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Introduction

The work of my past three years is focused on the Analysis on two classes of non
Euclidean spaces: the symmetric spaces of the noncompact type and the homogeneous
trees. The two families of spaces are more linked than their structure might suggest.

In continuity with my master thesis, my work starts from the Radon transform.
Given a space X and a family of subsets =, the Radon transform of a function f on X
is a function on Z defined by the integral of f restricted to every subset in E. In [1]
some of my collaborators have solved the unitarization problem for a class of Radon
transforms. That is, they prove the existence of a pseudo-differential operator that,
precomposed with the Radon transform, extends to a unitary operator Q on L?(X).
The problem has been inspired by Helgason who addressed and solved it in the case of
the polar Radon transform. The spaces X and = analyzed in [1] are transitive G-spaces
of a lesc group G such that (X, E) is a dual pair in the sense of Helgason. The Radon
transform for dual pairs is classically defined by Helgason [39]. Under some technical
assumptions they prove the existence of the unitarization of the Radon transform.
Furthermore they show that Q intertwines the two quasi regular representations w
and 7 of G on L?(X) and L%(Z), respectively. The latter result, under the additional
hypothesis of square integrability of 7, provides a new inversion formula for the Radon
transform.

The hyperbolic disk, and, more in general, the family of symmetric spaces of the
noncompact type, together with the family of its horocycles form a classical example
of dual pair in the sense of Helgason. Since this setup does not satisfy the technical
assumptions of [1], it is natural to investigate the unitarization problem in this context.
Such problem is not directly addressed by Helgason who however shows that the com-
position of the Radon transform with an operator extends to an injective operator [37].
We cannot find a surjectivity result in his wide literature. Another natural context
in which it is worthwhile to study the unitarization problem for the Radon transform
is the homogeneous tree. Homogeneous trees have some common properties with the
hyperbolic disk and also here it is possible to define the horocyclic Radon transform.
The question was instead totally open on homogeneous trees.

The two settings are, in a certain way, similar and the problem is the same. Our
contribution is the completion of the unitarization result for the symmetric spaces by
using techniques designed to fit well in the case of the homogeneous trees. Indeed some
intermediate results coincide in the statements and the spaces involved are clearly in
relation (see Figure 1), though the techniques used in the proofs are fairly different. Just
to give an idea, on symmetric spaces we can count on the Iwasawa decomposition of the
associated semisimple Lie group, while in the other case, since there is no decomposition
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4 INTRODUCTION

Figure 1: The two diagrams represent the main relations between the spaces and the
operators involved in the unitarization of the horocyclic Radon transform on symmetric
spaces and homogeneous trees, respectively.

for the group of isometries of the homogeneous tree (still denoted G), we use the easier
geometry of the tree.

In both settings, the range of the unitarization of the Radon transform results to
be a subspace LZ(Z) = L*(Z) which keeps track of the symmetries that the Radon
transform inherits from the geometry of the spaces. Furthermore we prove that the
unitarization Q@ intertwines the two quasi regular representations m and 7 of G on
L?(X) and L2(Z), respectively. Unlike the cases studied in [1], in these setups the
representation 7 is not square integrable and then we are not able to provide new
inversion formulae for the Radon transform.

I essentially completed the solution of the unitarization problems of the two Radon
transforms by using a mix of techniques of [6] and classical results on symmetric spaces
and on homogeneous trees. Hence I discussed the results with F. Bartolucci and F. De
Mari, which helped me to put the results in the correct perspective. With their expe-
rience and expertise, we wrote the paper in a more complete and satisfying way.

This problem motivates the second part of my work. We decided to study the class
of square integrable representations on symmetric spaces and homogeneous trees. In
the first case, it is well known that square integrable representations have a realization
on the holomorphic Bergman spaces. We observed that it is not possible to obtain a
unitarization result for the Radon transform on the hyperbolic disk which intertwines
a square integrable representation on the Bergman space with a representation on the
functions defined on =.

We moved our attention to the case of the homogeneous tree X. Ol’'shanskii clas-
sifies the square integrable representations of the group G of isometries on X in [45]
without exhibiting any realization on spaces of functions on X. In view of the analogy
between symmetric spaces and homogeneous trees, it is natural to ask whether a square
integrable representation of G can be realized on a space related to the holomorphic
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Bergman space. The notion of holomorphic function on X is not clearly stated in
literature, but the notion of harmonic function there is well known. In [17], the har-
monic Bergman spaces are introduced for functions defined on homogeneous trees. For
every finite measure ¢ on X which is radial w.r.t. a fixed origin o € X and decreasing
w.r.t. the distance from o, and for every 1 < p < o the (harmonic) Bergman space is
defined as the space of the harmonic functions in LP(0). We show that, as in the case of
the holomorphic Bergman spaces on the disk, when p = 2 they are reproducing kernel
Hilbert spaces. We provide a formula for the kernel and we study the boundedness
properties of the extension of the projector to LP(o). For simplicity we focus only on
the family of measures which decrease radially exponentially. We show that for every
measure of that family the extension of the projector to LP(o) is bounded if and only
if p>1.

The problem has been posed to me by F. De Mari and M. Vallarino. I provided
the formula of the kernel and essentially solved the problem of the boundedness of
the projector. I drew inspiration from the approach of [25|, [49], and [54], but the
techniques used in the proofs are fairly different, since the holomorphic kernel on the
disk has an easy Taylor decomposition that we do not have. With the help of the
expertise of F. De Mari and M. Vallarino, I was able to rewrite in a clearer formulation
the results obtained by me in a preliminary form.

The Radon transform

The Radon transform is introduced by J. Radon in the context of inverse problems.
In particular he addresses the problem of reconstructing a function starting from its
integrals on a family of subsets, typically lines or hyperplanes when the signal is defined
on R?. Radon proves a first reconstruction formula in 1917 in the case of integration
on hyperplanes of R3.

A generalization of the problem then is to reconstruct a function defined on a
manifold through the values of its integrals on a family of submanifolds. Helgason,
motivated by the example of the polar Radon transform, is the first to link the inversion
problem with the theory of homogeneous spaces, by introducing the Radon transform
in the context of dual pairs [39].

Given a function f defined on R? , the polar Radon transform of f on a line of the
plane is defined as the integral of f restricted to the line. The polar structure comes
from the parametrization of the family of lines by polar coordinates via [0,27) x R.
Namely,

RPOLF(0, 1) := ij(t cosf — ysinf,tsinf + ycos 0)dy, (0,t) € [0,27) x R.

This means that RP°! associates to a function on R? a function on [0,27) x R. The
idea of Helgason is to reduce this problem to the relation between the space X = R?
where the function is defined and the space of parameters = = [0, 27) x R. In this case
it is possible to see X and Z as homogeneous spaces of the group of rigid motions of
the plane: G = R? x K, where K = {R4: ¢ € [0,2m)} with

R, = [cosqﬁ —sing

sing cos¢

], ¢ € [0,2m).
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The group law of G is
(b,0)(b',¢") = (b+ Ryt , ¢ + ¢ mod 2m)

and gives to G structure of semidirect product of R? and K, namely G = R? x K. It
is easy to see that G acts on X = R? via the canonical action (b, ¢)[z] = b + Ryz.
Furthermore the isotropy of G' at 0 € R? is K and then G/K ~ X. Observe that the
action of (b, ¢) on R? is affine and maps lines into lines. Hence G acts on Z, too, via

(b;#).(0,t) = (60 + ¢ mod 2, +n(0) - R, D),
where 'n() = (cosf,sin ). The isotropy of G at the y-axis (0,0) € [0,27) x R is
H = {((07 b2)7 ¢) ¢e {077‘-}7 by € R}

and then = ~ G/H. The fact that a point € R? belongs to a line £ € = to the
fact that the cosets x = g1 K and & = goH intersect. Helgason extends this notion of
intersection to any pair of homogeneous spaces of the same group G.

We generalize this context. Let G be a lcsc group. We consider two G-transitive
spaces X and Z. We fix xg € X and & € Z and we denote by K and H their stabilizers
at G, respectively, so that X = G/K and = = G/H. Two elements z = g1 K € X and
& = goH € E are said to be incident if as cosets in G they intersect. Then it is possible
to define

Z ={{ € Z: xand ¢ intersect} < Z;

E: {x € X: x and & intersect} € X,

which are closed subsets by Lemma 1.1 in [39]. Looking back at the example of the
polar Radon transform, it is easy to see that § consists of the set of points lying on
the line &, basically the realization in X of the line parametrized by £ € Z. On the
other hand, & is the “sheaf” of (the parameters of) lines in = passing through z. It is
immediate to see that if 2 = g1[xo] and £ = g2.§p then

~ ~

T = g1.%0, £ = g2[&0]

Suppose that ggAcarries an H-invariant measure dmg. We push-forward the measure
mo to every £ = g&y by the map & 3 x — g[x] € & Hence we can define the Radon
transform by

RI(E) = Lf(x)dmg(w) = |, ftoleDama(e).

An important result on Radon transforms is the unitarization theorem. It replaces
the unitary extension of the Radon transform which, in general, is not possible to
achieve. Helgason states in [39] the existence of a pseudo-differential operator A such
that ARP°! extends to a unitary operator Q: L?(X) — L?(Z).

In [6], F. Bartolucci, F. De Mari, E. De Vito and F. Odone obtain both an unita-
rization and an intertwining result for a different Radon transform, the affine Radon
transform. The techniques used in [6] mimic the approach followed by Helgason to
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unitarize the polar Radon transform. In [1], the same authors together with G. S. Al-
berti present a new version of the unitarization theorem for a large class of Radon
transforms. They consider the case in which the spaces X and = forms a dual pair of
lesc transitive G-spaces of a lesc group G. They follow a different approach, based on
representation theory. Indeed, they prove that, under some technical assumptions, the
unitary extension Q exists and it intertwines the quasi regular representations 7 and
7 of G on L?(X) and L?(E), respectively. The main result is based on a generalization
of Schur’s lemma due to Duflo and Moore [21] and requires the irriducibility of 7. Fur-
thermore they show that, if 7 is square integrable, then an inversion formula for the
Radon transform follows from the unitarization result.

In the first part of my work, presented in Chapter 2 and 3, we investigated which
results of [1] extends to new cases. The first setup we decided to investigate has been
the hyperbolic disk and, more in general, the noncompact symmetric spaces. The
motivation is fairly easy: the space of horocycles defined there, together with the
symmetric space, forms a prototypical example of dual pair in the sense of Helgason.
Another family of spaces on which we focused are the homogeneous trees, due to
their deeply studied relation with symmetric spaces of rank one [16]. Among other
correspondences, horocycles are defined on homogeneous trees as well and they form a
dual pair with the tree in the sense of Helgason.

The techniques used in [1] cannot be transferred directly to the cases of symmetric
spaces and homogeneous trees primarily because the quasi regular representations are
not irreducible, much less square integrable. Hence, we adopted in both setups a combi-
nation of the classical results of the theory of symmetric spaces and homogeneous trees
(presented in [37] and [22], respectively) and the techniques that have been exploited
in [6].

Helgason essentially solves the unitarization problem in the case of symmetric
spaces. Indeed he proves that there exists an operator A which, precomposed with
the horocyclic Radon transform, extends to a injective operator on L?(X). We are not
able to find a unitarization result in the wide literature of Helgason’s. In our work
then we characterize the closed subspace of L?(Z) that, by keeping track of all the
symmetries of the Radon transform, is the range of the extension.

The horocyclic Radon transform on homogeneous trees was first introduced by
P. Cartier [14] and studied by A. Figa-Talamanca and M.A. Picardello [23], W. Betori,
J. Faraut and M. Pagliacci [12], M. Cowling, S. Meda and A.G. Setti [18], J. Cohen,
F. Colonna and E. Tarabusi [15], and A. Veca [52], to name a few.

Although the two setups have many common properties and the problem we solve
is essentially the same, some steps are fairly different. As we said before, the approach
is based on [6]. The crucial point is the relation between the Helgason-Fourier and the
horocyclic Radon transforms (that is, the Fourier slice theorem) and the correspondence
between the range of the former with the closed subspace Lf(E) C L?(Z) which is the
range of the unitarization. Horocycles are defined in both setups. We are interested
in their parametrization. We recall that the semisimple Lie group G associated to the
symmetric space has an Iwasawa decomposition G = KAN. Observe that the role
played by A on symmetric spaces is, in a certain sense, played by Z on homogeneous
trees. Indeed, on symmetric spaces, horocycles are parametrized by a boundary point
and an element of A, while on homogeneous trees by a boundary point and an integer.
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Figure 2: On the left the hyperbolic disk, that is the open unit disk in C. Geodesics
are diameters and portions of Euclidean circles orthogonal to the boundary. On the
right a part of a 2-homogeneous tree. Here geodesics are (double) infinite chains. In
both sides we highlight in red some geodesics lying in the bundle of parallel geodesics
ending at the boundary point w and in green some of the horocylces (on the tree, only
portions of them) which are orthogonal to such bundle.

We show that in both cases, the operator A, involved in the unitarization, can be
expressed as the conjugation of a Fourier multiplier 7 on A or on Z by a diffeomorphism
®*. The mapping ®% “transforms” a function on = in a function on the parameters.
Furthermore we prove that AR extends to Q: L*(X) — LZ(Z) in such a way that

7(9)Q = Qn(g), ge€G, (1)

where 7 and 7 are the quasi regular representations of G on L*(X) and LZ(Z), respec-
tively.

The Bergman spaces on homogeneous trees

In view of [1], where the authors use the square integrability of 7 and (1) to invert
the Radon transform, it is natural to ask whether it is possible to replace m with a
square integrable representation of the group in (1). Let us consider the hyperbolic
disk. In this setting, it is well known that each square integrable representation of
SU(1,1) has a realization on a Bergman space. For every a > 1, we consider the
measure dv,(z + iy) = (1 — 22 — y?)*2dady on the disk. We call Bergman space the
closed subspace Ab (D) of LP(D,v,) consisting of holomorphic functions. The square
integrable representations of SU(1,1) are of the following form. Let m € N, m > 1.
The representation 7, of SU(1,1) on A2(D) is defined by

m(o) @)= G4 ) 0o D), o7 = |f U] esua, se a2 m),

To the best of our knowledge, it is not possible to obtain (1) by replacing 7 with 7,,.



INTRODUCTION 9

It is well known that A2 (D) is a reproducing kernel Hilbert space for every a > 1

with kernel .

K = D. 2

U e U 2

Since AL (D) is a closed subspace of LP(DD,v,), there exists an orthogonal projection
Py: L*(D,v,) — A2(D) and it is immediate to see that

f flw (z,w)dvy (w), fe A2(D).

The boundedness properties of the extension of P, to LP(D,v,) are known. Indeed,
Theorem 4.24 in [54] states that, for every a > 1, the extension of P, is bounded on
LP(D, vy) if and only if p > 1. The two fundamental works on this topic are [25] and [49]
which, among other results, solve the problem for the extension to the non-weighted
Bergman spaces, that is when o = 2. Zhu in [54] rewrites this result extending to the
case of any a.

It is natural to ask whether this setup is replied on homogeneous trees. The square
integrable representations have been classified by G. I. Ol'shanskii in [45], but no ex-
plicit realization on Hilbert spaces of functions is given. Further, to the best of our
knowledge, a definition of holomorphic function on homogeneous trees is not available.
Hence it is not obvious how to define the analogous of holomorphic Bergman spaces.

By borrowing from the mean value property of harmonic functions, on homogeneous
trees we say that a function is harmonic if its value at a vertex is equal to the average
of the values in the neighbors. In [17], authors introduce Bergman spaces by replacing
the requirement for the functions to be harmonic rather than holomorphic. Although
it appears to be hard to define a unitary representation on these spaces, we decided
to investigate them. In particular we want to determine which properties they have in
common with their “continuous” and holomorphic counterpart defined above.

Consider a finite measure o on the g-homogeneous tree X whose Radon-Nikodym
derivative w.r.t. the counting measure is a function, still denoted by o, which is radial
(w.r.t. a fixed origin o) and decreasing. We call it reference measure. For every 1 <
p < 00, the Bergman space AP(X, o) is the (closed) subspace of LP(X, o) consisting of
harmonic functions. They are Banach spaces and, for p = 2, Hilbert spaces. In the
work presented in Chapter 4 we show that A%(X, o) is a reproducing kernel Hilbert
space for every reference measure o. The discrete structure of the tree, together with
the fact that we are considering harmonic functions and not holomorphic functions,
makes the formula for the kernel more troublesome than (2). Theorem 4.9 shows that
there exists a function I' (independent of o), a constant B, > 0, and a positive sequence
{bp }nen such that

Ky(z,z) Z —F (v, 2z,2)(1 — q‘”|*|z\)(1 _ qlvlf\wl)a

1
BU q_12veXb|U

where |z| = d(o, x), with the canonical distance on X.
In what follows, we use this formula to obtain boundedness results for the Bergman
projectors. As in the continuous case, there exists an orthogonal projector P, : L?(X,0) —
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A%(X, o) and it can be expressed via the kernel by
P f(2) = ). Ko(z,2)f(x)o(x),  feL*X,o0).

zeX

We focus on a family of reference measures which appears to be the natural coun-
terpart of the measures considered on the disk. For every a > 1, we denote by

fia (@) = g, xe X.

The boundedness result for P,, = P, is obtained as byproduct of a boundedness result
for the more general operators:

Sabef(2) = a " Y [Kelz,2)|f()g~ "
zeX

Topef(2) = ¢V Y Koz, ) f(2)q "),

zeX

for a,b € R and ¢ > 1. Our main results are Theorems 4.10 and 4.11, where we show
under which condition on a, b, ¢, a, p the operators S, . and Tj, ;. are bounded on
LP(X, p1a). As a consequence of the fact that P, = T, we have Theorem 4.15 in
which we show that P, is bounded on LP(X, ) if and only if p > 1.

A general question that arises form the previous results is: what do we know for
the other reference measures? The problem appears to be nontrivial. For the case
p = 1, we are able to find a counterexample to the boundedness for a large family of
reference measures, called optimal, introduced in [17]. On the other hand, we are aware
that for a subfamily of optimal measures it is possible to prove that P, is bounded on
LP(X, o) for every p > 1. The characterization of the class of measures o for which the
boundedness of P, on LP(X, o) is equivalent to p > 1 is part of the work I am carrying
on with F. De Mari and M. Vallarino.

The work of this thesis is contained in the following list of papers:

1. Francesca Bartolucci and Matteo Monti. Unitarization and inversion formula
for the Radon transform for hyperbolic motions. In 2019 13th International
conference on Sampling Theory and Applications (SampTA), pages 1-5, 2019.

2. Francesca Bartolucci, Filippo De Mari, and Matteo Monti. Unitarization of the Horo-
cyclic Radon Transform on Symmetric Spaces, pages 1-54. Springer International
Publishing, Cham, 2021.

3. Francesca Bartolucci, Filippo De Mari, and Matteo Monti. Unitarization of the
horocyclic Radon transform on homogeneous trees. Journal of Fourier Analysis
and Applications, 27(5):84, 2021.

4. Filippo De Mari, Matteo Monti, and Maria Vallarino. Boundedness of harmonic
Bergman projectors on homogeneous trees, in preparation.



Chapter 1

Preliminaries

This chapter collects several notions from different branches which have the common
property of being useful in the following chapters.

The chapter is organized as follows. In Section 1.1 we first recall the basic definitions
and results used in Analysis on groups, as the Haar measure, representation theory and
the Fourier transform on Abelian groups, and then we present homogeneous spaces.
Section 1.2 contains a list of important classes of Lie algebras and the corresponding
list of Lie groups. In particular the notion of semisimple Lie group is presented, which
will play a crucial role in Chapter 2, together with the Iwasawa decomposition. Finally,
in Section 1.3 we present the classical definition of Radon transform and a short version
of [1] in which an extension of the classical Radon transform is used to obtain a result
which has been the inspiration for Chapter 2 and 3.

1.1 Analysis on Lie groups and homogeneous spaces

The purpose of this section is to recall the basic facts of Analysis on groups and to
establish the notation used throughout. In Section 1.1.1 we present measure theory
on locally compact groups, which is then used in the particular case of Lie groups.
The general reference is [24]. Section 1.1.2 is devoted to a brief summary of group
representation theory, with focus on square integrable representations. We refer the
reader to [20] and [24] where this material is developed at some length. Then in
Section 1.1.3 we resume the theory which leads to define the Fourier transform on
Abelian groups. In addition to R, it will be used on Z, T, and on the Abelian component
of semisimple Lie groups. In the last section we present homogeneous spaces, on which
the analysis is carried out in what follows. General reference for the last two sections
is again [24].

1.1.1 Haar measures and modular functions

A Borel measure p on the topological space X, that is, a meausure on the o-algebra
B(X) of the Borel sets of X, is called a Radon measure if:

(i) w is finite on compact sets;

11
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(ii) p is outer regular on the Borel sets, that is for every Borel set E

w(E) =inf{u(U) : U o E, U open};

(iii) w is inner regular on the open sets, that is for every open set U

w(U) =sup{u(K) : K < E, K compact}.

Definition 1.1. A left Haar measure on the topological group G is a non zero Radon
measure j such that p(xE) = u(E) for every Borel set E ¢ G and every = € G.
Similarly for right Haar measures.

Of course, the prototype of Haar measure is the Lebesgue measure on the additive
group RY, which is invariant under left (and right) translations. Compactly supported
continuous functions on a topological space Y are denoted C.(Y). An equivalent defi-
nition for the left Haar measure pu is to require that for every f € C.(G) and h € G,

ffhg du(g ff )du(g (1)

A fundamental result on Haar measures is the following theorem due to A. Weil.

Theorem 1.2 (Theorem 2.10, [24]). Every locally compact group G has a left Haar
measure X, which is essentially unique in the sense that if u is any other left Haar
measure, then there exists a positive constant C' such that u = C\.

If we fix a left Haar measure p on G, then for any g € G' the measure 1, defined by

pg(E) = u(Eg)

is still a left Haar measure. Therefore by Theorem 1.2 there exists a positive real
number, denoted A(g) such that

pg = A(g)p.
The function A : G — R is called the modular function of G.

Proposition 1.3 (Proposition 2.24, [24]). Let G be a locally compact group with left
Haar measure w. The modular function A : G — R, is a continuous homomorphism
into the multiplicative group R . Furthermore, for every f € L*(G,u) we have

[ stamanto) = 2w [ rwants

A group for which every left Haar measure is also a right Haar measure, hence for
which A = 1, is called unimodular. Large classes of groups are unimodular, such as the
Abelian, compact, nilpotent, semisimple and reductive groups. Many solvable groups,
however, are not. Prototypical examples of non unimodular groups are the Iwasawa
N A groups, such as the affine “ax + b” group that we illustrate in Example 1.1. A
practical recipe for the computation of modular functions is given by the following
proposition.



1.1. ANALYSIS ON LIE GROUPS AND HOMOGENEOUS SPACES 13

Proposition 1.4 (Proposition 2.30, [24]). If G is a connected Lie group and Ad denotes
the adjoint action of G on its Lie algebra, then A(g) = det(Ad(g~1)).

We present the notion of semidirect product of Lie groups. Suppose that G and H
are two Lie groups and that we are given a group homomorphism

7: H — Aut(G), h—

such that the map (g,h) — 74(g) is a smooth map of G x H into H. Hence, for
every h € H the map 75 is an invertible Lie group homomorphism of G onto itself, and
Thi = Tp © Tg for every h,k € H. It is then possible to define the semidirect product of
G and H. It is the group denoted G x H whose elements are those of G x H and where
the product is defined by

(91, h1)(92, h2) = (917h, (92), h1h2).

It is immediate to check that this is a group law, and indeed smooth, so that G x H is
a Lie group. The neutral element is (eg, ey) and inverses are given by

(9. 7)" = (T1(g™h), h 7). (1.2)

If we identify G and H with the subsets of G x H given by {(g,er) : g € G} and
{(eg,h) : h € H}, respectively, then both G and H are closed subgroups and G is a
normal subgroup in G x H.

Example 1.1. The most obvious examples of semidirect product are the two versions
of the “ax + b group. We start from the connected version. Namely, it consists in the
set G = R4 x R; the multiplication is obtained by thinking of the pair (a,b) € G as the
affine transformation on R given by = — ax + b, that is

r—az+b—d(ax+b)+V = (da)z+ (a'b+1).
Therefore, the multiplication law is
(a',b')(a,b) = (d'a,a’b+ V). (1.3)

The neutral element of the group is clearly e = (1,0) and the inverse of an element has
the form
(a,b)7! = (a7, —a"b). (1.4)

Evidently, both components in (1.3) are smooth in the global coordinates on G, which
is then a (connected) Lie group. By using (1.1), it is easy to show that a~2dadb is a
left Haar measure for G, indeed if f € C.(G) and (a1,b1) € G, then

dadb

a2

dadb
f f(a1a7 (Ilb + bl) az
Ry xR a

dad
[ st
R+XR al o

_ J f(a,ﬁ)dadb

3
R, xR &

f £((ar,b1)(a, )
R4y xR




14 CHAPTER 1. PRELIMINARIES

It is possible to realize the “ax + b’ group as a matrix group by considering matrices
of the form

a b
[0 1]<—>(a,b), a>0,beR.
Hence we have an isomorphism of “ax + b” with a closed Lie subgroup of GL(d,R).
The Lie algebra of such subgroup consist of matrices
[A B

0 0], A, BeR.

It follows that

A B (0 b][A Bl[a! —ba!
Ad(“’b){o 0]:_0 1} [0 oHo 1 }
B [A —bA + aB
o 0

_ (1 0][A
-1 5]
By Proposition 1.4, we have that Ag(a,b) = det(Ad((a,b)™1)) = a™L.

A different version of the affine group is usually presented as full or non-connected.
Let Ggqp = R* x R. We endow Gy with the same multiplicative law in (1.3). The
group is clearly non-connected since Gy = (Ry x R) U (R_ x R), a~2dadb is still a
Haar measure and the modular function is Ag,,,(a,b) = |a| 1.

Other examples of semidirect products are the Iwasawa AN groups (see Section 1.2.2.3)
which, in the present notation, should be written N x A.

From now on, the choice of a left Haar measure p is considered as implicitly made,
and hence we write

1.1.2 Group representation theory

Below we present the fundamental notions and results concerning the theory of group
representations which are used in what follows. We use Chapter 2 of [20] and [24] as
general references.

1.1.2.1 Irreducible representations and Schur’s Lemma

Let us start by introducing some very basic notation. If H is an Hilbert space, we denote
its scalar product and the associated norm by (-, )3 and | - |x, respectively. Let H;
and Hso be two separable Hilbert spaces. We write B(H1, Hs2) for the space of bounded
linear operators of H; into Hsy. In the case in which H; = Ho = H we use B(H) for
B(H,H). We recall that T' € B(H1, Hz) is an isometry if it satisfies |Tu|y, = |u|y, for
every u € Hi. Thus, every isometry is injective (since ker7 = 0), but not necessarily
surjective. A surjective isometry is called a wnitary operator. Observe that, since
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[Tuly, = Tu,Tuyy, = {u,T*Tuyy, for every u € Hi, the polarization identity
implies that 7" is an isometry if and only if 7*T = idy,. This means that if T is a
unitary operator, then its inverse coincides with its adjoint. Finally, if Hi = He = H,
the set

UH) ={T € B(H) : T is unitary}

is a group with respect to the composition.

We have now all the necessary elements to present the representation theory. Let
G be a locally compact second countable Hausdorff topological group and let H be a
separable Hilbert space.

Definition 1.5. A wunitary representation of G on the Hilbert space H is a group
homomorphism 7: G — U(H) continuous in the strong operator topology. The Hilbert
space H is called the representation space of m and its dimension is called the dimension
or the degree of .

Observe that form the previous definition it immediately follows that if 7 is a
unitary representation of G on H, then for every g, h € G:

(i) m(gh) = m(g)m(h) and w(g7") = w(g)~" = 7(g)*;
(ii) g~ m(g)u is continuous for every u € H.

From the fact that 7(g) € U(H) and (i), we have that |7(g)u—7(h)u|y = |*(h~1g)u—
ul|. Therefore, it is sufficient to check the continuity of the maps g — m(g)u at the
identity e € G. Furthermore, 7(g) € U(H) implies

Im(g)u = ull3; = 2]ul; — 2Re({(m(g)u, w).

Hence if g — {(7(g)u, u)y are continuous for every u € H then the strong continuity of
7 is guaranteed. This is because the weak and strong operator topologies coincide on

UH).

Let 7 be a unitary representation of G on the Hilbert space H.

Definition 1.6. A subspace M < H is said to be w-invariant if 7(g)u € M for every
u € M and g € G, namely if 7(g)(M) < M for every g € G.

Definition 1.7. We say that the representation m is irreducible if the only closed
m-invariant subspaces in H are {0} and #.

We present a classical test for the irriducibility of a representation which is useful
in the following.

Lemma 1.8 (Proposition 2.47 in [20]). Let w be a unitary representation of the group
G on the Hilbert space H. The following two conditions are equivalent:

(i) the representation 7 is irreducible;

(ii) the coefficient g — {u,m(g)v) is not the zero function whenever u,v € H\{0}.
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Example 1.1 (continued). Let G be the affine group “az + b” considered in the first
part of Example 1.1. Let us consider the Hilbert space L?(R); define for every f € L?(R)
and (a,b) € G

w(a,b)f(x)z\}af <‘””a_b) TeR.

We have that 7(a,b) € U(L*(R)) since

Im(a.b)f13 = jR ! ‘ ; (x - b)

Furthermore, 7: G — U(L?*(R)) is a group homomorphism by the fact that x
is the affine transformation associated to (a,b)~!, as observed in (1.4), and that the
factor 4/a is multiplicative.

We show that 7 is not irreducible. We need the Fourier transform on L!(R) n L?(R)
defined by

2
do = j )P dy = | fI3.
R

z—b
a

FFE) = fR f@)e2tdr,  £eR

In the next section we introduce the Fourier transform on Abelian groups which gen-
eralizes the notion above. Furthermore, Theorem 1.19 and Theorem 1.20 have to be
intended as a general version of the classical Fourier inverse theorem and the Plan-
charel theorem, respectively. Let .#: L?(R) — L?(R) be the unitary extension of F.
A straightforward computation shows that for every f e L?(R)

F (w(a,b) f) (&) = Vae > F f(af).

Take two non zero f,g € L?(R). Then, by Plancherel theorem

dadb dadb
|, r@nrofSy = | . ol
2
_ —2mibé o gy dadd
Lh xRa fﬂie Fa8)Fg(¢) a?

[l sl el
Ry xR a

where wy(§) = .Z f(a&)Fg(£). Then we can apply again Plancherel theorem obtaining

pdadb ) o da
. Jensor =] | P

CL2
- j (f |fff<a5>2d“> Fg©)Fde.  (L5)
R \ JR,

a

Define now the following (Hardy) spaces

H(R) = {f e L*(R): Zf(£) =0if £ <0},
A (R) = {f e L*R): Zf(&) =0if &> 0}.
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Observe that if we choose f € #(R) and g € 7 (R), then, since a > 0, it follows
from (1.5) that [{7(-)f,9)r2() = 0, that is {(z(-)f,g) = 0 for a.e. g € G. From
Lemma 1.8 we have that m is not irreducible. Furthermore, it is possible to show that
the Hardy spaces are (the only) 7-invariant closed subspaces of L?(R) and that the
restrictions of 7 to .#% (R) and to ¢ (R) are irreducible.

Let us consider the non-connected version of the affine group. We define the unitary
representation my: G — U(L?(R)) by

1
mrn(a,b) f(z) = —=f <
Vlal
By the same approach used in the connected case, we have that

fR*XR (. b)f. 205" = JR (fR* EZIC3E da) | Fg()|? de

a’ |al

o 2 G MBI (16)
R* lal Jr

T —b

a

) R f € LQ(R), (a, b) € Gfun.

because the measure |a|~'da is invariant under the transformation a — a/¢ for any
¢ # 0. Hence if f and ¢ are not the zero function, then (1.6) cannot be zero. This
proves that 7y is irreducible.

The following is a classical result for the case of Abelian groups which is important
for the theory presented in the next section.

Proposition 1.9 (Corollary 3.6 in [24]). If the group G is Abelian, then every irre-
ducible representation w of G is one dimensional, that is H, ~ C.

Let m; and 7o be two unitary representations of G on the separable Hilbert spaces
H1 and Ho, respectively.

Definition 1.10. We say that T' € B(H1, Hz) is an intertwining operator for m; and
7o if 1t satisfies
Toml(g) =m(g)eT, geG.

We denote by C(m, m2) the space of intertwining operators of w1 and mo. If 11 = 79
we write C(m, ) = C(m).

Definition 1.11. The representations m; and 7y are called unitarily equivalent if there
exists a unitary operator C'(71,m2) # & and we write m; ~ 7.

The next result is one of the fundamental theorems in representation theory. It
gives a necessary and sufficient conditions for a representation to be irreducible and it
describes the set C'(my, m2) if both representations are irreducible.

Theorem 1.12 (Schur’s Lemma, Lemma 3.5 in [24]). Let m1 and may be two unitary
representations of G on the separable Hilbert spaces Hy and Ho, respectively and let
T e C(ﬂ'l, 7T2).

(1) Suppose that m1 = my = w. Then, w is irreducible if and only if C(m) contains
only scalar multiples of the identity.
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(ii) Suppose that 7y is irreducible. Then T = AS for some A = 0 and some isometry
S. If in addition ma is irreducible, then

. 1, if m ~ mo,
dlmC(ﬂ'l,ﬂ'Q): {0 if 71-17471-2

1.1.2.2 Square integrable representations

Square integrable representations are a class of representations very useful in applica-
tions. Indeed it is possible to reconstruct a vector u € H of the Hilbert space associated
to the square integrable representation 7 by knowing all its projections (u,w(g)1)y,
g € G, where ¥ € ‘H is a fixed vector.

Let G be a locally compact second countable group and let m be a unitary repre-
sentation of G on the separable Hilbert space H. Given a vector ¢ € H, we define
the woice transform of m with respect to 1 as the operator Vy,: H — L*(G) n C(G)
defined for any u € H by

Vyu(g) := (u, m(9)Y)n,  geG.

The continuity of V,u as a function on G is guaranteed by the continuity of 7 and the
remark after Definition 1.5, its boundedness by the Cauchy-Schwarz inequality on H.

Definition 1.13. A vector ¢ € H is called admissible for the representation 7 if the
voice transform associated to 1 is an isometry from H into L?(G), where G is endowed
with the Haar measure.

In the literature a vector is sometimes said to be admissible even when the voice
transform is a scalar multiple of an isometry. The two definitions are different but
clearly related by the multiplication by a constant.

Definition 1.14. If 7 is irreducible and admits an admissible vector, then we say that
7 is square integrable.

In order to state the fundamental result on square integrable representations, we
need to recall the definition of weak-integral.

Definition 1.15. If ¥: G — H is a map such that

uwfwﬂ@mw
G

is a continuous linear functional on H, then we define as weak integral of ¥, and we
denote it by

fW@@e%
G

the unique element in H satisfying for every u e H

<%LW@®M=L@ﬂ@M@-
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The existence and uniqueness of such element is guaranteed by the Riesz repre-
sentation theorem, see Theorem II.4 in [47]. We are now in a position to state the
fundamental result on square integrable representations; thanks to which it is possi-
ble to reconstruct an element in the representation space by its coefficients under an
admissible vector.

Theorem 1.16 (Theorem 2.25 in [26]). Suppose that © has an admissible vector ) € H.
Then, for any uw € H we have the reproducing formula

u= | voutan(opias. (1.7)

where the right-hand side is interpreted as weak-integral, and

Jul, = L Vyulg)2dg.

Example 1.1 (continued). We present an important example of square integrable
representation: the representation g, introduced in Section 1.1.2. We say that ¢ €
L?(R) satisfies the Calderén equation if

da (1.8)

ja

|17

From (1.6) it follows that the voice transform Wy f(a,b) = {f,m(a,b)¢)r2(w) is an
isometry from L?(R) into L?(Gy,y) if and only if ¢ satisfies the Calderén condition.
Thus the Calderén equation selects the admissible vectors, which, in this particular
example, are called 1D-wawvelets. The voice transform associated to the affine group is
called wavelet and this is also the reason for the different notation. The reproducing
formula (1.7) reads

dadb
5

f(l‘) = W¢f(a, b)ﬂfull(aa bW(Q«")

R* xR a

We refer to [19], [29], [44] for further reading on this topic.

1.1.3 The Fourier transform on Abelian groups

In this section we focus on the analysis on Abelian groups, with particular attention
to the definition of Fourier transform. The general reference is [24].

Let G be a locally compact Abelian group. Proposition 1.9 states that every ir-
reducible representation of GG is one-dimensional. This means that the Hilbert space
associated to an irreducible representation 7 is H, = C and n(g)u = &(g)u for every
u € C, where ¢ is a continuous homomorphism of G into T = {e?: 6 € [0, 27)} endowed
with the complex product. The homomorphism £: G — T is called character of G and
the set of characters is denoted by G. For reasons of duality which will be clearer in
the following, the notation

(g,6) =€(9), geG, €€,
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is preferred.

It is straightforward to see that G is an Abelian group under pointwise multipli-
cation. Hence, G is usually called the dual group of G. Furthermore it is possible to
see that in general if G is discrete, than G is compact and vice versa. The next result
collects some classical examples.

Proposition 1.17 (Theorem 4.6 and Corollary 4.8 in [24]). The following groups are
isomorphic:

(i) Rd ~ R? through the paring (x,€) = e2™<&)
(ii) T ~ Z through the paring (o, n) = a™;
(i) 7Z~T through the paring (n,a) = a".

Definition 1.18. The Fourier transform on L'(G) is the map F: LY(G) — C(C:‘)
defined by

FrE) = L<g,£>f(g>dg.

Example 1.2. We show how classical groups give rise to classical transforms.

(i) If G = R?, then the Fourier transform obtained is the classical Euclidean Fourier
transform defined on f € L'(R?) as

Fie) = f f@)e e Ods, e RY

Rd

(ii) If G = T, endowed with the normalized measure such that |T| = 1, then the
Fourier transform obtained is the classical Fourier series defined on a T-periodic
function, T > 0. Namely, if we consider a function f on T = {27™/T: t € [0, T]}
(endowed with the normalized Haar measure dt/T") as a T-periodic function, then
its Fourier series is determined by

X T or ., df
f(n) = L feFE ne (1.9)

(iii) If G = Z, endowed with the counting measure, then for every 7' > 0 the Fourier
transform can be expressed as the T-periodic function defined on L'(Z) by

Fft)y = f)e T, tel0,T). (1.10)

neZ

Observe that, differently from the canonical choice made in the previous example,
we choose to parametrize T with [0, 7] through t — e~27/T_ 1In fact, there is no
substantial difference from the canonical parametrization obtained by conjugating
the previous one. The reason for this choice will be clearer after Theorem 1.19.

The following two results consist in generalizations of fundamental facts in the
theory of classical Fuclidean Fourier transform.
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Theorem 1.19 (Theorem 4.22 in [24]). Let f € LY(G) such that Ff € L'(G). The
following inversion formula holds:

flo) = | Frexa.oas.  gec

As a consequence, we have that the choice made in the parametrization of T in (1.10)
allows us to consider the Fourier transform on Z as a kind of inverse of the Fourier
series in (1.9). Namely if f € L}(T) and f € L'(Z) then

Fi)y = fm)el Tt = f().

neZ

By duality, it is possible to consider the Fourier series in (1.9) as the inverse of the
Fourier transform in (1.10), as well.

Theorem 1.20 (Theorem 4.26 in [24]). The Fourier transform on L'(G) n L*(@)
extends to a unitary isomorphism % : L*(G) — L*(G), that is

12 fl oy = Iflizeys F e (6. (1.11)

1.1.4 Homogeneous spaces

Homogeneous spaces represent the setting on which we operate from now on. Here
we collect some basic facts about them. From now on, every group G considered is
assumed to be topological.

Definition 1.21. A group G acts on a set X if there exists a map, called action,
G x X 5 (g,x) — g[z] € X such that:

(i) the neutral element e € G satisfies e[x] = = for every z € X
(ii) h[g[z]] = hg|z] for every h,g € G and z € X.
Fix z € X, two important definitions associated to an action follows:
(i) the orbit of x € X is the set O, = {g[z]: g€ G} < X;
(i) the isotropy of x € X is the set H, = {g € G: g[z] = 2} < G.

When a group G acts on a set X, we say that X is a G-space. We say that X is a
transitive G-space, or equivalently that the action is transitive, if for every z,y € X
there exists g € G such that g[z] = .

The quotient spaces G/H represent a classical example of transitive G-spaces, since
G acts by left multiplication on G/H. If X is a transitive G-space, zo € X is fixed
and H = H,, < G is the isotropy of G at xp. Define the map ®: G/H — X by
®(gH) = g[xo]; it is easy to see that @ is a bijection. In particular, if G is a locally
compact and second countable group (from now on abbreviated by lesc), then G/H is
a lesc topological space. If in addition, X is a lcsc transitive G-space and the action
of G on X is continuous with respect to the product topology of G x X, then & is
an homeomorphism by Proposition 2.46 in [24], so that X is homeomorphic to the
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quotient space G/H. In such a case, we say that X is a homogenous space. Let us
observe that if we choose a different reference point z{, = goxo for some go € G (which
exists because we are assuming the action to be transitive), it is sufficient to replace
H with H = goHg, ! The map g — 90990 L induces a G-equivariant homeomorphism
between G/H and G/H'. Since the topology on G/H is the quotient topology then the
identification map is actually a homeomorphism.

In the following, the Radon transform is studied in different settings. The basic
spaces X and = which are involved in the theory of Radon transform are homogeneous
spaces of the same group G. From the point of view of Analysis, the natural question
arises whether the homogeneous space G/H admits a G-invariant Radon measure or
not. The answer to this question is contained in Theorem 1.22 below, which relates
integration on G to an iterated integral, first on H and then on G/H. These formulae
are achieved by means of the natural projection operator P : C.(G) — C.(G/H), also
known as Weil’s mean opearator, defined by

Py(gH) = L f(gh)dh,

which is well defined by the left invariance of dh, the Haar measure on H. Furthermore,
it is possible to see that P is continuous and surjective.

We are now in a position to state the classical result also known as the Weil’s
decomposition theorem. Here Ag and Ajp are the modular functions of G and H,
respectively.

Theorem 1.22 (Theorem 2.51, [24]). Let G be a locally compact group and H a closed
subgroup. There is a G-invariant Radon measure p on G/H if and only if Aqlg = Ag.
In this case, p is unique up to a constant factor, and if the factor is suitably chosen
then

f £(9)dg =f Pf(gH)du(gH) =
G G/H

for every f € C.(Q).

f f(gh)dhdu(gH) |
G/H JH

Hence, there always exists a G-invariant Radon measure on G/H whenever H is
compact, since Ag|g = Ay = 1. Indeed, the image of H under both modular functions
is a compact subgroup of the multiplicative group of positive reals, namely {1}.

Although many homogeneous spaces do not admit invariant measures (for example
R as a homogeneous space of the “ax + b” group), all of them admit strongly quasi
invariant measures. If p is a measure on X = G/H and we write p9(E) = u(gE) for
E € B(X), we say that u is a quasi invariant measure if all the p9 are equivalent, that
is, mutually absolutely continuous. We say that p is strongly quasi invariant if there
exists a continuous function A : G x X — (0, +00) such that

dpf(z) = Mg, z)dpu(z), zeX,geG.

In other words, the requirement is that the Radon-Nikodym derivative (dud/du)(x) is
jointly continuous in g and z. As mentioned, all homogeneous spaces admit strongly
quasi invariant measures (see Proposition 2.56 and Theorem 2.58 in [24]).

Finally, we recall the following important notion.
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Definition 1.23. Let G be a lcsc group and let X ~ G/H be a homogeneous space,
where H is a closed subgroup of GG. Fix xg € X. A Borel section is a measurable map
s: X — G satistfying s(x)[zg] = z for every z € X and s(z¢) = e.

Theorem 5.11 in [51] states that if G is second countable then there exists a Borel
section.

1.2 The structure of semisimple Lie algebras and Lie groups

In this section we present some classes of Lie algebras and Lie groups, with focus on
semisimple Lie groups. In the last part we present the example of the (semisimple) Lie
group SL(n,R) which plays an important role in Chapter 2. Classical references with
a wider scope are [35], [36], [43] and [50].

1.2.1 Classes of Lie algebras and Lie groups
1.2.1.1 Classes of Lie algebras
We fix a Lie algebra g and define recursively

=9 o' =[og=9d =[]

Each g/ is an ideal in g. The decreasing sequence
g=g"2¢'2¢°2...

is called the derived series or the commutator series of g. A Lie algebra is solvable if
¢’ = 0 for some positive integer j.
Now we consider another recursive definition in g:

go=9 g1=[o0]=9, gj+1=1[99]

Again, each g; is an ideal in g. The decreasing sequence
g=go=291=202=2...

is called the lower central series of g. A Lie algebra is nilpotent if g; = 0 for some
positive integer j.

Evidently, an Abelian Lie algebra is nilpotent and a nilpotent Lie algebra is solvable.
Both inclusions of these classes are proper.

Now we present the class of Lie algebras we are most interested in: semisimple
ones. Roughly speaking, a simple Lie algebra is a Lie algebra that is as far from being
Abelian as possible. This is formalized by saying that a Lie algebra is simple if it is
not Abelian and contains no proper Abelian ideals. A semisimple Lie algebra g is then
the Lie algebra direct sum of (all its) simple ideals (Corollary 6.3, Ch.II in [35]). This
turns out to be equivalent to the nondegeneracy of the Killing form B of g, thanks to
a theorem of Elie Cartan. The latter property is perhaps more efficient when it comes
to calculations, and we shall adopt it as definition.
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Definition 1.24. A real Lie algebra is called semisimple if its Killing form is nonde-
generate, i.e.

gt :={Xeg:B(X,Y)=0forall Y € g} = {0}
It is simple if it is semisimple and has no nontrivial ideals.

A Lie algebra g is said reductive if for every ideal a of g there is an ideal b such that
g=ad®b.

A real Lie algebra g of square matrices with entries in either R, C or H which is
closed under X — X* = ® X is reductive (Proposition 1.56 in [43]). Evidently, a
semisemple Lie algebra is reductive. The converse is of course not true. For example,
gl(n,R) is reductive but not semisimple.

Take a Lie subalgebra € of the Lie algebra g and let K* denote the connected Lie
subgroup of Int(g) (which is the connected Lie subgroup of GL(g) having ad(g) as Lie
algebra) whose Lie algebra is ad(¥) < ad(g). We say that £ is compactly contained in
g if K* is compact, and that g is compact if it is compactly contained in itself, that
is, if Int(g) is compact. Notice that, as a consequence, the Lie algebra of a compact
Lie group G is compact because Int(g) is the continuous image of G under Ad, hence
compact.

1.2.1.2 Classes of Lie Groups

For all the classes of Lie algebras that we have introduced in the previous section, the
corresponding classes of Lie groups are defined by requiring the Lie algebras to satisfy
the corresponding property.

Definition 1.25. A Lie group is called either solvable, nilpotent, semisimple or reduc-
tive if such is its Lie algebra.

The structure of solvable Lie groups is investigated in the recent monography |[5],
while that of nilpotent Lie groups is the subject of many books, among which we
mention the classical |28]. We content ourselves with some very basic facts described
in the next result.

Proposition 1.26 (Corollary 1.103 and Theorem 1.104 in [43]). (i) If g is solvable,
then there exists a simply connected Lie group G diffeomorphic to R™ whose Lie
algebra is g.

(ii) If N is a nilpotent, simply connected Lie group with Lie algebra n, then exp: n —
N is a diffeomorphism.

1.2.2 Decompositions

Classically, three decompositions play a crucial role in the theory of symmetric spaces:
the Cartan, Iwasawa and Bruhat decompositions. The latter, however, will not be
relevant for our purposes and we therefore shall not recall it.
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1.2.2.1 Cartan decomposition

It is fair to say that large parts of the structure theory of semisimple Lie algebras and
Lie groups rests on the notion of Cartan involution. For matrix Lie algebras, we have
already seen a very effective way of testing reductivity, hence semisimplicity, based on
the map X — !X = X*. Better properties are enjoyed by the variant

0(X) =-"X, (1.12)

which is an involution, that is, an automorphism of the Lie algebra whose square is
the identity. Let B denote the Killing form of a matrix Lie algebra. The involution 6
has the property that By(X,Y) = —B(X,0Y) is symmetric and positive definite. This
turns out to be a particular case of the following definition.

Definition 1.27. An involution 8 of a real semisimple Lie algebra g such that the
symmetric bilinear form

By(X,Y) =—-B(X,0Y)
is positive definite is called a Cartan involution.

From Theorem 6.16 in [43], we know that every real semisimple Lie algebra g has
a Cartan involution and any two such are conjugate via Int(g).

Let g be a real semisimple Lie algebra and let 8 be a Cartan involution. The
involution gives rise to the vector space direct sum

g=t+p (1.13)
where £ and p are the +1 and —1 eigenspaces of g relative to 6, respectively. Thus

[t €] €, [e,p]cp, [p,p]ct (1.14)

From (1.13) and (1.14) it follows that € and p are orthogonal with respect to both B
and By. Furthermore, since By is positive definite, it follows that

Definition 1.28. A decomposition g in a vector space direct sum g = € + p which
satisfies (1.14) and (1.15) is called a Cartan decomposition of g.

The most important consequence of the Cartan decomposition at the Lie algebra
level is the following version at the Lie group level, a general polar decomposition. If K is
the connected Lie subgroup of G with Lie algebra £, then there exists an automorphism
© of G such that dO© = # and ©? = id. Furthermore, K is the subgroup of G consisting
of the fixed points of © and the map K x p — G given by (k,X) — kexp X is a
diffeomorphism. See Theorem 6.31 in [43].
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1.2.2.2 The Iwasawa Decomposition of a Semisimple Lie Algebra

Let g be a semisimple Lie algebra with Cartan involution # and associated Cartan
decomposition g = € + p. Fix a maximal Abelian subspace a of p. Thus, a is a vector
subspace of p such that [a,a] = {0} and is maximal with this property. It is easy to
check that

(adX)* = —ad(6X)

where the adjoint (-)* is taken w.r.t the inner product By, so that the elements of
ad(p) are self-adjoint. This entails that the set {adH : H € a} is a commuting family
of self-adjoint linear maps. Therefore, g is the By-orthogonal direct sum of their joint
eigenspaces, all the eigenvalues of which are real and depend linearly on H. For any
fixed « € a*, we write

go={Heg:(adH)X = a(H)X, for all H € a}

and we say that a # 0 is a restricted root, or simply a root of the pair (g, a), whenever
go # {0}. The set of restricted roots is ¥ and the spaces g, with a € ¥ are called
(restricted) root spaces.

An element H € a is called regularif a(H) # 0 for all « € X3, otherwise it is singular.
The set @’ of regular elements is the complement in a of finitely many hyperplanes and
its connected components are called the Weyl chambers. We fix a Weyl chamber a* < a
and we declare a root « to be positive if it has positive values on a*. A root is simple if
it cannot be written as sum of positive roots. The set A of simple roots turns out to be
a basis of a*. Thus, there are exactly £ = dim a simple roots. This number is of utmost
importance and is called the real rank of g. We order the elments in a*, hence the roots
in X, lexicographically with respect to an ordering d1,...,dy of the simple roots. This
means that A\ = > a;d; is positive (written A > 0) if the first non-zero coefficient ay,
is positive. Together with g, § and a we assume that an ordering “>" has been fixed
on a* by choosing a labeling of the simple roots relative to a fixed Weyl chamber a*.
We consequently denote by X% and ¥~ the positive and negative roots, respectively.
Clearly, ¥ = X1 U X7, a disjoint union.

Theorem 1.29 (Proposition 6.43 in [43]). Let g = €+ p be a Cartan decomposition of
the semisimple Lie algebra g, and fix a maximal Abelian subspace a of p and an ordering
on a*. The vector space direct sum

n= > ga (1.16)

aeXt
is a nilpotent Lie algebra and g decomposes as the vector space direct sum

g=t+a+n (1.17)

Furthermore, a +n is solvable and [a +n,a +n] = n.

The vector space direct sum (1.17) is called the Twasawa decomposition of g relative
to the choice of (0,a,a™). The fact that [a,n] < n is clear from the very definition of
root space, because [a, go] © go. This exhibits a + n as a semidirect product.
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1.2.2.3 The Iwasawa decomposition of a semisimple Lie group
We are finally in a position to state the Iwasawa decomposition at the group level.

Theorem 1.30 (Theorem 6.46 in [43]). Let G be a connceted semisimple Lie group
and let g = €+ a + n be an lwasawa decomposition of its Lie algebra. Let K, A and
N be the connected subgroups of G whose Lie algebras are €, a and n, respectively. The
multiplication map K x Ax N — G given by (k,a,n) — kan is a diffeomorphism. The
groups A and N are simply connected and AN is solvable.

Observe that AN is in fact a semidirect product. Indeed, A acts on N by conju-
gation, as is most rapidly seen by observing that Ada(X) € g, if X € g, for any root
a €Y and for all a € A. Indeed, for any H € a, since a is Abelian, one has

[H,Ada(X)] = Ada ([Ada™ " (H), X]) = Ada ([H, X]) = a(H)Ada(X).

Therefore Ada preserves root spaces and in particular it preserves n. Thus A acts on
n via the adjoint action and, passing to exponentials, it acts on N by conjugation.
This is tantamount to saying that A normalizes N inside G. Hence NA = AN is the
semidirect product N x A.

The interpretation of the above theorem is that any element in G can be written
uniquely as a product g = kan with k€ K, a € A and n € N. These groups are called
Twasawa subgroups of G, as any of their conjugates. The decomposition is normally
expressed in the short form G = KAN. Actually, the result entails three similar
decompositions, that is G = KNA, G = ANK and G = NAK, where it is to be
understood that each element may be written in a unique way as a product of factors
in the three Iwasawa subgroups in any of the indicated orders. The groups K, A and
N are always the same but the factors of each element are not. This means that if
one changes the decomposition, that is, the order, then the single factors of the same
element may (and do) change, see formulee (1.23) in Section 1.2.3. The letters K, A
and N stand for compact, Abelian and nilpotent, respectively.

In the theory of symmetric spaces, two decompositions are more used than the
others, and for these an ad hoc notation is introduced. It is common to write

g=kexpH(g)n (1.18)
and
g =nexpA(g)k, (1.19)

whereby the N and K components appearing in (1.18) and (1.19) are different. Evi-
dently, H(g), A(g) € a but in general H(g) # A(g) (unless g € A).

Let M and M’ denote the centralizer and normalizer of a in K, respectively. This
means that

M:{meK:Adm(H):HforallHea},
M’z{weK:Adw(H)EaforaHHea}.

1

Passing to exponentials, it follows that if m € M, then mam™" = a for all a € A and

if we M’, then waw™' e A for all a € A.
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Definition 1.31. The quotient group W = M’'/M is called the Weyl group of (G, K).

The compact Lie groups M and M’ have the same Lie algebra, namely m, so that

W is in fact a finite group. We observe en passant that the Weyl group W acts on X
by

(w-a)(H) = a(Adw 1 H), Heaq, (1.20)

because for any root vector X € g, and any w € M’
[H, Adw(X)] = Adw ([Adw_l(H),X]) = (w-a)(H)Adw(X).

Hence Adw(X) € gy.q so that the corresponding root space is not zero. Notice that
the right hand side of (1.20) does not change if w is replaced with wm with m € M, so
it is really a definition on W and not just on M’.

Assume now that the data g, 0, a,a’ have been fixed. It is important to recall that
the exponential mapping exp: a — A is a diffeomorphism. This justifies the notation

log a, a€ A,

to mean the only element in a such that exp(loga) = a.

For any « € ¥, the vector space dimension of g, is called the multiplicity of a and
is usually denoted m,. Multiplicities may well vary, depending on the group. The
following element of a* plays a crucial role in the theory:

1
P=5 Z M. (1.21)

aext

Though it might appear somewhat exotic, this linear functional on a naturally appears
in relation with the semidirect product structure of the Iwasawa group AN, which
arises from the fact that A acts on n via the adjoint action and hence by conjugation
on N, this fact is presented in Section 2.2.

1.2.3 An example of semisimple Lie group: SL(d,R)

In this last part we show a canonical example of semisimple Lie group: SL(d,R). In
Chapter 2 we focus on the case d = 2 together with the group SU(1,1), highlighting
their relations with the symmetric spaces of upper half plane and hyperbolic disk,
respectively. We start by analyzing its Lie algebra.

Let d = 2. We denote by gl(d,R) the Lie algebra My(R) and we put

sl(d,R) = {X e gl(d,R): trX = 0}.

The Lie algebra sl(d, R) represents a classical example of semisimple Lie algebra, and
then SL(d,R) of semisimple Lie group.
The Cartan decomposition associated to the standard involution (1.12) reads

sl(d,R) = so(d,R) + Symg(d),

where

s50(d,R) = {X e gl(d,R): X + X* =0}
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is a compact Lie algebra and p = Symg(d) is the space of d x d symmetric and traceless

real matrices. The Cartan involution © for SL(d,R) is then
@g _ tg—l

as for all matrix groups with real entries. Hence K = SO(d). The diffeomorphism
(k,X) — kexp X of SO(d) x Symg(d) — SL(d,R) is just the classical polar decompo-
sition.

Let sl(d, R) = so(d, R) 4+ Symg(d) be the Cartan decomposition of sl(d, R) described
above, with Cartan involution #X = —!X. The natural maximal Abelian subspace of
Symg(d) is the (d — 1)-dimensional vector space consisting of the diagonal matrices
diag(ai,...,aq) with a1 + --- + ag = 0. Thus, the real rank of sl(d,R) is d — 1.
Let E;; denote the matrix whose only non-zero entry is 1 at position ij. Then, for
H = diag(ay,...,aq) and i # j

[H, Eij] = (a; — a;) Ejj

and in fact E;; spans a root space provided that 7 # j. It is customary to introduce
the linear functionals ex(-) on a, with 1 < k < d, via eg(diag(ay,...,aq)) = ag. Thus,
for i # j the (restricted) root cy; = e; — e; acts on H = diag(az,...,aq) by

aij(H) = a; — aj,
and we write in simplified form g;; in place of ga,; for the root space
gij = span{FE;;}, i # J.

For i < j the matrix Ej; is upper triangular, and for ¢ > j it is lower triangular. A
natural choice of Weyl chamber is

at = {diag(al,...,ad) tap > ag > e > ad}.
It is immediate to check that for j = 1,...,d—1 the roots J; = e; —e;41 are the simple
ones and that the set of positive roots is
Y = {ay; i < j} (1.22)

It follows that the nilpotent Iwasawa Lie algebra n defined in (1.16) is just the Lie
algebra of strictly upper triangular matrices. Notice that gy = a, that is, m = {0} and
that dim g, = 1 for every restricted root a € 3.

At the group level, A is the group of diagonal matrices with positive entries and
determinant 1, namely

diag(e®, ..., e%), a; +---+aqg =0,

and N is the group of unipotent upper triangular matrices, namely those of the form

_1 aig ... a1.d
0 1
1 ag-14
0 0o 1 |
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In the special case of SL(2,R), the following explicit formulae may be checked directly
for the Iwasawa K AN- and N AK-decompositions respectively:

{a b] N \/a;+62] [m 0 ] [1 Zé’if;‘é]
- : : 0
¢ d Va2+c? Va2+c? 0 0 1

1 bdtac 1 0 d __c
= { c2+d2] Ve2+d2 Ve +d? \/%2+d2 )
0 1 0 VEFE|| A A

Thus, if g is parametrized as above, then the functions in (1.18) and (1.19) take the
form

(1.23)

1 1
H(g) = 5 log(a® +¢*),  Alg) = 5 log(¢® + d?).

It is very easy to see that any orthogonal matrix w € SO(d) with the property
that each row and each column has exactly one non-zero entry conjugates any diagonal
matrix into another such. All such matrices are therefore in M’ provided that they are
orthogonal, and this forces each non-zero entry to be +1. Further, the only matrices
with determinant 1 that commute with all diagonal matrices with determinant 1 are
precisely the diagonal matrices and these are in SO(d) if and only if they are of the
form diag(e1,...,eq) with e; = +1 and [[,e; = 1. This leads to the identification of
W = M'/M with the set of permutation matrices, that is, with the symmetric group
Y4

As we have seen in (1.22), XF consists of all the linear operators «;; having j > 1.
Since every ga,; is one dimensional, we have that m, = 1 for every o € Y. Hence for
H = diag(ay,...,aq), we have

d
1 1
p(H):§ Z o (H 52 (d+1-=2k)a, = — Zkak,
1<i<j<d k=1
where we used a1 + -+ - + aqg = 0.

Another interesting example is that of SU(1, 1), that is the group

SU(1,1) = {[‘g 2] ca,beR, |a]® —|b* = 1},

whose Lie algebra su(1,1) is
0 t+is
ﬁu(l’l)_{[t—is _w}.ﬁ,t,seR}.
The Cartan involution is the usual one and yields
i 0 0 t+1is
e_{[o _w]eeﬂ%}, p—{L_Z,S ) ]e,t,seR}.

There is an elementary, yet fundamental, isomorphism SU(1,1) ~ SL(2,R), hence
su(1,1) ~ sl(2,R), which we now describe. Consider the matrix

-l
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which is in GL(2, C) but not in SU(1,1), of course. The maps

¥: SU(1,1) — SL(2,R), T(g) = AgA™, (1.24)
¥:su(l,1) — sl(2,R), P(X) =AXA!

are a Lie group and Lie algebra isomorphisms, respectively. It is easy to check that

AR )R R O (R e}

This proves that under ¢ the Cartan decomposition of su(1,1) is mapped onto the
Cartan decomposition of s[(2,R). Furthermore, Iwasawa decomposition of SU(1,1)
can be found from SL(2,R)’s by inverting W.

1.3 The Radon transform

In this section we present the result of which we provide different versions in Chapters 2
and 3: Theorem 1.35. Such result is classically called unitarization theorem for the
Radon transform and has been proved first by Helgason in the setup of the polar
Radon transform.

The first part of this section is devoted to the introduction of the polar Radon
transform, while in the second part a generalization of the Radon transform due to
Helgason [39] is followed by a result due to G. Alberti, F. Bartolucci, F. De Mari,
E. De Vito [1] which represents a first extension of the unitarization theorem. Other
general references are [6] and [2].

1.3.1 The classical Radon transform

Given a function on a space X and a family of subsets of X, the Radon transform
is a function which associates to every subset of the family the integral of the func-
tion restricted to the subset. The Radon transform has been originally introduced by
J. Radon [46] for integrals on lines and planes in the case of functions defined on R?
and R3, respectively. It was later generalized on subspaces of every dimension in R¢,
In the following we are interested in the case of integration on hyperplanes in R? and
then for simplicity we focus our attention on the case of lines in R2. Since the Radon
transform is a function defined on the family of hyperplanes, it is necessary to fix a
parametrization for hyperplanes; there are several choices which give rise to different
definitions of Radon transforms. The most general choice for the parametrization is to
associate to every (n,t) € (R?\{0}) x R the hyperplane

[n;t] = {x e R%: - n = t}.

Under this parametrization, the Radon transform of f € L'(R?) is defined by

Ri(n,t) =

= Tl ey f(z)dm(z)  ae. (n,t)e (RN\{0}) x R,
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where m is the Euclidean measure on the hyperplane [n;t]. Observe that Rf is well
defined for every f e L'(R?). In fact, if n € R?\{0} then Rf(n,t) < +oo for a.e. t € R,
since by Fubini’s theorem

JRd f(z)ldz = JR (Lx-n_t} ’f(x”dm(l’)) dt < 4.

We state a crucial result for the Radon transform which highlights its relation with the
Euclidean Fourier transform.

Proposition 1.32 (Fourier slice theorem, [39]). For any f € L'(R?) we have
I QF)RSf)(n,T)=Ff(rn), n e R\{0}, 7 € R.

Here the Fourier transform on the right hand side is on L!(R?), whereas the one
on the left hand side is one-dimensional and acts on the variabile ¢.

The parametrization we have chosen is clearly not injective, indeed [n;t] = [An; At],
for every A € R\{0}. From the non-injectivity of the parametrization it follows that

Rf(An, At) = |\ 'R f(n,t).

Clearly R f is completely defined by choosing a unique representative for each hyper-
plane.

We focus our attention on a different version of the Radon transform obtained by
choosing a suitable parametrization of the family of hyperplanes of R?. Observe that

{hyperplanes of R%} ~ P41 x R.

The canonical choice is given by parametrizing P! by the two-fold covering of the
unitary sphere S~1 € R%. Define 91 = [0,7]972 x [0,27). For all § € 91 we write
inductively

b= (01,'0), 6,€[0,7], 002

and then we put

n(0) = (cos0y,sin 0,'n(0)),

where n(é) € S92 corresponds to the previous inductive step. We shall use the
parametrization induced by n: ©%~! — §9-1 The Radon transform that we obtain
by adopting this parametrization is the most common realization and is called polar
Radon transform.

Definition 1.33. The polar Radon transform of f € L'(R%) is RP°!f: @4"1 x R — C
defined by

RPAF(0,1) := RF(n(6).1) = f f@)dm(z),  (0.t)e 0 xR
{n(0)-z=t}

For our purposes, it is sufficient to focus our attention on the case d = 2 in which
the polar Radon transform of f € L!(R?) can be written as

RPOLF(O,1) = JR f(tcos® —ysind,tsinf + ycosh)dy, (1.25)
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where, as above, the equality holds for a.e. (6,t) € S! x R. As observed in the d-
dimensional case, S! is a two-fold covering of P? and thus the parametrization is still
non-injective, indeed

RPOUF(,1) = RPOUF(O + m, —t). (1.26)
This new realization of the Radon transform yields a new version of Proposition 1.32.

Proposition 1.34 (Fourier slice theorem 2, Proposition 6 in [6]). Define ¢: [0,27) x
R — R2 by (0, 7) = mn(0). For every f € L'(R?) n L?(R?) there exists a negligible set
E < [0,27) such that for all § ¢ E the function RP°'f(6,-) is in L*(R) and satisfies

RpOlf(ea ) = "r_l[ff © 7/)(‘97 )]

It is not possible to extend directly the Radon transform to an isometry on L?(R?).
A classical result in the theory of Radon transform shows that there exists a pseudo-
differential operator whose precomposition with RP°' extends to a unitary operator
onto the closed subspace of functions

L%([0,27) x R) = {F € L*([0,27) x R): F(0,t) = F(8 + m, —t)}
of L%([0,27) x R) endowed with the measure dfdt/2. Consider the subspace

D — {F e L2([0,27) x R): f 7|(I® F)F(6, 7)[2d6dr < +0}
[0,27) xR

of L2([0,27) x R) and define the operator ZP°': D — L2([0,27) x R) by
(I ® F)(TP'F)(0,1) = |7|2(I® F)F(6,1),

that is a Fourier multiplier with respect to the second coordinate. Since 7 +— |7'|% is
a strictly positive (almost everywhere) Borel function on R, the spectral theorem for
unbounded operators, see Theorem VIIL6 in [47], shows that D is dense and that ZP°!
is a positive self-adjoint injective operator. It is possible to see that the operator ZP°!
acts on the second coordinate as the inverse of the Riesz potential with exponent 1/2
on L%(R). We show that if f € L'(R?) n L2(R?), then RP°'f € L?([0,27) x R), indeed

21
1f RPOLF (0, 1) *d0dt — 1J f (I ® FYRP\£(9, 7) 2drd6
2 Jjo2m)xr 2J)o Jr

_! f \F £ (rn(0))[2d6dr
2 Jjo,2m) xR

1 27 , 1 o 2
< 2J0 J|T|<1 | F f(rn(0))]d7df + 2f0 L|>1 \7[|F f(rn(0))|2drd6

<nlff+ g [ FRQPAE = 2SR + 1715 < e
R2

where we used Plancherel theorem (1.11) and Proposition 1.34. Furthermore it is easy
to see that RP'f € D for every f e L'(R?) n L?(R?) since

f I7]|(I ® F)RPf(0,7)2dodr = f |7||F f(mn(0))|*dodr
[0,2m) xR [0,27) xR

=2|f]3 < +oo.
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Hence we can consider the composite operator
ZPOIRPL: LY(R?) A L2(R?) — L*([0,27) x R).

We are now in a position to state one of the fundamental results in Radon transform
theory, which will be of inspiration for the results in the next section and then in the
following chapters.

Theorem 1.35 (Unitarization of the polar Radon transform, Theorem 4.1 [39]). The
composite operator ZP°'RP°! from L'(R?) n L?(R?) into L?([0,27) x R) extends to a
unique unitary operator

Q: L*(R?) — L2([0,27) x R).

Since the evenness condition (1.26) is a closed condition, the image of the operator
Q can not be the whole L2-space but just the subspace L2([0,27) x R).

1.3.2 Unitarization of the Radon transform between dual pairs

This section is devoted to the generalization of the notion of Radon transform due to
Helgason [39] and to the extension of Theorem 1.35 to this new class of transforms.
This different unitarization of Radon transform is presented in [1] in which, under some
hypothesis on the spaces involved, the authors derive new inversion formulae for the
Radon transform from it. The notion of Radon transform that we present has been
introduced by Helgason in [39] for a large class of pairs of homogeneous spaces of the
same locally compact group. Below we consider the adaptation of this notion to the
cases presented in [1].

Helgason considers two transitive G-spaces of a lcsc group G, X and Z, which
represent the space on which our functions are defined and the parameters of the
family of submanifolds on which we want to integrate, respectively. We denote the two
actions of g € G on X and = by:

r—g[r], £—gf  reX,{eE

In view of the desired intertwining result, we need to introduce the two quasi regular
representations of G which are involved. We suppose that X and = carry relatively
G-invariant measures dx and d¢ with characters « and 3, respectively. The group G
acts unitarly on L?(X,dx) via the quasi regular representation defined by

n(9)f(x) = ale) 2 f(g ' [2]).  ge€G. feLX(X.da),
and on L?(Z,d¢) via the representation # defined by
#9F(©) = Blo) *F(g€).  ge G, FeL’(Edo).

Now we define the Radon transform. Fix two origins xg € X and & € Z. We denote
byK and H the isotropy subgroups of G at zg and &g, respectively, so that

X ~G/K, =~G/H.
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We put
To=K.§ S =, fOZH[:E()]EX.

In order to define the Radon transform we assume that there exists an H-invariant
measure mg on & and a Borel section 0: 2 — G. In such way, we can “transport” the
definition of £y and %o to every £ € = and x € X, respectively, by defining

E=o©] <X, & =s(x)d <

[1]

)

which are closed subsets by Lemma 1.1 in [39).

We assume the transversality condition, that is we ask for the maps £ — é andz — T
to be injective, so that (X, Z) is a dual pair in the sense of Helgason. In addition to the
cases considered in the following, we refer to [39] for numerous examples of dual pairs
(X,E). Example 1.3 shows that the polar Radon transform (together with its dual
transform) can be obtained in this weakened framework starting from the similitude
group of the plane. The last part of this chapter is devoted to a different example in
which another dual pair is presented.

We are now ready to define the Radon transform for a dual pair according to
Helgason [39]. The idea is to use the Borel section o to push-forward the measure myg
from é[) to the manifolds é .

Definition 1.36. The Radon transform of f is the map Rf: 2 — C defined by
RI©) = | f@)ime(o):= | f(o@)[edmofe)
3 o

whenever the integral converges.

It is possible to define the dual Radon transform, or back-projection, of a function
defined on = by considering the integration of the restriction to &, for every x € X. In
the following dual Radon transform does not enter into play, so we refer to [1] and [39]
for a more in-depth analysis on it.

The main result of [1] holds under some assumptions. Before presenting it, we show
as the polar Radon transform satisfies the hypothesis we assumed throughout. First
of all, we recall the main assumptions that we have made until now on the transitive
G-spaces X and Z=:

(A1) thespaces X and E carry relatively G-invariant measures d X and d¢, respectively;

(A2) the H-transitive space fg = H[xo] € X carries a relatively H-invariant measure
mg, with character ~;

(A3) the pair (X, E) is a dual pair in the sense of Helgason, that is the transversality
condition holds.

We present now an example in which assumptions (Al)-(A3) are satisfied and the
Radon transform from Definition 1.36 is the polar Radon transform.
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Example 1.3. We consider the (connected component of the identity of the) similitude
group STM (2) of the plane. That is, STM (2) = R?x K with K = {Rga € GL(2,R): ¢ €
[0,27),a € RT} where
R, [COS(;S —sin d)]
7 |sing cos¢ |

By the identification K ~ [0,27) x R*, we write (b, ¢, a) for the elements in STM(2)
and the group law becomes

(b,p,a)(V',¢',a’") = (b+ Rpal', ¢ + ¢' mod 27, aa’).

Let db, d¢ and da be the left Haar measure on R?, [0,27) and R*, respectively. It is
easy to see that the left Haar measure on STM(2) is

du(b, ¢, a) = a3dbde¢da.
We put X = R? and zg = 0 € R%. The group acts transitively on R? by
(b, ¢,a)[x] = Ryax + b
and R? = X ~ G/K. Furthermore, since for every Borelian set E of R? we have
(b, 6, a)[E]| = [b + Ryak| = | det Ryal | E| = a®|E],
a rglatively G-invariant measure on X is the Lebesgue measure with character a(b, ¢, a) =
’ We need to choose the space = and the corresponding subgroup H < STM (2). We

choose E = [0, 7) x R on which STM (2) acts transitively through the affine action 1.3
on the lines of the plane parametrized by = via (1.25), that is:

(b, ¢, a).(0,t) = (0 + ¢ mod 27, a(t + w(6) - a~ 'R, b)),
where w(f) = (cos ,sinf), or equivalently by (1.2)

(b, ¢,a)".(0,8) = (—a~ 'R, 'b, —¢ mod m,a~").(6,1)
— (0 — ¢ mod w,t”’f)'b).
The isotropy at the point & = (0,0) € Z is
H ={((0,b2),¢,a) € SIM(2): by e R, ¢ € {0,7},a € RT}.

Thus, [0,7) x R ~ STM(2)/H and

f_ F((b,¢,a)™1.(0,t))dAdt = af F(#,t)dodt,  Fe L'(Z,dodt).

The relatively STM (2)-invariant measure on = is then the Lebesgue measure dfdt¢ with
B(b, ,a) = a. This means that (A1) is satisfied.
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It is easy to verify by direct computation that

€0 = H[zo] = {(0,b2) e R?: by e R} ~ R;
To=K.& ={(0,0)€=Z:0€[0,m)} ~[0,7),

and that the Lebesgue measure dby on éo is relatively H-invariant with character
~7((0,b2), ¢,a)) = a, so that (A2) is satisfied.
We define and o: = — SIM(2) by

a(0,t) = (tw(0),0,1),
it is immediate to see that o is a Borel section. Then we can define
0,1) = o(0,1)[éo] = {x e R2: 2 - w(f) = 1,

which is the set of all points laying on the line of equation z - w(#) = ¢, namely the line
that is uniquely parametrized by (6,t) € Z under the parametrization used in (1.25).
In a similar way we find

T =s(x).2o ={(0,t) e Z: t —w(h) - x = 0},

which parametrizes the set of all lines of the plane passing through the point x.

The transversality condition is satisfied since/:c\ — & maps a point in the set of all
lines passing through that point and (0,t) — (6,t) maps a line to the set of points
lying on that line, so that they are both clearly injective. Hence (R?,[0,7) x R) is a
dual pair in the sense of Helgason, as asked in (A3).

Finally we observe that the Radon transform defined as in Definition 1.36 coincides
with the polar Radon transform. Let f: R? — C. The Radon transform of f is the

map Rf: E — C defined by

Rf(6,1): = ; f(a(©)[x])dmo(z)

= f f(tcosO — ysin 6, tsind + ycos0)dy = RPF(0,1).
R

Hence we have shown that the polar Radon transform can be defined by following
the general theory of the Radon transform for dual pairs and belongs to the family of
transforms that are considered in [1]. Observe that, unlike the classical polar Radon
transform presented in Section 1.3.1, the angle 6 belongs to the smaller interval [0, 7).
This may be assumed in order to make the map (6,t) — @ injective. It is clear
that Theorem 1.35 is still valid without the evenness condition (1.26) and removing
the constant 1/2 from the density of the measure. Hence the operator Q maps L?(R?)
onto L2([0,7) x R) = L%(Z).

From now on, we suppose that assumptions (A1)-(A3) are satisfied. We write here
all the other hypothesis we need for the main results:

(A4) there exists a Borel section o: Z — G such that

(9.€) > v(o() ' ga(g™".€))

extends to a positive character of G independent of &;
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(A5) the quasi regular representation 7 of G acting on L?(X,dx) is irreducible and
square integrable;

(A6) the quasi regular representation # of G acting on L?(Z,d€) is irreducible;
(A7) there exists a non-trivial m-invariant subspace A < L?(X, dz) such that

f(o(©[]) € L' (&, mo) for almost all £ € =; (1.27)
Rf = | flo()[z])dmo(x) € L*(Z,dE), forall fe A, (1.28)
o

and the map f — R f is a closable operator from A to L?(Z,d¢).
The next results hold under the hypotheses (A1)-(A7).
Lemma 1.37 (Lemma 3.1 and Lemma 3.5 in [1]). We define the character x by

1 1 _ _
x(9) = Bl9)"Zalg)iv(go(g )™,  geG. (1.29)
The following statements hold true:

(i) the restriction of R to A is a densely defined operator from A into L*(Z,d¢)
satisfying
Rr(g) = x(9)"'#(9)R.  geG;

(ii) the closure R of R is a densely defined operator satisfying
Rn(9) =x(9)"'#(9)R,  geG.

By observing that the previous lemma shows that R is a semi-invariant operator!
with weight given by (1.29), we are in a position to state and prove the main result in
[1]. We stress that its proof does not use the transversality condition on (X, Z), that
is (A3), and the square integrability of 7; the irreducibility of 7 is only needed in the
last claim of the theorem.

Theorem 1.38 (Theorem 3.9, [1]). There exists a unique positive self-adjoint operator

Z: dom(Z) 2 ImR — L*(E, d¢),

semi-invariant with weight ¢ = x~' with the property that the composite operator TR

extends to an isometry Q: L*(X,dx) — L*(Z,d¢€) intertwining m and 7, namely
#(g)Qr(9) ' =Q,  geG.

Furthermore, if 7 is irreducible, then Q is a unitary operator and ™ and 7 are equivalent
representations.

! According to the classical work presented by Duflo and Moore in [21], a densely defined closed
operator 1" from a Hilbert space H1 to another Hilbert space Hs is called semi-invariant with weight
¢ if it satisfies

m(9)Tmi(9)" = C(9)T,  g€G,
where ( is a character of G and 7 and 72 are unitary representations of G acting on Hi and Ha,
respectively.
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The above result represents a generalizations of Theorem 1.35. In the next chapters
we focus on different versions, in the context of spaces in which assumptions (A1)-(A7)
are not satisfied. In particular in Chapters 2-3 we present new versions of Theorem 1.38
in settings in which the representation 7 is not irreducible.

In [1], the authors provide an inversion formula for the Radon transform as direct
consequence of Theorem 1.38 under the assumption that 7 is square integrable.

Theorem 1.39 (Theorem 6, [1]). Let ) € L?(X,dx) be an admissible vector for w such
that Qv € dom(Z) and set ¥ = T Q. Then, for any f € dom(R),

f = j )RS, #(g) Wy (g)dulg), (1.30)

where the integral is weakly convergent, and

1712 = L (@RS, #(0) T 2dp(g).

If, in addition, 1 € dom(R), then ¢ = I>Ra).

Example 1.3 (continued). We continue Example 1.3. We have already proved that the
setting of the polar Radon transform satisfies (A1)-(A3). We next show that (A4)-(A7)
are satisfied.

By a simple calculation, we can see that

Ao (8, )(b, 6. a)o (b, 6.a) (0.1)) =, (6,8) €, (b,6,a) € SIM(2),

and this means that « can be extended to a positive character of G which does not
depend on (0,t), as required in (A4).
The group SIM (2) acts on L?(R?) by means of the representation 7 defined by

(b, ¢, a) f(x) = a~2 f(a” 5 (=) (1.31)

The representation 7 is unitary and irreducible, as it can be seen by passing through
the equivalent definition in frequency domain

Flm(b, ¢,a)f](w) = aef2mb'w.7:f(aR;1w), w e R?, (1.32)

together with Lemma 1.8 and Plancherel formula (1.11), as we do for the (full) “ax +b"-
representation in Section 1.1.2. It is also known [3] that 7 is square integrable and thus
satisfies (AB).

Furthermore, STM(2) acts on L?([0,7) x R) via the unitary quasi regular repre-
sentation 7 defined by

t—w(f)-b
#(b,6,a)F(0,t) = a2 F (9 — ¢ mod T, w;)) : (1.33)
which is irreducible, as we want in (A6).

It remains to prove that (A7) is satisfied, that is the existence of a non-trivial -
invariant subspace A < L?(R?) such that (1.27) and (1.28) holds and f +— Rf is a
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closable operator from A to L?(Z,d¢). Observe that for f € L'(R?) by Theorem 1.34
we have

| mesepasar= [ @@ F)R)E.7) P
[0,7) xR

[0,m)xR
= f | F f(rw(9))>dodr
[0,7) xR

:f | Ff(&1, &)
R2 /€] + &5

d&idés.
We are thus led to consider

Apol _ {f c LI(RZ) A L2(R2): J Md€1d§2 < —i—OO},

B /G +E
which is m-invariant by (1.32) and by definition RP°'f € L2([0,7) x R) for every f €
APl Furthermore, we refer to Example 1 in [1] to show that RP restricted to AP
is closable.

Hence, we have that the pair (R?, [0, 7) x R) satisfies assumpitons (A1)-(A7). By
applying Lemma 1.37 to RP°' we have that RP°! is a semi-invariant operator from AP°!
to L%([0,7) x R) with weight x(b,¢,a) = a~"/2. From Theorem 1.38 there exists a
positive self-adjoint operator Z: dom(Z) 2 Im(RP°) — L2([0,7) x R), semi-invariant
with weight x(g)~" = a2, such that ZRP°! extends to a unitary operator Q: L?(R?) —
L?([0,7) x R) intertwining the representations 7 and # defined in (1.31) and (1.33),
respectively. Hence

IRPOlf _ Qf, f c ApOI’
Q*Qf = f7 f € LQ(RQ)a
QQ*F = F, Fe L*([0,m) x R),

m(9)Qn(9)™' =Q,  geSIM(2).

It follows from Theorem 1.35 that the operator Z we are looking for is strictly
related to ZP°. 1In fact, the only variation is that in the domain D we substitute
the evenness condition (1.26) for functions defined on [0,27) x R by considering only
functions defined on [0,7) x R. As a consequence of such choice, we have that the
extension Q is such that Im(Q) = L?([0,7) x R).

It is known that 7 is square integrable and the corresponding voice transform gives
rise to 2D-directional wavelets [4]. An admissible vector is a function 1 € L?(R?)
satisfying the following admissibility condition

J | Fy(€1, &)
Rz &2 +&3

Fix an admissible vector ¢ € L?(R?) and put ¥ = ZQw. Given f € AP°! define
G(b,¢,a) = a%<7€p°1f,fr(b, ¢,a)®), then (1.30) reads

d§1dée = 1.

_1x—b

da
= b, @, R dbdo—.
f(@) JRQX([O,QW)XRH G.9,0)9 ( ¢ a ) ¢a5
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1.3.2.1 Radon Transform for Hyperbolic Motions

In the following we present another example. In fact we show that the general previous
results may be applied to the Radon transform associated to the group of hyperbolic
motions of the plane. The results we present are collected in [9].

We consider the semidirect product G = R? x K, with

K = {aA;Q. € GL(2,R) : a € R*, se R, e € {—1,1}}

A= {coshs smhs] , Q- [0 1] 7

where

sinhs coshs 1 0

and € is the identity matrix. We denote by Cs the multiplicative group {—1,1}. Under
the identification K ~ R x R* x Cq, we write (b, s, a, €) for elements in G, so that the
group law becomes

(b, s,a,€)(t,s",da,€) = (b+ aAsQeb, s+ s, ade).

A left Haar measure of G is du(b, s, a,€) = |a| >dbdsdade, where db, ds and da are the
Lebesgue measures on R?, R and R*, respectively and de is the counting measure on
Cs.

The group G acts transitively on X = R? by the canonical action

(b, s,a,€)[x] =b+ aAsQecx, (b,s,a,¢) G, xeX.

The isotropy at the origin zp = 0 is the closed subgroup {(0,k) : k € K} ~ K, so
that X ~ G/K and the Lebesgue measure dx on X is relatively G-invariant with
positive character a(b, s,a,€) = |al?. It is possible to parametrize lines in the plane,
except those with slope -1 or 1, by the space of parameters = = Cy x R x R. In
fact, considering a triple (n,u,t) € Z, the vector u parametrizes the slope, whereas the
choice n = 1 (n = —1) corresponds to slope > 1 (< 1) and fixes the z—axis (y-axis) as
reference line; finally, ¢ parametrizes the intersection of the line with the reference axis.
We refer to Figure 1.1 for a graphic realization of the parametrization. The group G
is a subgroup of affine transformations of the plane and thus maps lines into lines. Its
action on this set of lines is given by

t— Quw(u) - b>7

(b7 s, a, 6)_1'(7%“31:) :<677a U+ s,
a

where w(u) = *(coshwu,sinhu), and is easily seen to be transitive. The isotropy at
& = (1,0,0) is

H ={((0,b2),0,a,1) : ba € R,a € R*}.
Thus, 2 ~ G/H. An immediate calculation gives that the measure d¢ = dndudt, where
du and dt are the Lebesgue measures on R and d is the counting measure on Co, is a

G-relatively invariant measure on = with positive character §(b, s, a, €) = |al.
Consider now the Borel section o: Z — G defined by

o(n,u,t) = (tQuw(—u), —u,1,n).
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Figure 1.1: The parametrization of all the lines in R? having slope different from 1
or -1 under Z. In particular, the two lines which are represented are parameteized by
(1,u,t) and (—1,u,t) for u,t > 0.

By direct computation
o = H[zo] = {(0,b2) : by e R} ~ R.

It is immediate to see that the Lebesgue measure dbs on éo is relatively H-invariant
with character v((0,b2),0,a,1) = |a| and that y(o(n,u,t)) = 1 for all (n,u,t) € Z, so
that (g,&) — ’y(a(f)_lga(g_l. f)) extends to a positive character of G independent of
&, as required in (A4). Further, we have that

(must) = o(n,u, t)[é] = {w € B2 : - Quu(u) = t},

which is the set of all points laying on the line of equation z - Q,w(u) = t. Therefore,

the submanifolds over which we integrate functions are lines in R?, except those/w\ith

slope -1 or 1, and are parametrized by = through the injective map (1, u,t) — (1, u,t).
The group G acts on L?(X) by means of the unitary representation 7 defined by

(b, s,a,€)f(z) = la| 7" fla™' QT AT (& — b)).

The dual action R? x K 3 (n,k) — kn has a single open orbit O = {(z,y) € R? :
lz| # |y} for {(1,0) € R? of full measure and the stabilizer K = {(0,1,1)} is
compact. Then, by a result due to Fiihr in [26], the representation 7 is square integrable.
Furthermore, G acts on L?(Z, d¢) by means of the quasi regular representation 7 defined
by

t—Quuw(u)-b

(b, 5,a,€)E(r,u, ) = ||} F <en,u ML

> , FelL?*zde).
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By Mackey imprimitivity theorem [24], one can show that also 7 is irreducible. The
proof, although not trivial, is based on classical arguments and we omit it. Hence
assumptions (A1)-(A6) are satisfied.

By Definition 1.36 we compute the Radon transform between the homogeneous
spaces X and = and we obtain

RIP f(1,u, 1) = f (At )y, (1.34)
R

which maps any (7, u,t) € E in the integral of f over the line parametrized by (n,u,t)

through the map (1, u,t) — (n,u,t), i.e. the line of equation x - Q,w(u) = t. Observe
that, by Fubini’s theorem, the integral (1.34) converges for any f € L'(R?). Then, we

define FH )2
Ff(&, &
AWP — (f e LNR?) A L3(R?) : f TR T IL
B2 4/[€F = &

which is 7-invariant and is such that R'P f € L2(Z, d¢) for all f € AMP. Furthermore,
it is possible to show that R™P, regarded as operator from AMP to L2(Z,d¢), is
closable. In order to determine the subspace A™P and to prove that RMWP: AWP _,
L?(Z,d¢) is closable, we adapt Theorem 1.32 to our context, precisely

d&1dés < -I-OO},

(I®f)Rhypf(nau7T) = Ff(T QTﬂ”(“))a

for every f € LY(R?) and (n,u,7) € =, where I is the identity operator on L?(Cy x
R, dndu).

It is worth observing that when we fix n =1 (n = —1) in (1.34) we are restricting
the integration of f over all lines with slope > 1 (< 1). Then, for n = 1 and n = —1 we
have the limited angle horizontal and vertical Radon transforms, respectively. We will
see in the following how these two different contributions enter in the inversion formula
(1.30) when we reconstruct an unknown function from its Radon transform.

Applying Lemma 1.37, RMP: AWP — [2(Z, d€) is a densely defined operator which
intertwines the representations 7 and 7 up to the positive character x(b,s,a,¢e) =
la|=Y/2, namely

#(b, s,a, ) R¥Pr(b, s,a,e) ™" = |a| V2ZRWP,

for all (b, s,a,€) € G.
The composition of R™P with a positive selfadjoint operator ZMP satisfying

#(b, s,a, ) IVP (b, s,a,¢)”" = |a|/2Lh¥P

can be extended to a unitary operator Q: L?(R?) — L?(Z,d¢) intertwining the irre-
ducible representations 7w and 7.

We can provide an explicit formula for Z™P. We consider the subspace D of
L?(Z,d¢) of the functions F such that

7||(I ® F)F(n,u,)|* dudr < +00, =—1,1,
. R\ [I( U "
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and we define the operator J on D by
(I ®F)TF(n,u,7) = [r|*(I® F)F(n.u,7).

a Fourier multiplier with respect to the last variable. A direct calculation shows that
J is a densely defined positive selfadjoint operator with the property

#(b, s, a,€) T (b, s,a,¢) " = |a]/2T.

By [21, Theorem 1], there exists ¢ > 0 such that Z"P = ¢J and we show that ¢ = 1.
It is possible to prove that the admissible vectors for 7 are the functions ¢ € L?(R?)
satisfying
[ Fp (&, &)
= dédEy = 1. 1.35
Jo e )
The voice transform is then (Vyf)(g) = (fn(g9)¥), and is a multiple of an isometry
from L?(R?) into L?(G,du) provided that v satisfies the admissible condition (1.35).
If Q1p € dom Z™P, by equation (1.30), we have that

Vel = [ R u 0%+ 5, wlu) - by dudt

RxR a ’a‘ (1 36)

t—Q_ - b dudt
+ Rhypf(—l,u,t)\lf(—e,u—l—s, 1w(w) ) Y

RxR a |al

for any f € A, where U = Z"™PQu). Note that the coefficients depend on f only
through its Radon transform and do not involve the operator ZMP as applied to the
function. Hence, the inversion formula for the voice transform in Theorem 1.39 allows
to reconstruct an unknown function f € AP from its Radon transform by computing
the coefficients (Vy f)(b, s, a,€) by means of (1.36). It is worth observing that the
different contributions in (1.36) with n = 1 and n = —1 reconstruct the frequency
projections of f onto the horizontal cone {(£1,&) € R? @ |&/6| < 1} and onto the
vertical cone {(£1, &) € R? 1 |€1 /€| < 1}, respectively. Moreover, we choose W(n, u,t) =
Uy, (u)Wy(t) such that ¥y, Wy, and Wy _; are 1D-wavelets, that is admissible vectors
for the square integrable representation of the affine group. We recall that the previous
condition is equivalent to satisfy the Calederon condition (1.8). Then we obtain a
formula for the voice transform which involves only integral transforms applied to
the Radon transform of the function, precisely a 1D-wavelet transform introduced in
Example 1.1, followed by a convolution and it reads

= X W [1 W (R (o, ,)) (0, () -8)| (1, 9)

+/lal n=—1,1

By substituting the value of the voice transform in (1.30), we obtain an the desired

(wa)(b, S, a, 6) =

inversion formula.



Chapter 2

Radon transform on symmetric
spaces

In this chapter we present the first extension to a different setting of Theorem 1.38: the
hyperbolic disk and, more in general, every (noncompact) symmetric space. The idea to
study these cases comes from the fact that a symmetric space, together with the family
of horocycles, represents a canonical example of dual pair in the sense of Helgason.
Roughly speaking, a symmetric space of the noncompact type is a homogeneous spaces
G/K where G is a connected semisimple Lie group G with finite center, and K is a
maximal compact subgroup of G. Horocycles = are a family of subsets of X which play
the role of hyperplanes in the Euclidean space. It is possible to see that = ~ G/H is a
homogeneous space for some H < G.

Figure 2.1: The hyperbolic disk is the complex open unit disk endowed with a Rie-
mannian structure for which geodesics are diameters and portions of Euclidean circles
orthogonal to the boundary. The red curves in the figure are part of the same bundle
of parallel geodesics. The green circles are in the family of horocycles orthogonal to
the given bundle.

The horocyclic Radon transform on symmetric spaces is considered by Helgason in
several papers [33], [34], [36], [37]. His setting, however, does not fit all the assumptions

45



46 CHAPTER 2. RADON TRANSFORM ON SYMMETRIC SPACES

(A1)-(AT) of the previous chapter. Indeed the quasi regular representation 7 of G on
L?(X) is not irreducible. For this reason, it is not possible to repeat the proof of
Theorem 1.38 that makes use of the generalization of Schur’s lemma due to Duflo and
Moore, which requires the irriducibility of 7, see [1] and [21]. We adopt a combination
of the approach followed by Helgason in the context of symmetric spaces [37] and the
techniques that have been developed in [6], in which the unitarization of the affine and
polar Radon tranforms is proved without making use of the irriducibility of .

We are well aware that the unitarization problem was already considered and essen-
tially solved by Helgason in [37]. Precisely, he constructs a pseudo-differential operator
A and he proves that the pre-composition with the horocyclic Radon transform yields
an isometric operator, see Theorem 3.9 in Chap. ITin [37]. Here, we prove that the com-
position AR can actually be extended to a unitary operator Q: L?(X,dz) — LE (2,de),
where dx and d§ are the G-invariant measures and where LE(E, d¢) is a closed subspace
of L?(Z,d¢) which accounts for the Weyl symmetries. Furthermore, we show that Q
intertwines the quasi regular representations 7 and 7.

Classically, a horocycle is parametrized by an element of the boundary K /M and an
element of the Abelian subgroup A. Such parametrization is actually made w.r.t. the
origin of the symmetric space. Part of our contribution is to introduce a different
parametrization w.r.t. each reference point z € X, namely

U,: K/M x A—E: (kM,a) — ky(k)aN[z],

see (2.10) for details. The first consequences are a different expression of the range of the
Helgason-Fourier transform (Theorem 2.17), the definition of L?(Z) and the inclusion
in it of the range of the horocyclic Radon transform (Corollary 2.25). We introduce a
Fourier multiplier 7, on the functions defined on K /M x A. The operator A is obtained
by “transporting” J, on the functions defined on = via ¥,. Namely, A = \I!j;*ljolll;’j,
where ¥¥ is the pull-back of ¥,. The key which permits us to prove the surjectivity of
Q is Proposition 2.24 which gives us a relation between the symmetries satisfied by the
Radon transform and by the Helgason-Fourier transform of a function. In this way, we
can use an adaptation of Helgason-Fourier unitary extension theorem (Theorem 2.17)
to prove the surjectivity of @. The symmetries that play a crucial role in the description
of the two ranges are expressed w.r.t. every reference point. For this reason, we need
to stress the dependence of every notion from the reference point and to keep track of
it. Although Figure 2.5 contains a complete map of the operators that come into play,
Figures 2.3 and 2.4 may be more understandable at first glance.

This chapter solves the problem in the context of the horocyclic Radon transform on
symmetric spaces. Two naturally related problems are the horocyclic Radon transform
on homogeneous trees, addressed and solved in Chapter 3, and the geodesic Radon
transform. The latter is commonly called X-ray transform and has been introduced
and inverted by Helgason on the hyperbolic space H?, see Theorem 3.12 in Chap.I
in [37], and on symmetric spaces of the noncompact type by Rouviére [48]|. Although
it is not in general true that a horocycle has codimension one in the symmetric space,
the horocyclic Radon transform can be seen as the analog of the Euclidean Radon
transform on hyperplanes in R?, whereas the X-ray transform is the analog of the
Radon on lines in RY.
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The chapter is divided as follows. In the first section, we recall basic notions on
symmetric spaces and we focus on these of the noncompact type. For these, the notion
of boundary and horocycle is presented. In Section 2.2, we endow the manifolds we
are interested in with measures and we introduce the Helgason-Fourier transform. The
Radon transform is presented in the last section together with its unitarization.

2.1 Symmetric spaces

In this section we introduce the notion of symmetric space and, focusing on a specific
class of symmetric spaces, we analyze the boundary and the family of horocycles, which
can be though of as the analog of hyperplanes. A general reference for the whole section
is [8] of which this represents a synthesis.

The first part of the section makes use of terminology of Sections 1.1 and 1.2. After a
formal definition, we analyze the classification of symmetric spaces which divides them
in three categories: of the Euclidean, compact and noncompact type. We are interested
in the last type. The classical setup for a symmetric space is a G-transitive space where
K is the isotropy subgroup of G at a fixed reference point 0o € X. In this sense, fixing
a maximal compact subgroup K corresponds to fixing a reference point in X. The
natural reference for the material in this section is the celebrated monography [35] by
Helgason, of which this is a synthesis. Other sources are for example [41], [53].

A prototypical example of noncompact symmetric space is the hyperbolic disk, it
will be a reference for the whole chapter and, when it is possible, we use it to give
a concrete idea of our theoretical approach. In Section 2.1.2 we present the notion of
boundary of a noncompact symmetric space. In Section 2.1.3 we illustrate a very useful
fact: the independence of every notion from the reference point we choose by fixing K.
In fact, by considering a different reference point x € X and then a different maximal
compact subgroup K, we have a new Iwasawa decomposition of G which conserves the
factors A and N, namely G factorizes in K, A, and N as in Theorem 1.30. This fact
leads to express every notion w.r.t. each reference point. In the following this helps
keep track of all the symmetries of the Helgason-Fourier and Radon transforms.

Finally, last part of the section is devoted to the family of horocycles. Horocycles
are the natural counterpart of Euclidean hyperplanes in symmetric spaces, since they
are sets of points orthogonal to a bundle of parallel geodesics. We see that, classically,
a horocycle is parametrized by an element of the boundary and an element of A. By
changing the reference point, it is possible to find several parametrizations through the
same sets of parameters. The freedom to pass from a parametrization to an other plays
a crucial role in the following.

In the whole chapter, we often consider different homogeneous spaces of the same
group GG. For clarity, we shall thus adopt notational variations to distinguish among
different actions, such as g[z] or g.x or g -z or g{x) and so forth.

2.1.1 Types of symmetric spaces

We start by recalling very basic facts and notions on symmetric spaces. We introduce
the definition of (Riemannian globally) symmetric space, followed by a list of examples.
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We focus on the classical (noncompact) example of the hyperbolic disk, for which we
describe the details. Other examples are presented in a more complete version in [8].

We present a classification of symmetric spaces which is based on properties of (the
Lie algebra of) its group of isometries and reflects the curvature of the space. It consists
in: Euclidean, compact and noncompact. In the rest of the chapter we focus only on
those of the noncompact case.

Definition 2.1. The Riemannian manifold M is a Riemannian globally symmetric
space if each p € M is an isolated fixed point of an isometry o, of M that is involutive

(o7 =id).

Symmetric spaces are homogeneous spaces. Let M be a Riemannian globally sym-
metric space. We denote I(M) the group of isometries of M; I(M) endowed with the
compact-open topology! is a Lie group. Furthermore, if G = Iy(M) is the connected
component of the identity of I(M) and pg € M, then the isotropy subgroup K of G
at po is compact and M ~ G/K.

Example 2.1 (The unit disk). The unit disk is a canonical example which deserves
a deeper analysis. It could be useful to keep in mind this example in order to have a
concrete counterpart of all the theoretical structure we develop.

By hyperbolic disk, or unit disk, we mean the manifold D = {z € C : |z] < 1}
endowed with the Riemannian metric given by the inner product

_ (u,v)
v = Ty

where u, v € T, (M) are tangent vectors at z € M.
The group G = SU(1,1) acts on M by means of the Mdbius action, namely

a b az +b
g[z]z{c d][z]:czﬂl’ ge G, zeD.

The Iwasawa subgroups obtained from the Iwasawa decomposition of SL(2,R) under
the Lie group isomorphism introduced in (1.24) are explicitly given by

e? 0 cosht sinht
K = {ko = [0 ew] coefo,2m},  A={a- [Smht Cosht} teRj(21)
N { (1 +is  —is - ]R}
T s 1—ds| PR

The action of G on D is transitive since for every z € D it is sufficient to consider the

matrix
1 1 =z
= —|_ e SU(1,1
5= |4 3] esua
which maps o in z via the Mo6bius action. Of course the isotropy of G at 0 € M is
K and M ~ G/K. The group SU(1,1) actually is the connected component of the

'The compact-open topology on I(M) is the smallest topology in which all the sets
{ge I(M):¢g(C) c U} are open, where C varies in the compacta of M and U in the open sets.
Its structure is not important for us.



2.1. SYMMETRIC SPACES 49

identity of I(ID). There are other isometries which do not arise from SU(1,1), as for
example g¢g~! where g € SU(1,1) and ¢(z) = Z.
As for the isometric involutions, consider first the Mobius action induced by

i 0
=0 )

which is the map z — —z. This fixes only o and is thus a global involution of which o
is an isolated fixed point. A global involution fixing only the point zg € D is given by
the Mébius action of the SU(1,1) element g.,Jg..!, where gz, is defined by (??). The
isometric property of such maps follows from the fact that Mobius actions of elements
of G are conformal maps and z — Z is an isometry, too.

Example 2.2. Below is a list of classical examples (see [8] for further examples):
e the Euclidean space R";
e the Euclidean sphere S~ ! < R";

e the upper half plane in C, that is Hy = {x + iy: y > 0}. This manifold has
a structure similar to the hyperbolic disk. It is in fact another model of the
2-dimensional hyperbolic space. The relation is given by the fact that H, ~
SL(2,R)/SO(2) and by the Lie group isomorphism (1.24) between SL(2,R) and
SU(1,1).

e the space of positive definite symmetric d-dimensional matrices SP(d, R), which
is a generalization of the upper half plane in higher dimension. Indeed, it is a
homogeneous space of SL(d, R). It is important to observe that for a general d > 2
there are no isometries between H? = SO(d, 1)/SO(d) and SP(d, R), because the
former has constant curvature while the latter has not. Thus, this cannot be
interpreted as a generalization of the hyperbolic disk.

A crucial point in the theory of symmetric spaces is the following. Let M be a
symmetric space, g be the Lie algebra of (M) and s = do,, then by Theorem 3.3,
Chap. IV [35]:

(i) gis a real Lie algebra;
(ii) s is an involutive automorphism of g;
(iii) the fixed points ¢ of s form a Lie algebra compactly contained in g,

where (iii) holds because K is compact (see Section 1.2.1.1 for the definition of compact
containment of a Lie algebra). A pair (g, s) satisfying (i), (ii), and (iii) above is called
an orthogonal symmetric Lie algebra. Denote 3 by the center of g, if in addition (g, s)
is such that

(iv) £n3 = {0},

then (g, s) is called effective. Fix such a pair and consider the decomposition g = u+ e
into the +1 and —1 eigenspaces with respect to s. Motivated by the important decom-
position result stated below in Theorem 2.2, one introduces the following terminology:
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(a) if g is compact and semisimple, then (g, s) is said to be of the compact type;

(b) if g is noncompact and semisimple and if g = u + ¢ is a Cartan decomposition,
then (g, s) is said to be of the noncompact type;

(c) if e is an Abelian ideal in g, then (g, s) is said to be of the Fuclidean type.

Theorem 2.2 (Theorem 1.1, Chap. V, [35]). Suppose that (g, s) is an effective orthog-
onal symmetric Lie algebra. Then there exist ideals go, g— and g+ such that

(1) 8 =90+ 9— + g+, a Lie algebra direct sum;

(ii) 9o, 9— and g+ are invariant under s and orthogonal with respect to the Killing
form;

(i1i) the pairs (go,s0), (g9+,s+) and (g—,s—) are effective orthogonal symmetric Lie
algebras of the Euclidean, compact and noncompact type, respectively.

The involutions sp, sy and s_ are those that arise by restricting s to the corre-
sponding ideals. The above result is of course of central importance because it allows
to study separately the various cases. Clearly, the decomposition yields a corresponding
decomposition of a symmetric space based on topological properties of (the connected
component of) its isometries Lie group and on algebraic properties of the respective
Lie algebra. The previous decomposition induces the notions of symmetric space of
Euclidean, compact and noncompact types. The Euclidean space, the sphere and the
unit disk are the prototypical examples of such spaces. There is a remarkable duality
between compact and noncompact types in which we are not interested. We content
ourselves with mentioning that the compact types have positive sectional curvature
and the noncompact ones have negative sectional curvature.

Since we are only interested in noncompact globlally symmetric spaces, we focus on
the corresponding structural assumptions. To this end, we need yet another piece of
terminology and we also slightly change the current notation to tune into the noncom-
pact case. Any pair (G, K) where G is a connected Lie group with Lie algebra g and
where K is a Lie subgroup of G with Lie algebra £ is said to be associated to the (ef-
fective) orthogonal symmetric Lie algebra (g, 6), and will be called of the noncompact
type if such is (g,6). Thus, from now on we fix an effective orthogonal symmetric Lie
algebra (g,0) of the noncompact type, so that the eigenspace decomposition relative
to 6, namely g = £ + p, is a Cartan decomposition. The next result is a cornerstone in
the theory.

Theorem 2.3 (Theorem 1.1, Chap. VI, |35]). With the notation above, suppose that
(G, K) is any pair associated with the effective orthogonal symmetric Lie algebra of the
noncompact type (g,0). Then:

(i) K is connected, closed and contains the center Z of G. Moreover, K is compact
if and only if Z is finite. In this case, K is a maximal compact subgroup of G;
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(i1) there exists an involutive analytic automorphism © of G whose fized point set is K
and whose differential at the identity e € G is 0; the pair (G, K) is a Riemannian
symmetric pair® and thus G/K is a globally symmetric space;

(iii) the mapping ¢: (X, k) — (exp X)k is a diffeomorphism of p x K onto G and the
mapping Exp is a diffeomorphism® of p onto the globally symmetric space G/K.

Assumption. From now on, let G be a connected semisimple Lie group with
finite center and X = G/K the associated symmetric space of the noncompact type,
where K is a maximal compact subgroup of G. We also fix an Iwasawa decomposition

G = KAN and we denote by M the centralizer of A in K.

Such Assumption is satisfied by the hyperbolic disk D we have seen in Example 2.1
because SU(1, 1) is semisimple and noncompact.

2.1.2 Boundary of a symmetric space

We recall again that our basic example of noncompact symmetric space is the unit
disk D, which has a rather obvious (topological) boundary, namely the unit circle
St = {2z € C: |z|] = 1}. The notion of boundary of a symmetric space is highly non-
trivial. For a deep study on the matter, we refer to the classical paper of Furstenberg
[27] in which a detailed motivation of Definition 2.4 below may be found. For our
purposes, some heuristics and some basic observations will suffice.

Notice first that D and S! are orbits of the Mobius action of G = SU(1,1) on C.
We already know that D is an orbit. Further, AN fixes 1 (easy to check) and K moves
it along the unit circle, via

ei0/2 0 :
kgjp 1 = [ 0 e—w/?] 1=, (2.2)

so that the G-orbit of 1is S*. The formula (2.2) shows also that the elements kj /2 When
0 is any multiple of 27 fix 1. These are +1, namely the elements of M, the centralizer
of A in K. Therefore, the stabilizer of 1 is the group P = M AN and S' ~ G/P. By
means of the Iwasawa decomposition we may write

S~ KAN/MAN

and the natural question arises whether this is the same as K /M or not. In the case at
hand this is quite clearly so because K acts transitively with isotropy M. This actually
holds more generally in the sense that

G/P = KAN/MAN ~ K/M.

2The pair (G, H), with H closed subgroup of the connected Lie group G, is called a symmetric pair
if there exists an involutive analytic automorphism o of G such that (Fix(c))o € H < Fix(o), where
Fix(o) is the set of elements fixed by o. If in addition the group Adg(H) is compact, then (G, H) is
called a Riemannian symmetric pair, see [35]. Proposition 3.4, Chap. IV in [35] states that then G/K
is a globally symmetric space.

3The exponential mapping Exp, quoted for completeness, is just the Riemannian exponential map-
ping (see for instance [35]) and will play no explicit role in what follows.
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Indeed, K acts on the coset space G/P in the natural fashion k - gP = (kg)P and by
the Iwasawa decomposition k € P = M AN if and only if £ € M. Hence the isotropy
at the coset {P} is M. Further, again by the Iwasawa decomposition, the action is
transitive, and we conclude that G/P ~ K/M. The reverse point of view (that of G
acting on K /M with isotropy P) will be illustrated below in (2.7), where the explicit
action of G on K /M is given.

Definition 2.4. The boundary of X is the coset space B := K /M.

We remark here en passant that M, which will play an important role below, nor-
malizes N, that is
mNm™t=N,  meM. (2.3)

To see this, look at the Lie algebra level. If « is a positive root and X € g, then for
every H € a it is

[H,AdmX] = Adm[Adm ™ *H, X]| = Adm[H, X]| = a(H)AdmX,

so that Adm(ga) < ga-
An other normalization property that involves N is that for any @ € A and any
v € N it holds
avaN = aNav. (2.4)

This, in turn, follows from choosing ¢/ € N such that v’a = av, which gives

— — — /
avaN = aaa 'vaN = aaNa 'a = aaNa 'a = aNa = aNvVa = aNav.

2.1.3 Changing the reference point

In what follows, it will be useful to change the reference point of both the symmetric
space X and its boundary. Although conceptually very well known and somehow
trivial, the actual explicit determination of what happens when doing so is not to be
found in the literature, to the best of our knowledge. In order to see how the various
decompositions are affected by changing the origin of our spaces, it is convenient to
introduce Borel sections and occasionaly adopt a slightly different notation for the
(various) G-actions.
The action of G on X = G/K will be written g[z], namely

glz] = g[hK] = ghK.

For any fixed 29 € X = G/K, we denote by sz,: X — G the Borel section relative to
xg. Such Borel section always exists since G is second countable, see Section 1.1.4.
We next show how, in the present context, a Borel section associated to o = eK €
G/K can be determined quite explicitly. Since K is the isotropy subgroup of G at o, the
map [: gK — g[o] is a diffeomorphism of G/K onto X. Furthermore, by the Iwasawa
decomposition of G (Theorem 1.30), each element of g € G can be written as the product
g = nak for exactly one triple (n,a, k) € N x Ax K, and the correspondence (n, a, k) <
nak is a diffeomorphism with G. Hence each class in G/K has a representative of the
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form naK with unique a € A and n € N, so that the mapping ¢: G/K — N A given by
naK — na is a diffeomorphism. It follows that the measurable, actually smooth, map

YpoB 1 X — NA

is a Borel section. Indeed, ¢ o 371(0) = ¥(K) = e and, by construction, for every
r € X, it holds ¢o 37! (z)[0] = 2 . From now on, we will denote by s, the Borel section
o 1 with image NA < G.

Fix now x € X and let K, be the isotropy of G at z € X. Evidently,

Ky = so(x)Kso(x) L.
It is then possible to write an Iwasawa decomposition w.r.t. the subgroup K. In fact,
G = 55(x)Gso(x) ™1 = 5,(2) KANs,(2) ™! = s,(2) Kso(x) *AN = K, AN,

because, as observed earlier, s,(x) € AN. By using the same approach, one obtains the
various versions of the Iwasawa decomposition where the factors appear in a different
order. It is worth observing that the subgroups 4 and N are independent of the maxi-
mal compact subgroup K, but the individual factors appearing in the decomposition of
a fixed element g € G are not. Given g € G, we extend the notation introduced in (1.18)
and (1.19) by denoting with H,(g), Az(g) the elements of a uniquely determined by

g € K:I? eXp H.l‘(g)N7 g € NeXpAl‘(g)K.Tv (25)

and furthermore we denote by k;(g) the unique element in K, such that g € k,(g)AN.
Clearly,

Ax(g7") = —Hz(g). (2.6)

Once the point & € X has been fixed, a Borel section s, : X — G can also be fixed,
so that for every y € X, s,(y)[z] = y and s,(x) = e. As before, it may be arranged
that s;(y) € NA = AN. Also, we denote by M, the centralizer of A in K, so that
M, = so(x)Ms,(x)~L. The following technical observation will be useful below.

Lemma 2.5. For any x, y € X we have

Ky O Kg|p = 1df,-

[k,
In particular, if kg = Ky (ky) for some ky € K, then ky = ky(kz).

Proof. Let k, € K,. Then according to the Iwasawa decomposition K, AN it is k, =
kg (ky)an, that is kg (ky) = ky(an)™! € K,AN. So that r, (ks (ky)) is precisely ky, as
desired. O

The action of G on the boundary B = K/M is induced by the decomposition
G/P = KAN/MAN in the sense that if g € G and kM € B then

g{kM) := k,(gk)M. (2.7)
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Consider now the action of K,. From the definition (2.7) and by Lemma 2.5, with
y = o, for any k € K it is

k()M = Kok (k)M = kM.

Thus the action of K, on the boundary is transitive. Next, observe that an element
kr = so(2)kso(x) ™! stabilizes M € K/M if and only if k,(so(x)ks,(z)~1) € M, which
means s,(x)k € MAN. This, together with the fact that M normalizes AN, implies
that k£ € M, hence k, € M,. Therefore the isotropy group of K, at M is M,. This
shows that the map induced by k, on K,/M,, which we denote £, ,, namely

boo: Ko/My — K/M,  koMy > kg o(keMy) := ko(ks) M, (2.8)

is a diffeomorphism. Furthermore, kM and k;(k)M, determine the same boundary
point, because by (2.8) ko(ky(k))M = kM. By Lemma 2.5 the inverse of kg, is the
map

Kog : K/M — K, /M,, EM — koo (kM) := kg (k) M.

2.1.4 Horocycles

A hyperplane in R™ is orthogonal to a family of parallel lines. What is a reasonable
analog of this in, say, Riemannian geometry? Since geodesics are very natural general-
izations of lines, a possible answer is given by a manifold that is orthogonal to families
of parallel geodesics. In the context of symmetric spaces, such manifolds are called
horocycles, sometimes also horospheres.

Let us see what this idea leads to in the context of the unit disk, our basic example
of noncompact symmetric space. The origin in D will be denoted o. If v: [a,b] — D is
a smooth curve with y(a) = o and v(b) = z € (—1,1) is a point on the real axis, then
the simple inequality

B2 b0+ )
(0?2 = [T — (07 - y()2P

shows that straight real lines through the origin are geodesics. We observe en passant
that since yo(t) = (tz,0) with ¢ € [0, 1] is such a straight line, then*

A(l], |])

1
d(o,x) = L(v) = Jo \/g“/o(t)(%(t)’%(t))dt W

1
2 1
:J LJdtzlog +‘x|
o 1— 2zl 1— |z]

4The definition of the length of a geodesic + is defined by

L(y) = f Gty (), A1),

where G is the metric tensor. In the case of the disk, the metric tensor has the form

4
= — e D.
Aot



2.1. SYMMETRIC SPACES 55

As we know, G = SU(1, 1) acts by isometries via the Mobius action on D. Such maps
are conformal and map circles and lines into circles and lines. Hence the geodesics in D
are circular arcs perpendicular to the boundary |z| = 1. All circular arcs perpendicular
to the same point at the boundary may be seen as parallel lines and thus a natural
notion of horocycle in this context is that of Fuclidean circle tangent to the boundary
(except the point on S') because such a circle is of course perpendicular to all the
above parallel geodesics.

The circle through the origin and tangent to the boundary at 1 € C is therefore the
prototype of horocycle. Observe that for ns € N as in (2.1)

2

n[o]z 1+ —1s [0]= —18 _ 5 _ s _ S
s is 1—is 1—is s+i 8241 5241

and an easy calculation shows that these are precisely the points on the circle of radius
1/4 centered at 1/2 € C that are contained in D). Furthermore, as s — 400 one gets
the boundary point by = 1 € C. We have obtained the basic horocycle, which will be
denoted &,, as the N-orbit NJo].

Figure 2.2: The basic horocycle &, in the unit disk and the horocycle £ tangent to the
boundary at 1 and with distance —t from the origin o. In gray, the sheaf of parallel
geodesics perpendicular to &, and &.
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Other horocycles tangent to by are the orbits Na;[o] = a;N[o] where of course

_|cosht sinht
©7 |sinht cosht

is any member of A (recall that A normalizes N). This is because
at[o] = tanht e (—1,1)

parametrizes any other point on the geodesic line (—1,1) < C and an easy calculation
shows that its N-orbit is just the circle through that point and tangent to by (see Fig.
2.2). It is clear that by acting with the rotation group one gets all other horocycles, that
is, all the Fuclidean circles in D tangent to the boundary. Thus, any other horocycle &
can be written in the form ka - £ with k € K and a € A. But this means

¢ = (ka)N (ka)~" (ka[o]),

which exhibits ¢ as an orbit of a group conjugate to N, namely (ka)N(ka)~!. This
motivates the Definition 2.6 below.

Definition 2.6 (§1, Chap.IT in [37]). A horocycle in X is any orbit of any subgroup of
G conjugate to N, that is an orbit N9[x] where z € X, g € G and N9 = gNg~!. We
shall denote by = the set of all horocycles in X.

By Theorem 1.1 in Chap.II in [37], horocycles are closed submanifolds of X. We
need a more manageable parametrization of horocycles. Observe that horocycles form
a homogeneous space of the group G. Indeed, the G-action on X maps horocycles to
horocycles and in fact the group G acts transitively on = by

(9: N"[z]) = g.(N"[2]) := gN"[a] = N#"[g[x]] € E.

We fix € X and we consider the horocycle £ = N[z]. By Theorem 1.1 in Chap.II in
[37], the isotropy at & is M, N and therefore

=~ G/M,N

under the diffeomorphism gM,; N — gN|[z]. Furthermore, by Proposition 1.4 in Chap.II
in [37], (K,/M,) x A is diffeomorphic to G/M,N under the mapping

(kxMy,a) — kyaM,N.

Therefore, for each horocycle £ € = there exist unique k, M, € K,/M, and a € A such
that
¢ = kgaN|z]. (2.9)

Observe that (2.9) gives us a different parametrization of = for every point = € X.
This is a crucial point for us because it lets us easily change the reference point as we
have seen above. We need an extra step, since until now every parametrization is made
by different parameters: in fact we are still using a parametrization of the boundary,
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K,/M,, which depends on the reference point xz. Then, since K/M is diffeomorphic
to K;/M, under the mapping ko (kM) = k. (k)M,, we define the diffeomorphism

U,: K/M x A— =, (kM,a) — kz(k)aN|[z]. (2.10)

The mappings ¥, play a crucial role in our work, actually they are our way to express
every horocycle by choosing a point on the boundary and an element in A w.r.t. a
given reference vertex x € X. There is a geometric meaning for this parametrization.
Looking at Figure 2.2, it is straightforward to note that a boundary element b fixes
a family of horocycles; namely, all those that are tangent to the boundary at b. This
family is what in differential geometry is called a foliation of the manifold X. The
parameter a € A allows us to move in the foliation and to select a horocycle. The
meaning of a is a slightly more complicated than that of b. In the case of the disk, it
can be thought of as a “signed” distance from the origin, that is t € R such that a = a;
is null when the horocycle passes through the reference point x (in the figure z = o),
positive when z is “external” to the circle, and negative when x is internal. Clearly, this
intuition cannot be extended to higher rank; that is, to the case in which A ~ R? with
d > 1; in such cases the best interpretation is to consider the foliation determined by
a boundary point as a space isomorphic to R?.

From the previous considerations, it is clear that the element in A must depend
on the choice of the reference vertex, while the boundary element should not. And,
in a certain sense, this holds true. Indeed the boundary point kM € K /M which
identifies the horocycle & = k5 (k)aN[z] through (2.10) is independent of the choice of
the reference point x € X. Namely, for every z,y € X

U, (kM,a) = U, (kM,d')

for some o’ € A. Indeed, if { = kyaN[z] and if we pick y € X, hence k,M, € K, /M,
and a’ € A such that { = kya’NJy], then k,M, = k,(k;)M, and this identifies the
boundary point k,(ky;)M. Indeed, by the K, AN- and K AN-Iwasawa decompositions
of k;, we have that

ky(ky) € kz AN = Ko(ky) AN,

so that
Ky,o(kiy(kz) My) = Ko(ky(ke)) M = ko(ks) M.

We shall say that W, (kM,a) represents the horocycle with normal kM and com-
posite distance loga from z (see below, Definition 2.8). We stress that the normal of a
horocycle is independent of the choice of x € X. The composite distance, however, is
different for different reference points.

This parametrization generalizes the geometric picture in D, where a horocycle
¢ = ka;N|o] is identified by the boundary point kM € K /M to which it is tangent and
the “signed distance” t from the reference point, see Fig. 2.2.

Now we present a result which relates the definition of horocycle with the parametriza-
tion we prefer to use.

Proposition 2.7. Fiz a reference point x € X. The horocycle through y € X with
normal kM is N*%=(*)[y].
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Proof. An equivalent statement is that, writing k = k,(k;) with k, € K, the horocycle
through y with normal x, (k)M is k. Nk, *[y] because k, = k. (k) by Lemma 2.5.
Since k = k,(kz), then kM and k, M, identify the same boundary point and a horocycle
with normal kM has the form £ = kyaM,N as in (2.9). If this represents a horocycle
through y, then there exists g € G such that

¢ = gNg ' [y] = ka(9)Nre(g) " [y].

Now observe that there exist « € A and v € N such that s,(g) ![y] = valz], then
¢ = ky(g)aN[z]. Thus, since £ = k,aN[x], we have that

kz(g)aN[z] = kyaN|z],

which by (2.9) implies k;(g)M, = ky;M,. Hence k;(g9) = kym, for some m, € M,.
However, (2.3) implies at once that m;Nm;' = N, and hence N*=(9) = Nkz O

The previous result allows to outline a horocycle starting from a boundary point
and an element of the symmetric space. The next determines a notation we use in the
following. We prefer to use b for a boundary element whenever it is not important the
boundary parametrization we adopt.

Definition 2.8. Fix a reference point z € X and choose y € X and b e K/M, so that
by Proposition 2.7 the horocycle £ = £(y, b) passing through y with normal b = kM is
uniquely determined, and hence there exists a unique a € A such that

&(y, kM) = ky(k)aN|z].

We denote by A, (y,b) € a the composite distance of the horocycle £(y,b) from x € X,

namely
Ax(ya b) = log a,

The function A, introduced above is central in our work; it is a generalization of
the function A: X x K/M — A considered by Helgason in §3, Chap. II [37]. Actually,
the two functions coincide when x = o and A, is a generalization which keeps track
of the reference vertex. The reader is warned not to confuse the composite distance
Az(y,b), which depends on (y,b) € X x B, with the Abelian component A4, (g) of g in
the NAK,-Iwasawa decomposition, which is a function on G (see (2.5)). A relation
between the two does exist, as pointed out in the next lemma, where we collect several
properties of the composite distance which will play a crucial role in our work.

Lemma 2.9. Fizx a reference point x € X. Then:
(i) for any k, € K, and g € G we have
Aa(gla], ro(ke) M) = As(kyg), (2.11)
where the right-hand side is defined by (2.5);

(ii) for anyye X, kM € K/M and g € G we have

Az (y, kM) = Agpa(glyl, gk M)); (2.12)
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(i1i) for any y,z€ X and kM € K/M we have

Ay (y, kM) = Ag(2, kM) + A, (y, kM). (2.13)

Proof. We start by proving (i). Let k, € K, and g € G. By Proposition 2.7 and (ii) of
Lemma 2.5, the horocycle passing through g[x] with normal (k)M is k., Nk, 1g[x].
By Definition 2.8, we have that

ko Nky ' glo] = ke exp(Az(g[2], 5o (ko) M))N 2],

and so k;1g € N exp(As(g[z], ko(kz)M))K,. This proves (i).

Now we want to show (2.12). For simplicity, we first prove the statement in the
case x = 0. Let y e X, kM € K/M and g € G. By Proposition 2.7, and the fact that
A normalizes N, the horocycle passing through g[y] with normal g{kM) = k,(gk)M
(see (2.7)) is

N gly] = ko(gk) Nro(gk) " gly] = gkN(gk) " g[y].

By the diffeomorphism given in (2.9), there exist h € Ky, and a € A such that
gkNE[y] = haNglo], (2.14)

and thus, by definition
a = exp(Ay[o)(9ly] , gkM))).

We need to show that a = exp(A,(y, kM)). Since K[, = gKg', we have h = gk1g™!
for some k1 € K and we claim that

k1ko(g~ )M = kM. (2.15)
By (2.14) we have that
k19~ 'aNso(g[o])[o] = kig~"aNg[o] = kNk™'[y] = kNs, (k™" [y])[o]-

Since s, takes values in AN and writing the NAK decomposition of g~!, there exist
a’,a” € A such that
k1ko(g~1)a' N[o] = kd” NJo).

Hence, by (2.9) we have that kik,(g~1)M = kM, that is the claim (2.15). Therefore,
for some m € M the right-hand side of (2.14) is
haNglo] = gkmso(g~") " g~ aNg[o
= gkmaN (ko(9~")""g™") glo]
= gkmaNko(g~") ™ [0]
= gkmaN o] = gkaN|o]

where in the second line we have used that x,(¢g~')"'g~! € AN and then (2.4). Sum-
marizing, we have shown that

gkNE Ls,(y)[0o] = gkaN[o].
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By taking e € N on the left, there must be n € N such that s,(y)[o] = kan[o], so that
(kan)~'s,(y) € K, whence k~'s,(y) € Kan. This shows that

a = exp(Ao(k™"s0(y))) = exp(Aq(y, kM)),

where the second equality follows by item (i). This concludes (ii) in the case z = o.
The general case follows by the latter. Indeed, by applying it with s,(z) and gs,(x),
respectively in the first and the second equality, we obtain

Ay, kM) = Ag(so(x) " [y], 50(x) kM) = Age(glyl, gk M) .

This proves (ii).

It remains to prove (iii). For simplicity we start by proving it for x = o, the
general case follows. Let y,z € X and kM € K/M. By the definition of s,, we have
that s,(0)™! = s,(2) and K = s,(0)K,s,(0)"!. Observe that, by the K, AN Iwasawa
decomposition of k

s.(0)k € 5.(0)k.(k)AN = s.(0)k.(k)s.(0) LAN,

and then
Ko(5.(0)k) = 5.(0)k.(k)s. (o)L
Furthermore, sy(0)k € K exp(H,(sy(0)k))N, so that

s.(0)kk ™15, (0) 7 € 5,(0)k,(k)s.(0) "IN exp(H, (s, (0)k) — Ho(s,(0)k)) K.  (2.16)
Now, observe that by (2.6) and (i) it is possible to rewrite

Ho(s2(0)k) — Ho(sy(0)k) (k_lsy(‘))_l) - Ao{k_ISZ(O)_l)

Ao
Ao(sy(0)~ o], kM) — Ay (s2(0)~"[o], kM)
Ao(y, kM) — Aoz, kM).

Hence, (2.16) becomes
5:(0)5,(0) ' € 5,(0),(k)s.(0) "IN exp(Ay(y, kM) — Ay(z,kM))K |
and by conjugating by s,(0)~! € AN

5,(0) 5. (0) €r. (k)5 (0) " N exp(Ao(y, kM) — Ao (z, kM))Ks.(0)
:Kz<k)N eXp(Ao(y7 kM) - Ao(za kM))Sz(O)ilKSZ(O)
:’?z(k)N eXp(Ao(y7 kM) — Ao(za kM))Kz7

where in the first equality we use (2.4). Finally, we observe that s,(0) 1s.(0) =
S0(y)sz(0) = s.(y) and then

k2 (k) '5:(y) € N exp(Ao(y, kM) — Ay(2, kM) K.
Therefore, by item (i) of Lemma 2.5 and item (i) above

Aoy, kM) — Ap(z, kM) = Az(ﬁz(k‘)_lsz(y)) =A,(y, kM) .
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This proves the case x = 0. The general case trivially follows:

Am(zakM) + Az(yv kM) = AO(Z7kM) - AO((L', kM) + Ao(y7 kM) - AO(‘Zv kM)
= A, (y, kM).

Hence this conclude the proof of the lemma. O

We recall that, under the analytic point of view, mappings ¥, play a very important
role for us. We show how the previous lemma reflects on them. In particular we show
how the action of g € G on a horocycle reflects on its parametrization and how two
parametrizations from different reference points are related.

Corollary 2.10. Let x € X. Then:
(i) for every g € G, the action on horocycles reads

gV (kM,a) = Vg, (9<{kM),a), (kM,a) e K/M x A; (2.17)

(ii) if y € X is an other reference point, then the following “change of variables” holds
true for every (kM,a) e K/M x A

(W;l oW, )(kM,a) = (kM,aexp(Ay(xz,kM))). (2.18)

Proof. Let x € X. By Definition 2.8, for every (kM,a) e K/M x A and z€ X
ze€V,(kM,a) <= Au(z,kM) =loga. (2.19)
Then, by (2.19) together with (2.12) it follows that

z€ 9.V, (kM,a) < g '[z]€ U, (kM,a)
loga = A.(g7 2], kM)
loga = Aypu1(2, g (kM))
=  ze VY (9<kM),a).

=
=

Hence (2.17) follows.
It remains to prove (ii). If y € X, then by (2.19) and (2.13) we have that

2€ VU, (kM,a) <= loga= A;(z,kM)
— loga = A;(y,kM) + Ay(z, kM)
— log(aexp(—Az(y,kM))) = Ay(z, kM)
— ze WV, (kM,aexp(Ay(z, kM))),

where in the last equivalence we use the equality A, (z, kM) = —A,(y, kM), which
follows immediately by (2.13). Hence, we have (2.18). O
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2.2 Analysis on symmetric spaces

We collect in this section the analytic ingredients that come into play. Apart from the
basic measures and function spaces, we introduce the Helgason-Fourier transform and
recall the results that we use throughout. The main references are, beyond [8], [36],
[37].

In particular, in the first part of the section we introduce all the measures and
function spaces we need in the following. We present the classical fact of how, through
Theorem 1.30, the Haar measure of a semisimple Lie group G decomposes w.r.t. to the
Haar measures of its Iwasawa components. The G-invariant measure on the symmet-
ric space X ~ G/K is immediate. Our main contribution here is the stressing of the
fact that the (compact) boundary is endowed with different K-invariant (probability)
measures, each relating to a different reference point. Furthermore, we clarify in for-
mulae their G-invariance and the relation between them, namely their Radon-Nikodym
derivative. These facts are crucial for us, since they allow to express symmetry proper-
ties in the definition of the functions spaces involved with the range of Helgason-Fourier
and Radon transforms. Finally, in Section 2.2.1.4 we present the G-invariant measure
on =. In this case the matter of the reference point is different: indeed, it is still true
that from every reference point, that is, from every possible parametrization of = under
K/M x A, a different G-invariant measure can be defined, but in this case all these
measures coincide as measures on =. Furthermore, the (L?(Z), L2(K/M x A))-pull-
back WXF of F by W, is introduced: its main role in the following is to “transport” a
function on Z in a more manageable function on K /M x A under the parametrization
we need, keeping track of the density of the measure on =.

Section 2.2.2 is a concise recall of the Fourier transform H introduced by Helgason
on symmetric spaces, which we call Helgason-Fourier transform in order to distinguish
it from the Euclidean Fourier transform. Furthermore, we state a different formulation
of Theorem 1.5 in [37], that is the classical unitary extension of H on L?(X). The new
formulation makes use of a symmetry property we denote § which is used to define the
function space Lac(K /M x a*)t, that is the range of the unitary extension of .

2.2.1 Measures

This section is devoted to the measures that will be involved in what follows, which
are the measures on the spaces X, B and Z. These are used to define the function
spaces that we are interested in, among which the L?-spaces that carry the regular
representations.

2.2.1.1 Measures on semisimple Lie groups of the noncompact type

Let G a semisimple Lie group. By Theorem 1.2, there exists a (left) Haar measure on
G, unique up to multiplication by a positive constant. We recall that by Theorem 1.30
there exist subgroups K, A, and N of G such that G = KAN = NAK. Since each
subgroup carries a Haar measure, the natural question arises whether it is possible to
write the Haar measure of G using the Haar measures of the three subgroups involved,
which are all, individually, unimodular.
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Since K is compact, we normalize its Haar measure in such a way that the total
measure is 1. The Haar measure on A is obtained by starting from the (positive)
measure that any Riemannian manifold inherits from its metric, see e.g. Chap. 1
in [36]. The invariant metric is obtained by taking the restriction to a x a of the Killing
form, which is positive definite on p x p D a x a, whereby a is identified with the tangent
space to A at the identity. The standard normalization is to multiply the Riemannian
measure by (27)~%2, where ¢ = dim A. As for N, we normalize its Haar measure dn
so that

J =2 H) g7 — 1.

N
where N = ©(N) and dm is the pushforward of dn under © (the involution © is the
one whose existence is guaranteed by Theorem 2.3 (ii)). The convergence of the above
integral is no trivial matter, and is discussed in detail in [36].

Proposition 2.11 (Proposition 5.1, Chap. I, [36]). Let dk, da and dn be left-invariant
Haar measures on K, A and N, respectively. Then the left Haar measure dg on G can
be normalized so that

f f(g)dg = f f(kan)e?'°&2dkdadn
G KxAxN

= f f(nak)e 2189 dndadk
NxAxXK

= f flank)dadndk
AxNxK

for every f € C.(G).

The case of the group AN deserves a separate comment. We recall that AN is in
fact a semidirect product since A acts on N by conjugation from the observation after
Theorem 1.30. Furthermore, for any H € a and any root vector X, € g, it holds

e k
Ad(exp H)(Xo) = ¥ (X,) = ) (ad]f Vx, = ety
R

It follows that upon choosing a basis of m, root vectors for each positive root « it is

det Ad(exp H)|n = H emaa(H)

a>0

or, using (1.21),
det Adal, = %8,

Proposition 1.4 now entails that the modular function of the AN Iwasawa group is
A(na) = e~ 2rlloga), (2.20)

Indeed, in the computation of det Ad(na) on n + a, all is relevant is the action of Ada
on n because the action of Ada is unimodular on a since A is Abelian, the action of Adn
is unimodular on n because N is nilpotent and that of Adn on a is again unimodular
because its projection on a is the identity (see also Corollary 5.2 in Chap. I in [36]).
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2.2.1.2 Measures on X

A classical notation in analysis on manifolds is to put D(X) instead of C.(X). It is
not just about symbols, the canonical use of D(X) is due to the topology with which
it is endowed (see Chap.II in [42]). In what follows we do not make use of the topology
but we have decided to use D(X) anyway as a matter of consistency with the results
that are cited.

Now, our purpose is to determine an explicit G-invariant measure on the symmetric
space X = G/K, whose existence is guaranteed by the fact that K is compact (see the
comment after Theorem 1.22). Recall that, by Proposition 2.11, if ¢ = nak, then the
Haar measure of G can be normalized so that

dg = e~ 229 qndadk,

where dk, da, and dn are the Haar measures on K, A and N that have been fixed in
the previous paragraph.

Observe that by the fact that X ~ G/K, functions on X are in a bijective cor-
respondence with right- K-invariant functions on G. Indeed, if f is a function on X,
then F(g) = f(g[o]) is a right-K-invariant function on G, and vice versa. Then the
G-invariant measure dx on X is the pushforward of dg under the canonical projection
G — G/K. Thus, for any f e D(X)

j f(x)de = f f(glodg = | F(nalo))e 215 dnda,
X G

NA

We henceforth denote by L?(X) the Lebsegue space of square integrable (equiva-
lence classes of) functions with respect to this measure. The quasi regular representa-
tion ™ of G on L?(X) is then defined in the usual way, namely

m(9)f(z) == flg7'[z]),  feL*X),geq.

It is a unitary non-irreducible representation. Actually, it is possible to construct
a family of Hilbert spaces in which L?(X) can be decomposed as a direct integral,
whereby the restriction of m to each of them is irreducible. These are the spherical
principal series representations, discussed in Chap. VI in [37]. It is also well known
that 7 is not square integrable.

2.2.1.3 Measures on the boundary

We shall now define positive measures on the boundary B by using its various possible
parametrizations. Since K and M are compact subgroups of GG, there exists a K-
invariant probability measure p° on B = K /M, see the comment below Theorem 1.22.
The choice of this measure is such that Weil’s decomposition holds, assuming that we
normalize the Haar measure of M in such a way that the total measure is 1.

We stress the fact that the measure above is just one of the possible choice. Indeed
for every other reference point x € X the analogous objects K,, M, and p® can be
introduced. The relation between u® and p* can be determined explicitly. We consider
the diffeomorphism T),: K — K, defined by k ~— s,(z)ks,(z)~!. Its restriction to
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M is a diffeomorphism between M and M,. Hence, T, induces the diffeomorphism
T,: K/M — K,/M, defined by

To(kM) = Tp(k)M, = so(x)kso(z) 1M, = so(x)kMs,(z)7! .

Let (T,)«(1°) be the pushfoward of the measure u® under Ty. Clearly, (T)«(1°) is a
K,-invariant probability measure on K, /M, and therefore % = (Ty)s(1°). As we saw
in (2.8), K;/M, is diffeomorphic to the boundary K /M through the map induced by
ko. Therefore, we can consider the following K, -invariant probability measure on the
boundary B = K/M

v = (ko) ().

It is worth observing that v° = ° and the following relation follows
V% = (Ko 0 Ty )« (1°) .

Lemma 2.12. The measure v° is G-quasi invariant. Let F € C(K/M) and g € G,

f F(g‘1<k:M>)dy"(kM)=j F(kM)e~ 2ok qp0 (k). (2.21)
K/M K/M

Proof. By Lemma 5.19 in Chap.I in [37], for every H € C(K) and g € G,
J H(ko(g  k))dk =f H (k)e2pHolgk) g, (2.22)
K K

A function F' € C(K/M) will now be regarded as an M-right invariant continuous
function on K. By our choice of v°, Theorem 1.22 holds and hence

L F(k)dk — L{/M JM F(kM m)dmdv® (kM)

_ L{/M F(kM) fM dmdv® (kM)

= f F(kM)dv®(kM),
K/M

where we have used the normalization of the Haar measure of M. The function k& —
F(g7Yk)) = F(ko(g7'k)) is M-invariant by r,(g~ km) = ko(g~1k)m. Since m € M
commutes with A and N,

gkm € ko(gk)m exp(Ho(gk))N

and so k — H,(gk) is M-invariant. It follows that k — F(k)e2/(Ho(9k) is also M-
invariant. The assertion follows by applying (2.22) to F' in place of H and then rewriting
the integrals over K of the M-invariant functions as integrals over K /M w.r.t. v° as
before. O
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Now we investigate the relation between the different boundary measures introduced
above. If FF'e C(K/M) and x € X, then

f F(kM)dv® (kM) = J F(ko(Tp(kM)))dv° (kM)
K/M K/M

_ f Ftg(50(x)k) M)dv® (kM)
K/M

:J F(kM)e—%(Ho(so(x)’lk))dUO(kM)
K/M

= f F (kM )e?Ae@kM) qpe (M)
K/M

by Lemma 2.12 and then applying item (i) of Lemma 2.9 together with (2.6) , since
—H,y(so(x) 7 k) = Ag(k7Lso(x)) = Ao(so(x)[0], kM) = Ay(x, kM).

By expressing the integral of a function on K/M with respect to either v* or v¥ as
above and then using (2.13) in the form

Ao(‘rv kM) = Ao(y7 kM) + Ay(l‘,k'M),

the Radon-Nikodym derivative between the measures v* and /¥ is

dv®
dvy

(kM) = e?rAv(@kM)), (2.23)
Let x€ X, ge G and F € C(K/M). Using first (2.23) with y = 0 and then (2.21)

f F(g~ " kM))dv™ (kM) = J F(g~ (kM) Aole kM) qr,0 (01
K/M K/M

_ J F (kM )2 Ao (0N =20 Hoak)) 4,0 (1 1)
K/M
Now observe that, by (2.11) and (2.12),

Ao(, g(kM)) — Ho(gk) = Ag-1[0] (971[37]7 kM) + AO(kilgil)

the latter equality being just (2.13) from Lemma 2.9. Hence, we obtain a sort of dual
relation between the G-action on the boundary and that on the reference points of the
boundary measures, namely

f F(g~YWEMY)dv® (kM) = J F(kM)dvd (k). (2.24)
K/M K/M
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2.2.1.4 Measures on =

Finally, in order to develop the theory in which we are interested, we need to introduce
a G-invariant measure on =. We denote by o the measure on A with density e2°(loga)
with respect to the Haar measure da. For every x € X, we can endow = with the
measure d¢ obtained as the pushforward of the measure v* ® o on K /M x A by means
of the map ¥, i.e.

d§ =V, (v ® o).

It turns out that d¢ is independent of the choice of z € X. We denote by L'(Z) and
L?(Z) the spaces of absolutely integrable functions and square integrable functions with
respect to the measure d¢, respectively. By definition, for every F e L!(Z)

L PeE= | (Fou) M, a07 Do) (kM. 0)

= J (F o W,)(kM,a)e* 18D du® (kM )da .
K/MxA

It is easy to verify that d¢ is G-invariant. We point out that Helgason introduced this
measure w.r.t. o € X, see Lemma 3.1 in Chap. II in [37]. Since in our treatment it is
important to change the reference point the expression above suits our needs.
The group G acts on L?(Z) via the quasi regular representation 7: G — U(L?*(E))
defined by
#(g)F(€):=F(g7"¢), FelL?*E),geG.

Equivalently, given x € X, by (2.17)
(7(9)F) 0 Wo(kM,a) = F o U yip (g~ kM), a), (2.25)

for every (kM,a) € K/M x A and g € G. We see in the following that 7 is not
irreducible.

We need to introduce some more notation. We denote by A~3 the map on K /M x A
defined by

A*%(kM, a) = ePlosa),

The reason for such notation resides in the fact that this function has the same ex-
pression of the inverse of the square root of the modular function of the AN Iwasawa
group, see (2.20).

Finally, for every z € X, we introduce the space L2(K /M x A) of square integrable
functions on K/M x A w.r.t. the measure v* ® da. For every F € L?(Z), we denote
by WiF the (L?(Z), L2(K/M x A))-pull-back of F by U, that is, we introduce the
unitary operator W¥: L?(Z) — L2(K/M x A) given by

U*F(kM,a) = (A™2 - (F o U,))(kM, a)

for almost every (kM,a) € K/M x A. In order to see that W? is unitary, observe that
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for every F € L%(Z) we have that
f 0 F(kM, a)|2dv® (kM) da
K/MxA
_ f (A} - (F o 0,))(kM, a) 2dv™ (kM)da
K/MxA
_ f (F o W,) (kM, a) 22129 4y (kM) da
K/MxA
- [ IP©OPE = 1P,
so that U is an isometry from L2(Z) into L2(K/M x A). Surjectivity is also clear.

2.2.2 The Helgason-Fourier transform

The Helgason-Fourier transform was defined by Helgason in analogy with the Fourier
transform on Euclidean spaces in polar coordinates. We briefly recall its definition and
its main features.

Definition 2.13 (§1, Chap. III, [37]). The Helgason-Fourier transform of f € D(X)
is the function Hf : K/M x a* — C defined by

Hf(EM,N) :f ()T Ao(@kM) g
X

As the Euclidean Fourier transform, the Helgason-Fourier transform extends to a
unitary operator on L?(X). The Plancherel measure involves the Harish-Chandra c
function, a cornerstone in the analysis on symmetric spaces [31], [32]. It is a meromor-
phic function c: af — C defined on the complexified dual space af for which various
formulae are available (see e.g. [38]). It may thus be restricted to the real space a*. As
an example, in the case of the unit disk, if Re(i\) > 0, then

INETY

¢ 2227
) 1 2F(%(i)\+ 1))’

so that
V)2 = ™ tanh (“) .
2 2

We denote by LgyC(K/M x a*) the space of the functions on K/M x a* that are

square integrable w.r.t. the measure w™" [c(A)| "2 dv°d)\, where w stands for the car-
dinality of the Weyl group W.

Proposition 2.14 (§1, Chap. III, [37]). For every fi, fo € D(X)

J fi1(z) fo(z)dz = f Hf1 (KM, \)H fo(kM, \)dv° (kM) da

_— 2.2
*x K /M wle(N)[? (2.26)



2.2. ANALYSIS ON SYMMETRIC SPACES 69

The rest of the paragraph is devoted to state the Plancherel theorem for the
Helgason-Fourier transform.

Property . We say that a function F' € Lg7C(K/M x a*) satisfies Property # if for
every x € X the function

a* 3\ —> PN Ao(@ kM) P AL\ dw® (kM) (2.27)
K/M
is W-invariant almost everywhere (see the comments after (1.20) for the W-action on
a*).
We denote by L2 (K /M x a*)# the space of functions F in L2 (K/M xa*) satisfying

Property f. We observe that the integral in (2.27) is absolutely convergent for almost
every A € a*. By Fubini theorem, for every F € L2 (K/M x a*) we have that

dX
9 . 2 o -
HF“L?,,C(K/MXG*) - J;* JK/M ‘F(kMa )\)‘ dV (kM)U)|C()\)|2 < +OO

Thus, the function F(-,\) is in L?(K/M,v°) < L'(K/M,v°) for almost every \ €
a* and, since p(Ay(z,-)) is bounded on K /M, the integrability properties of F(-,\)
continue to hold for the function e(PTiN (Ao ) (L)),

Remark 2.15. We observe en passant that the Helgason-Fourier definition depends
on the choice of 0 € X. Actually, it is possible to define it w.r.t. to every reference
point z € X on f € D(X) by

Mo f (KM, N) = f Fy)eT A qy - (BM, \) € K /M x a*,
X

An easy application of Lemma 2.9 (iii) clearly reveals a relation between H and H,,

namely ‘
Hof (KM, \) = 6(_p+7’>‘)A°($’kM)/Hf(k:M, A).
Hence, by using the Radon-Nikodym derivative (2.23) of v* w.r.t. v°, Property f for

‘H consists in the a.e. W-invariance of

a* 5\ —> Ho (KM, N)dv* (M),
K/M

for every x € X. This remark is not used in the following but however it represents an
explanation of the symmetries required in Property .

Every function F € L2 (K/M x a*)f is uniquely determined by its restriction on
K /M x a%. Here a% denotes the positive Weyl chamber

af ={Aea*: A eat},
where Ay represents A via the Killing form, in the sense that A(H) = B(Ay, H). If we
suppose that F, G € L2 (K /M x a*)# are such that F1|K/qui = F2|K/qui’ then
f PN Ao@rM)) (B — o)) (KM, sX)dv® (kM)
K/M

= J PN Ao(@kM)) (B — ) (M, \)dv® (kM) = 0
K/M
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for a. e. A € a* and for every s € W. Therefore, by Lemma 5.3 in Chap. II in [37], we
can conclude that Fy — Fp = 0in L2, (K/M x a*).

By the Paley-Wiener theorem for the Helgason Fourier transform (Theorem 5.1
in Chap. Il in [37]), Hf € L2 (K/M x a*)f for every f € D(X), so that Hf is
uniquely determined by its restriction on K/M x a%. We denote by L2 . (K/M x a*)
the space of the functions on K /M x a¥ that are square integrable w.r.t. the measure
lc(A)] % dv°dA and the Plancherel theorem for the Helgason-Fourier transform reads:

Theorem 2.16 (Theorem 1.5, Chap. III, [37]). The restricted Helgason-Fourier trans-
form f — Hf’K/anj extends to a unitary operator & from L*(X) onto L3 . (K/M x a%).

For our purpose we sometimes use a different terminology from Helgason. In par-
ticular, we need a different version of Theorem 2.16, that better suits our needs.

By the Plancherel formula (2.26), H is an isometry from D(X) into L2 . (K/M x a*).
Furthermore, we show that, by Theorem 2.16, H(D(X)) embeds densely in Lac(K/M X
a*)f. Let F e L2 . (K/M x a*)* be such that (FyHf)re (k/mxaxy = 0 for every
f € D(X). Then, by Fubini theorem we have that 7

1 .
0= j J F(kM,\ J f(z)e(=iA+o) (Ao(@.kM)) dzdv® (kM
w Jyo Jigpp TN | T M) P

1f ff (iA+p) (Ao kM) )
= — F(kM, \)e\"" TP 2ol dv? (kM) f(x)dx
W Jax JX JK/M ( ) ( #() le(M)]?

f j J F(kM, \)eA+p)Ao(@kM)) g0 (M) f(z)d 5
at Jx JK/M [c(A)]

= J f F(kM,\)Hf(kM, \)dv° (kM) dAz, (2.28)
at JK /M [c(A)]

where we use that F satisfies Property # and |c|? is W-invariant. Hence, (2.28) yields

<F’K/M><ajv,Hf’K/anj>L§’c(K/M><aj) = <F’K/M><aj7%f>L§’C(K/M><aj) =0,
for every f € D(X), and Theorem 2.16 implies that F' = 0 a.e. on K /M xa* . Therefore,
F=0in L . (K/M x a*) and H(D(X)) embeds densely in L2 (K /M x a*)t.

This leads us to state the following formulation of Theorem 2.16.

Theorem 2.17. The Helgason-Fourier transform H extends to a unitary operator F€
from L*(X) onto L2 . (K /M x a*)?.

In what follows, we always consider ./ taking values in L2 , (K /M x a*)F,

2.3 Unitarization of Radon transform

In this section we introduce the horocyclic Radon transform, we study its range, and
we investigate its intertwining properties with the quasi regular representations 7 and
7 of G. In the last part we present our main result: the so called unitarization theorem
for the horocyclic Radon transform.
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The horocyclic Radon transform of a signal is defined as a function on =. The
machinery we developed in the previous sections leads us to consider it as a function
on K/M x A in many ways, that is, w.r.t. every reference point. Section 2.3.1 contains
two important results: a classical one that is the Fourier slice theorem (§5, Chap. III
in [37]) and Proposition 2.24. The latter is the result on which Section 2.3.2 is based,
indeed it links Property f# of the previous section with Property b introduced below,
providing a characterization of LE(E), that is the range of the unitarization of the
horocyclic Radon transform.

Section 2.3.2 contains our main result, that is Theorem 2.28. In order to define the
operator A involved in the unitarization of R, we need some technicalities. The operator
A is the same introduced by Helgason in [37] on a dense domain of L?(Z). In addition,
we show that A maintains Property b. Roughly speaking, A is the conjugation of a
densely defined Fourier multiplier 7, by A~'/2. The last sentence must be interpreted:
indeed the conjugation cannot be expressed directly but we need to use the pull-back
U (and its inverse), see Figure 2.4. We stress that if we replace o with = € X, the so
obtained operator A is the same.

A

L2(2) EnLiE) £ L3(2)
Q| AoR R 1\ U*
2 jo 2
L*(X) —— D(X) D, LY(K/M x A)

Figure 2.3: The operator A is defined Figure 2.4: The Fourier multiplier 7,
on the dense subset £& < L?(Z) and is defined on the dense subset D, <
maintains Property b. Its precomposi- L2(K/M x A) and is “transported” on
tion with R extends to a unitary opera- functions defined on = by the conjuga-
tor Q on L%(X). tion with W¥.

The presence of the factor A~Y2 represents a difference from the setup of the

previous chapter, indeed in the classical unitarization examples presented in [1], the
operator A is always a pure Fourier multiplier.

Finally, we show that the unitary extension Q of AR intertwines the two quasi
regular representations of G on L?(X) and L?(Z), respectively.

We refer the reader to compare the two diagrams in Figures 2.3 and 2.4 with the
final on in Figure 2.5, which is completed with results proved below.

2.3.1 The horocyclic Radon transform

With horocyclic Radon transform we mean the integration of a signal on each horocy-
cle of Z. Because horocycles admit (several) explicit parametrizations, we define the
horocyclic Radon transform appealing directly to the basic parametrization, as clarified
in the definition that follows.
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Definition 2.18. The horocyclic Radon transform R f of a function f € D(X) is the
map Rf : Z — C defined by

(RfoW¥,)(kM,a) = JN f(kan[o])dn,

for every (kM,a) e K/M x A.

If we change parametrization, and use equality (2.18), for any z € X we obtain the
equivalent definition

(RfoW,)(kM,a) = (Rf oV,)(kM,aexp(Ay(x,kM)))
_ fN F(ka exp(Aq(z, EM))n[o])dn. (2.29)

Definition 2.19. Let f € D(X). We denote by Af the map Af : K/M x A — C
defined by

Af(kM,a) == U*(Rf)(kM,a) = (A2 - (Rf o U,))(kM, a).

It is worth observing that if the function f is K-left-invariant, then Af coincides
with the Abel transform of f introduced by Helgason in Chap. IV in [37].

We need to introduce the Fourier transform on the Abelian group A. It is possible
to see that, in the terminology of Section 1.1.3, A~ a* and la, \) = eAMloga) for every
a € A and A € a*. Hence Definition 1.18 reads as follows.

Definition 2.20. Let s € L'(A). The Fourier transform Fs of s is defined on a* by
Fs(A) = J s(a)e” Mg qq |
A

We denote by R the regular representation of A on L?(A), which is defined for every
se L%(A) and for every a € A by

Rys(a) = s(a™ta), ac€ A.

Furthermore, we denote by M the representation of A on L?(a*) defined for every
r € L*(a*) and for every a € A by

Myr(X) = e7og) (X)X e a*.

Proposition 2.21 (§7.2, Chap. 5, [40]). The Fourier transform F : L*(A) — L*(a*)
intertwines the reqular representation R with the representation M, i.e.

FRy = M,F,
for every a € A.

We are now ready to recall the result which relates the Helgason-Fourier transform
with the horocyclic Radon transform. We refer to Proposition 2.22 as the Fourier Slice
Theorem for the horocyclic Radon transform in analogy with Theorem 1.34 for the
polar Radon transform.
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Proposition 2.22 (§5, Chap. III, [37]). For every f € D(X) and kM € K/M, the
function a — Af(kM,a) is in L*(A) and

(1® F)AF(kM, \) = Hf(kM, ), (2.30)
for almost every A € a*.

Let f € D(X). By the Paley-Wiener theorem for the Helgason Fourier transform
(Theorem 5.1 in Chap. III in [37]), Hf is rapidly decreasing in the variable A € a*
uniformly over K /M, that is for every n € N

IH I, = sup  (L+ [A)"[HF(EM, )| < +oo.

kMeK /M, ea*

By Theorem 1.20 and Proposition 2.22, we have that

f RI(E)2dE = U2 (R f) (kM. 0)2dv®(kM)da
= K/MxA

[ @R RN EMN (kM)A
K/M xa*

= f |H f (KM, \)|>dv° (EM)dA
K/M xa*

2n 2
K/M xa*

(1 + A2
H f d)\ < +00,
< II#sI13 w

for every n > dim A/2. Therefore, Rf € L*(Z) for every f e D(X).
The horocyclic Radon transform intertwines the regular representations = and 7 of

G.
Proposition 2.23. For every g€ G and f € D(X)
R(w(g)f) = #(g)(Rf) -

Proof. Let g € G and f € D(X). It is sufficient to show that R(w(g)f) o ¥, =
7(g)(Rf) oV, on K/M x A. Let (kM,a) € K/M x A. Then

R(n(g)f) o UolkM, a) = fN 7(9)f (kanfo])dn

~ [ 7™ kanfol)an
N

_ jNf<n0<g—1k>exp<H0<g—1k>>an[o]>dn,

where we used the decomposition g~k € k,(g~ k) exp(H,(g'k))N and the fact that
A normalizes N. Now, by (2.6), (2.11) and (2.13), we have

Ho(g_lk‘) = _AO(k_lg) = —Ao(g[o], kM) = Ag[o](07 kM) .
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Finally, by g~ (kM) = k,(g~ k)M and (2.29) we have that
R(x(g)f) 0 Wo(kM, a) = jN F (o™ k) exp(A, o) (0, EM))an[o])dn

- fowo(glk) exp(Ao(g (0], g~ CEM))an[o])dn

=RfoW, (g WEM), a)
= (ﬁ-(g)Rf) © \Ijo(kM’ a),

where we used the action of G on = given in (2.25). O

—_
—

We now introduce a closed subspace of L?(Z) which will be crucial because it is the
range of the unitarization of the horocyclic Radon transform. To do it, we introduce a
property which will play a role similar to Property . Roughly speaking, we can think
of Property b above as the time analog of the Property # in frequency, under (I®F)%¥,,
for every x € X, as it is better clarified in Proposition 2.24 and in Figure 2.5.

By definition, for every z € X and every F € L?(Z)

|F 125 = L{/M L 0* F(kM, a)|2dadv® (kM) < +o0.

So that, the function W*F(kM,-) is in L?(A) for almost every kM € K/M. Then, by
Plancherel formula 1.11 and Fubini theorem

e L G
X

= J (I ® F)UXF(kM,\)[>dv®(kM)dA
K/M xa*

= f f (I ® F)UXF(kM,\)[2dv®(kM)d\ < +oo0.
a* JK/M

So that, for almost every A € a* the function (I ® F)WEF(-,\) is in L?(K/M,v%) <
LY(K/M,v*) and

J (I ® F)U*F(kM, \)dv® (kM)
K/M

<[ e FFGM N k)
K/M

which is finite.

Property b. We say that a function F' € L?(Z) satisfies Property b if for every
x € X the function

a“ 3\ — (I ® F)VrF(kM,\)dv" (kM)
K/M
is W-invariant almost everywhere.

We denote by LE(E) the space of functions F' € L?(Z) satisfying Property b. Notice
that by the considerations above, the integral appearing in Property b is finite for almost
every A € a*. Our main results in Section 2.3.2 are based on the characterization of
L2(Z) given in Proposition 2.24 below. We denote by L2(K/M x a*) the space of
square integrable functions on K /M x a* w.r.t. the measure v° ® dA.
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Proposition 2.24. The operator ®, defined on F € L*(Z) by
O, F(kM,\) = (I ® F)VEF(kM,N), a.e. (kM,\) e K/M x a*,

is an isometry from L*(Z) into L2 (K /M x a*). Furthermore, a function F belongs to
LE(E) if and only if ®,F satisfies Property f.

Proof. By Parseval identity, for every F' € L?(Z) we have that
J |6 F (KM, \)|? dv°(kM)dA
K/M xa*
= j J |(I @ F)U*F(kM,\)|* dAdv° (kM)
K/M Ja*
[ PR @) kM) = [P
K/MxA =
so that ®, is an isometry from L2(Z) into L2 (K/M x a*). Now, let F' € L*(Z). By

equation (2.18) and by the definition of the regular representation R of A, for almost
every kM € K/M and \ € a* we have that

N[

O F(kM,)N) = (I QF)VEF(kM,\) = (IQ F)(A™z - (FoW,))(kM,\)
= eP(Aol@kM)) (1 g Jr)([®Rexp(Az(o,kM))_l)(A_% (FoWy,))(kM, ).
Therefore, by Proposition 2.21 we obtain
BoF (KM, \) = AR (1 @ My a (oary-1) (I @ F)(AT2 - (F o W,))(kM, \)
— P INA(@ kM) (T @ F)(A™2 - (F o W,))(kM, \)
= PN @RM) (T & FYU*F (KM, \). (2.31)

Now, for every x € X and for almost every A € a*, (2.31) yields

f PN Aoz kM) G P( M, ) (kM)

K/M

_ J PN (Ao(2:kDD) (0=IN Ao b)) ([ @ F)T* F (KM, A)dv® (M)
K/M

= f (I ® F)U*F(kM, \)e2r(Ao@kM))quo k)
K/M

_ f (I ® F)U*F(kM, \)dv® (kM). (2.32)
K/M

Equality (2.32) allows us to conclude that F' satisfies Property b if and only if ®,F
satisfies Property § and this concludes our proof.
O

Corollary 2.25. For every f € D(X),
(I)o(Rf) = %f
in L2(K/M x a*) and Rf € LZ(E).
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Proof. The proof follows immediately by Proposition 2.22 and the fact that the Helgason-
Fourier transform satisfies Property f. O

Some comments are in order. Proposition 2.24 with Corollary 2.25 shows the link
between the range of the Radon transform with the range of the Helgason-Fourier
transform, which will play a crucial role in our main result. The range R(D(X)) has
already been completely characterized in Chap. IV in [37]. As it will be made clear in
the following, Property b better suits our needs.

2.3.2 Unitarization and intertwining

In order to obtain the unitarization for the horocyclic Radon transform that we are
after, we need some technicalities.
We put

D,={pel2(K/MxA): I® F)pe LiC(K/M x a*)}

and we define the operator J,: D, € L2(K/M x A) — L2(K/M x A) as the Fourier
multiplier

(I® F)(Top)(EM,\) = (IQF)p(kM,N), ae. (kM) e K/M x a*.

1
Vwle(N)]|
We define the set of functions

E={FeL*E): ®.F e L} (K/M x a*)}
and we consider the operator A: £ € L%(Z) — L%(Z) given by
AF = U L Ut F.

As a direct consequence of the definition of A and 7, for every F' € £ and for
almost every (kM,\) € K/M x a* we have (see the rightmost block in Fig. 2.5)

Bo(AF)(kM,\) = (I ® F)(J,U*F)(kM,\)
1 %
= i tep (L @ P EEE) kMY
1
= ey e M), (2.33)

The operator A intertwines the regular representation 7 as shown by the next
proposition.

Proposition 2.26. The subspace & is w-invariant and for all F € £ and g € G
w(g)AF = A7 (g)F. (2.34)
Proof. We consider F' € £, g € G and we prove that 7(g)F € £. By (2.25)

#(g)F o Uo(kM,a) = F o W 1 (g~ kM), a)
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for almost every (kM,a) € K/M x A. Therefore, we have
WE(#(9) F) (M, @) = Wy F(g™ kM), 0)
and consequently by equation (2.31)
B, (F(g)F)(EM, \) = (1® Fa) (W 1y F) (g~ kM), )
= PN A1 0o RN G (F) (g RMY, ) (2.35)
for almost every (kM,\) € K/M x a*. By equations (2.35), (2.24) and (2.23)

J |0 (7 (9) F) (KM, A)ﬁLM);i/\
me wleOV|

_ dvo(kM)dA
1kM )\ 22P (Og 1<kM>))
LJK/M kM), A)le wle(N) P

P 9" [o]
= f | D, F(kM, )\)\262,0(149_1[0](0,1@1\4)) dv (kM)dA
K/M xa* w|c()\)\2

:J |, F (kM, )\)‘QM
K/M xa* | ( )|

and we conclude that 7(g)F € £. We next prove the intertwining property (2.34). We
have already observed that, by Proposition 2.24, it is enough to prove that

Do (T(9)AF) = @0 (ATt (g)F)

for every g € G and F € £. By equations (2.35) and (2.33), for almost every (kM,\) €
K/M x a*, we have the chain of equalities

B (7(g)AF) (KM, \) = P~ N Ag-110@9 EMN g (A BY(g~L(kDMY, N)

L (=N (A1 (0.9~ kD)) -1
— e g~ o]\ D, (F)(g {kM>,\
NI (F) (g™ (k). )
1
= ——®,(7(g)F)(EM,\) = ®,(A7(g)F)(EM, \),
e P RO, ) = @ (A(g) ) (k1.)
which proves the intertwining relation. O

The next result follows directly by Proposition 2.24 and equation (2.33).
Corollary 2.27. For every F € £, AF € LZ(2) if and only if F € LZ(E).

Proof. By Proposition 2.24, AF € L2( ) if and only if ®,(AF') satisfies Property f. By
(2.33) and since A — |c(A)| is W-invariant, ®,(AF') satisfies Property # if and only
if ®,(F) satisfies Property #, which is equivalent to F € LZ(Z). This concludes the
proof. O

We are now in a position to prove our main result.
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A

ENLLE) « £ L*(Z)

*(X) ——— D(X)

time

frequency

A
L2 (K/M x a*) ——

Figure 2.5: Spaces and operators that come into play in our construction.

Theorem 2.28. The composite operator AR extends to a unitary operator
Q: LA(X) — LX)
which intertwines the representations m and 7, i.e.
7(9)Q =Qn(g9), geG. (2.36)

Theorem 2.28 implies that 7 and the restriction 7| 12(z) of 7 to L2(Z) are unitarily
equivalent representations. Moreover, 7| L2(E) (and then 7) is not irreducible, too.

Proof. We first show that AR extends to a unitary operator Q from L?(X) onto L?(Z).
It might be useful to keep in mind see the leftmost block in Fig. 2.5. Let f € D(X),
by the Fourier Slice Theorem (2.30), the Plancherel formula(1.11) and the definition of
Jo and A, we have that

HfH%Q(X) = H/Hf”%g,c(K/an*)ﬂ
= [T @ F)CS(RMITz (/a1 e

[ @RI R (M, NP (EM)A
K/M xa*
= [ @ AR) (kM A) P (M)A
K/M xa*
:J |T*(ARSf)(EM, a)|*dv° (kM )da
K/MxA
= [ARf|72z)-
Hence, AR is an isometric operator from D(X) into L?(Z). Since D(X) is dense in

L*(X), AR extends to a unique isometry from L?(X) onto the closure of Ran(AR) in
L?(Z). We must show that AR has dense image in L?(Z). The inclusion Ran(AR) =
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L2(Z) follows immediately from Corollary 2.25 and Corollary 2.27. Let F € LZ(Z) be
such that (F,ARf)r2=) = 0 for every D(X). By the Plancherel formula (1.11) and
the Fourier Slice Theorem (2.30) we have that

0 =(F, ARf>L2(E)

_ J (F o W,)(kM,a)(ARf o U,) (KM, a)e219) 0 (kM) da
K/MxA

_ J (U F)(kM, a) (7,97 (RF)) (M, a)dv® (kM)da
K/MxA

- L(/M , Qo(E) (KM, (I @ F)(JoW5(RS)) (kM A)dv® (kM)A

dve (kM)dA
Vwle(M)]
dv° (kM)dA

wle(M)[?

_ j By (F) (M, N T ® F) (U5 (R])) (DM, )
K/M xa*

_ J Vwle(N)| @, (F) (kM, \YHf (KM, X)
K/M xa*

For simplicity, we denote by ©F the function on K/M x a* defined as
OF (M, \) = vw|c(\)|®o(F)(kM, \), a.e. (kM,\) e K/M x a*.

Hence we have proved that (OF,Hf) = 0 for every f € D(X). The next two facts
follow immediately by Proposition 2.24. Since ®, is an isometry from L?(Z) into
L2 (K/M x a*), the function ©F belongs to L2 ,(K/M x a*). Further, since F € LZ(Z)
and since A — |c(\)| is W-invariant, then OF € L2 (K/M x a*)f. By Theorem 2.16,
H(D(X)) is dense in L2 ,(K/M x a*)?. Hence, OF = 0 in L2 ,(K/M x a*)? and then
®,(F) =0in L2 (K/M x a*). Since ®, is an isometry from L?(Z) into L2 (K /M x a*),
then F = 0 in L?(Z). Therefore, Ran(AR) = LZ(Z) and AR extends uniquely to a
surjective isometry
Q: L*(X) — LZ(T).

Observe that Qf = AR f for every f € D(X). The intertwining property (2.36) follows
immediately from Proposition 2.23 and Proposition 2.26. O
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Chapter 3

Radon transform on homogeneous
trees

This chapter contains the results published in [7]. The purpose of the work is to write
a unitarization result, that is a version of Theorem 1.35 and 1.38, in the setup of the
horocyclic Radon transform on homogeneous trees.

The idea of considering homogeneous trees is motivated by the fact that they are
a family of discrete spaces having a lot of similarities with the symmetric spaces of
the noncompact type of rank 1 analyzed in the previous chapter. Among others, the
definitions of boundary and horocycle are developed on the homogeneous trees. Conse-
quently, the Radon transform is defined on horocycles. After the results of Chapter 2,
a natural question is if the similarity of the two setting leads us to an analog result for
the horocyclic Radon transform on homogeneous trees. Indeed, this setting, as the one
in the previous chapter, does not satisfy the assumptions of [1].

The horocyclic Radon transform R on homogeneous trees was introduced by P. Cartier [14]
and studied by A. Figa-Talamanca and M.A. Picardello [23], W. Betori, J. Faraut and
M. Pagliacci [12], M. Cowling, S. Meda and A.G. Setti [18], J. Cohen, F. Colonna and
E. Tarabusi [15], and A. Veca [52], to name a few. Some of the typical issues considered
are inversion formulae and range problems.

We consider the group G of the isometries of the homogeneous tree X and we
show that the counting measure on X is G-invariant and horocycles = are endowed
with a G-invariant measure, too. The main result of our work is to provide a formula
for the pseudo-differential operator A such that AR extends to a unitary operator
Q: L*(X): LZ(Z), where even in this case LZ(Z) keeps track of symmetries naturally
satisfied by the structure of the Radon transform. Furthermore we show that Q in-
tertwines the two quasi regular representation m and # of G on L*(X) and LZ(Z),
respectively.

Our approach is similar to the previous chapter, but the techniques and the ideas
behind the results are sometimes very different. Also in this setup, horocycles can be
parametrized by an element of the boundary € and an integer number (instead of an
element of the Abelian subgroup A) w.r.t. every reference vertex z € X. We keep track
of these parametrizations with the family of functions

U,: QxZ—=

81
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defined in (3.3). Again, the key of our work lies in the freedom of changing the reference
point, which permits us to relate the range of the Helgason-Fourier transform and
LE(E), the image of the unitarization Q. This relation is highlighted in Proposition 3.9
which shows how these spaces are related by the Fourier transform of ¥*, the pull-back
of ¥,. Given a Fourier multiplier J, on functions defined on  x Z, the main operator
is A = W*~1 7,0* Also on the homogeneous trees, the definition of A can be seen to
be independent of the choice of the reference vertex o € X.

The chapter is organized in three sections. In Section 3.1, we present the main
notions and the relevant results in the theory of homogeneous trees, presenting notions
as boundary and horocycle. In Section 3.2, we introduce measures involved in our
analysis, we present the group of automorphisms on the tree and its quasi regular rep-
resentations, and then, we give a brief overview of the Helgason-Fourier transform. In
Section 3.3, we recall the horocyclic Radon transform on homogeneous trees, we present
its link with the Helgason-Fourier transform and we show its intertwining properties
with quasi regular representations. Finally, we prove the unitarization theorem for the
horocyclic Radon transform.

3.1 Homogeneous trees

In this section we recall the basic definitions and facts on homogeneous trees that will
be used throughout, focusing on the space of horocycles. We refer again to [12], [18]
and [22].

Section 3.1.1 contains the very basic definitions on homogeneous trees and fixes
terminology used throughout. It has to be considered as a concise introduction for
Chapter 4, too. Then we present the boundary €2 of a homogeneous tree in Section 3.1.2.
It is one of the clearest point of contact with symmetric spaces of rank one, and in
particular with the hyperbolic disk. Finally, we introduce the family of horocycles and
their different parametrization through Q x Z w.r.t. every possible reference vertex.
We stress the similitude with the hyperbolic disk where horocycles are parametrized
by the product of the boundary with the subgroup A ~ R.

3.1.1 Preliminaries

A graph is a pair (X, €), where X is the discrete set of vertices and € is the family
of edges, where an edge is a two-element subset of X. We often think of an edge as
a segment joining two vertices. If two vertices are joint by a segment, that is they
belong to the same edge, they are called adjacent. A tree is an undirected!, connected,
loop-free graph. In this chapter and in the following we are interested in homogeneous
trees. A g-homogeneous tree is a tree in which each vertex has exactly ¢ + 1 adjacent
vertices. If ¢ > 1, a g-homogeneous tree is infinite. From now on, we suppose ¢ > 2 in
order to exclude trivial cases, that is, segments and lines. Furthermore, with a slight
abuse of notation, we shall often call the set of vertices a tree, implying the structure
of edges which is totally clear on homogeneous trees.

! A graph is undirected if edges are unordered pairs.
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Given u,v € X with u # v, we denote by [u,v] the unique ordered t-uple (z¢ =
Uy L1, ..., 241 = v) € X! where {x;,7;11} € € and all the x; are distinct. We call
[u,v] a (finite) t-chain and we think of it as a path starting at uw and ending at v or,
equivalently, as the finite sequence of consecutive 2-chains [u, z1], [z1, 2], . .., [xi—2, v].
With slight abuse of notation, if [u,v] = (xo,...,2—1) we write u,v,z; € [u,v] and
[u,v] = [u,z;] U [zi,v], i € {1,...,t — 2}. In particular, if u and v are adjacent, both
[u,v], [v,u] € X? are oriented, unlike the edge {u,v} € & which is not. A homogeneous
tree X carries a natural distance d: X x X — N, where for every u, v € X the distance
d(u,v) is the number of 2-chains in the path [u,v]. Thus, paths minimize distance and
are geodesics of the tree.

Figure 3.1: A portion of a 2-homogeneous tree

3.1.2 The boundary of a homogeneous tree

An infinite chain is an infinite sequence (x;)en of vertices of X such that, for every
i €N, d(x;,i11) = 1 and z; # ;.2. We denote by ¢(X) the set of infinite chains on X.
We say that two chains (x;)en and (y;)ien are equivalent if there exist m € Z and N € N
such that x; = y; 4, for every i = N and, in such case, we write (2;)eny ~ (¥;)ien. The
boundary of X is the space Q of equivalence classes ¢(X)/ ~. Observe that an infinite
chain identifies uniquely a point of the boundary, which may be thought of as a point
at infinity. In fact, it is well known [16] that a homogeneous tree of even order ¢ + 1
can be isometrically embedded in the unit disk, the latter endowed with its hyperbolic
metric, in such a way that the limit points of infinite chains correspond a.e. to the
points of the unit circle, the topological boundary of the unit disk.

We denote by p the canonical projection of ¢(X) onto Q. For v e X and w € 2 we
write [v,w) for the unique chain (x;);cy starting at v, i.e. ¢ = v, and “pointing at” the
boundary point w, i.e. p((x;)ien) = w. Furthermore, given wy,ws € Q with wy # wsy, we
denote by (wi,ws2) the unique infinite sequence of (distinct) vertices (z;);ez such that
(_;)ien € w1 and (x;)en € we, and we call it a doubly infinite chain. The boundary €2
is endowed with the topology (independent of the reference point v) generated by the
open sets

Qy(u) ={we:uev,w)}, ue X.
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With this topology, €2 is a compact topological space. For later use, we remark that in
every class w € €2, there is a unique infinite chain [v,w) starting at v, and we denote
by

Iy ={[v,w):weQ}.

the set of all infinite chains starting at v. Clearly I';, and €2 may be identified.

3.1.3 Horocycles

A 2-chain [v,u] is said to be positively oriented with respect to w € Q if u € [v,w),
otherwise we say that [v,u] is negatively oriented.

For w € Q and v,u € X, we denote by ky(v,u) € Z the so-called horocyclic index
of v and w w.r.t. w, namely the number of positively oriented (w.r.t. w) 2-chains in
[v, 4] minus the number of negatively oriented (w.r.t. w) 2-chains in [v, u]. Horocyclic
index £y (v, ) on the tree is the analog of the function A, (-, kM) on symmetric spaces
introduced in Definition 2.8, indeed,as we will see below, in both the cases horocycles
can be outlined as counterimages of an integer or an element of the abelian subgroup
A through k(v,-) and A, (-, kM), respectively. An easy idea of the geometric meaning
of the horocyclic index is given by Figure 2.2 in which the tree is subdivided in layers
from the value of the horocyclic index w.r.t. a point at infinity which lies above.

Clearly, |kw(v,u)| < d(v,u). It is easy to verify that, for every v,u,z € X and for
every w € {2,

Rw(v,2) = Ky(v,u) + Ky (u, x). (3.1)

Furthermore, we have the following result, which relates the definition of horocyclic
index that we adopt with the one presented in [18|, which will be useful in the following.

Proposition 3.1. Let ve X and w e Q. If [v,w) = (x;)ien, then for every x € X

Hw(v7 ‘T) = hm (Z - d(xv ml))
1—00
Proof. We fix x € X and we observe that
lim (i — d(z,x;)) = lim (d(v, z;) — d(z, x;)).

1—00 1—00

Since [v,w) ~ [x,w), then there exists N € N such that zy € [z,w) and xn_1 ¢ [z,w),
with the understanding that if v € [z,w) then N = 0. Thus, for all i > N

d(v,z;) —d(z,z;) = d(v,zy) — d(x, zN)

and then
lim (d(v, z;) — d(z,2;)) = d(v,xn) — d(z,xN).

1—00
Furthermore, [v,z] = [v,zn]U[zN, x], where [v, 2] is the union of positively oriented
2-chains and [z, ] is the union of negatively oriented 2-chains. Hence,

Ko(v,2) = d(v,zN) —d(z,xzn) = lim (d(v, ;) — d(x, x;)) = lim (i — d(z, x;))

1—00 1—00

and this concludes the proof. O
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We are now in a position to introduce the horocycles.

Definition 3.2. For w € ), v € X and n € Z, the horocycle tangent to w of index n
with respect to the vertex v is the subset of X defined as

hyn =A{r€ X : hu(v,z) =n}.

We denote by = the set of horocycles.

Figure 3.2: A part of a 2-homogeneous tree. It is possible to see a relation with
Figure 2.1. The bundle of (red) parallel geodesics here is the family of all the geodesics
“ending” in w € §2; we represent only two of them. The tree is covered by the family
of horocycles “tangent” to w which here are represented as unions of vertices lying
on horizontal layers (dashed green lines). Actually, every layer is just a portion of a
(infinite) horocycle.

It follows immediately from (3.1) that for every v,ue€ X, ne Z and w € Q

h,n = by, (3.2)

wn+rew(u,w)

Hence the mapping (v,w,n) — h{, ,, is not injective and so = is not well parametrized
by X x € x Z. However, for fixed v € X, the map (w,n) — h, ,, is actually bijective,
so that Z may be identified with €2 x Z. Formally, for every v € X, there is a bijection

U,: QxZ— ZE, Uy(w,n) = hg, (3.3)

and, for every fixed w € 2, X can be covered disjointly as

X =Jh.

nez

This is clear also through Figure 3.2, where we fix the point at infinity and the integer
element outlines the “height” of the horocylce w.r.t. a reference vertex, v e X.
By equality (3.2), for each pair of vertices u, v € X

Ul oW,(w,n) = (w,n + Ky (u,v)).

The topology that = inherits as product of €2 and Z is proved to be independent of the
choice of v € X.
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At this point, the analogy with symmetric spaces can be highlighted. Horocycles
are parametrized by €2 x Z in different way, namely for every v € X the function ¥,
corresponds to a different parametrization. The notation for the parametrization is the
same of Chapter 2, the parameters of course are not. Although the correspondence
of the boundary of, say, the disk with  is clear, the role of the subgroup A ~ R of
SU(1,1) is played by Z. This is one of the reason for which homogeneous trees can be
seen as the discrete counterpart of hyperbolic disk and, in general, symmetric spaces
of rank one.

3.2 Analysis on homogeneous trees

The aim of this section is to describe the analysis on homogeneous trees, from the
measures involved to the Fourier transform defined on X. Standard references for
these are [12], [18] and [22].

We start by showing that the machinery of dual pairs devised by Helgason (see
Section 1.3.1) is applicable to homogeneous trees and horocycles. In particular both
the homogeneous tree X and the family of horocycles = are homogeneous spaces of the
group G of isometries on X and carry G-invariant measure. For every « € X, we endow
the (compact) boundary Q with a K, -invariant (probability) measure, where K, is the
isotropy subgroup of GG at . As on the boundary of symmetric spaces, we analyze the
relation between them. Even in this case, the possibility of changing reference point
is crucial; in particular it helps in the expression of the ranges of Helgason-Fourier
and Radon transforms. Section 3.2.3 is devoted to a brief overview of the Helgason-
Fourier transform. Finally, in Section 3.2.4 we give the definitions of the quasi regular
representations 7 and # on L?(X) and L?(E), respectively, highlighting the fact that
m is not irreducible.

3.2.1 Group actions

From now on, we fix a vertex o € X. As in the previous chapter, this is not a privileged
point because every vertex has the same properties in a homogeneous tree. Fixing o
will avoid confusion when in the following we would like to stress the changing of the
reference point. Furthermore, we denote |z| = d(o, z) for every z € X.

Let G be the group of isometries on X, that is the group of bijections g: X — X
which preserve the distance d. The group G is unimodular and locally compact, and
acts transitively on X by the action

(9,2) — glx] :=g(x), ged.

We denote by K the stability subgroup at o. It turns out that K is a maximal compact
subgroup of G and under the canonical bijection gK — g[o] we have the identification
X ~G/K .

The group G acts on the boundary as well. Indeed, it is easy to see that if g € G and
(x:)ien ~ (Yi)ien, then (g[x:])ien ~ (9[vi])ien, so that the transitive action of G on X
induces a transitive action of G on €. Indeed, if (z;)ien € ¢(X), then (g[z;])ien € ¢(X)
as well, because

d(glzi], glziv1]) = d(ws, 2i41) = 1
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and g[x;] # g[zrit2] since g is an isometry. Furthermore, (x;)en ~ (¥;)ien implies that
there exist m € Z and N € N such that d(g[x;], 9[¥i+m]) = d(zi, Yitm) = 0 for every
i = N and then (g[z;])ien ~ (9[yi])ien. Precisely, the group G acts on €2 by the action

(9,w) — g{w) = p((g[zi])ien),  w = p((%4)ien)-

This, in turn, induces a transitive action of K on the set I', of infinite chains starting

at o by means of
(k, [o,w)) — [0, k{w)), weQ.

We fix wg € 2 and we denote by K, the stabilizer of [0,wp) in K, so that T', ~ K/K,,,.

The group G of isometries of X acts transitively also on the space Z of horocycles
through the action on vertices because the G-action maps horocycles in themselves.
Indeed, if £ € 2, & = hY,, withv e X, we Q, neNand [v,w) = (z;)ien, then for

every g € G o
gl¢] = {9lz] : z € X, ky(v,x) =n} ={g[z] :x € X, Zli)r&(z —d(z,x;)) = n}
— fwe X : lm(i— dlg~[],20)) = }

1—00

= {we X : lim (i — d(z,g[])) = n}

={reX: Hg<w>(g[v],$) =n}

by Proposition 3.1. Basically, we proved that

Fw (0, ) = Fgy(glv], glz]). (3.5)
Therefore, from (3.4), G acts transitively on Z by

v — v ._ 19l
(97 hw,n) g'hw,n T hg<w>,n'

Fix next wg € 2 and consider the horocycle
& = hZO’O ={z e X : Ky,(o,x) = 0}.
If [o,wp) = (%i)ien, then

060 = e X : I (i — dz,gfa:))) = 0},

Hence, the isotropy subgroup at & is H = U;io Hj;, where H; is the subgroup of
isometries fixing the sub-path [z;,wo) € ¢(X). Therefore, Z ~ G/H. Observe that H
is the isotropy subgroup of G' at h{, ,, for every n € Z. Thus, by (3.2), H is the isotropy
subgroup of G at every horocycle tangent to wo, namely at hJ, ,, for every n € Z and
veX.

Let 7 € G be a one-step translation along (w1,wp), with wy € Q\{wp}, where wy is
as in the definition of H (see [22| for further details on the one-step translations in G).
Let v € (wp,w1) and assume 7(v) € [v,wp). Furthermore, denote by A the subgroup
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of G generated by the powers of 7. It is easy to see that the group A acts on H by

conjugation. Indeed, for every m € Z and g € H, g stabilizes every h’

wo.n and hence

o] m h'rim[o] _ hTmTim[O] = &,

m . _—m . m T o
T gT 'fO_T g-thp =T . wo,0 wo,0

where we use that 7" -wp = 77™-wp = wp. It has been proved in [52] that the resulting

semidirect product H x A has modular function
A(h,7™) =q¢ ™.

With slight abuse of notation, we write A~3 for the function A~3: Z — R, defined
by

A3 (n) =g,
and in what follows, the same notation is used for its trivial extension to  x Z. It is
straightforward to see that n — ¢2 plays the role of a — (%29 in (2.20).

3.2.2 Measures

We endow X with the counting measure dx which is trivially G-invariant, and we
denote by L?(X) the Hilbert space of square integrable functions with respect to dz.

As far as () is concerned, recall that  is identified with I', on which K acts
transitively. Therefore, I', admits a unique K-invariant probability measure u°. We
denote by v° the measure on {2 obtained as the push-forward of u° by means of the
canonical projection pj. : ', — €. It has been shown in [22] that

o _ q
v2(Qo(u)) = @+ Dgien’ u # o.

The measure v° is G-quasi invariant and, by definition, the Poisson kernel p,(g,w)
is the associated Radon-Nikodym derivative dv°(g~!{w))/dv°(w), i.e. for every F in
LY(Q,1°)

f Flg (@) d°(w) = f F@)polg ™ w)d?(w),  geG. (3.6)
[9] Q

It is possible to prove [22] that

Polg,w) = g (@leD,
Since v° is K-invariant, we may write p,(¢K,w) instead of p,(g,w). For every other
choice of the reference vertex v € X the analog objects K, (the isotropy subgroup of G
at v), T'y, u¥, V¥, p, can be introduced. It turns out that the measure v° is absolutely
continuous with respect to v¥. Precisely

| P = | Peroar)

Q
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for every F € L'(,v°). Therefore, we can endow the boundary 2 with infinitely many
measures which are absolutely continuous with respect to each other.

In order to adequately describe the measure on = relative to which we form the
Lebesgue spaces L'(Z) and L?(Z), we need the parametrization (3.3). The idea is to
define compatible measures on §2 x Z and = in the sense that the natural pull-back of
functions induced by the mapping ¥, : {2 x Z — = induces a unitary operator W} of the
corresponding L? spaces. To this end, we consider the measure on Z with density ¢"
with respect to the counting measure dn. We fix v € X and endow = with the measure
A obtained as the push-forward of the measure vV ® ¢"dn on € x Z by means of the
map ¥, i.e.

A = Uy, (v @ q"dn),

which is independent of the choice of the vertex v (see [12]). We denote by L!(Z)
and L?(Z) the spaces of absolutely integrable functions and square integrable functions
with respect to A, respectively. Thus, by definition of \, for every F € L!(Z)

J; F(&)dA(¢) = fg Z(F oW, )(w,n)q"dv’(w)dn.

It is easy to verify that A\ is G-invariant.

For every v € X, let L2 (€2 x Z) be the space of square integrable functions w.r.t.
the measure vV ®dn. For every F € L?(Z), we denote by W¥F the (L?(Z), L2 (Q x Z))-
pull-back of F' by W,, which involves the function A~ introduced in the previous
subsection, namely

U F(w,n) = (A2 - (F o 0,))(w,n),

for almost every (w,n) € Q x Z. Clearly, U* is a unitary operator from L?(Z) into
L2 (9 x Z). Indeed, for every F € L?(Z) we have that

* 2 1 2
j | VS F(w,n)|” dv’(w)dn =f ‘(A 2 (FoW,))(w,n)| dv’(w)dn
QX7

QX7

= f |(F o W,)(w,n)|? ¢"dv’(w)dn
QX7
= [_LIF@PaAE) = [FI7)
and then ¥ is an isometry from L?(Z) into L2 (2 x Z). Surjectivity is also clear.

3.2.3 The Helgason-Fourier transform on homogeneous trees

The Helgason-Fourier transform can be defined on homogeneous trees (see [18], [22],
[23]) in analogy with the setup of symmetric spaces, see Section 2.2.2 and [37]. We
briefly recall its definition and its main features. We put T' = 27/log(q), T = R/TZ ~
[0,7) and we denote by d¢ the normalized Lebesgue measure on T.

Definition 3.3. The Helgason-Fourier transform of f € C.(X) is the function Hf :
Q x T — C defined by

= D fla)gzinea) () e Qx T. (3.7)

zeX



90 CHAPTER 3. RADON TRANSFORM ON HOMOGENEOUS TREES

As the Euclidean Fourier transform, the Helgason-Fourier transform extends to a
unitary operator on L?(X) (see [22], [23]). The Plancherel measure involves a version
of the Harish-Chandra c-function inspired by the symmetric space construction (see
Section 2.2.2 and for a concise exposition [30]), namely the meromorphic function

1 11—z _ z—1
c(z) = — - ql a , ze C with ¢**71 # 1.
Q2 +q 2927 —q"

M

We put
q
= — 3.8
and we denote by L2(€2 x T)* the space of functions F in L2(€ x T), the space of square
integrable functions on 2 x T w.r.t. the measure ¢4 |c(1/2 + it)| "% dvodt, satisfying the

symmetry

f pa(x,w)%_itF(w,t)duo(w) :J po(ac,w)%“tF(w, —t)dv°(w), (3.9)
Q Q

for every z € X and for almost every ¢t € T.
As in the Euclidean case and in Theorem 2.16, the Helgason-Fourier transform
extends to a unitary operator on L%(X).

Theorem 3.4 (|22]|). The Helgason-Fourier transform H extends to a unitary isomor-
phism A from L2(X) onto L2 (Q x T)*.

3.2.4 Representations

Here we present the two representations of G which we are interesting in: the one on
L?(X) and the one on L?(Z) which we denote by 7 and #, respectively. Furthermore,
we show that 7 is not irreducible. The representation 7 is not irreducible, too, but we
do not show it since, as a consequence of our main result, Theorem 3.14, we have that
7 is unitary equivalent to a subrepresentation of 7.

3.2.4.1 Quasi regular representation on L?(X)

Recall that X is endowed with the counting measure dx which is trivially G-invariant.
Thus, the group G acts on L?(X) by the quasi regular representation 7: G —
U(L?(X)) defined by

m(9)f(x) = flg7[«]),  feL*(X), g€,

where U(L?(X)) denotes the group of unitary operators of L?(X).

The representation 7 is not directly treated in the analysis on G: the regular rep-
resentation on L2(G) is preferred. For this reason we have not found a clear statement
about the irriducibility of m. We present now a short proof that 7 is not irreducible.

We use the characterization of irreducibility given by Lemma 1.8, for which the
representation 7 is not irreducible if and only if there exist two functions hi, ho €
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L?(X)\{0} such that (hy,m(-)hayp2(x) vanishes identically on G. We start by proving
that for f € L?(X) and g € G, the action of G on X in frequency reads

A (w(9)f)w.1) = gD g f (g7 W) 1), (@) eQx T (3.10)
By the density of C,.(X) in L?(X), it is sufficient to prove (3.10) for f € C.(X). Indeed,

H(m(g)f)(w,t) = Z f(g—l[x])q(éﬂt)nw(o,x)

reX
Z fx 1 4it)rw (0,9[z])
CCEX
. +zt nw +’Lt Kw(g o].g[z])
= 42 Z fla
reX
+zt nw +zt Ky—1 (0,2)
— q Z f(x (w)
reX

_ q(%+it)nu(07g[0])7-[f(g_l <W>a t)7

where we used (3.1) and (3.5).
Now we want to find two not vanishing functions of L?(X) whose corresponding
coefficient vanishes identically on G. We introduce the subset

A:=Qx[i,f]§QxT=Qx[0,T).

Take f € L?(X). We know that sZf € L2(Q x T)! and if we multiply #f by the
characteristic function of A or A¢ it remains in L2(Q x T)* since (3.9) is true if the
function is restricted to a symmetric subset. We therefore choose

hy = A" H(xaHf), he=H " (xacHF).

Observe that the coefficient associated to hy and hg is

<h1a7r(g)h2>L2(X) :<XA%fvf%ﬂ(ﬂ(g)hQ»Lg(Qx'ﬂ‘)ﬁ
fLTMWﬁMMfWWﬁ%W%ﬁ%ﬂIW@ﬁ

[o]) quVO(W)dt -
e(5 +it)]>

« q(%—it)nw(o,g
Finally by Lemma 1.8, we conclude that m is not irreducible.

3.2.4.2 Quasi regular representation on L?(Z)

Similarly, since A is G-invariant, the group G acts on L?(Z) by the quasi regular unitary
representation #: G — U(L?*(Z)) defined by

#(9F(€) :=F(¢g'¢), Fel’E),geC
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3.3 Unitarization of Radon transform

In this last section, we present the horocyclic Radon transform and the main operators
which come into play in our main result: the extension of Theorem 1.35, presented in
Theorem 3.14.

Below we recall the definition of the horocyclic Radon transform on homogeneous
trees and its fundamental properties. As already mentioned, the horocyclic Radon
transform is precisely the Radon transform & la Helgason relative to the dual pair
(X,E). As for symmetric spaces, the case of homogeneous trees is not covered by the
general setup considered in [1] since the quasi regular representation 7 of G on L?(X) is
not irreducible. For this reason, we can not apply the results presented in Section 1.3.2
in order to obtain a unitarization theorem and we therefore adopt an approach which
mimics the one used in [46] and [6] in the case of the polar and the affine Radon
transforms, respectively.

We recall a version of the Fourier slice theorem for homogeneous trees (Proposi-
tion 3.7). Its role is to relate the Helgason-Fourier transform with the horocyclic Radon
transform. As in Chapter 2, the key of the proof of the unitarization result can be out-
lined in Proposition 3.9 and then in the role of ®,. Roughly speaking, Proposition 3.9
highlights the relation between the range of the Helgason-Fourier tranform and the
range of the Radon transform; more precisely, the range of the unitarization of the
Radon transform, LE (Z). This space is not the full L? space of = but it keeps track of
the symmetries which are naturally satisfied by the Radon transform.

Section 3.3.2 contains our main result, Theorem 3.14. The operator A involved
in the unitarization of the Radon transform is the conjugation by ¥, of a Fourier
multiplier J, on Z. The operator J,, as V¥,, depends on the choice of the reference
vertex o. Anyway, it is important to stress that A is independent of the reference
vertex. The intertwining property of Q follows from the fact that the Radon transform
(Proposition 3.8) and operator A (Proposition 3.12) are invariant under the action of

= A - A -
L2(2) EnLiE) ————— L2(®)
Q| AoR R vk |\
2 Jo 2
L*(X) —— D(X) D, Li (2 x 7Z)

Figure 3.3: The operator A is defined Figure 3.4: The Fourier multiplier 7,
on the dense subset £& < L?(E) and is defined on the dense subset D, <
maintains Property b. Its precomposi- L2(€ x Z) and is “transported” on func-
tion with R extends to a unitary opera- tions defined on = by the conjugation
tor Q on L%(X). with W,
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3.3.1 The horocyclic Radon transform

The definition of the horocyclic Radon transform is quite immediate. From the point
of view of Helgason, the crucial fact is that the counting measure restricted to the
horocycle &y is H-invariant, where H is the isotropy subgroup of G at &.

Definition 3.5. The horocyclic Radon transform R f of a function f € C.(X) is the
map Rf : Z — C defined by
Rf(€) =) f(@).

zel

We recall that for every v € X there exists a bijection ¥,: 2 x Z — = given by
(w,n) = hy, , and we shall write R, f = Rf o ¥,
Definition 3.6. The Abel transform Af of a function f € C.(X) is the map Af :
Q x Z — C defined by
1

Af(w,n) = V5(Rf)(w,n) = (A72 - Rof)(w,n).

We need the Fourier transform on L?(Z). As we have seen in Section 1.1.3, the
definition of the Fourier transform on Z strongly depends on the choice we made on
the parametrization of T. In fact, such parametrization determines the period of the
Fourier transform. The choice which better suits our needs is

[0,T] 5t — eiF T = ¢ teT.

We have already discussed the choice to consider the negative power in Section 1.1.3,
while the decision to express the parametrization as power of g is determined by the
expression of the Helgason-Fourier transform (3.7).

We denote by L2T the space of T-periodic functions f on R such that

T
A R

Let s € L?(Z), the Fourier transform Fs of s is then defined as the T-periodic function
having Fourier coefficients (s(n))nez. Precisely,

Fs= Z s(n)g™,

neZ

where the series converges in L%. The Plancherel formula (1.11), also called Parseval
identity in this case, reads
| FslZz = > ls(m)l.

nez
Furthermore, if s € L'(Z), for almost every t € T

Fs(t) = 3 s(ng™.

neZ

We are now ready to state the result which relates the Helgason-Fourier transform
with the horocyclic Radon transform. For the reader’s convenience, we include the
proof.
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Proposition 3.7 (Fourier slice theorem, version I, [13, 18|). For every f € C.(X) and
weQ, Af(w,-) e LY(Z) and

(1 F)Af(w,1) = Hf(w,1) (3.11)
for almost every t € T.

We refer to Proposition 3.7 as the Fourier Slice Theorem for the horocyclic Radon
transform in analogy with the polar Radon transform, see Theorem 1.34, and with the
symmetric spaces case, see Theorem 2.22.

Let f e C.(X) and v € X. By Parseval identity and Proposition 3.7 we have that

LIRFOPING = | [W5R ) wrn) P ()
= f (I @ F)Af(w,t)|?dv°(w)dt
QxT
= f |H f(w, t)|?dv° (w)dt.
QxT

Since f has finite support, then by the definition of the Helgason-Fourier transform,
the inequality |k, (0, z)| < |z| and v°(©2) = 1 the above leads to

LRAOPAO = | |3 fapgEromenpae wyar
= QxT acebuppf
2
Kw(0,x) °
<[ | X veu) ew
Q zesuppf

<[ 2 pwe] ¥ f 0D ()

zesupp f zesupp f

<| X H@P| > <+

zesupp f zesupp f

Therefore, Rf € L*(Z) for every f € C.(X). The horocyclic Radon transform inter-
twines the regular representations of G on L?(X) and L?(Z). This result is a direct
consequence of the fact that X and Z carry G-invariant measures dz and dA.

Proposition 3.8. For every ge G and f € C.(X)
R(m(g9)f) = 7(9)(Rf)-
Proof. For all g € G and f € C.(X)

=D g =)= > fly 9(RF)E),

x€e€ yeg—L.€

for every £ € E. O
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We now introduce a closed subspace of L?(Z) which will play a crucial role because

it is the range of the unitarization of the horocyclic Radon transform.
For every F € L*(Z)

P22z, fZ]\IIFwn|dV()<+oo.
nez

Hence, the function ¥ F(w, -) is in L?(Z) for almost every w € Q. Moreover, by Parseval
identity and Fubini theorem

Pl = | I05F G, m) P (w)dn
QxZ
- J f (1@ F)U2 F(w, £)2dv®(w)dt < +o0.
TJQ
Then, for almost every ¢ € T the function (I ® F)W:F(-,t) is in L?(£2,°) and
|J (I®F)ViF(w,t)dv’(w j (I ® F)V:F(w,t)|dv’(w) < 400.
We denote by L2( ) the space of functions in L?(Z) satisfying the symmetry condition

f (I ® F)U*F(w, t)dv°(w) = J (I® F)U* F(w, —t)dv°(w) (3.12)
Q Q

for every v € X and for almost every t € T.

Our main results in Section 3.3.2 are based on the following characterization of
L2(Z). We denote by L*(2 x T) the space of square integrable functions on € x T
w.r.t. the measure v° ® dt.

Proposition 3.9. Let ve X. We define the operator ®, on F € L?*(E) by
O,F(w,t) = [ @ F)U;F(w,1) = (I@ F)(A72 - (Fo W) (w,1),

for a.e. (w,t) € Q x T. Then ®, is an isometry from L*(Z) into L? (Q x T). Further-
more,

D, F(w,t) = po(v,w)? 2titg oF(w, t), (3.13)

for a.e. (w,t) € Q x T. Finally, a function F belongs to LE(E) if and only if ®,F
satisfies (3.9) for every x € X and almost every t € T.

The last statement can be generalized. Indeed, it can be proved that F € LZ(Z) if
and only if @, F satisfies (3.9) for every x € X and almost every ¢ € T, for at least one
(and hence for every) v € X. We refer to [7].

Proof. By Parseval identity, for every F' € L?(Z) we have that

f |(I>OF(w,t)|2dV°(w)dt:J f (1 ® F)U F(w, )| dtdv(w)
QxT QJT

- j W2 P, 0) v (w)dn = [F|2z),
OX7Z
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so that @, is an isometry from L?(Z) into L? (2 x T). Now, let v e X and F € L*(Z).
For almost every w € {2 we have that

T N
0= li FoVv 2qMt — B, F(w, t)|?dt
Nt ), ‘n;_N o Wo(w,n)q2q oF (w, )]
T N
= i FoW 2q"M — @, F (w,t)|?dt
N \nzZ_N 0 Wy(w,n + K (v,0))g7 g oF (w, 1)
T N+ky (v,0) )
= lim ‘ 2 FO\Ijv(wam)q(§+lt)(m_ﬁw(v’o))—(I)OF(w,t)Pdt
Nz Jo m=—N+ky(v,0)
T . N+kw(v,0) '
= lim ‘q(g'ﬂt)ﬁw(oﬂ}) Z Fo\IlU(w,m)q%q’mt—@OF(w,t)Ith
N=+Jo m=—N+rwy(v,0)
and, since
N+kgy(v,0)
B, F(w,t) = lim > FoW,(w,m)q?q™

N—+400
- m=—N+k(v,0)

in L2, we conclude that relation (3.13) holds true. Finally, let F € L%(Z). For every
x € X and for almost every ¢t € T, (3.13) yields

J po(a:,w)%_“beF(w,t)duo(w) = f po(x,w)%_itpo(x,w)%”t@xF(w,t)dvo(w)
Q Q

- L P, F(w, t)po(z, w)dv®(w)
:J O, F(w,t)dv” (w).
Q

Then, for every x € X and almost every t € T

1_

L Po(w,w)?

This equality allows us to conclude that F' € LZ(Z) if and only if ®,F satisfies (3.9)
and this concludes our proof. O

4o, F(w,t)dv°(w) = fﬂ([@f)\ll;‘;F(w,t)dvx(w).

Corollary 3.10. For every f € C.(X),
Oo(Rf) = Hf (3.14)
in L*(Q x T) and Rf € L2(Z).

Proof. The proof follows immediately by Proposition 3.7 and the fact that the Helgason-
Fourier transform satisfies (3.9). O

Some comments are in order. Proposition 3.9 with Corollary 3.10 shows that
R(C.(X)) = LZ(Z) and it highlights the link between the range of the Radon transform
with the range of the Helgason-Fourier transform, which will play a crucial role in our
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main result. The range R(C.(X)) has already been completely characterized in [15].
We recall the result in [15] for completeness and in order to understand the relation
with L2(Z).

Theorem 3.11 (Theorem 1, [15]). The range of the horocyclic Radon transform on
the space of functions with finite support on X is the space of continuous compactly
supported functions on Z satisfying the following two conditions

(i) for some v e X, hence for everyve X, >, FoW,(w,n) is independent of w € Q;

nez
(ii) for everyve X andneZ
f U¥F(w,n)dr’ (w) :J UHF(w, —n)dr’ (w). (3.15)
Q Q

It is worth observing that condition (3.12) is the equivalent on the frequency side
of equation (3.15) for continuous compactly supported functions on ZE. As it will be
made clear in the next section, condition (3.12) better suits our needs.

3.3.2 Unitarization and intertwining

In order to obtain the unitarization for the horocyclic Radon transform that we are
after, we need some technicalities. Figure 3.5 below might help the reader to keep track
of all the spaces and operators involved in our construction.

L2(2) ) L2(2) A ENLiE)e g A L*(2)
Q‘ Q] ANR] V) 1V
22x)— 9 gy ox)—A . p T sz e,

timeNF@V!@f
frequency Ve

c(i4i
12 x )220 « 1)

[¢]

Figure 3.5: Spaces and operators that come into play in our construction.

We set
D,={pel?(QxZ): IR F)pe L2 xT)}

and we define the operator J,: D, € L2(2 x Z) — L2(2 x Z) as the Fourier multiplier

(I @ F)(JTop)(w,t) = M(I@)f)go(w,t), a.e. (w,t) e Q x T,
2

where ¢, is given by (3.8). We define the set of functions

E={Fel*Z): ®,Fe L% xT)}
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and we consider the operator A: £ € L?(Z) — L?(Z) given by
AF = U L T 0k F.

It is possible to observe, see [7], that the construction of A, despite the definitions of
V,, D, and J,, is independent of the reference point that we fixed as origin; namely,
if J, is defined in the same way, for an other v € X, then A = \Ilq"j*ljv\ll;'j.

As a direct consequence of the definition of A and J,, for every F € £ and for
almost every (w,t) € Q x T we have that

D, (AF)(w,t) = (IR F)(TpoViF)(w,t)

- i (“fmu@f)(w F)(w, 1)

- L@OF(W,Q. (3.16)

e(z +it)]

The operator A intertwines the regular representation & as shown by the next
proposition.

Proposition 3.12. The subspace & is w-invariant and for all F € £ and g € G
7(g)AF = A7 (g)F. (3.17)
Proof. We consider F € £, g € G and we prove that 7(g)F € £. We observe that
#(9)F 0 Wo(w,n) = F oW (g~ (why )
for almost every (w,n) € Q x Z. Therefore, we have
U () F)(w,m) = Wies y Flg ™ w)ym)

and consequently
0o (7(9)F)(w, 1) = @yorpo) Fg™" (w), ) (3.18)
for almost every (w,t) € Q x T. By equations (3.6), (3.13) and (3.18)

. o Cqdr?(w)dt
Jo o 2o

~ [ [ 12t o op

(3 + )P

_1 cqdv®(w)dt

= ]| 12 ar s 0o e
o Cqdv?(w)dt

| @ P, et
fo’IF ¢ le(3 + it)]?

and we conclude that 7(g)F € £. We next prove the intertwining property (3.17). We
have already observed that, by Proposition 3.9, it is enough to prove that

Do (7 (g)AF) = @ (AT (g)F)
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for every g € G and F € £. By equations (3.16) and (3.18), for almost every (w,t) €
Q0 x T, we have the chain of equalities

o1 (AF) (g™ {w), 1)

= 7(1) *1[0]F(g_1 <w>’t)

Do (T(9)AF)(w,t) = @

= Y (g F)(w,1) = Do(Ad(g)F)(w, D),

which proves the intertwining relation. O

The next result follows directly by Proposition 3.9 and equation (3.16).
Corollary 3.13. For every F e £, AF € LE(E) if and only if F € LE(E)
Proof. By Proposition 3.9, AF € L(Z) if and only if ®,(AF) satisfies (3.9). By
(3.16) and since t — |c(1/2 + it)| is even, ®,(AF) satisfies (3.9) if and only if ®,F
satisfies (3.9), which is equivalent to F € L(Z). This concludes the proof. O
We are now in a position to prove our main result.
Theorem 3.14. The composite operator AR extends to a unitary operator

Q: LX) — L2(3)

which intertwines the representations m and 7, i.e.

7(9)Q = 9Omn(g), geq. (3.19)

Theorem 3.14 implies that @ is not irreducible, too. In particular, it is not irre-
ducible the subrepresentation of 7 obtained by restricting it to the (closed) subspace
L3(Z).

b

Proof. We first show that AR extends to a unitary operator Q from L*(X) onto LZ(E).
Let f € C.(X). By the Fourier Slice Theorem (3.11), the Parseval identity and the
definition of A, we have that

Hf”%%x) = HHfH%g(qur)u
= (1 ® F)(WH(R)22(my

- | @R R 0w @)
- | 0@ R W@ AR w0 ()i

:J U (AR F) (w, n) 2dv® (w)dn
OX7Z

= [ARf|72z):
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Hence, AR is an isometric operator from C.(X) into L?(Z). Since C.(X) is dense in
L?(X), AR extends to a unique isometry from L?(X) onto the closure of Ran(AR) in
L?(Z). We must show that AR has dense image in L?(Z). The inclusion Ran(AR) =
L2(Z) follows immediately from Corollary 3.10 and Corollary 3.13. Let F € L2(Z) be
such that (F,ARf)r2=) = 0 for every f € C.(X). By the Parseval identity and the
Fourier Slice Theorem (3.11) we have that

0={(F,ARf)r2(=)

_ J (F o Wo)(w, n) (AR 0 Uo)(w, n)q"dv® (w)dn
QX7

=J (W5 F) (w,n)(To¥5(R[))(w,n)dv’(w)dn
QOxZ

= LxT Do (F)(w, ) (I ® F)(To V5 (Rf))(w, t)dv®(w)dt

- [ eumenTEHmREH Y
- <G+ )]

_ J (5 +it)] e Cedr?(w)dt
QxT

L PRI D

For simplicity of notation, we denote by ©F the function on €2 x T defined as

(3 +it)]
Ve

Hence we have proved that (OF,Hf) = 0 for every f € C.(X). The following two
facts follow immediately from Proposition 3.9. Since ®, is an isometry from L?(Z) into
L? (€2 x T), then OF belongs to LZ(Q x T). Furthermore, since F € LZ(Z) and since
t — [c(1/2 + it)| is even, then OF € L2 .(Q x T)%. By Theorem 3.4, H(C.(X)) is dense
in L2 (€ x T)*. Thus, OF = 0 in L2 (2 x T)? and then ®,(F) = 0 in L2 (Q x T).
Since @, is an isometry from L?(Z) into L? (Q x T), then F = 0 in L?(Z). Therefore,

Ran(AR) = LZ(E) and AR extends uniquely to a surjective isometry

OF (w,t) = O, (F)(w,t), a.e. (w,t) e Q x T.

Q: I*(X) — LZ(Z).

Observe that Qf = AR f for every f € C.(X). Then, the intertwining property (3.19)
follows immediately from Proposition 3.8 and Proposition 3.12. O

As a byproduct, one obtains an extended Fourier Slice Theorem.

Proposition 3.15 (Fourier Slice Theorem, version II). For every f € L*(X)

(1® F)(W2(Q))(w, 1) = W%%ﬂw,t)
2

for almost every (w,t) € Q x T.
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Proof. For every f € C.(X), by (3.14) and (3.16) we have that

(1@ F)W(Q)(w.1) = Bo( QF)(w. 1)
= (I)O<ARf)(w7 t)
NG )
- R
\/>
e+

for almost every (w,t) € Q x T. Let f € L?(X), since C.(X) is dense in L?(X), then
there exists a sequence (fm)m S C.(X) such that f, — f in L*(X). Then, since

Q is a unitary operator from L?(X) onto LZ(Z) and ®, is an isometry from L?*(Z)
into L? (2 x T), then ®,(Qf,,) — ®,(Qf) in L? (Q x T). Since f,, € C.(X) for every
m e N,

1 F)(W5(Qfm))e8) = Lo M),

for almost every (w,t) € 2 x T. Hence, passing to a subsequence if necessary, for almost
every (w,t) e @ x T

Ve gt (1) = (T ® F) Q) (. 1).

im —
m—+0 |c(g + it)]

Therefore, passing to a subsequence if necessary, for almost every (w,t) € Q x T

T@F)WHQN)w ) = lim YU g5 oty= Y

mo Je(} + i) o} + )]

and this concludes our proof. ]
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Chapter 4

Harmonic Bergman projectors on
homogeneous trees

This chapter contains an ongoing work with Filippo De Mari and Maria Vallarino,
which is in its final stage but still not submitted.

Our first purpose was to answer the question: given a g-homogeneous tree X (¢ > 2)
and its group of isometries GG, do we know how to realize a square integrable repre-
sentation of G7 The square integrable representations of G have been classified in [22]
and [45] but there are no explicit formulae for them. On the other hand, it is well
known that, on the analog setting of the hyperbolic disk, square integrable representa-
tions of SU(1, 1) have a realization on Bergman spaces [42]. The definition of Bergman
space on the hyperbolic disk is given for holomorphic functions. To the best of our
knowledge, the definition of holomorphic function is not clearly stated for functions
defined on homogeneous trees.

The notion of harmonic function is stated for functions defined on homogeneous
trees by starting from the mean value property. That is, a function on X is said to be
harmonic if the mean of its values on the neighbors of a vertex coincides with the value
at the vertex, for every vertex. J. Cohen, F. Colonna, M. Picardello, and D. Singman
present the harmonic version of Bergman spaces on homogeneous trees in [17]. They
consider a family of reference measures which consist of finite measures absolutely
continuous w.r.t. the counting measure and whose Radon-Nikodym derivative o is
a radial (w.r.t. a fixed origin o € X) positive decreasing function on X. Thus, they
define the Bergman space AP(0) as the closed subspace of LP(o) consisting of harmonic
functions. The request for the measure o to be finite is necessary in order to avoid the
case in which the Bergman space consists only of the null function.

In the context of hyperbolic disk, when p = 2 Bergman spaces are RKHS, and the
holomorphic Bergman kernel is known as well as the properties of the associated pro-
jector. Indeed, the extension of the holomorphic Bergman projector to the (weighted)
LP-spaces is bounded if and only if p > 1, see [25], [49] and [54]. Furthermore, it is
weakly continuous on L', see [10] and [11]. In our work, first of all, we show that
A?(0) is a reproducing kernel Hilbert space for every reference measure o and we pro-
vide an explicit formula for the kernel K, in Theorem 4.14. Then, focusing on a class

103
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of reference measures, we prove that the extension of the projector

ng(Z) = Z KU(Z,x)f(l‘)U(x)

zeX

to an operator from LP(o) to AP(0) is bounded if and only if p > 1.

The class of measures we focus on coincides with the request of o to have an
exponential decreasing, namely we shall consider the measures defined by

o () = gl a>1,reX, (4.1)

where |z| € N denotes the distance of € X from the origin o. This family of measures
appears to be the natural counterpart of the measures (1 — |z + iy|?)* 2dzdy, o >
1, considered on the hyperbolic disk in the definition of the weighted (holomorphic)
Bergman spaces. Furthermore, the relation between different measures of the type
in (4.1) allows us to obtain intermediate results on the operator

Tunef (2) = ¢ Y Ke(z,2) f(2)g 7",

zeX

where K. is the kernel of A?(p.), ¢ > 1. The fact that the extension of P, = P, to
LP(uy) = LA is bounded if and only if p > 1 follows from the boundedness results for
Topeon LE.

A first natural question is whether the same holds for a general reference measure o.
In [17], the authors consider the optimal measures, a subset of the reference measures.
Roughly speaking, they are measures which decrease fast as the distance from the origin
increase. The measures introduced in (4.1) are optimal. We are aware that if o is an
optimal measure, then P, is not bounded on L!(c). Furthermore, we know that for
a large class of optimal measures P, is bounded on LP(c) for every p > 1. Another
natural question we would like to investigate is whether, and for which o, the operator
P, is weak type (1,1), that is when it is bounded as operator P,: L'(c) — L“*(0),
where L'® (o) denotes the Lorentz space.

4.1 Harmonic Bergman spaces on homogeneous trees

In what follows we consider a g-homogeneous tree X with ¢ > 2 and we fix 0 € X as
origin.

We start by integrating the preliminaries in Section 3.1.1 with some very basic
notation on the homogeneous tree which is not used in the previous chapter. If v € X,
then we denote by S(v,n) and B(v,n) the sphere and then ball centered at y with
radius n € N, respectively, i.e.

S(v,n) :={xe X:d(v,x) =n} and B(v,n) :={zx e X: d(v,z) < n}.
It is straightforward to check that

1, n = 0; qn+1+qn_2

S = d B =
S, )| {(qﬂ)qnl’ Lo md 1B =T
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We denote by |v| = d(o,v) the distance of v € X from o. If v # o, then we define the
sector of v as the subset

T, :={zx e X: [o,v] € [o,z]},

where [o0,v] is the chain defined in Section 3.1.1, and we adopt the convention T;, =
X. Moreover, we call predecessor of v the unique neighbor p(v) € X of v such that
Ip(v)| = |v] —1 and sons of v the neighbors of v that are different from the predecessor;
in other words sons are those neighbors of v having distance from the origin equal to
|v| + 1. We denote the set of all the sons of v as s(v) € X. Observe that o has no
predecessor and s(o) = S(o,1), while |s(v)| = ¢ for every v € X\{o}. Furthermore, in
what follows, we consider the predecessor as a function p: X\{o} — X so that we can
denote by p’: X\B(0,f — 1) — X the ¢-th predecessor.

In Section 4.1.1 we present some introductory fact for harmonic functions on ho-
mogeneous trees. In particular we want to extend a function which is locally harmonic,
say on a ball, to a harmonic function on X. The discrete structure of the tree allows to
build the extension in several ways. We choose to extend a function which is harmonic
on the ball B(o,n) to a harmonic function on X which is “radial” on sectors T}, gener-
ated by vertices y € S(o,n + 1). The harmonic extension that we adopt coincides with
the function on B(o,n+1) and is constant on the sets T), 0 S(0, m), with y € S(o,n+1)
and m > n. Clearly, we choose to consider functions which are harmonic in a ball cen-
tered in o because we will use it in what follows, but the center does not play a crucial
role. It is possible to obtain an extension for functions defined on every ball or even on
suitable, say connected, subsets of X.

Since there are no harmonic functions that are in LP w.r.t. the counting measure,
we need to endow the tree with finite measures. In Section 4.1.2 we recall the family of
measures, called reference measures, considered in [17] in the definition of the harmonic
Bergman spaces. For every 1 < p < +o we denote by AP(c) the Bergman space
associated to the measure o. They are Banach spaces and when p = 2 they are Hilbert
spaces with the scalar product inherited from L?(c). In Section 4.1.3 we provide an
orthonormal basis for every A?(a).

4.1.1 Harmonic functions on homogeneous trees

Definition 4.1. A complex valued function f on X is harmonic if its value at a vertex
coincides with the average of its values on its neighbors, namely, for every v e X

q+1 > fw) (4.2)

u~v

Equivalently, f is harmonic if Lf = 0, where L is the combinatorial Laplacian
defined by

Lf(v) : q+12f flv)  VveX.

u~v

We say that a complex valued function f is harmonic on a subset Y < X of X if Lf =0
onY.
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The harmonicity property (4.2) implies a certain rigidity for the function. In par-
ticular, the value of a harmonic function at a vertex y € X “propagates” to every layer
of the sector T}, as showed in the following. The following proposition is a modified
version of Lemma 4.1 in [17]. In this lemma, the authors show that a function which
is harmonic and radial on a sector Ty, y € X\{o}, is completely described by its values
at y and p(y). We consider a harmonic function on the sector 7, without the radial
condition and we formulate the conclusion just for the average on S(o,n), n = |y,
instead of for each vertex of the sector.

Proposition 4.2 (Lemma 4.1 in [17]). Let y € X\{o}. If f: X — C is harmonic on
Ty, then for every n € N, n > |y|, we have

n—|y| n—ly|—1
Mif@ = > drwm-| D & |fpw). (4.3)
Ed! 7=0 7=0

zeTy

Furthermore, if a function f: X — C is radial on T, and satisfies (4.3) for every
n = |y|, then f is harmonic on T,.

From Proposition 4.2 we deduce a generalization of formula (4.2).

Corollary 4.3. Let f be a harmonic function on X. Then the following mean value
property holds true: for every n € N\{0}

1
£0) = 50y 2 S (4.4)

We introduce a technique which permits to extend a function which is harmonic on
a ball (for simplicity centered in o) which will be useful in what follows. Let n € N,
n > 1, and g be a function on X which is harmonic on B(o,n+1). It is easy to see that
there are infinite ways to extend g to a harmonic function on all X which coincides
with g on B(o,n). For our purposes, we choose the next (fairly standard) extension.
We define gXf on X such that g is radial restricted on T}, for every y € S(o,n + 1) and
harmonic on X.

We suppose that such extension g exists and we provide an explicit formula for
it through Proposition 4.2. Let x € X\B(o,n). There exists a unique y € S(o,n + 1)
such that z € T, and y = p|x‘_"_1(a;). Since the function gZ is supposed to be radial
and harmonic on T}, by Proposition 4.2 we have that
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Hip) = v z
W@ = BoR g &
2€Ty
el —ful jal—lyl-1
=gV Y e - | D) ¢ abw)
j=0 J=0
|z|—n—1 ' |z|—n—2 '
r A I D S ER PO €9 I Al IO )
j=0 Jj=0
lz|—n—1 ‘ |z|—n—1 ‘
= > a7 )" @) - g |g(p" " (x)).
=0 =1

For simplicity we introduce the notation

n

n —
an:Zq_j:q _ql ) n €N,
j=0 1

and we put a_; = 0. Hence the extension is defined by

Wm:{mm, ol <
a\m|fnflg(p|x‘7nil(w)) - (a\x|fn71 - 1) g<p\x|fn(m))’ |x| > n.

The function gZ/ defined above is harmonic on X by Proposition 4.2 and by using the
fact that
X = B(o,n) u U 1.
yeS(o,n+1)

Observe that we do not lose the fact that g/’ is harmonic on B(o0,n) because, by the fact
that ap = 1 and a_; = 0, g7 = g on B(o,n+1), and not only on B(o,n). Furthermore,
the extension g/! is radial on every sector “starting” from S(o,n + 1) by construction.

It is worth mentioning that, in Definition 7 in [17], the authors introduce an operator
RH, which “radialize” a function defined on X on the sector T}, and which maintains
harmonicity.

4.1.2 Harmonic Bergman spaces A?

Homogeneous trees are classically endowed with the counting measure. The main
advantage of such measure is the invariance under the group of isometries of the tree,
as we have seen in the previous chapter. Let p > 1. The only harmonic function
that is p-summable w.r.t. the counting measure is the null function, as we show in the
following statement.

Proposition 4.4. If f is a harmonic function in LP(X), then f is the null function.
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Figure 4.1: The function g is harmonic on B(o,2), that is the set of vertices in green
area. The function gi! is obtained by “extending” the values of g in S(0,3) (blue area)
along their sectors such that g’ is harmonic and constant on vertices lying on the same
red arc, that is on the “layers” of the sectors.

Proof. Suppose that f is harmonic. We have that

D@ => > 1f @)

xeX n=0 |x‘=n
DYDY
Rt

p—1 +0©
LD Y Y

n=0|z|=ny~x

p

> Fw)

y~z

1
=@+ DIFIP = Ul < +o0,

since every vertex is neighbor of exactly ¢+1 other vertices. Hence the unique inequality
in the computation above is an equality, so that

> F)

Yy~

p

(q+ 177 Y IfIP = = (g + DPIf ()P,

Yy~

which means that |f|P is harmonic, too. If f is not the null function, then there exists
v € X such that f(v) # 0. Hence by Corollary 4.3, we have

D f@P =2 X f@P = f )P Y] 1S(v,n)| = +o,

reX n=0 d(uﬂ:):n n=0

which is a contradiction. Hence f = 0. O
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If we want to work with Hilbert spaces of harmonic functions, the previous propo-
sition leads to consider finite measures on X. Harmonic Bergman spaces have been
introduced [17] on a g-homogeneous tree X for the following class of measures.

Definition 4.5. A reference measure on X is a finite measure that is absolutely con-
tinuous w.r.t. the counting measure and whose Radon-Nikodym derivative o is a radial
positive decreasing function on X. With a slight abuse of notation we denote by o
the reference measure, too. Given a reference measure o on X for every p € [1,0) the
Bergman space AP(0) is the space of harmonic functions on X such that

Hf“ip(g) = Z |f($)|p0’(l‘) < +00.

reX

If o is a reference measure on X, and if we denote by o, the value of ¢ on the
sphere S(0,n), then

g+1 2
00+7Zanq"<+oo.

n=1

From now on, for a reference measure o, we put B, := o(X) < +00.

Example 4.1. Let a > 1. An interesting example of reference measure is the function
fol@) =g, zeX.

Indeed, o is radial, positive and decreasing. Furthermore,

+18 +1 ¢~ 14+q¢©
BMQ=1+q—Zq(1*a)”=1+q 1q == =7 I < 4o
q = g l—gq —q

Given a reference measure o, we introduce a decreasing sequence (by,)men Which
collects some important information on o, as we see in the following result. For every

n € N, we define
CERENE)

m=n+1 k=0 Jj=0

The sum are finite because o is a finite measure on X.

The next lemma is a technical result that is very useful in what follows. Roughly
speaking, we can say that the harmonic extension g/ of a function g harmonic on
B(o,n) and null on S(o,n) “localizes” the functions in A%(c) on B(o,n + 1). Indeed
the scalar product of gZ/ with a function f € A?(o) is completely determined by the
values that the two functions assume in B(o,n + 1). In particular, it involves only
values of ¢!l at vertices in which it coincides with g.

Lemma 4.6. Let n € N and g be a function on X which is harmonic on B(o,n) and
vanishes on S(o,n). Then there exists a constant b, > 0 such that for every f € A?(o)

0D a20) = FlBomy 9 BomDa2y + 0 (baf @) — b f () 9(v),

ly|=n+1

where by, is defined in (4.5).
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The constant o), has a structure similar to b,,, as can be seen in the proof below,
but we are not interested in it.

Proof. Let f € A%(c). We have that

Sahwe = Y, f@ Z om Y, flx)gH(x)

z€B(o,n) m=n+1 |z|=m

Observe that from the definition of g2/ and Proposition 4.2

Y, f@gl@ = > Y, fla)gl(x)

|z]=m [yl=n+1]z|=m
:veTy

m—n— m—n—1 m—n—2
i < DI )[( > q’f> f(y)—< > dﬂ) f(p(y))]gy)
lyl=n+1 \ j=0 k=0 pry
m—n—1 . 2 m—n—1 ‘ m—n—2 L
- > f(y)qm‘”‘1< > q‘]> —f(p(y))< > q‘”)( > q’“) 9(y).
Jj=0 j

lyl=n+1

Then by summing for m, we have

400 . I e m—n—1 ' 2
D1 oom Y, f@gll@) = > | fwely) ), Umqm"1< > q”)

m=n+1 |z|=m ly|=n+1 m=n+1 20
+© m—n—1 m—n—2
- 3 [ § a5 ) (3
ly|=n+1 m=n+1 j=0 k=0
= 2 (S &)~ BLf () 9v).
lyl=n+1

4.1.3 Orthonormal basis of A?(0)

We now focus on the case p = 2. The goal of this section is the construction of an
orthonormal basis for the space A%(o).
Let us consider the linear spaces

W, = {¢: s(v) - C: Z p(z) = 0} ~ {(Cq ) z:;’\{o}.

z€s(v)

For convenience we introduce the following intervals of integer numbers: for every
veX weset I, = {1,...,]|s(v)|}. We fix orthonormal basis {e, ;}jer, of W, w.r.t. to
the scalar product

(o, = D e)¥(y).

yes(v)
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Let v € X and j € I,. We consider the function defined by E, j(z) = ey 14
It is easy to see that E, ; is harmonic and null on B(o,|v|). We denote the harmonic
extension of E, ; by fy,; = (Ew')\[i\’ namely

foile) = {o, it ¢ T,\{v},

O|g|—|v|—1Cv,j (p‘wl_h)'_l(q?))a otherwise.

Hence f, ; is harmonic for every v € X and j € I,,. Furthermore f, ; is bounded, since
|foil < (1 —q Y7 ey lw, 0, and then f,; € A%(co) for every reference measure o.
Observe that f, j(v) = E, j(v) = 0 for every v € X and j € I,. More precisely, if v # o,
then

supp fu,; < T\{v}. (4.6)

Finally, we denote by fo = 1x. Of course, fo € A?(0), too.
Notice that the family

F = {fo}u{fw: vGX,jGIv}§A2(O'> (4'7>

is independent of the choice of the reference measure o. In the following we prove
that F is an orthogonal system in every A2(c). In the proofs we use that (ey;)jer,
are orthonormal and that the harmonic extension that we have introduced is radial on
sectors.

Proposition 4.7. The family F is a complete orthogonal system in A?(c) for every
reference measure o.

Proof. Fix a reference measure o. The fact that fy is orthogonal to every function of
the family follows from the harmonicity of f,;, v € X and j € I,,, and Corollary 4.4
which imply that the average of f,; on each sphere centered in o is a multiple of
fuv,j(0) = 0. Indeed

+oo
{ogs fodazey = Y fog(@)a(@) = > on Y} fuylz) =0.
n=0 |z|=n

zeX

Let us consider v, w € X with v # w. Without loss of generality we can consider two
situations: either T, n T3, = J or T,, & T}, In the first case f, ; L fy 1 for every j € I,
and k € I, because their supports are disjoint. If T;,, < T},, then we can suppose that
|w| < |v|. By the fact that f, j|p(o,jwj+1) = 0, from Lemma 4.6 we have

Fogs Fwionz@y = Dy Ol foi () = Blupfoi (@) Ewi(y) = 0

ly|=|w|+1

It remains to prove orthogonality in the case v = w. Let j, k € I, (= I,,) be such that
7 # k. We know that fv,k\B(ko‘) = 0, then by Lemma 4.6 we have

<fv,ja fv,k>A2(a) = b\v| Z Ev,j(y)Ev,k;(y) = b|v| Z ev,j(y)ev,k(y) =0,

ly|=v]+1 yes(v)
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where we used the fact that supp(E, 1), supp(Esy, ;) < s(v) and the orthogonality of e, ;
and e, in W,.

We show now that F is complete. Take g € A?*(0) such that (g, f)42(,) = 0 for
every f € F. We will show that ¢ is the null function in A?(c). In particular we prove
by induction that g = 0 on every B(o,m), m € N.

We start by observing that (g, fo) 42(,) = 0 implies g(0) = 0. Indeed by (4.4)

+o0 g+1%%
0= <gaf0>A2(a) = Z On Z 9() (1 + T Z q Un) g(0) = Byg(0). (4.8)
n=0 |z|=n

n=1

We assume now g = 0 on B(o,m) for some m € N. Let v € S(o,m). Observe that by
the fact that g is harmonic and g(v) = 0, we have g[(,) € W,. Hence for every j € I,

0 =4, fo i) a2(0) = bm D, €u;(®)g(y) (4.9)

yes(v)
and this implies that g(y) = 0 for every y € s(v) and so for every y € S(o,m + 1), that
is g vanishes on B(o,m + 1). The thesis follows by induction. O

We have proved that, for every reference measure o, F < A%(0) is a complete
orthogonal system. We now fix a measure ¢ and compute the norm of the functions
of the family F in A2(c). It is immediate to see that Hfoﬂig(g) = B, Let v € X and
j € I,. By (4.9), we have

[ fv.4l

20(0) = o Foda2o) = b Y €vj(@)ew;(y) = by (4.10)
yes(v)

Hence the norm of f, ; does not depend on j and coincides with the constant in (4.5).

Hence

Fo=A{Bs o} 0 {b, fuyive X, je L) (4.11)

is an orthonormal basis of A?(0).

4.2 The reproducing kernel of A?(0)

In this section we analyze an important aspect of the Bergman spaces A%(c): they
are reproducing kernel Hilbert spaces. In the following we present a recursive formula
for the kernel and we find its explicit formula. Observe that the main ingredient used
in the proofs of the formulae are the harmonic extension and the orthonormal basis
defined in the previous section together with the fact that W, v € X, are reproducing
kernel Hilbert spaces, too.

Let z € X. We consider the evaluation functional ®,: A?(oc) — C defined by
®.g9 = g(z). Observe that ®, is a bounded operator, indeed by the Cauchy-Schwarz
inequality

ILS(z,l)

qHZ!g q+1H9H

T~z

9

L?(0)
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where 1 g, 1) is the characteristic function of the sphere S(z,1). Let z € S(z,1), observe
that o(z) > 0y.|41 since |z| < |z| + 1. Hence

2
1 1 qg+1
= < — = .

S apc X ah

L2(0)  d(z2)=1 d(z,m)=1" |z|+1 z|+1

IlS(z,l)
g

Hence )
l9(2) < (g + 1)’§0|Qﬂ+1|\gHLz(a).

Thus A2%(0) is a reproducing kernel Hilbert space (RKHS), that is for every z € X
there exists K, € A?(o) such that

<97K2>A2(0) =9g(2), ge A2<U)'

Since F, defined in (4.11) is an orthonormal basis of A2, for every z € X we can
write

1 fv,j(z>fv,j
Ko=) EaDuwf = 2 f@F =5+ )5 2, === (412)
feFs feFo veX jel, |v]
We recall that by (4.6), for every z € X
{ve X: f,;(z) #0 for some j € I,} < B(o, |z| — 1).

Hence for every z € X the sum in (4.12) is finite and the decomposition of K, holds
true pointwisely.

Our goal is to compute K,. We introduce an auxiliary function I': X3 — R. For
every (v, z,2) € X3 we set

0, if {z,2} € T,\{v};
(v, z,z) = |8(|Zz2|}>_|17 if {z,2} = T, for some y € s(v);
1

otherwise.

Observe that I' is symmetric in the second and third component, that is I'(v, z,z) =
I'(v,z,2). Furthermore, I'(v, z,-) is the null function if z ¢ T,\{v} and whenever
z € T,\{v} we have supp(I'(v,z,-)) = T,\{v}. Finally, we have that the value of
I'(v, z,-) on T,\{v} is completely determined by the values on s(v), indeed the value of
['(v,2,-) at z € T,\{v} is equal to the value at pl*I=I"I=1(z) € s5(v).

Since W, is a RKHS for every v € X, for z € s(v) we have

SO(Z) = <Q07 F(Uv 2, ')>Wv7 p € Wy.

Indeed I'(v, 2, -) € W, because

1 |s(v) —1:0
| .

3 L) = (sl = D+

= [5()
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Figure 4.2: Partial representations of the function I'(v, 2, -) on T,,. The value of I'(v, z, -)

at vertices in the red area is |S\(:()u|)7\ ! while in the blue area is —m. Clearly, I'(v, z,v) =

0. Observe that the values of I'(v, z, -) do not change as z moves in the red area.

Furthermore,

Doz D, = TS0 - s T )

- %gp(z) + |S(1U)|<P(Z) = ¢(2),

by the fact that ¢ € W,,.

It is easy to see that I'(v, z, -) is harmonic on B(o, |v|) and then we can consider the
ﬁ", which is bounded by construction. Indeed it is easy
to observe that from the definition of harmonic extension we have for every = € T,)\{v}

harmonic extension (I'(v, z, -))

jal—Jo]-1
(F(’U, 2y ))ﬁ ($) = Z q_j F(Ua z’plml—lvl—l(x)) = a|x\—|v|—1r(v7 2, .%'), (413)
j=0

and it vanishes elsewhere. We recall that if z ¢ T, then I'(v, z,-) = (I'(v, 2,-))

|v‘) is

the null function.

Proposition 4.8. Let z € X and |o, z]| = {vt}l{io. The kernel K, is

if z=o,

1 .
F(F(Oaz’ ))6{7 'Lf |Z| = 17

+1 1 .
Kooy + 2Ky + —— (Do, 2 ), if |2 =m > 1.
q bmfl

1
B,
K,=<K,+
1
g
Proof. Since the measure o is finite and the constant functions are harmonic, K, =

B%r € A2%(0). The reproducing property follows from (4.8).
We prove the case |z| = 1. The function K, € A?(c) because it is sum of functions in
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A?(c). We prove the reproducing property. For g € A%(o), by the reproducing formula
of K, and Lemma 4.6

(9. KD ) = 900) + <0 (Do 2 Do)
=g(0)+ Y, 9(¥)T(0,2,y)

ly|=1

g+l

lyl=1
y#z

where we used that ¢ is harmonic at o. This proved the case |z| = 1.

It remains to prove the case |z| = m > 1. We have K, € A%(0) since it is sum of
bounded and harmonic functions. It remains to prove the reproducing formula, for
g € A%(c) by Lemma 4.6 we have

1 qg+1 1
(9, K2)a2(0) = qg(vm 2) + Tg(vm 1) + 349, (T (Vm—1,2 )i 1)A42(0)

__;g(vm_gﬂ;‘lg(vm_m S T2 9)9y)

yes(vm—1)
1 1 q—
= ——gloma)+= D, 9w +—g()—= >, gu) =92,
Y~Um—1 YES(Vyp—1)
y#z
where we used the fact that g is harmonic at v,,_1. ]

Hence we expressed the kernel K, through a two-step recursive formula. We aim
to find an explicit formula for K.

Theorem 4.9. For every (z,z) € X x X

K(z,x) = —F (v, z,x)(1 — gVI712hy (1 = glvI=lehy, (4.14)

bjy|

1
2
B veX

Proof. Let z € X and [o,z] = {vt}k:lo. We start by proving that
lz|—-1 [|z]—t—1

t=0 7=0

1

E(F(Utavt+la Ni- (4.15)

The case z = o trivially follows from Proposition 4.8. We prove (4.15) by induction on
m = |z| = 1. The case m = 1 directly follows from Proposition 4.8, too. Let m € N,
m > 1 and z € X, |z| = m. Suppose that (4.15) holds for every vertex in B(o,m — 1).
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Hence by (4.8) we have
1 +1 1
K, = 5K0m72 + qTKvmfl B (F('Umfb ))m—l
m
1 1 m—3 <mt3 ) 1
S a7 ) (v v, )
q [B t=0 j=0 b
—2 /m—t—2
R R q (F(/Utuvt-i-la ))
q BU t=0 7=0 t
1
- bf(]?(vm—laz, )1
m
1 m—1 q+1 m—t—2 B 1 m—t—3 B
:§+ Z q+1i Z gi)—= Z q’ (C(ve, veg1,-))
o t=0 q Jj=0 a J=0 !
- 4 2 Z q_J> — (D (vg, veg1, 7))
B, i—o \ 2o bt

Hence we proved (4.15) by induction. Since supp((T'(vg, viy1,-))#) = T, \{v:}, we have
that the ¢-th term of the sum in (4.15) does not vanish if and only if z € T,,,\{v+} and

hence by (4.13), we have

. L[ [l
K(Z,LU) = Kz(x) ==+ Z bi Z qij Z qij F(Uv Z, ‘T)
B =0 j=0

Z (1 —¢P=1Eh 1 — gP=lhr (e, 2, 2).

q—l
O

We call the confluent of two vertices of the tree z, z € X the element z A z € X
defined by

z A x = argmax{v;: v, € [0, x]}, {vt}t o = lo,z].
te[o,m]
The confluent z A x is the common vertex of [o,z] and [o, z] farthest from o. It is
possible to see that the value of the kernel K at (z,2) € X x X depends only on the
values of |z|, |z| and |z A z|. Furthermore, from (4.14) it is clear that K is symmetric,
that is K(z,z) = K(x, 2).

4.3 Boundedness of the Bergman projector

In this section we study the boundedness properties of the extension of the Bergman
projector to LP spaces.

We restrict our attention to a family of reference measures for which we are able to
prove that the extension of the Bergman projector to LP(X) is bounded if and only if
p > 1, see Theorem 4.15.
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In [17], authors introduce the definition of optimal measure, that is a reference
measure o for which

1
sup — Z omq™" < +o0.
neN Ongq™ ~—

It is easy to see that the measures that we study below are optimal. We know that the
boundedness of the operator on L! (o) is false for every optimal measure. On the other
hand, we are aware that for some optimal measures the boundedness of the projector
on LP(o) holds for every p > 1. The characterization of the family of measure for which
the Bergman projector is bounded if and only if p > 1 is part of the work that we are
completing.

We focus our attention on kernels associated to reference measures o of the form

o) =q ", a>1

This restriction allows us to prove two intermediate results: Theorems 4.10 and 4.11,
from which the results regarding the extension of Bergman projectors follows. Since
the proofs of Theorems 4.10 and 4.11 needs some technicalities, we present them in
Section 4.4. The last result is Theorem 4.15 which states that the extension of the
projector P, associated to the measure p, to LP(p) is bounded if and only if p > 1.

We shall use the notation L and A%, for the Lebesgue and Bergman spaces w.r.t.
e, Tespectively. Furthermore, we denote by K,: X x X — R the reproducing kernel
of A2. Tt will be useful to keep track of the weight in the constants introduced in (4.5),
so we denote them by b, ,. In particular observe that in this case there is a relation
between the constants: if n € N

+0o0 m—n—1 m—n—1 )
bom = Y, q‘””( > q'“)( 2 q])]
m=n+1 k1:0 7=0 (416)

io [q“(””) (ZZ q’“) (ZZI qj>] — e

=1 k=0 7=0

Furthermore we put B, = jiq(X).
For any real parameters a, b and for ¢ > 1, we define the following integral operators

Sanef(2) = a1 Y Koz 0| f(@)g ",

zeX

and
Topef(2) = Y Ke(z,2) f(x)g ",
zeX

We are now in a position to state two results, which will imply as a corollary the
boundedness properties of the Bergman projectors. Theorem 4.10 is devoted to the
study of the boundedness of the operators S, . and T, . on weighted LP-spaces for
p > 1; the case p = 1 needs different arguments and for this reason is treated apart in
Theorem 4.11. The proofs of both theorems are postponed to Section 4.4.

Theorem 4.10. Let « € R, ¢ > 1 and 1 < p < . The following conditions are
equivalent:
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(i) the operator S = Sy is bounded on L%;
(ii) the operator T =Ty, . is bounded on LE;
(iii) the parameters satisfy

c<a+b, —pa<a—1<p(b-1).

Theorem 4.11. Let « € R and ¢ > 1. The following conditions are equivalent:
(i) the operator S = Sq .. is bounded on L;
(ii) the operator T = Ty p.. is bounded on L ;
(iii) the parameters either satisfy
c=a+b, —a<a—1<b—1,

or satisfy
c<a+b, —a<a—1<b-—1.

We state a corollary which is simply a reformulation of the previous theorems when
c=a+b

Corollary 4.12. Let 1 < p < and a € R. If a,b € R are such that a +b > 1, then
the following conditions are equivalent:

(i) the operator S = Sqpa+tp is bounded on L¥;
(ii) the operator T = Ty p a4b s bounded on L ;

(i1i) the parameters satisfy
—pa<a—1<p(b-1).

Let 8 > 1. Since .A% c L% is a closed subspace of a Hilbert space, there exists
an orthogonal projection Pg: L% — A%. Observe that by the reproducing property of
Kps . = Kg(z,-), z€ X, we can write the projection Pgf of f e L% as follows

Psf(z) =<Psf, Kpzpuz = {fs PsEp 212 = {fs Kp2prz,

where we used the orthogonality of Pg. Hence we can rewrite Pg as the integral operator
on L% induced by the reproducing kernel Kpg, that is

Psf(z) = > Ks(z2)f(x)g 1", fel} ze X (4.17)
zeX

Now we state a preliminary result which, as well as being useful in the proofs in
the next section, shows that there is a natural family {f,}nen S L. such that P, f,
diverges in L}, and then that P, is not bounded on L.
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Lemma 4.13. Let o > 1. Then:

Z | Ka(z, 2)|g ! 2 [, reX.
zeX

Proof. For every x € X\{o}, we put {Ut}t o = lo,z], then by (4.14) and a > 1

d

2, Koz, 2)lg” “">Z|K (v, ) g~

zeX

(1
= v, x)(1— g (1 - q'“"“')) g
;(Ba q+122b‘v|
£l

2 0,5 3T S eI (0, v, ) (1 — g (1 = g1l

t=1veX

|z t—1
= Z Z qa(éft)r(w,vt,x)(l _ qut)(l _ qg,|x|)
t=1/¢=0

|z| ¢~
z;Z O Y el

where we used the fact that supp(I‘( , 0, x)) = [0,v4—1] = [vo, v4—1] and the function is
greater than or equal to = L there. O

Corollary 4.14. Let a > 1. Then P, is unbounded on L} (X).

Proof. For every n € N, we fix a vertex v, € X, |v,| = n, and define
fal@) = 60, (x)q°",  ze X,

It is easy to show that | fy|z1 = 1. On the other hand, we have P, f,(2) = Ka(z,vn),
and then by Lemma 4.13

|Pafallzy = Y [Kalz,v0)lg™ 2 Joa| =,
zeX

which tends to +00 as n — +00. O

The case p = 1 is actually the only value of 1 < p < o for which P, is not bounded
on L%, This follows from Corollary 4.12.

Theorem 4.15. Let 1 < p < 0, a, 8 > 1. The operator P is bounded from L% to A%
if and only if
p(B—1)>a—1.

In particular, P, is bounded from L% to AL, if and only if p > 1.

Proof. Tt is sufficient to observe that from (4.17), Pg = T 3. Hence, from Corol-
lary 4.12, the boundedness of Pg on L (X) is equivalent to p(8 —1) > a—1(> 0). O
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As a direct application of Theorem 4.15, we deduce the following result on the dual
of Bergman spaces.

Corollary 4.16. Let 1 <p <o and o > 1. Then
(AR)* = A%,
with equivalent norms under the pairing

L9 gy = 2 F(R9(2)a fe A ge AL (4.18)

zeX
Proof. Let g € AZ. By Holder inequality we have that
5,99 4] < 1814 1Lz

for every f € A and then g defines an operator in (AL)*. Conversely, for ® € (A5)*,
then by Hahn-Banach extension theorem, there exists ® € (L&)* such that ®| 4 = @

and | @[ 4n)x = H(i)H(Lg)*. Then by the duality on L? spaces there exists h € L such
that

®(f) = (f) = f s
for every f € Ab. By the orthogonality of P, and Theorem 4.15,
(I)(f) = <Paf7pah>Ag><Ag’ = <f’Pah>Angg"

Hence ® corresponds to P,h € A2 under the pairing (4.18). O

4.4 Proof of Theorems 4.10 and 4.11

This section is devoted to the proofs of Theorems 4.10 and 4.11, splitting up the proofs
in various results. In both statements it is straightforward to see that (i) implies (ii).
For the rest of the section «, a, b, ¢ are real parameters with ¢ > 1.

4.4.1 Proof of (ii) implies (iii)

In this subsection we suppose that the operator T, ; . is bounded on L% and we deduce
necessary conditions on the parameters a, b, ¢, « in various lemmas.

Lemma 4.17. Let 1 <p < oo. If T,y f € LY for every f € LY, then —pa < a — 1.

Proof. Consider f(z) = ¢~NI*! with N € R such that

1 —
N>max{ a,l—b}.
p
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Since N > 1_70‘ we have that f € L and

Topef(z) = q—a|z\ Z Kc(z,x)q—(b+N)|$|
zeX

+oo
_ q—a|z\ Z q—(b+N)n Z KC(Z,$)

+o0
_ q—a|z\ 2 q_(b+N)n|S(O, n)|Kc(Zvo)

n=0

by Corollary 4.3 applied to the harmonic function K.(z, - ). Hence, since N > 1 —b

1 +133% B
_ —alz| qar 1 (—b—-N+1)n | _ DbtN gl
Tupef(z) = a5 11+ D.4d =5 "
n=1
Now observe that Tj, 5 f € L% implies
+0

S gl — 14 LELSY jamarain oy

zeX q n=1
which holds if and only if —pa < o — 1, as required. O

From now on we put
1/p
lewily = | X5 lews@P | veX jel,1<p<o.

yes(v)
Lemma 4.18. Let 1 < p <o0. If T,y is bounded on LE, thena +b > c.
Proof. Fix a positive integer N such that

1—
N>max{ a,c—b}.
p

For every v € X\{o} and j € I, we define g, j(z) = f, j(x)g NV, where f,; € F are
defined in (4.7). By the condition N > 1_70‘, we have that g, ; € LL; then

Topego(z) = 0 Y Kelzoo) fo(x)g M
reX

= qialz‘<fv7ju Kc,z>L2

b+ N

since N > ¢ — b implies K. € L? = L}, . Now we use the decomposition (4.12) of
K., on the basis of A2 and obtain

1 u u
Kez foiirz, = <§C + Z 2 M,fw‘h?

b+ N
ueX kel, bc,|u|

v, \ %
= fbdl(|)<fv,ja fU,j>L§+N
_ bb-&—N,\v\fvj(z)

be ol
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where we use the orthogonality of 7 and (4.10). We calculate the norm of T}, 4 gy ; in
Lo

b+ N,
Bunesislly = (24L)" Y 1o ptor e

‘U‘ zeX
p +00

Dy+ N, v
_ ( b+N,|v| ) Zq (ap+a)n 2 ’fv,j(z)
|z|=n

be.ul

Since supp(fv,;) < To\{v}, the integral of | f, ;|P on the sphere S(o0,n) vanishes for every
n < |v]. If n > |v|, then pl*l="(2) is the unique vertex in s(v) in whose sector z lies.
Hence

|Z: |fv,j(z)|p:||2 v, (P17 z)|Pa;, —lpl#l=n(2)|

z€Ty,
=y D e TP
|z|=n
z€Ty
—ai_w_lqni'v'il Z e, ()P

yes(v)

—Jv]—-1
@ 20" ews

Hence we have

by o]\
[V - |V —(ap+a)n . p n—|v|—1 P
HTa,b,cgv,ﬂLg = <b> Z q ( ) aniwilq [v] ||€v,j D

e |vl n=|v|+1

p( bl;r]r |v|> Z —(ap+a)(m+|v]) ,p mflqm_l
v

m=

( b+N, |v|>pq (ap+a)|v] 2 (1=2(ap+a))m—1,p .

= |lev,;

= ||€w
m=1

b
HGUJHp ap + a b+N |v> (ap+oz)\v|7

where the existence of the constant k(ap + ) > 0 is guaranteed by ap + o > 1, through
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Lemma 4.17, and the fact that 1 < a,, < for every m € N. On the other hand,

ql’

N
190,35 = D 1 foj(@)Pg~ VPl

zeX

+00
= Y S ()P
n=0

|z|=n.
+00
_ —(Np+a)n p n—|v|—1
n=|v|+1

+00
— Jeu g~ Wrrall 3 ga-(Npraym-1gp
m=1

—(Np+a)|v
P(Np + a)g~ Vol

= [ev,]

with K(Np + ) — 1 when N — +400. From the boundedness of T, . we have that
there exists a positive constant C' such that for every v € X\{o}

1P P
1Tap.cv. ”L’& ~ (bb+N7|”|) g~ (pra=Np=a)lo| o (=p(N+b=0)lv| ;—(ap—Np)[v|
p - - b

ng,j| P bc,\v|

from (4.16). Hence we have that ¢ < a + b. O
Lemma 4.19. Let 1 <p < 0. If Typc is bounded on LY, then o —1 < p(8 — 1).

Proof. From Theorem 1.9 in [54], the boundedness of T, ;. on L% is equivalent to the

boundedness of the adjoint operator T wb.c O Lp It is easy to see that

Ti9(@) = ¢ N Ko(@,2)g(2)g TN = Ty g aracg(x)  geLE.
zeX

Hence, the fact that T*, _is bounded on Lg implies, through Lemma 4.17, that —p/(b—
a) <a-—1, that1sa—1<p(ﬂ 1). O

Lemmas 4.17, 4.18, 4.19 show that condition (ii) implies condition (iii) in Theo-
rem 4.10. Now we focus on the same implication in the case p = 1.

Lemma 4.20. If T, . is bounded on LY, then

a<b, when c=a+ b

a<b, when c<a-+bd.

Proof. From Lemma 4.18, if Tj, , . is bounded on L1 then ¢ < a+b. From Theorem 1.9
in [54], the boundedness of Tj ;. on Lé implies the the boundedness of the adjoint
operator 1%, . on LY defined by

T*g(z) = ¢ "N Ko(w,2)g(2)g~ @, ge L2,
zeX
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In particular, for 1x € LY, we have

T;b,c]lx(l’) = ¢ (b=alzl 2 K.(z, Z)q*(aJra)IZI
zeX
1
- q*(b*a)laflﬂ Z 1S(0,n)|qg” T = k(c,a + a)g~Clel,
&Y n=0
which belongs to LL if and only if a < b.
Suppose now that a +b = ¢. We know that a < b and we want to prove that o < b.

Assume by contradiction that o = b. Theorem 3.6 in [54] states that T ;b? . is bounded
on L;°, where
T*g(z) = Y. Ke(,2)9(2)q ", ge LY.
zeX
The boundedness of T, . on L;° implies that
sup Z |Ke(z, 2)|q % < 400.
zeX cx
Which is a contradiction by Lemma 4.13. Hence T, . is unbounded.
O

Lemmas 4.17, 4.18, 4.20 show that condition (ii) implies condition (iii) in Theo-
rem 4.11.

4.4.2 Proof of (iii) implies (i)

We start by stating a technical lemma, which will be useful in both Propositions 4.22
and 4.23, that are devoted to prove that (iii) implies (i) in the case p > 1 and p = 1,
respectively.

Lemma 4.21. Let 8,y > 1. Then there exist C1,Co,Cl > 0 depending only on 5 and
v such that

ST K (2, 2)lg ¥ <

zeX

Cy + Cog= BV ify 2 8,
Cl+Cé|Z|, Zf7:5

Proof. We start by observing that orthogonal basis {e, j}jer, of Wy, v € X, involved
in the construction of functions in F are such that their 1-norms in W, are bounded
from above, namely

1<V I[s(0)lllews

b=+|s(W)] <+ag+1, wveX, jel,.

lew,;
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Hence
M (2, 2)lg 7 = Z FY Y fui(2)fo,(@) R
reX reX ’y veX jel, 'Y [v|
f”UJ fw ) —B\xl
<Cp+ Z Z Z
reX veX ]EIU 'Y vl

=C1+ Z Z | fo.(2)] Z |fv7j(x)|q_'8|x‘

veX '77|U| jel, zeX

<Ch+ Z Z ‘fv,] |B 2va,]HL2

veX 'y,|v| jely

i+ By? >3 % M | fuilz

veX ’y [v] jel,

Where we use the fact that the measure pg is finite on X and thus HfHLl(X) <

H fll 13(x )» by Cauchy-Schwarz inequality. Now observe that from (4.6), we have
that fv.j(2) = 0if z ¢ T,\{v}. Hence, if we denote by {Ug}zzo the path [o, z], then

|z)—0—1 Z lev,j(ves1)], ifv=u,0<l<|zf;

2 fui(2) = jel

Jely 0, otherwise.

Therefore,

1

21—
1
— -3 ¥
S )l P < 0t B E Y TS ey, ()|
zeX =0 vt jer,

lz]-1

Z q (8= V)ZSUP lew,jll
'Y,O /=0

1b
Cl-l-B £,0

]EIU

_ Cy + Czq*(ﬁfv)IZ\’ if v # 8,
C1 + C|2|, if v = 3.

O]

Proposition 4.22. Let 1 <p<oo. Ifa+b>=c>1and —pa <a—1<p(b—1), then
Sap.c is bounded on LY.

Proof. We set
H(z,z) = |Keo(z,x)|q~ g O-el=l,

then we write the operator S, . as

Sapef(z ZHzJ: O"”‘.

reX



126 CHAPTER 4. PROJECTORS ON HOMOGENEOUS TREES

Our purpose is to apply Schur’s test (see Theorem 3.6 in [54]) to the integral operator
with positive kernel H: X x X — [0, +00). To do so, we have to show that there exists
a positive function A on X such that

M H(z2)h(2)P ¢ s @), > H(z2)h(z)Pq " < h(2)P. (4.19)
zeX reX
Observe that the two inequalities assumed for « are equivalent to
a+a—-1 a b—1 b—«
- <, -—— < .
p p p p

Hence, since a + b > 1, it is possible to choose an element

b—1 Ya—1b—
rye<—p/ ,;”,)m(—“ ;‘ , pa>¢@. (4.20)

We want to show that h(z) = ¢~ 717l satisfies conditions (4.19). Let z € X. We can
apply Lemma 4.21 since b + vp’ > 1 by (4.20), obtaining

Z H(z, a)h(z)V ¢l = gl Z |Ko(z,z)|q TP)lel

reX zeX
~alz| (bt =Olzly if b
q (Cl-i-Czq ), if v # o
g FI(Cy + Cyl2)), if y = &2

<P = h()

where we used a +b—c¢ > 0 and a > vp'. Similarly, we have that, by a + yp + a > 0
and by Lemma 4.21,

3 H(z 2)h(z)Pg o = gm0l 3 |1 (2, 2) g (@)l

zeX zeX
{q—(b—cx)ﬂ(cl + C«2q—(a-&-7p+oz—c)\z|)7 if v # cf(lz;a’
g OO+ Gyl if y = e=g=e

< ¢ PE = p(2)P,

since a + b = ¢ and, by (4.20), b — a > 7p.
In conclusion, (4.19) holds and by Schur’s test the operator S, is bounded on
LA(X). O

Notice that Proposition 4.22 shows that condition (iii) implies condition (i) in The-
orem 4.10.

Proposition 4.23. Ifa+b > c and
1

—a<a—§<b—1, when ¢ = a + b;
1

—a<a—§<b—1, when ¢ < a + b,

then Sqp.c is bounded on L.
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Proof. Let f € LL. We observe that, since a + o > 1, by Lemma 4.21

||Sa7b7CfHLclx = Z Z |KC(Z,$)|f(x)q_b‘33| q—(a+a)|z\

zeX |lxzeX
< @)t Y | Ke(z,2)|g (@t
zeX zeX
Z |f(2)]g~b1(Cy + Cag=@to=dlehy | if ¢ £ a + a,
xeX
@)t + Oy, fc=a+a
xeX

< S If@la e = | £l

reX

where we used the fact that a + b — ¢ > 0 and b > « in the case ¢ # a + «, and b > «
in the case ¢ = a + a. Hence, S, . is bounded on Lk O

Proposition 4.23 shows that condition (iii) implies condition (i) in Theorem 4.11.
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