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Abstract

Climate change driven by fossil fuels consumption demands a quick energy
transition to a carbon-neutral society. One of the most affected systems by
this paradigm shift is, without a doubt, the electric power system.

Once designed with few, typically high pollutant production nodes on the
transmission side, production is also located in the distribution side, with a
very high number of Distributed Energy Resources (DERs), primarily renew-
able. This change, however, comes with a cost: many, intermittent small
resources are hard to manage. They cannot always guarantee the meeting of
demand, creating difficulties to the reliability, security, and power quality of
the system.

As a result, the demand side is becoming more and more active, as its
contribution will be essential in addressing the new challenges. Moreover,
diverse storage systems have been recently researched, prototyped, and com-
mercialized that allow even more flexible management of the system, also
creating other types of loads such as Electrical Vehicles (EVs). Such loads
will modify load patterns in ways difficult to anticipate, which poses serious
questions on how to reinforce the current distribution and transmission assets.
Moreover, the role of the electricity markets, once liberalized to ensure low
energy prices to all the consumers, are becoming a central tool for system
operators. Indeed, markets are expected to procure all the flexibility needed
to meet unexpected generation, load, and infrastructural contingencies.

In this context, simulation, forecasting, and automated decision-making
tools derived from business and data analytics are becoming crucial for mod-
ern power systems design, planning, and operation.

During the Doctorate (Ph.D.), the author has worked on research projects
such as ”Adaptive Energy Efficiency Platform For Consumption Reduction
In Non-Residential Buildings” (PREDICT) and ”Distribution Optimization
Platform Through The Use Of Data From Electronic Meters And Distributed
Storage Systems” (PODCAST), intending to develop data analytics tools bet-
ter to manage distributed resources and all the related challenges.

This thesis homogenizes the work done by framing it in the context of two
great revolutions: one is the modern power system revolution, and the other
is the advent of the analytics revolution, which has been possible thanks to
the emergence of Big Data (BD) paradigm.
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The developed applications will be framed as particular cases of analytics
subfields (descriptive, diagnostic, predictive, or prescriptive) after detailing
the methodological aspects of the involved analytics branch that have much
broader use than the single applications presented.

In Chapter 1, this work is introduced by presenting the two current paradigm
shifts of energy transition and data analytics and explaining how the two are
interacting in the context of power systems. Some key definitions are laid out
that will help to clarify the concepts explained in the following chapters.

In Chapter 2, descriptive and diagnostics analytics and their possible ap-
plications to power systems are presented in the context of power systems.
As an application, the proposed Instantaneous Growing Stream Clustering
(IGSC) algorithm, devised during the Ph.D., is illustrated, which allows for
flexible probabilistic modeling and simulation of quantities of interest via
light online and adaptive clustering.

In Chapter 3, predictive analytics, with a particular focus on forecasting,
is presented, by following the Cross-Industry Standard Procedure for Data
Mining (CRISP-DM) framework, together with some of its many applications
present in the literature of power systems.

Applications of distribution network load forecasting, building energy fore-
casting, and Photovoltaic (PV) short-term forecasting are presented, all devel-
oped in the context of the projects PREDICT and PODCAST.

In Chapter 4, the final step of analytics, that is, prescriptive analytics, is
described together with some of the applications to the power system field.
Battery profile optimization and optimal sizing and siting, developed as a
functionality of a modern Distribution Management System (DMS), are the
applications of this chapter and are drawn from the PODCAST project.

Afterward, in the Conclusions, the key findings are summarized together
with some final comments.

Finally, the publications produced during the Ph.D., and contributed projects,
collaborations, and attended courses, are listed, while references cited in this
thesis conclude the dissertation.
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CHAPTER 1

Introduction: Power Systems and Data
Analytics

AI is the new electricity.
- Prof. Andrew Ng

This chapter will briefly outline the historical evolution of the power sys-
tem and data analytics systems. Then it will be shown how recent years have
nudged power systems into being more and more intelligent by artificial in-
telligence. Also, the terminology used in the rest of the thesis will be estab-
lished, and a detailed outline of the thesis will be given.

1.1 The Evolution of Power Systems

Natural phenomena involving electricity have been observed since ancient
times. Only in the modern age were they studied using the experimental
method. The first applications of these discoveries were for games, pranks, or
fraudulent advertising. But slowly, industrial applications began to emerge,
to the point that ”Electric city” soon became synonymous with progress [1].

9



10 Chapter 1. Introduction: Power Systems and Data Analytics

At the end of the 1800s, gas turbines became very common in the industrial
sector for self-production, together with hydropower plants. Urban transport
was quickly revolutionized by the electrified tram lines in the same years.
Also, private transport was electrified soon [2]. In the same years, With the
Great War, it became evident that electricity was central to industrial devel-
opment and military supremacy.

After the second world war, an unprecedented increase in demand began to
occur due to demographic and economic growth. Demand roughly doubled
every ten years in developing countries, without stopping with financial and
energetic crises. Nuclear plants began to be built nearly everywhere because
the amount of resources and reserves of oil and natural gas was estimated to
last very little at the time.

Most importantly, demand for large blocks of power, increased reliabil-
ity, and economic convenience suggested a broader interconnection, typically
state-wide. More interconnection brought new problems: new types of break-
ers and control systems for ensuring frequency synchronicity among all gen-
erators were invented.

In 1973, the oil embargo crisis gave impulse to the search of Renewable
Energy Source (RES) alternatives to fossil fuels, with states leading a series
of long-term energy planning initiatives for achieving energy independence
[3]. Moreover, also nuclear power was receiving less support from the public.

PV electricity, previously employed only for niche applications in outer
space exploration, began to be applied to a wider range of applications, even
though it took off only in the 2000s [4]. Also, wind power plants were an
integral part of these plans [3, 5]. Wave and tidal energy conversion were
experimented, although with much smaller success [6].

In the same years, the first scientific signs of human-induced global warm-
ing [7] made clean sources and efficiency at the generation, transport, and
demand level very crucial policy topics.

In the 80s, thanks to the rise of pro-capita income, rigid prices for elec-
tricity were less and less relevant [1]. Also, the demand growth started to
decrease, so new investments in generation plants with a high concentration
of power (such as nuclear or coal plants) were less convenient. Consequently,
new generation plants with capital intensity, like combine cycles, became af-
fordable. More economic agents could now contribute to the evolution of
the power systems. Together with a change of the dominant economic ideas,
these facts lead to the liberalization of electricity markets, with the objective
of decreasing energy prices.

Gabriele Mosaico Ph.D. in Electrical Engineering



1.1. The Evolution of Power Systems 11

The first liberalized electricity market was the UK, whose market started
to be liberalized in 1988 and finished in 2005. In the European Union, the
96/92/CE directive of December 19th, 1996, introduced minimum elements
of liberalization, which were:

• Division of balances of state-owned companies active in the sectors
(not necessarily privatization);

• The presence of an Independent System Operator (ISO) of the trans-
mission grid, needed for fair access to the market;

• Distinction in the market between final consumers or intermediates
(vendors or distributors).

• A Unique Acquirer for agents not participating in the liberalized mar-
ket.

Hence several drivers that lead to the evolution of contemporary power
systems can be identified: industrial development, climate change, electricity
markets, concerns about fossil fuel resources availability, and an increase in
demand for a more electrified society.

1.1.1 Contemporary Power Systems

Nowadays, the energy sector (of which electric power systems are one of the
major components) is deemed responsible for more than half of the emissions
that caused global warming, with respect to the preindustrial era [8].

The current climate science consensus identified by the Intergovernmental
Panel on Climate Change affirms that [9]:

• Human influence on recent climate change is unequivocal (see Fig-
ure 1.1);

• Climate change affects many weather and climate extremes in every
region across the globe with increasing evidence;

• Many of these changes are irreversible or reversible on a century or
even millennial-scale because they are linked to cumulative concentra-
tions of Greenhouse gases in the atmosphere (especially, Carbon Diox-
ide (CO2)).

University of Genova Gabriele Mosaico



12 Chapter 1. Introduction: Power Systems and Data Analytics

• These changes have negative effects for all ecosystems;

• These changes are not uniform across the region of the globe;

• For limiting these changes, which have obvious negative effects for all
ecosystems, reaching zero net emissions of CO2 is crucial, together
with limitations of other Greenhouse gasess;

• the decarbonization of the electricity demand is a key measure for a
better outlook [10] (see also Figure 1.2).

Figure 1.1: Changes in annually averaged global surface temperature over
the past 170 years (black line) relative to 1850-1900, compared to climate
model simulations [11] with human factors (in brown) and without human
factors (in green). Solid colored lines show multi-model averages, while
colored shades indicate the 90% central range of simulations [9].

Gabriele Mosaico Ph.D. in Electrical Engineering



1.1. The Evolution of Power Systems 13

Figure 1.2: Direct CO2 emissions by sector in baselines (solid bars) and
mitigation scenarios that likely will limit warming to 2bove preindustrial
levels (faded bars). All end-use sectors have potential of reducing emis-
sions, but the electric energy sector has the highest potential of all [10].
AFOLU stands for Agricultural, Forest and Other Land Uses.

On the other hand, the expansion of the power system is one of the fore-
most necessary conditions for the improvement of livelihoods in developing
countries [12, 13]. Moreover, fossil fuels resources are not distributed uni-
formly across nations. This context calls for deployment and integration of
greener, more widely available RESs, which, together with storage systems,
can contribute to wider participation in flexibility markets.

The tremendous growth in wind and solar PV can be observed by the graph-
ics reported in Figures 1.3–1.5.

Figure 1.3 reports the increasing share of new capacity expansion being
nowadays dominated by renewables.

Also, Figure 1.4 testifies how PV and wind plants constitute the most con-
sistent growth in capacity (in GW).

Finally, Figure 1.5 depicts the same phenomenon from the energy gener-
ated point of view. However, it points out that most of the share is still due to
hydro energy.

University of Genova Gabriele Mosaico



14 Chapter 1. Introduction: Power Systems and Data Analytics

Figure 1.3: Renewable share of global annual power capacity expansion
[14]

However, this decarbonization process, which pivots on the integration of
RESs such as PV and wind power plants, is strictly tied with an increasing
complexity [16].

This complexity has many causes.
Firstly, RESs have low or no inertial response since they are mostly inter-

faced with the grid via electronic inverters. On the other hand, main tradi-
tional power sources such as coal, nuclear, hydroelectric power, and natural
gas are characterized by synchronous generators, which can change their ro-
tational speed thanks to stored kinetic energy. This inertia can help meet fre-
quency imbalances due to abrupt load or generation variations, as well as grid
faults in an automatic way, via suitable control systems. With the increasing
penetration of renewables, the inertia of the system is lower and lower, and
grid operators have more challenges in keeping the system balanced [17].

Secondly, unlike traditional generation sources, which are dispatchable,
RES are variable, uncertain, and undispatchable, so backup sources (spinning
reserves) must be ready to provide the energy missing from RES at any given

Gabriele Mosaico Ph.D. in Electrical Engineering



1.1. The Evolution of Power Systems 15

Figure 1.4: Renewable power worldwide growth. RES types: in blue hy-
dropower, in gray wind power, in yellow solar, in green bioenergy, and in
red geothermal [14]

time. Undispatchability can also lead to the opposite problem, as RES gen-
eration can happen to be higher than demand. In this case, either the RES is
stored or curtailed. In the former case, the amount of storage capacity needed
can be prohibitive; in the latter case, clean energy is lost.

Thirdly, most RES (especially solar) are connected at the distribution level,
a portion of the power system that was built for serving passive clients, on
the basis of a monodirectional flux of energy. This also poses power quality
and safety concerns since more generation in the distribution systems raises
the voltage, and protection systems must be recalibrated. This calls for better
observability and more advanced control mechanisms at the distribution level.

Also, renewables have a low energy density: they need much more space in
comparison with fossil-fuel sources and are site-dependent (convenient only
where enough wind, solar, or wave energy is present), which can easily bring
to a high concentration of RES in certain areas of the power system, with the
result of possible congestions in the existing lines. For this, more thoughtful
planning and grid reinforcement investments are needed.

University of Genova Gabriele Mosaico



16 Chapter 1. Introduction: Power Systems and Data Analytics

Figure 1.5: Renewable energy generation worldwide growth. RES types:
in blue hydropower, in gray wind power, in yellow solar, in green bioen-
ergy, and in red geothermal [15]

Moreover, while the historical power systems had to deal with few gen-
eration plants and owners, now the number of agents involved in the secure
operation of the grid is higher than ever. For example, in Italy more than
900.000 PV plants are installed, for a capacity of 56 GW [18].

Thus, a new kind of agents, called aggregators, are being involved in the
management of the system that can manage the flexibility requests of the
Transmission System Operator by aggregating (hence the name) a great num-
ber of generation plants and loads in what are called Virtual Power Plants. But
the aggregators themselves need tools for optimally managing the flexibility
requests [19].

To have an idea of the challenges ahead, the framework developed by In-
ternational Energy Agency (IEA), which characterizes the different phases of

Gabriele Mosaico Ph.D. in Electrical Engineering



1.2. Data Analytics 17

renewable integration, can help. The framework captures the evolving chal-
lenges as countries transition to higher shares of RES and helps to prioritize
actions that ensure continuity of supply. The framework puts each system in
one of the following phases [8]:

• Phase 1: System integration is not a relevant issue;

• Phase 2: System integration draws on existing flexibility;

• Phase 3: System integration needs flexibility investments in all mea-
sures (like Battery Energy Storage Systems (BESSs));

• Phase 4: System integration requires advanced technologies because,
in this phase, system operators need to intervene frequently in order
to balance electricity demand and supply and to support power quality
requirements;

• Phase 5: System integration brings to frequent periods of RES exceed-
ing demand;

• Phase 6: System integration causes excess or deficit over months and
seasons.

Currently, the European Union (EU) is considered in phase 3 by the IEA,
with countries like Denmark and Ireland being already in phase 4. In 2030 all
countries will be either in phase 4 or 5, while in 2050, they will be in phase 5
or almost in phase 6 (the uncertainty is due to whether to prediction is made
using current policies or announced pledges) [8].

Some of these challenges can be addressed with specific technological ad-
vances (such as the implementation of synthetic inertia or improved BESS
technologies). But all of them can take the benefit of an information layer
over the assets on which insights and proactive actions can be deduced with
data analytics.

1.2 Data Analytics

Outlining the history of data analytics is more complicated than the one of
power systems since it is a discipline at the crossroad of many other fields and
relatively younger than power systems. Indeed, the concept of discovering
valuable information from massive collected data in commercial operation as
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aiding knowledge for business decisions was only proposed in 1989 under the
term ”business intelligence” (BI) [20].

Morever, the field is linked with many terms, that have no clear shared com-
mon meaning and are often misunderstood. Most of them will be described
in the following, in order to better clarify the object of the thesis and to give
an overview of this vast field of knowledge, technologies and processes. The
discussed terms will be:

• Big Data;

• Artificial Intelligence;

• Machine Learning, Pattern Recognition, and Data Mining;

• Deep Learning;

• Expert System;

• Analytics.

1.2.1 Big Data

With the fast spread of the internet and in particular of the Internet of Things
(IoT), data on the internet can be measured in exabytes (1018 bytes) and
zettabytes (1021 bytes) [21]. To refer to the associated technological inno-
vations, the BD term was coined [22], which might seem self-explanatory.

However, its definition is nonuniform, although some consensus can be
identified [20]. Definition of BD is typically linked to three ’V’s: volume,
variety, velocity [23].

• Volume refers to the amount of data, in particular, whether the data is
stored in one device or more than one device (via distributed computing
frameworks like Hadoop [24]). In the case of distributed storage, as it
is more and more common, communication issues also arise [20];

• Variety refers to the different sources of data (such as IoT, external
Application Programming Interface (API), services, surveys) and types
of data (structured, tabular data or unstructured data like audio, video,
and images);
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• Velocity refers to the frequency of acquisition of these data. Even small
increases in data frequency sampling can result in a tremendous in-
crease in storage requirements if all data is to be kept (see Table 1.1)

Table 1.1: Quantification of collected data in 1 year for 1 million devices
for different sampling rates (estimate of 5 KB per record) [20, 25]

Collection Frequency 1/day 1/h 1/30 min 1/15min
Records Collected 365 millions 8.75 billions 17.52 billions 35.04 billions
Volume of Data 1.82 TB 730 TB 1460 TB 2920 TB

It should be clear that the concept is by itself a relative one, at least in three
aspects:

• What is high depends on storage capacity, computing power, and al-
gorithms. In recent decades, data storage has tremendously improved.
Also, the increase in computing power has been remarkable, and high-
velocity data has shifted meaning. Consequently, computing costs have
dropped significantly, as investments that were was only affordable by
big companies and the military are now at hand for nearly every busi-
ness and sector [26]. Finally, algorithms allowing easy analysis of di-
verse types of data (like neural networks) have changed meaning to the
concept of high variety data. So what was once considered BD may not
be seen as BD now.

• Some data may be big in only one or two of the three aspects. A large
high-frequency group of IoT devices may be high in velocity and vol-
ume, but not in variety, for example, because the type of data involved
is just one.

• Also, what is BD depends on the single sector taken into consideration
and what data is considered (see Figure 1.6). For example, data con-
sidered big in the power sector may be fairly small in other industries
or vice versa.

Another fundamental aspect of BD is that data is not collected for a single,
premeditated aim, but it is considered as an asset that can be exploited in a
number of unforeseen, novel ways in the future.

The emergence of the BD has been fundamental for the affirmation of Big
Data Analysis, which most of the time can add increasing value (sometimes
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Figure 1.6: The three Vs (volume, velocity, variety) of power system data
[23]

added to the three ”Vs” of big data [20]) to processes as data dimension in-
creases and hence information is more diluted in data. In any case, BD and the
proper analysis tools are not sufficient: for handling the complex scenarios of
power systems also guarding the quality of data against measurement errors
and adversarial attacks (i.e., cybersecurity attacks) is fundamental (sometimes
referred to as another V: Veracity) [16, 20]).

1.2.2 Artificial Intelligence

Artificial Intelligence (AI) has no standard definition. It is referred to as a
subfield of computer science that investigates the creation of intelligent ma-
chines that can act like humans via the exploitation of the ever-increasing
amount of data produced worldwide [16, 27].

Historically, AI was born in the middle of the 20th century, with the arrival
of the first computers. Still, the strive of building machines with autonomous,
human-like capabilities has a long history. Artificial Neural Network (ANN)
and AI are related areas, and sometimes they are used as synonymous: actu-
ally, ANNs are just a tool to implement AI, but not the only one.
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The confusion is due to the fact that ANN is arguably the most common
way to build AI systems, given the impressive breakthroughs that ANN has
achieved with Deep Learning (DL) (see Section 1.2.4).

ANN is also the oldest tool for realizing AI since the first ANN (the Per-
ceptron) was invented in 1957 by Frank Rosenblatt, as a result of even older
research.

The term AI was coined just the year before (1956), in the context of the
Dartmouth Summer Research Project on Artificial Intelligence [28].

Other tools for implementing AI are expert systems (which were popular
at the end of the 21st century) and Reinforcement Learning (RL), which may
or may not use ANN as a subsystem. Also Machine Learning (ML) is a
fundamental piece of most AI systems. Another field is Transfer Learning
(TL), which deals with the problem of using developed models for unseen
tasks.

Although the most astounding breakthroughs of AI were unthinkable un-
til recently (for example, in the field of speech processing, videogames, and
computer vision), whether this constitutes true ’understanding’ is not clear.
Indeed, intelligence is all about generalization, and dealing with entirely novel
cases is very difficult even with state-of-the-art AI systems.

AI can be studied in two ways: one, more purely scientific, is by modeling
intelligence in order to understand intelligence, and one more technological,
that is, finding more clever ways to automate tedious or difficult tasks [29], by
exploiting BD, which can be regarded as a prerequisite for modern AI [16].
In this thesis, the focus will be on the applicative side of AI.

1.2.3 Machine Learning

ML and AI are not the same thing, although they are often used interchange-
ably. Machine Learning is a form of AI that enables a system to learn from
data rather than through explicit programming (while not all types of AI are
automatic [16]).

ML aims to solve a wide range of problems (or more precisely, tasks), the
most frequent ones being the following:

• Regression, where the system has to learn to map inputs to a continuous
quantity;
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• Classification, where the system has to classify the input into a prede-
termined class. A very similar task is solved by Pattern Recognition,
which is very similar to ML and sometimes overlapping;

• Clustering, where the input data has to be grouped into similar groups;

• Dimensionality Reduction, where the aim is to reduce the dimension of
the input data;

These tasks can be solved in various ways, the main ones being:

• Supervised Learning, where inputs have right examples (labeled data)
to learn from;

• Semi-supervised learning, where some inputs are not labeled, typically
the great majority of them;

• Unsupervised learning, where no data is labeled;

• Reinforcement learning, which is used in cases where the system has to
teach itself how to act in a dynamic environment by collecting rewards
to learn which actions are better. It has an aspect of exploration that
renders it quite peculiar compared to the other learning methods.

ML is strictly linked to many other disciplines like probability theory,
statistics, information theory, algorithmic science, and other ones. Another
related concept is Data Mining: the difference being in the mindset to un-
cover precious, new knowledge from corporate Databases, and can be seen as
a part of the Knowledge Discover in Databases process.

1.2.4 Deep Learning

DL is a subset of ML, which is itself a subset of AI. DL goes beyond machine
learning by creating more complex hierarchical models designed to mimic the
way humans learn new information. Specifically, the models are called Deep
Neural Network (DNN), which are deep versions of ANN. With time DNNs
have become deeper and deeper, with more artificial neurons and complex ar-
chitectures. Significant advances have been made in the last ten years (2012-
2022), especially with unstructured data problems (such as images, audio, and
video). Indeed, in 2012 for the first time, a DNN (called AlexNet) achieved
state-of-the-art recognition accuracy against all traditional machine learning
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and computer vision approaches. Also, for the first time, it was shown that
training on a Graphic Processing Unit significantly improved training time
[30].

Soon, DL applications spread everywhere. For example, it gave a tremen-
dous impulse to the development of RL, a kind of AI which learns through
experience rather than through examples.

Recently, the transformer architecture revolutionized also tasks involving
sequences, such as time-series and natural language processing [31].

DL has almost become synonymous with AI in the last years, although it
still has some limitations on structured data.

This is relevant to this thesis because data in the power systems sector is
highly structured. Anyway, the applications of DL to power systems have
enormous potential.

1.2.5 Expert system

An expert system is a computer program that models the ability of human ex-
perts to solve problems. It can reach the same level of problem-solving skills
as an expert can [27]. It was very popular in the 1970s and 1980s, with impor-
tant applications in also in the energy sector [32]. Expert Systems are made
of pieces of knowledge on a specialized field, expressed as if-then rules, to-
gether with a representation of particular conclusions. Examples of this kind
of modeling are the ones based on fuzzy logic, which are also used for control
[28]. Expert systems can be part of decision support systems, which manage
knowledge in order to provide tools to make informed decisions about pro-
cesses.

1.2.6 Analytics

Analytics can be traced back to Taylorism, a system of scientific management
that emerged in the 20th-century Scientific management, based on the princi-
ples of gathering workers’ knowledge to plan and optimize the time spent by
shop workers in completing tasks, with subsequent monitoring and continu-
ous improvement [33].

The analytics term refers to the steps needed to transform data into insights,
predictions, and actions that bring value. There are several types of analytics
structured around questions about the process being analyzed.
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• Descriptive Analytics. The objective is to answer the question: what
has happened? what is happening?. Connected with this step is Diag-
nostic Analytics, whose objective is to answer the question: why it has
happened? why it is happening?;

• Predictive Analytics. The objective is to answer the question: What
will happen?;

• Prescriptive Analytics. The objective is to answer the question: What
should I do?.

All of them are related, with descriptive and diagnostic analytics leading
to predictive analytics, which in turn aims to prescriptive, which is the part
adding the most value to the process.

In order to fulfill each analytics aim, a wide range of tools can be used,
like the ones described in the previous sections. Still, the way in which it is
realized can vary tremendously, from a front-end tool to visualize data and
perform simple what-if analysis to better inform manual corrective actions
to fully-fledged end-to-end Deep Reinforcement Learning (DRL) automated
solution.

The analytics process can be found in many places and can have many
forms. This thesis will focus on the data analytics solutions that deal with
AI solutions, informed, when appropriate, by a physical model of the power
system or subsystem.

1.3 Smart Power Systems

On some level, power systems have always been ”intelligent” because of au-
tomatic control systems installed at the generation, transmission, distribution,
and end-use level [34]. But the energy transition, as outlined in Section 1.1 is
putting pressure on the power system into being smarter than ever before.

To meet the new requirements, an information layer is now added to the
physical electricity system at all levels (centralized generation, transmission,
distribution, decentralized generation, and end-use [35]) with the purpose of
collecting and analyzing data coming from smart meters and sensors [20].

Adding an information layer to the power grid gives birth to what is called
a smart grid. Smart grid has been defined as an electricity network that can
integrate cleverly the actions of all the users connected to it, for economic and
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environmental objectives, all the while meeting security, policy, end-use, and
societal requirements [36] (see Figure 1.7).

In this context, data is central to developing a successful integrated system.
Data available are various, which can be sorted into three categories [20]:

• Measurement data, such as:

– Telemetry and Supervisory Control And Data Analysis (SCADA)
data;

– Oscillographic and Synchrophasor data;

– Consumption data (mostly from smart meters);

– Grid metadata (describing the grids);

– Vibration, Acoustic, Visual data streams of single assets [26];

• Business data, such as:

– Electric Markets data;

Figure 1.7: Smart Grid Infrastructure [37]
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– Customer service data;
– Marketing system data;
– Geographic Information Systems;

• External but related data, such as:

– Weather data;
– Traffic data;
– Social Media data;
– Festival, sport events, popular tv shows data.

This is undoubtedly a lot of data, but its potential is significant. It was
calculated that AI could reduce Greenhouse gases emissions by around 2%
each year, for a total of 1.3 GtCo2 by 2030 [38], with respect to a scenario
without massive employment of AI.

Similarly has been reported that digitalization, driven by the massive de-
ployment of smart meters (see Figure 1.8), could reduce global buildings sec-
tor demand by up to 10% until 2040. Also, transport CO2 emissions could be
reduced by over 50% in 2050 and increase demand response capacity more
than ten-fold (although the exact scale of these impacts is uncertain) [39].

Figure 1.8: Smart meter deployment, cost, and penetration ©IEA 2019
[39]

Also, the infrastructure needed to collect the data and coordinate the anal-
yses and the responses of the analytics algorithms presents their challenges,
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Table 1.2: Smart data collection devices and systems in smart grids [20]

Smart
Device Acronym Technology Application

Advanced
Metering
Infrastructure

AMI

Integration of smart meters,
data managementnsystems
and communication networks
to provide bidirectional
communication between
customers and utilites

Remote meter
configuration,
dynamic tariffs,
power quality
monitoring
and local control

Phasor
Measurement
Unit

PMU

Real-time measurements
(30 to 60 samples/second)
of multiple remote points with
a common time source
for synchronization

Electrical waves
measurement of
power grid

Wide
Area
Monitoring
System

WAMS
An application server
to deal with the incoming
information from PMUs

Dynamic
stability
of the grid

Remote
Terminal
Unit

RTU
A microprocessor-controlled
device to transmit telemetry data

Information
collection
of system
operation
status

Supervisory
Control
And
Data
Acquisition

SCADA
Data aquisition system
for physical systems

System monitoring
event processing
and alarm

Smart
Electronic
Device

IED

Monitoring and recording
status changes in the
substation and outgoing
feeders

Combination of
different relay
protection functions
with measurement,
recording and
monitoring

as the number and variety of devices connected is significant (see Tables 1.2
and 1.3). For this reason, standards of communication are an important topic
in the field [40].

On the other hand, the digitalization of the smart grid also drives up the
electricity demand. Even more, it is known that in specific contexts, such
as smart homes, efficiency solutions can lead to rebound effects, which is
the tendency to consume more electricity because an efficiency solution has
been implemented [41]. But there is also evidence that digitalization’s impact
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Table 1.3: Summary of communication network infrastructure in smart
grid

Type of
network Acronym Function Deployment

Data
Transmission
Rate

Home
Area
Network

HAN

Enabling
communication
among smart
home or
office devices
and smart meters
for local energy
management

Deployed
at house
or small
office

Low
(less than
1Kbps)

Neighborhood
Area
Network

NAN

Consisting of
several HANs
for energy
consumption data
aggregation
and storage
at Load Data
Centers
(LDCs)

Deployed
within area
of hundreds
of meters

Medium
(up to
2Kbps)

Wide
Area
Network

WAN

Enabling
the communication
of all smart grid’s
components

Deployed
within
tens of km

High
(up to
few Gbps)

on energy demand and emissions could be nearly ten times greater than any
negative impacts [42].

Overall, making the grid smarter by Information and Communication Tech-
nology is a valuable option in meeting the sustainability objectives of the en-
ergy transition.

1.3.1 Possible Applications

Applications of analytics in the context of smart grids are copious. In the
following, a nonexhaustive list is given [20]:

• Renewable energy forecasting. Being able to forecast RES generation
is very important in all power systems, especially in low inertia ones.
Good forecasting models could improve maintenance scheduling, dis-
patch planning, and frequency regulation [43];
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• Load forecasting. Similarly, short-term load forecasting is essential
for energy management and system operation, as well as for market
analysis, with significant possible savings [44];

• Load profiling. Methods for describing typical behaviors of elec-
tric consumption can have important benefits on operations and capital
planning, as well as tariff structure design [45];

• Fault detection. Uncertainty induced in the power grid by RESs, to-
gether with their much lower inertia, can lead to difficulties in detecting
faults, especially in microgrids. Specific analytics solutions can be de-
vised to help detect faults in active networks [46];

• Predictive Maintenance. The power system relies on equipment, such
as transformers, whose abrupt failure can cause severe damages and
from prolonged disservices to disastrous blackouts. Hence being able
to monitor the condition of power transformers and possibly predict
their future health is of immense value to the overall security of power
systems. Similar methods can be used to proactively maintain equip-
ment such as Heat Ventilation Air Conditioning (HVAC) systems and
BESS, by prolonging their lifetime;

• Transient stability analysis. Power system transient stability is the
ability of synchronous generators to continue to operate in synchronic-
ity after severe contingencies such as lines disconnection and short-
circuit faults [47]. In these delicate contexts, transient stability assess-
ment methods are fundamental, especially in modern power systems,
where increasing demand and higher RES penetration are pushing the
system to work near its security limits. In smart grids, analytics solu-
tions can provide a better security assessment via, for example, efficient
summarization techniques [20];

• Topology identification. Analytics solution can provide system oper-
ators with pseudo-measurements that can help in the visualization of
low voltage networks with limited metering [20, 48];

• Power quality monitoring. The increasing application of power electronics-
based loads and generators harmonic distortions is leading to unstable
and insecure states. Proactive identification of those states is possible
with analytics solutions [20];
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• Load disaggregation. Also called Non-Intrusive Load Modeling (NILM),
it aims is to disaggregate a load into its constituent appliances in order
to, on the one hand, save on equipment, and on the other, acquire use-
ful information about the subload usages. NILM works appeared in the
nineties [49], and it is still an active field today, leveraging the most
advanced analytics techniques [50];

• Non-technical loss detection. Losses due either by electrical theft or
errors in accounting are one of the prominent financial concerns for
utilities. They may also cause important imbalances in the system [20];

• Cybersecurity. Risk-informed strategies that rely on the understanding
of the impact of a potential event are very important in contemporary
smart grids, as attacks are becoming more frequent and more sophisti-
cated [26].

It is in the contexts of these applications that the work of the Ph.D. and this
thesis lies.

1.4 This Thesis

Among these significant changes and challenges that the power system faces,
this thesis tries to contribute with several hopefully original works and per-
spectives.

The research in power systems analytics is considerable in size but suffers
from several issues [20]. First of all, deployed applications are few, as access
to data is difficult. In particular, in most countries, smart grid data are con-
sidered confidential, so the availability of real-world data for researchers is
limited. Papers based on completely simulated data are not rare.

In addition, while the data analytics techniques have made astounding progress
in previous years, their transfer to specific domains such as power systems is
not immediate. The potentiality of such solutions is either not known or ex-
plored in full detail.

In this thesis, Applications presented stem from projects made in strict
collaboration with Distribution System Operators (DSOs), power equipment
manufacturers, BESSs manufacturers, and other actors that are highly aware
of the value of data for advanced insights in power system analytics. More-
over, the replicability of the models developed was one of the main concerns
in designing such solutions.
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For the problem of technological transfer, this thesis groups the applica-
tions within the framework, firstly proposed in [51], of the three types of
analytics presented in Section 1.2.6:

• Descriptive and Diagnostics Power System Analytics (Chapter 2);

• Predictive Power System Analytics (Chapter 3);

• Prescriptive Power System Analytics (Chapter 4).

Also, a comprehensive overview of the respective methodological aspects
is given for each type of analytics, hoping to offer power system engineers
and researchers the tools to appreciate analytics better and apply it in their
work.

This division was preferred because it does not rely on single data analytics
techniques but instead gives a goal-oriented perspective on such tools. Indeed,
sometimes, also in scientific reviews, the difference of the single techniques
receive more attention than the motivations for employing these tools, leaving
the reader wondering why one should choose one method over the other.

An introductory methodological part on the specific analytics is given for
each chapter. Then, an overview of selected applications is detailed. Finally,
the corresponding applications are described together with empirical experi-
ments.

In particular, in Chapter 2, Descriptive Power System Analytics and Diag-
nostic Power System Analytics are introduced. They try to answer the ques-
tions ”What has happened? What is happening?” ((Descriptive Analytics)
and to the questions ”Why did it happen? Why is it happening?” (Diagnostic
Analytics). While Descriptive analytics relies mainly on visualization tech-
niques, many types of Diagnostic Analytics approaches are possible, such as
interpretability techniques and simulation models.

The applications reviewed span many subsectors of power systems, such
as Phasor Measurement Unit (PMU) analytics, to smart meters analytics to
energy efficiency dashboards. Another example is given from the PODCAST
project, in which advanced functionalities for a DMS were developed and
visualized on an interface informed with all the grid metadata.

The innovative application of this chapter is an algorithm called Instanta-
neous Growing Stream Clustering (IGSC), a new stream clustering algorithm,
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devised during the Ph.D., which is able to dynamically adapt the number of
clusters of incoming data all the while modeling them in a Discrete Markov
Chain (DMC) [52, 53], for example for load modeling. Interesting features
of this algorithm are: its suitability for application to IoT devices, given that
it does not require a prohibitive amount of working memory; its probabilistic
model, highly interpretable, easy to visualize, and capable of simulating the
observed load; its applicability to multivariate settings, where the statistical
relationship between different measurements may be needed.

Experiments are given for: modeling active and reactive power; model-
ing active power in time. The algorithm was tested on diverse data, such as
a single HVAC unit serving a research laboratory; an HVAC composed of
an Air Handling Unit (AHU) and a chiller unit serving an entire university
department; several industrial devices for an industrial dataset.

Results show that the algorithm can give an immediate visualization and
a meaningful model of the monitored loads. Its clustering capabilities are in
line with comparable techniques drawn from the literature. Also, practical
advice on the choice of IGSC hyperparameter is given.

In Chapter 3, Predictive Power System Analytics is introduced, which
tries to answer the question ”What will happen?”. Contrary to the other ana-
lytics, a ubiquitous framework is available for developing predictive analytics
solutions: the CRISP-DM, developed by IBM [54, 55]. The single phases of
these frameworks will be described in detail, taking advantage of the copious
literature on the matter.

The subsequent review will focus on PV forecasting papers and load fore-
casting papers.

Next, three applications will be described:

• an innovative day-ahead PV forecasting hybrid approach, which lever-
ages either a Clear Sky Model (CSM) based model or a data-driven,
neural-network-based model based on a decision rule, constructed ei-
ther by a decision tree algorithm [56], or a linear regression decision
rule [57]. The algorithm is tested on a 20 kWp power plant located on
the top of a university department in Genoa, Italy. The goodness of the
proposed procedure is assessed;
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• the application of a day-ahead load forecasting algorithm [58] to 68
MV/LV substations and 17 MV users of the Italian distribution network
involved in the PODCAST project [59]. The experiments here ensure
that the proposed solution beats the business-as-usual solution;

• Finally, an energy forecasting model for the university building in-
volved in the PREDICT project [60]. The innovation of the model
is the use of a deep transfer learning solution for inferring the occu-
pancy data from a thermal imager. The estimated occupancy is then
linked with room booking data analyzed via text analytics procedures,
and future occupancy is forecasted using a k Nearest-Neighbors (kNN)
model. Lastly, the forecasted occupancy is used as input, together with
weather data and setpoint data, of a state-space model that constitutes
the final energy forecasting model. The solution was thought of as part
of a Model Predictive Control (MPC) solution for HVAC energy ef-
ficiency: the sensitivity of the model to various setpoints is therefore
checked with success.

Lastly, in Chapter 4, Prescriptive Power System Analytics is introduced,
which tries to answer the question What should happen?. This analytics is
all about automating the decision-making process, often needed in a power
system. As such, the previous analytics can be seen as the natural building
blocks of this final type of analytics.

Then, the primary methods for realizing prescriptive analytics are given:
first and foremost mathematical programming, together with its stochastic
version. Also, more data-driven tools are presented, either enhancing classi-
cal mathematical programming or providing a completely different alterna-
tive to the problem. The many other prescriptive analytics approaches are
also listed.

Some notable examples of prescriptive analytics are given: from HVAC
optimal control to EV smart charging to microgrid and BESS optimization.

Finally, two prescriptive analytics applications realized during the Ph.D.
(and in particular, during the PODCAST project) are described:

• A stochastic planning including DER regulation and sizing and siting
of storage devices is described, with priority in reactive compensation
distributed generators contributions. In contrast, the contributions of
BESS are minimized while solving voltage problems and congestions

University of Genova Gabriele Mosaico



34 Chapter 1. Introduction: Power Systems and Data Analytics

[61]. Probabilistic planning is based on daily Monte Carlo simula-
tions, extracting load and RES profiles based on a gaussian probabilis-
tic model. The proposed model is shown to be acceptable for the task
by testing it on the model of the PODCAST project network;

• A day-ahead battery profile optimization algorithm that can help run
a microgrid or an energy community. The algorithm considers sev-
eral technical constraints and aims to maximize the profit of the sys-
tem. Also, an intraday algorithm is devised in order to implement the
declared profile. Two experiments from the PODCAST project are re-
ported, which show that the batteries installed on the grid for the project
are able to follow the declared profile with the proposed optimization
algorithm.

The innovative contributions of this thesis can be therefore summarized in:

• A unified view of data analytics applied to power systems;

• Methodological considerations on all the types of analytics (descrip-
tive, diagnostic, predictive, prescriptive), useful for power system pro-
fessionals and researchers;

• Practical applications developed in strict conjunction with companies
of the power system sector for each type of analytics.
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CHAPTER 2

Descriptive and Diagnostic Power System
Analytics

All models are wrong, but some are useful
- Prof. George E. P. Box

2.1 General Methodological Aspects

In this chapter, the techniques that are used to answer the following questions
will be presented:

• What has happened (or: is happening) to the system?

• Why did it happen (or: is it happening)?

These are questions relative to the past (or the present), and their answers, if
present, are hidden in the data. The question may be about a particular event
or a general feature of the system at hand. In this sense, descriptive analytics
may be regarded as passive (historical) analysis [62]. Visualization of past
or present data is the simplest form of Descriptive Analytics, but there are
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others, as will be accounted for in the following. Also, visualizing data may
not be trivial, especially when the dimensionality of the data is considerable.

When Descriptive Analytics tries to answer why a specific thing happened,
it is more appropriately called Diagnostic Analyitics, since in that case, rea-
sons for events are needed.

Moreover, descriptive and diagnostic analytics are also valuable for the
contexts of predictive and prescriptive analytics, where the description and
diagnosis are needed for understanding the performances and the weaknesses
of the forecasting and decision-making solutions.

At the end of the chapter, a method developed during the Doctorate (Ph.D.)
(named Instantaneous Growing Stream Clustering (IGSC)) will be presented.
The IGSC algorithm is helpful for compactly visualizing complex time series
by identifying a series of observed states and for building a Discrete Markov
Chain (DMC) over them, with the additional feature of being computationally
light, thus making feasible its applicability on distributed Internet of Things
(IoT) devices. Examples of possible applications will be given, such as load
modeling on a variety of load types (i.e., building, Heat Ventilation Air Con-
ditioning (HVAC), industrial machinery).

2.1.1 Descriptive & Diagnostic Analytics Approaches

We will start with a tour of how descriptive and diagnostic analytics may be
implemented in general.

2.1.1.1 Visualization

Statistical graphics and Data Visualization (DV) are not a modern achieve-
ment of statistical sciences [63]. Indeed the concept of visualizing empirical
measurements (i.e., data) can be traced back to centuries, and the idea of
graphical coordinates even predate modern times.

With the development of statistical theory and the growing importance of
empirical numerical data, between the 1700s and the 1900s, graphical repre-
sentations were seen in new domains and with innovative pictorial concepts.
At the same time, machines for producing graphs began to be invented and
patented. Soon, an astounding explosion of use and innovation in statistical
graphics happened in the most disparate contexts. The use of graphics for
DV became common in scientific publications regarding natural and physical
phenomena.
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In the last century, DV became more and more popular: graphical methods
entered textbooks and educational curricula, and their use in scientific activity
was the norm. Also, Exploratory Data Analysis (EDA) (which comprises
DV and other descriptive analytics techniques) gained academic dignity by
being separated with mathematical statistics [64, 65]. Moreover, works on
perceptual elements of graphics and their link with the data displayed and
the message to be conveyed further refined the efficacy of DV. Also, new
techniques for visualizing multidimensional were developed [63].

Finally, the advent of modern electronic calculators made data visualization
easy and cheap to design, implement and distribute. Additionally, dynamic
and interactive visualization was made possible. Also, DV techniques able
to deal with vast amounts of data have been proposed, a problem that has its
peculiar challenges and benefits of usability [66].

The reason why DV gained such prominence is that it helps see data from
multiple viewpoints. That is, it helps with dealing with the multidimension-
ality of modern datasets. A common tool for navigating the data is the dash-
board, which is a single screen visualization that shows several graphs and
Key Performance Indicators (KPIs) to display a wide variety of information
in a limited space. To build an effective dashboard, the most important pieces
of information should be identified beforehand [67].

Dashboards are a special kind of interface. Interfaces connect a person to a
machine, system, or device and allow people to create machine-readable data
and instructions, for example, via a keyboard, touchscreen, voice recorder, or
other input devices. They are also key technologies for converting data-driven
analysis into real-world energy efficiency improvements, in conjunction with
human intervention [39].

Another way to deal with multidimensionality, typically together with DV
is to reduce the dimensionality of the data via some specific dimensionality
reduction techniques, such as [68]:

• Principal Component Analysis (PCA), which exploits the fact that many
datasets develop in certain directions rather than being distributed ran-
domly. In a sense, often, there are more variables than needed: there is
a redundancy of information. Hence the data can be represented with
other coordinates that are a linear combination of the original variables.
PCA is a specific algebraic method for building this new linear combi-
nation of variables. Specifically, principal components are orthogonal
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to each other. In addition, the variance of data along the first princi-
pal component is highest among all the possible principal components.
Also, the principal components are ordered according to the variance
of the data along the principal components;

• Factor Analysis (FA), a way to try to estimate the underlying compo-
nents of the multivariate data by assuming the data to be dependent on
a linear combination of common factors.

• Multi Dimensional Scaling (MDS), which allows visualizing distance
between points evaluated using distances different than euclidean dis-
tance;

• t-Stochastic Neighbor Embedding (t-SNE), which embeds (i.e., en-
codes) data in a lower-dimensional space (typically, 2D) in order to
respect as much as possible the distances of the high-dimensional space
in the low-dimensional space.

2.1.1.2 Interpretability

A model can be fitted to historical data to make the relationships interpretable.
Although there is no shared mathematical definition of interpretability (also
called explainability), it has been described as the ability to understand the
cause of a model decision or the predictability of a model result. Explanations
can be issued for a whole model or a single piece of data, in high stakes
scenarios, for example, when security is involved [69]. Interpretability is also
a prerequisite for fairness, privacy, robustness, causal inference, and trust.

Interpretability can be achieved in several ways:

• Intrinsic interpretability: simple models such as linear models and de-
cision trees are intrinsically interpretable, so modeling data using these
and similar types of models can guarantee a good level of interpretabil-
ity by default;

• Post-hoc interpretability: apply specific interpretability approaches to
arbitrary models (even highly complex like Deep Neural Network (DNN)).

The results of interpretability can be different:

• A summary statistic for each variable involved;
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• A summary visualization for each variable;

• The model itself (for intrinsically interpretable models);

• A data point, which provides interpretation through an example;

• An intrisic interpretable model developed for explaining the model (in
the case of black-box models);

Moreover, some methods can be applied to any model (so-called ”model-
agnostic”), while others are model-specific.

An explanation can be thought of as an answer to a why question. In this
sense, the link between explainability and diagnostic analytics is clear [70].
Good explanations may be contrastive (i.e., they refer to a meaningful base-
line), as simple as possible, and social (i.e., they should be tailored to the
target audience). They also focus on abnormalities, if present, and should be
as truthful and general as possible [71].

Interpretability can help gain insight into causal relationships between vari-
ables, but to test causal relationships, more specific data-driven approaches
can be used [72].

2.1.1.3 Simulation

From the data, a generative model can be built. A generative model is a
mathematical model that, given a training set, can generate (i.e., simulate)
data similar to the training instances [29].

Simulation can be used in contexts where collecting the data is costly in
terms of time, money, or another relevant aspect. Nevertheless, even if data
collection is cheap, it can be used for diagnostic purposes. Integrating data
analytics tools with simulation software is a critical aspect that has its specific
challenges [73].

A closely related concept is that of Digital Twin (DT), which aim is to
recreate the digital version of a physical asset [26]. This renders anomaly
detection applications possible, as well as many predictive and prescriptive
analytics tasks. There are several types of DTs [74]:

• Asset model. In this case, the goal is a general performance assessment
(by benchmarking), also with visualization of other connected assets;
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• Fault Model. The goal is to do diagnostics on errors, faults, and se-
curity (included cyber-security) [75], in a timely manner, in order to
understand how to avoid them. Faults may be due to external factors or
to natural degradation, for which a specific mathematical model should
be built;

• Operational Model, for operational planning activities, in order to op-
timize assets revenue on a day-to-day basis;

• Business Model, whose aim is to help in developing new services and
business models.

The inputs for the DTs are the variables of interest (such as active power,
reactive power, current, voltages, and flexibility) acquired with real-time IoT
devices. The actual DT can be built using either physics or various data-
driven methods, ranging from empirical models to statistics to Machine Learn-
ing (ML). Also, Virtual Reality (VR) and Augmented Reality (AR) can be
incorporated to ease the interpretation of the virtual simulation. There is a lot
of research going on in DT for Smart Grids (SGs), and a unified view is still
missing [76].

However, DTs are a hot topic also in other related fields, such as Smart
Manufacturing (SM), where manufacturers have widely used modeling and
simulations as a step for improving their operations by achieving insights,
patterns, trends, inefficiencies, and overall bottom-line [77].

Of course, no DT can ever be an actual replica of the physical asset. This
is due to the presence of several uncertainties in the building of any DT or
simulator.

The uncertainties can be of two types [77]:

• Epistemic uncertainties, that arise from ignorance about the problems;

• Aleatory uncertainties, that arise from problem-inherent variability.

Indeed, simulation for diagnostic analytics must be thoroughly validated
and sensitivity analysis performed for giving meaningful and useful results
[77]. In turn, simulation can be used for testing data-analytics solutions by
means of generating data. Recently, also deep learning has been leveraged
for generating realistic data [78–80].
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2.2 Descriptive and Diagnostic Applications in Power Sys-
tems

In this section, some applications found in the literature are reported: all
of them lie in the realm of descriptive and diagnostic analytics for a more
intelligent and efficient power system.

Simulation is essential in the context of building energy modeling. Build-
ings have many environmental and energy efficiency requirements. Also, the
possible design to fulfill them are numerous. Finally, not always the available
data are sufficient to explore all the possible design scenarios. In that regard,
simulation tools such as EnergyPlus [81] and specific software bridging sim-
ulation tools and data analytics tools (like eplusr R package [73]) are essential
for applying data analytics tools in this area because the simulations can gen-
erate a significant amount of data that has to be post-processed, and the output
is not always easy to be post-processed with standard tools. The benefits of
such tools are better reproducibility, both as replicability of scientific studies
and the repeatability of the analysis to different buildings.

As for DV, there are several examples of papers that try to enable advanced
visualizations in the energy sector. For example, three different types of en-
ergy visualization dashboards are compared in [67], with an evaluation made
by interviewing several users with experience with energy dashboards. Sim-
ple visuals emerged as key for reduced user response time and higher ratings
(Figure 2.1).

Figure 2.1: A dashboard designed using gauges, a light indicator, alternat-
ing stoplights, a pie chart, and tables. (NG stands for natural gas) [67]
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Indeed, Figure 2.1 was preferred to other dashboards that heavily relied
on recent time-series visualization, without resorting to more straightforward
gauges, which summarize in a rapid manner the current level of the measure-
ments and possibly their abnormality. This was made possible by making
questions to sample users with some knowledge about building energy man-
agement, usability, and performance of the dashboard (by performance, in
this case, it is meant whether the user can get the right information from the
single visualizations).

Other works apply descriptive and diagnostic analytics to check and im-
prove forecasting tasks. For example, in [82] a statistical analysis is made on
one and two days-ahead load forecasting errors for two Independent System
Operator (ISO) over a one-year period. Normality of errors was investigated
as well as an analysis to uncover which were the most difficult time periods
to forecast. This type of analysis is vital because an imprecise forecast can
lead, for example, to a suboptimal day-ahead unit commitment.

Another example is [83], where the role of data visualization and explo-
ration in devising a top-notch load forecasting solution for the Global Energy
Forecasting COMpetition 2017 (GEFCom2017) [84] is described. Descrip-
tive analytics helped the understanding of the length and the causes of miss-
ing data, as well as outliers and general data distribution. The most useful
of these was the so-called data heat map. The heat map alone was able to
identify and summarize several characteristics of the time series, such as the
weekly seasonality, the overall trend, daylight savings issues, and some pat-
tern linkable to commercial or industrial consumption profiles. Some of the
missing data visualized have been linked to an extreme weather event that
occurred in that period, and some time series appeared to be moved from one
location to another and therefore analyzed together.

In [85], a detailed error analysis of power output forecasting was performed
on a Photovoltaic (PV) system of 960 kWp, over several forecasting horizons.
The analysis was done by decomposing the Root Mean Square Error (RMSE)
in bias, standard deviation bias, and dispersion, and by estimating skewness,
and kurtosis, with some hints on how to use this analysis to improve the fore-
cast.

Descriptive and diagnostic analytics on smart meter data is reviewed in
[86] under the name of load analysis. Typical applications include volatility
and uncertainty of load profiling, anomaly detection, bad data (i.e., missing/-
failure data), and energy theft detection.
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Visualization and scenario analytics for distributed energy resources in the
context of stream data is studied in [87] for integrating it in standard Dis-
tribution Management System (DMS) since various distribution system data
streams have different granularities, misalignment, uneven sampling, delays.
The paper deals with the data fusion of different data sources. The system
provides tools for descriptive analytics (called situational awareness) by mak-
ing the best possible estimates of the state of the distribution system and some
scenario analytics (which translates to predictive analytics in the framework
of this thesis).

Three case studies on descriptive visual analytics are presented in [88],
namely visualizing smart-meter data, Phasor Measurement Unit (PMU) data,
and probabilistic forecasts. Smart meter data is represented in Figure 2.2,
where the black dots represent the various energy measurements of two smart
meters of two different households over the same time period in the Irish
Smart-Meter Dataset [89], divided by day of the week.

Figure 2.2: The demand plotted against the time of the week for two smart
meters from [88]

As the data is variable over the dataset, in Figure 2.2 the percentiles over the
hours of the single days are represented. This allows the quick identification
of the different load shapes between the different days and the different smart
meters, notwithstanding the anomalous and rare data present in the data. For
example, for the smart meter 1549, weekend days have higher values around
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midday than their working days counterparts, while smart meter 1539 is more
regular throughout the week and registers a higher energy consumption.

Another kind of analysis on the same dataset is performed in the same work
and reported in Figure 2.3.

Figure 2.3: All 500 households time series represented on a 2-D plane.
Points in red are the most typical households, while the black ones are the
most atypical. (HDR stands for high density region) [88].

In Figure 2.3, each point represents a household smart meter time series.
The time series is embedded in a 2-D plane via a laplacian eigenmap method
(a technique whose aim is similar to PCA, MDS and t-SNE) in order to iden-
tify the most atypical households.

Big data visual analytics for PMU are the second study case that involves
the use of PCA for visualizing big data generated from an islanding data event
due to loss of load and visualizing post-disturbance voltage data.

The third case is for visualizing probabilistic forecasts through visualizing
predictive distributions or by visualizing alternative trajectories in the future.
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A framework for real-time energy visualization systems for light commer-
cial businesses is studied in [90], with a critical evaluation of existing Elec-
trical Vehicle (EV) systems. Energy audits were made at 15 light commercial
businesses for benchmarking the proposed system.

A knowledge discovery method in building data is presented in [91] to
discover associations, correlations, and intrinsic data structure in big data, in
order to perform fault detection and diagnostics.

A paper describing Business Intelligence (BI) to manage energy on cam-
puses is [92]. The research question was about how to manage power con-
sumption efficiently, and consequently money spending by universities, using
a managed process, especially on the data collection side.

A tool for immersive analysis of spatial energy data is introduced in [93],
based on ImAxes [94], a software designed for immersive analytics of abstract
data in VR, with some new interaction techniques, for easily adding arbitrary
variables from the dataset being analyzed.

Power consumption visualizing across a range of arbitrary IT devices is
reported in [95]. This kind of solution can help improve energy awareness in
an organization. Two available software-based power metering solutions are
compared, and a user interface is developed by bringing all the about a device
dispersed across different data sources.

An anomalous detection algorithm is developed in [96], analyzing the whole
building energy consumption and then performing a diagnosis on the sub-
loads responsible for anomalous patterns. Evolutionary classification trees
are used to detect infrequently aggregated energy patterns, transformed through
an Adaptive Symbolic Aggregate approXimation (aSAX) process. Then a
post-mining analysis based on association rule mining is carried out. The
whole process is tested on data coming from a university campus [96].

As a final example, some visualizations taken from the participation to the
”Distribution Optimization Platform Through The Use Of Data From Elec-
tronic Meters And Distributed Storage Systems” (PODCAST) project (hap-
pened during the Ph.D.) will be briefly commented.

The aim of the PODCAST project is to build a prototype of a modern DMS,
capable of integrating Renewable Energy Source (RES) resources, monitor-
ing a wide variety of assets using smart meter data, and with advanced func-
tionalities like load forecasting (described in Section 3.4), PV forecasting
(described in Section 3.3), Battery Energy Storage System (BESS) control
(described in Section 4.4), state estimation, fault location, among others.
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The DMS was developed and tested on the distribution system of the city
of Sanremo (Italy). The view of the monitored portion of the grid under study
is presented in Figure 2.4.

Figure 2.4: Monitored feeders of the DMS of Sanremo (Italy)

In Figure 2.4 the diverse monitored feeders are displayed in different colors
in order to tell them apart. On the top of the image, the buttons for starting the
advanced functionalities can be found, either as idle (green) or already started
(red).

Zooming in, one can access the results of the algorithms for the single
substations, as can be seen in Figure 2.5.
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Figure 2.5: Result of the DMS functionalities on the single substations

The dropdown menu opened gives access to the results of the algorithms
applied to the selected substation (e.g., load forecasting, in the Figure 2.4) as
well as historical smart meter data and other relevant information.

In the next and last section of this chapter, an original contribution of the
Ph.D. to descriptive and diagnostic analytics is described in detail.

2.3 Application: Instantaneous Growing Stream Cluster-
ing

As an example of a descriptive and diagnostic analytics tool, in this last sec-
tion, an algorithm for characterizing loads monitored in real-time and with
low computational power, developed during the Ph.D. course, is presented.
The same method can be applied for other types of time series relevant to
power system analytics, such as weather data, PV power output, voltage pro-
files, among others. The algorithm can be used for visualizing the measured
data, as well as for simulation, new states detection, and can help the inter-
pretation and the characterization of the monitored quantity.

Specific strategies and technologies for the management of uncertainties
are crucial in the RES maximization [97–99]. These reasons have brought
to large-scale adoption of Advanced Metering Infrastructure (AMI) in power
systems, leading to improved system knowledge, monitoring, management,
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and control. On the other hand, dedicated techniques are required to manage
the large data flow generated by smart meters in order to use the full potential
of the available information [100, 101].

Advanced load modeling methodologies [48, 58] can be considered impor-
tant tools within this research area. Indeed, specific techniques have to be
employed to face the challenges brought by this large amount of data. Tradi-
tional load modeling methodologies do not use the streams of data generated
by AMI but provide only static load profiles, so advanced functionalities have
to be implemented in order to deal with the massive data stream. The IGSC
algorithm aims to deal with these limitations as it is an adaptive streaming al-
gorithm capable of modeling model a load through a Discrete Markov Chain.

The proposed algorithm can cluster the load measurements with minimal
computational effort, allowing real-time load modeling. The presented pro-
cedure’s performance is evaluated by experimental validation and compared
with two reference methodologies as benchmarks (Dynamical Clustering and
k-Means) in terms of clustering optimality and computational time [52]. Ad-
ditional discussion on the hyperparameter parameter selection was carried out
in [53].

2.3.1 Literature Review

A load modeling process consists of the estimation of a typical load curve
(also called load profile, load shape, or load pattern) of a generic customer
(residential, commercial, or industrial) or a device (such as a thermal load, a
pump, or a compressor) or even a whole process (such as a building, a factory,
or a system) [58].

Among the various approaches on load modeling proposed by the scientific
community, online and adaptive methods are gaining interest in both aca-
demic and industrial contexts because they can respond quickly to changes in
load usage and state, as well as to component failures. In [101], a recursive
and adaptive load profiling technique is presented for dynamically cluster-
ing loads of large customer databases. In [102] an adaptive online unsuper-
vised load modeling technique based on Hidden Markov Models (HMMs)
is shown in the context of Non-Intrusive Load Modeling (NILM). Authors
of [103, 104] have developed dynamical load profiling methods for dynamic
loads. Authors in [105] propose a dynamic clustering technique that applies
to spatio-temporal data. This algorithm has been updated in [106] through
the use of Particle Swarm Optimization (PSO).
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Authors in [107] investigate three of the most widely used unsupervised
clustering methods: k-means, k-medoid, and Self Organising Map for the
load profiling of domestic consumption. In [108], an extension of the Kalman
Filter is used for an online update of the parameters related to the exponential
load model.

In this landscape, in [52, 53], the IGSC algorithm is proposed to model
any load with a DMC through an adaptive streaming algorithm that clusters
the load values with minimal computational effort. This technique allows to
model the considered load in different modalities: in this thesis, a represen-
tation in the active-reactive power plane and another one in the active-power-
time plane will be shown (see Section 2.3.7 and Figure 2.6), but many other
representations are possible.
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Figure 2.6: Different Load modeling modalities: P, Q (up) and P vs time
(down)
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Although other papers have tried to take advantage of the streaming data
available from AMI, the proposed algorithm’s main contribution is repre-
sented by its suitability for edge-computing (i.e., a distributed model on which
computation is operated close to where data are gathered [109]). Indeed the
results show that IGSC requires few computational resources while achiev-
ing satisfying clustering results. These properties allow IGSC to be applied
within smart meters and other intelligent measurement and protection devices
(e.g., [110]). Moreover, the resulting DMC represents a simplified model of
the load, which can be sent to the cloud with few communication and mem-
ory resources. Also, the simplicity of the chosen probabilistic model makes
the output highly interpretable. Overall, it is a good way of describing and
visualizing the load history in a simplified way.

The main strong points of the presented algorithm can be hence summa-
rized in:

• Exploitation of the streaming data provided by AMI;

• Low computational effort;

• Edge-computing applicability: data can be processed within smart me-
ters or protection devices in a distributed configuration, rather than
transferred to a data center (which is typically provided by a third-party
that can charge for every additional computation);

• Limited request for memory and communication resources;

• Simplicity of the output. Indeed, a straightforward interpretation char-
acterizes DMCs.

In addition, the proposed probabilistic load modeling procedure can be ap-
plied and used in different and important fields: from anomaly detection and
condition monitoring to planning or sizing problems, as well as advanced con-
trol techniques (such as stochastic optimization or flexibility estimation/pro-
vision), data generation, and offline probabilistic modeling.

2.3.2 Proposed Approach

In this section, the background, the description, and some detailed applica-
tions of IGSC are presented.
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2.3.3 Mathematical Background - Discrete Markov Chains

A Discrete Markov Chain (DMC) is a stochastic model that can describe a
process through a sequence of possible events. It is composed of the following
elements [111]:

• A set ofN states {S1, ..., SN}. The states in Figure 2.6 are represented
by the blue circles;

• The transition matrix A = {aij}i,j=1,...N . This is a matrix of order N ,
wherein each element ai,j represents the probability of moving from
state Si to state Sj . Each row of A represents the probability distri-
bution of the next state of the considered process conditioned on the
current state. This implies that the sum of each row must be equal to 1.
Looking at Figure 2.6, the presence of a blue arrow between two states
Si and Sj means that ai,j 6= 0 and therefore that the transfer among Si
to Sj is possible. Otherwise, ai,j = 0, i.e. the direct connection be-
tween the two states is impossible, and hence there is no arrow between
the two states;

• the initial probability distribution related to the N states:

π = [π1, ..., π2, ..., πN ].

DMCs are a natural candidate for any temporal modeling. Despite their
simple structure, they are a powerful tool for modeling several different tem-
poral behaviors.

In load modeling and load profiling applications, a near real-time update of
the transition probabilities can be of great interest.

To use DMCs for near real-time power system data streams modeling, it
is crucial to face the following four issues, common to many data stream
clustering problems [112]:

1. The continuity of power measurement is not trivially mapped into dis-
crete states;

2. Data is not available all at once (and its order cannot be modified);

3. It is necessary to detect new states (which can arise at any given time);

4. Limited processing time. The computational time has to be lower than
the data sampling time.
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The proposed IGSC algorithm aims to resolve these issues with the follow-
ing ideas:

1. The continuous measurements are discretized via a particular (and mod-
ified) topological mapping technique;

2. The algorithm is designed to process one value at a time (it is, therefore,
an online algorithm);

3. New states can be added as soon as new data are available;

4. Its computational requirements are limited, and therefore the streaming
data can be processed in real-time on simple hardware.

2.3.4 Designing the Algorithm

This section describes the proposed stream clustering algorithm, starting from
a brief description of two similar algorithms present in the literature.

Since this approach is designed to perform load profiling in real-time, the
algorithm must process one value at a time with minimal computational ef-
fort. Besides, the algorithm models the considered load with a DMC, cluster-
ing the continuous measurements through a topological mapping technique.
Finally, the starting probability distribution is calculated by counting the num-
ber of samples in each cluster, while the transition matrix is evaluated by
keeping track of all the transitions from one state to another one.

The algorithm is inspired by two other approaches, which serve as a start-
ing point for the new algorithm, tailored for streaming applications:

• Instantaneous Topological Mapping (ITM)[113]. This algorithm aims
to represent feature spaces, as an alternative to Self-Organizing Maps
(SOM) [114] and Growing Neural Gas (GNG) [115].

• Growing Hidden Markov Model (GHMM), [116]. In this algorithm
ITM is used for updating the structure of a HMM, in order to construct
a GHMM.

The original ITM algorithm is described in the following.
Let ε and τ be positive real numbers. Let d(., .) be a distance measure

between two data points. Let Ot be the current observation, i.e., the vector
of the involved quantities. For instance, if active and reactive power are the
features to be clustered, then Ot = (Pt, Qt), where Pt is the active power at
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time t and Qt is the reactive power at time t. The algorithm is composed of
the following steps:

1. Matching step: find first and second centroids nearest to Ot (let them
be f and s)

2. Weight adaptation: f centroid slides to Ot of a tiny amount (ε)

fnew = ε(Ot − fold) (2.1)

3. Edge Adaptation:

(a) creates an edge between f and s, if it does not exist;

(b) for each neighbour m of fnew: if Ot is in the circle having the
segment fnewm as diameter, i.e.:

d(Ot,
1

2
fnew +

1

2
m) <

1

2
d(fnew,m) (2.2)

delete that edge (and delete also m if it has no other edges)

4. Node Adaptation:

(a) if Ot is outside the circle having fnews as diameter, that is:

d(Ot,
1

2
fnew +

1

2
s) >

1

2
d(fnew, s) (2.3)

and d(Ot, fnew) > τ , create new node with centroid equal to Ot
and connect the new node and fnew

(b) delete s if d(fnew, s) <
τ
2

As can be seen in the next section, the main ideas in this algorithm have
been ported to IGSC, with suitable modifications for applying it to power
system applications.

2.3.5 The Instantaneous Growing Stream Clustering Algorithm

The original ITM algorithm does not assign a probability to each link. There-
fore, the IGSC algorithm modifies the ITM algorithm in order to create a
DMC from the mapping, as described in the next paragraph.
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The nodes (or states) dwell in the same space of the measurements (e.g. in
the active power-time plane or the active power-reactive power plane) and are
characterized by the mean of the measurements that happened to be closest
to that state. For each state also, the number of measurements, their variance,
and covariance between the variables are kept in memory.

The algorithm presents just one parameter: τ , a positive real number, which
regulates how different from current states must be a new measurement in or-
der to add a new state to the DMC. In the following, the steps of the algorithm
are presented in detail, for the general case where n is the number of variables
being measured (e.g., in Figure 2.6, n = 2).

Let
m(x) = [m1(x), ...,mn(x)]

the mean vector of a state x,

σ(x) = [σ1(x), ..., σn(x)]

the variances of a state x, and ρi,j(x) the covariances within state x between
variables i and j (with i 6= j), and N(x) the number of measurements as-
signed to a state x. Let Ot = [O1,t, ...On,t] be the current observation, and
xt−1 the last timestep state. The steps of the proposed algorithm for each
incoming measurement are the following:

• Matching step: Find the two states closest toOt. Let indicate these two
states with Ft and St;

• State Adaptation: create a new state with the same coordinates of Ot,
connect it with Ft and assign it to xt (current state) if:

– Ot is outside the circle of diameter FtSt;

– The Euclidean distance between Ot and Ft is greater than τ ;

otherwise do not create a new state, instead let xt = Ft

• Weight adaptation: The state xt, to which Ot has been assigned, is
updated. For each variable i = 1, ..., n, the mean is updated as follows:

mi(xt) :=
m(xt) ·N(xt) +Ot

N(xt) + 1
(2.4)
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With a similar formula the variance of each variable is updated for cur-
rent state xt:

σi(xt) :=
σi(xt) ·N(xt) + (Ot −mi(xt))

2

N(xt) + 1
(2.5)

And with another analogous formula the covariances of each distinct
pair of variable i, j = 1, ..., n, i 6= j is updated for the current state xt:

ρi,j(xt) :=
1

N(xt) + 1
· ρi,j(xt) ·N(xt)

+
1

N(xt) + 1
(Oi,t −mi(xt)) · (Oj,t −mj(xt))

(2.6)

Finally, N(xt) is increased by one.

• Edge Adaptation: A link between the past state xt−1 and the current
state xt is created if it does not exist. Moreover, the weights of all the
links starting from the past state are changed to reflect the transition
probability.

In the case of missing values, nothing is updated or checked, and at the
next step, edge adaptation is omitted.

2.3.6 Application

Possible applications of the proposed IGSC in the context of the load model-
ing strategies may include:

• Visualizing the historical behavior of the load, and verify expected pat-
terns or anomalous behaviors;

• Simulate likely scenarios for the load;

• Anomaly detection and condition monitoring by detecting newly found
states and drifting probabilities. A newly found state can be linked to a
new consumption pattern or some sort of failure. Also, the changes in
probability are linked with usage changes;

• Extraction of probabilistic consumption patterns. Instead of storing all
the consumption data, the Markov Chain can be used to summarize

University of Genova Gabriele Mosaico



56 Chapter 2. Descriptive and Diagnostic Power System Analytics

an up-to-date probabilistic representation of the load behavior. With
this approach, it is possible to reduce communication requirements and
cloud computing memory;

• Near Real-Time load profiling. By having a probabilistic, updated, and
reliable load profile, advanced stochastic optimization techniques can
be applied to the system to which the load belongs (such as microgrid
management, sizing, planning, flexibility provision);

• Having a probabilistic account of the process, a load disaggregation
procedure could be devised if enough subloads are modeled.

2.3.7 Study Cases

In this section, two test cases used in the two published papers [52, 53] are
summarized. For both study cases, active and reactive power data are sampled
with one-second granularity.

The first test case is the external HVAC unit of the ABB Marine Laboratory
(ABB Lab), located within the Department of Electrical Electronic Telecom-
munication and Naval Engineering (DITEN) of the University of Genova.
The laboratory is used for both educational and research purposes. The rated
power of this appliance is 3 kW, and the dataset spans the month of July 2019
(see Figure 2.7). Active and reactive power data are sampled with one-second
granularity.

The second system is the HVAC system of the Education Sciences Depart-
ment (DISFOR) of the University of Genoa. The electric HVAC system is
composed of an Air Handling Unit (AHU), located at the top of the building,
and a Chiller Unit, positioned in the surrounding area. Its aggregated rated
power is around 100 kW. The dataset available was acquired between March
and April 2018 for a total of 35 days (see Figure 2.8).

Another testing dataset has been the the IEEE Industrial Machine Dataset
for Electrical Load Disaggregation (IMDELD) [117]. This database is com-
posed of heavy-machine data collected in a Brazilian poultry feed factory.
This plant produces at full-scale on the entire year, five days a week, Monday-
Friday, and occasionally on Saturday, from 10 AM to 5 PM. Among all the
measurements and devices, the active power measurements related to the fol-
lowing appliances have been used [117]:

• pelletizer II (rated power: 90 kW);
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• exhaust fan I (rated power: 5 kW);

• milling machine I (rated power: 50 kW).

Figure 2.7: Active load profile of ABBLab study case

Figure 2.8: Active load profile of DISFOR study case
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Samples have been collected from December 2017 to April 2018 for a total
of 111 days. The considered profiles are illustrated in Figure 2.9.
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Figure 2.9: Active load profile from IEEE Industrial Machine Dataset for
Electrical Load Disaggregation (IMDELD) dataset [117]

2.3.8 KPIs and Reference Methods

The results obtained by the proposed algorithm were evaluated through sev-
eral Key Performance Indicators (KPIs):

• Maximum Processing Time (MPT), measured in milliseconds [ms].
MPT must be lower than the streaming rate, regardless of the number of
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states identified. It evaluates the possibility of the proposed procedure
to perform real-time modeling.

• Clustering Goodness of fit measures. Let x̄i be the cluster center of
cluster Ci, and letNC the total number of clusters. Let x a generic data
point, N the number of data points, and |Ci| the number of data points
in the i-th cluster. Finally, let d2 be the squared euclidean distance.
The two goodness of fit indices employed in the published papers are
the following:

– Calinski-Harabasz Index (CHI), defined as:

CHI =
SSB

SSW

N −NC
NC − 1

(2.7)

where SSB and SSW are respectively the between-cluster vari-
ance matrix and the within-cluster variance, respectively [118].
They are defined as:

SSB =

NC∑
i=1

|Ci| · d2(x̄i,

NC∑
j=1

x̄i) (2.8)

SSW =

NC∑
i=1

∑
x∈Ci

d2(x, x̄i) (2.9)

SSB measures how much the centroids are distant from each other,
while SSW is related to how much the points in each cluster are
concentrated. A good clustering requires (under the assumption
that the clusters are convex) that SSB is as high as possible and
SSW is as low as possible. Hence, the higher the CHI, the better
the clustering.

– Davies-Bouldin Index (DBI):

DBI =

NC∑
i=1

max
i 6=j

Rij (2.10)
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where Rij is the similarity between each pair of clusters, defined
as

Rij =
si + sj
d2(x̄i, x̄j)

(2.11)

where si is the average distance between the samples in Ci, and
sj the same quantity in Cj . The DBI index is low if the Rij
are low, which is the case wherein the average distances within-
clusters are low and the distance between the centroids are high.
Hence, contrary to CHI, the lower the DBI index, the better the
clustering.

– Skill Score (SS). For each of the previous KPIs, a skill score is
defined:

SSCHI = 1− CHIref
CHI

(2.12)

SSDBI = 1− DBI

DBIref
(2.13)

where CHIref and DBIref are the CHI and the DBI attained
by a reference method on the same dataset. The SS are a number
in the interval [−∞, 1). They are 0 if the indexes are equal to
the reference method; they are negative if the reference method
scores better, and they are positive if the reference method has a
worse score.

• Number of Clusters Identified (NCI) and Number of Markovian Tran-
sition (NMT) identified. This KPIs are important for studying the com-
plexity of the algorithm as the granularity changes. It also affects the
memory utilized by the algorithm.

• Estimated Physical Memory (EPM), measured in Bytes [B]. It is com-
puted by assuming that each number of the Markov Chain is repre-
sented as a 64-bit (8 B). The EPM is computed as:

EPM = 8 ·NC · α+ 8 ·NE · β (2.14)

where NE is the number of non-zero elements of the transition matrix,
and α and β are respectively the numbers stored for each cluster and for
each non-zero element of the transition matrix, respectively. Assumed
values are α = 6 and β = 4.
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For defining the SSs, two other load modeling approaches have been im-
plemented:

• k-Means [119]. Although it is not a streaming algorithm, it will serve
as a reference for the skill scores. For each dataset, the k is chosen
through the elbow method [120]. For the scenarios involving time, the
clustering is run for each possible time instant.

• For [52], also Dynamical Clustering (DyCl), presented in [121] has
been used. The comparison has been possible using the implementa-
tion made available by the authors on GitHub [122], with some mod-
ifications that reflect the need for computing the transition probability
matrix of the Markov chain and the treatment of missing values in the
datasets.

2.3.9 Experimental Results

The experiments carried out in the published papers are reported in this sec-
tion. One set of experiments were performed on ABB Lab and DISFOR
datasets, while another set on IMDELD. The two sets of experiments are re-
ported separately in the following sections.

2.3.9.1 First set of Experiments

The data related to the DITEN and DISFOR test cases, described in Sec-
tion 2.3.7, were derived from on-field measurements and stored in a time-
series database in [52]. The data were then exported into daily files and con-
catenated in MATLAB. Abnormal data were treated as null values according
to a threshold set on the raw data. (5 kW and 5 kvar for ABBLab, 10 kW and
10 kvar for DISFOR). Three different versions of each dataset were built for
different time granularities: hourly, quarterly, minutely.

The algorithms were implemented on a Dell Precision Tower 3620, with
an Intel(R) Core(TM) i7-6700 CPU @3.40GHz and 16 GB of RAM.

Two different feature sets, with different granularities, were tested: P and
Q (i.e., active and reactive powers), as well as P and t (active power and
time index: 1-24 for hourly scenarios, 1-96 for 15-minute scenarios, 1-1440
for scenarios with granularity equal to 1-minute: notice that 96 and 1440
are respectively the number of 15-minute intervals in a day and one-minute
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Table 2.1: List of experimental scenarios

Scenario Dataset Granularity Features [τ, δ, kmax]
ABB-h-PQ ABBLab 1h P, Q [100, 104, 10]
ABB-q-PQ ABBLab 15 min P, Q [100, 104, 10]
ABB-m-PQ ABBLab 1 min P, Q [100, 104, 10]
ABB-h-Pt ABBLab 1h P, t [100, 107, 10]
ABB-q-Pt ABBLab 15 min P, t [100, 107, 10]
ABB-m-Pt ABBLab 1 min P, t [100, 107, 10]
DISFOR-h-PQ DISFOR 1h P, Q [100, 104, 10]
DISFOR-q-PQ DISFOR 15 min P, Q [100, 104, 10]
DISFOR-m-PQ DISFOR 1 min P, Q [100, 104, 10]
DISFOR-h-Pt DISFOR 1h P, t [100, 107, 10]
DISFOR-q-Pt DISFOR 15 min P, t [100, 107, 10]
DISFOR-m-Pt DISFOR 1 min P, t [100, 107, 10]

h=hourly, q=1 quarter, m=1 minute

intervals in a day). The complete list of the simulation scenarios is listed in
Table 2.1.

Parameters τ (for IGSC), δ (for DC) and kmax (for k-Means) are also re-
ported in Table 2.1. For each scenario, the τ for the IGSC has been set to
100, while the δ of the Dynamic Clustering has been set to 104 for PQ sce-
narios and to 107 for Pt scenarios. All other parameters of DC have been set
to default.
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In Table 2.2, for each scenario, the number of states identified and the
number of transitions with positive probability are reported.

Table 2.2: Number of states and transitions identified

Scenario States Transitions
IGSC kmeans DyCl IGSC kmeans DyCl

ABB-h-PQ 7 3 9 19 8 30
ABB-q-PQ 11 3 13 36 7 46
ABB-m-PQ 13 3 20 64 8 94
ABB-h-Pt 45 72 24 64 139 24
ABB-q-Pt 172 290 96 213 569 96
ABB-m-Pt 2305 4341 1440 2554 8711 1440
DISFOR-h-PQ 43 4 53 149 10 156
DISFOR-q-PQ 99 4 117 475 10 383
DISFOR-m-PQ 342 2 530 2455 4 2028
DISFOR-h-Pt 117 72 31 220 203 32
DISFOR-q-Pt 483 296 116 817 826 116
DISFOR-m-Pt 7415 4402 1671 11180 11317 1690

Firstly note that, as expected, the number of states and transitions identified
increases as the granularity decreases. Moreover, the P, t scenarios have far
more states and transitions identified: this is a consequence of the constraints
in the case of clustering with the time variable. Also, the DISFOR scenarios
present more states and transitions (a symptom of larger variability). The k-
Means approach returns very few states and transitions in the PQ scenarios
(see Figure 2.10). Finally, in all the ABB-Pt scenarios, the DyCl algorithm
identifies exactly one state and transition for each time: it hence identifies a
deterministic profile for those scenarios.

In Tables 2.3–2.5, the results of the experimental scenarios for each algo-
rithm are presented. Notice that all the algorithms present a maximum time
of computation lower than the sampling time, except for all the k-Means for
the m-Pt scenarios (for which the sampling time is 60.000 ms).
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Table 2.3: IGSC algorithm results (↑: the higher, the better; ↓: the lower,
the better. See Section 2.3.8 for KPI definitions

Scenario CHI ↑ DBI ↓ MPT [ms] ↓ EPM [kB] ↓
ABB-h-PQ 6.8E+03 0.3 77 1
ABB-q-PQ 1.3E+04 0.6 21 2
ABB-m-PQ 7.8E+05 0.5 23 3
ABB-h-Pt 8.3E+02 4.9 20 4
ABB-q-Pt 1.1E+03 5.0 22 15
ABB-m-Pt 9.9E+03 5.1 41 188
DISFOR-h-PQ 2.3E+05 0.5 15 7
DISFOR-q-PQ 1.5E+05 0.9 15 19
DISFOR-m-PQ 1.3E+06 1.3 21 93
DISFOR-h-Pt 6.8E+03 16.4 21 12
DISFOR-q-Pt 5.2E+03 16.2 21 48
DISFOR-m-Pt 7.3E+03 17.7 51 697

Table 2.4: DC algorithm results (↑: the higher, the better; ↓: the lower, the
better. See Section 2.3.8 for KPI definitions)

Scenario CHI ↑ DBI ↓ MPT [ms] ↓ EPM [kB] ↓
ABB-h-PQ 1.2E+04 0.4 1 1
ABB-q-PQ 6.3E+04 0.3 57 2
ABB-m-PQ 1.0E+06 0.5 57 4
ABB-h-Pt 2.9E+00 20.4 44 2
ABB-q-Pt 3.2E+00 27.0 52 8
ABB-m-Pt 8.4E+01 54.4 52 113
DISFOR-h-PQ 5.1E+06 0.3 40 7
DISFOR-q-PQ 6.7E+06 0.3 40 17
DISFOR-m-PQ 3.0E+07 0.2 49 88
DISFOR-h-Pt 9.4E+02 63.2 13 2
DISFOR-q-Pt 7.0E+02 79.1 58 9
DISFOR-m-Pt 7.5E+02 125.2 52 131

In addition, the estimated physical memory needed for the Markov Chain
is very contained: it does not exceed the MegaByte after one month of con-
tinuous modeling.
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Table 2.5: k-Means algorithm results (↑: the higher, the better; ↓: the lower,
the better. See Section 2.3.8 for KPI definitions)

Scenario CHI ↑ DBI ↓ MPT [ms] ↓ EPM [kB] ↓
ABB-h-PQ 2.7E+03 0.3 271 0.4
ABB-q-PQ 8.9E+03 0.4 299 0.4
ABB-m-PQ 3.6E+05 0.3 2919 0.4
ABB-h-Pt 2.1E+02 2.3 4937 8
ABB-q-Pt 4.0E+02 3.9 23534 31
ABB-m-Pt 7.1E+03 2.4 14390781 476
DISFOR-h-PQ 1.3E+05 0.3 195 1
DISFOR-q-PQ 2.8E+05 0.4 210 1
DISFOR-m-PQ 1.9E+06 0.0 1921 0.2
DISFOR-h-Pt 2.6E+03 20.9 2505 10
DISFOR-q-Pt 2.3E+03 25.6 12741 40
DISFOR-m-Pt 2.8E+03 31.8 5300394 560

Moreover, Table 2.6 presents the Skill Scores of the IGSC and the DyCl
algorithm for the k-Means results, as defined in Section 2.3.8.

We notice that the Skill Scores of IGSC are higher than those of DC in
all the P, t scenarios, while DyCl outperforms IGSC in the P, Q scenarios,
although when DyCl is outperformed, its SSs are worse than IGSC scores
when IGSC is outperformed. Also, DBI is generally better for k-Means than
for IGSC and DyCl, while the CHI is generally lower for k-Means. As for the
granularities, there is no clear pattern, although the scenarios with granularity
equal to one minute are typically lower than the other scenarios.

Figures 2.10–2.12 report the final Discrete Markov Chain and clusters of
selected scenarios and methods.

While the k-means algorithms correctly identify the main three points of
operations (idle, transient, and peak load), only the approaches involving
DMC can characterize probabilistically how the state transitions happen, ei-
ther during the day Figure 2.11 or together with the reactive power (Fig-
ure 2.12). In particular, the load has not been switched on during the night,
while the peaks (at 7 AM, 9 AM, midday, and 2 PM) are identifiable in Fig-
ure 2.11; in addition, the peak is reached typically via the same path in the
PQ plane, but sometimes the transition is more abrupt, which may indicate a
particular shutdown or some missing data issue (Figure 2.12).
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Table 2.6: Skill Scores (the higher, the better). For each KPI (See Sec-
tion 2.3.8), green indicates best performance, orange worse than reference
(k-means), but best between online methods, red worst performance be-
tween all methods, black better than reference but not best overall

Scenario SSCHI SSDBI

IGSC dc IGSC dc
ABB-h-PQ 0.61 0.77 -0.06 -0.12
ABB-q-PQ 0.31 0.86 -0.73 0.21
ABB-m-PQ 0.54 0.65 -0.58 -0.49
ABB-h-Pt 0.74 -71.85 -1.15 -7.91
ABB-q-Pt 0.63 -124.30 -0.29 -6.00
ABB-m-Pt 0.28 -83.03 -1.16 -22.06
DISFOR-h-PQ 0.43 0.97 -0.66 0.06
DISFOR-q-PQ -0.83 0.96 -0.92 0.37
DISFOR-m-PQ -0.50 0.94 -36.69 -5.87
DISFOR-h-Pt 0.62 -1.74 0.22 -2.02
DISFOR-q-Pt 0.55 -2.33 0.37 -2.09
DISFOR-m-Pt 0.62 -2.68 0.44 -2.94

Figure 2.10: Result of k-Means algorithm in ABB-m-PQ scenario
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Figure 2.11: Markov Chain of IGSC algorithm in ABB-h-Pt scenario. La-
bels refer to the centroids time value

Figure 2.12: Markov Chain of DC in ABB-m-PQ scenario. Labels refer to
the centroids active power value
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2.3.9.2 Second set of Experiments

The dataset for the second set of experiments was downloaded from the IEEE
Dataport site and preprocessed in MATLAB. For each considered device (pel-
letizer II, exhaust fan I, milling machine I), several scenarios were considered,
with hourly granularity (see Table 2.7).

Table 2.7: List of experimental scenarios [53]

Scenario Device Granularity τ

PEL-h-0.1 pelletizer II 1h 0.1 %
PEL-h-1 pelletizer II 1h 1 %
PEL-h-5 pelletizer II 1h 5 %
PEL-h-10 pelletizer II 1h 10 %
PEL-h-20 pelletizer II 1h 20 %
PEL-h-50 pelletizer II 1h 50 %
PEL-h-70 pelletizer II 1h 70 %
FAN-h-0.1 exhaust fan I 1h 0.1 %
FAN-h-1 exhaust fan I 1h 1 %
FAN-h-5 exhaust fan I 1h 5 %
FAN-h-10 exhaust fan I 1h 10 %
FAN-h-20 exhaust fan I 1h 20 %
FAN-h-50 exhaust fan I 1h 50 %
FAN-h-70 exhaust fan I 1h 70 %
MIL-h-0.1 milling machine I 1h 0.1 %
MIL-h-1 milling machine I 1h 1 %
MIL-h-5 milling machine I 1h 5 %
MIL-h-10 milling machine I 1h 10 %
MIL-h-20 milling machine I 1h 20 %
MIL-h-50 milling machine I 1h 50 %
MIL-h-70 milling machine I 1h 70 %

h=hourly

The focus of this set of experiments was the sensitivity analysis of the
parameter τ . This has been performed to have practical guidelines on the
algorithm implementation and exploit its full potential. In practice, τ repre-
sents the distance among two centroids belonging to the same time interval.
Considering τ as a percentage of the rated power, small values of τ identify
a great number of states. However, at the same time, it would lead to a slow
down of the algorithm, threatening its scalability and the chances to perform
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real-time modeling. On the other hand, higher values of τ (close to 100% of
the rated power) may not identify meaningful patterns. The following values
of τ have been tested: 0.1%, 1%, 5%, 10%, 20%, 50%, and 70% of the rated
power, for a total of 21 scenarios.

In Tables 2.8–2.10 the KPIs related to the simulations results are reported.

Table 2.8: Results of IGSC for the second set of experiment scenarios
(↑: the higher, the better; ↓: the lower, the better. See Section 2.3.8 for KPI
definitions)

Scenario CHI ↑ DBI ↓ States ↓ Transitions↓ MPT ↓ EPM ↓
[ms] [kB]

PEL-h-0.1 732.82 38.74 499 940 281.81 52.76
PEL-h-1 1293.11 60.39 295 760 263.24 37.57
PEL-h-5 1528.37 52.26 154 469 187.85 21.87
PEL-h-10 819.58 95.51 106 276 150.02 13.59
PEL-h-20 478.09 83.98 65 140 40.61 7.42
PEL-h-50 339.99 156.40 48 85 83.37 4.90
PEL-h-70 95.18 99.34 40 60 36.20 3.75
FAN-h-0.1 1490.81 7.44 448 910 60.80 49.43
FAN-h-1 2164.56 12.60 223 542 36.12 27.39
FAN-h-5 1874.30 23.43 120 242 32.99 13.18
FAN-h-10 1082.93 25.07 76 124 32.47 7.43
FAN-h-20 934.61 37.20 55 89 29.52 5.35
FAN-h-50 482.17 43.19 47 70 31.65 4.39
FAN-h-70 36.22 203.52 24 25 30.31 1.90
MIL-h-0.1 229.12 19.67 191 277 37.15 17.60
MIL-h-1 286.76 17.48 166 261 38.44 15.93
MIL-h-5 280.02 19.99 119 219 35.25 12.42
MIL-h-10 214.72 27.69 93 167 30.69 9.57
MIL-h-20 119.94 68.25 70 113 38.63 6.81
MIL-h-50 34.05 45.38 45 63 34.10 4.07
MIL-h-70 8.88 116.70 28 31 31.39 2.28
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Table 2.9: k-Means algorithm results (↑: the higher, the better; ↓: the lower,
the better. See Section 2.3.8 for KPI definitions)

Scenario CHI ↑ DBI ↓ States ↓ Transitions↓ MPT ↓ EPM ↓
[ms] [kB]

PEL-h-0.1–70 683.56 81.94 73 168 4892.18 8.67
FAN-h-0.1–70 1544.06 12.61 80 159 3704.15 8.71
MIL-h-0.1–70 127.73 37.14 72 134 3774.88 7.56

Table 2.10: Skill Scores for the second set of experiments (the higher, the
better). For each KPI (see Section 2.3.8), green indicates best performance
across all alternatives of τ of the same load, red performance worse than
k-means, black better than reference but not best overall

Scenario SSCHI SSDBI

PEL-h-0.1 0.06 0.52
PEL-h-1 0.47 0.26
PEL-h-5 0.55 0.36
PEL-h-10 0.16 -0.16
PEL-h-20 -0.42 -0.025
PEL-h-50 -1.01 -0.90
PEL-h-70 -6.18 -0.21
FAN-h-0.1 -0.03 0.40
FAN-h-1 0.28 0.00
FAN-h-5 0.17 -0.85
FAN-h-10 -0.42 -0.98
FAN-h-20 -0.65 -1.95
FAN-h-50 -2.20 -2.42
FAN-h-70 -41.62 -15.13
MIL-h-0.1 0.44 0.47
MIL-h-1 0.55 0.52
MIL-h-5 0.54 0.46
MIL-h-10 0.40 0.25
MIL-h-20 -0.06 -0.83
MIL-h-50 -2.75 -0.22
MIL-h-70 -13.38 -2.14
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We discuss the results across three dimensions: KPIs, use cases, and dif-
ferent levels of τ . The KPIs are the same as the first set of experiments, that
is, the same ones of Section 2.3.8. As the reference method, only k-means is
used in this set of experiments.

All the tests have been implemented on a Dell Latitude E6540, equipped
with an Intel(R) Core (TM) i7 @ 2.70 GHz and 8 GB of RAM.

As previously noted, MPT and EPM KPIs are important to assess the suit-
ability of the algorithm to low-hardware streaming applications. Both KPIs
are well under critical values (see Table 2.8). Clearly, for low levels of τ
these two KPIs are higher: indeed, values of τ close to 0% of the rated
power present a high number of states. This can be perceived graphically
in Figures 2.13–2.15, where the Markov Chains (MCs) of three scenarios
(τ = 1%, 5%, 10%) are depicted.
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Figure 2.13: Results of the proposed algorithm - Pelletizer II - τ =
1%, 5%, 10%
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Figure 2.14: Results of the proposed algorithm - Exhaust Fan I - τ =
1%, 5%, 10%

In these figures, as expected (see Section 2.3.7), a frequent shutdown of the
factory can be noticed in the late afternoon. The highest value for both MPT
and EPM is achieved by PEL-h-0.1 scenario. This may be linked to the higher
nominal power of the involved load. MPT is higher in the case of k-means
while the EPM is limited (see Table 2.9), but this is to be expected, as it is an
offline algorithm.

Gabriele Mosaico Ph.D. in Electrical Engineering



2.3. Application: Instantaneous Growing Stream Clustering 73

0 5 10 15 20

0

20

40

19 20 21

220

1 2 3 4
5 6

7

8

9 10 11
12 13

14

15 16

17 18

22

0 1 2
3 4 5

7

8

9
10 11 12

13

14 15
16

22

3

8
9

10
12

13

15 16
22

0

2
4

6

7

9

10

12 14

22

2
3

4

5

6 7 8

10

11

12
13

14 15 16

220 1 2 3 4 5 6 9 10 11 12 13 14 15 16

8 9

10
11

15 22

0

3

4

5 6

7

8
12

16

22

0

3 5
6

7

10
11 12 14

15

22

0

4

8
10

13 14

15
0 1

2 3
6

7

8

11

13

1 4 7
8

9 10
11 14

16

5

6

12
13

17

18

19 20 2112 15

22

1
8 12

0 5 10 15 20

0

20

40

19 20 21

220

1 2
3

4
5 6

7

8

9 10 11 12 13
14

15 16

17 18

22

0 1 2
4 5 7

8

9
13

14 15
16

3

8
9

10
13

15 16
22

2 4

6 10

12 142
3

4

5

6
7 8

10

11

12
13

14 15

220 1 2 3 4 5 9 10 11 12 13 14 15 16

9

11

15 22

0
5 6

7

8

3 5
6

7

10
11 12 14

22

4

14

152
7

1 9
14

16

6

12 17

18

19 20 21
4

0 5 10 15 20

0

20

40

19 20 21

220

1 2 3
4

5
6

7

8

9 10
11 12 13 14

15 16

17 18

22

0 1 2

7
8

14

16

3

9
13

15
22

2

10

12 142
3

4

5

6 7 8

10

11

12
13

220 1 2 3 5 9 10 11 12 13 14 15 16

9

11

15

0
5 6 8

3 6

11 12 14

22

4
15

7
1 9

17

18

19 20 21

Figure 2.15: Results of the proposed algorithm - Milling Machine I - τ =
1%, 5%, 10%
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Figures 2.16–2.18 report the result of the k-means clustering (it should be
noted that the k-means approach is not influenced by τ , therefore only one
plot per device is illustrated).
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Figure 2.16: k-means results - Pelletizer II
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Figure 2.17: k-means results - Exhaust Fan I
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In Figures 2.16–2.18, the different colors in each time step indicate a dif-
ferent cluster. Notice that the number of clusters may vary for each interval.

From these experiments, some comments can be made on the choice of the
τ parameter for IGSC.

From Table 2.10, it is possible to notice that the k-means algorithm is bet-
ter than the proposed approach (negative SS) for values of τ that are greater
or equal 20% of the rated power. For τ = 10%, results are mixed (positive
for the milling machines, negative for the fan, and one positive and one neg-
ative for the milling machine). For the cases wherein τ = 5%, it is possible
to observe positive results, except for the SSDBI related to the fan. For τ
under 5%, only positive skill scores can be noticed (except for the Fan-h-
0.1, though the SS is only slightly negative). The highest SSCHI is achieved
twice by τ = 1% (for the fan and the milling machines) and once by τ = 5%
(pelletizer). For SSDBI , τ = 0.1% emerges as optimal twice (pelletizer and
fan), while τ = 1% is the best choice in the remaining case. In general, the
FAN subcase has lower scores than the other devices. This may be linked just
to the fact that k-means achieves its best results with the fan database (see
Table 2.5 and Figure 2.17).
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2.4 Chapter Conclusions

This chapter introduced descriptive and diagnostic analytics, a broad set of
analytic approaches to be aware of a system. Descriptive and diagnostic ana-
lytics leverage several tools, such as visualization, modeling for understand-
ing, modeling for data generation, among others. Subsequently, some litera-
ture applications of this type of analytics have been introduced. Finally, a new
streaming clustering algorithm, named Instantaneous Growing Stream Clus-
tering (IGSC), and published during the Ph.D. [52, 53] has been proposed.
The presented technique can detect new clusters in time, and it constructs
a Discrete Markov Chain (DMC) for modeling the transitions between the
identified clusters. The algorithm can model any pair of variables (including
the time itself) to construct probabilistic profile models of relevant variables.

Applications of this algorithm are particularly interesting in the field of
power systems. Indeed, smart meters and other intelligent devices can be
exploited to construct synthetic power consumption models. These are inter-
esting for utilities that currently resort to costly third-party cloud resources
for processing smart meters data.

The proposed algorithm has been tested with two datasets, two different
load modeling modalities (active power/reactive power and active power in
time), and three granularities, for a total of 12 experimental scenarios [52].
The results of these tests have been compared with the outputs of similar al-
gorithms found in the literature, in particular, Dynamical Clustering (DyCl)
[121], modified for constructing the Markov chains, and with offline k-Means
approach. The KPIs show that the proposed algorithm respects time con-
straints for all the investigated scenarios, and the resulting MC required a
moderate memory. The proposed algorithm appears to have higher perfor-
mance in the profiling scenarios, while DyCl achieves better results in the P,
Q scenarios. These performances need further investigations to be general-
ized and explained.

In [53], a sensitivity analysis on the parameter (τ ) of the IGSC algorithm
has been presented for the case of load profiling. The study is performed on
an industrial open dataset [117]. The loads present different ranges of active
power, but normalizing τ through the rated power, an analysis of the parame-
ter selection could be proposed. Values of τ greater than 5% never achieved
the best results, while values greater than 10% never beat standard k-means.
The smallest τ considered (0.1%) had good performances, but at the same
time presented the highest Maximum Processing Time (MPT), which might
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lead to scalability problems as the data keep coming. This is consistent across
the loads considered, so one could argue that these conclusions are general,
although more case studies should be considered to confirm this assertion. In
addition, the optimal τ can vary according to the considered KPI. Thus, fur-
ther works should concentrate on finding KPIs and benchmarks for specific
applications of the algorithm, also by scoping the existing literature on similar
algorithms developed in fields other than power systems. Also, the sensitiv-
ity of τ for other modeling problems such as PQ or even trivariate modeling
and beyond could be investigated. Finally, the influence of the considered
distance measure on the outcome of the algorithm could be explored.
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CHAPTER 3

Predictive Power System Analytics

An approximate answer to the right problem
is worth a good deal more

than an exact answer to an approximate problem.
- Prof. John Tukey

Predictive analytics deals with methods aimed at answering the question:

• What will happen to the system?

Hence it deals mainly with predicting the unknown, especially regarding
the future. Therefore specific terminologies will be introduced for framing
the general predictive analytics problem and related lines of research. Then a
brief overview of forecasting applied to power systems will be given. Lastly,
some case studies investigated during the Ph.D. will be presented.

Before starting, it should be noted that there are other ways to frame and
define predictive analytics.

In particular, in [123] passive and active predictive analytics are distin-
guished. Passive predictive analytics does not involve intervention on the
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system. It can be achieved by simply modeling the correlation between cur-
rent and past data with future data (or between known and unknown data).
On the other hand, active predictive analytics involves actively intervening
in the system to obtain the desired outcome. Hence, in this case, modeling
as precisely as possible the causal relationships between the past and present
inputs and the future quantity (or between known and unknown quantities)
is crucial. For example, predicting the Market Clearing Price (MCP) for a
wholesaler that needs to submit bids to the market auction is different from
predicting the same quantity for a retailer with no access to the bidding mar-
ket since the wholesaler is contributing with its prediction in the formation of
the predicted quantity.

Another example is weather forecasting as opposed to climate forecasting.
Weather forecasting is a passive prediction since it is nearly impossible to
change short-term local weather variables. On the other hand, climate fore-
casting is an active prediction since long-term temperature averages can be
changed if proper policies at the global level are enforced.

In this chapter, passive predictive analytics will be discussed, leaving ac-
tive tasks for the chapter of prescriptive analytics. It is worth mentioning
this distinction, though, since predictive analytics is often tightly linked with
prescriptive analytics: failing to recognize the final use for which predictive
analytics solutions are developed can lead to suboptimal decisions. In other
words, in this chapter, forecasting is intended as an open-loop problem [124]:
subsequent decisions do not alter the quantity to be predicted.

Also, the same paper [123] points out correctly that the predicted quan-
tity can involve not a future quantity but simply an unknown quantity. An
example can be found in the third application (Section 3.5), where transfer
learning is used to estimate the people present in a room monitored with a
thermal camera. However, the same paper [123] is calling this type of pre-
dictive analytics ”diagnostics”, which was used in Chapter 2 to refer to tasks
aimed at understanding the causes of observed events (see Chapter 2). So it
would be confusing to use here in this thesis. Therefore, the remainder of
the thesis will employ a specific name (forecasting) for predictive analytics
regarding the future, leaving prediction as a generic term for both forecasting
and other predictive analytics problems.
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3.1 Cross-Industry Standard Procedure for Data Mining

While there is no common process for descriptive and diagnostic analytics to
follow and come to a definitive solution, predictive analytics has standard pro-
cedures for continuously developing, deploying, monitoring, and improving
models. In particular, a widely employed framework for predictive analyt-
ics is the Cross-Industry Standard Procedure for Data Mining (CRISP-DM)
[54, 55], depicted in Figure 3.1.

Business
Understanding

Data  
Understanding

Data Preparation

Modeling

Evaluation

Deployment

Figure 3.1: Scheme of the Cross-Industry Standard Procedure for Data
Mining (CRISP-DM) [54, 55]

The steps of the CRISP-DM procedure are the following:

• Business Understanding. This is the phase where the business prob-
lem is analyzed and, if it can be framed as a data mining problem, the
right dataset is collected in order to develop the solution. At the same
time, the right KPIs to be used are selected in order to evaluate the
model correctly;
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• Data Understanding. In this phase, the chosen dataset is preliminarily
analyzed in order to check inconsistencies, either by building simple
models or using visualizations. It is mostly the realm of descriptive
and diagnostic analytics;

• Data Preparation. In this phase, the data is preprocessed before being
used to develop a predictive model;

• Modeling. In this phase, the model is developed. Typically, the final
one is chosen among a pool of candidate models;

• Evaluation. The chosen model is evaluated using meaningful KPIs,
the ones decided in the business understanding phase. If the evaluation
is satisfying, then it can be deployed. Otherwise, the cycle restarts. It
may well be the case that the evaluation can give another light to the
problem to be solved: maybe the KPIs were not in line with the busi-
ness problem, or even the data mining problem itself does not solve the
business problem (or the business problem itself has to be reframed);

• Deployment. If the model passes the evaluation phase, the model is
put into production. This is where the monitoring of the model begins,
since the environment where the model runs can have characteristics
that could not have been observed in the previous steps, either because
of the limit of the experimental setting or because the environment is
changing altogether.

In the following subsections, each phase will be broken down into several
aspects that arise in most, if not all, predictive analytics tasks. Since their
prominence in power system analytics, particular focus will be given to fore-
casting tasks since their prominence in power system analytics.

3.1.1 Business Understanding

In this phase, the business problem is dissected. It is a crucial phase: even
the most rigorous data mining procedure is useless if it solves a non-existing
problem. Hence, the real problem must be identified and framed as a data
mining problem. There is no standard guideline, from an analytics perspec-
tive, on how to identify the right problem to solve. It typically involves maxi-
mizing some good measure such as profit or minimizing negative impacts, be
it environmental, energetic, reputational, or financial.
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However, some aspects of business problems translate easily into tasks for
the predictive analytics task. For example, if the problem is inherently fast-
changing or nonstationary, an online predictive model may be a clever solu-
tion. Online ML is the branch of ML that studies the models that update their
parameters as soon as new data becomes available. This is opposed to offline
(or batch) ML in which a model is trained using historical data and then, once
validated, the same model is used, without a continuous update of parameters
[125].

The forecasting problem, in particular, can be framed in various ways, as
the quantities to be forecasted depend on the business problem specifics. For
example, for a Distribution System Operator (DSO) the load forecasting prob-
lem can take very different characteristics, as exemplified by Figure 3.2. Data
granularity (i.e., the frequency of the data) and forecasting horizon (i.e., how
far in time must the model forecast), in particular, are very important in defin-
ing the subsequent CRISP-DM steps.

Figure 3.2: Various types of load forecasting tasks [126]
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A typical distinction is made in various fields between very short-term,
short-term, medium-term, and long-term forecasting, as shown in Figure 3.3
for power systems.

Figure 3.3: Different forecasting horizon definitions and their business and
operational objectives [127]

The distinction is somewhat subjective, and it is mainly a matter of business
objective: indeed very short-term forecasts are typically required for opera-
tions, short-term forecasts for operational planning, medium-term forecasts
for risk hedging and maintenance, while long-term forecasts for technical and
financial planning, as well as for policy design [128]. But from a technical
point of view, it mainly affects the relative importance of historical data as
inputs, with very short and long-term being the ones with the higher relative
importance of historical data.

Furthermore, some tasks are induced by the business problem itself: for
example, in electricity markets, an important task is the day-ahead forecast-
ing, that is, the forecast issued for the next calendar day (which should not
be confused with 24-hour ahead forecasting, which forecasts the value to be
observed 24 hours after the forecast origin [124]).
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Another important aspect is the level of aggregation for the forecasting
task. Indeed, a quantity (such as load) can be split into subquantities (typ-
ically several subloads plus losses [124]), and the question is whether it is
necessary to forecast the subquantities or it is sufficient to forecast the princi-
pal quantity. Indeed, typically the higher the aggregation level, the easier the
forecasting tasks, both in terms of forecasting KPIs and in terms of complex-
ity of the solution. On the other hand, a disaggregated forecast delivers more
information, and if the subquantities at different levels can be reconciled, the
accuracy of the forecast can increase ([86, 124]).

Also, the notion of ”good” prediction must be defined, both in terms of
meaningful KPIs and in terms of the magnitude of a satisfying predictive
analytics solution. In power systems, a small percentage of error can lead to
several hundred dollars loss for a utility financial bottom line [129].

Finally, as perfect predictions are impossible to obtain, one has to define
whether a measure of the uncertainty regarding the predictions is needed. If a
measure of uncertainty is given, forecasting is told probabilistic. Otherwise,
the problem is a point forecasting one. Typically, probabilistic forecasting
is to be preferred, as it has been shown to lead to better decisions [130];
however, it is also a less mature field, and the user of the forecast must be
able to understand the output and act based on it to leverage its potentiality. In
any case, the majority of use-cases (especially in power systems) benefit from
the additional details given by probabilistic forecasts [131]. The importance
of uncertainty qualification of point forecasts is paramount in the context of
risk constraints, such as the ones involved in optimal bidding and bilateral
contracts in liberalized markets [132].

Probabilistic forecasting can be in the form of quantiles, prediction inter-
vals, or density functions [127], and can be issued in many ways:

• statistics of deterministic errors [131];

• conformal prediction [133];

• error variance modeling, as well as skewness and kurtosis modeling
[131];

• quantile regression [134];

• bootstraping [135];

• kernel dressing [136];
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• specific models that give predictive intervals (such as xgboost) [137];

• copula models [138].

Finally, another aspect to be investigated is whether to frame the problem as
a regression problem, a classification problem, or another type of supervised
problem (or even a semisupervised or unsupervised problem).

This may arise, for example, when the quantity to be forecasted is difficult
to predict, and hence a simplification of the problem is needed. The question
here is whether the simplification still answers the business problem at hand.
This is seldom encountered in power system analytics. However, there are
instances where it may apply: for example, for ramp direction forecast [139],
or in forecasting the future state of a balancing market. Indeed, balancing
markets are very tough to predict but typically have four states: no regulation;
only upward regulation; only downward regulation; or both [140].

3.1.2 Data Understanding

Once the type of predictive analytics task is identified and the corresponding
data is collected, a closer look at the available information must be given. This
can be done mainly with the approaches presented in Chapter 2. Moreover,
additional care must be taken to understand whether the data has some biases
that must be taken care. An example in load forecasting can be the case where
a demand response program is in place. In that case, the load profile is not
the ”passive” load, but it is the load on which an action has been taken, and
hence some caution must be taken in using the data without any modification
[124].

Another aspect to observe is the quantity and the typology of data since
many modeling techniques have different performances with different quan-
tities of data (although, except in particular instances [141], the more the
data, the better). Specific preprocessing techniques are needed for different
typologies of data (such as unstructured data).

Also, the identification of bad data is an important aspect of this phase. Bad
data is a concept relative to the question to be answered: a bad data instance
for a task may not be bad for another one. Measurement errors in input data
may be very important in estimating causal relationships but have less impact
in predicting the response variable per se [142].

Another way in which data can be bad is if data is not up-to-date, meaning
that the model developed may not be relevant for deployment.
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It is not trivial to identify bad data, as expert knowledge and intuition are
often necessary. Also, changes in measurement procedure or bad choices of
missing value codes can give rise to bad data. This is further complicated by
the fact that the presence of errors can be proven, but its absence is not [142].

3.1.3 Data Preparation

Once the data have been explored, they can be prepared for the modeling
phase. There are many subphases here that can be tackled in different orders.
This phase together can take a large percentage of time and effort involved in
all the CRISP-DM process [143]. One is dealing with missing data.

Missing data can mean that an entire record is absent or that individual fea-
tures of a record are missing [142]. It is very common in real-world datasets
[144] and can severely hinder the performance of the desired models.

There are several types of missing data:

• Missing Completely At Random (MCAR) when the probability of a
data point being missing is completely independent of any variables in
the dataset;

• Missing At Random (MAR) when it is independent of its own (missing)
value but probabilistically dependent on the value of another variable;

• Missing Not At Random (MNAR) when it is dependent on its own
(missing) value.

Ways to deal with missing data are numerous as well:

• Complete Case Analysis (where data with partial information are dis-
carded). This may shrink the dataset size sensibly and can produce
biased results if data is MAR or MNAR;

• Imputation, where missing data are filled with simple substitutes (such
as previous available value). However, this is still not a good choice if
the missing data is a high proportion of all the data [144].

Other issues arise that deserve careful attention in developing a forecasting
solution. For example, nonstationary data is typically difficult to model with
ML techniques without applying various techniques of detrending. Similarly,
seasonality has to be adequately addressed (such as with calendar features that
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can capture seasonality), as well as calendar effects of holidays, weekends,
and leap days. Also, peaks and high volatility should be properly treated (all
very common characteristics of electricity markets [132]).

After bad, missing, and peculiar data is filtered out, inputs for predictive
models are to be constructed. This step is called feature extraction, which
is tightly connected with feature transformation techniques. This is neces-
sary for optimal modeling, as predictive modeling can lead to poor results
with some features but not with other features. This happens because dif-
ferent feature representations give different geometric shapes to the data,
and hence they may have very different relationships with the desired out-
put [145]. However, finding a suitable data representation is very difficult
because it is very domain and dataset-specific [146]. Several common ap-
proaches exist, though. Since the type of data being analyzed influences the
feature extraction possibilities to a great extent, the focus is on time series
data feature extraction techniques. They involve:

• feature learning (such as standard or recurrent neural networks);

• concepts of signal enhancement, such as smoothing or de-noising. Fourier
and Wavelet transforms in this category are among the most popular;

• local features methods, that encode local sequence characteristics into
features (such as moving average values);

• linear and non-linear feature transformations, such as PCA, MDS, and
t-SNE, described in Chapter 2;

• non-linear expansions, such as creating the square of existing features,
adding interaction terms (i.e., multiplying existing features in new fea-
tures)

• feature discretizations;

• normalization and standardization techniques;

• in general, basically any function of the input time series (see for ex-
ample [147] for other types of features available for time series).

It is sometimes advised to include more than to exclude features since typ-
ically feature selection is the step done immediately after feature extraction
[146].
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Indeed, after extracting the features, feature selection is needed to retain
the ”relevant” features while discarding the irrelevant ones [148]. Also, in
this context, the relevancy is problem, domain, and dataset-dependent. More-
over, two individually irrelevant features may be relevant if both are included
[146]. The notion of relevance itself is related to the objective being pur-
sued. An irrelevant feature for short-term forecasting may be relevant for
long-term forecasting and vice versa. Also, a good feature selection may im-
prove generalization capability and prevent overfitting (a phenomenon that
happens whenever the model mimics too closely the training set, and thence
the final model is unable to retain the signal helpful for predicting a new val-
idation or test set).

Feature selection methods can be classified by their output or their relation
with the predictive model. They can either produce a subset of the original
feature or rank all the original features (in the latter case, a threshold is needed
for actually selecting the features).

Nevertheless, the common distinction relies on their relationship with the
predictive model. Three types of feature selection methodologies can be dis-
tinguished:

• Filter methods, which are independent of the predictive model;

• Wrapper methods, which use an evaluation of the predictive model
trained with the selected features to evaluate the subset of features;

• Embedded methods, which perform feature selection in the training of
the predictive model itself (examples of these kinds are decision trees
and lasso regression).

While methods exploiting the predictive model (i.e., wrapper, embedded)
lead typically to higher performances, they are also more computationally
expensive. There are also approaches to use different feature selection meth-
ods by combining their output. They can be classified into homogeneous and
heterogeneous ensemble methods. The former group uses the same feature
selectors on different subsets of the data set, while the latter uses different
selection methods on the same dataset. But many other possibilities of en-
sembling are possible [148].

All these steps have been named called ”methodologies” in order to distin-
guish them from the actual predictive models, which are called techniques in
[127]. The distinction is helpful because one can use the same exact predic-
tive technique with many different methodologies and arrive at very different
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accuracy levels and conclusions (although many times methods, methodolo-
gies, and techniques are used as synonyms in the literature). It is also a line of
research less explored than using the same methodology with many different
techniques. The different types of techniques are discussed in the following.

3.1.4 Modeling

In this step, the actual predictive model is developed. Here the possibilities
are countless, as a lot of different choices can be made for the same task:

• Choice of the technique. There is a great number of techniques one can
choose. Since also, in this case, the ”best” technique is task, domain,
and dataset-dependent, it is utopic to hope to find the ”optimal” tech-
nique [127]. In any case, apart from empirical experimentation, several
fundamental choices have to be done, for example:

– Structured or Unstructured techniques. Structured techniques hy-
pothesize a data generating process, while unstructured techniques
try to learn it from data. Unstructured techniques can be com-
petitive in the presence of a high quantity of data (typically the
more, the better) [149]. Sometimes this distinction is referred to
as statistical/machine learning techniques, although this is more
a cultural, subjective distinction [149, 150]. The choice is not
trivial, especially in forecasting, where typical assumptions made
for unstructured techniques, such as that data are Independent and
Identically Distributed (IID) are not held. Also, hybrid solutions
are possible [145].

– Physical/Statistical techniques. In instances where a physical model
can capture the prediction, a physical model (i.e., derived from
physical equations) can be preferred to a data mining solution.
This is the case, for example, for PV forecasting. Also, in this
case, hybrid techniques are available [56]. Physical consideration
can also help in the data preparation phase [124], and in any case,
statistical postprocessing is often used when using data that come
from Numerical Weather Prediction (NWP) models.

• Global or Local approaches. If the task regards the forecasting of sev-
eral time series (such as load forecasting at various levels of a distri-
bution system), a choice must be made on whether the same model on
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each time series is to be developed, or a single model, leveraging all
the single time series is to be preferred [149];

• ”Integral” or Decomposition approaches. Especially in forecasting, the
time series to be forecasted can be decomposed in a sum of more time
series, capturing longer and shorter dynamics. Each decomposed time
series is then predicted with one or more techniques and their results
combined [151]. Similarly, data can be mapped into regions, for each
of which a specific model is trained;

• In the case of multi-step ahead forecasting, several schemes can be
devised [152]:

– Multi-Input Multi-Output (MIMO) strategy;

– Recursive strategy, where a one-step-ahead prediction model is
developed and then used recursively, using its previous step fore-
cast as new input;

– Direct strategy, where a model is developed for each lead time to
be forecasted.

With whichever technique and data preparation phase, a number of hyper-
parameters (a number that defines the parameters to be learned) is always to
be chosen. For example, when using a fully-connected one hidden layer neu-
ral network, the number of hidden units, the transfer functions, the training
algorithms, and other options are available before one can actually learn the
neural network model from the data. With the advent of Big Data (BD) and in
Deep Learning (DL) in particular, the number of hyperparameters can liter-
ally be immense. So, the problem of choosing in a reasonable amount of time
and with limited model evaluations a good choice of the hyperparameters is
not trivial. This also applies in modern ML systems, as there is a persistent
push toward automatizing ML pipelines, in what is called Automated Ma-
chine Learning (AutoML), where the problem of hyperparameter choice is
extended by including all the possibilities of the Data Preparation step. The
problem is known as HyperParameters Optimization (HPO). In DL setting,
the problem is also known as Neural Architecture Search (NAS). In the con-
text of AutoML, also Full Model Selection (FMS) and Combined Algorithm
Selection and Hyperparameter (CASH) concepts are encountered.

There are four main strategies for solving the HPO problem [153]:
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• Grid Search, also known as full factorial design. For each set of hy-
perparameters, a finite set of values is defined: the cartesian product of
these sets is evaluated. It is the simplest method, but it is not convenient
to use in the presence of many hyperparameters, as the number of eval-
uations quickly explodes as the number of hyperparameters increases;

• Random Search is a simple alternative, which samples configurations at
random until a specific budget (such as number of evaluations or time)
is exhausted. It has been shown to be more efficient than grid search.
It is also easier to parallelize;

• Genetic Search methods. They can be thought of as guided random
search methods. Indeed they start from a population (a set of con-
figurations) and improve them by applying local perturbations (muta-
tions) and combinations of different members (crossover) to obtain a
new generation of better configurations;

• Bayesian Optimization. These approaches are black-box global opti-
mization iterative algorithms with two key ingredients: a probabilistic
surrogate model and an acquisition function to decide which point to
evaluate next. This type of optimization can model integer, categori-
cal, and conditional hyperparameters. Advanced versions include con-
straint handling (for example, involving memory consumption, training
time, prediction time, energy usage) and ways to try configurations on
a subset of the training data to speed up computations.

Finally, a decision must be made on whether to use one predictive model
or an ensemble of predictive models. Strategies for ensembling are bagging,
boosting, stacking [148]. Ensembling is convenient when different forecasts
are comparable either in performance or diverse [154]. Diversity can be
achieved using forecasts issued with different techniques or data preparation
steps (methodologies). Ensembles will typically work worse if data are either
too volatile or with a significant amount of outliers. Ensembles may indeed
learn a poor model from the outliers. In general, the advantage is not that
the performance is better than the best of the single forecast, but because it is
much more difficult to issue a bad forecast if the predictive analytics solution
does not rely on a single model [155].

Concluding this section, in Table 3.1 the data preparation and the modeling
steps of the CRISP-DM framework are summarized.
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Table 3.1: Summary of Data Preparation and Modeling steps

CRISP-DM phase Subphase Options

Data Preparation

Bad Data Management
Complete Case Analysis;
Imputation; outlier removal

Feature Extraction

Feature Learning;
Signal enhancement;
local feature methods;
feature transformation;
non-linear expansions;
discretizations;
normalizations;
standardizations; etc.

Feature Selection
Filter; Wrapper;
Embedded methods.

Selection Ensembles
Homogeneous;
Heterogeneous.

Modeling

Choice of Technique
Structured or Unstructured;
Physical or Statistical;
or Hybrid.

Approach
Global or Local;
Integral or Decomposition;
MIMO; recursive; or direct.

Hyperparameter Selection

Grid Search;
Random Search;
Genetic Search;
or Bayesian Optimization.

Ensemble Method
Bagging; Boosting;
Stacking; others.

Of course, Table 3.1 is not exhaustive, as the number of options is very
large. Also, each option has many suboptions that enlarge the total number of
possibilities a modeler has to choose from in these two phases. In any case,
the main modeling decisions to be taken are listed.

3.1.5 Evaluation

Once a model has been developed, it must be evaluated. The task is not easy
for several reasons. First, it would be advisable to measure the capacity of
generalization of the model, that is, the distribution of the error (or some
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functional of it) that is to be expected in applying the model to new data.
This can be done only if a hold-out validation set is used or a cross-validation
procedure. The cross-validation procedure is the ideal procedure to use, but
it means running the same model several times.

In forecasting, the procedure must be taken with particular care since the
main assumption of cross-validation standard procedures (i.e., the data being
IID) are not met. There are several versions of cross-validation for time series
[156], with respect to the forecast origin, which is the time point of the last
known value:

• Fixed-Origin: only one forecast is issued for each time point of the test
set (this is the same as standard training/test procedure)

• Rolling-Origin-Recalibration: forecast origin is moved in training set
and model recalibrated;

• Rolling-Origin-Update: the same model is used while forecast origin is
moved, and recalibration does not take place;

• Rolling-Window-Evaluation: same as Rolling-Origin-Recalibration, but
the amount of training data is always the same (i.e., less recent data are
discarded).

An alternative method is given by the techniques for which the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion (BIC) can
be computed [157].

Also, particular care must be given to not using the same data for HPO and
evaluation, as this may lead to an optimistic value for the evaluation. Indeed,
typically, data used for HPO is included in a subset of the training set called
validation set, separate from the final evaluation test set.

Second, a meaningful functional of the error measure must be chosen.
Though it has been done in the business understanding phase, it is worth
mentioning that every commonly used functional has some issue. Ideally, it
should be scale-dependent (e.g., Mean Absolute Error (MAE) is not), but the
most common scale-dependent measures (such as Mean Absolute Percentage
Error (MAPE)), which rely on a reference value, have issues on zero or unde-
fined values, or they have a skewed distribution towards the reference value
[156]. Asymmetry can be corrected, but at the expense of the symmetry with
respect to the magnitude of the error (e.g., Symmetric Mean Absolute Per-
centage Error (sMAPE) has this characteristic).
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Problems with zero value can be mitigated by using a benchmark model
as a reference, but again, in general, the problem persists (e.g., Relative Root
Mean Square Error (RELRMSE)), and if the problem is overcome, this hap-
pens at the expense of interpretability (e.g., with Mean Absolute Scaled Error
(MASE)).

A solution might be to evaluate the same model with different error mea-
sures. Nonetheless, another problem arises: since the model has been devel-
oped minimizing only one of them, how to arrive at a single conclusion on
the model to select is not easy [158].

In general, it is very important to benchmark the model with simple models,
naive models, classic models, established models, or state-of-the-art models,
if possible: this helps to understand the potentiality of the selected models.
It is also important to be fair in comparison by devoting the same resources
(i.e., computing time) to each competing model [124]. In this regard, auto-
matic HPO procedures are beneficial. Also, statistical tests exist to determine
if two error measures are statistically different from each other [159], as also
the possibilities that two models behave similarly (i.e., either is equally per-
formant) must be taken into account [124, 128].

3.1.6 Deployment

Once the model has passed the evaluation phase, it is ready to be deployed (if
deployment requirements have been taken into account, as they should have
been in the business understanding phase). Now the monitoring phase takes
place, where the actual performance is measured. This is to be done in order
to understand whether the model is behaving correctly or some sort of concept
drift (or persistent missing data) is happening that requires the model to be
retrained [144, 160]. This is also important for online methods, as some of
them, such as neural networks, can pick up new relationships at the expense
of forgetting old ones [161].

3.2 Predictive Applications to Power Systems

Predictive analytics applications in power systems can be leveraged by all
types of users, mainly energy market participants and power system oper-
ators. While the former is concerned with optimal purchase and selling of
energy, the latter is concerned with reliability, security, and economic opera-
tion of the grid [131].
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Because of the applications being presented afterward, this section will be
mainly devoted to PV forecasting and load forecasting, although these are not
the only applications of predictive analytics in this domain.

For example, price forecasting is quite a crucial task since the types of
prices, markets (day-ahead, intra-day, balancing, and ancillary [128]), and
uses are very large and also policy-dependent. Hence, a method developed
for a specific market may not be transferable to a similar market of another
nation, although similarities do exist. Price is also a complicated quantity to
be forecasted because of spikes, and the fact that it is an inherently an active
predictive analytics problem (in the sense of [123], meaning that forecasts
contribute to the trading strategies of market participants [19, 132]).

Another important application that will not be reviewed in this section is
wind power forecasting: it is a pretty mature field, especially in the context
of probabilistic forecasting [162].

3.2.1 Common Issues

A big challenge facing the predictive analytics in power systems is how to
deliver disaggregated forecasts and predictions with the highest possible per-
formance, as this will greatly enhance the optimal operation of the whole
system, a wider involvement in the market, and demand response programs
(with, ideally, feasible net-load forecasting [131]). The quick adoption of
smart meters is believed to be helpful in solving the challenge [23].

Also, at the retail level, efficiency in single facilities such as factories or
buildings can be achieved by a comprehensive suite of predictive analytics
products, integrating consumption patterns with weather predictions, energy
prices, occupancy rates, and RES forecasting [39].

Since the challenges are all common and ultimately interconnected in the
context of decarbonization objectives, a need for data sharing, all the while
respecting the privacy of the data issuers, has been pointed out by many au-
thors [131].

3.2.2 PV Forecasting Applications

Many PV power forecasting techniques have been developed through the
years. A reliable forecast is the key for several smart grid applications [163],
such as: optimal dispatch, [164], active demand response, grid regulation
[165] and intelligent energy management [166].
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PV forecasting represents a large research topic which can be characterized
by the time horizon related to the prediction [167]:

• Very short/short term forecasting, wherein the time horizon varies from
seconds to 24-48 hours;

• Medium-term forecasting, which analyzes periods up to one month;

• Long-term forecasting, wherein the horizon can be set to 1-10 years.

A first distinction is made between direct and indirect forecasting methods
[167]. In an indirect forecasting approach, the solar irradiance is forecasted
and then exploited in commercial PV simulation software to predict the PV
power generation. Direct methodologies, on the other hand, aim at predicting
the PV output directly. A comparison between the two strategies can be found
in [168], wherein the results show that direct methods perform better.

Among direct methods, the most common classification is between phys-
ical models, statistical approaches, and hybrid methods that blend physical
and statistical techniques. The physical methods rely on the fact that the PV
power production is mainly affected by two physical variables: the amount
of irradiance reaching the panel and the PV modules temperature [169, 170].
The main advantage of physical models is that they do not require any histor-
ical data to be implemented.

Among these, the day-ahead horizon is crucial for the scheduling of the
conventional generation, and many national grid codes (e.g., [171], [172])
require a punctual and precise RES forecasting. In addition, in countries
with a day-ahead electricity market, large RES plants can act as producers
providing sale bids, wherein the actual production has to follow a scheduler
offer that is provided through a forecasting approach.

Two examples of physical methods for the day-ahead horizon that represent
the cell through an electrical circuit are described in [173]. The two models
are compared with a hybrid technique. The results show that the hybrid model
outperforms both physical models.

Still, the most popular approaches are the statistical ones. They consist of
the exploitation of historical data to train any typology of data-driven tech-
niques such as time series, regression models, machine learning, or deep
learning architectures. Statistical models are more versatile than physical
ones, and they are easier to set up. The most used statistical methods are
the Artificial Neural Networks (ANN) [174].
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This popularity derives from their effectiveness, which in turn stems from
the high nonlinearity of relationships between PV production and its related
variables [175]. Also, classical statistics models can lead to satisfactory re-
sults, possibly combined with ensemble techniques [176].

Any kind of mixture of physical and statistical approaches is a hybrid
method. Physical methods can become hybrid if statistical techniques are
used to correct their systematic errors. On the other hand, statistical ap-
proaches that use physical methodologies for the design of input variables
can be considered hybrid. Examples of this last kind of hybrid method are
described in [177] and [178]. In [179], an example of each of the two types
of hybrid methods is developed. The literature also presents solutions that
are called hybrid because of a particular combination of two statistical tech-
niques. For example, [180] uses two different algorithms for the training of a
feed-forward neural network, while in [181], nearest neighbor and ANN are
exploited for fulfilling the forecasting task. However, in practice, they are
statical methods.

3.2.3 Load Forecasting

One of the most important quantities to be predicted and forecasted is the load
demand: it is a common problem, and a key factor in electrical systems [127].
Load forecasting is throughout all electric power industry segments, includ-
ing generation, transmission, distribution, and retail. Applications of load
forecast include power supply planning, transmission, and distribution sys-
tems planning, demand-side management, power systems operations, main-
tenance, financial planning, and rate design. [127, 182]. In general, a reliable
load forecasting functionality is essential for the coordination of the uncer-
tainty brought by renewable generation units with actual demand, also consid-
ering the diffusion of active demand response programs, flexibility markets,
and load shaping strategies [58]. In addition, load forecasting is useful for
grid security, providing crucial information in order to determine in advance
imbalanced and vulnerable scenarios [58]. Finally, in a microgrid scenario,
accurate forecasting techniques and methodologies are crucial in the plan-
ning, design, and operation phases [183]. In this context, load forecasting
plays a fundamental role in enhancing the management and usage of the con-
ventional and renewable mix, and it helps to improve the economics of energy
exchange for easy integration of renewables into utilities.
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The number of methodologies, approaches, and techniques studied for tack-
ling this task is remarkable. The number of load forecasting reviews is also
considerable. Figure 3.4, taken from [184] gives a glimpse of how the var-
ious techniques are used for different horizons and granularity of the load
forecasting problem.

Figure 3.4: Techniques used for each horizon and data granularity for the
load forecasting task [184]

While in short-term applications, fine granularities and time series analysis,
as well as Artificial Neural Networks (ANNs) are typically used, in long-
term applications, regression techniques and more detailed (not data-driven)
approaches (”bottom-up” in Figure 3.4) are preferred.

Despite the great amount of research in the load forecasting realm, the
problem is still worth to be studied. Indeed, new factors complicate now
the study of the problem: for example, customers are becoming more price-
responsive [124], and behind-the-meter RES, as well as demand response
programs and increasing use of EVs, are rendering load forecasting more
complicated than before. Also, the human activities served by the load play a
major role [86], as well as weather, for which the optimal source of data to be
used is not easy to find [185]. For this growing complexity, new approaches
such as meta-learning [126], and deep learning [186] are being investigated,
among many others.
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Both PV and load forecasting are crucial for optimizing the grid operations
(for DSOs) as well as maximizing the revenue and savings from energy effi-
ciency solutions, as well as for minimizing the use of carbon-intensive energy
sources by leveraging, for example, BESSs. As a matter of fact, the outputs of
load and PV forecasting (and in general, RES) are a crucial input for energy
management algorithms of the types described in Chapter 4.

In the next sections, two applications of PV forecasting and two applica-
tions of load (and energy) forecasting will be delineated, originating from
works published during the Ph.D. [56, 57, 60] and from unpublished work
done within the Ph.D. for the PODCAST project (see Projects section at
Page 255).

3.3 Application: PV Forecasting

In this section, it will be presented an innovative PV forecasting procedure
developed during the Ph.D. and published in [56, 57].

The contribution is about an innovative hybrid forecasting technique for
the power output of a PV system. The proposed procedure has been validated
on a real PV plant, located in Genoa, Italy. The innovation of the proposed
hybrid forecasting method consists of the combined modality of physical and
statistical approaches. In particular, two physical models and one statistical
method are developed, while the proposed hybrid technique chooses among
them for the PV prediction according to the day ahead weather forecasting.

Several works have already presented a technique based on the selection
of different models, trained with data coming from different types of days.
For example, [187] describes a method composed of four support vector re-
gressors, one for each identified meaningful weather condition. In [188] five
neural networks coupled with a harmony search algorithm are used according
to a fuzzy k-means clustering technique. In that work, a fuzzy inference ap-
proach is used according to the weather prediction. In [189], days are divided
into two groups: for each of them, an ensemble of ANNs is developed. In
the forecasting phase, one of the two ensembles is utilized. In [190], data
are grouped in 6 clusters using the variance of five differential sequences of
weather Key Performance Indicators (KPIs). Each cluster is used to train,
through a back-propagation algorithm, a neural network which is employed
for the PV forecasting. In [191]. k-means clustering and gated recurrent unit
are employed respectively for classification and prediction tasks.
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Finally, the specific problem related to the classification of the day-ahead
weather condition is addressed in [192] and faced through k-nearest neighbor
and support vector machines.

In all these cases, weather prediction is used to select among different sta-
tistical methods. The innovative contribution of this technique lies in the
selection between a physical model (Clear Sky Model (CSM)), a statistically
corrected physical model (Corrected Clear Sky Model (CCSM)), and a sta-
tistical approach (Basic Ensemble Method of Neural Networks (BEM)). The
proposed approach represents a novel hybrid method for the PV forecasting
because it is neither a corrected physical approach nor a statistical technique
that uses inputs from a physical model. It is a methodology that, accord-
ing to the day-ahead weather forecast, may use a physical or a statistical
approach, differently from all the above-mentioned hybrid strategies, which
select among techniques of the same type.

The weather forecast can be used for the selection of the most appropri-
ate method in different modalities. The selection is made with decision tree
algorithm in [56] because of its easy implementation and straightforward in-
terpretation, while in [57], a simplified procedure has been proposed: the de-
cision rule is a single rule, identified through linear regression, that chooses
between a physical approach and a data-driven technique. The decision in
[56] is based on different weather variables, while in [57] it is based on the
day-ahead forecasting of the sole Cloud Cover Index (CCI).

The CCI is a number that measures the percentage of the considered sky
portion which is covered by the clouds at a given time. It ranges from 0
to 100, where CCI=0 indicates a cloudless sky, while CCI=100 indicates a
weather condition of a completely covered sky.

Through the analysis of the resulting decision rule, it is possible to verify
the rationality of the proposed approach. The proposed method is described
in detail in Section 3.3.2 and depicted, for the integral case in Figure 3.5,
while the simplified procedure is represented in Figure 3.6.

The main idea is that if the sky is predicted to be clear, a CSM, based on
well-known sun equations, is exploited; alternatively, a data-driven method-
ology should work better. This approach, if implemented correctly, should
achieve high accuracy since physical models are very precise on clear sky
days, while ANNs and statistical methods are more reliable on the other days.
The prediction is performed in MATLABwith a 15 minutes granularity and
with a horizon of 24 hours, starting from midnight (thence being a day-ahead
horizon).
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3.3.1 Key Performance Indicators - KPI

This section collects all the KPIs used to assess the quality of the proposed
forecasting procedure and for the selection of all the parameters of the method-
ologies described in subsequent sections.

The base for all the considered KPIs is the prediction error. It is defined as
the difference between the forecast and the measured variable at time t:

ε(t) = xmeas(t)− xforec(t) (3.1)

From this equation, it is possible to observe that positive errors correspond
to an underestimation of the actual value.

The second KPI proposed for this application is the Root Mean Square
Error (RMSE) [169]. It is defined as:

RMSE =

√√√√ 1

N

N∑
t=1

(ε(t))2 (3.2)

where N is the samples number. The RMSE can be normalized, obtaining
an estimation of the percentage error. This KPI is called normalized Root
Mean Square Error (nRMSE) and can be evaluated as:

nRMSE =
RMSE√

1
N

N∑
t=1

(xmeas(t))2

(3.3)

The Mean Bias Error (MBE) is defined as the mean difference between the
prediction and the measurement:

MBE =
1

N

N∑
t=1

ε(t) (3.4)

It represents the systematic part (bias) of the error: if it is positive, the
model has the tendency to underestimate the actual value (forecasts are on
average over measurement values); if negative, it overestimates it (forecasts
are on average under measurement values).

Finally, the Skill Scores (SSs) [193] measure the accuracy of a forecasting
technique with respect to the precision of a reference methodology. The SS
can be defined for different KPIs. In this application it has been calculated as:
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SS = 1− |KPIproposed|
|KPIreference|

(3.5)

where KPIproposed represents an estimation of the accuracy of the pro-
posed approach, while KPIreference is the same KPI evaluated on a refer-
ence method.

The range of the SS is [−∞,+1]. A positive value of SS implies that the
proposed technique provides a better result with respect to the other approach,
while a negative value corresponds to the opposite situation. Notice that a
SS = 1 represents the perfect forecast.

3.3.2 Proposed Approach

The methodology of [56] will be firstly presented; then, the simplification
introduced in [57] will be treated.

The method proposed in [56] consists of two Decision Rules (DeRus) and
three Sub Models (SubMs). Figure 3.5 describes the flowchart of the pro-
posed hybrid approach, where figure diamonds represent the decision rules,
while rectangles are the available forecasting approaches. The implemented
SubMs are:

• Clear Sky Model (CSM), based on well-known sun equations;

• Corrected Clear Sky Model (CCSM), a linear model which combines
CSM and cloud cover index;

• Basic Ensemble Method of Neural Networks (BEM), which uses out-
puts of multiple ANNs.

As can be seen from Figure 3.5, first, a decision based on day ahead weather
forecast is made on whether to use the BEM or a deterministic model. In case
the choice ends up being a deterministic model, a second decision must be
made between the CSM and the CCSM.

The forecasting has been designed with a day-ahead horizon and a granu-
larity equal to 15 minutes (which represents the standard monitoring interval
adopted in Italy, where the test site is located : see Section 3.5.1). Notice that
the output of the proposed method is composed of 96 values representing the
PV output for the 24 hours of the next day.
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Start 

Is the sky totally clear? 
DeRu2: 

Should the Clear Sky  
Model be used?

SubM3: Ensemble
of Artificial Neural
Networks (BEM)

End 

Is the sky clear? 
DeRu1: 

Should a Deterministic  
Model be used?

SubM2: Corrected
Clear Sky Model

(CCSM)

SubM1: Clear Sky
Model (CSM)

Yes

No

No

Yes

Figure 3.5: General scheme of the technique proposed in [56] (complete)

In [57] instead of a BEM, a single ANN is used, and a single decision rule
chooses between the ANN and the CSM models. The proposed procedure is
depicted in Figure 3.6.

The rest of this section describes the various part of the proposed strategy.
In particular, in Sections 3.3.3 and 3.3.4 the deterministic approaches (CSM
and CCSM) are described; in Section 3.3.5 the BEM is presented; finally, in
Section 3.3.6 the proposed hybrid methodology is described.
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Start 

Artificial
Neural
Network

End 

Is the sky clear? 
Should a  

Deterministic  
Model be used? 

Clear Sky
Model

Yes

No

Figure 3.6: General scheme of the technique proposed in [57] (simplified)

3.3.3 Clear Sky Model - CSM

When the sky is clear, the PV system is not shaded by any cloud. In this case,
there is little to no uncertainty in the PV output profile. Thus, a deterministic
model can be set up for covering scenarios with this weather condition [194],
[167]. Thus, the predicted PV output (Psystem(t)) is modeled as follows
[195] (notice that (t) indicates the time dependency):

Psystem(t) =
Eg,pv(t) · Ppeak · ηpan(t) · ηinv·ωDEG(t)

ESTD
(3.6)

where: Eg,pv (t) is the global irradiance on the plane of the array
[
W
m2

]
,

Ppeak represents the total rated peak power of the solar panel [kW], ηpan(t)
is the relative efficiency factor of the panels [p.u.], ηinv indicates the relative
efficiency factor of the inverter [p.u.], ωDEG(t) represents the coefficient of
degradation [p.u.] and ESTD is the irradiance of standard test conditions[
W
m2

]
.

The parameters Ppeak, ηinv are related to technical data of the PV plant,
while ESTD is a constant equal to 1000 W

m2 . The parameter ωDEG(t) can be
either set to prescribed values taken from large scientific reviews (e.g., see
[196]) or estimated through field measurements [197].

Thus, the main variables of this model are Eg,pv(t) and ηpan(t). Global
irradiance is the sum of three components, weakened by the shading factors.
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These take into account the possible shadows due to the surrounding buildings
[198]:

Eg,pv(t) = (1− Sdir(α(t), γ(t))) · Eb,pv(t)+
+(1− Sdiff ) · Ed,pv(t))+

+Er,pv(t)

(3.7)

where:

• Eb,pv(t) is the beam irradiance reaching the plane of the array
[
W
m2

]
;

• Ed,pv(t) represents the diffuse irradiance reaching the plane of the ar-
ray
[
W
m2

]
;

• Er,pv(t) is the reflected irradiance reaching the plane of the array
[
W
m2

]
;

• α(t) denotes the sun azimuth [deg.];

• γ(t) represents the sun elevation [deg.];

• Sdir(α(t), γ(t)) is the direct component shading factor [p.u.];

• Sdiff denotes the diffuse component shading factor [p.u.].

In particular, Er,pv(t) is calculated as follows:

Er,pv(t) =

{
Eg,hor(t) · ρg ·

(
1−cos(β)

2

)
for 1−cos(β)

2 > 0

0 o/w
(3.8)

where:

• Eg,hor(t) represents the global horizontal irradiance [ Wm2 ];

• ρg is the ground albedo [p.u.];

• β denotes the tilt angle of the PV array [deg.].
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The shading factors calculation (Sdir(α(t), γ(t)), Sdiff ) and the ground
albedo (ρg) are specific to the site and described in Section 3.3.7.1, while the
irradiance components are calculated as in [199].

The efficiency of the panel is mainly affected by modules temperature. In
this application the following equation has been utilized for its estimation
[200], [195]:

ηpan(t) = 1 + βc(Tm(t)− 25◦C) (3.9)

where βc is the module temperature coefficient (see Table 3.5).
For the module temperature estimation, several models have been consid-

ered [201–206]. The performances of these models have been compared on
a test set composed of clear sky days, and the following relation has been
selected [201]:

Tm(t) = Ta(t)+
Eg,pv(t)

ESTD
·(0.0712·Ws(t)

2−2.411·Ws(t)+32.96) (3.10)

where Ta(t) is the ambient temperature [◦C] and Ws(t) is the wind speed
[ms ].

3.3.4 Corrected Clear Sky Model - CCSM

The model described in the previous paragraph supposes that the sky is com-
pletely clear. This means that its performance can be improvable if the pres-
ence of clouds is considered. Thus, a modified version of CSM has been
developed. It consists of a Stepwise Linear Regression (SLR) model [207],
trained on clear sky or almost clear sky days, with regressors composed of
CSM output and CCI.

In order to estimate nonlinear behaviors, the variables have been taken up
to the fifth power.

The SLR is a linear regression where the regressors are selected through an
automated procedure that iteratively adds and removes regressors by testing
their statistical significance through a hypothesis test on their corresponding
coefficients, measured by the p-value of an F-statistic [207].

The proposed procedure is the following:

1. Fit an initial model with only the constant term;
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2. Add to the model the candidate regressor with the smallest p-value, pro-
vided that it is smaller than a predetermined entrance tolerance. Repeat
this step until no regressor can be added to the model;

3. Subtract to the model the regressor with the highest p-value, provided
that it is higher than a predetermined exit tolerance. If there is no re-
gressor with such a high p-value, end; otherwise, return to step 2.

The final result depends on the initial model and the predetermined toler-
ances. For this reason, there is no guarantee that the final result is the best
possible model. However, checking all the possible model candidates would
typically take a large amount of time (for p candidate regressors, there are
2p possible models), and therefore this procedure is used as a compromise
between optimality and feasibility.

In the proposed approach, the entrance and exit tolerance have been set
respectively to 0.05 and 0.1.

3.3.5 Neural Network Technique

The architecture adopted in both [56, 57] is the Multi-Layer Perceptron (MLP).
Figure 3.7 provides the general structure of a MLP.

Its architecture consists of three parts: an input layer, at least one hidden
layer, and an output layer. Each layer receives the inputs from the preceding
layer and, by means of weighting and translation, a nonlinear transformation
passes them to the next layer. The input layer processes the original input
vector, while the output layer passes the processed values to the user.

3.3.5.1 Input Variables

A crucial part of the design and the implementation of a reliable forecasting
algorithm based on ANNs is represented by the input selection. The set of
inputs chosen for the PV day-ahead forecasting is the following:

• quarter of an hour in the day (number from 1 to 96);

• day of the year (number from 1 to 366);

• ambient temperature [◦C];

• relative humidity [%];
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• wind speed [ms ];

• cloud cover Index [%].

The format of days and quarters of an hour is chosen in order to take
into account temporal autocorrelations of the target variable, as suggested
in [208]. Temperature and wind speed are selected because they are involved
in the panel efficiency estimation (see Section 3.3.3). Humidity is included
because it influences temperature and irradiance [209], and it is exploited
with interesting results in several literature works ([210], [178] and [208]).
Finally, CCI represents a numerical index for the estimation of the sky cover-
ing. Notice that all the meteorological inputs have to be provided by weather
predictions.

As a result, in order to forecast the day-ahead PV output, the ANN use as
input a vector of 6 numbers, one corresponding to each of the input.

Hidden Layer(s)

Input Layer Output Layer

X1 

X2

X3

Xn

Y1 

Y2

Y3

Ym

Figure 3.7: A multi-layer perceptron
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3.3.5.2 Hyperparameters Selection

After the definition of the inputs for a single ANN, another fundamental step
for the implementation of the BEM is represented by the parameters selec-
tion of the single MLPs. A generic MLP is characterized by the following
parameters:

• Number of hidden layers;

• Neurons number in the hidden layers;

• Transfer functions between each layer. These functions define the rela-
tionship of inputs and outputs between each layer;

• Training algorithm. Any ANN has to be trained on a knowledge dataset.
This database is composed of an input vector and a score vector. The
training algorithm defines the training method.

For the selection of all these parameters, the approaches proposed in [211],
[48] and [58] have been used. Table 3.2 reports the results of this phase.
These parameters have been utilized in all the ANNs within the BEM.

Table 3.2: Selected hyperparameters for the single ANNs within the BEM

Hidden layers number 1

Transfer function
Hyperbolic Tangent Sigmoid Function

tansig(x) = 2
[(1+e−2x)]

− 1

Training algorithm Resilient Backpropagation

One can combine more MLPs to form an ensemble. The ensemble tech-
nique exploited in [56] is described in Section 3.3.5.3.

3.3.5.3 Basic Ensemble Method - BEM

Ensemble averaging methods are usually implemented in order to achieve
more accurate results than a single ANN. The basic principle is to combine
outputs of several ANNs in order to have a better forecast of the PV genera-
tion. Two main aspects can help to achieve a better prediction:

• the combined effect of different ANNs compensates the different ran-
dom initialization of the weights;
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• each MLP employs a slightly different number of hidden units.

There are several typologies of ensemble methods. For the PV forecasting
application, a Basic Ensemble Method of Neural Networks (BEM) has been
analyzed and implemented [212]. The BEM output is defined by:

fBEM (t) =
1

n

n∑
i=1

fi(t); (3.11)

where n is the total number of ANNs and fi(t) are the single networks outputs
defined as a function of time index t.

In addition to these parameters related to a single ANN, for the BEM
methodology is necessary to determine the number of MLPs (i.e. parame-
ter n in (3.11)) within the ensemble. The selection of this parameter has been
performed using the strategy presented in [58]:

1. This selection procedure consists of training and testing (on the same
training and test set) single multi-layer perceptrons having a different
number of neurons in the hidden layer starting from 3 and increasing
by 1 for each iteration, until 99.

2. Next, five different perceptrons, with the top five neurons number iden-
tified, and with all the parameters reported in Table 3.2 have been con-
sidered. These five different networks have been trained on 14 differ-
ent random initialization of the weights related to the transfer func-
tions, thus 70 nets in total. The neural networks have been ordered
with respect to the RMSE error on the common test set. Then, they are
combined, starting from the best by adding to the BEM mean the best
remaining net. The best combination of the n first networks is chosen
as the best ensemble.

The final selected number of ANNs in [56] is n = 6: three with 52 neurons,
two with 50 neurons and one with 88 neurons.

3.3.6 Hybrid Technique for the PV Forecasting Technique Selection

In this section, the proposed hybrid techniques for selecting between the
methods presented in the previous sections are given. Firstly, the selection
method with decision trees will be thoroughly described; then, the simplified
version with linear regression will follow.

University of Genova Gabriele Mosaico



112 Chapter 3. Predictive Power System Analytics

3.3.6.1 Selection with Decision Trees

The accuracy of the Sub Model (SubM) is strongly related to the weather
conditions on the prediction window. Thus, the available information related
to weather data could be exploited before the forecast execution in order to
select the best methodology.

The selection steps can be two or one (see previous Figure 3.5):

1. DeRu1 consists in assessing whether the BEM or the CSM is more
convenient;

2. DeRu2 takes place whenever in DeRu1 the BEM technique is not cho-
sen. In that case, the second decision rule consists in the selection be-
tween the two other models: the CSM (see Section 3.3.3) or the CCSM
(see Section 3.3.4).

The main idea is to compare, on a training set, the performance in terms
of nRMSE of the two models under consideration in different climate condi-
tions, evaluated through the forecast mean on the prediction horizon of sev-
eral weather variables (CC, temperature, humidity, wind speed and pressure).
This is performed in order to determine which forecasting techniques have to
be selected (CSM, CCSM, or BEM) according to the different combinations
of the considered weather variables. In principle, any binary classifier that
takes as inputs multiple numerical variables could be used: in this section,
the decision tree technique case is the object of focus.

Decision trees are composed of a series of If/Else rules on the regressors
that lead to the output of the model. In order to predict a response, the user
has to follow the decisions in the tree from the root node down to a leaf node.
This last node contains the response. The If/Else rules are also known as
splits, while the regressors are often called attributes in the context of this
technique.

There are several ways to design and implement a decision tree. In this
application, the Classification And Regression Trees (CART) technique has
been employed [213].

CART is able to process nominal and continuous attributes both as targets
and predictors. Given a training set, the algorithm grows the tree to its full
size and then prunes it by eliminating the splits that give a little contribution
to the overall performance and that could produce overfitting [213].
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The splits are chosen by inspecting all the possible cases on each attribute.
Each possible splitting value divides the data that has reached the node into
two groups.

CART produces a sequence of nested pruned trees that are the final can-
didate trees. The final tree has to be chosen by comparison on a separate
validation set. Other nice features of the algorithm include automatic han-
dling of unbalanced classes and missing data, and possible adaptation for
cost-sensitive learning [214].

Back to the PV forecasting case, since the time horizon is the day-ahead,
also the two datasets built for the selection technique are composed of days.
For the choice between the two deterministic approaches (DeRu2), only clear
or almost clear sky days are included.

The general procedure for the dataset definition and the implementation of
the proposed hybrid technique is depicted in Figure 3.8 and can be summa-
rized as follows:

  
  
  
  
 

  
  
  
  
  
   
   

                                                                3. All Day Types

  
  
  
  
  
   
   

                                                                2. Clear Sky Days

Start

B: Days are labelled
according to the
performance

Compute mean of
weather variables
of all types of day 

End

A: Performance
evaluation of
deterministic
models

(CSM, CCSM)

B: Days are labelled
according to the
performance of the
described methods 

C: Exploitation of
weather variables
and labels to
implement
DR2 

A: Compute
performance of BEM
and deterministic
models chosen by

DR2 

C: Exploitation of
weather variables
and labels to
implement
 DR1 

1. All Day Types

Figure 3.8: General procedure for the implementation of the hybrid selec-
tion method

1. the daily mean values of the aforementioned weather variables of all-
day types are computed;

2. taking into account only clear sky days:

(a) performances in terms of nRMSE of the deterministic models are
computed;
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(b) their difference in terms of nRMSE is computed: the sign of the
difference tells which model has performed better. In this block,
the numerical performance is transformed into a categorical label

(c) exploitation of weather variables and labels for the implementa-
tion of DeRu2 through a decision tree approach;

3. considering all-day types:

(a) performances in terms of nRMSE of the BEM and the determin-
istic model selected by DeRu2 are calculated;

(b) the difference between the two performances for each day is com-
puted: the sign of the difference tells whether the ensemble or the
deterministic model has performed better. Also, in this case, the
numerical performance is transformed into a categorical label;

(c) exploitation of weather variables and labels for the implementa-
tion of DeRu1 through a decision tree approach.

Table 3.3 collects an example of the results obtained with performance
evaluation steps (steps A in Figure 3.8) related to DeRu2 for the definition
of a dedicated database, which is used for the definition of the decision tree.
Table 3.4 reports the same database but for DeRu1.

Table 3.3: Example of database definition for the decision tree - DeRu2

Day
Avg.

Pressure
[hPa]

Avg.
Temp.
[◦ C]

Avg.
Hum
[%]

Wind
Speed
[m
s

]

CCI
[%] Label

8 May 1018 17.44 72.93 0.27 18.83 CCSM
14 May 1016 19.26 35.65 1.86 10.42 CSM
29 May 1012 18.75 70.93 0.45 24.69 CSM

In the end, two decision trees are grown on different training sets, i.e. one
for the clear sky choice (DeRu2 in Figure 3.5) and another one for the selec-
tion among a deterministic approach or BEM (DeRu1 in Figure 3.5).
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Table 3.4: Example of database definition for the decision tree - DeRu1

Day
Avg.

Pressure
[hPa]

Avg.
Temp.
[◦ C]

Avg.
Hum
[%]

Wind
Speed
[m/s]

CCI
[%] Label

9 May 1017 17.91 74.06 0.30 21.54 DR2
10 May 1012 17.90 81.91 0.87 61.41 BEM
11 May 1007 18.61 53.82 1.55 25.63 BEM

In order to understand the process for the selection of the optimal pruning
level, it is necessary to introduce two fundamental concepts:

• trivial tree, which is the tree that always labels the observations with
the most frequent class. In DeRu1, for example, the trivial tree selects
always the same method among the three proposed techniques (CSM,
CCSM and BEM). For this reason, it is not a suitable tree: it makes
useless the hybrid technique of this section;

• pruning levels. These represent the orders of the nested pruned trees
produced by CART. Pruning level 0 is the complete tree, which achieves
perfect performance on the training set (and therefore is affected by
overfitting problems). The maximum pruning level corresponds to the
trivial tree.

For the selection of the best pruning level, the tree corresponding to the
smallest pruning level that improves the trivial tree on a validation set is cho-
sen. Moreover, only the first split of the resulting tree is considered.

The decision tree technique applied to the considered test site (see Sec-
tion 3.5.1) provides the hybrid method reported in Figure 3.9.

Notice that despite different weather variables have been considered during
the implementation of the tree, both the decisions are only based on the Cloud
Cover index. From Figure 3.9 it can be noticed that in DeRu1 the BEM is
chosen when the CCI is particularly high, confirming that the BEM technique
is better in cases wherein the sky is far from being clear (cloudy or rainy days),
confirming that the intuition behind the utilization of deterministic models is
correct.
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DR1: 
Cloud Cover <= 39.8 %?

BEM

Yes

Yes No

No

CSM CCSM

DR2: 
Cloud Cover <= 13.6 %?

Figure 3.9: The final hybrid technique for the selection of the most appro-
priate model for the case of the investigated test site (complete procedure,
[56])

3.3.6.2 Selection with Linear Regression

In Figure 3.10 the general technique for the implementation of the decision
rule with linear regression is depicted.

The algorithm can be summarized in the following steps:

1. In a dataset containing clear and nonclear sky days, the daily mean
values of the CCI for each day are computed;

2. The performances in terms of a meaningful KPI of the ANN and the
CSM are evaluated;

3. The performance difference is computed: the sign of the difference tells
which model has performed better;

4. The decision rule is implemented.
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Start

For each day:
Compute Mean of

CCI

End

Evaluate
performances of
ANN and CSM 

Use weather data
and performances
to implement the
 decision rule 

Figure 3.10: General algorithm for implementing the hybrid procedure

In detail, the decision rule is implemented as follows:

1. An ordinary least square regression line is computed with CCI as re-
gressor and difference of performance between CSM and ANN as de-
pendent variable. The difference of performance [p.u] of the day d is
evaluated as:

perfdiffd = nRMSECSMd − nRMSEANNd (3.12)

where nRMSEANNd is the nRMSE of ANN for day d,
while nRMSECSMd is the nRMSE of the CSM for day d. Therefore
a positive value indicates that the ANN has performed better than the
CSM, while a negative value means the opposite;

2. The value of CCI such that the regression line crosses the horizontal
axis is found: this is the selected threshold for the selection between
CSM and ANN approach.

Figure 3.11 plots the linear regression performed (in green) and the corre-
sponding threshold value (dashed black line).
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Figure 3.11: Linear Regression for the definition of the decision rule

Decision Rule: 
Cloud Cover <= 13.7 %?

ANN

Yes No

CSM

Figure 3.12: Final rule for the selection of the most appropriate method
(simplified procedure, [57])
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The decision rule exploited in [57] is represented in Figure 3.12.
In words, it can be summarized as follows:

• If the mean daily mean of CCI evaluated considering the 24 hours of
the next day is less than 13.7 % use CSM;

• otherwise use the ANN.

With these figures, the presentation of the hybrid PV forecasting procedure
is concluded. Next, the test site on which they have been benchmarked is
being presented.

3.3.7 Test Site

The test system considered for this validation of the proposed hybrid forecast-
ing procedure is a PV plant located in the harbor of Genova, Italy. In partic-
ular, the PV system is positioned on the rooftop of the Economics School of
the University of Genova. The building is oriented with respect to the south
of about 30◦ towards west.

The considered PV system presents a peak power of about 20 kWp, and it
is directly connected to the electric system of the underneath building.

The photovoltaic modules are supported by an aluminum structure of 51 m
× 3.3 m, which has a 30◦ inclination (tilt angle) with respect to the horizon.
The modules are composed of multi-crystalline silicon, and each of them can
produce 180 W. The dimension of each panel is 1.3 m2. A total of 108 panels
are installed on the structure. The modules are supplied by two inverters, with
nominal power equal to 12.5 kW.

Table 3.5 collects all the main parameters of the test site considered in the
Clear Sky Model. This table also reports the symbols related to the parame-
ters.

In Figure 3.13 a picture of the PV array is proposed. It can be noticed that
the surrounding buildings are near and present about the same height as the
array. This implies the presence of shades when the sun is low on the horizon.

3.3.7.1 Shading Modeling

The PV modules are positioned on the roof in order to minimize the losses of
irradiance due to the shadows of the higher surrounding buildings. Neverthe-
less, the considered PV system is slightly shaded by surrounding buildings
(see Figure 3.14), especially in the morning and in the late afternoon.

University of Genova Gabriele Mosaico



120 Chapter 3. Predictive Power System Analytics

Figure 3.13: Picture of the considered PV system, located on the rooftop
of the Economics School of the University of Genoa

Figure 3.14: Top view of the considered PV system (©2018 Google)

The software used for this application for the shadows modeling is PVSyst
6.6.4 [215]. This software allows the user to draw the shape and the dimen-
sion of the buildings surrounding the PV plant (Figure 3.15).

The measurements needed for the modeling are obtained through Google
Earth Pro. It is possible to have good measurements of both lengths and
angles through the ruler functionality.

The shapes of the near buildings are various, and therefore the most appro-
priate geometrical model has to be carefully chosen for each of them.
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Table 3.5: Tecnical parameters of the test site

Parameter Value
Peak Power (Ppeak) 20 kWp

Efficiency of the Inverter (ηinv) 0.971
Temperature Coefficient (βc) -0.045 1

◦C
Tilt Angle (β) 30◦

Latitude 44.4141◦

Longitude 8.9221◦

Local Time Zone 15◦

Orientation w.r.t. S, positive W 30◦

Number of Inverters 2
Inverters Nominal power 12.5 kW

Number of Panels 108
Nominal Power of each Panel 180 W

Surface of each Panel 1.3 m2

Coefficient of Degradation (ωDEG) 1

Figure 3.15: Shadows modeling of the sorrounding buildings

In addition, also the colors of the building are important to set because
they influence the outcome of the ground albedo, which in turn influences the
value of Er,pv (see Equation (3.8)).

Once the drawing has been made, the software is able to estimate all the
shadow-related parameters involved in (3.7) (Sdir, Sdiff and ρg). In partic-
ular, the software provides a table that presents values of Sdir for different
combinations of the sun position (see Table 3.6). Using linear interpolation,
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these values can be exploited to compute the parameters for any combination
of azimuth and solar altitude.

Table 3.6: Sdir approximation as a function of Azimuth (Az.) and Height
(Hgt.), in degrees.

Az.
Hgt. -180 -100 -80 -60 -40 -20 0 20 40 60 100 180

90 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
30 1 0 0.1 0.1 0 0 0 0 0 0 0 1
20 1 0.1 0.2 0.2 0.1 0.1 0 0 0 0 0 1
10 1 1 0.4 0.4 0.4 0.2 0.1 0.4 0.3 0 0.1 1
2 1 1 1 1 0.5 0.2 0.3 0.8 1 1 1 1

Nonzero values are present only if the height of the sun is low. This is
reasonable since shading over objects is longer at the beginning and the end
of each day.

3.3.8 Available Data

This section describes the available data for the considered test site.
A historical database of the PV plant, described in this section, collects

data from 2014 related to power production. For the weather variables, two
different sources have been considered:

1. A weather station located just outside the PV plant location. This de-
vice can provide measurement data related to the actual temperature,
humidity, and wind speed with a granularity of 15 minutes. In addi-
tion, the weather station has its own historical database that collects
measurements since 2014;

2. A web weather provider, OpenWeatherMap [216]. From this website,
it is possible to download a historical bulk dataset that contains all the
weather information and, in particular, the crucial data related to the
cloud cover index. This weather provider has been employed for the
weather forecasting of the variables used by the proposed hybrid pro-
cedures. Weather data have been imported from the provider through
the dedicated Application Programming Interface (API) in order to be
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quickly stored and analyzed. The data obtained from [216] are related
to a position that is about one kilometer away from the PV system.

In order to have a reliable dataset, several preprocessing actions have been
performed (such as outliers identification and missing data management). The
result of the preprocessing stage is a database with measurements related to
more than 70, 000 quarters of an hour (two years) of complete, reliable data.
According to the literature, this represents a robust dataset for the implemen-
tation of an accurate forecasting procedure [178]. The preprocessed, histori-
cal data have been used in the training phase of all the described methodolo-
gies.

3.3.9 Results: Decision Tree Hybrid Procedure

In this section, the decision tree-based hybrid model (see Section 3.3.6.1) is
applied on a two months dataset (November - December 2018) for a total of
61 days, located after the period used for training the single techniques and
the proposed procedure.

All the proposed methodologies need weather forecast, provided for exam-
ple by [216]. Thus, for each day of the testing period, a MATLABroutine has
launched at 11:45 pm in order to retrieve the meteorological predictions. The
PV forecasting is then executed automatically at midnight by making use of
the weather forecast.

Table 3.7 reports the performances of the base methodologies (CSM, CCSM,
BEM), as well as the hybrid approach.

Table 3.7: Hybrid and non hybrid methods performance on online test set

KPIs days number
nRMSE RMSE [kW] MBE [kW] BEM CCSM CSM

BEM 0.6090 2.4384 0.8092 61 0 0
CCSM 0.6702 2.6833 -0.7194 0 61 0
CSM 0.8143 3.2601 -1.1996 0 0 61

Hyb. Tree 0.3892 1.5583 0.0694 20 13 28
Ideal Hyb. 0.2761 1.1053 -0.0127 21 13 27

The best stand-alone method is the BEM, which outperforms the two clear
sky methods. However, thanks to the decision rule, the BEM can be enhanced
by the two clear sky models, whose individual performances are worse than
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the BEM. The last line of Table 3.7 reports the results of an ideal hybrid
method, which is a hypothetical technique that always chooses the most ac-
curate methodology. Since its nRMSE is lower with respect to the error com-
mitted by the proposed approach, it is possible to understand that there is a
margin for an improvement of the described decision rule. This can lead to
an increment of the accuracy of the proposed hybrid methodology.

The proposed hybrid methodology can also be seen as a three-categories
classification problem. Tables 3.8 and 3.9 report respectively the confusion
matrices related to the hybrid model and to the BEM (which can be viewed
as a hybrid model that always chooses the ensemble of ANNs).

Table 3.8: Confusion matrix for the hybrid technique

Ideal
CSM CCSM BEM

Pred.
CSM 18 2 0

CCSM 2 8 3
BEM 1 3 24

Table 3.9: Confusion matrix for the BEM method

Ideal
CSM CCSM BEM

Pred.
CSM 0 0 0

CCSM 0 0 0
BEM 21 13 27

Numbers on the main diagonal identify the days wherein the actual best
model is chosen. The BEM is included because it is the best trivial classifier
(i.e., a classifier that chooses the most populated category).

As a classifier, the BEM has been right 27 times out of 61 (44% accuracy,
see Table 3.9) while the proposed hybrid method has been right twice more:
50 out of 61 times (85% accuracy, Table 3.8).

This analysis is very important to understand whether the proposed proce-
dure actually improves on the standard procedures.

Table 3.10 reports the SSs for the comparison of the proposed hybrid ap-
proach with the single SubMs implemented in this application and other so-
lutions proposed in the literature.
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In addition, Table 3.10 collects also the different KPIs utilized in (3.5) for
the evaluation of the SSs. Notice that for the literature comparison it has been
considered the KPI average obtained in all the experimental tests.

Table 3.10: Skill Scores evaluation for a comparison with different day-
ahead methodologies

Reference Method SS KPI
CSM +0.5220 nRMSE

CCSM +0.4192 nRMSE
BEM +0.3609 nRMSE
[217] +0.1147 nRMSE
[218] +0.0137 RMSE/Ppeak

[219] +0.1018 (Avg.(|ε(t)|))/Ppeak

In [217] a hierarchical approach based on machine learning methods has
been implemented, while in [218] a similar day PV forecasting technique
has been adopted. Authors in [219] present an ensemble of five methods
(Grey-Box Model, ANN, K-Nearest Neighbours, Quantile Random Forest,
and Support Vector Regression), proving that their strategy provides a more
accurate forecast with respect to the single approaches.

As can be seen from Table 3.10, all the SSs are positive highlighting the
precision of the PV forecasting approach.

This literature comparison, even if on different test sites/sets, suggests that
the proposed hybrid technique is a robust and accurate procedure, represent-
ing a useful and reliable functionality for uncertainty management.

Focusing on the hybrid model, Figures 3.16 and 3.17 are useful to inspect
the improvement of this approach with respect to the versatile BEM approach.
As can be seen from these figures, the results of the proposed methodology
are very satisfying, especially for the 26th and 27th of November and for the
1st and 4th of December.

As testified by Figures 3.16 and 3.17, the BEM can attain a large error in
clear days, wherein the deterministic models provide better results. For this
reason, the proposed hybrid technique gives an important contribution to the
improvement of the overall accuracy of the PV forecast.
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Figure 3.16: PV output, BEM (yellow dotted line) and proposed hybrid
technique (red solid line) for five days of December 2018
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Figure 3.17: PV output, BEM (yellow dotted line) and proposed hybrid
technique (red solid line) for four days of November 2018
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3.3.10 Results: Linear Regression Based Hybrid Procedure

For hybrid model based on linear regression, in [57], the ANN and the CSM
have been tested on 30 days between 31st October 2017 and 4th December
2017. The forecast weather variables have been retrieved from OpenWeath-
erMap [216], and they are characterized by a granularity equal to three hours.
Thence they have been interpolated to the quarter of an hour because all the
models have been designed with such granularity.

Table 3.11 shows the performances of all the tested models.
As can be seen in Table 3.11 the proposed hybrid model performs better

than the ANN approach and CSM one, considering all the proposed KPIs.
The last row of Table 3.11 reports an ideal hybrid method, i.e., an approach
that always chooses the most accurate model between ANN and CSM. It
demonstrates that the proposed hybrid technique can yield, in principle, very
good results.

Table 3.12 shows the amount of days for which ANN (“ANN days”) or
CSM (“CSM days”) are chosen as optimal methods by each of the considered
approaches. In this context, ANN and CSM methods can be viewed as hybrid
models that always choose the same method, regardless of the decision rule
outcome.

Table 3.11: Hybrid and non hybrid methods performance

Method nRMSE RMSE MBE
ANN 0.6994 2.6419 -0.8131
CSM 0.9896 3.7378 1.5077

Hybrid - Proposed 0.5041 1.9041 -0.3398
Hybrid - Ideal 0.3015 1.1388 -0.0234

Table 3.12: Summary of choices made by each method

Method ANN days CSM days
ANN 30 0
CSM 0 30

Hybrid - Proposed 22 8
Hybrid - Ideal 17 13
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In Figures 3.18 and 3.19 predictions for six different days are reported.
From these figures, it is possible to notice that the hybrid approach improves
the forecasting results by selecting CSM for clear sky days and ANN in the
other cases.

Figure 3.18: Performance of the hybrid algorithm for the PV output of the
31st October, 1st and 2nd November 2017

This hybrid technique can be seen as a classification problem too. Indeed
the decision rule classifies the following day into CSM or ANN trying to
select the most accurate method. Tables 3.13 and 3.14 present the confusion
matrices of the hybrid model and the ANN (here interpreted as a hybrid model
that always choose the ANN approach). The main diagonal of these Tables
reports the number of days wherein the hybrid technique effectively selects
the most accurate approach. As it can be seen from Tables 3.13 and 3.14,
the hybrid method is right 25 times out of 30 (Table 3.13) while the ANN
method is right 17 times out of 30 (Table 3.14). This testifies that the proposed
hybrid methodology has behaved as a better classifier than the classic ANN
methodology on the test set.

In the next two sections, applications of load forecasting developed dur-
ing the Ph.D. are presented. The first regards the application of a modified
BEM technique to large scale load forecasting of a distribution network at
the medium voltage level in the context of the ”Distribution Optimization
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Figure 3.19: Performance of the hybrid algorithm for the PV output of the
11th, 12th and 13th November 2017

Table 3.13: Confusion matrix for the hybrid technique

Actual
CSM ANN

Pred. CSM 8 0
ANN 5 17

Table 3.14: Confusion matrix for ANN method

Actual
CSM ANN

Pred. CSM 0 0
ANN 13 17
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Platform Through The Use Of Data From Electronic Meters And Distributed
Storage Systems” (PODCAST) project, while the second one, in the context
of the ”Adaptive Energy Efficiency Platform For Consumption Reduction In
Non-Residential Buildings” (PREDICT) project, is an energy forecasting al-
gorithm for a tertiary building, leveraging deep transfer learning and text min-
ing for the detection and the prediction of the number of building occupants.

3.4 Application: Distribution Network Load Forecasting

A similar BEM technique as the one detailed in Section 3.3.5.3, was em-
ployed in the PODCAST project, within the developed DMS, for the load
forecasting of the monitored MV/LV substations and MV users of the distri-
bution system under study. Load forecasting represents a fundamental feature
for modern DMS, as it provides crucial information to functionalities such as
state estimation, optimization procedures, voltage support, optimal reconfig-
uration, and maintenance scheduling. Examples of papers that address load
forecasting embedded in DMSs can be found in [58, 220], while an appli-
cation of load forecasting applied to advanced DMS functionalities can be
found in [221].

3.4.1 PODCAST Grid description

The distribution network of the project is the electric distribution grid of San-
remo, Italy, which covers urban and rural areas. The radial distribution grid
is a Medium Voltage (MV) network that features:

• the HV/MV primary substation (132/15 kV/kV);

• 10 MV feeders, radially operated;

• 199 MV/LV substations (SUBs) (15/0.4 kV/kV);

• 20 Medium Voltage Users (MVUs) (2 producers, 3 prosumers and 15
consumers);

• a MV hydropower plant with a nominal power of 200 kW;

• 2 MV PV power plants, with a nominal power of 200 kWp and 20 kWp,
respectively;
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• 2 storage devices, with a nominal power of 30 kW and 70 kW, and
nominal size of 35 kWh for both of them;

• More than 116 km of lines.

The local DSO of the considered test site, Amaie S.p.A., can rely on a DMS
(see Figure 2.4 in Chapter 2) for the grid automation and the implementa-
tion of real-time functionalities through a dedicated Supervisory Control And
Data Analysis (SCADA) system which allows for the data acquisition and
management. Data from each measurement point are remotely acquired by
the SCADA system, with a granularity of one minute [222].

Of the 199 MV/LV substations, 68 are monitored and served by the load
forecasting algorithm, as well as 17 Medium Voltage Users out of 20. To-
gether they form the 85 time series for which the forecasting output is re-
quired by the specifics of the DMS. Each SUB or MVU has a different BEM,
trained on the respective data.

3.4.2 KPI: Mean Absolute Percentage Error

To read the results, Mean Absolute Percentage Error (MAPE) is used as KPI.
It is defined as:

MAPE =
1

N

n∑
i

|yi − ŷi|
yi

· 100% (3.13)

where represent the number of observation in the dataset, yi is the i-th mea-
sured load and ŷi the forecast for the i-th value.

3.4.3 The Load Forecasting Algorithm

The only difference of this application with respect to the BEM of the PV
forecasting hybrid procedure presented in Section 3.3, is in the variable pre-
dicted in the output layer (load value, instead of PV output value) and in the
input fed into the neural networks. The inputs are the following:

• quarter of an hour within the day (number 1...96);

• working day or holiday boolean;

• day of the week integer (1 being Sunday,...,7 being Saturday);

• load value with 24 hours lag;
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• mean load average of previous 24 hours;

• load value with seven days lag.

An example of the described inputs can be found in Table 3.15

Table 3.15: Example of inputs for proposed forecasting approach

Quarter
of hour Weekday

Avg.
day-ahead
load

Load
-24h

Load
-7days

Working
Day

1 7 144.20 111.94 110.11 0
2 7 144.22 112.36 105.18 0
...

...
...

...
...

...
96 7 153.24 90.21 96.26 0

It can be noted that the output of Table 3.15 dataset consists of 96 numbers,
defining the forecasted load for the next 24 hours, with a granularity of 15
minutes.

Data is acquired through specific instrumentation, and have to be prepro-
cessed, as explained in Section 3.1.3. In particular, missing data have been
filled using previously available data (mean of previous minute, day, week),
whenever available. Also, anomalous peaks (as identified by a threshold spe-
cific for each substation or customer).

Tables 3.16 and 3.17 reports the training, validation and test set limit days
chosen for each time series. The validation set has been used for identifying
the hyperparameters of the technique (in particular, the number of ensembles
and the number of neurons for each neural network). The method for defin-
ing the hyperparameters to use for each of the forecasting points is the one
explained in Sections 3.3.5.2 and 3.3.5.3.
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Table 3.16: Dataset for each medium voltage time series forecasted
(Part 1 of 2)

ID Training Set Validation Set Test Set
SUB001 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB003 26/03/2019 15/08/2019 15/08/2019 08/09/2019 08/09/2019 18/11/2019
SUB005 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB006 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB007 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB007 2 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB009 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB010 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB011 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB012 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB014 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB018 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB019 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB020 12/03/2020 27/10/2020 27/10/2020 03/11/2020 04/11/2020 11/11/2020
SUB037 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB045 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB046 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB047 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB047 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB047 2 24/09/2020 27/10/2020 27/10/2020 03/11/2020 04/11/2020 11/11/2020
SUB048 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB049 1 29/07/2019 04/10/2019 04/10/2019 15/10/2019 15/10/2019 18/11/2019
SUB049 2 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB061 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB062 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB073 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB074 24/09/2020 27/10/2020 27/10/2020 03/11/2020 04/11/2020 11/11/2020
SUB079 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB086 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB087 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB087 2 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB089 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB097 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB101 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB103 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB107 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB111 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB114 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB121 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB124 24/09/2020 27/10/2020 27/10/2020 03/11/2020 04/11/2020 11/11/2020
SUB126 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB131 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB142 03/05/2019 30/08/2019 30/08/2019 19/09/2019 19/09/2019 18/11/2019
SUB155 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB157 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
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Table 3.17: Dataset for each medium voltage time series forecasted (Part 2
of 2)

ID Training Set Validation Set Test Set
SUB157 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB158 28/07/2020 08/09/2020 08/09/2020 15/09/2020 15/09/2020 22/09/2020
SUB159 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB165 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB168 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB177 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB177 2 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB179 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB200 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB203 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB211 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB215 1 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB215 2 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB217 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB218 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB220 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB222 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
SUB224 12/07/2019 27/09/2019 27/09/2019 10/10/2019 10/10/2019 18/11/2019
MVU002 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU003 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU047 08/11/2019 14/11/2019 14/11/2019 16/11/2019 16/11/2019 19/11/2019
MVU129 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU166 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU169 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU171 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU178 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU180 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU183 28/05/2019 10/09/2019 10/09/2019 28/09/2019 28/09/2019 19/11/2019
MVU204 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU207 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU212 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU228 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU229 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU231 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
MVU234 28/05/2019 10/09/2019 10/09/2019 27/09/2019 27/09/2019 19/11/2019
SUB110 03/12/2019 31/01/2020 31/01/2020 10/02/2020 10/02/2020 10/03/2020
SUB137 18/11/2019 25/01/2020 25/01/2020 05/02/2020 05/02/2020 10/03/2020
SUB148 18/11/2019 25/01/2020 25/01/2020 05/02/2020 05/02/2020 10/03/2020
SUB150 18/11/2019 25/01/2020 25/01/2020 05/02/2020 05/02/2020 10/03/2020
SUB151 18/11/2019 25/01/2020 25/01/2020 05/02/2020 05/02/2020 10/03/2020
SUB159 08/10/2019 08/01/2020 08/01/2020 24/01/2020 24/01/2020 10/03/2020
SUB235 08/10/2019 08/01/2020 08/01/2020 24/01/2020 24/01/2020 10/03/2020
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The date limits that can be seen in Table 3.16 were chosen on the basis of
the availability of data and on the criterion of having at least one month of
test data as well as the maximum possible training set for each time series.

In order to make sure that the BEM approach is beneficial to the system, it
has been compared, on the same dataset, with a single ANN approach, that is,
a BEM with only one ANN. This is considered to be a meaningful baseline
because the single ANN technique is the one used currently by the experi-
mental DMS, as it is a technique derived from a previous project SmartGen
[223], in which a single ANN were applied for forecasting on a subset of
the time series studied for the PODCAST project. The comparison can be
appreciated in Table 3.18

From Table 3.18 it can be observed that the BEM technique implemented
in the PODCAST project is better than the current one in all cases, apart from
SUB151 and MVU228 (highlighted in red). Moreover, note that the medium
voltage customers with a high MAPE will need further analyses since they
are characterized by few data or communication issues (more than 30%).

Finally, in Figures 3.20–3.22 are reported the forecasts of selected MVUs.

Figure 3.20: Forecast (in red) of BEM technique on the test set of SUB020
(9.4% MAPE)
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Table 3.18: MAPE Results of BEM on load forecasting test sets (Ta-
bles 3.16 and 3.17). Red: cases where single ANN was better than BEM

ID Single ANN BEM ID Single ANN BEM
SUB001 9.1% 8.9% SUB142 10.5% 9.4%
SUB003 6.2% 6.1% SUB148 10.4% 10.2%
SUB005 15.4% 10.5% SUB150 7.3% 7.1%
SUB006 7.4% 7.0% SUB151 12.3% 14.1%
SUB007 1 14.5% 10.3% SUB155 11.1% 8.0%
SUB007 2 7.2% 5.9% SUB157 14.9% 11.6%
SUB009 9.2% 8.2% SUB158 23.3% 18.0%
SUB010 15.3% 13.2% SUB159 13.3% 13.1%
SUB011 1 13.1% 9.5% SUB165 18.0% 15.6%
SUB012 16.7% 16.0% SUB168 15.2% 13.5%
SUB014 12.1% 9.8% SUB177 1 9.0% 8.2%
SUB018 8.1% 7.2% SUB177 2 18.1% 11.0%
SUB019 11.3% 9.8% SUB179 51.2% 42.6%
SUB020 10.5% 9.4% SUB200 8.4% 8.1%
SUB037 9.3% 7.9% SUB203 7.1% 6.7%
SUB045 8.5% 5.9% SUB211 13.1% 10.5%
SUB046 8.7% 7.7% SUB215 1 12.1% 10.8%
SUB047 13.2% 8.5% SUB215 2 8.9% 7.4%
SUB047 1 14.4% 8.3% SUB217 4.3% 2.5%
SUB047 2 9.4% 7.3% SUB218 14.2% 9.3%
SUB048 24.5% 13.2% SUB220 66.6% 64.2%
SUB049 1 10.7% 9.7% SUB222 10.3% 7.2%
SUB049 2 6.5% 5.8% SUB224 8.2% 7.8%
SUB061 31.6% 22.2% SUB235 7.0% 4.3%
SUB062 8.8% 8.1% MVU002 49.7% 44.7%
SUB073 17.3% 16.1% MVU003 48.6% 39.4%
SUB074 30.3% 27.2% MVU047 24.5% 23.6%
SUB079 9.0% 7.9% MVU129 24.3% 19.5%
SUB086 18.9% 9.1% MVU166 33.4% 29.5%
SUB087 1 9.3% 7.0% MVU169 32.3% 30.7%
SUB087 2 9.9% 8.8% MVU171 6.0% 5.9%
SUB089 5.9% 5.6% MVU178 13.8% 9.0%
SUB097 62.3% 57.3% MVU180 6.5% 6.3%
SUB101 8.6% 6.1% MVU183 7.7% 7.6%
SUB103 12.1% 10.3% MVU204 10.5% 9.1%
SUB107 6.8% 6.2% MVU207 8.5% 7.8%
SUB110 11.6% 9.4% MVU212 12.0% 10.5%
SUB111 52.3% 49.3% MVU228 43.3% 48.6%
SUB114 8.9% 8.1% MVU229 25.9% 19.1%
SUB121 9.4% 8.9% MVU231 53.3% 50.1%
SUB124 10.3% 8.0% MVU234 15.6% 14.7%
SUB126 11.2% 11.1%
SUB131 8.1% 7.5%
SUB137 9.4% 9.0%
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Figure 3.21: Forecast (in red) of BEM technique on the test set of SUB074
(27.2% MAPE)

As testified by Figures 3.20–3.22, the load forecasts can capture the daily
seasonality of a wide range of MV/LV substaions and MV customers. Also
the peaks are forecasted with good precision, although it is a more challenging
task in points of the network with a lower level of load (see Figure 3.21).
The forecasts seen in Figures 3.20–3.22 can be accessed in the DMS via the
procedure described in Section 2.2 (see Figure 2.4).
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Figure 3.22: Forecast (in red) of BEM technique on the test set of SUB124
(8.0% MAPE)

3.5 Application: Non-Commercial Building Energy Predic-
tion

According to the International Energy Agency (IEA), the building sector is
responsible for 36% of global energy consumption and nearly 40% of total
direct and indirect CO2 emissions. Fossil fuels generate 84% of heating and
cooling energy, while renewables produce only the remaining 16% [39]. In
the European Union (EU), almost 75% of the buildings are energy inefficient,
while only 0.4-1.2% (depending on the country) of them are renovated each
year [224]. Hence there is space for significant improvements in terms of
efficiency (up to 40% in 2040). Space heating alone offers over a quarter of
the potential energy savings [39].

Structural improvements (e.g., outer envelope or window renewal) can achieve
substantial savings, but they require high capital investments, which may not
be affordable or may require a long payback period.

In this context, prescriptive analytics techniques based on Model Predictive
Control (MPC) have been deeply analyzed and implemented by the scientific
community in the last years. Several papers show promising results for the
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HVAC systems with consumption reductions from 7% up to 50% [225]. Be-
sides, MPC approaches can consider thermal comfort constraints.

In an MPC technique, a forecast model is employed to simulate the system
evolution. This prediction is used to determine a control sequence for the
system, wherein only the first element is implemented. At the next time step,
new measurements are collected, and the process is repeated. Thus, a reliable
system predictive model is a fundamental element for the performance of the
MPC strategy.

The overall objective of the application is to have an easily replicable pro-
cedure for the identification of a building energy model. Obtaining a suitable
building model is indeed the most time-consuming part of a MPC for the
HVAC optimal control. This block of the process is preventing MPC from
being widely exploited [226]. Thus, the technique presented in [227] has
been followed in order to identify a simplified building energy model, able to
consider occupancy as an input. This strategy is based on the utilization of
operational information, obtained in the presence of an existing MPC, which
in turn has been defined from historical data.

Among all the possible inputs of a simplified building model, occupancy
is one of the most important. Indeed, it can be crucial in order to define ther-
mal comfort constraints (e.g., when the building is empty for a considerable
period, the HVAC can be switched off)[228].

The simplified model is based on state-space equations that have been iden-
tified through a black box strategy.

In this application, deep Transfer Learning (TL) to thermal camera im-
ages for the estimation of the building occupancy has been employed. TL
leverages the predictive power of deep learning without the exploitation of
costly hardware for the training of specific neural networks. An example
of deep learning for occupancy estimation can be found in [229]. TL tech-
niques avoid the training phase of the network and are easily applied to image
data (e.g., see [230]). Prediction is performed through a historical database,
derived from the TL technique and public textual data retrieved from the Uni-
versity website (which owns the building), together with a procedure based on
a k Nearest-Neighbors (kNN) approach for the selection of the most similar
historical occupancy.

First, a description of the test site will be given, then the algorithm for
occupancy estimation and the algorithm for energy consumption prediction
will be presented, and the results for a testing period will be given for last.
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3.5.1 Test Site

The test site is a three-story building of the Department of Formation Sciences
of the University of Genova (the same described in Chapter 2), located at
44◦25′ N, 8◦53′ E.

The construction was initially an office building. It was bought and refur-
bished in the early 2000s by the University of Genova.

Figure 3.23 shows a top view of the building, while Figure 3.24 reports a
picture taken from the ground.

Figure 3.23: Top view of the test site, with AHU and Chiller (©2018
Google)

The building is used for educational activities, mainly lessons, seminars,
and exams. The test site presents three rooms on the base floor and two rooms
on each of the other two floors, and one restroom per floor.

The electric HVAC system is composed of an AHU, located at the top
of the building, and a Chiller Unit, positioned in the surrounding area (see
Figure 3.23).

Ducts going from North to South distribute conditioned air throughout the
building, serving all three floors.
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Figure 3.24: Picture of the test site

3.5.2 Monitoring and Control System

A monitoring system has been installed in the building as part of a massive
energy monitoring program of the University of Genova. It is composed of:

• A pulse counter that measures global energy consumption;

• One energy meter (DIRIS I30) for the chiller;

while the following instruments have been added during the PREDICT pr-
oject [231, 232]:

• Multi-configurable Regulator (Coster, model YLC 740) for the HVAC
system, which allows the remote control of the temperature setpoints
related to the three floors of the considered building;

• Two energy meters, one for the AHU and one for the general switch
(DIRIS I30);
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• One voltage meter (DIRIS U30);

• One thermal camera (FLIR AX8), installed in one room of the test site.
An example of the captured images is reported in Figure 3.25;

• Four temperature sensors (three internal, one external).

Figure 3.25: Example of image downloaded from the thermal camera

Figure 3.26 represents the overall monitoring and control architecture.
The cloud server archives temperature, energy, and occupancy data. The

utilization of a remote server makes the proposed system easily scalable. In
addition, it hosts the MPC algorithm that has controlled the building dur-
ing the ”Adaptive Energy Efficiency Platform For Consumption Reduction In
Non-Residential Buildings” (PREDICT) project (December 2018-February
2019), whose data make up the base of the algorithms that constitute this
application. The data relating to thermal images are managed by the TCP
protocol. Also, temperature and energy data are received through the SFTP
protocol, while the temperature setpoints are sent to the controller via Mod-
bus/TCP. Finally, the central server shares consumption data via web service
with the monitoring system of all the buildings belonging to the University of
Genova.
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Figure 3.26: Scheme of the monitoring system

3.5.3 Building Occupancy

The images captured by the thermal camera can be used to estimate the oc-
cupancy of the monitored room. This is performed through TL (see Sec-
tion 3.5.4). This estimation can, in turn, be exploited for the prediction of the
occupancy related to the other rooms or future time instants (by kNN, Sec-
tion 3.5.5). The prediction is then fed into the energy model as an input. The
proposed approach can be employed even with few historical data.

3.5.4 Occupancy Estimation

The main idea of this algorithm is to leverage the predictive power of deep
neural networks without resorting to costly hardware or cloud computing re-
sources. For this reason, a pre-trained deep neural network (i.e., characterized
by fixed weights) has been used to process each image into a vector of fea-
tures, which are then fed into a supervised machine learning method. Indeed,
deep networks learn general features in their first layers and problem-specific
features in the last layers. The basic principle of TL is to exploit the first
layers of pre-trained networks for the extraction of general features.
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In Figure 3.27 the scheme of the proposed algorithm is reported. The cho-
sen deep neural network is AlexNet, originally trained and employed for a
considerable image classification task. The network is available as an open-
source architecture (for more information about its composition, see [233]).
The neurons activations of one of the last layers are the inputs of a Support
Vector Regression (SVR) [234] methodology.

Figure 3.27: Scheme of the proposed algorithm [235]

The linear SVR, utilized in this application, consists in finding a function
f of the form:

f(x) = xTβ + b (3.14)

solving the following constraint optimization problem:

min
β

1

2
βTβ + C

N∑
n=1

(ξn + ξ∗n)

subject to ∀n : yn − (xTnβ + b) ≤ ε+ ξn

∀n : (xTnβ + b)− yn ≤ ε+ ξ∗n

∀n : ξn ≥ 0

∀n : ξ∗n ≥ 0

(3.15)

where N is the number of samples in the training set; n is the generic sam-
ple; ε and C are hyperparameters. Finally, ξn and ξ∗n are the slack variables
of the optimization problem:
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ξn =

{
0 |y − f(xn)| ≤ ε
|y − f(xn)| − ε otherwise

(3.16)

ξ∗n =

{
0 |y − f(xn)| ≥ ε
ε− |y − f(xn)| otherwise

(3.17)

The layers number of AlexNet exploited in this application has been identi-
fied according to the following procedure. A training set of images manually
labeled with the visible number of people is used for the computation of the
features related to the different truncating layers. In this application, the last
three hidden layers have been considered for the truncation process related
to AlexNet. These features are then used to train the linear SVR. The per-
formances of these three TL configurations are successively tested on a val-
idation set. The configuration attaining the best performance is selected and
again tested on another set for the estimation of the generalization error. No-
tice that images of the same day are employed only in one between training,
validation, and test set in order to avoid the contemporary presence of similar
pictures in the same dataset. After this process, the final hidden layer used
within AlexNet is fc6 (see Figure 3.27), which is the most internal among the
considered candidates.

The results of the test are reported in Section 3.5.10.

3.5.5 Occupancy Prediction

Section 3.5.4 deals with the estimation of the visible number of people in
an image. This algorithm is crucial for forming a historical database related
to occupancy. However, it does not deal with cases wherein images are not
available. Indeed, the test site (see Section 3.5.1) presents just one monitored
room (Room 3), which has 100 seats framed over a total of 141 seats. More-
over, the other rooms do not have the same size as the one with the thermal
camera. Finally, the application of the proposed building model to an MPC
algorithm requires an occupancy forecasting technique.

In this application, the prediction of non-monitored rooms occupancy and
the forecasting of the future people number are faced with the same approach.
The idea is to use the lessons and exams schedule information, publicly avail-
able on the university website, to build a historical database of events associ-
ated with the occupancy of the monitored room.
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Then, the occupancy related to a non-monitored room is approximated by
the most similar monitored room image. Similarity has to be intended in
terms of the time and scheduled events and computed by a nearest-neighbor
algorithm. The retrieved occupancy is also scaled through correction factors,
to consider the different dimensions of the test site rooms. These factors are
represented by the ratio between the number of seats in the room and the
number of visible seats in the monitored room (see Table 3.19). The same
process is performed for the estimation of future occupancy.

Table 3.19: Correction Factors for each of room of the considered test site

Room ID Floor n. Seats Correction Factor
1 3 99 99/100
2 3 180 180/100
3 2 141 141/100
4 2 150 150/100
5 1 108 108/100
6 1 99 99/100
7 1 46 46/100

Figure 3.28 reports the flowchart of the proposed prediction algorithm.
The historical database of processed images is composed of the following

variables:

• Time variables: year; month; day of the month; day of the week; day
of the year; hour; minute; the quarter of an hour within the day; infor-
mation about holidays/working days and exam periods.

• Variables related to room activities: this kind of data can be retrieved
on the university web portal, which contains a schedule for each room
of the considered building. The information used by the proposed al-
gorithm is: name of the activity, type of the activity (lesson, exam, and
seminar), and its responsible (professor name). The information is rep-
resented by standard text mining techniques (one-hot encoding, bag of
words).
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Figure 3.28: Scheme of the proposed algorithm

All the time variables are processed by the following formulas in order to
take into account the seasonal behavior:

sin(
2π

Pv
· Tv) (3.18)

cos(
2π

Pv
· Tv) (3.19)

where Tv is the v-th time variable value and Pv is the period related to that
variable (e.g., 7 for the day of the week).

The proposed algorithm has been used to estimate the occupancy of each
floor of the test site. The results have been then summed floor by floor. Fi-
nally, the resulting time series is fed into the building energy model, described
in the following section.
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3.5.6 Building Energy Model

State-space models are a common choice for building energy modeling. The
following equations define a state-space model:

xk+1 = Axk +Buk +Kek

yk = Cxk

x0 = xinit

(3.20)

where

• k = 0, 1... is a discrete time index;

• u is the input vector;

• x is the state vector;

• y is the output vector;

• e is the error vector;

• xinit is an initial value computed by the estimation algorithm;

• A,B,C,K are numerical matrices of appropriate dimensions.

The number of states for this kind of model is crucial. Here, it has been set
to 2, according to [236].

There are several ways to estimate the matrices of a state-space model.
They can be derived from the first principle relation between inputs and out-
puts (white-box approach), directly from data (black-box strategy), or through
physics considerations and exploiting data/measurements (gray-box model-
ing). In this case, a black-box approach is utilized. In particular, a Prediction
Error Minimization (PEM) procedure based on a subspace method (N4SID)
is exploited [237].

3.5.7 Inputs

A meaningful input selection for a state-space model is essential for a satis-
fying performance. Different types of variables have been considered:

• weather inputs: external temperature, wind speed, humidity, and direct
normal irradiation;
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• HVAC setpoints: controlled temperature for each floor;

• occupancy: computed through the algorithms described in Section 3.5.3;

• information about the time of the day (in particular night or holiday).

The final inputs for the proposed state-space method are summarized in
Table 3.20. In this table, column “Forecast Source” indicates how each vari-
able is predicted or which service is employed for this task, while column
“Actual Source” represents how the inputs are retrieved for the training of the
algorithms.

Table 3.20: Input variables for the proposed building energy model with
their corresponding sources

Variable Actual Source Forecast Source
External Temperature [◦C] Sensors [216]
Direct Normal Irradiance [ W

m2 ] [238] [238]
Setpoints Floor 1-2-3 [◦C] Sensors None (Controlled)
Humidity [%] [216] [216]
Occupancy Floor 1-2-3 [people] AlexNet+SVR kNN
Wind Speed [m

s
] [216] [216]

Night/Sunday Mode [0 or 1] Calendar Calendar

3.5.8 Output

The output of the state-space model is represented by the HVAC energy con-
sumption [kWh]. The accuracy of the proposed method can be verified with
the energy sensors described in Section 3.5.1. The building energy model can
be used within an MPC for the optimal control of the temperature setpoints of
the HVAC system. Thanks to this model, it is possible to minimize the HVAC
energy consumption considering thermal comfort constraints (e.g., limits on
temperature setpoints).

3.5.9 Key Performance Indicators

The performances of the proposed methodologies (occupancy estimation and
building energy model) are evaluated through the following Key Performance
Indicators (KPIs):
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• Root Mean Square Error (RMSE), defined as in Section 3.3.1;

• Normalized Root Mean Square Error (NRMSE), defined as in Sec-
tion 3.3.1;

• Mean Absolute Error (MAE):

MAE :=
1

N

N∑
t=1

(|ε(t)|) (3.21)

• Mean Bias Error (MBE), defined as in Section 3.3.1;

• Error Standard Deviation (ESD), defined as:

ESD :=

√√√√ 1

N

N∑
t=1

(ε(t)−MBE)2 (3.22)

3.5.10 Experimental Validation

This section presents the validation results of the proposed methodologies.
Notice that the sampling time of all the exploited databases is equal to 15
minutes.

3.5.11 Occupancy Estimation

The TL method described in Section 3.5.3 has been trained on a database of
505 images (13 December 2018-8 January 2019), validated on 96 pictures (11
December 2018), and tested on 96 images (12 December 2018). A common
feature extraction strategy Histogram of Oriented Gradients (HOG) has been
trained for a comparison with the proposed approach (AlexNet+SVR). The
validation and test set have been chosen in order to include images with both
high and low occupancy.

Figure 3.29 presents the raw output of the proposed approach (red line),
the result of the machine learning reference methodology (yellow curve), and
the actual occupancy (blue line). Figure 3.30 proposes the same plot with the
difference that the estimation of the night occupancy is set to zero. The pre-
sented approach follows more precisely the actual occupancy. The numerical
KPIs, reported in Table 3.21, testify this conclusion.
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Figure 3.29: Performance of the occupancy estimation algorithm (case
without smoothing)

Figure 3.30: Performance of the occupancy estimation algorithm (case
with night smoothing)
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Table 3.21: KPIs for the occupancy estimation algorithms

Smoothed MBE ESD MAE RMSE NRMSE
AlexNet+SVR No 0.06 1.3 0.7 1.3 14%
HOG+SVR No -0.09 2.6 1.6 2.6 29%
AlexNet+SVR Yes 0.23 1.2 0.7 1.2 13%
HOG+SVR Yes 0.35 2.3 1.1 2.3 27%

3.5.12 Building Energy Model

The proposed building energy model has been tested on a period of one week
(2 February 2019-8 February 2019) using actual data as inputs. Figure 3.31
depicts the actual HVAC consumption of the considered building (blue line)
and the output of the presented state-space model (red curve). As can be seen
from this figure, the model output follows the HVAC behavior with satisfy-
ing accuracy, although the peaks are underestimated, probably for their high
frequency. This result is also testified by all the KPIs that are reported in
Table 3.22.

Since the developed model will be used as the forecasting module of an
MPC algorithm, the correctness of the relation between the controlled vari-
ables and the output is crucial. Hence, a sensitivity analysis is performed.
In Figure 3.32, the predicted consumption of the considered HVAC system
is plotted for various values of temperature setpoints, which have been set
identical for all the floors.

Table 3.22: KPIs for the proposed building energy model

KPI Proposed State-Space Model
MBE 0.07 kWh
ESD 2.04 kWh
MAE 1.60 kWh
RMSE 2.04 kWh
NRMSE 26.0 %

As illustrated in Figure 3.32, for lower setpoints, lower energy consump-
tion is predicted, which is the correct behavior for an HVAC operating in win-
ter mode (notice that the test is performed in February). Thus, the proposed
model can be exploited within an optimal HVAC control procedure.
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Figure 3.31: Results of the building energy model for the considered test
set

Figure 3.32: Output for different values of temperature setpoints
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3.6 Chapter Conclusions

In this chapter, predictive analytics was introduced, employing a common
cross-industry standard for explaining the various aspect to be analyzed in
order to develop a predictive analytics solution. Forecasting was given a par-
ticular focus since predictions about the future are crucial in power systems,
and a distinction was made between forecasting and other passive types of
analytics that focus on predicting unknown (but not future) quantities. The
chosen standard (the widely used CRISP-DM) was presented step by step,
highlighting the relevant aspects and choices that an analyst has to make in
order to develop a predictive analytics solution.

Next, examples of predictive analytics applied to power systems found in
the scientific literature have been illustrated. A brief literature review was
load forecasting and PV forecasting.

Finally, some applications of predictive analytics developed during the
Ph.D. were exposed.

Firstly, a novel day-ahead PV forecasting procedure, based on a decision
rule that, based on the weather forecast (and in particular on CCI), decides on
whether to use a physical model or a neural network (in the simplified case
[57]) or between a physical model, a hybrid model or an ensemble (Basic
Ensemble Method of Neural Networks (BEM)) of neural networks (in the
complete case [56]). Decision rules are implemented with linear regression
in the simplified case and with two CART trees in the other case. The results
observed for the test site (a PV located in Genoa, Italy) are promising since
the hybrid approach improved the forecasting accuracy of both stand-alone
physical models and ANN techniques on an extended test set. The proposed
methodology presents all the good properties of an ensemble method, coupled
with enhanced performance on clear sky days. A comparison in terms of
accuracies with the literature seemed to confirm the goodness of the proposed
procedure. Moreover, the final decision tree provides good results for the
selection of the most appropriate method, and it reflects the intuition behind
the utilization of deterministic models or an ANN-based approach.

The presented approach can be employed as an input of optimization or
advanced algorithms within generation scheduling/unit commitment applica-
tions, energy management strategies, or grid regulation procedures.

Several parts of the proposed PV forecasting technique could be investi-
gated in order to improve the forecasting accuracy:
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1. the CCSM procedure could include more inputs (currently only CCI is
considered as weather regressor for CCSM) in order to be more com-
petitive with respect to the other methodologies;

2. the algorithm has been validated for the winter season but needs further
tests for the other seasons;

3. more sophisticated ensemble techniques can be considered;

4. different architecture of ANNs could be analyzed;

5. the hybrid technique could be designed to select different methods
within the same day;

6. a three-category classifier could substitute the two decisions that com-
pose the hybrid approach;

7. Model Output Statistic (MOS) could be performed on weather forecasts
in order to understand if they are affected by any bias [239];

8. Irradiance data could be used instead of CCI by the proposed hybrid
approach;

9. The CSM could be used to derive other features for the ANN part of
the forecasting procedure, for example, by computing a clear-sky index
[240];

10. The procedure could be compared with other baselines, such as the
ones derived from NWP.

Secondly, an unpublished application coming from the PODCAST proj-
ect was presented, where 85 MV/LV substations and 17 MV users loads of
the distribution network of Sanremo, Italy, were forecasted via BEM of neu-
ral networks. The results show that the BEM was able to enhance the cur-
rently used technique (a single neural network), developed in the course of a
previous project (SmartGen, [223]) on the same distribution network, on an
extensive dataset. This, together with the other DMS functionalities devel-
oped during the project, demonstrate that also DSOs with modest dimensions
can be equipped with advanced algorithms for managing the increasing RES
generation and the fluctuations in demand that are expected in the following
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years. In that regard, the forecasting technique does not have many require-
ments other than historical data from smart meters at the secondary substation
level, and hence it is easily repeatable in other contexts.

Finally, a noncommercial building HVAC energy forecasting procedure
was presented. It was designed for an MPC application that makes use of
a black-box building model based on state-space equations, with the goal of
minimizing the energy absorption, applied to a University of Genoa building
during the PREDICT project. As input, the proposed model uses the esti-
mation of the building occupancy, evaluated through a deep transfer learning
technique that exploits images taken by a thermal camera, as well as textual
data of room booking coming from the University of Genoa website.

The results show that the occupancy estimation is accurate on the test set
and that the state-space approach provides good results. Moreover, a sen-
sitivity analysis of the controllable variable (HVAC temperature setpoints)
confirms that the model is able to capture the realistic behavior of the consid-
ered HVAC system. Future works can exploit the proposed approach within
an advanced MPC strategy.

Although good, these predictive analytics solutions per se require a hu-
man to extract meaningful insights for informing proactive decisions. A very
powerful way to use them could be plugging them into a wider solution for
automating the decisions that will lead to better management of energy assets.
This can be done by prescriptive analytics, which is the topic of the next and
final chapter of this thesis.
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CHAPTER 4

Prescriptive Power System Analytics

Nothing is more difficult,
and therefore more precious,

than to be able to decide.
- Napoleon Bonaparte

In this final chapter, prescriptive analytics is presented. The questions be-
ing answered are the following:

• What should happen to the system?

• What should be done to make it happen?

The first question (”what should happen to the system?”), in part, it is not
the scope of analytics, as it involves a choice on what the system should do.
But once the overall goal is set (such as financial, environmental, or other
types of goals), it should be operationalized (i.e., transformed in a scalar,
numerical number to be either maximized or minimized).

For example, the overall objective of the system could be maximizing prof-
its.
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But profits can be computed over different time horizons, thus giving more
or less weight to long and short-term profits. As another example, one could
aim to reduce the environmental impact of the system. As one might expect,
”impact” is an imprecise word: it could mean to minimize the fossil fuel con-
sumption, or maximize renewable generation, or minimize renewable curtail-
ment, or even maximize profits, in contexts where they are strictly connected
to overall positive actions towards the environment (e.g., in flexibility mar-
kets).

Even with the same choice of objective, different numerical formulations
can be given, leading to very different actions and results.

The second question (”what should be done to make it happen?”) is entirely
in the scope of prescriptive analytics. It involves deciding which action to
implement and then implementing it. There are mainly two dimensions along
which decisions may be automated [241, 242]:

• One is the decision-making process stage;

• The other is the Level Of Automation (LOA);

In the taxonomies proposed in the literature, the decision-making process
is typically divided into four stages that mimic the human information pro-
cessing system itself:

• Phase 1. Firstly, there is the monitoring phase ([242]), or informa-
tion acquisition phase ([241]), also tied with information presentation
([243]). Here, if automation takes place, it takes the form of Descrip-
tive Analytics (Chapter 2). The human faculty being automated is the
sensory system [241];

• Phase 2. Secondly, there is the generation of options phase ([243]),
or simply generating phase ([242]), and involves information analysis
([241]). Automation made with analytics takes the forms of Diagnostic
Analytics (Chapter 2) and Predictive Analytics (Chapter 3). The auto-
mated human faculty is the perceptual system and the working memory
system;

• Phase 3. Thirdly, there is the selecting phase ([242]), which is the
actual decision-making phase, or selection of course of action phase
([243]) or decision selection phase ([241]). This is the phase related
to prescriptive analytics techniques and automates the decision-making
mechanism in the human organism;
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• Phase 4. Lastly, there is the implementing phase ([242]) implemen-
tation of action phase ([243]) or action implementation phase ([241]).
This is mostly out of the scope of analytics. Indeed, the action is typ-
ically delegated to another agent, i.e., the user, or another automated
system (such as with Proportional–Integral–Derivative (PID) control
systems), via a setpoint to be reached or pursued. This phase may auto-
mate all other biological systems of the human being not listed before.

As for the level of automation, there is a variety of proposed taxonomies in
the literature. However, all of them go from no automation to full automation.
They also may differ in which phase of decision-making is being automated.

For example, in [241] decision-making and action phases LOAs are listed,
based on [244]:

1. Computer offers no assistance: the human must take all decisions and
actions;

2. Computer offers a complete set of decision/action alternatives;

3. Computer narrows the selection down to a few;

4. Computer gives one alternative;

5. Computer gives one suggestion and executes if human approves;

6. Computer allows the human a restricted time to veto before automatic
execution

7. Computer executes automatically, then necessarily informs the human

8. Computer informs the human only if asked;

9. Computer informs the human only if the computer decides to;

10. Computer decides everything, acts autonomously, ignoring the human.

In this case, automation starts from level 5 to level 10.
The same papers point out that a system can have different LOAs in differ-

ent decision-making stages (see Figure 4.1
Alternatively, in [242], the action implementation is automated to some

extent already from level 2:
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Figure 4.1: Systems having different levels of automation across decision-
making stages [241]

1. Manual Control. The human performs all tasks;

2. Action Support. The system assists the operator with the performance
of the selected action, although some human control actions are re-
quired.

3. Batch Processing. The human generates and selects the options to
be performed, which are then passed to the system to be carried out
automatically.

4. Shared Control. Both the computer and the human generate possible
options for decision-making. The human retains full control over the
selection of which option to implement. The actual realizations of the
actions are shared between the human and the system.

5. Decision Support. The computer generates a list of decision options
from which the human can select. Also, the operator may contribute to

Gabriele Mosaico Ph.D. in Electrical Engineering



161

generating additional options. The human selects an option, which is
turned over to the computer for the final implementation.

6. Blended Decision-Making. The computer generates a list of decision
options that it selects from and carries out the action if the human con-
sents. The human may approve of the computer’s selected option or
select one from those generated by the computer or the operator.

7. Rigid System. This level represents systems presenting only a limited
set of actions to the operator. The operator’s role is to select from
this set and may not generate any other options. The system will fully
implement the selected actions.

8. Automated Decision-Making. The system selects and implements the
best option based upon a list of generated alternatives (possibly aug-
mented by suggestions from the human operator).

9. Supervisory Control. The system generates, selects, and implements
an option automatically. If necessary, the human can intervene by se-
lecting a different option.

10. Full Automation. The system carries out all actions at this level. Apart
from shutting down the system, the human is completely out of the
control loop and cannot intervene.

A summary of this taxonomy can be found in Table 4.1
In [243] a simplified LOA spectrum is reported, where there are four LOAs,

each characterized by which decision-making stage is automated (see Fig-
ure 4.2):

• In LOA1, only the monitoring phase is automated;

• In LOA2, both monitoring phase and option generation phase are auto-
mated;

• In LOA3, monitoring, generation, and decision phase are automated.
Only the implementation phase is left to the user;

• In LOA4, the system is autonomous, and the human is out of the loop.
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Table 4.1: Level Of Automation (LOA) taxonomy taken from [242]
(H=Human, C=Computer, H/C=Human/Computer)

FUNCTIONS
LOA MONITOR GENERATE SELECT IMPLEMENT
1. Manual Control H H H H
2. Action Support H/C H H H/C
3. Batch Processing H/C H H C
4. Shared Control H/C H/C H H/C
5. Decision Support H/C H/C H C
6. Blended
Decision-Making H/C H/C H/C C

7. Rigid System H/C C H C
8. Automated
Decision-Making H/C H/C C C

9. Supervisory Control H/C C C C
10. Full Automation C C C C

Figure 4.2: Levels of Automation according to [243]

Complete LOA taxonomies that span across all stages also exist, for exam-
ple in [245, 246]

Moreover, specific applications may have their LOA taxonomy, which may
be more specific about the functions being automatized (e.g., autonomous
driving [247]).
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Apart from clarification, these nomenclatures can help in designing sys-
tems. For example, [241] provides a scheme (reported in Figure 4.3) that can
help in evaluating which part of the system should be automated and to which
level.

Figure 4.3: An example of automation design tool [241]
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Framework in Figure 4.3 also incorporates the criteria thanks to which a
design can be specified. In particular, they are:

• Human performance Consequences, such as:

– mental workload;

– situation awareness;

– complacency (e.g. user trusts the system too much)

– skill degradation

• System performance consequences, such as:

– Automation reliability

– Cost of incorrect decision and action outcomes

In the following of the chapter, the focus will be on the prescriptive ana-
lytics practical tools to achieve automation in phase 3 of the decision-making
process. Then a brief review of how it is being applied in power systems will
follow. Afterward, two applications of prescriptive analytics being developed
during the Ph.D. will be detailed.

4.1 Approaches to Prescriptive Analytics

There are few literature reviews on prescriptive analytics tools [248]. It does
not mean that such tools are rare. Indeed, they bring the most value to busi-
ness across a wide range of industries (see Figure 4.4). Probably this is due
to the wide variety of tools that can be used for prescriptive analytics.

A recent review identified 6 classes of tools to do prescriptive analytics
(Figure 4.5) [248]. It also notes that most works use most than one method to
implement prescriptive analytics. At the same time, it recognizes that Mathe-
matical Programming (MP) is widely the most used tool to implement it.

MP is one of the main tools in the broad area of Operations Research (OR).
OR started first in the United Kingdom and then in the USA during the Sec-
ond World War as a discipline for contributing to the war effort on the part of
prominent scientists. After the war, scientists that participated in OR projects
started to apply the developed tools also in the engineering and the commer-
cial fields.
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Figure 4.4: Various analytics value as function of time [241]

As such, it is a broad and interdisciplinary field, involving mainly mathe-
matics and computer science, which is still hard today to define [249]. Some
authors even use it as a synonym for prescriptive analytics [250].

Consequently, in the following MP will be defined and presented. After-
ward, its intersections with Machine Learning (ML) methods will be outlined,
and finally, a brief overview of all the other possible approaches will be de-
scribed.

4.1.1 Mathematical Programming

Mathematical Programming (MP) was born in the context of OR, precisely
in the US Air Force. In that context, a ”program” was a schedule for logis-
tical activities, which involved a huge amount of data to be laid out [249].
Indeed, months were needed to calculate those programs. Scientists involved
in OR used both mathematics (in particular, optimization techniques) and the
first computers to compute as quickly as possible those programs. The ear-
liest form of mathematical program was a linear function to be minimized
(the objective) over some variables (the decision variables) subject to linear
equations and inequalities (the constraints). The same people also devised the
simplex algorithm for solving those problems. In Equation (4.1) the Linear
Programming (LP) is specified.

min
x

cTx

s.t. Ax ≤ b
(4.1)
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Figure 4.5: Methods for prescriptive analytics according to review [248]
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Nowadays, the possibilities of MP are much wider: many types of func-
tions (such as quadratic) can be optimized, and many types of constraints
(such as conic constraints) and decision variables (notably, integer variables)
can be handled. MPs can be divided into classes according to the objective.
For example:

Also, not only planning and scheduling but also control and design prob-
lems can be solved through mathematical programming.

A MP nowadays can be solved by the use of the following components:

• Model. The model is the programming problem itself. For example, the
Equation (4.1) is the model of a generic LP problem. In a model, the pa-
rameters to be specified by the data are defined, e.g., in Equation (4.1),
c, A, b are all defined by the model. The language with which the model
is defined is usually as close as possible to the standard mathematical
notation (algebraic modeling languages);

• Data. Typically in a separate file, the model’s parameters are specified
for the problem at hand. This allows for calling the same model with
different data, enhancing the portability of the problem;

• Solver. A solver is a program that takes a model and the data and
computes (or at least tries to compute) the solution to the program.
Solvers are typically specialized in some types of optimization prob-
lems: for example, there are LP solvers, Mixed Integer Linear Pro-
gramming (MILP) solvers, among others.

Typically these components are assembled by a standard script program,
such as python or MATLAB, which can also incorporate the logic on how
and when to call the optimization problem. This is important in the context of
the optimization over time since techniques such as Model Predictive Control
(MPC) rely on a sliding window to carry out each optimization that consti-
tutes the control problem solution.

4.1.2 Optimization under Uncertainty

In the presence of uncertainty, specific techniques are to be devised to solve
mathematical programs.

In particular, those techniques fall collectively under the name of Stochas-
tic Programming (SP), in which some quantity (parameter) is uncertain and
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so not the objective but rather the expected objective is optimized across all
the uncertainty realizations [251].

Randomness in uncertain parameters is modeled with probability distribu-
tions. It can be the case that the decisions have to be taken before knowing
uncertainty realizations (single-stage SP). Additionally, corrective actions can
be taken after uncertainty realizations (SP with recourse). Two-stage stochas-
tic programming problems can be computationally expensive to solve: in this
case, decomposition techniques, such as Benders decomposition, can be suc-
cessfully used [251].

Another framework to deal with uncertainty is Chance Constrained Opti-
mization (CCO). In CCO, an objective is minimized, while the constraints are
satisfied with a certain probability, with the aim of trading-off performance
(minimization) and reliability (constraints satisfaction) [251].

While a typical constraint is expressed in the form

G(x, ξ) ≤ 0 (4.2)

where x is the decision variable and ξ the uncertain parameter, chance
constraint is expressed in the following form:

P[G(x, ξ) ≤ 0] ≥ 1− ε (4.3)

with ε being a predefined risk level (typically small, so the probability of
constraint satisfaction ε is high). Hence, to be defined, a CCO problem needs
a risk level to be sustained by the user [251].

There are two main problems in applying CCO [251]:

1. the computation of probability of constraint satisfaction is typically in-
tractable, although some ways to overcome this have been devised;

2. In general, feasible sets are not convex. Convex reformulations are
possible in some cases.

Another paradigm for optimization under uncertainty is Robust Optimiza-
tion (RO). RO is based on the concept of uncertainty set, a set in which un-
certain realization can occur [251].

The idea of robust optimization is to hedge against the worst-case within
the uncertainty set [251], for example:

• realization giving rise to the largest constraint violation;
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• realization leading to the lowest objective value;

• the one with the highest regret.

There are two main kinds of RO: static and adaptive RO, each one corre-
sponding to single-stage problems and problems with recourse. In particular,
in adaptive RO the uncertainty is treated as a function of an ellipsoid (or
another convenient figure) [251], that can depend on, for example, the proba-
bility distribution of a forecast [131].

Each approach presented (SP,CCO,RO) has its own limitation, and hybrid
solutions are possible [251]. Nevertheless, SP is difficult to implement in
practice [248].

4.1.3 Machine Learning Tools

With the rise of Artificial Intelligence (AI), the methods for doing optimiza-
tion under uncertainty have known a renewed research interest. These re-
searches try to do SP, CCO and RO by leveraging data-driven methods, es-
pecially in modeling the probabilistic distribution involved. Also, other ap-
proaches have emerged, such as scenario-based optimization [251]. Common
to all these approaches is that they do not assume the uncertainty model to be
given a priori, but they learn it from data. Such adaptivity can prevent sub-
optimal solutions [251].

In this context, Distributionally Robust Optimization (DRO) is an approach
that is based on the concept of ambiguity set, that is, a set of probability
distributions, constructed based on available data, typically using first and
second-order information [252]. DRO hedges against the worst-case distri-
bution. By incorporating data into the definition of ambiguity set, DRO gen-
eralizes better, and it is more tractable than SP [251]. Moreover, it is often
more interpretable than standard approaches [248]. However, ambiguity set
constructions are not always guaranteed to converge to the true probability
distribution.

Also, data-drive CCO is based on the ambiguity set concept. Nonetheless,
it does not hedge against the worst-case distribution but rather uses the ambi-
guity set in the constraint definition [251]. But also in this version of CCO,
computability is a non-trivial issue [251].
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An interesting version of data-driven optimization under uncertainty is the
scenario-based optimization approach [253]. This framework does not re-
quire the explicit knowledge of probability distributions of uncertain param-
eters [251]. Instead, using a sample of possible realizations, it seeks an op-
timal solution having a high probabilistic guarantee of constraint satisfaction
[251]. It can be regarded as a RO with a discrete uncertainty set [251]. Also,
it is a practical way to achieve approximate solutions to CCO problems. The
scenario-based optimization approach has gained popularity, mainly because
it reduces the stochastic optimization problem to a deterministic one. As such,
scenario-based optimization leverages all the tools developed for determinis-
tic programming.

All of these approaches are open-loop, in the sense that the optimization
model and the data-driven system (usually a forecasting model) do not com-
municate. If the data-driven system induces bad solutions, typically, it has
no feedback from it and cannot self-correct. Indeed, the training of the fore-
casting model is made independently of the optimization model it concurs to
solve. This is a problem since it is known that closed-loop control systems are
better in performance than open-loop systems. Although closed-loop solu-
tions do exist (in particular Reinforcement Learning (RL) solutions), closed-
loop versions of the data-driven stochastic optimization approaches are rare.
The key could be to render the objective functions of the forecasting model
training procedure dependent on the mathematical programming to be solved,
for example, by using a weighted sum of the objectives. Alternatively, iter-
ative schemes between forecasting and mathematical programming could be
devised [251].

Another way data-driven techniques can enhance standard mathematical
programming is when exact solutions cannot be found (as for many classes
of non-linear problems) or cannot be found in a reasonable amount of time.
Also, most of the best solvers are tied to an expensive license, hindering their
use in cases where strict budget limits are present in building solutions. In
those cases, approximate solutions can help in building prescriptive analytics
solutions.

One example can be the Multi Parametric Programming (MPP) approach.
MPP aims at estimating a function that outputs the optimal solution of a
mathematical program given the parameters of the program [254]. Loosely
speaking, it predicts the optimal solution based on parameters of the prob-
lem, employing Supervised Learning (SL), where the example inputs are the
parameters, and the output is the optimal solution.
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The dataset used is derived from a number of problems for which the op-
timal solution has been found. The estimated function can then be used to
”predict” the optimal solution to the prescriptive problem, even for param-
eters never seen in the original dataset. Of course, in general, the result-
ing optimal value is not guaranteed to be actually optimal, nor to satisfy all
the constraints of the original problems. However, the prescriptive analytics
problem is reduced to a simple function evaluation instead of a programming
problem for which a solver is needed. This can be very useful when solution
time is critical, for example, in fast online applications.

Moreover, also metaheuristic techniques, such as genetic algorithms, can
be used for such optimization problem instances. Indeed, they are powerful
global optimizers [248]. However, their convergence to a nearly-optimal so-
lution is not guaranteed in a fixed time, and the metaheuristic solver is still
needed.

Another kind of approximate solution is given by Bayesian optimization,
already shortly introduced in Section 3.1.4 in the context of hyperparameter
optimization.

Finally, more and more ML is being exploited for difficult classes of prob-
lems in the solver themselves, such as those involving Combinatorial Opti-
mization (CO) [250]. Even in those cases, challenges of feasibility are pres-
ent, as well as scaling issues and how to actually generate an ML model that
generalizes to unseen data.

A specific kind of ML tool for prescriptive analytics is RL. RL algorithms
require that the problem be expressed as a multi-stage decision problem known
as Markov Decision Process (MDP). The MDP model offers a formal mathe-
matical language describing sequential control operations. In such operations,
the outcomes are partly uncertain and partly informed by the actions of the
decision-making agent [255].

An MDP consists of a set of states within a definite state space, a set of
possible actions within a definite action-space, a reinforcement function, and
a state transition function or probability. The agent’s objective is to maximize
the total reward. The reward is any scalar quantity that can be used to im-
plicitly communicate the objective of the learning activity to the agent. Thus,
suitable reward shaping is essential to achieve the desired objective.

As one of the few closed-loop optimization frameworks, RL is promising
in providing a wide application of prescriptive analytics. However, despite its
ground-breaking results in recent years, RL still poses challenges to possible
applications.
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Indeed, the efficiency of the solution depends on the method being used,
with no easy criteria. Also, conceiving an MDP that best represents the opti-
mization environment is a complex task. Indeed mapping the state space in a
mathematical space is not trivial, especially in industrial applications. More-
over, simulators are used for training RL, but transferring RL agent from a
simulated environment to the real world is not guaranteed to achieve good
policies. Although RL is suited for self-adaptation in dynamical environ-
ments, stability is still an issue.

4.1.4 Other Prescriptive Analytics Tools

In the following other possibilities for prescriptive analytics will be briefly
introduced.

• Simulation. While in this thesis simulation has been located in Sec-
tion 2.1.1.3, within Diagnostic Analytics, it is also widely used for
decision-making. Modeling the dynamics of the system can be a hard
and long process (and inherently imprecise). Yet, if the modeling is
carried out, it can help make decisions even more than other tools. In-
deed, what-if scenarios can be simulated and then analyzed for arriving
at a good decision. It is even more convenient if the system to be stud-
ied is complicated or data gathering is expensive or risky. Note also
that most simulators rely on first principles rather than analytics [248].
Examples of widely used simulators in power systems are EnergyPlus
[81], and DIGSilent [256];

• Logic-based models. While it is hard to arrive at a mathematical pro-
gram formulation, an RL solution, or even more to a simulator, it is
easier and more common to have an idea on what should be the course
of action to be taken. These broad types of tools may include simple
rule-based systems to more complex expert systems, possibly involving
interaction between the expert and a rule learning system [248];

• Recommender systems are a particular kind of prescriptive analytics
tool aimed at providing suggestions to the decision-maker, rather than
selecting a definitive action to be taken. They can be based on unsuper-
vised techniques such as clustering and collaborative filtering, as well
as predictive analytics techniques that leverage past decision data in
order to predict what actions should be suggested [257];
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• Risk assessment frameworks. Risk assessment tools can be used in the
context of decisions where risk is the main uncertainty factor. Risk
is defined as the probability of an undesirable event multiplied by the
impact of that event. These methods are mostly a guideline for experts
in order to decide, but they may include some analytical and stochastic
aspects in order to be as less subjective as possible [258, 259].

• Stochastic Processes. Probabilistic models such as stochastic processes
may be used to model volatile quantity such as market prices in order
to estimate the probability of undesirable events to be hedged against
[128].

• Statistical Inference. Other statistical tools such as sampling techniques
and design of experiments can be thought of as prescriptive analytics
tools in contexts where specialized decisions have to be made (typi-
cally in situations of small data, where the data that can be gathered
is small or when it is unfeasible or too costly to use all data to draw
conclusions).

4.2 Prescriptive Applications to Power Systems

While power systems are heading towards a complete RES integration, a high
number of new and important decisions have to be made at all levels: invest-
ment, planning, and operational. Plenty of expectations are put on analytics
in order to prescribe an optimal course of actions at all levels [16].

In the future, AI and big data will further enhance decision-making and
planning, condition monitoring, inspections, certifications, and supply chain
optimization and will generally increase the efficiency of energy systems [16].

Examples of prescriptive analytics applications abound: from customer
characterization, to demand response program design, to retail pricing [86],
to predictive maintenance, HVAC optimal control, EV smart charging, mi-
crogrid optimization, including BESS, as well as all kinds of decisions to be
made by systems operators in order to keep the system safe and with quality
service.

Much like prescriptive analytics is about automating decision-making pro-
cesses, also predictive maintenance is the final step of a more and more auto-
mated approach to maintenance.
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• The first step is reactive (or run-to-failure) maintenance, where repairs
are made after the damage occurred only [260];

• The second step is preventive maintenance, where a machine is in-
spected at predefined time intervals [260];

• Next is Condition Based Monitoring (CBM), where maintenance ac-
tions are dynamic but based only on current states (the maintenance
system is also called diagnostic system);

• Whenever also future states are estimated, and maintenance actions are
made before damage can occur, predictive maintenance (or prognos-
tics) is involved [260].

While diagnostic and partly the prognostic part of predictive maintenance
are applications of predictive analytics, the action to take in order to be proac-
tive with respect to the damage is an application of prescriptive analytics. In
some cases, highly data-driven techniques are not suited because of the few
failure data. For these reasons, efforts to share data on failure are carried out.

Predictive maintenance can significantly enhance the useful life of RES
asset. For example, wind turbines operations contribute up to the 20% of the
total cost of wind energy over a period of 20 years. In this sense, predictive
maintenance can greatly help reduce the cost of renewable energy and thus
contribute to the energy transition [260]

Not few predictive maintenance techniques integrate physical models and
simulation into the final solution [261]

As already noted in Section 3.5, buildings contribute a lot to energy de-
mand and Carbon Dioxide (CO2) emissions. A smart Building Energy Man-
agement System (BEMS) (that controls HVAC and other building compo-
nents such as lights and windows) can maximize the consumption of (possi-
bly self-produced renewable energy, while also balancing building occupants’
comfort requirements.[39].

Typically HVAC are run with simple Supervised Learning (SL), and many
studies have suggested that substituting them with MPC can significantly ben-
efit the current efficiencies KPIs [262].

While being efficacious on paper, MPC can have significant development
and operational requirements. Hence in [262] a simplified control law pro-
cedure learned from MPC has been proposed (similar to the aforementioned
MPP approach to an approximate solution to programming problems).
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Also, work exploring the links between the energy efficiency improvement
and the flexibility services of single and multiple buildings were studied, us-
ing both SL and RL [263, 264]. Heating, cooling, and ventilation optimiza-
tion were investigated in [265], also involving occupancy data.

While today the number of EV is manageable, its number is predicted to
increase tremendously in the next few years. Apart from infrastructural up-
grades, new techniques for scheduling and control Electrical Vehicle Supply
Equipment (EVSE) will be needed because the concurrent charging of mil-
lions of EVs can have a number of adverse effects on power grids [266]

Conflicting goals are at stake: while vehicles should be charged as quickly
as possible, utilizing RES for the charge is important, as well as giving flex-
ibility to the system, and also economic profits may be taken into considera-
tion. Also balanced charging between near EVs is advisable [267].

In [268], a RL-based optimal charging strategy model for a DSO to address
the voltage violation problem is proposed. A review of RL approaches on the
problem of EV charging is carried out in [269]. A simulator for develop-
ing such algorithms is introduced in [267], while a more classical optimiza-
tion solution is proposed to illustrate the goodness of the simulator. In [270]
a modified version of laxity algorithm (a sort of heuristic way to prescribe
smart charging) is reported. The problem of Electrical Bus (EB) Fleet smart
charging is addressed in [271]. The simulation results show that the proposed
algorithm can significantly reduce the battery degradation cost during the op-
erating time of EBs while giving relatively small errors when considering
randomnesses of EBs charging processes. Moreover, the proposed algorithm
can reduce the computational complexity significantly for practical applica-
tions [271].

In the future, the real-time electric price can be considered as an external
input for the state of MDP. Since the price is time-variant, forecasting the
price is a great challenge. Further, the model-free approach can be potentially
improved by combining the reinforcement learning with the EBs mechanical
model to increase the accuracy of the charging schedule, which still requires
extensive research [271].

Works on optimizing a microgrid are also very common in the literature.
Batch RL is proposed to manage a battery in a microgrid by taking the in-
verter’s efficiency into account [272]. Deep Reinforcement Learning (DRL)
is applied in [273] to enhance the Energy Management System (EMS) of a
microgrid. A review on the same problem is given in [255]. A simulator
for benchmarking different RL solutions have been developed and presented
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in [274]. A genetic algorithm is used to optimize an industrial microgrid in
[275]. A mixed-integer algorithm written in GAMS [276] and developed in
MATLAB is used in [277] to optimally dispatch a BESS based on day-ahead
PV forecasting. A chance-constrained method for maximizing economic gain
in an integrated PV-BESS system is presented in [278].

Another line of prescriptive analytics applications in power systems is the
sizing and siting of BESSs. Both are planning problems: in one case, the op-
timal size according to some objective in terms of capacity or power is to be
decided, while in the siting problem (also called allocation, site selection, or
placement), the decision regards the site of the BESS. There are two types of
BESS owners: system operators and demand-side owners. System operators
may use BESS for ensuring grid operation under the pressure of high penetra-
tion of RES, while demand-side owners are interested in self-consumption or
participation in the markets. Services offered by BESS are numerous. Among
them are frequency regulation, black start services, flexible ramping, conges-
tion relief, and peak shifting, RES capacity firming, which lead to reduced
curtailment of RES, reduced reliance on thermal generators as well as capac-
ity investment deferral [279]. For each of them, investments are needed, and
suitable sizing (and siting when possible) must be found.

Examples of prescriptive analytics solutions for system operators include:
optimal sizing considering a future prediction about PV penetration [280];
joint transmission and distribution side benefits satisfying chance-constrained
security conditions [281]; BESS planning under high penetration of wind
generation at the distribution level [282]; multiple services such as voltage
constraints, system losses and total cost of energy minimization [283]; sizing
and siting for minimizing costs of voltage deviations, power losses and peak
demands [284]; siting and sizing for decreasing the voltage impact of PV
systems in a distribution system [285]; allocation and optimal size for dealing
with over-frequency in transmission systems [286]. Also demand-side owners
need planning, for example, for minimizing PV grid export and increase self-
consumption [287], for jointly sizing PV systems [288], and for minimizing
investment costs and ensuring continuous operation [289].

Other types of objectives can be found in BESS siting and sizing litera-
ture: for example, for protecting the grid against adversarial attacks [290];
in conjunction with HVAC optimal operation, so that size of BESS can be
minimized [291]; and allocation and sizing on shipboards [292].

Most works rely on deterministic programming, or their stochastic counter-
parts, and rely on simulations of the future state of the market, the grid, and of
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the demand [293]. Computations for these kinds of problems are intensive, so
many examples of alternative solutions to mathematical programming, such
as genetic algorithms [282, 284, 294, 295], and reinforcement learning [296]
can be found in the literature.

Before concluding this chapter, two applications drawn from the Ph.D.
work are reported. The first application [61] presented is about an optimal
storage siting and sizing methodology with the objective of helping an Ital-
ian DSO, involved in the PODCAST project [59], in respecting voltage and
current constraints required by grid codes. The second is a Microgrid/En-
ergy Community profile optimization algorithm, with day-ahead and intra-
day stages, developed during the PODCAST project.

4.3 Application: Optimal Storage Siting and Sizing

Distributed Energy Resources (DERs) are changing the paradigms of net-
work planning and management: the old ”fit and forget” philosophy cannot
be applied to modern active distribution networks, whereas smart technolo-
gies cover a key role in the integration of these actors in the system opera-
tion. In particular, in order to face new bottlenecks of power transmission,
a European Directive [297] requires to evaluate all possible smart solutions
before investing in grid reinforcement. Advanced communication technolo-
gies together with robust and efficient control strategies must be exploited
by DMSs in order to coordinate simultaneous DER contributions to regula-
tion, which include RESs, flexible loads and BESSs. Italian requirements for
DER reactive power support and communication infrastructure are defined in
[298, 299].

In this scenario, Volt/Var Optimization (VVO) methodologies represent
crucial functionalities for the optimization of voltage profiles and reactive
power. These techniques can help evaluate the most efficient configuration for
the controllable devices, reduce operating costs, and minimize power losses.
In addition, a robust VVO algorithm can contribute to congestion relief. Stor-
age systems can be considered one of the main tools inside these strategies
and, in order to maximize their contribution, DSOs should exploit advanced
methodologies for the optimal sizing and allocation [300, 301].

In recent years, the scientific community has proposed a great number of
VVO techniques. Authors in [302] face the problem of VVO for distribution
systems with RES penetration. In [303, 304] multi-agent methodologies are
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designed for loss reduction and voltage control, while in [305] a holistic ap-
proach for integrated Volt/Var control in medium and low voltage networks is
presented. Finally, authors in [306] describe a strategy for the optimal sizing
and allocation of Distributed Generatorss (DGs) within a VVO strategy, while
in [307] also the grid reconfiguration is embedded.

This application aims to define and test an algorithm for DER regulation
and optimal allocation of storage devices in a distribution grid. The presented
formulation finds the optimal sizing and siting of storage devices necessary
to guarantee the respect of voltage and current constraints when dispatchable
DERs in the considered network are not sufficient.

Unlike most works in literature, a linearized technique has been chosen for
the mathematical formulation, which leads to minor approximation errors (as
testified by simulations). Moreover, it also leads to several benefits such as
computational speed, problem scalability, working point flexibility (since the
linearization is performed around nominal voltage), and the possibility to pur-
sue multiple tasks simultaneously. The proposed procedure is tested on the
real distribution grid model of the city of Sanremo, using Monte Carlo extrac-
tions from measured data. In fact, available real data from smart meters are
essential to derive load and RES profiles suitable for integration in stochastic
planning.

4.3.1 Optimization Problem Formulation

The proposed formulation uses MILP computation and is implemented in
Matlab-GAMS environment with CPLEX solver [308]. It is an upgrade and
extension of [309] and [59], where slack voltage regulation has been added,
and robust probabilistic planning is performed using Monte Carlo technique
including load and RES profile modeling. The presented procedure leverages
a linearized approach to load flow equations (reworked from [310]) and mag-
nitude constraints (revised from [311]), which require integer variables to de-
scribe Piecewise Linear Functions (PLFs). The problem anyway exploits in-
teger variables to identify the optimal number of battery modules that should
be installed at each node along the grid. Therefore, all network elements are
correctly represented by the linear model, including their operational limits.

Briefly showing the upgrades with respect to [59], linear power flow equa-
tions compute Cartesian coordinates of voltages (V reN and V imN ) as a function
of nodal injections (using ZIP model: constant impedance (SZN ), constant
current (SIN ) and constant power (SPN )), defining in origin the constant
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matrices A, B and C that depend on the linearization point. In order to iso-
late also slack voltage Vs and make it adjustable, equations have been further
decomposed by adding slack voltage coefficient D.

Are =(−Bre − Cre)V reN + (Cim −Bim)V imN +

+ SreIN −DreVs
(4.4)

Aim =(−Bim − Cim)V reN + (Bre − Cre)V imN +

− SimIN −DimVs
(4.5)

A =− 2S∗PN (4.6)
B =diag(S∗PN ) (4.7)
C =YNN − diag(S∗ZN ) (4.8)
D =YNS (4.9)

It is recalled that since linearization is performed on voltage deviations, the
approximation is accurate when voltage magnitude is close to 1 p.u. (which
is true in the performed scenarios), but it is valid for any working point.

Voltage and current constraints are linearised as in Figure 4.6, fully defined
in [309].

The objective function to be minimized, as already said, is the total number
of battery modules employed to satisfy operational constraints. Assuming
that installation cost is equivalent at all substations, a simple summation on
all k nodes of the network is computed:

min

N∑
k=1

(NBESS(k)) (4.10)

The problem can be reduced if only particular nodes are available for the
installations due to logistic or space requirements. The slack variables which
the formulation leverages for regulations are nodal constant power injections,
SreIk and SimIk , here represented by DGs reactive injections and both active
and reactive contributions of BESSs (indeed modeled as current-controlled
sources). DG reactive regulation is free, as long as it respects power factor
limits in [298].

University of Genova Gabriele Mosaico



180 Chapter 4. Prescriptive Power System Analytics

Concerning BESS modeling, similarly to [309], its sizing parameters are
defined by the integer variable NBESS multiplied by the power rating and
energy capacity of each module (which are both fixed values). A quadratic
capability curve is assumed. The State of Charge (SoC) is computed taking
into account charge and discharge currents (SC,reI,t , SD,reI,t with corresponding
efficiencies ηc, ηd), defining the relationship between the two parameters.

In order to perform non-correlated daily stochastic scenarios, everyday
at midnight the SoC is bounded to return to the initial status, as in Equa-
tion (4.11). This contraint is introduced in order to ensure the continuous
operation of the BESS on a day-to-day basis. For the initial SoC, in t = 0,
an empirical optimal value is chosen (70%, optimal at midnight for systems
with PV penetration).

SOCk,t∝24 = NBESS(k) · SOCk,t=0 (4.11)

Figure 4.6: Modeling voltage (pu) and current (%) limits [309]

4.3.2 Real Network Model

The presented algorithm is applied to the real distribution network of San-
remo city (Italy) within the PODCAST project. The local DSO, AMAIE
S.p.a., allows data acquisition through a dedicated SCADA system and vari-
ous functionalities provided by the DMS [59, 171].
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4.3.3 Grid Description

The complete distribution system is an MV network, composed of 186 MV/LV
substations (15/0.4 kV/kV) and 17 MV prosumers, operated radially, with
ten feeders starting from the HV/MV primary substation of Tinasso (which
is 132/15 kV). Four feeders (shown in Figure 4.7) are completely moni-
tored through measurement devices installed at the secondary winding of each
MV/LV substation. The grid model of this network (represented in MAT-
POWER, a MATLAB toolbox for power system simulations, which is used
for non-linear validation of the results) is used as input for the study, adding
an equivalent load of non-monitored feeders at the primary substation.

The overall power related to the RES distributed generation in the net-
work of Sanremo is close to 1.98 MW. According to the current standards
[298, 299], DERs are connected at the LV or the MV grid depending on
their size. In particular, two PV plants with nominal power of 200 kWp and
20 kWp are connected respectively at the MV and the LV level of substations
155 and 148 (see Figure 4.7)), while a 200 kW hydropower plant is con-
nected at the MV side of the substation 97. The non-monitored feeders are
modeled through six equivalent loads, whose actual power is monitored at the
primary substation. In addition, equivalent loads connected at the LV level of
secondary substations are used to model LV networks downstream MV/LV
transformers. Finally, a SCADA system acquires data from each measure-
ment point with a granularity equal to one minute (see also Section 3.4.1).
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Figure 4.7: Scheme of the four monitored feeders of the Sanremo’s net-
work, highlighting DERs location (PV, Hydro) and optimal BESS siting
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4.3.4 Load Modeling for Monte Carlo simulation

The load profiles of the substations are derived from active power historical
data, using a sampling time of 15 minutes. The approach is derived from
[171], with some adaptations to make it suitable for Monte Carlo simulation.
The procedure is the following for each substation:

• The available data are divided into a working day dataset, a pre-holiday
dataset, and a holiday dataset. This aggregation is defined according to
the different load behavior for the different day types;

• For each dataset, the mean daily active power profile (composed of 96
values) is computed, as well as the standard deviation for each quar-
ter of an hour. Missing values are omitted. Both yearly and monthly
profiles are computed;

• Each raw profile is then smoothed using Fourier Decomposition [171]:

ŷ(t) = a0 +

6∑
i=1

ai · cos(t · w) + bi · sin(x · w)

where w = 2π
95 , αi and βi are the Fourier coefficients and t = 1, ..., 96.

• In cases where no data are available for the monthly profile computa-
tion, the yearly profile is used, scaled by a convenient factor.

In Figures 4.8–4.10 some examples of the resulting load profiles are re-
ported for the same substation, for the same period (July), and the three dif-
ferent types of day. In each plot, the raw mean profile, the profile smoothed
with Fourier decomposition, the 95% confidence interval for each point of
the curve (assuming gaussianity), and an example of Monte Carlo Simulation
for the profile are reported. The simulation takes a random gaussian value for
each quarter of an hour: the mean and the standard deviation are taken from
the smoothed profile of the same time instant. In most cases, the Monte Carlo
draw falls inside the confidence band region.

By comparing the three profiles of this specific substation, it is possible to
see that the various types of the day have different behaviors. The holiday
profile is lower in magnitude and less variable than the other two. In addition,
the pre-holiday profile is slightly lower in magnitude and less variable than
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Figure 4.8: Raw mean profile (red), Fourier-smoothed profile (blue), 95%
gaussian confidence interval of the smoothed profile (error bars) and ex-
ample of Monte Carlo draw (black) for Substation 7 in the month of July -
working days

the curve of the working days. Similar behaviors can be found for other
substations. These statistical behaviors justify the dataset division employed
for this work.
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Figure 4.9: Raw mean profile (red), Fourier-smoothed profile (blue), 95%
gaussian confidence interval of the smoothed profile (error bars) and ex-
ample of Monte Carlo draw (black) for Substation 7 in July - pre-holiday
days
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Figure 4.10: Raw mean profile (red), Fourier-smoothed profile (blue), 95%
gaussian confidence interval of the smoothed profile (error bars) and exam-
ple of Monte Carlo draw (black) for Substation 7 in July - holiday days
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4.3.5 Simulation Results

Simulations have been performed on the test network with Monte Carlo sce-
narios, extracting 3000 daily profiles of loads and RESs to represent different
operating conditions, taking into account hourly, daily, and seasonal varia-
tion. The computational time is approximately 4 secs for each equivalent day
(on a dedicated workstation, core i, 64GB RAM), proving the scalability of
the solution. The imposed range for voltage magnitudes is (0.95-1.05 p.u.),
whereas the congestion limit is considered above 90% of the branch rated
power. Available BESS modules are 500 kWh/1000 kW, and all LV nodes
are considered as possible locations.
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Figure 4.11: Result of BESS allocation

Optimal allocations suggested by the daily simulations performed are al-
ways composed of one or two BESS modules, located in a limited group of
nodes (which have been selected in Figure 4.11, for readability). Some days
do not require any storage when no violations are identified.

Therefore, the four following substations can be identified as suitable for
storage installations, marked also in Figure 4.7:

• n◦ 220 ”Nuvoloni” (bus 87)

• n◦ 47 ”Casino’” (buses 108 and 109)

• n◦ 87 ”Mercato Ortofrutta” (bus 138)

• n◦ 97 ”Filtri Poggio” (bus 147), same of the hydropower plant.
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Figure 4.12: Voltage profiles over all MonteCarlo simulation in AMAIE
grid

Figure 4.12 shows average voltage magnitudes computed at all nodes (sorted
by number, not physical connections) with ”gap areas” to represent the vari-
ations registered in all simulated scenarios: both at MV and LV level, the
imposed range is respected. The highest gaps occur at substations where the
load is highly fluctuating or where strong regulations can be performed.
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Figure 4.13: Comparison of voltages of all nodes (MV and LV) before and
after optimization, one day at 8 PM, with model validation

More specifically, Figure 4.13 shows an example (in a sample scenario, at 8
PM) of comparison of bus voltage magnitudes before and after the optimiza-
tion (effectively flattening the profile), each with the corresponding validation
via non-linear power flow (having circles and dots overlapping testifies the
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great match of outputs). As expected, the error on voltages computation due
to linearization is negligible, with a mean (over 174 nodes and 72000 time
intervals) equal to 3.13·10−4% and a maximum of 0.006%.

Also, branch congestion limits can require, in some conditions, BESS con-
tribution in order to respect the imposed limits. In particular, MV lines tend to
be far from their maximum flows, while MV/LV transformers may encounter
critical conditions: a focus on transformers flows (compared to their limit, the
dotted lines) is offered in Figure 4.14. In this situation, energy storage is the
only way to ensure problem feasibility.
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Figure 4.14: Computed values of transformers’ currents (magnitude, real
and imaginary components) compared to their limits

In the end, Table 4.2 reports the maximum (in absolute value) power in-
jections required to the controllable devices at any simulated time in order
to improve voltage profiles and relieve congestions. It is noted that these
contributions are required in different moments: depending on the different
criticalities, BESS injections can be mainly active (to solve congestion prob-
lems) or reactive (when compensation is needed to boost the voltage profile).
Reactive regulation supplied by DGs is often close to the maximum allowed
by [298].
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Table 4.2: Minimum/maximum injections from BESS and DGs at all nodes
among all scenarios, compared to corresponding limits

Generators Batteries
Qg Qmax

g Qb Pb Smax
b

Nodes [kVAr] [kVAr] [kVAr] [kW] [MVA]
39 -47 ± 48
45 -4.7 ± 5
87 790 -347 ± 1

108 653 800 ± 1
109 429 -341 ± 1
138 557 428 ± 1
147 -46 ± 2.5 130 -193 ± 1

4.4 Application: Microgrid/Energy Community Profile Op-
timization Algorithm

Microgrids and energy communities are emerging as valuable means for the
efficient and flexible management of DERs, including storage devices, among
others [312]. Crucial to these applications is the capability to guarantee re-
serve capacity and compensate for RES and demand forecast errors [313].
Hence, control algorithms for day-to-day microgrid operation represent a hot
research topic: a recent review can be found in [314]. An industrial microgrid
operation solution is presented in [315]; a stochastic optimization framework
for microgrids is introduced in [316], while an MPC based approach is given
in [317]. Similar algorithms can be employed for aggregators [19, 318].

In this context, in the PODCAST project, a procedure for optimizing the
profile of a microgrid or an energy community has been defined. The proce-
dure comprises two parts: a day-ahead and an intra-day stage. The controlled
assets are two BESSs, described in Section 4.4.3.1 . MATLAB and AMPL
[319] were used for modeling and testing the procedure.

The proposed procedure is able to optimize the profile of a microgrid or an
energy community. The algorithm consists of two levels: In the day-ahead
stage, planning of the optimal profile is carried out with mathematical pro-
gramming (with a predefined time horizon and granularity). In the intra-day
stage, the profile planned in the previous day is realized with a simple rule
based on the actual microgrid/energy community absorption (which is up-
dated about every three minutes). Thanks to this method, a microgrid or an
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energy community can optimize its profile and participate in the day-ahead
market and propose a profile that will be realized in the next day. In the fol-
lowing sections, the algorithm will be introduced in a general way, then the
description of their application to the PODCAST project will be given, to-
gether with the results of some experiments carried out on a real distribution
network.

4.4.1 Day-ahead Stage

The goal of the optimum problem is to minimize the following objective func-
tion:

min
Pimp,Pexp

L
∆t∑
i=1

cimp(i) · (Pimp ·∆t)− cexp(i) · (Pexp(i) ·∆t) (4.12)

where:

• ∆t represents optimized profile granularity [h];

• L is the length of the optimization [h];

• i is the time index, which spans from 1 to L
∆t ;

• cimp(i) is the cost of energy when the distribution grid imports from
the microgrid/energy community, relative to time i [C/kWh];

• cexp(i) is the cost of energy when the distribution grid exports to the
microgrid/energy community, relative to time i [C/kWh];

• Pimp(i) ≥ 0 is the imported power at time i [kW];

• Pexp(i) ≥ 0 is the exported power at time i [kW].

The decision variablesPimp(i) andPexp(i) are defined by Equations (4.13)–
(4.15):

Pimp(i) ≤ ximp(i) · Pmaximp (i) (4.13)

Pexp(i) ≤ xexp(i) · Pmaxexp (i) (4.14)
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ximp(i) + xexp(i) ≤ 1 (4.15)

where:

• ximp(i) is the binary variable equal to 1 if the distribution grid is im-
porting energy from the microgrid at time i (otherwise, it is 0);

• xexp(i) is the binary variable equal to 1 if distribution grid is exporting
energy to the microgrid at time i (otherwise, it is 0);

• Pmaximp (i) is the parameter that represents the maximum power that the
distribution grid can import from the microgrid at time i [kW];

• Pmaxexp (i) is the parameter that represents the maximum power that the
distribution grid can export to the microgrid at time i [kW];

Hence, also ximp(i) and xexp(i) are decision variables.
Next, The first SoC of the storages is equal to the last measured SoC: for

the s-th storage.

SoCs(1) = SoCmeass (4.16)

with S being the number of storages in the microgrid/energy community,
s = 1, ..., S and SoCmeass is the last measured SoC of the s-th storage .

The dynamics of the SoCis considered in Equations (4.17)–(4.22):

SoCs(i) = SoCs(i− 1) +
∆t

Enoms

(ηchs · P chs (i)− ηdscs · P dscs (i)) (4.17)

P chs (i) ≤ xchs (i) · Pmax,chs (4.18)

SoCs(i) ≤ SoCmaxs (4.19)

SoCs(i) ≥ SoCmins (4.20)

while the constraints related to the maximum and minimum power are:

P dscs (i) ≤ xdscs (i) · Pmax,dscs (4.21)
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xchs (i) + xdscs (i) ≤ 1 (4.22)

with s = 1, ...S and i = 1, ..., L∆t and where:

• SoCs(i) is the state of charge of the storage system at time i [p.u.];

• Enoms is the nominal capacity of the s-th BESS [kWh];

• ηchs is the charging efficiency of the s-th BESS [p.u.];

• ηdscs is the charging efficiency of the s-th BESS [p.u.];

• P chs (i) ≥ 0 is the variable indicating the charging power of the s-th
BESS [kW];

• P dscs (i) ≥ 0 is the variable indicating the discharging power of the s-th
BESS [kW];

• xchs (i) is the binary variable equal to 1 if the BESS is charging, 0 oth-
erwise;

• xdscs (i) is the binary variable equal to 1 if the BESS is discharging, 0
otherwise;

• P (max,ch)
s is the maximum charging power of the s-th BESS;

• P (max,dsc)
s is the maximum discharging power of the s-th BESS;

• SoCmaxs is the maximum SoC state for the s-th BESS [p.u.]

• SoCmins is the minimum SoC for the s-th BESS [p.u.]

Hence, also P chs (i), P dscs (i), xchs (i), xdscs (i) are decision variables.
Among the other constraints, a desired property is the continuity of the

algorithm, that is, the algorithm should be able to run every day, with little
initial SoC condition differences between consecutive days, as indicated by
Equation (4.23):

ε ≤ SoCs(
L

∆t
)− SoCs(1) ≤ ε (4.23)

where:
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• ε is the parameter representing the tolerance between initial and final
state [p.u.];

For limiting the degradation of the batteries, a limit on an approximation
of charging and discharging cycles is enforced:

ηchs
Enoms

·
L
∆t∑
i=1

P chs ≤ lchs (4.24)

ηdscs

Enoms

·
L
∆t∑
i=1

P dscs ≤ ldscs (4.25)

where:

• lchs is the maximum number of charging cycles;

• ldscs is the maximum number of discharging cycles;

Finally, the load balance equation for the microgrid/energy community is:

Load(i) + Pexp(i) +

S∑
s=1

ηchs P
ch
s (i) =

= PV (i) + Pimp(i) +

S∑
s=1

ηdscs P dscs (i)

(4.26)

where Load(i):

• Load(i) is the load forecasting at time i (see Section 3.4) [kW];

• PV(i) is the generation forecasting at time i (see Section 3.3) [kW];

To summarize, the day-ahead optimization is based on a MILP, the ob-
jective is defined in Equation (4.12) and constraints are in Equations (4.13)–
(4.26), while the decision variables are:

• xchs (i), xdscs (i);

• P chs (i), P dscs (i);
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• Pimp(i), Pexp(i);

• ximp(i), xexp(i).

The algorithm (implemented in AMPL [319] environment) defines the op-
timal microgrid/energy community profile:

PTOT (i) = Pexp(i)− Pimp(i) (4.27)

which is positive quantity if the microgrid/energy community is absorb-
ing negative if the microgrid/energy community is exporting. Examples of
finalized profile and battery optimization profiles are reported in Figures 4.15
and 4.16.

Figure 4.15: Example of day-ahead optimization output: forecasted load
and BESS setpoints
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Figure 4.16: Example of day-ahead optimization output: final net load
optimized profile

4.4.2 Intra-day Stage

The profile defined by the optimization of the day before must be realized
during the following day. Batteries, in this case, are used to compensate for
forecasting errors made on load and renewable generation. The intra-day
control is performed with a granularity equal to one minute. Its goal is to
realize the PTOT profile defined by the optimizer of the day before. For this
reason, within each ∆t-minute interval of a day (defined by the time index i
= 1, ..., L

∆t ). The intra-day stage carries out the following control logic on the
storage devices:

Pstorage(i,m) = Ptot(i)− Pmeas(i,m) m = 1, 2, ..., 60 ·∆t (4.28)

where:
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• PTOT (i) is the day-ahead optimized profile for quarter of interval i;

• Pmeas(i,m) [kW] is the microgrid/energy community absorption mea-
sured at minute m of interval i ;

• Pstorage(i,m) [kW] total setpoint that the S BESSs have to provide at
minute m of interval i . Each BESS must provide Pstorage(i,m)

S .

In particular, if Pstorage(i,m) ≤ 0 BESSs operate in charging mode,
while if Pstorage(i,m) ≥ 0 batteries go in discharging mode.

Moreover, thePstorage(i,m) is set to zero whenever Equations (4.19) and (4.20)
(maximum and minimum SoC constraints) are violated.

4.4.3 Experiments

Two experiments aimed at ensuring that the algorithm can derive and follow
an optimized profile were carried out the first and the second days of De-
cember of 2020 during the Ph.D. on a portion of the distribution grid of the
PODCAST project (described in Section 3.4.1 and Section 4.3.3).

The start and the end of the two experiments are reported in Table 4.3.

Table 4.3: Experiments for BESS profile optimization algorithm

Exp. n. Start End
1 1st December 2020 - 08:33 1st December 2020 12:32
2 2nd December 2020 15:29 2nd December 2020 19:30

4.4.3.1 Battery Energy Storage System of the PODCAST project

The BESS controlled by the algorithm are two systems of 30 and 70 kWh
nominal energy and of 30 and 70 kW nominal power. Each storage is com-
posed of a string of Toshiba SCiBTM modules [320] (see Figure 4.17).

The modules are mounted each on separate but equal racks (Figure 4.18)
inside two twin switchboards, together with all the auxiliary systems, listed
in the following:

• one Power center for parallel connection with breaker;

• auxiliary distribution switchboard;
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Figure 4.17: Image of the Toshiba SCibTM Cell [320]

• lighting system;

• cooling system;

• ventilation system.

The two switchboards are placed inside a shelter (see Figures 4.19 and 4.20),
which was situated in a rural area that corresponds to a portion of the distri-
bution system which was characterized by a high penetration of PV systems.

The two BESSs are connected with the SCADA-DMS system. There are
three ways to control the two systems:

• in person at the shelter (done mainly for maintenance purposes);

• through a remote algorithms server, connected to the DMS via the Open
Platform Communications - Unified Architecture (OPC-UA) protocol
(see Figure 4.21), wherein the intra-ahead algorithm is implemented.

• via the DMS (see Figures 4.22 and 4.23), wherein the proposed opti-
mization procedure is implemented;
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Figure 4.18: Project battery cells mounted on a switchboard

Figure 4.19: Shelter used for hosting the BESSs
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Figure 4.20: Internal view of the shelter with the two BESSs

Figure 4.21: Communication scheme for the remote control of the BESSs
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Figure 4.22: DMS interface for monitoring the storage systems

Figure 4.23: Example of controlling remotely the BESSs
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4.4.3.2 Chosen Parameters

Several parameters have to be set in order to run the day-ahead stage opti-
mization. Pmax,chs , Pmin,chs are set to the respective values of the available
BESSs. All the considered parameters are collected in Table 4.4:

Finally, the solver chosen for the optimization is CPLEX [308], called from
MATLAB [321] via AMPL environment [319].

4.4.4 Round-Trip Efficiency Estimation

Before presenting the results of the experiments, the round-trip efficiencies of
the batteries (namely, ηchs , η

dsc
s for s = 1, 2) have been estimated.

They have been computed in several trials, on the 28th of September 2020,
where significant setpoints (such as 5, 10, and 15 kW) were set for a single
BESS. At the same time, both the given setpoint and the state of charge of
the batteries have been noted in order to estimate the relationship between the
given setpoint and the actual setpoint realized by the BESSs.

The supposed relationship is linear, with the efficiency being the slope of
the linear model:

y = η · x+ ε (4.29)

where:

• y is the effective setpoint (computed from the measured SoC);

• x is the given setpoint;

• η is the battery round-trip efficiency;

• ε is a gaussian error;

The given and the actual setpoints are different for different reasons. Firstly,
the given setpoint is a supervisory control setpoint: the battery EMS tries to
realize it, and its effective realizations depend on several factors tied to the
BESS system state, the grid state, and the EMS settings themselves, which are
hard to predict without uncertainties. Hence, round-trip efficiency is modeled
by Equation (4.29) in a black-box fashion. Also, two efficiencies are distin-
guished for each BESS: charging and discharging efficiency. Since it is a ratio
between to power setpoints, the efficiencies are dimensionless.

The final values are the ones reported in Table 4.5
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Table 4.4: Choice of parameters for the experiments of microgrid/energy
community profile optimization

Parameter Description Choice Notes

∆t Time granularity 0.25 h
15 minutes
(standard for
the Italian Market)

L Optimization horizon 24 h

L
∆t

Number
of Optimization
Intervals

96
standard for the
Italian Market

S
Number
of BESSs

2

lch, ldsc
Maximum charging
and discharging
cycles allowed

1000

cexp

Costs
of buying
energy

0.2 C/kWh
Costs where considered
constant throughout
the day

cimp

Revenue
of selling
energy

0.1 C/kWh
Costs where
considered constant
throughout the day

ε

Maximum
allowed SoC
difference from
day-to-day operation

0.1
Corresponding to
a maximum SoC
difference

Pmax
imp ,
Pmax
exp

Maximum power
exchanged
by microgrid

70 MW

SoCmax
s ,

SoCmin
s

Anti-degradation
limits

10%, 90%

ηchs ,
ηdscn

Charging
and Discharging
round-trip
efficiencies

Table 4.5
Chosen with
algorithm described
in Section 4.4.4
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Table 4.5: Estimated round-trip efficiencies

Battery Efficiency Symbol Value [p.u.]
30 kW(h) Charging ηch1 0.98
30 kW(h) Discharging ηdsc1 0.89
70 kW(h) Charging ηch2 1.04
70 kW(h) Discharging ηdsc2 1.00

With the efficiencies, all the parameters have been chosen. Therefore, the
experiments could take place.

4.4.4.1 First Experiment

The optimized day-ahead profile for the first experiment is reported in Fig-
ure 4.24.

Figure 4.24: Experiment n.1 - Optimized profile in the day-ahead stage
load profile
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Around noon, the values are particularly volatile because a preliminary
experiment was made the day before.

This fact underlines the importance of measuring the uncontrolled load of
the aggregate and the controlled devices separately, such as the BESSs, in
order to separate the actual demand from the demand modified by actions
performed for flexibility, energy efficiency, or other reasons.

In Figure 4.25 it is the output of the two procedures: both the day-ahead
stage output (in blue) and the realized intra-day profile (in red).

Figure 4.25: Experiment n.1 - Realized load profile

The profile realized by the intra-day procedure is the actual load requested
by the microgrid/energy community plus the BESSs actions. The realized
profile is sampled every three minutes, while the target profile is constant
for each 15-minutes interval. So it is not immediate to see the performance
of the profile optimization algorithm: this can be inspected by looking at
Figure 4.26, where the equivalent requested and realized energy profile is
reported.
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Figure 4.26: Experiment n.1 - Realized energy profile

The overall error committed during the experiment is equal to 0.6 kWh in
MAE, a satisfying level, also given the peculiarity of the load around mid-
day, as already noted (see Figure 4.24). The error is wider a the end of the
experimentation because BESSs could not compensate as well as before the
error. Indeed, as Figures 4.27 and 4.28 testifies, the BESS had to mostly act
as generator toward the grid in order to respect the profile. This caused that
around 11:30 AM, the SoCs reached the lower limit set by Equations (4.19)
and (4.20). Since the auxiliary systems of the BESS are powered by the bat-
teries and never switched off, this means that the SoC decreases naturally.
Hence, the BESSs can only operate charging mode, until the SoC returns to
acceptable values for operating in discharging mode (as it happened around
noon, see blue lines in Figures 4.25 and 4.26).
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Figure 4.27: Experiment n.2 - Implemented setpoints

Figure 4.28: Experiment n.2 - Realized energy profile
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4.4.4.2 Second Experiment

The day-ahead optimized profile for experiment 2 day is illustrated in Fig-
ure 4.29.

Figure 4.29: Experiment n.2 - Optimized profile in the day-ahead stage

In this case, the experiment was carried out in the afternoon to test a mo-
ment of the day with a higher and more constant load. Indeed, in the first
experiment (Figure 4.25), the load never exceeded 70 kW, while in the sec-
ond experiment (Figure 4.30), the load was almost always above 80 kW.

University of Genova Gabriele Mosaico



208 Chapter 4. Prescriptive Power System Analytics

Figure 4.30: Experiment n.2 - Realized load profile

Figure 4.31: Experiment n.2 - Realized energy profile
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The declared profile was initially higher than the actual one. This is the
reason why the BESS had to raise the total demand by charging, as shown in
Figure 4.32

Figure 4.32: Experiment n.2 - Realized energy profile

This has been possible until 5 PM, when the SoC reached the 90% thresh-
old, and the setpoint were set to 0 kW for not violating the Equations (4.19)
and (4.20) constraints. Nevertheless, since the BESSs are always switched
on, the SoC naturally drops, hence giving the possibility of action in both
charge and discharge directions in this case. As a result, the MAE is better in
this experiment (0.25 kWh).

After 5:30 PM, BESSs made the reverse regulation by discharging and
lowering the demand, ending at 65% of SoC.

In Figure 4.33 the implemented setpoints of both BESS are reported.
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Figure 4.33: Experiment n.2 - Implemented setpoints

They are equal until the 70 kW storage hits the 90% SoC limit, leaving the
other BESS to optimize the microgrid/energy community profile. After a brief
period of no action or little charges (due to natural discharging of BESSs, the
BESSs both contributed to lower the net demand). Note that along all the
experiment neither battery reached the 15kW (or -15 kW) of implemented
setpoint (see Figures 4.27 and 4.33).

4.5 Chapter Conclusions

In this chapter, an overview of prescriptive analytics was given. It was framed
in the context of decision-making process automation as the set of tools that
can achieve the highest Levels of Automation (LOAs).

Then, the various practical mathematical techniques to build prescriptive
analytics solutions were presented. In particular, deterministic and stochastic
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mathematical programming methods were introduced, as well as its intersec-
tions with ML tools, and many alternatives (such as data-driven stochastic
programming methods, multiparametric programming, genetic algorithms,
reinforcement learning, Supervised Learning (SL), simulation, and risk as-
sessment frameworks)

Afterward, the main applications of prescriptive analytics on power sys-
tems were reviewed, such as HVAC optimal control, EV smart charging,
BESS sizing and siting.

Finally, two applications developed during the Ph.D. are presented. The
first [61] is about an algorithm that aims to solve stochastic planning, in-
cluding DER regulation and sizing and siting of storage devices. Priority
in reactive compensation was indeed given to DGs contributions, in accor-
dance with modern network standards, whereas the contributions of BESS
were minimized while solving voltage problems and congestions.

The application showed the potential of network planning also consider-
ing DER operation, an essential step towards smarter distribution networks.
The developed tool can be integrated into the DMS within the PODCAST
project in order to exploit the use of historical data coming from smart me-
tering. Probabilistic planning was based on daily Monte Carlo simulations,
extracting load and RES profiles based on a modeling technique based on a
gaussianity assumption for the quarterly load values.

The presented formulation resulted in being robust and effective, guaran-
teeing the respect of grid constraints at any time and on all the components.
The accuracy of the proposed model has been proven to be far acceptable for
the tasks, with negligible percentage errors on voltage magnitude calculation,
gaining the advantages of linearity in comparison with other techniques.

Future developments of this work can include reconfiguration, a more de-
tailed cost function of BESS devices (adding, for example, installation costs),
and the minimization of network losses, together with the voltage deviations
from nominal values. Furthermore, it will be interesting to perform a second-
iteration optimization on a unique full-time simulation, considering only the
identified substations for BESS installation in order to refine the obtained so-
lution.

Also, looser assumptions about the load profile can be thought (perhaps
exploiting the IGSC algorithm, see Section 2.2), and more tools on how to
select the BESS location can be added, for example, by integrating the risk
for which the BESS is protecting the DSO: this could lead to lower prescribed
BESS capacity, with negligible impact on security constraints.
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Finally, a deterministic two-stage microgrid or energy community opti-
mization algorithm with two BESS was presented, composed of day-ahead
optimization and intra-day realization. The application was developed within
PODCAST project with good results on two experiments of 4 hours each.

Some developments are needed for this application to be applied constantly
on the distribution grid for the whole day. In particular, separating of BESS
contributions to the load from the load itself can enhance the forecasting algo-
rithm performance. Also, investigating stochastic optimization techniques for
the day-ahead stage and incorporating very short-term forecasts in the intra-
day stage can further help the successful application of the same algorithm in
other contexts.
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CHAPTER 5

Conclusions

In this thesis, the world of analytics and power systems were presented in
conjunction to see how the first can help the second meet its epochal chal-
lenges.

In the beginning, a brief history and the current state of power systems and
data analytics are presented, and an outline of the subsequent work is given.
The power system is under pressure to transition from its fossil-fuel-based
generation to one where Renewable Energy Sources (RESs) are the promi-
nent source of energy. This shift is to happen in a relatively short amount
of time for mitigating the adverse effects of climate change, for which the
energy system is one of the main responsible. In this context, data analytics,
which has already revolutionized many aspects of society, science, and tech-
nology, is helping modern power grids to be more proactive and sustainable
by leveraging all the possible forms of flexibility to address the variability
and stochasticity of RESs.

The rest of the thesis breaks down power system analytics into four com-
ponents: Descriptive, Diagnostic, Predictive, and Prescriptive Analytics.
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The most basic forms of analytics are firstly presented: Descriptive (”What
happened to the system?”) and Diagnostic analytics (”Why it happened?”).
Visualization, simulation, and explainability were introduced, together with
some researches that leveraged these tools to give more insights to power
system agents. The Instantaneous Growing Stream Clustering (IGSC) algo-
rithm, developed during the Ph.D., was presented in this context. It consists
of a technique for constructing a Discrete Markov Chain (DMC) from se-
quential (possibly streaming) data, requiring low computing capability and
memory, hence capable of being applied to Internet of Things (IoT) devices.
The states of the DMC are defined as clusters centroids of the data, hence
having the same exact dimension of the data and representing a state in the
feature space. Hence, the algorithm can be both used as a simulation tool
and as a visualization tool. The technique was presented in [52] and further
analyzed in [53].

Then, Predictive analytics (”What will happen to the system?”) was intro-
duced, using the common CRISP-DM framework, analyzing its components,
namely: business understanding, data understanding, data preparation, mod-
eling, evaluation, and deployment. Particular focus was put on forecasting as
a crucial subsegment of Predictive analytics for power systems. Afterward,
a review of Predictive analytics applications in power systems was made,
with a particular focus on load and Photovoltaic (PV) forecasting. Three
applications were presented: PV forecasting and distribution network load
forecasting, drawn from work made within the PODCAST project, and non-
commercial building energy forecasting, drawn from the PREDICT project.
The PV forecasting technique devises an innovative hybrid procedure, inte-
grating neural networks and Clear Sky Models (CSMs) via a decision rule,
was published in [56] and a simplified version in [57]. The building energy
forecasting technique was published in [60] and leveraged deep transfer learn-
ing on thermal images and text mining techniques for occupation estimation
and forecasting.

Lastly, Prescriptive analytics (”What should happen to the system?”) was
presented. Mathematical programming, its main technique, was overviewed
in its deterministic and stochastic forms. Also, other methods, especially
the ones leveraging Machine Learning (ML) were reviewed. Two applica-
tions drawn from the PODCAST project were presented. The first involved
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Volt/Var optimization including new Battery Energy Storage System (BESS)
optimal sizing and siting for a Distribution System Operator (DSO), and was
published in [61]. The second, a two-stage deterministic programming tech-
nique for microgrid/energy community profile optimization, leveraging two
BESSs installed in the distribution grid for the project.

The above work shows that neither tools nor capabilities are missing from
the analytics side to meet the future power system’s uncertain challenges.
Nor is it the case that power system professionals are not aware of the great
possibilities of analytics. All seems set for analytics revolution to in power
systems.

Nevertheless, as noted in Glassman J., Shao B., St Louis R., ”Don’t get the
cart before the horse: There are no shortcuts to Prescriptive analytics” [143],
where several C-level professionals of prominent fields were interviewed on
the topic of Prescriptive analytics, one cannot jump directly into Prescriptive
analytics, without addressing several obstacles in its way.

Data quality is one of them (such as right granularity, integration, and ac-
curacy), but also cultural changes are needed.

For example, shared taxonomies are needed: it is challenging to commu-
nicate when different names refer to different concepts, which, in turn, may
affect data quality.

Support from decision-makers is also crucial. Also, using the correct tools
for the correct problems is very important. Not necessarily more complicated
tools translate better results (which is sometimes the case for Prescriptive
analytics) [143].

While this is true in general, in the case of power systems, at least two
aspects are very auspicious in that regard. First, there is all the support one
can get from society and policy-makers in realizing the energy transition.
Secondly, prescriptive analytics has long been present in this field, as the
power system is one of the most automated systems globally (despite being
one of the most complex). Moreover, Predictive analytics, which is crucial in
unlocking prescriptive analytics potential, is one of the most mature analytics.
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This maturity can also overflow into other related energy-intensive sectors
like the naval, industrial, and building sectors, among others.

In that respect, this thesis has tried to give some structure to many tools and
names that make up analytics, with the help of some concrete applications,
with the hope to be useful for other researchers to also contribute to power
systems with data analytics.
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