that better fits
the data.
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Such goal can be reached with inference methods based on Maximum Likeli-
hood Estimation (MLE) . The concept of MLE relies on the maximization of
a likelihood function of the model. Indeed, such value tells us how much ob-
servations are likely given a model defined by a set of parameters. In our case
the model corresponds to the graph G, whose parameters 6 we represent by
its adjacency matrix K.

Definition 10 (Likelihood) Given data X and the parameters K the likelihood L(X|K)
of the graph G is any function of K proportional to the density function p(X|K).

Note that the likelihood is a function of the parameter K for fixed X whereas
the probability is a function of X for fixed K. It is common, for optimisa-
tion problems, to use the log-likelihood ¢(X|K) ( the natural logarithm of the
likelihood function L(X|K)) as it allows to remove products and exponentials
within the function to optimise, plus avoiding numerical issues when D > N.

Suppose now that, for fixed data X, we have two possible values for the
parameters K, K’ and K”, and that L(X|K’') > L(X|K"). This means that K’ is
at least likely as K” and, therefore, it is the one the better supports the data.
This naturally leads to the concept of Maximum Likelihood:

Definition 11 (Maximum Likelihood) A maximum likelihood estimate of K is a
value, K*, that maximizes the likelihood L(X|K) — or the log-likelihood ¢(X|K).

5.3.1 {1 penalisation

The inference of graphical models through MLE still remains a difficult prob-
lem given the dimension of the possible search space. If we consider D vari-
ables, it is combinatorial in the number of possible edges, 20" We can re-
duce the search space by assuming sparsity of the solution. Such assumption,
by constraining the problem, eases the identification of the graph, improves in-
terpretability of the results and reduces the noise. It is fundamental especially
when the number of variables is higher than the number of available samples
(the so-called D > N problem).

Formally, this translates into the addition to a MLE problem of a sparsityen-
forcing penalty called ¢;-norm. Such norm is a convex non-smooth function
that is often used as a relaxation of the non-convex {y-norm that enforces the
number of edges to be small. Given the adjacency matrix K of the graph G, the
f1-norm is defined as

K100 = ) Kyl (48)

1ji#]
Such norm penalises the weight of edges between the variables shrinking their
value and forcing those edges that have values in an interval [«, «] to be zero,
thus selecting only a subset of possible connections. Here, & measures the
strength of the penalty on the problem, the higher the a the higher the number
of zero edges. Such penalisation approach has been widely used in literature,
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and the very first model exploiting such idea was proposed and developed by
[171] for a neighbourhood estimation of Gaussian Graphical Models.

Definition 12 (Neighborhood Estimation) Penalised neighbourhood estimation in
fers the conditional independence separately for each node in the graph solving a lasso-
like problem where the considered variable is the dependent variable and the others are
considered as independent covariates.

Consistency proofs of such approach are provided [171], and they can be
extended for logistic regression [252]. In particular, in [252] they provide suf-
ficient conditions on the number of samples, dimensions and neighbourhood
size to estimate the neighbourhood of each node simultaneously. Neighbour-
hood estimation, nevertheless, has been shown to be an approximation of the
exact problem [100, 267] as it does not yield to the MLE when there is no
equality between the (possibly perturbed) empirical covariance matrix and the
estimated one. In [100] the authors bridge the conceptual gap between this and
the exact problem proposing the graphical lasso method, based on the work
of [20]. Later, the concept of an ¢; penalised MLE was proposed also for non
Gaussian distributions [20]. Again inference is performed via neighbourhood
selection as the computation of the joint likelihood is infeasible [39, 171, 211,
212, 260, 267].

5.4 Gaussian Graphical Models

Gaussian Graphical Models (GGMs) are widely used, for example in psychol-
ogy [73, 86], biology [136, 235] and neurology [230] and they are particularly
suited for the modelling of continuous variables. This means that the sample
space is defined as X = IR. GGMs are probabilistic graphical models which
variables are jointly distributed according to a multivariate Gaussian distribu-
tion A/(u,X) where u € RP is the mean vector, and ¥ € SE 4 is the D x D
covariance matrix. For simplicity, unless otherwise specified, throughout this
thesis the normal distributions are assumed to be centred in 0, ie., ; = 0
Vi = 1,...,D. This is assumed without loss of generality as we let the vari-
ables to be completely explained by the covariance matrix X [65].

If > is a well-defined covariance matrix, (i.e., is positive definite), then the
conditional independence between variables in the multivariate normal distri-
bution is associated to zero entries in its inverse [77].

Proposition 1 Let X ~ N(0,%) be a random vector drawn from a multivariate
normal distribution, where K = L1 is the precision matrix of the distribution. Let T
be the set of entries in X.. Then, for each v,s € I with v # s,

Xy 1L Xs|T'\{v,s} = K]uvs] =0. (49)

This result follows from standard linear algebra, details and proof of the
proposition can be found in [147]. Therefore, the precision matrix is associated
to the graph G, where an edge exists if and only if the two variables have a
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value different than zero in the corresponding entry of the precision matrix
K. For this reason, the precision matrix can be considered as the weighted
adjacency matrix of G, encoding the conditional dependences between vari-
ables. The Gaussian distribution is the only exponential family distribution for
which it is feasible to compute the normalisation constant. Indeed, such value
is defined as the integral over all the possible values of the random variables,
and, only with the Gaussian distribution, we can compute a finite form [251].
Therefore, this allows to reason in terms of joint distribution which leads to
more consistent results [100]. Let X = (X3,...,Xp) ~ N (0,%) indicate a ran-
dom vector, and X the dataset containing N realisations of the D variables in
such a way that X € RVN*P, then the density function is defined as

p(X|Z) = - exp < - ;leXT) (50)

2717 det(X)?

Given the set of N iid samples in D dimensions in matrix X, based on Equa-
tion 50, the Gaussian log-likelihood is defined as

N

(X|2) =log] [p(Xi|E) = —g log det(X) — gtr(%xsz*). (51)
i=1

This likelihood is expressed in function of X but, in literature, it has been
shown that estimating the precision matrix K leads to better results [20, 39, 100,
147, 171, 212, 252, 267]. We re-write the likelihood in terms of the precision
matrix K as

leem(X|K) o« Nlogdet(K) — tr(%XTXK) o (52)

where log det denotes the logarithm of the determinant of the matrix K, tr
is the trace function defined as tr(-) = Y(+)[ii], i.e., the sum of the diagonal

1
elements of the matrix and c is a constant term.

5.4.1 Lasso penalisation

Given the sparsity assumption we want to force some entries of the precision
matrix K to be zero, as introduced in Section 5.3.1 [171]. A model for the
inference of K including the sparse prior is the graphical lasso (GL) what writes
out as [100, 122]:

minimizex — {oom(K|X) + «||K]|o41, (53)

where || - ||o41 is the off-diagonal ¢; norm. Equation 53 has a lasso-like form
[240]

. For this reason, the problem can be solved by coordinate descent, using a
modified lasso regression on each variable in turn, thus leading to a simple,
efficient and fast procedure.
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5.5 Temporal Extensions

Problems in Equation 53 aims at recovering the structure of the system at fixed
time (static network inference). However, complex systems may have tempo-
ral dynamics that regulate their overall functioning [7]. Hence, the modelling
of such complex systems requires a dynamical network inference, where the
states of the network are intended as co-dependent. Indeed, the analysis of
a set of variables which describe the system at a particular time point could
not provide enough information on the more global and general behaviour of
the system. As an example, one may consider the analysis of genes observa-
tions under the presence of a particular phenotype. Static network inference
would answer to the question regarding a particular status of the cell. The an-
swer to the same question asked later in time could lead to a different answer.
The idea of time-varying network inference is to continue the inference pro-
cess in time. It could be seen as a generalisation of a static inference process
that infers separately networks at different point in time. The addition is that
time-varying network inference exploits the temporal component during the
optimisation. This can improve performances as, in static network inference,
there is no theoretical guarantee that the network at step t would be similar
to the network at step ¢t 4+ 1, while one may intuitively expect so. Dynamic
network inference instead will embed prior knowledge on the evolution of the
network which could help in presence of noise in particular time points of the
network. Indeed, changes in the network at a particular time point may be due
to external perturbation, noise or a particular developing state of the system.
The dynamism can be modelled in different ways:

1. by assuming a specific temporal dynamic modelled by differential equa-
tions [2];

2. by assuming stochasticity on the edge of the networks [102, 200];

3. by assuming a temporal consistency modelled through a similarity func-
tion between contiguous time points [37, 112].

The first and second options are suitable for many applications but they, in
turn, require a wide knowledge on the applicative domain. Temporal consis-
tency, instead, allows us to be broad on the possible applications. In this thesis,
as we do not have a specific domain in mind, we focus and exploit the concept
of temporal consistency.

5.5.1 Temporal Consistency

In order to exploit temporal consistency we need to assume that the network
models a non-stationary distribution that may change at each time point. This
implies that to different time points correspond different states of the system
that cannot be expressed by a unique model. We assume a consistency (or
similarity) between consecutive states of the network, as, for sufficiently close
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time points, a system would show negligible differences [112]. The same con-
sistency principle can be exploit in other contexts as multi-class [74, 109] or
multi-layer[61] network inference.

Definition 13 (Consistency) Two inferred networks are said to be exactly consistent
if the distance between the related network structures, in terms of some norm, is zero.

The more the distance grows the less consistent the networks are. The infer-
ence of a dynamical network that assumes temporal consistency of consecutive
time points can be performed through a regularised approach that extends the
stationary model with the imposition of a penalty [103]. The main example
of this type of dynamical inference is the context of GGMs and it is the time-
varying graphical lasso (TVGL) [112] where the inference of a network at a single
time point ¢ is guided by the states at adjacent time points. Throughout the the-
sis this model will be also referred to as TGL. When we mention it as TVGL
we intend the original version proposed in [112] while when we call it TGL we
intend our re-implementation of such model. We will try to explicitly mention
this when there is an ambiguity.

Consider now a system formed by D entities measured over T time points. For
each time point t we have N; samples randomly drawn as

X = (Xy,...,Xr) ~ (N(0,%Z4),...,(N)0,Z7))

where X; € RV*D fort =1,...,T.

The goal, since we are in the Gaussian case, is to infer the precision matrices
K = (Ky,...,Kr) € RIP*D)XT that encode the conditional dependencies at
each time point [112]. The TVGL problem is defined as follows

T T-1
minimizegcsp ), —Niloom(XilKe) + a|[Kellog1 + B ) Y(Kis1 — Ki), (54)
t=1 t=1
where ¥ is a function that encodes prior information on the temporal be-
haviour of the network. The related parameter p imposes a certain strength
on the consistency of such behaviour in time.

PENALTY FUNCTIONS [112] proposed different consistency functions that
guarantee a fast optimisation of the related problem. In particular, we can
choose among;:

e ¥(-) = ¢1(-) = X |- |, which is the lasso penalty that encourages few
]
edges to change between subsequent time points while the rest of the

structure remains the same [74];

* ¥(-) = l1o(-) = L || +j ||* which is the group lasso penalty that encour-
j
ages the graph to restructure at some time points and to stay stable in

others [103, 111];

e Y(1) = B() = Zi,]-(-i,]')z, which is the Laplacian penalty which encour-
ages smooth transitions over time, for slow changes of the global struc-
ture [257];
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e ¥(\) = lo(-) = Ej(max| i |), which is the max norm penalty which
1
encourages a block of nodes to change their structure with no additional
penalty with respect to the change of a single edge among such nodes;

°« ¥(.) = V:AIB\.I/I}O— . ¥j [1Vjl|p, which is the row-column overlap penalty that

encourages a major change of the network at a specific time, while the
rest of the system is enforced to remain constant. Choosing p = 2 causes
the penalty to be node-based, i.e., the penalty allows for a perturbation
of a restricted number of nodes [178]

5.6 Conclusion

In this chapter we provided background on graphical models inference meth-
ods based on the Gaussian probability distribution assumption. In particular,
we showed how it can be possible to exploit a penalised Maximum Likelihood
Estimation strategy to infer a graphical model that assumes a distribution be-
longing to the Exponential Family class. We described in details the inference
for Gaussian Graphical Models and we discussed the state-of-the-art tempo-
ral extensions to these models focusing on the one that extends GGMs with
temporal consistency.
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Contributions

6.1 Missing Data in Gaussian Graphical Models

Part of this section is present in the following publication: Tozzo, Veronica, Gar-
barino, Davide & Barla, Annalisa. Missing Values in Multiple Joint Inference of Gaus-
sian Graphical Models. In Proceedings of the 10th International Conference on Proba-
bilistic Graphical Models, PMLR 138:497-508, 2020.

Real-world phenomena are often not fully measured or completely observ-
able, raising the so-called missing data problem.

As a consequence, the need of developing ad-hoc techniques that cope with
such issue arises in many inference contexts.

We focus on the inference of Gaussian Graphical Models (GGMs) from mul-
tiple input datasets having complex relationships (e.g. multi-class or temporal).
We propose a method that generalises state-of-the-art approaches to the infer-
ence of both multi-class and temporal GGMs while naturally dealing with
two types of missing data: partial and latent. Synthetic experiments show that
our performance is better than state-of-the-art. In particular, we compared re-
sults with single network inference methods that suitably deal with missing
data, and multiple joint network inference methods coupled with standard
pre-processing techniques (e.g. imputing). When dealing with fully observed
datasets our method analytically reduces to state-of-the-art approaches provid-
ing a good alternative as our implementation reaches convergence in shorter or
comparable time. Finally, we show that properly addressing the missing data
problem in a multi-class real-world example, allows us to discover interesting
varying patterns.

6.1.1 Introduction
Consider the two following scenarios: (i) during a medical trial we submit a

survey to patients to assess their status, for privacy concerns they refuse to
answer to some questions; (i) during a weather monitoring experiment, we
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consistently do not measure the humidity in the air. These two types of situ-
ations lead to two different concepts: in the first case, questionnaires present
missing values randomly positioned depending on the concerns of the patient,
we call the final data partial. Differently, in the second scenario, we do not have
any observation of humidity, thus we say that the related data are latent [154].
We will generically refer to these types of data as missing data, to indicate one
of the two or a combination of both.

Missing data require careful consideration in all machine learning and sta-
tistical settings. We restrict to the problem of inferring multiple joint Gaus-
sian Graphical Models (GGMs) when the input data may contain missing
values. A multiple joint GGM is represented by a set of undirected graph
G = (Gy)k; = (V,E)L |, where V = {Xj,...,Xp} is a finite set of nodes
that represent random variables, and each E; C V x V is a set of edges, where
E; is not necessarily equal to E; for k # j. Each k = 1,..., K defines a specific
connectivity pattern and its meaning depends on the context. Either it could
be associated with K different classes when dealing with multi-class network
inference [74, 109] , or it could index a sorted sequence of discrete time-points
when facing a problem of temporal network inference [112, 180, 242]. Each E;
univocally determines a multivariate normal distribution N (jy, Z¢). Indeed,
the precision matrix, ®, = £, ! encodes the conditional independence between
pairs of variables, i.e., the structure of the graph Gy, since ©(i,f) is o if and
only if (x;, xj) ¢ Ey [147] Therefore, one can interpret the precision matrix as
the weighted adjacency matrix of Gy.

Typically the graph structure Gy is not known as we can only observe the be-
haviour of the single variables in the system. We indicate the 7, observations
of the D variables as Xy = (xj,.. -/XiD):-li 1 € R™*P which is a dataset that
may contain missing values. Joint multiple network inference aims at learning
a series of precision matrices ® = (O)1<x<k that are both sparse and consis-
tent with each other from these observations. The sparsity assumption is due
to the combinatorial nature of the problem that requires to be constraint to
have identifiability guarantees [100]. The consistency assumption fulfills the
need of a similar structure among classes/time points that belong to the same
underlying system [74, 97, 109, 112, 180, 242].

In literature, the problem of inferring graphs from observations that contain
missing data has been tackled in the single graph inference case. A non-convex
method based on Expectation Maximization (EM)[78] has been used to cope
with the problem of partial data [154, 234] and latent data [266]. Differently,
in [54, 55, 65] they considered a convex sparse plus low-rank decomposition
method to marginalise out the effect of latent data. The inference of multiple
joint GGMs in presence of latent data was tackled in [56, 97, 242] using the
sparse plus low-rank approach only in the case of temporal networks. To the
best of our knowledge, a unified way of dealing with all types of missing data
and types of joint inference does not exist.

Here, we provide a method that is able to deal with both partial and latent
data in the case of multiple GGMs. The novelty of the approach consists in
providing a unique way of handling different types of multiple joint inference
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methods as well as two types of missing data. Moreover, in the case of latent
data, the method can provide more insights on the actual latent connections
compared to previously published work. The method leverages on the EM
algorithm to deal with missing data [234, 266] and kernels to deal with differ-
ent types of joint inference problems. Indeed, in [241] they proposed a kernel
method that, by suitable choices of the kernel, allows to consider simultane-
ously different types of complex temporal relationships and multi-class data.
Synthetic experiments show that our method provides good results in terms
of estimate of the true underlying network as well as good estimate of the true
values of the edges. We thoroughly evaluated the proposed method under sev-
eral levels of complexity both in the multi-class and the temporal case. We also
show that our method is able to retrieve possibly better results than the state-
of-the-art in case of complete data. We also provide a real-world case study
in which we compare the performances of the newly proposed method in a
multi-class setting. We show that, differently from the state-of-the-art method
coupled with imputing techniques we are indeed able to capture variability
patterns within the classes that are consistent with the data.

6.1.2 Missing data

Missing data are values of a dataset that are un-observed and may possibly be
meaningful for a specific analysis task. We consider two possible patterns of
data missing at random, i.e. the missing values does not depend on the value
itself. Each of these two types of data introduces different problems during
the inference of networks [154]. Given k data matrices X; € R™**P which
samples are assumed to be drawn from a multivariate Gaussian distribution,
we formally define the two types of missing data as follows.

Partial data can be described as the absence of measurements randomly po-
sitioned in each observation. More formally, partial data consist in a set of ma-
trices Xy where for eachk =1,...,K and for eachi = 1,..., n; there are some
unobserved values indexed by the set Mf‘ C {1,...,D}. These “holes” in the
matrix make impossible direct computation and thus require pre-processing
or ad-hoc inference mechanisms. The pre-processing approaches are typically:
complete cases and imputing. In the complete cases we discard the samples that
do not have complete measurements on the variables, while imputing filles the
holes with a suitable value, e.g. the empirical mean. The issues deriving from
complete cases and imputing pre-processing are the following: the former re-
duces the sample size drastically which may impede the correct inference of
the underlying graph especially when n < D; the latter introduces substantial
bias in the estimated solution even if it induces to believe that we can reason
in terms of complete data [154, 164]. Hence, pre-processing techniques distort
the empirical distribution of the variables which consequently leads to biased
estimates of the underlying graph.

Latent data describe the consistent absence of some variable measurements
across all samples. More formally, we observe D variables but there are I more,
indexed by the set M¥ = {D +1,..., D +1} that are always unobserved across
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all data matrices k = 1,...,K and samples i = 1,...,n;. Therefore, on these
variables, we do not have any information, not their number nor the rela-
tionship they have with the observed variables. Their presence in the system
though, if not taken into account, leads to spurious edges, i.e., links that would
be conditioned away if the latent variables could have been observed [54].

6.1.3 Joint multiple network inference

We consider a multiple joint Gaussian Graphical Model defined as a set of mul-
tivariate normal distributions N that factorises according to a set of graphs
G = (V,E¢)K . The inference of such graphs corresponds to the learning of
the precision matrices ® = (01, ..., ) that completely define the underlying
distributions assuming that the means py is zero for every k. The index k can
have different meanings depending on the context. We deal with the inference
from: multi-class data, or Joint Graphical Lasso (JGL) [74, 109] where k indexes
different classes of observations; temporal data, or Time-varying Graphical Lasso
(TGL) [112, 242]. where k corresponds to discrete time points obtained by di-
viding a time-series of length T in K chunks of equal size. In each chunk
the samples are assumed to be i.i.d. The concept of joint inference lies in the
fact that we guide the inference method with the prior that there is structural
consistency among the k precision matrices ® = (@,...,0). In order to
deal with both JGL and TGL with a unique inference method we recur to the
methodology proposed in [241] where the authors exploit a kernel formula-
tion to model the dependencies allowing to consider in a single way different
joint inference problems. A kernel ¥ € ST is a positive semi-definite matrix
that encodes, at each entry «(k, k'), the strength of how much two different
networks, ® and Oy, should be similar in such a way that, samples belonging
to different (but related) input matrices, can drive the inference toward a more
reliable estimation of the structure especially when the number of samples is
low.

Consider two networks indexed by k and k’, the kernel models similarities
dependency strength in such a way that a strength equal to zero (x[k, k'] = 0)
implies that graphs Gy and Gy are independent from each other and, therefore,
no consistency is forced on them during the inference. In particular we will use
for

¢ multi-class data, a kernel which enforces the same similarity on all classes

k(k,K') = {1' itk =K (55)
B, ifk#£K

¢ temporal data, a kernel which enforces similarity only on consecutive
time points
1, ift; =t
K(tisti) = QB ifti=tiqort;=t 4 (56)

0, otherwise
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Here, B > 0 is a constant value that measures the strength of how similar the
graphs k and k' are.

In order to impose structure similarity that derives from joint inference, we
adopt a penalised Maximum Likelihood Estimation (MLE) method where the
penalisation is given by [241]

K K—1K—k
Pyx(@) = ), xg¥(@s—0p) =) Y xw¥(Opix — Op).
sk=1 k== (57)
s>k

Such penalty depends on the kernel x that encodes the type of multiple joint
network inference and the consistency function ¥ that defines the type of sim-
ilarity to enforce on graphs that are dependent to each other according to the
specified kernel.

In [112] the authors proposed different consistency functions. We make ex-
plicit use of the following two, but all the ones proposed in the original paper
can be easily substituted. In particular, we will consider ¥ (-) = ¢1(-) = ¥ | - |,
which is the lasso penalty that encourages few edges to change between sub-
sequent time points while the rest of the structure remains the same [74] and
Y(-)=6() = Yij -]2, which is the Laplacian penalty that causes smooth tran-
sitions [103, 111].

Note that substituting the explicit formulation of the kernels in Equations (55)
and (56) in the penalty in Equation (57), leads to the original inference prob-
lems JGL [74] and TGL [112], respectively.

6.1.4 Joint network inference with missing data

For each k, consider a set of n; observations X; € R™*P where each sample
is a D-dimensional vector drawn from a multivariate Gaussian distribution
N (g, ©) that may be not complete, i.e., some values may be missing. We want
to define a general network inference method that, from such observations,
learns a set of precision matrices ® = (04,...,0k) € R(D*D)xK and means
= (y1,...,ux) € RP*K Differently from literature, we need to estimate the
means instead of assuming data to be centered in zero. Indeed, in presence
of partial data we cannot compute the empirical mean and re-centre the data
without introducing bias as we would distort the empirical distribution in the
same way as imputation does [154].

The modelling and the inference of GGMs from these type of data is aid by
the factorisation properties that hold for the multivariate normal distribution.
Consider, for each kand i = 1,.. ., ny the sets Of»‘ and Mf.‘ of indices of observed
and missing variables, respectively. Such sets allows us to divide the sample i
as Xili,:] = (X[i, OF], Xk[i, M¥]). Accordingly, for each sample i it is possible
to define block precision matrices that group the set of observed and missing
variables together. This grouping procedure allows us to obtain a conditional
distribution that is still a multivariate normal distribution with parameters
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analytically related to the original ones [154]. Thus, the resulting precision
matrix O, fork=1,...,Kis

O[M]] O [M}O}]
@k - Zk_l - 7 (58)
O[O M;] ©[Of]

and mean vectors are pix = (pe[M~], 4 [OF]).

The inference problem can then be defined as MLE. Note that, the likelihood
has the same form for each k, and it is defined exploiting information on the
observed data only [234, 266]. Nonetheless, the inference aims at learning all
parts of the precision matrices ®y. The log-likelihood writes out as follows:

i

1 _
(X [OM)]@y) = 5 ; (log det((@;ollk) + (Xyor — P‘}jof_f) (®;:ollk) 1(Xko,k - P‘kojf)) (59)

Finally, given the likelihood, the kernel x and a behaviour ¥ the functional to
optimise to perform inference takes the form

K
minimize 3 | = €X(0401) +81@kls ] + Pr.x(©) (60)
ecs! 5
where || - ||oz1 is the off-diagonal ¢;-norm, which promotes sparsity in the

precision matrices and whose strength is regulated by a and the constraint
@y € SY restricts the search space to the cone of positive definite matrices.

6.1.5 Latent data specialization

The optimisation problem presented in Equation (60) requires further consid-
erations when in presence of latent data. Indeed, when introducing latent
variables while the model remains the same we naturally introduce a fur-
ther hyper-parameter. Consider the set M of missing values, in the case of
latent variables such set is assumed to be the same across all k multiple graphs
and across all n; samples. Nonetheless, no prior information on the number
of latent variables is naturally provided with the data. The number of latent
variables is exactly the cardinality of the set|M| = r, and thus, by imposing
a certain set M we are imposing a certain number of latent variables. Such
hyper-parameter can be selected via model selection strategies, but it can be
shown that results are not particularly subsceptible to this choice, i.e., we reach
similar performances even if the value r is not precisely the same of the true
underlying system [266].

The proposed model allows us to infer the relationships among latent vari-
ables and between latent and observed variables, thus obtaining an explicit
information of them differently from what was done in [242].
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Algorithm 4 EM algorithm

1: Inputs: ¥ consistency function, ¥ temporal dependencies, X samples,
2: a sparsity hyper-parameters

3: fort=1,...,do

4: fork=1,...Kdo

5 cki = e[ ME] + Ky [MF] 710 [MFOF] (Xi [1, OF] — e [O4])

. IR Xi[iv] if v e OF
6 EX )08 ey = ) K ireeon
ckliv]  if v € Mj
Xy [iv] X [iv'] if v,0' € OF
7: E [ Xy [iv] Xi [i0] | Xi [OF], w1071 = & X [iw]cg[iv'] if v e OF
(O [MK] 1)y + ck[iv]ck[iv’]  otherwise
8: Cplov'] = Ty E[Xk[iv] Xi[i0']| X, [OF], ' O]
o end for
10: fork=1,...Kdo
1L ﬂ;( = nlk(zl"il Xk[il]r- .. 121'11 Xk [id])
12: end for
13 @ = argmin I [~nkloom(O%|Ch) + | Okll] + Py (©)
Q-0
14: end for

6.1.5.1 Optimisation

Problem (60) is non-convex because of the unknown values of the input data
matrices X. In the ideal case of complete input data, the estimation of the two
sets of parameters y, ©® would be straightforward using optimisation methods
as the Alternating Direction Methods of Multiplier (ADMM) [45]. Nonetheless,
the lack of knowledge on input data requires a specific optimization method.
We recur to the Expectation Maximization (EM) algorithm, an alternating pro-
cedure that has guarantees of reaching a local minimum of functional (60).
The procedure consists of two steps the E-step and the M-step, both repeated
at each iteration. In the former we compute the expectation on the missing
values (thus estimating the complete X) while in the latter we substitute the
estimated complete data in the functional and we maximise it to retrieve dis-
tribution parameters g and ©. The EM algorithm for the complete data case
is described in Algorithm 4. Such algorithm may get stuck in local optima, for
this reason we may require multiple initialisations in order to detect the final
best reliable network.

The E-step can be performed separately for each k because of the linearity of
the expectation operator. In order to easily compute the expectation we express
the likelihood in Equation (59) in terms of sufficient statistics of the Normal
distribution. For each k we have two sufficient statistics: the sample mean u{
and the sample covariance matrix Cx = nikX,;r Xk. The E-steps consists of the
estimation of the expectation of the two sufficient statistics u¢ and Cy, this can
be done by observing that, thanks to the factorization property of the normal
distribution, for each sample i the missing values indexed by Mf are again dis-
tributed according to a multivariate normal distribution. Thus, the expectation
of the missing values can be computed as the mean of such distribution. By
substituting the previous estimates for @) and yy at iteration t we can compute
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the expectation as in line 6 of Algorithm 4 Given the estimates of the E-step
we can now reason in terms of complete data, and the maximisation problem
corresponds to the model proposed in [241] and has the form in line 13 of
Algorithm 4.

We call the implementation of this EM algorithm Missing Multiple Graphical
Lasso (MMGLy), we typically omit the subscript « if it is clear from the context.
In general, it can either model the temporal graphical lasso or the joint graphi-
cal lasso by substituting kernels in Equations (55) and (56). Note that in [241]
they proposed different kernels also for the modelling of complex temporal
patterns. We do not mention them as it is not the aim of our work but we can
substitute also these kernels to obtain more complex temporal patterns (e.g.
seasonality).

6.1.6 Experimental validation

We assessed the performance of the proposed method in different scenarios
compared with the state-of-the-art methods. Due to space restrictions, we refer
the reader to the publicly available open source Python library regain® for
complete details on the experiments. We designed three synthetic experiments:

¢ Exp-PT: we considered a temporal evolving graphical model (kernel
of Equation (56)) in presence of partial data. We compared the perfor-
mance with the time-varying graphical lasso (TGL) [112] coupled with
pre-processing techniques (imputing and complete data strategies) and
the missing graphical lasso (MGL) [234] that copes with partial data, but
does not consider time (i.e., we fit a model for each time point).

¢ Exp-PC: we considered a multi-class graphical model (kernel in Equa-
tion (55)) and we assessed performances of the state-of-the art method
the Joint Graphical Lasso (JGL) [74] coupled with imputing and complete
data.

* Exp-LT we consider a latent temporal evolving graphical model (ker-
nel specified in Equation (56)) and we compared the performance with
the state-of-the-art method for latent time-varying graphical inference
(LTGL) [242] and a static version of an EM approach, LVGLASSO, that
deals with latent variables [266].

For all these experiments we performed the analysis at five increasing val-
ues for the of observed variables |O| in the interval [10,100]. For each of these
values we performed the experiments at three different percentages of missing
data 5,10,20% for both partial and latent cases. We fixed the number of sam-
ples Ny = 100 in order to consider an increasing ill-posedness as the number
of observed variables increases. We fixed the number of classes/times K = 10,
so that the total number of unknowns is given by the formula K * w.

1 https://github.com/veronicatozzo/regain
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Figure 34: MCC of the results obtained for MMGL, TGL(complete), TGL(inputing) and MGL.
Left panel all results, right panel mean results per percentage of partial data.
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Figure 35: MCC of the results obtained for MMGL, JGL(complete), JGL(inputing). Left panel
all results, right panel mean results per percentage of partial data.

For each of these possibilities we repeated the experiments 10 times to have
mean results.

Given the large number of total experiments and hyper-parameters for each
considered method performing ad-hoc cross-validation, even bayesian opti-
mization method [198] would have required too much computational time
[243]. Thus, we fixed some of them to the value provided by theoretical bounds,
while we fixed the others to reasonable arbitrary values. The hyper-parameters
are as follows. All the models have the sparsity enforcing parameter &, MMGL
has x which, if we use either Equation (56) or (55), it coincides with the choice
of a parameter § similarly to TGL [112], JGL [74] and LTGL [242]. In the spe-
cific case of latent variables we also need to fix the number of latent variables 7,
similarly to LVGLASSO [266]. Lastly, LTGL has two further hyper-parameters
T and 7 that guide the latent variables behaviour in time. We fixed a = %

[210] and T = 24/|O|/ Ni [55] according to theoretical results, while we fixed
B =1 and r to the real number of latent variables in synthetic data. While one
may object that fixing r is not fair w.r.t. the choice of T = 1 for LTGL it can
be shown that the choice of ¥ does not impact heavily the performance of our
algorithm and thus we opted to fix it to the true value. Such behaviour is simi-
larly reported in [266]. Simulation results can be found in the github repository.
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Figure 36: MCC of the results obtained for MMGL, LVGLASSO and LTGL. Left panel all re-
sults, right panel mean results per percentage of partial data.

All hyper-parameters were fixed to the same values for all the models under
consideration.

We present the results in terms of Matthews Correlation Coefficient (MCC)
[168] where we considered as true positive the number of edges correctly iden-
tified, true negative the number of edges that were correctly inferred as absent,
false positive is the number of edges that the algorithm identifies as existing
but are not and false negative are those edges that are not inferred by the
algorithm but exist.

6.1.6.1 Results

Results are presented in Figure 34, 35 and 36 for Exp-PT, Exp-PC and Exp-LT
respectively. It can be seen that MMGL is the one with the highest MCC across
all types of experiments while being stable as the percentage of partial or
latent data increases (right panel of all three figures). The only state-of-the-art
method that provides closely related performance is TGL with imputing as pre-
processing strategy. When using complete data as pre-processing strategies, as
well as when exploiting static method, the percentage of missing data matters
on the final result. Indeed, regularization for multiple join inference allows
us to exploit information on other classes/time to improve the inference as
it can be seen also for TGL and JGL with imputing. In Figure 34 and 36, we
observed that 20% missing data result in better performances, while not having
a theoretical explanation for this behaviour we argue that it might simply be
due to the data generation process. We performed also a scalability assessment
in terms of convergence time. Results are presented in Figure 37, where we
can observed that MMGL is the one that requires the highest time to converge
in the Exp-PT and Exp-LT, this is expected as MMGL solves a non-convex
problems that also estimates the means and precision matrices in time. Instead,
in Exp-PT we can observe that it is faster than the available state-of-the-art
implementation of JGL.
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Figure 37: Scalability results for the experiments Exp-PT (left panel), Exp-PC (central panel)
and Exp-LT (right panel).

6.1.6.2 Case study: automobile safety

We performed a last experiment on a real-world dataset that consists of a
multi-class dataset of automobile characteristics> where class o corresponds
to set of safest cars and class 5 to the most risky sett. The dataset contains
~ 26% of missing values across all classes, which are also unbalances as we
have 3 samples for class o, 22 for class 1, 67 for class 2, 54 for class 3, 32
for class 4, and 27 for class 5. The hyper-parameters were selected through
likelihood-based cross-validation in the following ranges a« = [1072,10?] and
B = [107°,10'] and the resulting hyper-parameters are « = 10 and g = 10~*.
We analysed the dataset with MMGL and JGL coupled with imputing, results
are presented in Figure 38. The first thing that we can notice is that there are
difference in the edges inferred in class o or 5 with the two methods as well as
there are differences in the graph inferred with MMGL from the two classes
but JGL tends to infer the same graph throughout all the classes. We do not
discuss the possible insights obtained by this analysis as they are not the scope
of this paper, but we want to remark that by exploiting MMGL we can obtain
insights on the dataset that were impossible to obtain using JGL as it infers a
network that is consistent across all five classes.

6.1.7 Conclusions

We presented a method that allows in a unique way to handle the inference of
networks from data that may have different patterns of missing data as well as
different complex inter-relationships as multi-class or temporal evolution. We
showed on synthetic data that our method performs better than a variety of
state-of-the-art methods thus providing a valuable alternative to both joint net-
work inference method [74, 112, 242] as well as static inference methods that
deal with missing data [234, 266]. MMGL optimization could be improved. In-
deed, we could reduce time to converge by parallelising the K expectations
computations. We do not provide such results but we expect the time to con-
vergence to be reduced drastically. Moreover, in the case of latent variables we

2 https://sci2s.ugr.es/keel/dataset.php?cod=90
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Figure 38: Comparison of the networks obtained with MMGL and JGL on the automobile
dataset. A blue edge means that the edge was present in the first named set and
not in the second. Red edge the opposite. The labels correspond to Normalized-
losses (NL), Wheel-base (WB), Length (L), Width (W), Height (H), Curb-weight
(CW), Engine-size (ES), Bore (B), Stroke (S), Compression-ratio (CR), Horsepower
(HP), Peak-rpm (PR), City-mpg (CM), Highway-mpg (HM), Price (P).

can reason in terms of blocks when computing the expectation step and we
can remove the estimate of the means as re-centering the data does not induce
any bias. This approach is equivalent but would further reduce convergence
time. Our derivations show that indeed handling latent data or partial data
can be done in a unique way, and this show that the two different methods
presented in [266] for latent data and [234] for partial data are, indeed, the
same. As proposed in [234], this method could be exploit as a pre-processing
step to perform imputing and thus preparatory to supervised machine learn-
ing tasks. We leave the validation of this approach to further work due to lack
of space. Also, our method different from methods that marginalise out the la-
tent variables effect as [54, 242] and, by allowing a direct estimate of the latent
variables graph may be used for complex inference and data mining.

100



6.2 NON-STATIONARITY IN TIME-VARYING GAUSSIAN GRAPHICAL MODELS

6.2 Non-stationarity in Time-varying Gaussian
Graphical Models

Part of this section is present in the following publication: Tozzo, Veronica, Ciech,
Federico, Garbarino, Davide, & Verri, Alessandro (2021, August). Statistical Models
Coupling Allows for Complex Local Multivariate Time Series Analysis. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp.

1593-1603).

The increased availability of multivariate time-series asks for the develop-
ment of suitable methods able to holistically analyse them. To this aim, we
propose a novel flexible method for data-mining, forecasting and causal pat-
terns detection that leverages the coupling of Hidden Markov Models and
Gaussian Graphical Models. Given a multivariate non-stationary time-series,
the proposed method simultaneously clusters time points while understand-
ing probabilistic relationships among variables. The clustering divides the time
points into stationary sub-groups whose underlying distribution can be in-
ferred through a graphical model. Such coupling can be further exploited to
build a time-varying regression model which allows to both make predictions
and obtain insights on the presence of causal patterns. We extensively validate
the proposed approach on synthetic data showing that it has better perfor-
mance than the state of the art on clustering, graphical models inference and
prediction. Finally, to demonstrate the applicability of our approach in real-
world scenarios, we exploit its characteristics to build a profitable investment
portfolio. Results show that we are able to improve the state of the art, by
going from a -%20 profit to a noticeable 80%.

6.2.1 Introduction

Local multivariate time series analysis involves a variety of tasks that aim at
studying the characteristics of subsequent points in time, such as their short
or long term similarities or effect on future behaviour.

Consider the example of stock trends in a financial system. Each stock has
an associated value that changes in time. Such value could possibly depend
on other stocks behaviour as well as external environmental causes. At each
time point one may want to obtain various insights on such stock values. Here,
we refer to the following scenarios: (a) understanding how stocks are related
to each other (multivariate correlation analysis) [56] ; (b) detecting patterns of
stock interactions repeated in time (time points clustering) [146, 213]; (c) predict-
ing their value at the next time-point (forecasting) [57, 191, 272], and, lastly (d)
understanding possible causal relationships among them (non-stationary causal-
ity) [204]. These tasks aim at locally characterizing every single observation in
the time series under different perspectives. If applied on the same time series,
these local characterizations can naturally enable a global understanding of the
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Multivariate correlation
analysis (a)

—_— Forecasting (c)

. !

Non-stationary causality
(d)

Time points clustering (b) e

Figure 39: Schematic representation of the four tasks and how they impact each other
in our framework. Multivariate correlation analysis (task (1)) and time point
clustering (task (b)) are mutually supportive to one another, together (pur-
ple arrows) they allow for forecasting (task (c)) and the understanding of
non-stationary causal patterns (task (d)). This last is also influenced by fore-
casting.

underlying system. Typically, these tasks are approached separately by restrict-
ing the problem to a constrained setting (i.e., strong assumptions on data) with
the intent of having the best possible performances on such domain [9o, 100,
107, 130, 151, 189, 228, 249]. Nonetheless, we argue that these tasks are deeply
connected to one another (Figure 39). Solving them globally may therefore re-
sult both in an increased accuracy per-task and a more in-depth insight on the
system as a whole. On the latter, especially, the unified analysis makes the a
posteriori global analysis easier to perform as the learned models are coherent
with the initial assumptions and between each other by construction. The main
contribution of this paper is a framework that solves tasks a-d globally, filling
a missing gap in the literature. Our method synergically solves the four tasks
by leveraging their dependencies as depicted in Figure 39. It achieves this goal
with a simple coupling of two statistical models which allows to retain a sin-
gle set of mild assumptions on the data. More formally, we present a statistical
model, Time Adaptive Gaussian Model (TAGM), that combines Hidden Markov
Models (HMMs) and Gaussian Graphical Models (GGMs). The main idea is
presented in Figure 40. Given a time series {xj,...,x¢} C R’ we assign to
each time point a hidden state {z1,...,z¢} that, in the specific example, as-
sumes K = 2 values k; or k. Suppose to observe the state k;, all observations
assigned to that state (i.e., {x1, x2, x5}) are then i.i.d. and assumed to be drawn
from a multivariate Gaussian distribution N (11, ®; !). The associated distribu-
tion is inferred through a GGM from {x1, x2, x5}. Specifically, a GGM univo-
cally determines the underlying distribution through a graph that is encoded
in the matrix ®;. Such matrix is called precision matrix and is the inverse of
the covariance matrix. In the graph we can directly read pairwise conditional
independencies among variables, e.g. v1v2|v3, v4, U5 if and only if ©1(1,2) =0,
or, equivalently, there is no edge between the two nodes in the correspond-
ing graph. TAGM naturally solves tasks (a) and (b) (Section 6.2.2). Indeed, we
can divide the time points into clusters by pairing each cluster to a hidden
state. At the same time, multivariate correlation analysis is achieved through
the inference of the corresponding underlying graph. This coupling is both
advantageous and necessary. On the one hand, it is advantageous since knowl-
edge on the variable dependencies can be leveraged to better assign each time
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Input data: multivariate time-series with N=6 and D=5
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Figure 40: Schematic representation of the simultaneous instantiation of multivariate
correlation analysis and time point clustering. Given a time series of multi-
dimensional vectors, through an HMM, we associate each time point to
a hidden state (i.e., cluster). Given the K=2 hidden states, we infer two
GGMs that model the underlying distributions. Note that, if we observe
the Markov chain of the HMM, we can assume the time points associated
to a specific state to be i.i.d.

point to a cluster. On the other hand, it is necessary as the inference of a GGM
requires more than one observation. Thus, we can exploit the division into
clusters to collect independent and equally distributed samples. TAGM can
also be directly used for forecasting (task (c), Section 6.2.3). At training time,
we construct an augmented version of the input time series in which we con-
catenate each time point with the next one (Figure 44). We then apply TAGM
on this augmented time series to infer the relative clusters and variable depen-
dencies. At prediction time, we predict the next most probable state/cluster
by exploiting the information on the previous inferred states in the HMM. The
values of the unseen point are then estimated exploiting the GGM associated
to that cluster. The same procedure can be used to understand causal patterns
(task (d), Section 6.2.4). Indeed, the learned statistical dependencies and se-
quentiality allow us to have insights on causal relationships. Note that, the
ability of detecting more than one GGM allows for non-stationary causality
patterns, which entails high flexibility.

We extensively evaluate TAGM on synthetic data sets and show how it leads
to significant improvement compared to the state of the art in clustering, learn-
ing graph structures and prediction. Results are presented in Section 6.2.2.2
for tasks (a) and (b), and Section 6.2.4.1 for task (c). We also show the appli-
cability of our method to real-world scenarios through a financial use case
(Section 6.2.5). In particular, we exploit it to construct a profitable investment
portfolio [273]. The standard approach used in finance is to fix a temporal
window on which perform correlation analysis [203]. Such approach does not
account for underlying changes and thus assumes all time points in that win-
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dow to be stationary. Differently, our method removes such assumption while
also exploiting the interpretability of GGMs to understand the dependencies
among stocks. This is fundamental, as simple correlation analysis often car-
ries spurious information that can lead to poor decision making. We show
that TAGM overcomes the state-of-the-art approach for building a portfolio
in terms of profit and loss variations, obtaining a 80% profit compared to the
-%:20 of standard methods.

6.2.2 The Time Adaptive Gaussian Model

TAGM is based on the assumption that the system under analysis is non-
stationary, i.e., the underlying distribution of variables at each time point
may change in time. One of the possible methods to analyse sequential non-
stationary data is a Hidden Markov Model (HMM) [28]. HMMs assume that
the series of observations is generated by a certain number of (hidden) inter-
nal states connected through a Markov chain of latent variables. If we consider
Figure 40, the latent variables are modelled as zy, ...,z¢. Such variables may
assume possible K = 2 different states, each of these gets associated to a pos-
sibly different distribution. The family of such distributions depends on the
type of data in analysis, for simplicity, we consider continuous data and we
assume underlying multivariate Gaussian distributions. Nonetheless, adopt-
ing the same idea for other distribution assumptions is straightforward from
the model definition. Differently from standard approaches, instead of directly
estimating the empirical means and covariances of such distributions from ob-
servations, we associate a graphical model where the lack of an edge explicitly
encodes the conditional independencies between a pair of variables. We ex-
ploit Gaussian Graphical Models (GGMs) [147] where the precision matrices
(®1 and ©,) are the inverse of the covariance matrices and they can be inter-
preted as the adjacency matrices of a graph. This switch of perspective still
allows us to estimate a multivariate Gaussian distribution, while allowing for
directly imposing sparsity on the adjacency matrices [100]. Sparsity is funda-
mental as: it provides a higher stability to noise in presence of fewer samples;
it grants higher interpretability as it allows for identifying the most relevant
dependencies (i.e. the edges) while removing spurious correlations that would
be captured by the empirical covariance matrix; and, it allows us to extend this
method to perform prediction as well as understand causality patterns (more
details about this will be provided in Section 6.2.3 and ??).

6.2.2.1 The model

Consider N sequential (temporal) observations, x;, € RP forn=1, ..., Non
D variables. We assume that such observations follow a non-stationary process,
and thus are generated by possibly more than one underlying distribution.
The number of such distributions could be ideally infinite [32], but, for the
sake of simplicity, we here assume them to be fixed to K. In order to map
each observation x; to one distribution, HMM pairs them to a hidden (latent)
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variable z,, € {0, 1}K, that has only one non-zero component at position k if the
n-th observation is associated to the k-th distribution. In the rest of the paper,
we will use the notation z,, ; to indicate the k-th positional value of the vector
Zy.

The sequence of latent variables follows a Markov chain process, meaning
that z,112,-1|z4. As a consequence, if we condition on the latent variables,
the observations x; and x;;1 become independent thus allowing to freely use
them to infer the corresponding underlying distributions (see Figure 40).

The joint distribution on observed X = (x1,Xy,...,Xy) and latent variables
Z = (z1,2y,...,2zN) is given by

N N

p(X,Z]TC,A,cp):p(zﬂn)[np(zn[zn,b }H (xXn|zn, §), (61)

n=2 n=1

where [28]:

o the probability p(z1|m) = TT5_; 7r,"*, with Y 7 = 1, is the initial latent
node z; probability, which dlffers from the other states as there is no
parent node;

e the probability p(zu|z,_14) = [T, H] 1A Z” Lk s the transition proba-
bility of moving from one state to the other. Here, A € [0,1]%*K is the
transition matrix that we assume to be constant in time and it is defined
as

Ajg = p(zng = 1zp-1;=1)

with0 < Ajp <land };Ajr =1

e the probabilities p(x,|z,, @) = [T, p(xu|px)?*, are the emission probabil-
ities where ¢ = {¢1,...,¢x} is a set of K different parameters governing
the distributions, one for each of the possible K states.

Combining HHMs with GGMs is achieved by setting the emission probabil-
ities to
K

xn’Zn/ HN xn‘,uk/ 1)Z"k

k=1

in such a way to have an explicit correspondence between the distribution of
each state and a graph, modelled through the precision matrix ©.

Moreover, we impose sparsity by coupling the emission probabilities with a
Laplacian prior on the precision matrices. The posterior of the final model is
defined as

N
p(m, A1, 01X, Z) sp(zr|m) | T [ plaulznr, A)]

n=2 (62)

N K
HHN x?’l|‘1’lk1 1)ane 2H®kH1Dd

n=1k=1
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oPTIMIZATION The optimization of parameters § = {7, A,7,©} in func-
tional (62) is performed through a Maximum A Posteriori approach. In par-
ticular, we employ the Baum’s version of the expectation maximization (EM)
algorithm [29]. In short, it consists in an alternating minimization procedure,
in which the parameters 7r, A, are updated as in a standard HMM, while the
inference of the @ reduces to solving a Graphical Lasso [100]
O = argmin tr(OSy) — log det(®) 4+ A||O|1 04 (63)
0>0
where Sy is the empirical covariance matrix of the observations that are asso-
ciated to the k-th hidden state, and if we denote such observations as Xj, it is
defined as
1 N T 1 N
Sk=cn— 2 Znk(n — ) (Xn — i) Pk = —y——
ZnNzl Znk n=1 ZnNzl Znk n=1
The objective value tr(®S;) — log det(®) is the negative log likelihood of the
multivariate normal distribution and || - ||,4 is the off-diagonal ¢;-norm that
imposes sparsity on the precision matrix @ without considering the diagonal
elements. More details on the optimization of this model can be found in [66].

ZnkXn-

HIGHER ORDER AND ONLINE EXTENSIONS TAGM could benefit from two
extensions to better handle real-world scenarios. The first extension is an on-
line learning variation, Incremental TAGM or IncTAGM, that could be useful
in presence of high-frequency data. Indeed, in real-world contexts where new
observations arrive at a high rate (e.g. every second) one may want to be able
to fine tune the model online in order to consider such observations instan-
taneously instead of re-fitting on the complete time series. We derive such
extension following the idea in [62]. In practice IncTAGM starts as a standard
TAGM on the available data, as a new time point becomes available the set of
parameters is updated accordingly and the new point gets assigned to a state.
Such update can be achieved by a variation in the E step of the EM algorithm,
more details in [66].

The second extension is a higher-order Markov chain version, Memory TAGM
or MemTAGM. It is based on the idea that latent states could have higher or-
der dependencies, which are not captured if we consider a Markov chain of
order one. In short, the main idea is to allow the emission probability of x, to
depend not only on z, but also from the previous m € Z* sequence of states
p(xXnl{x0}ocn, {ze}i<n) = P(xn|{zé}2:n7(m71))- Each observation is condition-
ally independent of the previous ones and of the state sequence history, given
the current and the preceding m — 1 states. For the derivation of the related op-
timization algorithm we followed [110]. The main drawback is a much higher
computational time as the transition matrix and the corresponding initial state
dimensions increase, more details in [66].

6.2.2.2 Experimental assessment

In order to evaluate the performance of TAGM we devised three sets of syn-
thetic experiments. We generated data fixing the number of states K; for each
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Figure 41: Asymptotic behaviour of TAGM on data. In the left panel we study the
performance of the method as the number of observations increases, while
on the right panel we fix the number of observations and we study the
behaviour as the noise to signal ratio increases.
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Figure 42: Comparison of TAGM with state-of-the-art methods in terms of V-measure
and MCC. On the left panel we have the behaviour for different states and
increasing dimensions, on the right panel the mean behaviour for the num-
ber of states.

state k = 1,...,K, the mean y; € RP is assumed to be drawn from a multi-
variate standard normal distribution N (0, Z), while the precision matrix ©; €
SP*D is generated as a sparse semi-positive definite matrix. The sequence of
hidden states is generated by sampling from a transition matrix A € [0, 1]X*X
where each row is sampled from a Dirichlet distribution (see Appendix for
more details). Given the sequence of states and the related us and ®s, we draw
a sequence of N samples in D dimensions. TAGM has two hyper-parameters,
the number of hidden states K and the sparsity penalty A in the Graphi-
cal Lasso (see Equation (63)). We cross-validated such parameters using the
Bayesian Information Criterion (BIC) [224] (see Appendix 8.2). Note that the
problem is non-convex, thus different initialization may lead to different local
minima. To handle this issue, we performed multiple initializations and we se-
lect the result with highest likelihood (possible ways for initializing the model
are described in Appendix 8.3). Results are presented in terms of V-measure
for clustering performance [217], and Matthews correlation coefficient (MCC)
for network inference performance [168] where we binarise the inferred preci-
sion matrix in such a way that o corresponds to a missing edge and 1 indicates
an identified edge, see Appendix 8.4 for details. The optimization algorithm
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and data generation pipelines for the experiments are implemented within an
open-source Python framework that contains the real-world dataset as well 3.

STUDYING ASYMPTOTIC BEHAVIOUR As a first assessment we character-
ized the model in terms of number of observations needed to learn the data
structure and its sensitiveness to external noise.On both experiments we fixed
D = 10 variables and K = 5 states, for the first experiment we incremented
the number of observations N until perfect inference is reached, while in the
second experiment we fixed N = 2000 and we let the noise to signal ratio in-
crements until the performances are equal to chance. The results are shown in
Figure 41. As can be seen from the left panel of Figure 41, our model is able to
converge to the real cluster labels after 400 observations while to infer the real
graphs is necessary to have 10000 observations. On the right panel of Figure 41
we observe, as expected, that TAGM performance decreases as the noise stan-
dard deviation increases. We can also note that model performance remains
good up to the point where noise to signal ratio is equal to one. Beyond that
point the model is not able to distinguish the signal from the noise and there-
fore it reaches the performance of a random model. Given these results, for the
following experiments we set the number of observations to N = 2000 and the
noise to signal ratio to 1.

CLUSTERING AND NETWORK INFERENCE PERFORMANCE  Here, we wanted
to assess the ability of TAGM to infer the correct states of the system and the
related GGMs. We generated synthetic datasets allowing for both the number
of states K and the number of dimensions D to vary in the sets {2,5,10,15}
and {10, 15,20,30} respectively and we fixed N = 2000. We compared TAGM
with state-of-the-art methods, in particular HMM [28], Gaussian Mixture Mod-
els (GMM) [90], spectral clustering [189] and K-Means [163]. Of these methods
the only one that directly provides an estimate of the underlying distribution
is HMM, note that it provides the empirical covariance matrix that we need to
invert to be able to compare it with the precision matrix. For the other methods,
we first infer the clusters and then on the samples belonging to each cluster
we perform Graphical Lasso separately. Results are shown in Figure 42. On the
left we show the point per point behaviour of the methods as both the number
of states and the number of dimensions vary, while on the right we show the
mean behaviour across different dimensions for the different number of states.
It is evident that TAGM is the one that performs best in both V-measure and
MCC and that HMM and GMM have close performance in clustering but have
less ability in detecting the true graph.

HIGHER ORDER AND ON-LINE EXTENSION We finally performed two ex-
periments to compare TAGM to the online and the higher order extensions. To
compare TAGM and IncTAGM, we generated a synthetic dataset with K = 5
states, D = 10 dimensions and N = 2000 observations. We wanted to assess
the behaviour of IncTAGM with respect to TAGM as the percentage of initial

3 https://github.com/veronicatozzo/regain/tree/HMM
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Figure 43: Comparison of TAGM with its extensions in terms of V-measure and
MCC. On the left hand panel we drew the ratio V-measure(TAGM)/V-
measure(IncTAGM) and the ratio MCC(TAGM)/MCC(IncTAGM) as the
percentage of training data increases. On the right hand panel we drew
the V-measure and MCC of MemTAGM and TAGM as the memory of the
hidden Markov process increases.

data given in input N = %N to IncTAGM increases. The results are shown
on the left panel of Figure 43, where we can see that IncTAGM has reason-
able performances when the percentage is low and it asymptotically tends to
the performance of TAGM as the percentages of input data reaches 100%. To
compare TAGM and MemTAGM we generated a synthetic dataset with K = 3
states, d = 10 dimensions and N = 2000 observations, while letting the mem-
ory of the hidden Markov process vary in the set {1,...,5}. In this way we
are able to evaluate the behaviour of MemTAGM with respect to TAGM as the
memory of the hidden Markov process increases. The results are shown on
the right panel of Figure 43, where we can see that MemTAGM performance
in terms of V-measure is slightly better than TAGM for every considered mem-
ory window. On the other hand, the MCC results are comparable. We want to
point out that the time complexity of the step of the optimization algorithm
that assigns each point to a state is O(K?N), and MemTAGM number of states
has a number of possible states K = K" (with v being the memory window),
thus having complexity O(K"2N). Therefore, the slight improvement in perfor-
mances that we see in Figure 43 does not justify the need for a such increased
complexity and therefore higher computational time.

6.2.3 Making predictions

Being able to predict future time points may be useful in applied contexts in
which, for example, we seek to make decision based on unseen data. Here, we
aim at performing a multi-output regression where given the values at time
point n, x,, € RP, we want to predict the values at time point n 4- 1, denoted
asy, € RP.

If we are provided N observations in D variables, in order to exploit TAGM
to predict the observation at N + 1, we first need to augment the time series.
In practice for each time point n = 1,..., N — 1 we stack x, and y, = Xx,41 in
a new vector X, = [x,, yu] € R?P (see Figure 44).

If we now apply TAGM on the newly built time series, we obtain, for each
time point its state and related underlying GGMs.
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Figure 44: Schematic example of the construction of the augmented time series given
in input to TAGM to perform predictions.

Suppose now that, at time 1, we inferred a hidden state k with the related
precision matrix ® € R?P*2P_ Such matrix can be divided in blocks as

@k — <®]§cx ®,§cy>
kT k
®xy ®W

where @, indicates the sub-matrix that encodes the conditional independen-
cies of the vector x,, @% denotes the sub-matrix of conditional independen-
cies of the vector y, and the block @’;y encodes the conditional independen-
cies among x;, and yj,. Similarly, we can divide the inferred means vector as
k — 1.,k 4k
p= [y
We can now observe that each y, is normally distributed, indeed

P(Yulxn, zux =1) = N(P_‘/@il) (64)
where

=y + 05,1 (0%) 7 (xn — 1y), (65)
and,

0= ®§y - (G)I;y)T(@];x)il@I;cy' (66)

Then, given a time-series of length N, and an inferred TAGM model on
the augmented time series on the first 1,...,N — 1 time points, we aim at
estimating the unknown values of yy, given the observed xy as yny = f(xy). It
is trivial to observe that the minimization of the expected squared prediction
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error f(xny) = E[yn|x = xn] corresponds to Equation (65). Thus, we predict
the value of yy as

yn = iy + 0L, T(O8) 7 (xn — 1) (67)

which corresponds to a time-varying lasso linear regression [99]. This regres-
sion model assumes the knowledge of £, i.e., the hidden state assigned at time
point N. Such state cannot directly be inferred from data because we do not
have the complete values for £y, but it can be estimated propagating the infor-
mation from the Markov chain of the HMM. To this end we exploit the Viterbi
method [94].

This approach not only allows us to estimate the values of yy, it also pro-
vides information on the predicted underlying GGM whose precision matrix
is obtained as in Equation (66).

Moreover, this approach is flexible to consider more than one previous time
point for the prediction of yy. Indeed, if we want to exploit information on a
window of length w, it is sufficient to build an augmented time series where,
foreachn =1,...,N — 1, we define £, = [xy_w, ..., Xn, yu] € RP¥.

6.2.4 Causality

Granger causality test [107]. Multivariate Granger causality analysis aims at
detecting those variables that across all time series are causal for other. Typi-
cally, this is achieved by fitting an autoregressive model on the time series. The
main drawback of this approach is that it assumes that all the observations are
i.id. and, therefore, that causal relations do not change in time. TAGM, on
the other hand, provides more flexibility and interpretability in this matter as
to each of the K state is associated a different causal pattern given by the in-
ferred precision matrix ®*. By looking at Equation (67), we can observe that
the regression coefficients are given by W = @ﬁyT(G)ﬁx)*]. Thus, for each vari-
able y[j] for j = 1,...,D the features that are causal for it are given by the
coefficients in the j-th column of W. The causality of this is simply implied
by the sequentiality of the data. Under a different perspective, our predictive
model (Equation (67)) can be seen as a solution of an ordinary differential
equation that models mass-action kinetics as specified in [204], Equation (=2).
Thus, TAGM allows us to detect possibly K multivariate non-stationary causal-
ity patterns in any input time-series.

6.2.4.1 Experimental assessment

We evaluated the performance of TAGM for prediction on one synthetic ex-
periment. Data are fixing K = 2,3,4,5 and N = 2000. The generation method
is as described in Section 6.2.2.2 and Appendix 8.1. The hyper-parameters are
cross-validated with BIC (Appendix 8.2) and results are presented in terms
of Mean Absolute Error (MAE) (Appendix 8.4). For the estimate of the next
time point precision matrix we compared the performances of TAGM with the
inverse of the empirical covariance matrix of the last 25, 50 and 100 days on a
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Method K=2 K=3 K=4 K=5

Emp Cov last 25 days | 0.23+0.03 | 0.14+£0.07 | 0.00£0.09 | 0.04 +0.12
Emp Cov last 50 days | 0.294+0.02 | 0.174+0.13 | 0.024+0.06 | 0.09 +0.15
Emp Cov last 100 days | 0.31+0.05 | 0.124+0.11 | 0.04+0.11 | 0.0540.09
TAGM 0.65 + 0.03 | 0.56 = 0.09 | 0.62 £ 0.11 | 0.67 *+ 0.12

Table 9: Performance in the prediction of the next precision matrix in terms of MCC.

Method K=2 K=3 K=4 K=5

Lgb 1174+£023 | 1.43+£046 | 1.95+045 | 1.55+0.63
LSTM 116 +0.26 | 1.42+045 | 2.06 +£0.51 | 1.50 £0.38
VAR 1.144+024 | 1.43+£045 | 1.97+045 | 1.374+0.36
Kernel RBF | 1.154+0.24 | 1.43+045 | 1.974+0.49 | 1.47£0.46
TAGM 1.09 = 0.23 | 1.40 £ 0.46 | 1.93 £ 0.41 | 1.35 * 0.34

Table 10: Performance in the prediction of the next time point values in terms of MAE
(below table).

time series of dimension D = 10. The results are in Table g where we observe
that TAGM greatly outperforms the prediction compared to the estimate of
the covariance matrix. For the evaluation of the prediction of the specific val-
ues we compared our model with Gradient Boosting (LGB) [151], Long-Short
Term Memory Neural Network (LSTM) [130], Kernel regression with Gaus-
sian assumption (Kernel RBF) [249] and vector autoregression (VAR) [228] on
a time-series of D = 5 variables. The results are in Table 10 where we observe
that TAGM has always a lower prediction error compared to all the other con-
sidered methods.

6.2.5 Use Case: Stock Prices

TAGM can be exploited to analyse stock market prices. In particular we con-
sider the tasks of building an investment portfolio as well as forecasting of
future stock values.

BUILDING AN INVESTMENT PORTFOLIO Ideally, a portfolio consists in set
of stocks on which one invest. The best portfolio is one that provides the high-
est possible profit while maintaining a low fixed risk level. Stock picking (i.e.,
the selection of the best stocks to put in the portfolio) is a hard task, indeed,
even if you restrict to a given industrial sector, there are many factors that can
cause underlying variations in the market. Moreover, stocks may be dependent
on each other in a way that is often difficult to disentangle. The ability to detect
and understand stock dependencies as well as changes in the market would
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allow to perform the best hedging strategy. Hedging is the process of investing
in contrary or opposite sectors in order to balance against a possible loss.

Nowadays, the study of stock dependencies is performed by fixing a tem-
poral window and inferring the related empirical covariance matrix. Such
method does not account for possible underlying changes in the distribution
in that window, and, moreover, it requires to fix an arbitrary cut-off in the
length of the analysed time series. TAGM, on the other hand, solves both prob-
lems as it could be applied as an exploratory step on the complete time series,
while automatically detecting when the underlying distribution changes possi-
bly due to environmental or political conditions. Simultaneously, it provides a
cleaner view on the dependencies than the empirical covariance matrix as the
GGMs graphs remove spurious dependencies among stocks.

We performed a small experiment by considering three securities (i.e. trad-
able financial assets): Petrobras (PETR4), WTI crude Oil front futures, and ex-
change from US dollar to Brazilian Real (USD/BRL). We considered the period
from 12/01/2010 to 15/09/2016, corresponding to 1635 trading days which
have many price swings (up and down) (see Figure 45 leftmost panel). We
trained our model on the first 1470 days and we tested on the last 165 (from
20/01/2016 to 15/09/2016). Such securities have deep investment connections
and the goal is to find a combination of weights (i.e., amount of invested
money) for each security which allows to earn a positive return in the long
run and being backed from big losses in case of price oscillations (i.e. keeping
a fixed risk). According to the Markowitz mean-variance portfolio optimiza-
tion theory the two quantities of interests are: the expected value of returns
and their covariance [41]. As these two quantities vary, the portfolio weights
should vary accordingly.

To this end, each day starting from 20/01/2016, we fit TAGM on all the pre-
vious observations of the time series. The inferred GGM at the current date is
used as weights for the securities. Note that, we adjust such weights if and only
if there has been a change in the underlying distribution (i.e. the hidden state
of the HMM) otherwise we keep the weights fixed to the previous day values.
We compared the performance of our approach against the common state-of-
the-art method of taking the last 50 days covariances. The performances are
given in terms of profits and losses (P&L) and in the evaluation we suppose
for simplicity that there are no trading fees. Results are shown in Figure 45
central panel where it is possible to see how TAGM greatly outperforms the
empirical covariance approach going from a -20% to a 80% profit. This is due
to the changes in trend of the WTI Crude Oil security, that are captured by
TAGM but not by the mean empirical covariance strategy.

STOCK VALUES FORECASTING To test TAGM regression performance on
real data we considered a period of 30 trading days from 4/08/2016 to 15/09/2016.
We compare our results with the same state-of-the-art regression methods used
in synthetic experiments. Figure 45 right panel shows that the performance of
all the considered methods are very closed to each other, with TAGM slightly
improving overall. This is due to the fact that past price values are not very
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Figure 45: TAGM enables significantly improvement in the construction of a financial
portfolio (central panel) due to its ability to promptly detect changes in
underlying dependencies among stocks (data showed on the left). TAGM
shows better performance also in the prediction of next day stock prices
(right panel).

informative to predict the next values since their short-run movements depend
on the real time news and market sentiment. Therefore, as long as we do not
introduce this information in the prediction it would be difficult to evaluate the
prediction performance as all methods catch the same information (typically
just noise).

6.2.6 Related Work

We position TAGM against various state-of-the-art approaches that perform
clustering, temporal network inference, forecasting and causality analysis. All
these approaches perform these tasks in isolation whereas TAGM can be used
to simultaneously perform all four.

The combination of inferring a latent representation as clustering coupled
with GGMs was presented in [9o, 158], where the authors combined GGMs
with Gaussian Mixture Models. Note that, such approach does not explicitly
account for sequential data.

In the context of graph inference, TAGM can be seen as a generalisation
of current state-of-the-art methods for temporal graphical models inference.
Such methods typically rely on the assumption that the time points within a
chunk, which size is arbitrarily chosen, are i.i.d. [97, 112]. Our approach relaxes
such assumption making it more reliable for real-world analysis. We can find
methods that perform simultaneous graph inference and clustering [113, 241].
Nonetheless, being based on the assumption of chunks they are impossible to
compare directly with the presented model. All the previous methods have
to rely on the imposition of norms to consider sequentiality. We avoid such
imposition by relying on the Markov chain of the hidden states. In literature,
we also find papers that look at single time points assuming local topological
changes [56, 120, 184, 262] but they do not provide a way to directly perform
clustering of the inferred networks.
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For prediction tasks, we found in literature two examples that explicitly con-
sider non-stationarity and sequentiality in a setting similar to ours. In [49] the
authors use a vector autoregressive model (VAR) on time-dependent splines
while in [184] they infer a dynamic graphical model and they predict the topol-
ogy of the next time point. These last two methods, while allowing for next
time point prediction, do not directly allow us to estimate the underlying pre-
cision matrix. Another interesting relationship of TAGM is with multivariate
gaussian process regression [60], which makes explicit use of the conditional
dependencies to estimate future time points. We want to point out that many
methods that perform prediction on time series exist. We do not explicitly re-
port them as their integration with GGMs is not obvious.

Lastly, differently from our setting, causality is often studied assuming sta-
tionarity of the time series, thus causal relationships are inferred as constant in
time [72, 130, 151, 204, 228, 249]. In literature, we can find research directions
that consider non-stationarity [124, 196, 231], but, to the best of our knowl-
edge, the explicit use of dynamic graphical models to this aim is not present
in literature.

6.2.7 Conclusions and Future Directions

We present a novel methodology to perform data-mining, forecasting and
understanding causality patterns on multi-variate time-series. Our method
combines HMMs and GGMs, providing a way to simultaneously cluster non-
stationary time-series into stationary sub-groups and for each cluster detect-
ing probability relationships among variables through graphical model infer-
ence. This simultaneous inference is suitable to be transformed into a time-
varying regression model that allows to make predictions on non-stationary
time-series. Moreover, the regression coefficients can be interpreted as causal
patterns. Our method generalizes many state-of-the-art methods and provides
a wide range of analysis type to be performed on time series. Both synthetic
and real experiments show that it does indeed outperform state-of-the-art
method for clustering, network inference and prediction.

There are many improvements that could be performed. One could add flex-
ibility in the detection of each observation state by making the transition prob-
abilities (the matrix A) time-dependent [133]. Also, using a non-parametric
Bayesian approach would allow us to transform TAGM into an infinite-state
model [32] thus removing the problem of identifying the most suitable hyper-
parameter K (the number of states). Moreover, TAGM could benefit from con-
vergence analysis and faster optimization techniques as it requires a high com-
putational time when dealing with long time-series as the inference of the
Markov chain cannot be easily parallelized. Two future interesting directions
could be to relax the assumption of Gaussian distributed data and thus, by
changing the emission probabilities to graphical models that allow for other
type of distributions (e.g., Poisson, Binomial, or others) [10, 120, 134, 261].
Moreover, if one is interested just in exploiting graphical models to study
causality, we want to point out an interesting resemblance between Equation
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(2) in [204] that models system kinetics and Equation (8) in [260] that define a
pairwise graphical model on a general exponential family distribution. To con-
clude, the urge to dissect the underlying system observed through time series
has led current research to deeply rely on graphical models. The approach we
presented reinforces the general understanding that, indeed, graphical models
are a powerful tool to study time series under a variety of different perspec-
tives.
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Conclusions

We conclude this thesis presenting a brief recap of the major contributions.
The first part of the thesis focuses on the extension of state-of-the-art machine
learning and deep learning methods to graph modeled data. We shed light on
criticalities regarding the application of machine learning algorithms to rela-
tional data. In particular, we emphasize the paramount importance of learning
suitable graph vector representations to properly incorporate complexity in
adopted statistical models and leverage links information (Chapter 2 and 3).
In Chapter 4 we propose four adaptations of machine learning algorithms to
graph-modelled data, i.e.:

1. thanks to a degree-based representation of Web sub-networks (i.e. web-
sites), we understand their topological evolution based on the generative
principle: central or peripheral. Moreover, this representation allows us
to question the overall ubiquitous presence of scale-free networks in real-
world examples (Section 4.1);

2. we propose a novel approach based on network analysis to infer a surface-
specific and time-varying score for professional tennis players and use it
in addition to players’ statistics of previous matches to represent tennis
match data (Section 4.2);

3. relying on graphlet counts we represent preterm infants motion. The
coupled use of this representation and a probabilistic model allows us to
discover motion patterns characterizing different neurological conditions
(Section 4.3);

4. we provide an extensive description of a future application for academic
collaboration recommendations. In this regard, we propose a prelimi-
nary analysis of an academic collaboration heterogeneous network, i.e.
the MaLGa center. (Section 4.4).

The second part of the thesis focuses on methodologies specific to the prob-
abilistic network inference macro-area (Chapter 5). More specifically, we inves-
tigate inference methods of Markov Random Fields under the assumption of
Gaussian distributed data. In this context, we deal with time-varying data and
overcome two critical issues about missing data and non stationary time series:
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1. in the former case, we propose a method that generalises state-of-the-art
approaches and deals with two types of missing data: partial and latent
(Section 6.1);

2. in the latter case, we propose the TAGM model which extends the state-
of-the-art approaches to non stationary time-varying graphical models.
TAGM relies on a clustering approach to identify stationary points in the
multivariate time series (Section 6.2).



Appendix A

8.1 Synthetic dataset generation

We generated data through a Markov process which controls the probability
to remain in the same state or to go from one state to another one.
The synthetic data generation comprehend the following steps:

1. we fix suitable values for the number of observations N, the number of
states K and the number of multivariate time series D.

2. for every state k = 1,...,K, we allow for several combinations of distri-
butions to generate the observations.

a)

b)

The mean can be drawn in two ways: from a multivariate normal
distributionyy ~ N(0,Z), where T is the identity matrix, or from
an uniform distribution with y ~ U(a,b) and a,b € R with a < b.
If 2 < b then the generated cluster are more likely to be separated
between each other.

The covariance matrix X; can be set in three ways: fixing a cer-
tain maximum degree for each node d, we randomly selected its
neighbours and put deterministically the weights of the edges to
0.98/d to ensure positive definiteness of the resulting precision ma-
trix [171, 266]; from the tool scikit-learn.datasets which generates
a random symmetric, positive-definite matrix; from the precision
matrix stressing the links between nodes, starting from the identity
matrix and putting randomly ones in the off-diagonal places respect-
ing the symmetric matrix constraint. In this way we are generating
precision matrix with either strong links between nodes or no links
at all. This case is interesting because in this way the networks cor-
responding to each state k are very different between each others
like the case with means very far away.

3. each row of the transition matrix A is generate from a Dirichlet distribu-
tion Dir(a) where a € RX. In particular, to not have too quick transitions
from one state to another we impose «; = « - a; with i # j where i is the
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index of the row transition we are drawing and «; all the other element
of a different than a;. x is also known as the force constant, in the sense
that the bigger «x is the more likely the state i is respect to the others;

4. finally, for each time point 7, the state k is drawn from the transition
matrix A then the data are drawn from the related normal distribution
Xn ~ N(yk,Zk).

8.2 Model selection

Our model has two hyper-parameters to cross-validate:
1. the number of finite states K;

2. the regularization parameter A which regulates the sparsity of the preci-
sion matrix @y;

To estimate these two hyper-parameters we employ cross validation (CV)
with a Bayesian Information Criterion (BIC) score. To determine the number
of hidden states we use the BIC approach [224] which has the form

BIC(m) = In p(X|m, 0) — %ln(n).

v represents the number of free parameters and m the considered model. In
our case the number of free parameters can be computed in the following:

¢ the probabilities 7t have dimension K with one constraint, so v; = K —1;

e the transition matrix A has dimension K x K but each row has a con-
straint, so v4 = K(K —1);

¢ the means y are K with dimension d without any constraint, so v, = KD;

¢ the precision matrices ® are K, one for each state, with dimension d x d
but they have the constraint given by graphical lasso therefore vg =
Y.i>jeij wheree;; = 0if é)i,j = 0and ¢;; = 1 otherwise. @ is the estimated
precision matrix.

Putting all together the total number of free parameter v is

K
V=Ur+Va+Vvu+ve=(K-1)(K+1)+KD+ ) ve,.
k=1

To see that this CV combination of methods is suitable for the estimation of the
hyper-parameters of our model we generated a multivariate time series with
D =10 and K = 5 and we cross-validate K and A from the sets K € {3,...,8}

and A € [18,25]. We show in Figure 46 the results and as we can see it found
the K from which we have generated the data.
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Figure 46: Cross validation

8.3 Initialization choices

The optimization algorithm requires an initialization of the initial parameters
6. Since the likelihood function we are considering is non-convex the parame-
ters initialization is crucial to find the optimal solution. In particular,given the
cluster number K we have to initialize four parameters: the transition matrix
A and the initial probabilities 7t and the Gaussian distribution parameters ©
and p. In our implementation we adopt the following initializations choices:

¢ the transition matrix A and the initial probabilities 7 can either be
initialised with equal probabilities for each state + or by randomly sam-
pling from a uniform distribution ¢/(0,1) or symmetric Dirichlet distri-
bution Dir(1), with the constraints that each row has to sum to one;

¢ the Gaussian distribution parameters © and p are initialized by com-
puting an initial subdivision of the time points into clusters. To this aim
with used K-means or Gaussian mixture model (GMM). Both GMM and
K-means are non-convex, thus, depending on initialisation lead to differ-
ent solutions as well. Given the dataset initial subdivision, we compute
respectively the empirical covariances and means. Finally we run the
graphical lasso to compute the corresponding precision matrix and we
use that as initial parameters.

8.4 Evaluation metrics

We use a metric score for each of the following aspects:

1. clustering performance: we compare the clustering results in terms of
V-measure [217] which returns a value v € [0,1] where v = 0 means that
the cluster labels are assigned completely randomly while v = 1 means
that there is a perfect match between the true labels and the one found
by the models.

2. network inference performance: in order to evaluate the performances
of the methods we need to identify a map between the true clusters and
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the identified ones in order to compare the underlying graphs. Such map
is obtained by taking the maximum per row of the contingency table of
the true and predicted labels. We then consider the true and inferred
graphs as binary classes (0 no edge identified, 1 edge identified) and we
compute the Matthews correlation coefficient (MCC) [168]

TP x TN — FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

which return a value in the interval[—1, 1] where 0 corresponds to chance.

. forecasting performance: we used as score the Mean Absolute Error
(MAE) which measures the error between the true next point value and
the predicted one. Since we are predicting d values for each future time
point we compute the mean MAE across entries of the vector:

1N

MAE = — Y. ( Z |Xna — xnd|>

i=1
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