

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND

TELECOMMUNICATION ENGINEERING AND NAVAL ARCHITECTURE

(DITEN)

PHD IN SCIENCE AND TECHNOLOGY FOR

ELECTRONIC AND TELECOMMUNICATION ENGINEERING

(STIET)

THE FACETS OF EDGE AI IN AUTOMOTIVE:

EXPLORING EMBEDDED FRAMEWORKS,

VOICE ASSISTANTS, AND

DEEP REINFORCEMENT LEARNING

DOCTORAL THESIS

Tutor Author

Prof. Riccardo Berta Luca Lazzaroni

Coordinator of the PhD Program

Prof. Maurizio Valle

2024
XXXVI Cycle

Gotta catch 'em all!

Acknowledgments

Desidero esprimere la mia più sincera gratitudine ai Proff. Riccardo

Berta e Francesco Bellotti che mi hanno guidato in questi tre anni e

insegnato ad apprezzare questo percorso.

Ringrazio poi tutti i componenti del laboratorio, (o meglio, gli

abitanti). In ordine, per così dire, di apparizione, ringrazio Alessio

vodars Capello, per tutti gli aiuti ricevuti e le innumerevoli partite su

Showdown; Marianna xmarrix Cossu, per aver sempre portato il buon

umore in laboratorio; Alessandro pigo Pighetti e Luca forno Forneris (ai

più noti come pornerisfighetti), fedelissimi compagni di padel che sarà

dura rimpiazzare durante il loro soggiorno londinese; Matteo malefretto

Fresta, maestro di Make it Meme.

Un ringraziamento va poi alla mia famiglia, che mi ha sempre

supportato (anche quando non torno il weekend) e motivato.

Ringrazio infine Valentina, che mi ha accompagnato in questo

percorso (e non solo) rendendolo leggero e piacevole.

I

Abstract

This thesis presents a comprehensive exploration of the synergistic

relationship between edge computing and AI, with a particular focus

on the automotive sector. As technology rapidly evolves, edge

computing emerges as a paradigm shift, especially significant in

automotive applications. The shift from cloud-centric approaches to

decentralized computation enhances real-time processing capabilities

and reduces latency, enabling intelligent decision-making at the

network's edge. Central to this investigation is Edgine, a versatile,

non-vendor-locked framework tailored for heterogeneous IoT

applications. This work not only evaluates Edgine's adaptability but

also innovatively applies it in developing tools for performance

assessment in the automotive industry. Indeed, Edgine proved useful

even in most of the later developed tools, both as an evaluation and

measurement tool. Another significant contribution of this research

pertaining to edge AI vehicular technology is the development of

embedded voice assistants optimized for vehicles. The thesis details

the creation of an end-to-end voice assistant system capable of

operating offline, emphasizing privacy and security concerns inherent

in cloud-based systems. The system supports the Italian language and,

in a vehicular-only context, can achieve results comparable to cloud-

connected solutions, demonstrating the feasibility of integrating

advanced AI methods in embedded systems and the application of

II

transfer learning. The potential of edge computing in overcoming the

limitations of traditional cloud-connected solutions is also examined,

alongside future research directions for enhancing voice assistants in

terms of latency, language, and domain support. The thesis then shifts

focus to deep reinforcement learning (DRL), specifically its

application to automated driving for low-speed maneuvering. The

effectiveness of DRL is explored through experiments in both Unity

and CARLA -simulated environments. Key factors for successful DRL

training, such as curriculum learning and simulation parameter

tuning, are discussed. Results, in both environments, are promising,

paving the way to possible future research directions in dynamic

scenarios and real-world vehicle implementations. The final area of

exploration is the explainability of DRL models, a critical aspect in

domains like automated driving where safety is paramount. A novel

approach for interpretability analysis is presented, combining episode

timelines, frame-by-frame analysis, and aggregated statistical

analysis. This investigation provides insights into the decision-making

processes of DRL models and highlights future research opportunities

in areas such as temporal correlations and more complex vehicular

models. In summary, this thesis links advancements in edge

computing, embedded voice assistants, DRL in automated driving,

and DRL model explainability. This integration shapes a dynamic and

evolving landscape, fostering a foundation for innovative

developments within the automotive industry.

III

Table of Contents

1 Introduction ... 1

2 Related Work ... 12

2.1 Edge computing engines.. 13

2.2 On-the-edge voice assistants ... 17

2.2.1 Datasets ... 18

2.2.2 Models and Toolkits ... 19

2.3 DRL for motion and path planning .. 25

2.3.1 Driving simulators .. 29

2.4 DRL models explainability .. 32

3 Edgine ... 35

3.1 Measurify ... 36

3.2 Edgine ... 39

3.3 Experiments ... 46

3.3.1 Industrial use-cases ... 46

3.3.2 Environmental use-cases .. 52

3.3.3 Sports use-cases ... 57

3.4 Users’ feedback.. 62

3.5 New features .. 63

IV

4 Embedded Voice Assistant .. 64

4.1 Methodology ... 66

4.2 Automotive embedded VA implementation 71

4.2.1 Speech classification ... 72

4.2.2 Automatic speech recognition 74

4.2.3 Natural language understanding 84

4.2.4 Speech synthesis .. 87

4.2.5 Toolchain .. 94

4.3 Results and discussion ... 98

5 DRL for low-speed maneuvering ... 107

5.1 Deep reinforcement learning... 108

5.2 Unity experiment .. 114

5.2.1 Unity ML-Agents .. 114

5.2.2 Experiment setup .. 119

5.2.3 Results ... 123

5.3 CARLA experiment .. 145

5.3.1 Experiment setup .. 145

5.3.2 Results ... 151

5.4 Unity or CARLA? .. 154

6 DRL models explainability .. 157

V

6.1 Environment .. 158

6.2 Experimental results ... 163

6.2.1 Episode view .. 164

6.2.2 Frame view ... 169

6.2.3 Aggregated view ... 174

7 Summary of contributions ... 179

8 Conclusions .. 180

9 References .. 183

VI

List of Figures

Figure 1: The edge computing paradigm schematic 2

Figure 2: Measurify cloud API schematic [9] .. 39

Figure 3: Block diagram of Edgine in the IoT ecosystem [158] 39

Figure 4: JSON description of a script [158]... 41

Figure 5: High-level Edgine-Measurify system architecture [9] 45

Figure 6: Stages of the shock monitoring system for the transport of

goods [9] .. 47

Figure 7: Graphical interface of the shock monitoring web page [9] . 50

Figure 8: Schematic of the tank-level monitoring system [9] 51

Figure 9: Snapshots from the tank level monitoring app. (a) Login

page; (b) Tank monitoring info; (c) App settings [9] 52

Figure 10: Measurements of the air quality system related to CO

concentration [9] .. 54

Figure 11: The plant monitoring system screen for local inspection [9]

 .. 55

Figure 12: The plant monitoring app. (a) Login page; (b) Report on the

monitored plants; (c) Temperature graph over time; (d) Scan interval

settings [9] ... 56

Figure 13: The smart bike main components. (a) The front fork with

the ultrasonic and the hall sensors; (b) The main core of the system

VII

with a led and a buzzer to check if the system is running correctly; (c)

The inside of the core, and a battery that powers the system [9] 59

Figure 14: The smart bike app layout. (a) The bike data; (b) Speed

evolution over the tour [9] ... 60

Figure 15: The smart racket project [9] ... 62

Figure 16: VA workflow ... 71

Figure 17: SC model training (a) and validation (b) losses over 97

training epochs ... 73

Figure 18: QuartzNet B×R architecture .. 75

Figure 19: Training (a) and validation (b) WERs over 256 epochs of

training .. 78

Figure 20: ASR model training (a) and validation (b) losses over 256

epochs of training .. 79

Figure 21: Comparative of WERs on the English [197] and Italian

portions of the Common Voice dataset. Cloud-based solutions are in

orange and embedded solutions are in blue ... 83

Figure 22: NLU model training pipeline .. 85

Figure 23: Intent declaration for the training phase 87

Figure 24: NLU model training (a) and validation (b) losses over 83

training epochs ... 87

Figure 25: TTS architecture, including the Tacotron2 spectrogram

generator and the MelGAN vocoder .. 89

VIII

Figure 26: Target (a) and predicted (b) spectrograms by the Tacotron2

model ... 90

Figure 27: Spectrogram generator model training (a) and validation (b)

losses over 1,500 epochs of training .. 91

Figure 28: Tacotron2 model alignment plot after 1,500 epochs of

training .. 92

Figure 29: Target (a) and predicted (b) spectrograms by the Tacotron2

model ... 94

Figure 30: Vocoder training losses. (a) generator loss, (b) discriminator

loss, (c) waveform generator validation loss ... 94

Figure 31: Block diagram of the toolchain ... 95

Figure 32: Set of parameters configurable within the JSON file 98

Figure 33: RL training loop .. 109

Figure 34: Taxonomy of DRL algorithms (non-comprehensive) 113

Figure 35: A potential ML-Agents learning environment 117

Figure 36: ML-Agents project development workflow...................... 118

Figure 37: ML-Agents per-episode workflow 119

Figure 38: The kinematic bicycle model ... 120

Figure 39: View of the Raycast lidar sensor ... 122

Figure 40: The Unity garage environment ... 124

IX

Figure 41: Tensorboard plots of each reward evolution during

experiment #3. Rewards: (a) collision, (b) goal, (c) distance, (d)

alignment. Dashed blue lines indicate the switch from the first to the

second phase .. 132

Figure 42: Progression of the success rate in the Unity experiment #3.

Transition between phases indicated by a dashed blue line 135

Figure 43: Sample random obstacles Unity environments, with

random positions and orientations ... 140

Figure 44: Progression of the success rate in the Unity random

obstacles experiment. The transition between phases is indicated by

dashed blue lines ... 142

Figure 45: Success rate over training for an agent trained without CL

 .. 143

Figure 46: The CARLA parking environment. The targeted parking lot

is indicated with a red square .. 146

Figure 47: The toolchain implemented in CARLA: from behavior

specifications to DRL model .. 148

Figure 48: The training of the PPO agent in CARLA over around 60M

steps. (a) is the success rate, whereas (b) represents the cumulative

reward. The three CL phases are distinguished by dashed blue lines

 .. 152

Figure 49: Highway DRL model architecture. Picture courtesy of [149]

 .. 159

X

Figure 50: Episode View of episode nr. 40. The “Max vehi” chart

represents the MAV and MSV timelines [235] 165

Figure 51: Frame view of frames 39 and 40, episode 40. Features values

normalized [235] .. 170

Figure 52: Frame view of episode 40, frames 73-75 [235] 173

Figure 53: Heatmaps representing, on the road grid (relative to the

EV), the number of times in which a vehicle in the cell gets max

attention (a) and max SHAP (c). On the right (b and d), values are

normalized by the traffic in the cell, thus numbers represent

percentages [235] ... 177

Figure 54: Absolute number of times of presence of max SHAP feature

in the grid. Grey cells indicate no presence. Color code: black, x; blue,

y; green velocity; red: trigonometric heading. The total number of

samples is 9,040 [235] .. 178

XI

List of Tables

Table 1: Summary of Edge Computing solutions 16

Table 2: Summary of state-of-the-art speech-processing datasets,

models, NLU solutions, and TTS solutions ... 23

Table 3: Driving simulators summary .. 31

Table 4: Outlook of the main Measurify resources [9] 37

Table 5: Instructions currently available in Edgine [9] 42

Table 6: Edgine’s HTTPS requests [9] ... 43

Table 7: Report of the five most recent shocks [9] 50

Table 8: Measurements of the air quality system in terms of CO

concentration [9] .. 54

Table 9: Car VA use-cases .. 65

Table 10: Target embedded device vs Amazon Alexa, specifications

comparison ... 69

Table 11: WER, CER, and transcription times 80

Table 12: VA execution times ... 99

Table 13: VA memory usage .. 100

Table 14: VA end-to-end performance evaluation 102

Table 15: Error rates in noisy and noiseless environments 105

Table 16: Feature comparison among VA systems 105

XII

Table 17: ML-Agents NN architecture ... 123

Table 18: Hyperparameters for the Unity garage parking experiment

 .. 127

Table 19: Test results of the three garage experiments in Unity 129

Table 20: 100 episodes comparison between Hybrid A* and DRL PPO

– Garage environment .. 137

Table 21: Difficulty levels of the random obstacle environment 141

Table 22: 100 episodes comparison between Hybrid A* and DRL PPO

– Random obstacles environment ... 144

Table 23: CARLA experiment RF components 149

Table 24: PPO network setup for the CARLA experiment 150

Table 25: Author’s contributions and publications related to the thesis

 .. 179

XIII

List of Abbreviations

Abbreviation Definition

AD Automated Driving

ADF Automated Driving Function

AI Artificial Intelligence

AMP Automatic Mixed Precision

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ASR Automatic Speech Recognition

CER Character Error Rate

CL Curriculum Learning

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

D3QN Dueling Double Deep Q-Network

DDQN Double Deep Q-Network

DIET Dual Intent Entity Transformer

DL Deep Learning

DNN Deep Neural Network

DPG Deterministic Policy Gradient

DQN Deep Q-Network

DRL Deep Reinforcement Learning

XIV

DSP Digital Signal Processor

EV Ego Vehicle

GAN Generative Adversarial Network

GUI Graphical User Interface

I2C Inter-Integrated Circuit

ICER Intent Classification Error Rate

IDM Intelligent Driver Model

IoT Internet of Things

IRER Interpretation Error Rate

kNN k-Nearest Neighbors

KWS Keyword Spotting

MAV Max Attention Vehicle

MDP Markov Decision Process

ML Machine Learning

MSV Max SHAP Vehicle

NLP Natural Language Processing

NLU Natural Language Understanding

NN Neural Network

NPV Non-Player Vehicle

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

REST Representational State Transfer

XV

RF Reward Function

RL Reinforcement Learning

RNN Recurrent Neural Network

SB3 Stable-Baselines3

SC Speech Classification

SER Slot Error Rate

SLU Spoken Language Understanding

SPI Serial Peripheral Interface

SSID Service Set Identifier

TD3 Twin Delayed Deep Deterministic policy gradients

TOPS Tera Operations Per Second

TPU Tensor Processing Unit

TRPO Trust Region Policy Optimization

TSV Tab-Separated Values

TTS Text to Speech

UI User Interface

VA Voice Assistant

VAD Voice Activity Detection

WER Word Error Rate

XAI Explainable Artificial Intelligence

 Introduction

1

1
 Introduction

In the rapidly changing world of technology, this thesis conducts an

extensive investigation into the mutually beneficial correlation

between the edge computing paradigm and AI, specifically in the

automotive sector.

In the constantly evolving field of IoT, edge computing presents

itself as a paradigm shift that reshapes standard models, especially in

the field of automotive applications. Unlike the conventional cloud-

centric method, edge computing distributes computation and data

storage, placing computing resources adjacent to the data source

(Figure 1). This architectural change reduces delays and improves

real-time processing power, thus converting network peripheral

devices into intelligent entities capable of self-governing data

processing and decision-making abilities [1].

Edge computing's distributed nature opens the way for a new era

of connectivity and responsiveness. The capability to perform on-

 Introduction

2

device data processing enhances decision-making speed, rendering it

critical in situations where low latency is crucial.

The importance of edge computing in the automotive industry

goes beyond increased operational efficiency. Instant decision-making

on the vehicle or its surroundings enhances operational efficiency and

ensures safety, making edge computing a crucial linchpin. This

becomes especially important in applications like automated driving

(AD), where split-second decisions have significant consequences.

Figure 1: The edge computing paradigm schematic

At the heart of the transformative power of edge computing lies a

system able to process and manage data at the network periphery.

This should be positioned to perform computation and data

processing tasks closer to the source of data generation, which, in the

automotive context, often involves a myriad of sensors and devices

embedded in the vehicle. By bringing computational capabilities

DATABASE INTERNET EDGE
DEVICE SENSOR

 Introduction

3

closer to the data source, these systems minimize latency and enhance

the speed at which data is processed, enabling real-time decision-

making.

Our exploration begins with a thorough analysis of edge

computing systems and their crucial function in processing data from

the edge. Central to the investigation is a versatile framework, Edgine,

a non-vendor-locked, interoperable framework designed to support

the IoT paradigm in diverse application domains [2], including the

automotive industry. The first scope of our study involves evaluating

the adaptability of Edgine in the creation of a range of applications

across diverse fields such as business, environment, and sports. For

our analysis, undergraduate students pursuing a Bachelor’s degree in

Electronic and Information Technology Engineering engaged in their

final thesis have been selected. The primary objective of this target was

to evaluate the ease of development, taking into consideration the

subjects’ basic professional proficiency. Additionally, it emphasizes

the significance of didactics and didactic tools in cultivating a new

cohort of electronic system designers who possess practical expertise

in end-to-end IoT applications, rather than solely focusing on specific

aspects.

By analyzing the architecture, real-world applications, and user

feedback of Edgine, the flexibility and user-friendly design that

distinguishes this comprehensive system are presented. In addition,

given the versatile nature of the system, it will also prove useful for

 Introduction

4

the development and testing of the models and frameworks later

discussed in this thesis.

Subsequently, another facet of edge computing applied to

automotive is explored, such as embedded Voice Assistants (VAs).

One significant advantage of VAs is their capacity to control diverse

IoT devices through voice commands, including those integrated

within intelligent vehicles. Privacy and security pose significant

concerns, particularly in relation to cloud-based solutions [3], [4], [5].

Smart speakers are in a constant state of listening while they await the

wake-word that triggers the dialogue management system of a VA.

Subsequently, upon activation, a VA commences the process of

capturing audio segments of the user’s utterances. Consequently, an

uninterrupted flow of clips is consistently sent to a remote server,

where the audio data is analyzed to comprehend the user’s spoken

language and generate a suitable reply. This leads to the exposure of

user data, thereby rendering the system susceptible to cyber-attacks.

In addition, the processing of data necessitates a reliable and high-

performing Internet connection. The inclusion of a real-time response

is imperative to mitigate potential driver frustration and ensure safety,

as certain situations may pose inherent risks. The aforementioned

requirements, which hold significant importance in the automotive

industry, indicate the significance of offline VAs in ensuring privacy,

enhancing resilience, and ensuring uninterrupted functionality in all

situations. Certain online VAs, such as Apple Siri and Google

 Introduction

5

Assistant, possess the additional functionality of offline voice

assistance [6]. This includes features like setting alarms, sending text

messages, and playing music. Nevertheless, the scope of supported

functionalities is significantly constrained in comparison to the

comprehensive online operability. In contrast, fully offline VAs are not

as prevalent in usage and possess a more limited range of

functionalities.

The utilization of the edge computing paradigm has therefore the

potential to effectively address the aforementioned issues.

Furthermore, the utilization of edge devices not only mitigates or

minimizes the necessity for transmitting sensitive data but also offers

advantages in terms of latency, energy efficiency, and bandwidth

utilization [7], [8], [9]. Cloud-based solutions can leverage

significantly larger computational and storage resources, thereby

enabling the attainment of enhanced performance and versatility.

However, the requirement for an embedded system to effectively

manage and analyze data on-site presents a significant opportunity

with the emergence of new generation edge devices. These devices

possess substantial computational capabilities, including the inclusion

of GPUs [10]. Furthermore, the utilization of cloud computing enables

the training of Machine Learning (ML) and Deep Learning (DL)

models on large datasets, which can subsequently be deployed on

embedded devices with enhanced efficiency through optimized

techniques [11]. This technology holds the potential to develop offline

 Introduction

6

VAs that can attain performance comparable to cloud-connected

solutions, including the ability to process a wide range of commands.

Significant emphasis is placed on three primary novel

contributions. Our primary objective is to attain offline performance

that is on par with cloud-based systems, representing a noteworthy

progression in the respective domain. Furthermore, our attention is

directed towards providing support for non-mainstream languages

such as Italian, acknowledging their significance in catering to a

substantial portion of potential users on a global scale. In conclusion,

we conduct a thorough examination of system modules, machine

learning models, and training methodologies, contributing valuable

insights and enhancing the existing knowledge in the field of offline

virtual assistants. Given the embedded nature of the developed VA,

for this use-case, Edgine is used to calculate and automatically log to

the cloud all the evaluation metrics.

Afterward, the research moves from the study of the classic DL

paradigm to investigate another crucial aspect of automotive AI, i.e.,

the use of Deep Reinforcement Learning (DRL) to build an

autonomous agent able to drive in a vehicular context such as a low-

speed maneuvering environment. An emerging phenomenon in the

advancement of Automated Driving Functions (ADFs) involves,

indeed, the utilization of DRL agents. These agents acquire task-

specific knowledge by engaging with the designated environment

through a trial-and-error approach, facilitated by a Deep Neural

 Introduction

7

Network (DNN) architecture [12]. Given the inherent characteristics

of this methodology, it is advantageous to provide training within

virtual driving simulators that closely replicate real-world conditions.

This facilitates the establishment of secure operational conditions in

which the agent can acquire the intended behavior, which is

influenced by the allocation of rewards and penalties contingent upon

the agent’s position within the given environment. The primary goal

of a DRL agent is to optimize the total expected rewards it receives

throughout its entire lifespan. This is commonly referred to as the

cumulative reward. Through the strategic utilization of acquired

knowledge pertaining to the anticipated utility, which encompasses

the summation of projected forthcoming rewards discounted by a

specific factor, the agent possesses the capability to enhance its overall

reward in the extended duration. This suggests that the components

comprising the Reward Function (RF) must be intentionally crafted to

facilitate the agent’s attainment of the target policy. Experiments

conducted in the Unity game simulator and CARLA reveal the

effectiveness of DRL in real-time path planning and trajectory

tracking, paving the way for real-world implementation. Again,

Edgine is used for model testing and evaluation metrics gathering,

showing the versatility and potential of the system.

Concluding with a critical examination of the explainability of

DRL models, this study recognizes the significance of transparency in

ML and DL, an especially crucial facet of an industry, such as the

 Introduction

8

automotive one, where safety standards take precedence. Our

research aims to investigate the correlation between attention [13] and

interpretability. SHAP is used for interpretability justified by its

robust theoretical underpinnings in game theory ([14], [15]), as well as

its extensive adoption in general contexts [16] and specifically within

our field of study [17]. The SHAP method has indeed been recently

introduced in the field of DRL as a foundational approach for

elucidating the decision-making process of a trained agent in the

specific context of the Gymnasium LongiControl environment [17].

The SHAP framework, which is grounded in game theory, provides a

comprehensive approach for interpreting predictions post-hoc [14].

The proposed framework integrates six established methods, namely

LIME [18], DeepLIFT [19], and Layer-Wise Relevance Propagation

[20], which have been demonstrated to employ identical explanation

models [16]. According to the provided prediction, SHAP assigns an

importance measurement to each feature, enabling a quantitative

explanation of the output generated by any machine learning model

[14]. In the aforementioned study pertaining to the longitudinal

control of a vehicle [17], the researchers computed SHAP values for

various input features. These values were used to determine the

impact of each feature on the chosen action, specifically the degree of

acceleration. The findings are visually presented in a novel RL-SHAP

diagram representation, organized along a timeline.

 Introduction

9

Furthermore, this research focuses on comprehending the

methodologies for analyzing and visualizing attention and SHAP

values within a 2D spatial highway setting. Specifically, we restrict

our analysis to individual frames, disregarding any temporal

correlations, thereby facilitating a clearer interpretation of the complex

relations between SHAP and attention in isolation before advancing

to more intricate (3D) temporal dynamics. Another question that is

being considered is whether the abstract information derived from the

neural model, such as attention and SHAP values, is adequate for

achieving interpretability. Alternatively, it is being debated whether a

more comprehensive domain-specific analysis should be conducted to

ensure a thorough functional verification.

The simulation environment utilized in this study is highway-env

[21]. It incorporates the Bicycle Kinematic Model motion model [22],

which is a linear acceleration model inspired by the Intelligent Driver

Model (IDM) [23]. Additionally, it incorporates a lane-changing

behavior based on the MOBIL model [24]. Although this platform is

less complex compared to widely-used vehicle simulators like CARLA

[25] or SUMO [26], it has a strong track record in evaluating innovative

decision-making control policies based on DRL (e.g., [27], [28], [29]). It

is therefore highly suitable for creating a framework to analyze high-

level decision-making in highway scenarios without any interference

due to excessive environment complexity.

 Introduction

10

In summary, this study endeavors to explore and elucidate the

synergistic potential of edge computing and AI within the automotive

sector. While the diverse subjects addressed - Edgine, offline VAs, and

DRL applications - may appear unrelated, they are intrinsically linked

by the common thread of enhancing automotive intelligence through

edge computing technologies.

Firstly, Edgine serves as the foundational framework that

underpins this exploration. Its adaptable nature and relevance across

various IoT applications, including automotive, provide a practical

demonstration of how edge computing can reshape data processing

and decision-making paradigms in vehicles.

Secondly, the development of offline VAs within vehicles

showcases a specific application of edge computing, addressing

critical concerns such as privacy, security, and real-time

responsiveness. This area not only highlights the practicalities of

implementing edge computing solutions but also delves into the

challenges and opportunities of maintaining high performance in

offline settings, a crucial aspect for automotive applications.

Finally, the application of DRL for the development of an ADF

such as parking, demonstrates the role of edge computing in

facilitating complex AI tasks. By training and deploying these models

on edge devices, this research underscores the feasibility and benefits

of localized, real-time data processing for critical vehicular functions.

 Introduction

11

This is also complemented by an in-depth analysis of Explainable

Artificial Intelligence (XAI) applied to another key ADF such as

highway driving.

Collectively, these topics do not simply represent discrete

investigations; rather, they form a cohesive storyline that emphasizes

the transformative impact of edge computing in the automotive sector.

This thesis, therefore, aims to chart a path for future innovations in

intelligent vehicular systems, demonstrating how these seemingly

diverse elements blend to advance the field of automotive technology.

This is essential to illustrate the multi-faceted influence of edge

computing and AI in the automotive industry, paving the way for

integrated, intelligent vehicular systems of the future.

 Related Work

12

2
Related Work

In this chapter, related works in the field of edge computing are

presented, with a specific focus on its application in the automotive

industry. Our examination begins by analyzing edge computing

engines, which efficiently process vehicle data and enable the

transmission of pertinent information to dedicate cloud

infrastructures. Subsequently, the elaborate and crucial realm of on-

the-edge voice assistants, which are highly relevant to the automotive

sector, is explored. The focus is on the use of DL models to enhance

the functionality of voice assistants and the resulting requirement for

specialized datasets. The exploration further extends to the domain of

motion and path planning, which is critical in the context of AD. The

emphasis moves away from conventional DL models and toward the

use of DRL to tackle the intricacies of motion and path planning for

autonomous agents. The chapter concludes by shifting focus to the

issue of explaining DRL models. Ensuring the explainability of DRL

models becomes crucial since they play a pivotal role in autonomous

 Related Work

13

agent development, especially in industries where strict safety

standards are a mandatory requirement.

2.1 Edge computing engines

Edge devices have gained increasing significance within the IoT

framework [2], serving as integral components in a seamless

computational flow from the field to the cloud. The edge computing

paradigm [7], strategically situating computation, including AI, in

close proximity to data sources [1], strives to minimize latency, energy

consumption, and bandwidth usage.

Given its extensive application potential, major industry players

are actively involved in crafting hardware and software solutions.

Amazon provides the IoT solution Greengrass [30], streamlining local

ML inference on devices using archetypes created, trained, and

optimized in the cloud. AWS IoT Greengrass incorporates the Lambda

runtime [31], a serverless computation service that eliminates the need

for provisioning or managing infrastructure, automatically handling

underlying compute resources with minimum hardware

requirements of a 1 GHz processor frequency and 128 MB of RAM. On

the other hand, Google introduced the Edge Tensor Processing Unit

(TPU) [32] and Cloud IoT Edge [33]. The former, an Application-

Specific Integrated Circuit (ASIC), is tailor-made for AI execution at

the periphery, while the latter serves as an edge computing platform

extending Google Cloud’s data processing and ML capabilities to edge

 Related Work

14

devices. The strategy involves developing AI models in the cloud and

utilizing them on IoT edge cloud devices, leveraging the capabilities

of the Edge TPU hardware accelerator. This hardware can also run

TensorFlow Lite [34], a platform simplifying the conversion of

TensorFlow [35] Neural Network (NN) models into streamlined

versions suitable for edge devices. A more compact TensorFlow Lite

variant, TensorFlow Lite Micro, is specifically designed for running

ML models on devices with limited memory such as Digital Signal

Processors (DSPs) and microcontrollers [36]. Also, QKeras [37] allows

to transform Keras models [38] to their quantized version, thus

reducing inference time and resource consumption. IBM developed

Edge Application Manager [39], an intelligent, secure, and flexible

platform providing a management tool for edge processing. This

autonomous solution allows a single administrator to handle the scale,

variability, and frequency of application environment changes across

endpoints concurrently. Edge endpoints operate on Red Hat

OpenShift containers [40], supporting AI tools for DL, voice, and

image recognition, as well as video and acoustics analysis. Microsoft

contributes Azure IoT Edge [41], enabling the distribution of cloud

workloads to run on IoT peripheral devices. Local processing reduces

latency, with the option to utilize Microsoft’s Project Brainwave [42],

a DL platform for real-time AI inference in both the cloud and at the

edge. Azure device management ensures functionality even in

conditions of poor internet connection, automatically synchronizing

device status upon reconnection. IoT Edge supports various

 Related Work

15

programming languages, including C, C#, Java, Node.js, and Python.

Microsoft also launched EdgeML [43], a suite of ML algorithms for

deployment in resource-constrained environments, with published

results showcasing its effectiveness for training in conditions of

limited computing power [44], [45], [46], [47], [48], [49].

In addressing cross-platform support, computational resource

allocation algorithms were devised to enhance Vehicular Networks’

performance [50], a crucial IoT application. The system uses the k-

Nearest Neighbors (kNN) algorithm for platform selection (cloud

computing, mobile edge computing, or local computing) and

Reinforcement Learning (RL) for resource allocation, resulting in a

significant 80% reduction in latency compared to basic algorithms. To

tackle IoT device energy consumption [51], virtualization, particularly

container-based virtualization, is suggested, addressing the multi-

platform and multi-OS challenges [52]. A performance evaluation

study explores the strengths and weaknesses of various low-power

devices when handling container-virtualized instances versus native

executions. Given its adaptability and close connection to IoT devices,

edge computing presents diverse use cases. For example, in [53], a

modular climatic enclosure through IoT device virtualization,

enabling the application of common semantic rules for various users

is proposed. Similarly, edge computing is employed in a smart IoT-

based firefighting method [54], air pollution monitoring [55], edge

video surveillance [56], and an IoT-based manufacturing context [57].

 Related Work

16

Table 1 summarizes the above-presented solutions and their main

application fields.

Table 1: Summary of Edge Computing solutions

Provider Solution Name Key Features Focus Area

Amazon IoT Greengrass

Local ML inference,
Lambda runtime for
serverless computation,
minimal hardware
requirements

Cloud-
integrated
edge
computing

Google
Edge TPU,
Cloud IoT Edge

ASIC for AI execution,
TensorFlow Lite for
model optimization,
extends cloud ML to
edge devices

AI execution
and model
optimization
at the edge

IBM
Edge
Application
Manager

Intelligent, secure
management platform
for edge processing,
supports DL tools

Edge
processing and
management

Microsoft
Azure IoT Edge,
EdgeML

Local processing to
reduce latency,
supports real-time AI
inference, algorithms
for resource-limited
environments

Cloud
workload
distribution
and AI
inference

Research
studies

Various

kNN for platform
selection, RL for
resource allocation,
container-based
virtualization for cross-
platform support

Vehicular
Networks, IoT
smart
applications

 Related Work

17

In this diverse landscape, the Edgine framework emerges as a

pivotal innovation. Edgine is an open-source, platform-independent

framework designed to streamline the development of edge

computing applications across various domains. It distinguishes itself

by its focus on abstraction and portability, aiming to facilitate code

reuse and knowledge transfer across different application scenarios.

Unlike vendor-specific solutions, Edgine's architecture is built to be

cloud and edge-provider agnostic, enabling seamless integration in a

wide range of IoT environments. This framework is not just a mere

tool for application development; it represents a paradigm shift in

how edge computing applications are conceptualized and executed.

The detailed exposition of Edgine and its comprehensive capabilities

will be further elaborated in Section 3.2.

2.2 On-the-edge voice assistants

This section delves into the landscape of speech processing, with a

focus on the Italian language, designated as the target language for

our system; and on English, which serves as the benchmark due to its

extensive representation in scientific literature and availability in

commercial products. All the presented solutions are then

summarized in Table 2.

 Related Work

18

2.2.1 Datasets

The exploration into training the VA involved delving into the domain

of open-source AI resources. This choice was motivated by the costs

associated with proprietary datasets, often reaching tens of thousands

of dollars. Italian open-source datasets, unfortunately, are somewhat

limited, offering only a modest amount of speech hours. An emerging

approach comes in the form of Mozilla Common Voice, a crowd-

sourced, open-source, multi-language dataset [58]. Contributors

participate by recording their voices through sentences provided on

the Common Voice website [59]. The validation process employs a

voting system, with each record subjected to assessment by three

users. The Italian version of this dataset presently stands at 310

validated hours in MP3 format, boasting a mono configuration and a

sample rate of 48 kHz. Manifest files, structured in Tab-Separated

Values (TSV) format, are available for training, validation, test phases,

and additional categories. The M-AILABS dataset [60], a freely usable

multi-language resource, taps into LibriVox and Project Gutenberg

[61], [62]. It is segmented by speaker name and sex, making it

particularly suitable for tasks requiring a single speaker, such as

Speech Synthesis. The Italian subset features two voices - male and

female - totaling 18 hours of speech. Recordings, in WAV format with

a mono configuration, are set at a 16 kHz sample rate. Notably, the

texts originate from literature classics published between 1884 and

1964, imbuing them with a sometimes courtly and emphatic

pronunciation. Manifest files are available in CSV and JSON formats.

 Related Work

19

Facebook AI contributes to the dataset repertoire with Multilingual

LibriSpeech (MLS), an open-source collection spanning eight

languages, including Italian [63]. Drawing from LibriVox audiobooks,

MLS, akin to M-AILABS, boasts a larger scale. The Italian segment,

enriched with 28 different speakers, accumulates to 279 hours of

speech.

2.2.2 Models and Toolkits

The construction of speech recognition models is inherently tied to

datasets and facilitated through speech toolkits. Recent developments

have ushered in Italian language-enabled toolkits, some of which offer

pre-trained models suitable for fine-tuning in specific applications.

Vosk [64] emerges as a distinct speech recognition toolkit

characterized by a substantial vocabulary transcription,

reconfigurable vocabulary, and user-friendly installation. Notably, it

provides a compact Italian model compatible with Raspberry Pi and

Android devices. Mozilla DeepSpeech [65] leans on the extensive

Common Voice Italian dataset for Automatic Speech Recognition

(ASR), utilizing end-to-end DL with a Recurrent Neural Network

(RNN) core. Facebook AI Research contributes wav2letter [66], an ASR

tool accompanied by pre-trained models, including an Italian variant

derived from Multilingual LibriSpeech [63]. NeMo by NVIDIA [67]

extends beyond ASR, supporting Voice Activity Detection (VAD),

Keyword Spotting (KWS), and Text to Speech (TTS) in a

comprehensive package. Comparative assessments position

 Related Work

20

NVIDIA’s NeMo toolkit with a slight edge [68]. Additionally, a DL-

based speech recognition system is presented in [69], featuring a

semantic communication model extracting text-related semantic

features through a Convolutional Neural Network (CNN) and RNN-

based encoder. These semantic features are then converted to text

information through a decoder, followed by speech synthesis to

regenerate the speech signals. Wav2vec 2.0 [70] introduces a

framework for self-supervised learning of speech representations,

achieving commendable Word Error Rate (WER) on the Librispeech

dataset (4.8/8.2 on test-clean/other) [71].

Given the modest dimensions of Italian datasets compared to their

English counterparts, especially in multi-speaker scenarios, a viable

strategy involves leveraging transfer learning [72], [73]. Mozilla

DeepSpeech offers a transfer learning version fine-tuned from the

Common Voice English dataset to various languages, including

Italian. Applications of fine-tuning, as demonstrated in [74] with the

NeMo toolkit, reveal promising outcomes. Indeed, the QuartzNet

15x5 model, fine-tuned with Common Voice Spanish and Russian

datasets, outperforms its trained-from-scratch counterparts.

Challenges, however, lie in the demanding computing resources

essential for the training phase, a subject addressed in [75] along with

results achieved by the QuartzNet model within the NeMo

framework.

 Related Work

21

Following the speech recognition stage, Natural Language

Understanding (NLU) takes center stage in extracting meaning from

the transcribed text. Established solutions requiring an Internet

connection, such as Google Dialogflow [76], Amazon Lex [77],

Facebook wit.ai [78], and Microsoft Bot Framework [79], coexist with

off-line, open-source alternatives. Rasa [80], a Python module, stands

out for its capability in ML-based dialogue management and language

understanding. It provides pre-defined pipelines, including the

integration of spaCy [81], an open-source Natural Language

Processing (NLP) tool boasting pre-trained models in 64 languages.

This combination, supported by Rasa, facilitates offline NLU, with an

available default pipeline for training models from scratch, catering to

domain-specific applications. DeepPavlov [82], another open-source

library in Python, specializes in developing dialogue agents. It

features three models: intent classification, entity recognition, and

spelling correction. While resembling Rasa in its pipeline-based

approach, it exhibits less customizability. Recent developments

showcase also end-to-end solutions for ASR and NLU. An English,

transformer-based [13] model for Spoken Language Understanding

(SLU) is proposed in [83], achieving impressive accuracy on the Fluent

Speech Commands dataset [84]. Snips [85], a dedicated SLU platform

for IoT microprocessors, stands out for its offline functionality with

low resource consumption. However, its recent transition to private

ownership has rendered the code non-public and no longer open-

source. Paval [86] introduces a virtual personal assistant focusing on

 Related Work

22

suggesting local points of interest and services. In a domain-specific

context, Paval outperforms general-purpose systems like Google

Assistant, Apple Siri, and Microsoft Cortana, leveraging not only NLP

but also semantic technologies and external knowledge for geo-

located data retrieval.

The final stage of building a VA involves speech synthesis,

commonly known as TTS. The section presents two fundamental types

of solutions: a two-stage pipeline and an end-to-end approach. The

two-stage pipeline involves generating a spectrogram (mel or Hz

scale) initially, followed by a voice-encoder (vocoder) producing

audio based on the spectrogram. Numerous models adopting this

approach are available, including the renowned Tacotron2 [87], which

maps characters to mel-scale spectrograms through a recurrent

sequence-to-sequence feature prediction network. Tacotron2 is the

most well-known spectrogram generator, and numerous other

contributors have adopted its implementation [88], [89]. Notable

vocoders include glow-based (WaveGlow [90], SqueezeWave [91],

UniGlow [92]) and Generative Adversarial Network (GAN)

architectures (MelGAN [93], HiFiGAN [94]). On the contrary, the end-

to-end approaches utilize a single model to generate audio directly

from the text. Several models exemplifying this approach are available

in the literature. FastPitchHifiGAN [95] combines a spectrogram

generator (FastPitch [96]) and the HiFiGAN vocoder for waveform

generation from the text. Similarly, FastSpeech2HiFiGAN [97]

 Related Work

23

combines the FastSpeech2 [98] spectrogram generator and HiFiGAN

into a unified model, trained end-to-end. All the TTS models

discussed, including those employing the two-stage pipeline and end-

to-end approaches, are accessible within the NeMo toolkit. Additional

end-to-end TTS systems, such as NaturalSpeech [99] and FastDiff-TTS

[100], are introduced. NaturalSpeech exploits a variational

autoencoder for direct waveform generation, achieving human-level

performance on the LJ Speech dataset [101]. FastDiff-TTS stands out

for both high-quality speech synthesis and impressive inference

speed, enabling real-time speech synthesis. Although the source code

for these end-to-end TTS solutions is yet to be released officially, their

potential in enhancing the VA experience is acknowledged.

Table 2: Summary of state-of-the-art speech-processing datasets, models,
NLU solutions, and TTS solutions

Category Name Description Specifics /
Highlights

Datasets

Mozilla
Common Voice

Crowdsourced,
multi-language
dataset

Italian version: 310
hours, 48 kHz,
MP3

M-AILABS

Multi-language
dataset, using
LibriVox and
Project Gutenberg

Italian: 18 hours, 16
kHz, WAV format

Multilingual
LibriSpeech

Open-source
collection, multi-
language

Italian: 279 hours,
diverse speakers

 Related Work

24

Models &
Toolkits

Vosk

Speech recognition
toolkit with
reconfigurable
vocabulary

Compact Italian
model, Raspberry
Pi/Android
compatible

Mozilla
DeepSpeech

End-to-end DL
with RNN for ASR

Utilizes Common
Voice Italian
dataset, appears to
be no longer
maintained

wav2letter

ASR tool by
Facebook AI with
pre-trained models
available in many
languages

Italian variant
available

NeMo
NVIDIA’s toolkit
for ASR, VAD,
KWS, and TTS

Comparative edge
in performance

Wav2vec 2.0

Self-supervised
learning
framework for
speech
representations

Low WER on
Librispeech dataset

NLU
Solutions

Rasa

ML-based dialogue
management and
language
understanding in
Python

Offline
functionality, high
versatility,
supports spaCy

DeepPavlov
Python library for
dialogue agents

Features intent
classification,
entity recognition,
and spelling
correction

 Related Work

25

TTS
Solutions

Tacotron2

Two-stage pipeline
model mapping
characters to mel-
scale spectrograms
then to audio

Widely adopted
spectrogram
generator

FastPitchHifiGA
N

Combines
FastPitch
spectrogram
generator with
HiFiGAN vocoder

End-to-end model
for text to
waveform
generation

FastSpeech2HiFi
GAN

Combines
FastSpeech2 with
HiFiGAN into a
single model

Trained end-to-end

NaturalSpeech

Utilizes a
variational
autoencoder for
direct waveform
generation

Human-level
performance on LJ
Speech dataset

FastDiff-TTS

Notable for high-
quality speech
synthesis and
impressive
inference speed

Enables real-time
speech synthesis

2.3 DRL for motion and path planning

In literature, numerous techniques are proposed to tackle the

complexities of the motion and path planning domain. Global

planning, a pivotal aspect, witnesses the influence of graph-search-

based methodologies. Algorithms like Dijkstra [102], [103], A* [104],

 Related Work

26

Hybrid A* [105], and State Lattice [106] play a crucial role by mapping

the state space of vehicles and other objects in the scene onto an

occupancy grid. Sampling-based suboptimal planners, including the

renowned Probabilistic Roadmap Method (PRM) [107] and the

Rapidly-exploring Random Tree (RRT) [108], take a different

approach by randomly sampling the configuration or state space,

seeking connectivity [109]. To overcome the sub-optimality of RTT,

[110] hybridized it with Ant Colony Systems (ACS) algorithms,

resulting in good performance and fast convergence. Curve

interpolation techniques, exemplified by Bezier [111] and Splines

[112], as well as those inspired by biological systems such as genetic

algorithms (GA) [113], ant colony algorithms (ACO) [114], and particle

swarm algorithms [115], have gained prominence due to their rapid

convergence and robust characteristics.

For what concerns local path planning, the Artificial Potential

Field (APF) algorithm, introduced by Khatib [116], stands as a

pioneering solution. By combining continuous attractive fields related

to goal-reaching tasks and repulsive fields generated by obstacles, the

APF algorithm navigates a vehicle through unknown environments.

Also, variations of the APF algorithm have emerged, including

methods for local minimum avoidance by anticipating future

movements to preemptively bypass obstacles [117] and the

incorporation of techniques like Simulated Annealing [118] and Fuzzy

Logic [119]. Several algorithms have been presented to handle

 Related Work

27

dynamic obstacles. One such example is the dynamic window

approach with the virtual manipulators (DWV) technique [120]. The

DWV method produces modified candidate paths that are non-

straight and non-arc by predicting the location of dynamic obstacles.

Turning our attention to the DRL paradigm, it is first necessary to

introduce RL. RL, as a subset of Machine Learning (ML), takes center

stage in this context. RL involves an agent learning a policy through

trial and error, discerning which actions to take in diverse states. The

learning process unfolds in an environment providing positive and/or

negative rewards for each decision taken by the agent. Framed as the

optimal control of a Markov Decision Process, RL boasts two primary

approaches: value-based algorithms, focused on finding the action

with the maximum expected overall value, and policy-based

algorithms, aimed at determining the maximum reward policy [121].

The optimal action-value function 𝑄𝑄∗ = max
𝜋𝜋

𝑄𝑄𝜋𝜋(𝑠𝑠) satisfies the

Bellman Optimality Equation: 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼{max
𝑎𝑎′∈𝐴𝐴

[𝑅𝑅(𝑠𝑠,𝑎𝑎) +

 𝛾𝛾𝑄𝑄∗(𝑠𝑠′,𝑎𝑎′)]}, where s is a state, a an action, the apex denotes the next

step, R is the reward and γ the discount factor [122]. The Q-learning

algorithm iteratively calculates [123] Q* through the application of a

sampling version on a batch of collected experience. To tackle the

challenge of continuous state spaces, the Deep Q-Network (DQN)

algorithm [124] uses a NN model to represent the action-value

function Q. Additional algorithms, including Double Deep Q-

Network (DDQN) [125], Dueling DQN [126], and Dueling Double

 Related Work

28

Deep Q-Network (D3QN) [127], have emerged as pivotal solutions,

contributing significantly to overcoming challenges related to

convergence and stability.

In dynamic path planning within unknown environments, we

witness a significant paradigm shift. The application of the DQN

algorithm [128], a cornerstone in DRL, allows for learning successful

policies directly from high-dimensional sensory inputs through end-

to-end RL. In [129], a DRL agent is trained in a dynamic unknown

environment using the DDQN method [130] and a CNN as a

backbone, allowing it to reach the targeted position. In [131], the

asynchronous advantage actor-critic (A3C) method [132] is utilized for

training a four-wheeled rescue robot on difficult terrain within an

urban environment.

Combining global and local planning strategies emerges as a

promising approach for achieving superior overall performance.

PRM-RL [133], a hierarchical method that merges sampling-based

path planning with RL, exemplifies the power of combining short-

range, point-to-point navigation policies learned by RL agents with

the guidance of PRM planning for long-range navigation. Similarly,

the integration of RRT and a DRL agent (RL-RRT) presented in [134]

for long-range planning demonstrates the fusion of planning and

control functionalities. The agent serves as the local planner during

planning and as the controller during execution. The system shows its

capability of being transferable to previously unobserved

 Related Work

29

experimental environments, thus making RL-RRT faster by replacing

expensive computations with simple neural network inference. In

[135], a new path planner (PRM+TD3) that combines the Twin

Delayed Deep Deterministic policy gradients (TD3) DRL algorithm

with the RPM global path planning method is presented. The

proposed method demonstrates promising results in terms of both

development efficiency and model generalization.

The integration of DRL in various applications extends its reach to

autonomous underwater vehicles (AUVs) and unmanned aerial

vehicles (UAVs). Techniques like DRL path planning based on DDQN

prove effective in enhancing the planning of autonomous underwater

vehicles navigating through ocean currents [136]. Similarly, the

application of DDQN for path planning in UAVs, particularly those

leveraging edge servers for computing tasks [137], showcases the

adaptability of DRL across diverse scenarios.

2.3.1 Driving simulators

Simulation tools have become integral in testing and refining

complete DRL pipelines before deploying learned agents in real-world

scenarios. This is even more important considering AD contexts, in

which realism and availability of real cars’ sensors is key to simulate

ADFs. Highway-env [138], implemented in Python and relying on the

Gymnasium toolkit [139], offers a collection of open-source

environments for autonomous driving and tactical decision-making

 Related Work

30

tasks. The environments are presented in a bird’s-eye view and serve

as a robust platform for the development, deployment, testing, and

comparison of RL methods and models. Stable-Baselines 3 [140], [141]

is employed as the library, providing implementation support for

state-of-the-art DRL algorithms. Another notable simulation tool is

Unity, a widely adopted game engine, cross-platform in nature, that

enables the streamlined development of games and simulations,

applied across multiple industrial sectors [142]. It can be utilized with

ML-Agents [143], an open-source toolkit that enables the usage of

Unity as a simulation setting to fashion and educate self-governing

agents. ML-Agents also offers a Python Application Programming

Interface (API) for the implementation of main RL algorithms, which

is based on the PyTorch library. Finally, CARLA [25] is an open-source

simulator specifically designed for developing, testing, and evaluating

AD systems within a realistic urban environment. CARLA stands out

for its feature-rich framework, incorporating physically accurate

vehicle models, highly detailed maps reflecting real-world road

networks, accurate traffic flow, infrastructure information, weather

conditions, and pedestrian simulation. The framework provides a

comprehensive set of APIs and ancillary tools to facilitate the

development and evaluation of autonomous systems.

These simulation tools serve as invaluable assets in bridging the

gap between theoretical developments and practical implementations,

 Related Work

31

ensuring the robustness and efficacy of autonomous systems in

diverse and dynamic environments.

A summary of the comparison between the simulators presented

is shown in Table 3.

Table 3: Driving simulators summary

Simulator Features Strengths Application
Focus

Highway-env

Open-source
environments
for AD and
tactical decision-
making, bird’s-
eye view

Robust platform
for RL methods
and model
testing

Development
and testing of
ADFs and
tactical decision-
making tasks

Unity 3D

Cross-platform
game engine for
simulation
development,
applied in
multiple sectors

Versatile,
widely adopted,
allows for
detailed
customization

Development of
games and
simulations,
including
automotive
applications

CARLA

Realistic urban
environment
simulator for
AD systems

Detailed maps,
realistic
simulated
sensors,
comprehensive
simulation of
traffic and
pedestrians

Developing,
testing, and
evaluating
ADFs in a
realistic urban
setting

 Related Work

32

2.4 DRL models explainability

The AD field poses a unique set of challenges, that require

sophisticated decision-making abilities in constantly changing and

highly uncertain environments. In our pursuit to attain elevated stages

of automation, it is crucial to establish effective strategies for high-

level decision-making [144]. The task of driving is appropriately

formalized as a Partially Observable Markov Decision Process

(POMDP), while carefully taking into account the stochastic nature of

various road actors and the inherent uncertainties associated with

perception systems [145].

The key component lying at the heart of decision-making within

behavioral planning is the prediction of trajectory. Traditional

approaches to trajectory prediction mainly focus on spatial interaction

modeling, with landmark models such as the Social Force model [146].

This model combines attractive forces from a goal vehicle with

repulsive forces generated by other vehicles. Nevertheless, the

trajectory prediction landscape is evolving, with attention-based

architectures trained through DRL steadily increasing in popularity.

Pioneering research, exemplified by [28], [147], and [148], highlights

the advantages of such architectures in dealing with varying numbers

of nearby vehicles, ensuring invariance to the chosen order of feature

representation, and inherently accommodating interactions between

the Ego Vehicle (EV) and other traffic participants [149]. Recent

advancements, such as the Hierarchical Spatio-Temporal Attention

 Related Work

33

architecture (HSTA) [150], introduce innovative elements by

incorporating spatial interactions with varying weights and

considering temporal interactions across multiple time steps

involving all agents. The work of [28], which integrates attention

modules into a hierarchical control structure of a D3QN (D3QN-DA),

stands out for achieving superior safety rates and average exploration

distances. Concurrently, [27] presents an analogous hierarchical

control framework. In this setup, the upper-level is dedicated to

managing driving decisions in a highway environment, while the

lower-level governs speed and acceleration. By integrating the D3QN

DRL algorithm within this hierarchical framework the convergence

rate and control performance of the highway decision-making

strategy are significantly improved.

The field of XAI comes into play with [151], providing the

foundational principles of interpretable data science for decision-

making. To visualize feature interactions and importance, model-

agnostic approaches like LIME [18], SHAP [14], partial dependence

plots (PDP) [152], and permutation feature importance scores are

widely applied and recognized in recent reviews [16], [153].

Acknowledging the challenges in producing highly-performing

white-box models, particularly in domains like computer vision and

natural language processing, [16] highlights the persistent gap in

performance against DL models. Furthermore, [154] draws attention

to the several open research points in XAI, citing challenges ranging

 Related Work

34

from defining explanations to general interpretation pitfalls. In this

expansive field, [155] warns against typical errors in interpreting ML

models, such as utilizing interpretation techniques inappropriately or

drawing unwarranted causal conclusions. Within this broad

landscape, SHAP emerges because of the ability to analyze individual

predictions by quantifying the contribution of each feature to the

overall prediction. Rooted in the concept of Shapley values [156] for

model feature influence scoring, SHAP offers desirable properties

such as consistency, missingness, and local accuracy, albeit with a high

computational cost. It operates as an additive feature attribution

method, meaning that the sum of SHAP values aligns with the model’s

prediction. This approach adheres to efficiency properties,

guaranteeing a fair distribution of effects (i.e., the prediction) among

the features.

 Edgine

35

3
Edgine

The idea of Edgine arose from the necessity for a flexible and

adaptable framework that facilitates the IoT paradigm across diverse

application domains, ranging from agriculture to sports to

automotive. To achieve this goal, three essential components are

necessary:

• An edge device that collects environmental data through

sensors;

• An execution engine that operates on the edge, interprets and

processes the data captured by the device, and subsequently

sends it to the cloud in a structured manner;

• A cloud server that stores the data and can be queried for

visualizing and extrapolating information.

This chapter primarily delves into the architecture of the cloud

server (referred to as Measurify [157]), followed by the presentation of

 Edgine

36

the execution engine, Edgine. Then, this study demonstrates various

real-world use cases of the system utilizing different edge devices,

highlighting the user-friendly design that sets apart this end-to-end

system, as well as its versatility. Finally, some users’ feedback is

reported, concluding presenting the ongoing work on new features for

Edgine.

3.1 Measurify

Measurify is a cloud-based platform that has been developed to

effectively manage intelligent objects inside IoT ecosystems. It is

characterized by its abstract nature and its focus on measurement-

oriented functionalities. Measurify employs a methodology wherein it

represents these objects as online resources, making them accessible

through APIs that adhere to the principles of Representational State

Transfer (REST) architecture. The process involves the utilization of a

platform-agnostic HTTPS interface to enable remote access to data and

resources, facilitating the creation of apps that may effectively utilize

these entities.

Table 4 presents a comprehensive overview of the primary resources

employed by Measurify. Further information can be obtained from

[157], where the Measurify framework is presented.

 Edgine

37

Table 4: Outlook of the main Measurify resources [9]

Element Description

Measurement
Value of a feature measured by a
device for a specific thing

Thing
A generic object target of a
measurement (I.e., within which a
measurement is performed)

Device
A sensor that provides
measurements about a thing

Feature
A physical dimension measured by
a device

Script

A JSON string that contains
information on how to manipulate,
store, and transmit streams of
measurements coming from
devices. This is the program to be
executed by a field device

Tag
Labels attachable to resources, to
better specify them

Users
Users (with roles and rights) that
have access to the resources of the
current application

 Edgine

38

In addition to gathering all the data transmitted from the field,

Measurify also offers developers a remote programming interface for

configuring a deployed field execution engine. By providing its

credentials, each edge engine can access a specific tenant area within

a Measurify cloud installation. The schematic representation of the

edge-cloud system is presented in Figure 2. This picture illustrates the

arrangement and progression of both the configuration and execution

stages of a typical IoT ecosystem application, which is facilitated by

the Measurify platform. During the configuration phase, the

developer establishes the specifications for various elements such as

things, devices, features, user roles, and permissions, as well as scripts

that are relevant to the new application. During the execution phase,

the devices gather, analyze, and transmit measurements to the cloud,

which may then be accessed and queried by authorized users. The two

phases are not temporally distinct, as a developer can include new

elements such as features, scripts, and other components throughout

the execution phase.

 Edgine

39

Figure 2: Measurify cloud API schematic [9]

3.2 Edgine

Edgine is a cross-platform edge system that offers the capability to

retrieve scripts from cloud-based sources and execute operations

locally (Figure 3). From the standpoint of edge-to-cloud continuum

computing, the system possesses the capability of being configured

remotely, encompassing both settings and executable scripts.

Figure 3: Block diagram of Edgine in the IoT ecosystem [158]

 Edgine

40

Edgine relies on Measurify for its cloud infrastructure. Measurify

not only gathers all the data transmitted from the field by an Edgine

instance, but it also offers developers a remote programming interface

for configuring a deployed Edgine. The runtime operation of Edgine

includes two distinct components: an initialization phase and a

continuous loop phase. At the beginning of the start-up process,

Edgine establishes a connection with the API to retrieve its

description. This description includes a comprehensive list of scripts

that are to be executed, as well as the corresponding parameter values

required for its configuration. During the iteration, Edgine

sequentially executes each assigned script. Every device that is linked

to a Measurify installation is characterized by a JSON descriptive

scheme that encompasses the features and scripts fields. The former

refers to the enumeration of measurement kinds, as stated in

Measurify, which serves to ensure the integrity of input. On the other

hand, the latter serves as a descriptor for the computing work that is

necessary, as depicted in Figure 4. Specifically, the code field of the

system describes the executable script, which consists of a series of

functions (instructions) that the Edgine use to process its raw data

before transmitting it to the cloud. This processing occurs in a

continuous loop. Every instruction is implemented on its input data

stream, which consists of the output from the preceding instruction.

The initial phase of the sequence is employed to process the raw input

data. The instructions depicted in Figure 4 pertain to the calculation of

 Edgine

41

the available ROM in GB, its subsequent conversion into MB, and the

ultimate dispatch to Measurify.

Figure 4: JSON description of a script [158]

There are two potential methods for uploading data to the cloud:

continuous uploading, where data is transmitted as soon as it is

processed, or batch uploading, where a specified number of

measurements are accumulated before being sent in bulk. This second

option is particularly useful in the absence of internet connection or if

the embedded system on which Edgine is installed is required to

consume as little energy as possible.

The existing operation set is documented in Table 5. Table 6

presents a synthesis of the HTTP requests made during the two

distinct phases of execution, namely authentication and script

download (performed at start-up), and the subsequent infinite loop

for uploading measurements. It is worth to highlight that this process

is entirely automatically performed by Edgine and does not require

any user intervention.

 Edgine

42

Table 5: Instructions currently available in Edgine [9]

Instruction Description

send
Sends to the API all elements of the
data stream

map
A new data stream is created by
performing a simple arithmetic
operation between two operands

max/min

A new data stream is created
containing only the min/max value
among the values in the input
stream

window / slidingWindow

A new data stream is created by
applying a two-operand function
on an accumulator, initialized to
the value of the second argument,
and on each input element, for a
number of values indicated by the
size of the window/slidingWindow

filter

A new data stream is created
letting using only the elements of
its input stream that have a value
within a specified range

average / median / stdDeviation

A new data stream is created by
taking the
average/median/stdDeviation of a
specified number of samples in its
input stream

 Edgine

43

Table 6: Edgine’s HTTPS requests [9]

Request Subject Description

POST Login credentials
JWT is received from
the cloud

GET Device description
Scripts are retrieved
from the cloud

POST Measurements
Edge-processed data
are shipped the cloud

Another significant advancement pertained to the communication

interface, which was intentionally designed to be highly abstracted

from the underlying hardware to enhance portability. To facilitate the

transition of developers from Windows, Linux, or macOS platforms to

Arduino, classes have been developed that incorporate macros. The

distinction between the two types of platforms pertains to the nature

of their Internet connectivity. The Arduino system facilitates

automatic connection to a specified Wi-Fi network as indicated in the

code and is additionally programmed to initiate a reconnection

process in the event of signal disruption. In contrast, network

connection (including reconnection) on PC-type devices is not

automated, as users can utilize the User Interface (UI) to manually

select a network of their choice. In addition, the automation of the

 Edgine

44

connection necessitates distinct implementations for various

operating systems, thereby introducing complexity to the structure of

Edgine. The transmission of data to the cloud is facilitated by a thread

that is created during each cycle, ensuring that the edge device is not

obstructed by communication tasks. Furthermore, regardless of the

specific platform being used, a thread queue is utilized to enqueue

threads when the network connection is unavailable. This ensures that

data delivery remains accurate even under such circumstances.

By leveraging switchable network connection classes, the Edgine

platform has been successfully implemented on major PC operating

systems, namely Windows, Linux, and macOS. Additionally, Edgine

has been extended to support various Arduino and Arduino-style

boards, including Arduino MKR WiFi 1010, Arduino UNO WiFi

Rev.2, Arduino NANO 33 IoT, Arduino NANO 33 BLE, Arduino MKR

VIDOR 4000 WiFi, Espressif ESP32-WROVER, and Espressif ESP8266.

Figure 5 illustrates the schematic structure of the overall end-to-

end system architecture of the Edgine-Measurify. At a broad level, the

image depicts a sequence of commands flowing from the cloud to the

edge, representing the downstream direction. Conversely,

measurements are observed to flow from the edge to the cloud,

representing the upstream direction. A running example is provided

below.

 Edgine

45

A plant (Thing) is monitored through a humidity Sensor. Data are

collected through an embedded Board in which Edgine (Edge runtime)

is running. Measurements are shipped to the Measurify server whenever

an internet connection is available. The stored information can be

consulted and processed by front-end Developers (e.g., statistics can be

collected and visualized) and is also available to the embedded board

which can use it exploiting scripts. Scripts allow to perform operations

on the previously collected measurements. For instance, if the

humidity average level falls below a certain threshold, the water

pump (Actuator) can be enabled to water the plant.

Figure 5: High-level Edgine-Measurify system architecture [9]

 Edgine

46

3.3 Experiments

The purpose of this section is to evaluate the capability of the

presented system to meet various requirements in diverse application

contexts. To achieve this objective, a comprehensive analysis of six

practical applications utilizing the Edgine-Measurify framework is

presented. These applications span across three significant domains,

namely business, environment, and sport. The applications have been

developed with the help of third-year students enrolled in an

Electronic and Information Technology Engineering BSc program,

working on their final thesis, who focused on the data collection

aspect. This underscores the system’s inherent simplicity, which can

be leveraged for practical applications even by technicians lacking

specialized professional expertise.

3.3.1 Industrial use-cases

In the following subsection, two scenarios illustrating the

implementation of Edgine inside the realm of industries are

delineated. The advantages obtained include real-time performance

and the capability to operate offline (e.g., edge devices deployed in

remote locations with inconsistent connectivity). These advantages

are in contrast to the conventional data flows of cloud computing

[159].

 Edgine

47

3.3.1.1 Shock monitoring

The initial application pertains to the implementation of an embedded

system designed to assess shocks and bumps. The present study

focuses on the application of logistics and transportation industries,

where ensuring the preservation of goods during shipment is of

utmost importance. The sequential processes involved in the

implementation of the proposed system are illustrated in Figure 6.

Figure 6: Stages of the shock monitoring system for the transport of goods
[9]

From a developer’s standpoint, the system comprises two unique

phases: the shock monitoring phase, where data from sensors is

collected and analyzed, and the package integrity check phase, which

entails examining the recorded history of detected bumps stored in a

cloud database.

 Edgine

48

The deployed edge system comprises a SparkFun 9DoF IMU

Breakout-LSM9DS1 sensor, which incorporates a 3-axis accelerometer,

a 3-axis gyroscope, and a 3-axis magnetometer. The sensor is attached

to an Arduino MKR WiFi 1010 board, which is equipped with the

MKR MEM Shield to expand the device’s memory capacity, enabling

the storage of data locally in the case of connectivity issues with the

cloud, which is very likely considering that the vehicle carrying the

package will almost always be moving. The LSM9DS1 sensor is

interfaced to the board via the Inter-Integrated Circuit (I2C) serial

protocol, while the MKR MEM Shield is connected through Serial

Peripheral Interface (SPI).

Based on the workflow outlined in the preceding section, the

system autonomously initiates a connection to a designated Wi-Fi

network and authenticates itself on Measurify using a username,

password, and tenant credentials. Subsequently, relevant data

pertaining to the object being measured is obtained from the cloud via

a GET request, accompanied by executable scripts. After being stored

locally, measurements are transmitted to the server, depending on the

availability of network connectivity. The login and information

retrieval phases are executed singularly within the initialization

process, specifically within the Arduino setup function. In contrast,

the cyclic execution of the Arduino loop function facilitates the

processing of sensor data and the subsequent transmission of the

results to the cloud. The code for monitoring shocks is derived from a

 Edgine

49

previous study ([160]), which employed a two-dimensional shock

detection method in the context of vehicle crashes to determine the

precise location of impact on the car. A three-dimensional approach to

suit the transports specific use-case had been implemented. If the size

of the shock surpasses the predetermined threshold, referred to as

sensitivity, the shock value is transmitted to Measurify as an

indication of a collision having taken place. The executable script

utilizes the filter operation described in Table 5 to choose values that

exceed a specified threshold. The position of the point of impact is also

calculated and transmitted to Measurify to give a clearer idea about

the extent of possible damage.

The visualization of data for the purpose of online package

integrity verification involves the creation of a web page that

incorporates a table displaying the most recent five occurrences of

package effects together with their corresponding locations. An

illustrative sample can be observed in Table 7. In order to enhance

comprehension, a set of six images is presented, with each image

depicting a different facet of the packaging (Figure 7). The graphic

representation illustrates the magnitude of the impact by the

utilization of a color scale consisting of four distinct keys: grey to

indicate the absence of impact, green to represent a minor disturbance,

yellow to signify a moderate jolt, and red to indicate the detection of a

significant shock.

 Edgine

50

Table 7: Report of the five most recent shocks [9]

Time Magnitude Angle XY Angle YZ Angle XZ

12/09/2021,
16:45:50

3 251 230 254

12/09/2021,
16:45:50

6 270 185 268

12/09/2021,
16:45:50

3 92 353 252

12/09/2021,
16:45:50

3 93 341 260

12/09/2021,
16:45:50

4 67 287 277

Figure 7: Graphical interface of the shock monitoring web page [9]

3.3.1.2 Tank level monitoring

The second application pertains to a monitoring system designed to

measure the quantity of rainwater in a tank utilized as a storage

facility for an aqueduct. The embedded system is dependent on the

utilization of an Arduino MKR GSM 1400 board in conjunction with

an HC-SR04 ultrasonic sensor. In addition, the program has been

enhanced by the incorporation of an Arduino MKR SD Proto Shield,

 Edgine

51

thereby enabling the expansion of memory capacity. This

augmentation facilitates the storage of data samples as a

precautionary measure in the event of connectivity disruptions. The

fundamental operational principle of the gadget is illustrated in

Figure 8.

Figure 8: Schematic of the tank-level monitoring system [9]

Like the other embedded applications, there exists an initial setup

step that is subsequently followed by a loop phase. The sole

distinction is to the script that is linked to the utilized resource. In this

scenario, the application relies on a filter operation. This operation

selectively sends only those samples to the cloud whose values

surpass either the upper threshold or fall below the lower threshold.

Due to the remote location of the tank within a wooded region, the

system has a GSM module integrated into the circuit board. This

 Edgine

52

module facilitates the transmission of SMS notifications to alert the

tank maintainer of any potential risks.

To facilitate the monitoring and visualization of the collected data,

a mobile application has been constructed using Flutter, an open-

source framework that enables the creation of natively compiled,

cross-platform applications for both iOS and Android devices [161].

Figure 9 displays the three primary pages of the application.

(a) (b) (c)

Figure 9: Snapshots from the tank level monitoring app. (a) Login page; (b)
Tank monitoring info; (c) App settings [9]

3.3.2 Environmental use-cases

One example of an IoT application domain is environmental

monitoring, as demonstrated in previous studies [162], [163], [164],

[165]. Next, an overview of two use-cases from this perspective is

provided. The first application is designed to monitor the air quality

within an enclosed space, while the subsequent system enables the

 Edgine

53

assessment of a plant’s condition and the environmental factors

surrounding it.

3.3.2.1 Air-quality monitoring

The scenario in question relates to the implementation of a system

designed to monitor the levels of noxious gasses within an enclosed

area. The gases under surveillance include carbon monoxide (CO),

nitrogen dioxide (NO2), and methane (CH4). The microcontroller

employed in this study is the Arduino MKR WiFi 1010, while the gas

sensor utilized is the MiCS-6814. The communication between the gas

sensor and the microcontroller is established via the I2C protocol. The

application life cycle remains consistent with earlier instances. The

data samples are regularly transmitted to the cloud, as specified in the

script, together with the identifier corresponding to the specific gas

being measured.

In line with previous instances, a webpage has been developed

with the purpose of presenting data in both graphical and tabular

representations. Table 8 presents a representative illustration of

carbon monoxide readings, whereas Figure 10 exhibits a visual

representation wherein the values of the samples are graphically

depicted in a temporal view.

 Edgine

54

Table 8: Measurements of the air quality system in terms of CO
concentration [9]

Date Time Concentration (ppb)

21-1-2020 19:47 6044.16

21-1-2020 19:18 6044.16

21-1-2020 18:48 6193.68

21-1-2020 18:18 6472.43

21-1-2020 17:48 7155.01

21-1-2020 17:18 8858.53

Figure 10: Measurements of the air quality system related to CO
concentration [9]

 Edgine

55

3.3.2.2 Plant monitoring

The objective of this application is to facilitate the remote monitoring

of plants and flowers. The selected microcontroller for this project is

the Arduino Uno WiFi Rev 2. It is equipped with three sensors: the

Sparkfun TSL2561 brightness sensor, the DHT22 Pro v1.3 air-humidity

and temperature sensor, and the DFRobot SEN0193 soil moisture

capacitive sensor. The luminance sensor offers data in Lux units,

enabling the user to determine whether the plant is receiving adequate

light. Additionally, the air-humidity and temperature sensor delivers

samples in °C and %RH, respectively, offering information on the

surrounding environment in which the plant is cultivated. The soil

moisture sensor facilitates determining whether the plant requires

additional water. Furthermore, an Arduino device has been equipped

with a TFT screen to facilitate direct visualization of data from the

source, as depicted in Figure 11.

Figure 11: The plant monitoring system screen for local inspection [9]

 Edgine

56

Given the presence of diverse measurements in the application,

Measurify captures four distinct features, each corresponding to a

specific type of measurement. The accompanying scripts facilitate the

specification of various sampling intervals and processing procedures

for these distinct physical variables.

A mobile application has been built using the Flutter framework

to enhance the usability of data interaction. The primary screens of the

application are depicted in Figure 12. The application enables users to

obtain a comprehensive overview of the plants being monitored, as

well as access graphs that depict the changes in various features over

a period. Additionally, the scan interval can be adjusted within the

application.

(a) (b) (c) (d)

Figure 12: The plant monitoring app. (a) Login page; (b) Report on the
monitored plants; (c) Temperature graph over time; (d) Scan interval settings
[9]

 Edgine

57

3.3.3 Sports use-cases

The advancement in miniaturization of edge devices has facilitated the

integration of digital technologies into sports activities through the

use of wearable devices such as wristbands, cardio-bands, and

smartwatches. Additionally, some devices can be attached to sports

equipment such as shoes, tennis rackets, motorbikes, and cars. These

developments have been documented in various studies (e.g., [166],

[167], [168], [169], [170]). This subsection describes two sports

applications that were developed by utilizing the Edgine-Measurify

platform.

3.3.3.1 Smart bike

The objective of this work is to observe and track the performance of

an enduro mountain bike throughout a descent over a designated trail,

with the purpose of enabling athletes to assess their own performance.

The dimensions that have been considered are as follows:

• The temporal evolution of speed;

• The vertical profile of the route;

• The duration of travel;

• The maximum lean angle of the bicycle;

• The maximum gradient of the route;

• The number of front fork compressions;

 Edgine

58

• The maximum velocity achieved.

The utilization of a Grove – Hall sensor has been employed for the

purpose of obtaining speed and time data. The device, attached to the

bicycle’s front fork, facilitates the measurement of wheel revolutions,

enabling the determination of speed, time, and distance covered. The

DFRobot SRF05 ultrasonic sensor has been employed to measure the

number of front fork compressions. Additionally, this device, which is

also mounted on the fork, quantifies the displacement from the front

hub, resulting in a reduction in distance during compressions. The

measurement of the elevation profile of the route was conducted using

a Grove – Barometer BMP280, a device capable of detecting

atmospheric pressure in hectopascals (hPa). The measure is

subsequently transformed into an altitude value, as detailed in [171].

In order to determine the lean angle of the bicycle and the slope of the

route, the utilization of an accelerometer and a gyroscope was

necessary. Given the specified criteria, an Arduino Nano 33 IoT board

was selected due to its inclusion of a built-in LMS6DS3 sensor,

eliminating the need for any further installation on the MTB. In order

to mitigate the risk of system failures or damages, a logic level shifter,

namely the Pololu 4-channel, was utilized. This was necessary due to

the utilization of sensors, such as the hall sensor and ultrasonic sensor,

which operate at a voltage above 3.3 V. These sensors function within

the voltage range of 0-5 V. Figure 13 depicts the ultimate iteration of

 Edgine

59

the prototype, which encompasses the board and the sensors attached

to the mountain bike.

(a) (b) (c)

Figure 13: The smart bike main components. (a) The front fork with the
ultrasonic and the hall sensors; (b) The main core of the system with a led
and a buzzer to check if the system is running correctly; (c) The inside of the
core, and a battery that powers the system [9]

Within the execution loop, the edge system acquires data samples

from the sensors and establishes a connection with Measurify by

utilizing the Edgine library. Subsequently, the system transmits the

script-processed outcomes to the cloud for each individual

characteristic. The scripts in question prescribe the acquisition rate of

different signals and the desired computation, such as the maximum

value inside a given sliding window, by utilizing the actions outlined

in Table 5. Similar to the previous use-cases, a mobile application

using the Flutter framework has been developed. The user is able to

collect real-time data regarding the smart bike, as well as access

instructive graphs illustrating information about the tour. The main

 Edgine

60

page of the application, as depicted in Figure 13, displays a graphical

representation illustrating the progression of speed during a tour.

(a) (b)

Figure 14: The smart bike app layout. (a) The bike data; (b) Speed evolution
over the tour [9]

3.3.3.2 Smart racket

The final application case within the domain of sports pertains to the

development of a tennis racket assistance system that gathers data

pertaining to an athlete’s strokes. The project entails the development

and deployment of a system capable of quantifying velocity, rotation,

and point and angle of impact, with the objective of facilitating the

differentiation of distinct stroke types. A total of six distinct stroke

types have been taken into consideration: serve, forehand

groundstroke, backhand groundstroke, overhead smash, forehand

volley, and backhand volley.

The utilization of accelerometer and gyroscope sensors is crucial

for this use-case. The Arduino Nano 33 IoT board was selected as the

 Edgine

61

development board because of its integrated LMS6DS3 sensor. The

raw data from the sensors alone do allow to differentiate between the

six distinct types of strokes. Hence, the primary objective of the

application is to facilitate the generation of a dataset for every

individual class. Subsequently, the provided information will be

utilized to train a neural model using an edge learning strategy [172],

with the objective of recognizing strokes. The objective of the

suggested methodology is to enhance the approach presented in [173].

In this previous study, a motion sensor was attached to the racket to

categorize the stroke type into three distinct classes: serve,

groundstroke, and volley. In addition, the serve stroke involves the

proposal of a regression model to estimate the speed of the ball.

Similarly, for the groundstroke and volley, two models are suggested:

a regression model and a physical model. The physical model is most

suitable for proficient players who consistently execute stroke

gestures, whereas the regression model is better suited for novice

players who exhibit more variability in their stroke gestures. The

Edgine system can be used to perform local data processing and

transmit information to Measurify with minimal post-processing

requirements. An application will be designed for mobile devices with

the purpose of displaying real-time aggregated statistics from a tennis

match. This data will be collected through specifically constructed

scripts for the task, which will include information such as the count

of forehand groundstrokes, the maximum speed of serves, and the

percentage of forehand groundstrokes in comparison to backhand

 Edgine

62

groundstrokes. The integration of Edgine with the results of an

integrated neural network, which classifies the raw sensor data into

the six specified categories, is currently work in progress. The

anticipated construction of the final prototype is projected to resemble

the configuration depicted in Figure 15. The board will be fitted into

the throat of the racket, which is protected by a pitted casing, because

of the reduced diameter of the racket handle.

Figure 15: The smart racket project [9]

3.4 Users’ feedback

As per the accounts provided by the students who actively

participated in the above-mentioned projects, the utilization of the

Measurify framework for the development of a comprehensive IoT

application yielded numerous advantages. The system’s user-friendly

interface and straightforward installation process enabled the

developer to prioritize dataflow design over cloud interfacing,

resulting in a significant reduction in development time. Moreover,

the utilization of scripts that sequence a certain number of instructions

 Edgine

63

facilitated the attainment of the projects’ goals in a coherent and

accurate manner. The main challenges faced revolved around the

necessity for the developer to embed the Service Set Identifier (SSID)

credentials within the code and a certain level of complexity in

comprehending the interplay between the edge system and the cloud.

Specifically, since the HTTPS queries initiated by Edgine are concealed

within the library, there is a lack of quick indication for the user

regarding the successful storage of data in the cloud server.

3.5 New features

Currently, Edgine’s capabilities are being expanded by adding

support to ML and DL models locally, with subsequent automated

logging of results and evaluation metrics to Measurify using scripts.

NN’s configurations and weights are stored in the cloud database;

Edgine is exploited to automatically GET the desired model and its

description, to then perform on-the-edge inference and subsequently

POST the results on Measurify. This extends Edgine’s field of action

from simple operations to the DL domain, allowing for a more in-

depth data elaboration. This functionality is still work-in-progress but

currently under test, with promising results, in the context of DRL

models for low-speed maneuvering, which will be presented in

Chapter 5.3. Also, future works with Edgine will include its evaluation

in terms of performance, efficiency, latency, and resilience,

particularly in executing ML and DL tasks.

 Embedded Voice Assistant

64

4
Embedded Voice Assistant

After testing the potential of edge computing through the Edgine

experiment, a transition was made to explore on-the-edge VAs, a

domain highly relevant to the automotive industry. To accomplish

this, however, we must advance from executing basic edge-side

scripts to implementing DL models that permit speech processing and

subsequent response generation for the user. In this instance, Edgine

can be utilized to securely store significant system performance and

utilization data on the cloud server. Being interested in developing an

end-to-end VA system to be used on high-end embedded devices, first

the needed modules are investigated, along with their

interconnections, and performance. Then, the implementation of each

block is presented, and experimental results are finally provided.

To provide an overview of the intended scope of the system, Table

9 outlines a compilation of voice command instances categorized

based on their respective subsystems. Although the dialogue

management system is primarily crafted for offline functionality, it is

 Embedded Voice Assistant

65

also supposed to handle commands that necessitate an internet

connection, such as downloading a song or map, engaging with an

online navigator, or accessing weather information. Consequently, the

development of the system has considered intents that involve an

internet connection.

Table 9: Car VA use-cases

Subsystem Examples

Phone
• Please, call John

• Call mum via WhatsApp

Heating, Ventilation, and Air
Conditioning (HVAC)

• Set the temperature to 22
degrees

• Turn off the heating of the
front left seat

Vehicle state
• How many liters are consumed

per 100 km?

• Tell me the tire pressure

Drive mode
• Select sport mode

• Enter eco mode

Location-based services (offline)
• Take me to Rome

• Find the nearest Italian
restaurant

Media
• Stop the track

• Fast forward the song by 15
seconds

 Embedded Voice Assistant

66

4.1 Methodology

This section presents a comprehensive examination of the workflow,

aimed at providing an overview of the various components,

interfaces, and overall design. The subsequent section will provide an

overview of the implementation details pertaining to the individual

modules.

End-to-end VAs necessitate a thorough process that encompasses

various stages, starting from the reception of incoming speech and

concluding with the provision of feedback regarding the execution of

the intended action. Consequently, a workflow was devised enabling

the execution of the subsequent procedures:

• Human voice detection;

• Activation keyword detection;

• Speech recognition and conversion into text;

• Text conversion into meaningful data;

• Text conversion into speech to give feedback to the user.

The logical sequence of steps in a conversation with a VA is as

follows. Initially, speech is detected, and if the spoken word is

identified as a wake-word, the process of speech recognition is

initiated. Subsequently, significant information, i.e., intents and

entities, is derived from the inferred statement, with the purpose of

 Embedded Voice Assistant

67

comprehending the user’s query. The request that has been detected

is ultimately carried out by the system, and the assistant provides

feedback in the form of a vocal response.

The implementation of the conversational process can be achieved

by employing a series of dedicated modules that are responsible for

managing distinct aspects of the conversation.

The VAD module is employed to discern human speech from

ambient noise of non-human origin. The module functions as a binary

classifier with two distinct classes: "voice" and "noise". The system

should remain in an active listening state at all times and should only

be deactivated upon detection of a specific keyword. Reactivation of

the system should occur at the conclusion of the conversation.

The activation of a KWS block triggers the interaction with the VA

exclusively when a specific wake-word is pronounced. In the absence

of this wake-word, no further steps are executed. This module also

functions as a binary classifier, specifically designed to differentiate

the wake-word from all other verbal utterances produced by humans.

When the user utters the designated wake-word, an ASR module

is triggered, initiating the process of transcribing the spoken sentence

into written text. The complexity of this module surpasses that of the

preceding two modules, as it undertakes a multi-class classification

task on the input speech. In this task, the classes correspond to the

characters of the target alphabet as well as the punctuation marks.

 Embedded Voice Assistant

68

The acquired text string is subsequently analyzed by an NLU

module, which extracts intents and associated entities. Intent refers to

a set of utterances that share similar meanings, while entities represent

data that hold important values. These values are treated as

parameters by the system when executing user requests, such as

numerical values or geographical locations. The inclusion of this step

is imperative to acquire a semantic interpretation that is

comprehensible by the VA system, thereby enabling it to execute the

user’s requested task.

Following the execution of the intent, a TTS module is tasked with

audibly informing the user regarding the outcome, whether it be a

successful or unsuccessful execution of the provided command.

Consequently, this stage entails employing a spectrogram generator

to transform the raw textual output of the system into a visual

depiction of the frequency spectrum of the audio signal across time.

Subsequently, a vocoder is utilized to convert this visual

representation into an audible speech waveform.

The sequence of tasks presented above is challenging, especially in

an embedded setup, and the modules involved require substantial

resources to attain a performance level comparable to that of cloud-

based applications. Therefore, an estimation of the minimum

specifications has been conducted, which include a memory capacity

of at least 4 GB. While a GPU is not mandatory, it is recommended in

order to achieve faster inference, with a minimum performance of 1

 Embedded Voice Assistant

69

Tera Operations Per Second (TOPS). Additionally, the power

consumption should not exceed 30 W. The latest generation of high-

end embedded devices fulfills these requirements. The NVIDIA Jetson

AGX Xavier was selected as the development board for our project.

The selection of this particular system was based on its compact

dimensions (105 mm × 105 mm × 65 mm) and its notable

computational capabilities, as well as the availability of a powerful

graphics processing unit (GPU) [10]. Table 10 presents the

specifications of the board, along with the specifications of Amazon

Alexa’s cloud infrastructure (Amazon EC2 Inf1 [174]). This

comparison aims to emphasize the gap in computing capabilities

between cloud-based and edge solutions.

Table 10: Target embedded device vs Amazon Alexa, specifications
comparison

Feature NVIDIA Jetson AGX
Xavier Amazon EC2 Inf1

Memory 32 GB Up to 192 GB

GPU

512-core NVIDIA
Volta GPU with 64
Tensor Cores (32
TOPS)

Up to 16 AWS
Inferentia chips (128
TOPS each)

CPU
8-core NVIDIA
Carmel ARM v8.2 64-
bit

Up to 96 2nd gen Intel
Xeon (x86 64-bit)

Power
Between 10 W and 30
W

Not specified

 Embedded Voice Assistant

70

The proposed workflow, as depicted in Figure 16, is designed to

utilize the VA in a setting where reliable Internet access is not available

and there is a need for minimal delay. Furthermore, in order to

maintain a significant degree of extensibility, it has been strategically

devised with the intention of incorporating additional languages in

the future. The conversation steps mentioned above have undergone

minor modifications in order to enhance the system’s compatibility for

embedded deployment. For instance, it was decided to integrate the

VAD and KWS tasks into a unified module, referred to as Speech

Classification (SC), motivated by the shared characteristic of binary

classification. This unit conducts a binary classification task, where the

two classes under consideration are the wake-word and its negation.

The negation class encompasses non-human background noises as

well as any other human-uttered words that are not the wake-word.

The decision to activate the ASR block only after the wake-word is

recognized enables faster inference while maintaining user privacy.

This approach ensures that unintended information from the user

cannot be gathered by the system.

 Embedded Voice Assistant

71

Figure 16: VA workflow

4.2 Automotive embedded VA implementation

Following workflow presentation, we now proceed to conduct an

examination of the implementation of the in-car embedded VA.

In order to mitigate the issue of overfitting and promote

generalization, a strategy of early stopping was implemented during

the training phase of each model. Early stopping [175] involves the

monitoring of a validation metric, such as validation loss or accuracy,

during the training process. If the metric does not show improvement

over a specified number of iterations, the training process is halted.

The implementation of early stopping resulted in a substantial

reduction in the training time of each model.

 Embedded Voice Assistant

72

4.2.1 Speech classification

As depicted in Figure 16, the SC module is located at the forefront of

the toolchain and operates continuously to detect the wake-word

uttered by the user. The module in question is exclusively deactivated

for the duration of the live interaction between the user and the VA.

For the implementation of this task MarbleNet model [176] has been

chosen, which is a deep neural network consisting of 1D time-channel

separable convolution blocks, batch normalization, Rectified Linear

Unit (ReLU), dropout layers, and Cross Entropy loss. The model

described in this study, which is based on the QuartzNet model

(section 4.2.2.1), was developed by NVIDIA and is accessible through

the NeMo toolkit. The choice of this solution is because it can achieve

comparable performance to state-of-the-art VAD models while

utilizing significantly fewer parameters (88K compared to the 738K of

the CNN-TD model proposed in [177]). The architecture of the system,

similar to other VAD architectures, is designed to carry out a binary

classification task. This task involves discerning the segments of an

audio signal that contain human speech from those that do not. As

anticipated in the previous section, to enhance the efficiency of our

pipeline and accelerate inference, this architecture has been employed

in an alternative manner. The two class labels were modified in order

to differentiate between the genuine wake-word and other words

spoken by humans, as well as the ambient noise present in the

background. The dataset utilized for the wake-word class in our study

was obtained from Lifetouch, an Italian company specializing in high-

 Embedded Voice Assistant

73

technology solutions for the automotive and transportation industry

[178]. In contrast, for the counterpart dataset, a collection of human-

uttered words from the Lifetouch dataset has been generated and

combined them with common background noises encountered in-car

environments. These background noises were sourced from

Freesound [179] using its API. These sounds encompass traffic sounds,

such as those produced by cars and buses, as well as human

conversations and other related noises. By employing a singular DL

model, it was possible to successfully execute both VAD and KWS.

The model was trained for a total of 97 epochs, i.e., approximately

14,000 steps. During this training process, 93% accuracy was achieved.

Figure 17 displays the training and validation Cross Entropy losses

during training. The narrow discrepancy between the training and

validation loss indicates a strong fit of the model.

(a) (b)

Figure 17: SC model training (a) and validation (b) losses over 97 training
epochs

 Embedded Voice Assistant

74

4.2.2 Automatic speech recognition

ASR plays a pivotal role in the overall process, alongside TTS, as these

layers serve as the primary means of interaction between the system

and the user. In order to achieve state-of-the-art performance, it is

necessary to utilize high-dimensional datasets containing substantial

quantities of speech data lasting several hours. As previously

indicated, this issue relates to languages other than English or

Chinese. In the context of ASR, the inclusion of multiple-speaker

datasets is deemed necessary. To address the challenge, the NeMo

toolkit provides the option of employing transfer learning. This

approach allows us to capitalize on the knowledge embedded in a pre-

trained English model, enabling the utilization of a smaller Italian

dataset to fine-tune the model’s weights. In this study, the initial

model utilized for fine-tuning was the NVIDIA QuartzNet 15x5 model

[180], pre-trained in the English language. Subsequently, fine-tuning

was conducted on this model using the Common Voice Italian dataset.

The QuartzNet 15x5 model was chosen due to the NeMo support for

transfer learning and the model’s relatively low parameter count

(19M) in comparison to the current leading models [180].

4.2.2.1 ASR model

The QuartzNet model (Figure 18) is composed of blocks that are

interconnected with residual connections. Each block consists of

modules that incorporate 1D time-channel separable convolutional

layers, batch normalization, and ReLU layers. The network consists of

 Embedded Voice Assistant

75

an encoder and a decoder. The encoder is responsible for processing

acoustic signals and generating a latent representation of the captured

voice. The proposed approach can be interpreted as an acoustic model

utilized to extract speech features, which are subsequently fed into a

decoder responsible for generating textual output. The decoder

utilizes the given representation to produce letters based on the

alphabet of the target language. Consequently, the encoder exhibits

the potential for cross-linguistic reusability, whereas the decoder’s

adaptability is contingent upon the specific target alphabet.

Figure 18: QuartzNet B×R architecture

The QuartzNet 15x5 model, trained on multiple datasets (namely:

LibriSpeech [71], Mozilla Common Voice [58], WSJ [181], Fisher [182],

Switchboard [183] and NSC Singapore English [184]) using

Connectionist Temporal Classification (CTC) Loss [185], achieves a

WER of 3.79% on LibriSpeech dev-clean, and a WER of 10.05% on

LibriSpeech dev-other. It is worth to highlight that WERs under 5% are

considered to be professional level [186]. Notably, the model has a

relatively low parameter count of 18.9M [187]. This model is part of

the NVIDIA NGC collection [188], available in the NeMo toolkit.

 Embedded Voice Assistant

76

4.2.2.2 ASR dataset

To train the model, the Mozilla Common Voice dataset [58] has been

employed, specifically the Italian variant known as Common Voice

Corpus 8.0. This dataset encompasses a comprehensive collection of

310 validated hours of audio recordings in MP3 format. The decision

to select this specific dataset for the transfer learning task was

influenced by several factors. These include the dataset’s size, the

availability of labels for both the training and testing phases and the

lower quality of other open-source datasets.

4.2.2.3 ASR transfer learning experiment

After the English pre-trained model and the Italian dataset were

established, the process of transfer learning for the model was

initiated. The NeMo toolkit has been exploited, leveraging the

QuartzNet 15x5 model.

Prior to training the English model, it was essential to perform pre-

processing on the audio files. This was required because the training

data consisted of WAV files with a sampling rate of 16 kHz, while the

Common Voice clips were in MP3 format with a sampling rate of 48

kHz. Consequently, the Common Voice clips were converted to match

the training data of QuartzNet 15x5. In this phase, JSON manifests

have been generated for the training, validation, and test phases.

These manifests contain information such as the clip name, duration,

and the sentence spoken. Additive features that were included in the

 Embedded Voice Assistant

77

original TSV manifests but lacked relevance for our specific objective

were eliminated. Furthermore, all the characters were converted to

lowercase.

The model was fine-tuned using the NovoGrad optimizer, as

recommended in [74] β1and β2 were set to 0.95 and 0.25, respectively

[189]. Furthermore, the learning rate was set to 0.001, utilizing a

Cosine Annealing policy and a warm-up ratio of 12% [190]. The labels

of the decoder were modified to correspond with the characters of the

Italian alphabet. The network underwent training using the PyTorch

Lightning tool [191] for a total of 256 epochs. The training process

involved utilizing the CTC Loss, similar to the original QuartzNet

15x5 model. A batch size of 32 was employed, along with Automatic

Mixed Precision (AMP) O1 [192].

Following the completion of 256 epochs and approximately

921,200 training steps, the obtained outcomes were deemed

satisfactory. Figure 19 illustrates the WER of the model on both the

training and validation datasets. The WER, which serves as the

established benchmark for evaluating the accuracy of ASR models

[193], is calculated in the following manner:

 𝑊𝑊𝑊𝑊𝑅𝑅 =
(𝑖𝑖𝑤𝑤 + 𝑠𝑠𝑤𝑤 + 𝑑𝑑𝑤𝑤)

𝑛𝑛𝑤𝑤
 (1)

where nw is the number of words in the reference text, sw is the

number of words substituted (in the inferred text), dw the number of

 Embedded Voice Assistant

78

words deleted, and iw the number of words to be inserted to transform

the hypothesis text into the ground truth. Therefore, the WER is a

numerical value ranging from 0 to 1. The final validation WER stands

at 11.7%. In the context of speech transcription, it is widely

acknowledged in the literature that WERs ranging from 20% to 25%

are generally considered to be the upper limit of acceptable

performance [194].

(a) (b)

Figure 19: Training (a) and validation (b) WERs over 256 epochs of training

In the subsequent section, a comparative analysis of these WER

findings with alternative open-source offline solutions will be

conducted. This analysis will demonstrate that the aforementioned

results are comparable to, if not surpassing, the current cutting-edge

implementations of cloud-based and desktop computing systems.

The provided visual representation in Figure 20 illustrates the

progression of training and validation loss throughout 256 training

epochs. The training process lasted 5 days and 21 hours, utilizing two

24 GB NVIDIA GeForce RTX 3090 GPUs. The model successfully

 Embedded Voice Assistant

79

acquired knowledge of the fundamental patterns and correlations

within the dataset, as evidenced by the training and validation loss

plots. The training process was halted at 256 epochs due to the

observation that the validation loss did not exhibit any further

improvement.

(a) (b)

Figure 20: ASR model training (a) and validation (b) losses over 256 epochs
of training

4.2.2.4 ASR models comparative

A comparative analysis between the trained model and the current

state-of-the-art solutions has been conducted, focusing on metrics

such as WER, Character Error Rate (CER), and transcription time. The

comparison was conducted using the Vosk and DeepSpeech models,

both of which are open-source and do not necessitate a connection to

any cloud service. The DeepSpeech model utilized in this study was

acquired through the application of transfer learning. The process

involved initially training the English DeepSpeech model with the

 Embedded Voice Assistant

80

Common Voice English dataset, followed by further training with the

Common Voice Italian dataset, similar to our own model.

To ensure equitable conditions, the Common Voice test set has

been employed, which had not been previously utilized by any of the

models. The dataset consists of a total of 12,928 utterances, which

corresponds to approximately 12 hours of speech. The calculation of

WER and CER was conducted employing the Python JiWER tool [195].

Findings are presented in Table 11.

Table 11: WER, CER, and transcription times

Model Dataset WER CER Transcription
time a

Ours (based
on NeMo)

Common
Voice Italian
test set

11.7% 3.12% 0.215 s

Vosk
Common
Voice Italian
test set

29.8% 12.5% 0.464 s

DeepSpeech
Common
Voice Italian
test set

45.8% 13.24% 1.778 s

a The audio file considered is 5.269s long.

The presented table demonstrates that our model attains WER and

CER values that are deemed satisfactory based on reference [194],

which sets an upper limit of acceptability at 20-25%. Furthermore, our

model outperforms both the Vosk and DeepSpeech models in terms

 Embedded Voice Assistant

81

of WER and CER. In contrast, the QuartzNet 15x5 English model,

which underwent training using over 3,300 hours of spoken English

language data, demonstrates a WER of 3.79% on the LibriSpeech dev-

clean dataset. However, its performance on the dev-other sets yields a

WER of 10.05%, indicating notable variability in performance based

on the specific test set utilized.

Considering the diverse range of word lengths present in the

Italian lexicon, the performance of the model has been also assessed

using the CER metric, which measures errors at the character level

rather than the word level. Based on the WER, a word is deemed to be

inaccurately recognized if a single letter within it is not correctly

identified. The CER is derived using the subsequent equation:

 𝐶𝐶𝑊𝑊𝑅𝑅 =
(𝑖𝑖 + 𝑠𝑠 + 𝑑𝑑)

𝑛𝑛
 (2)

where n is the number of characters, while i, s, and d the insertions,

substitutions, and deletions necessary to convert the inferred text into

the ground-truth text, respectively. The obtained CER from our model

validates the observations made regarding the WER. However, it also

demonstrates that the DeepSpeech model exhibits a higher degree of

closeness to the other two models when it comes to this kind of error.

The observed behavior aligns with the findings presented in reference

[196], which, in the first figure, shows the nonlinear correlation

between WER and CER.

 Embedded Voice Assistant

82

When evaluating the precision of the model, it is important to

consider the nature of the test set being employed. Upon examining

the individual utterances, it has come to our attention that they contain

a significant number of archaic terms, as well as certain non-Italian

words or proper nouns. Sentences such as "Tom Sawyer and his friend

Huckleberry Finn are witnesses of a homicide" pose challenges in

accurately identifying and transcribing them for various Italian

models. These difficulties can result in increased WER and CER levels.

This phenomenon is also observed in the training dataset, where

utterances of this nature, although present in small quantities, do not

significantly contribute to the effective training of the model for its

application in a general language context. If the dataset had excluded

utterances with uncommon usage, it is likely that the performance of

all three models, as measured by WER and CER, would have

improved. It is argued that introducing this change into the dataset

would be particularly advantageous for tasks such as in-vehicle VAs,

as they typically involve minimal usage of uncommon words by the

user.

For the purpose of comparison, Figure 21 presents WER

benchmarks provided by Picovoice [197] for the English idiom, along

with the results for Italian (as previously displayed in Table 11). The

Common Voice dataset was utilized for both tests, with one test

conducted on the English version and the other on the Italian version.

The depicted figure illustrates cloud ASR solutions, namely Amazon

 Embedded Voice Assistant

83

Transcribe, Azure STT, Google STT (two versions), and IBM Watson

STT, represented by orange bars. In contrast, the blue bars represent

non-cloud-connected models, including the two Picovoice models, the

two DeepSpeech models, the Vosk model, and our model. The

performance of our model in terms of WER is similar to that achieved

by cloud-based models in the English language. It is important to note

that our model has undergone fine-tuning using a relatively limited

Italian dataset, making the fact that its performance is comparable, if

not superior, to English and cloud-connected models noteworthy.

Figure 21: Comparative of WERs on the English [197] and Italian portions of
the Common Voice dataset. Cloud-based solutions are in orange and
embedded solutions are in blue

The final factor taken into account during the assessment pertains

to the transcription time. This aspect holds significant importance

when employing the model in ASR systems that necessitate a balance

between accuracy and low latency. This is particularly relevant for

time-sensitive applications like real-time navigation. The results

presented in Table 11 demonstrate the superior performance of our

 Embedded Voice Assistant

84

model compared to the other two models, particularly in terms of

transcription time, for an audio file with a duration of approximately

5 seconds. The DeepSpeech model exhibits a computational time that

is approximately eightfold greater than that of our NeMo model,

thereby indicating its lack of suitability for real-time applications.

4.2.3 Natural language understanding

The NLU module is responsible for processing unprocessed text

and transforming it into structured information, specifically intents

and entities. These data are then utilized by the system to categorize

the sentence according to its content. NLU and NLP are distinct in

their approaches. NLU focuses on comprehending the meaning and

significance of a sentence, while NLP primarily involves the

conversion of an entire text into its constituent semantic elements.

Rasa [80] has been selected as a tool for NLU due to its notable

flexibility and customizability. This is due to its ability to create and

utilize tailored NLU pipelines with desired modules. The components

comprising our NLU pipeline are depicted in Figure 22 and elaborated

upon in the subsequent discussion.

• WhitespaceTokenizer: divides a sentence into individual words

based on the presence of whitespace characters;

• RegexFeaturizer: generates features for entity extraction and

intent classification by identifying regular expressions that

have been defined in the training dataset;

 Embedded Voice Assistant

85

• LexicalSyntacticFeaturizer: iterates through the sentence using

a sliding window and derives lexical and syntactic features;

• CountVectorsFeaturizer: converts a given text into a vector by

considering the frequency of each word present in the text.

Word token counts are employed as features;

• Dual Intent Entity Transformer (DIET) Classifier: an

architecture based on transformers [13] capable of performing

both intent classification and entity recognition [198];

• Entity Synonym Mapper: ensures that entity values detected in

the training data are mapped to the same value if they can be

defined as synonyms of other words;

• FallbackClassifier: responsible for classifying a message as the

intent nlu_fallback if the confidence score is below a specified

threshold, which has been set to 0.3. A fallback will also arise in

the event that the two highest-ranked intents exhibit

comparable levels of confidence.

Figure 22: NLU model training pipeline

 Embedded Voice Assistant

86

To explore different approaches, a spaCy pre-trained model has

been investigated, leveraging its associated pipeline. However, this

approach yielded inferior performance. It is argued that this

phenomenon can be attributed to the inherent characteristics of our

specific application scenario. Considering our requirement to create

an NLU engine that focuses on specific terminology, specifically in-car

intents as outlined in Table 9, it is likely that a generic pre-trained

model is not suitable for this particular scenario. This assertion is

supported by the Rasa documentation as well [199].

In accordance with the specifications described in Table 9, a total

of 85 intents has been established. For each intent, an average of five

exemplary sentences to be included in the training dataset has been

curated, and formatted in YAML. Figure 23 presents an illustrative

instance of adjusting the volume of a radio. The reporting of

significant values, such as numerical quantities, follows a specific

syntax that enables the system to recognize them as entities. This

allows the system to extrapolate the value of these entities and

subsequently execute the requested action. In the case under

examination, the radio volume value that has been requested is

identified as an entity, enabling the system to establish the desired

value accordingly.

The DIET classifier was trained for 83 epochs, reaching an

accuracy of 98%. Figure 24 reports the training and validation losses

over the training.

 Embedded Voice Assistant

87

Figure 23: Intent declaration for the training phase

(a) (b)

Figure 24: NLU model training (a) and validation (b) losses over 83 training
epochs

4.2.4 Speech synthesis

The TTS module is responsible for generating speech based on an

input text. It consists of two submodules: a spectrogram generator,

which produces a mel (a perceptual scale of pitches judged by listeners

to be equal in distance from one another) or Hz spectrogram; and a

vocoder, which converts the spectrogram into audible speech. The two

submodules have the option to undergo separate or joint training.

The Tacotron2 model [89] was chosen for its high reliability, open-

source availability, and its success demonstrated in terms of Mean

Opinion Score (MOS) [87]. Additionally, its integration within the

 Embedded Voice Assistant

88

NeMo toolkit made it the preferred choice for our spectrogram

generation needs.

Regarding the vocoder, empirical testing on various models

within the NeMo framework has been conducted, including

WaveGlow, SqueezeWave, UniGlow, MelGAN, and HiFiGAN. The

selection was made based on the criterion of obtaining the most

intelligible output voice, leading us to choose MelGAN.

The final component that was selected was the dataset. Regarding

the ASR case, it is worth noting that the availability of open-source

Italian datasets is quite limited. However, M-AILABS [60] has proven

to be a dependable resource due to its provision of a substantial

amount of speech data from a single speaker (18 hours in total for the

male speaker). Figure 25 illustrates the architecture of the resulting

TTS module obtained.

 Embedded Voice Assistant

89

Figure 25: TTS architecture, including the Tacotron2 spectrogram generator
and the MelGAN vocoder

The Tacotron2 model is characterized by a sequence-to-sequence

architecture. The system is composed of an encoder, responsible for

generating a concealed representation of the characters in the input

alphabet, and a decoder, which transforms this representation into a

mel spectrogram. Once the inputs and location features have been

projected into 128-dimensional hidden representations, the encoder

output is then passed to an attention network, which serves to

condense the encoded sequence into a context vector. Location-

sensitive attention is employed [200], allowing to focus on specific

portions of the encoder data that is to be used at each decoder step.

The decoder is a type of autoregressive RNN that is designed to make

 Embedded Voice Assistant

90

predictions of the mel spectrogram based on the encoded input

sequence. The resulting output consists of an 80-dimensional audio

spectrogram, where each frame is computed every 12.5 milliseconds.

This spectrogram captures various aspects of speech, including word

pronunciation, volume, speed, and intonation.

The Tacotron2 model underwent training for a total of 1,500

epochs, which is equivalent to approximately 73,500 steps. The

findings are presented in Figure 26, which displays the ground truth

and prediction of a sample mel spectrogram. Additionally, Figure 27

illustrates the training and validation loss curves, indicating a swift

convergence of the model.

(a)

(b)

Figure 26: Target (a) and predicted (b) spectrograms by the Tacotron2 model

 Embedded Voice Assistant

91

(a) (b)

Figure 27: Spectrogram generator model training (a) and validation (b) losses
over 1,500 epochs of training

The two spectrograms that were generated exhibit a notable

degree of similarity, which is further corroborated by the alignment

plot depicted in Figure 28. The encoder, on the y-axis, receives an

input character and its corresponding state at each iteration,

producing a real vector that represents the network’s current status at

that particular time. Approximately 60 vectors are generated by the

encoder. The decoder, represented on the x-axis, utilizes the vectors

(y-axis), in order to generate audio spectrograms, specifically in the

form of mel-spectrograms. The decoder also operates in a sequential

manner, proceeding through approximately 200 steps. At each step, it

determines the significance of each specific vector along the y-axis to

generate audio frames at that particular time. An almost diagonal line

results when audio frames are created by focusing on the correct input

characters.

 Embedded Voice Assistant

92

Figure 28: Tacotron2 model alignment plot after 1,500 epochs of training

Regarding the vocoder, MelGAN is a non-autoregressive feed-

forward CNN to transform mel spectrograms into time-domain

waveform samples in a GAN setup. In contrast to conventional GANs,

MelGAN diverges in its approach by excluding the utilization of a

global noise vector as an input due to a difference in the generated

waveforms when additional noise is fed to the generator. The

generator is a feed-forward network that employs a fully

convolutional architecture. It performs up-sampling on the input

sequence, increasing its resolution by a multiplicative factor of 256.

This up-sampling process occurs in four stages, with each stage

increasing the resolution by factors of 8×, 8×, 2×, and 2×, respectively.

This is necessary because the mel-spectrogram, which serves as the

input, has a temporal resolution that is 256 times lower than the

desired output resolution. The discriminator block exhibits a multi-

scale architecture comprising three discriminators, each possessing an

identical structure but functioning on distinct audio scales, namely

 Embedded Voice Assistant

93

raw audio, raw audio down-sampled by a factor of two, and down-

sampled by a factor of four. In this manner, each discriminator

acquires discriminative characteristics by focusing on a particular

target frequency range. For instance, the discriminator that operates

on down-sampled audio lacks access to high frequencies, thereby

specializing in the tuning of low frequencies exclusively.

The MelGAN model was trained for a total of 2,950 epochs, which

corresponds to approximately 108,000 training steps. Figure 29

presents a comparative analysis of the target and predicted plots,

illustrating the degree of similarity observed between the two. Figure

30 illustrates the training and validation losses of the model. The

training loss of the generator exhibits a sharp decline around the

10,000th step, as depicted in Figure 30a. The presence of the

discriminator (Figure 30b) is responsible for its capability to

differentiate between waveforms generated by the generator and

authentic waveforms. Figure 30c (validation) illustrates the evident

convergence of the overall model. It is observed that the discriminator

progressively improves its capacity to differentiate between real and

generated waveforms, while the loss of the waveform generator

remains constant, showing its robustness.

 Embedded Voice Assistant

94

(a)

(b)

Figure 29: Target (a) and predicted (b) spectrograms by the Tacotron2 model

(a) (b) (c)

Figure 30: Vocoder training losses. (a) generator loss, (b) discriminator loss,
(c) waveform generator validation loss

4.2.5 Toolchain

Following the determination of the components constituting the

toolchain, they have been interlinked in accordance with the visual

representation depicted in Figure 31.

 Embedded Voice Assistant

95

Figure 31: Block diagram of the toolchain

To ensure continuous activation of the SC module for detecting the

wake-word from the user and subsequent activation of the following

modules only upon wake-word detection, separate audio streams

have been maintained. The activation of the ASR audio stream is

contingent upon the utterance of the wake-word. The PyAudio library

was utilized for this specific objective [201]. The PyAudio package

offers Python bindings for PortAudio, an audio I/O library [202].

PortAudio provides a straightforward API that allows users to record

and/or play sound by utilizing a basic callback function.

Upon detection of the wake-word, the system initiates the

activation of the ASR audio stream. Subsequently, the user’s

command is transcribed into text in real-time. A Python library was

developed to convert numerical values written in letters into digits, as

the Rasa toolkit does not accept such values within sentences, as they

are the output of the ASR model. The acceptable range of values is

limited to 0 to 999 due to the specific requirements of the in-car use-

case. This range is deemed sufficient as it covers numerical values

such as radio volume or interior temperature, which are known to

 Embedded Voice Assistant

96

never exceed 1,000. Consequently, the text is subsequently transmitted

to the NLU engine, which transforms it into significant data,

specifically intent and entities. In a practical application scenario, the

intent execution block is responsible for executing the command,

which is not addressed in this context. The user is provided with

subsequent feedback that is determined by the recognized intent and

the resulting execution. To fulfill this objective, a JSON file was

generated that encompasses responses corresponding to every

conceivable intent. The Rasa framework has the capability to handle

responses, however, a dedicated JSON file has been developed to

enhance its flexibility, specifically for the purpose of incorporating

additional languages into the system. The inclusion of a new language

is facilitated by this introduction, as it simplifies the process for the

user. The user is only required to input the responses for each intent

in the JSON file and provide sample sentences for the intents in the

Rasa project for training purposes. Moreover, this approach enabled

us to exclusively utilize the NLU component of Rasa, while

disregarding the Core component, responsible for managing

responses and story sequences (i.e., sequences of questions and

answers). Consequently, this optimization streamlined the model and

enhanced the efficiency of inference times.

In contrast to Rasa, our Tacotron2 model does not possess the

capability to process numerical values represented in digit form, as the

training dataset employed (specifically, M-AILABS) exclusively

 Embedded Voice Assistant

97

contains numerical values expressed in alphabetic characters.

Therefore, the process involved the utilization of the num2words

open-source Python library [203], designed for converting numerical

values into their corresponding textual representations. This library

offers support for a wide range of languages, encompassing 38

different linguistic variations, including Italian. The user is

subsequently provided with a response. In the event that the system

is unable to interpret the command, or the intent is non-existent, a

default response is given, prompting the user to rephrase their input.

In this scenario, the VA will remain active rather than reverting to its

inactive state, which involves waiting for the wake-word. Instead, it

will remain in a state of readiness for further instructions from the

user, with a timeout period of 10 seconds. After this duration, the VA

will cease listening.

The models associated with the different components comprising

the toolchain exhibit interchangeability, thereby facilitating the

seamless replacement of these models with newly trained ones or the

inclusion of models trained in different languages, without

necessitating manual code modifications. The user is solely required

to indicate the name of the new model in a JSON configuration file,

alongside other significant parameters such as the anticipated sample

rate or the language identification of the model (see Figure 32). This

ensures enhanced ease of access. Furthermore, due to the system’s

 Embedded Voice Assistant

98

inherent capability to accommodate various languages, the language

switch functionality is directly managed within the configuration file.

Figure 32: Set of parameters configurable within the JSON file

4.3 Results and discussion

This section presents the performance analysis results of the system

that has been created to leverage the benefits of offline computation in

an in-vehicle VA. The VA system was implemented on an NVIDIA

Jetson AGX Xavier board, as described in section 4.1. Due to the

adoption of a 64-bit ARM architecture by the board, it was necessary

to build Rasa and NeMo from source as they lack native compatibility.

Our study involved the identification and training of neural

models capable of attaining exceptional performance levels on the

reference test sets. In this section, however, the system is evaluated in

its entirety, first with an examination of the inference times, which are

documented in Table 12. Outcomes indicate that the duration of the

initialization process is considerable; however, it is important to note

that initialization is solely necessary during system boot-up. Upon the

 Embedded Voice Assistant

99

VA’s execution, the cumulative duration of its operation amounts to

around one second. This average value is derived from 20 distinct

runs, encompassing a variety of commands with varying durations.

Table 12: VA execution times

Task Description Avg time

Initialization

Start-up of models (pre-
downloaded) and audio
streaming. Occurs once, at
booting time

57.691 s

Speech Classification
Detection of the wake-word
from the user 0.023 s

ASR transcription
time

Time elapsed between when
the user stops speaking and
when the ASR model obtains
the entire sentence (ASR works
through PyAudio streaming
while the user speaks)

0.132 s

Intent Recognition
Convert written text to
meaningful data 0.071 s

TTS
Convert raw text to mel
spectrogram, then to speech 0.790 s

The VA memory footprint within the Jetson AGX Xavier board is

presented in Table 13. The disk space allocation for the VA amounts

to approximately 4 GB, including the necessary Python libraries and

the DL models, which occupy a relatively modest size of a few

hundred MB (specifically, 236.7 MB). Regarding the RAM usage, 6 GB

 Embedded Voice Assistant

100

is needed for the VA to perform inference, including the initialization

of the system and the two PyAudio streams (one for SC, one for ASR).

Hence, it is assumed that the system has the potential to function

effectively on a less advanced board, albeit with the drawback of

longer inference times likely attributable to limitations imposed by the

lower-end GPU.

Table 13: VA memory usage

Model Disk occupation RAM occupation at
runtime

SC 361.5 kB 0.4 GB

ASR 72.5 MB 1.2 GB

NLU 25.4 MB 1.4 GB

TTS
105.5 MB (Tacotron2) +
32.9 MB (MelGAN)

1.4 GB

Net total 236.7 MB 4.4 GB

Gross total
~ 4 GB (including
required libraries and
models)

6 GB (0.6 GB init + 1
GB PyAudio streams)

To comprehensively evaluate the overall system performance

within the specified application domain, tests have been conducted

using a custom dataset. This dataset comprised 135 sentences

recorded in a noiseless environment and 135 in a noisy environment

(i.e., amidst traffic), totaling 270 utterances from nine distinct speakers

(three females and six males). Covering diverse use-cases outlined in

 Embedded Voice Assistant

101

Table 9, speakers have been instructed to record application domain-

related commands, with each user recording 30 sentences, evenly split

between noiseless and noisy environments. These sentences were

semantically aligned with one of the 85 intents in the Rasa training set,

allowing us to assess all designated VA features with a relatively

modest number of audio clips.

Table 14 presents sample sentences extracted from the dataset,

along with their ASR transcriptions, the ground truth intent, NLU

interpretation (i.e., inferred intent and, if present, entities), and the

TTS-associated response. Noteworthy focus was given to critical cases,

with errors highlighted in italics. For instance, the first sentence is

correctly parsed. However, a common error observed involves

recognizing an intent opposite to another, such as "on" instead of "off"

or "up" instead of "down." This is evident in the second sentence where

"off" is erroneously identified as "on." It is posited that the similarity

between sentences, differing only in the verb, contributes to this error.

While this can be mitigated by incorporating domain knowledge into

the system, it underscores the challenge for the ASR module to

recognize the [ɲ] phoneme (represented by the "gn" digram), present

in Italian but absent in English. This suggests a potential weakness in

the transfer learning approach from English to Italian, probably

necessitating updates to the lower layers of the NN. Nevertheless, the

third sentence demonstrates that the system can still extrapolate the

correct intent even when a sentence is not parsed entirely accurately.

 Embedded Voice Assistant

102

Table 14: VA end-to-end performance evaluation

Spoken
command

ASR
transcri
ption

Ground
truth
intent

Inferred
intent Entities TTS

response

Alza la
temperatura
di otto gradi

(Raise the
temperature
by eight
degrees)

Alza la
temper
atura di
otto
gradi

turn_up_
temperat
ure

turn_up_
temperat
ure

temper
ature =
8

Alzo la
temperatura
dell’aria
condizionata
di otto gradi

(Turning up
the air
conditioning
temperature
by eight
degrees)

Spegni il
riscaldament
o sedile
anteriore
sinistro

(Turn off the
left front seat
heating)

Speni il
riscalda
mento
sedile e
anterior
e
sinistro

turn_off_
seat_heat
ing

turn_on_
seat_heati
ng

seat_ty
pe =
anterior
e
sinistro

Accendo il
riscaldament
o del sedile
anteriore
sinistro

(Turning on
the left front
seat heating)

Quanti litri
consumo
ogni cento
chilometri
percorsi?

(How many
liters do you
consume per
hundred
kilometers
traveled?)

Quanti
detre
consum
o ogni
100
chilome
tri per
corsi?

show_fu
el_consu
mption_
100km

show_fu
el_consu
mption_
100km

None

Il consumo è
di quattro
litri ogni 100
chilometri

(Consumptio
n is four
liters per 100
kilometers)

 Embedded Voice Assistant

103

In the assessment process, apart from the WER and CER that

specifically pertain to the performance of the ASR model, three

supplementary metrics have been also taken into account [83]. These

metrics consider the involvement of the NLU model, thereby

encompassing the overall execution of the ASR+NLU system. The

following additional metrics are taken into consideration:

• Intent Classification Error Rate (ICER): proportion of incorrect

intent predictions to the total number of utterances;

• Slot Error Rate (SER): ratio of incorrect entity predictions to the

total number of entities;

• Interpretation Error Rate (IRER): proportion of incorrect

interpretations within a set of utterances. An incorrect

interpretation refers to a sentence where either the entity or the

intent prediction is inaccurate. IRER is calculated by dividing

the number of incorrect interpretations by the total number of

utterances. This metric is the most stringent and pertinent at

both the application and system levels [83].

Table 15 presents the obtained results in all the metrics discussed.

Higher values for both WER and CER in comparison to the values

presented in Table 11 are visible. Our hypothesis is that this can be

primarily attributed to the quality of the audio files being examined.

Table 11 pertains to audio files sourced from the Common Voice

dataset, which were chosen subsequent to a quality assessment phase

 Embedded Voice Assistant

104

conducted through crowdsourcing. Conversely, Table 15 pertains to

audio clips that were recorded within an ecological context. Regarding

the IRER, it is noteworthy that our achieved result of 9.77% aligns with

the user requirements outlined for the project. The aforementioned

value decreases further when excluding the critical sentences

discussed earlier, specifically those that can convey an opposing

meaning based on a single word, typically the verb. In the absence of

such sentences, the percentage decreases to 3.37% in the noiseless

condition and 6.74% in the noisy condition. The IRER observed in this

study is notably lower compared to the 22% error rate reported by

[204] in their study on Alexa. It is worth noting that the task performed

in [204] can be considered more complex, as it pertains to a wider

domain. No other comparable system-level findings appear published

in the literature. The values obtained under the presence of noise

exhibit a comparable level of performance to the other conditions,

thereby providing evidence for the resilience of the proposed system

to background noise. This characteristic is particularly significant in

the context of vehicular applications.

In conclusion, Table 16 provides a comprehensive comparison

between our model and existing state-of-the-art solutions. Results

demonstrate that our model is capable of offering complete offline

end-to-end speech processing without compromising functionality,

thus representing a significant advancement in the current state-of-

the-art.

 Embedded Voice Assistant

105

Table 15: Error rates in noisy and noiseless environments

Error type Noiseless env Noisy env

WER 17.71% 21.30%

CER 3.7% 5.1%

ICER 9.02% 9.35%

SER 3.09% 7.04%

IRER 9.77% 13.08%

Table 16: Feature comparison among VA systems

Model Multi-
language

Offline
operation SC ASR NLU TTS

Google
Assistant

 limited

Siri limited

Picovoice ×

Vosk × × ×

DeepSpeech × × ×

Ours

 Embedded Voice Assistant

106

All the metrics considered in this section have been measured

through Edgine’s scripts, which allowed for extrapolation and

automatic storage into Measurify. In this scenario, Edgine served as a

system evaluation tool, proving again its flexibility and wide range of

potential use in the IoT context.

 DRL for low-speed maneuvering

107

5
DRL for low-speed

maneuvering

In the realm of automotive-applied artificial intelligence, an additional

aspect of interest lies in the application of the DRL paradigm. This

approach, which relies on an agent’s direct exploration of the

environment, proves to be highly efficient for tasks that demand

learning a particular behavior (i.e., a policy) via interactions with the

environment itself. An example of DRL’s automotive application is in

planning vehicle trajectories and executing parking maneuvers. This

task synergizes well with DRL since it involves observing the

environment through sensors and then responding accordingly by

modulating the brake and accelerator pedals as well as the steering

and gearbox.

The chapter is structured as follows. First, the RL paradigm is

illustrated and then two experiments are proposed using the Unity

game simulator [143]. Subsequently, a similar experiment is

 DRL for low-speed maneuvering

108

performed using a more realistic engine, i.e., CARLA [25]. Finally, a

comparison of the use between the two simulators is provided.

5.1 Deep reinforcement learning

In addition to supervised and unsupervised learning, RL constitutes

an established paradigm within the ML field. RL is a technique used

to train an autonomous agent to make optimal decisions within a

specific environment. The acquisition of knowledge occurs through an

iterative process of trial-and-error, facilitated by the agent’s

interactions with the surrounding environment. The interactions

encompass periodic environmental observations as well as the

corresponding actions executed by the agent. The rewards derived

from the environment are gathered with the observations and actions,

and then processed by an RL algorithm. This algorithm iteratively

improves the agent’s policy, which refers to its decision-making

strategy, throughout the training process (see Figure 33).

 DRL for low-speed maneuvering

109

Figure 33: RL training loop

The policy represents a mapping between observations and

actions. It can be realized in various forms, such as a look-up table, a

complex function, or even a stochastic function that specifies a

probability. During each training episode, the agent’s objective is to

optimize the overall cumulative reward to its maximum potential. In

order to achieve this objective, the agent must prioritize actions that it

has previously encountered and found to yield favorable outcomes

within a given state. However, in order to ascertain such actions, it is

necessary to experiment with actions that have not been previously

selected. Therefore, it is essential for the agent to utilize existing

knowledge while also engaging in exploration of novel actions, to

 DRL for low-speed maneuvering

110

ensure optimal decision-making. The concept being referred to is the

widely recognized trade-off between exploration and exploitation

[205].

In the context of RL, it is common to represent a problem as a

Markov Decision Process (MDP), which consists of a collection of

states denoted as S, a transition function denoted as T, and an RF

denoted as R. During each iteration, an agent is situated in a specific

state s, performs an action a, and subsequently transitions to a new

state s’. This transition is governed by a transition probability, denoted

as T(a, s, s’), which is a value between 0 and 1. Additionally, the agent

receives a reward, denoted as R(s, a), based on the state and action

taken. The agent learns a stochastic policy, which establishes a

relationship between the state space and the set of available actions by

assigning each of them a probability p(a|s). The objective is to identify

the optimal policy π*, which aims to maximize the expected

cumulative rewards within an episode, as represented by the

following equation:

 𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝜋𝜋
𝔼𝔼𝜋𝜋 �� 𝛾𝛾𝑘𝑘𝑎𝑎𝑡𝑡+𝑘𝑘

𝐻𝐻−1

𝑘𝑘=0

� 𝑠𝑠𝑡𝑡 = 𝑠𝑠� (3)

Where r is the reward, t the current timestep, and γ a discount

factor (γ ∈ [0,1]) that controls how the agent values future rewards

(i.e., low values encourage the agent to prioritize short-terms rewards,

while large values give it a longer perspective). H is the horizon,

 DRL for low-speed maneuvering

111

defined as the total number of steps in the MDP. It can be set to infinite

or to a finite number if the episode ends after a certain number of steps

or whenever a terminating condition is satisfied. In this case, γ values

close to 1 are typically preferred to encourage the agent to actively

pursue the objective. On the other hand, lower γ values allow for

balanced long and short -terms rewards.

In conventional decision-making scenarios, the magnitude of the

MDP state space is substantial, leading to the prevalent utilization of

deep neural networks for modeling policies, referred to as DRL. Over

the course of time, a multitude of DRL training methods have been

devised, and they can be categorized from diverse viewpoints. One

primary differentiation can be made between algorithms that are

value-based and those that are policy-based. Value-based methods,

such as Q-learning [205], employ a value network to approximate the

Q-value. The Q-value represents the total expected reward for each

individual (s, a) pair, assuming the agent consistently adheres to a

policy π. The Q-table is initialized with random values and updated

iteratively using a learning rate ranging from 0 to 1. The table update

policy can be formulated as follows:

 𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼 �𝑎𝑎 + 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎′∈ 𝐴𝐴(𝑠𝑠′)

𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)� (4)

where Q is the state-action value function, a the learning rate, r the

reward, and γ the discount factor. The scalability of Q-learning is

 DRL for low-speed maneuvering

112

limited by its structure, specifically in relation to the number of states

and actions. This poses a significant challenge, especially in the

context of continuous-action problems [205]. Furthermore, it has been

observed that value-based RL algorithms are ill-equipped to handle

scenarios involving stochastic policies, primarily due to their reliance

on greedy action selection [206].

Policy-based methods, on the other hand, involve the direct

learning of a policy, often achieved through the optimization of neural

network weights using gradient descent. This optimization process

aims to maximize the expected reward. The policy can be classified as

either deterministic, such as the Deterministic Policy Gradient (DPG)

proposed by Silver et al. [207], or stochastic, where actions are selected

probabilistically, such as the Proximal Policy Optimization (PPO)

introduced by Schulman et al. [208].

Actor-critic methods integrate the advantages of value-based and

policy-based approaches [209], [210]. The actor network is responsible

for executing the policy in a continuous action space, while the critic

network is responsible for estimating the value function. The value

function helps to update the policy using a historical sequence of

states, actions, and rewards, resulting in reduced variance.

Another distinction can be made between on-policy and off-policy

methods. In addition to the primary objective of optimizing the "target

policy," off-policy methods employ a behavior distribution during

 DRL for low-speed maneuvering

113

training to facilitate sufficient exploration of the state space. In the

context of Q-learning, it is common to employ a Ɛ-greedy strategy to

determine the behavior distribution, which serves as the learnable

policy. This strategy involves selecting actions according to a

probability of 1-Ɛ for exploiting the current knowledge, and a

probability of Ɛ for exploring randomly. This approach effectively

balances the exploration-exploitation trade-off [128].

One final differentiation can be made between model-based and

model-free approaches, which is contingent upon whether a model of

the environment is built.

Figure 34 presents a non-comprehensive classification of RL

algorithms.

Figure 34: Taxonomy of DRL algorithms (non-comprehensive)

This study centers around the PPO algorithm, specifically

designed to fit into a continuous action space in accordance with the

 DRL for low-speed maneuvering

114

requirements of our problem. PPO, which was introduced by

Schulman et al. in 2017 [208], has emerged as a prominent benchmark

for addressing continuous control problems. Policy gradient methods

introduce noise to the value estimation network due to its frequent

updates with each experience sample. The Trust Region Policy

Optimization (TRPO) method, as described by Schulman et al. [211]

employs a strategy that constrains the policy gradient step in order to

limit the variation of the policy. PPO, on the other hand, incorporates

an objective function that facilitates the execution of multiple epochs

of minibatch updates. This design choice allows PPO to harness some

of the benefits associated with TRPO. However, PPO surpasses TRPO

in terms of implementation simplicity, generalization ability, and

sample efficiency.

5.2 Unity experiment

The first experiment involves a parking case-study in the Unity game

engine, which is very popular in several domains, from video games

to autonomous agent development [142].

5.2.1 Unity ML-Agents

The ML-Agents open-source toolkit [143] enables the utilization of

Unity as a simulation environment for the development and training

of autonomous agents. ML-Agents offers a Python API that facilitates

the use of the major RL algorithms. This implementation is built upon

 DRL for low-speed maneuvering

115

the PyTorch library. The key components of ML-Agents encompass

the following:

• Learning environment: the Unity scene that serves as the

setting in which the agent engages in observation, action, and

learning. The ML-Agents Toolkit SDK facilitates the

encapsulation of any Unity scene into a learning environment,

enabling the specification of agents and their corresponding

behaviors. It is feasible to concurrently train multiple agents,

thereby substantially diminishing the training duration;

• mlagents-learn: the utility responsible for managing the

training process. It is initiated by means of a .yaml

configuration file. The file is organized into multiple sections,

namely behaviors, environment, engine, checkpoint, and torch.

The behaviors section outlines the training algorithm and its

associated hyperparameters. The environment section specifies

the path to the environment, any relevant environment

arguments, and the number of parallelized environments. The

engine section defines the rendering settings, including screen

dimension, render quality, time scale, and whether to render

the scene. The checkpoint section contains information

regarding the creation of checkpoints during training. Lastly,

the torch section determines whether the CPU or GPU will be

used for training;

 DRL for low-speed maneuvering

116

• Python low-level API: enables communication with the Unity

scene during training;

• External communicator: an internal component within the

learning environment that facilitates communication with the

Python API;

• Python trainers: it comprises the algorithms necessary for

training the agents and offers the "mlagents-learn" command-

line utility and is exclusively integrated with the Python low-

level API.

Figure 35 illustrates the architectural design of a representative

learning environment within the ML-Agents framework. In this

particular instance, the Python trainer is instructing two agents,

specifically referred to as A1 and A2, through the utilization of the

Python API. The Communicator module establishes a connection

between the Agents and the Python API, facilitating the retrieval of

essential environment parameters required for training purposes.

These parameters include the target coordinates and the current

location of the agent, among others. To ensure comprehensive

analysis, the environment incorporates two additional agents. The

first is an agent that incorporates a policy executed by a NN, which

has been previously trained during a prior RL session. The second is

a Heuristic agent, as it operates based on a predefined set of heuristic

rules to determine its behavior.

 DRL for low-speed maneuvering

117

Figure 35: A potential ML-Agents learning environment

Figure 36 provides a comprehensive depiction of the standard

workflow employed in ML-Agents projects. The primary phase of

design and implementation involves the establishment of

fundamental elements, including simulation settings, observations,

actions, reward signals, and NN hyper-parameters. The subsequent

training involves the execution of multiple simulation episodes,

potentially incorporating adjustments such as modifications to the RF.

Once the per-episode reward achieved by the agent reaches an

appropriate threshold, the training process is terminated, and the

acquired policy can be subsequently evaluated through pure

inference. In the event of a successful test, the model may be deployed.

 DRL for low-speed maneuvering

118

However, if the test is unsuccessful, the training process must be

restarted using a model that has been updated by the designer based

on the knowledge and experience acquired.

The per-episode workflow, which includes the configuration of

randomized parameters to enhance the agent’s generalization

abilities, is outlined in Figure 37.

Figure 36: ML-Agents project development workflow

 DRL for low-speed maneuvering

119

Figure 37: ML-Agents per-episode workflow

5.2.2 Experiment setup

To incorporate the DRL agent into the vehicle, a basic three-

dimensional model that was accessible from [212] has been used. The

collider component of the vehicle, which facilitates collision detection,

is in the form of a parallelepiped with dimensions 3.90 × 1.70 m.

 DRL for low-speed maneuvering

120

The utilization of a basic kinematic bicycle model for the vehicle is

justified by the low-speed maneuver setup [213]. The equations

pertaining to this model, along with a corresponding illustration in

Figure 38, are as follows.

�̇�𝑋 = 𝑉𝑉 𝑐𝑐𝑐𝑐𝑠𝑠�𝜓𝜓 + 𝛽𝛽(𝑢𝑢2)�

�̇�𝑌 = 𝑉𝑉 𝑠𝑠𝑖𝑖𝑛𝑛�𝜓𝜓 + 𝛽𝛽(𝑢𝑢2)�

�̇�𝑉 = 𝑢𝑢1

�̇�𝜓 =
𝑉𝑉
𝑙𝑙𝑟𝑟
𝑠𝑠𝑖𝑖𝑛𝑛�𝛽𝛽(𝑢𝑢2)�

(5)

where 𝑢𝑢1 is the acceleration command and 𝑢𝑢2 the front wheel angle

used as a steering command. 𝛽𝛽(𝑢𝑢2) is the slip angle at the center of

gravity:

 𝛽𝛽(𝑢𝑢2) = 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑛𝑛 �𝑎𝑎𝑎𝑎𝑛𝑛(𝑢𝑢2)
𝑙𝑙𝑟𝑟

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
� (6)

Figure 38: The kinematic bicycle model

 DRL for low-speed maneuvering

121

The agent receives information regarding the vehicle’s position,

the target’s position, and the speed vector from the environment. In

addition, the system can receive a continuous flow of data from both

a lidar sensor and a camera. The lidar sensor, which has a field of view

spanning 360° and an angular resolution of 10° (see Figure 39), is

positioned at the apex of the roof, precisely at its center. This sensor

generates a one-dimensional array of data. The length of the radius is

5 meters. This deliberate choice of a short-range was made in an

attempt to improve the agent’s ability to generalize. The camera is

positioned above the windshield and has a vertical field of view of 60°

and a horizontal field of view of 120°. It has a resolution of 84 × 84

pixels. The lidar is utilized via the ML-Agents Raycast sensor

component, while the camera is employed through a Camera

component. Equation (7) presents the comprehensive observation

vector.

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑟𝑟 = (𝑚𝑚𝑣𝑣𝑣𝑣ℎ𝑙𝑙𝑖𝑖𝑙𝑙𝑣𝑣,𝑦𝑦𝑘𝑘,𝑤𝑤𝑘𝑘−1)
𝑆𝑆𝑖𝑖𝑎𝑎𝑐𝑐𝑣𝑣𝑟𝑟𝑎𝑎 = (𝑚𝑚𝑘𝑘, 𝑣𝑣𝑘𝑘)

𝑆𝑆𝑣𝑣𝑒𝑒𝑣𝑣 = �agent𝑣𝑣𝑣𝑣𝑙𝑙, agent𝑙𝑙𝑙𝑙𝑟𝑟 , target𝑙𝑙𝑙𝑙𝑟𝑟 , distance𝑎𝑎𝑎𝑎𝑣𝑣𝑒𝑒𝑡𝑡→𝑡𝑡𝑎𝑎𝑟𝑟𝑎𝑎𝑣𝑣𝑡𝑡�

𝑆𝑆 = (𝑆𝑆𝑣𝑣𝑒𝑒𝑣𝑣,𝑆𝑆𝑖𝑖𝑎𝑎𝑐𝑐𝑣𝑣𝑟𝑟𝑎𝑎,𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑟𝑟)

(7)

The agent possesses the capability to manipulate the motor torque,

the brake torque, and the orientation of its front wheels. The vehicle’s

steering angle range is in the range [-𝜋𝜋/6, 𝜋𝜋/6]. The brake torque range

spans from 0 to 300, while the motor torque range extends from -400

 DRL for low-speed maneuvering

122

to 400. This enables the vehicle to execute both forward and backward

maneuvers.

Figure 39: View of the Raycast lidar sensor

The selected neural network model is an MLP consisting of two

hidden layers, each containing 256 neurons. In the presence of a

camera sensor, the neural network incorporates two supplementary

convolutional layers for the purpose of preprocessing the visual

signal. Table 17 presents a synthesis of the values that characterize the

network architecture.

 DRL for low-speed maneuvering

123

Table 17: ML-Agents NN architecture

Layer Sizes Description

Input layer (408 or 84×84×3)+8

408 lidar values or an
84×84 RGB image + 2D
values of distance
between agent and
goal, agent’s speed,
agent’s heading, and
goal’s heading

Convolutional
layers

1st Kernel size = [8,8]

1st Stride size = [4,4]

2nd Kernel size = [4,4]

2nd Kernel size = [2,2]

2 convolutional layers
to pre-process the
camera input, when
provided

Dense layers 256 2 layers

Output layer 3
Possible agent’s
actions: throttle,
steering, brake

5.2.3 Results

This section provides a description of the two tests conducted to

validate our approach, namely parking in a garage and navigating

within an area with randomly placed obstacles.

The results presented in this section, along with the corresponding

source code, can be accessed at the following URL:

https://github.com/Elios-Lab/pathfollowing.

https://github.com/Elios-Lab/pathfollowing

 DRL for low-speed maneuvering

124

5.2.3.1 Garage environment

The first developed environment is visible in Figure 40. A garage-like

setup is presented, with ten parking lots in a 400 m2 area. Each lot,

with dimensions of 5.3 × 3.5 meters, is enclosed by walls. The central

corridor, which allows for bidirectional vehicular traffic, measures 20

meters in length and 8 meters in width. The objective of the DRL agent

is to determine and implement a trajectory from an arbitrary starting

location to a specified destination while ensuring avoidance of any

potential wall collisions.

Figure 40: The Unity garage environment

The RF plays a crucial role in the design of autonomous agents as

it serves as the mechanism by which the agent’s behavior is influenced

by the environment. The initial step involved replicating the RF

(Equation (8)) from a well-known open-source project that utilizes

 DRL for low-speed maneuvering

125

ML-Agents [214]. The proposed incentive system imposes penalties

on the agent for engaging in collisions, while simultaneously

providing rewards for its motion and successful attainment of the

target. The proper alignment of the vehicle within the parking lot is

also rewarded.

 𝑎𝑎𝑟𝑟𝑤𝑤𝑎𝑎𝑎𝑎𝑑𝑑 =

⎩
⎨

⎧
0.2 ∗ |𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎| 𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑑𝑑 𝑖𝑖𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛𝑎𝑎 𝑎𝑎ℎ𝑟𝑟 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙

0.8 ∗ |𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎| 𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑎𝑎𝑎𝑎 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑟𝑟𝑑𝑑 𝑖𝑖𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛𝑎𝑎 𝑎𝑎ℎ𝑟𝑟 𝑎𝑎𝑐𝑐𝑎𝑎𝑑𝑑
−0.01 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑛𝑛

0.001 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙𝑟𝑟 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑖𝑖𝑙𝑙𝑡𝑡𝑣𝑣
 (8)

where 𝑎𝑎𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛𝑚𝑚𝑟𝑟𝑛𝑛𝑎𝑎 = �|𝑎𝑎𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑣𝑣𝑣𝑣𝑙𝑙|� ∗ �|𝑎𝑎𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙𝑟𝑟|� ∗ cos(𝜗𝜗) and 𝜗𝜗 is the

angle between the EV heading vector and the EV-target conjunction

vector.

By conducting multiple iterations of experiments, it was possible

to enhance the RF, leading to improved outcomes in terms of both

accuracy and convergence time. The ultimate equation is represented

as Equation (9).

 𝑎𝑎𝑟𝑟𝑤𝑤𝑎𝑎𝑎𝑎𝑑𝑑 = �

−1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑐𝑐𝑛𝑛
0 𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙

𝑐𝑐1 ∗ ((𝑐𝑐2 ∗ 𝑑𝑑2) +
𝑐𝑐3 ∗ (1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)

𝑑𝑑 + 1
)

 (9)

where 𝑐𝑐1 = 0.01, 𝑐𝑐2 = −0.01, and 𝑐𝑐3 = −1.5.

The function computes the sum of two types of rewards: sparse

rewards, which are provided when a specific event takes place, and

dense rewards, which are given at each step of the simulation. The first

sparse reward imposes a penalty on the agent in the event of a

 DRL for low-speed maneuvering

126

collision. The second component provides a reward for successfully

attaining the objective. A supplementary objective incentive is

incorporated in direct proportion to the ultimate alignment of the

vehicle with respect to the parking lot.

The dense reward is designed to incentivize progress towards the

goal and is comprised of two components, which align with the

objectives of reaching the final position and achieving the final

orientation. The first component imposes a penalty on the agent-goal

distance, denoted as d. The subsequent component penalizes the

deviation from alignment with the parking lot. The division of the

second term by the distance d is justified, as the effective management

of misalignment is relevant primarily in situations where the vehicle

is in proximity to the target. The utilization of a Manhattan distance

metric appears to be more suitable for the given environment,

probably due to the nature of the maneuvering trajectories required to

enter parking lots. The dense reward is normalized within the range

of -2 to 0.

The allocation of sparse and dense rewards is calibrated using the

c1, c2, and c3 coefficients, with the aim of attaining an optimal

equilibrium based on empirical evidence.

The PPO algorithm was employed as the DRL backbone method,

which is widely recognized as a benchmark for addressing continuous

control problems. The optimal values for the training

 DRL for low-speed maneuvering

127

hyperparameters were determined through empirical analysis or

adapted to the machine in use and are presented in Table 18.

Table 18: Hyperparameters for the Unity garage parking experiment

Hyperparameter Value

Batch size 512

Buffer size 51200

Learning rate schedule Linear

Learning rate (initial) 1e-4

Time horizon 128

The scene undergoes re-initialization at the start of every training

episode. A specific parking lot is chosen as the designated target, and

its entrance is made accessible. The agent is then placed in a randomly

determined position and orientation within the central corridor. An

episode is considered complete under the following conditions: (i) the

vehicle successfully reaches the designated goal; (ii) the vehicle

encounters an obstacle, although this criterion is not enforced during

the initial training phase to allow for continued exploration despite

collisions; (iii) the episode reaches the maximum predetermined

number of steps without the vehicle reaching the goal.

In evaluating the training phase, the following performance

metrics have been considered:

 DRL for low-speed maneuvering

128

• Cumulative reward: the total amount of reward accumulated

over a given period of time or a series of events. The cumulative

rewards obtained by the agent during an episode constitute its

total reward. The temporal progression of this metric serves as

a significant determinant of the efficacy of the training.

Rewards are exclusively distributed during the training phase,

rendering this particular quantity inapplicable during testing,

in contrast to subsequent quantities;

• Goal rate: the ratio of episodes that achieved the desired

outcome (i.e., goal reached) to the total number of episodes;

• Collision rate: the ratio of collisions to episodes. As it will be

shown, in certain cases, collisions may result in terminal

consequences, while in others, they may not;

• Timeout rate: the ratio between episodes ended with a timeout

(i.e., doing the maximum number of steps, without reaching the

goal) and the total number of episodes.

In the context of our analysis within garage settings, three sub-

experiments have been undertaken, delineated as follows.

1. Utilization of a singular target lot across all training episodes,

resulting in limited generalizability. A collision does not

constitute a terminal event. The vehicle is equipped with a

lidar;

 DRL for low-speed maneuvering

129

2. Replacement of the lidar sensor with a camera and

modifications to the NN architecture to accommodate the

varying inputs. Specifically, the addition of two convolutional

layers is employed to process the camera signal, and the

resulting output is concatenated with the other inputs;

3. Utilization of a lidar-equipped vehicle that is trained to

navigate towards one of ten parking lots. The specific parking

lot is randomly chosen at the start of each episode. The

occurrence of a collision is not considered a terminal event

until the success rate surpasses a specific threshold, at which

point the collision is designated as a terminal event.

In each of the sub-experiments, the testing phase comprises 100

episodes. During each episode, the vehicle is spawned with random

position and orientation. The objective is to successfully navigate to

one of the lots, randomly selected. Findings are presented in Table 19.

Table 19: Test results of the three garage experiments in Unity

Sub-exp. no. Sensor
Number of
target parking
lots in training

Success rate in
tests

1 Lidar 1 50%

2 Camera 1 80%

3 Lidar 10 94%

 DRL for low-speed maneuvering

130

In the context of computational allocation during the training

process, it was observed that the utilization of a dedicated GPU did

not yield a substantial enhancement in performance, as evidenced by

the results obtained in this experiment and corroborated by similar

findings in other studies. This phenomenon may be attributed to the

relatively shallow depth and limited number of neurons in the NN

utilized. In addition, it should be noted that RL places a significant

demand on the CPU as a result of the sequential nature of the agent-

environment interaction, as depicted in Figure 33. Furthermore, it is

worth mentioning that rendering is disabled when the camera is not

in use. The recorded training speeds amount to approximately 1.4

million steps per hour. These measurements were obtained using a

system comprising an Intel Xeon W2223 processor, 32 GB of RAM, and

an NVIDIA Quadro RTX 4000 GPU.

In relation to sub-experiment #1, it has been observed that there

exists a crucial phase within the initial 8 million steps. During this

phase, the reward obtained is consistently low and unstable, while the

lengths of episodes are primarily characterized by collisions initially,

followed by timeouts. Specifically, it was possible to observe that in

numerous instances, the vehicle consistently performed abrupt gear

reversals, remaining predominantly stationary. This phenomenon is

indicative of a local minimum, which hinders the agent’s ability to

enhance its performance. Upon completing 8 million steps, the agent’s

performance rapidly converges to a stable state characterized by

 DRL for low-speed maneuvering

131

consistently high rewards and shorter episode lengths. Nevertheless,

during the testing phase, wherein the target can be selected from any

of the ten lots, it becomes evident that the agent, despite its training,

is unable to effectively generalize its knowledge (Table 19).

In the subsequent sub-experiment (#2), the lidar was replaced with

a camera. The efficacy of the training was demonstrated. However, it

should be noted that the agent’s ability to generalize to multiple target

test cases is unsatisfactory, as indicated in Table 19. Therefore, it has

been attempted to initiate the training process again by randomly

simulating all potential target lot scenarios. However, this approach

resulted in a deceleration of the learning process and did not yield

substantial enhancements. Furthermore, the notion of imposing

penalties for timeouts did not yield substantial benefits.

In sub-experiment #3, it has been reverted to employing a lidar

sensor as opposed to a camera, resulting in a reduction in both input

size and training duration. Additionally, the constants were tuned and

the rewards normalized. To ensure the optimal tuning of these

hyperparameters, it was imperative to generate and evaluate

supplementary Tensorboard visualizations, as depicted in Figure 41.

Specifically, the values of each component of the RF (namely, collision,

goal, distance, and alignment) have been recorded in Tensorboard to

conduct a quantitative analysis of the agent’s behavior. Efficiently

assessing various alternatives and fine-tuning the RF and simulation

 DRL for low-speed maneuvering

132

settings is a crucial aspect that demands a significant amount of time

and effort.

(a) (b)

(c) (d)

Figure 41: Tensorboard plots of each reward evolution during experiment
#3. Rewards: (a) collision, (b) goal, (c) distance, (d) alignment. Dashed blue
lines indicate the switch from the first to the second phase

As visible in Figure 41, it was necessary to split the training into

two phases, therefore employing the Curriculum Learning (CL)

paradigm.

CL in RL poses challenges due to the absence of a preexisting

dataset, making it difficult to assess the difficulty of samples using a

Difficulty Measurer [215]. In line with the study conducted in [216],

 DRL for low-speed maneuvering

133

our approach involved the utilization of a one-pass algorithm [217],

wherein the difficulty levels were incrementally adjusted to

correspond to the progressively intricate iterations of the learning

environment. It was also possible to incrementally enhance the agent’s

abilities in various training phases (e.g., as demonstrated by [218]).

However, initial findings indicated that augmenting the training

complexity did not yield any advantages. In contrast to the approach

taken by [216], our study did not establish a predetermined quantity

of steps for each stage. Instead, a performance criterion has been

employed, as outlined by [215]. Furthermore, in each phase, not only

the intricacy of the context has been heightened (such as the type of

objective and the conditions for episode conclusion), but also

adjustments to the RF of the agent have been made. These

modifications were made based on a meticulous analysis of the

Tensorboard charts from multiple training iterations, as previously

stated. In the initial phase of this experiment, two distinct stages have

been executed. In the initial scenario, the agent undergoes training

with the objective of successfully navigating toward a specific

designated location. Collisions are subject to penalties but do not

result in the termination of the episode. This approach is implemented

to facilitate the agent’s exploration of the environment without

frequent disruptions [219]. Once the objective is attained at a rate

surpassing 99.5%, the commencement of the subsequent phase ensues.

During this particular stage, the activation of the remaining nine

targets occurs randomly. Also, collisions are considered as terminal

 DRL for low-speed maneuvering

134

events for an episode. Moreover, the penalty associated with collisions

is heightened, resulting in a decrease in the reward from -1 to -10. The

introduction of these factors is responsible for the significant decline

in performance of the goal reward, as evident from the stage transition

depicted in Figure 41b. Nevertheless, the training process continues to

be effective, albeit at a slower pace, due to the significantly higher

intricacy of the learning environment. Subsequently, after a

satisfactory number of iterations, the model achieves a desirable level

of performance in the designated environment.

The initial phase is concluded in 25M steps, followed by an

additional 57M steps required to complete the subsequent stage.

Figure 42 illustrates the progression of the success rate, specifically the

achievement of goals without any collisions, throughout the training

process. Experimental findings indicate that for an agent to reach

multiple targets, it is imperative to provide training on multiple

targets (Table 19). Conversely, training the agent solely on a single

target leads to overfitting, as it becomes overly specialized in locating

the precise position of that target.

 DRL for low-speed maneuvering

135

Figure 42: Progression of the success rate in the Unity experiment #3.
Transition between phases indicated by a dashed blue line

The impact of CL was evaluated by conducting a comparative

analysis of the outcomes achieved by an agent trained from the

beginning under identical conditions and rewards as our stage 2

agent. Remarkably, despite undergoing 80 million iterations, the

success rate consistently remains at 0. Our argument posits that a

crucial determinant of CL lies in the potential occurrence of first

episodes involving nonterminal collisions. This not only facilitated the

investigation of the surroundings (including exploring the movement

area and the consequences of the actions taken) but also exposed the

agent to the rewards related to the achievement of the goal.

Conversely, an agent which experiences significant penalties from the

outset for collisions learns that remaining stationary is more

advantageous than navigating through a hazardous environment.

Consequently, CL facilitates a learning process that encourages

exploration, discourages excessively cautious behaviors, and

promotes a more adaptable approach to learning.

 DRL for low-speed maneuvering

136

The test results obtained from sub-experiment #3 were compared

with those of Hybrid A*. Hybrid A* is a modified version of the widely

recognized A* search algorithm, specifically designed for the

exploration of the three-dimensional kinematic state space of a

vehicle. This algorithm ensures that the generated path remains

kinematically feasible by incorporating a state-update rule that

considers the continuous state of the vehicle within the A* nodes [220],

[221].

An open-source Unity implementation of the Hybrid A* algorithm

[222] has been used to conduct our experimentation within our

designated test environment. The outcomes of our experimentation

are outlined in Table 20. To generate the path, Hybrid A* employs a

discretization technique that divides the map into square cells of 25

cm on each side. Each individual cell within the map is considered a

node, and throughout the process of generating a path, each node is

assigned a corresponding cost. The heuristic function takes into

consideration the potential movements of the vehicle, taking into

account a distinct set of actions defined by three steering angles: -30°,

0°, and 30°. In order to prevent collisions, a flow field is formed around

the obstacles. The manipulation of the safety margin allows for

regulation of the extent of its expansion. Findings indicate that Hybrid

A* demonstrates a success rate of 100%, which subsequently decreases

to 85% during the path following phase due to the discretization of the

map. The computational time required to compute the path, which is

 DRL for low-speed maneuvering

137

irrelevant to the DRL agent, exceeds 0.8 seconds, as observed in the

performance evaluation conducted on an Intel Xeon W2223 machine.

In order to enhance the real-time performance of Hybrid A* algorithm,

it is necessary to augment the cell size to 1.2 meters. However, this

adjustment resulted in a decrease in the target reach rate to 21%. Table

20 additionally demonstrates that the DRL agent has the capacity to

decrease the average number of gear inversions required to attain the

aim by 25%. Therefore, the DRL agent demonstrates superior

performance in terms of target attainment rate, gear inversion rate,

and latency, while also eliminating the requirement for a map.

Table 20: 100 episodes comparison between Hybrid A* and DRL PPO –
Garage environment

Path planning
algorithm Success rate

Gear inversions
per episode

Time for path
planning

Proposed DRL 94% 3.36 -

Hybrid A* 85% 4.48 0.857 s

Our experience highlights the significance of certain aspects in

establishing a suitable environment and mitigating the occurrence of

systematic errors, which can be challenging to detect.

The time interval between consecutive updates of the

environment, known as the simulation tick, must be sufficiently rapid

to ensure an accurate physics simulation. Failure to meet this

 DRL for low-speed maneuvering

138

requirement may result in delayed or missed detection of collisions

and/or goal attainment. However, the specific tuning of the simulation

tick should be based on the real-time speed of the simulated stuff and

the computational capacity of the CPU.

Another parameter that requires meticulous adjustment is the

decision period, which refers to the interval between each agent’s

action selection. A short decision period results in the vehicle

remaining in a standstill state. The present analysis posits that, within

this context, the agent lacks the temporal capacity to observe the

consequences of its actions. When the decision period is very long,

conversely, the agent’s responsiveness diminishes, resulting in

inadequate management of the vehicle’s dynamics.

To enhance the efficiency of the training phase, the capability

provided by ML-Agents to concurrently execute several training

scenarios has been leveraged. This results in an elevated steps-per-

second ratio, albeit with a concomitant rise in CPU workload. Due to

this rationale, it is advisable to avoid excessively high numbers of

parallel environments, as the step/second ratio experiences a decline

beyond a particular threshold that is specific to the machine in use.

The selection of the sensor(s) significantly influences the learning

and behavioral characteristics of the agent, as well as the duration of

the training process. The choice between a camera sensor and lidar

carries significant implications, as the camera necessitates scene

 DRL for low-speed maneuvering

139

rendering at each timestep. This process reduces the number of

instructions executed per second, hence prolonging the training time.

In addition, the use of two convolutional layers in the neural network

architecture for processing the camera information necessitates a

higher network size, hence influencing the duration of the training

process. Given the comparable outcomes obtained from both the

camera and lidar in our studies, it has been made the decision to

accord higher priority to the latter. In relation to the concept of

generalization, it has been observed that there exist distinct

limitations. Specifically, when alterations are made to the

configuration, such as modifications in the width or length of the

driving area or adjustments in the positioning of the parking lots, a

notable decline in performance occurs. Consequently, it becomes

necessary to fine-tune the agent in order to address this issue.

5.2.3.2 Random obstacles environment

The preceding experiment involved the training of an agent to

successfully navigate to a designated parking lot, starting from a

randomly selected location within a garage. However, it is important

to consider the potential existence of unforeseen impediments that

may be present prior to reaching the intended destination. In order to

conduct an analysis, a separate Unity environment was established,

and its examination is presented in this sub-section.

 DRL for low-speed maneuvering

140

The input type, neural network setup, and RL training method used

in this experiment are identical to those employed in Garage

experiment #3. The objective of the agent is to navigate through an 80

× 80 m area, with the aim of reaching a position that is randomly

determined. This task involves avoiding a variable number of static

obstacles, which are randomly positioned and oriented between the

starting point and the destination point, as depicted in Figure 43.

Figure 43: Sample random obstacles Unity environments, with random
positions and orientations

The RF is built upon a methodology akin to that utilized for the

garage parking task, with the inclusion of an additional penalty for

low-speed behavior. The decision to implement this modification was

made to address observed experimental scenarios wherein the agent

would cease its movement in close proximity to the target without

actually reaching it. This behavior appeared to indicate a sense of

satisfaction with the achieved distance, maybe in comparison to the

perceived risk of a collision.

 DRL for low-speed maneuvering

141

During the training phase, a one-step CL process was employed,

similar to the approach utilized in the initial experiment. The level of

difficulty was systematically increased by introducing a greater

number of obstacles inside the visual scene. After successfully

achieving proficiency in a certain difficulty level, the agent’s training

progresses to more intricate environments. The levels of difficulty are

documented in Table 21. Adjustments to hyperparameters, such as the

RF, may also occur during these transitions between levels, guided by

the agent’s behavioral observations.

Table 21: Difficulty levels of the random obstacle environment

Difficulty level Description

1 No obstacles

2
One obstacle midway between the
spawning point and the target

3
Like level 2 but with two
additional obstacles on the sides

4
Like level 3 but an additional
obstacle is placed in a second series
of obstacles

5
Like level 3 but two additional
obstacles are placed in the second
series of obstacles

6
Like level 3 but three additional
obstacles are placed in the second
series of obstacles

 DRL for low-speed maneuvering

142

Figure 44 displays the progression of the training success rate

across various difficulty levels. In relation to the initial three levels, it

is seen that the initial level is attained after a total of 11 million steps,

followed by the intermediate level after an additional 36.5 million

steps, and ultimately, the third level is achieved after an additional

363.5 million steps. The observed decrease in performance with each

level transition indicates a deficiency in the agent’s capacity for

generalization. Indeed, it is observed that the agent demonstrates

proficiency in navigating toward a designated target while sticking to

the existing obstacle framework at each phase. However, it does not

exhibit the same level of competence in reaching a target without

encountering any collisions. Nevertheless, it is seen that as the

difficulty levels increase, there is a decrease in the drop, indicating that

the agent finally acquires the ability to generalize. It is evident that

each level transition necessitates specialized training, a process that

the agent gradually and perceptibly accomplishes.

Figure 44: Progression of the success rate in the Unity random obstacles
experiment. The transition between phases is indicated by dashed blue lines

 DRL for low-speed maneuvering

143

Figure 45 illustrates the performance of a system that underwent

direct training at the ultimate difficulty level, as described in Table 21.

In this scenario, in contrast to garage parking, the agent that

underwent training without CL demonstrates a noteworthy level of

performance, but with a discernible disparity compared to CL (95%

versus 98%). It is suggested that the dissimilarity shown in the garage

case study can be ascribed to the increased spacing between obstacles

inside this subsequent environment. While collisions are terminal

events since the beginning of the training process, they are not overly

common. Therefore, the agent categorized as a "novice" is still able to

navigate and familiarize itself with the environment, ultimately

acquiring knowledge of the task at hand. A comparison with Figure

44 reveals that the agent commences its learning process at a later

stage due to the greater complexity of the environment. This delay in

learning could be an issue in situations when prompt feedback is

required, such as when exploring various hyperparameters on

hardware that is shared or requires payment upon usage.

Figure 45: Success rate over training for an agent trained without CL

 DRL for low-speed maneuvering

144

In addition, for the purposes of this experiment, a comparative

analysis between our DRL agent and a Hybrid A* implementation is

provided. The Hybrid A* algorithm demonstrates a slightly superior

performance compared to our DRL agent in terms of goal reach rate,

with a success rate of 99% as opposed to the DRL agent’s 98%. Our

contention is that this can be attributed to the reduced intricacy of the

maneuvers required to attain the desired objective. Nevertheless,

achieving a decrease in latency from 0.56 seconds to 0.17 seconds

necessitates an increase in the size of the cell side from 0.5 meters to

1.2 meters, resulting in a decline in the success rate to 69%.

Table 22: 100 episodes comparison between Hybrid A* and DRL PPO –
Random obstacles environment

Path planning
algorithm Success rate

Time for path
planning

Proposed DRL 98% -

Hybrid A* 99% 0.561 s

Also in this scenario, the DRL agent demonstrates superior

performance in terms of latency and similar success rates compared to

Hybrid A* while also not needing an a priori map.

 DRL for low-speed maneuvering

145

5.3 CARLA experiment

The experiment involves a parking case-study in the CARLA

simulator, which is becoming very popular in the automotive domain

for the simulation of ADFs.

5.3.1 Experiment setup

Compared to the previous case in Unity, the main aim of this

implementation is to enhance the level of realism, to obtain a model

that is closer to real-world vehicles. In order to enhance the degree of

realism in graphics and physics modeling, the choice for a driving

simulator was CARLA [25], an open-source software designed

specifically for the advancement of ADFs. The system encompasses a

variety of town maps and diverse vehicle models that may

accommodate various sensors, including radar, lidar, camera, and

others. Furthermore, CARLA provides an API that grants users the

ability to manipulate several elements pertaining to the simulation,

such as traffic patterns, pedestrian actions, weather conditions, sensor

functionality, and more. The official section pertaining to DRL lacks

recent updates; however, there have been recent proposals [223], [224]

that provide promising outcomes in the context of trajectory tracking

applications.

Commencing with the pre-existing Town 5, which includes a

parking space, extraneous items have been eliminated from the

environment. This was done to create a streamlined scenario that

 DRL for low-speed maneuvering

146

minimizes the computational burden of rendering and thereby

reduces training time. The parking area, depicted in Figure 46, has

dimensions of 50 x 50 m. It consists of a total of 60 comb parking

places, each measuring 5 x 2.5 m, arranged in a 90-degree orientation.

The designated training area is enclosed by brick walls, effectively

creating a barrier that serves to protect the agent from experiencing

falls. The weather encompasses a total of 15 distinct atmospheric

situations, including variations of sunlight, rainfall, fog, and cloud

cover. In addition, there exists a diverse range of 41 vehicle models,

spanning from motorcycles to trucks, each offering the option for

personalized color customization.

Figure 46: The CARLA parking environment. The targeted parking lot is
indicated with a red square

 DRL for low-speed maneuvering

147

In order to integrate our DRL agent, the Gymnasium toolkit,

previously referred to as OpenAI Gym [225], has been employed.

Gymnasium is a Python toolkit that provides an interface for creating

and implementing DRL environments. It has gained widespread

recognition as the preferred method for facilitating communication

between agents and simulation environments. Furthermore, the

Gymnasium framework offers the capability to construct customized

settings. Consequently, the CARLA parking scenario has been

encapsulated within a Gymnasium environment to obtain a DRL-

compatible interface. In addition, it should be noted that Gymnasium

is fully compatible with Stable-Baselines3 (SB3) [226], which is a

Python library that is openly available and provides a diverse range

of DRL algorithms. This compatibility allows for the seamless

integration of Gymnasium with SB3, enabling users to efficiently

establish the training method as well as the NN architecture and

configuration in a straightforward and simple manner. Figure 47

displays the diagram illustrating the tools employed and their

corresponding interfaces.

 DRL for low-speed maneuvering

148

Figure 47: The toolchain implemented in CARLA: from behavior
specifications to DRL model

In each episode, the initial position and orientation of the car are

randomly determined within the drivable region. The objective to be

achieved is reaching one of the 60 lots, which are picked randomly in

each episode. In order to provide training for our agent, the Jeep

Wrangler vehicle model has been used, which was accessible within

the CARLA simulation environment. The dimensions of the car are

4.80 × 1.90 × 1.90 m, and it possesses a total mass of 2206 kg. CARLA

models the vehicle dynamics using NVIDIA PhysX [227], a widely

used physics simulation engine. The EV (i.e., the agent) is equipped

with a lidar sensor positioned at the vehicle’s midpoint, offering a

panoramic horizontal field of view spanning 360 degrees.

Table 23 provides a comprehensive summary of the constituent

elements of the RF. The two primary factors that influence the EV’s

approach towards the goal are the distance and heading rewards.

Collision is sparse, but it is essential to instruct the agent on how to

avoid other Non-Player Vehicles (NPVs) and the boundaries of the

 DRL for low-speed maneuvering

149

designated area. There are two key factors that are associated with the

successful attainment of the designated parking lot: goal and

alignment. The goal reward is granted upon the arrival of the EV to

the parking lot, whereas alignment compensates the agent for

successfully parking in a well-aligned manner. This component is

maximum if the car is perfectly aligned (0 degrees difference from the

parking orientation) and decreases linearly to 0 depending on how

crookedly the agent is parked (where 0 indicates parking with 90-

degree difference from the parking orientation).

Table 23: CARLA experiment RF components

Name Description Range Type

Distance
Euclidean
distance from
EV to target

[-0.1, 0] dense

Heading

Angle between
EV forward
vector and EV-
target vector

[-0.1, 0] dense

Collision
Collision with
walls or NPVs
event

[-1, 0] sparse

Goal
Target achieved
event

[0, 15] sparse

Alignment

Angle between
EV forward
vector and
parking lot
orientation

[0, 10] sparse

 DRL for low-speed maneuvering

150

In order to be compliant with the previous Unity experiment, the

PPO algorithm [208] was employed for training the model. The chosen

architecture for the primary NN is an MLP configuration, consisting

of two hidden layers each containing 512 neurons. The input and

output values of this configuration are presented in Table 24. In order

to enhance the agent’s perception of its motion, at each network

update the most recent four input values have been stacked on top of

the current input value. This enables the agent to effectively capture

the evolving dynamics and fluctuations in the environment over time.

Table 24: PPO network setup for the CARLA experiment

Type Quantity Dimension Resulting size

Input

Lidar data 61

340 (5 stacked
inputs)

Distance from
target (x, y)

2

Speed (x, y) 2

Acceleration (x, y) 2

Angular velocity
(yaw)

1

Output

Throttle 1

4
Steering 1

Brake 1

Reverse 1

 DRL for low-speed maneuvering

151

Based on the above findings in the Unity environment, albeit of

less complexity, a similar CL technique has been implemented for the

purpose of training the agent. In this scenario, the training process is

divided into three stages. In the initial stage, the analysis just focuses

on the EV, no NPVs are present in the scene. An episode concludes

either when the goal is achieved or when it exceeds a maximum of 240

steps (corresponding to 4 minutes in the real world). The absence of

penalties for collisions serves as an incentive for the agent to engage

in exploratory behavior inside the environment. During the second

phase, the selection of the number of NPVs is performed randomly

within the range of 0 to 20 for each episode. Similar to the previous

phase, the episode can only terminate upon meeting the target or

when a timeout occurs. Collisions are now subject to a minor penalty,

quantified by a weight of -0.1. In the third phase, the conditions are

comparable to those in phase #2, with the exception that an episode is

now terminated by a collision, which incurs a penalty weight of -1.

5.3.2 Results

The PPO agent underwent training for approximately 60 million steps,

as depicted in Figure 48. In the initial CL phase, the agent successfully

achieved the goal in all instances after a total of 25 million steps, as

depicted in Figure 48a. Once this is attained in the absence of NPVs

within the given context, the subsequent phase begins, spanning

approximately 15 million steps. During this phase, the agent acquires

the skill of parking while NPVs are positioned near the designated

 DRL for low-speed maneuvering

152

parking area. The last stage, when collisions denote a terminal state,

persisted for a duration of 20 million steps, resulting in a concluding

success rate of 97%.

(a) (b)

Figure 48: The training of the PPO agent in CARLA over around 60M steps.
(a) is the success rate, whereas (b) represents the cumulative reward. The
three CL phases are distinguished by dashed blue lines

While the overall success rate is deemed satisfactory, certain issues

pertaining to the utilization of CARLA emerged during the process of

code development. Specifically, the absence of explicit assistance for

DRL posed challenges in terms of implementing the environment and

ensuring compatibility with Gymnasium and SB3. Overkill values of

the CARLA environment update frequency, exceeding 20 Hz,

significantly prolonged the training duration due to increased

computational demands. Conversely, frequencies below 10 Hz failed

to ensure adequate observation of the environment by the agent,

resulting in instances where the agent inadvertently reached the goal

without being detected. Furthermore, it was again crucial to

implement a decision period, as excessively high network update

 DRL for low-speed maneuvering

153

frequencies (exceeding 10 Hz) hindered the agent’s ability to acquire

a knowledge of locomotion. This limitation arose from the fact that a

brief accelerator pedal pressure did not provide adequate duration for

initiating movement. An optimal compromise that was identified

involves utilizing a CARLA environment update rate of 20 Hz in

conjunction with a network update rate of 5 Hz, resulting in a decision

period of 4. However, it is important to note that this determination

was made through extensive experimentation and iterative

refinement.

It is worth remarking that, for this experiment, test results have

been obtained using Edgine. First, the obtained NN is uploaded to

Measurify through its dedicated GUI Graphical User Interface [228].

Successively, an Edgine instance is executed on a Ubuntu PC (since

the model has been trained using Ubuntu) to automatically download

the NN weights from the cloud. Once the model is obtained, a

dedicated script allows to perform inference. Since the model

described has been trained using the Gymnasium toolkit, a specific

Edgine operation has been defined which enables it to execute the

Python snippet dedicated to launch the CARLA server, load the

model, and run inference in the parking environment. Once results are

obtained, they are returned to the Edgine instance which

automatically ships them to Measurify using the send() operation.

 DRL for low-speed maneuvering

154

At the moment of writing, this Edgine feature results still working

progress, but the results achieved so far are encouraging and reveal

other potential that Edgine can offer in the field of edge computing.

5.4 Unity or CARLA?

In this part, we undertake a comparative analysis of our development

experience in both Unity and CARLA simulators.

Unity is a versatile graphic engine utilized across multiple

industries. It has the capability to adjust simulation environments and

settings and provides a range of readily integrable vehicle sensors like

lidars, radars, cameras, and semantic cameras. Additionally, the

process of generating other observations is uncomplicated. The

utilization of a GUI enhances the user experience by facilitating a

pleasant and efficient interaction, eliminating the necessity to delve

into the underlying source code. A Unity simulation necessitates the

computation of physics and graphics, particularly in cases when the

agent’s input incorporates a camera, hence resulting in a significantly

elevated processing need. The aforementioned concern, which is

applicable to all environments, can be effectively addressed through

the utilization of Unity’s capability to instantiate multiple

environments within parallel processes and/or execute multiple

scenes concurrently. This approach optimizes training time by fully

leveraging the CPU’s cores. One significant constraint is the limited

range of selectable NN topologies and tunable parameters. For

 DRL for low-speed maneuvering

155

instance, only dense and convolutional neural networks are available,

without including advanced mechanisms like attention [13] that are

currently considered state-of-the-art. Unity may be accessed through

the ML-Agents Python library, which provides also an interface for

Unity as a Gymnasium environment. This enables the utilization of

many neural network architectures, including bespoke ones [229].

Nevertheless, the available material is scarce, and there is a lack of

scholarly publications on this topic in the existing literature.

The CARLA platform is an open-source tool designed for the

simulation and evaluation of ADFs. The platform offers a considerable

level of adaptability in relation to the customization and management

of the physical aspects of the environment, facilitating the creation of

intricate situations. This feature proves to be highly advantageous for

conducting experiments in the field of DRL. CARLA offers pre-

established maps and tools, such as the Scenario Runner [230] and

Map Editor [231], to facilitate the creation of simulations in settings

that are either extremely realistic or tailored to specific requirements.

Additionally, the software showcases a noteworthy assortment of

meticulously replicated vehicle models, encompassing various

metrics such as maximum RPM, the moment of inertia pertaining to

the engine, the duration required for gear shifting, and the drag

coefficient associated with the vehicle’s chassis, among others. This

achievement is facilitated by the utilization of the Unreal Engine game

engine [232], which offers advanced capabilities in terms of generating

 DRL for low-speed maneuvering

156

three-dimensional graphics and conducting physics simulations.

CARLA utilizes a customized version of Unreal Engine 4.26,

incorporating tailored modifications exclusive to CARLA’s

functionalities, necessitating robust computational resources. The

dynamic models of vehicles are derived from NVIDIA PhysX, the

established Unreal Engine 4 vehicle model [227]. The learning curve

of the tool is rather steep. The training process is influenced by the

overall sophistication and complexity of the environment. This

influence is observed through various aspects, including the type of

vehicle, the observations made, and most notably, the timing of the

simulation world’s progress and the agent’s decision.

In summary, the selection of the simulation framework is

contingent upon the requirements and objectives of the research

endeavor. If the primary focus is on realism and achieving a high level

of physical accuracy, CARLA would be the optimal selection.

However, the Unity ML-Agents toolbox presents a potential

compromise between the accuracy of virtual reality depiction and the

effectiveness of modeling, training, and simulation.

 DRL models explainability

157

6
DRL models explainability

The primary issue with employing ML algorithms is that they operate

as black-box methods, which makes it challenging to identify patterns

attributed to the decisions made by the agent. This problem becomes

more critical when considering the automotive industry, where

enforcing very high safety standards is paramount to safeguard

human lives. The chapter presents an examination of SHAP values

and a comparison with attention layer outputs from a DRL neural

network for a highway use case.

First, the development environment and DRL model are

introduced. Next, experimental results are presented and analyzed in

three modes: (i) episode timeline analysis, (ii) frame-by-frame

analysis, and (iii) aggregate statistical analysis.

 DRL models explainability

158

6.1 Environment

Being the scope of this research investigating the explainability of DRL

models, it has been decided to adopt a simple DRL algorithm and a

basic learning environment, so to avoid any possible interference

caused by the complexity of the DRL algorithm or the development

environment. To accomplish the outlined research objectives, a DRL

agent was trained using a basic DQN algorithm within the highway-

env environment [21]. Highway-env is a collection of simple 2D bird-

eye view environments for training RL agents in AD tasks,

particularly in highway settings. Highway-env is one of the

environments provided within Gymnasium. The open-source code

base was altered to extract the necessary data for analysis from each

episode, including the status log, action log, attention matrix values,

and Q matrix values.

The architecture of the agent model is centered on a single EV-

attention layer, which is designed to capture the interdependence

between the EV and the other vehicles. The layer receives a single

vector input for each vehicle. This input is generated by embedding

the feature list of each vehicle using a linear dense layer encoder with

64 units. The final output is produced by a decoder consisting of two

dense layers (Figure 49, [149]). A single EV-attention head is employed

in order to maintain simplicity and accommodate the unidirectional

nature of the highway environment.

 DRL models explainability

159

Figure 49: Highway DRL model architecture. Picture courtesy of [149]

The analysis was conducted on a standard 3-lane highway-env

environment, utilizing its default values with the exception of certain

parameters. These parameters include a traffic density of 0.6

(medium), an observation of 8 vehicles to mitigate computational

complexity and reduce training times, a policy frequency of 1 Hz to

allow the agent sufficient time to observe the consequences of its

decisions, and an episode duration of 80 frames (equivalent to 80

seconds) to adequately assess agent behavior. In the highway-env

framework, the vehicles under observation are arranged in a

sequential manner based on their distance from the EV. Specifically,

the EV is denoted as v0, while v1 represents the vehicle closest to the

EV, v2 refers to the second closest vehicle, and so on. Hence, it can be

observed that there is no distinct identity assigned to each vehicle for

every episode, apart from the EV. However, cars are identifiable on a

per-frame basis. Each episode encompassed a collective sum of 15

vehicles, constituting the predetermined standard value. Every

observation sent to the DRL model has seven distinct features for each

vehicle. These features include the presence of a vehicle in the current

 DRL models explainability

160

frame, as the observation region around the EV is constrained.

Additionally, the features consist of the vehicle’s x and y coordinates,

longitudinal and lateral speed, as well as the two trigonometric

directions. The observations are normalized with a longitudinal

distance of 100 meters and a speed of 80 meters per second. Each lane

has a width of 3.5 meters and serves as a reference point for both the

EV, where its x-coordinate is always 0, and the other cars, where their

positions are measured relative to the EV.

The velocity of the EV can be categorized into three distinct levels:

20, 25, and 30 m/s. These levels are slightly more than the average

velocity of other vehicles, which typically travel at approximately 22

m/s. The agent can select one of five actions, namely right, left, idle,

faster, or slower, at each frame. The system proceeds to process the

determined activities while considering the relevant context. As an

example, the deceleration at a velocity of 20 m/s leads to an idle action,

and the same principle applies to the left action when the EV is already

positioned in the third lane. To elucidate this point, we shall

henceforth make a distinction between action, which refers to the

decision made by the model, and real action, which pertains to the

action executed by the EV while considering the constraints imposed

by the context.

The agent underwent training using a dense reward of 0-1 for

speed and a sparse reward of -2 for collisions, which served as the

factor for the premature conclusion of an episode. To enhance

 DRL models explainability

161

simplicity, we have excluded the right lane reward from the analysis,

as the initial model does not impose any penalties for overtaking on

the right side.

Following the completion of the training process, the ultimate

success rate stands at 89%. Additionally, an average distance of 2.3 km

was driven every episode. In our empirical observations, it was

generally observed that training effectiveness is limited to the initial

phase, specifically between 400 and 1,200 episodes. Subsequently,

performance deterioration occurs without any notable recovery, even

after approximately 35,000 episodes, which corresponds to a training

duration of 48 hours on an NVIDIA DGX system. The phenomenon

described in the literature is sometimes referred to as catastrophic

forgetting [233]. Extended training durations have been observed to

result in more caution exhibited by the agent, potentially attributable

to the occurrence of accidents arising from unfavorable behaviors

exhibited by other vehicles.

Once an agent has undergone adequate training, it becomes

suitable for analysis. SHAP values are derived by executing a specific

quantity of episodes and training the model using the SHAP Python

module. Based on the SHAP documentation and SHAP library [234],

a DeepExplainer has been used and provided with the agent’s DQN

model (the value network) and the observations from a set of 20

training episodes (equivalent to 1,600 samples). This approach aims to

generate accurate estimations of the SHAP values for each input

 DRL models explainability

162

feature. After being trained, the SHAP model can be provided with

test values in order to generate estimations. The computation of SHAP

values occurs at each frame in the context of a DRL system. These

values are calculated based on the value network of the DRL, which

provides the Q value for every available action. The Q value

represents the anticipated cumulative reward when the agent is in the

observed state and executes the action, subsequently continuing to

play until the episode concludes according to a specific policy π.

Hence, SHAP values are available for every potential action, while this

study primarily concentrates on values pertaining to the chosen action

only. Despite the algorithm’s exponential complexity [14], the

execution times of SHAP were rather short, typically on the scale of a

few seconds.

The attention values are derived from the output of the attention

layer, which represents a probability distribution over cars. Therefore,

the aggregate always equals 1, and higher maximum attention values

signify a concentration of attention on a particular vehicle, whereas

lower maximum attention values suggest a dispersion of attention

across multiple vehicles.

A necessary modification is required when comparing attention

and SHAP, as attention values are assigned on a per-vehicle basis, but

SHAP values are assigned on a per-feature basis. Upon reviewing less

complex issues, such as [17], it has been deemed a suitable

 DRL models explainability

163

approximation to establish the SHAP value of a vehicle as the SHAP

value of its most significant attribute.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑉𝑉𝑙𝑙) = max
𝑓𝑓𝑖𝑖∈{𝑓𝑓𝑣𝑣𝑎𝑎𝑡𝑡𝑓𝑓𝑟𝑟𝑣𝑣𝑠𝑠 𝑣𝑣𝑓𝑓 𝑉𝑉𝑖𝑖}

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑙𝑙)} (10)

The per-vehicle SHAP values are subsequently transformed into

probabilities using the softmax function. Max SHAP Vehicle (MSV)

refers to the vehicle within a certain frame that possesses the greatest

per-vehicle SHAP value, while Max Attention Vehicle (MAV) refers to

the vehicle that possesses the highest attention value.

6.2 Experimental results

The analysis was structured on three primary perspectives. One aspect

to be considered is the timeline of each individual episode.

Subsequently, an examination is conducted on the SHAP and

attention values pertaining to each decision frame. The final step

involves calculating statistical measures by aggregating many

episodes. Consequently, a Python Jupyter notebook has been

constructed for the purpose of conducting the analysis. To enhance the

clarity of the presentation, the three aspects are designated as episode

view, frame view, and aggregated view, respectively. The analysis

will be presented in a sequential manner, with the aim of simplifying

the presentation. However, it is crucial to note that many of the

considerations presented are the result of an iterative synergy between

the three views.

 DRL models explainability

164

The complete analysis, along with the corresponding source code,

can be accessed at the following URL: https://github.com/Elios-

Lab/explain-drl-highway.

6.2.1 Episode view

The initial stage of the analysis involves examining the progression of

one or more episodes on a chronological scale, referred to as the

episode view. As an illustrative example, Figure 50 presents a subset

of the most pertinent variables observed in episode 40, which has been

carefully selected to serve as a notable instance. The perspective

presented exhibits certain attributes that are considered significant for

enabling the analysis, such as action, actual action, and ego lane. These

attributes are then graphically represented by plotting their respective

values along the timeline. The display also includes the MAV and

MSV vehicles. Vehicles are identified in a sequential manner, frame by

frame, based on their relative distances. In this context, v1 represents

the vehicle in closest proximity to the EV, v2 denotes the second closest

vehicle, and so forth. The term v0 represents the EV. The classification

of the most significant feature (referred to as the feature with the

highest SHAP value) is also provided. Based on the established

highway-env convention, the lanes are assigned numerical values

ranging from 0 to 2, with the numbering progressing from left to right.

The features are assigned numerical values in the following manner:

0 - presence, 1 - longitudinal distance (x) from the EV, 2 - lateral

https://github.com/Elios-Lab/explain-drl-highway
https://github.com/Elios-Lab/explain-drl-highway

 DRL models explainability

165

distance (y), 3 - relative longitudinal velocity, 4 - relative lateral

velocity, and 5 and 6 - trigonometric headings.

Figure 50: Episode View of episode nr. 40. The “Max vehi” chart represents
the MAV and MSV timelines [235]

 DRL models explainability

166

Upon observing the lane plot, it is evident that the EV initiates its

trajectory in the rightmost lane, subsequently transitions to the

leftmost lane at approximately frame 24, and subsequently reverts to

the rightmost lane shortly after frame 30. Two additional instances of

this pattern, resulting from a double simultaneous overtaking, are

observed. Subsequently, the EV concludes the episode by proceeding

along the central lane. In the present episode, it is evident that the

highest attention is never on the EV, in contrast to the maximum

SHAP. Furthermore, a distinct disparity can be observed between

MAV and MSV, as the MAV tends to be in closer proximity to the EV

compared to the MSV. It may therefore be inferred that attention is of

a broader nature, whereas SHAP is more focused on the decision.

There exist only three instances in which the MAV is v3 and the MSV

is v2, indicating an MAV farther away and an MSV in closer proximity

to the EV.

Considering the max (i.e., most important) feature diagram, it

appears that it is almost always the longitudinal distance from the EV,

the lane position (in these frames the MSV is the EV), and, in the

episode’s last frames (72-79), the trigonometric heading (in one case,

lane position), when the MSV is v4 or v3. Upon careful examination of

the timelines depicted in Figure 50, it becomes evident that the

concluding frames exhibit a distinctive pattern characterized by a

series of alternating deceleration and acceleration events. Notably, the

max feature is the trigonometric heading of the lowest order absent

 DRL models explainability

167

vehicle (specifically, v3 or v4). This topic warrants further

investigation in the following. It is also observed that the agent

consistently maintains the highest speed throughout its trajectory,

with the exception of these final frames.

MSV is the EV exclusively in frames 22 and 59. This phenomenon

is characterized by the occurrence of two overtaking maneuvers in the

left lane, with the most prevalent behavior being idle.

Upon examining the chart depicting the distance between the

distance from EV of the MAV and MSV, it becomes evident that

attention is predominantly paid to the EV. Additionally, there exists a

"step & staircase" pattern, characterized by attention steps occurring

near EV overtakes, which can be identified by the longitudinal

distance of v1 approaching zero. Conversely, MSV tends to transition

abruptly, or "jump," to a vehicle located further ahead prior to the

overtaking event. In certain instances, the execution of the "step" is

postponed until the overtaking maneuver is initiated. The observed

pattern indicates that the decision to change lanes, whether it involves

overtaking or returning to the right lane, is typically influenced by a

reference vehicle that is positioned at a greater distance from the EV.

This suggests that the decision-making process is not significantly

influenced by the nearest vehicles, as they are already in the process

of being overtaken, i.e., the agent has completed the processing of said

vehicles and has subsequently shifted its attention towards a broader

perspective.

 DRL models explainability

168

Except for the aforementioned cases, the MAV is on the closest or

second closest vehicle. Conversely, the MSV exhibits a greater range

of possibilities, encompassing the EV as well as possessing a longer

line of sight, but it is never on the closest vehicle. The concept of SHAP

pertains to the ultimate determination made by the NN, whereas

attention operates at a shallower layer (Figure 49). This suggests that

SHAP exhibits a form of predictive capability in decision-making, a

trait commonly associated with skilled drivers [236]. Conversely,

attention is primarily focused on nearby vehicles in order to prevent

unexpected incidents, such as infrequent spontaneous lane changes by

certain vehicles in the highway-env model, which have the potential

to cause accidents. In certain instances, there is an occurrence of

convergence between maximum attention and SHAP within the

frames. This phenomenon occurs as a result of the MAV

“approaching” the MSV, i.e., the EV gets closer to the MSV and causes

it to also become the MAV. However, the MSV undergoes a rapid

advancement to a vehicle that is more distant, thus representing a

"delayed step" in the aforementioned pattern.

Finally, the cumulative sum of SHAP values within a given frame

serves as a noteworthy indicator of the anticipated advantages

resulting from the executed action. Jumps in this value follow a

successful lane change decision, such as initiating or completing an

overtaking maneuver. Additionally, a relatively minor decrease in the

value occurs when new vehicles approach or remain near the EV.

 DRL models explainability

169

The interpretation of the above-described final frames, which tend

to occur in other episodes as well, required a more in-depth

investigation, which spurred us to implement a second display

modality, namely the frame view, that we describe in the following.

6.2.2 Frame view

The frame view of an episode refers to a quantitative perspective that

presents a comprehensive observation for each frame. This

information is structured in the form of a table, where vehicles are

listed in rows and their corresponding features are displayed in

columns. Additionally, the action undertaken during the specific

frames is also included. For instance, Figure 51 illustrates the frame

view of frames 39 and 40 in episode 40. The perspective additionally

incorporates the SHAP values, represented by a color code

superimposed on the tabulated values. The values of attention are also

color-encoded in the row header, specific to each vehicle.

 DRL models explainability

170

Figure 51: Frame view of frames 39 and 40, episode 40. Features values
normalized [235]

The agent’s decision in frames 39 and 40 is faster. Given that the

vehicle is currently operating at its maximum velocity, the ensuing

action is idle. In frame 39, the maximum attention is observed on v1,

while the maximum SHAP value is observed on v2. However, in the

subsequent frame, the attention and SHAP values converge, both

indicating vehicle v2 as the focal point. Upon initial observation, it is

evident that attention values are evenly distributed among vehicles,

with a proportional relationship to longitudinal distance, particularly

in the same lane as the vehicle (y=0), which corresponds to the central

lane. In contrast, SHAP values are specifically focused on the

 DRL models explainability

171

longitudinal distance of v2 and v3. The ticks located on the color scale

positioned at the right side of each frame provide an indication of the

precise SHAP values. Consequently, it can be observed that both

frames exhibit a predominant presence of positive values. Specifically,

the cumulative SHAP values for all features amount to 13.0 and 11.3

in the respective frames. This suggests that the Q value surpasses the

mean value, potentially due to the presence of ample space in the

vicinity of the vehicle’s front region. Positive rewards are exclusively

granted for achieving high speed, while negative rewards are assigned

for instances of collisions. In frame 39, the vehicle with the highest

attention would impede the model’s inclination towards selecting a

faster action, while in the subsequent frame, the nearest vehicle (v1)

would similarly deter such action. In the current context, v1 does not

receive the highest level of attention, as it is positioned in a different

lane, albeit by a small margin. This observation appears to validate the

prior perception that the model’s decision-making process exhibits

greater foresight compared to the MAV, as it relies more heavily on

information pertaining to vehicles situated at greater distances.

As expected, the concluding frames (73-75) of the episode present

a considerable level of difficulty. In Figure 52, the EV consistently

occupies the central lane, while no other vehicles are present within

its designated lane. Therefore, it would be a straightforward task for

it to maintain a constant velocity without any deviations. However,

the progress of the vehicle is impeded by the proximity of two adjacent

 DRL models explainability

172

vehicles in the adjacent lanes, which captures all the driver’s focus (as

they are the sole entities within the visual field). The MSV is assigned

to the trigonometric orientations of three vehicles that are not present

in the current scene. As anticipated, one could argue that the model

intends this as an indication of presence. However, it is worth noting

that the tangible presence aspect of these vehicles serves as a

significant deterrent to the intended course of action. This discrepancy

underscores the challenge that the agent encounters when confronted

with this situation. Following the occurrence of two slower actions at

frames 73 and 75, the agent undergoes faster in frame 78, subsequently

assuming an idle state in frame 79, without reaching its maximum

velocity. Considering the aforementioned factors, it becomes evident

that the decisions made by agents are typically influenced by a

reference vehicle that is positioned at a considerable distance from the

EV, specifically in the lane that is the target of the decision-making

process. Within the final frames of each simulation, which are

infrequent during the training process, the absence of a vehicle is

observed, thereby posing a challenge for the model to effectively

address this scenario. In actuality, the agent’s ability to overtake all 15

vehicles and successfully complete the episode is a rare occurrence.

When considering the frame view and examining the non-chosen

actions, it becomes evident that the trigonometric heading of v3, v4,

and v5 serves as a motivating factor for all of them, thus confirming

the presence of uncertainty. However, if we narrow our analysis to the

present vehicles, it becomes apparent that the EV y-coordinate holds

 DRL models explainability

173

primary significance, as previously observed in other scenarios

involving non-idle actions.

Figure 52: Frame view of episode 40, frames 73-75 [235]

 DRL models explainability

174

6.2.3 Aggregated view

The episode analysis provides valuable insights for further

examination. Nevertheless, conducting a comprehensive statistical

analysis across a series of episodes would prove beneficial, potentially

even subdividing specific driving situations. Furthermore, the

preceding analysis largely overlooks the significance of 2D spatial

factors. The rationale behind our third approach, referred to as the

aggregated view, is to provide an analysis based on a collection of 150

test episodes. In conducting the analysis, unsuccessful episodes are

excluded to prevent the inclusion of unfavorable behaviors that may

compromise the accuracy of the interpretation.

The distribution of the determined actions is as follows: The

distribution of percentages in the given data is as follows: 2% for idle,

21% for right, 10% for left, 60% for faster, and 7% for slower. In relation

to actions, the allocation is as follows: 70% of the time is spent in an

idle state, 9% of the time is dedicated to moving to the right, 9% of the

time is allocated to moving to the left, 6% of the time is spent in

accelerated motion, and 6% of the time is devoted to deceleration. The

EV exhibits its maximum velocity in 85% of the frames, while it

demonstrates its minimum velocity in 7% of the frames. The agent’s

average speed is 104 km/h, resulting in a distance traveled of 2.3 km.

The agent exhibits a propensity for occupying the right lane, with a

frequency of 45%, while the center and left lanes are chosen 28% of the

time each. This preference is observed even in the absence of explicit

 DRL models explainability

175

rules or rewards pertaining to lane selection. We contend that this

phenomenon can be attributed to the increased potential for danger in

the central lane, which arises from the possibility of vehicles merging

from both the left and right sides. The acquisition of a preference for

either the right or left lane may occur in a random manner during the

training process. This can be attributed to the variability of traffic

conditions, as evidenced by instances where a preference for the left

lane was observed instead of the right. The inclination towards

driving in a lateral lane can account for the human-like overtaking

behaviors evident in the "Ego lane" chart depicted in Figure 50.

The highest level of attention is on v2 and v1. Conversely, the

maximum SHAP values are observed in v2, occasionally extending to

v0, v3, and v4, with minimal presence in other areas. Additionally, the

analysis reveals that the maximum attention and SHAP values

coincide for the same vehicle in only 27% of instances. Also, only 31%

of the two maximum values are within the second maximum value of

the other, providing further evidence of a distinct separation between

the attention layer and the network’s decision-making output.

The max SHAP features are the longitudinal distance, which

accounts for 76% of the observed occurrences, followed by the lateral

position (i.e., lane) at 15%, and trigonometric heading at 9%. It is worth

noting that the trigonometric heading is considered an indicator of the

absence of the vehicle in the scene, as previously mentioned.

 DRL models explainability

176

The mean distance of the MAV is 31.8 m, with a standard deviation

of 15.2 m. This value is significantly lower compared to the MSV,

which has an average distance of 47.9 m and a standard deviation of

25.0 m. In both instances, the EV is omitted.

Except for the EV cases, the vehicle in the same lane as the EV

receives greater attention in the majority of instances (61%), compared

to the maximum attention received by the max SHAP vehicle (46%).

This implies that the distinction between attention and SHAP also

encompasses the latitudinal dimension. The distinction between MAV

and MSV is even more evident through a spatial analysis conducted

on heatmaps (Figure 53). The EV is in the (2, 1) cell of the grid view,

corresponding to the third row and second column. The rows in the

grid represent the relative lanes in relation to the EV. For instance, the

fifth row represents the second lane to the right of the EV, which may

or may not exist in a particular frame. The width of each cell measures

5 m. The diagram illustrates the spatial arrangement of the MAV and

MSV, as depicted in Figure 53a and Figure 53c, respectively. Figure

53b and Figure 53d report the same values normalized by the traffic

within the cell. The data presented in the figures indicate that the

primary focus of attention is predominantly towards the front of the

vehicle, with minimal attention allocated laterally. The concept of

normalization emphasizes the fact that the agent consistently allocates

the highest level of attention to any vehicle located within the three to

four cells ahead. The maximum values of SHAP, when not on the EV,

 DRL models explainability

177

are observed at a greater distance. When examining normalized

values, it becomes evident that the maximum SHAP values exhibit a

greater dispersion across the various lanes. The findings of this study

validate the previous analyses, which suggest that the network

decision-making process is primarily influenced by the EV state

(specifically, the lane) or, more commonly, by the presence of a vehicle

in the target lane, rather than the nearby vehicle in the same lane

(which receives most of the attention). This vehicle appears to serve as

a point of reference for the decision-making process. It is crucial to

emphasize that SHAP, attention mechanisms, and the DRL NN

primarily pertain to vehicles rather than sparsely populated road

segments.

(a) (b)

(c) (d)

Figure 53: Heatmaps representing, on the road grid (relative to the EV), the
number of times in which a vehicle in the cell gets max attention (a) and max
SHAP (c). On the right (b and d), values are normalized by the traffic in the
cell, thus numbers represent percentages [235]

 DRL models explainability

178

In summary, by computing the most significant SHAP feature for

each position in the grid (refer to Figure 54), it is confirmed that lane

information is the most crucial aspect to consider when analyzing the

EV. In close proximity to the EV, there is a lack of noteworthy

maximum SHAP cases. However, as the longitudinal distance

increases, particularly beyond 10 meters, it emerges as the most

significant feature. It is observed that speed does not emerge as a

predominant feature in the SHAP model. This can be attributed to the

consistently high speed of the EV, typically reaching 30 m/s, while

NPVs tend to operate at relatively slower speeds, averaging around

22 m/s, with no substantial variations.

Figure 54: Absolute number of times of presence of max SHAP feature in the
grid. Grey cells indicate no presence. Color code: black, x; blue, y; green
velocity; red: trigonometric heading. The total number of samples is 9,040
[235]

 Summary of contributions

179

7
Summary of contributions

The contributions made by the author in relation to this thesis are

listed in Table 25, along with resulting publications in scientific

journals or international conferences.

Table 25: Author’s contributions and publications related to the thesis

Topic Contribution Publications

Edgine

Development of the Edgine system [158]

Application of the system to IoT and
virtual contexts

[9], [237]

Embedded Voice
Assistant

Development of the VA [238]

DRL for low-
speed
maneuvering

Unity experiment [12], [239]

CARLA experiment [240]

DRL models
explainability

Study of the highway-env [241]

Explainability study [235], [242]

 Conclusions

180

8
Conclusions

This thesis proposed an edge AI approach in the field of automotive

applications. The research has yielded significant advancements, also

highlighting the importance of the interconnections between the

different sub-areas of research touched upon.

We have successfully developed and implemented Edgine, a

versatile tool independent of specific edge/cloud platforms and open

source. Quantitatively, Edgine has demonstrated substantial

improvements in data handling and development efficiency, reducing

IoT applications implementation times according to users with a basic

knowledge of the subject. Qualitatively, its adaptability was evident

through successful deployment in both professional and educational

settings. Future work will focus on enhancing Edgine’s capabilities to

process more complex data types and support advanced ML and DL

models directly at the edge.

 Conclusions

181

Building upon the foundational advancements in IoT, the

exploration extended into the realm of embedded VAs. The

development, deployment, and test of an end-to-end VA system,

capable of functioning entirely offline and optimized for low-resource

environments, has been illustrated. This system’s support for the

Italian language and its performance, comparable to cloud-connected

solutions in terms of WER, CER, ICER, SER, and IRER, demonstrates

the potential of integrating advanced AI methods in embedded

systems, which also results in reduced latency and higher privacy

standards. The application of transfer learning has been pivotal in this

achievement, and future research aims to broaden the system’s

capabilities, including reducing initialization latency and extending

language and domain support. Also, the Edgine integration allowed

us to easily compute evaluation metrics with a streamlined process.

The journey then led us into the intricate world of DRL,

particularly in the context of AD applied to a low-speed maneuvering

automotive context. We successfully trained DRL agents for tasks such

as map-less path planning and parking maneuvers, within both Unity

and CARLA-simulated environments, proving the effectiveness of

DRL in complex, real-time scenarios. Key factors identified for

successful training, such as curriculum learning and the fine-tuning of

simulation parameters, underscored the nuanced balance required in

DRL applications. Future research in this area is directed towards

application in dynamic scenarios and real-world vehicle

 Conclusions

182

implementation, starting from a scale model. For this application as

well, the use of Edgine was essential to easily test the model and

collect results.

The exploration concluded with an investigation in the realm of

DRL model explainability. As DL models become increasingly

complex, understanding their decision-making processes becomes

crucial, especially in applications like AD. The novel approach for

interpretability analysis implemented, utilizing a combination of

episode timelines, frame-by-frame analysis, and aggregated statistical

analysis, has provided profound insights into the behavior and

decision-making factors of DRL models. This analysis not only

revealed the complex decision-making processes of the models, but

also highlighted areas for further research, such as exploring temporal

correlations, more complex vehicular models, and refining training

methods through incident analysis.

In summary, this collective exploration weaved together the

advancements in IoT technologies with Edgine, the evolution of VAs

in low-resource automotive environments and in a non-mainstream

language such as Italian, the practical application of DRL in AD, and

the critical aspect of DRL explainability. Each element of this

exploration builds upon the other, showcasing the ever-evolving

landscape in IoT, AI, and AD technology and paving the way for

future innovations and interconnections in these fields.

 References

183

References

[1] L. Lin, X. Liao, H. Jin, and P. Li, “Computation Offloading Toward Edge
Computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607, Aug.
2019, doi: 10.1109/JPROC.2019.2922285.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):
A vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

[3] M. Hoy, “Alexa, Siri, Cortana, and More: An Introduction to Voice
Assistants,” Medical Reference Services Quarterly, vol. 37, pp. 81–88, Jan. 2018,
doi: 10.1080/02763869.2018.1404391.

[4] L. Hernández Acosta and D. Reinhardt, “A survey on privacy issues and
solutions for Voice-controlled Digital Assistants,” Pervasive and Mobile
Computing, vol. 80, p. 101523, Feb. 2022, doi: 10.1016/j.pmcj.2021.101523.

[5] J. C. S. Dos Anjos et al., “Data Processing Model to Perform Big Data Analytics
in Hybrid Infrastructures,” IEEE Access, vol. 8, pp. 170281–170294, 2020, doi:
10.1109/ACCESS.2020.3023344.

[6] WWDC 2021 — June 7 | Apple, (Jun. 07, 2021). Accessed: Jun. 21, 2023. [Online
Video]. Available: https://www.youtube.com/watch?v=0TD96VTf0Xs

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct.
2016, doi: 10.1109/JIOT.2016.2579198.

[8] X. Wang, T. Wei, L. Kong, L. He, F. Wu, and G. Chen, “ECASS: Edge
computing based auxiliary sensing system for self-driving vehicles,” Journal
of Systems Architecture, vol. 97, pp. 258–268, Aug. 2019, doi:
10.1016/j.sysarc.2019.02.014.

[9] R. Berta, F. Bellotti, A. De Gloria, and L. Lazzaroni, “Assessing Versatility of
a Generic End-to-End Platform for IoT Ecosystem Applications,” Sensors,
vol. 22, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/s22030713.

[10] “NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in
Robotics,” NVIDIA Technical Blog. Accessed: Feb. 28, 2022. [Online].
Available: https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-
teraops-ai-robotics/

[11] S. Mittal, “A Survey on optimized implementation of deep learning models
on the NVIDIA Jetson platform,” Journal of Systems Architecture, vol. 97, pp.
428–442, Aug. 2019, doi: 10.1016/j.sysarc.2019.01.011.

 References

184

[12] L. Lazzaroni, F. Bellotti, A. Capello, M. Cossu, A. De Gloria, and R. Berta,
“Deep Reinforcement Learning for Automated Car Parking,” in Applications
in Electronics Pervading Industry, Environment and Society, R. Berta and A. De
Gloria, Eds., in Lecture Notes in Electrical Engineering. Cham: Springer
Nature Switzerland, 2023, pp. 125–130. doi: 10.1007/978-3-031-30333-3_16.

[13] A. Vaswani et al., “Attention Is All You Need,” arXiv:1706.03762 [cs], Dec.
2017, doi: 10.48550/arXiv.1706.03762.

[14] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model
Predictions,” in Advances in Neural Information Processing Systems, Curran
Associates, Inc., 2017. Accessed: Jul. 11, 2022. [Online]. Available:
https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b6776
7-Abstract.html

[15] C. Molnar, Interpretable Machine Learning. Accessed: Aug. 08, 2022. [Online].
Available: https://christophm.github.io/interpretable-ml-book/

[16] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A
Review of Machine Learning Interpretability Methods,” Entropy, vol. 23, no.
1, Art. no. 1, Jan. 2021, doi: 10.3390/e23010018.

[17] R. Liessner, J. Dohmen, and M. Wiering, “Explainable Reinforcement
Learning for Longitudinal Control: 13th International Conference on Agents
and Artificial Intelligence, ICAART 2021,” Proceedings of the 13th
International Conference on Agents and Artificial Intelligence, pp. 874–881, 2021.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’:
Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, in
KDD ’16. New York, NY, USA: Association for Computing Machinery, Aug.
2016, pp. 1135–1144. doi: 10.1145/2939672.2939778.

[19] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important Features
Through Propagating Activation Differences.” arXiv, Oct. 12, 2019. doi:
10.48550/arXiv.1704.02685.

[20] A. Binder, G. Montavon, S. Bach, K.-R. Müller, and W. Samek, “Layer-wise
Relevance Propagation for Neural Networks with Local Renormalization
Layers.” arXiv, Apr. 04, 2016. doi: 10.48550/arXiv.1604.00825.

[21] “GitHub - eleurent/highway-env: A minimalist environment for decision-
making in autonomous driving.” Accessed: Jul. 11, 2022. [Online].
Available: https://github.com/eleurent/highway-env

[22] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, “The
Kinematic Bicycle Model: a Consistent Model for Planning Feasible
Trajectories for Autonomous Vehicles?,” in IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, United States, Jun. 2017. Accessed: Jul. 11,

 References

185

2022. [Online]. Available: https://hal-polytechnique.archives-
ouvertes.fr/hal-01520869

[23] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Phys. Rev. E, vol. 62,
no. 2, pp. 1805–1824, Aug. 2000, doi: 10.1103/PhysRevE.62.1805.

[24] “General Lane-Changing Model MOBIL for Car-Following Models - Arne
Kesting, Martin Treiber, Dirk Helbing, 2007.” Accessed: Jul. 12, 2022.
[Online]. Available: https://journals.sagepub.com/doi/10.3141/1999-10

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
Open Urban Driving Simulator,” no. arXiv:1711.03938. arXiv, Nov. 10, 2017.
doi: 10.48550/arXiv.1711.03938.

[26] P. Alvarez Lopez et al., “Microscopic Traffic Simulation using SUMO,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), Maui, USA:
IEEE, Nov. 2018, pp. 2575–2582. Accessed: Jul. 11, 2022. [Online]. Available:
https://www.itsc2019.org/

[27] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, and D. Cao, “Decision-Making
Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement
Learning,” IEEE Access, vol. 8, pp. 177804–177814, 2020, doi:
10.1109/ACCESS.2020.3022755.

[28] S. Zhang, Y. Wu, H. Ogai, H. Inujima, and S. Tateno, “Tactical Decision-
Making for Autonomous Driving Using Dueling Double Deep Q Network
With Double Attention,” IEEE Access, vol. 9, pp. 151983–151992, 2021, doi:
10.1109/ACCESS.2021.3127105.

[29] R. Chandra, A. Bera, and D. Manocha, “Using Graph-Theoretic Machine
Learning to Predict Human Driver Behavior,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 3, pp. 2572–2585, Mar. 2022,
doi: 10.1109/TITS.2021.3130218.

[30] “AWS IoT Greengrass Documentation.” Accessed: Dec. 19, 2021. [Online].
Available: https://docs.aws.amazon.com/greengrass/

[31] “AWS Lambda Documentation.” Accessed: Dec. 19, 2021. [Online].
Available: https://docs.aws.amazon.com/lambda/?id=docs_gateway

[32] “Edge TPU - Run Inference at the Edge,” Google Cloud. Accessed: Dec. 18,
2021. [Online]. Available: https://cloud.google.com/edge-tpu

[33] “Bringing intelligence to the edge with Cloud IoT,” Google Cloud Blog.
Accessed: Dec. 18, 2021. [Online]. Available:
https://cloud.google.com/blog/products/gcp/bringing-intelligence-edge-
cloud-iot/

 References

186

[34] “TensorFlow Lite | ML for Mobile and Edge Devices,” TensorFlow.
Accessed: Dec. 18, 2021. [Online]. Available:
https://www.tensorflow.org/lite

[35] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems,” no. arXiv:1603.04467. arXiv, Mar. 16,
2016. doi: 10.48550/arXiv.1603.04467.

[36] R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning on
TinyML Systems,” arXiv:2010.08678 [cs], Mar. 2021, Accessed: Dec. 18, 2021.
[Online]. Available: http://arxiv.org/abs/2010.08678

[37] C. N. Coelho et al., “Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for particle detectors,” Nat
Mach Intell, vol. 3, no. 8, Art. no. 8, Aug. 2021, doi: 10.1038/s42256-021-00356-
5.

[38] “Keras 3: A new multi-backend Keras.” Keras, Oct. 03, 2023. Accessed: Oct.
03, 2023. [Online]. Available: https://github.com/keras-team/keras

[39] “IBM Edge Application Manager - Overview.” Accessed: Dec. 19, 2021.
[Online]. Available: https://www.ibm.com/cloud/edge-application-
manager

[40] “Red Hat OpenShift makes container orchestration easier.” Accessed: Dec.
19, 2021. [Online]. Available:
https://www.redhat.com/en/technologies/cloud-computing/openshift

[41] D. Jensen, Beginning Azure IoT Edge Computing: Extending the Cloud to the
Intelligent Edge. Apress, 2019.

[42] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-Time
AI,” presented at the Proceedings of the 45th International Symposium on
Computer Architecture, 2018, Jun. 2018. Accessed: Dec. 19, 2021. [Online].
Available: https://www.microsoft.com/en-us/research/publication/a-
configurable-cloud-scale-dnn-processor-for-real-time-ai/

[43] D. K. Dennis et al., “EdgeML: Machine Learning for resource-constrained
edge devices.” [Online]. Available: https://github.com/Microsoft/EdgeML

[44] C. Gupta et al., “ProtoNN: Compressed and Accurate kNN for Resource-
scarce Devices,” p. 16.

[45] S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma, “Compiling KB-sized
machine learning models to tiny IoT devices,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Phoenix AZ USA: ACM, Jun. 2019, pp. 79–95. doi: 10.1145/3314221.3314597.

[46] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient Machine Learning in
2 KB RAM for the Internet of Things,” in Proceedings of the 34th International
Conference on Machine Learning, PMLR, Jul. 2017, pp. 1935–1944. Accessed:

 References

187

Jan. 17, 2022. [Online]. Available:
https://proceedings.mlr.press/v70/kumar17a.html

[47] S. G. Patil et al., “GesturePod: Enabling On-device Gesture-based Interaction
for White Cane Users,” in Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology, New Orleans LA USA: ACM, Oct.
2019, pp. 403–415. doi: 10.1145/3332165.3347881.

[48] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma,
“FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated
Recurrent Neural Network,” p. 23.

[49] D. Dennis, C. Pabbaraju, H. V. Simhadri, and P. Jain, “Multiple Instance
Learning for Efficient Sequential Data Classification on Resource-
constrained Devices,” in Advances in Neural Information Processing Systems,
Curran Associates, Inc., 2018. Accessed: Jan. 17, 2022. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/hash/d9fbed9da256e344c1fa46b
b46c34c5f-Abstract.html

[50] Y. Cui, Y. Liang, and R. Wang, “Resource Allocation Algorithm With Multi-
Platform Intelligent Offloading in D2D-Enabled Vehicular Networks,” IEEE
Access, vol. 7, pp. 21246–21253, 2019, doi: 10.1109/ACCESS.2018.2882000.

[51] O. Väänänen and T. Hämäläinen, “Requirements for Energy Efficient Edge
Computing: A Survey,” in Internet of Things, Smart Spaces, and Next
Generation Networks and Systems, O. Galinina, S. Andreev, S. Balandin, and
Y. Koucheryavy, Eds., in Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 3–15. doi: 10.1007/978-3-030-
01168-0_1.

[52] R. Morabito, “Virtualization on Internet of Things Edge Devices With
Container Technologies: A Performance Evaluation,” IEEE Access, vol. 5, pp.
8835–8850, 2017, doi: 10.1109/ACCESS.2017.2704444.

[53] O. Debauche, S. Mahmoudi, S. A. Mahmoudi, P. Manneback, and F. Lebeau,
“Edge Computing and Artificial Intelligence Semantically Driven.
Application to a Climatic Enclosure,” Procedia Computer Science, vol. 175, pp.
542–547, Jan. 2020, doi: 10.1016/j.procs.2020.07.077.

[54] X. Wu, R. Dunne, Q. Zhang, and W. Shi, “Edge computing enabled smart
firefighting: opportunities and challenges,” in Proceedings of the fifth
ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies - HotWeb
’17, San Jose, California: ACM Press, 2017, pp. 1–6. doi:
10.1145/3132465.3132475.

[55] Z. Idrees, Z. Zou, and L. Zheng, “Edge Computing Based IoT Architecture
for Low Cost Air Pollution Monitoring Systems: A Comprehensive System
Analysis, Design Considerations & Development,” Sensors, vol. 18, no.
9, Art. no. 9, Sep. 2018, doi: 10.3390/s18093021.

 References

188

[56] H. Sun, X. Liang, and W. Shi, “VU: video usefulness and its application in
large-scale video surveillance systems: an early experience,” in Proceedings
of the Workshop on Smart Internet of Things, in SmartIoT ’17. New York, NY,
USA: Association for Computing Machinery, Oct. 2017, pp. 1–6. doi:
10.1145/3132479.3132485.

[57] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, “Edge Computing
in IoT-Based Manufacturing,” IEEE Communications Magazine, vol. 56, no. 9,
pp. 103–109, Sep. 2018, doi: 10.1109/MCOM.2018.1701231.

[58] R. Ardila et al., “Common Voice: A Massively-Multilingual Speech Corpus,”
arXiv:1912.06670 [cs], Mar. 2020, doi: 10.48550/arXiv.1912.06670.

[59] “Common Voice by Mozilla.” Accessed: Dec. 14, 2021. [Online]. Available:
https://commonvoice.mozilla.org/

[60] “The M-AILABS Speech Dataset – caito.” Accessed: Dec. 14, 2021. [Online].
Available: https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/

[61] “LibriVox: Free Public Domain Audiobooks,” Reference Reviews, vol. 28, no.
1, pp. 7–8, Jan. 2014, doi: 10.1108/RR-08-2013-0197.

[62] “Project Gutenberg,” Project Gutenberg. Accessed: Dec. 14, 2021. [Online].
Available: https://www.gutenberg.org/

[63] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “MLS: A Large-
Scale Multilingual Dataset for Speech Research,” Interspeech 2020, pp. 2757–
2761, Oct. 2020, doi: 10.21437/Interspeech.2020-2826.

[64] “VOSK Offline Speech Recognition API,” VOSK Offline Speech Recognition
API. Accessed: Dec. 14, 2021. [Online]. Available:
https://alphacephei.com/vosk/

[65] “Project DeepSpeech.” Mozilla, Feb. 02, 2022. Accessed: Feb. 02, 2022.
[Online]. Available: https://github.com/mozilla/DeepSpeech

[66] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2Letter: an End-to-End
ConvNet-based Speech Recognition System,” arXiv:1609.03193 [cs], Sep.
2016, doi: 10.48550/arXiv.1609.03193.

[67] O. Kuchaiev et al., “NeMo: a toolkit for building AI applications using Neural
Modules,” arXiv:1909.09577 [cs, eess], Sep. 2019, doi:
10.48550/arXiv.1909.09577.

[68] N. Nagari, “Comparing 4 Popular Open Source Speech To Text Neural
Network Models,” Medium. Accessed: Feb. 02, 2022. [Online]. Available:
https://medium.com/@nick.nagari/comparing-4-popular-open-source-
speech-to-text-neural-network-models-92676a9f9265

[69] Z. Weng, Z. Qin, X. Tao, C. Pan, G. Liu, and G. Y. Li, “Deep Learning Enabled
Semantic Communications with Speech Recognition and Synthesis.” arXiv,
Mar. 31, 2023. doi: 10.48550/arXiv.2205.04603.

 References

189

[70] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations.” arXiv, Oct. 22,
2020. doi: 10.48550/arXiv.2006.11477.

[71] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASR
corpus based on public domain audio books,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2015, pp.
5206–5210. doi: 10.1109/ICASSP.2015.7178964.

[72] L. Torrey and J. Shavlik, Transfer Learning. IGI Global, 2010, pp. 242–264. doi:
10.4018/978-1-60566-766-9.ch011.

[73] D. Wang and T. F. Zheng, “Transfer learning for speech and language
processing,” in 2015 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA), Dec. 2015, pp. 1225–1237. doi:
10.1109/APSIPA.2015.7415532.

[74] J. Huang et al., “Cross-Language Transfer Learning, Continuous Learning,
and Domain Adaptation for End-to-End Automatic Speech Recognition,”
arXiv:2005.04290 [eess], May 2020, doi: 10.48550/arXiv.2005.04290.

[75] “Develop Smaller Speech Recognition Models with NVIDIA’s NeMo
Framework,” NVIDIA Developer Blog. Accessed: Feb. 02, 2022. [Online].
Available: https://developer.nvidia.com/blog/develop-smaller-speech-
recognition-models-with-nvidias-nemo-framework/

[76] “Build chatbots with Dialogflow,” Google Developers. Accessed: Feb. 02,
2022. [Online]. Available:
https://developers.google.com/learn/pathways/chatbots-dialogflow

[77] “Conversational AI and Chatbots - Amazon Lex - Amazon Web Services,”
Amazon Web Services, Inc. Accessed: Jun. 21, 2023. [Online]. Available:
https://aws.amazon.com/lex/

[78] “Wit.ai.” Accessed: Jun. 21, 2023. [Online]. Available:
https://wit.ai/docs/quickstart

[79] “Microsoft Bot Framework.” Accessed: Feb. 02, 2022. [Online]. Available:
https://dev.botframework.com/

[80] “Open source conversational AI,” Rasa. Accessed: Feb. 02, 2022. [Online].
Available: https://rasa.com/

[81] “spaCy · Industrial-strength Natural Language Processing in Python.”
Accessed: Feb. 02, 2022. [Online]. Available: https://spacy.io/

[82] M. Burtsev et al., “DeepPavlov: Open-Source Library for Dialogue Systems,”
in Proceedings of ACL 2018, System Demonstrations, Melbourne, Australia:
Association for Computational Linguistics, Jul. 2018, pp. 122–127. doi:
10.18653/v1/P18-4021.

 References

190

[83] M. Saxon, S. Choudhary, J. P. McKenna, and A. Mouchtaris, “End-to-End
Spoken Language Understanding for Generalized Voice Assistants,”
Interspeech 2021, pp. 4738–4742, Aug. 2021, doi: 10.21437/Interspeech.2021-
1826.

[84] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio, “Speech
Model Pre-training for End-to-End Spoken Language Understanding,”
arXiv:1904.03670 [cs, eess], Jul. 2019, doi: 10.48550/arXiv.1904.03670.

[85] A. Coucke et al., “Snips Voice Platform: an embedded Spoken Language
Understanding system for private-by-design voice interfaces.” arXiv, Dec.
06, 2018. doi: 10.48550/arXiv.1805.10190.

[86] L. Massai, P. Nesi, and G. Pantaleo, “PAVAL: A location-aware virtual
personal assistant for retrieving geolocated points of interest and location-
based services,” Engineering Applications of Artificial Intelligence, vol. 77, pp.
70–85, Jan. 2019, doi: 10.1016/j.engappai.2018.09.013.

[87] J. Shen et al., “Natural TTS Synthesis by Conditioning WaveNet on Mel
Spectrogram Predictions,” arXiv:1712.05884 [cs], Feb. 2018, doi:
10.48550/arXiv.1712.05884.

[88] T. Nekvinda and O. Dušek, “One Model, Many Languages: Meta-learning for
Multilingual Text-to-Speech,” arXiv:2008.00768 [cs, eess], Aug. 2020, doi:
10.48550/arXiv.2008.00768.

[89] “Tacotron 2 (without wavenet).” NVIDIA Corporation, Feb. 02, 2022.
Accessed: Feb. 02, 2022. [Online]. Available:
https://github.com/NVIDIA/tacotron2

[90] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A Flow-based Generative
Network for Speech Synthesis,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp.
3617–3621. doi: 10.1109/ICASSP.2019.8683143.

[91] B. Zhai et al., “SqueezeWave: Extremely Lightweight Vocoders for On-device
Speech Synthesis,” arXiv:2001.05685 [cs, eess], Jan. 2020, doi:
10.48550/arXiv.2001.05685.

[92] “TTS Vocoder Uniglow | NVIDIA NGC,” NGC Catalog. Accessed: Feb. 02,
2022. [Online]. Available:
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/tts_uniglo
w

[93] K. Kumar et al., “MelGAN: Generative Adversarial Networks for Conditional
Waveform Synthesis,” arXiv:1910.06711 [cs, eess], Dec. 2019, doi:
10.48550/arXiv.1910.06711.

[94] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative Adversarial Networks for
Efficient and High Fidelity Speech Synthesis,” arXiv:2010.05646 [cs, eess],
Oct. 2020, doi: 10.48550/arXiv.2010.05646.

 References

191

[95] “TTS En E2E FastPitch Hifigan | NVIDIA NGC,” NGC Catalog. Accessed:
Feb. 02, 2022. [Online]. Available:
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/tts_en_e2e
_fastpitchhifigan

[96] A. Łańcucki, “Fastpitch: Parallel Text-to-Speech with Pitch Prediction,” in
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Jun. 2021, pp. 6588–6592. doi:
10.1109/ICASSP39728.2021.9413889.

[97] “TTS En E2E Fastspeech2 Hifigan | NVIDIA NGC,” NGC Catalog. Accessed:
Feb. 02, 2022. [Online]. Available:
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/tts_en_e2e
_fastspeech2hifigan

[98] Y. Ren et al., “FastSpeech 2: Fast and High-Quality End-to-End Text to
Speech,” arXiv:2006.04558 [cs, eess], Mar. 2021, doi:
10.48550/arXiv.2006.04558.

[99] X. Tan et al., “NaturalSpeech: End-to-End Text to Speech Synthesis with
Human-Level Quality.” arXiv, May 10, 2022. doi: 10.48550/arXiv.2205.04421.

[100] R. Huang et al., “FastDiff: A Fast Conditional Diffusion Model for High-
Quality Speech Synthesis.” arXiv, Apr. 21, 2022. doi:
10.48550/arXiv.2204.09934.

[101] “The LJ Speech Dataset.” Accessed: Jun. 21, 2023. [Online]. Available:
https://keithito.com/LJ-Speech-Dataset

[102] M. Luo, X. Hou, and J. Yang, “Surface Optimal Path Planning Using an
Extended Dijkstra Algorithm,” IEEE Access, vol. 8, pp. 147827–147838, 2020,
doi: 10.1109/ACCESS.2020.3015976.

[103] L. Liu et al., “Path Planning for Smart Car Based on Dijkstra Algorithm and
Dynamic Window Approach,” Wireless Communications and Mobile
Computing, vol. 2021, p. e8881684, Feb. 2021, doi: 10.1155/2021/8881684.

[104] Z. Boroujeni, D. Goehring, F. Ulbrich, D. Neumann, and R. Rojas, “Flexible
unit A-star trajectory planning for autonomous vehicles on structured road
maps,” in 2017 IEEE International Conference on Vehicular Electronics and
Safety (ICVES), Vienna, Austria: IEEE, Jun. 2017, pp. 7–12. doi:
10.1109/ICVES.2017.7991893.

[105] S. Sedighi, D.-V. Nguyen, and K.-D. Kuhnert, “Guided Hybrid A-star Path
Planning Algorithm for Valet Parking Applications,” in 2019 5th
International Conference on Control, Automation and Robotics (ICCAR), Apr.
2019, pp. 570–575. doi: 10.1109/ICCAR.2019.8813752.

[106] S. Pothan, J. L. Nandagopal, and G. Selvaraj, “Path planning using state
lattice for autonomous vehicle,” in 2017 International Conference on

 References

192

Technological Advancements in Power and Energy (TAP Energy), Dec. 2017, pp.
1–5. doi: 10.1109/TAPENERGY.2017.8397363.

[107] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug.
1996, doi: 10.1109/70.508439.

[108] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” The
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001,
doi: 10.1177/02783640122067453.

[109] D. Gonzalez Bautista, J. Pérez, V. Milanes, and F. Nashashibi, “A Review of
Motion Planning Techniques for Automated Vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, pp. 1–11, Nov. 2015, doi:
10.1109/TITS.2015.2498841.

[110] M. A. R. Pohan, B. R. Trilaksono, S. P. Santosa, and A. S. Rohman, “Path
Planning Algorithm Using the Hybridization of the Rapidly-Exploring
Random Tree and Ant Colony Systems,” IEEE Access, vol. 9, pp. 153599–
153615, 2021, doi: 10.1109/ACCESS.2021.3127635.

[111] “Bézier curve-based trajectory planning for autonomous vehicles with
collision avoidance - Zheng - 2020 - IET Intelligent Transport Systems -
Wiley Online Library.” Accessed: Feb. 07, 2023. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2020.0355

[112] P. Wang, J. Yang, Y. Zhang, Q. Wang, B. Sun, and D. Guo, “Obstacle-
Avoidance Path-Planning Algorithm for Autonomous Vehicles Based on B-
Spline Algorithm,” World Electric Vehicle Journal, vol. 13, no. 12, Art. no. 12,
Dec. 2022, doi: 10.3390/wevj13120233.

[113] K. Hao, J. Zhao, K. Yu, C. Li, and C. Wang, “Path Planning of Mobile Robots
Based on a Multi-Population Migration Genetic Algorithm,” Sensors, vol. 20,
no. 20, Art. no. 20, Jan. 2020, doi: 10.3390/s20205873.

[114] H. Nobahari and S. Nasrollahi, “A terminal guidance algorithm based on ant
colony optimization,” Computers & Electrical Engineering, vol. 77, pp. 128–
146, Jul. 2019, doi: 10.1016/j.compeleceng.2019.05.012.

[115] Y. Ling, N. Yang, H. Yu, and Y. Zhu, “Novel Bayesian Network Incremental
Learning Method Based on Particle Swarm Optimization Algorithm,” in
Emerging Trends in Intelligent and Interactive Systems and Applications, M.
Tavana, N. Nedjah, and R. Alhajj, Eds., in Advances in Intelligent Systems
and Computing. Cham: Springer International Publishing, 2021, pp. 941–
947. doi: 10.1007/978-3-030-63784-2_114.

[116] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” in Autonomous Robot Vehicles, I. J. Cox and G. T. Wilfong, Eds., New
York, NY: Springer, 1990, pp. 396–404. doi: 10.1007/978-1-4613-8997-2_29.

 References

193

[117] R. Szczepanski, T. Tarczewski, and K. Erwinski, “Energy Efficient Local Path
Planning Algorithm Based on Predictive Artificial Potential Field,” IEEE
Access, vol. 10, pp. 39729–39742, 2022, doi: 10.1109/ACCESS.2022.3166632.

[118] P. Grabusts, J. Musatovs, and V. Golenkov, “The application of simulated
annealing method for optimal route detection between objects,” Procedia
Computer Science, vol. 149, pp. 95–101, Jan. 2019, doi:
10.1016/j.procs.2019.01.112.

[119] F. L. Silva, S. Filgueira da Silva, F. Mazzariol Santiciolli, J. J. Eckert, L. C. A.
Silva, and F. G. Dedini, “Multi-objective Optimization of the Steering
System and Fuzzy Logic Control Applied to a Car-Like Robot,” in Multibody
Mechatronic Systems, M. Pucheta, A. Cardona, S. Preidikman, and R. Hecker,
Eds., in Mechanisms and Machine Science. Cham: Springer International
Publishing, 2021, pp. 195–202. doi: 10.1007/978-3-030-60372-4_22.

[120] M. Kobayashi and N. Motoi, “Local Path Planning: Dynamic Window
Approach With Virtual Manipulators Considering Dynamic Obstacles,”
IEEE Access, vol. 10, pp. 17018–17029, 2022, doi:
10.1109/ACCESS.2022.3150036.

[121] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,
“An Introduction to Deep Reinforcement Learning,” FNT in Machine
Learning, vol. 11, no. 3–4, pp. 219–354, 2018, doi: 10.1561/2200000071.

[122] R. Bellman, “DYNAMIC PROGRAMMING AND LAGRANGE
MULTIPLIERS,” Proc Natl Acad Sci U S A, vol. 42, no. 10, pp. 767–769, Oct.
1956.

[123] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach Learn, vol. 8, no. 3, pp.
279–292, May 1992, doi: 10.1007/BF00992698.

[124] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.

[125] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with
Double Q-learning.” arXiv, Dec. 08, 2015. doi: 10.48550/arXiv.1509.06461.

[126] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,
“Dueling Network Architectures for Deep Reinforcement Learning.” arXiv,
Apr. 05, 2016. doi: 10.48550/arXiv.1511.06581.

[127] M. Sewak, “Deep Q Network (DQN), Double DQN, and Dueling DQN,” Deep
Reinforcement Learning, 2019, doi: 10.1007/978-981-13-8285-7_8.

[128] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, Art. no. 7540, Feb. 2015, doi: 10.1038/nature14236.

[129] X. Lei, Z. Zhang, and P. Dong, “Dynamic Path Planning of Unknown
Environment Based on Deep Reinforcement Learning,” Journal of Robotics,
vol. 2018, p. e5781591, Sep. 2018, doi: 10.1155/2018/5781591.

 References

194

[130] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with
Double Q-learning,” no. arXiv:1509.06461. arXiv, Dec. 08, 2015. doi:
10.48550/arXiv.1509.06461.

[131] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat, “Robot Navigation of
Environments with Unknown Rough Terrain Using deep Reinforcement
Learning,” in 2018 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), Aug. 2018, pp. 1–7. doi: 10.1109/SSRR.2018.8468643.

[132] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning.”
arXiv, Jun. 16, 2016. doi: 10.48550/arXiv.1602.01783.

[133] A. Faust et al., “PRM-RL: Long-range Robotic Navigation Tasks by
Combining Reinforcement Learning and Sampling-based Planning.” arXiv,
May 16, 2018. doi: 10.48550/arXiv.1710.03937.

[134] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT:
Kinodynamic Motion Planning via Learning Reachability Estimators from
RL Policies.” arXiv, Jul. 12, 2019. doi: 10.48550/arXiv.1907.04799.

[135] J. Gao, W. Ye, J. Guo, and Z. Li, “Deep Reinforcement Learning for Indoor
Mobile Robot Path Planning,” Sensors, vol. 20, no. 19, Art. no. 19, Jan. 2020,
doi: 10.3390/s20195493.

[136] Z. Chu, F. Wang, T. Lei, and C. Luo, “Path Planning Based on Deep
Reinforcement Learning for Autonomous Underwater Vehicles Under
Ocean Current Disturbance,” IEEE Transactions on Intelligent Vehicles, vol. 8,
no. 1, pp. 108–120, Jan. 2023, doi: 10.1109/TIV.2022.3153352.

[137] Y. Peng, Y. Liu, and H. Zhang, “Deep Reinforcement Learning based Path
Planning for UAV-assisted Edge Computing Networks,” in 2021 IEEE
Wireless Communications and Networking Conference (WCNC), Mar. 2021, pp.
1–6. doi: 10.1109/WCNC49053.2021.9417292.

[138] E. Leurent, “An Environment for Autonomous Driving Decision-Making.”
May 2018. Accessed: Jun. 10, 2022. [Online]. Available:
https://github.com/eleurent/highway-env

[139] G. Brockman et al., “OpenAI Gym,” no. arXiv:1606.01540. arXiv, Jun. 05, 2016.
doi: 10.48550/arXiv.1606.01540.

[140] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-Baselines3: Reliable Reinforcement Learning Implementations,”
Journal of Machine Learning Research, vol. 22, no. 268, Art. no. 268, 2021.

[141] “Stable Baselines3.” DLR-RM, Feb. 03, 2023. Accessed: Feb. 03, 2023. [Online].
Available: https://github.com/DLR-RM/stable-baselines3

[142] U. Technologies, “Real-time 3D Technology for Automotive and
Transportation | Unity.” Accessed: Feb. 03, 2023. [Online]. Available:
https://unity.com/solutions/automotive-and-transportation

 References

195

[143] A. Juliani et al., “Unity: A General Platform for Intelligent Agents.” arXiv,
May 06, 2020. Accessed: May 27, 2022. [Online]. Available:
http://arxiv.org/abs/1809.02627

[144] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision making
for autonomous driving considering interaction and uncertain prediction of
surrounding vehicles,” in 2017 IEEE Intelligent Vehicles Symposium (IV), Jun.
2017, pp. 1671–1678. doi: 10.1109/IVS.2017.7995949.

[145] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making
under uncertainty for autonomous driving using continuous POMDPs,” in
17th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Oct. 2014, pp. 392–399. doi: 10.1109/ITSC.2014.6957722.

[146] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, May 1995, doi:
10.1103/PhysRevE.51.4282.

[147] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi, “Attention
Based Vehicle Trajectory Prediction,” IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 1, p. 175, 2021, doi: 10.1109/TIV.2020.2991952.

[148] J. Wang, Q. Zhang, and D. Zhao, “Highway Lane Change Decision-Making
via Attention-Based Deep Reinforcement Learning,” IEEE/CAA Journal of
Automatica Sinica, vol. 9, no. 3, pp. 567–569, Mar. 2022, doi:
10.1109/JAS.2021.1004395.

[149] E. Leurent and J. Mercat, “Social Attention for Autonomous Decision-Making
in Dense Traffic.” arXiv, Nov. 27, 2019. doi: 10.48550/arXiv.1911.12250.

[150] Y. Wu et al., “HSTA: A Hierarchical Spatio-Temporal Attention Model for
Trajectory Prediction,” IEEE Transactions on Vehicular Technology, vol. 70, no.
11, pp. 11295–11307, Nov. 2021, doi: 10.1109/TVT.2021.3115018.

[151] K. Coussement and D. F. Benoit, “Interpretable data science for decision
making,” Decision Support Systems, vol. 150, p. 113664, Nov. 2021, doi:
10.1016/j.dss.2021.113664.

[152] J. H. Friedman and J. J. Meulman, “Multiple additive regression trees with
application in epidemiology,” Stat Med, vol. 22, no. 9, pp. 1365–1381, May
2003, doi: 10.1002/sim.1501.

[153] M. Gashi et al., “State-of-the-Art Explainability Methods with Focus on Visual
Analytics Showcased by Glioma Classification,” BioMedInformatics, vol. 2,
no. 1, Art. no. 1, Mar. 2022, doi: 10.3390/biomedinformatics2010009.

[154] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D.
Pedreschi, “A Survey of Methods for Explaining Black Box Models,” ACM
Comput. Surv., vol. 51, no. 5, p. 93:1-93:42, Aug. 2018, doi: 10.1145/3236009.

 References

196

[155] C. Molnar et al., “General Pitfalls of Model-Agnostic Interpretation Methods
for Machine Learning Models,” in xxAI - Beyond Explainable AI: International
Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria,
Revised and Extended Papers, A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-
R. Müller, and W. Samek, Eds., in Lecture Notes in Computer Science. ,
Cham: Springer International Publishing, 2022, pp. 39–68. doi: 10.1007/978-
3-031-04083-2_4.

[156] L. S. Shapley, “A Value for N-Person Games,” RAND Corporation, Mar. 1952.
Accessed: Jul. 11, 2022. [Online]. Available:
https://www.rand.org/pubs/papers/P295.html

[157] R. Berta, A. Kobeissi, F. Bellotti, and A. De Gloria, “Atmosphere, an Open
Source Measurement-Oriented Data Framework for IoT,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 3, pp. 1927–1936, Mar. 2021, doi:
10.1109/TII.2020.2994414.

[158] R. Berta, A. Mazzara, F. Bellotti, A. De Gloria, and L. Lazzaroni, “Edgine, A
Runtime System for IoT Edge Applications,” in Applications in Electronics
Pervading Industry, Environment and Society, S. Saponara and A. De Gloria,
Eds., in Lecture Notes in Electrical Engineering. Cham: Springer
International Publishing, 2021, pp. 261–266. doi: 10.1007/978-3-030-66729-
0_31.

[159] W. Dai, H. Nishi, V. Vyatkin, V. Huang, Y. Shi, and X. Guan, “Industrial Edge
Computing: Enabling Embedded Intelligence,” IEEE Industrial Electronics
Magazine, vol. 13, no. 4, pp. 48–56, Dec. 2019, doi: 10.1109/MIE.2019.2943283.

[160] “arduino - Understanding how to use an accelerometer to detect vehicle
collisions,” Electrical Engineering Stack Exchange. Accessed: Dec. 28, 2021.
[Online]. Available:
https://electronics.stackexchange.com/questions/156352/understanding-
how-to-use-an-accelerometer-to-detect-vehicle-collisions

[161] “Flutter - Build apps for any screen.” Accessed: Dec. 28, 2021. [Online].
Available: //flutter.dev/

[162] W. Hou, Z. Ning, and L. Guo, “Green Survivable Collaborative Edge
Computing in Smart Cities,” IEEE Transactions on Industrial Informatics, vol.
14, no. 4, pp. 1594–1605, Apr. 2018, doi: 10.1109/TII.2018.2797922.

[163] X. Lyu et al., “Selective Offloading in Mobile Edge Computing for the Green
Internet of Things,” IEEE Network, vol. 32, no. 1, pp. 54–60, Jan. 2018, doi:
10.1109/MNET.2018.1700101.

[164] Md. S. Munir, S. F. Abedin, D. H. Kim, N. H. Tran, Z. Han, and C. S. Hong,
“A Multi-Agent System toward the Green Edge Computing with
Microgrid,” in 2019 IEEE Global Communications Conference (GLOBECOM),
Dec. 2019, pp. 1–7. doi: 10.1109/GLOBECOM38437.2019.9013574.

 References

197

[165] D. Zhang et al., “Near-Optimal and Truthful Online Auction for Computation
Offloading in Green Edge-Computing Systems,” IEEE Transactions on Mobile
Computing, vol. 19, no. 4, pp. 880–893, Apr. 2020, doi:
10.1109/TMC.2019.2901474.

[166] Z. Wu and C. Zhou, “Equestrian Sports Posture Information Detection and
Information Service Resource Aggregation System Based on Mobile Edge
Computing,” Mobile Information Systems, vol. 2021, p. e4741912, Jul. 2021,
doi: 10.1155/2021/4741912.

[167] Z. Chen et al., “An empirical study of latency in an emerging class of edge
computing applications for wearable cognitive assistance,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, San Jose California:
ACM, Oct. 2017, pp. 1–14. doi: 10.1145/3132211.3134458.

[168] S. Salkic, B. C. Ustundag, T. Uzunovic, and E. Golubovic, “Edge Computing
Framework for Wearable Sensor-Based Human Activity Recognition,” in
Advanced Technologies, Systems, and Applications IV -Proceedings of the
International Symposium on Innovative and Interdisciplinary Applications of
Advanced Technologies (IAT 2019), S. Avdaković, A. Mujčić, A. Mujezinović,
T. Uzunović, and I. Volić, Eds., in Lecture Notes in Networks and Systems.
Cham: Springer International Publishing, 2020, pp. 376–387. doi:
10.1007/978-3-030-24986-1_30.

[169] Z. Han, “Research on Sports Balanced Development Evaluation System
Based on Edge Computing and Balanced Game,” Security and
Communication Networks, vol. 2021, p. e5557138, Apr. 2021, doi:
10.1155/2021/5557138.

[170] R. Massoud, R. Berta, S. Poslad, A. De Gloria, and F. Bellotti, “IoT Sensing for
Reality-Enhanced Serious Games, a Fuel-Efficient Drive Use Case,” Sensors,
vol. 21, no. 10, Art. no. 10, Jan. 2021, doi: 10.3390/s21103559.

[171] “Grove_BMP280.” Accessed: Dec. 29, 2021. [Online]. Available:
https://github.com/Seeed-Studio/Grove_BMP280

[172] F. Sakr, R. Berta, J. Doyle, A. De Gloria, and F. Bellotti, “Self-Learning
Pipeline for Low-Energy Resource-Constrained Devices,” Energies, vol. 14,
no. 20, Art. no. 20, Jan. 2021, doi: 10.3390/en14206636.

[173] H. Zhao, S. Wang, G. Zhou, and W. Jung, “TennisEye: Tennis Ball Speed
Estimation using a Racket-mounted Motion Sensor,” in 2019 18th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN),
Apr. 2019, pp. 241–252. doi: 10.1145/3302506.3310404.

[174] “Amazon EC2 Inf1 Instances,” Amazon Web Services, Inc. Accessed: Apr. 11,
2022. [Online]. Available: https://aws.amazon.com/ec2/instance-types/inf1/

[175] L. Prechelt, “Early Stopping - But When?,” in Neural Networks: Tricks of the
Trade, G. B. Orr and K.-R. Müller, Eds., in Lecture Notes in Computer

 References

198

Science. , Berlin, Heidelberg: Springer, 1998, pp. 55–69. doi: 10.1007/3-540-
49430-8_3.

[176] F. Jia, S. Majumdar, and B. Ginsburg, “MarbleNet: Deep 1D Time-Channel
Separable Convolutional Neural Network for Voice Activity Detection,”
arXiv:2010.13886 [cs, eess], Feb. 2021, doi: 10.48550/arXiv.2010.13886.

[177] R. Hebbar, K. Somandepalli, and S. Narayanan, “Robust Speech Activity
Detection in Movie Audio: Data Resources and Experimental Evaluation,”
in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2019, pp. 4105–4109. doi:
10.1109/ICASSP.2019.8682532.

[178] “LifeTouch - automotive UX design and engineering studio.” Accessed: Dec.
13, 2021. [Online]. Available: http://lifetouch.it/

[179] “Freesound - Freesound.” Accessed: Dec. 13, 2021. [Online]. Available:
https://freesound.org/

[180] S. Kriman et al., “Quartznet: Deep Automatic Speech Recognition with 1D
Time-Channel Separable Convolutions,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
May 2020, pp. 6124–6128. doi: 10.1109/ICASSP40776.2020.9053889.

[181] D. B. Paul and J. M. Baker, “The Design for the Wall Street Journal-based CSR
Corpus,” in Speech and Natural Language: Proceedings of a Workshop Held at
Harriman, New York, February 23-26, 1992, 1992. Accessed: Dec. 14, 2021.
[Online]. Available: https://aclanthology.org/H92-1073

[182] C. Cieri, D. Miller, and K. Walker, “The Fisher Corpus: a Resource for the
Next Generations of Speech-to-Text,” in Proceedings of the Fourth International
Conference on Language Resources and Evaluation (LREC’04), Lisbon, Portugal:
European Language Resources Association (ELRA), May 2004. Accessed:
Jun. 18, 2023. [Online]. Available: http://www.lrec-
conf.org/proceedings/lrec2004/pdf/767.pdf

[183] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD: telephone
speech corpus for research and development,” presented at the Acoustics,
Speech, and Signal Processing, IEEE International Conference on, IEEE
Computer Society, Mar. 1992, pp. 517–520. doi:
10.1109/ICASSP.1992.225858.

[184] J. Koh et al., Building the Singapore English National Speech Corpus. 2019, p. 325.
doi: 10.21437/Interspeech.2019-1525.

[185] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: labelling unsegmented sequence data with recurrent
neural networks,” in Proceedings of the 23rd international conference on Machine
learning, in ICML ’06. New York, NY, USA: Association for Computing
Machinery, Jun. 2006, pp. 369–376. doi: 10.1145/1143844.1143891.

 References

199

[186] W. Xiong et al., “Toward Human Parity in Conversational Speech
Recognition,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 12, pp. 2410–2423, Dec. 2017, doi:
10.1109/TASLP.2017.2756440.

[187] “Multidataset-QuartzNet15x5 | NVIDIA NGC.” Accessed: Dec. 14, 2021.
[Online]. Available:
https://catalog.ngc.nvidia.com/orgs/nvidia/models/multidataset_quartznet
15x5

[188] C. Tekur and F. Gardiner, “Nvidia {‘NGC’} Deep Learning Containers,” 2019,
Accessed: Dec. 14, 2021. [Online]. Available:
https://www.usenix.org/conference/opml19/presentation/tekur

[189] B. Ginsburg et al., “Stochastic Gradient Methods with Layer-wise Adaptive
Moments for Training of Deep Networks,” arXiv:1905.11286 [cs, stat], Feb.
2020, doi: 10.48550/arXiv.1905.11286.

[190] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with Warm
Restarts,” arXiv:1608.03983 [cs, math], May 2017, doi:
10.48550/arXiv.1608.03983.

[191] “PyTorch Lightning.” Accessed: Dec. 14, 2021. [Online]. Available:
https://pytorchlightning.ai/

[192] “apex.amp — Apex 0.1.0 documentation.” Accessed: Dec. 14, 2021. [Online].
Available: https://nvidia.github.io/apex/amp.html

[193] eric-urban, “Test accuracy of a Custom Speech model - Speech service - Azure
Cognitive Services.” Accessed: Jun. 18, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-
service/how-to-custom-speech-evaluate-data

[194] C. Munteanu, G. Penn, R. Baecker, E. Toms, and D. James, “Measuring the
acceptable word error rate of machine-generated webcast transcripts,” in
Ninth International Conference on Spoken Language Processing, Citeseer, 2006.

[195] “JiWER: Similarity measures for automatic speech recognition evaluation.”
Jitsi, Feb. 08, 2022. Accessed: Feb. 16, 2022. [Online]. Available:
https://github.com/jitsi/jiwer

[196] W. Lund, D. Kennard, and E. Ringger, Combining Multiple Thresholding
Binarization Values to Improve OCR Output. 2013. doi: 10.1117/12.2006228.

[197] “Speech-to-Text Benchmark.” Picovoice, Apr. 27, 2022. Accessed: Apr. 27,
2022. [Online]. Available: https://github.com/Picovoice/speech-to-text-
benchmark

[198] T. Bunk, D. Varshneya, V. Vlasov, and A. Nichol, “DIET: Lightweight
Language Understanding for Dialogue Systems,” arXiv:2004.09936 [cs], May
2020, doi: 10.48550/arXiv.2004.09936.

 References

200

[199] “Tuning Your NLU Model.” Accessed: Feb. 25, 2022. [Online]. Available:
https://rasa.com/docs/rasa/tuning-your-model/

[200] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-
Based Models for Speech Recognition.” arXiv, Jun. 24, 2015. doi:
10.48550/arXiv.1506.07503.

[201] “PyAudio Documentation — PyAudio 0.2.11 documentation.” Accessed:
Feb. 28, 2022. [Online]. Available:
https://people.csail.mit.edu/hubert/pyaudio/docs/

[202] “PortAudio - an Open-Source Cross-Platform Audio API.” Accessed: Mar.
22, 2022. [Online]. Available: http://www.portaudio.com/

[203] “num2words library - Convert numbers to words in multiple languages.”
Savoir-faire Linux, Feb. 23, 2022. Accessed: Feb. 28, 2022. [Online].
Available: https://github.com/savoirfairelinux/num2words

[204] V. Perera, T. Chung, T. Kollar, and E. Strubell, “Multi-task learning for
parsing the alexa meaning representation language,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, in AAAI’18/IAAI’18/EAAI’18.
New Orleans, Louisiana, USA: AAAI Press, Feb. 2018, pp. 5390–5397. doi:
10.1609/aaai.v32i1.12019.

[205] “Sutton & Barto Book: Reinforcement Learning: An Introduction.” Accessed:
Jan. 26, 2023. [Online]. Available:
http://www.incompleteideas.net/book/the-book-2nd.html

[206] Y. Gu, Y. Cheng, C. L. P. Chen, and X. Wang, “Proximal Policy Optimization
With Policy Feedback,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 52, no. 7, pp. 4600–4610, Jul. 2022, doi:
10.1109/TSMC.2021.3098451.

[207] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms”.

[208] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms.” arXiv, Aug. 28, 2017. Accessed: Jan. 28,
2023. [Online]. Available: http://arxiv.org/abs/1707.06347

[209] D. Wang, H. He, and D. Liu, “Adaptive Critic Nonlinear Robust Control: A
Survey,” IEEE Transactions on Cybernetics, vol. 47, no. 10, pp. 3429–3451, Oct.
2017, doi: 10.1109/TCYB.2017.2712188.

[210] D. Wang, M. Ha, and J. Qiao, “Self-Learning Optimal Regulation for Discrete-
Time Nonlinear Systems Under Event-Driven Formulation,” IEEE
Transactions on Automatic Control, vol. 65, no. 3, pp. 1272–1279, Mar. 2020,
doi: 10.1109/TAC.2019.2926167.

 References

201

[211] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region
Policy Optimization.” arXiv, Apr. 20, 2017. doi: 10.48550/arXiv.1502.05477.

[212] Y. Dev, “Chevrolet Corvette 1980 Different colours.” Accessed: May 30, 2022.
[Online]. Available: https://sketchfab.com/3d-models/chevrolet-corvette-
1980-different-colours-7e428bdb3ab54b4e9ac610e545fd9d03

[213] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, “The
Kinematic Bicycle Model: a Consistent Model for Planning Feasible
Trajectories for Autonomous Vehicles?,” in IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, United States, Jun. 2017. Accessed: Jul. 11,
2022. [Online]. Available: https://hal-polytechnique.archives-
ouvertes.fr/hal-01520869

[214] R. K, “Autonomous Car Parking using ML-Agents,” XRPractices. Accessed:
Feb. 03, 2023. [Online]. Available:
https://medium.com/xrpractices/autonomous-car-parking-using-ml-
agents-d780a366fe46

[215] X. Wang, Y. Chen, and W. Zhu, “A Survey on Curriculum Learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp.
4555–4576, Sep. 2022, doi: 10.1109/TPAMI.2021.3069908.

[216] L. Anzalone, P. Barra, S. Barra, A. Castiglione, and M. Nappi, “An End-to-
End Curriculum Learning Approach for Autonomous Driving Scenarios,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp.
19817–19826, Oct. 2022, doi: 10.1109/TITS.2022.3160673.

[217] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,”
in Proceedings of the 26th Annual International Conference on Machine Learning,
in ICML ’09. New York, NY, USA: Association for Computing Machinery,
Jun. 2009, pp. 41–48. doi: 10.1145/1553374.1553380.

[218] Y. Wei, H. Zhang, Y. Wang, and C. Huang, “Autonomous Maneuver
Decision-Making Through Curriculum Learning and Reinforcement
Learning With Sparse Rewards,” IEEE Access, vol. 11, pp. 73543–73555, 2023,
doi: 10.1109/ACCESS.2023.3297095.

[219] L. Lazzaroni, F. Bellotti, A. Capello, M. Cossu, A. De Gloria, and R. Berta,
“Deep Reinforcement Learning for Automated Car Parking,” in Applications
in Electronics Pervading Industry, Environment and Society, in Lecture Notes in
Electrical Engineering. Cham: Springer International Publishing, 2022. doi:
10.1007/978-3-031-30333-3_16.

[220] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical Search
Techniques in Path Planning for Autonomous Driving,” AAAI Workshop -
Technical Report, Jan. 2008.

[221] J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel, “Application of
Hybrid A* to an Autonomous Mobile Robot for Path Planning in

 References

202

Unstructured Outdoor Environments,” in ROBOTIK 2012; 7th German
Conference on Robotics, May 2012, pp. 1–6.

[222] E. Nordeus, “Self Driving Vehicle.” Jan. 27, 2023. Accessed: Feb. 05, 2023.
[Online]. Available: https://github.com/Habrador/Self-driving-vehicle

[223] Ó. Pérez-Gil et al., “Deep reinforcement learning based control for
Autonomous Vehicles in CARLA,” Multimed Tools Appl, vol. 81, no. 3, pp.
3553–3576, Jan. 2022, doi: 10.1007/s11042-021-11437-3.

[224] R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, J. Araluce, and L. M.
Bergasa, “Reinforcement Learning-Based Autonomous Driving at
Intersections in CARLA Simulator,” Sensors, vol. 22, no. 21, Art. no. 21, Jan.
2022, doi: 10.3390/s22218373.

[225] G. Brockman et al., “OpenAI Gym,” no. arXiv:1606.01540. arXiv, Jun. 05, 2016.
doi: 10.48550/arXiv.1606.01540.

[226] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-Baselines3: Reliable Reinforcement Learning Implementations,”
Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

[227] NVIDIA-Omniverse, “NVIDIA PhysX.” Accessed: Mar. 14, 2023. [Online].
Available: https://github.com/NVIDIA-Omniverse/PhysX

[228] A. Capello et al., “Exploiting Big Data for Experiment Reporting: The Hi-
Drive Collaborative Research Project Case,” Sensors, vol. 23, no. 18, Art. no.
18, Jan. 2023, doi: 10.3390/s23187866.

[229] “ml-agents/Python-Gym-API.md at develop · Unity-Technologies/ml-agents
· GitHub.” Accessed: Mar. 09, 2023. [Online]. Available:
https://github.com/Unity-Technologies/ml-
agents/blob/develop/docs/Python-Gym-API.md

[230] “CARLA ScenarioRunner.” Accessed: Mar. 15, 2023. [Online]. Available:
https://carla-scenariorunner.readthedocs.io/en/latest/

[231] “CARLA Map Editor.” Accessed: Mar. 15, 2023. [Online]. Available:
https://github.com/carla-simulator/carla-map-editor

[232] “Unreal Engine | The most powerful real-time 3D creation tool,” Unreal
Engine. Accessed: Feb. 07, 2023. [Online]. Available:
https://www.unrealengine.com/en-US

[233] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in
Cognitive Sciences, vol. 3, no. 4, pp. 128–135, Apr. 1999, doi: 10.1016/S1364-
6613(99)01294-2.

[234] “shap.DeepExplainer — SHAP latest documentation.” Accessed: Jul. 11,
2022. [Online]. Available: https://shap-
lrjball.readthedocs.io/en/latest/generated/shap.DeepExplainer.html

 References

203

[235] F. Bellotti, L. Lazzaroni, A. Capello, M. Cossu, A. De Gloria, and R. Berta,
“Explaining a Deep Reinforcement Learning (DRL)-Based Automated
Driving Agent in Highway Simulations,” IEEE Access, vol. 11, pp. 28522–
28550, 2023, doi: 10.1109/ACCESS.2023.3259544.

[236] P. Stahl, B. Donmez, and G. A. Jamieson, “Anticipatory driving competence:
motivation, definition & modeling,” in Proceedings of the 5th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications,
in AutomotiveUI ’13. New York, NY, USA: Association for Computing
Machinery, Oct. 2013, pp. 286–291. doi: 10.1145/2516540.2516579.

[237] L. Lazzaroni, A. Mazzara, F. Bellotti, A. De Gloria, and R. Berta, “Employing
an IoT Framework as a Generic Serious Games Analytics Engine,” in Games
and Learning Alliance, I. Marfisi-Schottman, F. Bellotti, L. Hamon, and R.
Klemke, Eds., in Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 79–88. doi: 10.1007/978-3-030-63464-3_8.

[238] L. Lazzaroni, F. Bellotti, and R. Berta, “An Embedded End-to-End Voice
Assistant.” submitted for publication.

[239] R. Berta et al., “Developing Deep-Learning-Based Autonomous Agents for
Low-Speed Maneuvering in Unity 3D.” submitted for publication.

[240] L. Lazzaroni, A. Pighetti, F. Bellotti, A. Capello, M. Cossu, and R. Berta,
“Automated Parking in CARLA: A Deep Reinforcement Learning-Based
Approach,” in Applications in Electronics Pervading Industry, Environment and
Society, F. Bellotti, M. D. Grammatikakis, A. Mansour, M. Ruo Roch, R.
Seepold, A. Solanas, and R. Berta, Eds., in Lecture Notes in Electrical
Engineering. Cham: Springer Nature Switzerland, 2024, pp. 352–357. doi:
10.1007/978-3-031-48121-5_50.

[241] G. Campodonico et al., “Adapting Autonomous Agents for Automotive
Driving Games,” in Games and Learning Alliance, F. de Rosa, I. Marfisi
Schottman, J. Baalsrud Hauge, F. Bellotti, P. Dondio, and M. Romero, Eds.,
in Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 101–110. doi: 10.1007/978-3-030-92182-8_10.

[242] F. Bellotti, L. Lazzaroni, A. Capello, M. Cossu, A. De Gloria, and R. Berta,
“Designing an Interpretability Analysis Framework for Deep Reinforcement
Learning (DRL) Agents in Highway Automated Driving Simulation,” in
Proceedings of SIE 2022, G. Cocorullo, F. Crupi, and E. Limiti, Eds., in Lecture
Notes in Electrical Engineering. Cham: Springer Nature Switzerland, 2023,
pp. 239–244. doi: 10.1007/978-3-031-26066-7_37.

	Introduction
	Related Work
	2.1 Edge computing engines
	2.2 On-the-edge voice assistants
	2.2.1 Datasets
	2.2.2 Models and Toolkits

	2.3 DRL for motion and path planning
	2.3.1 Driving simulators

	2.4 DRL models explainability

	Edgine
	3.1 Measurify
	3.2 Edgine
	3.3 Experiments
	3.3.1 Industrial use-cases
	3.3.1.1 Shock monitoring
	3.3.1.2 Tank level monitoring

	3.3.2 Environmental use-cases
	3.3.2.1 Air-quality monitoring
	3.3.2.2 Plant monitoring

	3.3.3 Sports use-cases
	3.3.3.1 Smart bike
	3.3.3.2 Smart racket

	3.4 Users’ feedback
	3.5 New features

	Embedded Voice Assistant
	4.1 Methodology
	4.2 Automotive embedded VA implementation
	4.2.1 Speech classification
	4.2.2 Automatic speech recognition
	4.2.2.1 ASR model
	4.2.2.2 ASR dataset
	4.2.2.3 ASR transfer learning experiment
	4.2.2.4 ASR models comparative

	4.2.3 Natural language understanding
	4.2.4 Speech synthesis
	4.2.5 Toolchain

	4.3 Results and discussion

	DRL for low-speed maneuvering
	5.1 Deep reinforcement learning
	5.2 Unity experiment
	5.2.1 Unity ML-Agents
	5.2.2 Experiment setup
	5.2.3 Results
	5.2.3.1 Garage environment
	5.2.3.2 Random obstacles environment

	5.3 CARLA experiment
	5.3.1 Experiment setup
	5.3.2 Results

	5.4 Unity or CARLA?

	DRL models explainability
	6.1 Environment
	6.2 Experimental results
	6.2.1 Episode view
	6.2.2 Frame view
	6.2.3 Aggregated view

	Summary of contributions
	Conclusions
	References

