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Introduction

The discovery of the integer Quantum Hall Effect in 1980 [107, 195] is nowadays rec-
ognized as a watershed moment in condensed matter physics, as it introduced into the
field topological concepts belonging to mathematics. In Quantum Hall systems, one-
dimensional gapless channels emerge along the edges of a two-dimensional Hall bar
subjected to a strong perpendicular magnetic field. Whereas the bulk of the material is
insulating, these edge states behave as perfect conductors, allowing for ballistic and co-
herent electron transport, just like waveguides used in quantum optics for the coherent
transport of photons. Their unique conduction properties were understood to take roots
in their topological protection against backscattering.

However, it took some time for researchers to really grasp the potential of the in-
terplay between topology and solid state physics. However, eventually, in the years
thereafter there has been a remarkable surge in both the theoretical prediction and the
experimental realization of new topological materials. The relevance of the subject
was conclusively acknowledged by the award of the 2016 Nobel Prize in Physics to
D. J. Thouless, F. D. M. Haldane, and J. M. Kosterlitz for their pioneering theoretical
discoveries in the realms of topological phase transitions and phases of matter [80,102].

One of the most intriguing aspects of topological materials is, as we mentioned, the
existence of edge states. These states arise at the physical boundaries of the system
and exhibit exceptional properties due to the so-called bulk-boundary correspondence,
which relates the non-trivial topology of the bulk to the topologically-protected prop-
erties of the edge states. Importantly, such properties are robust against perturbations,
making these states appealing and exploitable in experiments, and expected to enable a
new generation of electronics, sensors, and optical components for a range of techno-
logical applications.

Over the past fifteen years, an innovative field has emerged: that of two-dimensional
topological insulators, and in particular of the Quantum Spin Hall Effect [20,95]. These
materials are particularly intriguing due to the helical nature of their one-dimensional
edge channels: along them, the electron spin and the direction of propagation are
locked, resulting in two counter-propagating channels having opposite spin polariza-
tion. This property opens the way to spintronics advancements [121, 131, 145], as the
manipulation of electron spins is directly achievable through the control of the helical

1
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Introduction

edge states.
After the first experimental evidencies of the helical edge states in HgTe-CdTe het-

erostructures [103], as theoretically predicted by B. A. Bernevig, T. L. Hughes and
S.-C. Zhang [21], research has predominantly moved in two directions:

- finding the Quantum Spin Hall Effect in new materials, with the main task of
making the effect observable at room temperature;

- creating functional nanostructures that leverage the properties of edge states in
view of applications in spintronics, superconducting spintronics, and topological
quantum computation.

Among other possibilities, two powerful tools are the proximity effect to induce super-
conductivity, which has been largely investigated in the last years [104, 133, 149, 165],
and the realization of constrictions between the edges [49, 110, 113, 152, 176], whose
first – and only – experimental signature was provided in an experiment conducted in
2020 [168].

• The combination of topological insulators and superconductivity has attracted
from the beginning a lot of attention, with the primary task of developing topo-
logical superconductivity to realize protected Majorana bound states [63, 96], but
also in view of superconducting spintronics [25, 112, 175].
On the one hand, a Quantum Spin Hall Insulator in close proximity to supercon-
ductors inherits superconducting correlations [118], thanks to a leakage of Cooper
pairs – couple of correlated electrons that realize the ground state of the supercon-
ductor – extending over the superconducting coherence length ξ, which measures
how far correlations between paired electrons penetrate into the normal region,
and represents effectively the “size” of Cooper pairs.
As a byproduct of proximity effect, there have been also theoretical and experi-
mental studies of topological Josephson junctions, namely hybrid structures where
not only one, but two superconducting leads proximitize a topological insulator on
opposite sides [45,50,63]. At energies lower than the superconducting gap1, trans-
port across the junction is mediated by Cooper pairs traveling from one lead to
the other through the helical edge states, forming a dissipationless current named
Josephson current [93]. Importantly, if the junction’s width is comparable to ξ, the
two electrons of a Cooper pair can not only be injected into a same edge, but also
split and propagate over opposite edges [78, 148]. Topological Josephson junc-
tions are often studied in the presence of magnetic fields, to benefit of magnetic
interference phenomena that provide a deeper insight into the transport properties
of the junction [54].

• On the other hand, constrictions consist in bringing the opposite edges of a topo-
logical insulator closer to each other, such that they can hybridize or interact. Of
special significance are single-electron inter-edge scattering events [49, 110, 113,
152, 176], which broaden the potential applications of Quantum Spin Hall-based
systems. Indeed, they effectively make the two edges similar – in terms of spectral
properties – to a spin-orbit coupled quantum wire, which is regarded as the main

1Let’s assume for simplicity that the two superconductors are characterized by a same gap.
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platform to realize Majorana fermions and parafermions. However, the Quantum
Spin Hall Effect has the advantages over quantum wires that cleaner samples can
be fabricated and that multiterminal experiments are more easily designed. More-
over, most proposals for the realization of topologically confined Majoranas on
Quantum Spin Hall platforms require the coexistence of superconductive and fer-
romagnetic ordering [2, 39, 175], which turns out to be difficult to achieve in the
laboratory, and the constriction potentials are able to make ferromagnetic barriers
unessential. The full versatility of Quantum Spin Hall constrictions is not only re-
stricted to the formation of the renowned non-Abelian anyons, but ranges over sev-
eral related topics, such as odd-frequency superconductivity [22, 38, 60, 171, 174]
or Floquet topology.

In this Thesis, the system under consideration is a long Quantum Spin Hall constric-
tion, employed as the non-superconducting element of a Josephson junction, with a
magnetic field and bias possibly included. This configuration combines the two nanos-
tructures we have previously introduced. Despite the continuous interest in finding new
schemes to access and manipulate the Quantum Spin Hall states, this one was largely
uncharted in the realm of theoretical investigation. Although the implementation of a
proximitized constriction in experimental settings is not attested in literature to date,
both the constriction itself and the proximization of topological insulators have been
achieved. Therefore, the assembly of the entire structure appears as a feasible goal, and
its theoretical analysis holds significant relevance. This represents the starting motiva-
tion of this Thesis.

Through our investigations, two additional facts emerge and make this system wor-
thy of attention:

1. We have mentioned that a reference lengthscale in proximitized systems is the co-
herence length ξ of the induced superconducting pairing, which represents effec-
tively the Cooper pair size and, in turn, the distance over which the two bounded
electrons can split. The presence of the constriction places the system in a regime
where additional effects involving single electrons become relevant: each of the
two electrons can independently undergo inter-edge tunneling, and if the edge
channels have spatial extent comparable to ξ, they can propagate over different
trajectories pertaining to a same edge. From a fundamental point of view, this
system represents therefore a good platform to study the role of single-electron
physics within the superconducting context, which as we will demonstrate origi-
nates clear-cut signatures.

2. It turns out that this experimentally conceivable system is also naturally entitled
to interesting functionalities in the realm Josephson junctions, as it can host the
anomalous Josephson effect, that can be used to design phase batteries and to drive
superconducting circuits and superconducting memories, and the superconducting
diode effect, which inspires great perspectives as well, without the need of external
bias or magnetic fields.

This Thesis is organized as follows:
In Chapter 1, we revise the roadmap that led to the realization of the Quantum Spin

Hall Effect.

3
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Introduction

We start from the integer Quantum Hall Effect (1980) and the lattice model proposed by
F. D. M. Haldane (1988) to reproduce the same physics in the absence of a net magnetic
field, identifying time-reversal symmetry breaking as the essential ingredient. We then
discuss the proposal by C. L. Kane and E. J. Mele (2005), who discovered that one sheet
of graphene, with spin-orbit interaction, realizes a time-reversal invariant extension of
the Haldane model: more specifically, the system is equivalent to two copies of the
Haldane model, and represents the first appearance of the Quantum Spin Hall Effect.
Next we describe A. Bernevig, T. L. Hughes and S.-C. Zhang’s alternative (2006), based
on HgTe-CdTe heterostructures, which was the first experimentally feasible proposal,
and is still nowadays one of the most popular platforms. Some of the first experimental
evidencies of the effect are reviewed, as well as the main ways of nanostructuring the
edge states and their major technological applications.

In Chapter 2, we provide an overview of the Josephson effect.
We start from the description of superconductivity through the Ginzburg-Landau the-
ory, and derive the DC and AC Josephson effect. We subsequently discuss the con-
sequences of a magnetic field applied to the junction on the Josephson effect. Within
this framework, we introduce the so-called interference pattern, a measurable quan-
tity strongly related to the transport properties of the non-superconducting part of the
junction. We first discuss the simpler scenario where Cooper pairs do no split, with
a focus on the case of topological Josephson junctions, including the first experiment
on this subject. We then include the splitting of Cooper pairs over opposite edges of
the topological insulator, showing that this is associated to a specific feature arising in
the interference pattern. We revise a tunneling model [78] for topological Josephson
junctions which captures the coexistence and competition between these two transport
arrangements. This work is the starting point for the results of the Thesis.

Chapter 3 contains our original results published in [187, 188].
We incorporate in the Josephson junction of [78] the presence of a long constriction
between the Quantum Spin Hall edge states. We perturbatively compute the Josephson
current analytically both in the absence and in the presence of a bias, and discuss the
new Cooper pair transport processes allowed by the presence of the constriction. We
show that these processes reflect into a novel and well recognizable feature of the in-
terference pattern – a peculiar periodicity in the magnetic flux piercing the junction –
that is absent in previous models where the two edges are not tunnel-coupled to each
other. The result represents a possible experimental signature of the coupling between
the helical edges, and is discussed in a range of parameters. We interpret the result in
the light of the single-electron physics dominating the constriction. At the end of the
Chapter we further comment on two points. First, the robustness of the results against
edge reconstruction [187], which is a spatial separation of the two counter-propagating
channels. This may arise if the potential confining the edge states is not infinitely sharp,
but smooth, which is an experimentally more realistic assumption. Second, the general-
ization to the case of uniform inter-edge tunneling, namely the constriction corresponds
to the whole system and not only a subregion of it.

Chapter 4 is based on the results published in [191].
We revise the requirements for the so-called anomalous Josephson effect: whereas in
general a Josephson current can flow only if the phases characterizing the superconduc-
tors differ with each other, under appropriate symmetry breakings an “anomalous” cur-

4
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rent can arise even in the absence of any phase difference. We also introduce a closely
related phenomenon, the superconducting diode effect, which shares similarities with
the celebrated semiconducting diode, and mention some of the suitable experimental
platforms. Lastly, we show that among them is also the proximitized Quantum Spin
Hall constriction with reconstructed edge channels introduced in Chapter 3. Notably,
in this system the two effects do not need the presence of a magnetic field.

In Chapter 5, we present our results published in [189].
Here, we inspect the role of the spatial extent of the edge states on the transport proper-
ties and the interference pattern of the junction. This aspect is usually neglected, and the
edge states are often modeled in theoretical works as strongly localized. In some cases
of the literature, where the edge shape is considered, the lengthscales involved are such
that the two electrons can be assumed not to split. However, apart from the splitting into
opposite edges that we mentioned above, if the edge channels themselves have spatial
extent comparable to ξ, the electrons can also split over different trajectories within a
same edge. The number of paths they can follow remarkably increases, leaving an im-
print on the interference pattern. We suggest an intuitive way of describing this setup
for arbitrary edge shapes, and discuss the interference pattern with a particular focus
on the case of prevailing non-local transport, namely highly broadened edge states and
a large occurrence of Cooper pair splittings.

Appendices A and B illustrate technical parts of the calculations and discuss details
in support of the comments presented in the main text.

5
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CHAPTER1
Two-dimensional topological insulators

1.1 Early topology: the Quantum Hall Effect

This Section is devoted to the Quantum Hall Effect, which can be considered as the
precursor of topological condensed matter physics. In Subsec. 1.1.1 we will describe
the effect, which works as follows: a clean two-dimensional electron gas, at very low
temperature, subjected to a strong perpendicular magnetic field, is insulating in the bulk
but hosts chiral metallic channels at the physical boundaries of the sample. Moreover,
such channels are ballistic even in the presence of impurities. In Subsec. 1.1.2 we will
formally derive that the conductance of the system is quantized to the values ne2/h,
with n an integer number (corresponding to the number of chiral edge channels). In
Subsec. 1.1.3 we will discuss a lattice model of spinless electrons in the presence
of a periodic magnetic flux, suggested by F. D. M. Haldane in 1988 to reproduce the
Quantum Hall Effect physics.

1.1.1 From Classical to Quantum Hall Effect

Reminder of the Classical Hall Effect

The first observation of the Classical Hall Effect dates back to 1879, due to E. H. Hall.
He analyzed a thin metallic plaquette subjected to a perpendicular magnetic field, B =
Be3

1. He injected a current along e1 and observed a longitudinal resistance independent
of the magnetic field and a transverse resistance, called Hall resistance, proportional to
B. The system is conveniently described by the Drude model for diffusive transport in
a metal [52, 97].

Let us suppose thatN free electrons are moving on a xy planar system of dimensions
1From now on, ei, i = 1, 2, 3 will denote the unit vectors along the x, y, z axis.

7
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Chapter 1. Two-dimensional topological insulators

Lx and Ly, pierced by a perpendicular magnetic field B and subjected to an in-plane
electric field. The electron density is

ne =
N

LxLy
. (1.1)

Between two successive scattering events – due to impurities in the sample or electron-
electron and electron-phonon interactions – electrons are accelerated by the Lorentz
force

F = −e [E+ vD ×B] , (1.2)

where vD is the drift velocity of the electrons in the metal and −e (e > 0) is the electron
charge. In Eq. (1.2), the first contribution is due to the electric field and the second one
to the magnetic field. The equation of motion for each electron reads as

dp

dt
= −p

τ
+ F = −p

τ
− e [E+ vD ×B] , (1.3)

with p = mevD its momentum. Here,me is the electron mass and τ the relaxation time,
which is the time interval between a scattering event and the next one. The macroscopic
properties we are interested in refer to the stationary regime, namely dp

dt
= 0. In this

case, we have

0 = −eEx − ωcpy −
px
τ
, (1.4a)

0 = −eEy + ωcpx −
py
τ
, (1.4b)

where we have defined the cyclotron frequency ωc = eB
me

. We now introduce the current
density

J = −enevD = −ene
me

p, (1.5)

which combined with Eq. (1.4) returns

σ0Ex = ωcτJy + Jx, (1.6a)
σ0Ey = −ωcτJx + Jy. (1.6b)

Here we have introduced σ0 = neτe2

me
, which is the Drude conductivity in the absence

of magnetic field. Recalling that Ei = ρikJk, i = x, y, from the previous equations we
can easily read the resistivity tensor:

ρ =

(
ρxx ρxy

ρyx ρxx

)
=

(
1
σ0

ωcτ
σ0

−ωcτ
σ0

1
σ0

)
. (1.7)

Notice that, in the absence of magnetic field, the tensor is diagonal and E and J are
directly proportional. Its inverse tensor is the conductivity tensor

σ =

(
ρxx

ρ2xx+ρ
2
xy

− ρxy
ρ2xx+ρ

2
xy

ρxy
ρ2xx+ρ

2
xy

ρxx
ρ2xx+ρ

2
xy

)
. (1.8)

We can now assess the dynamics of the system. In the initial state, there is only the
Jx component of the current density. Due to the magnetic contribution to the Lorentz

8
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1.1. Early topology: the Quantum Hall Effect

Figure 1.1: The Hall bar. The magnetic field B is directed along the z direction, and an in-plane electric
field E pushes electrons to move creating a current density J. Due to the magnetic contribution to
the Lorenz force, denoted by FB electrons accumulate on the upper edge of the bar. Due to the
imbalance of charge between the two edges of the bar, an electric component of the Lorenz force FE

arises. When they compensate, the only surviving component of the current density is along the x
direction.

force, electrons accumulate on the lower edge of the bar (see Fig. 1.1), creating a non-
zero Jy component. This out-of-equilibrium situation is compensated by the occurrence
of an electric field along −e2 and, consequently, an electric force term. The stationary
regime is reached as soon as the two forces compensate. At that stage, there is no
electron flow along e2 and only Jx survives. In that case, we have

Ex =
1

σ0
Jx, Ey = −ωcτ

σ0
Jx. (1.9)

where Ey is the most relevant component of the electric field (the Hall electric field).
For a uniform electric field, the associated voltage drops are

VL = ExLx =
1

σ0
JxLx, VH = EyLy = −ωcτ

σ0
JxLy, (1.10)

and since the current flowing through the sample is I = JxLy, we have

VL =
1

σ0

Lx
Ly
I, VH = −ωcτ

σ0
I. (1.11)

Finally, the longitudinal and Hall resistances are

RL =
|VL|
I

=
1

σ0

Lx
Ly

= ρxx
Lx
Ly
, RH =

|VH |
I

=
ωcτ

σ0
= ρxy. (1.12)

Notably,RL strongly depends on the dimension of the Hall bar, whereasRH is universal
and independent of the geometry of the system. This stems from the two-dimensionality
of the sample. As anticipated RL (ρxx) in independent of the magnetic field, while RH

(ρxy) depends linearly on that.
We mention in passing that, since a same discussion holds for holes provided that

−e → e and ne → nh, measurements of Classical Hall Effect can be employed to ex-
tract information about the charge carriers and their densities in the analyzed material.

9
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Chapter 1. Two-dimensional topological insulators

Figure 1.2: Longitudinal resistivity (ρxx) and Hall resistivity (ρxy) as a function of the magnetic field
for the states of the Integer Quantum Hall Effect. The former drops to zero where the latter shows
extremely precise quantized plateaux. Adapted with permission from [183]. Copyright 2024 by the
American Physical Society.

The Quantum Hall Effect

In 1980, more than a hundred years later than the experiments performed by E. H.
Hall, K. von Klitzing and his collaborators studied the Hall effect in Silicon MOSFET
samples at high magnetic fields (up to 10 T) and very low temperature (∼ 1.5 K)
[195]. In this regime, which is known as Integer Quantum Hall regime, they found
very different results from those of the Classical Hall Effect. Indeed, in such condition,
the Hall resistivity ρxy is no longer linear in the magnetic field, but quantized with the
plateau structure in Fig. 1.2. In correspondence with the plateaux, the longitudinal
resistivity vanishes. Since plateaux appear at

RH = ρxy =
1

ν

h

e2
, (1.13)

with ν an integer, this phenomenology has been called Integer Quantum Hall Effect
[69]. Within a single-particle picture in terms of Landau levels, it has been shown that
each plateau corresponds to the first ν levels being occupied [107]. The quantization
is extremely precise (order of one part in 109). For ν = 1, one obtains the quantum of
resistance

RK =
h

e2
, (1.14)

named Klitzing resistance. The measured value of RK in 1990, RK = 25812.807Ω,
has become the standard of maintenance for the International System Ohm2. For his
astonishing discover, von Klitzing was awarded the Nobel Prize in 1985.

In terms of conductivity, when ρxx = 0 (namely, where a plateau occurs),

σxx = 0, σxy = ν
e2

h
. (1.15)

2The Klitzing resistance is also related to the fine-structure constant α, α = cµ0/2RK = 1/137, with µ0 = 4π · 10−7 H/m
the vacuum permittivity.
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1.1. Early topology: the Quantum Hall Effect

Then, the bulk of the system becomes insulating and transport occurs only along one-
dimensional channels at the boundary of the sample. In particular, in Eq. (1.15), ν cor-
responds to the number of chiral channels on each edge, see Fig. 1.3. Semiclassically,
this can be understood by thinking about the different orbits performed by the electrons.
Due to magnetic field, electrons in the bulk are localized in closed cyclotron orbits with
a fixed center of motion, and therefore cannot travel from one end of the sample to
the other. On the other hand, orbits near the edges are interrupted, such that electrons
bounce forward with the so-called skipping orbits. Moreover, all the electrons on one
edge propagate in the same direction, and electrons close to the other edge propagate in
the opposite direction. This results in the creation of chiral one-dimensional conducting
channels. Owing to chirality, these channels are protected against backscattering. They
exist as long as ρxy lies on a plateau, and are thus insensitive to small variations of the
magnetic field, as well as robust with respect to disorder and impurities.

Figure 1.3: Hall system corresponding to the first and second plateaux, with a couple and two couples
of chiral channels, respectively. Figure from [140].

Our goal will now be to highlight the topological origin of the Quantum Hall Effect.
To this aim, in what follows, we give a formal demonstration of the quantization of the
Hall conductance by relating it to a global topological invariant quantity.

1.1.2 Conductance quantization

In this Subsection, we will prove that the transverse conductance of an insulator is
quantized in units of the conductance quantum e2/h. We will first introduce the con-
cepts of Berry phase and Berry curvature. Then we will demonstrate that the system’s
conductance is given by the integral of the Berry curvature over the Brillouin zone or,
in other words, by the sum of the Chern numbers of all the filled bands. Lastly, we will
show that the Chern number of a fully filled band is an integer.

11
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Chapter 1. Two-dimensional topological insulators

Berry phase and Berry curvature

Let us now introduce a crucial definition for topology in condensed matter physics,
which is the Berry phase [20].

Let us consider a system described by a time-dependent Hamiltonian H(R), with
R = R(t) a set of parameters on which H depends. We are interested in the adiabatic
evolution of the system: this means that the parameters R(t) have a slow variation if
compared to the energy scales at play (such as the energy gap for an insulator). In
particular, we assume that the parameter evolution follows a curve C, which for now
can be either open or closed.

We define the instantaneous orthonormal basis of eigenstates ofH(R(t)), |n(R(t))⟩,
satisfying

H(R(t)) |n(R(t))⟩ = En(R(t)) |n(R(t))⟩ . (1.16)

We notice that, as any wavefunction, each |n(R(t))⟩ is defined by Eq. (1.16) up to a
phase factor, which may depend on R. As R evolves with time, the Hamiltonian is
diagonalized by a new instantaneous basis and, in principle, the phase of each |n(R)⟩
can change independently from the others. Keeping this warning in mind, let’s then try
to understand how a state evolves as R moves along C.

Let us assume that the system has been prepared in an instantaneous eigenstate
|n(R(t0))⟩ (we set t0 = 0 for simplicity), and let |n(R(t))⟩ be nondegenerate for ev-
ery R(t) ∈ C. We want to identify the evoluted state of the system, which we denote
as |ψ(t)⟩, at the generic time t. The adiabatic theorem comes to our aid [120]: in-
deed, if the variation of R is adiabatic and the Hamiltonian changes continuously from
H(R(0)) to H(R(t)), then |ψ(t)⟩ corresponds at every time to an instantaneous eigen-
state of H(R(t)). In particular, to an eigenstate continuously connected to |n(R(0))⟩.
This means

|ψ(t)⟩ = e−iθ(t) |n(R(t))⟩ . (1.17)

In order to specify the phase θ(t), we plug |ψ(t)⟩ in the time-dependent Schrödinger
equation

H(R(t)) |ψ(t)⟩ = iℏ
d

dt
|ψ(t)⟩

⇒En(R(t)) |ψ(t)⟩ = ℏθ̇(t) |ψ(t)⟩+ iℏ
d

dt
|ψ(t)⟩ , (1.18)

and project the equation onto |n(R(t))⟩, obtaining

En(R(t)) = ℏθ̇(t) + iℏ ⟨n(R(t))| d
dt

|n(R(t))⟩ . (1.19)

Solving for θ(t) and recalling that θ(0) = 0, we get

θ(t) =
1

ℏ

∫ t

0

En(R(t′))dt′ − i

∫ t

0

⟨n(R(t′))| d
dt′

|n(R(t′))⟩ dt′. (1.20)

The evoluted state is hence given by

|ψ(t)⟩ = e−
i
ℏ
∫ t
0 En(R(t′))dt′eiγn |n(R(t))⟩ , (1.21)

where, apart from the dynamic phase factor, a second phase is present: we define it as
the Berry phase γn.

12
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1.1. Early topology: the Quantum Hall Effect

Definition 1.1.1. Berry phase: γn = i
∫ t
0
⟨n(R(t′))| d

dt′
|n(R(t′))⟩ dt′.

We can rewrite the Berry phase as follows

γn = i

∫ t

0

⟨n(R(t′))| ∇R |n(R(t′))⟩·dR(t′)

dt′
dt′ = i

∫
C
⟨n(R)| ∇R |n(R)⟩·dR, (1.22)

making clear that it only depends on the path C in the parameter space. The Berry phase
has thus a purely geometric nature. By analogy with the magnetic vector potential, we
can define the Berry vector potential (or Berry connection) An(R), such that γn =∫
C dR ·An(R).

Definition 1.1.2. Berry connection: An(R) = i ⟨n(R)| ∇R |n(R)⟩.

This leads us to two comments:

1. γn is real by construction, hence is it proper to call it a phase. Indeed, it is straight-
forward to show that the quantity ⟨n(R)| ∇R |n(R)⟩ = −⟨n(R)| ∇R |n(R)⟩∗ is
purely imaginary. The Berry connection is thus real and so is the Berry phase.

2. The Berry connection is gauge-dependent. A gauge transformation of the instan-
taneous eigenstates corresponds to |n(R)⟩ → eiξ(R) |n(R)⟩, with ξ(R) smooth
and single-valued. As a consequence, An(R) → An(R) − ∇Rξ(R) and, lastly,
γn → γn −

∫
C dR · ∇Rξ(R) = γn − (ξ(Rf )− ξ(Ri)).

However, if C is a closed curve and if we require the instantaneous eigenstates to be
single-valued, it is easy to show that ξ(Rf ) = ξ(Ri) + 2mπ, m ∈ Z, and the Berry
phase is no longer gauge-dependent (and defined less than multiples of 2π). Keeping C
as a closed path, and leveraging Stokes’ theorem, we can rewrite

γn = −Im
∫
C
⟨n(R)| ∇R |n(R)⟩ · dR = −Im

∫
∂S=C

∇× ⟨n(R)| ∇R |n(R)⟩ dS

= −Im
∫
ϵijk∂j ⟨n(R)| ∂k |n(R)⟩ dSi = −Im

∫
ϵijk ⟨∂jn(R)|∂kn(R)⟩ dSi

= −1

2
Im
∫
ϵijk (⟨∂jn(R)|∂kn(R)⟩ − ⟨∂kn(R)|∂jn(R)⟩) dSi. (1.23)

From the last expression, we can infer the definition of the Berry curvature.

Definition 1.1.3. Berry curvature: Ωjk = i (⟨∂jn(R)|∂kn(R)⟩ − ⟨∂kn(R)|∂jn(R)⟩).

In conclusion

γn = −1

2
Im
∫
ϵijkΩjkdSi. (1.24)

We notice that the Berry curvature is evidently gauge-invariant. It will play a crucial
role in the computation of the quantized conductance. In that case, the parameter space
will be nothing but the Brillouin zone.

13
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Chapter 1. Two-dimensional topological insulators

Computation of the Hall conductance

Now that we have introduced all the needed quantities, we can move on towards the
demonstration of the quantized conductance [147]. This derivation is closely related
to the Thouless adiabatic pump (1983). The interested reader can find more details in
Ref. [177].

Suppose we have an insulating system in a magnetic field B arising from a vector
potential A. Under the hypothesis of independent electrons, the single-particle Hamil-
tonian reads as

H =
1

2m
(p+ eA)2 + V (r), (1.25)

where V (r) is the periodic lattice potential. Due to the vector potential, the system is
not translationally invariant anymore. However, it can be shown that it is possible to
build a new kind of translation operators, called magnetic translation operators, and a
new (reduced) Brillouin zone [106]. We do not delve into the details, and just tell that
this allows to invoke an analogous of Bloch theorem and define a set of magnetic Bloch
eigenfunctions with the same structure as the original ones:

ψk(r) = eik·ruk(r). (1.26)

In order to compute the conductivity, we have to introduce an electric field. Let’s
then assume to apply a small and uniform electric field E. As we don’t want to spoil
the magnetic Bloch eigenfunctions just introduced, we can refer it to a time-dependent
vector potential

E = −∂tAE(t) ⇒ AE(t) = −Et. (1.27)

For a continuous system, at the Hamiltonian level, the introduction of AE(t) corre-
sponds to the substitution

p+ eA → p+ e (A+AE(t)) = p+ eA+R(t), (1.28)

where R(t) ≡ ℏk(t) = −etE. It can be shown that, given the (magnetic) Bloch
solution in Eq. (1.26) for k = 0, ψk(r) = eik·ruk+k(t)(r) is a solution for any k . To
recap,in order to maintain the translational invariance, it has been necessary to introduce
a time-dependence in the Hamiltonian, H → H(R(t)).

If |E| is small, then Ṙ, which represents the electric force experienced by each
electron, is also small. Recalling that the ground state is separated from the excited
states by a gap (as we are considering an insulating system), the linear response to
the electric field can be regarded as an adiabatic perturbation to the Hamiltonian. We
don’t draw here the derivation of the first correction to the adiabatic theorem, and just
state the result [147, 177]. Let’s suppose that, at the initial time, the system is in the
instantaneous ground state |ϕ0(t = 0)⟩. The adiabatically evoluted state at time t is
given by

|Ψ(t)⟩ = eiγ0(t)e−
i
ℏ
∫ t
0 dt

′E0(t′)

[
|ϕ0(t)⟩+ iℏ

∑
n̸=0

|ϕn(t)⟩
⟨ϕn(t)|∂tϕ0(t)⟩
En(t)− E0(t)

]
, (1.29)

with |ϕn(t)⟩ the instantaneous eigenstates of H(t), En(t) their eigenenergies and

γn = i

∫ t

0

⟨ϕ0(R(t′))| ∇R |ϕ0(R(t′))⟩ · dR(t′)

dt′
dt′ (1.30)
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1.1. Early topology: the Quantum Hall Effect

the Berry phase written in the form of Eq. (1.22).
The first quantity we need is the current operator associated to the problem. By

using the Kohn approach, it can be proven that it reads as

J =
1

ℏ
∂H

∂k
= ∇RH(R). (1.31)

We now compute the average current on the state |Ψ(t)⟩, at the first-order correction to
the adiabatic theorem:

⟨Ψ(t)|J|Ψ(t)⟩ = ⟨ϕ0(t)|∇RH(R(t))|ϕ0(t)⟩

+ iℏ
∑
n̸=0

[⟨ϕ0(t)|∇RH(R(t))|ϕn(t)⟩ ⟨ϕn(t)|∂tϕ0(t)⟩
En(t)− E0(t)

− c.c.

]
. (1.32)

Some manipulations allow us to rewrite both addends conveniently:

1. The first term can be rewritten by using the Feynman-Hellmann theorem as
⟨ϕ0(t)|∇RH(R(t))|ϕ0(t)⟩ = ∇R ⟨ϕ0(t)|H(R(t))|ϕ0(t)⟩ = ∇RE0(R(t)).

2. In the second term, ⟨ϕ0(t)|∇RH(R(t))|ϕn(t)⟩
En(t)−E0(t)

= −⟨∇Rϕ0(t)|ϕn(t)⟩.
Substituting into Eq. (1.32), we get

⟨Ψ(t)|J|Ψ(t)⟩ = ∇RE0(R(t))− iℏ
∑
n̸=0

(⟨∇Rϕ0(t)|ϕn(t)⟩ ⟨ϕn(t)|∂tϕ0(t)⟩ − c.c.) .

(1.33)
We notice that, for an insulating system, the first term is zero. Indeed, since all bands are
either completely filled or completely empty, and R(t) simply boosts all the momenta,
we have that the ground state energy is independent of that. Concerning the second
term, we can safely include n = 0 into the sum, as

⟨∇Rϕ0(t)|ϕ0(t)⟩ ⟨ϕ0(t)|∂tϕ0(t)⟩ − c.c. = 0.

We obtain

⟨Ψ(t)|J|Ψ(t)⟩ = −iℏ
∑
n

(⟨∇Rϕ0(t)|ϕn(t)⟩ ⟨ϕn(t)|∂tϕ0(t)⟩ − c.c.) , (1.34)

and lastly, rewriting |∂tϕ0⟩ = dR
dt

· |∇Rϕ0⟩ = −eE · |∇Rϕ0⟩, we have

⟨Ψ(t)|Jα|Ψ(t)⟩ = ieℏ
∑
β

[⟨∂αϕ0|∂βϕ0⟩ − ⟨∂βϕ0|∂αϕ0⟩]Eβ. (1.35)

Denoting by V the sample volume, the average current density is finally

Jeα =
−e
V

⟨Ψ(t)|Jα|Ψ(t)⟩ = σαβEβ, (1.36)

from which

σαβ =
−ie2ℏ
V

[⟨∂αϕ0|∂βϕ0⟩ − ⟨∂βϕ0|∂αϕ0⟩]|R=0 . (1.37)

As expected, σαα = 0: as we are dealing with an insulating system, there is no longitu-
dinal current flow.
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Chapter 1. Two-dimensional topological insulators

To conclude, we need to rewrite σαβ in terms of the magnetic Bloch eigenfunctions.
Since we are assuming the electrons to be independent from each other, the ground
state at the initial time t = 0, in second quantization, is

|ϕ0(0)⟩ =
∏
n

∏
k

c†n,k |0⟩ , (1.38)

where c†n,k is the fermionic operator creating an electron with wavevector k in the nth

band, and |0⟩ is the vacuum of the Fock space. Moreover, ψn,k(r) = ⟨r|c†n,k|0⟩. The
instantaneous ground state at time t is

|ϕ0(t)⟩ =
∏
n

∏
k

c†n,k(t) |0⟩ , (1.39)

where, as we formerly discussed, |ϕ0(t)⟩ = eik·run,k+k(t) = ⟨r|c†n,k(t)|0⟩. The instan-
taneous ground state has energy

E0(t) =
∑
n

∑
k

ϵn,k+k(t). (1.40)

As stated below Eq. (1.33), in the thermodynamic limit it doesn’t depend on k . Plug-
ging Eq. (1.39) into the expression for the conductivity, we find

σαβ =
−e2ℏ
V

∑
n

∑
k

i
[
⟨∂Rαψn,k|∂Rβ

ψn,k⟩ − ⟨∂Rβ
ψn,k|∂Rαψn,k⟩

]∣∣
R=0

. (1.41)

The derivatives are given by

∂Rαψn,k = ∂Rαe
ik·run,k+R/ℏ =

1

ℏ
eik·r∂kαun,k+R/ℏ. (1.42)

The term in parenthesis, evaluated at k = 0 (R = 0), becomes

1

ℏ2
[
⟨∂kαun,k|∂kβun,k⟩ − ⟨∂kβun,k|∂kαun,k⟩

]
. (1.43)

At this stage, the conductivity reads as

σαβ =
−e2
ℏ

1

V

∑
n

∑
k

i
[
⟨∂kαun,k|∂kβun,k⟩ − ⟨∂kβun,k|∂kαun,k⟩

]
. (1.44)

In the thermodynamic limit, the sum is replaced by an integral over the first Brillouin
zone. For a two-dimensional k-space (on which we will focus in the following),

σαβ =
−e2
ℏ

1

(2π)2

∑
n

∫
dk2i

[
⟨∂kαun,k|∂kβun,k⟩ − ⟨∂kβun,k|∂kαun,k⟩

]
=
−e2
h

∑
n

cn, (1.45)

with cn the Chern number associated to the nth band.

Definition 1.1.4. Chern number: cn = 1
2π

∫
dk2i

[
⟨∂kαun,k|∂kβun,k⟩ − ⟨∂kβun,k|∂kαun,k⟩

]
.
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1.1. Early topology: the Quantum Hall Effect

Quantization of the Chern number

The last part of this discussion aims at proving that the Chern number can only take
integer values. This will finally imply the quantization of the conductance.

The Chern number is given by the integration of the Berry curvature, which is gauge-
independent, over the Brillouin zone. The latter, due to periodic boundary conditions,
is a thorus. We will denote it as T 2

BZ . We have previously derived the Berry curvature
as the rotor of the Berry connection. If it were possible to have A smoothly defined
over all the Brillouin zone, by switching to its line integral over the Brillouin zone
contour, we would obtain a zero Chern number. The point is that, for topologically
non-trivial systems, a gauge such that the Berry connection is well defined over the
entire Brillouin zone doesn’t exist. A non-zero Chern number is precisely a sign of
hurdle in the application of Stokes’ theorem.

We have seen that the Berry connection is modified by a gauge-transformation as

An(k) → An(k)−∇kξ(k), (1.46)

where n labels the instantaneous eigenstates basis |un,k⟩. Let us suppose that we
couldn’t find a gauge such that |un,k⟩ is smooth and well defined over all the Bril-
louin zone. On the contrary, let us assume that |un,k⟩ has a singularity at k = k̃. We
consider a small regionRϵ

k̃
sorrounding such point,Rϵ

k̃
= {k ∈ T 2

BZ : |k−k̃| < ϵ}, and
choose a second gauge such that the wavefunction is there well defined. In particular

k ∈ Rϵ
k̃
: |un,k⟩′ = eiξ(k) |un,k⟩ . (1.47)

On the boundary of Rϵ, ∂Rϵ, both gauges are well defined, and the corresponding
Berry connections An(k) and A′

n(k) differ by the quantity ∇kξ(k). While computing
the Chern number, we have to split the integration:

cn =
1

2π

(∫
T 2
BZ−Rϵ

k̃

∇×An(k)d
2k+

∫
Rϵ

k̃

∇×A′
n(k)d

2k

)

=
1

2π

∮
∂Rϵ

k̃

(A′
n(k)−An(k)) · dk = − 1

2π

∮
∂Rϵ

k̃

∇kξ(k) · dk

=
1

2π
(ξ(0)− ξ(2π)) , (1.48)

where in the last step we have parametrized ∂Rϵ
k̃

with k(θ) = k̃+ ϵ(cos(θ), sin θ). For
any gauge choice, the wavefunction has to be single-valued, whence

|un,k(θ=2π)⟩′ = |un,k(θ=0)⟩′ , |un,k(θ=2π)⟩ = |un,k(θ=0)⟩ . (1.49)

This allows to conclude

ξ(k(0))− ξ(k(2π)) = 2mπ, m ∈ Z, (1.50)

and that the Chern number in Eq. (1.48) is quantized to integer numbers.
To summarize, throughout this Subsection we have demonstrated that the Hall con-

ductance is quantized to integer multiples of e2/h, which is the conductance quantum.
Being quantized, it is not spoiled by small perturbations of the system. As long as our
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Chapter 1. Two-dimensional topological insulators

assumptions hold, the Chern number cannot change. On the other hand, if our hypothe-
ses are violated and the sysyem is drastically perturbed (for instance, the gap closes and
reopens), the Chern number is not robust anymore. In the next Subsection, in the con-
text of the Haldane model, we will see that a non-zero Chern number, for a finite-size
system, is associated to metallic edge states having energies within the energy gap.

1.1.3 Haldane lattice model

So far, we have introduced the Quantum Hall Effect and its stunning properties. The
dissipationless current flow and the robustness of the boundary states with respect to
disorder and perturbations are highly promising in view of technological applications.
However, such appeal is somehow weakened by the need for strong magnetic fields.
The quest for more convenient experimental platforms started soon.

In this Subsection, we will show that it is possible to reproduce the physics of the
Quantum Hall Effect even in the absence of a net magnetic field. At least for spinless
systems, in order to have a non-zero Chern number (and hence protected boundary
states), it is sufficient to break time-reversal symmetry. Such symmetry breaking, in
the original setup, was guaranteed by the magnetic field.

To this regard, in 1988, F. D. M. Haldane proposed a two-dimensional, honey-
comb lattice model with nearest- and next-to nearest-neighbor hopping amplitudes [80].
Moreover, a magnetic field with the lattice periodicity and symmetry (and thus with no
net magnetic flux through the unitary cell) was included. Such model represents a pre-
cursor of the so-called Quantum Anomalous Hall Effect, and attracted renewed interest
starting from 2004, when it was realized that graphene could accommodate its experi-
mental realization. In what follows, we analyze the Haldane model. Some of graphene
properties will be discussed in the next Section.

Time-reversal symmetry for spinless systems

First of all, we prove that a system of spinless particles requires time-reversal symmetry
breaking to have a non-zero Chern number. For a spinless particle, it can be derived
that the time-reversal operator T simply acts on the states as the complex conjugation
operator K. More generally, in presence of other degrees of freedom such as spin,
T = UK with U a unitary operator. Hence T 2 = ±1 (for spinless systems, T 2 = 1).
Let us consider a spinless lattice system, and let ci be the fermionic operator which
destroys a particle on the i-th site. Since we have discrete translational invariance, by
imposing periodic boundary conditions we can define the Fourier-transformed operator

ci =
1√
N

∑
k

eik·Rick, (1.51)

with N the number of cells and the sum running over the first Brillouin zone. It is
straightforward to check

T ciT −1 = ci, (1.52)

namely the creation and annihilation operators on each site are invariant under time-
reversal. Moreover, for the Fourier-transformed operators

T ckT −1 = c−k. (1.53)
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1.1. Early topology: the Quantum Hall Effect

Let H =
∑

k c
†
kh(k)ck be a time-reversal invariant Hamiltonian, such that

[H, T ] = 0 ⇒ T HT −1 = H. (1.54)

Making use of Eq. (1.53), it is easy to show that

T h(k)T −1 = h(−k). (1.55)

Then, if ψ(k) is an eigenstate of h(k) with energy ϵ(k), we find

h(k)ψ(k) = h(k)T −1T ψ(k) = ϵ(k)ψ(k) ⇒ h(−k)T ψ(k) = ϵ(k)T ψ(k), (1.56)

which means that T ψ(k) = ψ∗(k) is an eigenstate of h(−k) with energy ϵ(k) as well.
Let us now compute the Berry curvature for a spinless, time-reversal invariant sys-

tem. For simplicity, we consider a single filled band with Bloch states |u(k)⟩:

Ωij(−k) = i (⟨∂iu(−k)|∂ju(−k)⟩ − ⟨∂ju(−k)|∂iu(−k)⟩) , (1.57)

and by expanding on a basis |un(k)⟩, we get

Ωij(−k) =i
∑
n

(⟨∂iun(−k)|∂jun(−k)⟩ − ⟨∂jun(−k)|∂iun(−k)⟩)

=− i
∑
n

(⟨∂iun(k)|∂jun(k)⟩ − ⟨∂jun(k)|∂iun(k)⟩)

=− Ωij(k). (1.58)

The integration of the Berry curvature over the Brillouin zone returns 0. In order to see
effects related to the Berry phase, time-reversal symmetry breaking is hence necessary.
Given this premise, we are now ready to introduce and discuss the Haldane model.

Nearest neighbor hopping

Let us consider a two-dimensional system with honeycomb lattice of lattice constant a.
It is described by a rhombic Bravais lattice and a basis with two atoms per cell. We can
identify two sublattices A and B, marked in Fig. 1.4 by empty and filled dots. Two
primitive vectors can be chosen among

v1 =
√
3ae1, v2 =

√
3

2
ae1 +

3

2
ae2, v3 = −

√
3

2
ae1 +

3

2
ae2. (1.59)

We will use v2 and v3. Notice that nearest neighbors, separated by the distance a,
belong to different sublattices, and that v2 − v3 = v1. We also introduce the vectors
which link a site of sublattice A to its nearest neighbors belonging to sublattice B:

d1 =

√
3

2
ae1 +

1

2
ae2, d2 = −

√
3

2
ae1 +

1

2
ae2, d3 = −ae2. (1.60)

The first term we include in the Hamiltonian is a hopping term between nearest neigh-
bor sites:

Hnn = −t
∑
i

(
a†ibi+d1 + a†ibi+d2 + a†ibi+d3

)
+ h.c. (1.61)
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Chapter 1. Two-dimensional topological insulators

A

B2 B1

B3

v1

v2v3

d3

d1d2

a

Figure 1.4: Honeycomb lattice of the Haldane model. The two sublattices, denoted by A and B, are
identified with empty and filled dots, respectively. The vectors vi, i = 1, 2, 3 are also shown. Any
couple of them identifies the primitive cell, whose origin is set on a site of sublatticeA. di, i = 1, 2, 3
are the vectors linking a A site to its three nearest neighbor B sites.

Here, i labels the cell identified by the vector Ri = mv2 + nv3, m, n ∈ Z. For our
choice of coordinates, Ri points to a site of sublattice A. We denote by a†i (b

†
idj
, j ∈

{1, 2, 3} ) the creation operator of a spinless fermion at position Ri (Ri+dj) of sublat-
tice A(B). We choose to characterize the position of sublattice B sites as, for instance,
Ri

B = Ri + d3.
We are ultimately interested in solving the problem, namely in diagonalizing the

Hamiltonian. To do so, we have to move to k-space. As done before, we impose pe-
riodic boundary conditions and Fourier-transform the fermionic operators. We choose
the following convention

a(k) =
∑
j

eik·Rjaj, b(k) =
∑
j

eik·Rjbj

aj =

∫
k∈BZ

e−ik·Rja(k), bj =

∫
k∈BZ

e−ik·Rjb(k), (1.62)

where the integral has to be intended as a two-dimensional integration over the Brillouin
zone. Moreover, we notice that for the b operators we center the Fourier-transform on
the origin of the primitive cell Rj and not on the site as in the original paper. For our
purposes, this is a legitimate choice. To summarize, the three nearest neighbor B sites
of the Aj site belong to three different cells, with origins in Rj, Rj + v2, Rj + v3.

By substitution of Eq. (1.62) into Eq. (1.61), we get

Hnn = −t
∫ ∫ ∑

j

[
eik·Rje−ik

′·Rj + eik·Rje−ik
′·(Rj+v2)

+ eik·Rje−ik
′·(Rj+v3)

]
a†(k)b(k′) + h.c. (1.63)
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1.1. Early topology: the Quantum Hall Effect

Figure 1.5: Dispersion relation in Eq. (1.67) over the first Brillouin zone. The gap closes at the Dirac
points, and has a linear dispersion around them.

Recalling that
∑

j e
i(k−k′)·Rj = δk,k′ , we can simplify the previous equation as

Hnn = −t
∫
k∈BZ

[
1 + e−ik·v2 + e−ik·v3

]
a†(k)b(k) + h.c. =

∫
k∈BZ

Hk
nn, (1.64)

with
Hk
nn = −t

[
f(k)a†(k)b(k) + f ∗(k)b†(k)a(k)

]
, (1.65)

being f(k) = 1 + e−ik·v2 + e−ik·v3 . Choosing the basis (ak, bk)T , we can rewrite

Hk
nn = −t(a†k, b†k)

(
0 f(k)

f ∗(k) 0

)(
ak

bk

)
. (1.66)

We started from an N × N matrix and end up with a 2 × 2 matrix to be diagonalized.
The diagonalization returns

ϵ(k) = ±t|f(k)| = ±t

√√√√3 + 2
3∑
i=1

cos (k · vi). (1.67)

This dispersion relation for the first Brillouin zone is depicted in Fig. 1.5. It is clearly
visible that around the zero-energy points it has a linear behavior, originating the fa-
mous Dirac cones. Such zero-energy points are given by

|f(k)| = 0 ⇔
{

Re{f(k)} = 0 = 1 + cos (k · v2) + cos (k · v3)

Im{f(k)} = 0 = − sin (k · v2) + sin (k · v3)
(1.68)

We observe that the reciprocal lattice basis vectors, which we denote by ṽ2 and ṽ3, and
satisfy ṽi · vj = 2πδij, i, j ∈ {1, 2, 3}, help us to construct the solutions. It can indeed
be verified they are3

3More precisely, this is just one of three possible choices, shown in Fig. 1.6 Indeed, k±1 are located at two of the six vertices
of the Brillouin zone. Each of them is equivalent to two of the others, since they differ by an integer multiples of the primitive
reciprocal lattice vectors.
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kx

ky

K ≡ k+
D

K ′K

K ′ ≡ k−
D

K K ′

ṽ2ṽ3

Figure 1.6: First Brillouin zone, with the reciprocal lattice basis vectors. The chosen Dirac points kξ
D

are also shown.

kξ = ξ
ṽ2 − ṽ3

3
, ξ = ±1. (1.69)

Moreover,
∑3

i=1 cos (k
ξ · vi) = −3/2, which in fact cancels the squareroot in Eq.

(1.67). The special points just found are named Dirac points, and often denoted by kξD.
The index ξ is called valley isospin.

Next-nearest neighbor hopping

The second term to be included in the Hamiltonian is the next-nearest neighbor hop-
ping, which we will denote as Hnnn. This term is made of a real term of next-nearest
neighbor hopping and a local magnetic field B(r) directed perpendicularly to the two-
dimensional lattice. As we anticipated, B(r) has the lattice periodicity and symmetry,
and thus a zero net magnetic flux through the unitary cell. The latter property allows to
choose a periodic vector potential A(r). It can be shown [20] that the presence of A(r)
modifies the hopping amplitude as t → tei(e/ℏ)

∫
A·dr ≡ teiϕ. Such replacement is the

so-called Peierls substitution. The integration has to be performed along the hopping
path. Any closed path made of nearest neighbor hoppings encloses the unitary cell,
hence Hnn is unchanged by the Peierls substitution. On the other hand, the hopping
amplitude t′ of Hnnn acquires a complex phase. Let us analyze its consequences.

We have

Hnnn =− t′eiϕ
∑
i

(
a†iai+v1 + a†i+v1

ai+v2 + a†i+v2
ai

)
− t′e−iϕ

∑
i

(
b†ibi+v1 + b†i+v1

bi+v2 + b†i+v2
bi

)
+ h.c. (1.70)

The next-nearest neighbor hopping occurs within sites of a same sublattice, A or B.
Each line of Eq. (1.70) describes the hopping of an electron across sites of one sublat-
tice, with an associated phase e±iϕ having opposite sign for the two sublattices. This
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1.1. Early topology: the Quantum Hall Effect

complex phase and its sign are crucial, since they chiralize the problem provoking time-
reversal symmetry breaking.

In order to diagonalize H = Hnn + Hnnn, we have to rewrite Hnnn in k-space.
Differently from Hnn, we skip the full calculation. We find

Hk
nnn = −2t′(a†k, b

†
k)

(
cosϕC(k) + sinϕS(k) 0

0 cosϕC(k)− sinϕS(k)

)(
ak

bk

)
(1.71)

where

C(k) = cos (k · v1) + cos (k · v2) + cos (k · v3), (1.72)
S(k) = sin (k · v1)− sin (k · v2) + sin (k · v3). (1.73)

The full Hamiltionian H = Hnn +Hnnn can be recast as

H = (a†k, b
†
k)[H0σ0 +H(k) · σ]

(
ak, bk

)T
, (1.74)

with

H0(k) = −2t′ cosϕC(k), (1.75a)
Hx(k) = −t[1 + cos (k · v2) + cos (k · v3)], (1.75b)
Hy(k) = −t[sin (k · v2) + sin (k · v3)], (1.75c)
Hz(k) = −2t′ sinϕS(k). (1.75d)

Here σ0 is the 2 × 2 identity matrix and σi are the Pauli matrices. Being proportional
to the identity, the first term in Eq. (1.74) can be neglected for the calculation of eigen-
values and eigenvectors4.

Being written in terms of the Pauli matrices, the Hamiltonian in Eq. (1.74) is the
one of a two-level system. The diagonalization for a generic such Hamiltonian goes as
follows. We have

H(k) · σ =

(
Hz Hx − iHy

Hx + iHy −Hz

)
, (1.76)

with the associated eigenvalue equation

(ϵ−Hz)(ϵ+Hz)− (Hx − iHy)(Hx + iHy) = 0 ⇒ ϵ = ±
√
H2
x +H2

y +H2
z . (1.77)

Restoring the contribution we previously neglected:

ϵ(k) = H0(k)±
√
H2
x(k) +H2

y (k) +H2
z (k). (1.78)

Given the expressions in Eq. (1.75), we have hence access to the energy spectrum. In
the last equation, the sum H2

x(k)+H
2
y (k) represents the contribution ofHnn, explicitly

H2
x(k) +H2

y (k) = t2|f(k)|2 = t2

[
3 + 2

3∑
i=1

cos (k · vi)
]
, (1.79)

4To do so, we have to assume that such term does not introduce any degeneracies. This holds as true for |t′/t| < 3.
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Chapter 1. Two-dimensional topological insulators

where we used Eq. (1.67). The gap-closing points are given by

H2
x(k) +H2

y (k) +H2
z (k) = 0. (1.80)

This requires, for sure,H2
x(k)+H

2
y (k) = 0, which is satisfied by kξD, ξ = ±1 as shown

before (f(kξD) = 0). Maintaining our former choice kξD = ξ(ṽ2 − ṽ3)/3, we have

C(kξD) = cos (ξ
4π

3
) + cos (ξ

2π

3
) + cos (−ξ 2π

3
) = −3

2
, (1.81)

S(kξD) = sin (ξ
4π

3
)− sin (ξ

2π

3
) + sin (−ξ 2π

3
) = −3ξ

√
3

2
. (1.82)

Finally,
ϵλ(kξD) = 3t′ cosϕ+ λ3

√
3t′ sinϕ, (1.83)

where λ = ±1 labels the two bands, and ϕ ∈ [0, π]. The two bands are separated
by a gap ϵ+1(kξD) − ϵ−1(kξD) = 6

√
3t′ sinϕ. A gap-closing is only allowed by ϕ =

{0, π}, namely if the next-nearest neighbor hopping amplitude is purely real. Any other
value of ϕ is responsible for a gap-opening, maximized by a purely imaginary hopping
amplitude (ϕ = π/2). By looking at Eq. (1.75), we can hence conclude that the term
responsible for the transition from a semimetal to an insulating dispersion relation is
Hz ∝ σz.

At zero temperature, only the lower band is filled. Concerning the Bloch eigenstates
of the generic two-level system of Eq. (1.74) it can be verified that for the lower band
they read as

u =

(
Hz − |H|
Hx + iHy

)
, (1.84)

with eigenvalues −|H|. Moreover, their modulus squared is

|u|2 = 2|H|(|H| −Hz), (1.85)

which equals zero for |H| = Hz. For the Haldane model, this corresponds to

H2
x(k) +H2

y (k) +H2
z (k) = H2

z (k), Hz > 0

⇒
{

H2
x(k) +H2

y (k) = 0

Hz > 0 ⇒ −2t′ sinϕS(k) = ξ3
√
3t′ sinϕ > 0

⇔ k = k+1
D . (1.86)

To summarize, within the first Brillouin zone, the Bloch eigenstate u(k) of the lower
band of the Haldane model has zero norm at the Dirac point k+1

D .
As formerly discussed when presenting the Berry phase, we can always multiply u

by a phase factor:
u′ = e−iφu. (1.87)

By choosing

e−iφ =
Hz + |H|
Hx + iHy

∣∣∣∣Hz + |H|
Hx + iHy

∣∣∣∣−1

, (1.88)

24



i
i

“output” — 2024/2/14 — 20:42 — page 25 — #35 i
i

i
i

i
i

1.1. Early topology: the Quantum Hall Effect

we obtain
|u′|2 = 2|H|(Hz + |H|). (1.89)

It can be easily checked that in this case the norm equals zero at k−1
D . This suggests

that there might be not a well defined gauge over all the Brillouin zone. If this were
true, from the Chern number quantization discussion, we know that the Chern number
would be different from 0.

Competing masses in the Haldane model

Now that we have understood that the Hamiltonian term responsible for the gap opening
is the one proportional to σz, it is clear that any other added term ∝ σz would play the
same game. Let’s add an (on site) chemical potential term to the Hamiltonian,

Hµ = µ
∑
i

(
a†iai − b†ibi

)
, (1.90)

which distinguishes the two sublattices and hence breaks inversion symmetry. In k-
space,

Hk
µ = (a†k, b

†
k)

(
µ 0

0 −µ

)(
ak

bk

)
= (a†k, b

†
k)µσz

(
ak, bk

)T
, (1.91)

proportional to σz as could be expected by the fact that it doesn’t couple the two sub-
lattices. In the complete Hamiltonian, this term will compete with Hk

nnn in opening the
gap. Eq. (1.74) is unchanged except its z component, reading now as

Hz(k) = −2t′ sinϕS(k) + µ. (1.92)

The energy spectrum is only modified by such replacement of Hz(k). At the Dirac
point, where we found the gap opening,

Hz(k
ξ
D) = −2t′ sinϕS(kξD) + µ = ξ3

√
3t′ sinϕ+ µ. (1.93)

If µ = −ξ3
√
3t′ sinϕ, the gap at kξD is closed, while the other at k−ξ

D remains open. As
we anticipated and will be soon re-discussed, the competition of µ and t′, by closing
and reopening the gap, allows to switch from a zero to a non-zero Chern number.

Chern number in the Haldane model

We have now all we need to discuss the Chern number and the different topological
phases in the Haldane model. In Eq. (1.84) we have introduced the Bloch eigenstate
for the lower band of the Haldane model, normalized as

u =
1√

2|H|(|H| −Hz)

(
Hz − |H|
Hx + iHy

)
, (1.94)

which has a singularity for |H| = Hz (recall that now Hz includes also the term ∝ µ).
This condition might be satisfied only at k = kξD, provided that Hz(k

ξ
D) = |Hz(k

ξ
D)|,

namely
ξ3
√
3t′ sinϕ+ µ = |ξ3

√
3t′ sinϕ+ µ|. (1.95)
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Chapter 1. Two-dimensional topological insulators

• For µ > 3
√
3t′ sinϕ > 0, it is satisfied by both k+1

D and k−1
D , which are hence

both singularities for u.

• For µ < −3
√
3t′ sinϕ < 0, it is satisfied by neither k+1

D nor k−1
D . u is thus well

defined over all the Brillouin zone. In this case, from previous discussions, we
know that the Chern number is 0.

By operating a gauge transformation, we also introduced (again, after normalization)

u′ = e−iϕu =
1√

2|H|(|H|+Hz)

( −Hx + iHy

Hz + |H|

)
, (1.96)

which has a singularity for −|H| = Hz. In this case, for µ > 3
√
3t′ sinϕ, u′ has no

singularities and we can conclude that the Chern number is again 0.
The last and most intriguing range to be inspected is |µ| < 3

√
3t′ sinϕ. We could al-

ready expect |µ| > 3
√
3t′ sinϕ to be a trivial regime, since it is adiabatically connected

to the atomic limit |µ| → ∞. In such limit, the hopping is suppressed and electrons
are all localized, belonging either to atoms of type A or to atoms of type B (depending
on which configuration corresponds to lower-energy), and no Hall conductance - and
non-zero Chern number - is possible. If |µ| < 3

√
3t′ sinϕ, the valley isospin ξ plays

a crucial role. It is easy to check that, in particular, u is singular at k = k+1
D and u′ is

singular at k = k−1
D .

We can follow the procedure described when we discussed the quantization of the
Chern number: we consider a small region Rϵ

k+1
D

surrounding k+1
D (and not containing

k−1
D ), within which we choose the gauge A′ = A−∇kφ. We have

c =
1

2π

∮
∂Rϵ

k+1
D

(A′(k)−A(k)) · dk = ... = 1. (1.97)

We do not report here the calculation of the two Berry curvatures A and A′ and just
focus on the result. As long as |µ| < 3

√
3t′ sinϕ, we have c = 1 and σxy = e2/ℏ from

Eq. (1.45). We expect to have topologically protected boundary states, lying within the
energy gap.

If ϕ ⇒ −ϕ, we essentially exchange the two Dirac points and the gauges chosen
inside and outside Rϵ

k+1
D

. As a consequence, c and σxy gain an extra sign as well. In
Fig. 1.7 we finally draw the phase diagram of the Haldane model.

To conclude, it can be shown that via diagonalization of the full Haldane Hamilto-
nian for a finite-size system in the topological phase c ̸= 0, one finds that there exist
eigenenergies closing the gap, associated to c (metallic) chiral eigenstates located at
the physical boundary of the system. This reproduces the physics we discussed for the
Quantum Hall Effect. The gap closing and reopening marks a so-called topological
phase transition, and the correspondence between bulk properties (a finite Chern num-
ber) and protected metallic states at the boundary is the bulk-boundary correspondence,
a key-concept in topological phases of matter.

1.2 The Quantum Spin Hall Effect

The Quantum Hall state represented the first example of a topologically non-trivial
state of matter, where the quantization of the Hall conductance is protected by a topo-
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Figure 1.7: Phase diagram of the Haldane model: the orange and yellow regions correspond to the
topological phases with Chern number c = ±1.

logical invariant. In this Section, we can now address the Quantum Spin Hall Ef-
fect, characterized by non-trivial topological properties similar to, but distinct from
the Quantum Hall state. In this case not the Chern number, but a Z2 topological invari-
ant marks it from a mathematical point of view. Physically, this new phase features
couples of robust5 counter-propagating helical channels at the boundary of a bulk-
insulating sample. In Subsec. 1.2.1 we will present the (unfortunately, never imple-
mented) Kane-Mele model, which devises a graphene-based platform to realize the
Quantum Spin Hall Effect. Many concepts and results of the Haldane model will come
in handy. In Subsec. 1.2.2 we will discuss a later Quantum Spin Hall model, by B. A.
Bernevig, T. L. Hughes, and S.-C. Zhang, exploiting the peculiar band structure arising
in CdTe/HgTe/CdTe quantum wells. In Subsec. 1.2.3 we will briefly review the first
experimental evidencies of the effect and mention more recent achievements on the he-
lical edge states. Subsec. 1.2.4 will revise how to engineer interesting properties in the
Quantum Spin Hall Effect via the appropriate nanostructuring. Lastly, in Subsec. 1.2.4
we will mention some of its potential applications, with a focus on the realization of
Majorana bound states.

1.2.1 Kane-Mele model

In this Subsection, we discuss the generalization of the Haldane model to a graphene
sheet with spin-orbit coupling suggested by Kane and Mele in 2005 [95], which pro-
vided the theoretical basis for two-dimensional topological insulators. Spin-orbit cou-
pling acts as two effective and opposite magnetic fields for opposite spins. Such model
is hence, effectively, as two copies of Haldane model. In the present case, two metal-
lic edge states appear in the bulk energy gap. Indeed, due to time-reversal symmetry
(which is respected by spin-orbit coupling) and to Kramers’ theorem, eigenstates come
in doublets, and the two edge states are exactly Kramers’ partners of each other. As we
will discuss, thanks to Kramers’ theorem they are protected from backscattering as long
as time-reversal symmetry is preserved, giving rise to a symmetry protected topological
phase. Lastly, electrons with opposite spin turn out to propagate in opposite directions:
this property is often referred to as spin-momentum locking. These edge states originate
the so-called Quantum Spin Hall Effect, namely a longitudinal charge current produces
a quantized transverse spin bias, with a quantized spin Hall conductance.

5As we will discuss in a while, the robustness is guaranteed only for an odd number of couples of channels.
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Graphene

Before discussing the model, we recall that graphene is a two-dimensional system,
consisting of a layer of carbon atoms bound in a hexagonal honeycomb lattice. It has
been the first two-dimensional crystal to be identified and has been isolated for the first
time in 2004 at the University of Manchester, by A. Geim and K. Novoselov [125] who
were awarded the Nobel Prize in 2010. A honeycomb lattice of identical atoms has
been introduced in the former Section, within the description of Haldane model. In Eq.
(1.59) we have introduced the primitive vectors

v1 =
√
3ae1, v2 =

√
3

2
ae1 +

3

2
ae2, v3 = −

√
3

2
ae1 +

3

2
ae2, (1.98)

with a the lattice constant, a ≈ 0.142 nm for graphene. Any couple of vectors can be
chosen to define the primitive unit cell.

With a tight-binding approach, which we do not explicitly recover here, it is possible
to obtain the dispersion relation of graphene, which reads as

ϵλk = 2(tnnn − stnn)
3∑
i=1

cos (k · vi) + λtnn

√√√√3 + 2
3∑
i=1

cos (k · vi), (1.99)

where λ = ±1, tnnn is the next-nearest neighbor hopping amplitude, tnn is the nearest
neighbor hopping amplitude (also known as transfer integral) and s gives a measure of
the overlap of the orbital wavefunctions on nearest neighbor sites. This is exactly what
we obtained as a dispersion relation for the Haldane model in Eq. (1.78), provided
that the phase ϕ is set to zero, that we substitute tnn → −t, and that we identify
tnnn − stnn = −t′ as an effective hopping amplitude. The overlap correction brought
by s gives a renormalization of the next-nearest neighbor hopping. That comment aside,
all the results obtained for the Haldane model (in the specific case ϕ = 0) hold true.

The presence of next-nearest neighbor hopping breaks particle-hole symmetry. As
a consequence, the energy dispersion is no longer symmetric for positive and negative
energies. Moreover, being the next-nearest neighbor hopping real, no gap is opened at
the Dirac point.

The experimental synthesis of single-layer graphene, together with its physical and
chemical stability, marked a breakthrough in condensed matter and renewed the interest
in the Haldane model: after almost twenty years, a suitable platform was finally found.

Formulation of the model

The Kane-Mele model appeared as the first possible experimental realization of Hal-
dane model on a graphene-based platform. As a mass term, spin-orbit interaction is
exploited. Unfortunately, spin-orbit coupling in graphene turned out to be too weak,
making it impossible to observe the Quantum Spin Hall Effect. Indeed, the gap opened
by spin-orbit interaction is only 24µeV [68]. However, it shed light on the Z2 classifi-
cation of topological insulators in the presence of time-reversal symmetry.

The starting point is to derive a low-energy Hamiltonian for graphene, expanding it
around the first Brillouin zone’s vertices K, K′, which coincide with the Dirac points
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(Eq. (1.69)). It can be shown that such expansion reads as

H(qξ) =
3

2
ta(ξqxσx + qyσy) ≡ ℏvF (ξqxσx + qyσy), (1.100)

where qξ = k − kξD is the expansion variable and, for graphene, vF ≈ 3 · 10−3c.
Such Hamiltonian can be recast into a new form in real space, which will be denoted
as H0. To do so, we substitute qj → −i∂j and we consider a larger spinor with four
components

Ψ(r) =


uA(K, r)

uB(K, r)

uA(K
′, r)

uB(K
′, r)

ψ(r), (1.101)

where the components describe basis states at momentum K, K′ centered on atoms the
A, B sublattice, K, K′ are the first Brillouin zone vertices, and ψ(r) is the envelope
function. This leads to

H0 = −iℏvFψ†(σxτz∂x + σyτ0∂y)ψ, (1.102)

where τi is a Pauli matrix acting in the K, K′ space, and τ0 the identity matrix in the
same space. In a matricial form,

H0 = −iℏvFψ†
(
σx∂x + σy∂y 0

0 −σx∂x + σy∂y

)
ψ. (1.103)

From our discussion of the Haldane model, we know that an interesting gap opening
may arise from a term proportional to σzτz. Notice that this is odd under time-reversal,
and that so far we have not included the spin degree of freedom. We do it now.

It is known from the theory of special relativity that an electron with momentum p
and in the presence of an electric field E, perceives in its rest frame a magnetic field
B = p × E/mc2, with c the speed of light. Such field interacts with the magnetic
moment of the electron proportionally to its spin. The corresponding Hamiltonian con-
tribution is

HSO =
eℏ

4m2c2
s · p× E. (1.104)

Here, s is the electron spin expressed in units of ℏ/2. The spin-orbit term enters the
low-energy Hamiltonian via

HSO = ∆SOψ
†σzτzszψ, (1.105)

which respects time-reversal symmetry. ∆SO can be related to the parameters in Eq.
(1.104) [95], but it is not important for what follows.

Thanks to spin-orbit interaction, a gap opens around K, K′. Indeed, the energy
dispersion is now

ϵ(q) = ±
√
(ℏvF |q|)2 +∆2

SO, (1.106)

with a gap of 2∆SO around q = 0. If sz = ±1 is selected in HSO, two Hamiltonians
are obtained: they both violate time-reversal symmetry and correspond to two Haldane
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Chapter 1. Two-dimensional topological insulators

models for spinless electrons, having opposite Chern numbers. To see it more explicitly,
let’s look back at the low-energy Hamiltonian for graphene in k-space, incorporating
the spin-orbit interaction as well:

H(qξ)K−M = ℏvF (ξqxσx + qyσy) + ∆SOξσzsz. (1.107)

The derivation of a low-energy Hamiltonian for the Haldane model, having set the
chemical potential to zero, returns

H(qξ)H = ℏvF (ξqxσx + qyσy) + ξ3
√
3t′ sinϕσz. (1.108)

Identifying ∆SO = 3
√
3t′ sinϕ, we see that sz = +1 corresponds to a Haldane model

having Chern number +1, whereas sz = −1 (which realizes ϕ→ −ϕ) corresponds to a
Haldane model having Chern number -1.

We can finally discuss the physics revealed by the Kane-Mele model. A Quantum
Spin Hall Effect arises with Hall conductance e2/h for spin up electrons, and with
Hall conductance −e2/h for spin down electrons: an electric field induces opposite
currents for opposite spins. The Hall conductance is zero, but a spin Hall conductance
emerges as a consequence of the spin current. If sz is a good quantum number, such
conductance is quantized. To identify the spin Hall conductance quantum, we start
from a spin current density

Js =
ℏ
2e

(J↑ − J↓), (1.109)

where J↑(J↓) represents the current density associated to spin up(down) electrons.
From the comments above, and choosing a y-oriented electric field, we get

J↑
x =

e2

h
Ey, J↓

x = −e
2

h
Ey. (1.110)

From Eq. (1.109),
Jsx =

e

2π
Ey, (1.111)

which allows to identify the spin Hall conductance quantum as σsxy = e/2π.

Boundary states and topological protection

Having highlighted the analogy to the Haldane model, solving the Kane-Mele model
for a finite-size sample should lead to two boundary states. The Hamiltonian under
consideration is that of two Haldane tight-binding models corresponding to opposite
spins and having opposite phases (set to ϕ = ±π/2 for simplicity) and µ = 0:

H = −t
∑
⟨ij⟩

∑
α

c†iαcjα − it′
∑
⟨⟨ij⟩⟩

∑
αβ

νijs
z
αβc

†
iαcjβ. (1.112)

Here, νij = −νji acts as inverter of the Haldane phase depending on the hopping
direction and t′ = ∆SO/3

√
3.

In their paper [95], Kane and Mele solved the model for a strip with zig-zag edges
and a finite y-size. As shown in Fig. 1.8, two bands cross the gap, linking the one-
dimensional projections of K and K′, and correspond to edge states located at the
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1.2. The Quantum Spin Hall Effect

Figure 1.8: Result of the Kane-Mele diagonalization with periodic boundary conditions on the x di-
rection and zig-zag edges, with the boundary states emerging inside the energy gap. Reprinted with
permission from [95]. Copyright 2024 by the American Physical Society.

Figure 1.9: The helical edge states of the Quantum Spin Hall Effect: on each side of the sample, electrons
having opposite spins are counter-propagating.
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Chapter 1. Two-dimensional topological insulators

Figure 1.10: Whenever an odd number of Kramers doublets is present on the edge, as in panel (a), a gap
in the edge state spectrum cannot be opened without a violation of Kramers theorem (b). However, if
an even number of Kramers doublets is present, as in panel (c), the edge states can be fully gapped out
even in the presence of time-reversal symmetry as shown in panel (d). Figure from [48], reproduced
with permission from Springer Nature.

boundary of the graphene strip. Each band has two degenerate states, one per edge. On
each edge, the two states with opposite spins are counter-propagating: they are hence
said to be helical (Fig. 1.9).

The band crossing is protected via Kramers theorem, which states that, in the pres-
ence of time-reversal symmetry, for each energy of a 1/2-spin system there are at least
two degenerate eigenstates (Kramers doublets) [20]. On each edge of the strip, the two
opposite-spin states form a Kramers doublets. Also at their crossing point, kx = π/a,
the Kramers partners must be degenerate. Such degeneration cannot be lifted. If an
odd number of Kramers doublets is present, as in the Kane-Mele solution, it is not pos-
sible to gap them out without violating the Kramers theorem: the Quantum Spin Hall
phase is not adiabatically connected to a trivial insulator and represents a completely
new topological phase. On the other hand, if an even number of Kramers doublets is
present, one can gap out all of them without violating Kramers theorem (see Fig. 1.10),
obtaining a state which is topologically equivalent to a trivial insulator. For this distinc-
tion based on the number of Kramers pairs, the topological order of the Quantum Spin
Hall Effect is Z2: it is 0 for trivial insulators and 1 for topological insulators.

We emphasize that Kramers theorem ensures that the helical edge states are pro-
tected from elastic and non-magnetic backscattering (which are perturbations respect-
ing time-reversal symmetry). It doesn’t say anything about inelastic backscattering or
scattering off magnetic impurities, which can in principle occurr.

Unfortunately, it was soon realised that the bulk gap is too tiny (∼ 10−3 meV) to
experimentally observe the Quantum Spin Hall Effect in graphene. The search for the
Quantum Spin Hall state then turned to new platforms, in particular to semiconducting
systems.
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1.2. The Quantum Spin Hall Effect

1.2.2 Bernevig-Hughes-Zhang (BHZ) model

Soon after the Kane-Mele model, in 2006, B. A. Bernevig, T. L. Hughes, and S.-C.
Zhang found a more suitable system to realize the Quantum Spin Hall Effect, namely
CdTe/HgTe/CdTe quantum wells. They predicted that such a heterostructure can be-
have as a two-dimensional topological insulator, provided that the HgTe layer is thicker
than a critical thickness dc. This prediction was confirmed only a year later, in 2007,
by the experimentalists in the group of L. W. Molenkamp in Würzburg [103].

The modified Dirac equation and the emergence of edge states

Already in the discussion of the Haldane model, we found that a competition of mass
terms, leading to a closing and reopening of the energy gap, allows to switch from a
zero to a non-zero Chern number, with the emergence of states having energies within
the band gap and located at the boundaries of the system. We here stop and revise this
fact explicitly, in one- and two-dimensional systems [159]. This will allow for a simpler
understanding of the BHZ model.

Let us start from the Dirac equation, which describes a relativistic particle with spin
1/2,

H = cpiαi +mc2β, (1.113)

where c is the speed of light, m the particle’s rest mass, and αi, i = 1, 2, 3 and β are
related to the Dirac γ matrices and satisfy the Clifford algebra. We first consider the
d = 1 + 1-dimensional case. The Hamiltonian density reads as (ℏ = 1)6

H = −iv∂xσx +Mσz, (1.114)

where we substituted px = −i∂x, M = mv2, v is the Fermi velocity and σi are the
Pauli matrices. Solving the eigenvalue problem, eigenstates with positive and negative
energies turn out to be separated by a gap large |2M |. We observe that the Dirac
Hamiltonian above is invariant under the transformation M → −M , σy,z → −σy,z,
σx → σx. In order to better analyze this fact, we can complicate a bit the picture by
introducing a change of sign in the mass term:

M(x) =

{
m1 > 0 for x≪ 0

m2 < 0 for x≫ 0.
(1.115)

If we assume M(x) to have a continuous profile, the gap vanishes at some point near
the domain wall x = 0, having opposite signs before and after that point. Where the gap
closes, a state having energy inside the gap exists. In particular, it is easy to show that
intra-gap bound states cannot exist for sgn(m1m2) = +1, while, for sgn(m1m2) = −1,
a zero-energy bound state emerges, having wavefunction

ψ(x) =

(
1

i

)√
1

v

∣∣∣∣ m1m2

m1 −m2

∣∣∣∣e−|M(x)x|/v. (1.116)

Such state is hence embedded in the energy gap and is exponentially localized in the
vicinity of the domain wall, spreading over a distance v/|m1/2| on the two sides. To

6In one dimension, the two Dirac matrices α1 and β are any two of the three Pauli matrices, for example α1 = σx, β = σz
[159].
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Chapter 1. Two-dimensional topological insulators

summarize, the Dirac Hamiltonian accommodates the presence of intra-gap states lo-
calized around the physical point where the mass changes sign. We can think of the
vacuum as a region with a large and positive energy gap: therefore, at the ends of a
finite-size system with negative mass, intra-gap bound states are expected.

Looking back at the indistinguishability of Hamiltonians with ±M , we can intro-
duce a term to break such symmetry:

h1D = vpxσx + (M −Bp2x)σz, (1.117)

obtaining a so-called modified Dirac Hamiltonian. We want to study the existence of
zero-energy bound states at the boundaries of the system. To this end, let us assume to
deal with a semi-infinite one-dimensional system, extending from x = 0 to +∞. From
the zero-energy condition,[

vpxσx + (M −Bp2x)σz
]
ψ(x) = 0

⇒ −i∂xσxψ(x) = −1

v
(M +B∂2x)σzψ(x)

⇒ ∂xψ(x) = −1

v
(M +B∂2x)σyψ(x), (1.118)

where in the last row we have multiplied by σx from the left. The wavefunction will
hence be written in terms of ψη(x) = χηϕ(x), where σyχη = ηχη (hence χη =

1/
√
2(η, i)T ), and ϕ(x = 0) = 0. The function ϕ(x) is a solution of

∂xϕ(x) = −η
v
(M +B∂2x)ϕ(x). (1.119)

Assuming a trial function ϕ(x) ∝ e−λx,

−λ = −η
v
(M +Bλ2) ⇒ Bλ2 − v

η
λ+M = 0 ⇒ Bλ2 − vηλ+M = 0. (1.120)

Hence, we obtain two solutions λ±,

λ± =
vη ±

√
v2 − 4MB

2B
. (1.121)

Their sum and product are λ+ + λ− = vη/B and λ+λ− =M/B. So far, we have

ψη(x) ∝ 1√
2

(
η

i

)
(ae−λ+x + be−λ−x). (1.122)

Since we want the wavefunction to vanish at x = 0, b = −a. To obtain a well defined
solution at x = +∞, we need λ± > 0. From their sum and product, this implies that:

• η = sgn(B), hence only one of the χη is suitable to have a bound state and we
have to plug this information also in the λ factors, λ± → λ±|η=sgn(B);

• sgn(MB) = 1.

We can thus conclude that, under the condition sgn(MB) = 1, there exist a solution of
a bound state with zero-energy,

ψ(x) ∝ 1√
2

(
sgn(B)

i

)
(e−x/ξ+ − e−x/ξ−), (1.123)
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1.2. The Quantum Spin Hall Effect

with ξ−1
± = v(1 ±

√
1− 4MB/v2)/2|B|. ξ± determine the spatial distribution of the

wavefunction, which is sharply localized at the boundary for large MB. A crucial
result of this discussion is that the existence of the edge state is only related to the
global quantity sgn(MB), which has to amount to +1. The specific values of M and B
are not relevant.

We can now easily generalize the discussion for the case of two spatial dimensions,
which will be needed for what follows. The modified Dirac Hamiltonian, written in
momentum space, is

h2D± (k) = d(k) · σ, (1.124)

where σ = (σx, σy, σz) is the vector of the Pauli matrices, k = (kx, ky) and d(k) =
(vkx,±vky,M(k)), with M(k) = M − B(k2x + k2y). As an example, we will analyze
the "+" case. We consider a semi-infinite plane x > 0 and require that the wave-
function vanishes at the boundary x = 0. ky is a good quantum number, because the
system is translationally invariant along the y direction. Moreover, at ky = 0, the two-
dimensional equation recovers the one-dimensional equation, hence the x-dependent
part of the solution has the identical (known) form as Eq. (1.123) for sgn(MB) = 1.
The solution for non-zero ky is simply given by the bound state along x multiplied by
a plane wave along y

ψky(x, y) ∝
1√
2

(
sgn(B)

i

)
(e−x/ξ+ − e−x/ξ−)eikyy (1.125)

with a slight abuse of notation, because ξ± now also depend on ky,

ξ−1
± = v

(
1±

√
1− 4MB/v2 + 4B2k2y/v

2
)
/2|B|. (1.126)

We can look at the y-dependent part of h2D+ as a perturbation to the one-dimensional
Hamiltonian. We denote it by h2D+ (ky) and project it onto the edge state solution,
⟨ψky |h2D+ (ky)|ψky⟩ to obtain a one-dimensional effective model for the edge state. To
leading order in ky, its energy dispersion results in

Eedge state(ky) = vkysgn(B) ⇒ vedge state =
∂Eedge state(ky)

dky
= vsgn(B). (1.127)

Recalling that sgn(B) = η, which is the eigenvalue of σy associated to ψky(x, y),
we deduce that for B > 0(B < 0) it corresponds to a state propagating with posi-
tive(negative) velocity and with positive(negative) spin-polarization along y. This re-
flects the property we already encountered in the Kane-Mele model, the spin-momentum
locking: electrons with opposite spin counter-propagate.

Before moving to the realization of helical edge states in realistic systems, we em-
phasize once more the role of sgn(MB). At small momenta, the sign of the momentum-
dependent mass term M(k) is the same as sgn(M), while at large momenta it is the
same as −sgn(B). If sgn(MB) = −1, the sign of the mass term M(k) at small and
large momenta (for instance, sweeping across the Brillouin zone) remains the same. If
sgn(MB) = +1, M(k) changes sign. We recover what we discussed at the beginning
of the Subsection, namely the emergence of bound states when the mass term changes
sign.
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Chapter 1. Two-dimensional topological insulators

Figure 1.11: Bulk energy bands of HgTe and CdTe near the Γ-point. The Γ8 band is indicated in red
and the Γ6 band is indicated in blue. Figure from [21], reprinted with permission from AAAS.

Without computing it explicitly, we lastly mention that the Chern number is found
to be

c = −1

2
[sgn(M) + sgn(B)]. (1.128)

In the trivial regime, sgn(MB) = −1 and the Chern number c = 0, while c = ±1 in
the topological regime (sgn(MB) = +1).

Band structures of HgTe and CdTe

A crucial point of the BHZ model is represented by the different band structures of the
materials involved, HgTe and CdTe, which we briefly describe here. CdTe has a normal
semiconductor band structure, with the valence band Γ8 separated by an energy gap
from the conduction band Γ6. On the other hand, HgTe has an inverted semimetallic
band structure [123], with the Γ8 band above the Γ6 valence band, as shown in Fig.
1.11. Intuitively, thin and thick quantum wells will exhibit different band structures:
when the central layer of HgTe is thin, the energy bands align in a normal ordering,
similarly to CdTe. On the contrary, when the width of HgTe is (sufficiently) thick,
the energy bands will be in the inverted regime, similarly to HgTe. The closing and
reopening of the gap, necessarily separating the two regimes (normal and inverted),
marks a topological phase transition and the emergence, as we shall see, of the helical
edge states, see Fig. 1.12.

BHZ model

As in the original paper by Bernevig, Hughes and Zhang [21], it is possible to introduce
an effective band model to describe the system around the Γ-point (the center of the
first Brillouin zone), where the essential physics takes place.7 We will follow Refs.
[21], [99] and [48].

7For both materials the gap is minimum at Γ-point, see Fig. 1.11.
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1.2. The Quantum Spin Hall Effect

Figure 1.12: Scheme of the CdTe/HgTe/CdTe quantum well in the topological regime, featuring the
helical edge states. Figure from [48], reproduced with permission from Springer Nature.

For both HgTe and CdTe, the important bands around the typical Fermi level are
close to the Γ-point and are the s-type band, Γ6, and the p-type band which is split by
spin-orbit coupling into the Γ7 band (with J = 1/2) and the Γ8 band (with J = 3/2).
The Γ7 band has negligible effects on the band structure, therefore the starting point
can be a six-band model taking into account the Γ6 and Γ8 bands only. In particular, the
following six-component spinor, including the six essential atomic states per unit cell,
can be considered:

Ψ = (|Γ6, 1/2⟩ , |Γ6,−1/2⟩ , |Γ8, 3/2⟩ , |Γ8, 1/2⟩ , |Γ8,−1/2⟩ , |Γ8,−3/2⟩)T . (1.129)

These six bands combine with each other and originate the spin up and spin down states
(±) of three types of subbands: electron-like (|En=1,±⟩), heavy-hole-like (|Hn=1,±⟩),
and light-hole-like (|Ln=1,±⟩), where this distinction is related to properties of the
respective wavefunctions, and the subscript n labels states with an increasing number
of nodes along the growth-direction z (n = 1 identifies the lowest subbands). Since
the L1 subband is well separated in energy from the others, it will be neglected. We
can thus deal with an effective four-band model for the subbands that participate in
the mentioned inversion crossing: |E1,mJ = ±1/2⟩ and |H1,mJ = ±3/2⟩, which we
order as

{|E1,+⟩ , |H1,+⟩ , |E1,−⟩ , |H1,−⟩}. (1.130)

At the Γ-point with in-plane momentum k = 0, mJ is still a good quantum number.
In particular, at this point the H1 subband comes from the |Γ8,mJ = ±3/2⟩ states
while the E1 subband comes from a linear combination of the |Γ6,mJ = ±1/2⟩ and
|Γ8,mJ = ±1/2⟩ states. In the presence of time-reversal symmetry, Kramers theorem
states that each state, as E1 and H1, must be doubly degenerate: |E1,±⟩ and |H1,±⟩
are indeed Kramers partners.

An effective low-energy Hamiltonian, to describe the quantum well near the Γ-point,
can be built on this basis by making some symmetry considerations.

• Due to Kramers theorem, terms connecting Kramers partners, namely (|E1,+⟩ , |E1,−⟩)
and (|H1,+⟩ , |H1,−⟩), must vanish.

• |E1,±⟩ and |H1,±⟩ have opposite transformations under two-dimensional spatial
reflections. Hence, a Hamiltonian matrix element connecting them must be an
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Chapter 1. Two-dimensional topological insulators

odd function of the in-plane momentum k = (kx, ky) (remember that we consider
a quantum well built along the z direction), since we assume that the Hamilto-
nian preserves inversion symmetry. To lowest order in k, (|E1,+⟩ , |H1,+⟩) and
(|E1,−⟩ , |H1,−⟩) will be coupled via a term linear in k.

• To preserve rotational symmetry around the growth-axis (z-axis), it can be shown
that these matrix elements must by proportional to k± = kx ± iky.

• Again for parity constraints, diagonal terms can only contain even powers of mo-
mentum k, including k-independent terms.

• Terms coupling (|E1,+⟩ , |H1,−⟩) and (|E1,−⟩ , |H1,+⟩) are not admitted, be-
cause they would split the Kramers degeneracy via second order perturbation pro-
cesses.

Altogether, these considerations lead to

H(kx, ky) =

(
h(k) 0

0 h∗(−k),

)
(1.131)

with
h(k) = ϵ(k)σ0 + d(k) · σ. (1.132)

Here, ϵ(k) = C−D(k2x+k
2
y), d(k) = (Akx, Aky,M(k)),M(k) =M−B(k2x+k

2
y), and

A, B, C, D, M are material parameters depending on the geometrical structure of the
quantum well8, and the zero of the energy is set by the overall constant C at the top of
the valence band of HgTe, as in Fig. 1.11. As we anticipated, d3(k) is an even function
of k, while d1(k), d2(k) are odd. Moreover, d1(k) ± d2(k) = A(kx ± ky) = Ak± as
needed.

The main parameter is M , which is the energy difference between the E1 and H1

levels at the Γ-point. The band inversion in HgTe makes it unavoidable to have a level
crossing at some critical thickness of the HgTe layer, dc. Indeed, for thin HgTe layers,
with thickness d < dc, the quantum well is in the "normal" (not inverted) regime, where
CdTe is dominant and for the overall band structure, at the Γ-point, E(Γ6) > E(Γ8).
On the other hand, for d > dc, the quantum well is in the inverted regime, withE(Γ6) <
E(Γ8). By varying the thickness of the well, E1 and H1 necessarily cross at some dc,
leading to a change of sign for M (see Fig. 1.13).

We can now connect to our previous discussion about the modified Dirac equation
and the emergence of edge states. If we neglect ϵ(k) and identify A ≡ v, we are deal-
ing with the modified Dirac Hamiltonian h(k) in two-spatial dimensions as h2D+ (k)
in Eq. (1.124). As that Hamiltonian, h(k) breaks time-reversal symmetry, although
the symmetry is recovered as soon as the complete four-band model is considered:
the quantum well corresponds to two modified Dirac Hamiltonian h(k) and h∗(−k)
related with each other by time-reversal symmetry. Therefore, under the appropriate
condition sgn(MB) = 1, two helical states appear at the boundary of the sample.
They are Kramers partners, having opposite direction of propagation and spin polariza-
tion. In a CdTe/HgTe/CdTe quantum well, the parameter B is always negative. Hence

8This connection to the material parameters is done in [21] by deriving the Hamiltonian in Eq. (1.131) rigorously through the
k · p theory.
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1.2. The Quantum Spin Hall Effect

Figure 1.13: Quantum-well geometry and lowest subbands for the two different regimes d < dc and
d > dc. Figure from [21], reprinted with permission from AAAS.

sgn(MB) = −sgn(M), and it is −1 in the normal regime (M > 0), which is hence
trivial, and +1 in the inverted regime (M < 0), which is hence topological. In the topo-
logical regime, the Chern numbers c+ and c− associated to the two Hamiltonians h(k)
and h∗(−k) are opposite, c+ = +1 and c− = −1. Although the total Chern number is
zero, a new Chern number can be defined

c =
c+ − c−

2
, (1.133)

which is zero in the trivial phase and ±1 in the topological one. The band structure of
the quantum well in the two regimes is shown in Fig. 1.14.

To summarize: from the form of the effective Dirac Hamiltonian and the gap sign
change for the CdTe/HgTe/CdTe quantum well, together with general considerations
about the modified Dirac equations and the emergence of edge states, we straightfor-
wardly concluded the existence of the Quantum Spin Hall state in the system proposed
by Bernevig, Hughes and Zhang.

1.2.3 Experimental evidencies

Already in the original paper [21], it was suggested that signatures of the Quantum Spin
Hall Effect could be detected via a series of electrical measurements. The first experi-
mental evidence of the one-dimensional edge states in topological insulators dates back
to 2007, thanks to the work of L. W. Molenkamp and collaborators [103]. Through
conductance measurements, it was shown that if the Fermi energy lies within the bulk
energy gap, the system is equivalent to a trivial insulator for d < dC while, in the topo-
logical regime d > dC , a current flow is present. Measures on different devices in the
topological regime and shorter than the mean inelastic free path9 (∼ 1µm at the mea-
surement temperature) led to a four-terminal resistance R14,23 = h/2e2, independent of
the sample and corresponding to a conductance of 2e2/h. This confirmed the physical
picture of two counter-propagating and one-dimensional channels where backscatter-
ing is forbidden. This scenario has been validated also in other multi-terminal transport
experiments [145]. These measurements are widely acknowledged as representing a
definitive experimental evidence for the existence of edge states in the Quantum Spin
Hall regime [33]. Before discussing the experimental results, we here derive the ex-
pected resistance value relying on the Landauer Büttiker formalism [32], a quantum

9We remind that the helical edge states are robust against single-particle elastic backscattering, but inelastic mechanisms can
cause backscattering.
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Chapter 1. Two-dimensional topological insulators

Figure 1.14: Energy spectrum of the CdTe/HgTe/CdTe quantum well (a) in the normal (d < dc) and (b)
inverted (d > dc) regime. Reprinted with permission from [137]. Copyright 2024 by the American
Physical Society.

transport theory which well describes non-local transport and which is also suitable for
the Quantum Hall Effect. We here follow Ref. [137].

Hints on the Landauer-Büttiker description

Within the Landauer-Büttiker formalism, the relationship between current and voltage
is [31]

Ii =
e2

h

∑
j ̸=i

(TjiVi − TijVj), (1.134)

where Ii is the current flowing out of the i-th electrode into the sample, Vi is the voltage
on the i-th electrode, and Tji is the transmission probability from the i-th to the j-th
electrode. The current conservation implies that the total current flow is

∑
i Ii = 0. A

voltage lead j is defined as a lead drawing a zero net current, Ij = 0. In the equilibrium
condition, all the probes have equal voltage and zero current flow, whence

∑
j ̸=i Tij =
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1.2. The Quantum Spin Hall Effect

Figure 1.15: Six-terminal Quantum Spin Hall setup employed for the transport measurement we dis-
cussed. Current flows through contacts 1 and 4, I14, while the voltage drop is measured at contacts
2 and 3, V23. Figure from [103], reprinted with permission from AAAS.

∑
j ̸=i Tji. This enables to rewrite the Landauer-Büttiker formula as

Ii =
e2

h

[∑
j ̸=i

TjiVi −
∑
j ̸=i

TijVj

]
=
e2

h

[∑
j ̸=i

TijVi −
∑
j ̸=i

TijVj

]

=
e2

h

∑
j ̸=i

Tij(Vi − Vj). (1.135)

Moreover, in a time-reversal invariant system, Tij = Tji. In general, for a two-dimensional
device, Tij has a complicated and sample-dependent form. If transport takes place only
on edge states, however, it greatly simplifies.

To this regard, let us start by the Quantum Hall Effect with ν = 1, where transport is
realized through one couple of chiral edge states. In this case, forN current and voltage
leads, the transmission matrix has entries TQHEi+1,i = 1, i = 1, ..., N and TQHEij = 0
otherwise (we periodically identify the (N + 1)-th electrode with the 1-st electrode).
This originates from the fact that chiral edge states are protected against backscattering,
and hence the i-th electrode transmits with unit probability to the neighboring (i+1)-th
electrode only on one side (owing to chirality). Let us consider now a Quantum Hall
setup with the same labeling as the one in Fig. 1.15, assuming 1 and 4 to be current
leads and 2, 3, 5, 6 to be voltage leads. Then I1 = −I4 ≡ I14, V2 − V3 = 0 and
V1 − V4 = (h/e2)I14. The four-terminal and two-terminal resistances are then

R14,23 =
V2 − V3
I14

= 0, R14,14 =
V1 − V4
I14

= h/e2. (1.136)

Let us move to the Quantum Spin Hall Effect, featuring counter-propagating helical
edge states. As we have already commented in this Thesis, they can be regarded as two
copies of chiral edge states linked one to another by time-reversal symmetry. Therefore,
the T matrix satisfies TQSHE = TQHE + (TQHE)†. Recalling the form of TQHEij , we
find TQSHEi+1,i = TQSHEi,i+1 = 1, and TQSHEij = 0 otherwise. If we now look back to the
sample in Fig. 1.15 with current leads on 1 and 4, we find again I1 = −I4 ≡ I14, but
V2 − V3 = (h/2e2)I14 and V1 − V4 = (3h/e2)I14. This yields

R14,23 = h/2e2, R14,14 = 3h/2e2. (1.137)
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Chapter 1. Two-dimensional topological insulators

At first sight, it might seem absurd to get a non-vanishing four-terminal longitudinal
resistance, given the dissipationless character of the Quantum Spin Hall edge states
and the fact that it is zero for the Quantum Hall case. How can the leads cause any
dissipation of the helical edge states, that are protected from backscattering? The point
is that, as the counter-propagating channels enter the voltage leads, they interact with
a reservoir containing a large number of low-energy degrees of freedom, and time-
reversal symmetry is effectively broken by the macroscopic irreversibility. As a result,
the channels equilibrate at the same chemical potential, determined by the voltage of
the lead, and dissipation occurs due to the equilibration process. A more rigorous and
microscopic analysis on the different role played by a metallic lead on the Quantum
Hall and on the Quantum Spin Hall state (see the Supporting Material of [145]) is
consistent with our simple discussion.

The four-terminal resistance is, in particular, what is measured in the following ex-
periment [99, 103].

Experimental results

A prototype the experimental setup is shown in Fig. 1.16. The heterostructure is re-
alized with techniques such as molecular-beam epitaxy, and the peculiar multi-layer
structure allows to enhance the carriers’ mobility in the HgTe layer. Moreover, a metal-
lic gate (Vg) allows to tune the Fermi energy within the quantum well’s band structure.
The experimental results for the four-terminal resistance discussed above are shown in
Fig. 1.17. Different curves are associated to different devices. In particular, curve I
corresponds to a quantum well with d = 5.5 nm (normal regime), and curves II, III, IV
to quantum wells with d = 7.3 nm (inverted regime). In the main panel, B = 0 T and
T = 30 mK. The inset shows measures performed on two samples of the same wafer,
with same device size but at different temperature, 30 mK (green) and 1.8 K (black).

When the Fermi energy lies within the bulk energy gap, the red and green curves
show data in good agreement with the theoretical prediction R14,23 = h/2e2 associated
to the presence of protected edge states. If the distance between the contacts is greater
than the inelastic mean free path, as we anticipated, some sort of scattering mechanism
can take place. The form of the scattering matrix becomes non-universal, and deviations
from the predicted plateau arise (as for the blue curve). Lastly, as expected, for a
quantum well in the trivial regime (black curve) the edge states disappear: the well
behaves as a trivial insulator, whose resistance saturates inside the bulk energy gap.
The inset further shows that the quantum plateau is only weakly sensitive to temperature
variations.

Since this first experiment, many more have been performed to better understand
the properties of the Quantum Spin Hall phase, and not only on HgTe/CdTe platforms.
Here we just mention the main idea of two, still in the earlier stages of topological
insulators.

The first identifies a transport signature of the spin polarization of the Quantum Spin
Hall State [27]. Via split-gate technique, two T-shaped bars are combined, one in the
Quantum Spin Hall regime and the other in the non-topological Spin Hall regime, to
fabricate a hybrid H-shaped bar (see Fig. 1.18). With reference to panel (a), a current is
injected in the metallic region through contacts 3 and 4. Due to Spin Hall Effect, a spin
imbalance accumulates at opposite edges of the T-bar; here, if the helical edge states
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1.2. The Quantum Spin Hall Effect

Figure 1.16: Scheme of the typical structure of the samples. The top metallic gate allows to tune the
Fermi energy. Figure from [17], © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

of the Quantum Spin Hall part are spin-polarized, the spin imbalance is transferred
to contacts 1 and 2, where a finite potential difference is measured. In panel (b), the
injecting and detecting contacts are simply interchanged. Both configurations provided
multi-terminal resistances in agreement with the presence of spin-polarized edge states.

In the second experiment [126], the idea is to image the magnetic fields produced by
current flowing in Hall bars made from HgTe quantum wells with a scanning supercon-
ducting quantum interference device (SQUID) (Fig. 1.19). Then, for a two-dimensional
current density there is a one-to-one correspondence through the Biot Savart law be-
tween the current density and the z component of the magnetic field produced by the
current, allowing to infer the former. When transport is supposedly dominated by bulk
conduction, the measured magnetic profile crosses smoothly through zero in the Hall
bar, as expected for a homogeneous current flow through the Hall bar. On the other
hand, when transport is supposedly dominated by edge channels, the magnetic profile
shows two steep crossings through zero at the top and bottom edge of the Hall bar,
indeed consistently with a dominant current flow at the edge of the bar. Such current
images confirmed once more the existence of edge channels in the Quantum Spin Hall
regime, see Fig. 1.20.
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Chapter 1. Two-dimensional topological insulators

Figure 1.17: Measures of the four-terminal resistance R14,23 as a function of the gate voltage Vg (used
to tune the Fermi energy) for different devices. Only the black curve corresponds to a device in the
normal regime, d = 5.5 nm. For all the others, d = 7.3 nm. The inset shows the same quantity
measured at different temperature (30 mK and 1.8 K). Figure from [103], reprinted with permission
from AAAS.

Figure 1.18: Schematic of the setup for spin polarization measurements in [27] (whence the Figure is
taken, reproduced with permission from Springer Nature) with two T-shaped bars, a Quantum Spin
Hall one (in yellow) and a metallic one which shows the Spin Hall Effect (in green), combined to
form a hybrid H-shaped bar.

Many experimental progresses have been achieved thereafter, that both improved
the cleanliness and stability of the edge states, and that revealed new physics. On the
one hand, we mention [18], where a new generation of high quality (Cd,Hg)Te/HgTe-
structures, based on a new chemical etching method, was analyzed. Significant im-
provements in the transport properties were obtained: in particular, the mean free path
turned out to be comparable to the sample dimensions (over 10 µm) and the stabil-
ity of the Quantum Spin Hall conductance persisted until high temperature. On the
other hand, it was surprisingly found that the edge states can be robust even in the
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1.2. The Quantum Spin Hall Effect

Figure 1.19: Outline of the measurement. The magnetic field (in red) generated by the current (in blue)
is measured by detecting the flux through the SQUID’s pickup loop. Figure from [126], reproduced
with permission from Springer Nature.

Figure 1.20: (a)-(b) Magnetic images at two different gate voltages corresponding to bulk and edge
transport. In (a), the white dashed line sketches the Hall bar, while the SQUID’s pickup loop is
shown in black. In (b), the top gate’s outline is indicated by the grey dashed line. The current flows
along the edges of the gated part of the Hall bar, whereas it spreads out in the ungated parts and
the contacts. (c)-(d) x component of the two-dimensional current density obtained from the current
inversion of the magnetic images (a)-(b). (e)-(f) Same for the y component. The magnetic images and
the current densities are normalized to the applied current. Figure adapted from [126], reproduced
with permission from Springer Nature.

presence of strong magnetic fields and, hence, under time-reversal symmetry break-
ing [53, 116, 205].

1.2.4 Nanostructuring the helical edge states

After the experimental realization of topological insulators, two main challenges have
been faced:

• The first is the quest for new experimental platforms hosting the Quantum Spin
Hall Effect. Indeed, in HgTe-CdTe quantum wells, the topological phase transition
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Chapter 1. Two-dimensional topological insulators

depends on the thickness and cannot be manipulated. Other structures, such as
type-II inverted semiconductors, allow to electrostatically tune the system either
in the inverted or in the normal regime [114].

• The second is the creation of nanostructures to access and manipulate the edge
states in view of technological applications, in particular for spintronics, super-
conducting spintronics and topological quantum computation.

In the following, we will focus on nanostructuring. In particular, we will recap the main
available tools to act on the edges’ dispersion relation (in terms of band splittings and
gap-opening mechanisms) and their potential for applications. For those experimentally
achieved, mentions will be made.

Bare edge Hamiltonian

As discussed, a single edge of a two-dimensional topological insulator hosts two counter-
propagating modes with opposite spin, as schematized in Fig. 1.21. The corresponding
effective Hamiltonian Hkin. is given by

Hkin. =
∑
σ=±

∫ L

0

dxψ†
σ(x)(−iℏσvF∂x)ψσ(x). (1.138)

Here the sample extends from x = 0 to x = L, vF is the Fermi velocity, σ = ± is
the spin projection and ψσ(x) is the Fermi annihilation operator of an electron with
spin projection σ at position x. The crossing point of the two edges, in thin quantum
wells, can be accessed by gating. We also notice that, due to the helical nature of the
edge states, the single edge has half the degrees of freedom with respect to usual one-
dimensional spinful systems. Hence, in some sense, the helical edge represents half of
a Dirac fermion in one dimension.

Figure 1.21: Single edge of a two-dimensional topological insulator, hosting two counter-propagating
modes with opposite spin.

In the limit of infinitely long sample, the energy spectrum associated to both the
edges is shown in Fig. 1.22, and compared to that of the Quantum Hall Effect.

Magnetic barriers

A first possible additional term is represented by magnetic barriers. This term shows
analogies with the mass in the Dirac equation we previously discussed, with the extra
degree of freedom given by the direction of the magnetization. If the magnetization is
parallel to the quantization axis, no gap opens. Let us assume that σ is defined along
the z axis. Then the Hamiltonian describing magnetic barriers is [136]

HB =
∑
σ,σ′=±

∫ L

0

dxψ†
σ(x) (Mx(x)[σx]σ,σ′ +My(x)[σy]σ,σ′)ψσ′(x). (1.139)
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1.2. The Quantum Spin Hall Effect

Figure 1.22: A schematic comparison between the energy dispersion of the Quantum Hall Effect and the
Quantum Spin Hall Effect. For the latter, each edge hosts two channels with opposite chirality, and
same-chirality channels on opposite edges have opposite spin polarization.

Here, Mx/y(x) are the magnetization components in the x and y directions and σx/y
are the Pauli matrices. By changing the mass to mimick the Jackiw-Rebbi model [91]
(or more precisely the Goldstone-Wilczek model [71]), fractional charges appear [182,
190]. We however emphasize that, so far, magnetic barriers have not been successfully
implanted on the Quantum Spin Hall Effect.

Proximity effect

By covering a Quantum Spin Hall sample with a superconductor, a leakage of Cooper
pairs occurs over a typical lengthscale ξ, which is called the coherence length. As a con-
sequence, a superconducting pairing (and a superconducting gap ∆) is induced in the
material [98, 101, 118, 194]. In particular, ξ ∼ ℏvF/∆, where vF is its Fermi velocity.
Interestingly, the induced Cooper pairs do not have in general the same properties and
symmetries as in the proximitizing superconductor, because the induced superconduc-
tivity is deeply influenced by the peculiar transport properties of the hosting material.
As an implication, despite most known superconductors feature zero-momentum spin-
singlet Cooper pairs (s-wave superconductors), very exotic superconducting states can
be implemented in proximitized materials [196]. The derivation of the proximity ef-
fect starts from the two Hamiltonians of the superconducting and non-superconducting
system, connected via a single-electron tunneling Hamiltonian:

HT =

∫
dr dxΨ†

s(r)T (r, x)ψσ(x) + h.c., (1.140)

where the integration is over the entire volume of the two materials. Ψs(r) is the
fermionic annihilation operator of an electron at position r with spin polarization s
within the superconductor, and T (r, x) is the tunneling matrix. The form of T (r, x)
is responsible for the type of induced pairing in the normal material and for the region
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Chapter 1. Two-dimensional topological insulators

over which it is induced. Let us assume that the single-electron tunneling between the
two subsystems is characterized by an amplitude Γ. In the large gap limit ΓkF,S ≪ ∆S ,
with ∆S the superconductor’s gap and kF,S the superconductor’s Fermi wavevector,HT

can be treated perturbatively. Indeed, single-electron tunneling is strongly suppressed
due to the parent superconductor’s gap. At second order, an effective Cooper-pair hop-
ping term arises.

In the simplest case [3], the inherited superconducting term is also of s-wave type
and, in practise, it is described by the low-energy Hamiltonian

H∆ =

∫ L

0

dxψ†
+(x)∆ψ

†
−(x) + h.c., (1.141)

where ∆ is the induced superconducting pairing (different from ∆S) and L is the length
of the proximitized region (see the sketch in Fig. 1.23).

Figure 1.23: Sketch of the helical edge proximitized by a s-wave superconductor. A leakage of Cooper
pairs occurs over a lengthscale ξ ∼ ℏvF /∆ (see the main text). This results in an induced supercon-
ducting pairing in the topological insulator.

Interesting effects, such as odd-frequency pairing [22, 38, 60, 171, 174] and missing
Shapiro steps [198], arise in the proximitized Quantum Spin Hall Effect. Further in-
triguing phenomena, in combination with magnetic barriers, include the emergence of
Majorana bound states and 4π-periodic Josephson currents [63].

Given the proximity effect, it is possible to realize a topological Josephson junction.
Two standard possibilities are putting a superconductor on top of the outer edge of a
quantum spin-Hall Corbino disk pierced by a magnetic flux [63] (see Fig. 1.24), or
covering a two-dimensional topological insulators with two superconductors [45, 50]
(see Fig. 1.25). Such setup will be discussed in the next Chapter.

We underline here that a more rigorous analysis of the proximity effect is in or-
der to obtain a deeper quantitative understanding of the induced pairing [78, 104, 133,
149, 165]. One possibility is to construct the action corresponding to the proximitized
system, and then to integrate out the parent superconductor’s degrees of freedom. A
calculation with this method will be addresses in the following Chapter and the associ-
ated Appendix A (Sec. A.2).

Quantum spin Hall constriction and edge reconstruction

A further mass term is present when two edges (indexed by τ = ±1) are brought close
to each other. In this case, the kinetic energy Hkin. becomes H ′

kin. =
∑

τ H
τ
kin., with

Hτ
kin. =

∑
σ=±

∫ L
0
dxψ†

σ,τ (x)(−iτσvF∂x)ψσ,τ (x), ψσ,τ (x) being the Fermi operator
on the τ edge. In the presence of time-reversal symmetry, two scattering terms arise
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1.2. The Quantum Spin Hall Effect

Figure 1.24: A topological Josephson junction realized with a Quantum Spin Hall insulator in a Corbino
disk geometry proximitized by a superconductor and pierced by a magnetic flux Φ. Reprinted with
permission from [63]. Copyright 2024 by the American Physical Society.

Figure 1.25: A topological Josephson junction realized with a Quantum Spin Hall insulator proximitized
by two superconducting leads. Reprinted with permission from [50]. Copyright 2024 by the American
Physical Society.

[49, 110, 113, 152, 176]. The first is a mass term

Hb.s. =
∑
σ,τ

∫ L

0

dx b(x)ψ†
σ,τ (x)ψσ,−τ (x), (1.142)

with b(x) parametrizing the scattering amplitude. In this case, the direction of motion
of the scattered electron is reversed and its spin polarization is unchanged. We notice
that Hb.s. preserves both time-reversal symmetry and axial spin symmetry. The second
term which is always included, and which describes forward scattering events, reads as

Hf.s. =
∑
σ,τ

∫ L

0

dx f(x)ψ†
σ,τ (x)ψ−σ,−τ (x). (1.143)

Again, f(x) is a parameter determining the term amplitude. As the backward scattering
contribution, the forward scattering one Hf.s. is also time-reversal invariant. It however
breaks axial spin symmetry: in order to maintain the direction of motion, a spin-flip
occurs. As we shall explain, the combination of Hb.s. and Hf.s. is extremely promising
for designing heterostructures. The processes just described are shown in Fig. 1.26.

For a point-like quantum point contact located at x = x in the sample, f(x), b(x) ∝
δ(x − x). We are here interested in the opposite regime: let us assume f(x) and b(x)
to be uniform, f(x) = f, b(x) = b10. In this case, Hf.s. acts effectively as a spin-
orbit coupling [200], splitting in energy same-chirality states by a quantity ±f . On

10We will maintain this assumption also in the next Chapters, where we will deal with long Quantum Spin Hall constrictions
(having length ≫ k−1

F ).
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Chapter 1. Two-dimensional topological insulators

Figure 1.26: Quantum Spin Hall constriction of length L, with the two possible inter-edge scattering
mechanisms: the forward one denoted by f , and the backward one denoted by b.

the other hand, Hb.s. opens a gap large 2b at the Dirac point. The resulting energy
spectrum for an infinite sample is shown in Fig. 1.27. Notably, in terms of spectral
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Figure 1.27: Spectrum of the infinitely long Quantum Spin Hall constriction taking into account the
forward and backward scattering processes. Different colors represent states having orthogonal
spin. We have set f/b = 1.

properties, either E > 0, E < 0 are equivalent to a spin-orbit coupled quantum wire,
which is regarded as the main platform to realize Majorana fermions and parafermions.
However, the Quantum Spin Hall Effect allows for cleaner samples and more easily
conceivable multiterminal experiments. Moreover, it allows to overcome two issues
concerning quantum wires: first, true quantum wires are not purely one-dimensional
systems, and higher sub-bands can in principle contribute to the low-energy physics;
second, detection schemes are limited by the absence of symmetries in the wire and
in the leads. On the contrary, although the Quantum Spin Hall system is described
by the same number of fermionic fields as a quantum wire, it naturally possesses a
charge-conjugation symmetry and benefits from the helical nature of its channels. This
enables to envision novel spin-selective detection schemes. Lastly, the constriction
is able to make ferromagnetic barriers unessential in superconducting spintronics and
topological quantum computation applications, which is extremely relevant since, to
date, they were never successfully implanted on these systems. To summarize, the
Quantum Spin Hall constriction appears as a symmetry enriched, spin-orbit coupled,
quantum wire.
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1.2. The Quantum Spin Hall Effect

Figure 1.28: (a) SEM image of the device, with the well visible narrow channel defined in the HgTe
mesa. (b) A schematic of the constriction design and measurement setup. The yellow part is the gate
electrode and the orange parts are the ohmic contacts for measurements. The central part is the one
sketched in Fig. 1.26. Figures from [168], reproduced with permission from Springer Nature.

A (long) Quantum Spin Hall constriction has been experimentally realized in 2020
[168], formed by wet chemical etching of the HgTe heterostructure and using a top
gate electrode to tune the chemical potential. In that paper, the only experimental result
reported in literature to date, the constriction was pinpointed by an interaction induced
reduction of the conductance. A scanning electron microscope (SEM) image and a
skecth of the experimental setup are shown in Fig. 1.28.

To conclude this Subsection, we anticipate here that it can happen that each scatter-
ing amplitude assumes two different values for different couples of channels involved.
Namely, the dashed lines in Fig. 1.26 may correspond to f1 ̸= f2 and b1 ̸= b2. This
phenomenon is known as edge reconstruction [197], and we will come back on that in
Chapter 4. Its origin resides in spontaneous time-reversal symmetry breaking possibly
arising due to a smooth confinement potential for the edge states. The basic idea is
the following. Let us assume that the density of electrons is controlled by an external
gate. In order to minimize the Coulomb energy, it is electrostatically convenient for the
electron density to mimic the positive-charge distribution on the gate. If such distri-
bution goes smoothly to zero near the edge of the system, the electron density can try
to accommodate it by separation of the edge modes. The smoother the confining po-
tential, the larger can be the separation between the edge modes. Then, for differently
distanced couples of channels, the scattering amplitudes will change accordingly.

1.2.5 Potential applications of the helical edge

We have seen that the metallic edges of two-dimensional topological insulators rep-
resent a new and intriguing gapless electronic system. Their most promising feature
in view of technological applications is spin-momentum locking, which allows for a
purely electric manipulation of the spin degree of freedom, and might hence have a
relevant impact in spintronics [121, 131, 145]. When proximitized with s-wave super-
conductors and eventually ferromagnetic barriers, systems featuring spin-momentum
locking can furtherly exhibit topological superconductivity [62, 63] and odd-frequency
superconductivity [22, 38, 60, 171, 174], with potential applications in superconducting
spintronics [25, 112, 175]. Concerning topological quantum computation [124], Majo-
rana bound states [63] (and, with strong electron–electron interactions, parafermions
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Chapter 1. Two-dimensional topological insulators

[127, 192, 203]), may arise in topological heterostructures. Regarding Majorana bound
states, these systems could in principle represent an alternative to spin–orbit coupled
quantum wires in the presence of magnetic fields and induced superconductivity, which
are nowadays regarded as the main platform.

In this Subsection, we will discuss in more details how to engineer, in principle,
Majorana bound states with a two-dimensional topological insulator as a playground.
This goal was already investigated by Fu and Kane both in two-dimensional [63] and
in three-dimensional [62] topological insulators.

In the following discussion, the essential ingredient will be a single helical edge. We
will make use of the building blocks introduced in Subsec. 1.2.4 and find under which
conditions they can reproduce the physics of the renowned Kitaev model [96]. We start
from the Hamiltonian introduced in Eq. (1.138)

Hkin. =

∫
dxψ†(x)(−iℏσzvF∂x − µ)ψ(x), (1.144)

where now ψ(x) = (ψ+(x), ψ−(x))
T , µ is the chemical potential, and we are assuming

the ring-geometry in Fig. 1.29(a) with periodic boundary conditions. The edge states’
dispersion corresponds to the blue and red lines in Fig. 1.29(b). To achieve topological
(spinless) superconductivity, a term such as that H∆ in Eq. (1.141) is enough. Indeed,
as we already pointed out, the energy spectrum supports a single pair of Fermi points
(as long as the Fermi level doesn’t touch the bulk bands), and hence in some sense
the system appears as effectively spinless. The presence of a superconductor superim-
posed on the helical edge (see Fig. 1.29(c)) gaps out the spectrum, which results in the
(physical) quasiparticle energies

E1,2(k) =
√
(±ℏvFk − µ)2 +∆2, (1.145)

describing a topological superconductor, as the weak-pairing phase of the Kitaev chain
[96], with time-reversal symmetry.

However, in order to make clear the emergence of a p-wave type superconductivity,
it is useful to introduce a time-reversal symmetry breaking term, similar to the one in
Eq. (1.139) but with uniform magnetization:

HB = −Mx

∫
dxψ†(x)σxψ(x), (1.146)

where Mx ≥ 0 corresponds to the Zeeman energy. For our purpose, differently from
Eq. (1.139), it is sufficient to consider a Zeeman field only along the x axis. The effect
of the Zeeman term alone is two-fold: it tilts the spin polarization of the edge states
away from the z axis and opens a gap at their intersections. These effects are shown in
Fig. 1.29(b) by the solid black lines and the arrows. For ∆ = 0, the spectrum is given
by

ϵ1,2(k) = µ±
√
(vFk2) +M2

x , (1.147)

and the gap at k = 0 is allowed by time-reversal symmetry breaking. The best way to
understand the effect of H∆ is to rewrite the total Hamiltonian H = Hkin. +HB +H∆

in terms of the operators ψ1,2(k) that diagonalize Hkin. + HB (thus corresponding to
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1.2. The Quantum Spin Hall Effect

Figure 1.29: (a) Schematic of the system, consisting in the two counter-propagating, helical edge states
of a Quantum Spin Hall Insulator in a ring geometry. (b) The bare edge states’ dispersion (red
and blue lines) and the modified spectrum in the presence of a Zeeman term (black solid lines). (c)
The system is proximitized by a s-wave superconductor, which pushes the edge into a topological
superconducting phase such as the weak-pairing phase in Kitaev model. (d) Phase diagram of the
system, elucidating the trivial and topological regimes as a function of Mx and µ. (e)-(f) Domain
walls between topological (green lines) and trivial regions (dashed lines) localize Majorana zero-
modes (denoted by γ1,2). This can be done either with a ferromagnetic insulator (e) or with a Zeeman
field with a proper tuning of µ by gating (f). Figure adapted with permission of IOP Publishing, Ltd,
from [3]; permission conveyed through Copyright Clearance Center, Inc.
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Chapter 1. Two-dimensional topological insulators

electrons with energies ϵ1,2). Then H reads as

H =

∫
dk

2π
[ϵ1(k)ψ

†
1(k)ψ1(k) + ϵ2(k)ψ

†
2(k)ψ2(k)

+∆s(k)(ψ2(−k)ψ1(k) + h.c.)

+
∆p(k)

2
(ψ1(−k)ψ1(k) + ψ2(−k)ψ2(k) + h.c.)], (1.148)

where

∆p(k) =
vFk∆√

(vFk)2 +M2
x)
, ∆s(k) =

Mx∆√
(vFk)2 +M2

x)
. (1.149)

The first line of Eq. (1.148) describes the band energies of Hkin.+HB, while the others
represent the effect of superconductivity. In particular, the second line is the inter-band
s-wave pairing, while the third is an intra-band p-wave pairing. The latter is shown in
Fig. 1.29(b). Notice that ∆p(k) must have odd parity since it couples electrons from
a same band, but overall the Fermi statistics has to be respected. We have explicitly
shown a fact we mentioned in the previous Subsection: the induced superconductivity
is influenced by the properties of the hosting material. In this case, thanks to spin-orbit
coupling, a p-wave pairing is effectively generated from an s-wave pairing.

If Mx ≫ ∆ and µ is tuned close to the bottom of the upper band, as in Fig. 1.29(b),
it is straightforward to make a connection with the Kitaev model. The lower band is
uninfluential, so that we can take ψ2 → 0. Also, the relevant momenta are those around
k = 0, from which we can expand ϵ1(k) ≈ −(µ−Mx)+ v2Fk

2/2Mx ≡ −µ′+ k2/2m′.
Moreover, ∆p(k) ≈ vF∆k/Mx ≡ ∆′k. All in all, the effective Hamiltonian is

H ′ =

∫
dx

[
ψ†
1(x)

(
−µ′ − ∂2x

2m′ψ1(x)

)
+

∆′

2
(−ψ1(x)i∂xψ1(x) + h.c.)

]
, (1.150)

which is indeed the Hamiltonian for the continuum version of a p-wave superconductor
in one dimension. This confirms that, for Mx ≫ ∆ and |µ| ≳ Mx, the edge described
by H corresponds to the topological weak-pairing phase of the Kitaev chain.

The (physical) quasiparticle energy spectrum of the full Hamiltonian in Eq. (1.148)
is

E ′
1,2(k) =

√
∆2 +

ϵ21 + ϵ22
2

± (ϵ1 − ϵ2)
√

∆2
s + µ2, (1.151)

with a gap closing forM2
x = ∆2+µ2. Since we already found that the topological phase

corresponds to Mx ≫ ∆ and |µ| ≳ Mx, we can conclude that in the most general case
the topological superconductivity regime is given by

Mx <
√

∆2 + µ2, (1.152)

which is the one with a superconductivity-dominated gap. Notice that this includes also
the case Mx = 0, as we briefly mentioned before introducing HB. The resultant phase
diagram is depicted in Fig. 1.29(d).

For now, we have obtained a one-dimensional topological superconductor from a
ring-shaped helical edge. In order to isolate Majorana zero-modes, we have to in-
troduce domain walls separating differently gapped (topological/trivial) regions. Two
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1.2. The Quantum Spin Hall Effect

possibilities to do that are shown in Figs. 1.29(e)-(f). In panel (e), the upper and lateral
sides of the system are gapped by superconductivity (green regions), while the lower
side is gapped by the Zeeman term (dashed region). This is in principle achievable via
proximization to a ferromagnet [59, 150] (and, importantly, the chemical potential has
to be set within the gap). A second option, shown in panel (f), is to introduce both
superconductivity and the magnetic term everywhere in the system, with Mx > ∆, and
to tune the chemical potential through gates such that Mx >

√
∆2 + µ2 only on the

lower arm.
As a final remark, we underline that Mx > ∆ doesn’t forbid to be far below the

superconductor’s critical field (the Zeeman energy in the topological insulator can pre-
vail the one in the superconductor thanks to the spin-orbit enhancement of the g-factor,
see [199]).
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CHAPTER2
Josephson junctions and interference effects

In the previous Chapter we have introduced the Quantum Spin Hall edge states and
the main possibilities to create functional nanostructures exploiting their properties.
When discussing the proximity effect, we mentioned that so-called topological Joseph-
son junctions can be realized, namely structures made of two superconducting leads
connected by a Quantum Spin Hall sample.

The first part of this Chapter is devoted to general aspects of Josephson junctions.
In Sec. 2.1 we describe the Josephson effect, which consists in a non-dissipative cur-
rent flowing through such junctions even without the need for external electromagnetic
fields. In Sec. 2.2 we introduce a magnetic field piercing the junction and describe the
interference effects which arise, with a particular focus on the interference pattern. At
the end of the Section we specialize to the case of Quantum Spin Hall-based Josephson
junctions. Lastly, in Sec. 2.3, we discuss under which circumstances and in what way
transport can become non-local, with Cooper pairs splitting through the junction.

2.1 The Josephson effect

In this Section, we provide an overview of the Josephson effect. It is possible to give
a complete description of the phenomenon in terms of a microscopic theory, based on
a tunneling Hamiltonian formalism. This can be found for instance in [5, 12], but also
in [41, 94]. In Sec. 2.3 we will deal with a microscopic tunneling model applied to
a topological Josephson junction in a similar spirit. However, in the present Section
we propose a simpler handling of the topic, mainly focusing on the phenomenolog-
ical aspects. Some of the first experimental evidencies of the phenomenon are also
mentioned.

In Subsec. 2.1.1 we discuss how a superconductor can be described as a quantum
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Chapter 2. Josephson junctions and interference effects

state described by a macroscopic complex quantity, the Ginzburg-Landau order param-
eter, which is related to the local number of Cooper pairs. Relying on the Ginzburg-
Landau description, in Subsec. 2.1.2 we will easily derive the DC Josephson effect,
which consists in a supercurrent flow across a Josephson junction in the absence of
applied voltage bias, as far as the phases of the superconducting order parameters are
different. In Subsec. 2.1.3 we will present Feynman’s model [56], based on a “two-level
system” picture, which allows to understand how the effect is modified by the presence
of a constant bias (AC Josephson effect). Lastly, we will mention the consequences of
an AC voltage and the physics of the so-called Shapiro steps.

We will mainly follow [12,76,179], but the interested reader can also refer to [178].

2.1.1 The order parameter for a superconductor

The aim of this Subsection is to introduce the order parameter associated to a supercon-
ductor. To do so, we have to give some hints about the Ginzburg-Landau description of
superconductivity.

In 1950, Ginzburg and Landau [105] provided a phenomenological description of
superconductivity as a second-order phase transition. In particular, they introduced a
macroscopic and complex quantity ψ(r), the order parameter, which gives a measure of
the order in the superconducting phase (that is, below the critical temperature Tc). At
any given temperature, such order parameter is related to the local density of Cooper
pairs as

ρ = |ψ(r)|2. (2.1)

The theory is developed with a variational method applied to a supposed expansion of
the free-energy in powers of |ψ(r)|2 and |∇ψ(r)|2. This leads to two coupled differen-
tial equations for ψ(r) and the vector potential A(r), the Ginzburg-Landau equations.

Given its phenomenological origin, Ginzburg-Landau theory initially received little
consideration. However, in 1959 [73], Gor’kov showed that the theory could be ob-
tained as a limiting case of the microscopic theory of BCS [11] near Tc, generalized to
include spatially varying situations. In this reassessment of the theory, ψ(r) turned out
to be proportional to the BCS gap parameter ∆(r). A strongpoint of Ginzburg-Landau
theory is that, by focusing on the overall free energy instead of on the detailed spectrum
of excitations, a macroscopic discussion of superconductivity is possible. We will not
revise Gor’kov derivation, and rather move directly to the phenomenological treatment
by Ginzburg and Landau.

The basic assumption of Ginzburg-Landau theory is that the superconductor free
energy density, around Tc, can be written as a functional of the order parameter of the
form

fS(T, ψ(r)) = fN(T ) + α(T )|ψ(r)|2 + 1

2
β(T )|ψ(r)|4 + 1

2m∗

∣∣∣∣(p− e∗

c
A

)
ψ(r)

∣∣∣∣2 ,
(2.2)

where fN(T ) is the free energy density in the normal phase (ψ = 0) and α and β are
phenomenological quantities. For now m∗, e∗ are just parameters, but they will turn
out to be the effective mass and charge of superconducting particles (i.e. Cooper pairs).
The free energy cannot depend on the global phase of ψ(r), but just on its modulus,
because the global phase of quantum states is not observable. Moreover, odd powers
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2.1. The Josephson effect

are excluded since they are not differentiable at ψ = 0. For a deeper insight into Eq.
(2.2), let us consider the simpler case A(r) = 0 and ψ(r) = constant. Then

fS(T, ψ)− fN(T ) = α(T )|ψ|2 + 1

2
β(T )|ψ|4, (2.3)

namely the change in free energy from the normal (ψ = 0) to the superconducting
(ψ ̸= 0) phase is nothing but an expansion in |ψ|2 up to second order. Higher order
terms can be reasonably neglected as long as |ψ|2 is small, which holds true near the
transition point. β has to be positive, otherwise the lowest free energy would correspond
to arbitrarily large values of |ψ|2, where the expansion is certainly non valid. Moreover,
we know that Tc is, by definition, the highest temperature at which |ψ|2 ̸= 0 gives a
lower free energy than |ψ|2 = 0. The parameter α has thus to change sign at Tc, such
that the free energy change has a negative minimum for a finite |ψ|2, see Fig. 2.1.

Figure 2.1: Schematic behavior of the Ginzburg-Landau free-energy change, fS(T, ψ) − fN (T ), as a
function of the order parameter ψ, in the absence of fields and gradients. Figure adapted from [76],
copyright © 2000 ACADEMIC PRESS. Published by Elsevier Ltd All rights reserved.

By minimizing the overall free energy – the volume integral FS =
∫
drfS(T, ψ)

– with respect to variations of ψ (or ψ∗) and of A, one obtains the two following
Ginzburg-Landau equations1

1

2m∗

(
p− e∗

c
A

)2

ψ(r) + β|ψ(r)|2ψ(r) = −α(T )ψ(r), (2.4a)

JS =
−iℏe∗
2m∗ [ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)]− e∗2

m∗c
|ψ(r)|2A(r). (2.4b)

The first is analogous to the Schrödinger equation for a free particle with energy eigen-
value −α, with an additional nonlinear term. The second has the usual form of a

1Explicitely, we start from the extremum principle δFS = 0. We define

ψ(r) = ψ0(r) + η(r),

where ψ0(r) is the solution that we are looking for, and η(r) is a small deviation from it. We can write down FS [ψ0+η] up to the
linear order in η, η∗, and require that such linear terms vanish for any η(r), η∗(r) (since ψ0(r) minimizes FS ). This is equivalent
to demand that their prefactors vanish for all r, obtaining Eq. (2.4a) after dropping the subscript “0”. A similar approach, starting
from

A(r) = A0(r) + a(r),

leads to Eq. (2.4b). See [178] for more details.
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Chapter 2. Josephson junctions and interference effects

quantum current density for particles having mass m∗, charge e∗ and wavefunction
ψ(r). Without delving into the details, but relying on flux-quantization experiments
[46, 51, 178], it is natural to set e∗ = 2e, with e the electron charge. Concerning m∗,
one could then choose twice the effective electron mass in the metal. Sincem∗

metal ≈ m,
with m the bare electron mass, it is common to simply set m∗ = 2m.

We have found that the order parameter can be regarded as a wavefunction for “su-
perconducting electrons” (namely, for Cooper pairs). A single wavefunction captures
a macroscopic number of electrons which are assumed to “condense” in a same quan-
tum state. In this sense, the superconducting state is macroscopic, and “particles” with
charge 2e and mass 2m are described by a whole wavefunction

ψ(r) = |ψ(r)|eiθ(r). (2.5)

Eq. (2.4b) becomes

JS = |ψ(r)|2
[
eℏ
m

∇θ(r)− 2e2

mc
A(r)

]
=
ρe

m

[
ℏ∇θ(r)− 2e

c
A(r)

]
. (2.6)

Having summarized what is the order parameter describing a superconductor, a last
comment is in order. Eq. (2.6) states that the supercurrent, which is an observable
physical quantity, depends on the phase of the macroscopic wavefunction and on the
vector potential, which cannot be accessed in experiments and are only defined up to
gauge transformations. We have to require the gauge-invariancy of JS . This is ensured
if, under a transformation of the vector potential A → A + ∇χ, the phase varies
accordingly as θ → θ + 2e

ℏcχ. The quantity

γ = ∇θ(r)− 2e

ℏc
A(r) (2.7)

is called the gauge-invariant phase gradient.

We can now move to the description of the Josephson effect. Let us suppose to
make a so-called superconducting S-I-S junction, made of two superconducting films
of the same material, having superconducting gap ∆, separated by an insulating layer.
If the intermediate layer is thin enough, quasiparticles (“normal electrons”) can flow
from one superconductor to the other by means of tunneling. In particular, at T = 0 we
expect no tunneling as long as the applied voltage to the junction is smaller than 2∆/e,
which gives a measure of the energy gap voltage2. On the other hand, if eV ≥ 2∆,
a Cooper pair can be broken into two normal electrons which can then tunnel across
the barrier [76]. It is natural to ask whether a sufficiently thin barrier would allow an
entire Cooper pair to tunnel. Around 1962, this possibility was considered as highly
implausible to be measured: being the tunneling probability for a single electron very
small (typically, ≲ 10−4), that same probability squared for a Cooper pair would be
even smaller. However, B. D. Josephson showed that the probability for a Cooper pair
to tunnel through the barrier is the same as for a single electron. The process does not
correspond to the leakage of two incoherent electron waves; much differently, it is the
macroscopic wavefunction describing the entire ensemble of superconducting electrons

2For different superconductors, the threshold would be (∆1 +∆2)/e.
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2.1. The Josephson effect

that tunnels through the barrier. The electron pair correlations and the superconduct-
ing long-range order extend through the barrier. In some sense, the system behaves
as a single superconductor, and paired electrons flow without dissipation [93]. Only
one year after Josephson’s prediction, P. W. Anderson and J. M. Rowell gave the first
experimental confirmation of the effect [7].

2.1.2 The DC Josephson effect

Let us consider an S-I-S junction made now of two different superconductors, separated
by a barrier of thickness a, as in Fig. 2.2. For a very thick barrier, the two supercon-
ductors are characterized by the order parameters ψl = |ψl|eiθl and ψr = |ψr|eiθr .
Each of them is assumed to be uniform within the entire volume of the corresponding
superconductor. However, if the insulating barrier is thin, we expect the two supercon-

Figure 2.2: Junction between two superconductors separated by an insulating barrier of thickness a. In
red it is shown the behavior of the order parameter wavefunctions, decaying within the barrier.

ducting order parameters to decay within such region. A reasonable ansatz for the order
parameter in the barrier region is the linear combination

ψ(x) = ψle
−βx + ψre

β(x−a), (2.8)

where β represents the damping within the barrier. Plugging Eq. (2.8) into Eq. (2.4b)
in the absence of magnetic fields, we obtain the Josephson supercurrent density

JS =
−iℏe
2m

[
ψ∗(x)

d

dx
ψ(x)− ψ(x)

d

dx
ψ∗(x)

]
=

−iℏe
m

βe−βa(ψ∗
l ψr − ψlψ

∗
r)

=
−iℏe
m

βe−βa|ψr||ψl|(ei(θr−θl) − e−i(θr−θl)) =
2ℏe
m
βe−βa|ψr||ψl| sin (θr − θl)

≡ Jc sin (θr − θl). (2.9)

The Josephson supercurrent flowing between two superconductors separated by a thin
insulating barrier is thus of the form3

I = Ic sin (θr − θl), (2.10)

where Ic is the critical or maximum Josephson supercurrent and depends on the (geo-
metrical and physical) properties of the junction. The expression above is the so-called
current-phase relation of the junction.

3With a more general approach, I can be written as a Fourier series of both sine and cosine terms. However, due to symmetry
constraints, in most cases all the coefficients of the cosine terms must vanish. An example is time-reversal symmetry, which
requires I(θr − θl) = −I(θl − θr), excluding any cosine term from a Fourier series. In the next Chapters we will discuss the
physical consequences of time-reversal symmetry breaking in Josephson junctions.
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Chapter 2. Josephson junctions and interference effects

We have here followed a heuristic approach and in the simplified case without ap-
plied bias and magnetic field. We now discuss a different derivation due to R. Feyn-
man [56]. Though very simple, it allows to understand all the essential physics even
in the presence of a voltage bias. Later on, we will extensively discuss the effects of a
magnetic field.

2.1.3 The AC Josephson effect and Shapiro steps

Let us consider, as before, a superconductor-barrier-superconductor junction as in Fig.
2.2, with superconducting wavefunctions ψr/l. It has been said that such wavefunctions
describe a macroscopic state, |ψ|2 corresponding to the Cooper pair density ρ. From
now on in this Subsection, |r⟩ and |l⟩ will denote the base state for the right and left
superconductor, respectively. Then, we have

⟨l|ψ∗
l ψl|l⟩ = |ψl|2 = ρl, ⟨r|ψ∗

rψr|r⟩ = |ψr|2 = ρr. (2.11)

Taking into account the weak coupling between the superconductors, some kind of
transition between |r⟩ and |l⟩ states can occur owing to the finite overlap of ψl and ψr,
as mentioned in the previous Subsection. A state vector will then be of the form

|ψ⟩ = ψr |r⟩+ ψl |l⟩ , (2.12)

namely a particle can be either in a left or in a right state with associated amplitude
ψr/l. The system evolves according to

iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ , (2.13)

where the Hamiltonian is made of three terms,

H = Hl +Hr +HT . (2.14)

Here Hl = El |l⟩ ⟨l| and Hr = Er |r⟩ ⟨r| are the unperturbed left and right Hamiltoni-
ans, with Er/l the superconductors’ ground state energies, and

HT = K(|l⟩ ⟨r|+ |r⟩ ⟨l|) (2.15)

is the interaction (tunneling) term. K is the coupling amplitude of the two state system
and depends on the junction’s properties. With no vector potential, K can be assumed
to be real4 [12]. By projecting the Schrödinger equation, Eq. (2.13), on the two basis
states, we obtain

iℏ
∂ψr
∂t

= Erψr +Kψl, (2.18a)

iℏ
∂ψl
∂t

= Elψl +Kψr. (2.18b)

4In order to take into account a vector potential A, the coupling amplitude K should be modified by a phase factor as [44]

KA ≡ ⟨l|HT |r⟩A = ⟨l|HT |r⟩A=0 e
i 2e
ℏc

∫ l
r A·dl. (2.16)

In this case, moving on with the calculations, we would obtain

JS(t) = Jc sin

[
(θl − θr)−

2e

ℏc

∫ l

r
A · dl

]
,

∂

∂t

[
(θl − θr)−

2e

ℏc

∫ l

r
A · dl

]
=

2eV

ℏ
. (2.17)

62



i
i

“output” — 2024/2/14 — 20:42 — page 63 — #73 i
i

i
i

i
i

2.1. The Josephson effect

If a constant bias difference V is included, the two chemical potentials µr/l of the
superconductors are shifted by a quantity eV . Hence5 El −Er = 2eV . We set the zero
of the energy halfway, such that

iℏ
∂ψr
∂t

= −eV ψr +Kψl, (2.19a)

iℏ
∂ψl
∂t

= eV ψl +Kψr. (2.19b)

Substituting ψr/l =
√
ρr/le

iθr/l and separating the real and imaginary terms, we get{
∂ρl
∂t

= 2
ℏK

√
ρlρr sin (θl − θr)

∂ρr
∂t

= − 2
ℏK

√
ρlρr sin (θl − θr)

,


∂θl
∂t

= K
ℏ

√
ρl
ρr
cos (θl − θr) +

eV
ℏ

∂θr
∂t

= K
ℏ

√
ρl
ρr
cos (θl − θr)− eV

ℏ

.

(2.20)
The tunneling supercurrent density is given by JS ≡ e∗ ∂ρl

∂t
= −e∗ ∂ρr

∂t
, whence

JS(t) =
2e∗K

ℏ
√
ρlρr sin (θl − θr). (2.21)

If e∗ = 2e and if we assume two identical superconductors ρl = ρr = ρ,

JS(t) = Jc sin (θl − θr), (2.22)

with Jc = 4eKρ/ℏ the critical supercurrent density6. Notice that we recover the struc-
ture of Eq. (2.9), but now with a time dependence owing to

∂(θl − θr)

∂t
=

2eV

ℏ
. (2.23)

The last two equations are the Josephson equations. If the potential across the junction
is zero, V = 0, we get that the phase difference is constant and any finite supercurrent
density with intensity ranging from −Jc to +Jc can flow through the junction. This is
the DC Josephson effect we already found. The first observation dates back to 1963 by
P. W. Anderson and J. M. Rowell [7]. Later, in 1965, T. I. Smith measured the voltage
developed across the junction in the DC regime [164]. In particular, he measured the
persistent current in superconducting loops with an inserted junction, getting an upper
bound of 4 × 10−16 V. A typical voltage-current behavior is shown in Fig. 2.3, with
the well visible zero-resistance (dissipationless) spike at V = 0. When the current
exceeds the value Ic = JcV , where V is the volume of each superconductor, a finite
voltage appears across the junction. In the Figure, this appears as a switching from
a zero-voltage state to a quasiparticle branch of the I − V characteristic curve. So,
whereas from Eq. (2.6) the supercurrent within each superconductor is due to the phase
gradient, in a Josephson junction it originates from the phase difference between the
two weakly coupled superconductors. Let us suppose now that a non-zero constant
voltage is applied. Then, from Eq. (2.23) we have

θl − θr = (θl − θr)0 +
2eV

ℏ
t, (2.24)

5Er/l = 2µr/l for an isolated superconductor, see [12].
6The supercurrent is obtained by multiplying by the superconductors’ volume.

Note that in order to keep the particle densities in the superconducting electrodes constant, the junction has to be attached to a
current source. The current source adds and removes charges from the two superconductors keeping ρ constant. Such feeding
currents are not included in the equations above, since they would not change the expressions of the tunnel pair current density.
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Chapter 2. Josephson junctions and interference effects

Figure 2.3: Upper panel: scheme of the (direct) I − V characteristic curve (at T = 0) of an S-I-
S junction displaying the Josephson current. When V = 0, a direct supercurrent can flow (DC
Josephson effect, up to a maximum value Ic). For |V | > 2∆/e the quasiparticle tunneling current is
shown. Figure adapted from [76], copyright © 2000 ACADEMIC PRESS. Published by Elsevier Ltd
All rights reserved. Lower panel: same characteristic curve for a Sn− SnxOy − Snx junction at a
temperature T = 1.52K. Figure from [12], copyright © 1982 by John Wiley & Sons, Inc.

where (θl− θr)0 is the superconducting phase difference with no bias, and the resulting
supercurrent density is an AC one,

JS(t) = Jc sin

[
(θl − θr)0 +

2eV

ℏ
t

]
. (2.25)

Accordingly, the Josephson supercurrent is

I(t) = Ic sin

[
(θl − θr)0 +

2eV

ℏ
t

]
. (2.26)

This is the AC Josephson effect, and the angular frequency is given by ωJ = 2eV/ℏ,
with

ωJ
2πV

= 483.597898(19)
MHz
µV

. (2.27)

As Josephson himself suggested, a convenient way to observe the AC supercurrent is to
apply to the junction a constant voltage V and a radiofrequency or microwave voltage,
such as Vr cos (ωrt). In this case, Eq. (2.23) becomes

∂(θl − θr)

∂t
=

2eV

ℏ
+

2eVr
ℏ

cos (ωrt). (2.28)
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2.1. The Josephson effect

After integration, we get

θl − θr = (θl − θr)0 +
2eV

ℏ
t+

2eVr
ℏωr

sin (ωrt). (2.29)

Finally, the supercurrent is

I(t) = Ic sin

[
(θl − θr)0 +

2eV

ℏ
t+

2eVr
ℏωr

sin (ωrt)

]
, (2.30)

which is frequency modulated. Leveraging

cos (a sinx) =
+∞∑

n=−∞

Jn(a) cos (nx), sin (a sinx) =
+∞∑

n=−∞

Jn(a) sin (nx),

(2.31)
where Jn(x) are Bessel functions of first kind of order n, we have

sin (b+ a sinx) =
+∞∑

n=−∞

Jn(a) sin (b+ nx). (2.32)

Substituting into Eq. (2.30), one obtains

I(t) = Ic

+∞∑
n=−∞

Jn

(
2eVr
ℏωr

)
sin

[
(θl − θr)0 +

(
2eV

ℏ
+ nωr

)
t

]
. (2.33)

Since Josephson junctions are often considered in circuit configurations in parallel with
a resistance R, which therefore acts as a shunt, an additional shunt current V/R has to
be included in the total current,

I(t) =
V

R
+ Ic

+∞∑
n=−∞

Jn

(
2eVr
ℏωr

)
sin

[
(θl − θr)0 +

(
2eV

ℏ
+ nωr

)
t

]
. (2.34)

The DC part of the current is therefore V/R unless

2eV = −nℏωr. (2.35)

For such values of voltage, an additional zero-frequency contribution arises, given by

IcJn

(
2eVr
ℏωr

)
sin (θl − θr)0. (2.36)

The resulting DC current increases linearly as V/R with the bias, except when the latter
satisfies Eq. (2.35), where it suddenly jumps, and reads as

⟨I(t)⟩ = V

R
+ IcJn

(
2eVr
ℏωr

)
sin (θl − θr)0

∈
[
V

R
− IcJn

(
2eVr
ℏωr

)
,
V

R
+ IcJn

(
2eVr
ℏωr

)]
. (2.37)

These jumps are called Shapiro spikes and are shown in Fig. 2.4. In reality, circuits
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Chapter 2. Josephson junctions and interference effects

Figure 2.4: DC current of a Josephson junction driven by an AC voltage, with the well visible Shapiro
spikes of width ℏωr/2e. Figure adapted from [135].

are usually driven by a current instead of a voltage. The plot of the DC current ver-
sus the average voltage exhibits a simple ladder behavior, shown in Fig. 2.5. The
corresponding steps are known as Shapiro steps after S. Shapiro, who first observed
this phenomenon in 1963 [157]. Their appearance follows naturally from the discus-
sion above, occurring precisely when the average voltage matches ⟨V ⟩ = nℏωr/2e, as
described for the Shapiro spikes.

Figure 2.5: Microwave power at 9300 MHz (A) and 24850 MHz (B) giving rise to many zero-slope
regions spaced at V or 2V . For A, 2V = 38.5µV and for B 2V = 103µV . The vertical scale is
58.8µV/cm for A and 50µV/cm for B. The horizontal scale is 67nA/cm for A and 50µA/cm for
B. Adapted with permission from [157]. Copyright 2024 by the American Physical Society.

To conclude this discussion, we emphasize that the Josephson effect does not only
occur in the presence of a very thin insulating barrier, as in its original formulation.
Indeed, the superconductors can be linked via a Quantum Hall or a Quantum Spin Hall
insulator – as we mentioned in the previous Chapter – or via a ferromagnet, and the
link is not necessarily as thin as in the pioneering works by Josephson (tens of Å), as
we will see.

66



i
i

“output” — 2024/2/14 — 20:42 — page 67 — #77 i
i

i
i

i
i

2.2. Quantum interference in the Josephson effect

2.2 Quantum interference in the Josephson effect

In this Section, we want to analyze the consequences on the Josephson effect of a
magnetic field applied to the junction. In Subsec. 2.2.1 we will first discuss how the
gauge-invariant phase difference and the current-phase relation are modified. We will
emphasize the important role played by the supercurrent density distribution, and show
how the latter can be related to the so-called interference pattern within the Dynes-
Fulton description. To this regard, we will take into account both uniform and non-
uniform supercurrent density distributions, and will revise some relevant examples. In
Subsec. 2.2.2 we will present an experiment which applies the introduced concepts on
measurements in topological Josephson junctions. We will conclude by commenting on
a similar experiment which importantly sheds light on the fragility of Dynes-Fulton’s
hypothesis of local nature of the supercurrent, an issue we will investigate in Sec. 2.3.

2.2.1 Dynes and Fulton approach and the interference pattern

Gauge-invariant phase difference with a magnetic field

Let us consider the junction depicted in Fig. 2.6, pierced by a magnetic field along the
z direction, B = Be3. We draw our attention to the effects of the magnetic field on the
phase difference from the left to the right side of the barrier defined in a gauge-invariant
way. We are interested in understanding how this quantity changes as a function of the
y position. To this aim, we can consider a section of the junction in the xy plane.
We will see that the external magnetic field generates spatial changes of the gauge-
invariant phase difference, giving rise to spatial interference phenomena in Josephson
supercurrents. The resulting interference effect will be conceptually analogous to the
diffraction at a slit in optics.

Figure 2.6: Sketch of the junction under consideration, having width w and barrier’s thickness L. The
two superconductors are labeled by r, l and assumed to have the same London penetration depth λ.
The London penetration depth represents the characteristic decay length over which an applied field
decays exponentially inside a superconductor.

With reference to Fig. 2.6, we determine the phase shift introduced by B between
two positions P and Q along the y-axis separated by an infinitesimal distance dy. The
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Chapter 2. Josephson junctions and interference effects

starting point is

∮
C

∇θ · dl =2πn

=(θQb
− θQa)︸ ︷︷ ︸
I

+(θPc − θQb
)︸ ︷︷ ︸

II

+(θPd
− θPc)︸ ︷︷ ︸
III

+(θQa − θPd
)︸ ︷︷ ︸

IV

+2πn, (2.38)

where n is an integer, θ is the gauge-invariant superconducting phase difference and C
is the closed loop in Fig. 2.6, made by the solid red lines Cr and Cl and the dashed
green ones. From Eq. (2.6) in the previous Subsection, we know that within each
superconductor (labeled by r, l) the gauge-invariant phase gradient is

∇θl,r =
2e

ℏc

(
mc

2e2ρ
JS +A

)
, (2.39)

where ∇×A = B. We will neglect self-fields originated by the Josephson supercurrent
itself, and assume that the magnetic field throughout the junction coincides with the
external B. Terms II and IV in Eq. (2.38) are hence

θPc − θQb
=

∫ Pc

Qb

∇θ · dl = 2e

ℏc

∫ Pc

Qb

(
mc

2e2ρ
JS +A

)
· dl, (2.40a)

θQa − θPd
=

∫ Qa

Pd

∇θ · dl = 2e

ℏc

∫ Qa

Pd

(
mc

2e2ρ
JS +A

)
· dl. (2.40b)

On the other hand, the gauge-invariant phase difference between two points on opposite
sides l and r across the barrier, at a same position y, reads as [75] (see also footnote 4
of this Chapter)

φ =

∫ r

l

γ · dl = (θr − θl)−
2e

ℏc

∫ r

l

A · dl. (2.41)

This is the case for terms I and III in Eq. (2.38), whence (being careful about signs)

θQb
− θQa = φ(Q) +

2e

ℏc

∫ Qb

Qa

A · dl

⇒ φ(Q) = (θQb
− θQa)−

2e

ℏc

∫ Qb

Qa

A · dl, (2.42a)

θPd
− θPc = −φ(P ) + 2e

ℏc

∫ Pd

Pc

A · dl

⇒ −φ(P ) = (θPd
− θPc)−

2e

ℏc

∫ Pd

Pc

A · dl. (2.42b)
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2.2. Quantum interference in the Josephson effect

Altogether, Eqs. (2.40), (2.42) give the change in the gauge-invariant phase difference

φ(Q)− φ(P ) =(θQb
− θQa + θPd

− θPc)−
2e

ℏc

∫ Qb

Qa

A · dl− 2e

ℏc

∫ Pd

Pc

A · dl

=− 2e

ℏc

∫ Pc

Qb

(
mc

2e2ρ
JS +A

)
· dl− 2e

ℏc

∫ Qa

Pd

(
mc

2e2ρ
JS +A

)
· dl

− 2e

ℏc

∫ Qb

Qa

A · dl− 2e

ℏc

∫ Pd

Pc

A · dl

=− 2e

ℏc

∮
C

A · dl− 2e

ℏc

∫ Pc

Qb

mc

2e2ρ
JS · dl−

2e

ℏc

∫ Qa

Pd

mc

2e2ρ
JS · dl.

(2.43)

The second and third integrals, which are performed on Cr,l, can be neglected. Indeed,
if the superconductors’ thickness along x is larger than the London penetration depth7

λ, we can choose Cr,l such that the vertical lines lie outside the penetration regions.
Here the shielding current density JS is zero (it decreases exponentially moving away
from the interfaces). Also, the line integrals along the two horizontal sections of Cr(Cl)
within the penetration regions cancel with each other in the limit dy → 0, which we are
about to perform8. Under these hypothesis, and substituting P, Qwith their coordinates
y + dy, y, we have

φ(y + dy)− φ(y) =
2e

ℏc

∮
C

A · dl (2.44)

The line integral can be replaced by the surface integral of the magnetic field9,

dφ =
2e

ℏc
B(2λ+ L)dy ⇒ dφ

dy
=

2e

ℏc
B(2λ+ L). (2.45)

After integration, we get

φ(y) =
2e

ℏc
B(2λ+ L)y + φ(0), (2.46)

which is the gauge-invariant phase difference across the junction at any y, in the pres-
ence of a piercing magnetic field. The integration constant φ(0) is the phase difference
across the junction at y = 0. The superconducting flux quantum ϕ0 = hc/2e has also
been introduced. In Gaussian units, ϕ0 = 2.07 × 10−7 G·cm2. In SI units10, the factor
c is absent and ϕ0 = h/2e = 2.07 × 10−15 Wb. Denoting by L∗ = (2λ + L), in Eq.
(2.46) we can resort to the total flux piercing the junction, ϕ = BL∗w, where w is its
width (see Fig. 2.6). Doing so,

φ(y) =
2πϕ

ϕ0

y

w
+ φ(0). (2.47)

7We assume it to be the same for both superconductors.
8A different argument, used by [12], is that these sections can be chosen to be perpendicular to JS .
9We recall that λ defines the region over which the field penetrates into the superconducting electrodes.

10Gaussian units are used in much of the old physics literature on these topics, and on which the previous Sections are based.
This is a good time to switch to SI units for practical convenience.
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Chapter 2. Josephson junctions and interference effects

To summarize, we have found that the phase entering the sinusoidal part of the
supercurrent density – see Eq. (2.22) – is spatially modulated by the magnetic field.
We then have

JS(y) = Jc sin

(
2πϕ

ϕ0

y

w
+ φ(0)

)
, (2.48)

where we recall that Jc is the critical supercurrent density per unit length. The Joseph-
son supercurrent density JS(y) exhibits a periodic distribution inside the junction. We
will soon discuss the computation of the total supercurrent, including the generaliza-
tion to a non-uniform Jc. In Ref. [180] the gauge-invariant phase difference in the
presence of a magnetic field is computed in a slightly different way, but Eq. (2.48) is
still recovered.

The flux ϕ introduced above is the magnetic flux through an effective junction area,
which depends on the screening properties of the leads. In most cases, screening in
the superconducting leads is not taken into account11. For simplicity, in the following
we will also assume that it can be neglected. This approximation is justified as long as
w/(2λP ) ≪ 1, where λP = 2λ2/d is the Pearl penetration depth and d is the supercon-
ductors’ thickness in the z direction. This is the appropriate screening length if d≪ λ.
Under these assumptions, which are valid in a wide range of scenarios, we can safely
use L∗ = L and ϕ = BLw. If the magnetic field is fully screened by the superconduc-
tors, we can assume their superconducting phases θr,l to remain unchanged and identify
φ(0) with the superconducting phase difference in the absence of magnetic field.

The interference pattern

For any y = y, through the sinusoidal current-phase relation in Eq. (2.48), we get the
supercurrent contribution associated to transport along y. The total supercurrent can be
obtained by integrating over all the possible horizontal trajectories, namely

I(θr − θl, ϕ) =

∫ w/2

−w/2
JS(y)dy =

∫ w/2

−w/2
Jc sin

(
2πϕ

ϕ0

y

w
+ θr − θl

)
dy, (2.49)

where we have emphasized the two dependencies on the superconducting bare phase
difference and on the magnetic contribution. The maximum supercurrent with respect
to the difference (θr − θl), which becomes a function of the mere magnetic flux, and
taken in absolute value, is the so-called interference pattern:

Ic(ϕ) ≡ |max [I(θr − θl, ϕ), θr − θl]| , (2.50)

whose name is due to the fact that the magnetic field dependence results from a spatial
interference effect of the macroscopic wavefunctions in the two superconducting elec-
trodes. The effect emerges through the spatial change in y of the gauge-invariant phase
difference. To compute the interference pattern, we first rewrite Eq. (2.49) as

I(θr − θl, ϕ) = Jc sin (θr − θl)

∫ w/2

−w/2

[
cos

(
2πϕ

ϕ0

y

w

)]
dy = Ic sin (θr − θl)

sin
(
πϕ
ϕ0

)
πϕ
ϕ0

,

(2.51)
11Be careful that so far we neglected screening effects in the tunnel barrier and not in the leads.
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2.2. Quantum interference in the Josephson effect

Figure 2.7: (a) Fraunhofer interference pattern, corresponding to uniform transport across the junction.
The minima occur at values of ϕ which are multiples of the flux quantum. (b) Rowell’s measurements
of the critical current of a Pb-I-Pb junctions as a function of the magnetic field and at a temperature of
1.3 K. The expected (and verified) effect of the external magnetic field was the reduction of the direct
current to a minimum whenever the junction contained integral numbers of flux units. Reprinted with
permission from [146]. Copyright 2024 by the American Physical Society.

with Ic = Jcw. Notice that, since a uniform Jc is an even function of y, we could
decouple the y- and the (θr−θl)-dependence. In this case, the maximization mentioned
above is easily obtained with sin (θr − θl) = 1, and the corresponding interference
pattern is

Ic(ϕ) = Ic

∣∣∣∣∣∣
sin
(
πϕ
ϕ0

)
πϕ
ϕ0

∣∣∣∣∣∣⇒ Ic(ϕ)

Ic(0)
=

∣∣∣∣∣∣
sin
(
πϕ
ϕ0

)
πϕ
ϕ0

∣∣∣∣∣∣ . (2.52)

This is the Fraunhofer pattern and is shown in Fig. 2.7(a). The first observations in this
direction were made by J. M. Rowell in 1963 [146]. Fig. 2.7(b) shows his measures on
a Pb-I-Pb junction. Further measurements followed in later years [10, 58, 154, 201].

Notice that, so far, we have neglected effects due to nonuniformities of tunneling
barriers (and of supercurrent densities). Physically, we can think of a metallic weak
link which allows for a uniform current flow. A clearer insight comes from rewriting
Eq. (2.49) as

I(θr − θl, ϕ) = Im

[
Jc e

i(θr−θl)
∫ w/2

−w/2
ei2πϕ/ϕ0 y/wdy

]

⇒ Ic(ϕ) = Jc

∣∣∣∣∣
∫ w/w

−w/2
ei2πϕ/ϕ0 y/wdy

∣∣∣∣∣
= Jc

∣∣∣∣∫ +∞

−∞
[Θ(|y|+ w/2)−Θ(|y| − w/2)]ei2πϕ/ϕ0 y/wdy

∣∣∣∣ . (2.53)

The Fraunhofer pattern emerges as the Fourier transform of the supercurrent density
distribution, which is here rectangular-shaped, equivalently to the optical diffraction
pattern of a slit with the same shape as the barrier (and a constant transmission). The
observed interference effect is completely analogous to the diffraction of light in optics.
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Chapter 2. Josephson junctions and interference effects

The experimental detection of Fraunhofer patterns was a very important step towards
the understanding of the Josephson tunneling of Cooper pairs. Since then, from the
experimental point of view, it was still unclear whether the measured supercurrent was
flowing as a homogeneous Josephson tunneling current or just through small holes
in the tunneling barrier. Only the former possibility is compatible with the observed
Fraunhofer pattern.

Dynes and Fulton description

In what follows, we no longer assume that the critical supercurrent density Jc is uni-
form, for instance due to local inhomogeneities in the junction (or, more interestingly,
because of the edge states in a topological insulator, as we shall see). The simple Fraun-
hofer result in Eq. (2.53) is replaced by a more general Fourier transform, as discussed
by R. C. Dynes and T. A. Fulton [54] (we keep neglecting all screening effects). In
particular, for a given Jc(y), Eq. (2.49) becomes

I(θr − θl, ϕ) =

∫ w/2

−w/2
Jc(y) sin

(
2πϕ

ϕ0

y

w
+ θr − θl

)
dy. (2.54)

With the same procedure used above, we obtain

Ic(ϕ) =

∣∣∣∣∣
∫ +w/2

−w/2
Jc(y)e

i2πϕ/ϕ0 y/wdy

∣∣∣∣∣ . (2.55)

It is instructive to revise some results of the application of Eq. (2.55).

• If the critical supercurrent density Jc(y) is sharply peaked around a specific y∗,
then we have

I(θr − θl, ϕ) ∝ sin

(
2πϕ

ϕ0

y∗

w
+ θr − θl

)
, (2.56)

which results in a flux-independent maximal current (as could be expected, since
no interference between different paths can arise).

• If there is only edge transport, which is expected, for instance, if the tunnel barrier
is a two-dimensional topological insulator, then ideally

Jc(y) =
I0
2

[
δ
(
y +

w

2

)
+ δ

(
y − w

2

)]
, (2.57)

and
Ic(ϕ)

Ic(0)
=

1

2

∣∣eiπϕ/ϕ0 + e−iπϕ/ϕ0
∣∣ = ∣∣∣∣cos(πϕϕ0

)∣∣∣∣ , (2.58)

named SQUID pattern (see Fig. 2.8(a)) after the Superconducting Quantum In-
terference Device, which shows the same features. Such device, shown in Fig.
2.8(b), is a superconducting circuit made of two Josephson junctions in parallel.

• Related to the previous case, one can more realistically include some broadening
of Jc(y), possibly also across the bulk. This is for instance done in [12] with sev-
eral examples. The main consequence of broadening is a decay of the interference
pattern, see Fig. 2.9.

72



i
i

“output” — 2024/2/14 — 20:42 — page 73 — #83 i
i

i
i

i
i

2.2. Quantum interference in the Josephson effect

Figure 2.8: (a) SQUID interference pattern arising from a supercurrent density sharply peaked at the
edges of the junction. (b) Sketch of a Superconducting Quantum Interference Device. Figure from
[76], copyright © 2000 ACADEMIC PRESS. Published by Elsevier Ltd All rights reserved.

To conclude this part, we underline the main limitations of the Dynes-Fulton ap-
proach. (i) First, we have assumed from the beginning a sinusoidal current-phase re-
lation, which holds in the so-called tunneling regime. This is not always the case,
and corresponds to low-transparency interfaces between the superconductors and the
non-superconducting region. (ii) A second implied hypothesis is the local nature of
the supercurrent, flowing perpendicularly to the superconducting contacts. This means
that the supercurrent density only depends on a y coordinate while the current flows
in the x direction. Although Dynes and Fulton’s analysis is straightforward and in-
formative, this second assumption can lead to false results, as we will discuss in the
next Subsection for the particular case of topological Josephson junctions. More in
general, this assumption has been relaxed also in some works on mesoscopic Joseph-
son junctions [13, 85, 108], for instance by including an angular distribution for the
paths of Cooper pairs, or the effects of normal reflection at the superconductors’ bound-
aries [158].

Before moving on, it is worth noticing that Dynes and Fulton’s description is also
interesting if applied backwards, namely to obtain a supercurrent density profile given
the interference pattern (which can be measured in transport experiments). This is not
a trivial matter, in principle. From Eq. (2.55), the measured quantity is the absolute
value of

I(ϕ) =
∫ +w/2

−w/2
Jc(y)e

i2πϕ/ϕ0 y/wdy. (2.59)

Hence, I(ϕ) = Ic(ϕ)e
iθ(ϕ), where θ(ϕ) is real. To determine Jc(y), both Ic(ϕ) and θ(ϕ)

are needed. The difficulty in determining the latter can be overcome if Jc(y) is assumed
to be an even function, Jc(y) ≈ Jc(−y). More details can be found in [54] on how to
consider an additional small odd component.

2.2.2 Experiments on topological Josephson junctions

This Subsection finally merges concepts introduced in Chapter 1 and 2. Indeed, we
discuss the first experiment on a topological Josephson junction, namely a Joseph-
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Chapter 2. Josephson junctions and interference effects

Figure 2.9: Interference pattern for the supercurrent density distribution shown in the inset. The non-
vanishing density in the central part and the finite width of the side peaks are responsible for the
pattern’s decay (to be compared for instance with the SQUID pattern). Figure adapted from [12],
copyright © 1982 by John Wiley & Sons, Inc.

son junction where the non-superconducting part is a (two-dimensional) topological
insulator [82]. In particular, in the experiment, the setup consists of a proximitized
HgTe/HgCdTe quantum well, pierced by a perpendicular magnetic field. We have al-
ready presented, in the previous Chapter, experimental evidencies for the Quantum Spin
Hall Effect [27,103,126,145]. The aim of [82] is to demonstrate that superconductivity
can be induced in the Quantum Spin Hall edge: in other words, that a supercurrent is
carried across the device (solely) along the helical edges. In this regime, the system
is said to be a Quantum Spin Hall superconductor. For a discussion of the proximity
effect, we refer the reader to Subsec. 1.2.4.

The essential idea is to leverage the quantum interference effects we have just dis-
cussed. Being the interference pattern highly sensitive to the supercurrent density dis-
tribution, it is expected to clearly discriminate between the trivial and the topological
regime. At a given bulk carrier density, a uniform supercurrent density is expected for
a non-topological junction (quantum well thinner than dC), or in a topological junction
(quantum well thicker than dC , see Subsec. 1.2.2 on the BHZ model) far from the bulk
insulating regime. Over a range of bulk densities, the Quantum Spin Hall edge channels
coexist with bulk states. In this case, the helical edge contribution appears as peaks in
the supercurrent density at each edge, quite similarly to the inset of Fig. 2.9. However,
if the bulk carriers’ density is decreased, the edge peaks are the only features in the
supercurrent density, as in the SQUID case. These different scenarios, together with
the interference patterns predicted by the Dynes and Fulton description, are shown in
Fig. 2.10.

In the experiment, the interference pattern is measured and the Dynes-Fulton ap-
proach is applied backwards to infer the supercurrent density. The effective area pierced
by the magnetic field includes not only the quantum well, but also part of the super-
conducting leads due to screening effects (as we commented at the end of Subsec.
2.2.1). The supercurrent density is not simply assumed to be symmetric, and a small
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2.2. Quantum interference in the Josephson effect

Figure 2.10: Each column shows a sketch of the conducting states in the sample, the corresponding
supercurrent density and the interference pattern predicted by the Dynes and Fulton approach. (a)
The quantum well is in the trivial regime, and the bulk is filled with charge carriers, the supercurrent
density has a uniform profile and the expected interference pattern is a Fraunhofer, see Eq. (2.52).
(b) The quantum well is in the topological regime. Bulk carriers are depleted, and in the supercurrent
density two peaks emerge owing to the helical edge states. Side lobes are more pronounced and the
central one gets thinner. Notice that this case is similar to the one shown in Fig. 2.9.(c) The quantum
well is still in the topological regime, but bulk carriers are completely depleted. The supercurrent is
carried solely by the edge states, giving rise to a sinusoidal double-slit pattern, with a decay related
to edge states’ width. Figure adapted from [82], reproduced with permission from Springer Nature.

but non-vanishing odd component is also considered (see the Supplementary Informa-
tion of [82]).

Some of the main plots are shown in Fig. 2.11, and correspond to measures on a
quantum well of thickness d = 7.5 nm, contacted by Titanium/Aluminum supercon-
ducting leads, with a width of 4µm12. The first and second rows are associated to differ-
ent values of the top-gate voltage VG and bulk carriers’ density. At a more positive gate
voltage, which means higher bulk density, the critical current envelope is similar to a
Fraunhofer (single-slit) pattern (Fig. 2.11(a)). Accordingly, the extracted supercurrent
density profile is almost rectangular shaped (Fig. 2.11(b)): this means that the quantum
well is in the regime of high bulk carrier density of a trivial conductor. On the other
hand, at more negative gate voltage and lower bulk density, the critical current envelope
gets similar to a sinusoidal oscillation (Fig. 2.11(c)). Such transformation towards a
SQUID-like interference pattern is accompanied by the development of sharp peaks in
the supercurrent density, spatially located at the edges of the sample (Fig. 2.11(d)). At
the most negative voltage, that is VG = −0.45 V (gating further would make the critical
current too small to get reliable measurements), and assuming a Gaussian shape, the
widths of the two supercurrent-carrying edge channels are estimated to be 408 nm and
319 nm, see Fig. (2.12). This was the first direct measure of the helical edges’ spatial

12We underline here that the thickness of the quantum well is related to the width of the sample (the distance between the
opposite edges). In particular, a larger thickness allows for smaller values of the width. For instance, in [168], d = 10.5 nm and
the width of the Quantum Spin Hall constriction is only 25 nm. This comment will come in handy later on in this Thesis.
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Chapter 2. Josephson junctions and interference effects

Figure 2.11: (a) and (c) show a map of the differential resistance across the junction at VG = 1.05 V and
VG = −0.425 V, respectively. The former case results in a single-slit interference which is typical of
a uniform supercurrent profile. This is in agreement with the extracted supercurrent profile, shown in
panel (b). In the latter case, on the other hand, the differential resistance exhibits a more sinusoidal
interference pattern. The supercurrent density, shown in panel (d), turns out to be dominated by
the contribution from the edges, with almost no supercurrent through the bulk. Figure from [82],
reproduced with permission from Springer Nature.
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2.2. Quantum interference in the Josephson effect

Figure 2.12: Supercurrent density profile for VG = −0.45 V with a Gaussian fit to extract the edge
states’ width. Figure from [82], reproduced with permission from Springer Nature.

extent. Measures on different devices with similar dimensions, however, led to quite
different values. These width variations were ascribed by the authors to the presence
of additional edge modes or of bulk modes coupled too weakly across the junction to
carry a supercurrent.

The same measurements were performed on a heterostructure with a quantum well
thickness of 4.5 nm, much lower than the critical thickness of dc = 6.3 nm. In this case,
the quantum well should never enter the Quantum Spin Hall regime. It was verified
that, in fact, the supercurrent density profile remains uniformly distributed throughout
the whole junction. Being the edge supercurrents present only in the Quantum Spin
Hall regime, it was concluded that superconductivity had been actually induced in the
helical Quantum Spin Hall edge states.

Shortfall of Dynes and Fulton description

A similar experiment was carried out a year later in Josephson junctions based on InAs/-
GaSb quantum wells [134], which are also platforms for two-dimensional topological
insulators [53,114]. In the edge dominated regime, an interesting feature was observed
in the interference pattern: in addition to the expected SQUID-like pattern, the authors
observed a modulation between even and odd peaks amplitudes, usually referred to as
even-odd effect or 2ϕ0-periodicity [16, 24, 42, 43, 78] (see Fig. 2.13(a)). Assuming
the validity of the Dynes and Fulton approach, a current density profile featuring three
peaks is found: two at the edges (responsible for the SQUID-like flux dependence) and
a third peak located in the middle of the junction (originating the different heights of
even and odd peaks), as shown in Fig. 2.13(b). Even more strangely, simulations indi-
cated that the middle channel should be within 10% of the device centre. While such
a peculiar current distribution might make sense for certain physical devices, it is for
sure unsatisfactory for systems where only edge transport is expected. Different expla-
nations of the effect are guessed in the paper, and in any case it is needed to go beyond
the Dynes and Fulton description. Among others, it is suggested the possibility that
the Cooper pair transmission through the junction involves both edges simultaneously,
clearly violating the Dynes and Fulton’s hypothesis of local transport. This scenario is
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Chapter 2. Josephson junctions and interference effects

Figure 2.13: (a) Quantum interference pattern in a Josephson junctions based on an InAs/GaSb quantum
well, in the edge dominated transport regime. A 2ϕ0-periodicity, instead of the ϕ0 standard SQUID
periodicity, is well visible. (b) Current profile assuming the validity of Dynes and Fulton analysis,
featuring two peaks at the edges of the sample and a third peak in the middle. Figure from [134],
reproduced with permission from Springer Nature.

the subject of the next Section and will be crucial for the results of this Thesis.

2.3 Beyond Dynes and Fulton: non-local transport

2.3.1 Andreev Reflection in a nutshell

Before moving on, it is useful to shortly revise the mechanism of Andreev Reflection.
Even before discussing the Josephson effect, in Chapter 1 we have mentioned the pos-
sibility to introduce Cooper pairs – and, consequently, to induce a superconducting
pairing – in a non-superconducting material (the proximity effect). Here we discuss
how it is possible that Cooper pairs, that are only generated inside a superconductor
(below the critical temperature), are not confined to the interior of the superconductor
itself. Let us consider an interface between a superconductor (S) and a normal metal
(N ). At first glance, the transfer of Cooper pairs seems impossible, as they are not
eigenfunctions of a non-superconducting material. On the other hand, normal electrons
cannot enter S owing to the superconducting gap ∆. Let us suppose that an electron
with energy ϵ < ∆ reaches the interface from the N side. Instead of being simply
reflected, it drags a second electron with opposite energy, momentum and spin to enter
S as a Cooper pair. The second electron is taken from the valence band, where a hole
is consequently left and is retro-reflected. The electric charge is not conserved during
the process, as a charge 2e is transfered from N to S. However, there is no energy
transfer, because on theN side the electronic excitation is replaced by a hole with same
energy, and on the S side the Cooper pair simply adds to the condensate (which is the
superconductor’s ground state). This special kind of scattering, which is called Andreev
reflection, is schematically shown in Fig. 2.14.

2.3.2 Crossed Andreev Reflection (CAR) and Local Andreev Reflection (LAR)

Transport in Josephson junctions whose non-superconducting region hosts edge chan-
nels, such as the one mentioned at the end of Sec. 2.2 [134], is dominated by the
interplay of two charge quanta: charge e and charge 2e. Although charge can only
enter or leave the superconductors in units of 2e (Cooper pairs), in the normal region a
pair can be split over opposite edges. In terms of Andreev reflections, this corresponds
to an electron impinging on the normal metal/superconductor interface along one edge
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2.3. Beyond Dynes and Fulton: non-local transport

Figure 2.14: Andreev reflection at the interface between a normal metal (N) and a superconductor (S).
The incident electron with energy ϵ (measured with respect to the Fermi energy EF ) and less than
∆ is retro-reflected as a hole (in black). Together, they form a correlated electron-hole pair. The
incident electron and the missing electron in the valence band enter the superconductor as a Cooper
pair. Their energies must be opposite to each other since Cooper pairs have energy EF .

and being Andreev reflected as a hole along the opposite edge, see Fig. 2.15(a). This
process is referred to as Crossed Andreev Reflections (CAR) [47] and produces oscil-
lations of the critical current as a function of the magnetic flux with a periodicity h/e,
twice to the usual one. Due to their non-local character, CAR processes are appealing,
for instance, for applications in quantum communication. Several systems have been
proposed as potential candidates to observe CAR [23,25,35,37,57,66,142,144,204] and
some experimental observations have been reported [40, 86, 88, 148, 151]. If the edge
channels are chiral, as in the case of the Quantum Hall Effect, Fig. 2.15(a) represents
the only possible current-carrying path.

Figure 2.15: Even-odd effect mechanism for interference oscillations. In the case of uncoupled edges,
the standard flux periodicity is h/2e, due to a charge transfer of 2e (Cooper pair) along the left or
right edge channel (represented by the blue/red thick vertical lines). Here the edge channels are cou-
pled by a conducting path along the normal metal/superconductor interface, and a circulating loop
of charge ±e becomes possible. The associated flux periodicity in this case is h/e. Such circulating
loop may be (a) half electron-type (red line) and half hole-type (blue line), or (b) totally electron/-
totally hole-type. Reprinted with permission from [16]. Copyright 2024 by the American Physical
Society.

If the edge channels allow for propagation in both directions, such as in the Quantum
Spin Hall Effect, there are further possibilities. First, the critical current has also a
standard h/2e-periodic term, stemming from Andreev reflections along a single edge
(this process is called Local Andreev Reflection, LAR). Moreover, there is another type
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Chapter 2. Josephson junctions and interference effects

of h/e-periodic term, arising from the circulating path depicted in Fig. 2.15(b). This
is not relevant for our following discussions. The competition between these processes
has been extensively analyzed in [16], motivated by [134].

Figure 2.16: The system mainly analyzed in this Thesis will consist of a topological Josephson junction,
having length L and width W , pierced by a magnetic flux ϕ, with a point-like injection of Cooper
pairs at the intersection between the edge states and the superconductors (represented by the left and
right leads in dark grey). We will call “LAR” the intraedge injection (upper panel) and “CAR” the
interedge one (lower panel). The second possibility, as we will see, is allowed as long as W ∼ ξ,
with ξ the superconducting coherence length.

The description of LAR and CAR is usually done by considering them within a
scattering matrix approach, as in [16]. In the remainder of this Thesis, we will follow a
different route, entirely tunneling-based. We will always deal with Quantum Spin Hall-
based Josephson junctions, and call “LAR” the tunneling injection of both electrons of
a Cooper pair into a same edge, and “CAR” the tunneling injection of the two electrons
into opposite edges (see Fig. 2.16). The latter process, as we will discuss, is possible
as long as W ∼ ξ, with W the junction’s width and ξ the superconducting coherence
length.

2.3.3 LAR and CAR in a topological Josephson junction: a tunneling description

Introduction

We now revise a work which will be of major importance for the rest of this Thesis [78].
The system under investigation is a Josephson junction where the non-superconducting
part is represented by either a trivial or a topological insulator, shown in Fig. 2.17. In a
trivial insulator, non-helical, whereas in a topological insulator, helical edge states may
contribute to subgap transport.

As we know from the previous discussion, a SQUID-like interference pattern is as-
sociated to a supercurrent density peaked at the edges of the sample. In particular,
in the experiment discussed in the previous Section, such a supercurrent density was
related to the topological regime of the system. However, edge states can also have a
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2.3. Beyond Dynes and Fulton: non-local transport

Figure 2.17: (a) Sketch of the long and narrow Josephson junction under consideration, biased by a
voltage V and pierced by the perpendicular magnetic field B. The solid lines represent the helical
edge states corresponding to a topological insulator as a link between the superconductors. The edge
states corresponding to the dashed lines would be present for a trivial insulator, a scenario which we
do not focus on. The upper and lower edge are labeled by τ . (b) Energy spectrum of the upper edge,
with the bare bandwidth M and the relevant subgap region 2∆. µ denotes the chemical potential in
the superconductors. Adapted with permission from [78]. Copyright 2024 by the American Physical
Society.

non-topological origin [42,43], and lead to experimental signatures which are similar to
the helical scenario. In particular, the even-odd effect may occur in such trivial systems
as well, and it is thus not sufficient to decisively identify the topological or trivial case.
Its h/e periodicity is often explained by the Crossed Andreev Reflection processes we
discussed above. However, in [78] it is shown that the flux-dependent nonequilibrium
supercurrent, for long13 and narrow Josephson junctions, exhibits striking differences
in the interference pattern of helical and non-helical edge states, further enhanced by
electron-electron interactions in the edge states. This allows for an unambiguous iden-
tification of the topological nature of the insulator.

In the following, we will be particularly interested in Josephson junctions based
on topological insulators. Therefore, we will not focus on the non-helical case, and
rather focus on carefully setting up the formalism, which will be applied also in the
next Chapters. Moreover, we will neglect electron-electron interactions, as they are not
crucial for the original results we will present.

Model

The considered Josephson junction is made of two s-wave superconducting leads grown
on a two-dimensional topological insulator, which is pierced by a magnetic flux ϕ.
The bulk gap of the insulator is assumed to be sufficiently large, such that transport
between the superconductors occurs only via the one-dimensional edge states. Also,
the presence of the superconductors pushes the underlying insulating regions into a
metallic phase [141] and destroys the edge states under them abruptly. All in all, as
shown in Fig. 2.17(a), the system consists of two one-dimensional channels of length

13These are junctions with the separation L between the superconductors being much larger than the coherence length ξ =
ℏvF /∆, where vF is the Fermi velocity in the normal region of the junction and ∆ is the superconducting gap.
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Chapter 2. Josephson junctions and interference effects

L, separated by a width W , with a weak and point-like injection of Cooper pairs at the
ends, where the edge states and the superconductors intersect. Such injection can be
intraedge (what we defined before as LAR) or interedge (what we defined before as
CAR). As a starting point, the full Hamiltonian is made of three contributions

H = HE +HS +HT , (2.60)

which describe the edge states, the superconductors and the tunneling connecting them.
As said before, we will focus on the case of helical edge states. The non-helical scenario
is easily derived by considering two copies ofHE distinguished by a helicity index (and
would correspond to the dashed lines in Fig. 2.17(a)). We can now refer to the previous
Chapter. Indeed, HE is given by Eq. (1.138) written now for both edges. In a matricial
form

HE =

∫ +∞

−∞
dxψ†(x)(−iℏvF∂x)ρzψ(x), (2.61)

where ρz is the z Pauli matrix acting in the right-mover/left-mover space and by bold
font we denote the vector basis ψ(x) = (ψ11(x), ψ−11(x), ψ1−1(x), ψ−1−1(x))

T . Here
ψρτ (x) is the Fermi operator that annihilates an electron at position x propagating in the
ρ-direction channel of the τ edge. In particular, ρ = 1/− 1 stands for the right/left di-
rection of motion and τ = 1/−1 for the upper/lower edge. Due to the spin-momentum
locking, these two indices completely define the edge states, since the spin polarization
is determined by their helical nature. Notice also that the integral between −L/2 and
L/2 has been extended to (−∞,+∞), because the main focus of the paper is on long
junctions where boundary effects are negligible.

The contributionHS refers to the two three-dimensional and BCS-like superconduc-
tors, and reads as

HS =
∑
j=l,r

Hj
S =

1

2

∫
drΨ†

S,jHj
SΨS,j, (2.62)

where

ΨS,j =
(
Ψj(r),Ψ

†
j(r)

)T
=
(
Ψj,↑(r),Ψj,↓(r),Ψ

†
j,↑(r),Ψ

†
j,↓(r)

)T
(2.63)

and Ψj,σ′(r) is the annihilation operator of an electron in the jth superconducting lead
(j = −1 for the left one, j = 1 for the right one14), with σ =↑ / ↓ spin polarization
(with respect to the same axis as the spin polarization defined in the edges) and at
position r. The Hamiltonian density is

Hj
S =


−ℏ2∇2

r

2m
− µ 0 0 −∆e−iθj

0 −ℏ2∇2
r

2m
− µ ∆e−iθj 0

0 ∆eiθj ℏ2∇2
r

2m
+ µ 0

−∆eiθj 0 0 ℏ2∇2
r

2m
+ µ

 . (2.64)

∆ is the superconducting pairing amplitude, µ the chemical potential – which is as-
sumed to be the same in the two superconductors – while θj are the bare pairing phases
that are kept distinguished in order to achieve the Josephson effect.

14In some cases, for the sake of clarity, j = l, r will be preferred to j = −1, 1.
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2.3. Beyond Dynes and Fulton: non-local transport

Lastly, HT represents the tunneling Hamiltonian connecting the superconductors
and the edges15. Is it given by

HT =
∑
j=±1

Hj
T =

∑
j=±1

∫
dx

∫
drΨ†

j(r)T j(r, x)ψ(x) + h.c., (2.65)

where the tunneling matrix is

[T j(r, x)]σ′,ρτ =
T√

1 + f 2
T

(ifT )
1−σ′τρ

2 eiρkF x δ(x− j
L

2
) δ(r− rjτ ). (2.66)

Here kF is the Fermi momentum resulting from the doping of the topological insu-
lator, whence the Dirac point is shifted away from zero energy. Moreover rj,τ =
(jL/2, τW/2, 0)T are the contact points between the j-th superconductor and the edges
(rj,1 for the upper and rj,−1 for the lower edge channel respectively). As anticipated, the
tunneling is assumed to occur locally at the intersections between the superconductors
and the edges. Two more parameters have been introduced: fT and T. The quantity fT
is the ratio of spin-reversing processes over the spin-conserving ones. It is reasonable
to include such a parameter in the model since it allows to take into account the Rashba
coupling in the material, which makes spin flips possible [87, 128, 193]. Typically, it
is fT ≪ 1. The other parameter T is the tunneling coefficient related to the opacity
of the barrier. Notice that the tunneling Hamiltonian HT has the same form as the one
introduced in Eq. (1.140), when discussing the proximity effect.

Effective Hamiltonian for the edge states

In order to obtain an effective Hamiltonian of the proximitized system, we need to
integrate out the superconductors. This procedure is quite long and can be found in
Sec. A.2 of Appendix A. The calculation is performed in the absence of the magnetic
field. We will discuss soon how the magnetic field is reinserted, keeping in mind the
gauge-invariance of the phase.

After the integration over the superconductors’ degrees of freedom, the total effec-
tive Hamiltonian is HE + δHE , with the extra term δHE written as [78]

δHE ≈
∑
ζ,ζ′,j

[
Γjζ,ζ′ψζ(x

−
j )ψζ′(x

+
j ) + h.c.

]
, (2.67)

Here, ζ, ζ ′ are collective indices standing for ρτ, ρ′τ ′, and x±j = jL/2± δζ,ζ′ξ/2, where
ξ = ℏvF/∆ is the coherence length in the edges, which represents the short distance
cut-off of our system, ξ ≪ L. The approximation is done focusing on the low temper-
ature and small voltage regime T, V ≪ ∆. In this regime, as commented in Appendix
A, transport between the superconductors and the edges is essentially carried out by
Cooper pairs, and there is no contribution of single quasi-particles.

Eq. (2.67) accommodates all the possible injection processes for the two electrons,
shown in Fig. 2.18: either in a spin-singlet or spin-triplet state (the triplet processes
being proportional to a factor f̃T = fT/

√
1 + f 2

T ; and either into the same edges (“Lo-
cal Andreev Reflection”, LAR) or into different ones (“Crossed Andreev Reflection”,

15As for HE , for nonhelical edge states it would have a larger dimension. It is here written for the helical case.
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Chapter 2. Josephson junctions and interference effects

CAR). CAR is possible since we assume ξS > W , where ξS = ℏvF,S/∆ (with vF,S the
Fermi velocity in the superconductors) is the coherence length of the superconductors,
and its suppression compared to LAR will be denoted by fC16. The splitting x±j is in-
troduced to make tunneling of spin-triplet Cooper pairs into or out of the same edge
possible.

Figure 2.18: Examples of processes of injection of Cooper pair from the left superconductor into the
edge channels, and then from the latters into the right superconductor. The injection into (or out of)
opposite edges is associated to a suppression factor of fC , and the injection in a spin triplet state is
associated to a suppression factor of f̃T . Adapted with permission from [78]. Copyright 2024 by the
American Physical Society.

The summation in Eq. (2.67) is antisymmetrized for each ζ ̸= ζ ′. This means that
the summed terms are only ten:

Γj11,11 Γj11,−11 Γj11,1−1 Γj11,−1−1 Γj−11,−11

Γj−11,1−1 Γj−11,−1−1 Γj1−1,1−1 Γj1−1,−1−1 Γj−1−1,−1−1.

Each of the Γjζ,ζ′ coefficients contains all the details specifying the tunneling process,
i.e. species of the electrons forming the Cooper pair, spin-flipping, Local/Crossed An-
dreev Reflection. They are all proportional to the tunneling rate Γ = πT2NS , with NS

the normal density of states per spin at the Fermi-level in the superconductors. The full
expression for the Γjζ,ζ′ coefficients is [78]

Γjζ,ζ′ = Γ
(
if̃T

)δρ∗τ,ρ′∗τ ′
(fC)

δτ,−τ ′ei[
j
2
kFL(ρ+ρ

′)−θj ]. (2.68)

Notice that, as expected, the factor fC is present only if τ ̸= τ ′ (CAR) and f̃T is present
only if the spins of the two electrons of the Cooper pair are the same (triplet injection).

Effect of the magnetic field and the voltage bias

The magnetic field and the voltage bias piercing the junction have not been included yet.
They both have an effect on the superconducting phase difference, and the tunneling
coefficients Γjζ,ζ′ need to be modified accordingly. The effect of a magnetic flux has
been discussed extensively in the first part of this Chapter, arriving at the expression in
Eq. (2.47) as the phase difference perceived by a Cooper pair transmitted from the left
to the right superconductor. The only paths allowed for electrons through the junction

16Here, fC ∼ f(kF,SW )e−W/ξS , with f an oscillatory and decaying function and kF,S the Fermi momentum in the super-
conductors. This quantity naturally emerges while integrating out the superconductors, see [78] for the details.
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2.3. Beyond Dynes and Fulton: non-local transport

are now y = ±W/2. If both electrons are injected into the upper edge (τ = τ ′ = 1) or
into the lower edge (τ = τ ′ = −1), Eq. (2.47) returns

φ(y = τW/2) =
τπϕ

ϕ0

+ θr − θl, (2.69)

These two cases correspond to LAR processes. It can be easily shown that for a single
transmitted electron on the τ edge, the magnetic flux contribution is τπϕ/2ϕ0. There-
fore, if a Cooper pair is split over the two edges via a CAR process, the two single-
electron phases cancel, and no-flux dependence arises. The effect can be simply in-
cluded in the model just by adding flux-dependent factors to the Γjζ,ζ′ coefficients. In
particular, it is sufficient to substitute

e−iθj → e
−i

[
θj+

j
2

πϕ(τ+τ ′)
2ϕ0

]
. (2.70)

We can check that Eq. (2.70) returns the correct phase differences we discussed. The
Cooper pair tunneling from the left superconductor to the edges is described by (Γlζ,ζ′)

∗,
and the one from the edges to the right superconductor is described by Γrζ,ζ′ . For two
CAR processes τ = −τ ′,

e
−i

[
θr+

1
2

πϕ(τ+τ ′)
2ϕ0

]︸ ︷︷ ︸
FromΓr

ζ,ζ′

e
i
[
θl− 1

2
πϕ(τ+τ ′)

2ϕ0

]︸ ︷︷ ︸
From (Γl

ζ,ζ′ )
∗

= e−i(θr−θl), (2.71)

hence there is no flux dependence. On the other hand, for two LAR processes τ = τ ′,
and

e
−i

[
θr+

1
2

πϕ(τ+τ ′)
2ϕ0

]︸ ︷︷ ︸
FromΓr

ζ,ζ′

e
i
[
θl− 1

2
πϕ(τ+τ ′)

2ϕ0

]︸ ︷︷ ︸
From (Γl

ζ,ζ′ )
∗

= e
−i

[
(θr−θl)+ τπϕ

ϕ0

]
, (2.72)

in agreement with Eq. (2.69).
Notice that the collected geometric Aharonov-Bohm phase is the only magnetic

effect included, while orbital- and Zeeman effects are neglected.
The last element is the voltage bias, which brings a time dependence into the super-

conducting phase difference (the AC Josephson effect). This is implemented by

e
−i

[
θj+

j
2

πϕ(τ+τ ′)
2ϕ0

]
→ e

−i
[
θj+

j
2

πϕ(τ+τ ′)
2ϕ0

+ j
2
ωJ t

]
, (2.73)

with ωJ = 2eV/ℏ, so that the overall superconducting phase difference reads as

φ =
(τ + τ ′)πϕ

2ϕ0

+ ωJt+ θr − θl. (2.74)

To conclude, the new expressions for the Γjζ,ζ′ coefficients are

Γjζ,ζ′ = Γ
(
if̃T

)δρτ,ρ′τ ′
(fC)

δτ,−τ ′e
i
[
j
2
kFL(ρ+ρ

′)−θj− j
2

πϕ(τ+τ ′)
2ϕ0

− j
2
ωJ t

]
. (2.75)

Computation of the supercurrent

Having assessed the effective Hamiltonian of the system at low-energies E ≪ ∆,
Heff = HE + δHE , including the effect of the magnetic field and the bias, it is now
possible to go through the supercurrent calculation.
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Chapter 2. Josephson junctions and interference effects

The total number operator relative to the electrons in the edge states is given by

N =
∑
ζ

∫
dxψ†

ζ(x)ψζ(x). (2.76)

The unperturbed edge system is clearly particle number conserving, namely [HE, N ] =
0, while a net change in the number of electrons arises due to the coupling to the
superconductors. In particular, we denote as Ṅ r(Ṅ l) the variation originated by the
right(left) superconductor. In the Heisenberg picture,

Ṅ r =
i

ℏ
[HE + δHr

E, N ] =
i

ℏ
[δHr

E, N ], (2.77)

Ṅ l =
i

ℏ
[HE + δH l

E, N ] =
i

ℏ
[δH l

E, N ]. (2.78)

The operator Ij , relative to the current flowing in the edges reads as17 Ij(t) = eṄ j .
Specifically, Ir(t)(I l(t)) are the currents injected from the superconducting leads in
the edges. Since the procedure is independent of the choice of the lead, the authors
report the calculation of the generic j-th term.

Given the form of δHj
E , carrying out the anticommutation leads to

Ij =
2ie

ℏ
∑
ζ,ζ′

[
Γjζ,ζ′ψζ(x

−
j )ψζ′(x

+
j )− h.c.

]
. (2.79)

The next step is to compute the expectation value

Ij(t) ≡
〈
U(−∞, t)Ij(t)U(t,−∞)

〉
, (2.80)

taken with respect to the unperturbed edge state system in the far past. Here, U(−∞, t) =

U †(t,+∞) = T+e
− i

ℏ
∫ t
−∞ dτδHE(τ) is the time-evolution operator in the interaction pic-

ture representation, with T+ the time-ordering operator.
Assuming the coupling between the lead j and the edges to be weak (namely ΓNE ≪

1, with NE the density of states at the Fermi-level in the edge system), δHE can be re-
garded as a small perturbation. According to the linear response theory, up to linear
order in δHE (corresponding to second order in Γ), we get

Ij(t) ≈ i

ℏ

∫ t

−∞
dτ
〈[
δHE(τ), I

j(t)
]〉
E
. (2.81)

The subscript “E” serves as a reminder of the fact that we are considering an initial
(at t = −∞) equilibrium average calculated with respect to the unperturbed system
(described by HE) in the past. In the calculation of Ij(t), the relevant perturbation is
the one induced by the −j-th superconductor, namely δH−j

E . This can be understood
by looking at the expressions of the Γjζ,ζ′ coefficients: since they keep trace of the phase
of the superconductor to whom they are related, the superconducting phase difference-
dependent supercurrent originates from the −j, j terms.

17We remind that the perturbation δHj
E - and therefore also Ij - acquires a time dependence in the Γj

ζ,ζ′ coefficients as the bias
V is non-zero.
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2.3. Beyond Dynes and Fulton: non-local transport

The calculation in full detail can be found in Appendix A. Skipping some steps, one
gets

Ij(t) =
4eΓ2

ℏ2
Re
{
e−i(ωJ t+φ0)

∑
ζ,ζ′

fζ,ζ′

∫ ∞

−∞
dt′ ei

eV
ℏ t′θ(t′)

〈[
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′), ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

]〉
E

}
, (2.82)

where

fζ,ζ′ = (f̃T )
2δρ∗τ,ρ′∗τ ′f

2δτ,−τ ′

C e
i
[
kFL(ρ+ρ

′)− πϕ
2ϕ0

(τ+τ ′)
]
. (2.83)

Such prefactor emerges from the product Γjζ,ζ′(t)
[
Γ−j
ζ,ζ′(t− t′)

]∗
, and is reminescent of

the injection out of the −j-th superconductor and into the j-th superconductor. For
instance, a spin-flip factor f̃T is collected if the spin polarizations (ρτ and ρ′τ ′) of
the two electrons are the same. Along the same line of reasoning, a CAR factor fC
is acquired if the Cooper pair is split over the two edges, τ = −τ ′, neutralizing the
SQUID phase factor πϕ/ϕ0 which is expected in the LAR case only. From now on, it
is set j = r, −j = l. With further manipulation and by applying Wick’s theorem, the
current finally reads as

Ir(t) =
2e∆Γ2

ℏ3π2v2F
Im
{
e−i(ωJ t+φ0)

∑
ζ,ζ′

fζ,ζ′

∫ ∞

0

ds eiṼ sImΠζ,ζ′

(
T̃ , L̃, s

)}
, (2.84)

where each addend corresponds to a process (the transport of a Cooper pair through
the junction) contributing to the current. In Eq. (2.84), Ṽ = eV/∆, L̃ = L∆/ℏvF ,
T̃ = πkBT/∆ and s = t′∆/ℏ are dimensionless quantities, and the function Πζ,ζ′ is
given by a combination of products of two Green functions,

Πζ,ζ′

(
T̃ , L̃, s

)
=δζ,ζ′

T̃

sinh
[
T̃
(
L̃− δζ,ζ′ − ρs+ iρ

)] T̃

sinh
[
T̃
(
L̃+ δζ,ζ′ − ρs+ iρ

)]
−ρρ′ T̃

sinh
[
T̃
(
L̃− ρs+ iρ

)] T̃

sinh
[
T̃
(
L̃− ρ′s+ iρ′

)] . (2.85)

If ζ = ζ ′, which means that the two electrons within a Cooper pair are injected in
a spin-triplet state and into the same edge, the above expression can be expanded in
ξ/L≪ 1. At the second order, this leads to

Πζ,ζ

(
T̃ , L̃, s

)
=

T̃ 4

sinh4
[
T̃
(
L̃− ρs+ iρ

)] . (2.86)

Notice that the absence of the Cooper pair splitting ±ξ/2 introduced before would have
resulted in Πζ,ζ

(
T̃ , L̃, s

)
= 0, in accordance with Pauli principle.

The temperature and bias dependence is encoded by the integrals over s, which are
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Chapter 2. Josephson junctions and interference effects

essentially five, which in [78] are denoted as

I1 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− s+ i

)]
sinh

[
T̃
(
L̃+ s− i

)] , (2.87a)

I2+ = −
∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh2
[
T̃
(
L̃− s+ i

)] , (2.87b)

I2− = −
∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh2
[
T̃
(
L̃+ s− i

)] , (2.87c)

I4+ =

∫ +∞

0

ds eiṼ sIm
T̃ 4

sinh4
[
T̃
(
L̃− s+ i

)] , (2.87d)

I4− =

∫ +∞

0

ds eiṼ sIm
T̃ 4

sinh4
[
T̃
(
L̃+ s− i

)] . (2.87e)

In the following, we will use the notation

I2 = ei2kFLI2+ + e−i2kFLI2−, I4 = ei2kFLI4+ + e−i2kFLI4−. (2.88)

In particular, the paper especially analyzes the long junction regime, L̃ ≫ 1, and since
the current computation considered low sub-gap energies, we have Ṽ , T̃ ≪ 1. Details
on the integrals’ behavior can be found in the Supplemental Material to [78].

Results and discussion

The quantity which is inspected in [78] is the magnitude of the ωJ Fourier component
of the time dependent supercurrent Ir(t), namely

IrωJ
=

∣∣∣∣∣ 1T
∫ T/2

−T/2
dt e−iωJ tIr(t)

∣∣∣∣∣ = 1

2

2e∆Γ2

ℏ3π2v2F

∣∣∣∣∣∑
ζ,ζ′

fζ,ζ′

∫ ∞

0

ds eiṼ sImΠζ,ζ′

(
T̃ , L̃, s

)∣∣∣∣∣ ,
(2.89)

as a function of the magnetic flux ϕ. Here, T = 2π/ωJ . At zero-bias, the corresponding
quantity is the critical current associated to Ir. In this case, the prefactor 1/2 is absent.
In terms of flux dependence, the above expression admits a simple form

IrωJ
=

∣∣∣∣A cos
πϕ

ϕ0

+ f 2
CB

∣∣∣∣ , (2.90)

where, as expected, we recognize the SQUID term originating from LAR and the flux-
independent term originating from CAR. The coefficients A and B contain all the am-
plitudes associated to the current contributing processes, and therefore all the details of
the underlying model. They might have cumbersome expressions as a function of the
parameters and are in general complex-valued. In particular,

A = 2(I1 + f̃ 2
TI4), B = (I2 + 2f̃ 2

TI1). (2.91)

The resulting plots are shown in Fig. 2.19. We omit those relative to electron-electron
interactions, which we did not review. Apart from the zero-bias case (Fig. 2.19(a)),
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2.3. Beyond Dynes and Fulton: non-local transport

Figure 2.19: Different plots of IrωJ
, with each curve normalized with respect to its maximum. In all

panels, L̃ = 20, f̃T = 0, kFL = π(4n + 3)/4, fC = 0.3. The insets show the maximum and
minimum value of IrωJ

as a function of the sweeping parameter and normalized with respect to the
overall maximum value. (a) Ṽ = 0 and T̃ varies between 0 and 0.2. (b) Same range for temperature,
but Ṽ = 0.1. (c) Bias Ṽ varying between 0 and 0.2 while T̃ = 0.1. Adapted with permission
from [78]. Copyright 2024 by the American Physical Society.

different values of temperature and bias give rise to different features, and the even-odd
effect can be more or less visible. Unlike the helical case, for non-helical edge chan-
nels (not discussed here) the plots are highly robust in the parameter space. The papers
hence suggests to measure the flux-dependent Josephson-frequency Fourier component
of the supercurrent, for various values of bias voltage and temperature, as a way to
identify the topological or non-topological nature of the edge states carrying the super-
current.

As a last comment we emphasize that, within this model, the two electrons within a
Cooper pair enter and leave the junction in the same spin state and via the same type of
Andreev reflection process. In the next Chapter we will see that, in the presence of a
constriction between the helical edge states, this fact does not hold true anymore, and a
new interplay of Local and Crossed Andreev Reflection emerges.
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CHAPTER3
The proximitized Quantum Spin Hall constriction

In this Chapter, we delve into the theoretical analysis of a long constriction between
the helical edge states of a two-dimensional topological insulator. The constriction is
laterally tunnel-coupled to two superconductors and a magnetic field is applied perpen-
dicularly to the plane of the two-dimensional topological insulator. This configuration
merges many of the concepts we have previously introduced. Despite its technologi-
cal importance, it remains largely uncharted in the realm of theoretical investigation.
While the complete implementation of a proximitized constriction has yet to be realized
in experimental settings, both the constriction itself and the proximization of topolog-
ical insulators have been achieved. Therefore, the assembly of the entire structure ap-
pears to be a feasible endeavor, and its theoretical analysis holds significant relevance.
Moreover, the only result reported in literature dealing with a long Quantum Spin Hall
constriction, and mentioned in Chapter 1, is about an interaction-induced reduction of
the conductance [168], which might disappear in the presence of superconductors, due
to screening. It is hence even more challenging to demonstrate the formation of topo-
logical constrictions in the presence of superconductivity, and our analysis addresses
this issue. At the same time, we provide a characterization of the device and pinpoint
an experimental signature of the coupling between the edges. These original results
have been published in [188], and this Chapter is largely based upon that.

More specifically, we characterize theoretically the Josephson current in the pres-
ence of a magnetic field perpendicular to the plane defined by the edges. We find that
the constriction leads to a 4ϕ0-periodicity of the maximal current as a function of the
magnetic flux. Such a periodicity is new compared to the SQUID and the even-odd
effect ones, and is visible both if a finite bias is applied to the junction and in the
zero-bias regime. We also show that the signature is robust - or even enhanced - at
finite temperature. We emphasize that the anomalous periodicity we find is not strictly
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Chapter 3. The proximitized Quantum Spin Hall constriction

related to crossings in the Andreev bound states and to Majorana physics [96]. Uncon-
ventional periodicities have been previously reported in [122], but based on different
physics and in a Josephson junction with a nanowire as non-superconducting element
and not a quantum spin Hall constriction. Ours is instead due to a new interplay of
Local and Crossed Andreev Reflection allowed by the constriction, as schematically
shown in Fig. 3.1: differently from the case without inter-edge tunneling, a Cooper
pair can now enter and leave the junction with Andreev Reflection processes of dif-
ferent type. Being the junction pierced by a magnetic flux, this gives rise to a new
possibility for the Aharonov-Bohm phase acquired, distinguished from that of a LAR-
LAR or CAR-CAR propagation. As we will discuss, the processes responsible for the
anomalous 4ϕ0-periodicity are exactly those where, within the constriction, one of the
two electrons forming the Cooper pair tunnels between the two edges.

Figure 3.1: An innovative feature of Josephson junctions based on Quantum Spin Hall constrictions:
the possible interplay of Local (LAR) and Crossed Andreev Reflection (CAR) due to single-electron
inter-edge tunneling within the constriction.

The starting point for our formalism is the tunneling model for the topological
Josephson junction we described in Subsec. 2.3.3. On top of that, we embed the pres-
ence of the inter-edge tunneling events discussed in 1.2.4.

At the end of the Chapter we will further comment on two points: first, the robust-
ness of the results against edge reconstruction [187]; second, their generalization to the
case of uniform inter-edge tunneling, and not confined to a subregion of the system as
it is in Fig. 3.1.

3.1 Anomalous flux periodicities

3.1.1 Model

Fig. 3.2 shows the setup under investigation, consisting of a Josephson junction made
of a two-dimensional topological insulator sample of length L and width W tunnel-
coupled to two s-wave superconductors, right (r) and left (l). The superconduct-
ing part is a proximitized region of the topological structure. Halfway in the non-
superconducting region there is a constriction between the helical edge states, having
length ℓ (ℓ < L, ℓ > kF

−1, with kF the Fermi momentum) and width w ≪ W . As
will be soon discussed, within the constriction inter-edge tunneling events may occurr,
namely an electron can move from the upper edge to the lower one or viceversa. We
additionaly include a magnetic field B applied perpendicularly to the plane of the two-
dimensional topological insulator, and a bias V . We will now examine in detail each of
the components.
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3.1. Anomalous flux periodicities

Figure 3.2: Schematic of the setup: a sample of two-dimensional topological insulator of length L and
width W is laterally tunnel-coupled to two superconductors (right, r and left, l); a magnetic field
B, applied perpendicularly to the plane of the topological insulator, and a bias V are also included.
Halfway in the non-superconducting region, there is a constriction of length ℓ and width w between
the helical edges. Figure adapted from [188].

The constriction

Central to our investigation is the constriction formed between the helical edges of the
two-dimensional topological insulator. These edges span the range −L/2 < x < L/2.
Their separation W at the interfaces with the superconductors diminishes significantly
to w ≪ W within the constriction of length ℓ < L (where ℓ > k−1

F ), as shown in Fig.
3.3. Since L ≫ k−1

F , the system under inspection acquires translational invariance and
we retain momentum k as an eligible quantum number. The Hamiltonian describing
the helical states H0

E is given by

H0
E =

∑
k

c†kH0
Eck, (3.1)

where
ck = (ck,11, ck,−11, ck,−1−1, ck,1−1)

T , (3.2)

with ck,ρτ the Fermi operator that annihilates an electron with momentum k propagating
in the ρ-direction channel of the τ edge. As in the previous Chapter, we denote by
ρ = 1(−1) the right (left) direction of motion and by τ = 1(−1) the upper (lower)
edge. The bare Hamiltonian is made of two terms,

H0
E = Hkin. +Hf.s.. (3.3)

The kinetic part Hkin. is described by two copies of Eq. (1.138) with opposite helicity,

Hkin. = ℏvFkτz ⊗ ρz (3.4)

with vF the Fermi velocity. Here ρi and τi, i = 0, x, y, z represent the identity and the
three Pauli matrices acting on right/left mover and upper/lower edge space, respectively.
The second term,

Hf.s. = fτx ⊗ ρx (3.5)

describes the forward scattering tunneling across the edges parametrized by f (as intro-
duced in Eq. (1.143)). We recall that it originates from processes where one electron
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Chapter 3. The proximitized Quantum Spin Hall constriction

changes the edge while preserving the direction of motion – hence flipping its spin and
breaking axial spin symmetry – and that it preserves time-reversal symmetry. It is im-
portant to highlight that, while the parameter f is taken as constant over the entire junc-
tion, the assumption is that tunneling takes place exclusively within the constriction of
length ℓ, owing to the smaller separation of the helical edges w ≪ W . However, in the
case of long constriction (ℓ > k−1

F ), we only take into account momentum-conserving
tunneling events, neglecting finite size effects related to ℓ. Sec. 3.3 will deal with
inter-edge tunneling uniformly present in the whole junction L.

When discussing Quantum Spin Hall constrictions, a backward scattering term of
the type Hb.s. = bτx ⊗ ρ0 was also introduced (see Eq. (1.142)). In the present con-
text, this term is neglected, along with any gapping of the edges due to intra-edge
mechanisms. As discussed in Subsec. 1.2.4, the former (but also the latter) does not
exert significant influence on the system away from the Dirac point, which for thick
heterostructures is located deep in the valence band [168]. We can thus focus on this
circumstance and ignore such effects. They could be included perturbatively but we do
not expect them to affect our results.

Given the coherent transport observed over distances comparable to the sample di-
mensions in state-of-the-art devices, we assume the absence of impurities [18]. For a
schematic of the system and of the couplings, see Fig. 3.3. Diagonalizing Eq. (3.1), we

Figure 3.3: Schematic of the constriction of length ℓ and width w. The direction-conserving couplings
between the upper and lower edge of the two-dimensional topological insulator, with amplitude f ,
are also shown. Figure adapted from [188].

obtain

H0
E =

4∑
i=1

∑
k

EAi
(k)A†

k,iAk,i, (3.6)

with

Ak,1 =
1√
2
(−ck,−11 + ck,−1−1)

Ak,2 =
1√
2
(ck,−11 + ck,−1−1)

Ak,3 =
1√
2
(−ck,11 + ck,1−1)

Ak,4 =
1√
2
(ck,11 + ck,1−1) , (3.7)
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3.1. Anomalous flux periodicities

and the spectrum is

EA1(k) = −f − ℏvFk
EA2(k) = f − ℏvFk
EA3(k) = −f + ℏvFk
EA4(k) = f + ℏvFk. (3.8)

The four operators in Eq. (3.7) have well-defined chirality (left for Ak,1, Ak,2 and right
for Ak,3, Ak,4). We highlight the 1/

√
2 weight in each term Ak,i, due to the equal

superposition of an upper-edge state and a lower-edge state. We re-establish that the
role of f is to split the dispersion in energy, analogously to the Rashba coupling in
quantum wires [74, 84, 132, 138, 166].

In the following we will rediscuss the tunneling processes in connection with the
magnetic flux ϕ through the plane of the topological insulator.

Superconducting leads and effective Hamiltonian

The edges just described are proximitized, for x < −L/2 and x > L/2, with two
standard BCS superconductors 1. The left superconductor, extending for x < −L/2,
is indexed by j = −1 while the right one, extending for x > L/2, by j = 1. In some
later expressions, and especially with several indices involved, we will resort back to
l and r. The superconducting pairing is denoted by ∆j = ∆eiθj , with θj the bare
superconducting pairing phases - that we keep distinguished in principle. Moreover,
we assume the chemical potential to be the same in the two superconductors. Their
Hamiltonian Hj

S and the tunneling Hamiltonian between the superconductors and the
constriction, HT =

∑
j H

j
T , are kept identical to the ones in [78] introduced in the

previous Chapter. As shown in Appendix A, they lead to the effective Hamiltonian of
the proximitized system in Eq. (2.67), approximately written as2 [78]

δHE ≈
∑
ζ1,ζ2,j

[
Γjζ1,ζ2ψζ1(x

−
j )ψζ2(x

+
j ) + h.c.

]
, (3.9)

with ψζ(x) = ψρτ (x) = 1/
√
L
∑

k ck,ρτe
ikx. Compared to Eq. (2.67), and for future

convenience, we denote by ζ1, ζ2 – instead of ζ, ζ ′ – the collective indices for the two
injected electrons. In particular, ζ1 = ρ1τ1, ζ2 = ρ2τ2 and x±j = jL/2±δζ1,ζ2ξ/2, where
ξ = ℏvF/∆ is the coherence length in the edges, with ξ ≪ L. The approximation is
done for the regime EAi

≪ ∆. The possible processes of injection of the two electrons,
already present in [78], are schematized in Fig. 3.4. The triplet processes, enabled by
spin-orbit coupling [193], are rescaled by a factor f̃T = fT/

√
1 + f 2

T if compared to the
singlet ones. The parameter fT is included in the single-electron tunneling Hamiltonian
associated to the interfaces between the superconductor and the topological insulator
(see Eq. (2.65)), to take into account spin-flip events. The injection into different
edges via CAR is suppressed by the factor fC if compared to LAR. In particular, fC ∝
e−W/ξS , and in order to allow for a significant amount of CAR we assume ξS > W ,
ξS = ℏvF,S/∆ being the coherence length of the superconductors (vF,S is their Fermi
velocity). All this information is encoded in each of the Γjζ1,ζ2 coefficients.

1In experiments on two-dimensional topological insulators, Niobium is the prime example of employed superconductor.
2We remind that the summation is antisymmetrized for each ζ1 ̸= ζ2.
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Chapter 3. The proximitized Quantum Spin Hall constriction

Figure 3.4: Possible processes of injection of two electrons: in a spin-singlet or spin-triplet state (left
or right panels) and either into the same edge or into different ones (upper or lower panels). Figure
adapted from [188].

In momentum space, the effective Hamiltonian becomes

δHE =
∑
ζ1,ζ2,j

[
Γjζ1,ζ2

1

L

∑
k1

∑
k2

ck1,ζ1e
ik1x

−
j ck2,ζ2e

ik2x
+
j + h.c.

]
= δHr

E + δH l
E, (3.10)

where

Γjζ1,ζ2 = (−1)δζ1,−1−1δζ2,1−1Γ
(
f̃T

)δρ1∗τ1,ρ2∗τ2
(fC)

δτ1,−τ2ei[
j
2
kFL(ρ1+ρ2)−θj ]. (3.11)

Here Γ is the tunneling rate of Cooper pairs3. Compared to [78], the additional minus
sign in Eq. (3.11) is due to a different choice of the order for our edges basis4. This
choice obviously does not affect the results.

Introduction of magnetic field and bias

So far we didn’t include the applied bias V across the two superconductors and the
magnetic flux ϕ piercing the junction perpendicularly, and it is now necessary to modify
the rates properly. While the bias simply introduces a time dependence (2eV/ℏ)t (see
Eq. (2.23)), it is not a trivial question, in principle, whether we can use the same
approach of [78] concerning the magnetic field. As in that work, we neglect the Zeeman
coupling since it only provides a small energy splitting of the energy bands without
significantly contributing to our results. The orbital effect is encoded by the minimal

3Γ ∝ T2, where T parametrizes the magnitude of single-electron tunneling, see Eq. 2.66.
4This naturally leads to the definition of Γj

−1−1,1−1 ≡ Γj
−1−1,1−1 −Γj

1−1,−1−1 instead of Γj
1−1,−1−1 ≡ Γj

1−1,−1−1 −
Γj
−1−1,1−1 as in the original paper. The difference in sign between the right hand side in the two cases originates the minus in

Eq. (3.11).
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3.1. Anomalous flux periodicities

coupling −iℏ∇ → −iℏ∇ + eA, with e > 0 the absolute value of the electron charge.
We use the Landau gauge A = B(−y, 0, 0), such that the upper and lower edge states
acquire opposite contributions ∓ evFϕ

2L
to the energy. In the long junction limit L→ ∞,

this contribution can hence also be neglected.
In the absence of inter-edge tunneling, the Aharonov-Bohm phase is ±πϕ/ϕ0 for a

Cooper pair entering and exiting the edge channels through two LAR processes both on
the upper/lower edge. By contrast, when both processes are CAR, the Aharonov-Bohm
phase is γAB = 0, as the phases acquired by the two electrons cancel with each other.
However, the distinctive feature of our system is that an arbitrary number of inter-edge
tunnelings may occur within the constriction, originating new processes that transfer a
Cooper pair through the junction, as sketched in Fig. 3.1. A more careful discussion is
hence in order, in particular distinguishing between even and odd numbers of tunneling
events.

• With an even number of tunnelings, a Cooper pair can now enter the junction with
a LAR process on the upper/lower edge and leave it with a LAR process on the
opposite (lower/upper) one. This process is flux-independent, since the Aharonov-
Bohm phase picked by the two electrons on the upper edge is canceled by the one
picked on the lower one.

• With an odd number of tunnelings, by contrast, a Cooper pair can enter the junc-
tion with a LAR and exit with a CAR (or viceversa). This unusual scenario is as-
sociated to an unconventional Aharonov-Bohm phase of ±πϕ/2ϕ0. For instance,
if the Cooper pair enters the junction from the left superconductor with a LAR in
the upper edge and exits to the right superconductor with a CAR, the two electrons
accumulate the same phase while traveling on the upper edge, until the constric-
tion. After the constriction, they travel on opposite edges and their phases cancel
with each other. The resulting magnetic phase is πϕ/2ϕ0. The opposite phase
−πϕ/2ϕ0 is obtained when the LAR process happens on the lower edge.

Importantly, the discussion of the Aharonov-Bohm phases above holds true if the flux
enclosed in the constriction is negligible. This is fully justified by the assumption
ℓw ≪ LW . The relevance of this approximation is that it allows us not to care about the
exact number of tunneling events and their precise location within the constriction. The
inter-edge tunneling is effectively treated as occurring halfway across the junction. For
this reason, in the following calculations, the lengthscale ℓwill not intervene explicitely,
and only L will appear. If the flux enclosed in the constriction were included in our
calculation, it would just add a weak Fraunhofer-like decay to the flux-dependence.
However, our results would be qualitatively unchanged. At the end of the Chapter
we will comment on how to deal with the case of extended tunneling, namely with a
constriction as long as the junction, ℓ = L. Thanks to the assumption above, we can
include in our previous description all the phases described before, just by adding the
same flux-dependent factors of [78] to the tunneling amplitudes in Eq. (3.11):

e−iθj → e
−i

[
θj+

j
2

(
πϕ(τ1+τ2)

2ϕ0
+ωJ t

)]
, (3.12)

with ωJ = 2eV/ℏ. Since the gauge-invariant phase difference mentioned above is
among the superconductors, it will involve one tunneling with j = −1 ((Γlζ1,ζ2)

∗, from
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Chapter 3. The proximitized Quantum Spin Hall constriction

the left superconductor to the edges) and one with j = 1 (Γrζ3,ζ4 , from the edges to
the right superconductor). Even in the presence of inter-edge tunneling, Eq. (3.12)
returns the correct phase differences we discussed: for two CAR processes (τ1 = −τ2
and τ3 = −τ4), there is no flux-dependence; for two LAR processes on the same edge
(τ1 = τ2 = τ3 = τ4 ≡ τ ), we get a flux-dependent phase τπϕ/ϕ0; for two LAR on
opposite edges (τ1 = τ2 ̸= τ3 = τ4) we get zero; for a CAR and a LAR (τ1 = τ2 ≡ τ
and τ3 = −τ4, or τ1 = −τ2 and τ3 = τ4 ≡ τ ) we get the anomalous term, with the sign
depending on the τ of the LAR. This term will be essential for our results.

To conclude this part, we move to the Ak,i basis by making the unitary transfor-
mation inverse to the one of Eq. (3.7). Let aζi,i, with ζi = 11, −11, −1 − 1, 1 − 1
and i = 1, 2, 3, 4, be the elements of such unitary matrix. Then, for each of the four
operators ck,ζi , we have

ck,ζi = aζi,1Ak,1 + aζi,2Ak,2 + aζi,3Ak,3 + aζi,4Ak,4. (3.13)

Substituting Eq. (3.13) in Eq. (3.10), we obtain

δHE =
∑
i1,i2

∑
k1,k2

∑
ζ1,ζ2,j

1

L

[
Γjζ1,ζ2aζ1,i1aζ2,i2e

ik1x
−
j eik2x

+
j Ak1,i1Ak2,i2 + h.c.

]
≡
∑
i1,i2,j

∑
k1,k2

1

L

[
Γji1,i2(k1, k2)Ak1,i1Ak2,i2 + h.c.

]
, (3.14)

where we have defined

Γji1,i2(k1, k2) ≡
∑
ζ1,ζ2

Γjζ1,ζ2aζ1,i1aζ2,i2e
ik1x

−
j eik2x

+
j . (3.15)

Until now, the summation over i1, i2 runs over 16 terms. We can reduce them up to
10 by antisymmetrizing the coefficients when i1 ̸= i2, introducing the new coefficients
αi1,i2,j

5. We obtain

δHE =
∑
j

δHj
E =

∑
j

∑
i1,i2

∑
k1,k2

1

L
[αi1,i2,j(k1, k2)Ak1,i1Ak2,i2 + h.c.] , (3.16)

where now αi1,i2 = α1,1 α1,2 α1,3 α1,4 α2,2 α2,3 α2,4 α3,3 α3,4 α4,4.
5E.g., for i1, i2 = 1, 2:

∑
k1,k2

Γj
1,2(k1, k2)Ak1,1Ak2,2 +

∑
k1,k2

Γj
2,1(k1, k2)Ak1,2Ak2,1 =

=
∑
k1,k2

Γj
1,2(k1, k2)Ak1,1Ak2,2 +

∑
k1,k2

Γj
2,1(k2, k1)Ak2,2Ak1,1 =

=
∑
k1,k2

Γj
1,2(k1, k2)Ak1,1Ak2,2 −

∑
k1,k2

Γj
2,1(k2, k1)Ak1,1Ak2,2 =

=
∑
k1,k2

(
Γj
1,2(k1, k2)− Γj

2,1(k2, k1)
)
Ak1,1Ak2,2 ≡

≡
∑
k1,k2

α1,2,j(k1, k2)Ak1,1Ak2,2.
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3.1. Anomalous flux periodicities

The effective Hamiltonian HE of the edges, which reads

HE = H0
E + δHE, (3.17)

is now expressed on the basis that diagonalizes H0
E . In the next Subsection, we show

how to adapt the formalism of [78] for the evaluation of the Josephson current in our
system, as the number of terms in the presence of the constriction is noticeably larger.

3.1.2 Formalism for the transport properties

Let N =
∑

i

∑
k A

†
k,iAk,i be the total number operator relative to the electrons. The

net change in the number of electrons, different from zero due to the coupling to the
superconductors, is given by Ṅ , with

Ṅ =
i

ℏ
[H0

E+δHE, N ] =
i

ℏ
(
[H0

E + δHr
E, N ] + [H0

E + δH l
E, N ]

)
≡ Ṅ r+Ṅ l, (3.18)

where [·, ·] is the commutator and

Ṅ r =
i

ℏ
[H0

E + δHr
E, N ] =

i

ℏ
[δHr

E, N ]

Ṅ l =
i

ℏ
[H0

E + δH l
E, N ] =

i

ℏ
[δH l

E, N ] (3.19)

in the Heisenberg picture.
The current operator describing the exchange of electrons between the jth supercon-

ductor and the edges is given by Ij(t) = eṄ j . According to our convention, Ir(t) and
I l(t) are the currents injected from the superconducting leads into the edges, as shown
in Fig. 3.5 by the blue arrows. The total current is

I tot(t) = Ir(t)− I l(t), (3.20)

flowing in the direction shown by the yellow arrow in the Figure. In the following we

Figure 3.5: Direction of the right, left and total current flow according to our conventions. Figure
adapted from [188].

sketch the calculation of the generic jth term.
The anticommutation leads to

Ij =
2ie

ℏL
∑
i1,i2

∑
k1,k2

1

L
[αi1,i2,j(k1, k2)Ak1,i1Ak2,i2 − h.c.] . (3.21)
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Chapter 3. The proximitized Quantum Spin Hall constriction

In the weak coupling regime between leads and edges, δHE can be treated perturba-
tively. We are interested in the mean value

⟨Ij(t)⟩ =
〈
U(−∞, t)Ij(t)U(t,−∞)

〉
, (3.22)

taken with respect to the unperturbed edge state system in the far past, and where Ij

time-evolves according to the unperturbed edge Hamiltonian H0
E . With a little abuse of

notation, in the following we will drop the angle brackets and simply denote it as Ij(t).
Here, U(−∞, t) = U †(t,+∞) = T+e

− i
ℏ
∫ t
−∞ dτδHE(τ) is the time-evolution operator in

the interaction picture representation, with T+ the time-ordering operator. Up to linear
order in δHE (second order in the tunneling rate Γ in this case), we get

Ij(t) ≈ i

ℏ

∫ t

−∞
dτ
〈[
δHE(τ), I

j(t)
]〉

0
. (3.23)

The subscript "0" specifies that the average is calculated with respect to the unperturbed
system described by H0

E . As in the previous Chapter, the relevant perturbation (leading
to the superconducting phase difference-dependent supercurrent) is the one induced by
the −jth superconductor, namely δH−j

E .
Moving forward with the calculations (see Appendix B), we get

Ij(t) =
8e

ℏ2
Im
{∫ ∞

−∞
dt′θ(t′)

∑
i1,i2

∑
k1,k2,k′1,k

′
2

1

L2
αi1,i2,j(k

′
1, k

′
2, t)α

∗
i1,i2,−j(k1, k2, t− t′)

〈[
Ak′1,i1(t)Ak′2,i2(t), A

†
k2,i2

(t− t′)A†
k1,i1

(t− t′)
]〉

0

}
, (3.24)

where we have recovered the explicit time dependence of the coefficients α6, and the
correlation functions from now on will be time-ordered. Since the unperturbed edge
system is time-translation invariant, Eq. (3.24) is equivalent to

Ij(t) =
8e

ℏ2
Im
{∫ ∞

−∞
dt′θ(t′)

∑
i1,i2

∑
k1,k2,k′1,k

′
2

1

L2
αi1,i2,j(k

′
1, k

′
2, t)α

∗
i1,i2,−j(k1, k2, t− t′)

〈[
Ak′1,i1(t

′)Ak′2,i2(t
′), A†

k2,i2
(0)A†

k1,i1
(0)
]〉

0

}
, (3.25)

where the time-evolved operators in the expectation value are simply given by

Ak′1,i1(t
′) = Ak′1,i1e

−iEAi1
(k′1)t

′/ℏ
, Ak′2,i2(t

′) = Ak′2,i2e
−iEAi2

(k′2)t
′/ℏ
. (3.26)

Making use of Wick’s theorem and recalling that〈
Ak1,i1(t

′)A†
k2,i2

(0)
〉
0
= δi1,i2δk1,k2

1

1 + e
βEAi1

(k)
, (3.27)

6They depend on time as the Γj
ζ1,ζ2

coefficients, due to the presence of the bias V .
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3.1. Anomalous flux periodicities

with β = 1/kBT , we obtain

∑
k1,k2,k′1,k

′
2

1

L2
αi1,i2,j(k

′
1, k

′
2, t)α

∗
i1,i2,−j(k1, k2, t− t′)

〈[
Ak′1,i1(t

′)Ak′2,i2(t
′), A†

k2,i2
(0)A†

k1,i1
(0)
]〉

0

=
1

(2π)2

{
− δi1,i2

∫ +∞

−∞
dk1 e

−iEAi1
(k1)t′/ℏ e

βEAi1
(k1)

1 + e
βEAi1

(k1)

·
∫ +∞

−∞
dk2 αi1,i1,j(k1, k2, t)α

∗
i1,i1,−j(k1, k2, t− t′)e

−iEAi1
(k2)t′/ℏ e

βEAi1
(k2)

1 + e
βEAi1

(k2)

+

∫ +∞

−∞
dk1 e

−iEAi1
(k1)t′/ℏ e

βEAi1
(k1)

1 + e
βEAi1

(k1)

·
∫ +∞

−∞
dk2 αi1,i2,j(k1, k2, t)α

∗
i1,i2,−j(k1, k2, t− t′)e

−iEAi2
(k2)t′/ℏ e

βEAi2
(k2)

1 + e
βEAi2

(k2)

}
.

(3.28)

The full expansion of Eq. (3.25) is cumbersome. However, by looking at Eqs. (3.25)-
(3.28) we can identify the typical structure of each term: a product of two α coefficients
- which, through the Γs, contain all the details specifying the tunneling process - and
two Green functions given by the two integrals.

3.1.3 Results

Analytical results

The long and intricate calculation sketched in the previous Section leads to the follow-
ing expression for the right/left current (more details can be found in Appendix B)

Ir/l(t) = C Im
{
e∓i(ωJ t+θr−θl)

∫ +∞

0

ds e±isṼ
[
A1 cos

(
π
ϕ

ϕ0

)
+ A2 sin

(
π

2

ϕ

ϕ0

)
+ A3

]}
= C Im

{
e∓i(ωJ t+θr−θl)

[
Ã
r/l
1 cos

(
π
ϕ

ϕ0

)
+ Ã

r/l
2 sin

(
π

2

ϕ

ϕ0

)
+ Ã

r/l
3

]}
.

(3.29)

Here, C ≡ (−2e∆Γ2)/(π2ℏ3v2F ) is a constant. We have introduced Ṽ = eV/∆ and
s = t′∆

ℏ , with t′ a time variable. The three complex factors A1, A2 and A3 depend
on all the parameters except for the flux ϕ. Likewise, Ãr/l1 , Ã

r/l
2 , Ã

r/l
3 stand for the

three coefficients A1, A2, A3 once the integration over s is done, and the indices r/l
are related to the sign in e±isṼ . To give an idea of their form, we report explicitly
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Chapter 3. The proximitized Quantum Spin Hall constriction

Ãr1, Ã
r
2, Ã

r
3:

Ãr1 =
πeṼ (−1+iL̃)

6

{
iei2kFLf̃ 2

T Ṽ

[
6 + cos

(
2f̃
)(

−6 + 4T̃ 2 + Ṽ 2
)

+ cosh
(
2f̃ − i2f̃ L̃

)(
4T̃ 2 + Ṽ 2

)]
+

12T̃

sinh
(
2L̃T̃

) cosh
(
f̃ − if̃ L̃

)
cosh

(
f̃ + if̃ L̃

)}
,

Ãr2 =
πfC f̃T Ṽ

6
ei2kFLeṼ (−1+iL̃) sin

(
2f̃
)(

24− 4T̃ 2 − Ṽ 2
)
,

Ãr3 =
π

6
eṼ (−1+iL̃)

{
iṼ e2ikFL

[
6
(
f 2
C − f̃ 2

T

)
− f̃ 2

T

(
−6 + 4T̃ 2 + Ṽ 2

)
cos
(
2f̃
)

+ f̃ 2
T

(
4T̃ 2 + Ṽ 2

)
cosh

(
2f̃ − 2if̃ L̃

)]
+

6T̃

sinh
(
2L̃T̃

)[(−1 + 2f 2
C f̃

2
T

)
cosh

(
2f̃
)

+ cosh
(
2if̃ L̃

)]}
,

where the dimensionless quantities f̃ = f/∆, L̃ = L∆/ℏvF and T̃ = πkBT/∆ are
referred to the superconducting gap ∆7.

The different scattering processes contributing to the current can be singled out.
Table 3.1 lists all the processes giving a nonzero contribution to Ir(t), specifying the
coefficient Ãi they enter.

Table 3.1: Transport processes contributing to Ir(t): the initial state (after the tunneling from the left
superconductor) and final state (before the tunneling to the right superconductor) of the Cooper
pair are indicated, together with the Ãi coefficient they are associated with. To clarify the notation,
u ↑ u ↑→ l ↓ l ↓ means that both electrons are injected in the upper edge with spin up, and extracted
from the lower edge with spin down.

Ã1: u ↑ u ↑→ u ↑ u ↑, l ↓ l ↓→ l ↓ l ↓, u ↑ u ↑→ l ↓ l ↓, l ↓ l ↓→ u ↑ u ↑,
l ↑ l ↓→ u ↑ u ↓ u ↑ u ↓→ l ↑ l ↓, u ↑ u ↓→ u ↑ u ↓, l ↑ l ↓→ l ↑ l ↓.

Ã2: u ↑ l ↓→ u ↑ u ↑, u ↑ l ↓→ l ↓ l ↓, u ↑ u ↑→ u ↑ l ↓, l ↓ l ↓→ u ↑ l ↓.
Ã3: u ↓ l ↓→ u ↓ l ↓, u ↑ l ↑→ u ↑ l ↑, u ↓ l ↓→ u ↑ l ↑, u ↑ l ↑→ u ↓ l ↓,

u ↑ l ↓→ u ↑ l ↓.

We focus on the term proportional to sin
(
π
2
ϕ
ϕ0

)
in Eq. (3.29), which is responsible

for the resulting 4π-periodicity with respect to the magnetic flux (or, equivalently, a
4ϕ0-dependence). This term is absent in the absence of forward tunneling among the
two edges (f = 0). Moreover, in order to have a nonzero Ãr/l2 one must additionally
have f̃T ̸= 0, which is reasonable due to the strong spin-orbit coupling characterizing
the structure. The need for its presence is easily understood: an odd number of tun-
neling events within the constriction necessarily leads to a spin-flip of one electron of
the pair; since we assume to deal with standard BCS superdonducors, an additional
spin-flip at the superconductor-topological insulator interface is required to recover the
spin singlet state. The anomalous periodicity is found analytically to be brought about
by processes where the Cooper pair switches from being on one edge only to being

7Notice that our previous assumption of sub-gap energy regime requires Ṽ , T̃ ≪ 1.
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3.1. Anomalous flux periodicities

delocalized between the two edges (see Table 3.1). These processes are proportional to
f̃TfC and must include an odd number of forward tunneling in the constriction.

This is shown in Fig. 3.6 with an example. A Cooper pair enters the junction with
a LAR in the upper edge and leaves it with a CAR after one electron tunnels in the
constriction. Before the constriction, the two electrons pick up equal Aharonov-Bohm
phases which sum up, while after the constriction they cancel with each other. Within
the constriction, the acquired phase is negligible (making the precise location of the
tunneling within the constriction irrelevant, as we already pointed out). The amplitude
of the process just described is proportional to Γr11,1−1(Γ

l
11,11)

∗, explicitly

Γr11,1−1(Γ
l
11,11)

∗ =
(
ΓfC e

−i(θr+ 1
2
ωJ t)
)(

Γf̃T e
i
(
θl− 1

2
ωJ t− πϕ

2ϕ0

))
=

= Γ2fC f̃T e
−i[(θr−θl)+ωJ t]e

−i πϕ
2ϕ0 .

Notice that the flux-dependence does correspond to the anomalous term we commented
before. A spin-flip f̃T is needed due to the fact that in (1) and (5) in the Figure we have
a singlet state and that within the constriction an odd number (one) of inter-edge tun-
neling events results in a spin-flip of one electron. The anomalous periodicity hence

Figure 3.6: A prototypical example of a process carrying a 4π-periodic dependence on the flux ϕ: (1) a
Cooper pair is injected from the left superconductor in the upper edge; (2) during the injection, one
of the electrons is spin-flipped, and thus the Cooper pair enters the edge system in a spin-triplet state,
acquiring a f̃T factor accounting for the spin-flip. (3) Having enclosed a flux ϕ/2, in the constriction
an electron tunnels to the lower edge; no flux is enclosed in the remaining path. (4) When the opposite
end of the junction is reached, a final fC factor keeps track of the CAR; (5) clearly, the Cooper pair
reaches the right superconductor in a spin-singlet state. Figure adapted from [188].

represents a hallmark of the presence of forward scattering and the coupling between
the edges. It is important to note the general difficulty in demonstrating such coupling.
Indeed, as already discussed, in long constrictions the single particle backscattering is
only able to open a gap at the Dirac point. However such point is often hidden in the va-
lence band of the structure [109,163,168]. Achieving zero conductance as a function of
the gate voltage, that would strongly indicate the formation of the constriction, is hence
not always achievable and remains unverified in experimental settings. At present, the
only signature that is related to the existence of the constriction is a reduction of the
conductance from 2e2/h to e2/h. However, this behavior is originated by electronic
interactions, leaving uncertainty about its persistence in the presence of superconduc-
tors in close proximity to the constriction. Therefore, a more conclusive signature of
formation of the constriction is needed.
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Chapter 3. The proximitized Quantum Spin Hall constriction

Figure 3.7: (a) Ic, normalized with respect to its maximum, for L̃ = 20, kFL = 6π, f̃T = 0.4, fC = 0.3
and f̃ = 0.3. The plot is represented as a function of ϕ (in units of ϕ0) and for Ṽ = 0. T̃ is varying
between 0.008 and 0.2 (see the red bar legend aside). (b) Same but without the normalisation to the
maximum. Figure adapted from [188].

Quantitative analysis

In the limit Ṽ → 0, we analyze the critical current Ic(ϕ) shown in Fig. 3.7, given by the
total current Ir− I l (from Eq. (3.29)) for θr− θl = π/2. As we can see, the anomalous
periodicity is more pronounced at high temperature T̃ , while at low temperature, a 2ϕ0-
periodicity is almost recovered, as shown in Fig. 3.7(a). There, the current at different
temperatures, normalized to its maximum value, is shown as a function of the flux. This
rescaling facilitates the comparison of periodicity in the different curves. In the picture,
darker lines correspond to lower temperatures. However, the magnitude of the current
itself decreases as temperature is raised, as shown in Fig. 3.7(b), where the plots are
not scaled.

For finite values of Ṽ , owing to the AC Josephson effect, the current becomes time-
dependent. As in Ref. [78], we hence analyze the Fourier component of the current at
the frequency ωJ given by the voltage. Quantitatively, what we plot is

IrωJ
=

∣∣∣∣∣ 1T
∫ T/2

−T/2
e−iωJ tIr(t)

∣∣∣∣∣ , (3.31)

with T = 2π/ωJ . The Fourier transform of the total current is qualitatively similar. The
applied bias generates additional features in the curves which increase the visibility
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3.1. Anomalous flux periodicities

of the anomalous periodicity, see Fig. 3.8. On top of that, and differently from the
zero-bias case, the 4ϕ0 component becomes more pronounced for lower temperature
(Fig. 3.9(a)). Moreover, as in the zero-bias limit, higher temperature makes the signal
smaller. This fact is shown in Fig. 3.9(b), which represents the same plots as Fig. 3.9(a)
but without scaling. The zero-bias and finite-bias regimes, showing distinct behaviors
in response to variations in parameters, can prove beneficial for different materials.

Figure 3.8: IrωJ
, normalized with respect to its maximum, for L̃ = 20, kFL = 6π, f̃T = 0.4, fC = 0.3,

f̃ = 0.3 and T̃ = 0.1. The plot is represented as a function of ϕ (in units of ϕ0) and for Ṽ varying
between 0.008 and 0.2 (see the green bar legend aside). Figure adapted from [188].

3.1.4 Discussion and conclusions

In this Section, we have inspected a Josephson junction having a long constriction be-
tween helical edge states as a non-superconducting element, and pierced by a magnetic
flux. The interplay between the possibility of spin-flips through the coefficient f̃T (en-
abled by the strong spin-orbit interaction characterizing the system) and the coupling
between opposite edges (through inter-edge tunneling) results in an anomalous 4ϕ0-
periodicity of the Josephson current with respect to the flux.

This behavior is present both in the presence and in the absence of external bias. It
is robust with respect to temperature and doesn’t need for fine tuning. The effect in
our system needs the occurrence of three steps: a LAR with spin-flipping, a tunneling
between the edges and a CAR, as shown in Fig. 3.6. Throughout our discussion, we
neglected the magnetic flux enclosed in the constriction; if included, it would just add a
weak Fraunhofer-like decay to the pattern, without substantially affecting our findings.
Instead, a following Section will discuss how to describe the system if the constriction
constitutes the entire junction.

The anomalous periodicity we found represents a cut signature of a constriction
between edges tunnel-coupled to superconducting leads. Its physical origin resides
in the possibility of switching the Cooper pair nature from localized on one edge to
delocalized on both edges. This is allowed by the single-electron tunneling within
the narrow region. In the absence of inter-edge tunneling, the fate of the Cooper
pairs is predetermined: Cooper pairs entering the weak link in LAR on the left end
(x = −L/2, y = ±W/2) necessarily end up on the right end of the same edge
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Chapter 3. The proximitized Quantum Spin Hall constriction

Figure 3.9: (a) IrωJ
, normalized with respect to its maximum, for L̃ = 20, kFL = 6π, f̃T = 0.4,

fC = 0.3, f̃ = 0.3 and Ṽ = 0.1. The plot is represented as a function of ϕ (in units of ϕ0) and for T̃
varying between 0.008 and 0.2 (see the red bar legend aside). (b) Same but without the normalization
to the maximum. Figure adapted from [188].

106



i
i

“output” — 2024/2/14 — 20:42 — page 107 — #117 i
i

i
i

i
i

3.1. Anomalous flux periodicities

(x = L/2, y = ±W/2), picking a phase difference ±πϕ/ϕ0; similarly, Cooper pairs
entering the link in CAR unavoidably exit in CAR without accumulating any phase,
as discussed in Subsec. (3.1.1). This scenario corresponds to a standard SQUID pat-
tern or an even-odd effect, similar to [78], and is plotted in Fig. 3.10. The inclusion
of inter-edge tunneling notably allows for a third possibility: a Cooper pair can enter
the junction in LAR and exit in CAR, or viceversa. The single-electron tunneling is
the boundary between two types of Cooper pairs, having different insights of the mag-
netic flux. For the setup we considered, the resulting phase difference is ±πϕ/2ϕ0,
ultimately leading to a 4ϕ0-periodic contribution to the Josephson current.

Figure 3.10: (a) IrωJ
, normalized with respect to its maximum, for L̃ = 20, kFL = 6π, f̃T = 0.4,

fC = 0.3, f̃ = 0 and T̃ = 0.1. The plot is represented as a function of ϕ (in units of ϕ0) and for
Ṽ varying between 0.008 and 0.2 (see the green bar legend aside). (b) Same parameters values, but
now Ṽ = 0.1 and T̃ varies between 0.008 and 0.2 (see the red bar legend aside). Figure adapted
from [188].

To summarize our original results:

- If the edges are not coupled (f = 0, see Fig. 3.10), there are only two possible
contributions, a ϕ0 and a 2ϕ0 terms. The former originates a SQUID pattern, while
the latter comes from the presence of CAR and leads to the even-odd effect, that
we discussed in the previous Chapter of this Thesis (Subsec. 2.3.2). Depending
on the parameters at play (in particular, temperature and bias), the 2ϕ0 component
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Chapter 3. The proximitized Quantum Spin Hall constriction

can be more or less pronounced. This is the main point of [78].

- If f is finite, an additional 4ϕ0 component emerges (see Figs. 3.7-3.9). Whenever
a constriction allows to switch from a Cooper pair propagating on one side to
a Cooper pair delocalized on both sides, we argue that novel periodicities can
emerge. They are, more in general, connected to single-electron physics in the
superconducting context. This explanation of the phenomenon, applied to our
setup, substantiates the robustness of the anomalous periodicity with respect to
slight spatial variations of the parameters.

Although our considerations apply, in principle, to all the Quantum Spin Hall (candi-
date) systems, we argue in particular our results to be readily observable in HgTe-CdTe
heterostructures. Assuming the realistic lengthscales

L ≃ 3µm, ℓ ≃ 1µm, W ≃ 200 nm, w ≃ 30 nm,

the magnetic field necessary to observe the effect is of the order B ≃ 10−3 T. The
temperature and bias ranges are limited by the pairing potential ∆ ∼ 0.40meV (a
reasonable value for HgTe-based systems [79,198]), which determines an upper bound
of ∼ 300mK and ∼ 80µeV. We conclude by recalling from Subsec. 1.2.3 that the edge
states have been proved to be robust even in the presence of magnetic fields that are
much stronger than those needed for our proposal [53, 116, 205].

3.2 Unbalanced tunneling amplitudes

We now shortly discuss the more general and experimentally realistic case of a recon-
structed constriction. As elucitated in [197], and briefly mentioned in Chapter 1, unlike
the infinitely sharp edge potential assumed in traditional calculations, it is experimen-
tally more realistic to consider a smooth one. If the density of electrons is determined
by an external gate, it is electrostatically convenient for it to mimic the positive charge
distribution on the gate. If the latter goes to zero smoothly close to the edge of the
system, the electron density can do likewise via a separation of the opposite spin chan-
nels, see Fig. 3.11. As a consequence, the two direction-conserving tunnel couplings
of our model should have different intensities, f1 ̸= f2. In this Section we introduce
such distinction and rediscuss the interference pattern of the system. As in the absence
of edge reconstruction, we find the occurrence of a 4ϕ0-periodic component in the AC
Josephson current as a function of the magnetic flux, robust in a wide range of param-
eters. We also discuss the temperature dependence in more detail. Other interesting
consequences of reconstruction will be discussed in the next Chapter.

The Hamiltonian associated to the reconstructed constriction is modified as

H0
E =

∫ +∞

−∞
dxψ†(x)


−iℏvF∂x 0 0 f1

0 iℏvF∂x f2 0

0 f2 iℏvF∂x 0

f1 0 0 −iℏvF∂x

ψ(x), (3.32)

where ψ(x) = (ψ11(x), ψ−11(x), ψ−1−1(x), ψ1−1(x))
T as before. The possible edge

reconstruction is taken into account by allowing in principle the two couplings to take
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3.2. Unbalanced tunneling amplitudes

Figure 3.11: Comparison between the non-reconstructed and the reconstructed constriction. In the first
case, corresponding to the left panels, the edge potential is sharp and the two right- and left-moving
channels are equally distant. In the second case, corresponding to the right panels, the edge potential
is smooth, leading to a spatial separation of the two channels on each edge. As a consequence, the
right-moving channels (for instance) are closer to each other than the left-moving ones, resulting in
the unbalance f1 ̸= f2. Lower panels are reprinted with permission from [197]. Copyright 2024 by
the American Physical Society.

different values (on the same line of thought as before, we neglect backward scattering
and only consider forward scattering).

After the Fourier transformation ψρτ (x) = 1√
L

∑
k ck,ρτ e

ikx, the diagonalization of
Eq. (3.32) leads to the four eigenstates and eigenvalues

Ak,1 =
1√
2
(−ck,−11 + ck,−1−1) EA1(k) = −f2 − ℏvFk, (3.33a)

Ak,2 =
1√
2
(ck,−11 + ck,−1−1) EA2(k) = f2 − ℏvFk, (3.33b)

Ak,3 =
1√
2
(−ck,11 + ck,1−1) EA3(k) = −f1 + ℏvFk, (3.33c)

Ak,4 =
1√
2
(ck,11 + ck,1−1) EA4(k) = f1 + ℏvFk. (3.33d)

The f1/f2 couplings split by different amounts the two right-mover/left-mover branches.
The two current contributions in Eq. (3.29) are now dependent on both f1, f2. De-

veloping calculations similar to those of the previous Section, we obtain the following
expression for the right component

Ir(t) = C Im
{
e−i(ωJ t+θr−θl)

∫ +∞

0

ds eisṼ
[
A1

(
f̃1, f̃2

)
cos

(
π
ϕ

ϕ0

)
+ A2

(
f̃1

)
sin

(
π

2

ϕ

ϕ0

)
+ A3

(
f̃1, f̃2

)]}
, (3.34)

where the dimensionless quantities and C have been already introduced. The left current
I l(t) is straightforwardly obtained by conjugating the two complex exponentials and
exchanging f̃1 and f̃2. We confine our discussion to the current contribution that is
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Chapter 3. The proximitized Quantum Spin Hall constriction

aligned with the bias direction according to Fig. 3.5, that is Ir(t). After integration, the
full analytical expression for Ṽ > 0 is

Ir(t) = C Im
{
e−i(ωJ t+θr−θl)

[
Ã1

(
f̃1, f̃2

)
cos

(
π
ϕ

ϕ0

)
+ Ã2

(
f̃1

)
sin

(
π

2

ϕ

ϕ0

)
+Ã3

(
f̃1, f̃2

)]}
, (3.35)

with the new coefficients

Ã1 =
πeṼ (−1+iL̃)

6

{
iei2kFLf̃ 2

T Ṽ

[
6 + cos

(
2f̃1

)(
−6 + 4T̃ 2 + Ṽ 2

)
+ cosh

(
2f̃1 − i2f̃1L̃

)
(
4T̃ 2 + Ṽ 2

)]
+

12T̃

sinh
(
2L̃T̃

) cosh
(
f̃1 − if̃1L̃

)
cosh

(
f̃2 + if̃2L̃

)}
, (3.36a)

Ã2 =
πfC f̃T Ṽ

6
ei2kFLeṼ (−1+iL̃) sin

(
2f̃1

)(
24− 4T̃ 2 − Ṽ 2

)
, (3.36b)

Ã3 =
π

6
eṼ (−1+iL̃)

{
iṼ e2ikFL

[
6
(
f 2
C − f̃ 2

T

)
− f̃ 2

T

(
−6 + 4T̃ 2 + Ṽ 2

)
cos
(
2f̃1

)
+ f̃ 2

T

(
4T̃ 2 + Ṽ 2

)
cosh

(
2f̃1 − 2if̃1L̃

)]
+

6T̃

sinh
(
2L̃T̃

)[(−1 + 2f 2
C f̃

2
T

)
cosh

(
f̃1 + f̃2 − if̃1L̃+ if̃2L̃

)
+ cosh

(
f̃1 − f̃2 − if̃1L̃− if̃2L̃

)]}
. (3.36c)

The explicit form of I l(t) is not reported here.
Eq. (3.35) shows that the 4ϕ0-periodic term, emerged for the non-reconstructed

case, is present even if the constriction is reconstructed. This means that the anomalous
periodicity is not accidentally related to the particular restriction f̃1 = f̃2. The anoma-
lous contribution is proportional to Ã2 and depends, for each current component, on
one single tunneling coefficient: the right-mover coefficient f̃1 in the case of Ir(t) and
the left-mover coefficient f̃2 in the case of I l(t). With given values for f̃1 and f̃2, the
relative weight of the 4ϕ0-component differs between the two currents. Consequently,
it may exhibit a better or worse visibility in Ir(t) and I l(t). Moreover, by looking
for instance at Ir(t), and considering that Ã2 ∝ fC f̃T sin

(
2f̃1

)
, it is clear the neces-

sity of fC , f̃T ̸= 0, as in [188]. However, while without reconstruction we needed
f̃1 = f̃2 ≡ f̃ ̸= 0, in our present analysis a single coupling is sufficient.

Fig. 3.12 shows the ωJ -Fourier component of Ir(t),

IrωJ
=

∣∣∣∣C [Ã1

(
f̃1, f̃2

)
cos

(
π
ϕ

ϕ0

)
+ Ã2

(
f̃1

)
sin

(
π

2

ϕ

ϕ0

)
+ Ã3

(
f̃1, f̃2

)]∣∣∣∣ , (3.37)

for different values of the tunneling coefficients and at a fixed temperature and bias
T̃ = Ṽ = 0.1. It is well visible that, whenever f̃1 = 0, a standard 2ϕ0-periodicity
is recovered (see dashed and dotted lines), while all the other cases, either with edge
reconstruction (including f̃2 = 0) or not, exhibit the 4ϕ0-feature. We find that I lωJ

=
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3.2. Unbalanced tunneling amplitudes

Figure 3.12: IrωJ
, normalized with respect to its maximum, for L̃ = 20, kFL = 6π, f̃T = 0.4, fC = 0.3,

T̃ = 0.1 and Ṽ = 0.1, as a function of ϕ (in units of ϕ0). The different curves correspond to different
values of f̃1, f̃2. Whenever f̃1 = 0, a standard 2ϕ0-periodicity is recovered (dashed and dotted
lines), while in all the other cases, either in presence of edge reconstruction or not, and regardless
of the value of f̃2, IrωJ

is 4ϕ0-periodic. Figure adapted from [187], with kind permission of Società
Italiana di Fisica.

IrωJ
, provided that f̃1 and f̃2 are interchanged in Ã1/2/3 and that the bias is reversed,

Ṽ → −Ṽ .
So far, we have discussed the occurrence of the 4ϕ0-signature, which isn’t affected

by the edge reconstruction. However, the visibility of the feature depends on which one
among the differently periodic terms dominates; this is related to both f̃1 and f̃2 and is,
therefore, sensitive to the edge reconstruction. To better appreciate the relevance of the
different periodicities, since Eq. 3.37) contains several interfering terms, we rewrite it
conveniently as

IrωJ
= |C|

√
α + β cos

(
2π

ϕ

ϕ0

)
+ γ sin

(
3π

2

ϕ

ϕ0

)
+ δ cos

(
π
ϕ

ϕ0

)
+ ϵ sin

(
π

2

ϕ

ϕ0

)
,

(3.38)
where

α =
|Ã1|2
2

+
|Ã2|2
2

+ |Ã3|2, β =
|Ã1|2
2

, γ = ReÃ1ReÃ2 + ImÃ1ImÃ2,

δ = −|Ã2|2
2

+ 2ReÃ1ReÃ3 + 2ImÃ1ImÃ3,

ϵ = 2ReÃ2ReÃ3 + 2ImÃ2ImÃ3 − ReÃ1ReÃ2 − ImÃ1ImÃ2.

Although the processes originating the 4ϕ0-periodicity (those contributing to Ã2, and
listed in Table 3.1) are just a few, they are connected to all the others through the
interference pattern. The resulting periodicity depends on the coefficients β, γ, δ, ϵ,
whereas α is a flux-independent offset. We focus on their dependence on temperature,
since in the non-reconstructed case [188] some challenges arose at high temperature.
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Chapter 3. The proximitized Quantum Spin Hall constriction

Given f̃1, f̃2, all the coefficients have a higher sensitivity to temperature in the lower-
temperature regime, as shown in Figs. 3.13(a)-3.14(a) (where we considered f̃1 =
0.12, f̃2 = 0.2 and the viceversa). At high temperature (but keeping T̃ ≪ 1 due to
our former approximations), we find that the prefactors of the flux-dependent terms
β, γ and ϵ approach zero or settle to very small values if compared to the offset α.
However δ, which brings the standard periodicity, behaves differently: it may increase
with temperature, as in Fig. 3.13(b), or reach a plateau with greater magnitude than
the others, as in Fig. 3.14(b). In the first case, the 4ϕ0-periodicity can survive at high
temperature, since the different periodicities have a comparable weight (Fig. 3.13(c)).
However, this weight being small, the curves are flattened and their peak structure
is weakened. By contrast, in the second case the 2ϕ0-periodic contribution becomes
dominant and the 4ϕ0-periodic one almost vanishes (Fig. 3.14(c)). As in [188], where
f̃1, f̃2 are equal, we recover that the intensity of IrωJ

(namely, the peak-to-peak distance)
drops down at high temperature. The occurrence of the anomalous periodicity is in
general worsened, but can persist at high temperature, depending on f̃1, f̃2.

Given our comments below Eq. (3.37), we can interpret Fig. 3.13(c) and Fig. 3.14(c)
respectively as IrωJ

for Ṽ > 0 and I lωJ
for Ṽ < 0 of a constriction with f̃1 = 0.12, f̃2 =

0.2. This link between the two quantities offers a doubled possibility of inspection
of the anomalous periodicity – more or less visible – that can all rely on the same
analytical results.
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3.2. Unbalanced tunneling amplitudes

Figure 3.13: (a) Temperature dependence of the coefficients α, β, γ, δ, ϵ, for T̃ varying between 0.008
and 0.25. (b) Zoom of (a) on the high-temperature range, from T̃ = 0.12 to T̃ = 0.25, only for the
prefactors of the flux-dependent terms β, γ, δ and ϵ. (c) IrωJ

, normalized with respect to its maximum,
as a function of ϕ (in units of ϕ0) and for T̃ varying between 0.008 (lighter grey) and 0.2 (darker
grey) with steps of 0.008. Here, f̃1 = 0.12, f̃2 = 0.2, L̃ = 20, kFL = 6π, f̃T = 0.4, fC = 0.3 and
Ṽ = 0.1. Figure adapted from [187], with kind permission of Società Italiana di Fisica.
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Chapter 3. The proximitized Quantum Spin Hall constriction

Figure 3.14: (a) Temperature dependence of the coefficients α, β, γ, δ, ϵ, for T̃ varying between 0.008
and 0.25. (b) Zoom of (a) on the high-temperature range, from T̃ = 0.12 to T̃ = 0.25, only for the
prefactors of the flux-dependent terms β, γ, δ and ϵ. (c) IrωJ

, normalized with respect to its maximum,
as a function of ϕ (in units of ϕ0) and for T̃ varying between 0.008 (lighter grey) and 0.2 (darker
grey) with steps of 0.008. Here, f̃1 = 0.2, f̃2 = 0.12, L̃ = 20, kFL = 6π, f̃T = 0.4, fC = 0.3 and
Ṽ = 0.1. Figure adapted from [187], with kind permission of Società Italiana di Fisica.

114



i
i

“output” — 2024/2/14 — 20:42 — page 115 — #125 i
i

i
i

i
i

3.3. Hints about the extended tunneling

3.3 Hints about the extended tunneling

To conclude this Chapter, we discuss how the description should be modified if the
inter-edge tunneling were extended throughout the whole structure instead of confined
to a subregion of it. These two scenarios are compared in Fig. 3.15. So far, in deriving
the Aharonov-Bohm phases associated to Cooper pairs transport, we assumed negligi-
ble flux enclosed in the constriction (ℓw ≪ WL, see panel (a)). This allowed us not
to worry about the exact number of tunneling events and their exact location within the
constriction: we could effectively treat them as occurring halfway across the junction.
In the case of panel (b), where w = W and ℓ = L, this semplification is not possible
anymore, and a more detailed description is in order.

Figure 3.15: Comparison between a constriction confined to a portion of the junction (a) and the ex-
tended constriction (b).

Let us start from an illustrative case, depicted in Fig. 3.16. The process consists in a
Cooper pair entering and leaving the junction via CAR, which in the former description
was associated to no flux dependence. Within the new setup, this is true only if no
inter-edge tunneling occurs, and a perturbative approach in the tunneling amplitude f
is needed. Given the initial and final states, the first higher order to which the process
is allowed is f 2, namely the two electrons change the edge of propagation with each
other. Let us assume that the electron injected in the upper edge undergoes inter-edge
tunneling at position x2 = ϵ2L along the junction. Until that, the two Aharonov-
Bohm phases cancel. Then, till the second electron tunnels at x1 = ϵ1L, a phase
γAB = −πϕ

ϕ0
(ϵ1 − ϵ2) is accumulated. After the second tunneling event, the phases

compensate again. Since x1, x2 can assume any value between 0 and L, we have to
integrate ϵ1, ϵ2 between 0 and 1:∫ 1

0

dϵ1

∫ 1

0

dϵ2e
−πϕ

ϕ0
(ϵ1−ϵ2) = 2

1− cos
(
πϕ
ϕ0

)
(
πϕ
ϕ0

)2 . (3.39)

In the calculation of the current presented in this Chapter, one should then isolate the
amplitude associated to the process just described, expand it in powers of f - for in-
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Chapter 3. The proximitized Quantum Spin Hall constriction

Figure 3.16: Injection and extraction of a Cooper pair through CAR processes with two inter-edge
tunneling events at x = ϵ1L, ϵ2L. The different colors (green/purple) are introduced to keep trace of
the path of each electron.

stance, up to the second order - and complement the term f 2 with the Aharonov-Bohm
contribution computed above.

This has to be done for all the processes involved, and the new flux dependencies are
summarized in Table 3.2. Preliminary results show an interference pattern more similar
to a Fraunhofer pattern than a SQUID pattern, with two main peculiar features:

• a side lobe decay faster compared to that of a standard Fraunhofer pattern;

• traces of a “doubled” minima periodicity compared to the standard Fraunhofer
pattern, just as a doubled periodicity compared to the standard SQUID pattern
emerged in [188].

We conclude that the presence of a constriction remains highly influential on the inter-
ference pattern. Fig. 3.17 shows IrωJ

for the two setups (a) and (b) of Fig. 3.15. It
displays that the extended tunneling in setup (b) makes the effect of the constriction
visible even for parameter values at which it is weak for setup (a).

Table 3.2: Aharonov-Bohm phases to be associated to the different types of processes up to the second
order in the inter-edge coupling.

Injection-Extraction Flux dependence Order in the inter-edge tunneling

LAR-CAR
∫ 1

0
dϵ
(
e−iπϕϵ

ϕ0 − e−iπϕϵ
ϕ0

)
= 2i

cos
(

πϕ
ϕ0

)
−1

πϕ
ϕ0

f

LAR-LAR with edge change
∫ 1

0
dϵ1
∫ 1

ϵ1
dϵ2e

−iπϕ
ϕ0

(ϵ1+ϵ2−1) =
1−cos

(
πϕ
ϕ0

)
(

πϕ
ϕ0

)2 f2

CAR-CAR 1 f0∫ 1

0
dϵ1
∫ 1

0
dϵ2e

−πϕ
ϕ0

(ϵ1−ϵ2) = 2
1−cos

(
πϕ
ϕ0

)
(

πϕ
ϕ0

)2 f2

LAR-LAR on a same edge cos
(

πϕ
ϕ0

)
f0∫ 1

0
dϵ1
∫ 1

ϵ1
dϵ2e

−iπϕ
ϕ0

(ϵ1−ϵ2+1) + (ϕ→ −ϕ) f2

= −2

[
cos

(
2πϕ
ϕ0

)
−cos

(
πϕ
ϕ0

)
(

πϕ
ϕ0

)2 +
sin

(
πϕ
ϕ0

)
πϕ
ϕ0

]
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3.3. Hints about the extended tunneling

Figure 3.17: IrωJ
as a function of ϕ (in units of ϕ0) for the two cases of Fig. 3.15. Here L̃ = 20,

kFL = 23π/4, f̃T = 0.5, fC = 0.3, f̃ = 0.3. The values of T̃ and Ṽ are indicated in the legend.
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CHAPTER4
The anomalous Josephson effect

In this Chapter, we focus on another declination of the Josephson effect which may
occur if the junction satisfies specific symmetry conditions: the anomalous Josephson
effect. Leaving aside the AC Josephson effect and magnetic interference, we have
seen that the minimal requirement for a Josephson current to flow is a phase difference
between the superconducting leads. However, this is not a truly exhaustive formulation
of the effect, and an “anomalous” current can arise even in the absence of any phase
difference [9, 15, 19, 34, 50, 64, 65, 70, 89, 100, 117, 143, 153, 156, 160–162, 167, 169,
170, 173, 202]. To this aim, the system must break time-reversal and spatial inversion
symmetry [72, 115, 139]. In Sec. 4.1 we briefly explain why, by looking at the generic
current-phase relation and its properties. Then, in Sec. 4.2, we revise the technological
perspectives inspired by this effect and introduce a closely related phenomenon, the
superconducting diode effect [90,206]. We conclude the Section by mentioning some of
the suitable experimental platforms. Lastly, in Sec. 4.3, we show that among them there
is also the Quantum Spin Hall constriction with reconstructed edge channels introduced
in Chapter 3. There, not only the anomalous effect appears, but it is also interestingly
increased by temperature.

4.1 Supercurrent properties and origin of the phase shift

Before delving into the anomalous Josephson effect and its occurrence in our Quantum
Spin Hall-based system, let us revise some basic properties satisfied by the Josephson
current (in particular, by the current-phase relation) [72]. Let us assume that the two
superconductors defining the junction are described by the order parameters ∆r =
|∆|eiθr and ∆l = |∆|eiθl .

1. First of all, any change of 2π in the wavefunctions of the superconducting elec-
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Chapter 4. The anomalous Josephson effect

trodes cannot affect the wavefunctions themselves. In other words, a shift of n2π,
n ∈ Z, of θr or θl, is irrelevant. This forces the supercurrent I , which depends on
their difference, to be a 2π-periodic function,

I(θr − θl) = I[(θr − θl) + n2π]. (4.1)

2. Reversing the direction of the supercurrent flow must introduce a change of sign
of the phase difference, namely the current-phase relation is an odd function

I(θr − θl) = −I(θl − θr). (4.2)

Notably, this property does not hold in every case, but only if either time-reversal
symmetry or spatial inversion symmetry are preserved. An easy way to understand
this fact is the following [139]. It can be shown that the Josephson supercurrent
can be computed from the free energy of the junction F as [6]

I(θ) =
2e

ℏ
∂F

∂θ
, (4.3)

where θ = θr − θl and F = −kBT lnTr{e−H/kBT} is the free energy. H is
the Hamiltonian of the junction, T the temperature and kB the Boltzmann con-
stant. It is well known that any two Hamiltonians H and H ′ have identical spec-
tra if and only if they are connected by a unitary or antiunitary transformation:
H = UH ′U †. In these cases, the transformation has no consequences on the
free energy, F ′ = F . By investigating transformations between given pairs of
H and H ′, we can infer the symmetries that the Josephson current must possess,
and the requirements to obtain asymmetries. For instance, for a finite supercur-
rent at zero phase difference to flow, I(θ = 0) ̸= 0, it is necessary that the free
energy is not symmetric under θ → −θ. Otherwise, F (θ) = F (−θ) implies
I(θ) = −I(−θ) with I(θ = 0) = 0. When does a transformation U , such that
H(−θ) = UH(θ)U †, exist? A swap in the sign of θ in the Hamiltonian is pro-
duced by the parity operator (which effectively exchanges the two superconduct-
ing electrodes) or by the time-reversal operator. As long as (at least) one of these
symmetries is preserved, we can conclude I(θ) = −I(−θ). If they are all broken,
I(θ = 0) ̸= 0 is allowed: this is the anomalous Josephson effect, and the asso-
ciated current is called anomalous Josephson current. In a following Section we
will explain the interest in such effect in view of applications in superconducting
electronics and spintronics, and refer to some possible experimental platforms.
We mention in passing that, if only time-reversal symmetry is broken, which is a
necessary but not sufficient condition to get the anomalous Josephson effect, the
junction typically exhibits a π shift in the current-phase relation. Such junction is
called a π-junction [30].

3. As a direct consequence of Eq. (4.2) in point 2., a DC supercurrent can flow only
in the presence of a superconducting phase gradient,

I(n2π) = 0, n ∈ Z. (4.4)

4. Lastly, from points 1. and 2., the supercurrent should also vanish at θ = nπ,

I(nπ) = 0, n ∈ Z, (4.5)
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therefore one can consider I(θ) only in the interval 0 < θ < π.

In general, without specifying the symmetries of the system, I(θ) can be decomposed
into a Fourier series (see for instance [173])

I(θ) =
∑
n≥1

[In sin (nθ) + Jn cos (nθ)], (4.6)

where In and Jn are coefficients to be determined. Hence, the current-phase relation is
not always simply sinusoidal, but might be “skewed”. Notice that, if time-reversal and
inversion symmetries are not broken, the current-phase relation has to be antisymmetric
even in presence of the higher harmonics, that is Jn = 0. If the temperature is close to
the critical temperature, or if the junction is relatively opaque – the so-called tunneling
limit – the first harmonic n = 1 dominates and the higher ones, n > 1, are usually
neglected. However, if these conditions are relaxed, their contribution can be observed.
For n = 1,

I(θ) = I1 sin (θ) + J1 cos (θ) = Ī sin(θ + φ0), (4.7)

where Ī =
√
I21 + J2

1 and φ0 = arctan I1/J1 is the anomalous phase shift, whose
microscopic form depends on the system under consideration and specific model as-
sumptions. Junctions featuring the current-phase relation in Eq. (4.7) are called φ0-
junctions.

4.2 Experimental implementations and technological applications

In the previous Section, we have pointed out the two essential requirements for the
anomalous Josephson effect to occurr: both time-reversal and inversion symmetry have
to be broken. The most common tool to break time-reversal symmetry is the application
of a magnetic field [115]. A popular alternative is to attach a ferromagnetic insulator
to the superconductor. This kind of systems have been widely discussed in the litera-
ture [81,119,172,181]. Besides, π-junctions can be realized in Josephson junctions with
non-equilibrium normal metal interlayer [14], semiconductor nanowires [185], d-wave
superconductors [186], gated carbon nanotubes [36]. The appeal of π-junctions resides
in their potential as building blocks for superconducting circuit elements, such as su-
perconducting programmable logic [67], superconducting digital quantum circuits [55],
and scalable superconducting logic circuits [184]. In particular, they can be exploited
as on-chip batteries for biasing quantum circuits, providing a constant phase shift be-
tween the two superconductors. In analogy to a traditional battery, with supplies a
voltage, these junctions are said to be “phase batteries”. Significantly, they allow to
remove bias lines and reduce decoherence.

Concerning inversion symmetry breaking to realize a φ0-junction, it can happen in-
trinsically, such as in topological insulators [50,83] or in superconductors with Rashba
spin-orbit coupling [19, 100, 143, 202], but it can also be provoked by asymmetries of
the junction geometry [156] or asymmetries of the device originated during the fabri-
cation process [89]. Compared to a π-junction, a φ0-junction allows to realize a phase
battery which provides an arbitrary phase shift, rather than just 0 or π [130]. Initially,
it was suggested to combine 0 and π-junctions, but it is not a trivial task to balance
them properly [29]. Apart from junctions which combine conventional superconduc-
tors with magnetism and spin-orbital interaction, other systems in which the effect has
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Chapter 4. The anomalous Josephson effect

been predicted are unconventional superconductors [64,65,169,173] and topologically
nontrivial superconductors [153]. The anomalous Josephson effect has also been exper-
imentally observed [9,77,89,117,161,167,170]. We notice that, even for a φ0-junction
(see Eq. (4.7)), the positive critical current I+c = maxθ[I(θ)] is clearly equal in modulus
to the negative one I−c = minθ[I(θ)]. The critical supercurrent is said to be reciprocal.

Let us look back at Eq. (4.6). In the presence of higher harmonics – for instance, if
the junction transparency is high – the cosine terms cannot be absorbed in a mere phase
shift as in Eq. (4.7), and a further effect occurs. As a consequence, it might happen
that the critical current is different for opposite current directions, namely I+c ̸= |I−c |.
Since, for an applied current which is higher than the critical value, a superconduc-
tor becomes a normal metal with a finite resistance, it follows that a current I , with
min(|I−c |, I+c ) < I < max(|I−c |, I+c ), is a supercurrent in one direction, and a dissi-
pative current in the opposite direction (see the cartoon in Fig. 4.1). Such a device is
called a superconducting diode. The name is reminescent of the semiconducting diode,
namely the p − n junction, which conducts current primarily in one direction [92].
This nonreciprocal charge transport has several applications, including rectification of
current, detection of radio signals, temperature sensors. But most importantly it basi-
cally opened the way to modern electronics, being the basic component of computer
memories and logic circuits. Given the analogy to its semiconducting counterpart, the
superconducting diode inspires great perspectives, and has already been experimentally
observed [8, 111, 129].

Figure 4.1: Schematic representation of the diode effect in a Josephson junction: for proper intensities
(see the main text), a current flows with no resistance in one direction (the right one in the Figure,
denoted by the straight arrow), while it dissipates in the other (denoted by the rugged arrow). Figure
adapted from [92], reproduced with permission from Springer Nature.

In view of the following Section, among the several studies on the anomalous Joseph-
son effect, it is useful to mention in particular the work by Dolcini et al. [50]. The
authors consider a junction based on a two-dimensional topological insulator and sub-
jected to a Zeeman field along the spin quantization axis of the edge states. The model
initially focuses on a single edge, and satisfies the symmetry requirements to realize
both the anomalous Josephson effect and the diode effect, since the calculations in-
clude all the harmonics. If the width of the topological insulator is sufficiently large1,
the system may be simply described as two junctions in parallel, and the contribution of
the second edge can be easily accounted for by a copy of the single-edge Hamiltonian
with opposite helicity. Interestingly, when both edges are considered and contribute

1The reference scale is the superconducting coherence length ξ.
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4.3. Edge reconstruction-induced anomalous effect

to the Josephson current, their anomalous current contributions might compensate with
each other, leading to the conventional Josephson effect. However, only if the two junc-
tions on either side of the sample have the same length the compensation is exact, and
the conventional result is recovered. If the two junctions have different lengths, as de-
picted in Fig. 4.2, the compensation is only partial and a residual effect persists. In the
next Section, we will elucidate some analogies and differences between this work and
our results about a Josephson junction based on a constriction between reconstructed
edge channels.

Figure 4.2: The topological Josephson junction based on a topological insulator inspected in [50]
(whence the Figure is taken, reprinted with permission, copyright 2024 by the American Physical
Society). When both edges are considered, in order to get a non-vanishing anomalous Josephson
current, it is mandatory that the two sides of the sample have different length, L1 ̸= L2.

4.3 Edge reconstruction-induced anomalous effect

This Section is largely based on the publication [191], where we point out a further
property of the proximitized Quantum Spin Hall constriction. Under certain experimen-
tal circumstances, which are discussed below, the edge states might be reconstructed,
meaning that the differently spin polarized states on each edge are spatially separated.
We have discussed in the previous Chapter how this condition affects only marginally
the anomalous periodicities emerging in the interference pattern. However, in the ab-
sence of magnetic field and external bias, it takes on a fundamental importance. Indeed,
it allows the system to host the anomalous Josephson effect presented in the previous
Section. We find that, intriguingly, the effect is reinforced by a temperature increase in
a range of parameters. Explicitly, for low temperature and weak inter-edge tunneling
between the topological channels, the anomalous current has a small zero temperature
contribution and a quadratic one. We explain these features on the basis of a simple
perturbative argument.

4.3.1 Model and formalism for the transport properties

Let us reconsider the particular case of Josephson junction based on a two-dimensional
topological insulator that we analyzed in the previous Chapter, namely the proximitized
Quantum Spin Hall constriction, with a particular focus on symmetries and symmetry
breakings. We report a scheme in Fig. 4.3(a). For the purposes of this Chapter, it
is not relevant whether the constriction corresponds to the whole junction or not, as
distinguished in Sec. 3.3, because we will not deal with magnetic interference effects.
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Chapter 4. The anomalous Josephson effect

Figure 4.3: (a) The system under investigation: a Josephson junction having lengthL and widthW , with
the edge channels of a two-dimensional topological insulator serving as the non-superconducting
region. The superconductors are assumed to be of BCS type. As in the previous Chapters, ρ =
±1 labels the right/left-mover metallic channels, τ = ±1 the upper/lower edge, and j = ±1 the
right/left superconductor. Importantly, f1/2 denotes the amplitude of the inter-edge tunneling for
right/left-moving electrons. Due to the unbalance between the tunneling amplitudes f1 ̸= f2, both
inversion symmetry and time-reversal symmetry are broken. (b) Injection processes of Cooper pairs
from the superconductors to the edges of the topological insulator: either a single edge (upper panels,
which correspond to a Local Andreev Reflection) or both edges (lower panels, which correspond to
a Crossed Andreev Reflection) might be involved. In the proximitized system, Cooper pairs can flow
either in a singlet (left panels) or in a triplet (right panels) spin state. Triplet injections and Crossed
Andreev Reflections affect the tunneling amplitudes with a factor of f̃T and fC , respectively. Figure
adapted from [191].

Referring to the Figure, on the upper edge, right/left moving electrons have spin up-
/down projection. On the lower edge, the situation is reversed, in other words electrons
with spin down/up move right/left. At this stage, inversion symmetry is already broken
at the level of the single edges, but time-reversal symmetry is not [83]. To do so, we
can combine the constriction and edge reconstruction. Let us recap one last time the
three main conceptual steps of this scheme:

• Through etching, the edge channels are brought at a distance that is comparable
with their localization length, such that electrons can tunnel between the upper
and lower edge. This can happen in two ways [48, 61, 110]: via backscattering,
which preserves the spin polarization, or via forward scattering, which flips it.

• The constriction is fabricated long with respect to the inverse Fermi momentum.
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4.3. Edge reconstruction-induced anomalous effect

As we already commented in this Thesis, it is in some sense unavoidable to this
date: currently, constrictions between helical edge states have only been realized
in thick HgTe quantum wells, where the Dirac point is hidden in the bulk valence
band [168]. The spin-preserving backscattering is hence irrelevant, and the only
process remaining is the spin-flipping forward scattering [168], denoted by f1, f2
in Fig. 4.3(a). However, even alone, this process is still time-reversal invariant.

• The third point consists in the edge reconstruction: as proposed in Ref. [197], if
the potential confining the edge channels is soft, the spin up and spin down chan-
nels can separate in real space in order to mimic the positive charge distribution
of the gate and minimize the Coulomb energy. This creates an unbalance in the
tunneling rates for spin up and spin down electrons (see Fig. 4.3(a), f1 ̸= f2).
Time-reversal symmetry is hence also broken, as well as inversion symmetry at
the level of the full structure.

Thanks to these three considerations, according to what was said at the beginning of
this Chapter, the Josephson junction with reconstructed helical edges as a link is hence
expected to exhibit a φ0 Josephson effect in the absence of external fields. Such anoma-
lous effect has similarities to the one previously discussed in [50], where, however, a
magnetic field is crucially required. Furthermore, in that case, the effect is mainly
present when a single edge is considered as a weak link, while it tends to vanish when
both edges are considered. Additional comments on this comparison will follow at the
end of the Chapter.

We now provide a quantitative analysis of what we have just described. Consistently
with the previous Chapters, the fermionic operators ψρτ (x) annihilate an electron at po-
sition x propagating in the ρ-direction channel of the τ edge. In particular, ρ = 1 (−1)
stands for the right (left) direction of motion and τ = 1 (−1) for the upper (lower)
edge. The spin polarization is hence τρ. For notational convenience, we previously in-
troduced the spinor ψ(x) = (ψ11(x), ψ−11(x), ψ−1,−1(x), ψ1−1(x))

T . The Hamiltonian
could hence be recast in the quadratic form

H = H0
E + δHE, (4.8)

with H0
E describing the two-dimensional topological insulator and δHE the coupling to

the superconductors, that are considered of s-wave type. From Eq. (3.32),

H0
E =

∫ +∞

−∞
dxψ†(x)H0

Eψ(x), (4.9)

where the separation L between the superconductors has been effectively taken as infi-
nite for long junctions, and H0

E is the Hamiltonian density of the edge channels, made
up of the two contributions H0

E = Hkin. + Hf.s., that are the kinetic term and the
forward scattering term, respectively. In a compact form,

Hkin. = ℏvF (−i∂x)τz ⊗ ρz, (4.10)

Hf.s. =
f1
2
(−τy ⊗ ρy + τx ⊗ ρx) +

f2
2
(τy ⊗ ρy + τx ⊗ ρx)

=
−f1 + f2

2
τy ⊗ ρy +

f1 + f2
2

τx ⊗ ρx, (4.11)
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with ρi and τi, i = 0, x, y, z, the identity and the three Pauli matrices acting in the
right/left-movers and the upper/lower edge space, respectively, and vF the Fermi veloc-
ity. The couplings f1 and f2 parametrize the tunneling between the edges, and we em-
phasize that as f1 ̸= f2 and the edges are reconstructed, time-reversal symmetry is bro-
ken. Our model does not include magnetic impurities, that would introduce intra-edge
backscattering (and, for the present discussion, other sources of symmetry-breakings),
due to the fact that long and ballistic edges can nowadays be accomplished [18]. We
also neglect charge puddles in the bulk of the two-dimensional topological insulator
sample, owing to its narrowness.

In terms of energy spectrum, the non-superconducting part just discussed repre-
sents a pair of one-dimensional Dirac cones, in which the two right-moving branches
are shifted with respect to the left-moving ones proportionally to f1 − f2. Moreover,
branches with fixed chirality do not have fixed spin projection anymore, due to the spin
non-conserving tunneling. We will come back on considerations about the effect of
f1, f2 on the spectrum.

Before focusing on the anomalous current, let us recall our previous perturbative
formalism in a few lines. We know that the superconducting leads, assumed to have a
large superconducting gap ∆ with respect to all the other energy scales at play, affect
the system via the perturbative Hamiltonian δHE . Besides the large gap hypothesis, its
derivation required both the Hamiltonian model of the superconductors (in our case, it is
the standard BCS one), and a weak coupling between the latters and the edges, see [78].
Ultimately, the coupling to the superconductors (j = ±1 denoting the right/left one)
was found to be [78, 188]

δHE =
∑
ζ1,ζ2,j

[
Γjζ1,ζ2ψζ1(x

−
j )ψζ2(x

+
j ) + h.c.

]
, (4.12)

with ζi collective indices standing for ρiτi, x±j = jL/2±δζ1,ζ2ξ/2 (ξ ≪ L the coherence
length in the edges). We recall that the sum has been antisymmetrized for each ζ1 ̸= ζ2
term, and all the possible injection processes are collected in Fig. 4.3(b). The generic
coefficient reads as

Γjζ1,ζ2 = Γ(−1)δζ1,−1−1δζ2,1−1

(
f̃T

)δρ1τ1, ρ2τ2

(fC)
δτ1,−τ2ei[

j
2
kFL(ρ1+ρ2)−θj ]. (4.13)

Here, Γ parametrizes the typical amplitude of the tunneling processes across the su-
perconductors/topological insulator interfaces, θj are the bare phases of the supercon-
ductors, kF is the Fermi momentum, f̃T = fT/

√
1 + f 2

T and fT/C are coefficients
related to the occurrence of spin flips and tunneling into different edges (Crossed An-
dreev Reflection), respectively. In the following discussions, a main role will be played
by fT . Indeed, the propagation of triplet Cooper pairs on a same reconstructed edge,
that fT ̸= 0 enables, breaks inversion symmetry and is found to be the origin of our
anomalous current. A finite fT is justified by the strong spin-orbit coupling charac-
terizing HgTe quantum wells. Although expected as well, fC is not essential for the
following, while it was pivotal for our former results involving a perpendicular mag-
netic field [188].

We are now ready to investigate the direct Josephson current through the junction.
With a standard perturbative Kubo-like approach with respect to δH , we can find the
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4.3. Edge reconstruction-induced anomalous effect

right and left current contributions in the reconstructed case, see Eq. (3.34) with ϕ =
Ṽ = 0 (and see Appendix A for all the details of the method in the non-reconstructed
case). By combining them together, the Josephson current reads as

I tot = C Im
{
e−i(θr−θl)I(f̃1, f̃2)− ei(θr−θl)I(f̃2, f̃1)

}
, (4.14)

with C ≡ (−2e∆Γ2)/(π2ℏ3v2F ). The function I has the following structure

I(f̃1, f̃2) =
1

Γ2

∑
ζ1,ζ2,ζ3,ζ4

Γrζ1,ζ2(Γ
l
ζ3,ζ4

)∗
∫ +∞

0

ds Im
[
Πζ1,ζ2,ζ3,ζ4

(
L̃, f̃1, f̃2, T̃ , s

)]
.

(4.15)

The integral evaluates the amplitude associated to the transport of a Cooper pair whose
electrons are in the initial states ζ3, ζ4 and in the final states ζ1, ζ2, encoding all the rel-
evant information. More quantitatively, Πζ1,ζ2,ζ3,ζ4 arises as a combination of products
of two Green functions (see [188] for the details) calculated over the Hamiltonian in
the absence of superconductors. As before, we resort to the adimensional quantities

L̃ =
L∆

ℏvF
, T̃ =

πkBT

∆
, f̃1,2 =

f1,2
∆
.

Apparently, in Eq. (4.14) only the difference between the bare phases of the two super-
conductors appears. However, in the next Subsection, we will bring out the anomalous
phase shift.

4.3.2 Results

To better characterize the anomalous effect, we first recast the current as

I tot = C [A cos (θr − θl) + B sin (θr − θl)] ≡ CD sin [(θr − θl) + φ0], (4.16)

where we have defined

A ≡ Im
[
I
(
f̃1, f̃2

)
− I

(
f̃2, f̃1

)]
, B ≡ −Re

[
I
(
f̃1, f̃2

)
+ I

(
f̃2, f̃1

)]
,

D ≡
√
A2 + B2, tanφ0 ≡

A
B . (4.17)

This way we have singled out the parameter φ0, that is the one describing the anomalous
Josephson effect. When φ0 = 0 mod 2π, there is no anomalous Josephson effect. It is
present otherwise.

To move towards the quantitative description of the φ0 effect, let us consider the
current in the absence of phase difference between the superconductors, θr = θl. What
we explicitly have is

Ia ≡ I tot∥θr=θl = C Im
[
I
(
f̃1, f̃2

)
− I

(
f̃2, f̃1

)]
, (4.18)

which makes evident that processes contributing to I symmetrically under the exchange
f̃1 ↔ f̃2 do not give rise to an anomalous current (Ia = 0). A deeper analysis, sup-
ported by Eq. (4.15) and the expressions of Πζ1,ζ2,ζ3,ζ4 , excludes processes where one
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electron is injected in a right-moving channel and the other in a left-moving channel.
Specifically, we find that the processes responsible for the anomalous effect are ∝ f̃ 2

T

and independent of fC . They correspond to injections as depicted in the upper-right
panel of Fig. 4.3(b). Quantitatively, we have

Ia =
C
Γ2

{
Im

[
8∑
i=1

Λi

∫ +∞

0

ds Im Πi(s)

]
− f̃1 ↔ f̃2

}
, (4.19)

where the coefficients Λi are listed in the Table below.

Table 4.1: Coefficients Λi and processes contributing to the anomalous Josephson current.

Coefficient Λi Corresponding Γr
ζ1,ζ2

(Γl
ζ3,ζ4

)∗

Λ1 = Γ2f̃2T e
−i2kFL = Γr

−11,−11(Γ
l
−11,−11)

∗

Λ2 = Γ2f̃2T e
−i2kFL = Γr

−1−1,−1−1(Γ
l
−1−1,−1−1)

∗

Λ3 = Γ2f̃2T e
−i2kFL = Γr

−11,−11(Γ
l
−1−1,−1−1)

∗

Λ4 = Γ2f̃2T e
−i2kFL = Γr

−1−1,−1−1(Γ
l
−11,−11)

∗

Λ5 = Γ2f̃2T e
i2kFL = Γr

11,11(Γ
l
11,11)

∗

Λ6 = Γ2f̃2T e
i2kFL = Γr

1−1,1−1(Γ
l
1−1,1−1)

∗

Λ7 = Γ2f̃2T e
i2kFL = Γr

11,11(Γ
l
1−1,1−1)

∗

Λ8 = Γ2f̃2T e
i2kFL = Γr

1−1,1−1(Γ
l
11,11)

∗

The Πi functions are not all independent of each other, and can be written in a unified
form. In particular, it can be shown that

Π1(s) = Π2(s) Π3(s) = Π4(s) Π5(s) = Π6(s) Π7(s) = Π8(s),

where, from calculations that we skip here, but can be inferred by following [188] and
Appendix B,

Π1(s) =
T̃ 2

2

{
[cosh(λ2) + 1]K2(s)−

[
cosh(λ2) + cos

(
2f̃2

)]
K(s+ 1)K(s− 1)

}
,

Π3(s) =
T̃ 2

2

{
[cosh(λ2)− 1]K2(s)−

[
cosh(λ2)− cos

(
2f̃2

)]
K(s+ 1)K(s− 1)

}
,

Π5(s)=
T̃ 2

2

{
[cosh(λ1) + 1](K∗(−s))2−

[
cosh(λ1) + cos

(
2f̃1

)]
K∗(−s− 1)K∗(−s+ 1)

}
,

Π7(s)=
T̃ 2

2

{
[cosh(λ1)− 1](K∗(−s))2 −

[
cosh(λ1)−cos

(
2f̃1

)]
K∗(−s− 1)K∗(−s+ 1)

}
.

Here,

K(s) =
1

sinh
[
T̃
(
L̃+ s− i

)] , (4.20)

with s ∈ R, and
λν = 2f̃ν

(
1 + iL̃

)
, (4.21)

with ν = 1, 2. We stop for a moment to further manipulate these expressions. The
reader wishing to proceed straightforwardly to the results can move to Eq. (4.29).
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We first notice the symmetry relation

K∗(−s) = 1

sinh
[
T̃
(
L̃− s+ i

)] ≡ K(−s+ 2i),

thanks to which we can rewrite the functions Π5(s) and Π7(s) as

Π5(s) =
T̃ 2

2

{
[cosh(λ1) + 1]K2(−s+ 2i)−

[
cosh(λ1) + cos

(
2f̃1

)]
K(−s+ 2i− 1)K(−s+ 2i+ 1)

}
, (4.22)

Π7(s) =
T̃ 2

2

{
[cosh(λ1)− 1]K2(−s+ 2i)−

[
cosh(λ1)− cos

(
2f̃1

)]
K(−s+ 2i− 1)K(−s+ 2i+ 1)

}
. (4.23)

Hence, in a unified form, we obtain

Π1(s) ≡ Π
(2)
+ (s), (4.24a)

Π3(s) ≡ Π
(2)
− (s), (4.24b)

Π5(s) ≡ Π
(1)
+ (−s+ 2i), (4.24c)

Π7(s) ≡ Π
(1)
− (−s+ 2i), (4.24d)

where

Π
(ν)
± (s) =

T̃ 2

2

{
[cosh(λν)± 1]K2(s)−

[
cosh(λν)± cos

(
2f̃ν

)]
K(s+ 1)K(s− 1)

}
.

(4.25)
Since ξ is the short distance cut-off, and since we are interested in the long junction
regime, we can expand the functions K at the lowest order in ξ/L. In this case, what
we obtain is

K(s+ 1)K(s− 1) ≃ T̃ 2K4(s) +K2(s), (4.26)

and hence Eq. (4.25) becomes

Π
(ν)
± (s) =

T̃ 2

2

{[
∓ cos

(
2f̃ν

)
± 1
]
K2(s)−

[
cosh(λν)± cos

(
2f̃ν

)]
T̃ 2K4(s)

}
.

(4.27)
Plugging this result into Eq. (4.19) and extracting the imaginary parts, the terms
∝ K2(s) cancel out exactly and we are left with the following expression for the
anomalous current, which represents the central result of our analysis

Ia
C =− 2f̃ 2

T sin (2kFL)
[
cosh (2f̃1) cos (2f̃1L̃) (I1 + I2)

− sinh (2f̃1) sin (2f̃1L̃) (I4 − I3) + f̃1 ↔ f̃2

]
. (4.28)
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Chapter 4. The anomalous Josephson effect

Here

I1 = T̃ 4 Im
[∫ +∞

0

dsK4(s)

]
, I2 = T̃ 4 Im

[∫ +∞

0

ds (K∗(−s))4
]
,

I3 = T̃ 4 Re
[∫ +∞

0

dsK4(s)

]
, I4 = T̃ 4 Re

[∫ +∞

0

ds (K∗(−s))4
]
.

The building block is given by

T̃ 4

∫ +∞

0

dsK4(s) =
4

3
T̃ 3 1− 3e2(L̃−i)T̃[

1− e2(L̃−i)T̃
]3 ≡ F

(
L̃, T̃

)
,

T̃ 4

∫ +∞

0

ds (K∗(−s))4 = F
(
−L̃, T̃

)
,

and we notice that

I1 = I2 I3 + I4 =
4

3
T̃ 3.

With some more simple algebraic manipulations, one can now finally reach the final
expression for the anomalous current characterizing the system,

Ia = CD sin(φ0) = 4Cf̃ 2
T sin(2kFL)Im

{
[cosh(λ2)− cosh(λ1)]

[
F
(
L̃, T̃

)
− 2

3
T̃ 3

]}
.

(4.29)

The function F
(
L̃, T̃

)
is explicitly

F
(
L̃, T̃

)
=

4

3
T̃ 3 1− 3e2(L̃−i)T̃[

1− e2(L̃−i)T̃
]3 .

4.3.3 Discussion and conclusions

Let us start from the inspection of the anomalous current in Eq. (4.29) as a function of
the two tunneling amplitudes, as shown in Fig. 4.4(a).
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4.3. Edge reconstruction-induced anomalous effect

Figure 4.4: Anomalous current Ia = Itot∥θr=θl flowing in the system. (a) Density plot of Ia/C as a
function of f̃1, f̃2, with fC = 0.3, f̃T = 0.4, kFL = 23/4π, L̃ = 20 and T̃ = 0.25 (color scale at
the right). (b) Ia/C as a function of f̃2, for different values of T̃ (see the plot legend) and f̃1 = 0.2.
The other parameters remain unchanged from panel (a). Figure adapted from [191].

As a first observation, the anomalous current does not have a well-defined sign.
Just like the ordinary current, it obviously has to be antisymmetric in the exchange of
the right and left current contributions, being proportional to their difference – see Eq.
(4.14). But from the same Equation and the previous Chapter, we know that Ir and I l

are related to each other simply by f̃1 ↔ f̃2, if θr = θl. Accordingly, in Fig. 4.4(a)
Ia appears odd under the exchange f̃1 ↔ f̃2. In terms of symmetries, such exchange
essentially realizes the inversion of the structure. Consistently, we find Ia = 0 for
f̃1 = f̃2, and in that case Eq. (4.16) recovers the standard Josephson effect (see the
dashed white line on the diagonal). This could be expected from the beginning since
for f̃1 = f̃2 time-reversal symmetry is preserved, and the conditions for the anomalous
effect are no longer met. An oscillatory behavior is also present as a function of f̃1
and f̃2 (see again Fig. 4.4(a)). This fact is not surprising since oscillations in the
amplitude of the DC and AC (non-anomalous) Josephson currents were also present
for f̃1 = f̃2 [188]. As a second interesting fact, thanks to such oscillations, Ia increases
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Chapter 4. The anomalous Josephson effect

rapidly as soon as an asymmetry between the couplings, although small, is introduced.
This is visible in Fig. 4.4(b), where we set f̃1 = 0.2: the anomalous current assumes
a finite value as f̃2 deviates, even slightly, from 0.2. Finally, it is here worth noticing a
peculiar effect: the anomalous current increases as the temperature is increased, having
to keep, however, kBT smaller than the induced gap. This effect is better shown in Fig.
4.5. Surprising at first, it can be understood with a simple “perturbative” argument:
the inter-edge scattering proportional to f1/2 mixes states with the same kinetic energy
±ℏvFk; in a Fermi’s golden rule approach whereHf.s. is the perturbation, its effects are
strongly suppressed at low temperature due to the Fermi functions. Such a temperature
dependence is hence a clear cut signature of the constriction.

Figure 4.5: Ia/C as a function of T̃ , for different values of f̃1 (see the plot legend), at f̃2 = 0.2. Here
fC = 0.3, f̃T = 0.4, kFL = 23/4π, L̃ = 20. Figure adapted from [191].

In order to catch the essential physics underlying such temperature behavior, an
expansion of Eq. (4.29) is particularly illuminating. First of all, the anomalous current
has a zero temperature contribution, although hardly visible in Fig. 4.5:

Ia

Cf̃ 2
T sin(2kFL)

∥∥∥∥∥
T̃=0

=
4

3
Im

cosh(λ2)− cosh(λ1)(
L̃− i

)3
 . (4.30)

Despite its low visibility, the presence of this term is significant and will be discussed
in a while. Restoring finite temperature, without assumptions on L̃ but expanding for
small T̃ and f̃ν , we obtain

Ia

Cf̃ 2
T sin(2kFL)

T̃ ,f̃ν≪1≃ 8

3

(
f̃ 2
1 − f̃ 2

2

)[ 1

1 + L̃2
+ 2T̃ 2

]
, (4.31)
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4.3. Edge reconstruction-induced anomalous effect

which is the quadratic temperature scaling well visible in Fig. 4.52.
We can now interpret the temperature dependence of the anomalous current. As

we already commented, at zero temperature (see Eq. (4.30)), and for small f̃1/2, the
inter-edge tunneling events are suppressed by phase space arguments. In this case, the
effect has a different origin: the coupling between the edges, for f̃1 ̸= f̃2, splits the en-
ergies of electrons having different chiralities. In terms of the spin degree of freedom,
it is analogous to the application of two magnetic fields in the z-direction opposite to
each other on the two edges. Under this perspective, our system realizes two replica
of the single-edge φ0 effect reported in [50], and discussed at the end of the previous
Section. However, while in [50] the anomalous current vanishes when both edges are
considered, in our case the effect is opposite for the two edges and the cancellation
doesn’t occur. The energy splitting just mentioned is independent of the length L̃ of
the system and, accordingly, the associated current decays as the distance between the
superconductors is increased (Eq. (4.30)), as usual for Josephson currents. When the
temperature is finite, as in Eq. (4.31), the second mechanism for the φ0 effect comes
into play: the inter-edge tunneling. Just as the zero temperature contribution, the fi-
nite temperature one scales as f̃ 2

1/2. It thus involves two inter-edge tunneling events,
consistently with the processes we identified in Table 4.1, which require at least two
tunnelings. The probability of each tunneling event scales as L̃, so that the finite tem-
perature term scales, compared to the zero temperature one, with a factor L̃2 more.
Moreover, each tunneling corresponds to a product f(1 − f), with f = 1/(eE/kBT + 1)
the Fermi function. Under integration over the energies E = ±ℏvFk, such a product
contributes with a factor T̃ , and since we are in the presence of a double tunneling,
the leading order becomes T̃ 2. The probability of the events contributing to the tem-
perature activated anomalous current is hence favored by both the junction length and
temperature. Our qualitative interpretation is able to capture the scaling of the φ0 effect
at finite temperature, its non-zero value at zero temperature, and the better scaling with
the length of the junction characterizing the thermally activated processes.

To summarize, the Quantum Spin Hall-based Josephson junction we conceived turns
out to be an experimentally relevant system hosting the φ0 Josephson effect, remark-
ably in the absence of applied magnetic fields. The necessary symmetry breakings are
provided by the edge reconstruction, a phenomenon which can take place with soft con-
finement potentials. The anomalous Josephson current, surprisingly at first, increases
as the temperature is increased. We have analyzed in detail such an increase resorting
to a perturbative expansion and we have qualitatively interpreted that on the basis of
the thermal activation of the inter-edge tunneling processes in the constriction. Our
results open the way to the design of phase batteries in these systems, without the need
of external magnetic fields. Being the building block of our system a two-dimensional
topological insulator, it is possible to envision the direct integration of the φ0 junction
just considered with other functional nanostructures built on the same topological in-
sulator. Lastly, going beyond the low-transparency interfaces assumption, and hence

2On the other hand, we can also write analytically the thermodynamic limit of Eq. (4.29)

Ia

Cf̃2T sin(2kFL)

T̃ L̃≫1
≃ 16

[
cos

(
2f̃2L̃

)
cosh

(
2f̃2

)
− cos

(
2f̃1L̃

)
cosh

(
2f̃1

)]
T̃ 3

e−4L̃T̃ sin
(
4T̃

)
−

8

3

[
sin

(
2f̃2L̃

)
sinh

(
2f̃2

)
− sin

(
2f̃1L̃

)
sinh

(
2f̃1

)]
T̃ 3, (4.32)

but we will rather focus on Eq. (4.31).
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Chapter 4. The anomalous Josephson effect

including higher order contributions of δHE in the calculation of the current, our setup
satisfies the requirements to exhibit the superconducting diode effect.

134



i
i

“output” — 2024/2/14 — 20:42 — page 135 — #145 i
i

i
i

i
i

CHAPTER5
Role of the spatial extension of the edge channels

In this last Chapter, we summarize the main results on how to describe transport through
a Quantum Spin Hall-based Josephson junction in the presence of edges with large
spatial extension. This situation is shown in Fig. 5.1(c)-(d).

In Chapter 2 (Subsec. 2.2.1), we have discussed the Dynes and Fulton description
of supercurrents in the presence of a magnetic field, emphasizing that such description
is not able to capture any Cooper pair splitting. Then, in Sec. 2.3, we have introduced
the Crossed Andreev Reflection, which is the most common splitting mechanism when
dealing with edge states. In what follows, we discuss a heuristic approach that gener-
alizes Dynes and Fulton’s one. It is still built on the supercurrent density, but includes
any distinguished trajectories for the two electrons, provided that they are not further
away from each other than the coherence length ξ. This can involve a single edge (a
generalization of Local Andreev Reflection, LAR) or both edges (a generalization of
Crossed Andreev Reflection, CAR). We will see that the wider the edges, the more pro-
nounced are the consequences on the interference pattern, which is highly sensitive to
the electrons’ path. The pattern’s periodicity resulting from this phenomenology will
be discussed and compared to the case of localized edge states. This Chapter is largely
based on the original results in Ref. [189].

5.1 Local and non-local transport of Cooper pairs

Before moving to the description of extended channels, we shortly recap how the inter-
ference pattern looks like when they have a strongly localized profile. To this aim, let us
consider a Josephson junction of length L and width w. Let the non-superconducting
part be tunnel-coupled to a right and a left superconducting leads, and subjected to
a uniform perpendicular magnetic field, B = Be3, with a magnetic flux ϕ = BLw
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Chapter 5. Role of the spatial extension of the edge channels

Figure 5.1: (a) A topological Josephson junction with strongly localized edge states on the boundaries,
marked in pink and green. Each boundary hosts two counter-propagating channels with identical
profiles. For clarity of the picture, only one colored shape per boundary is shown. The electrons of a
Cooper pair can be both injected into a same edge (LAR) or split over opposite edges (CAR), if the
superconducting coherence length ξ is larger or comparable with the width of the junction. (b) The
colored shapes represent the edges’ profiles for the junction (a): g(y) for the upper edge (pink) and
g(−y) for the lower edge (green). They are assumed to be symmetric around y = 0. (c) The same
sample as (a) for the case of broadened edge states, which allow different trajectories for electrons
injected in LAR and a wider range of possibilities for CAR. As an example, both panels (a) and (c)
show LAR processes involving only the upper edge. (d) Edges’ profiles g(y) and g(−y) as in (b), but
for the junction (c), where they also overlap to some extent. Figure adapted from [189].

piercing the junction.
In the simplest case, when Cooper pair splitting is forbidden or neglected, the gauge-

invariant phase difference picked up by the two tied electrons reads as [179]

φ = (θr − θl)−
2π

ϕ0

∫
A · dr, (5.1)

where θr(θl) is the phase characterizing the right(left) superconductor, A is the vector
potential, and the line integral has to be evaluated over the path of the Cooper pair from
a side of the junction to the other. We are here assuming that the magnetic field is
fully screened from the superconducting electrodes, see Subsec. 2.2.1. With the gauge
choice A = −Bye1, and by considering horizontal (ballistic) paths labeled by y, with
−w/2 ≤ y ≤ w/2, Eq. (5.1) becomes

φ(y) = (θr − θl) +
2πϕ

ϕ0

y

w
. (5.2)

The second addend in Eq. (5.2) represents the Aharonov-Bohm contribution, which for
a single electron would read as (πϕ/ϕ0)(y/w).

Following Dynes and Fulton prescription, the total supercurrent through the junction
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5.2. From narrow to extended edge channels

is given by (see Eq. (2.54)),

I(θr − θl, ϕ) =

∫ w/2

−w/2
Jc(y) sin

(
θr − θl +

2πϕ

ϕ0

y

w

)
dy. (5.3)

with Jc(y) the critical supercurrent density. Maximizing with respect to (θr − θl) and
getting the absolute value, this returns the critical supercurrent as a function of the
magnetic flux, or interference pattern, Ic(ϕ). In Chapter 2, we have presented two
cases:

• If Jc(y) is uniform, one obtains the Fraunhofer pattern,

Ic(ϕ)/Ic(0) = |sin (πϕ/ϕ0)/(πϕ/ϕ0)| .
More complicated settings, for instance including diagonal trajectories for Cooper
pairs, have been addressed in the literature for different realizations of Josephson
junctions [13, 85, 108, 158].

• If there is only edge transport, and the edge channels are assumed to be extremely
narrow, then Jc(y) = I0[δ(y + w/2) + δ(y − w/2)]/2, and one gets the SQUID
pattern,

Ic(ϕ)/Ic(0) = |cos (πϕ/ϕ0)| .
We are interested in this second situation, in particular in Josephson junctions having
a two-dimensional topological insulator as a weak link. If w ∼ ξ, a first step beyond
Dynes and Fulton is the introduction of Cooper pair splitting over the narrow edges via
CAR processes (Sec. 2.3). This is shown in Fig. 5.1(a). The Aharonov-Bohm phases
acquired on opposite edges cancel with each other, resulting in a flux-independent pro-
cess that modifies the SQUID pattern into the even-odd effect [16, 24, 42, 43, 78, 134],
with a doubled periodicity of 2ϕ0,

Ic(ϕ)/Ic(0) = |cos (πϕ/ϕ0) + f | .
The next Section is devoted to the case of two-dimensional systems with extended edge
states. Different interference patterns depending on the extension of the edge states and
on the width of the junction will be found.

5.2 From narrow to extended edge channels

We now move to the scenario depicted in Fig. 5.1(c). In the proximitized regions,
the edge states are gapped out, while in the central part they have a spatial profile
qualitatively sketched in Fig. 5.1(d). Each boundary hosts two counter-propagating
channels with identical profile and opposite spin polarization, although for clarity a
single colored shape per boundary is shown.

We first introduce two distinguished coordinates in Eq. (5.3) (one for each electron
of the Cooper pair), y↑ and y↓:

I(θr − θl, ϕ) =

∫ w/2

−w/2
dy↑ dy↓ Jc(y↑, y↓) sin

(
θr − θl +

πϕ

ϕ0

(y↑ + y↓)

w

)
= Im

[
ei(θr−θl)

∫ w/2

−w/2
dy↑ dy↓ Jc(y↑, y↓)e

iπϕ
ϕ0

y↑
w e

iπϕ
ϕ0

y↓
w

]
, (5.4)
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Chapter 5. Role of the spatial extension of the edge channels

Here ↑ / ↓ refers to the electron’s spin projection, and we keep considering only hori-
zontal trajectories. We also maintain the sinusoidal current-phase relation of the former
approach, valid for low-transparency interfaces. The function Jc(y↑, y↓), which weights
how each specific path contributes to the total supercurrent, is a generalization of the
critical supercurrent density and to enclose the main physical properties of the normal
region. The main point is to comprise the possibility for a Cooper pair to split into
different trajectories within a same edge, as far as they lie within a distance ξ. To this
aim, an overall constraint function to take into account the Cooper pair’s size should be
included. Our ansatz is

Jc(y↑, y↓) = J0e
−|y↑−y↓|/ξ[sg(y↑)g(y↓) + sg(−y↑)g(−y↓)︸ ︷︷ ︸

LAR

+ g(−y↑)g(y↓)︸ ︷︷ ︸
CAR

], (5.5)

where J0 has the dimensions of a current per unit length and g(±y) will be connected
to the spatial profile of the upper/lower edge states, which are assumed to be symmetric
around y = 0 (see Fig. 5.1(d)). Each term is the product of a factor involving only
y↑ and a factor involving only y↓. As marked in the Equation, the first two addends
are identified as a generalization of LAR, into the upper or lower edge, to the case of
extended edge states. The third term represents CAR. The parameter s is the ratio of
the amplitudes of LAR and CAR. Indeed, owing to the helicity of the edge channels,
LAR and CAR are clearly different processes: as we do not consider spin-flips here, in
the LAR case, spin up and spin down electrons have opposite directions of propagation;
on the contrary, in the CAR case, they are either right-movers or left-movers [78, 188].
In general, s might depend on temperature, applied bias, and length of the junction.
Such dependence is not specified here, and it is rather treated as a phenomenological
parameter to unbalance the presence of LAR and CAR.

Two unusual features are incorporated in Eqs. (5.4)-(5.5):

1. the electrons can tunnel into the same edge but at different positions;

2. the electrons can tunnel into different edges acquiring Aharonov-Bohm phases
that do not cancel each other out. This implies the unconventional possibility of
flux-dependent CAR processes.

The part within square brackets has the flavor of a probability density. We argue that
g(y) ≡ |ψu(y)| = |ψl(−y)|, where ψu/l(y) is the wavefunction of the upper/lower edge
state.

We can check two limiting cases of the last two Equations:

• For ξ ≪ w, we should recover Dynes and Fulton. In the constraint function

e−|y↑−y↓|/ξ = e−
|y↑−y↓|

w
w
ξ , the first fraction necessarily takes values between 0 and

1. Therefore e−|y↑−y↓|/ξ ξ≪w−→ 0, and the supercurrent density vanishes unless y↑ =
y↓ ≡ y. The Cooper pairs’ electrons are labeled by a same coordinate back again1.
Moreover, if the edge states’ extent is ≲ ξ ≪ w, they do not overlap and in the
CAR term g(−y)g(y) = |ψl(y)||ψu(y)| = 0. Concerning LAR, from Dynes and
Fulton we should get

Jc(y) = I0(|ψu(y)|2 + |ψl(y)|2), (5.6)

1More precisely, e−|y↑−y↓|/ξ ξ≪w−→ 2ξδ(y↑ − y↓).
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5.3. Results

and indeed (apart from the factor s) our supercurrent becomes

I(θr − θl, ϕ) = 2ξJ0Im
[
ei(θr−θl)

∫ w/2

−w/2
dy
(
|ψu(y)|2 + |ψl(y)|2

)
e
i 2πϕ

ϕ0

y
w

]
, (5.7)

where we can identify 2ξJ0 ≡ I0. By specifying |ψu/l(y)| ∝ δ(y ∓ w/2), it leads
to a SQUID interference pattern.

• On the contrary, if ξ ≫ w, then e−|y↑−y↓|/ξ ξ≫w−→ 1, and the integrals over y↑ and
y↓ in Eq. (5.4) factorize, unsurprisingly corresponding to completely independent
trajectories for the two electrons.

For what concerns CAR, if the conduction can only happen on narrow edges |ψu/l(y)| ∝
δ(y∓w/2) (such as in the upper panel of Fig. 5.1(a)), this results in a flux-independent
contribution to the critical current, as expected.

In the next Section, we focus on the interference pattern arising from differently
extended edges and for different values of ξ, s. In particular, we aim at identifying
a parameter regime in which the interference pattern is 2ϕ0-periodic. Indeed, as the
doubled periodicity is a widely studied signature, it is interesting to investigate new
mechanisms that can give rise to it. Moreover, it has been previously discussed that
it usually emerges in the presence of Cooper pair splitting, which is a cornerstone in
our description of broadened edge states. We therefore expect it to arise also in our
system. In particular, we find that this unusual periodicity in our model corresponds
to a markedly non-local transport regime, when the edge states are highly broadened
and CAR are the dominating processes. To move in this direction, we inspect the
CAR-dominated regime, and set s < 1 from now on2. This circumstance has been
experimentally observed. In Ref. [42], an InSb Josephson junction is analyzed, and
CAR processes turn out to be larger than expected and to even exceed the LAR ones3. It
would be interesting to pinpoint rather general conditions under which CAR processes
are more important than LAR processes, but this open issue is beyond the scope of the
present discussion.

5.3 Results

We draw the attention to the interference pattern of the junction, to discuss the role of
the edges’ profile g(y) and of the two parameters ξ and s. From Eq. (5.4), the pattern
reads as4

Ic(ϕ) =

∣∣∣∣∣
∫ w/2

−w/2
dy↑ dy↓ Jc(y↑, y↓)e

iπϕ
ϕ0

y↑
w e

iπϕ
ϕ0

y↓
w

∣∣∣∣∣ , (5.8)

with Jc(y↑, y↓) from Eq. (5.5).
2A second CAR contribution should be proportional to s2. Since s < 1, it will be neglected, and only the first order in s will

be included.
3The authors measured an entirely 2ϕ0-periodic pattern, in combination with an enhanced conduction at both edges. We know

from Chapter 2 that a 2ϕ0 periodicity can result from the flux-independent supercurrent due to CAR interfering with the standard
ϕ0-periodic SQUID current. If LAR dominates over CAR, a ϕ0 oscillation should be simultaneously present, otherwise the CAR
amplitude must be larger than the LAR one.

4We recall that the interference pattern is obtained as the maximum supercurrent with respect to the difference (θr − θl), taken
in absolute value.
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Chapter 5. Role of the spatial extension of the edge channels

As we commented in Chapter 2, any extended supercurrent density profile leads to
decaying patterns. We obtain also here a fast side lobe decay. Reminescent of the even-
odd pattern, which is 2ϕ0-periodic, in the non-local transport regime our model features
an interference pattern approaching a 2ϕ0-periodicity. This is shown in Fig. 5.2.

Figure 5.2: Resultant interference pattern Ic(ϕ) (panel (b)) and the separated contributions of LAR
(panel (c)) and CAR (panel (d)) for the edge’s profiles shown in panel (a), with ξ/w = 0.85 and
s = 0.2. All plots are in arbitrary units. Figure from [189].

The edge profile is visible in panel (a), and we set ξ/w = 0.85 and s = 0.2. Panel
(b) is the total interference pattern. As anticipated, it is fastly decaying and its min-
ima approach multiples of 2ϕ0. Panels (c) and (d) isolate the LAR and the CAR term
(s = 0), respectively, to pinpoint the interplay of the two contributions. The LAR
pattern on its own, despite Cooper pair splitting is strongly favored by the large ra-
tio ξ/w, shares similarities with a standard Fraunhofer pattern, although a shift of the
minima away from ϕ0 multiples is visible. On the other hand, CAR processes exhibit
a pronounced decay with only a mild 2ϕ0 modulation on top. In panel (b), the 2ϕ0

oscillation arise from the interaction of these two terms. The minima in the odd mul-
tiples of ϕ0, ϕ = ϕ0, 3ϕ0, 5ϕ0, are not present. Fig. 5.3 covers a larger interval for
the same plot, showing that this trend persists. While ϕ ≈ 2ϕ0 hosts a minimum, for
ϕ = 4ϕ0, 6ϕ0, 8ϕ0 very lowered bumps, reminiscent of the peak structure of the LAR
contribution, are still visible. This is indeed dominant over the CAR one for large
values of ϕ, due to its slower decay.

Fig. 5.4 shows the interference pattern obtained for different values of coherence
length, a more or less prevalent role played by LAR and CAR (represented by the
parameter s), and different spatial profiles for the edge states. In particular, we consider
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Figure 5.3: Resultant interference pattern Ic(ϕ) in Fig. 5.2b for a larger interval for the magnetic flux.
Figure from [189].

two different edge states’ shapes for the plots in panels (b) and (d).
For panel (b), we assume the shape in panel (a), the same as Fig. 5.2,

g(−y) = 0.05

|y/w + 0.4|2 + 0.05
θ(−y/w + 0.5)θ(y/w + 0.5). (5.9)

For panel (d), we assume the shape in panel (c),

g(−y) = e−(y/w−0.45)2/(2∗0.22)θ(−y/w + 0.5)θ(y/w + 0.5), (5.10)

but fine details about the functional form describing the edge profile are not crucial.
Both functions are peaked at the opposite ends of the junction, around y = ±w/2,
but have a different overlap. The full interference pattern, arising from both LAR and
CAR, is plotted for different combinations of ξ/w and s (see the plot legend). From the
patterns obtained, we see that the finite extension of the edge states leads to a pattern
with a main central lobe and decaying side lobes. Moreover, if CARs are dominant and
the edge states overlap, the resulting periodicity approaches 2ϕ0. In the next Section
we discuss the various cases in more detail.

5.4 Discussion and conclusions

In Fig. 5.4(b), the orange curve is the one presented in Fig. 5.2(b), with a high co-
herence length (ξ/w = 0.85) and the prominent presence of CAR (s = 0.2), featuring
a minima periodicity approaching 2ϕ0. We use it now as a reference plot. For the
black curve, CAR is almost missing (s = 0.7). Owing to ξ/w ≪ 1, this situation
can be captured by Dynes and Fulton description applied to a supercurrent density
∝ g(y)2 + g(−y)2. If s is decreased, LAR is also suppressed, and the entire pattern
is lowered. Increasing the coherence length, the possibility of a non-local propagation
of the two electrons is increased, although not sufficiently to get a clearly visible 2ϕ0-
periodicity. A LAR-dominated scenario (a weak suppression s ∼ 1), despite high co-
herence lengths, still leads to Fraunhofer-like behavior with more minima and a slower
decay (light blue curve, with ξ/w = 0.85 and s = 0.7).

Panel (d) is associated to edge states with a smaller overlap. Tuning the parameters
as in the black and light blue curves, gives a result similar to panel (b). This had to be
the case, because we are not in the appropriate parameter regime to appreciate non-local
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Chapter 5. Role of the spatial extension of the edge channels

Figure 5.4: Panels (a), (c) show two possible profiles g(y) and g(−y) for the edge states. Panels (b),
(d), are the corresponding interference patterns, arising from both LAR and CAR. Different colors
are associated to different values of ξ and s, see the plot legend. Figure from [189].

transport significantly, hence the different shape doesn’t produce striking differences.
However, choosing both parameters to favor non-local transport (orange curve, with
ξ/w = 0.85 and s = 0.2), the periodicity starts to approach 2ϕ0, with weak minima.
This shows the need for highly extended states as in (a) to better see the 2ϕ0-periodicity.
To summarize, to this aim:

1. A high coherence length ξ (ξ ≳ w) is necessary because short values of ξ/w
suppress the occurrence of CAR. This first requirement depends on the choice of
the superconductors and on the sample width, and it is not hard to fulfill.

2. Second, the ratio s has to be low (at least s < 1/2), which means that CAR
dominate over LAR.

3. Lastly, a significant overlap of the edge states is needed. If the edge states do not
overlap, there start to emerge features expected for perfectly localized edges: a
SQUID-like pattern with the additional even-odd effect, which is 2ϕ0-periodic but
not decaying. See Fig. 5.5.

To sum up, in this Chapter we have described a way to compute the supercurrent
– and the interference pattern – of a Josephson junction with spatially extended edge
states. We argued that, as a consequence of their spatial extension, the edge states can
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5.4. Discussion and conclusions

Figure 5.5: Interference pattern (b) obtained with our approach applied to the more localized and non-
overlapping edge states in (a), with g(−y) = e−(y/w−0.45)2/(2∗0.12)θ(−y/w + 0.5)θ(y/w + 0.5).
The parameters are specified in the plot legend. There start to emerge features expected for perfectly
localized edges. For comparison with (b), panel (c) shows patterns associated to perfectly localized
edge states: a SQUID pattern (black), an even-odd pattern with prevalence of LAR (light blue), an
even-odd pattern with prevalence of CAR (orange).

host different trajectories for the two electrons. Our approach, although not technically
demanding, maintains the straightforward and informative nature of the Dynes and Ful-
ton’s one. At the same time, it fills one of its main gaps, that is the assumption that both
electrons within a Cooper pair follow the same path. Our generalization allows to take
into account also CAR processes. Some limiting cases have been discussed, showing
that the new approach correctly captures the already studied regimes. The Dynes and
Fulton hypothesis of sinusoidal current-phase relation, which holds in the tunneling
regime between the superconductors and the middle region, has been maintained. A
further assumption we made is that the two edge states have a symmetric profile. On
the other hand, their specific functional form is not crucial.

While strongly localized edge states give rise to a pattern with no decay and a pe-
riod ϕ0 or 2ϕ0, including a finite extent of the edge states in the model gives rise to
wider possibilities. We particularly focused on the role played by LAR and CAR pro-
cesses in determining the interference pattern, together with the edge states’ broadening
and the superconducting coherence length. The periodicity of the resulting pattern can
vary from ϕ0 to 2ϕ0, depending on the dominating process. In particular, we find that
the doubled periodicity goes together with non-local transport, when the two electrons
within a pair can separately explore the two edges and the latter are widely broadened
through the junction.
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Chapter 5. Role of the spatial extension of the edge channels

This work can help in developing a more realistic description of experimentally
realized systems, and opens up further generalizations and refinements. Among these,
a justification at the microscopic level of the phenomenological parameters would be
an interesting follow-up.
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Conclusions and perspectives

In this Thesis we have considered Josephson junctions where the non-superconducting
part is respresented by a Quantum Spin Hall system. In particular, we have addressed
experimentally relevant features of this setup which were still lacking a theoretical
description. The common thread has been the investigation of phenomena having
lengthscales comparable or less than the superconducting coherence length ξ, such that
Cooper pair splitting, in different ways, plays a key role. Our attention was drawn to
three main aspects. First, in Chapter 3, we have analyzed the effects on the interfer-
ence pattern of inter-edge tunneling within a Quantum Spin Hall constriction. Second,
in Chapter 4, the occurrence of edge reconstruction was discussed, together with its
impact on the current-phase relation of the junction. Lastly, in Chapter 5, we have
considered the role of the spatial distribution of the edge states instead of considering
them as perfectly localized. In what follows we summarize in more details each of the
raised problems.
Although we suggested that nanostructures exploiting constrictions between helical
edges are entitled to a huge variety of functionalities, their potential is by far not ex-
hausted with the results of this Thesis. At the end of each bullet below, we mention
examples of open problems which might be the subject of further studies.

• Summary and outlook of Chapter 3
In this Chapter we established a model to describe a Josephson junction realized
by a helical constriction between superconducting leads, and addressed its prop-
erties in the presence of a magnetic field and an external bias, as well as tunneling
events between the two edges of the topological insulator occurring in the narrow
region, located halfway along the junction. The object of our analysis was the
functional dependence of the critical current on the magnetic field via the interfer-
ence pattern.

We showed that the interference pattern corresponds to an unusual 4ϕ0-periodic
SQUID-like interference pattern (ϕ0 = h/2e) – which in the absence of inter-
edge tunneling is only 2ϕ0-periodic – persisting in a wide range of parameters.
This robustness makes it a convenient tool to test our theoretical model for a su-
perconducting quantum point contact in experiments. The physical explanation
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Conclusions and perspectives

we proposed resides in the fact that the dominant effect induced by the tunneling
involves a single electron within the Cooper pair, with elemental charge e and not
2e as for the pair. This effectively doubles the relevant flux quantum, resulting in
a new Aharonov-Bohm phase γAB = ±πϕ/2ϕ0. We argued that, more generally,
whenever in a constriction there is the possibility to switch from a Cooper pair liv-
ing on one side to a Cooper pair split over both sides, anomalous periodicities can
emerge. Also, the system allows for an unusual interplay of Local and Crossed
Andreev Reflection for the transmission of a same Cooper pair.

This work opens up to interesting follow-ups. First, the generalization of the
results to extended inter-edge tunneling, uniformly present in the junction and not
confined to a small subregion. In this case, the computation of the gauge-invariant
phases requires closer attention, and it is interesting to determine the resultant
period of the interference pattern. The outcome would be the characterization of
a complex though experimentally relevant setup. Our preliminary results show an
interference pattern more similar to a Fraunhofer pattern than a SQUID pattern,
with traces of a doubled minima periodicity compared to the standard Fraunhofer
pattern, just as a doubled periodicity compared to the standard SQUID pattern
emerged in [188]. Afterwards, it would be meaningful to inspect the AC-driven
behavior of the system, to test whether the anomalous periodicities can also show
up in the Shapiro step structure. This evaluation will be crucial when the formation
of Majorana fermions in the structure will be assessed.

• Summary and outlook of Chapter 4
Elaborating over the previous results, in this Chapter we analyzed the conse-
quences of the edge reconstruction, which is a spatial separation arising between
the two channels on each edge. If the potential confining the edge states is smooth,
this might happen as a result of electron-electron interactions, which make such re-
arrangement electrostatically convenient. The edge reconstruction has been imple-
mented in our theoretical model through an unbalance between the different inter-
edge tunneling amplitudes at play. Interestingly, this breaks both time-reversal
symmetry and inversion symmetry, allowing for two connected and promising be-
haviors: the φ0 Josephson effect and the superconducting diode effect. The first
consists in the presence of a finite Josephson current – called “anomalous Joseph-
son current” – in the absence of a phase difference between the two supercon-
ductors, and has recently been experimentally observed. It is attractive because it
can be exploited to design phase batteries, and to drive superconducting circuits
and superconducting memories. The second, experimentally observed as well, in-
spires great perspectives given the analogy to its semiconducting counterpart, that
laid the foundation for modern electronics.

Whereas the breaking of inversion symmetry can be provided by the geometry
of the nanostructure or by the microscopic lattice, the breaking of time-reversal
symmetry is often driven externally by means of applied magnetic fields. Notably,
for our reconstructed edge system, no external magnetic field is needed.

We analytically showed that, unexpectedly at first, the anomalous effect is rein-
forced by a temperature increase in a range of parameters. The peculiar temper-
ature dependence has been substantiated by a simple argument based on Fermi’s
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golden rule approach, and attributed to the thermal activation of the inter-edge
tunneling processes in the constriction. For this reason, it represents a clear trade-
mark of the constriction.
Our results open the way to design phase batteries, remarkably in the absence of
external magnetic fields, and make it possible to envision the direct integration of
the φ0 junction we considered with other functional nanostructures built on a same
Quantum Spin Hall sample. Lastly, going beyond the tunneling regime (namely,
the hypothesis of opaque interfaces between the superconductors and their link),
we expect the reconstructed system to realize a superconducting diode, which
would deserve a full characterization.

• Summary and outlook of Chapter 5
This Chapter was devoted to the role of the spatial extent of the edges’ wavefunc-
tions on transport through the junction. While the edge states are usually modeled
as strongly localized, we inspected the uncharted situation where they are broad-
ened through the junction over appreciable lengthscales for Cooper pairs, or even
overlap with each other.
In this cases, since the two electrons of a Cooper pair can propagate and explore
the junction independently over lengthscales comparable to ξ, the number of paths
they can follow remarkably increases, both via Local Andreev Reflection (the in-
jection of both into a same edge) and via Crossed Andreev Reflection (their split-
ting over opposite edges). If the junction is pierced by a magnetic flux, this gives
rise to wider possibilities for the Aharonov-Bohm phases they acquire. The maxi-
mal current as a function of the magnetic flux, which results from the interference
of all these paths, becomes rapidly decaying and can exhibit different periods in
terms of the superconducting flux quantum ϕ0 = h/2e. Both features are absent
in the case of localized states.
We suggested a way of describing this phenomenology, generalizing the long-
lasting Dynes and Fulton approach, and addressed the question whether Crossed
Andreev Reflection processes can bring along interference oscillations with a peri-
odicity 2ϕ0 as in the case of Crossed Andreev Reflection for localized edge states.
We found that the answer is affirmative and identified the best regime to observe
such periodicity, finding that it requires a prevalence of Crossed over Local An-
dreev Reflection.
Our main findings are the derivation of an expression that allows for the com-
putation of supercurrents in the experimentally relevant scenario of topological
Josephson junctions featuring edge states with finite spatial extent, and the intro-
duction of a new way of taking into account the non-local character of Cooper
pairs.
This proposal can help in developing a more realistic description of experimentally
realized systems and opens up further generalizations and refinements, first of all a
justification at a microscopic level of the phenomenological parameters involved.
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APPENDIXA
Complements to Chapter 2

A.1 Details on the calculation of Eq. (2.84)

This Section contains all the missing calculations in the current computation of Sec. 2.3
to reach Eq. (2.84). Let us restart from Eq. (2.81), where it has already been selected
the relevant perturbation −j,

Ij(t) ≈ i

ℏ

∫ t

−∞
dτ
〈[
δH−j

E (τ), Ij(t)
]〉
E
. (A.1)

Let us define A(j, t) = Γjζ,ζ′(t)ψζ(x
−
j , t)ψζ′(x

+
j , t) as in [78]. Then

Ij(t) =
i

ℏ

∫ t

−∞
dτ
∑
ζ,ζ′

〈[
A(−j, τ) + A†(−j, τ), 2ie

ℏ
(A(j, t)− A†(j, t))

]〉
E

=
−2e

ℏ2
∑
ζ,ζ′

∫ t

−∞
dτ
〈[
A(−j, τ) + A†(−j, τ), A(j, t)− A†(j, t)

]〉
E
. (A.2)

The average value can be rewritten as〈[
A(−j, τ) + A†(−j, τ), A(j, t)− A†(j, t)

]〉
E

=
〈
[A(−j, τ), A(j, t)]−

[
A(−j, τ), A†(j, t)

]
+
[
A†(−j, τ), A(j, t)

]
−
[
A†(−j, τ), A†(j, t)

]〉
E

=
〈
[A(−j, τ), A(j, t)] +

[
A†(−j, τ), A(j, t)

]†
+
[
A†(−j, τ), A(j, t)

]
+ [A(−j, τ), A(j, t)]†

〉
E

=2
〈
Re [A(−j, τ), A(j, t)] + Re

[
A†(−j, τ), A(j, t)

]〉
E
. (A.3)
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Appendix A. Complements to Chapter 2

The first term mediated on the unperturbed edge system returns zero, since it is not
particle number conserving. Substituting in the above expression,

Ij(t) =
4e

ℏ2
∑
ζ,ζ′

∫ t

−∞
dτRe

〈[
A(j, t), A†(−j, τ)

]〉
E
. (A.4)

By making the change of variable t′ = t− τ ,

Ij(t) =
4e

ℏ2
Re

{∑
ζ,ζ′

∫ +∞

0

dt′
〈[
A(j, t), A†(−j, t− t′)

]〉
E

}

=
4e

ℏ2
Re

{∑
ζ,ζ′

∫ +∞

−∞
dt′θ(t′)

〈[
A(j, t), A†(−j, t− t′)

]〉
E

}

=
4e

ℏ2
Re

{∑
ζ,ζ′

∫ +∞

−∞
dt′θ(t′)Γjζ,ζ′(t)(Γ

−j
ζ,ζ′(t− t′))∗〈[

ψζ(x
−
j , t)ψζ′(x

+
j , t), ψ

†
ζ′(x

+
−j, t− t′)ψ†

ζ(x
−
−j, t− t′)

]〉
E

}
=

4e

ℏ2
Re

{∑
ζ,ζ′

∫ +∞

−∞
dt′θ(t′)Γjζ,ζ′(t)(Γ

−j
ζ,ζ′(t− t′))∗〈[

ψζ(x
−
j , t

′)ψζ′(x
+
j , t

′), ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

]〉
E

}
, (A.5)

where in the last step we made a translation in time of the fermionic operator leveraging
the time-translation invariance of the unperturbed edge system. Notice that, in princi-
ple, there should be two sums over ζ, ζ ′ and ζ ′′, ζ ′′′. However, since these sums are
ordered, the only non-zero average value corresponds to ζ ′′, ζ ′′′ = ζ, ζ ′. The prefactor
is

Γjζ,ζ′(t)(Γ
−j
ζ,ζ′(t− t′))∗

=Γ2(f̃T )
2δρτ,ρ′τ ′ (fC)

2δτ,−τ ′e
ij
2

[
kFL(ρ+ρ

′)−ωJ t−φ0− πϕ
2ϕ0

(τ+τ ′)
]
e

ij
2

[
kFL(ρ+ρ

′)−ωJ (t−t′)−φ0− πϕ
2ϕ0

(τ+τ ′)
]

=Γ2(f̃T )
2δρτ,ρ′τ ′ (fC)

2δτ,−τ ′e
ij
[
kFL(ρ+ρ

′)− πϕ
2ϕ0

(τ+τ ′)
]
e−ij(ωJ t+φ0)eij

ωJt′
2

≡Γ2fζ,ζ′e
−ij(ωJ t+φ0)eij

ωJt′
2 . (A.6)

Plugging it into Eq. (A.5), we get

Ij(t) =
4eΓ2

ℏ2
Re

{
e−ij(ωJ t+φ0)

∑
ζ,ζ′

fζ,ζ′

∫ +∞

−∞
dt′θ(t′) eij

eV t′
ℏ

〈[
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′), ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

]〉
E

}
, (A.7)

where we used ωJ = 2eV/ℏ. The next step is to compute the average value. It can be
shown that

θ(t′)
〈[
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′), ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

]〉
E

=− 2iθ(t′)Im
〈
T ψζ(x−j , t′)ψζ′(x+j , t′)ψ†

ζ′(x
+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E
, (A.8)
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A.1. Details on the calculation of Eq. (2.84)

which is a time-ordered correlation function. Due to the former presence of θ(t′), we
have t′ > 0 and 〈

T ψζ(x−j , t′)ψζ′(x+j , t′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E
. (A.9)

Thanks to the spatial translation invariance of the infinite edges, we can move to mo-
mentum space by Fourier transforming

ψζ(x, t) =
1√
L

∑
k

eik(x−ρvF t)ck,ζ , ψ†
ζ(x, t) =

1√
L

∑
k

e−ik(x−ρvF t)c†k,ζ , (A.10)

whence〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
1

L2

〈
+∞∑

k=−∞

eik(x
−
j −ρvF t′)ck,ζ

+∞∑
k′=−∞

eik
′(x+j −ρ′vF t′)ck′,ζ′

+∞∑
k′′=−∞

e−ik
′′x+−jc†k′′,ζ′

+∞∑
k′′′=−∞

e−ik
′′′x−−jc†k′′′,ζ

〉
E

=
1

L2

+∞∑
k,k′,k′′,k′′′=−∞

eik(x
−
j −ρvF t′)eik

′(x+j −ρ′vF t′)e−ik
′′x+−je−ik

′′′x−−j

〈
ck,ζck′,ζ′c

†
k′′,ζ′c

†
k′′′,ζ

〉
E
.

(A.11)

with

{ck,ζ , ck′,ζ′} = {c†k,ζ , c†k′,ζ′} = 0, {ck,ζ , c†k′,ζ′} = δζ,ζ′δk,k′ . (A.12)

Making use of Wick’s theorem

〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
1

L2

+∞∑
k,k′,k′′,k′′′=−∞

eik(x
−
j −ρvF t′)eik

′(x+j −ρ′vF t′)e−ik
′′x+−je−ik

′′′x−−j

−
〈
ck,ζc

†
k′′,ζ′

〉
E

〈
ck′,ζ′c

†
k′′′,ζ

〉
E
+
〈
ck,ζc

†
k′′′,ζ

〉
E

〈
ck′,ζ′c

†
k′′,ζ′

〉
E
. (A.13)

Recalling that

〈
c†k,ζck′,ζ′

〉
E
= δζ,ζ′δk,k′fk, fk =

1

1 + eβℏvF kρ
, β =

1

kBT
, (A.14)
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we have 〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
1

L2

+∞∑
k,k′,k′′,k′′′=−∞

{
eik(x

−
j −ρvF t′)eik

′(x+j −ρ′vF t′)e−ik
′′x+−je−ik

′′′x−−j

− (1− fk)(1− fk′)δk,k′′δζ,ζ′δk′,k′′′ + (1− fk)(1− fk′)δk,k′′′δk′,k′′

}
=

1

L2

{
−
∑
k

(1− fk)e
ik(x−j −ρvF t′−x+−j)

∑
k′

(1− fk′)e
ik′(x+j −ρvF t′−x−−j)δζ,ζ′

+
∑
k

(1− fk)e
ik(x−j −ρvF t′−x−−j)

∑
k′

(1− fk′)e
ik′(x+j −ρ′vF t′−x+−j)

}
. (A.15)

Moving to integrals,〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
1

(2π)2

{
−
∫ +∞

−∞
dk (1− fk)e

ik(x−j −ρvF t′−x+−j)

∫ +∞

−∞
dk′ (1− fk′)e

ik′(x+j −ρvF t′−x−−j)δζ,ζ′

+

∫ +∞

−∞
dk (1− fk)e

ik(x−j −ρvF t′−x−−j)

∫ +∞

−∞
dk′ (1− fk′)e

ik′(x+j −ρ′vF t′−x+−j)

}
.

(A.16)

In order to simplify the exponentials, we look for instance at j = r, −j = l. In this
case

x+j − x+−j = x+r − x+l = L, x−j − x−−j = x−r − x−l = L,

x−j − x+−j = x−r − x+l = L− δζ,ζ′ξ, x+j − x−−j = x+r − x−l = L+ δζ,ζ′ξ.

(A.17)

This finally leads to〈
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′)ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

〉
E

=
1

(2π)2

{
−
∫ +∞

−∞
dk (1− fk)e

ik(L−δζ,ζ′ξ−ρvF t′)
∫ +∞

−∞
dk′ (1− fk′)e

ik′(L+δζ,ζ′ξ−ρvF t′)δζ,ζ′

+

∫ +∞

−∞
dk (1− fk)e

ik(L−ρvF t′)
∫ +∞

−∞
dk′ (1− fk′)e

ik′(L−ρ′vF t′)
}
. (A.18)

The last thing to do is the evaluation of the four integrals, each corresponding to a
propagator. By moving to the complex plane and using the residue theorem, it can be
shown that∫ +∞

−∞
dk (1− fk)e

ik(L−δζ,ζ′ξ−ρvF t′)e−ρkξ =

∫ +∞

−∞
dk

eρβℏvF k

1 + eρβℏvF k
eik(L−δζ,ζ′ξ−ρvF t

′)e−ρkξ

=
i∆

ρℏvF
T̃

sinh
[
T̃
(
L̃− δζ,ζ′ − ρs+ iρ

)] , (A.19)
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A.2. About integrating out the superconductors

where we have introduced the dimensionless quantities of the main text, L̃ = L∆/ℏvF ,
T̃ = πkBT/∆, s = t′∆/ℏ. In the integral, the cut-off e−ρkξ has been introduced to
ensure the convergence at +∞(−∞) for ρ = 1(−1). Notice that, since ξ = ℏvF/∆ ≪
vFβ, we have not introduced any divergence in the opposite direction, at −∞(+∞).

Finally, looking back at Eq. (A.8),

θ(t′)
〈[
ψζ(x

−
j , t

′)ψζ′(x
+
j , t

′), ψ†
ζ′(x

+
−j, 0)ψ

†
ζ(x

−
−j, 0)

]〉
E

=
iθ(t′)

2π2
Im


(
i∆

ℏvF

)2
δζ,ζ′ T̃

sinh
[
T̃
(
L̃− δζ,ζ′ − ρs+ iρ

)] T̃

sinh
[
T̃
(
L̃+ δζ,ζ′ − ρs+ iρ

)]
−ρρ′ T̃

sinh
[
T̃
(
L̃− ρs+ iρ

)] T̃

sinh
[
T̃
(
L̃− ρ′s+ iρ′

)]


≡ −i∆2

2π2ℏ2v2F
θ(t′) ImΠζ,ζ′

(
T̃ , L̃, s

)
, (A.20)

with Πζ,ζ′

(
T̃ , L̃, s

)
as introduced in the main text. Inserting this into Eq. (A.7), making

the change of variable t′ → s and substituting Ṽ = eV/∆ in the integration,

Ir(t) =
4eΓ2

ℏ2
∆

2π2ℏv2F
Im

{
e−i(ωJ t+φ0)

∑
ζ,ζ′

fζ,ζ′

∫ +∞

−∞
ds θ(s) eiṼ sImΠζ,ζ′

(
T̃ , L̃, s

)}
,

(A.21)

which is exactly Eq. (2.84).

A.2 About integrating out the superconductors

The aim of this Section is to show the procedure to derive an effective edge Hamiltonian
which includes the low-energy proximity effect of the superconductors on the edge
states. The strategy is to get through the path integral for fermionic fields. In this
formalism, one can express the partition function in terms of the actions for the edge
states, for the superconductors, and for the tunneling contribution. By completing the
square in the superconductor fields, a Gaussian integral, which can be carried out, is
obtained. Having integrated out the degrees of freedom of the superconductors, an
effective action containing only the edge state fields remains, representing effectively
their coupling to the superconductors. Then, under the appropriate conditions it is
possible to get back to an effective edge Hamiltonian.

Without delving into the details of the formalism, which can be found for instance
in [4] and go beyond the purpose of this Thesis, we recall just some essential concepts.
Throughout this Section, ℏ = 1.

Given a Hamiltonian of the form

H(a†, a) =
∑
ij

hija
†
iaj, (A.22)
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Appendix A. Complements to Chapter 2

the path integral representation of the partition function1

Z = tre−βH =
∑
n

⟨n| e−βH |n⟩ , (A.23)

where β ≡ 1/T and the sum runs over a completes set of Fock space states {|n⟩}, is
given by

Z =

∫
D(ψ, ψ)e−

∫ β
0 dτ [ψ∂τψ+H(ψ,ψ)] =

∫
D(ψ, ψ)e−S[ψ,ψ)], (A.24)

with

S[ψ, ψ)] =

∫ β

0

dτ [ψ(τ)∂τψ(τ)+H(ψ(τ), ψ(τ))] =

∫ β

0

dτ

[∑
ij

ψi(τ)(∂τδij + hij)ψj(τ)

]
.

(A.25)
ψ, ψ are vectors made of the Grassmann variables corresponding to the fermionic op-
erators a†, a. They satisfy the boundary condition ψi(0) = −ψi(β), ψi(0) = −ψi(β).

Grassmann variables arise from the construction of fermionic coherent states: let
us suppose that the annihilation operators are characterized by a set of coherent states
such that, for all i,

ai |ψ⟩ = ψi |ψ⟩ . (A.26)

The anticommutativity of fermionic operators implies that the eigenvalues ψi have to
anticommute with each other as well,

ψiψj = −ψjψi. (A.27)

Hence, they are clearly not ordinary numbers. A set of such objects can be defined in a
mathematically rigorous way, but here we just take Eq. (A.27) as a working definition.
It is straightforward to demonstrate that a fermionic coherent state, namely a state which
simultaneously diagonalizes all annihilation operators, is defined by

|ψ⟩ = e−
∑

i ψia
†
i |0⟩ . (A.28)

To get Eq. (A.24) from Eq. (A.23), we first insert into the latter the resolution of
identity in terms of coherent states

IF =

∫
d(ψ, ψ)e−

∑
i ψiψi |ψ⟩ ⟨ψ| , (A.29)

obtaining

Z =

∫
d(ψ, ψ)e−

∑
i ψiψi

∑
n

⟨n|ψ⟩ ⟨ψ| e−βH |n⟩ . (A.30)

In order to remove the resolution of identity IF =
∑

n |n⟩ ⟨n|, the factor ⟨n|ψ⟩ has to
be commuted to the right-hand side. It can be verified that the fermionic coherent states
acquire a minus sign under permutation, ⟨n|ψ⟩ ⟨ψ|n⟩ = −⟨ψ|n⟩ ⟨n|ψ⟩ (notice that, on

1Notice that the partition function can be interpreted as a trace over the transition amplitude ⟨n| e−iHt |n⟩ evaluated at an
imaginary time t = −iβ = −iτ . The transformation t → −iτ is described as a Wick rotation. The variable τ appearing from
now on indicates the imaginary time.
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A.2. About integrating out the superconductors

the other hand, no sign is acquired by bringing ⟨n|ψ⟩ to the right of e−βH , because H
contains even numbers of creation/annihilation operators). We get

Z =

∫
d(ψ, ψ)e−

∑
i ψiψi

∑
n

−⟨ψ| e−βH |n⟩ ⟨n|ψ⟩ =
∫
d(ψ, ψ)e−

∑
i ψiψi−⟨ψ| e−βH |ψ⟩ .

(A.31)
The next step, which we do not cover here explicitly, is to divide the time interval β

in N segments δ = β/N

e−βH = (e−δH)N = e−δH · · · · · e−δH . (A.32)

We insert in the above expression N − 1 resolutions of identity in terms of coherent
states, each indicized by n = 1, . . . , N

IF =

∫
d(ψ

n
, ψn)e−

∑
i ψ

n
i ψ

n
i |ψn⟩ ⟨ψn| . (A.33)

After some manipulations, the result can be plugged into (A.31). Lastly, identifying
|ψ0⟩ = − |ψN⟩, namely ψ

0
= −ψN , ψ0 = −ψN , and sending N → ∞ while keeping

β = Nδ fixed, one obtains Eq. (A.24).
We have derived Eqs. (A.24-A.25) starting from a HamiltonianH(a†, a) =

∑
ij hija

†
iaj .

The Hamiltonians of our problem are of the form

Hj
S =

1

2

∫
dr′Ψ†

S,j(r
′)Hj

S(r
′)ΨS,j(r

′) =
1

2

∫
dr′
∑
αβ

Ψ†α
S,j(r

′)Hj αβ
S (r′)Ψβ

S,j(r
′),

(A.34a)

HE =
1

2

∫
dxψ†

E(x)H̃E(x)ψE(x) =
1

2

∫
dx
∑
αβ

ψ†α
E (x)H̃αβ

E (x)ψβ
E(x), (A.34b)

Hj
T =

1

2

∫
dx

∫
dr′ {Ψ†

S,j(r
′)T̃ j(r′, x)ψE(x) +ψ

†
E(x)

[
T̃ j(r′, x)

]†
ΨS,j(r

′)},
(A.34c)

where we have doubled the original space for the edge states to introduce particle-hole
symmetry,

ψE(x) = (ψ(x),ψ†(x))T

=
(
ψ11(x), ψ−11(x), ψ1−1(x), ψ−1−1(x), ψ

†
11(x), ψ

†
−11(x), ψ

†
1−1(x), ψ

†
−1−1(x)

)T
,

(A.35)

and

H̃E =

(HE 0

0 HE

)
, T̃ j(r′, x) =

(T j(r′, x) 0

0 −[T j(r′, x)]∗

)
, (A.36)

with HE and T j(r′, x) as in the main text. For what follows, it is useful to express
Hj
S(r

′) in the compact form

Hj
S(r

′) =

(
−∇2

r′

2m
− µ

)
ηz ⊗ σ0 + i∆(eiθjη− − e−iθjη+)⊗ σy, (A.37)
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where ηz, η± are Pauli matrices acting in particle-hole space, with η± = (ηx ± ηy)/2,
while σ0, σy acts in spin space (σ0 is the identity).

With a slight abuse of notation, from now on we will denote by ΨS,j, ΨS,j, ψE, ψE

the Grassman variables associated to the operators ΨS,j, Ψ
†
S,j, ψE, ψ

†
E . Inspired by

Eqs. (A.24-A.25), the actions written in terms of Grassman variables read as

SjS[ΨS,j,ΨS,j] =
1

2

∫ β

0

dτ

∫
dr′ΨS,j(r

′, τ)(∂τ +Hj
S(r

′))ΨS,j(r
′, τ),

(A.38a)

SE[ψE,ψE] =
1

2

∫ β

0

dτ

∫
dxψE(x, τ)(∂τ + H̃E(x))ψE(x, τ), (A.38b)

SjT [ΨS,j,ΨS,j,ψE,ψE] =
1

2

∫ β

0

dτ

∫
dx

∫
dr′ {ΨS,j(r

′, τ)T̃ j(r′, x)ψE(x, τ)

+ψE(x, τ)
[
T̃ j(r′, x)

]†
ΨS,j(r

′, τ)}. (A.38c)

In this case, the partition function will be

Z =
∏
j

∫
D(ΨS,j,ΨS,j)∫

D(ψE,ψE)e
−

∑
j S

j
S [ΨS,j ,ΨS,j ]−SE [ψE ,ψE ]−

∑
j S

j
T [ΨS,j ,ΨS,j ,ψE ,ψE ]. (A.39)

The actions containing the superconductor fields, SjS[ΨS,j,ΨS,j] and SjT [ΨS,j,ΨS,j,ψE,ψE],
are at most quadratic in the fields. It is hence possible to complete the square such that,
in the partition function, a Gaussian integral can be factorized2. Let us consider the
sum

SjS[ΨS,j,ΨS,j] + SjT [ΨS,j,ΨS,j,ψE,ψE] =

=
1

2

∫ β

0

dτ

{∫
dr′ΨS,j(r

′, τ)(∂τ +Hj
S(r

′))ΨS,j(r
′, τ)

+

∫
dx

∫
dr′ {ΨS,j(r

′, τ)T̃ j(r′, x)ψE(x, τ) +ψE(x, τ)
[
T̃ j(r′, x)

]†
ΨS,j(r

′, τ)}
}
.

(A.40)

In order to complete the square, we make use of the definition of the superconductor
Green’s function GjS(rτ, r′τ ′) as the inverse of the superconductor kernel,

−∂τGjS(rτ, r′τ ′)−Hj
S(r

′)GjS(rτ, r′τ ′) = (−∂τ−Hj
S(r

′))GjS(rτ, r′τ ′) = δ(r−r′)δ(τ−τ ′).
(A.41)

2We remind in passing that
∫
d(ϕ, ϕ)e−ϕTAϕ = detA, where ϕ and ϕ are N -components vectors of Grassmann variables,

the measure is d(ϕ, ϕ) ≡
∏N

i=1 dϕidϕi =
∏N

i=1 dReϕidImϕi, and A is an arbitrary complex matrix.
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Eq. (A.40) can then be recast as

SjS[ΨS,j,ΨS,j] + SjT [ΨS,j,ΨS,j,ψE,ψE] =

=
1

2

∫ β

0

dτ

∫
dr′
{
ΨS,j(r

′, τ)−
∫ β

0

dτ ′′
∫
dx

∫
dr′′
[
ψE(x, τ

′′)
[
T̃ j(r′′, x)

]†
GjS(r′′τ ′′, r′τ)

]}
(∂τ +Hj

S(r
′))

{
ΨS,j(r

′, τ)−
∫ β

0

dτ ′
∫
dx′
∫
dr′′′

[
GjS(r′′′τ, r′τ ′)T̃ j(r′′′, x′)ψE(x

′, τ ′)

]}
−1

2

∫ β

0

dτ

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
∫
dr′
∫
dr′′
∫
dr′′′{

ψE(x, τ
′′)
[
T̃ j(r′′, x)

]†
GjS(r′′τ ′′, r′τ)(∂τ +Hj

S(r
′))GjS(r′′′τ, r′τ ′)T̃ j(r′′′, x′)ψE(x

′, τ ′)

}
,

(A.42)

where the extra term arising from the first two rows is canceled by the last two. The
latter can be rewritten as

1

2

∫ β

0

dτ

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
∫
dr′
∫
dr′′
∫
dr′′′{

ψE(x, τ
′′)
[
T̃ j(r′′, x)

]†
GjS(r′′τ ′′, r′τ)δ(r′′′ − r′)δ(τ − τ ′)T̃ j(r′′′, x′)ψE(x

′, τ ′)

}
=
1

2

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′{

ψE(x, τ
′′)

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]†
GjS(r′′τ ′′, r′′′τ ′)T̃ j(r′′′, x′)ψE(x

′, τ ′)

}
=
1

2

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
{
ψE(x, τ

′′)Σ(τ ′, τ ′′, x, x′)ψE(x
′, τ ′)

}
. (A.43)

In the last equivalence, we have defined the self-energy

Σj(τ
′, τ ′′, x, x′) ≡

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]†
GjS(r′′τ ′′, r′′′τ ′)T̃ j(r′′′, x′). (A.44)

We can now make some further remarks. Since Hj
S(r

′) is independent of time, the
Green’s function GjS(r′′τ ′′, r′′′τ ′) does not depend on τ ′, τ ′′, but rather on their differ-
ence τ ′ − τ ′′ [28]. Hence, also Σj(τ

′, τ ′′, x, x′) = Σj(τ
′ − τ ′′, x, x′). Moreover, the

times at which the two electrons of a Cooper pair tunnel, τ ′ and τ ′′, are of the order
1/∆ [26]. Since we are interested in energies E ≪ ∆, we can assume them to be equal
(Appendix D of [155]), namely Σj(τ

′ − τ ′′, x, x′) ∝ δ(τ ′ − τ ′′).
The first two rows of Eq. (A.42) are now in a quadratic form, and hence lead a

gaussian contribution, which can be integrated, to the partition function. The extra
term Eq. (A.43) has to be added to the edge state action Eq. (A.38b),

SeffE [ψE,ψE] =
1

2

∫ β

0

dτ

∫
dxψE(x, τ)(∂τ + H̃E(x))ψE(x, τ)

+
1

2

∑
j

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
{
ψE(x, τ

′′)Σj(τ
′ − τ ′′, x, x′)ψE(x

′, τ ′)

}
.

(A.45)
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Before moving back to Hamiltonians, we need to better specify Σ(τ ′ − τ ′′, x, x′).
For now, we just deduced that it is proportional to a δ in time.

• Since GjS only depends on the difference τ ′ − τ ′′, it can be expressed in terms of
a Fourier transform with just one fermionic Matsubara frequency iωn and not two
(here ωn = (2n+ 1)π/β). In particular,

Σ(iωn, x, x
′) =

∫
dr′′
∫
dr′′′

[
T̂ νj(r′′, x)

]†
[∫ β

0

d(τ ′ − τ ′′)GjS(τ ′ − τ ′′, r′′, r′′′)eiωn(τ ′−τ ′′)
]
T̂ ν′j(r′′′, x′)

=

∫
dr′′
∫
dr′′′

[
T̂ νj(r′′, x)

]†
GjS(iωn, r′′, r′′′)T̂ ν′j(r′′′, x′). (A.46)

• Being proportional to δ(τ ′ − τ ′′), in the frequency space Σ(iωn, x, x
′) has to be

constant in ωn.

This is not enough yet. However, a common approximation in the literature for E ≪ ∆
is to consider iωn → 0 [1, 149], that is

Σ(iωn, x, x
′)
E≪∆≈ Σ(iωn = 0, x, x′). (A.47)

We can hence substitute, in (A.45),

Σ(τ ′ − τ ′′, x, x′) =
1

β

∑
n

e−iωn(τ ′−τ ′′)Σ(iωn, x, x
′) =

1

β
Σ(iωn = 0, x, x′)

∑
n

e−iωn(τ ′−τ ′′)

= Σ(iωn = 0, x, x′)δ(τ ′ − τ ′′). (A.48)

Σ(iωn = 0, x, x′) can be written explicitly. First of all,

Σ(iωn = 0, x, x′) =

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]†
GjS(iωn = 0, r′′, r′′′)T̃ j(r′′′, x′).

(A.49)
We need an expression for GjS(iωn = 0, r′′, r′′′). We know that

(−∂τ −Hj
S(r

′))GjS(rτ, r′τ ′) = δ(r− r′)δ(τ − τ ′). (A.50)

By Fourier transforming,

(iωn −Hj
S(r

′))GjS(iωn, r, r′) = δ(r− r′). (A.51)

Assuming that the superconductors can be treated as bulk (translationally invariant)
systems in three dimensions, we have GjS(iωn, r, r′) = GjS(iωn, r − r′). We can hence
obtain their Green’s function by moving to k-space, where

GjS(iωn, r− r′) =

∫
dk

(2π)3
eik·(r−r′)GjS(iωn,k) (A.52)

and Eq. (A.51) becomes

(iωn −Hj
S(k))GjS(iωn,k) = 1. (A.53)
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We can conclude that

GjS(iωn,k) = (iωn −Hj
S(k))

−1 = (iωn − ξkηz ⊗ σ0 − i∆(eiθjη− − e−iθjη+)⊗ σy)
−1

= −iωn + ξkηz ⊗ σ0 + i∆(eiθjη− − e−iθjη+)⊗ σy

ωn2 + ξk
2 +∆2

, (A.54)

where ξk = k2/(2m)−µ, and Hj
S(k) was simply obtained by Fourier transforming Eq.

(A.37). Evaluating at ωn = 0,

GjS(iωn = 0,k) = −ξkηy ⊗ σ0 + i∆(eiθjη− − e−iθjη+)⊗ σy

ξk
2 +∆2

, (A.55)

and, from Eq. (A.49),

Σ(iωn = 0, x, x′) =

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]†
GjS(iωn = 0, r′′, r′′′)T̃ j(r′′′, x′)

=

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]† ∫ dk

(2π)3
eik·(r

′′−r′′′)GjS(iωn = 0,k)T̃ j(r′′′, x′)

=

∫
dr′′
∫
dr′′′

[
T̃ j(r′′, x)

]†
∫

dk

(2π)3
eik·(r

′′−r′′′)

[
−ξkηz ⊗ σ0 + i∆(eiθjη− − e−iθjη+)⊗ σy

ξk
2 +∆2

]
T̃ j(r′′′, x′).

(A.56)

We can now go back to Eq. (A.45) and substitute Eq. (A.48)

SeffE [ψE,ψE] =
1

2

∫ β

0

dτ

∫
dxψE(x, τ)(∂τ + H̃E(x))ψE(x, τ)

+
1

2

∑
j

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
{
ψE(x, τ

′′)Σj(τ
′ − τ ′′, x, x′)ψE(x

′, τ ′)

}

=
1

2

∫ β

0

dτ

∫
dxψE(x, τ)(∂τ + H̃E(x))ψE(x, τ)

+
1

2

∑
j

∫ β

0

dτ ′
∫ β

0

dτ ′′
∫
dx

∫
dx′
{
ψE(x, τ

′′)Σj(iωn = 0, x, x′)δ(τ ′ − τ ′′)ψE(x
′, τ ′)

}

=
1

2

∫ β

0

dτ

∫
dxψE(x, τ)(∂τ + H̃E(x))ψE(x, τ)

+
1

2

∑
j

∫ β

0

dτ ′
∫
dx

∫
dx′
{
ψE(x, τ

′)Σj(iωn = 0, x, x′)ψE(x
′, τ ′)

}

=
1

2

∫ β

0

dτ

∫
dx

∫
dx′

(
ψE(x, τ)

{
δ(x− x′)(∂τ + H̃E(x))

+
∑
j

Σj(iωn = 0, x, x′)

}
ψE(x

′, τ)

)
. (A.57)
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Appendix A. Complements to Chapter 2

From this action, by following what said between Eq. (A.34b) and Eq. (A.38), we can
infer an effective Hamiltonian for the edge system, containing the edge state operators
only

Heff
E =

1

2

∫
dxψ†

E(x)H̃E(x)ψE(x) +
1

2

∑
j

∫
dx

∫
dx′ψ†

E(x)Σj(iωn = 0, x, x′)ψE(x
′)

≡HE +
∑
j

δHj. (A.58)

For the remaining calculations, we refer the reader to [78], and just mention what should
be done.

By looking at the form of the self-energy, we see that there are two different pos-
sibilities, depending on whether we consider the diagonal elements of GjS(iωn, r − r′)
in the particle-hole space, or the anomalous (off-diagonal) elements, which correspond
to Cooper pairs. It can be verified that in the sub-gap energy regime there are no con-
tributions from the diagonal quasi-particle sector, but only from the anomalous ones.
Moreover, by looking at the structure of the tunneling matrices, it is clear that only two
specific spatial separations play a role. The first is r − r′ = 0, when both tunneling
processes take place at the same edge. This corresponds to a Local Andreev Reflec-
tion in case of the anomalous sector. The second is |r − r′| = W , when the tunneling
processes occur at opposite edges. This realizes a Crossed Andreev Reflection in the
anomalous sector. Both contributions are computed in [78], and the conclusion is that
the low-energy effect of the superconducting self-energies Σj on the edge system is a
point-like injection of Cooper pairs at xj = jL/2, either into a same edge or into oppo-
site edges. The channel of injection of each electron is encoded into the indices ρτ and
ρ′τ ′ of the edge state operators. The result is Eq. (2.67) of the main text.
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APPENDIXB
Complements to Chapter 3

In the following, we address the calculation of the current Ij(t) in more detail. Let’s
look back at Eq. (3.28), and make use of the two definitions in the main text

αi1,i2,j(k1, k2) ≡ Γji1,i2(k1, k2)− Γji2,i1(k2, k1)

Γji1,i2(k1, k2) ≡
∑
ζ1,ζ2

Γjζ1,ζ2aζ1,i1aζ2,i2e
ik1x

−
j eik2x

+
j ,

where we remind that the possible values for i1, i2 are

1, 1 1, 2 1, 3 1, 4 2, 2 2, 3 2, 4 3, 3 3, 4 4, 4
(B.1)

while those for ζ1, ζ2 are

11, 11 11,−11 11,−1− 1 11, 1− 1 − 11,−11

− 11,−1− 1 − 11, 1− 1 − 1− 1,−1− 1 − 1− 1, 1− 1 1− 1, 1− 1.
(B.2)
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We focus on the calculation of Ij(t) for j = r = 1. In this case, Eq. (3.28) becomes∑
k1,k2,k′1,k

′
2

1

L2
αi1,i2,1(k

′
1, k

′
2, t)α

∗
i1,i2,−1(k1, k2, t− t′)

〈[
Ak′1,i1(t

′)Ak′2,i2(t
′), A†

k2,i2
(0)A†

k1,i1
(0)
]〉

0

=
1

(2π)2

{
− δi1,i2

∑
ζ1,ζ2

Γrζ1,ζ2

∑
ζ3,ζ4

(Γlζ3,ζ4)
∗

[ ∫ +∞

−∞
dk1 e

−iEAi1
(k1)t′/ℏ e

βEAi1
(k1)

1 + e
βEAi1

(k1)
aζ1,i1aζ4,i1e

ik1[L−(δζ1,ζ2+δζ3,ζ4 )
ξ
2 ]∫ +∞

−∞
dk2 e

−iEAi1
(k2)t′/ℏ e

βEAi1
(k2)

1 + e
βEAi1

(k2)
aζ2,i1aζ3,i1e

ik2[L−(δζ1,ζ2+δζ3,ζ4 )
ξ
2 ]
]
+∫ +∞

−∞
dk1 e

−iEAi1
(k1)t′/ℏ e

βEAi1
(k1)

1 + e
βEAi1

(k1)

∫ +∞

−∞
dk2 e

−iEAi2
(k2)t′/ℏ e

βEAi2
(k2)

1 + e
βEAi2

(k2)[∑
ζ1,ζ2

(
Γrζ1,ζ2aζ1,i1aζ2,i2e

ik1(L
2
−δζ1,ζ2

ξ
2)eik2(

L
2
+δζ1,ζ2

ξ
2)−

Γrζ1,ζ2aζ1,i2aζ2,i1e
ik2(L

2
−δζ1,ζ2

ξ
2)eik1(

L
2
+δζ1,ζ2

ξ
2)
)

∑
ζ3,ζ4

(
(Γlζ3,ζ4)

∗aζ3,i1aζ4,i2e
−ik1(−L

2
−δζ3,ζ4

ξ
2)e−ik2(−

L
2
+δζ3,ζ4

ξ
2)−

(Γlζ3,ζ4)
∗aζ3,i2aζ4,i1e

−ik2(−L
2
−δζ3,ζ4

ξ
2)e−ik1(−

L
2
+δζ3,ζ4

ξ
2)
)]}

. (B.3)

In the previous expression, the building block is represented by the integral∫ +∞

−∞
dk e

−iEAi1/i2
(k)t′/ℏ e

βEAi1/i2
(k)

1 + e
βEAi1/i2

(k)
eik[L+(±δζ1,ζ2±δζ3,ζ4 )

ξ
2 ], (B.4)

where all the combinations of signs ± are possible. Let the generic energy dispersion
be written as EAi1/i2

(k) = fi1/i2 + ρi1/i2ℏvFk, with ρi1/i2 = ±1 and fi1/i2 = ±f , then
it can be computed∫ +∞

−∞
dk e

−iEAi1/i2
(k)t′/ℏ e

βEAi1/i2
(k)

1 + e
βEAi1/i2

(k)
eik[L+(±δζ1,ζ2±δζ3,ζ4 )

ξ
2 ] =

= exp

{[(
L+ (±δζ1,ζ2 ± δζ3,ζ4)

ξ

2

)
i− ρi1/i2ξ

]
(−fi1/i2)
ρi1/i2ℏvF

}
1

sinh [ π
ℏβvF (L± (δζ1,ζ2 ± δζ3,ζ4)

ξ
2
− ρi1/i2vF t

′ + iρi1/i2ξ)]

(
πi

ρi1/i2βℏvF

)
. (B.5)

Inserting these results in Eq. (3.25) and distinguishing explicitly the cases i1 = i2
and i1 ̸= i2 in the sum over i1i2, the current Ir(t) reads as follows

Ir(t) =
8e

(2πℏ)2
Im
{∫ +∞

−∞
dt′Θ(t′)

∑
i1,i2

∑
ζ1,ζ2

∑
ζ3,ζ4

Γrζ1,ζ2(Γ
l
ζ3,ζ4

)∗
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[
− δi1,i2Im

{
aζ1,i1aζ4,i1aζ2,i1aζ3,i1e

{
[(L−(δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L− (δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]

(
πi

ρi1βℏvF

)2}

+ δi1,i2Im
{
aζ1,i1aζ2,i2aζ3,i1aζ4,i2e

{
[(L+(−δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (−δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(δζ1,ζ2−δζ3,ζ4 )

ξ
2)i−ρi2λ]

−fi2
ρi2

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 − δζ3,ζ4)

ξ
2
− ρi2vF t

′ + iρi2λ)]

(
πi

ρi1βℏvF

)(
πi

ρi2βℏvF

)}

+ δi1,−i2Im
{
aζ1,i1aζ2,i2aζ3,i1aζ4,i2e

{
[(L+(−δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (−δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(δζ1,ζ2−δζ3,ζ4 )

ξ
2)i−ρi2λ]

−fi2
ρi2

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 − δζ3,ζ4)

ξ
2
− ρi2vF t

′ + iρi2λ)]

(
πi

ρi1βℏvF

)(
πi

ρi2βℏvF

)}

− δi1,−i2Im
{
aζ1,i1aζ2,i2aζ3,i2aζ4,i1e

{
[(L+(−δζ1,ζ2−δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (−δζ1,ζ2 − δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi2λ]

−fi2
ρi2

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi2vF t

′ + iρi2λ)]

(
πi

ρi1βℏvF

)(
πi

ρi2βℏvF

)}

− δi1,−i2Im
{
aζ1,i2aζ2,i1aζ3,i1aζ4,i2e

{
[(L+(δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(−δζ1,ζ2−δζ3,ζ4 )

ξ
2)i−ρi2λ]

−fi2
ρi2

ℏvF

}

1

sinh [ π
ℏβvF (L+ (−δζ1,ζ2 − δζ3,ζ4)

ξ
2
− ρi2vF t

′ + iρi2λ)]

(
πi

ρi1βℏvF

)(
πi

ρi2βℏvF

)}

+ δi1,−i2Im
{
aζ1,i2aζ2,i1aζ3,i2aζ4,i1e

{
[(L+(δζ1,ζ2−δζ3,ζ4 )

ξ
2)i−ρi1λ]

−fi1
ρi1

ℏvF

}

1

sinh [ π
ℏβvF (L+ (δζ1,ζ2 − δζ3,ζ4)

ξ
2
− ρi1vF t

′ + iρi1λ)]
e

{
[(L+(−δζ1,ζ2+δζ3,ζ4 )

ξ
2)i−ρi2λ]

−fi2
ρi2

ℏvF

}
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1

sinh [ π
ℏβvF (L+ (−δζ1,ζ2 + δζ3,ζ4)

ξ
2
− ρi2vF t

′ + iρi2λ)]

(
πi

ρi1βℏvF

)(
πi

ρi2βℏvF

)}]}
.

(B.6)

The summation over i1, i2 runs over 10 terms that can be divided into three cases:

1. i1 = i2, including i1, i2 = 1, 1 2, 2 3, 3 4, 4;

2. i1 ̸= i2, with Ak1,i1 and Ak2,i2 being both right-movers or both left-movers, in-
cluding i1, i2 = 1, 2 3, 4;

3. i1 ̸= i2, withAk1,i1 andAk2,i2 having opposite directions of propagation, including
i1, i2 = 1, 3 1, 4 2, 3 2, 4.

Table B.1 makes explicit the three cases, by looking at Eq. (3.8).

fi1 fi2 ρi1 ρi2

(i) 1, 1 −f −f -1 -1
2, 2 f f -1 -1
3, 3 −f −f 1 1
4, 4 f f 1 1

(ii) 1, 2 −f f -1 -1
3, 4 −f f 1 1

(iii) 1, 3 −f −f -1 1
1, 4 −f f -1 1
2, 3 f −f -1 1
2, 4 f f -1 1

Table B.1: Details concerning the ten terms of the summation over i1, i2 in Eq. (B.6).

The next step consists in developing the summations over ζ1, ζ2 and ζ3, ζ4, remem-
bering that the possible values are only those listed in (B.2). Since some of the aζ,i are
zero, the corresponding addends of the sum will not contribute to the current. The last
thing to be done is the evaluation of the eighteen integrals intervening once the previous
expression is expanded. In particular

I1 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− s+ i

)]
sinh

[
T̃
(
L̃+ s− i

)] , (B.7)

I2 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh
[
T̃
(
L̃− s+ i

)]
sinh

[
T̃
(
L̃+ s− i

)] , (B.8)

I3 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh2
[
T̃
(
L̃− s+ i

)] , (B.9)

I4 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh2
[
T̃
(
L̃− s+ i

)] , (B.10)

I5 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh2
[
T̃
(
L̃+ s− i

)] , (B.11)
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I6 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh2
[
T̃
(
L̃+ s− i

)] , (B.12)

I7 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh4
[
T̃
(
L̃− s+ i

)] , (B.13)

I8 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh4
[
T̃
(
L̃− s+ i

)] , (B.14)

I9 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh4
[
T̃
(
L̃+ s− i

)] , (B.15)

I10 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh4
[
T̃
(
L̃+ s− i

)] , (B.16)

I11 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− 1− s+ i

)]
sinh

[
T̃
(
L̃+ 1− s+ i

)] , (B.17)

I12 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh
[
T̃
(
L̃− 1− s+ i

)]
sinh

[
T̃
(
L̃+ 1− s+ i

)] , (B.18)

I13 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− 1

2
− s+ i

)]
sinh

[
T̃
(
L̃+ 1

2
− s+ i

)] , (B.19)

I14 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh
[
T̃
(
L̃− 1

2
− s+ i

)]
sinh

[
T̃
(
L̃+ 1

2
− s+ i

)] , (B.20)

I15 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− 1 + s− i

)]
sinh

[
T̃
(
L̃+ 1 + s− i

)] , (B.21)

I16 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh
[
T̃
(
L̃− 1 + s− i

)]
sinh

[
T̃
(
L̃+ 1 + s− i

)] , (B.22)

I17 =

∫ +∞

0

ds eiṼ sIm
T̃ 2

sinh
[
T̃
(
L̃− 1

2
+ s− i

)]
sinh

[
T̃
(
L̃+ 1

2
+ s− i

)] , (B.23)

I18 =

∫ +∞

0

ds eiṼ sRe
T̃ 2

sinh
[
T̃
(
L̃− 1

2
+ s− i

)]
sinh

[
T̃
(
L̃+ 1

2
+ s− i

)] . (B.24)

Only those in Eqs. (B.7)-(B.16) are independent. Indeed, up to the second order in
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ξ/L, we have

I11 ≈ I7 + I3,

I12 ≈ I8 + I4,

I13 ≈
1

4
I7 + I3,

I14 ≈
1

4
I8 + I4,

I15 ≈ I9 + I5,

I16 ≈ I10 + I6,

I17 ≈
1

4
I9 + I5,

I18 ≈
1

4
I10 + I6.

Some of the independent integrals are already present in [78], the other ones have been
evaluated under the same assumptions and up to the same order in ξ. We obtain

I1 ≈ −πT̃ e
(iṼ L̃−Ṽ )

sinh
(
2T̃ L̃

) ,
I2 ≈ −iπT̃ e

(iṼ L̃−Ṽ )

sinh
(
2T̃ L̃

) ,
I3 ≈ iπṼ e(iṼ L̃−Ṽ ),

I4 ≈ −πṼ e(iṼ L̃−Ṽ ),
I5 ≈ 0,

I6 ≈ 0,

I7 ≈ −iπ
6
Ṽ
(
Ṽ 2 + 4T̃ 2

)
e(iṼ L̃−Ṽ ),

I8 ≈
π

6
Ṽ
(
Ṽ 2 + 4T̃ 2

)
e(iṼ L̃−Ṽ ),

I9 ≈ 0,

I10 ≈ 0.

Once the integration over s is done, we obtain

Ir(t) = C Im
{
e−i(ωJ t+φ0)

[
Ãr1 cos

(
π
ϕ

ϕ0

)
+ Ãr2 sin

(
π

2

ϕ

ϕ0

)
+ Ãr3

]}
, (B.25)

with C = (−2e∆Γ2)/(π2ℏ3v2F ) as defined in the main text and Ãr1, Ã
r
2, Ã

r
3 reported

there explicitly.

166



i
i

“output” — 2024/2/14 — 20:42 — page 167 — #177 i
i

i
i

i
i

Bibliography

[1] I. Affleck, J.-S. Caux, and A. M. Zagoskin. Andreev scattering and Josephson current in a one-dimensional
electron liquid. Phys. Rev. B, 62:1433–1445, 2000. doi:10.1103/PhysRevB.62.1433.

[2] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker. Electrically Detected Interferome-
try of Majorana Fermions in a Topological Insulator. Phys. Rev. Lett., 102:216404, 2009.
doi:10.1103/PhysRevLett.102.216404.

[3] J. Alicea. New directions in the pursuit of Majorana fermions in solid state systems. Reports on Progress in
Physics, 75(7):076501, 2012. doi:10.1088/0034-4885/75/7/076501.

[4] A. Altland and B. Simons. Condensed Matter Field Theory. Cambridge University Press, 2010. URL
https://doi.org/10.1017/CBO9780511789984.

[5] V. Ambegaokar and A. Baratoff. Tunneling Between Superconductors. Phys. Rev. Lett., 10:486–489, 1963.
doi:10.1103/PhysRevLett.10.486.

[6] P. W. Anderson. Ravello - Lectures on the Many-Body Problem. ed. E. R. Caianello (Academic Press, New
York), 1963. URL https://doi.org/10.1016/B978-0-12-395616-3.X5001-3.

[7] P. W. Anderson and J. M. Rowell. Probable Observation of the Josephson Superconducting Tunneling Effect.
Phys. Rev. Lett., 10:230–232, 1963. doi:10.1103/PhysRevLett.10.230.

[8] F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota, T. Moriyama, Y. Yanase, and T. Ono.
Observation of superconducting diode effect. Nature, 584(7821):373–376, 2020. doi:10.1038/s41586-020-
2590-4.

[9] A. Assouline, C. Feuillet-Palma, N. Bergeal, T. Zhang, A. Mottaghizadeh, A. Zimmers, E. Lhuillier, M. Ed-
drie, P. Atkinson, M. Aprili, and H. Aubin. Spin-Orbit induced phase-shift in Bi2Se3 Josephson junctions.
Nature Communications, 10(1):126, 2019. doi:10.1038/s41467-018-08022-y.

[10] E. P. Balsamo, G. Paternò, A. Barone, M. Russo, and R. Vaglio. Temperature and mag-
netic field dependence of the critical current in Sn-SnxOy-in Josephson junctions. physica sta-
tus solidi (a), 35(2):K173–K175, 1976, https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssa.2210350266.
doi:https://doi.org/10.1002/pssa.2210350266.

[11] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of Superconductivity. Phys. Rev., 108:1175–1204,
1957. doi:10.1103/PhysRev.108.1175.

[12] A. Barone and G. Paternò. Physics and Applications of the Josephson Effect. John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 1982. URL https://doi.org/10.1002/352760278X.

[13] V. Barzykin and A. M. Zagoskin. Coherent transport and nonlocality in mesoscopic SNS junctions:
anomalous magnetic interference patterns. Superlattices and Microstructures, 25(5):797–807, 1999.
doi:https://doi.org/10.1006/spmi.1999.0731.

[14] J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and T. M. Klapwijk. Reversing the direction of the
supercurrent in a controllable Josephson junction. Nature, 397(6714):43–45, 1999. doi:10.1038/16204.

167

https://doi.org/10.1103/PhysRevB.62.1433
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1017/CBO9780511789984
https://doi.org/10.1103/PhysRevLett.10.486
https://doi.org/10.1016/B978-0-12-395616-3.X5001-3
https://doi.org/10.1103/PhysRevLett.10.230
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41467-018-08022-y
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssa.2210350266
https://doi.org/https://doi.org/10.1002/pssa.2210350266
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1002/352760278X
https://doi.org/https://doi.org/10.1006/spmi.1999.0731
https://doi.org/10.1038/16204


i
i

“output” — 2024/2/14 — 20:42 — page 168 — #178 i
i

i
i

i
i

Bibliography

[15] C. Baumgartner, L. Fuchs, A. Costa, J. Picó-Cortés, S. Reinhardt, S. Gronin, G. C. Gardner, T. Lindemann,
M. J. Manfra, P. E. Faria Junior, D. Kochan, J. Fabian, N. Paradiso, and C. Strunk. Effect of Rashba and Dres-
selhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson
junctions. Journal of Physics: Condensed Matter, 34(15):154005, 2022. doi:10.1088/1361-648X/ac4d5e.

[16] B. Baxevanis, V. P. Ostroukh, and C. W. J. Beenakker. Even-odd flux quanta effect in the
Fraunhofer oscillations of an edge-channel Josephson junction. Phys. Rev. B, 91:041409, 2015.
doi:10.1103/PhysRevB.91.041409.

[17] C. R. Becker, C. Brüne, M. Schäfer, A. Roth, H. Buhmann, and L. W. Molenkamp.
The influence of interfaces and the modulation doping technique on the magneto-
transport properties of HgTe based quantum wells. Physica Status Solidi c,
4(9):3382–3389, 2007, https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssc.200775402.
doi:https://doi.org/10.1002/pssc.200775402.

[18] K. Bendias, S. Shamim, O. Herrmann, A. Budewitz, P. Shekhar, P. Leubner, J. Kleinlein, E. Bocquillon,
H. Buhmann, and L. W. Molenkamp. High Mobility HgTe Microstructures for Quantum Spin Hall Studies.
Nano Letters, 18(8):4831–4836, 2018. doi:10.1021/acs.nanolett.8b01405.

[19] F. S. Bergeret and I. V. Tokatly. Theory of diffusive ϕ0 Josephson junctions in the presence of spin-orbit
coupling. Europhysics Letters, 110(5):57005, 2015. doi:10.1209/0295-5075/110/57005.

[20] B. A. Bernevig. Topological Insulators and Topological Superconductors. Princeton University Press, 2013.
URL https://books.google.at/books?id=wOn7JHSSxrsC.

[21] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. Quantum Spin Hall Effect and Topological Phase Transition
in HgTe Quantum Wells. Science, 314(5806):1757–1761, 2006. doi:10.1126/science.1133734.

[22] A. M. Black-Schaffer and A. V. Balatsky. Odd-frequency superconducting pairing in topological insulators.
Phys. Rev. B, 86:144506, 2012. doi:10.1103/PhysRevB.86.144506.

[23] G. Blasi, F. Taddei, L. Arrachea, M. Carrega, and A. Braggio. Nonlocal Thermoelectricity in a
Superconductor–Topological-Insulator–Superconductor Junction in Contact with a Normal-Metal Probe: Ev-
idence for Helical Edge States. Phys. Rev. Lett., 124:227701, 2020. doi:10.1103/PhysRevLett.124.227701.

[24] G. Blasi, F. Taddei, V. Giovannetti, and A. Braggio. Manipulation of Cooper pair entanglement in hybrid
topological Josephson junctions. Phys. Rev. B, 99:064514, 2019. doi:10.1103/PhysRevB.99.064514.

[25] D. Breunig, P. Burset, and B. Trauzettel. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic
Ordering. Phys. Rev. Lett., 120:037701, 2018. doi:10.1103/PhysRevLett.120.037701.

[26] C. Bruder, R. Fazio, and G. Schön. Proximity effect and charging in mesoscopic normal-metal–
superconductor junction systems. Phys. Rev. B, 50:12766–12769, 1994. doi:10.1103/PhysRevB.50.12766.

[27] C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-
C. Zhang. Spin polarization of the quantum spin Hall edge states. Nature Physics, 8(6):485–490, 2012.
doi:10.1038/nphys2322.

[28] H. Bruus and K. Flensberg. Many-Body Quantum Theory in Condensed Matter Physics: An Introduc-
tion. Oxford Graduate Texts. OUP Oxford, 2004. URL https://books.google.it/books?id=
CktuBAAAQBAJ.

[29] L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin. On possibility of the spontaneous magnetic flux in a
Josephson junction containing magnetic impurities. Solid State Communications, 25(12):1053–1057, 1978.
doi:https://doi.org/10.1016/0038-1098(78)90906-7.
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