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I 

Abstract 

This thesis presents a comprehensive exploration of the synergistic 

relationship between edge computing and AI, with a particular focus 

on the automotive sector. As technology rapidly evolves, edge 

computing emerges as a paradigm shift, especially significant in 

automotive applications. The shift from cloud-centric approaches to 

decentralized computation enhances real-time processing capabilities 

and reduces latency, enabling intelligent decision-making at the 

network's edge. Central to this investigation is Edgine, a versatile, 

non-vendor-locked framework tailored for heterogeneous IoT 

applications. This work not only evaluates Edgine's adaptability but 

also innovatively applies it in developing tools for performance 

assessment in the automotive industry. Indeed, Edgine proved useful 

even in most of the later developed tools, both as an evaluation and 

measurement tool. Another significant contribution of this research 

pertaining to edge AI vehicular technology is the development of 

embedded voice assistants optimized for vehicles. The thesis details 

the creation of an end-to-end voice assistant system capable of 

operating offline, emphasizing privacy and security concerns inherent 

in cloud-based systems. The system supports the Italian language and, 

in a vehicular-only context, can achieve results comparable to cloud-

connected solutions, demonstrating the feasibility of integrating 

advanced AI methods in embedded systems and the application of 



 

II 

transfer learning. The potential of edge computing in overcoming the 

limitations of traditional cloud-connected solutions is also examined, 

alongside future research directions for enhancing voice assistants in 

terms of latency, language, and domain support. The thesis then shifts 

focus to deep reinforcement learning (DRL), specifically its 

application to automated driving for low-speed maneuvering. The 

effectiveness of DRL is explored through experiments in both Unity 

and CARLA -simulated environments. Key factors for successful DRL 

training, such as curriculum learning and simulation parameter 

tuning, are discussed. Results, in both environments, are promising, 

paving the way to possible future research directions in dynamic 

scenarios and real-world vehicle implementations. The final area of 

exploration is the explainability of DRL models, a critical aspect in 

domains like automated driving where safety is paramount. A novel 

approach for interpretability analysis is presented, combining episode 

timelines, frame-by-frame analysis, and aggregated statistical 

analysis. This investigation provides insights into the decision-making 

processes of DRL models and highlights future research opportunities 

in areas such as temporal correlations and more complex vehicular 

models. In summary, this thesis links advancements in edge 

computing, embedded voice assistants, DRL in automated driving, 

and DRL model explainability. This integration shapes a dynamic and 

evolving landscape, fostering a foundation for innovative 

developments within the automotive industry. 
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1 
  Introduction 

In the rapidly changing world of technology, this thesis conducts an 

extensive investigation into the mutually beneficial correlation 

between the edge computing paradigm and AI, specifically in the 

automotive sector.  

In the constantly evolving field of IoT, edge computing presents 

itself as a paradigm shift that reshapes standard models, especially in 

the field of automotive applications. Unlike the conventional cloud-

centric method, edge computing distributes computation and data 

storage, placing computing resources adjacent to the data source 

(Figure 1). This architectural change reduces delays and improves 

real-time processing power, thus converting network peripheral 

devices into intelligent entities capable of self-governing data 

processing and decision-making abilities [1]. 

Edge computing's distributed nature opens the way for a new era 

of connectivity and responsiveness. The capability to perform on-
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device data processing enhances decision-making speed, rendering it 

critical in situations where low latency is crucial.  

The importance of edge computing in the automotive industry 

goes beyond increased operational efficiency. Instant decision-making 

on the vehicle or its surroundings enhances operational efficiency and 

ensures safety, making edge computing a crucial linchpin. This 

becomes especially important in applications like automated driving 

(AD), where split-second decisions have significant consequences. 

 

Figure 1: The edge computing paradigm schematic 

At the heart of the transformative power of edge computing lies a 

system able to process and manage data at the network periphery. 

This should be positioned to perform computation and data 

processing tasks closer to the source of data generation, which, in the 

automotive context, often involves a myriad of sensors and devices 

embedded in the vehicle. By bringing computational capabilities 
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closer to the data source, these systems minimize latency and enhance 

the speed at which data is processed, enabling real-time decision-

making.  

Our exploration begins with a thorough analysis of edge 

computing systems and their crucial function in processing data from 

the edge. Central to the investigation is a versatile framework, Edgine, 

a non-vendor-locked, interoperable framework designed to support 

the IoT paradigm in diverse application domains [2], including the 

automotive industry. The first scope of our study involves evaluating 

the adaptability of Edgine in the creation of a range of applications 

across diverse fields such as business, environment, and sports. For 

our analysis, undergraduate students pursuing a Bachelor’s degree in 

Electronic and Information Technology Engineering engaged in their 

final thesis have been selected. The primary objective of this target was 

to evaluate the ease of development, taking into consideration the 

subjects’ basic professional proficiency. Additionally, it emphasizes 

the significance of didactics and didactic tools in cultivating a new 

cohort of electronic system designers who possess practical expertise 

in end-to-end IoT applications, rather than solely focusing on specific 

aspects. 

By analyzing the architecture, real-world applications, and user 

feedback of Edgine, the flexibility and user-friendly design that 

distinguishes this comprehensive system are presented. In addition, 

given the versatile nature of the system, it will also prove useful for 
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the development and testing of the models and frameworks later 

discussed in this thesis. 

Subsequently, another facet of edge computing applied to 

automotive is explored, such as embedded Voice Assistants (VAs). 

One significant advantage of VAs is their capacity to control diverse 

IoT devices through voice commands, including those integrated 

within intelligent vehicles. Privacy and security pose significant 

concerns, particularly in relation to cloud-based solutions [3], [4], [5]. 

Smart speakers are in a constant state of listening while they await the 

wake-word that triggers the dialogue management system of a VA. 

Subsequently, upon activation, a VA commences the process of 

capturing audio segments of the user’s utterances. Consequently, an 

uninterrupted flow of clips is consistently sent to a remote server, 

where the audio data is analyzed to comprehend the user’s spoken 

language and generate a suitable reply. This leads to the exposure of 

user data, thereby rendering the system susceptible to cyber-attacks. 

In addition, the processing of data necessitates a reliable and high-

performing Internet connection. The inclusion of a real-time response 

is imperative to mitigate potential driver frustration and ensure safety, 

as certain situations may pose inherent risks. The aforementioned 

requirements, which hold significant importance in the automotive 

industry, indicate the significance of offline VAs in ensuring privacy, 

enhancing resilience, and ensuring uninterrupted functionality in all 

situations. Certain online VAs, such as Apple Siri and Google 
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Assistant, possess the additional functionality of offline voice 

assistance [6]. This includes features like setting alarms, sending text 

messages, and playing music. Nevertheless, the scope of supported 

functionalities is significantly constrained in comparison to the 

comprehensive online operability. In contrast, fully offline VAs are not 

as prevalent in usage and possess a more limited range of 

functionalities. 

The utilization of the edge computing paradigm has therefore the 

potential to effectively address the aforementioned issues. 

Furthermore, the utilization of edge devices not only mitigates or 

minimizes the necessity for transmitting sensitive data but also offers 

advantages in terms of latency, energy efficiency, and bandwidth 

utilization [7], [8], [9]. Cloud-based solutions can leverage 

significantly larger computational and storage resources, thereby 

enabling the attainment of enhanced performance and versatility. 

However, the requirement for an embedded system to effectively 

manage and analyze data on-site presents a significant opportunity 

with the emergence of new generation edge devices. These devices 

possess substantial computational capabilities, including the inclusion 

of GPUs [10]. Furthermore, the utilization of cloud computing enables 

the training of Machine Learning (ML) and Deep Learning (DL) 

models on large datasets, which can subsequently be deployed on 

embedded devices with enhanced efficiency through optimized 

techniques [11]. This technology holds the potential to develop offline 



 Introduction 

 

6 

VAs that can attain performance comparable to cloud-connected 

solutions, including the ability to process a wide range of commands. 

Significant emphasis is placed on three primary novel 

contributions. Our primary objective is to attain offline performance 

that is on par with cloud-based systems, representing a noteworthy 

progression in the respective domain. Furthermore, our attention is 

directed towards providing support for non-mainstream languages 

such as Italian, acknowledging their significance in catering to a 

substantial portion of potential users on a global scale. In conclusion, 

we conduct a thorough examination of system modules, machine 

learning models, and training methodologies, contributing valuable 

insights and enhancing the existing knowledge in the field of offline 

virtual assistants. Given the embedded nature of the developed VA, 

for this use-case, Edgine is used to calculate and automatically log to 

the cloud all the evaluation metrics. 

Afterward, the research moves from the study of the classic DL 

paradigm to investigate another crucial aspect of automotive AI, i.e., 

the use of Deep Reinforcement Learning (DRL) to build an 

autonomous agent able to drive in a vehicular context such as a low-

speed maneuvering environment. An emerging phenomenon in the 

advancement of Automated Driving Functions (ADFs) involves, 

indeed, the utilization of DRL agents. These agents acquire task-

specific knowledge by engaging with the designated environment 

through a trial-and-error approach, facilitated by a Deep Neural 
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Network (DNN) architecture [12]. Given the inherent characteristics 

of this methodology, it is advantageous to provide training within 

virtual driving simulators that closely replicate real-world conditions. 

This facilitates the establishment of secure operational conditions in 

which the agent can acquire the intended behavior, which is 

influenced by the allocation of rewards and penalties contingent upon 

the agent’s position within the given environment. The primary goal 

of a DRL agent is to optimize the total expected rewards it receives 

throughout its entire lifespan. This is commonly referred to as the 

cumulative reward. Through the strategic utilization of acquired 

knowledge pertaining to the anticipated utility, which encompasses 

the summation of projected forthcoming rewards discounted by a 

specific factor, the agent possesses the capability to enhance its overall 

reward in the extended duration. This suggests that the components 

comprising the Reward Function (RF) must be intentionally crafted to 

facilitate the agent’s attainment of the target policy. Experiments 

conducted in the Unity game simulator and CARLA reveal the 

effectiveness of DRL in real-time path planning and trajectory 

tracking, paving the way for real-world implementation. Again, 

Edgine is used for model testing and evaluation metrics gathering, 

showing the versatility and potential of the system. 

Concluding with a critical examination of the explainability of 

DRL models, this study recognizes the significance of transparency in 

ML and DL, an especially crucial facet of an industry, such as the 
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automotive one, where safety standards take precedence. Our 

research aims to investigate the correlation between attention [13] and 

interpretability. SHAP is used for interpretability justified by its 

robust theoretical underpinnings in game theory ([14], [15]), as well as 

its extensive adoption in general contexts [16] and specifically within 

our field of study [17]. The SHAP method has indeed been recently 

introduced in the field of DRL as a foundational approach for 

elucidating the decision-making process of a trained agent in the 

specific context of the Gymnasium LongiControl environment [17]. 

The SHAP framework, which is grounded in game theory, provides a 

comprehensive approach for interpreting predictions post-hoc [14]. 

The proposed framework integrates six established methods, namely 

LIME [18], DeepLIFT [19], and Layer-Wise Relevance Propagation 

[20], which have been demonstrated to employ identical explanation 

models [16]. According to the provided prediction, SHAP assigns an 

importance measurement to each feature, enabling a quantitative 

explanation of the output generated by any machine learning model 

[14]. In the aforementioned study pertaining to the longitudinal 

control of a vehicle [17], the researchers computed SHAP values for 

various input features. These values were used to determine the 

impact of each feature on the chosen action, specifically the degree of 

acceleration. The findings are visually presented in a novel RL-SHAP 

diagram representation, organized along a timeline.  
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Furthermore, this research focuses on comprehending the 

methodologies for analyzing and visualizing attention and SHAP 

values within a 2D spatial highway setting. Specifically, we restrict 

our analysis to individual frames, disregarding any temporal 

correlations, thereby facilitating a clearer interpretation of the complex 

relations between SHAP and attention in isolation before advancing 

to more intricate (3D) temporal dynamics. Another question that is 

being considered is whether the abstract information derived from the 

neural model, such as attention and SHAP values, is adequate for 

achieving interpretability. Alternatively, it is being debated whether a 

more comprehensive domain-specific analysis should be conducted to 

ensure a thorough functional verification. 

The simulation environment utilized in this study is highway-env 

[21]. It incorporates the Bicycle Kinematic Model motion model [22], 

which is a linear acceleration model inspired by the Intelligent Driver 

Model (IDM) [23]. Additionally, it incorporates a lane-changing 

behavior based on the MOBIL model [24]. Although this platform is 

less complex compared to widely-used vehicle simulators like CARLA 

[25] or SUMO [26], it has a strong track record in evaluating innovative 

decision-making control policies based on DRL (e.g., [27], [28], [29]). It 

is therefore highly suitable for creating a framework to analyze high-

level decision-making in highway scenarios without any interference 

due to excessive environment complexity. 
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In summary, this study endeavors to explore and elucidate the 

synergistic potential of edge computing and AI within the automotive 

sector. While the diverse subjects addressed - Edgine, offline VAs, and 

DRL applications - may appear unrelated, they are intrinsically linked 

by the common thread of enhancing automotive intelligence through 

edge computing technologies. 

Firstly, Edgine serves as the foundational framework that 

underpins this exploration. Its adaptable nature and relevance across 

various IoT applications, including automotive, provide a practical 

demonstration of how edge computing can reshape data processing 

and decision-making paradigms in vehicles. 

Secondly, the development of offline VAs within vehicles 

showcases a specific application of edge computing, addressing 

critical concerns such as privacy, security, and real-time 

responsiveness. This area not only highlights the practicalities of 

implementing edge computing solutions but also delves into the 

challenges and opportunities of maintaining high performance in 

offline settings, a crucial aspect for automotive applications. 

Finally, the application of DRL for the development of an ADF 

such as parking, demonstrates the role of edge computing in 

facilitating complex AI tasks. By training and deploying these models 

on edge devices, this research underscores the feasibility and benefits 

of localized, real-time data processing for critical vehicular functions. 
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This is also complemented by an in-depth analysis of Explainable 

Artificial Intelligence (XAI) applied to another key ADF such as 

highway driving. 

Collectively, these topics do not simply represent discrete 

investigations; rather, they form a cohesive storyline that emphasizes 

the transformative impact of edge computing in the automotive sector. 

This thesis, therefore, aims to chart a path for future innovations in 

intelligent vehicular systems, demonstrating how these seemingly 

diverse elements blend to advance the field of automotive technology. 

This is essential to illustrate the multi-faceted influence of edge 

computing and AI in the automotive industry, paving the way for 

integrated, intelligent vehicular systems of the future. 
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2 
Related Work 

In this chapter, related works in the field of edge computing are 

presented, with a specific focus on its application in the automotive 

industry. Our examination begins by analyzing edge computing 

engines, which efficiently process vehicle data and enable the 

transmission of pertinent information to dedicate cloud 

infrastructures. Subsequently, the elaborate and crucial realm of on-

the-edge voice assistants, which are highly relevant to the automotive 

sector, is explored. The focus is on the use of DL models to enhance 

the functionality of voice assistants and the resulting requirement for 

specialized datasets. The exploration further extends to the domain of 

motion and path planning, which is critical in the context of AD. The 

emphasis moves away from conventional DL models and toward the 

use of DRL to tackle the intricacies of motion and path planning for 

autonomous agents. The chapter concludes by shifting focus to the 

issue of explaining DRL models. Ensuring the explainability of DRL 

models becomes crucial since they play a pivotal role in autonomous 
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agent development, especially in industries where strict safety 

standards are a mandatory requirement. 

2.1 Edge computing engines 

Edge devices have gained increasing significance within the IoT 

framework [2], serving as integral components in a seamless 

computational flow from the field to the cloud. The edge computing 

paradigm [7], strategically situating computation, including AI, in 

close proximity to data sources [1], strives to minimize latency, energy 

consumption, and bandwidth usage. 

Given its extensive application potential, major industry players 

are actively involved in crafting hardware and software solutions. 

Amazon provides the IoT solution Greengrass [30], streamlining local 

ML inference on devices using archetypes created, trained, and 

optimized in the cloud. AWS IoT Greengrass incorporates the Lambda 

runtime [31], a serverless computation service that eliminates the need 

for provisioning or managing infrastructure, automatically handling 

underlying compute resources with minimum hardware 

requirements of a 1 GHz processor frequency and 128 MB of RAM. On 

the other hand, Google introduced the Edge Tensor Processing Unit 

(TPU) [32] and Cloud IoT Edge [33]. The former, an Application-

Specific Integrated Circuit (ASIC), is tailor-made for AI execution at 

the periphery, while the latter serves as an edge computing platform 

extending Google Cloud’s data processing and ML capabilities to edge 
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devices. The strategy involves developing AI models in the cloud and 

utilizing them on IoT edge cloud devices, leveraging the capabilities 

of the Edge TPU hardware accelerator. This hardware can also run 

TensorFlow Lite [34], a platform simplifying the conversion of 

TensorFlow [35] Neural Network (NN) models into streamlined 

versions suitable for edge devices. A more compact TensorFlow Lite 

variant, TensorFlow Lite Micro, is specifically designed for running 

ML models on devices with limited memory such as Digital Signal 

Processors (DSPs) and microcontrollers [36]. Also, QKeras [37] allows 

to transform Keras models [38] to their quantized version, thus 

reducing inference time and resource consumption. IBM developed 

Edge Application Manager [39], an intelligent, secure, and flexible 

platform providing a management tool for edge processing. This 

autonomous solution allows a single administrator to handle the scale, 

variability, and frequency of application environment changes across 

endpoints concurrently. Edge endpoints operate on Red Hat 

OpenShift containers [40], supporting AI tools for DL, voice, and 

image recognition, as well as video and acoustics analysis. Microsoft 

contributes Azure IoT Edge [41], enabling the distribution of cloud 

workloads to run on IoT peripheral devices. Local processing reduces 

latency, with the option to utilize Microsoft’s Project Brainwave [42], 

a DL platform for real-time AI inference in both the cloud and at the 

edge. Azure device management ensures functionality even in 

conditions of poor internet connection, automatically synchronizing 

device status upon reconnection. IoT Edge supports various 
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programming languages, including C, C#, Java, Node.js, and Python. 

Microsoft also launched EdgeML [43], a suite of ML algorithms for 

deployment in resource-constrained environments, with published 

results showcasing its effectiveness for training in conditions of 

limited computing power [44], [45], [46], [47], [48], [49]. 

In addressing cross-platform support, computational resource 

allocation algorithms were devised to enhance Vehicular Networks’ 

performance [50], a crucial IoT application. The system uses the k-

Nearest Neighbors (kNN) algorithm for platform selection (cloud 

computing, mobile edge computing, or local computing) and 

Reinforcement Learning (RL) for resource allocation, resulting in a 

significant 80% reduction in latency compared to basic algorithms. To 

tackle IoT device energy consumption [51], virtualization, particularly 

container-based virtualization, is suggested, addressing the multi-

platform and multi-OS challenges [52]. A performance evaluation 

study explores the strengths and weaknesses of various low-power 

devices when handling container-virtualized instances versus native 

executions. Given its adaptability and close connection to IoT devices, 

edge computing presents diverse use cases. For example, in [53], a 

modular climatic enclosure through IoT device virtualization, 

enabling the application of common semantic rules for various users 

is proposed. Similarly, edge computing is employed in a smart IoT-

based firefighting method [54], air pollution monitoring [55], edge 

video surveillance [56], and an IoT-based manufacturing context [57]. 
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Table 1 summarizes the above-presented solutions and their main 

application fields. 

Table 1: Summary of Edge Computing solutions 

Provider Solution Name Key Features Focus Area 

Amazon IoT Greengrass 

Local ML inference, 
Lambda runtime for 
serverless computation, 
minimal hardware 
requirements 

Cloud-
integrated 
edge 
computing 

Google 
Edge TPU, 
Cloud IoT Edge 

ASIC for AI execution, 
TensorFlow Lite for 
model optimization, 
extends cloud ML to 
edge devices 

AI execution 
and model 
optimization 
at the edge 

IBM 
Edge 
Application 
Manager 

Intelligent, secure 
management platform 
for edge processing, 
supports DL tools  

Edge 
processing and 
management 

Microsoft 
Azure IoT Edge, 
EdgeML 

Local processing to 
reduce latency, 
supports real-time AI 
inference, algorithms 
for resource-limited 
environments 

Cloud 
workload 
distribution 
and AI 
inference 

Research 
studies 

Various 

kNN for platform 
selection, RL for 
resource allocation, 
container-based 
virtualization for cross-
platform support 

Vehicular 
Networks, IoT 
smart 
applications 
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In this diverse landscape, the Edgine framework emerges as a 

pivotal innovation. Edgine is an open-source, platform-independent 

framework designed to streamline the development of edge 

computing applications across various domains. It distinguishes itself 

by its focus on abstraction and portability, aiming to facilitate code 

reuse and knowledge transfer across different application scenarios. 

Unlike vendor-specific solutions, Edgine's architecture is built to be 

cloud and edge-provider agnostic, enabling seamless integration in a 

wide range of IoT environments. This framework is not just a mere 

tool for application development; it represents a paradigm shift in 

how edge computing applications are conceptualized and executed. 

The detailed exposition of Edgine and its comprehensive capabilities 

will be further elaborated in Section 3.2. 

2.2 On-the-edge voice assistants 

This section delves into the landscape of speech processing, with a 

focus on the Italian language, designated as the target language for 

our system; and on English, which serves as the benchmark due to its 

extensive representation in scientific literature and availability in 

commercial products. All the presented solutions are then 

summarized in Table 2. 
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2.2.1 Datasets 

The exploration into training the VA involved delving into the domain 

of open-source AI resources. This choice was motivated by the costs 

associated with proprietary datasets, often reaching tens of thousands 

of dollars. Italian open-source datasets, unfortunately, are somewhat 

limited, offering only a modest amount of speech hours. An emerging 

approach comes in the form of Mozilla Common Voice, a crowd-

sourced, open-source, multi-language dataset [58]. Contributors 

participate by recording their voices through sentences provided on 

the Common Voice website [59]. The validation process employs a 

voting system, with each record subjected to assessment by three 

users. The Italian version of this dataset presently stands at 310 

validated hours in MP3 format, boasting a mono configuration and a 

sample rate of 48 kHz. Manifest files, structured in Tab-Separated 

Values (TSV) format, are available for training, validation, test phases, 

and additional categories. The M-AILABS dataset [60], a freely usable 

multi-language resource, taps into LibriVox and Project Gutenberg 

[61], [62]. It is segmented by speaker name and sex, making it 

particularly suitable for tasks requiring a single speaker, such as 

Speech Synthesis. The Italian subset features two voices - male and 

female - totaling 18 hours of speech. Recordings, in WAV format with 

a mono configuration, are set at a 16 kHz sample rate. Notably, the 

texts originate from literature classics published between 1884 and 

1964, imbuing them with a sometimes courtly and emphatic 

pronunciation. Manifest files are available in CSV and JSON formats. 
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Facebook AI contributes to the dataset repertoire with Multilingual 

LibriSpeech (MLS), an open-source collection spanning eight 

languages, including Italian [63]. Drawing from LibriVox audiobooks, 

MLS, akin to M-AILABS, boasts a larger scale. The Italian segment, 

enriched with 28 different speakers, accumulates to 279 hours of 

speech. 

2.2.2 Models and Toolkits 

The construction of speech recognition models is inherently tied to 

datasets and facilitated through speech toolkits. Recent developments 

have ushered in Italian language-enabled toolkits, some of which offer 

pre-trained models suitable for fine-tuning in specific applications. 

Vosk [64] emerges as a distinct speech recognition toolkit 

characterized by a substantial vocabulary transcription, 

reconfigurable vocabulary, and user-friendly installation. Notably, it 

provides a compact Italian model compatible with Raspberry Pi and 

Android devices. Mozilla DeepSpeech [65] leans on the extensive 

Common Voice Italian dataset for Automatic Speech Recognition 

(ASR), utilizing end-to-end DL with a Recurrent Neural Network 

(RNN) core. Facebook AI Research contributes wav2letter [66], an ASR 

tool accompanied by pre-trained models, including an Italian variant 

derived from Multilingual LibriSpeech [63]. NeMo by NVIDIA [67] 

extends beyond ASR, supporting Voice Activity Detection (VAD), 

Keyword Spotting (KWS), and Text to Speech (TTS) in a 

comprehensive package. Comparative assessments position 
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NVIDIA’s NeMo toolkit with a slight edge [68]. Additionally, a DL-

based speech recognition system is presented in [69], featuring a 

semantic communication model extracting text-related semantic 

features through a Convolutional Neural Network (CNN) and RNN-

based encoder. These semantic features are then converted to text 

information through a decoder, followed by speech synthesis to 

regenerate the speech signals. Wav2vec 2.0 [70] introduces a 

framework for self-supervised learning of speech representations, 

achieving commendable Word Error Rate (WER) on the Librispeech 

dataset (4.8/8.2 on test-clean/other) [71]. 

Given the modest dimensions of Italian datasets compared to their 

English counterparts, especially in multi-speaker scenarios, a viable 

strategy involves leveraging transfer learning [72], [73]. Mozilla 

DeepSpeech offers a transfer learning version fine-tuned from the 

Common Voice English dataset to various languages, including 

Italian. Applications of fine-tuning, as demonstrated in [74] with the 

NeMo toolkit, reveal promising outcomes. Indeed, the QuartzNet 

15x5 model, fine-tuned with Common Voice Spanish and Russian 

datasets, outperforms its trained-from-scratch counterparts. 

Challenges, however, lie in the demanding computing resources 

essential for the training phase, a subject addressed in [75] along with 

results achieved by the QuartzNet model within the NeMo 

framework. 
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Following the speech recognition stage, Natural Language 

Understanding (NLU) takes center stage in extracting meaning from 

the transcribed text. Established solutions requiring an Internet 

connection, such as Google Dialogflow [76], Amazon Lex [77], 

Facebook wit.ai [78], and Microsoft Bot Framework [79], coexist with 

off-line, open-source alternatives. Rasa [80], a Python module, stands 

out for its capability in ML-based dialogue management and language 

understanding. It provides pre-defined pipelines, including the 

integration of spaCy [81], an open-source Natural Language 

Processing (NLP) tool boasting pre-trained models in 64 languages. 

This combination, supported by Rasa, facilitates offline NLU, with an 

available default pipeline for training models from scratch, catering to 

domain-specific applications. DeepPavlov [82], another open-source 

library in Python, specializes in developing dialogue agents. It 

features three models: intent classification, entity recognition, and 

spelling correction. While resembling Rasa in its pipeline-based 

approach, it exhibits less customizability. Recent developments 

showcase also end-to-end solutions for ASR and NLU. An English, 

transformer-based [13] model for Spoken Language Understanding 

(SLU) is proposed in [83], achieving impressive accuracy on the Fluent 

Speech Commands dataset [84]. Snips [85], a dedicated SLU platform 

for IoT microprocessors, stands out for its offline functionality with 

low resource consumption. However, its recent transition to private 

ownership has rendered the code non-public and no longer open-

source. Paval [86] introduces a virtual personal assistant focusing on 
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suggesting local points of interest and services. In a domain-specific 

context, Paval outperforms general-purpose systems like Google 

Assistant, Apple Siri, and Microsoft Cortana, leveraging not only NLP 

but also semantic technologies and external knowledge for geo-

located data retrieval. 

The final stage of building a VA involves speech synthesis, 

commonly known as TTS. The section presents two fundamental types 

of solutions: a two-stage pipeline and an end-to-end approach. The 

two-stage pipeline involves generating a spectrogram (mel or Hz 

scale) initially, followed by a voice-encoder (vocoder) producing 

audio based on the spectrogram. Numerous models adopting this 

approach are available, including the renowned Tacotron2 [87], which 

maps characters to mel-scale spectrograms through a recurrent 

sequence-to-sequence feature prediction network. Tacotron2 is the 

most well-known spectrogram generator, and numerous other 

contributors have adopted its implementation [88], [89]. Notable 

vocoders include glow-based (WaveGlow [90], SqueezeWave [91], 

UniGlow [92]) and Generative Adversarial Network (GAN) 

architectures (MelGAN [93], HiFiGAN [94]). On the contrary, the end-

to-end approaches utilize a single model to generate audio directly 

from the text. Several models exemplifying this approach are available 

in the literature. FastPitchHifiGAN [95] combines a spectrogram 

generator (FastPitch [96]) and the HiFiGAN vocoder for waveform 

generation from the text. Similarly, FastSpeech2HiFiGAN [97] 
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combines the FastSpeech2 [98] spectrogram generator and HiFiGAN 

into a unified model, trained end-to-end. All the TTS models 

discussed, including those employing the two-stage pipeline and end-

to-end approaches, are accessible within the NeMo toolkit. Additional 

end-to-end TTS systems, such as NaturalSpeech [99] and FastDiff-TTS 

[100], are introduced. NaturalSpeech exploits a variational 

autoencoder for direct waveform generation, achieving human-level 

performance on the LJ Speech dataset [101]. FastDiff-TTS stands out 

for both high-quality speech synthesis and impressive inference 

speed, enabling real-time speech synthesis. Although the source code 

for these end-to-end TTS solutions is yet to be released officially, their 

potential in enhancing the VA experience is acknowledged. 

Table 2: Summary of state-of-the-art speech-processing datasets, models, 
NLU solutions, and TTS solutions 

Category Name Description Specifics / 
Highlights 

Datasets 

Mozilla 
Common Voice 

Crowdsourced, 
multi-language 
dataset 

Italian version: 310 
hours, 48 kHz, 
MP3  

M-AILABS 

Multi-language 
dataset, using 
LibriVox and 
Project Gutenberg  

Italian: 18 hours, 16 
kHz, WAV format 

Multilingual 
LibriSpeech 

Open-source 
collection, multi-
language 

Italian: 279 hours, 
diverse speakers 
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Models & 
Toolkits 

Vosk 

Speech recognition 
toolkit with 
reconfigurable 
vocabulary 

Compact Italian 
model, Raspberry 
Pi/Android 
compatible 

Mozilla 
DeepSpeech 

End-to-end DL 
with RNN for ASR 

Utilizes Common 
Voice Italian 
dataset, appears to 
be no longer 
maintained 

wav2letter 

ASR tool by 
Facebook AI with 
pre-trained models 
available in many 
languages 

Italian variant 
available 

NeMo 
NVIDIA’s toolkit 
for ASR, VAD, 
KWS, and TTS 

Comparative edge 
in performance 

Wav2vec 2.0 

Self-supervised 
learning 
framework for 
speech 
representations 

Low WER on 
Librispeech dataset 

NLU 
Solutions 

Rasa 

ML-based dialogue 
management and 
language 
understanding in 
Python 

Offline 
functionality, high 
versatility, 
supports spaCy 

DeepPavlov 
Python library for 
dialogue agents 

Features intent 
classification, 
entity recognition, 
and spelling 
correction 
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TTS 
Solutions 

Tacotron2 

Two-stage pipeline 
model mapping 
characters to mel-
scale spectrograms 
then to audio 

Widely adopted 
spectrogram 
generator 

FastPitchHifiGA
N 

Combines 
FastPitch 
spectrogram 
generator with 
HiFiGAN vocoder 

End-to-end model 
for text to 
waveform 
generation 

FastSpeech2HiFi
GAN 

Combines 
FastSpeech2 with 
HiFiGAN into a 
single model 

Trained end-to-end 

NaturalSpeech 

Utilizes a 
variational 
autoencoder for 
direct waveform 
generation 

Human-level 
performance on LJ 
Speech dataset 

FastDiff-TTS 

Notable for high-
quality speech 
synthesis and 
impressive 
inference speed 

Enables real-time 
speech synthesis 

 

2.3 DRL for motion and path planning 

In literature, numerous techniques are proposed to tackle the 

complexities of the motion and path planning domain. Global 

planning, a pivotal aspect, witnesses the influence of graph-search-

based methodologies. Algorithms like Dijkstra [102], [103], A* [104], 
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Hybrid A* [105], and State Lattice [106] play a crucial role by mapping 

the state space of vehicles and other objects in the scene onto an 

occupancy grid. Sampling-based suboptimal planners, including the 

renowned Probabilistic Roadmap Method (PRM) [107] and the 

Rapidly-exploring Random Tree (RRT) [108], take a different 

approach by randomly sampling the configuration or state space, 

seeking connectivity [109]. To overcome the sub-optimality of RTT, 

[110] hybridized it with Ant Colony Systems (ACS) algorithms, 

resulting in good performance and fast convergence. Curve 

interpolation techniques, exemplified by Bezier [111] and Splines 

[112], as well as those inspired by biological systems such as genetic 

algorithms (GA) [113], ant colony algorithms (ACO) [114], and particle 

swarm algorithms [115], have gained prominence due to their rapid 

convergence and robust characteristics.  

For what concerns local path planning, the Artificial Potential 

Field (APF) algorithm, introduced by Khatib [116], stands as a 

pioneering solution. By combining continuous attractive fields related 

to goal-reaching tasks and repulsive fields generated by obstacles, the 

APF algorithm navigates a vehicle through unknown environments. 

Also, variations of the APF algorithm have emerged, including 

methods for local minimum avoidance by anticipating future 

movements to preemptively bypass obstacles [117] and the 

incorporation of techniques like Simulated Annealing [118] and Fuzzy 

Logic [119]. Several algorithms have been presented to handle 
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dynamic obstacles. One such example is the dynamic window 

approach with the virtual manipulators (DWV) technique [120]. The 

DWV method produces modified candidate paths that are non-

straight and non-arc by predicting the location of dynamic obstacles. 

Turning our attention to the DRL paradigm, it is first necessary to 

introduce RL. RL, as a subset of Machine Learning (ML), takes center 

stage in this context. RL involves an agent learning a policy through 

trial and error, discerning which actions to take in diverse states. The 

learning process unfolds in an environment providing positive and/or 

negative rewards for each decision taken by the agent. Framed as the 

optimal control of a Markov Decision Process, RL boasts two primary 

approaches: value-based algorithms, focused on finding the action 

with the maximum expected overall value, and policy-based 

algorithms, aimed at determining the maximum reward policy [121]. 

The optimal action-value function 𝑄𝑄∗ = max
𝜋𝜋

𝑄𝑄𝜋𝜋(𝑠𝑠) satisfies the 

Bellman Optimality Equation: 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼{max
𝑎𝑎′∈𝐴𝐴

[𝑅𝑅(𝑠𝑠,𝑎𝑎)  +

 𝛾𝛾𝑄𝑄∗(𝑠𝑠′,𝑎𝑎′)]}, where s is a state, a an action, the apex denotes the next 

step, R is the reward and γ the discount factor [122]. The Q-learning 

algorithm iteratively calculates [123] Q* through the application of a 

sampling version on a batch of collected experience. To tackle the 

challenge of continuous state spaces, the Deep Q-Network (DQN) 

algorithm [124] uses a NN model to represent the action-value 

function Q. Additional algorithms, including Double Deep Q-

Network (DDQN) [125], Dueling DQN [126], and Dueling Double 
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Deep Q-Network (D3QN) [127], have emerged as pivotal solutions, 

contributing significantly to overcoming challenges related to 

convergence and stability. 

In dynamic path planning within unknown environments, we 

witness a significant paradigm shift. The application of the DQN 

algorithm [128], a cornerstone in DRL, allows for learning successful 

policies directly from high-dimensional sensory inputs through end-

to-end RL. In [129], a DRL agent is trained in a dynamic unknown 

environment using the DDQN method [130] and a CNN as a 

backbone, allowing it to reach the targeted position. In [131], the 

asynchronous advantage actor-critic (A3C) method [132] is utilized for 

training a four-wheeled rescue robot on difficult terrain within an 

urban environment. 

Combining global and local planning strategies emerges as a 

promising approach for achieving superior overall performance. 

PRM-RL [133], a hierarchical method that merges sampling-based 

path planning with RL, exemplifies the power of combining short-

range, point-to-point navigation policies learned by RL agents with 

the guidance of PRM planning for long-range navigation. Similarly, 

the integration of RRT and a DRL agent (RL-RRT) presented in [134] 

for long-range planning demonstrates the fusion of planning and 

control functionalities. The agent serves as the local planner during 

planning and as the controller during execution. The system shows its 

capability of being transferable to previously unobserved 
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experimental environments, thus making RL-RRT faster by replacing 

expensive computations with simple neural network inference. In 

[135], a new path planner (PRM+TD3) that combines the Twin 

Delayed Deep Deterministic policy gradients (TD3) DRL algorithm 

with the RPM global path planning method is presented. The 

proposed method demonstrates promising results in terms of both 

development efficiency and model generalization. 

The integration of DRL in various applications extends its reach to 

autonomous underwater vehicles (AUVs) and unmanned aerial 

vehicles (UAVs). Techniques like DRL path planning based on DDQN 

prove effective in enhancing the planning of autonomous underwater 

vehicles navigating through ocean currents [136]. Similarly, the 

application of DDQN for path planning in UAVs, particularly those 

leveraging edge servers for computing tasks [137], showcases the 

adaptability of DRL across diverse scenarios. 

2.3.1 Driving simulators 

Simulation tools have become integral in testing and refining 

complete DRL pipelines before deploying learned agents in real-world 

scenarios. This is even more important considering AD contexts, in 

which realism and availability of real cars’ sensors is key to simulate 

ADFs. Highway-env [138], implemented in Python and relying on the 

Gymnasium toolkit [139], offers a collection of open-source 

environments for autonomous driving and tactical decision-making 
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tasks. The environments are presented in a bird’s-eye view and serve 

as a robust platform for the development, deployment, testing, and 

comparison of RL methods and models. Stable-Baselines 3 [140], [141] 

is employed as the library, providing implementation support for 

state-of-the-art DRL algorithms. Another notable simulation tool is 

Unity, a widely adopted game engine, cross-platform in nature, that 

enables the streamlined development of games and simulations, 

applied across multiple industrial sectors [142]. It can be utilized with 

ML-Agents [143], an open-source toolkit that enables the usage of 

Unity as a simulation setting to fashion and educate self-governing 

agents. ML-Agents also offers a Python Application Programming 

Interface (API) for the implementation of main RL algorithms, which 

is based on the PyTorch library. Finally, CARLA [25] is an open-source 

simulator specifically designed for developing, testing, and evaluating 

AD systems within a realistic urban environment. CARLA stands out 

for its feature-rich framework, incorporating physically accurate 

vehicle models, highly detailed maps reflecting real-world road 

networks, accurate traffic flow, infrastructure information, weather 

conditions, and pedestrian simulation. The framework provides a 

comprehensive set of APIs and ancillary tools to facilitate the 

development and evaluation of autonomous systems.  

These simulation tools serve as invaluable assets in bridging the 

gap between theoretical developments and practical implementations, 
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ensuring the robustness and efficacy of autonomous systems in 

diverse and dynamic environments. 

A summary of the comparison between the simulators presented 

is shown in Table 3. 

Table 3: Driving simulators summary 

Simulator Features Strengths Application 
Focus 

Highway-env 

Open-source 
environments 
for AD and 
tactical decision-
making, bird’s-
eye view 

Robust platform 
for RL methods 
and model 
testing 

Development 
and testing of 
ADFs and 
tactical decision-
making tasks 

Unity 3D 

Cross-platform 
game engine for 
simulation 
development, 
applied in 
multiple sectors 

Versatile, 
widely adopted, 
allows for 
detailed 
customization 

Development of 
games and 
simulations, 
including 
automotive 
applications 

CARLA 

Realistic urban 
environment 
simulator for 
AD systems 

Detailed maps, 
realistic 
simulated 
sensors, 
comprehensive 
simulation of 
traffic and 
pedestrians 

Developing, 
testing, and 
evaluating 
ADFs in a 
realistic urban 
setting 
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2.4 DRL models explainability 

The AD field poses a unique set of challenges, that require 

sophisticated decision-making abilities in constantly changing and 

highly uncertain environments. In our pursuit to attain elevated stages 

of automation, it is crucial to establish effective strategies for high-

level decision-making [144]. The task of driving is appropriately 

formalized as a Partially Observable Markov Decision Process 

(POMDP), while carefully taking into account the stochastic nature of 

various road actors and the inherent uncertainties associated with 

perception systems [145]. 

The key component lying at the heart of decision-making within 

behavioral planning is the prediction of trajectory. Traditional 

approaches to trajectory prediction mainly focus on spatial interaction 

modeling, with landmark models such as the Social Force model [146]. 

This model combines attractive forces from a goal vehicle with 

repulsive forces generated by other vehicles. Nevertheless, the 

trajectory prediction landscape is evolving, with attention-based 

architectures trained through DRL steadily increasing in popularity. 

Pioneering research, exemplified by [28], [147], and [148], highlights 

the advantages of such architectures in dealing with varying numbers 

of nearby vehicles, ensuring invariance to the chosen order of feature 

representation, and inherently accommodating interactions between 

the Ego Vehicle (EV) and other traffic participants [149]. Recent 

advancements, such as the Hierarchical Spatio-Temporal Attention 
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architecture (HSTA) [150], introduce innovative elements by 

incorporating spatial interactions with varying weights and 

considering temporal interactions across multiple time steps 

involving all agents. The work of [28], which integrates attention 

modules into a hierarchical control structure of a D3QN (D3QN-DA), 

stands out for achieving superior safety rates and average exploration 

distances. Concurrently, [27] presents an analogous hierarchical 

control framework. In this setup, the upper-level is dedicated to 

managing driving decisions in a highway environment, while the 

lower-level governs speed and acceleration. By integrating the D3QN 

DRL algorithm within this hierarchical framework the convergence 

rate and control performance of the highway decision-making 

strategy are significantly improved. 

The field of XAI comes into play with [151], providing the 

foundational principles of interpretable data science for decision-

making. To visualize feature interactions and importance, model-

agnostic approaches like LIME [18], SHAP [14], partial dependence 

plots (PDP) [152], and permutation feature importance scores are 

widely applied and recognized in recent reviews [16], [153]. 

Acknowledging the challenges in producing highly-performing 

white-box models, particularly in domains like computer vision and 

natural language processing, [16] highlights the persistent gap in 

performance against DL models. Furthermore, [154] draws attention 

to the several open research points in XAI, citing challenges ranging 
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from defining explanations to general interpretation pitfalls. In this 

expansive field, [155] warns against typical errors in interpreting ML 

models, such as utilizing interpretation techniques inappropriately or 

drawing unwarranted causal conclusions. Within this broad 

landscape, SHAP emerges because of the ability to analyze individual 

predictions by quantifying the contribution of each feature to the 

overall prediction. Rooted in the concept of Shapley values [156] for 

model feature influence scoring, SHAP offers desirable properties 

such as consistency, missingness, and local accuracy, albeit with a high 

computational cost. It operates as an additive feature attribution 

method, meaning that the sum of SHAP values aligns with the model’s 

prediction. This approach adheres to efficiency properties, 

guaranteeing a fair distribution of effects (i.e., the prediction) among 

the features. 
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3 
Edgine 

The idea of Edgine arose from the necessity for a flexible and 

adaptable framework that facilitates the IoT paradigm across diverse 

application domains, ranging from agriculture to sports to 

automotive. To achieve this goal, three essential components are 

necessary: 

• An edge device that collects environmental data through 

sensors; 

• An execution engine that operates on the edge, interprets and 

processes the data captured by the device, and subsequently 

sends it to the cloud in a structured manner; 

• A cloud server that stores the data and can be queried for 

visualizing and extrapolating information. 

This chapter primarily delves into the architecture of the cloud 

server (referred to as Measurify [157]), followed by the presentation of 
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the execution engine, Edgine. Then, this study demonstrates various 

real-world use cases of the system utilizing different edge devices, 

highlighting the user-friendly design that sets apart this end-to-end 

system, as well as its versatility. Finally, some users’ feedback is 

reported, concluding presenting the ongoing work on new features for 

Edgine. 

3.1 Measurify 

Measurify is a cloud-based platform that has been developed to 

effectively manage intelligent objects inside IoT ecosystems. It is 

characterized by its abstract nature and its focus on measurement-

oriented functionalities. Measurify employs a methodology wherein it 

represents these objects as online resources, making them accessible 

through APIs that adhere to the principles of Representational State 

Transfer (REST) architecture. The process involves the utilization of a 

platform-agnostic HTTPS interface to enable remote access to data and 

resources, facilitating the creation of apps that may effectively utilize 

these entities. 

Table 4 presents a comprehensive overview of the primary resources 

employed by Measurify. Further information can be obtained from 

[157], where the Measurify framework is presented. 
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Table 4: Outlook of the main Measurify resources [9] 

Element Description 

Measurement 
Value of a feature measured by a 
device for a specific thing 

Thing 
A generic object target of a 
measurement (I.e., within which a 
measurement is performed) 

Device 
A sensor that provides 
measurements about a thing 

Feature 
A physical dimension measured by 
a device 

Script 

A JSON string that contains 
information on how to manipulate, 
store, and transmit streams of 
measurements coming from 
devices. This is the program to be 
executed by a field device 

Tag 
Labels attachable to resources, to 
better specify them 

Users 
Users (with roles and rights) that 
have access to the resources of the 
current application 
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In addition to gathering all the data transmitted from the field, 

Measurify also offers developers a remote programming interface for 

configuring a deployed field execution engine. By providing its 

credentials, each edge engine can access a specific tenant area within 

a Measurify cloud installation. The schematic representation of the 

edge-cloud system is presented in Figure 2. This picture illustrates the 

arrangement and progression of both the configuration and execution 

stages of a typical IoT ecosystem application, which is facilitated by 

the Measurify platform. During the configuration phase, the 

developer establishes the specifications for various elements such as 

things, devices, features, user roles, and permissions, as well as scripts 

that are relevant to the new application. During the execution phase, 

the devices gather, analyze, and transmit measurements to the cloud, 

which may then be accessed and queried by authorized users. The two 

phases are not temporally distinct, as a developer can include new 

elements such as features, scripts, and other components throughout 

the execution phase. 
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Figure 2: Measurify cloud API schematic [9] 

3.2 Edgine 

Edgine is a cross-platform edge system that offers the capability to 

retrieve scripts from cloud-based sources and execute operations 

locally (Figure 3). From the standpoint of edge-to-cloud continuum 

computing, the system possesses the capability of being configured 

remotely, encompassing both settings and executable scripts. 

 

Figure 3: Block diagram of Edgine in the IoT ecosystem [158] 
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Edgine relies on Measurify for its cloud infrastructure. Measurify 

not only gathers all the data transmitted from the field by an Edgine 

instance, but it also offers developers a remote programming interface 

for configuring a deployed Edgine. The runtime operation of Edgine 

includes two distinct components: an initialization phase and a 

continuous loop phase. At the beginning of the start-up process, 

Edgine establishes a connection with the API to retrieve its 

description. This description includes a comprehensive list of scripts 

that are to be executed, as well as the corresponding parameter values 

required for its configuration. During the iteration, Edgine 

sequentially executes each assigned script. Every device that is linked 

to a Measurify installation is characterized by a JSON descriptive 

scheme that encompasses the features and scripts fields. The former 

refers to the enumeration of measurement kinds, as stated in 

Measurify, which serves to ensure the integrity of input. On the other 

hand, the latter serves as a descriptor for the computing work that is 

necessary, as depicted in Figure 4. Specifically, the code field of the 

system describes the executable script, which consists of a series of 

functions (instructions) that the Edgine use to process its raw data 

before transmitting it to the cloud. This processing occurs in a 

continuous loop. Every instruction is implemented on its input data 

stream, which consists of the output from the preceding instruction. 

The initial phase of the sequence is employed to process the raw input 

data. The instructions depicted in Figure 4 pertain to the calculation of 
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the available ROM in GB, its subsequent conversion into MB, and the 

ultimate dispatch to Measurify. 

 

Figure 4: JSON description of a script [158] 

There are two potential methods for uploading data to the cloud: 

continuous uploading, where data is transmitted as soon as it is 

processed, or batch uploading, where a specified number of 

measurements are accumulated before being sent in bulk. This second 

option is particularly useful in the absence of internet connection or if 

the embedded system on which Edgine is installed is required to 

consume as little energy as possible. 

The existing operation set is documented in Table 5. Table 6 

presents a synthesis of the HTTP requests made during the two 

distinct phases of execution, namely authentication and script 

download (performed at start-up), and the subsequent infinite loop 

for uploading measurements. It is worth to highlight that this process 

is entirely automatically performed by Edgine and does not require 

any user intervention. 
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Table 5: Instructions currently available in Edgine [9] 

Instruction Description 

send 
Sends to the API all elements of the 
data stream 

map 
A new data stream is created by 
performing a simple arithmetic 
operation between two operands 

max/min 

A new data stream is created 
containing only the min/max value 
among the values in the input 
stream 

window / slidingWindow 

A new data stream is created by 
applying a two-operand function 
on an accumulator, initialized to 
the value of the second argument, 
and on each input element, for a 
number of values indicated by the 
size of the window/slidingWindow 

filter 

A new data stream is created 
letting using only the elements of 
its input stream that have a value 
within a specified range 

average / median / stdDeviation 

A new data stream is created by 
taking the 
average/median/stdDeviation of a 
specified number of samples in its 
input stream 
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Table 6: Edgine’s HTTPS requests [9] 

Request Subject Description 

POST Login credentials 
JWT is received from 
the cloud 

GET Device description 
Scripts are retrieved 
from the cloud 

POST Measurements 
Edge-processed data 
are shipped the cloud 

 

Another significant advancement pertained to the communication 

interface, which was intentionally designed to be highly abstracted 

from the underlying hardware to enhance portability. To facilitate the 

transition of developers from Windows, Linux, or macOS platforms to 

Arduino, classes have been developed that incorporate macros. The 

distinction between the two types of platforms pertains to the nature 

of their Internet connectivity. The Arduino system facilitates 

automatic connection to a specified Wi-Fi network as indicated in the 

code and is additionally programmed to initiate a reconnection 

process in the event of signal disruption. In contrast, network 

connection (including reconnection) on PC-type devices is not 

automated, as users can utilize the User Interface (UI) to manually 

select a network of their choice. In addition, the automation of the 
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connection necessitates distinct implementations for various 

operating systems, thereby introducing complexity to the structure of 

Edgine. The transmission of data to the cloud is facilitated by a thread 

that is created during each cycle, ensuring that the edge device is not 

obstructed by communication tasks. Furthermore, regardless of the 

specific platform being used, a thread queue is utilized to enqueue 

threads when the network connection is unavailable. This ensures that 

data delivery remains accurate even under such circumstances. 

By leveraging switchable network connection classes, the Edgine 

platform has been successfully implemented on major PC operating 

systems, namely Windows, Linux, and macOS. Additionally, Edgine 

has been extended to support various Arduino and Arduino-style 

boards, including Arduino MKR WiFi 1010, Arduino UNO WiFi 

Rev.2, Arduino NANO 33 IoT, Arduino NANO 33 BLE, Arduino MKR 

VIDOR 4000 WiFi, Espressif ESP32-WROVER, and Espressif ESP8266. 

Figure 5 illustrates the schematic structure of the overall end-to-

end system architecture of the Edgine-Measurify. At a broad level, the 

image depicts a sequence of commands flowing from the cloud to the 

edge, representing the downstream direction. Conversely, 

measurements are observed to flow from the edge to the cloud, 

representing the upstream direction. A running example is provided 

below. 
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A plant (Thing) is monitored through a humidity Sensor. Data are 

collected through an embedded Board in which Edgine (Edge runtime) 

is running. Measurements are shipped to the Measurify server whenever 

an internet connection is available. The stored information can be 

consulted and processed by front-end Developers (e.g., statistics can be 

collected and visualized) and is also available to the embedded board 

which can use it exploiting scripts. Scripts allow to perform operations 

on the previously collected measurements. For instance, if the 

humidity average level falls below a certain threshold, the water 

pump (Actuator) can be enabled to water the plant. 

 

Figure 5: High-level Edgine-Measurify system architecture [9] 
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3.3 Experiments 

The purpose of this section is to evaluate the capability of the 

presented system to meet various requirements in diverse application 

contexts. To achieve this objective, a comprehensive analysis of six 

practical applications utilizing the Edgine-Measurify framework is 

presented. These applications span across three significant domains, 

namely business, environment, and sport. The applications have been 

developed with the help of third-year students enrolled in an 

Electronic and Information Technology Engineering BSc program, 

working on their final thesis, who focused on the data collection 

aspect. This underscores the system’s inherent simplicity, which can 

be leveraged for practical applications even by technicians lacking 

specialized professional expertise. 

3.3.1 Industrial use-cases 

In the following subsection, two scenarios illustrating the 

implementation of Edgine inside the realm of industries are 

delineated. The advantages obtained include real-time performance 

and the capability to operate offline (e.g., edge devices deployed in 

remote locations with inconsistent connectivity). These advantages 

are in contrast to the conventional data flows of cloud computing 

[159]. 
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3.3.1.1 Shock monitoring 

The initial application pertains to the implementation of an embedded 

system designed to assess shocks and bumps. The present study 

focuses on the application of logistics and transportation industries, 

where ensuring the preservation of goods during shipment is of 

utmost importance. The sequential processes involved in the 

implementation of the proposed system are illustrated in Figure 6. 

 

Figure 6: Stages of the shock monitoring system for the transport of goods 
[9] 

From a developer’s standpoint, the system comprises two unique 

phases: the shock monitoring phase, where data from sensors is 

collected and analyzed, and the package integrity check phase, which 

entails examining the recorded history of detected bumps stored in a 

cloud database. 
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The deployed edge system comprises a SparkFun 9DoF IMU 

Breakout-LSM9DS1 sensor, which incorporates a 3-axis accelerometer, 

a 3-axis gyroscope, and a 3-axis magnetometer. The sensor is attached 

to an Arduino MKR WiFi 1010 board, which is equipped with the 

MKR MEM Shield to expand the device’s memory capacity, enabling 

the storage of data locally in the case of connectivity issues with the 

cloud, which is very likely considering that the vehicle carrying the 

package will almost always be moving. The LSM9DS1 sensor is 

interfaced to the board via the Inter-Integrated Circuit (I2C) serial 

protocol, while the MKR MEM Shield is connected through Serial 

Peripheral Interface (SPI).  

Based on the workflow outlined in the preceding section, the 

system autonomously initiates a connection to a designated Wi-Fi 

network and authenticates itself on Measurify using a username, 

password, and tenant credentials. Subsequently, relevant data 

pertaining to the object being measured is obtained from the cloud via 

a GET request, accompanied by executable scripts. After being stored 

locally, measurements are transmitted to the server, depending on the 

availability of network connectivity. The login and information 

retrieval phases are executed singularly within the initialization 

process, specifically within the Arduino setup function. In contrast, 

the cyclic execution of the Arduino loop function facilitates the 

processing of sensor data and the subsequent transmission of the 

results to the cloud. The code for monitoring shocks is derived from a 
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previous study ([160]), which employed a two-dimensional shock 

detection method in the context of vehicle crashes to determine the 

precise location of impact on the car. A three-dimensional approach to 

suit the transports specific use-case had been implemented. If the size 

of the shock surpasses the predetermined threshold, referred to as 

sensitivity, the shock value is transmitted to Measurify as an 

indication of a collision having taken place. The executable script 

utilizes the filter operation described in Table 5 to choose values that 

exceed a specified threshold. The position of the point of impact is also 

calculated and transmitted to Measurify to give a clearer idea about 

the extent of possible damage. 

The visualization of data for the purpose of online package 

integrity verification involves the creation of a web page that 

incorporates a table displaying the most recent five occurrences of 

package effects together with their corresponding locations. An 

illustrative sample can be observed in Table 7. In order to enhance 

comprehension, a set of six images is presented, with each image 

depicting a different facet of the packaging (Figure 7). The graphic 

representation illustrates the magnitude of the impact by the 

utilization of a color scale consisting of four distinct keys: grey to 

indicate the absence of impact, green to represent a minor disturbance, 

yellow to signify a moderate jolt, and red to indicate the detection of a 

significant shock. 
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Table 7: Report of the five most recent shocks [9] 

Time Magnitude Angle XY Angle YZ Angle XZ 

12/09/2021, 
16:45:50 

3 251 230 254 

12/09/2021, 
16:45:50 

6 270 185 268 

12/09/2021, 
16:45:50 

3 92 353 252 

12/09/2021, 
16:45:50 

3 93 341 260 

12/09/2021, 
16:45:50 

4 67 287 277 

 

 

Figure 7: Graphical interface of the shock monitoring web page [9] 

3.3.1.2 Tank level monitoring 

The second application pertains to a monitoring system designed to 

measure the quantity of rainwater in a tank utilized as a storage 

facility for an aqueduct. The embedded system is dependent on the 

utilization of an Arduino MKR GSM 1400 board in conjunction with 

an HC-SR04 ultrasonic sensor. In addition, the program has been 

enhanced by the incorporation of an Arduino MKR SD Proto Shield, 
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thereby enabling the expansion of memory capacity. This 

augmentation facilitates the storage of data samples as a 

precautionary measure in the event of connectivity disruptions. The 

fundamental operational principle of the gadget is illustrated in 

Figure 8. 

 

Figure 8: Schematic of the tank-level monitoring system [9] 

Like the other embedded applications, there exists an initial setup 

step that is subsequently followed by a loop phase. The sole 

distinction is to the script that is linked to the utilized resource. In this 

scenario, the application relies on a filter operation. This operation 

selectively sends only those samples to the cloud whose values 

surpass either the upper threshold or fall below the lower threshold. 

Due to the remote location of the tank within a wooded region, the 

system has a GSM module integrated into the circuit board. This 
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module facilitates the transmission of SMS notifications to alert the 

tank maintainer of any potential risks. 

To facilitate the monitoring and visualization of the collected data, 

a mobile application has been constructed using Flutter, an open-

source framework that enables the creation of natively compiled, 

cross-platform applications for both iOS and Android devices [161]. 

Figure 9 displays the three primary pages of the application. 

   
(a) (b) (c) 

Figure 9: Snapshots from the tank level monitoring app. (a) Login page; (b) 
Tank monitoring info; (c) App settings [9] 

3.3.2 Environmental use-cases 

One example of an IoT application domain is environmental 

monitoring, as demonstrated in previous studies [162], [163], [164], 

[165]. Next, an overview of two use-cases from this perspective is 

provided. The first application is designed to monitor the air quality 

within an enclosed space, while the subsequent system enables the 
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assessment of a plant’s condition and the environmental factors 

surrounding it. 

3.3.2.1 Air-quality monitoring 

The scenario in question relates to the implementation of a system 

designed to monitor the levels of noxious gasses within an enclosed 

area. The gases under surveillance include carbon monoxide (CO), 

nitrogen dioxide (NO2), and methane (CH4). The microcontroller 

employed in this study is the Arduino MKR WiFi 1010, while the gas 

sensor utilized is the MiCS-6814. The communication between the gas 

sensor and the microcontroller is established via the I2C protocol. The 

application life cycle remains consistent with earlier instances. The 

data samples are regularly transmitted to the cloud, as specified in the 

script, together with the identifier corresponding to the specific gas 

being measured. 

In line with previous instances, a webpage has been developed 

with the purpose of presenting data in both graphical and tabular 

representations. Table 8 presents a representative illustration of 

carbon monoxide readings, whereas Figure 10 exhibits a visual 

representation wherein the values of the samples are graphically 

depicted in a temporal view. 
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Table 8: Measurements of the air quality system in terms of CO 
concentration [9] 

Date Time Concentration (ppb) 

21-1-2020 19:47 6044.16 

21-1-2020 19:18 6044.16 

21-1-2020 18:48 6193.68 

21-1-2020 18:18 6472.43 

21-1-2020 17:48 7155.01 

21-1-2020 17:18 8858.53 

 

 

Figure 10: Measurements of the air quality system related to CO 
concentration [9] 
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3.3.2.2 Plant monitoring 

The objective of this application is to facilitate the remote monitoring 

of plants and flowers. The selected microcontroller for this project is 

the Arduino Uno WiFi Rev 2. It is equipped with three sensors: the 

Sparkfun TSL2561 brightness sensor, the DHT22 Pro v1.3 air-humidity 

and temperature sensor, and the DFRobot SEN0193 soil moisture 

capacitive sensor. The luminance sensor offers data in Lux units, 

enabling the user to determine whether the plant is receiving adequate 

light. Additionally, the air-humidity and temperature sensor delivers 

samples in °C and %RH, respectively, offering information on the 

surrounding environment in which the plant is cultivated. The soil 

moisture sensor facilitates determining whether the plant requires 

additional water. Furthermore, an Arduino device has been equipped 

with a TFT screen to facilitate direct visualization of data from the 

source, as depicted in Figure 11. 

 

Figure 11: The plant monitoring system screen for local inspection [9] 
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Given the presence of diverse measurements in the application, 

Measurify captures four distinct features, each corresponding to a 

specific type of measurement. The accompanying scripts facilitate the 

specification of various sampling intervals and processing procedures 

for these distinct physical variables. 

A mobile application has been built using the Flutter framework 

to enhance the usability of data interaction. The primary screens of the 

application are depicted in Figure 12. The application enables users to 

obtain a comprehensive overview of the plants being monitored, as 

well as access graphs that depict the changes in various features over 

a period. Additionally, the scan interval can be adjusted within the 

application. 

 

(a) (b) (c) (d) 

Figure 12: The plant monitoring app. (a) Login page; (b) Report on the 
monitored plants; (c) Temperature graph over time; (d) Scan interval settings 
[9] 
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3.3.3 Sports use-cases 

The advancement in miniaturization of edge devices has facilitated the 

integration of digital technologies into sports activities through the 

use of wearable devices such as wristbands, cardio-bands, and 

smartwatches. Additionally, some devices can be attached to sports 

equipment such as shoes, tennis rackets, motorbikes, and cars. These 

developments have been documented in various studies (e.g., [166], 

[167], [168], [169], [170]). This subsection describes two sports 

applications that were developed by utilizing the Edgine-Measurify 

platform. 

3.3.3.1 Smart bike 

The objective of this work is to observe and track the performance of 

an enduro mountain bike throughout a descent over a designated trail, 

with the purpose of enabling athletes to assess their own performance. 

The dimensions that have been considered are as follows: 

• The temporal evolution of speed; 

• The vertical profile of the route; 

• The duration of travel; 

• The maximum lean angle of the bicycle; 

• The maximum gradient of the route; 

• The number of front fork compressions; 
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• The maximum velocity achieved. 

The utilization of a Grove – Hall sensor has been employed for the 

purpose of obtaining speed and time data. The device, attached to the 

bicycle’s front fork, facilitates the measurement of wheel revolutions, 

enabling the determination of speed, time, and distance covered. The 

DFRobot SRF05 ultrasonic sensor has been employed to measure the 

number of front fork compressions. Additionally, this device, which is 

also mounted on the fork, quantifies the displacement from the front 

hub, resulting in a reduction in distance during compressions. The 

measurement of the elevation profile of the route was conducted using 

a Grove – Barometer BMP280, a device capable of detecting 

atmospheric pressure in hectopascals (hPa). The measure is 

subsequently transformed into an altitude value, as detailed in [171]. 

In order to determine the lean angle of the bicycle and the slope of the 

route, the utilization of an accelerometer and a gyroscope was 

necessary. Given the specified criteria, an Arduino Nano 33 IoT board 

was selected due to its inclusion of a built-in LMS6DS3 sensor, 

eliminating the need for any further installation on the MTB. In order 

to mitigate the risk of system failures or damages, a logic level shifter, 

namely the Pololu 4-channel, was utilized. This was necessary due to 

the utilization of sensors, such as the hall sensor and ultrasonic sensor, 

which operate at a voltage above 3.3 V. These sensors function within 

the voltage range of 0-5 V. Figure 13 depicts the ultimate iteration of 



 Edgine 

 

59 

the prototype, which encompasses the board and the sensors attached 

to the mountain bike. 

 
(a) (b) (c) 

Figure 13: The smart bike main components. (a) The front fork with the 
ultrasonic and the hall sensors; (b) The main core of the system with a led 
and a buzzer to check if the system is running correctly; (c) The inside of the 
core, and a battery that powers the system [9] 

Within the execution loop, the edge system acquires data samples 

from the sensors and establishes a connection with Measurify by 

utilizing the Edgine library. Subsequently, the system transmits the 

script-processed outcomes to the cloud for each individual 

characteristic. The scripts in question prescribe the acquisition rate of 

different signals and the desired computation, such as the maximum 

value inside a given sliding window, by utilizing the actions outlined 

in Table 5. Similar to the previous use-cases, a mobile application 

using the Flutter framework has been developed. The user is able to 

collect real-time data regarding the smart bike, as well as access 

instructive graphs illustrating information about the tour. The main 
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page of the application, as depicted in Figure 13, displays a graphical 

representation illustrating the progression of speed during a tour. 

  
(a) (b) 

Figure 14: The smart bike app layout. (a) The bike data; (b) Speed evolution 
over the tour [9] 

3.3.3.2 Smart racket 

The final application case within the domain of sports pertains to the 

development of a tennis racket assistance system that gathers data 

pertaining to an athlete’s strokes. The project entails the development 

and deployment of a system capable of quantifying velocity, rotation, 

and point and angle of impact, with the objective of facilitating the 

differentiation of distinct stroke types. A total of six distinct stroke 

types have been taken into consideration: serve, forehand 

groundstroke, backhand groundstroke, overhead smash, forehand 

volley, and backhand volley. 

The utilization of accelerometer and gyroscope sensors is crucial 

for this use-case. The Arduino Nano 33 IoT board was selected as the 
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development board because of its integrated LMS6DS3 sensor. The 

raw data from the sensors alone do allow to differentiate between the 

six distinct types of strokes. Hence, the primary objective of the 

application is to facilitate the generation of a dataset for every 

individual class. Subsequently, the provided information will be 

utilized to train a neural model using an edge learning strategy [172], 

with the objective of recognizing strokes. The objective of the 

suggested methodology is to enhance the approach presented in [173]. 

In this previous study, a motion sensor was attached to the racket to 

categorize the stroke type into three distinct classes: serve, 

groundstroke, and volley. In addition, the serve stroke involves the 

proposal of a regression model to estimate the speed of the ball. 

Similarly, for the groundstroke and volley, two models are suggested: 

a regression model and a physical model. The physical model is most 

suitable for proficient players who consistently execute stroke 

gestures, whereas the regression model is better suited for novice 

players who exhibit more variability in their stroke gestures. The 

Edgine system can be used to perform local data processing and 

transmit information to Measurify with minimal post-processing 

requirements. An application will be designed for mobile devices with 

the purpose of displaying real-time aggregated statistics from a tennis 

match. This data will be collected through specifically constructed 

scripts for the task, which will include information such as the count 

of forehand groundstrokes, the maximum speed of serves, and the 

percentage of forehand groundstrokes in comparison to backhand 
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groundstrokes. The integration of Edgine with the results of an 

integrated neural network, which classifies the raw sensor data into 

the six specified categories, is currently work in progress. The 

anticipated construction of the final prototype is projected to resemble 

the configuration depicted in Figure 15. The board will be fitted into 

the throat of the racket, which is protected by a pitted casing, because 

of the reduced diameter of the racket handle. 

 

Figure 15: The smart racket project [9] 

3.4 Users’ feedback 

As per the accounts provided by the students who actively 

participated in the above-mentioned projects, the utilization of the 

Measurify framework for the development of a comprehensive IoT 

application yielded numerous advantages. The system’s user-friendly 

interface and straightforward installation process enabled the 

developer to prioritize dataflow design over cloud interfacing, 

resulting in a significant reduction in development time. Moreover, 

the utilization of scripts that sequence a certain number of instructions 
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facilitated the attainment of the projects’ goals in a coherent and 

accurate manner. The main challenges faced revolved around the 

necessity for the developer to embed the Service Set Identifier (SSID) 

credentials within the code and a certain level of complexity in 

comprehending the interplay between the edge system and the cloud. 

Specifically, since the HTTPS queries initiated by Edgine are concealed 

within the library, there is a lack of quick indication for the user 

regarding the successful storage of data in the cloud server. 

3.5 New features 

Currently, Edgine’s capabilities are being expanded by adding 

support to ML and DL models locally, with subsequent automated 

logging of results and evaluation metrics to Measurify using scripts. 

NN’s configurations and weights are stored in the cloud database; 

Edgine is exploited to automatically GET the desired model and its 

description, to then perform on-the-edge inference and subsequently 

POST the results on Measurify. This extends Edgine’s field of action 

from simple operations to the DL domain, allowing for a more in-

depth data elaboration. This functionality is still work-in-progress but 

currently under test, with promising results, in the context of DRL 

models for low-speed maneuvering, which will be presented in 

Chapter 5.3. Also, future works with Edgine will include its evaluation 

in terms of performance, efficiency, latency, and resilience, 

particularly in executing ML and DL tasks. 
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4 
Embedded Voice Assistant 

After testing the potential of edge computing through the Edgine 

experiment, a transition was made to explore on-the-edge VAs, a 

domain highly relevant to the automotive industry. To accomplish 

this, however, we must advance from executing basic edge-side 

scripts to implementing DL models that permit speech processing and 

subsequent response generation for the user. In this instance, Edgine 

can be utilized to securely store significant system performance and 

utilization data on the cloud server. Being interested in developing an 

end-to-end VA system to be used on high-end embedded devices, first 

the needed modules are investigated, along with their 

interconnections, and performance. Then, the implementation of each 

block is presented, and experimental results are finally provided. 

To provide an overview of the intended scope of the system, Table 

9 outlines a compilation of voice command instances categorized 

based on their respective subsystems. Although the dialogue 

management system is primarily crafted for offline functionality, it is 
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also supposed to handle commands that necessitate an internet 

connection, such as downloading a song or map, engaging with an 

online navigator, or accessing weather information. Consequently, the 

development of the system has considered intents that involve an 

internet connection. 

Table 9: Car VA use-cases 

Subsystem Examples 

Phone 
• Please, call John 

• Call mum via WhatsApp 

Heating, Ventilation, and Air 
Conditioning (HVAC) 

• Set the temperature to 22 
degrees 

• Turn off the heating of the 
front left seat 

Vehicle state 
• How many liters are consumed 

per 100 km? 

• Tell me the tire pressure 

Drive mode 
• Select sport mode 

• Enter eco mode 

Location-based services (offline) 
• Take me to Rome 

• Find the nearest Italian 
restaurant 

Media 
• Stop the track 

• Fast forward the song by 15 
seconds 



 Embedded Voice Assistant 

 

66 

4.1 Methodology 

This section presents a comprehensive examination of the workflow, 

aimed at providing an overview of the various components, 

interfaces, and overall design. The subsequent section will provide an 

overview of the implementation details pertaining to the individual 

modules. 

End-to-end VAs necessitate a thorough process that encompasses 

various stages, starting from the reception of incoming speech and 

concluding with the provision of feedback regarding the execution of 

the intended action. Consequently, a workflow was devised enabling 

the execution of the subsequent procedures: 

• Human voice detection; 

• Activation keyword detection; 

• Speech recognition and conversion into text; 

• Text conversion into meaningful data; 

• Text conversion into speech to give feedback to the user. 

The logical sequence of steps in a conversation with a VA is as 

follows. Initially, speech is detected, and if the spoken word is 

identified as a wake-word, the process of speech recognition is 

initiated. Subsequently, significant information, i.e., intents and 

entities, is derived from the inferred statement, with the purpose of 



 Embedded Voice Assistant 

 

67 

comprehending the user’s query. The request that has been detected 

is ultimately carried out by the system, and the assistant provides 

feedback in the form of a vocal response. 

The implementation of the conversational process can be achieved 

by employing a series of dedicated modules that are responsible for 

managing distinct aspects of the conversation. 

The VAD module is employed to discern human speech from 

ambient noise of non-human origin. The module functions as a binary 

classifier with two distinct classes: "voice" and "noise". The system 

should remain in an active listening state at all times and should only 

be deactivated upon detection of a specific keyword. Reactivation of 

the system should occur at the conclusion of the conversation. 

The activation of a KWS block triggers the interaction with the VA 

exclusively when a specific wake-word is pronounced. In the absence 

of this wake-word, no further steps are executed. This module also 

functions as a binary classifier, specifically designed to differentiate 

the wake-word from all other verbal utterances produced by humans. 

When the user utters the designated wake-word, an ASR module 

is triggered, initiating the process of transcribing the spoken sentence 

into written text. The complexity of this module surpasses that of the 

preceding two modules, as it undertakes a multi-class classification 

task on the input speech. In this task, the classes correspond to the 

characters of the target alphabet as well as the punctuation marks. 
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The acquired text string is subsequently analyzed by an NLU 

module, which extracts intents and associated entities. Intent refers to 

a set of utterances that share similar meanings, while entities represent 

data that hold important values. These values are treated as 

parameters by the system when executing user requests, such as 

numerical values or geographical locations. The inclusion of this step 

is imperative to acquire a semantic interpretation that is 

comprehensible by the VA system, thereby enabling it to execute the 

user’s requested task. 

Following the execution of the intent, a TTS module is tasked with 

audibly informing the user regarding the outcome, whether it be a 

successful or unsuccessful execution of the provided command. 

Consequently, this stage entails employing a spectrogram generator 

to transform the raw textual output of the system into a visual 

depiction of the frequency spectrum of the audio signal across time. 

Subsequently, a vocoder is utilized to convert this visual 

representation into an audible speech waveform. 

The sequence of tasks presented above is challenging, especially in 

an embedded setup, and the modules involved require substantial 

resources to attain a performance level comparable to that of cloud-

based applications. Therefore, an estimation of the minimum 

specifications has been conducted, which include a memory capacity 

of at least 4 GB. While a GPU is not mandatory, it is recommended in 

order to achieve faster inference, with a minimum performance of 1 
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Tera Operations Per Second (TOPS). Additionally, the power 

consumption should not exceed 30 W. The latest generation of high-

end embedded devices fulfills these requirements. The NVIDIA Jetson 

AGX Xavier was selected as the development board for our project. 

The selection of this particular system was based on its compact 

dimensions (105 mm × 105 mm × 65 mm) and its notable 

computational capabilities, as well as the availability of a powerful 

graphics processing unit (GPU) [10]. Table 10 presents the 

specifications of the board, along with the specifications of Amazon 

Alexa’s cloud infrastructure (Amazon EC2 Inf1 [174]). This 

comparison aims to emphasize the gap in computing capabilities 

between cloud-based and edge solutions. 

Table 10: Target embedded device vs Amazon Alexa, specifications 
comparison 

Feature NVIDIA Jetson AGX 
Xavier Amazon EC2 Inf1  

Memory  32 GB Up to 192 GB 

GPU 

512-core NVIDIA 
Volta GPU with 64 
Tensor Cores (32 
TOPS) 

Up to 16 AWS 
Inferentia chips (128 
TOPS each) 

CPU 
8-core NVIDIA 
Carmel ARM v8.2 64-
bit 

Up to 96 2nd gen Intel 
Xeon (x86 64-bit) 

Power 
Between 10 W and 30 
W 

Not specified 
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The proposed workflow, as depicted in Figure 16, is designed to 

utilize the VA in a setting where reliable Internet access is not available 

and there is a need for minimal delay. Furthermore, in order to 

maintain a significant degree of extensibility, it has been strategically 

devised with the intention of incorporating additional languages in 

the future. The conversation steps mentioned above have undergone 

minor modifications in order to enhance the system’s compatibility for 

embedded deployment. For instance, it was decided to integrate the 

VAD and KWS tasks into a unified module, referred to as Speech 

Classification (SC), motivated by the shared characteristic of binary 

classification. This unit conducts a binary classification task, where the 

two classes under consideration are the wake-word and its negation. 

The negation class encompasses non-human background noises as 

well as any other human-uttered words that are not the wake-word. 

The decision to activate the ASR block only after the wake-word is 

recognized enables faster inference while maintaining user privacy. 

This approach ensures that unintended information from the user 

cannot be gathered by the system. 
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Figure 16: VA workflow 

4.2 Automotive embedded VA implementation 

Following workflow presentation, we now proceed to conduct an 

examination of the implementation of the in-car embedded VA. 

In order to mitigate the issue of overfitting and promote 

generalization, a strategy of early stopping was implemented during 

the training phase of each model. Early stopping [175] involves the 

monitoring of a validation metric, such as validation loss or accuracy, 

during the training process. If the metric does not show improvement 

over a specified number of iterations, the training process is halted. 

The implementation of early stopping resulted in a substantial 

reduction in the training time of each model. 
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4.2.1 Speech classification 

As depicted in Figure 16, the SC module is located at the forefront of 

the toolchain and operates continuously to detect the wake-word 

uttered by the user. The module in question is exclusively deactivated 

for the duration of the live interaction between the user and the VA. 

For the implementation of this task MarbleNet model [176] has been 

chosen, which is a deep neural network consisting of 1D time-channel 

separable convolution blocks, batch normalization, Rectified Linear 

Unit (ReLU), dropout layers, and Cross Entropy loss. The model 

described in this study, which is based on the QuartzNet model 

(section 4.2.2.1), was developed by NVIDIA and is accessible through 

the NeMo toolkit. The choice of this solution is because it can achieve 

comparable performance to state-of-the-art VAD models while 

utilizing significantly fewer parameters (88K compared to the 738K of 

the CNN-TD model proposed in [177]). The architecture of the system, 

similar to other VAD architectures, is designed to carry out a binary 

classification task. This task involves discerning the segments of an 

audio signal that contain human speech from those that do not. As 

anticipated in the previous section, to enhance the efficiency of our 

pipeline and accelerate inference, this architecture has been employed 

in an alternative manner. The two class labels were modified in order 

to differentiate between the genuine wake-word and other words 

spoken by humans, as well as the ambient noise present in the 

background. The dataset utilized for the wake-word class in our study 

was obtained from Lifetouch, an Italian company specializing in high-
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technology solutions for the automotive and transportation industry 

[178]. In contrast, for the counterpart dataset, a collection of human-

uttered words from the Lifetouch dataset has been generated and 

combined them with common background noises encountered in-car 

environments. These background noises were sourced from 

Freesound [179] using its API. These sounds encompass traffic sounds, 

such as those produced by cars and buses, as well as human 

conversations and other related noises. By employing a singular DL 

model, it was possible to successfully execute both VAD and KWS. 

The model was trained for a total of 97 epochs, i.e., approximately 

14,000 steps. During this training process, 93% accuracy was achieved. 

Figure 17 displays the training and validation Cross Entropy losses 

during training. The narrow discrepancy between the training and 

validation loss indicates a strong fit of the model. 

 
(a) (b) 

Figure 17: SC model training (a) and validation (b) losses over 97 training 
epochs 
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4.2.2 Automatic speech recognition 

ASR plays a pivotal role in the overall process, alongside TTS, as these 

layers serve as the primary means of interaction between the system 

and the user. In order to achieve state-of-the-art performance, it is 

necessary to utilize high-dimensional datasets containing substantial 

quantities of speech data lasting several hours. As previously 

indicated, this issue relates to languages other than English or 

Chinese. In the context of ASR, the inclusion of multiple-speaker 

datasets is deemed necessary. To address the challenge, the NeMo 

toolkit provides the option of employing transfer learning. This 

approach allows us to capitalize on the knowledge embedded in a pre-

trained English model, enabling the utilization of a smaller Italian 

dataset to fine-tune the model’s weights. In this study, the initial 

model utilized for fine-tuning was the NVIDIA QuartzNet 15x5 model 

[180], pre-trained in the English language. Subsequently, fine-tuning 

was conducted on this model using the Common Voice Italian dataset. 

The QuartzNet 15x5 model was chosen due to the NeMo support for 

transfer learning and the model’s relatively low parameter count 

(19M) in comparison to the current leading models [180]. 

4.2.2.1 ASR model 

The QuartzNet model (Figure 18) is composed of blocks that are 

interconnected with residual connections. Each block consists of 

modules that incorporate 1D time-channel separable convolutional 

layers, batch normalization, and ReLU layers. The network consists of 



 Embedded Voice Assistant 

 

75 

an encoder and a decoder. The encoder is responsible for processing 

acoustic signals and generating a latent representation of the captured 

voice. The proposed approach can be interpreted as an acoustic model 

utilized to extract speech features, which are subsequently fed into a 

decoder responsible for generating textual output. The decoder 

utilizes the given representation to produce letters based on the 

alphabet of the target language. Consequently, the encoder exhibits 

the potential for cross-linguistic reusability, whereas the decoder’s 

adaptability is contingent upon the specific target alphabet. 

 

Figure 18: QuartzNet B×R architecture 

The QuartzNet 15x5 model, trained on multiple datasets (namely: 

LibriSpeech [71], Mozilla Common Voice [58], WSJ [181], Fisher [182], 

Switchboard [183] and NSC Singapore English [184]) using 

Connectionist Temporal Classification (CTC) Loss [185], achieves a 

WER of 3.79% on LibriSpeech dev-clean, and a WER of 10.05% on 

LibriSpeech dev-other. It is worth to highlight that WERs under 5% are 

considered to be professional level [186]. Notably, the model has a 

relatively low parameter count of 18.9M [187]. This model is part of 

the NVIDIA NGC collection [188], available in the NeMo toolkit. 
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4.2.2.2 ASR dataset 

To train the model, the Mozilla Common Voice dataset [58] has been 

employed, specifically the Italian variant known as Common Voice 

Corpus 8.0. This dataset encompasses a comprehensive collection of 

310 validated hours of audio recordings in MP3 format. The decision 

to select this specific dataset for the transfer learning task was 

influenced by several factors. These include the dataset’s size, the 

availability of labels for both the training and testing phases and the 

lower quality of other open-source datasets. 

4.2.2.3 ASR transfer learning experiment 

After the English pre-trained model and the Italian dataset were 

established, the process of transfer learning for the model was 

initiated. The NeMo toolkit has been exploited, leveraging the 

QuartzNet 15x5 model. 

Prior to training the English model, it was essential to perform pre-

processing on the audio files. This was required because the training 

data consisted of WAV files with a sampling rate of 16 kHz, while the 

Common Voice clips were in MP3 format with a sampling rate of 48 

kHz. Consequently, the Common Voice clips were converted to match 

the training data of QuartzNet 15x5. In this phase, JSON manifests 

have been generated for the training, validation, and test phases. 

These manifests contain information such as the clip name, duration, 

and the sentence spoken. Additive features that were included in the 
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original TSV manifests but lacked relevance for our specific objective 

were eliminated. Furthermore, all the characters were converted to 

lowercase.  

The model was fine-tuned using the NovoGrad optimizer, as 

recommended in [74] β1and β2 were set to 0.95 and 0.25, respectively 

[189]. Furthermore, the learning rate was set to 0.001, utilizing a 

Cosine Annealing policy and a warm-up ratio of 12% [190]. The labels 

of the decoder were modified to correspond with the characters of the 

Italian alphabet. The network underwent training using the PyTorch 

Lightning tool [191] for a total of 256 epochs. The training process 

involved utilizing the CTC Loss, similar to the original QuartzNet 

15x5 model. A batch size of 32 was employed, along with Automatic 

Mixed Precision (AMP) O1 [192]. 

Following the completion of 256 epochs and approximately 

921,200 training steps, the obtained outcomes were deemed 

satisfactory. Figure 19 illustrates the WER of the model on both the 

training and validation datasets. The WER, which serves as the 

established benchmark for evaluating the accuracy of ASR models 

[193], is calculated in the following manner: 

 𝑊𝑊𝑊𝑊𝑅𝑅 =
(𝑖𝑖𝑤𝑤 + 𝑠𝑠𝑤𝑤 + 𝑑𝑑𝑤𝑤)

𝑛𝑛𝑤𝑤
 (1) 

where nw is the number of words in the reference text, sw is the 

number of words substituted (in the inferred text), dw the number of 
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words deleted, and iw the number of words to be inserted to transform 

the hypothesis text into the ground truth. Therefore, the WER is a 

numerical value ranging from 0 to 1. The final validation WER stands 

at 11.7%. In the context of speech transcription, it is widely 

acknowledged in the literature that WERs ranging from 20% to 25% 

are generally considered to be the upper limit of acceptable 

performance [194]. 

  
(a) (b) 

Figure 19: Training (a) and validation (b) WERs over 256 epochs of training 

In the subsequent section, a comparative analysis of these WER 

findings with alternative open-source offline solutions will be 

conducted. This analysis will demonstrate that the aforementioned 

results are comparable to, if not surpassing, the current cutting-edge 

implementations of cloud-based and desktop computing systems. 

The provided visual representation in Figure 20 illustrates the 

progression of training and validation loss throughout 256 training 

epochs. The training process lasted 5 days and 21 hours, utilizing two 

24 GB NVIDIA GeForce RTX 3090 GPUs. The model successfully 
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acquired knowledge of the fundamental patterns and correlations 

within the dataset, as evidenced by the training and validation loss 

plots. The training process was halted at 256 epochs due to the 

observation that the validation loss did not exhibit any further 

improvement. 

  
(a) (b) 

Figure 20: ASR model training (a) and validation (b) losses over 256 epochs 
of training 

4.2.2.4 ASR models comparative 

A comparative analysis between the trained model and the current 

state-of-the-art solutions has been conducted, focusing on metrics 

such as WER, Character Error Rate (CER), and transcription time. The 

comparison was conducted using the Vosk and DeepSpeech models, 

both of which are open-source and do not necessitate a connection to 

any cloud service. The DeepSpeech model utilized in this study was 

acquired through the application of transfer learning. The process 

involved initially training the English DeepSpeech model with the 
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Common Voice English dataset, followed by further training with the 

Common Voice Italian dataset, similar to our own model. 

To ensure equitable conditions, the Common Voice test set has 

been employed, which had not been previously utilized by any of the 

models. The dataset consists of a total of 12,928 utterances, which 

corresponds to approximately 12 hours of speech. The calculation of 

WER and CER was conducted employing the Python JiWER tool [195]. 

Findings are presented in Table 11. 

Table 11: WER, CER, and transcription times 

Model Dataset WER CER Transcription 
time a 

Ours (based 
on NeMo) 

Common 
Voice Italian 
test set  

11.7% 3.12% 0.215 s 

Vosk 
Common 
Voice Italian 
test set  

29.8% 12.5% 0.464 s 

DeepSpeech 
Common 
Voice Italian 
test set  

45.8% 13.24% 1.778 s 

a The audio file considered is 5.269s long. 

The presented table demonstrates that our model attains WER and 

CER values that are deemed satisfactory based on reference [194], 

which sets an upper limit of acceptability at 20-25%. Furthermore, our 

model outperforms both the Vosk and DeepSpeech models in terms 
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of WER and CER. In contrast, the QuartzNet 15x5 English model, 

which underwent training using over 3,300 hours of spoken English 

language data, demonstrates a WER of 3.79% on the LibriSpeech dev-

clean dataset. However, its performance on the dev-other sets yields a 

WER of 10.05%, indicating notable variability in performance based 

on the specific test set utilized.  

Considering the diverse range of word lengths present in the 

Italian lexicon, the performance of the model has been also assessed 

using the CER metric, which measures errors at the character level 

rather than the word level. Based on the WER, a word is deemed to be 

inaccurately recognized if a single letter within it is not correctly 

identified. The CER is derived using the subsequent equation: 

 𝐶𝐶𝑊𝑊𝑅𝑅 =
(𝑖𝑖 + 𝑠𝑠 + 𝑑𝑑)

𝑛𝑛
 (2) 

where n is the number of characters, while i, s, and d the insertions, 

substitutions, and deletions necessary to convert the inferred text into 

the ground-truth text, respectively. The obtained CER from our model 

validates the observations made regarding the WER. However, it also 

demonstrates that the DeepSpeech model exhibits a higher degree of 

closeness to the other two models when it comes to this kind of error. 

The observed behavior aligns with the findings presented in reference 

[196], which, in the first figure, shows the nonlinear correlation 

between WER and CER. 
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When evaluating the precision of the model, it is important to 

consider the nature of the test set being employed. Upon examining 

the individual utterances, it has come to our attention that they contain 

a significant number of archaic terms, as well as certain non-Italian 

words or proper nouns. Sentences such as "Tom Sawyer and his friend 

Huckleberry Finn are witnesses of a homicide" pose challenges in 

accurately identifying and transcribing them for various Italian 

models. These difficulties can result in increased WER and CER levels. 

This phenomenon is also observed in the training dataset, where 

utterances of this nature, although present in small quantities, do not 

significantly contribute to the effective training of the model for its 

application in a general language context. If the dataset had excluded 

utterances with uncommon usage, it is likely that the performance of 

all three models, as measured by WER and CER, would have 

improved. It is argued that introducing this change into the dataset 

would be particularly advantageous for tasks such as in-vehicle VAs, 

as they typically involve minimal usage of uncommon words by the 

user. 

For the purpose of comparison, Figure 21 presents WER 

benchmarks provided by Picovoice [197] for the English idiom, along 

with the results for Italian (as previously displayed in Table 11). The 

Common Voice dataset was utilized for both tests, with one test 

conducted on the English version and the other on the Italian version. 

The depicted figure illustrates cloud ASR solutions, namely Amazon 
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Transcribe, Azure STT, Google STT (two versions), and IBM Watson 

STT, represented by orange bars. In contrast, the blue bars represent 

non-cloud-connected models, including the two Picovoice models, the 

two DeepSpeech models, the Vosk model, and our model. The 

performance of our model in terms of WER is similar to that achieved 

by cloud-based models in the English language. It is important to note 

that our model has undergone fine-tuning using a relatively limited 

Italian dataset, making the fact that its performance is comparable, if 

not superior, to English and cloud-connected models noteworthy. 

 

Figure 21: Comparative of WERs on the English [197] and Italian portions of 
the Common Voice dataset. Cloud-based solutions are in orange and 
embedded solutions are in blue 

The final factor taken into account during the assessment pertains 

to the transcription time. This aspect holds significant importance 

when employing the model in ASR systems that necessitate a balance 

between accuracy and low latency. This is particularly relevant for 

time-sensitive applications like real-time navigation. The results 

presented in Table 11 demonstrate the superior performance of our 
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model compared to the other two models, particularly in terms of 

transcription time, for an audio file with a duration of approximately 

5 seconds. The DeepSpeech model exhibits a computational time that 

is approximately eightfold greater than that of our NeMo model, 

thereby indicating its lack of suitability for real-time applications. 

4.2.3 Natural language understanding 

The NLU module is responsible for processing unprocessed text 

and transforming it into structured information, specifically intents 

and entities. These data are then utilized by the system to categorize 

the sentence according to its content. NLU and NLP are distinct in 

their approaches. NLU focuses on comprehending the meaning and 

significance of a sentence, while NLP primarily involves the 

conversion of an entire text into its constituent semantic elements. 

Rasa [80] has been selected as a tool for NLU due to its notable 

flexibility and customizability. This is due to its ability to create and 

utilize tailored NLU pipelines with desired modules. The components 

comprising our NLU pipeline are depicted in Figure 22 and elaborated 

upon in the subsequent discussion. 

• WhitespaceTokenizer: divides a sentence into individual words 

based on the presence of whitespace characters; 

• RegexFeaturizer: generates features for entity extraction and 

intent classification by identifying regular expressions that 

have been defined in the training dataset; 
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• LexicalSyntacticFeaturizer: iterates through the sentence using 

a sliding window and derives lexical and syntactic features; 

• CountVectorsFeaturizer: converts a given text into a vector by 

considering the frequency of each word present in the text. 

Word token counts are employed as features; 

• Dual Intent Entity Transformer (DIET) Classifier: an 

architecture based on transformers [13] capable of performing 

both intent classification and entity recognition [198]; 

• Entity Synonym Mapper: ensures that entity values detected in 

the training data are mapped to the same value if they can be 

defined as synonyms of other words; 

• FallbackClassifier: responsible for classifying a message as the 

intent nlu_fallback if the confidence score is below a specified 

threshold, which has been set to 0.3. A fallback will also arise in 

the event that the two highest-ranked intents exhibit 

comparable levels of confidence. 

 

Figure 22: NLU model training pipeline 
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To explore different approaches, a spaCy pre-trained model has 

been investigated, leveraging its associated pipeline. However, this 

approach yielded inferior performance. It is argued that this 

phenomenon can be attributed to the inherent characteristics of our 

specific application scenario. Considering our requirement to create 

an NLU engine that focuses on specific terminology, specifically in-car 

intents as outlined in Table 9, it is likely that a generic pre-trained 

model is not suitable for this particular scenario. This assertion is 

supported by the Rasa documentation as well [199].  

In accordance with the specifications described in Table 9, a total 

of 85 intents has been established. For each intent, an average of five 

exemplary sentences to be included in the training dataset has been 

curated, and formatted in YAML. Figure 23 presents an illustrative 

instance of adjusting the volume of a radio. The reporting of 

significant values, such as numerical quantities, follows a specific 

syntax that enables the system to recognize them as entities. This 

allows the system to extrapolate the value of these entities and 

subsequently execute the requested action. In the case under 

examination, the radio volume value that has been requested is 

identified as an entity, enabling the system to establish the desired 

value accordingly. 

The DIET classifier was trained for 83 epochs, reaching an 

accuracy of 98%. Figure 24 reports the training and validation losses 

over the training. 
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Figure 23: Intent declaration for the training phase 

  
(a) (b) 

Figure 24: NLU model training (a) and validation (b) losses over 83 training 
epochs 

4.2.4 Speech synthesis 

The TTS module is responsible for generating speech based on an 

input text. It consists of two submodules: a spectrogram generator, 

which produces a mel (a perceptual scale of pitches judged by listeners 

to be equal in distance from one another) or Hz spectrogram; and a 

vocoder, which converts the spectrogram into audible speech. The two 

submodules have the option to undergo separate or joint training. 

The Tacotron2 model [89] was chosen for its high reliability, open-

source availability, and its success demonstrated in terms of Mean 

Opinion Score (MOS) [87]. Additionally, its integration within the 
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NeMo toolkit made it the preferred choice for our spectrogram 

generation needs. 

Regarding the vocoder, empirical testing on various models 

within the NeMo framework has been conducted, including 

WaveGlow, SqueezeWave, UniGlow, MelGAN, and HiFiGAN. The 

selection was made based on the criterion of obtaining the most 

intelligible output voice, leading us to choose MelGAN. 

The final component that was selected was the dataset. Regarding 

the ASR case, it is worth noting that the availability of open-source 

Italian datasets is quite limited. However, M-AILABS [60] has proven 

to be a dependable resource due to its provision of a substantial 

amount of speech data from a single speaker (18 hours in total for the 

male speaker). Figure 25 illustrates the architecture of the resulting 

TTS module obtained. 
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Figure 25: TTS architecture, including the Tacotron2 spectrogram generator 
and the MelGAN vocoder 

The Tacotron2 model is characterized by a sequence-to-sequence 

architecture. The system is composed of an encoder, responsible for 

generating a concealed representation of the characters in the input 

alphabet, and a decoder, which transforms this representation into a 

mel spectrogram. Once the inputs and location features have been 

projected into 128-dimensional hidden representations, the encoder 

output is then passed to an attention network, which serves to 

condense the encoded sequence into a context vector. Location-

sensitive attention is employed [200], allowing to focus on specific 

portions of the encoder data that is to be used at each decoder step. 

The decoder is a type of autoregressive RNN that is designed to make 
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predictions of the mel spectrogram based on the encoded input 

sequence. The resulting output consists of an 80-dimensional audio 

spectrogram, where each frame is computed every 12.5 milliseconds. 

This spectrogram captures various aspects of speech, including word 

pronunciation, volume, speed, and intonation.  

The Tacotron2 model underwent training for a total of 1,500 

epochs, which is equivalent to approximately 73,500 steps. The 

findings are presented in Figure 26, which displays the ground truth 

and prediction of a sample mel spectrogram. Additionally, Figure 27 

illustrates the training and validation loss curves, indicating a swift 

convergence of the model. 

 
(a) 

 
(b) 

Figure 26: Target (a) and predicted (b) spectrograms by the Tacotron2 model 
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(a) (b) 

Figure 27: Spectrogram generator model training (a) and validation (b) losses 
over 1,500 epochs of training 

The two spectrograms that were generated exhibit a notable 

degree of similarity, which is further corroborated by the alignment 

plot depicted in Figure 28. The encoder, on the y-axis, receives an 

input character and its corresponding state at each iteration, 

producing a real vector that represents the network’s current status at 

that particular time. Approximately 60 vectors are generated by the 

encoder. The decoder, represented on the x-axis, utilizes the vectors 

(y-axis), in order to generate audio spectrograms, specifically in the 

form of mel-spectrograms. The decoder also operates in a sequential 

manner, proceeding through approximately 200 steps. At each step, it 

determines the significance of each specific vector along the y-axis to 

generate audio frames at that particular time. An almost diagonal line 

results when audio frames are created by focusing on the correct input 

characters. 
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Figure 28: Tacotron2 model alignment plot after 1,500 epochs of training 

Regarding the vocoder, MelGAN is a non-autoregressive feed-

forward CNN to transform mel spectrograms into time-domain 

waveform samples in a GAN setup. In contrast to conventional GANs, 

MelGAN diverges in its approach by excluding the utilization of a 

global noise vector as an input due to a difference in the generated 

waveforms when additional noise is fed to the generator. The 

generator is a feed-forward network that employs a fully 

convolutional architecture. It performs up-sampling on the input 

sequence, increasing its resolution by a multiplicative factor of 256. 

This up-sampling process occurs in four stages, with each stage 

increasing the resolution by factors of 8×, 8×, 2×, and 2×, respectively. 

This is necessary because the mel-spectrogram, which serves as the 

input, has a temporal resolution that is 256 times lower than the 

desired output resolution. The discriminator block exhibits a multi-

scale architecture comprising three discriminators, each possessing an 

identical structure but functioning on distinct audio scales, namely 
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raw audio, raw audio down-sampled by a factor of two, and down-

sampled by a factor of four. In this manner, each discriminator 

acquires discriminative characteristics by focusing on a particular 

target frequency range. For instance, the discriminator that operates 

on down-sampled audio lacks access to high frequencies, thereby 

specializing in the tuning of low frequencies exclusively. 

The MelGAN model was trained for a total of 2,950 epochs, which 

corresponds to approximately 108,000 training steps. Figure 29 

presents a comparative analysis of the target and predicted plots, 

illustrating the degree of similarity observed between the two. Figure 

30 illustrates the training and validation losses of the model. The 

training loss of the generator exhibits a sharp decline around the 

10,000th step, as depicted in Figure 30a. The presence of the 

discriminator (Figure 30b) is responsible for its capability to 

differentiate between waveforms generated by the generator and 

authentic waveforms. Figure 30c (validation) illustrates the evident 

convergence of the overall model. It is observed that the discriminator 

progressively improves its capacity to differentiate between real and 

generated waveforms, while the loss of the waveform generator 

remains constant, showing its robustness. 
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(a) 

 
(b) 

Figure 29: Target (a) and predicted (b) spectrograms by the Tacotron2 model 

 
(a) (b) (c) 

Figure 30: Vocoder training losses. (a) generator loss, (b) discriminator loss, 
(c) waveform generator validation loss 

4.2.5 Toolchain 

Following the determination of the components constituting the 

toolchain, they have been interlinked in accordance with the visual 

representation depicted in Figure 31. 
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Figure 31: Block diagram of the toolchain 

To ensure continuous activation of the SC module for detecting the 

wake-word from the user and subsequent activation of the following 

modules only upon wake-word detection, separate audio streams 

have been maintained. The activation of the ASR audio stream is 

contingent upon the utterance of the wake-word. The PyAudio library 

was utilized for this specific objective [201]. The PyAudio package 

offers Python bindings for PortAudio, an audio I/O library [202]. 

PortAudio provides a straightforward API that allows users to record 

and/or play sound by utilizing a basic callback function. 

Upon detection of the wake-word, the system initiates the 

activation of the ASR audio stream. Subsequently, the user’s 

command is transcribed into text in real-time. A Python library was 

developed to convert numerical values written in letters into digits, as 

the Rasa toolkit does not accept such values within sentences, as they 

are the output of the ASR model. The acceptable range of values is 

limited to 0 to 999 due to the specific requirements of the in-car use-

case. This range is deemed sufficient as it covers numerical values 

such as radio volume or interior temperature, which are known to 
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never exceed 1,000. Consequently, the text is subsequently transmitted 

to the NLU engine, which transforms it into significant data, 

specifically intent and entities. In a practical application scenario, the 

intent execution block is responsible for executing the command, 

which is not addressed in this context. The user is provided with 

subsequent feedback that is determined by the recognized intent and 

the resulting execution. To fulfill this objective, a JSON file was 

generated that encompasses responses corresponding to every 

conceivable intent. The Rasa framework has the capability to handle 

responses, however, a dedicated JSON file has been developed to 

enhance its flexibility, specifically for the purpose of incorporating 

additional languages into the system. The inclusion of a new language 

is facilitated by this introduction, as it simplifies the process for the 

user. The user is only required to input the responses for each intent 

in the JSON file and provide sample sentences for the intents in the 

Rasa project for training purposes. Moreover, this approach enabled 

us to exclusively utilize the NLU component of Rasa, while 

disregarding the Core component, responsible for managing 

responses and story sequences (i.e., sequences of questions and 

answers). Consequently, this optimization streamlined the model and 

enhanced the efficiency of inference times.  

In contrast to Rasa, our Tacotron2 model does not possess the 

capability to process numerical values represented in digit form, as the 

training dataset employed (specifically, M-AILABS) exclusively 
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contains numerical values expressed in alphabetic characters. 

Therefore, the process involved the utilization of the num2words 

open-source Python library [203], designed for converting numerical 

values into their corresponding textual representations. This library 

offers support for a wide range of languages, encompassing 38 

different linguistic variations, including Italian. The user is 

subsequently provided with a response. In the event that the system 

is unable to interpret the command, or the intent is non-existent, a 

default response is given, prompting the user to rephrase their input. 

In this scenario, the VA will remain active rather than reverting to its 

inactive state, which involves waiting for the wake-word. Instead, it 

will remain in a state of readiness for further instructions from the 

user, with a timeout period of 10 seconds. After this duration, the VA 

will cease listening. 

The models associated with the different components comprising 

the toolchain exhibit interchangeability, thereby facilitating the 

seamless replacement of these models with newly trained ones or the 

inclusion of models trained in different languages, without 

necessitating manual code modifications. The user is solely required 

to indicate the name of the new model in a JSON configuration file, 

alongside other significant parameters such as the anticipated sample 

rate or the language identification of the model (see Figure 32). This 

ensures enhanced ease of access. Furthermore, due to the system’s 
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inherent capability to accommodate various languages, the language 

switch functionality is directly managed within the configuration file. 

 

Figure 32: Set of parameters configurable within the JSON file 

4.3 Results and discussion 

This section presents the performance analysis results of the system 

that has been created to leverage the benefits of offline computation in 

an in-vehicle VA. The VA system was implemented on an NVIDIA 

Jetson AGX Xavier board, as described in section 4.1. Due to the 

adoption of a 64-bit ARM architecture by the board, it was necessary 

to build Rasa and NeMo from source as they lack native compatibility. 

Our study involved the identification and training of neural 

models capable of attaining exceptional performance levels on the 

reference test sets. In this section, however, the system is evaluated in 

its entirety, first with an examination of the inference times, which are 

documented in Table 12. Outcomes indicate that the duration of the 

initialization process is considerable; however, it is important to note 

that initialization is solely necessary during system boot-up. Upon the 
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VA’s execution, the cumulative duration of its operation amounts to 

around one second. This average value is derived from 20 distinct 

runs, encompassing a variety of commands with varying durations.  

Table 12: VA execution times 

Task Description Avg time 

Initialization 

Start-up of models (pre-
downloaded) and audio 
streaming. Occurs once, at 
booting time 

57.691 s 

Speech Classification 
Detection of the wake-word 
from the user 0.023 s 

ASR transcription 
time 

Time elapsed between when 
the user stops speaking and 
when the ASR model obtains 
the entire sentence (ASR works 
through PyAudio streaming 
while the user speaks) 

0.132 s 

Intent Recognition 
Convert written text to 
meaningful data 0.071 s 

TTS 
Convert raw text to mel 
spectrogram, then to speech 0.790 s 

The VA memory footprint within the Jetson AGX Xavier board is 

presented in Table 13. The disk space allocation for the VA amounts 

to approximately 4 GB, including the necessary Python libraries and 

the DL models, which occupy a relatively modest size of a few 

hundred MB (specifically, 236.7 MB). Regarding the RAM usage, 6 GB 
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is needed for the VA to perform inference, including the initialization 

of the system and the two PyAudio streams (one for SC, one for ASR). 

Hence, it is assumed that the system has the potential to function 

effectively on a less advanced board, albeit with the drawback of 

longer inference times likely attributable to limitations imposed by the 

lower-end GPU. 

Table 13: VA memory usage 

Model Disk occupation RAM occupation at 
runtime 

SC 361.5 kB 0.4 GB 

ASR 72.5 MB 1.2 GB 

NLU 25.4 MB 1.4 GB 

TTS 
105.5 MB (Tacotron2) + 
32.9 MB (MelGAN) 

1.4 GB 

Net total 236.7 MB 4.4 GB 

Gross total 
~ 4 GB (including 
required libraries and 
models) 

6 GB (0.6 GB init + 1 
GB PyAudio streams) 

To comprehensively evaluate the overall system performance 

within the specified application domain, tests have been conducted 

using a custom dataset. This dataset comprised 135 sentences 

recorded in a noiseless environment and 135 in a noisy environment 

(i.e., amidst traffic), totaling 270 utterances from nine distinct speakers 

(three females and six males). Covering diverse use-cases outlined in 
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Table 9, speakers have been instructed to record application domain-

related commands, with each user recording 30 sentences, evenly split 

between noiseless and noisy environments. These sentences were 

semantically aligned with one of the 85 intents in the Rasa training set, 

allowing us to assess all designated VA features with a relatively 

modest number of audio clips. 

Table 14 presents sample sentences extracted from the dataset, 

along with their ASR transcriptions, the ground truth intent, NLU 

interpretation (i.e., inferred intent and, if present, entities), and the 

TTS-associated response. Noteworthy focus was given to critical cases, 

with errors highlighted in italics. For instance, the first sentence is 

correctly parsed. However, a common error observed involves 

recognizing an intent opposite to another, such as "on" instead of "off" 

or "up" instead of "down." This is evident in the second sentence where 

"off" is erroneously identified as "on." It is posited that the similarity 

between sentences, differing only in the verb, contributes to this error. 

While this can be mitigated by incorporating domain knowledge into 

the system, it underscores the challenge for the ASR module to 

recognize the [ɲ] phoneme (represented by the "gn" digram), present 

in Italian but absent in English. This suggests a potential weakness in 

the transfer learning approach from English to Italian, probably 

necessitating updates to the lower layers of the NN. Nevertheless, the 

third sentence demonstrates that the system can still extrapolate the 

correct intent even when a sentence is not parsed entirely accurately. 
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Table 14: VA end-to-end performance evaluation 

Spoken 
command 

ASR 
transcri
ption 

Ground 
truth 
intent 

Inferred 
intent Entities TTS 

response 

Alza la 
temperatura 
di otto gradi 

(Raise the 
temperature 
by eight 
degrees) 

Alza la 
temper
atura di 
otto 
gradi 

turn_up_
temperat
ure 

turn_up_
temperat
ure 

temper
ature = 
8 

Alzo la 
temperatura 
dell’aria 
condizionata 
di otto gradi  

(Turning up 
the air 
conditioning 
temperature 
by eight 
degrees) 

Spegni il 
riscaldament
o sedile 
anteriore 
sinistro 

(Turn off the 
left front seat 
heating) 

Speni il 
riscalda
mento 
sedile e 
anterior
e 
sinistro 

turn_off_
seat_heat
ing 

turn_on_
seat_heati
ng 

seat_ty
pe = 
anterior
e 
sinistro 

Accendo il 
riscaldament
o del sedile 
anteriore 
sinistro 

(Turning on 
the left front 
seat heating) 

Quanti litri 
consumo 
ogni cento 
chilometri 
percorsi? 

(How many 
liters do you 
consume per 
hundred 
kilometers 
traveled?) 

Quanti 
detre  
consum
o ogni 
100 
chilome
tri per 
corsi? 

show_fu
el_consu
mption_
100km 

show_fu
el_consu
mption_
100km 

None 

Il consumo è 
di quattro 
litri ogni 100 
chilometri 

(Consumptio
n is four 
liters per 100 
kilometers) 
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In the assessment process, apart from the WER and CER that 

specifically pertain to the performance of the ASR model, three 

supplementary metrics have been also taken into account [83]. These 

metrics consider the involvement of the NLU model, thereby 

encompassing the overall execution of the ASR+NLU system. The 

following additional metrics are taken into consideration: 

• Intent Classification Error Rate (ICER): proportion of incorrect 

intent predictions to the total number of utterances; 

• Slot Error Rate (SER): ratio of incorrect entity predictions to the 

total number of entities; 

• Interpretation Error Rate (IRER): proportion of incorrect 

interpretations within a set of utterances. An incorrect 

interpretation refers to a sentence where either the entity or the 

intent prediction is inaccurate. IRER is calculated by dividing 

the number of incorrect interpretations by the total number of 

utterances. This metric is the most stringent and pertinent at 

both the application and system levels [83]. 

Table 15 presents the obtained results in all the metrics discussed. 

Higher values for both WER and CER in comparison to the values 

presented in Table 11 are visible. Our hypothesis is that this can be 

primarily attributed to the quality of the audio files being examined. 

Table 11 pertains to audio files sourced from the Common Voice 

dataset, which were chosen subsequent to a quality assessment phase 
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conducted through crowdsourcing. Conversely, Table 15 pertains to 

audio clips that were recorded within an ecological context. Regarding 

the IRER, it is noteworthy that our achieved result of 9.77% aligns with 

the user requirements outlined for the project. The aforementioned 

value decreases further when excluding the critical sentences 

discussed earlier, specifically those that can convey an opposing 

meaning based on a single word, typically the verb. In the absence of 

such sentences, the percentage decreases to 3.37% in the noiseless 

condition and 6.74% in the noisy condition. The IRER observed in this 

study is notably lower compared to the 22% error rate reported by 

[204] in their study on Alexa. It is worth noting that the task performed 

in [204] can be considered more complex, as it pertains to a wider 

domain. No other comparable system-level findings appear published 

in the literature. The values obtained under the presence of noise 

exhibit a comparable level of performance to the other conditions, 

thereby providing evidence for the resilience of the proposed system 

to background noise. This characteristic is particularly significant in 

the context of vehicular applications. 

In conclusion, Table 16 provides a comprehensive comparison 

between our model and existing state-of-the-art solutions. Results 

demonstrate that our model is capable of offering complete offline 

end-to-end speech processing without compromising functionality, 

thus representing a significant advancement in the current state-of-

the-art. 
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Table 15: Error rates in noisy and noiseless environments 

Error type Noiseless env Noisy env 

WER 17.71% 21.30% 

CER 3.7% 5.1% 

ICER 9.02% 9.35% 

SER 3.09% 7.04% 

IRER 9.77% 13.08% 

 

Table 16: Feature comparison among VA systems 

Model Multi-
language 

Offline 
operation SC ASR NLU TTS 

Google 
Assistant 

 limited     

Siri  limited     

Picovoice      × 

Vosk   ×  × × 

DeepSpeech   ×  × × 

Ours       
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All the metrics considered in this section have been measured 

through Edgine’s scripts, which allowed for extrapolation and 

automatic storage into Measurify. In this scenario, Edgine served as a 

system evaluation tool, proving again its flexibility and wide range of 

potential use in the IoT context. 



 DRL for low-speed maneuvering 

 

107 

5 
DRL for low-speed 

maneuvering 

In the realm of automotive-applied artificial intelligence, an additional 

aspect of interest lies in the application of the DRL paradigm. This 

approach, which relies on an agent’s direct exploration of the 

environment, proves to be highly efficient for tasks that demand 

learning a particular behavior (i.e., a policy) via interactions with the 

environment itself. An example of DRL’s automotive application is in 

planning vehicle trajectories and executing parking maneuvers. This 

task synergizes well with DRL since it involves observing the 

environment through sensors and then responding accordingly by 

modulating the brake and accelerator pedals as well as the steering 

and gearbox. 

The chapter is structured as follows. First, the RL paradigm is 

illustrated and then two experiments are proposed using the Unity 

game simulator [143]. Subsequently, a similar experiment is 
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performed using a more realistic engine, i.e., CARLA [25]. Finally, a 

comparison of the use between the two simulators is provided. 

5.1 Deep reinforcement learning 

In addition to supervised and unsupervised learning, RL constitutes 

an established paradigm within the ML field. RL is a technique used 

to train an autonomous agent to make optimal decisions within a 

specific environment. The acquisition of knowledge occurs through an 

iterative process of trial-and-error, facilitated by the agent’s 

interactions with the surrounding environment. The interactions 

encompass periodic environmental observations as well as the 

corresponding actions executed by the agent. The rewards derived 

from the environment are gathered with the observations and actions, 

and then processed by an RL algorithm. This algorithm iteratively 

improves the agent’s policy, which refers to its decision-making 

strategy, throughout the training process (see Figure 33). 
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Figure 33: RL training loop 

The policy represents a mapping between observations and 

actions. It can be realized in various forms, such as a look-up table, a 

complex function, or even a stochastic function that specifies a 

probability. During each training episode, the agent’s objective is to 

optimize the overall cumulative reward to its maximum potential. In 

order to achieve this objective, the agent must prioritize actions that it 

has previously encountered and found to yield favorable outcomes 

within a given state. However, in order to ascertain such actions, it is 

necessary to experiment with actions that have not been previously 

selected. Therefore, it is essential for the agent to utilize existing 

knowledge while also engaging in exploration of novel actions, to 
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ensure optimal decision-making. The concept being referred to is the 

widely recognized trade-off between exploration and exploitation 

[205]. 

In the context of RL, it is common to represent a problem as a 

Markov Decision Process (MDP), which consists of a collection of 

states denoted as S, a transition function denoted as T, and an RF 

denoted as R. During each iteration, an agent is situated in a specific 

state s, performs an action a, and subsequently transitions to a new 

state s’. This transition is governed by a transition probability, denoted 

as T(a, s, s’), which is a value between 0 and 1. Additionally, the agent 

receives a reward, denoted as R(s, a), based on the state and action 

taken. The agent learns a stochastic policy, which establishes a 

relationship between the state space and the set of available actions by 

assigning each of them a probability p(a|s). The objective is to identify 

the optimal policy π*, which aims to maximize the expected 

cumulative rewards within an episode, as represented by the 

following equation: 

 𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝜋𝜋
𝔼𝔼𝜋𝜋 �� 𝛾𝛾𝑘𝑘𝑎𝑎𝑡𝑡+𝑘𝑘

𝐻𝐻−1

𝑘𝑘=0

� 𝑠𝑠𝑡𝑡 = 𝑠𝑠� (3) 

Where r is the reward, t the current timestep, and γ a discount 

factor (γ ∈ [0,1]) that controls how the agent values future rewards 

(i.e., low values encourage the agent to prioritize short-terms rewards, 

while large values give it a longer perspective). H is the horizon, 
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defined as the total number of steps in the MDP. It can be set to infinite 

or to a finite number if the episode ends after a certain number of steps 

or whenever a terminating condition is satisfied. In this case, γ values 

close to 1 are typically preferred to encourage the agent to actively 

pursue the objective. On the other hand, lower γ values allow for 

balanced long and short -terms rewards. 

In conventional decision-making scenarios, the magnitude of the 

MDP state space is substantial, leading to the prevalent utilization of 

deep neural networks for modeling policies, referred to as DRL. Over 

the course of time, a multitude of DRL training methods have been 

devised, and they can be categorized from diverse viewpoints. One 

primary differentiation can be made between algorithms that are 

value-based and those that are policy-based. Value-based methods, 

such as Q-learning [205], employ a value network to approximate the 

Q-value. The Q-value represents the total expected reward for each 

individual (s, a) pair, assuming the agent consistently adheres to a 

policy π. The Q-table is initialized with random values and updated 

iteratively using a learning rate ranging from 0 to 1. The table update 

policy can be formulated as follows: 

 𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼 �𝑎𝑎 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎′∈ 𝐴𝐴(𝑠𝑠′)

𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)� (4) 

where Q is the state-action value function, a the learning rate, r the 

reward, and γ the discount factor. The scalability of Q-learning is 
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limited by its structure, specifically in relation to the number of states 

and actions. This poses a significant challenge, especially in the 

context of continuous-action problems [205]. Furthermore, it has been 

observed that value-based RL algorithms are ill-equipped to handle 

scenarios involving stochastic policies, primarily due to their reliance 

on greedy action selection [206]. 

Policy-based methods, on the other hand, involve the direct 

learning of a policy, often achieved through the optimization of neural 

network weights using gradient descent. This optimization process 

aims to maximize the expected reward. The policy can be classified as 

either deterministic, such as the Deterministic Policy Gradient (DPG) 

proposed by Silver et al. [207], or stochastic, where actions are selected 

probabilistically, such as the Proximal Policy Optimization (PPO) 

introduced by Schulman et al. [208]. 

Actor-critic methods integrate the advantages of value-based and 

policy-based approaches [209], [210]. The actor network is responsible 

for executing the policy in a continuous action space, while the critic 

network is responsible for estimating the value function. The value 

function helps to update the policy using a historical sequence of 

states, actions, and rewards, resulting in reduced variance. 

Another distinction can be made between on-policy and off-policy 

methods. In addition to the primary objective of optimizing the "target 

policy," off-policy methods employ a behavior distribution during 
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training to facilitate sufficient exploration of the state space. In the 

context of Q-learning, it is common to employ a Ɛ-greedy strategy to 

determine the behavior distribution, which serves as the learnable 

policy. This strategy involves selecting actions according to a 

probability of 1-Ɛ for exploiting the current knowledge, and a 

probability of Ɛ for exploring randomly. This approach effectively 

balances the exploration-exploitation trade-off [128]. 

One final differentiation can be made between model-based and 

model-free approaches, which is contingent upon whether a model of 

the environment is built. 

Figure 34 presents a non-comprehensive classification of RL 

algorithms. 

 

Figure 34: Taxonomy of DRL algorithms (non-comprehensive) 

This study centers around the PPO algorithm, specifically 

designed to fit into a continuous action space in accordance with the 
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requirements of our problem. PPO, which was introduced by 

Schulman et al. in 2017 [208], has emerged as a prominent benchmark 

for addressing continuous control problems. Policy gradient methods 

introduce noise to the value estimation network due to its frequent 

updates with each experience sample. The Trust Region Policy 

Optimization (TRPO) method, as described by Schulman et al. [211] 

employs a strategy that constrains the policy gradient step in order to 

limit the variation of the policy. PPO, on the other hand, incorporates 

an objective function that facilitates the execution of multiple epochs 

of minibatch updates. This design choice allows PPO to harness some 

of the benefits associated with TRPO. However, PPO surpasses TRPO 

in terms of implementation simplicity, generalization ability, and 

sample efficiency. 

5.2 Unity experiment 

The first experiment involves a parking case-study in the Unity game 

engine, which is very popular in several domains, from video games 

to autonomous agent development [142]. 

5.2.1 Unity ML-Agents 

The ML-Agents open-source toolkit [143] enables the utilization of 

Unity as a simulation environment for the development and training 

of autonomous agents. ML-Agents offers a Python API that facilitates 

the use of the major RL algorithms. This implementation is built upon 
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the PyTorch library. The key components of ML-Agents encompass 

the following: 

• Learning environment: the Unity scene that serves as the 

setting in which the agent engages in observation, action, and 

learning. The ML-Agents Toolkit SDK facilitates the 

encapsulation of any Unity scene into a learning environment, 

enabling the specification of agents and their corresponding 

behaviors. It is feasible to concurrently train multiple agents, 

thereby substantially diminishing the training duration; 

• mlagents-learn: the utility responsible for managing the 

training process. It is initiated by means of a .yaml 

configuration file. The file is organized into multiple sections, 

namely behaviors, environment, engine, checkpoint, and torch. 

The behaviors section outlines the training algorithm and its 

associated hyperparameters. The environment section specifies 

the path to the environment, any relevant environment 

arguments, and the number of parallelized environments. The 

engine section defines the rendering settings, including screen 

dimension, render quality, time scale, and whether to render 

the scene. The checkpoint section contains information 

regarding the creation of checkpoints during training. Lastly, 

the torch section determines whether the CPU or GPU will be 

used for training; 
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• Python low-level API: enables communication with the Unity 

scene during training; 

• External communicator: an internal component within the 

learning environment that facilitates communication with the 

Python API; 

• Python trainers: it comprises the algorithms necessary for 

training the agents and offers the "mlagents-learn" command-

line utility and is exclusively integrated with the Python low-

level API. 

Figure 35 illustrates the architectural design of a representative 

learning environment within the ML-Agents framework. In this 

particular instance, the Python trainer is instructing two agents, 

specifically referred to as A1 and A2, through the utilization of the 

Python API. The Communicator module establishes a connection 

between the Agents and the Python API, facilitating the retrieval of 

essential environment parameters required for training purposes. 

These parameters include the target coordinates and the current 

location of the agent, among others. To ensure comprehensive 

analysis, the environment incorporates two additional agents. The 

first is an agent that incorporates a policy executed by a NN, which 

has been previously trained during a prior RL session. The second is 

a Heuristic agent, as it operates based on a predefined set of heuristic 

rules to determine its behavior. 
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Figure 35: A potential ML-Agents learning environment 

Figure 36 provides a comprehensive depiction of the standard 

workflow employed in ML-Agents projects. The primary phase of 

design and implementation involves the establishment of 

fundamental elements, including simulation settings, observations, 

actions, reward signals, and NN hyper-parameters. The subsequent 

training involves the execution of multiple simulation episodes, 

potentially incorporating adjustments such as modifications to the RF. 

Once the per-episode reward achieved by the agent reaches an 

appropriate threshold, the training process is terminated, and the 

acquired policy can be subsequently evaluated through pure 

inference. In the event of a successful test, the model may be deployed. 
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However, if the test is unsuccessful, the training process must be 

restarted using a model that has been updated by the designer based 

on the knowledge and experience acquired. 

The per-episode workflow, which includes the configuration of 

randomized parameters to enhance the agent’s generalization 

abilities, is outlined in Figure 37. 

 

Figure 36: ML-Agents project development workflow 
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Figure 37: ML-Agents per-episode workflow 

5.2.2 Experiment setup 

To incorporate the DRL agent into the vehicle, a basic three-

dimensional model that was accessible from [212] has been used. The 

collider component of the vehicle, which facilitates collision detection, 

is in the form of a parallelepiped with dimensions 3.90 × 1.70 m.  
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The utilization of a basic kinematic bicycle model for the vehicle is 

justified by the low-speed maneuver setup [213]. The equations 

pertaining to this model, along with a corresponding illustration in 

Figure 38, are as follows. 

 

�̇�𝑋 = 𝑉𝑉 𝑐𝑐𝑐𝑐𝑠𝑠�𝜓𝜓 + 𝛽𝛽(𝑢𝑢2)� 

�̇�𝑌 = 𝑉𝑉 𝑠𝑠𝑖𝑖𝑛𝑛�𝜓𝜓 + 𝛽𝛽(𝑢𝑢2)� 

�̇�𝑉 = 𝑢𝑢1 

�̇�𝜓 =
𝑉𝑉
𝑙𝑙𝑟𝑟
𝑠𝑠𝑖𝑖𝑛𝑛�𝛽𝛽(𝑢𝑢2)� 

(5) 

where 𝑢𝑢1 is the acceleration command and 𝑢𝑢2 the front wheel angle 

used as a steering command. 𝛽𝛽(𝑢𝑢2) is the slip angle at the center of 

gravity: 

 𝛽𝛽(𝑢𝑢2) = 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑛𝑛 �𝑎𝑎𝑎𝑎𝑛𝑛(𝑢𝑢2)
𝑙𝑙𝑟𝑟

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
� (6) 

 

Figure 38: The kinematic bicycle model 
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The agent receives information regarding the vehicle’s position, 

the target’s position, and the speed vector from the environment. In 

addition, the system can receive a continuous flow of data from both 

a lidar sensor and a camera. The lidar sensor, which has a field of view 

spanning 360° and an angular resolution of 10° (see Figure 39), is 

positioned at the apex of the roof, precisely at its center. This sensor 

generates a one-dimensional array of data. The length of the radius is 

5 meters. This deliberate choice of a short-range was made in an 

attempt to improve the agent’s ability to generalize. The camera is 

positioned above the windshield and has a vertical field of view of 60° 

and a horizontal field of view of 120°. It has a resolution of 84 × 84 

pixels. The lidar is utilized via the ML-Agents Raycast sensor 

component, while the camera is employed through a Camera 

component. Equation (7) presents the comprehensive observation 

vector. 

 

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑟𝑟 = (𝑚𝑚𝑣𝑣𝑣𝑣ℎ𝑙𝑙𝑖𝑖𝑙𝑙𝑣𝑣,𝑦𝑦𝑘𝑘,𝑤𝑤𝑘𝑘−1) 
𝑆𝑆𝑖𝑖𝑎𝑎𝑐𝑐𝑣𝑣𝑟𝑟𝑎𝑎 = (𝑚𝑚𝑘𝑘, 𝑣𝑣𝑘𝑘) 

𝑆𝑆𝑣𝑣𝑒𝑒𝑣𝑣 = �agent𝑣𝑣𝑣𝑣𝑙𝑙, agent𝑙𝑙𝑙𝑙𝑟𝑟 , target𝑙𝑙𝑙𝑙𝑟𝑟 , distance𝑎𝑎𝑎𝑎𝑣𝑣𝑒𝑒𝑡𝑡→𝑡𝑡𝑎𝑎𝑟𝑟𝑎𝑎𝑣𝑣𝑡𝑡� 

𝑆𝑆 = (𝑆𝑆𝑣𝑣𝑒𝑒𝑣𝑣,𝑆𝑆𝑖𝑖𝑎𝑎𝑐𝑐𝑣𝑣𝑟𝑟𝑎𝑎,𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑟𝑟) 

(7) 

The agent possesses the capability to manipulate the motor torque, 

the brake torque, and the orientation of its front wheels. The vehicle’s 

steering angle range is in the range [-𝜋𝜋/6, 𝜋𝜋/6]. The brake torque range 

spans from 0 to 300, while the motor torque range extends from -400 
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to 400. This enables the vehicle to execute both forward and backward 

maneuvers. 

 

Figure 39: View of the Raycast lidar sensor 

The selected neural network model is an MLP consisting of two 

hidden layers, each containing 256 neurons. In the presence of a 

camera sensor, the neural network incorporates two supplementary 

convolutional layers for the purpose of preprocessing the visual 

signal. Table 17 presents a synthesis of the values that characterize the 

network architecture. 
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Table 17: ML-Agents NN architecture 

Layer Sizes Description 

Input layer (408 or 84×84×3)+8 

408 lidar values or an 
84×84 RGB image + 2D 
values of distance 
between agent and 
goal, agent’s speed, 
agent’s heading, and 
goal’s heading  

Convolutional 
layers 

1st Kernel size = [8,8] 

1st Stride size = [4,4] 

2nd Kernel size = [4,4] 

2nd Kernel size = [2,2] 

2 convolutional layers 
to pre-process the 
camera input, when 
provided 

Dense layers 256 2 layers 

Output layer 3 
Possible agent’s 
actions: throttle, 
steering, brake 

5.2.3 Results 

This section provides a description of the two tests conducted to 

validate our approach, namely parking in a garage and navigating 

within an area with randomly placed obstacles. 

The results presented in this section, along with the corresponding 

source code, can be accessed at the following URL: 

https://github.com/Elios-Lab/pathfollowing. 

https://github.com/Elios-Lab/pathfollowing
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5.2.3.1 Garage environment 

The first developed environment is visible in Figure 40. A garage-like 

setup is presented, with ten parking lots in a 400 m2 area. Each lot, 

with dimensions of 5.3 × 3.5 meters, is enclosed by walls. The central 

corridor, which allows for bidirectional vehicular traffic, measures 20 

meters in length and 8 meters in width. The objective of the DRL agent 

is to determine and implement a trajectory from an arbitrary starting 

location to a specified destination while ensuring avoidance of any 

potential wall collisions. 

 

Figure 40: The Unity garage environment 

The RF plays a crucial role in the design of autonomous agents as 

it serves as the mechanism by which the agent’s behavior is influenced 

by the environment. The initial step involved replicating the RF 

(Equation (8)) from a well-known open-source project that utilizes 
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ML-Agents [214]. The proposed incentive system imposes penalties 

on the agent for engaging in collisions, while simultaneously 

providing rewards for its motion and successful attainment of the 

target. The proper alignment of the vehicle within the parking lot is 

also rewarded. 

 𝑎𝑎𝑟𝑟𝑤𝑤𝑎𝑎𝑎𝑎𝑑𝑑 =

⎩
⎨

⎧
0.2 ∗  |𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎|         𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑑𝑑 𝑖𝑖𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛𝑎𝑎 𝑎𝑎ℎ𝑟𝑟 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙

0.8 ∗  |𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎|          𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑑𝑑 𝑖𝑖𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛𝑎𝑎 𝑎𝑎ℎ𝑟𝑟 𝑎𝑎𝑐𝑐𝑎𝑎𝑑𝑑 
−0.01                                𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑛𝑛                                                        

0.001 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙𝑟𝑟 ∗  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡𝑣𝑣                                                               
 (8) 

where 𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎 = �|𝑎𝑎𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑣𝑣𝑣𝑣𝑙𝑙|� ∗ �|𝑎𝑎𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙𝑟𝑟|� ∗ cos(𝜗𝜗) and 𝜗𝜗 is the 

angle between the EV heading vector and the EV-target conjunction 

vector. 

By conducting multiple iterations of experiments, it was possible 

to enhance the RF, leading to improved outcomes in terms of both 

accuracy and convergence time. The ultimate equation is represented 

as Equation (9). 

 𝑎𝑎𝑟𝑟𝑤𝑤𝑎𝑎𝑎𝑎𝑑𝑑 = �

−1                      𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑛𝑛                    
0                      𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙                         

𝑐𝑐1 ∗ ((𝑐𝑐2 ∗  𝑑𝑑2) +  
𝑐𝑐3 ∗ (1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)

𝑑𝑑 + 1
)

 (9) 

where 𝑐𝑐1 = 0.01, 𝑐𝑐2 = −0.01, and 𝑐𝑐3 = −1.5. 

The function computes the sum of two types of rewards: sparse 

rewards, which are provided when a specific event takes place, and 

dense rewards, which are given at each step of the simulation. The first 

sparse reward imposes a penalty on the agent in the event of a 
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collision. The second component provides a reward for successfully 

attaining the objective. A supplementary objective incentive is 

incorporated in direct proportion to the ultimate alignment of the 

vehicle with respect to the parking lot. 

The dense reward is designed to incentivize progress towards the 

goal and is comprised of two components, which align with the 

objectives of reaching the final position and achieving the final 

orientation. The first component imposes a penalty on the agent-goal 

distance, denoted as d. The subsequent component penalizes the 

deviation from alignment with the parking lot. The division of the 

second term by the distance d is justified, as the effective management 

of misalignment is relevant primarily in situations where the vehicle 

is in proximity to the target. The utilization of a Manhattan distance 

metric appears to be more suitable for the given environment, 

probably due to the nature of the maneuvering trajectories required to 

enter parking lots. The dense reward is normalized within the range 

of -2 to 0. 

The allocation of sparse and dense rewards is calibrated using the 

c1, c2, and c3 coefficients, with the aim of attaining an optimal 

equilibrium based on empirical evidence. 

The PPO algorithm was employed as the DRL backbone method, 

which is widely recognized as a benchmark for addressing continuous 

control problems. The optimal values for the training 
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hyperparameters were determined through empirical analysis or 

adapted to the machine in use and are presented in Table 18. 

Table 18: Hyperparameters for the Unity garage parking experiment 

Hyperparameter Value 

Batch size 512 

Buffer size 51200 

Learning rate schedule Linear 

Learning rate (initial) 1e-4 

Time horizon 128 

 

The scene undergoes re-initialization at the start of every training 

episode. A specific parking lot is chosen as the designated target, and 

its entrance is made accessible. The agent is then placed in a randomly 

determined position and orientation within the central corridor. An 

episode is considered complete under the following conditions: (i) the 

vehicle successfully reaches the designated goal; (ii) the vehicle 

encounters an obstacle, although this criterion is not enforced during 

the initial training phase to allow for continued exploration despite 

collisions; (iii) the episode reaches the maximum predetermined 

number of steps without the vehicle reaching the goal. 

In evaluating the training phase, the following performance 

metrics have been considered: 
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• Cumulative reward: the total amount of reward accumulated 

over a given period of time or a series of events. The cumulative 

rewards obtained by the agent during an episode constitute its 

total reward. The temporal progression of this metric serves as 

a significant determinant of the efficacy of the training. 

Rewards are exclusively distributed during the training phase, 

rendering this particular quantity inapplicable during testing, 

in contrast to subsequent quantities; 

• Goal rate: the ratio of episodes that achieved the desired 

outcome (i.e., goal reached) to the total number of episodes; 

• Collision rate: the ratio of collisions to episodes. As it will be 

shown, in certain cases, collisions may result in terminal 

consequences, while in others, they may not; 

• Timeout rate: the ratio between episodes ended with a timeout 

(i.e., doing the maximum number of steps, without reaching the 

goal) and the total number of episodes. 

In the context of our analysis within garage settings, three sub-

experiments have been undertaken, delineated as follows. 

1. Utilization of a singular target lot across all training episodes, 

resulting in limited generalizability. A collision does not 

constitute a terminal event. The vehicle is equipped with a 

lidar; 
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2. Replacement of the lidar sensor with a camera and 

modifications to the NN architecture to accommodate the 

varying inputs. Specifically, the addition of two convolutional 

layers is employed to process the camera signal, and the 

resulting output is concatenated with the other inputs; 

3. Utilization of a lidar-equipped vehicle that is trained to 

navigate towards one of ten parking lots. The specific parking 

lot is randomly chosen at the start of each episode. The 

occurrence of a collision is not considered a terminal event 

until the success rate surpasses a specific threshold, at which 

point the collision is designated as a terminal event. 

In each of the sub-experiments, the testing phase comprises 100 

episodes. During each episode, the vehicle is spawned with random 

position and orientation. The objective is to successfully navigate to 

one of the lots, randomly selected. Findings are presented in Table 19. 

Table 19: Test results of the three garage experiments in Unity 

Sub-exp. no. Sensor 
Number of 
target parking 
lots in training 

Success rate in 
tests 

1 Lidar 1 50% 

2 Camera 1 80% 

3 Lidar 10 94% 
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In the context of computational allocation during the training 

process, it was observed that the utilization of a dedicated GPU did 

not yield a substantial enhancement in performance, as evidenced by 

the results obtained in this experiment and corroborated by similar 

findings in other studies. This phenomenon may be attributed to the 

relatively shallow depth and limited number of neurons in the NN 

utilized. In addition, it should be noted that RL places a significant 

demand on the CPU as a result of the sequential nature of the agent-

environment interaction, as depicted in Figure 33. Furthermore, it is 

worth mentioning that rendering is disabled when the camera is not 

in use. The recorded training speeds amount to approximately 1.4 

million steps per hour. These measurements were obtained using a 

system comprising an Intel Xeon W2223 processor, 32 GB of RAM, and 

an NVIDIA Quadro RTX 4000 GPU. 

In relation to sub-experiment #1, it has been observed that there 

exists a crucial phase within the initial 8 million steps. During this 

phase, the reward obtained is consistently low and unstable, while the 

lengths of episodes are primarily characterized by collisions initially, 

followed by timeouts. Specifically, it was possible to observe that in 

numerous instances, the vehicle consistently performed abrupt gear 

reversals, remaining predominantly stationary. This phenomenon is 

indicative of a local minimum, which hinders the agent’s ability to 

enhance its performance. Upon completing 8 million steps, the agent’s 

performance rapidly converges to a stable state characterized by 
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consistently high rewards and shorter episode lengths. Nevertheless, 

during the testing phase, wherein the target can be selected from any 

of the ten lots, it becomes evident that the agent, despite its training, 

is unable to effectively generalize its knowledge (Table 19). 

In the subsequent sub-experiment (#2), the lidar was replaced with 

a camera. The efficacy of the training was demonstrated. However, it 

should be noted that the agent’s ability to generalize to multiple target 

test cases is unsatisfactory, as indicated in Table 19. Therefore, it has 

been attempted to initiate the training process again by randomly 

simulating all potential target lot scenarios. However, this approach 

resulted in a deceleration of the learning process and did not yield 

substantial enhancements. Furthermore, the notion of imposing 

penalties for timeouts did not yield substantial benefits. 

In sub-experiment #3, it has been reverted to employing a lidar 

sensor as opposed to a camera, resulting in a reduction in both input 

size and training duration. Additionally, the constants were tuned and 

the rewards normalized. To ensure the optimal tuning of these 

hyperparameters, it was imperative to generate and evaluate 

supplementary Tensorboard visualizations, as depicted in Figure 41. 

Specifically, the values of each component of the RF (namely, collision, 

goal, distance, and alignment) have been recorded in Tensorboard to 

conduct a quantitative analysis of the agent’s behavior. Efficiently 

assessing various alternatives and fine-tuning the RF and simulation 
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settings is a crucial aspect that demands a significant amount of time 

and effort. 

 
(a) (b) 

 
(c) (d) 

Figure 41: Tensorboard plots of each reward evolution during experiment 
#3. Rewards: (a) collision, (b) goal, (c) distance, (d) alignment. Dashed blue 
lines indicate the switch from the first to the second phase 

As visible in Figure 41, it was necessary to split the training into 

two phases, therefore employing the Curriculum Learning (CL) 

paradigm. 

CL in RL poses challenges due to the absence of a preexisting 

dataset, making it difficult to assess the difficulty of samples using a 

Difficulty Measurer [215]. In line with the study conducted in [216], 
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our approach involved the utilization of a one-pass algorithm [217], 

wherein the difficulty levels were incrementally adjusted to 

correspond to the progressively intricate iterations of the learning 

environment. It was also possible to incrementally enhance the agent’s 

abilities in various training phases (e.g., as demonstrated by [218]). 

However, initial findings indicated that augmenting the training 

complexity did not yield any advantages. In contrast to the approach 

taken by [216], our study did not establish a predetermined quantity 

of steps for each stage. Instead, a performance criterion has been 

employed, as outlined by [215]. Furthermore, in each phase, not only 

the intricacy of the context has been heightened (such as the type of 

objective and the conditions for episode conclusion), but also 

adjustments to the RF of the agent have been made. These 

modifications were made based on a meticulous analysis of the 

Tensorboard charts from multiple training iterations, as previously 

stated. In the initial phase of this experiment, two distinct stages have 

been executed. In the initial scenario, the agent undergoes training 

with the objective of successfully navigating toward a specific 

designated location. Collisions are subject to penalties but do not 

result in the termination of the episode. This approach is implemented 

to facilitate the agent’s exploration of the environment without 

frequent disruptions [219]. Once the objective is attained at a rate 

surpassing 99.5%, the commencement of the subsequent phase ensues. 

During this particular stage, the activation of the remaining nine 

targets occurs randomly. Also, collisions are considered as terminal 
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events for an episode. Moreover, the penalty associated with collisions 

is heightened, resulting in a decrease in the reward from -1 to -10. The 

introduction of these factors is responsible for the significant decline 

in performance of the goal reward, as evident from the stage transition 

depicted in Figure 41b. Nevertheless, the training process continues to 

be effective, albeit at a slower pace, due to the significantly higher 

intricacy of the learning environment. Subsequently, after a 

satisfactory number of iterations, the model achieves a desirable level 

of performance in the designated environment. 

The initial phase is concluded in 25M steps, followed by an 

additional 57M steps required to complete the subsequent stage. 

Figure 42 illustrates the progression of the success rate, specifically the 

achievement of goals without any collisions, throughout the training 

process. Experimental findings indicate that for an agent to reach 

multiple targets, it is imperative to provide training on multiple 

targets (Table 19). Conversely, training the agent solely on a single 

target leads to overfitting, as it becomes overly specialized in locating 

the precise position of that target. 
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Figure 42: Progression of the success rate in the Unity experiment #3. 
Transition between phases indicated by a dashed blue line 

The impact of CL was evaluated by conducting a comparative 

analysis of the outcomes achieved by an agent trained from the 

beginning under identical conditions and rewards as our stage 2 

agent. Remarkably, despite undergoing 80 million iterations, the 

success rate consistently remains at 0. Our argument posits that a 

crucial determinant of CL lies in the potential occurrence of first 

episodes involving nonterminal collisions. This not only facilitated the 

investigation of the surroundings (including exploring the movement 

area and the consequences of the actions taken) but also exposed the 

agent to the rewards related to the achievement of the goal. 

Conversely, an agent which experiences significant penalties from the 

outset for collisions learns that remaining stationary is more 

advantageous than navigating through a hazardous environment. 

Consequently, CL facilitates a learning process that encourages 

exploration, discourages excessively cautious behaviors, and 

promotes a more adaptable approach to learning. 
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The test results obtained from sub-experiment #3 were compared 

with those of Hybrid A*. Hybrid A* is a modified version of the widely 

recognized A* search algorithm, specifically designed for the 

exploration of the three-dimensional kinematic state space of a 

vehicle. This algorithm ensures that the generated path remains 

kinematically feasible by incorporating a state-update rule that 

considers the continuous state of the vehicle within the A* nodes [220], 

[221]. 

An open-source Unity implementation of the Hybrid A* algorithm 

[222] has been used to conduct our experimentation within our 

designated test environment. The outcomes of our experimentation 

are outlined in Table 20. To generate the path, Hybrid A* employs a 

discretization technique that divides the map into square cells of 25 

cm on each side. Each individual cell within the map is considered a 

node, and throughout the process of generating a path, each node is 

assigned a corresponding cost. The heuristic function takes into 

consideration the potential movements of the vehicle, taking into 

account a distinct set of actions defined by three steering angles: -30°, 

0°, and 30°. In order to prevent collisions, a flow field is formed around 

the obstacles. The manipulation of the safety margin allows for 

regulation of the extent of its expansion. Findings indicate that Hybrid 

A* demonstrates a success rate of 100%, which subsequently decreases 

to 85% during the path following phase due to the discretization of the 

map. The computational time required to compute the path, which is 
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irrelevant to the DRL agent, exceeds 0.8 seconds, as observed in the 

performance evaluation conducted on an Intel Xeon W2223 machine. 

In order to enhance the real-time performance of Hybrid A* algorithm, 

it is necessary to augment the cell size to 1.2 meters. However, this 

adjustment resulted in a decrease in the target reach rate to 21%. Table 

20 additionally demonstrates that the DRL agent has the capacity to 

decrease the average number of gear inversions required to attain the 

aim by 25%. Therefore, the DRL agent demonstrates superior 

performance in terms of target attainment rate, gear inversion rate, 

and latency, while also eliminating the requirement for a map. 

Table 20: 100 episodes comparison between Hybrid A* and DRL PPO – 
Garage environment 

Path planning 
algorithm Success rate 

Gear inversions 
per episode 

Time for path 
planning 

Proposed DRL 94% 3.36 - 

Hybrid A* 85% 4.48 0.857 s 

 

Our experience highlights the significance of certain aspects in 

establishing a suitable environment and mitigating the occurrence of 

systematic errors, which can be challenging to detect.  

The time interval between consecutive updates of the 

environment, known as the simulation tick, must be sufficiently rapid 

to ensure an accurate physics simulation. Failure to meet this 
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requirement may result in delayed or missed detection of collisions 

and/or goal attainment. However, the specific tuning of the simulation 

tick should be based on the real-time speed of the simulated stuff and 

the computational capacity of the CPU. 

Another parameter that requires meticulous adjustment is the 

decision period, which refers to the interval between each agent’s 

action selection. A short decision period results in the vehicle 

remaining in a standstill state. The present analysis posits that, within 

this context, the agent lacks the temporal capacity to observe the 

consequences of its actions. When the decision period is very long, 

conversely, the agent’s responsiveness diminishes, resulting in 

inadequate management of the vehicle’s dynamics. 

To enhance the efficiency of the training phase, the capability 

provided by ML-Agents to concurrently execute several training 

scenarios has been leveraged. This results in an elevated steps-per-

second ratio, albeit with a concomitant rise in CPU workload. Due to 

this rationale, it is advisable to avoid excessively high numbers of 

parallel environments, as the step/second ratio experiences a decline 

beyond a particular threshold that is specific to the machine in use. 

The selection of the sensor(s) significantly influences the learning 

and behavioral characteristics of the agent, as well as the duration of 

the training process. The choice between a camera sensor and lidar 

carries significant implications, as the camera necessitates scene 
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rendering at each timestep. This process reduces the number of 

instructions executed per second, hence prolonging the training time. 

In addition, the use of two convolutional layers in the neural network 

architecture for processing the camera information necessitates a 

higher network size, hence influencing the duration of the training 

process. Given the comparable outcomes obtained from both the 

camera and lidar in our studies, it has been made the decision to 

accord higher priority to the latter. In relation to the concept of 

generalization, it has been observed that there exist distinct 

limitations. Specifically, when alterations are made to the 

configuration, such as modifications in the width or length of the 

driving area or adjustments in the positioning of the parking lots, a 

notable decline in performance occurs. Consequently, it becomes 

necessary to fine-tune the agent in order to address this issue. 

5.2.3.2 Random obstacles environment 

The preceding experiment involved the training of an agent to 

successfully navigate to a designated parking lot, starting from a 

randomly selected location within a garage. However, it is important 

to consider the potential existence of unforeseen impediments that 

may be present prior to reaching the intended destination. In order to 

conduct an analysis, a separate Unity environment was established, 

and its examination is presented in this sub-section. 
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The input type, neural network setup, and RL training method used 

in this experiment are identical to those employed in Garage 

experiment #3. The objective of the agent is to navigate through an 80 

× 80 m area, with the aim of reaching a position that is randomly 

determined. This task involves avoiding a variable number of static 

obstacles, which are randomly positioned and oriented between the 

starting point and the destination point, as depicted in Figure 43. 

 

Figure 43: Sample random obstacles Unity environments, with random 
positions and orientations 

The RF is built upon a methodology akin to that utilized for the 

garage parking task, with the inclusion of an additional penalty for 

low-speed behavior. The decision to implement this modification was 

made to address observed experimental scenarios wherein the agent 

would cease its movement in close proximity to the target without 

actually reaching it. This behavior appeared to indicate a sense of 

satisfaction with the achieved distance, maybe in comparison to the 

perceived risk of a collision. 
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During the training phase, a one-step CL process was employed, 

similar to the approach utilized in the initial experiment. The level of 

difficulty was systematically increased by introducing a greater 

number of obstacles inside the visual scene. After successfully 

achieving proficiency in a certain difficulty level, the agent’s training 

progresses to more intricate environments. The levels of difficulty are 

documented in Table 21. Adjustments to hyperparameters, such as the 

RF, may also occur during these transitions between levels, guided by 

the agent’s behavioral observations. 

Table 21: Difficulty levels of the random obstacle environment 

Difficulty level Description 

1 No obstacles 

2 
One obstacle midway between the 
spawning point and the target 

3 
Like level 2 but with two 
additional obstacles on the sides 

4 
Like level 3 but an additional 
obstacle is placed in a second series 
of obstacles 

5 
Like level 3 but two additional 
obstacles are placed in the second 
series of obstacles 

6 
Like level 3 but three additional 
obstacles are placed in the second 
series of obstacles 
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Figure 44 displays the progression of the training success rate 

across various difficulty levels. In relation to the initial three levels, it 

is seen that the initial level is attained after a total of 11 million steps, 

followed by the intermediate level after an additional 36.5 million 

steps, and ultimately, the third level is achieved after an additional 

363.5 million steps. The observed decrease in performance with each 

level transition indicates a deficiency in the agent’s capacity for 

generalization. Indeed, it is observed that the agent demonstrates 

proficiency in navigating toward a designated target while sticking to 

the existing obstacle framework at each phase. However, it does not 

exhibit the same level of competence in reaching a target without 

encountering any collisions. Nevertheless, it is seen that as the 

difficulty levels increase, there is a decrease in the drop, indicating that 

the agent finally acquires the ability to generalize. It is evident that 

each level transition necessitates specialized training, a process that 

the agent gradually and perceptibly accomplishes. 

 

Figure 44: Progression of the success rate in the Unity random obstacles 
experiment. The transition between phases is indicated by dashed blue lines 
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Figure 45 illustrates the performance of a system that underwent 

direct training at the ultimate difficulty level, as described in Table 21. 

In this scenario, in contrast to garage parking, the agent that 

underwent training without CL demonstrates a noteworthy level of 

performance, but with a discernible disparity compared to CL (95% 

versus 98%). It is suggested that the dissimilarity shown in the garage 

case study can be ascribed to the increased spacing between obstacles 

inside this subsequent environment. While collisions are terminal 

events since the beginning of the training process, they are not overly 

common. Therefore, the agent categorized as a "novice" is still able to 

navigate and familiarize itself with the environment, ultimately 

acquiring knowledge of the task at hand. A comparison with Figure 

44 reveals that the agent commences its learning process at a later 

stage due to the greater complexity of the environment. This delay in 

learning could be an issue in situations when prompt feedback is 

required, such as when exploring various hyperparameters on 

hardware that is shared or requires payment upon usage. 

 

Figure 45: Success rate over training for an agent trained without CL 
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In addition, for the purposes of this experiment, a comparative 

analysis between our DRL agent and a Hybrid A* implementation is 

provided. The Hybrid A* algorithm demonstrates a slightly superior 

performance compared to our DRL agent in terms of goal reach rate, 

with a success rate of 99% as opposed to the DRL agent’s 98%. Our 

contention is that this can be attributed to the reduced intricacy of the 

maneuvers required to attain the desired objective. Nevertheless, 

achieving a decrease in latency from 0.56 seconds to 0.17 seconds 

necessitates an increase in the size of the cell side from 0.5 meters to 

1.2 meters, resulting in a decline in the success rate to 69%. 

Table 22: 100 episodes comparison between Hybrid A* and DRL PPO – 
Random obstacles environment 

Path planning 
algorithm Success rate 

Time for path 
planning 

Proposed DRL 98% - 

Hybrid A* 99% 0.561 s 

 

Also in this scenario, the DRL agent demonstrates superior 

performance in terms of latency and similar success rates compared to 

Hybrid A* while also not needing an a priori map. 
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5.3 CARLA experiment 

The experiment involves a parking case-study in the CARLA 

simulator, which is becoming very popular in the automotive domain 

for the simulation of ADFs. 

5.3.1 Experiment setup 

Compared to the previous case in Unity, the main aim of this 

implementation is to enhance the level of realism, to obtain a model 

that is closer to real-world vehicles. In order to enhance the degree of 

realism in graphics and physics modeling, the choice for a driving 

simulator was CARLA [25], an open-source software designed 

specifically for the advancement of ADFs. The system encompasses a 

variety of town maps and diverse vehicle models that may 

accommodate various sensors, including radar, lidar, camera, and 

others. Furthermore, CARLA provides an API that grants users the 

ability to manipulate several elements pertaining to the simulation, 

such as traffic patterns, pedestrian actions, weather conditions, sensor 

functionality, and more. The official section pertaining to DRL lacks 

recent updates; however, there have been recent proposals [223], [224] 

that provide promising outcomes in the context of trajectory tracking 

applications. 

Commencing with the pre-existing Town 5, which includes a 

parking space, extraneous items have been eliminated from the 

environment. This was done to create a streamlined scenario that 
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minimizes the computational burden of rendering and thereby 

reduces training time. The parking area, depicted in Figure 46, has 

dimensions of 50 x 50 m. It consists of a total of 60 comb parking 

places, each measuring 5 x 2.5 m, arranged in a 90-degree orientation. 

The designated training area is enclosed by brick walls, effectively 

creating a barrier that serves to protect the agent from experiencing 

falls. The weather encompasses a total of 15 distinct atmospheric 

situations, including variations of sunlight, rainfall, fog, and cloud 

cover. In addition, there exists a diverse range of 41 vehicle models, 

spanning from motorcycles to trucks, each offering the option for 

personalized color customization. 

 

Figure 46: The CARLA parking environment. The targeted parking lot is 
indicated with a red square 
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In order to integrate our DRL agent, the Gymnasium toolkit, 

previously referred to as OpenAI Gym [225], has been employed. 

Gymnasium is a Python toolkit that provides an interface for creating 

and implementing DRL environments. It has gained widespread 

recognition as the preferred method for facilitating communication 

between agents and simulation environments. Furthermore, the 

Gymnasium framework offers the capability to construct customized 

settings. Consequently, the CARLA parking scenario has been 

encapsulated within a Gymnasium environment to obtain a DRL-

compatible interface. In addition, it should be noted that Gymnasium 

is fully compatible with Stable-Baselines3 (SB3) [226], which is a 

Python library that is openly available and provides a diverse range 

of DRL algorithms. This compatibility allows for the seamless 

integration of Gymnasium with SB3, enabling users to efficiently 

establish the training method as well as the NN architecture and 

configuration in a straightforward and simple manner. Figure 47 

displays the diagram illustrating the tools employed and their 

corresponding interfaces. 
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Figure 47: The toolchain implemented in CARLA: from behavior 
specifications to DRL model 

In each episode, the initial position and orientation of the car are 

randomly determined within the drivable region. The objective to be 

achieved is reaching one of the 60 lots, which are picked randomly in 

each episode. In order to provide training for our agent, the Jeep 

Wrangler vehicle model has been used, which was accessible within 

the CARLA simulation environment. The dimensions of the car are 

4.80 × 1.90 × 1.90 m, and it possesses a total mass of 2206 kg. CARLA 

models the vehicle dynamics using NVIDIA PhysX [227], a widely 

used physics simulation engine. The EV (i.e., the agent) is equipped 

with a lidar sensor positioned at the vehicle’s midpoint, offering a 

panoramic horizontal field of view spanning 360 degrees. 

Table 23 provides a comprehensive summary of the constituent 

elements of the RF. The two primary factors that influence the EV’s 

approach towards the goal are the distance and heading rewards. 

Collision is sparse, but it is essential to instruct the agent on how to 

avoid other Non-Player Vehicles (NPVs) and the boundaries of the 
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designated area. There are two key factors that are associated with the 

successful attainment of the designated parking lot: goal and 

alignment. The goal reward is granted upon the arrival of the EV to 

the parking lot, whereas alignment compensates the agent for 

successfully parking in a well-aligned manner. This component is 

maximum if the car is perfectly aligned (0 degrees difference from the 

parking orientation) and decreases linearly to 0 depending on how 

crookedly the agent is parked (where 0 indicates parking with 90-

degree difference from the parking orientation). 

Table 23: CARLA experiment RF components 

Name Description Range Type 

Distance 
Euclidean 
distance from 
EV to target 

[-0.1, 0] dense 

Heading 

Angle between 
EV forward 
vector and EV-
target vector 

[-0.1, 0] dense 

Collision 
Collision with 
walls or NPVs 
event 

[-1, 0] sparse 

Goal 
Target achieved 
event 

[0, 15] sparse 

Alignment 

Angle between 
EV forward 
vector and 
parking lot 
orientation 

[0, 10] sparse 
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In order to be compliant with the previous Unity experiment, the 

PPO algorithm [208] was employed for training the model. The chosen 

architecture for the primary NN is an MLP configuration, consisting 

of two hidden layers each containing 512 neurons. The input and 

output values of this configuration are presented in Table 24. In order 

to enhance the agent’s perception of its motion, at each network 

update the most recent four input values have been stacked on top of 

the current input value. This enables the agent to effectively capture 

the evolving dynamics and fluctuations in the environment over time. 

Table 24: PPO network setup for the CARLA experiment 

Type Quantity Dimension Resulting size 

Input 

Lidar data 61 

340 (5 stacked 
inputs) 

Distance from 
target (x, y) 

2 

Speed (x, y) 2 

Acceleration (x, y) 2 

Angular velocity 
(yaw) 

1 

Output 

Throttle 1 

4 
Steering 1 

Brake 1 

Reverse 1 
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Based on the above findings in the Unity environment, albeit of 

less complexity, a similar CL technique has been implemented for the 

purpose of training the agent. In this scenario, the training process is 

divided into three stages. In the initial stage, the analysis just focuses 

on the EV, no NPVs are present in the scene. An episode concludes 

either when the goal is achieved or when it exceeds a maximum of 240 

steps (corresponding to 4 minutes in the real world). The absence of 

penalties for collisions serves as an incentive for the agent to engage 

in exploratory behavior inside the environment. During the second 

phase, the selection of the number of NPVs is performed randomly 

within the range of 0 to 20 for each episode. Similar to the previous 

phase, the episode can only terminate upon meeting the target or 

when a timeout occurs. Collisions are now subject to a minor penalty, 

quantified by a weight of -0.1. In the third phase, the conditions are 

comparable to those in phase #2, with the exception that an episode is 

now terminated by a collision, which incurs a penalty weight of -1. 

5.3.2 Results 

The PPO agent underwent training for approximately 60 million steps, 

as depicted in Figure 48. In the initial CL phase, the agent successfully 

achieved the goal in all instances after a total of 25 million steps, as 

depicted in Figure 48a. Once this is attained in the absence of NPVs 

within the given context, the subsequent phase begins, spanning 

approximately 15 million steps. During this phase, the agent acquires 

the skill of parking while NPVs are positioned near the designated 
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parking area. The last stage, when collisions denote a terminal state, 

persisted for a duration of 20 million steps, resulting in a concluding 

success rate of 97%.  

 

(a) (b) 

Figure 48: The training of the PPO agent in CARLA over around 60M steps. 
(a) is the success rate, whereas (b) represents the cumulative reward. The 
three CL phases are distinguished by dashed blue lines 

While the overall success rate is deemed satisfactory, certain issues 

pertaining to the utilization of CARLA emerged during the process of 

code development. Specifically, the absence of explicit assistance for 

DRL posed challenges in terms of implementing the environment and 

ensuring compatibility with Gymnasium and SB3. Overkill values of 

the CARLA environment update frequency, exceeding 20 Hz, 

significantly prolonged the training duration due to increased 

computational demands. Conversely, frequencies below 10 Hz failed 

to ensure adequate observation of the environment by the agent, 

resulting in instances where the agent inadvertently reached the goal 

without being detected. Furthermore, it was again crucial to 

implement a decision period, as excessively high network update 
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frequencies (exceeding 10 Hz) hindered the agent’s ability to acquire 

a knowledge of locomotion. This limitation arose from the fact that a 

brief accelerator pedal pressure did not provide adequate duration for 

initiating movement. An optimal compromise that was identified 

involves utilizing a CARLA environment update rate of 20 Hz in 

conjunction with a network update rate of 5 Hz, resulting in a decision 

period of 4. However, it is important to note that this determination 

was made through extensive experimentation and iterative 

refinement. 

It is worth remarking that, for this experiment, test results have 

been obtained using Edgine. First, the obtained NN is uploaded to 

Measurify through its dedicated GUI Graphical User Interface [228]. 

Successively, an Edgine instance is executed on a Ubuntu PC (since 

the model has been trained using Ubuntu) to automatically download 

the NN weights from the cloud. Once the model is obtained, a 

dedicated script allows to perform inference. Since the model 

described has been trained using the Gymnasium toolkit, a specific 

Edgine operation has been defined which enables it to execute the 

Python snippet dedicated to launch the CARLA server, load the 

model, and run inference in the parking environment. Once results are 

obtained, they are returned to the Edgine instance which 

automatically ships them to Measurify using the send() operation. 
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At the moment of writing, this Edgine feature results still working 

progress, but the results achieved so far are encouraging and reveal 

other potential that Edgine can offer in the field of edge computing. 

5.4 Unity or CARLA? 

In this part, we undertake a comparative analysis of our development 

experience in both Unity and CARLA simulators.  

Unity is a versatile graphic engine utilized across multiple 

industries. It has the capability to adjust simulation environments and 

settings and provides a range of readily integrable vehicle sensors like 

lidars, radars, cameras, and semantic cameras. Additionally, the 

process of generating other observations is uncomplicated. The 

utilization of a GUI enhances the user experience by facilitating a 

pleasant and efficient interaction, eliminating the necessity to delve 

into the underlying source code. A Unity simulation necessitates the 

computation of physics and graphics, particularly in cases when the 

agent’s input incorporates a camera, hence resulting in a significantly 

elevated processing need. The aforementioned concern, which is 

applicable to all environments, can be effectively addressed through 

the utilization of Unity’s capability to instantiate multiple 

environments within parallel processes and/or execute multiple 

scenes concurrently. This approach optimizes training time by fully 

leveraging the CPU’s cores. One significant constraint is the limited 

range of selectable NN topologies and tunable parameters. For 
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instance, only dense and convolutional neural networks are available, 

without including advanced mechanisms like attention [13] that are 

currently considered state-of-the-art. Unity may be accessed through 

the ML-Agents Python library, which provides also an interface for 

Unity as a Gymnasium environment. This enables the utilization of 

many neural network architectures, including bespoke ones [229]. 

Nevertheless, the available material is scarce, and there is a lack of 

scholarly publications on this topic in the existing literature. 

The CARLA platform is an open-source tool designed for the 

simulation and evaluation of ADFs. The platform offers a considerable 

level of adaptability in relation to the customization and management 

of the physical aspects of the environment, facilitating the creation of 

intricate situations. This feature proves to be highly advantageous for 

conducting experiments in the field of DRL. CARLA offers pre-

established maps and tools, such as the Scenario Runner [230] and 

Map Editor [231], to facilitate the creation of simulations in settings 

that are either extremely realistic or tailored to specific requirements. 

Additionally, the software showcases a noteworthy assortment of 

meticulously replicated vehicle models, encompassing various 

metrics such as maximum RPM, the moment of inertia pertaining to 

the engine, the duration required for gear shifting, and the drag 

coefficient associated with the vehicle’s chassis, among others. This 

achievement is facilitated by the utilization of the Unreal Engine game 

engine [232], which offers advanced capabilities in terms of generating 
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three-dimensional graphics and conducting physics simulations. 

CARLA utilizes a customized version of Unreal Engine 4.26, 

incorporating tailored modifications exclusive to CARLA’s 

functionalities, necessitating robust computational resources. The 

dynamic models of vehicles are derived from NVIDIA PhysX, the 

established Unreal Engine 4 vehicle model [227]. The learning curve 

of the tool is rather steep. The training process is influenced by the 

overall sophistication and complexity of the environment. This 

influence is observed through various aspects, including the type of 

vehicle, the observations made, and most notably, the timing of the 

simulation world’s progress and the agent’s decision. 

In summary, the selection of the simulation framework is 

contingent upon the requirements and objectives of the research 

endeavor. If the primary focus is on realism and achieving a high level 

of physical accuracy, CARLA would be the optimal selection. 

However, the Unity ML-Agents toolbox presents a potential 

compromise between the accuracy of virtual reality depiction and the 

effectiveness of modeling, training, and simulation. 
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6 
DRL models explainability 

The primary issue with employing ML algorithms is that they operate 

as black-box methods, which makes it challenging to identify patterns 

attributed to the decisions made by the agent. This problem becomes 

more critical when considering the automotive industry, where 

enforcing very high safety standards is paramount to safeguard 

human lives. The chapter presents an examination of SHAP values 

and a comparison with attention layer outputs from a DRL neural 

network for a highway use case. 

First, the development environment and DRL model are 

introduced. Next, experimental results are presented and analyzed in 

three modes: (i) episode timeline analysis, (ii) frame-by-frame 

analysis, and (iii) aggregate statistical analysis. 
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6.1 Environment 

Being the scope of this research investigating the explainability of DRL 

models, it has been decided to adopt a simple DRL algorithm and a 

basic learning environment, so to avoid any possible interference 

caused by the complexity of the DRL algorithm or the development 

environment. To accomplish the outlined research objectives, a DRL 

agent was trained using a basic DQN algorithm within the highway-

env environment [21]. Highway-env is a collection of simple 2D bird-

eye view environments for training RL agents in AD tasks, 

particularly in highway settings. Highway-env is one of the 

environments provided within Gymnasium. The open-source code 

base was altered to extract the necessary data for analysis from each 

episode, including the status log, action log, attention matrix values, 

and Q matrix values.  

The architecture of the agent model is centered on a single EV-

attention layer, which is designed to capture the interdependence 

between the EV and the other vehicles. The layer receives a single 

vector input for each vehicle. This input is generated by embedding 

the feature list of each vehicle using a linear dense layer encoder with 

64 units. The final output is produced by a decoder consisting of two 

dense layers (Figure 49, [149]). A single EV-attention head is employed 

in order to maintain simplicity and accommodate the unidirectional 

nature of the highway environment. 
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Figure 49: Highway DRL model architecture. Picture courtesy of [149] 

The analysis was conducted on a standard 3-lane highway-env 

environment, utilizing its default values with the exception of certain 

parameters. These parameters include a traffic density of 0.6 

(medium), an observation of 8 vehicles to mitigate computational 

complexity and reduce training times, a policy frequency of 1 Hz to 

allow the agent sufficient time to observe the consequences of its 

decisions, and an episode duration of 80 frames (equivalent to 80 

seconds) to adequately assess agent behavior. In the highway-env 

framework, the vehicles under observation are arranged in a 

sequential manner based on their distance from the EV. Specifically, 

the EV is denoted as v0, while v1 represents the vehicle closest to the 

EV, v2 refers to the second closest vehicle, and so on. Hence, it can be 

observed that there is no distinct identity assigned to each vehicle for 

every episode, apart from the EV. However, cars are identifiable on a 

per-frame basis. Each episode encompassed a collective sum of 15 

vehicles, constituting the predetermined standard value. Every 

observation sent to the DRL model has seven distinct features for each 

vehicle. These features include the presence of a vehicle in the current 
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frame, as the observation region around the EV is constrained. 

Additionally, the features consist of the vehicle’s x and y coordinates, 

longitudinal and lateral speed, as well as the two trigonometric 

directions. The observations are normalized with a longitudinal 

distance of 100 meters and a speed of 80 meters per second. Each lane 

has a width of 3.5 meters and serves as a reference point for both the 

EV, where its x-coordinate is always 0, and the other cars, where their 

positions are measured relative to the EV. 

The velocity of the EV can be categorized into three distinct levels: 

20, 25, and 30 m/s. These levels are slightly more than the average 

velocity of other vehicles, which typically travel at approximately 22 

m/s. The agent can select one of five actions, namely right, left, idle, 

faster, or slower, at each frame. The system proceeds to process the 

determined activities while considering the relevant context. As an 

example, the deceleration at a velocity of 20 m/s leads to an idle action, 

and the same principle applies to the left action when the EV is already 

positioned in the third lane. To elucidate this point, we shall 

henceforth make a distinction between action, which refers to the 

decision made by the model, and real action, which pertains to the 

action executed by the EV while considering the constraints imposed 

by the context. 

The agent underwent training using a dense reward of 0-1 for 

speed and a sparse reward of -2 for collisions, which served as the 

factor for the premature conclusion of an episode. To enhance 
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simplicity, we have excluded the right lane reward from the analysis, 

as the initial model does not impose any penalties for overtaking on 

the right side. 

Following the completion of the training process, the ultimate 

success rate stands at 89%. Additionally, an average distance of 2.3 km 

was driven every episode. In our empirical observations, it was 

generally observed that training effectiveness is limited to the initial 

phase, specifically between 400 and 1,200 episodes. Subsequently, 

performance deterioration occurs without any notable recovery, even 

after approximately 35,000 episodes, which corresponds to a training 

duration of 48 hours on an NVIDIA DGX system. The phenomenon 

described in the literature is sometimes referred to as catastrophic 

forgetting [233]. Extended training durations have been observed to 

result in more caution exhibited by the agent, potentially attributable 

to the occurrence of accidents arising from unfavorable behaviors 

exhibited by other vehicles. 

Once an agent has undergone adequate training, it becomes 

suitable for analysis. SHAP values are derived by executing a specific 

quantity of episodes and training the model using the SHAP Python 

module. Based on the SHAP documentation and SHAP library [234], 

a DeepExplainer has been used and provided with the agent’s DQN 

model (the value network) and the observations from a set of 20 

training episodes (equivalent to 1,600 samples). This approach aims to 

generate accurate estimations of the SHAP values for each input 
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feature. After being trained, the SHAP model can be provided with 

test values in order to generate estimations. The computation of SHAP 

values occurs at each frame in the context of a DRL system. These 

values are calculated based on the value network of the DRL, which 

provides the Q value for every available action. The Q value 

represents the anticipated cumulative reward when the agent is in the 

observed state and executes the action, subsequently continuing to 

play until the episode concludes according to a specific policy π. 

Hence, SHAP values are available for every potential action, while this 

study primarily concentrates on values pertaining to the chosen action 

only. Despite the algorithm’s exponential complexity [14], the 

execution times of SHAP were rather short, typically on the scale of a 

few seconds. 

The attention values are derived from the output of the attention 

layer, which represents a probability distribution over cars. Therefore, 

the aggregate always equals 1, and higher maximum attention values 

signify a concentration of attention on a particular vehicle, whereas 

lower maximum attention values suggest a dispersion of attention 

across multiple vehicles. 

A necessary modification is required when comparing attention 

and SHAP, as attention values are assigned on a per-vehicle basis, but 

SHAP values are assigned on a per-feature basis. Upon reviewing less 

complex issues, such as [17], it has been deemed a suitable 
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approximation to establish the SHAP value of a vehicle as the SHAP 

value of its most significant attribute. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑉𝑉𝑙𝑙) = max
𝑓𝑓𝑖𝑖∈{𝑓𝑓𝑣𝑣𝑎𝑎𝑡𝑡𝑓𝑓𝑟𝑟𝑣𝑣𝑠𝑠 𝑣𝑣𝑓𝑓 𝑉𝑉𝑖𝑖}

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑙𝑙)} (10) 

The per-vehicle SHAP values are subsequently transformed into 

probabilities using the softmax function. Max SHAP Vehicle (MSV) 

refers to the vehicle within a certain frame that possesses the greatest 

per-vehicle SHAP value, while Max Attention Vehicle (MAV) refers to 

the vehicle that possesses the highest attention value. 

6.2 Experimental results 

The analysis was structured on three primary perspectives. One aspect 

to be considered is the timeline of each individual episode. 

Subsequently, an examination is conducted on the SHAP and 

attention values pertaining to each decision frame. The final step 

involves calculating statistical measures by aggregating many 

episodes. Consequently, a Python Jupyter notebook has been 

constructed for the purpose of conducting the analysis. To enhance the 

clarity of the presentation, the three aspects are designated as episode 

view, frame view, and aggregated view, respectively. The analysis 

will be presented in a sequential manner, with the aim of simplifying 

the presentation. However, it is crucial to note that many of the 

considerations presented are the result of an iterative synergy between 

the three views.  
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The complete analysis, along with the corresponding source code, 

can be accessed at the following URL: https://github.com/Elios-

Lab/explain-drl-highway. 

6.2.1 Episode view 

The initial stage of the analysis involves examining the progression of 

one or more episodes on a chronological scale, referred to as the 

episode view. As an illustrative example, Figure 50 presents a subset 

of the most pertinent variables observed in episode 40, which has been 

carefully selected to serve as a notable instance. The perspective 

presented exhibits certain attributes that are considered significant for 

enabling the analysis, such as action, actual action, and ego lane. These 

attributes are then graphically represented by plotting their respective 

values along the timeline. The display also includes the MAV and 

MSV vehicles. Vehicles are identified in a sequential manner, frame by 

frame, based on their relative distances. In this context, v1 represents 

the vehicle in closest proximity to the EV, v2 denotes the second closest 

vehicle, and so forth. The term v0 represents the EV. The classification 

of the most significant feature (referred to as the feature with the 

highest SHAP value) is also provided. Based on the established 

highway-env convention, the lanes are assigned numerical values 

ranging from 0 to 2, with the numbering progressing from left to right. 

The features are assigned numerical values in the following manner: 

0 - presence, 1 - longitudinal distance (x) from the EV, 2 - lateral 

https://github.com/Elios-Lab/explain-drl-highway
https://github.com/Elios-Lab/explain-drl-highway
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distance (y), 3 - relative longitudinal velocity, 4 - relative lateral 

velocity, and 5 and 6 - trigonometric headings. 

 

Figure 50: Episode View of episode nr. 40. The “Max vehi” chart represents 
the MAV and MSV timelines [235] 
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Upon observing the lane plot, it is evident that the EV initiates its 

trajectory in the rightmost lane, subsequently transitions to the 

leftmost lane at approximately frame 24, and subsequently reverts to 

the rightmost lane shortly after frame 30. Two additional instances of 

this pattern, resulting from a double simultaneous overtaking, are 

observed. Subsequently, the EV concludes the episode by proceeding 

along the central lane. In the present episode, it is evident that the 

highest attention is never on the EV, in contrast to the maximum 

SHAP. Furthermore, a distinct disparity can be observed between 

MAV and MSV, as the MAV tends to be in closer proximity to the EV 

compared to the MSV. It may therefore be inferred that attention is of 

a broader nature, whereas SHAP is more focused on the decision. 

There exist only three instances in which the MAV is v3 and the MSV 

is v2, indicating an MAV farther away and an MSV in closer proximity 

to the EV. 

Considering the max (i.e., most important) feature diagram, it 

appears that it is almost always the longitudinal distance from the EV, 

the lane position (in these frames the MSV is the EV), and, in the 

episode’s last frames (72-79), the trigonometric heading (in one case, 

lane position), when the MSV is v4 or v3. Upon careful examination of 

the timelines depicted in Figure 50, it becomes evident that the 

concluding frames exhibit a distinctive pattern characterized by a 

series of alternating deceleration and acceleration events. Notably, the 

max feature is the trigonometric heading of the lowest order absent 
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vehicle (specifically, v3 or v4). This topic warrants further 

investigation in the following. It is also observed that the agent 

consistently maintains the highest speed throughout its trajectory, 

with the exception of these final frames.  

MSV is the EV exclusively in frames 22 and 59. This phenomenon 

is characterized by the occurrence of two overtaking maneuvers in the 

left lane, with the most prevalent behavior being idle. 

Upon examining the chart depicting the distance between the 

distance from EV of the MAV and MSV, it becomes evident that 

attention is predominantly paid to the EV. Additionally, there exists a 

"step & staircase" pattern, characterized by attention steps occurring 

near EV overtakes, which can be identified by the longitudinal 

distance of v1 approaching zero. Conversely, MSV tends to transition 

abruptly, or "jump," to a vehicle located further ahead prior to the 

overtaking event. In certain instances, the execution of the "step" is 

postponed until the overtaking maneuver is initiated. The observed 

pattern indicates that the decision to change lanes, whether it involves 

overtaking or returning to the right lane, is typically influenced by a 

reference vehicle that is positioned at a greater distance from the EV. 

This suggests that the decision-making process is not significantly 

influenced by the nearest vehicles, as they are already in the process 

of being overtaken, i.e., the agent has completed the processing of said 

vehicles and has subsequently shifted its attention towards a broader 

perspective. 



 DRL models explainability 

 

168 

Except for the aforementioned cases, the MAV is on the closest or 

second closest vehicle. Conversely, the MSV exhibits a greater range 

of possibilities, encompassing the EV as well as possessing a longer 

line of sight, but it is never on the closest vehicle. The concept of SHAP 

pertains to the ultimate determination made by the NN, whereas 

attention operates at a shallower layer (Figure 49). This suggests that 

SHAP exhibits a form of predictive capability in decision-making, a 

trait commonly associated with skilled drivers [236]. Conversely, 

attention is primarily focused on nearby vehicles in order to prevent 

unexpected incidents, such as infrequent spontaneous lane changes by 

certain vehicles in the highway-env model, which have the potential 

to cause accidents. In certain instances, there is an occurrence of 

convergence between maximum attention and SHAP within the 

frames. This phenomenon occurs as a result of the MAV 

“approaching” the MSV, i.e., the EV gets closer to the MSV and causes 

it to also become the MAV. However, the MSV undergoes a rapid 

advancement to a vehicle that is more distant, thus representing a 

"delayed step" in the aforementioned pattern. 

Finally, the cumulative sum of SHAP values within a given frame 

serves as a noteworthy indicator of the anticipated advantages 

resulting from the executed action. Jumps in this value follow a 

successful lane change decision, such as initiating or completing an 

overtaking maneuver. Additionally, a relatively minor decrease in the 

value occurs when new vehicles approach or remain near the EV. 
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The interpretation of the above-described final frames, which tend 

to occur in other episodes as well, required a more in-depth 

investigation, which spurred us to implement a second display 

modality, namely the frame view, that we describe in the following. 

6.2.2 Frame view 

The frame view of an episode refers to a quantitative perspective that 

presents a comprehensive observation for each frame. This 

information is structured in the form of a table, where vehicles are 

listed in rows and their corresponding features are displayed in 

columns. Additionally, the action undertaken during the specific 

frames is also included. For instance, Figure 51 illustrates the frame 

view of frames 39 and 40 in episode 40. The perspective additionally 

incorporates the SHAP values, represented by a color code 

superimposed on the tabulated values. The values of attention are also 

color-encoded in the row header, specific to each vehicle. 
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Figure 51: Frame view of frames 39 and 40, episode 40. Features values 
normalized [235] 

The agent’s decision in frames 39 and 40 is faster. Given that the 

vehicle is currently operating at its maximum velocity, the ensuing 

action is idle. In frame 39, the maximum attention is observed on v1, 

while the maximum SHAP value is observed on v2. However, in the 

subsequent frame, the attention and SHAP values converge, both 

indicating vehicle v2 as the focal point. Upon initial observation, it is 

evident that attention values are evenly distributed among vehicles, 

with a proportional relationship to longitudinal distance, particularly 

in the same lane as the vehicle (y=0), which corresponds to the central 

lane. In contrast, SHAP values are specifically focused on the 
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longitudinal distance of v2 and v3. The ticks located on the color scale 

positioned at the right side of each frame provide an indication of the 

precise SHAP values. Consequently, it can be observed that both 

frames exhibit a predominant presence of positive values. Specifically, 

the cumulative SHAP values for all features amount to 13.0 and 11.3 

in the respective frames. This suggests that the Q value surpasses the 

mean value, potentially due to the presence of ample space in the 

vicinity of the vehicle’s front region. Positive rewards are exclusively 

granted for achieving high speed, while negative rewards are assigned 

for instances of collisions. In frame 39, the vehicle with the highest 

attention would impede the model’s inclination towards selecting a 

faster action, while in the subsequent frame, the nearest vehicle (v1) 

would similarly deter such action. In the current context, v1 does not 

receive the highest level of attention, as it is positioned in a different 

lane, albeit by a small margin. This observation appears to validate the 

prior perception that the model’s decision-making process exhibits 

greater foresight compared to the MAV, as it relies more heavily on 

information pertaining to vehicles situated at greater distances. 

As expected, the concluding frames (73-75) of the episode present 

a considerable level of difficulty. In Figure 52, the EV consistently 

occupies the central lane, while no other vehicles are present within 

its designated lane. Therefore, it would be a straightforward task for 

it to maintain a constant velocity without any deviations. However, 

the progress of the vehicle is impeded by the proximity of two adjacent 
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vehicles in the adjacent lanes, which captures all the driver’s focus (as 

they are the sole entities within the visual field). The MSV is assigned 

to the trigonometric orientations of three vehicles that are not present 

in the current scene. As anticipated, one could argue that the model 

intends this as an indication of presence. However, it is worth noting 

that the tangible presence aspect of these vehicles serves as a 

significant deterrent to the intended course of action. This discrepancy 

underscores the challenge that the agent encounters when confronted 

with this situation. Following the occurrence of two slower actions at 

frames 73 and 75, the agent undergoes faster in frame 78, subsequently 

assuming an idle state in frame 79, without reaching its maximum 

velocity. Considering the aforementioned factors, it becomes evident 

that the decisions made by agents are typically influenced by a 

reference vehicle that is positioned at a considerable distance from the 

EV, specifically in the lane that is the target of the decision-making 

process. Within the final frames of each simulation, which are 

infrequent during the training process, the absence of a vehicle is 

observed, thereby posing a challenge for the model to effectively 

address this scenario. In actuality, the agent’s ability to overtake all 15 

vehicles and successfully complete the episode is a rare occurrence. 

When considering the frame view and examining the non-chosen 

actions, it becomes evident that the trigonometric heading of v3, v4, 

and v5 serves as a motivating factor for all of them, thus confirming 

the presence of uncertainty. However, if we narrow our analysis to the 

present vehicles, it becomes apparent that the EV y-coordinate holds 
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primary significance, as previously observed in other scenarios 

involving non-idle actions. 

 

Figure 52: Frame view of episode 40, frames 73-75 [235] 
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6.2.3 Aggregated view 

The episode analysis provides valuable insights for further 

examination. Nevertheless, conducting a comprehensive statistical 

analysis across a series of episodes would prove beneficial, potentially 

even subdividing specific driving situations. Furthermore, the 

preceding analysis largely overlooks the significance of 2D spatial 

factors. The rationale behind our third approach, referred to as the 

aggregated view, is to provide an analysis based on a collection of 150 

test episodes. In conducting the analysis, unsuccessful episodes are 

excluded to prevent the inclusion of unfavorable behaviors that may 

compromise the accuracy of the interpretation. 

The distribution of the determined actions is as follows: The 

distribution of percentages in the given data is as follows: 2% for idle, 

21% for right, 10% for left, 60% for faster, and 7% for slower. In relation 

to actions, the allocation is as follows: 70% of the time is spent in an 

idle state, 9% of the time is dedicated to moving to the right, 9% of the 

time is allocated to moving to the left, 6% of the time is spent in 

accelerated motion, and 6% of the time is devoted to deceleration. The 

EV exhibits its maximum velocity in 85% of the frames, while it 

demonstrates its minimum velocity in 7% of the frames. The agent’s 

average speed is 104 km/h, resulting in a distance traveled of 2.3 km. 

The agent exhibits a propensity for occupying the right lane, with a 

frequency of 45%, while the center and left lanes are chosen 28% of the 

time each. This preference is observed even in the absence of explicit 
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rules or rewards pertaining to lane selection. We contend that this 

phenomenon can be attributed to the increased potential for danger in 

the central lane, which arises from the possibility of vehicles merging 

from both the left and right sides. The acquisition of a preference for 

either the right or left lane may occur in a random manner during the 

training process. This can be attributed to the variability of traffic 

conditions, as evidenced by instances where a preference for the left 

lane was observed instead of the right. The inclination towards 

driving in a lateral lane can account for the human-like overtaking 

behaviors evident in the "Ego lane" chart depicted in Figure 50. 

The highest level of attention is on v2 and v1. Conversely, the 

maximum SHAP values are observed in v2, occasionally extending to 

v0, v3, and v4, with minimal presence in other areas. Additionally, the 

analysis reveals that the maximum attention and SHAP values 

coincide for the same vehicle in only 27% of instances. Also, only 31% 

of the two maximum values are within the second maximum value of 

the other, providing further evidence of a distinct separation between 

the attention layer and the network’s decision-making output. 

The max SHAP features are the longitudinal distance, which 

accounts for 76% of the observed occurrences, followed by the lateral 

position (i.e., lane) at 15%, and trigonometric heading at 9%. It is worth 

noting that the trigonometric heading is considered an indicator of the 

absence of the vehicle in the scene, as previously mentioned. 
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The mean distance of the MAV is 31.8 m, with a standard deviation 

of 15.2 m. This value is significantly lower compared to the MSV, 

which has an average distance of 47.9 m and a standard deviation of 

25.0 m. In both instances, the EV is omitted. 

Except for the EV cases, the vehicle in the same lane as the EV 

receives greater attention in the majority of instances (61%), compared 

to the maximum attention received by the max SHAP vehicle (46%). 

This implies that the distinction between attention and SHAP also 

encompasses the latitudinal dimension. The distinction between MAV 

and MSV is even more evident through a spatial analysis conducted 

on heatmaps (Figure 53). The EV is in the (2, 1) cell of the grid view, 

corresponding to the third row and second column. The rows in the 

grid represent the relative lanes in relation to the EV. For instance, the 

fifth row represents the second lane to the right of the EV, which may 

or may not exist in a particular frame. The width of each cell measures 

5 m. The diagram illustrates the spatial arrangement of the MAV and 

MSV, as depicted in Figure 53a and Figure 53c, respectively. Figure 

53b and Figure 53d report the same values normalized by the traffic 

within the cell. The data presented in the figures indicate that the 

primary focus of attention is predominantly towards the front of the 

vehicle, with minimal attention allocated laterally. The concept of 

normalization emphasizes the fact that the agent consistently allocates 

the highest level of attention to any vehicle located within the three to 

four cells ahead. The maximum values of SHAP, when not on the EV, 
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are observed at a greater distance. When examining normalized 

values, it becomes evident that the maximum SHAP values exhibit a 

greater dispersion across the various lanes. The findings of this study 

validate the previous analyses, which suggest that the network 

decision-making process is primarily influenced by the EV state 

(specifically, the lane) or, more commonly, by the presence of a vehicle 

in the target lane, rather than the nearby vehicle in the same lane 

(which receives most of the attention). This vehicle appears to serve as 

a point of reference for the decision-making process. It is crucial to 

emphasize that SHAP, attention mechanisms, and the DRL NN 

primarily pertain to vehicles rather than sparsely populated road 

segments.  

 
(a) (b) 

 
(c) (d) 

Figure 53: Heatmaps representing, on the road grid (relative to the EV), the 
number of times in which a vehicle in the cell gets max attention (a) and max 
SHAP (c). On the right (b and d), values are normalized by the traffic in the 
cell, thus numbers represent percentages [235] 
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In summary, by computing the most significant SHAP feature for 

each position in the grid (refer to Figure 54), it is confirmed that lane 

information is the most crucial aspect to consider when analyzing the 

EV. In close proximity to the EV, there is a lack of noteworthy 

maximum SHAP cases. However, as the longitudinal distance 

increases, particularly beyond 10 meters, it emerges as the most 

significant feature. It is observed that speed does not emerge as a 

predominant feature in the SHAP model. This can be attributed to the 

consistently high speed of the EV, typically reaching 30 m/s, while 

NPVs tend to operate at relatively slower speeds, averaging around 

22 m/s, with no substantial variations. 

 

Figure 54: Absolute number of times of presence of max SHAP feature in the 
grid. Grey cells indicate no presence. Color code: black, x; blue, y; green 
velocity; red: trigonometric heading. The total number of samples is 9,040 
[235] 
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7 
Summary of contributions 

The contributions made by the author in relation to this thesis are 

listed in Table 25, along with resulting publications in scientific 

journals or international conferences. 

Table 25: Author’s contributions and publications related to the thesis 

Topic Contribution Publications 

Edgine 

Development of the Edgine system [158] 

Application of the system to IoT and 
virtual contexts 

[9], [237] 

Embedded Voice 
Assistant 

Development of the VA [238] 

DRL for low-
speed 
maneuvering 

Unity experiment [12], [239] 

CARLA experiment [240] 

DRL models 
explainability 

Study of the highway-env [241] 

Explainability study [235], [242] 
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8 
Conclusions 

This thesis proposed an edge AI approach in the field of automotive 

applications. The research has yielded significant advancements, also 

highlighting the importance of the interconnections between the 

different sub-areas of research touched upon.  

We have successfully developed and implemented Edgine, a 

versatile tool independent of specific edge/cloud platforms and open 

source. Quantitatively, Edgine has demonstrated substantial 

improvements in data handling and development efficiency, reducing 

IoT applications implementation times according to users with a basic 

knowledge of the subject. Qualitatively, its adaptability was evident 

through successful deployment in both professional and educational 

settings. Future work will focus on enhancing Edgine’s capabilities to 

process more complex data types and support advanced ML and DL 

models directly at the edge. 
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Building upon the foundational advancements in IoT, the 

exploration extended into the realm of embedded VAs. The 

development, deployment, and test of an end-to-end VA system, 

capable of functioning entirely offline and optimized for low-resource 

environments, has been illustrated. This system’s support for the 

Italian language and its performance, comparable to cloud-connected 

solutions in terms of WER, CER, ICER, SER, and IRER, demonstrates 

the potential of integrating advanced AI methods in embedded 

systems, which also results in reduced latency and higher privacy 

standards. The application of transfer learning has been pivotal in this 

achievement, and future research aims to broaden the system’s 

capabilities, including reducing initialization latency and extending 

language and domain support. Also, the Edgine integration allowed 

us to easily compute evaluation metrics with a streamlined process. 

The journey then led us into the intricate world of DRL, 

particularly in the context of AD applied to a low-speed maneuvering 

automotive context. We successfully trained DRL agents for tasks such 

as map-less path planning and parking maneuvers, within both Unity 

and CARLA-simulated environments, proving the effectiveness of 

DRL in complex, real-time scenarios. Key factors identified for 

successful training, such as curriculum learning and the fine-tuning of 

simulation parameters, underscored the nuanced balance required in 

DRL applications. Future research in this area is directed towards 

application in dynamic scenarios and real-world vehicle 
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implementation, starting from a scale model. For this application as 

well, the use of Edgine was essential to easily test the model and 

collect results. 

The exploration concluded with an investigation in the realm of 

DRL model explainability. As DL models become increasingly 

complex, understanding their decision-making processes becomes 

crucial, especially in applications like AD. The novel approach for 

interpretability analysis implemented, utilizing a combination of 

episode timelines, frame-by-frame analysis, and aggregated statistical 

analysis, has provided profound insights into the behavior and 

decision-making factors of DRL models. This analysis not only 

revealed the complex decision-making processes of the models, but 

also highlighted areas for further research, such as exploring temporal 

correlations, more complex vehicular models, and refining training 

methods through incident analysis. 

In summary, this collective exploration weaved together the 

advancements in IoT technologies with Edgine, the evolution of VAs 

in low-resource automotive environments and in a non-mainstream 

language such as Italian, the practical application of DRL in AD, and 

the critical aspect of DRL explainability. Each element of this 

exploration builds upon the other, showcasing the ever-evolving 

landscape in IoT, AI, and AD technology and paving the way for 

future innovations and interconnections in these fields.  
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