
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Automated Assistance for Actionable Security: Security and
Compliance of TLS Configurations

by

Salvatore Manfredi

Theses Series DIBRIS-TH-2023-XX

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy https://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

Automated Assistance for Actionable Security:
Security and Compliance of TLS Configurations

by

Salvatore Manfredi

March, 2023

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
https://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Salvatore Manfredi
DIBRIS, University of Genoa, Genoa (Italy)
Center for Cybersecurity, FBK, Trento (Italy)

Date of submission: December 2022

Title: Automated Assistance for Actionable Security: Security and Compliance of TLS
Configurations

Advisor: Silvio Ranise
Director, Center for Cybersecurity, FBK, Trento (Italy)

Full professor, Department of Mathematics, University of Trento, Trento (Italy)

Co-Advisor: Giada Sciarretta
Researcher, Center for Cybersecurity, FBK, Trento (Italy)

Ext. Reviewers: Stefano Calzavara⋆, Juraj Somorovsky†

⋆ Associate Professor, Department of Environmental Science, Informatics and Statistics,
Università Ca’ Foscari Venezia, Venezia (Italy)

† Associate Professor, Faculty of Computer Science, Electrical Engineering and Mathematics,
Paderborn University, Paderborn (Germany)

Abstract

Since its first version was published in 1999 as an RFC, Transport Layer Security
(TLS) has rapidly become the de facto standard for providing confidentiality and
integrity to communications exchanged in an insecure environment. Despite the fact
that the protocol has undergone a number of structural and logical revisions over the
past 23 years, its implementations still contain a significant flaw. In essence, the
lack of a default secure configuration reduces the usability of TLS because system
administrators, who are responsible for its configuration, must study the state of the
art in terms of technologies and new vulnerabilities, and understand how to secure
their deployment.

While TLS cipher suites and extensions have evolved over the past decade, in-
creasing the protocol’s overall security, supporting software has been slow to drop
support for insecure ciphers, broken hash algorithms, and outdated protocol ver-
sions [KRA+18]. All components that system administrators and app developers
may accidentally make available on their systems. In addition to managing the web-
server itself, administrators must also manage cross-cutting elements such as cer-
tificate management, the TLS library, and the system on which these applications
are installed. Administrators can take advantage of the availability of state-of-the-
art tools, TLS analyzers capable of detecting a wide variety of vulnerabilities on a
target system. Some are downloadable, while others can be run directly through the
browser, but they all share one drawback: they cannot guide system administrators
and app developers through the process of fixing the discovered vulnerabilities. This
partially defeats the purpose of these tools, as administrators will still need to spend
time researching scientific literature and determining how to fix the discovered mis-
configuration.

To assist system administrators and app developers with the crucial task of configu-
rating their deployments, we contribute with:

• a study of the state-of-the-art in terms of TLS analyzers capable of inspecting
webservers’ configuration, performing vulnerability detection and compliance
analysis, with a focus on their features, limitations and application domains;

1

• the design and development of TLSAssistant, a modular and extendable open
source framework that can assist system administrators and app developers in
correctly configuring TLS deployments. The strengths of the tool include its
ability to generate actionable reports, containing accurate, concise information
and code fragments that can be copied and pasted into the webserver configu-
ration in order to mitigate the detected vulnerabilities;

• the development of a methodology that can assist users in assessing the com-
pliance of their systems against a single or multiple agency-issued security
guidelines;

• the application of TLSAssistant in a variety of corporate scenarios and projects,
describing its impact and the lessons learned from its deployment.

2

Acknowledgements

English

First of all, I want to thank Professor Might who was able to formalize what “I wanted to do
when I grew up” [Mig] and Professor Cavallaro, who made me discover it [WSF]. I want to
thank Professor Ranise, who gave me the opportunity to pursue this goal, and Dr. Sciarretta,
whose only fault was that she had the most interesting internship topic among those proposed. I
sincerely thank Professor Merlo and Dr. Fabiano for their great support when I most needed it.

I also want to express my gratitude to Dr. Sharif, the best colleague/helpdesk I could have asked
for, as well as all the friends and coworkers who have helped me during these challenging years.

Finally, I want to thank my parents and my sister. If I have come this far, it is also your fault.

Italiano

Per prima cosa, voglio ringraziare il Professor Might che è riuscito a formalizzare ciò che “avrei
voluto fare da grande” [Mig] e il Professor Cavallaro che me lo fece scoprire [WSF]. Ringrazio
il Professor Ranise, che mi ha dato la possibilità di perseguire questo obbiettivo e la Dottoressa
Sciarretta, la cui unica colpa è stata quella di aver proposto l’argomento di tirocinio più interes-
sante. Ringrazio sentitamente il Professor Merlo e la dottoressa Fabiano per il loro importantis-
simo supporto quando ne avevo più bisogno.

Ringrazio il Dr. Sharif, il miglior collega/helpdesk che avrei potuto sperare di trovare, e tutte le
persone, i colleghi e gli amici che mi hanno supportato in questi anni impegnativi.

Voglio infine ringraziare i miei genitori e mia sorella. Se sono arrivato fin qui è anche colpa
vostra.

Table of Contents

List of Figures 4

List of Tables 6

Chapter 1 Introduction 8

1.1 Goals and Contributions . 9

1.2 Thesis Structure . 10

Chapter 2 Background 13

2.1 Historical Notes . 13

2.2 Transport Layer Security . 14

2.2.1 TLS Handshake . 14

2.3 Misconfigurations and Vulnerabilities . 19

Chapter 3 Actionable Hints for Configuring TLS 23

3.1 Related Work: TLS Analyzers . 23

3.1.1 Mobile Clients . 27

3.1.2 Report Snippet . 28

3.2 Actionable Mitigations . 28

3.2.1 Mitigations Identification . 29

3.2.2 Initial Tool Design and Assumptions . 29

3.2.3 Attack Trees . 33

1

3.3 Usability and Impact of Assisted Mitigations 36

3.3.1 Related work: Usability Studies . 38

3.3.2 User Study Design . 39

3.3.3 User Study Results . 48

3.4 Lessons Learned and Discussion . 53

Chapter 4 TLS Vulnerabilities and Threat Intelligence 55

4.1 Context and Motivation . 55

4.2 FINSEC Project . 57

4.3 Planning and Integration . 59

4.3.1 STIX Output in TLSAssistant . 60

4.3.2 FINSEC Connector . 62

4.3.3 API and Queue Handling . 63

4.4 Integration with Risk Assessment . 65

4.5 Lessons Learned and Discussion . 66

Chapter 5 From Standalone Tool to Collaborative Framework 68

5.1 Discussion: Challenges and Limitations . 68

5.2 Architecture Definition . 69

5.2.1 Modules Characterization . 71

5.2.2 Standards . 80

5.3 Discussion . 84

Chapter 6 An Assisted Methodology to Evaluate Security Compliance 87

6.1 Banking Standards . 88

6.1.1 PSD2 . 88

6.1.2 PCI-DSS . 89

6.1.3 Discussion . 90

6.2 National TLS Guidelines . 90

2

6.3 Challenges . 92

6.4 Related Work: Tools for Compliance Analysis 94

6.5 Compliance Methodology . 97

6.5.1 Recommendations Collection . 97

6.5.2 Single Guideline . 99

6.5.3 Multiple Guidelines . 100

6.6 Prototyping . 103

6.6.1 SAT . 104

6.6.2 JSON Schema . 106

6.6.3 Reference Use Cases . 108

6.7 Discussion . 109

Chapter 7 Impact on Collaborations 112

7.1 eIDAS Authentication Scheme . 112

7.2 Sensitive SaaS Configuration . 113

7.3 Continuous Monitoring of Enterprise Infrastructures 115

7.4 Feedback on Agency-issued TLS Guidelines . 116

Chapter 8 Conclusions and Future Work 118

8.1 Future Work . 119

Bibliography 120

Appendix A Survey Questionnaires’ Content 136

Appendix B Leaves Content of TLS Attack Trees 138

B.1 Break Confidentiality . 138

B.2 Break Authentication . 140

3

List of Figures

2.1 TLS 1.2 full handshake . 15

2.2 TLS 1.2 Client Hello content . 16

2.3 TLS 1.2 Server Hello content . 17

3.1 testssl.sh report snippet . 26

3.2 TLSAssistant v1.0 architecture . 32

3.3 TLSAssistant v1.0 report (excerpt) . 33

3.4 An example of an attack tree in the context of TLS 34

3.5 Attack tree depicting the goal of breaking TLS message confidentiality (simplified) 35

3.6 Attack tree depicting the goal of breaking TLS message integrity 36

3.7 Attack tree depicting the goal of breaking TLS authentication (simplified) 37

3.8 TLSAssistant v1.1 architecture . 38

3.9 Time (in minutes) to fix a security issue . 50

4.1 FINSEC reference architecture . 56

4.2 FINSEC Dashboard . 57

4.3 A simplified STIX SDO ecosystem with its possible relationships 58

4.4 A simplified FINSEC architecture . 59

4.5 STIX output for the Bar Mitzvah attack . 61

4.6 TLSAssistant v1.2 architecture . 62

4.7 Integration of TLSAssistant in the FINSEC architecture 64

4

4.8 Integration of TLSAssistant in a Risk Assessment Engine model 66

5.1 TLSAssistant v2 architecture . 69

5.2 TLSAssistant v2 report (excerpt) . 78

5.3 TLSAssistant v2 scoreboard . 79

5.4 TLSAssistant v2 logo . 85

6.1 sslyze compliance output (excerpt) . 94

6.2 TLS-Scanner output fragment . 96

6.3 Defined partial orders . 101

6.4 Comparison approaches . 102

6.5 Compliance module architecture . 103

6.6 generate-after-one Apache output fragment . 110

6.7 compare-to-many Apache report fragment . 111

7.1 CIE ID infrastructure (simplified) . 113

7.2 Examples of SaaS integrations . 114

7.3 Grafana output for a single host (excerpt) . 115

7.4 Grafana output summed per-host (excerpt) . 117

5

List of Tables

2.1 Main differences introduced with TLS 1.3 . 19

2.2 List of known protocol-related TLS attacks . 20

3.1 TLS analyzers comparison - Server side . 24

3.2 TLS analyzers comparison - Mobile side . 28

3.3 List of suggested mitigations for webservers . 30

3.4 List of suggested mitigations for Android apps 30

3.5 Demographics: Participants’ academic background 40

3.6 Demographics: Participants’ technical background 41

3.7 Experimental design . 44

3.8 Correctness in fixing an incorrect TLS configuration 48

3.9 Analysis of correctness (GLMM) . 48

3.10 Time (in minutes) to fix a security issue . 50

3.11 Analysis of time (GLMM) . 51

3.12 Analysis of survey questionnaire (Fisher’s test) 51

3.13 Analysis of survey questionnaire . 52

3.14 Analysis of survey questionnaire (Mann-Whitney test) 53

6.1 RFC 2119 requirement levels meaning . 91

6.2 TLS protocol compliance across guidelines (excerpt) 92

6.3 TLS extensions recommendations across guidelines (excerpt) 97

6

6.4 Supported groups recommendations across guidelines (excerpt) 98

6.5 Single Guideline - Compliance evaluation . 99

6.6 SAT solvers evaluation . 104

A.1 Questions in the survey questionnaire . 136

B.1 Break Confidentiality - Full Leaves . 138

B.2 Break Authentication - Full Leaves . 140

7

Chapter 1

Introduction

Since its first version, published as an RFC in 1999, Transport Layer Security (TLS) has estab-
lished itself as a powerful suite of protocols, able to protect insecure communications by provid-
ing both confidentiality and integrity to the communicating parties. Despite the fact that TLS has
undergone multiple updates and sometimes even significant protocol changes, its implementa-
tions still contain the protocol’s biggest flaw: they do not provide strong security out-of-the-box
and must be configured to provide the desired security benefits. The problem is worsened by the
fact that TLS is not a part of a single software, but rather a collaboration between a webserver, a
TLS library, and a host operating system. All three must be handled properly in order to provide
secure communications.

Kotzias et al. [KRA+18] observe that the TLS ecosystem has undergone significant changes over
the past decade, with notable shifts in the cipher suites and TLS extensions offered by clients and
accepted by servers. In particular, they report that clients, particularly web browsers, are quick to
adopt new algorithms but slow to drop support for older ones. They also encounter a substantial
amount of client software that likely provides insecure ciphers by accident. Backward compati-
bility is especially dangerous and impactful when we notice that almost 5,000,000 websites still
support SSLv3, a protocol no longer considered secure since 2015 [Sho22a, BTPL15]. More than
233,000 webservers are still vulnerable to a six years old attack called Sweet32 [Sho22c, BL16]
and approximately 203,000 still use an out-of-date version of OpenSSL that can be tricked into
leaking the victim’s memory contents. [Sho22b, Syn14]. All these settings, that become “mis-
configurations” when new attacks and vulnerabilities are discovered, can be secured by editing
the webserver’s configuration (for SSLv3 and Sweet32) or by upgrading the installed TLS library
(for Heartbeat).

In order to provide the best possible service, a system administrator must comprehend the reper-
cussions of each configuration element and make decisions in accordance with this knowledge.
Each of the customizable preferences has nontrivial implications that can only be fully grasped

8

through an in-depth examination of the current state of the art, a task that a system administrator
may not have the time or desire to complete. Moreover, a user study conducted by Tiefenau et
al. [THKvZ20a] demonstrated that even experienced administrators find it difficult to predict the
immediate effects of applying an update and are extremely concerned about potential downtimes.
It also appears that they prefer suggestions from peers who have experienced a similar situation to
vendor-provided information. This causes (potentially) valid configurations to become obsolete
and insecure over time due to the lack of upgrades.

An alternative to conducting a literature review would be to rely on cutting-edge tools that are
able to identify incorrect configurations and provide the administrator with information regard-
ing potential dangers to the system’s safety. However, relying on these tools does not absolve the
administrator of his or her responsibility to comprehend how system components interact with
one another, what security issues may result from misconfigurations and how to actually mitigate
the detected vulnerabilities. Thus, the system administrator must weigh the risk of overlooking
a security vulnerability by not studying best practices against the risk of unintentionally intro-
ducing security flaws due to a lack of knowledge and understanding. In addition, when shifting
the focus from a single webserver to a broader perspective, additional factors such as security
standards (e.g., [PCI18]) and national guidelines (e.g., [Age20]) must be taken into account.

1.1 Goals and Contributions

This thesis focuses on the state-of-the-art regarding the practical applications of TLS, ranging
from configuration difficulties to interoperability issues in various scenarios. Our goal is to
bridge the gap between cutting-edge research and the system administrators and app developers
that could benefit from it but who either lack the time or the knowledge to access it themselves.
The work begins with the observation that a subset of TLS analyzers share a significant limita-
tion: they provide little to no guidance on how to actually mitigate the detected vulnerabilities.
We sought to address this deficiency by providing actionable hints, a set of literature-based in-
structions that would assist system administrators in deploying secure instances of the TLS pro-
tocol. We chose to expand the use of these hints, demonstrate their effectiveness and usability
in the context of a user study, and evaluate their impact in a real-world scenario. As a result of
our work over the years, we have decided to broaden our risk assessment efforts. Indeed, the
ability to provide an “overall assessment” of a system, analyze evolving risks, and monitor new
vulnerabilities is of the extreme significance, given that TLS serves as a central component of
many modern technologies. Finally, we worked on the development of a methodology that would
permit the evaluation of a system’s compliance with a set of guidelines. Thus going beyond the
protection of a single system and aiming to secure a service as part of a larger, more regulated
ecosystem.

To summarize, this work provides the following main contributions:

9

• a study of the state-of-the-art in terms of TLS analyzers capable of inspecting webservers’
configuration, performing vulnerability detection and compliance analysis, with a focus on
their features, limitations and application domains;

• the design and development of TLSAssistant, a modular and extendable framework that
can assist system administrators and app developers in correctly configuring TLS deploy-
ments. The tool - freely available on GitHub [Sec] - is designed to be easily extensible
(to simplify the upgrade process, allowing third-party and internal contributors to rely on a
reliable core system that can automatically integrate new modules) and interoperable with
other cybersecurity tools or platforms. The strengths of the tool include its ability to gen-
erate actionable reports, containing accurate, concise information and code fragments that
can be copied and pasted into the webserver configuration in order to mitigate the detected
vulnerabilities and ensure the compliance with agency-issued guidelines;

• the development of a methodology that can assist users in assessing the compliance of their
systems against a single or multiple agency-issued security guidelines;

• the application of TLSAssistant in a variety of corporate scenarios and projects, describ-
ing its impact and the lessons learned from its deployment.

1.2 Thesis Structure

The thesis is structured as follows.

Chapter 2 - Background

This chapter introduces the foundational concepts and definitions of this work. It will focus on
the TLS suite, including its history, protocols, functions, and vulnerabilities.

Chapter 3 - Actionable Hints for Configuring TLS

This chapter introduces the concept of “actionable hints” and describes our evaluation of their
applicability and impact. To achieve this, we will (i) present the state-of-the-art in TLS analyzers,
highlighting their features and a shared limitation, (ii) illustrate the concept of actionable hints
and the work of collecting known mitigations to create reliable actionable reports, (iii) describe
the design of an automated tool called TLSAssistant, and (iv) the user study designed to evaluate
its usability.

Chapter 4 - TLS Vulnerabilities and Threat Intelligence

This chapter presents TLSAssistant integration into FINSEC, a framework for predictive and
collaborative financial infrastructure security. Integrating multiple security intelligence sources

10

and vulnerability evaluation and scoring could improve the other integrated services. The sec-
tions will (i) describe the context in which this integration took place, (ii) provide an overview
of the FINSEC platform by describing its structure, how it works, and the parties involved, (iii)
demonstrate how we overcame the integration challenges, (iv) describe the information exchange
with the Risk Assessment Engine as implemented in FINSEC, and (v) discuss the lessons learned.

Chapter 5 - From Standalone Tool to Collaborative Framework

In this chapter, we will (i) discuss the challenges and limitations encountered while working
on TLSAssistant over the years, (ii) introduce a new architecture for TLSAssistant v2, de-
signed to be modular and easily extendable, and (iii) discuss the lessons learned during the re-
design phase.

Chapter 6 - An Assisted Methodology to Evaluate Security Compliance

In this chapter, we will (i) describe the circumstances that led to the study of agency-issued com-
pliance guidelines, (ii) introduce the existing guidelines, (iii) present the state-of-the-art in terms
of compliance assessment tools, (iv) illustrate the defined use cases, the proposed methodology
to implement them, and (v) describe the prototyping work.

Chapter 7 - Impact on Collaborations

This chapter will focus on the scientific, technical, and social impact of a series of collaborations
that have taken place over the past three years.

Chapter 8 - Conclusions and Future Work

In this chapter, we conclude the thesis work and offer some insight into potential future direc-
tions.

11

The content of this thesis is based on the following peer-reviewed conference and journal articles:

1. Salvatore Manfredi, Silvio Ranise, and Giada Sciarretta. 2019. Lost in TLS? No More!
Assisted Deployment of Secure TLS Configurations. In: Foley, S. (eds) Data and Applica-
tions Security and Privacy XXXIII. DBSec 2019. Lecture Notes in Computer Science, vol
11559. Springer, Cham. [MRS19]

2. Andrea Bisegna, Roberto Carbone, Mariano Ceccato, Salvatore Manfredi, Silvio Ranise,
Giada Sciarretta, Alessandro Tomasi, and Emanuele Viglianisi. 2020. 6. Automated Assis-
tance to the Security Assessment of API for Financial Services. In Cyber-Physical Threat
Intelligence for Critical Infrastructures Security: A Guide to Integrated Cyber-Physical
Protection of Modern Critical Infrastructures. Now Publishers. [BCC+20]

3. Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise. 2021. Do
Security Reports Meet Usability? Lessons Learned from Using Actionable Mitigations for
Patching TLS Misconfigurations. In Proceedings of the 16th International Conference on
Availability, Reliability and Security (ARES 21). Association for Computing Machinery,
New York, NY, USA, Article 141, 1–13. [MCSR21a]

4. Salvatore Manfredi, Silvio Ranise, Giada Sciarretta, and Alessandro Tomasi. 2020. TL-
SAssistant Goes FINSEC A Security Platform Integration Extending Threat Intelligence
Language. In Cyber-Physical Security for Critical Infrastructures Protection: First Inter-
national Workshop, CPS4CIP 2020, Guildford, UK, September 18, 2020, Revised Selected
Papers. Springer-Verlag, Berlin, Heidelberg, 16–30. [MRST20]

5. Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise. 2022. Empir-
ical Validation on the Usability of Security Reports for Patching TLS Misconfigurations:
User- and Case-Studies on Actionable Mitigations. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, 13(1), 56–86. [MCSR22]

6. Matteo Rizzi, Salvatore Manfredi, Giada Sciarretta, and Silvio Ranise. (2022). A Modular
and Extensible Framework for Securing TLS. In Proceedings of the Twelveth ACM Con-
ference on Data and Application Security and Privacy. CODASPY ’22: Twelveth ACM
Conference on Data and Application Security and Privacy. ACM. [RMSR22b]

7. Matteo Rizzi, Salvatore Manfredi, Giada Sciarretta, and Silvio Ranise. 2022. Demo:
TLSAssistant v2: A Modular and Extensible Framework for Securing TLS. In Proceedings
of the 27th ACM on Symposium on Access Control Models and Technologies (SACMAT
’22). Association for Computing Machinery, New York, NY, USA, 271–272. [RMSR22a]

12

Chapter 2

Background

This chapter presents the fundamental concepts and definitions upon which this work is founded.
Specifically, it will cover the Transport Layer Security (TLS) suite of protocols, including (i) its
history, (ii) the protocols that constitute it, their functioning and (iii) their vulnerabilities.

2.1 Historical Notes

TLS (short for “Transport Layer Security”) originated as a compromise between Netscape [Inc22]
and Microsoft [Mic22a] proposals for how to secure HTTP [IET22]. Netscape created Se-
cure Sockets Layer (SSL) 2.0 in 1994 and released it alongside its browser, Navigator 1.1, in
1995 [Ris22]. Due to the protocol’s severe cryptographic and practical flaws, two companies
decided to develop an alternative. Netscape introduced SSL 3.0 in 1995 [Net], while Microsoft,
its competitor, revised SSL 2.0 and developed the PCT protocol. PCT v1.0 was backward com-
patible with SSL 2.0, but this protocol never gained traction on outside of the Microsoft ecosys-
tem [Ris22].

Diverse industry and community members opposed a protocol fork, so Consensus Development
(already responsible for the SSL 3.0 reference implementation) arranged a meeting between
Netscape and Microsoft [Die14]. After Microsoft and Netscape agreed to support the IETF’s
open process for standardizing the SSL protocol, the standardization process began. As part
of the agreement, SSL was renamed to avoid giving the impression that the IETF supported
Netscape’s protocol. TLS 1.0 (which was actually SSL 3.1) was published as an official RFC in
1999 [DA99].

13

2.2 Transport Layer Security

The main goal of the TLS protocol is to ensure the confidentiality and integrity of data exchanged
between two communicating applications. It is composed of two layers: the Handshake protocol
and the Record protocol [DR08].

Record protocol deployed on top of a transport protocol (such as TCP) and encapsulates the
messages coming from higher levels. It ensures confidentiality by employing symmetric encryp-
tion algorithms with keys generated for each connection and integrity by calculating the hash
of the messages being sent. The used keys and algorithms are those agreed upon during the
handshake.

Handshake protocol deployed on top of the Record protocol, negotiates the shared secret (i.e.
Master Secret) from which all required keys will be derived. The identity of the connecting peers
is authenticated by using public key cryptography and it is generally required for at least one
entity. The handshake protocol supports two special messages: (i) Change Cipher Spec, which
changes the session’s ciphering strategy, and (ii) Alert, which broadcasts potential alerts.

Four versions of the TLS protocol have been released over the past 24 years:

• TLS 1.0 published in 1999 as a standardization of the SSL 3.0 protocol by IETF [DA99]
(see Section 2.2);

• TLS 1.1 introduced in 2006 to enhance protection against CBC attacks [DR06];

• TLS 1.2 published in 2008 with significant security enhancements (such as supporting
authenticated encryption and AES cipher suites) and extensions support [DR08];

• TLS 1.3 published in 2018 with modifications to the handshake, removal of legacy fea-
tures, and simplification of cipher suite negotiation [Res18].

According to the SSL Pulse scan conducted by Qualys [Qua22a], 99.8% of the most popular
websites [Ser22] support TLS 1.2, making it the most widely supported protocol to date. Due
to its wide availability and the number of protocol-related vulnerabilities discovered in recent
years (which will be discussed in Section 2.3), from here on out we will focus on TLS 1.2 and
its handshake.

2.2.1 TLS Handshake

The purpose of TLS 1.2 handshake is to allow the parties to exchange all information required
to establish a secure session. Figure 2.1 depicts the entire handshake (with asterisks indicating

14

Figure 2.1: TLS 1.2 full handshake

optional data and the yellow segments showing the encrypted transmission). Messages 1-2 start
the handshake and exchange information that will be used to identify the session and the current
connection. Messages 3 and 4 are used to initiate the authentication process (i.e., by sending
and verifying X.509 certificates) and to exchange the keying material necessary to construct the
Master Secret, from which all required keys will be derived. Theoretically, both client and server
authentication are optional, but the most frequent authentication scenarios involve either uni-
lateral (server-authenticated) or mutual authentication (both parties authenticated). The Change
Cipher Spec message, sent by both parties immediately before the handshake’s final message, in-
structs the Record protocol to use the negotiated algorithms and keys (upon reception). Finally,
the Finished is the first encrypted message sent over the secure channel and is used to verify the
handshake’s validity.

In the following, we will discuss the content of each message:

Client Hello transmitted by the client to initiate the handshake. As shown in Figure 2.2, it is
composed of:

15

Figure 2.2: TLS 1.2 Client Hello content

client version - the version of TLS that the client wishes to use to communicate with;

random - random value obtained by chaining the timestamp (32 bit in UNIX time) and a
randomly generated nonce (28 bytes);

session id - the ID of a session the client wishes to use;

cipher suites - a list of supported cipher suites. The list of cipher suites contains the
client’s preferred cryptographic algorithms. Each element specifies a unique combi-
nation of a key exchange, bulk encryption, and MAC algorithm;

compression methods - a list of supported compression methods;

client hello extension list - a list of requested additional functionalities.

16

Figure 2.3: TLS 1.2 Server Hello content

Server Hello is sent by the server once it receives a Client Hello. It contains, as shown in
Figure 2.3:

server version - this field will contain the lower protocol version suggested by the client
and the highest supported by the server;

random - as for the client, it is obtained by chaining the timestamp and a randomly gen-
erated nonce;

session id - the ID of the session corresponding to this connection;1

cipher suite - the chosen cipher suite from those proposed by the client;

compression method - the compression method chosen among those proposed by the
client;

server hello extension list - the required set of extensions.

Certificate

server-side transmitted if the client requests an authenticated connection (via cipher suite
proposal). The server must send a list of X.509v3 certificates (from the host one up
to the root CA);

client-side transmitted if the client has received a Certificate Request message. It must
send a list of X.509v3 certificates (from the host one up to the root CA) complying
with the requirements contained in the message itself.

1A session consists of a secure channel that can contain multiple connections. Multiple connections within a
session share a subset of the terms of the initial handshake (e.g., session ID and cipher suite).

17

Server Key Exchange sent if the delivered certificate lacks sufficient information to establish a
secure channel between the server and client. This occurs when the chosen key exchange
algorithm is dh anon, dhe rsa, or dhe dss (obsolete). The content of the message
depends on the chosen algorithm:

dh anon (anonymous Diffie-Hellman)

dh p DH prime modulus;
dh g DH generator;
dh Ys the server’s public value (gX mod p);

dhe rsa (Ephemeral Diffie-Hellman with RSA)

• the server signs the DH parameters using its private key to create a pre-master
secret.

Certificate Request transmitted by a non-anonymous server to request a client authentication. It
contains the following values:

certificate types the accepted certificate types (e.g., rsa sign, rsa fixed dh);

supported signature algorithms a set of supported signatures (e.g., SHA512, SHA1
DSA or ecdsa sha1);

certificate authorities a list of acceptable authorities.

Server Hello Done is an empty message that signals the end of the server’s hello messages.

Client Key Exchange configures the premaster secret that will later be used to generate the Mas-
ter Secret.2 This message contains one of the following structures based on the agreed key
exchange algorithm selected (as specified in the Server Hello):

RSA-Encrypted Premaster Secret Message a 48-byte premaster secret is generated by
the client and encrypted using the server’s public key (acquired from the received
certificate);

Ephemeral Diffie-Hellman public exponent (dhe) the client sends dh Yc, the remain-
ing DH public value;

Static Diffie-Hellman exponent (fixed dh) the message will be empty because the public
exponent has already been sent within the certificate.

Certificate Verify sent to provide client certificate verification. It is a signed concatenation of all
handshake messages (sent and received) prior to Client Key Exchange.

2The Master Secret is a 48 bytes long string used as a source to derive all session-related keys.

18

Table 2.1: Main differences introduced with TLS 1.3
Status Component Reason

Removed not-AEAD ciphers avoid attacks on legacy ciphers
RSA key exchange always provide forward secrecy
broken hash algorithms (MD5, SHA-1) avoid SLOTH and similar attacks
Change Cipher Spec message streamline the handshake
data compression avoid CRIME attack
session renegotiation avoid renegotiation attacks

Added 0-RTT mode for a quick resumption increase resumption speed
EncryptedExtensions msg avoid transmitting preferences in plaintext

Changed msg encryption starts after the Server Hello allow Client certificate encryption
Hello content (structure unchanged) extend Handshake capabilities

Change Cipher Spec its reception signifies the beginning of the agreed-upon encryption strat-
egy. It is transmitted by both the client and the server and consists of a single “1” byte.

Finished both parties generate a MAC by hashing the entire handshake. It is used to indicate
the algorithm’s completion.

2.2.1.1 TLS 1.3

In August 2018, the IETF published RFC 8446 as a proposed standard after four years of work
and 28 drafts [Dat18]. The document explains how TLS 1.3 operates and, in the first chapter,
outlines the main differences between TLS 1.2 and 1.3. Table 2.1 provides a summary of the
major differences, which include profound changes to the handshake, the elimination of support
for several legacy components (such as cipher suites and hash algorithms), a simplified key ex-
change, and a redesign of key derivation functions. The presence of these improvements fixed at
their source a number of vulnerabilities exploitable by some still-viable attacks for TLS 1.2.

2.3 Misconfigurations and Vulnerabilities

TLS protocol versions prior to 1.3 are prone to a wide range of vulnerabilities. While some
of the attacks are the result of flaws in the logic of the protocol, other exploit the support of
weak cryptographic aspects (e.g., weak ciphers and hash functions) or (in)voluntary weakening
of security properties (such as accepting self-signed certificates [Devc]).

In Table 2.2 we detail a set of well-known TLS attacks, each line contains: (i) the name given
by the authors; (ii) the feature or weakness exploited and (iii) a brief description on how the

19

attack can be mounted. Among all the attacks, here we provide some details on four that will be
referenced throughout the thesis: CRIME [NIS12], BREACH [GHP12], Bar Mitzvah [Man] and
ROBOT [BSY18].

CRIME and BREACH are related to the availability of DEFLATE, a compression algorithm
that reduces an input’s size by replacing duplicate strings with a reference to their last
occurrence. Given that neither TLS nor HTTP conceal the size of each message, this
information leakage can be exploited by an attacker to steal sensitive data. Assuming a
desire to steal session cookies, the attack is carried out by injecting different characters into
the client’s messages in an attempt to guess the cookie (e.g., using a controlled JavaScript
loaded by the victim). Thanks to DEFLATE, the response will be larger if the guess is
incorrect and the characters are not part of the cookie. Alternatively, if the attacker guessed
correctly, the size will not change. This attack is classified as CRIME if it exploits TLS
compression; otherwise, it is classified as BREACH;

Bar Mitzvah utilizing the invariance weakness of the RC4 stream cipher, an attacker can re-
trieve the session cookie by attempting to guess the least significant bits of the keystream.
While the attack has been known since 2013, nearly 4.2% of the world’s most popular
websites continue to support it (according to the Qualys SSL Pulse dashboard [Qua22a]);

ROBOT due to the availability of the PKCS#1v1.5 padding algorithm in RSA, an attacker is
able to extract the private key of the session and breaking the message confidentiality.
By using an adaptive chosen-ciphertext attack, based on Daniel Bleichenbacher’s chosen-
ciphertext attack [Ble98], the victim is forced to leak information that help the attacker in
guessing the key. The key may then be employed to decrypt HTTPS traffic transmitted
between the TLS server and the user’s browser.

Table 2.2: List of known protocol-related TLS attacks

Name Vulnerability Attack
3SHAKE [MI14] Renegotiation feature Complete three handshakes with incor-

rectly placed certificates

ALPACA [BDM+21]Availability of multiple
protocols on the same
server

Redirect traffic from one subdomain to an-
other, resulting in a valid TLS session

Bar Mitzvah [Man] RC4 steam cipher Extract weak keys by targeting the first 100
bytes of the ciphertext

Continued on next page

20

Table 2.2 – Continued from previous page
Name Vulnerability Attack
BEAST [Gre11] Initialization vector in

cipher block chain
Guess the plaintext to retrieve the symmet-
ric key

BREACH [GHP12] HTTP compression
mechanism

Request data from the server in order to
guess the response body (note: without
downgrading the SSL/TLS connection)

CRIME [NIS12] TLS header compres-
sion mechanism (DE-
FLATE)

Continuously request data from the server
in order to decrypt the session cookies (in-
ferring the encryption)

DROWN [Por] SSLv2 weakness due to
the use of export ciphers

Decrypt intercepted TLS connections by
connecting to an SSLv2 server that uses the
same private key

Lucky 13 [AP13] CBC-mode weakness
due to HMAC-SHA1
decryption failure
information leakage

Replace the last bytes with chosen bytes
and monitor the transmission time

RC4
NOMORE [VP]

Bias in the generation
of the “random” keys of
the RC4 stream cipher

Statistically analyze the Fluhrer-McGrew
biases

Raccoon [MBA+21] Premaster secret man-
agement

Construct an oracle by exploiting timing
measurements

Renegotiation
attack [MIT09]

Renegotiation feature Inject plaintext within an existing data
stream

ROBOT [BSY18] PKCS#1v1.5 padding
in RSA

Force the victim to leak information that
help the attacker in guessing the key

SLOTH [Duc] Availability of weak
hash functions

Request an RSA-MD5 certificate signature
and looking for collisions

SSL-POODLE
[MDK]

SSLv3 weakness due to
the missing validation
of padding bytes

Downgrade to SSLv3 and guessing the
padding in order to slowly recover plaintext

Sweet32 [BL16] 64-bit block ciphers Mount a birthday attack which creates col-
lisions

Continued on next page

21

Table 2.2 – Continued from previous page
Name Vulnerability Attack
TLS-POODLE
[MIT14b]

Availability of CBC-
mode for ciphers

Exploit the non-determinism during de-
cryption

Improving the accessibility of TLS libraries can help mitigate all of these issues, as the availabil-
ity of legacy or insecure features whose use is not discouraged is what leads to misconfigurations
and servers susceptible to attacks that date back a decade or more. Providing a strong default
configuration for general-purpose use, streamlining TLS software configuration, and making
backwards compatibility features opt-in can significantly reduce the likelihood of misconfigura-
tion resulting from the use of default settings [KRA+18].

22

Chapter 3

Actionable Hints for Configuring TLS

In this chapter, we introduce the concept of actionable hints and describe the work we performed
to evaluate their applicability and impact. To this aim, we will (i) present the state-of-the-art
in terms of TLS analyzers, highlighting their features and a shared limitation, (ii) illustrate the
concept of “actionable hints” and the work of collecting known mitigations to create reliable
actionable reports, (iii) describe the design of an automated tool, able to assist system adminis-
trators and app developers in securing their TLS deployments and (iv) describe the user study
conducted to evaluate the tool’s usability when patching defective TLS configurations and the
effectiveness of reports containing actionable reports.

3.1 Related Work: TLS Analyzers

There exists a wide amount of TLS analyzers freely available online. With the intention of
creating an open source downloadable tool, we decided to filter the available analyzers based on
the ability to download and run them locally (i.e., excluding powerful webapps such as Qualys
SSL Server Test [Qua22b] and Cryptosense Discovery [Cry]), read, study, and redistribute their
source code (i.e., excluding closed source or obsolete tools), and with the greatest number of
available vulnerability checks.

23

Table 3.1: TLS analyzers comparison - Server side

Checks 3S
ha

ke
ch

k

ss
lsc

an

ss
lyz

e*

te
sts

sl.
sh

TL
S-S

ca
nn

er
*

tls
fu

zz
er

*

Last updated Nov 2015 Jul 2022 May 2022 Sep 2022 Jul 2022 Sep 2022
Language Python 2 C Python 3 Bash Java Python 3

Available protocols ◗ ● ● ● ● ●

Available ciphers ❍ ● ● ● ● ●

Cipher preference ❍ ● ❍ ● ◗ ❍

Forward secrecy ❍ ◗ ● ● ● ❍

Elliptic curves ❍ ● ● ● ● ❍

DH groups ❍ ● ● ● ● ❍

Negotiated protocol ◗ ❍ ❍ ● ❍ ❍

Negotiated cipher ❍ ❍ ❍ ● ❍ ❍

Certificate details ❍ ● ● ● ● ❍

Certificate validity ❍ ● ● ● ● ❍

Chain of trust ❍ ● ● ● ● ❍

CRL ❍ ❍ ❍ ● ❍ ❍

OSCP ❍ ● ● ● ● ❍

Cert. transparency ❍ ● ● ● ● ❍

HSTS ❍ ❍ ❍ ● ● ❍

HPKP ❍ ❍ ❍ ● ● ❍

Webserver detection ❍ ❍ ❍ ● ❍ ❍

CRIME ❍ ◗ ◗ ● ● ❍

BREACH ❍ ❍ ❍ ● ● ❍

Sweet32 ❍ ◗ ◗ ● ● ◗

POODLE ❍ ◗ ◗ ● ● ❍

POODLE variants ❍ ◗ ◗ ❍ ● ❍

ROBOT ❍ ◗ ● ● ● ●

Drown ❍ ◗ ❍ ● ● ●

RC4 ❍ ● ● ● ❍ ◗

CCS Injection ❍ ● ● ● ❍ ◗

Lucky 13 ❍ ◗ ◗ ◗ ❍ ●

Heartbleed ❍ ● ● ● ● ●

Logjam ❍ ◗ ● ● ● ◗

Freak ❍ ◗ ◗ ● ❍ ◗

Continued on next page

24

Table 3.1 – Continued from previous page

Checks 3S
ha

ke
ch

k

ss
lsc

an

ss
lyz

e*

te
sts

sl.
sh

TL
S-S

ca
nn

er
*

tls
fu

zz
er

*

BEAST ❍ ◗ ◗ ● ❍ ◗

3SHAKE ● ❍ ❍ ◗ ● ◗

SLOTH ❍ ❍ ❍ ❍ ❍ ●

ALPACA ❍ ❍ ❍ ❍ ● ❍

Raccoon ❍ ❍ ❍ ❍ ● ❍

Table 3.1 shows the comparison between the six most peculiar ones, comparing them to find the
best state-of-the-art standalone tools with a wide amount of available checks (elements marked
with an asterisk were not part of the original comparison). 1 Each check is identified depending
on the type of information resulting in their output. In particular, ●, ◗ and ❍ mean a complete,
partial (which can be inferred using other explicit detections) or total lack of detection, respec-
tively. The evaluated tools are:

TLS Extended Master Secret Extension Checker [You] (abbreviated as “3Shake chk”
for spacing purposes): is a simple script that checks if the target server supports the only
available mitigation for the 3SHAKE attack [MI14]: the extended master secret TLS ex-
tension [BDLP+15]. The output shows, for each available version of TLS (up to 1.2), if
the extension request has been accepted by the server;

sslscan [rbs17]: is tool capable of performing a variety of checks without focusing on specific
deployment aspects. Despite its features, it does not implement many vulnerability checks
directly;

sslyze [Diq22]: is another powerful tool, similar to sslscan in terms of available checks and
similarly limited;

testssl.sh [Wet22]: is a fully-featured tool able to analyze a server’s configuration. The tool
is mainly focused on detecting weaknesses and various configuration issues while being
able to perform a wider set of tests. Among these, testssl.sh can provide detailed insights
on both certificate (e.g., chain of trust, revocation data, OSCP settings, HSTS and HPKP
status) and webserver (e.g., security headers, fingerprinting, key usage) status. The gener-
ated report contains the results for all the performed analysis, associated with a color that
signals the severity of the detected result (going from green to red);

1Since our first comparison in 2018, many available tools have undergone significant enhancements, but their
focus (and corresponding feature gap) have remained unchanged.

25

Figure 3.1: testssl.sh report snippet

TLS-Scanner [Ruh22]: is a state-of-the-art vulnerability scanner able to assist pentesters and
security researchers in the evaluation of TLS Server configurations. It is developed by
the team of researchers that discovered important attacks against TLS (e.g., ROBOT and
DROWN).

tlsfuzzer [Kar22] is a test suite for all SSL and TLS implementations. It comes with a mul-
titude of scripts narrowed for specific use cases. While it uses fuzzing techniques for
testing target libraries, the scripts are generally written in a way that verifies correct error
handling: according to the author, it does not check only that the system under test did
not crash but also that it returned correct error messages. A crucial drawback consists in
the fact that tlsfuzzer lacks a proper documentation, and thus its usage is subsequent to
understanding the purpose of the available scripts.

All the listed tools work by repeatedly connecting to the target webserver using specifically
crafted Client Hello messages (see Section 2.2.1). By checking the server’s responses (i.e.
the Server Hello message), the tools are able to infer its configuration.

26

3.1.1 Mobile Clients

While in a browser the handling of TLS and its certificates is built-in, this is not the case for
mobile native applications: a developer can either choose to use one of the many available TLS
libraries (e.g., OkHttp [Squ22]) or to implement his own methods. In both cases, an incorrect
certificate handling may lead to several authentication-related issues. To detect this kind of
misconfigurations, there exist the need for specific tools. Table 3.1 shows the differences between
five Android-related analyzers (elements marked with an asterisk were not part of the original
comparison):

MalloDroid [FHM+12]: is a Python script (built on top of Androguard [Des]) that performs
static analysis on the code of an Android application. It takes as input and Android app
installer (.apk file) and uses the capabilities inherited from Androguard to decompile
the application. Once the script acquires the source code, it (i) extracts the set of URLs the
app is instructed to connect and checks the validity of their certificates, and (ii) identifies
if the app is using a non-standard trust manager and checks the related methods;

QARK [Lin19] is a static code analysis tool designed to recognize potential security vulner-
abilities. A key feature is the ability to dynamically generate a custom-built testing app,
designed to demonstrate the detected issues;

SMV-Hunter [utd15] is a set of tools able to perform large-scale automated detection of SS-
L/TLS man-in-the-middle vulnerabilities in Android apps. Despite being an interesting
research tool, it has never been updated since its first release;

SUPERAndroidAnalyzer [SUP18] is a complete APK file analyzer for a wide set of An-
droid vulnerabilities, including SSL/TLS. It works by decompiling the target apks and
performing static analysis following the rules provided in a customizable JSON file called
rules.json. Its report shows in great detail the detected vulnerabilities, providing the af-
fected line of code and ordering them according to their risk level (i.e. critical, high,
medium, low and warning);

Tapioca [Dor]: testing framework that performs a series of unique checks by simulating a
MITM. Using different types of packet capture, the tool is able to: (i) validate the nego-
tiation between server and client; (ii) enumerate all the URLs the app tries to connect;
(iii) verify if the client correctly validates the received certificates; and (iv) (prior packet
decryption) search among the messages to locate known strings. Tapioca is very peculiar
as its installer permanently alters the host OS as it converts the entire system into a tool.

27

Table 3.2: TLS analyzers comparison - Mobile side

Checks M
all

oD
ro

id

QARK*

SM
V-

Hun
te

r*

SUPER*

Ta
pio

ca

Last updated Dec 2013 Apr 2019 Oct 2015 Dec 2018 Apr 2022
Language Python 2 Python 3 Java Rust Python 3

TrustManager ● ◗ ◗ ◗ ❍

HostnameVerifier ● ◗ ◗ ◗ ❍

Weak algorithms ❍ ● ❍ ● ❍

Ignored SSL errors ❍ ● ❍ ● ◗

Accepting all certificates ❍ ◗ ❍ ● ●

Certificate disclosure ❍ ❍ ❍ ● ❍

KeyStore disclosure ❍ ❍ ❍ ● ❍

Use of insecure SSL methods ❍ ◗ ❍ ● ●

3.1.2 Report Snippet

Besides the wide amount of provided features, all the compared tools share a major limitation:
they offer little to no explanation on how to actually mitigate the detected weaknesses. This
partially defies their own purpose, as system administrators and app developers will be required
to spend a lot of time and effort researching the most appropriate set of mitigations to apply.

To show the required effort, we provide a snippet of the testssl.sh’s report (see Figure 3.1). It
contains the full list of performed checks matched with their respective presence in the analyzed
TLS deployment. The status of each vulnerability is shown with a combination of a string (e.g.;
“VULNERABLE”) and a color that represents the severity of the finding. Not the shown snippet
nor any other part of the report provide any useful insight on how to actually mitigate the detected
vulnerabilities.

3.2 Actionable Mitigations

To address the scarceness of available information on how to actively fix a misconfiguration, we
decided to work on the concept of “actionable mitigation”. An actionable mitigation consists
of a concise yet informative report containing a practical mitigation that even an inexperienced
user can apply to fix an issue. To evaluate their applicability and impact we decided to build a
tool able to perform a wide set of analyses as well as generating reports containing actionable

28

mitigations.

3.2.1 Mitigations Identification

As a first step toward the creation of an automated analysis tool, we listed all known TLS vul-
nerabilities (see Section 2.3) and gathered the current best practices to mitigate each one. These
mitigations, shown in Tables 3.3 and 3.4, have been collected by fetching information from both
scientific literature and each vendor’s technical documentation.

The vast majority of the server-related mitigations are applied by changing some lines in the
server’s configuration file, while the remaining ones are related to vulnerable/outdated support
libraries. Android-related weaknesses are instead more strongly tied to improper debugging
techniques and a lack of understanding of the certificate validation flow process. Consequently,
the resolution to these problems consists in applying known best practices.

The objective was to provide system administrators with the most efficient mitigations that re-
quired the least amount of effort (and assuming the use of OpenSSL, the most widely used TLS
library at the time [Dat23]). We omitted on purpose any mitigation that would have required
recompilation of libraries and webservers. In an effort to enhance the comprehensiveness of the
tool, as future work we intend to incorporate mitigations requiring a higher level of expertise to
implement.

3.2.2 Initial Tool Design and Assumptions

To assist system administrators and Android developers in correctly configuring their TLS de-
ployment, and close the gap between available analyzers and actual user needs, we decided to
build a tool able to perform a wide set of analyses as well as generate reports containing action-
able mitigations. Our target users consist of system administrators and app developers without
specific knowledge of TLS or its vulnerabilities. The returned actionable mitigation should there-
fore be as seamless and straightforward as possible.

For the design, we consider a wide set of known TLS attacks, which can be carried out by an
attacker who can add, remove, or modify messages sent between the client and the server. In
addition, the attacker can control websites, inject malicious JavaScript content into the client (in
order to trigger abnormal requests or behaviors), and exploit timing side-channels.

Aiming to analyze the greatest number of vulnerabilities with the smallest number of state-of-
the-art tools, we selected a subset of the most suitable state-of-the-art tools. In 20182, the choice
fell on:

2Chapter 5 discusses the current set of integrated tools, which has been upgraded over the years.

29

Chapter 3 — Actionable Hints for Configuring TLS 30

Table 3.3: List of suggested mitigations for webservers
Attack Mitigation

3SHAKE [MI14] Upgrade to OpenSSL v1.1.0+
ALPACA [BDM+21] Use ALPN and SNI TLS extensions
Bar Mitzvah [Man] Disable the RC4 cipher
BEAST [Gre11] Disable TLS 1.0
BREACH [GHP12] Disable HTTP compression
CSS Injection [MIT14a] Upgrade to OpenSSL v1.0.1h+
CRIME [NIS12] Disable TLS compression
DROWN [Por] Disable SSLv2
Freak [MIT15] Disable all export ciphers
Heartbleed [Syn14] Upgrade to OpenSSL v1.0.1g+
Logjam [Gre] Disable all export ciphers
Lucky 13 [AP13] Upgrade to OpenSSL v1.0.1e+
RC4 NOMORE [VP] Disable the RC4 cipher
Raccoon [MBA+21] Avoid “static” DH ciphers
Renegotiation attack [MIT09] Upgrade to OpenSSL v0.9.8m+
ROBOT [BSY18] Avoid RSA key exchanges
SLOTH [Duc] Upgrade to OpenSSL v1.0.1f+
SSL POODLE [MDK] Disable SSLv3
Sweet32 [BL16] Disable 3DES ciphers
TLS POODLE [MIT14b] Avoid CBC mode for ciphers

Table 3.4: List of suggested mitigations for Android apps
Weakness Mitigation

Accepting self-signed certificates [Devc] Perform a complete certificate validation
Certificate disclosure [Devc] Obfuscate the required certificate
Keystore disclosure [Deva] Use a strong and secure password
SSL getInsecure method [Devd] Substitute any getInsecure with a getDefault
Unsecure TrustManager [Now17] Switch to an external TLS library
Weak Algorithms [Devb] Use strong encryption algorithms

testssl.sh [Wet22] chosen among many others (as shown in Section 3.1) due to its focus on
vulnerabilities and the wide amount of features;

TLS Extended Master Secret Extension Checker [You] (3SHAKE checker for spacing
reasons) added to make our tool able to detect the Triple Handshake attack; 3

MalloDroid [FHM+12] even if less powerful than Tapioca (see Section 3.1), it was more suit-
able for our modularity requirement. Tapioca installer’s effects on the host system are
incompatible with the idea of portability our tool has.

By extracting information from server responses, we are aware that false positives may be de-
tected (e.g., vulnerabilities that cannot be exploited because not all the preconditions for mount-
ing an attack are present). The presence of multiple analysis tools capable of identifying the
same vulnerability could reduce the number of false positives. However, this is outside of our
initial set of assumptions and could therefore be considered for future improvement.

The tool, called TLSAssistant - whose first iteration was written in Bash - can be invoked via
command-line. Among the available parameters, the tool takes as input the target to be evaluated
(e.g., the IP address of a server) and outputs a single report file. Its content depends on the
detected weaknesses and on the level of verbosity the user chose. Figure 3.2 shows its initial
architecture composed of two main components: ANALYZER and EVALUATOR.

ANALYZER. Takes as input a series of parameters depending on which analysis the user wants to
run. By design, our tool has a flexible architecture that allows a continuous integration of newer
and more sophisticated tools. In 2018, the set of integrated tools consisted of command-line
scripts written either in Bash or Python. The integrated tools allow the ANALYZER to take as
input: (i) a hostname/IP address (optionally specifying the port to scan); (ii) an apk installer
or (iii) both of the previous. Once loaded, the module will run each of the tools related to the
required scan, collect their reports and transmit them to the EVALUATOR.

EVALUATOR. Core of TLSAssistant, it is responsible for the enumeration of the detected vul-
nerabilities and the generation of actionable report that will guide system administrators and app
developers towards the application of all needed mitigations. The EVALUATOR can be split in
two dependent modules:

Vulnerability enumerator collects and analyzes the reports generated by the ANALYZER. By
parsing the inputs, this module is able to compile a list containing all the discovered vul-
nerabilities.

Report handler takes the vulnerability list and, in accordance with the user’s choice, renders
the final output. While TLSAssistant has been developed to be modular, the only available

3In 2018, this was the only tool that provided a complete detection of the Triple Handshake attack. It has
eventually been discarded in favor of testssl.sh’s updated set of detections.

31

Server related

Final
report

Developer Mallodroid
(Android) Testssl.sh 3SHAKE

checker ++

Others

ANALYZER

EVALUATOR

Vulnerability
Enumerator

Report Handler

Textual
Description

Code
Snippets

Mitigations

Mitigation
Report Tool Report(s)

URLAndroid
APK

Report
options

Vulnerability List

Tools report(s)

+

Figure 3.2: TLSAssistant v1.0 architecture

source of information is the Mitigations module. It consists of a shared database contain-
ing a list of all the known TLS vulnerabilities with their descriptions and related fixes (see
Section 3.2.1). The Report handler offers three kind of reports, each version provides the
content of the previous one and adds more technical details. For every detected weakness,
the main information contained in each version of the report is the following:

v0 mitigations’ description. It is the most basic form of report, as it only contains a de-
scription of how the related mitigation work;

v1 code snippet. Provides a fragment of code that can be copy-pasted into the webserver’s
configuration to seamlessly fix the weakness. TLSAssistant can detect any web-
server but is only able to provide snippets for Apache HTTP server. We planned to
extend the code coverage to more webservers available on the market. A fragment of
this report can be seen in Figure 3.3;

v2 tools’ individual reports. In addition to our detailed contribution, this kind of report
also provides the full set of individual reports generated by each tool.

32

Figure 3.3: TLSAssistant v1.0 report (excerpt)

3.2.3 Attack Trees

We decided to model a series of attack trees in order to gain a better understanding of how each
attack could affect the TLS security. An attack tree is a hierarchical organization of the software
threats [Sch99]. Given a root node that identifies the objective to be attained, the tree is structured
as follows: each node represents a sub-objective, and each leaf represents a different strategy for
achieving the objective. Every node represents a single concept, and groups of nodes can be
labeled with the condition of being satisfied simultaneously (AND nodes) or not (OR nodes).
Attack trees can be expanded by introducing new edge types. One can model a tree based on
various criteria (e.g., computational cost or time), each of which can provide unique insight into
the difficulty of achieving a given objective.

The attack tree depicted in Figure 3.4 is obtained by applying Bruce Scheiner’s 1999 original
design to the TLS context. It has a limited expressive capacity because there is no way to dis-
tinguish between the leaves shown. There exist related works that apply the concept of attack
trees in the context of TLS, articles like the one published in 2019 by Calzavara et al.[CFN+19]
which systematically evaluates the attack conditions on multiple TLS vulnerabilities. While the
work in [CFN+19] can benefit from the original design whereas, for our purposes, the expres-
sive capacity of the original design prevents us from providing useful details regarding the actual
application of the attack.

To increase TLS security awareness, we decided to extend TLSAssistant v1.0 adding a re-

33

Break
authentication

Exploit
Handshake protocol

Exploit
Record protocol

Exploit
PKI reliance

Downgrade the
session

Generate
and check

Exploit
certificate generation

Analyze
request/response size

Exploit
cipher collisions

Exploit
CRIME

Exploit
BREACH

Figure 3.4: An example of an attack tree in the context of TLS

port option that can dynamically generate a forest of attack trees (namely v3, based on the ver-
bosity scheme outlined in Section 3.2.2). TLSAssistant upgraded architecture can be seen in
Figure 3.8. The graphical representations of the detected vulnerabilities can be utilized effec-
tively in two situations: to teach and learn how a misconfiguration can impact a system (and
its security properties) and to conduct a more accurate risk analysis by understanding how a
particular attack can be mounted.

All the TLS attack trees consist of:

A goal (root) To model a tree capable of covering the entire TLS infrastructure, we decided
to organize all attacks based on the security property they would violate. Consequently,
our TLS attack trees have the following objectives: (i) Break Authentication, (ii) Break
Confidentiality, (iii) Break Integrity;

Protocol/infrastructure subgoals Establish which protocols (e.g., Handshake Protocol), or
infrastructure (e.g., Public Key Infrastructure) is being exploited to achieve the root goal.
These nodes may also contain a reference to other attack trees. For example, due to the
impact of the attacks, the Break Integrity tree can be seen as a Break Authentication’s
subtree;

34

Break
message confidentiality

Exploit
Handshake protocol

Generate
and check MITM

Exploit
export-grade ciphers

Exploit
PKCS#1 v1.5 padding

DROWN ROBOT

3SHAKE

Figure 3.5: Attack tree depicting the goal of breaking TLS message confidentiality (simplified)

Technique subgoals Show the technique an attacker has to use in order to exploit the aforemen-
tioned protocol (e.g., a session downgrade attack is performed by exploiting the Handshake
Protocol);

Attacks (leaves) The original leaf definition was not enough expressive for our purposes, for
this reason we decided to extend them by adding some sort of “sub-leaves”. Each leaf con-
tains all the details needed to understand how the attack works divided into boxes. The first
one lists the prerequisites an attacker needs, the second one describes the steps needed to
exploit the vulnerability and, if needed, a third one shows how the attack is concluded. For
example, an attacker who detects the presence of TLS compression may be able to launch
a CRIME attack [NIS12]. By controlling the victim’s browser via JavaScript, it is possible
to continuously retrieve portions of the session cookie, thereby violating message confi-
dentiality. The attacker is then able to impersonate the victim (breaking authentication) by
using the same cookie on a different channel.

Figure 3.5, whose leaves can be seen in Appendix B.1, shows the tree structured on attacks that
break message confidentiality. In particular, it shows three ways to exploit the Handshake pro-

35

Figure 3.6: Attack tree depicting the goal of breaking TLS message integrity

tocol either by using a MITM approach or exploiting backward compatibility. Figure 3.6 shows
the only attack that directly threatens message integrity while Figure 3.7 (whose leaves can be
seen in Appendix B.2) contains the attacks that can break message authentication.4 The dashed
parts are references to the trees shown in the two previous figures. This graphical representation
is used to indicate an intersection between the three modeled trees (except for the MITM branch
within Figure 3.5).

The graphical representation of these trees can be generated by compiling two provided DOT
files using a tool called Graphviz [Autb]. These two files, enriched with a set of hooks that
allow TLSAssistant to highlight and edit them, compose its attack trees database.

3.3 Usability and Impact of Assisted Mitigations

To evaluate the usability of TLSAssistant when patching defective TLS configurations, we de-
signed and performed a user study involving 62 participants.

4Some of the leaves may have an effect on more than one element of the CIA triad, but in order to avoid
redundancy, they have been placed in a single subtree.

36

Chapter 3 — Actionable Hints for Configuring TLS 37

B
re

ak
au

th
en

tic
at

io
n

B
re

ak
cl

ie
nt

 a
ut

he
nt

ic
at

io
n

B
re

ak
se

rv
er

 a
ut

he
nt

ic
at

io
n

E
xp

lo
it

H
an

ds
ha

ke
 p

ro
to

co
l

E
xp

lo
it

A
le

rt
 p

ro
to

co
l

E
xp

lo
it

R
ec

or
d

pr
ot

oc
ol

B
re

ak
m

es
sa

ge
 c

on
fid

en
tia

lit
y

B
re

ak
m

es
sa

ge
 in

te
gr

ity
E

xp
lo

it
P

K
I

re
lia

nc
e

E
xp

lo
it

P
K

I
re

lia
nc

e
E

xp
lo

it
H

an
ds

ha
ke

 p
ro

to
co

l

E
xp

lo
it

ha
sh

 c
ol

lis
io

ns
D

ow
ng

ra
de

 th
e

se
ss

io
n

E
xp

lo
it

th
e

T
L

S
te

rm
in

at
io

n
m

od
e

H
ija

ck
 th

e
se

ss
io

n
E

xp
lo

it
H

an
ds

ha
ke

 p
ro

to
co

l

G
en

er
at

e
an

d
ch

ec
k

E
xp

lo
it

ce
rt

ifi
ca

te
 g

en
er

at
io

n
E

xp
lo

it
ce

rt
ifi

ca
te

 c
he

ck
E

xp
lo

it
ce

rt
ifi

ca
te

 g
en

er
at

io
n

E
xp

lo
it

ce
rt

ifi
ca

te
 c

he
ck

M
IT

M

S
L

O
T

H

M
IT

M

P
O

O
D

L
E

T
ru

nc
at

io
n

at
ta

ck
G

en
er

at
e

an
d

ch
ec

k
C

A
 im

pa
irm

en
t

C
A

 s
po

of
in

g
C

A
 im

pa
irm

en
t

C
A

 s
po

of
in

g

A
na

ly
ze

re
qu

es
t/r

es
po

ns
e

si
ze

A
na

ly
ze

re
sp

on
se

 ti
m

e
E

xp
lo

it
ci

ph
er

 c
ol

lis
io

ns
E

xp
lo

it
R

C
4

pe
rm

ut
at

io
n

bi
as

C
R

IM
E

B
R

E
A

C
H

L
uc

ky
 1

3
S

w
ee

t3
2

B
ar

 M
itz

va
h

R
C

4
N

O
M

O
R

E

E
xp

lo
it

ha
sh

 c
ol

lis
io

ns

M
IT

M

S
L

O
T

H

Figure 3.7: Attack tree depicting the goal of breaking TLS authentication (simplified)

Server related

Final
report

Developer

Mallodroid
(Android)

testssl.sh 3SHAKE
checker

++

Others

ANALYZER

EVALUATOR

Vulnerability
Enumerator

Report Handler

Mitigation
Report

URLAndroid
APK

Report
options

Vulnerability List

Tools report(s)

tlsfuzzer HTTPS/HSTS
checker

Graphic

Attack TreesTextual
Description

Code
Snippets

Mitigations

Custom
attack trees

NEW

NEW

Figure 3.8: TLSAssistant v1.1 architecture

3.3.1 Related work: Usability Studies

3.3.1.1 Usability Studies in Cyber Security

Multiple usability studies have been conducted to evaluate tools and methodologies in various
cyber-security domains, including password storage and penetration testing.

Naiakshina et al. conducted qualitative usability studies with either students [NDT+17] or re-
mote freelance developers [NDG+19], requesting that they create a password storage mecha-
nism. These studies demonstrated that participant knowledge of security does not guarantee the
delivery of secure software.

In the domain of risk assessment, Allodi et al. measured the accuracy [ACMS20] and the dif-
ficulty [ABC+17] of students (with different technical education) in assessing the severity of
software vulnerabilities using the Common Vulnerability Scoring System. Labunets et al. con-
ducted a series of empirical evaluations to compare the efficacy of two classes of threat-analysis
techniques [LMPT13] and the clarity of two risk model representations [LMP+17].

38

Scandariato et al. conducted a series of controlled experiments to compare static analysis and
penetration testing tools based on how well they assist developers in accurately detecting vulner-
abilities [SWJ13] and then fixing the code [CS16].

Compared to the described studies, our focus is different: we tried to understand how a system
administrator could be guided toward a correct configuration of vulnerable webservers using
actionable hints.

3.3.1.2 Impact of Providing Hint Suggestions

The following articles focus instead on how awareness and documentation affect the usage and
related maintenance of specific technologies; they start from hypothesis similar to ours but focus
on the difficulty rather than proposing a solution.

Acar et al. [ABF+16] conducted a systematic investigation into how the documentation available
to developers directly affects both security and privacy properties. They discovered that the
majority of developers use search engines and StackOverflow to address issues, resulting in poor
implementation outcomes. Gorski et al. [GIW+18] evaluated the impact of providing security
advice in the event of API misuse, demonstrating that the advices had a positive impact on code
security and had no effect on the interface’s overall usability.

Krombholz et al. investigated the mental models of both users and sysadmins; their findings
reveal a large number of misconceptions regarding threat models, protocol components, and the
benefits of using HTTPS [KBP+19]. In [KMSW17], they also conducted a series of controlled
experiments to demonstrate the complexities of deploying HTTPS, demonstrating that it is far
too complicated even for experts. Bernhard et al. have partially validated the findings of the
latter as they conducted two usability studies focusing on the certificate acquisition [BSA+19].

The research conducted by Tiefenau et al. reveals that even skilled administrators struggle to
keep their systems up-to-date because the decision-making process preceding the application of
patches is time-consuming and requires careful consideration [THKvZ20b]. To overcome this
limitation, Li et al. propose that assisting system administrators during information collection
would simplify updating efforts and increase the likelihood of prioritizing updates for managed
systems [LRM+19].

3.3.2 User Study Design

This study aims to examine the impact of providing system administrators with a set of mitiga-
tions in order to evaluate the assistance provided by actionable reports in patching a flawed TLS
configuration. The quality focus regards how mitigation hints increase the developer capability
to correctly and quickly patch a defective TLS configuration. We thus formulate the following

39

Table 3.5: Demographics: Participants’ academic background
Course X ✓

Introduction to Computer and Network Security 12 50
Security Testing 28 34
Cryptography 41 21
Network Security 52 10
Cyber Security Risk Assessment 57 5
Offensive Security 58 4
Complexity, Crypto and Financial Technology 59 3

two research questions:

RQ1. Does a textual description of the mitigation and the corresponding code snippet increase
the likelihood of a correct patch to a defective TLS configuration by a system administra-
tor?

RQ2. Does a textual description of the mitigation and the corresponding code snippet decrease
the time required by a system administrator to patch a defective TLS configuration?

The main perspective from which our experiment should be evaluated is how actionable infor-
mation can improve the speed and accuracy of identifying and patching insecure TLS configura-
tions. Other interesting perspectives include (i) a researcher interested in empirically evaluating
the value of hints for patching defective TLS configurations; or (ii) a project manager, who has
to make a decision of which development/maintenance tools and procedures to adopt, in order to
ensure the successful deployment of a correctly configured infrastructure.

The experimental settings have been designed following the template and guidelines by Wohlin et
al. [Car01] to select participants and present their demographics (Section 3.3.2.1), to define the
experimental design and select appropriate metrics and dependent/independent variables (Sec-
tion 3.3.2.2), to identify the most appropriate statistical tests (Section 3.3.2.3) and to identify the
threats to the validity of our findings (Section 3.3.2.4).

3.3.2.1 Demographic Statistical Sample

We involved 62 participants in this study. They are Bachelor and Master students from the
departments of Computer Science and Mathematics of the University of Trento playing the role
of inexperienced system administrators who should patch defective TLS configuration files.

The study has been conducted as part of laboratory lectures in two courses of cybersecurity
offered in at the University of Trento.

40

Table 3.6: Demographics: Participants’ technical background
Technical skill X ✓

Configure TLS servers 47 15
Configure Apache HTTP instances 29 33
Create/edit UNIX configuration files 26 36
Change working folder 1 61
Create/remove folder 2 60
Edit file 3 59
Install package 5 57

Participants were aware that they could abandon the experiment at any time without conse-
quences, as their performance would have not been evaluated. There was no compensation for
their participation in the study, neither monetary nor an exam bonus.

A profiling survey has been used to collect demographic data from the participants.

Seniority. The first question splits participants according to their seniority: 22 participants are
Bachelor and 40 are Master students.

Year. 11 participants attend the 2nd and 11 the 3rd year of the Bachelor program, while 26
participants attend the 1st year and 14 the 2nd year of the Master program.

Academic background. We filled a list of the related University courses, whose content might
have been relevant to influence the result of a corrective task on TLS configuration. The answers
are shown in Table 3.5. Participants background was collected in terms of which related courses
they already attended or not (column marked with ✓ and X , respectively, in the table). Most of
the participants (i.e., 50 over 62) already attended the course Introduction to Computer and Net-
work Security, while almost half of the participants (i.e., 34 out of 62) attended the course about
Security Testing. Less participants attended Cryptography (21 students) and Network Security
(10 students). A smaller group attended Complexity, Crypto and Financial Technology (3 partic-
ipants), Cyber-Security Risk Assessment (5 participants) and Offensive Security (4 participants).

Technical background. Additionally, we collected the technical background of participants, in
terms of which tasks they conducted in the past (data shown in Table 3.6). Only 15 are expert in
manually configuring a TLS server because they already did it (column marked with ✓), while
half of them already configured Apache HTTP servers (33 participants) and created or edited
other Unix configuration files (36 participants). The large majority of the participants are fluent
in basic Unix administration tasks, such as navigating in the file system (61 participants), working
with folders (60 participants), editing files (59 participants) and installing system packages (57
participants).

Number of participants. Establishing the right number of participants to a user study is a

41

difficult task that can be completed only ex-post, after the experimental data are collected (by
estimating the power of the test, as done in [CMM+15]). However, a replication with a large
number of participants is mandatory for inconclusive studies, where the observed difference in
independent variables was not statistically relevant (power was low). As a matter of fact, between
15 and 20 participants is considered reasonable to draw conclusions from statistical analyses of
the results [SM16]; in our case we have 4 times this number of participants.

Concerning the profiles of participants, we are aware that the expertise of students may be differ-
ent from that of professionals. However, finding professionals available to conduct a demanding
experiment as the one we designed is not easy. We mitigated this limitation by considering
students with different levels of education (Bachelor and Master) and by making sure that partic-
ipants had enough knowledge on TLS and its related vulnerabilities. All in all, the use of under-
graduate students as a proxy of junior developers to draw conclusions is a common practice in
empirical software engineering that is largely accepted and validated [HRW00, SAW08, SMJ15].

Ethical considerations. Participation was voluntary and students could have chosen not to attend
the experiment without negative results on the final evaluation of the exam. Those students who
opted to participate were aware that they would not be evaluated based on their performance
and that they would receive no compensation (neither money nor bonus in the exam mark) for
the participation in the study; they were aware that they could drop off at any time with no
consequence. During all the experimentation, we strive to adhere to the general ethical principles
stated in the ACM code of conduct [Ass18] with particular attention to trustworthiness, fairness,
privacy, and confidentiality.

3.3.2.2 Experimental Setup and Execution

Systems. The systems used to conduct the experiment are two web servers with faulty TLS
configurations, running Apache HTTP Server v2.4.37 and OpenSSL v1.0.2. Each incorrect con-
figuration exposes the corresponding system to one specific attack. The two systems are:

• S1: a defective webserver vulnerable to BREACH; and

• S2: a defective webserver vulnerable to CRIME.

They are packaged as two distinct VirtualBox machines. Instead of using a random pair of de-
tectable misconfigurations (e.g., POODLE [MDK], Sweet32 [BL16] or others) we selected two
vulnerabilities that are comparable in terms of complexity of the operations required to patch. In
addition, we ensured that they could be fixed in two hours, taking into account the student’s tech-
nical background. In particular, both are prone to the same type of information leakage caused
by DEFLATE, but exploited using two different attacks (as discussed in Section 2.3). In addi-
tion, it is important to note that these systems are representative of realistic TLS configurations

42

as both Apache and OpenSSL are respectively the most popular webserver [Dat22] and TLS
library [Dat23]. To make the corrective tasks independent, only one vulnerability is present in
each system.

Metrics. To measure the support of mitigation actions to conduct a corrective maintenance on
TLS configurations (i.e., vulnerability detection and fix), we identified the following variables.
The main factor of the experiment—that acts as an independent variable—is the presence of the
mitigation hints during the execution of the task. In our experiment, the base treatment case
TRlist consists of the bare list of vulnerabilities, as it is provided by the analysis tool testssl.sh;
and TRhint consists of the actionable reports generated by TLSAssistant, that include not only
the list of vulnerabilities, but also a textual description of the mitigations and a code snippet to
apply the mitigation.

Moreover, by adopting an approach similar to the one described in the ISO 9241 (Part 11) stan-
dard [ISO18], we instrumented the experimental settings to measure the following dependent
metrics:

• Correctness of each corrective task performed by participants, which corresponds to the
System Effectiveness in [ISO18] and thus examines the participants’ ability to complete
a task. Participants could repeat the scans as many times as they like during the exper-
imental session. However, to consider a task correct, the participants were supposed to
run a final scan and to show the experimenter that the freshly generated report contains no
vulnerability.

• Time taken to perform a corrective task on a defective TLS configuration, which corre-
sponds to the System Efficiency in [ISO18]. We collected such information by asking par-
ticipants to fill in—while performing the experimental tasks—start and end time of each
task.

Finally, the System Satisfaction in [ISO18] to evaluate the overall usability of the TLS analyzer
report is measured by a survey questionnaire (available in [MCSR21b] and analyzed in Sec-
tion 3.3.3.3).

Experimental Design. We employ a counterbalanced experimental design intended to fit into
two 40-minute lab sessions. Each participant is randomly assigned to one of four groups based
on his or her seniority, with each group working in two laboratories on different systems with
different treatments. The design allows for considering different combinations of Systems and
Treatments in different order across Labs (see Table 3.7).

Experimental Procedure. Before the experiment, participants were properly trained with lec-
tures and exercises on TLS, to recall the required background [MCSR21b]. The purpose of
training is to make participants confident about the kind of tasks they are going to perform and
the environment they will have available.

43

Table 3.7: Experimental design
Group A Group B Group C Group D

Lab 1 S1 + TRhint S2 + TRlist S2 + TRhint S1 + TRlist

Lab 2 S2 + TRlist S1 + TRhint S1 + TRlist S2 + TRhint

The experimental setting has been designed to be as realistic as possible. Participants could
therefore run scanning tools as frequently as desired, inspect scan reports, and search the Internet
for additional information. Furthermore, by conducting a dry run, we ensured that the entire
experiment could be completed in two hours. The dry run also helped in refining the survey
questionnaires. Participants have been delivered the following material:

• two virtual machines: S1 and S2;

• two digital documents containing the instructions for each treatment (i.e., TRlist and TRhint);

• a printed page containing a recap of the lessons learned during the training phase (e.g., the
commands used).

The experiment was carried out according to the following procedure. Participants had to:

1. Complete a pre-experiment profiling survey questionnaire;

2. For Lab 1: (i) mark the start time; (ii) perform the corrective task; (iii) mark the stop time;

3. Complete a survey questionnaire on the first lab;

4. For Lab 2: (i) mark the start time; (ii) perform the corrective task; and (iii) mark the stop
time;

5. Complete a survey questionnaire divided in three parts: a 1st part on the second lab, a 2nd
part on a comparison between the two labs, and a 3rd part to collect feedback on TRhint

(the treatment with mitigation hints).

The pre-experiment profiling survey collects demographic data about the participants, such as
their previous experience with Apache HTTP Server and their knowledge of the Bash command
language; the complete survey is included in the replication package available online [MCSR21b]
and we have described the collected data in Section 3.3.2.1.

Each lab can be considered over, and, thus, a participant can mark the stop time, only after
proving that the task was successfully completed or because the available time has expired.

44

We provide the list of questions for the survey questionnaire in [MCSR21b], report them in
Appendix A and discuss the answers in Section 3.3.3.3. The survey questionnaires deal with
cognitive effects of the treatments on the behavior of the participants and perceived usefulness
of the provided report.

3.3.2.3 Statistical Tests

We are interested in determining if the presence of mitigation hints influences the Correctness
and Time required to fix defective TLS configurations. However, observed differences in the
correctness of corrective tasks and the time spent on them could be due to random variation or
measurement errors. To test if the observed difference is statistically significant, we use sound
statistical tests. As a common practice, we accept a 5% probability of committing type-I error,
i.e., assessing that the difference is significant when it is actually due to random error. Practi-
cally, this setting defines the threshold α = 0.05, for considering the result of a statistical test
significant.

The lack of statistical significance may indicate that there was an effect, but it was not observable
(possibly due to a small number of observations), rather than that there is no effect, i.e., we risk
to commit a type-II error (nullification fallacy [KFLS15]). To quantify the probability of this
problem, when the significance threshold is not reached, we can estimate the probability π of
committing a type-II error as 1 - Power, where Power is the statistical power of the adopted
statistical test. As common practice, assume a threshold β = 0.20 and we consider the power
adequate when π < β.

The decision of which statistical tests to use was based on test applicability conditions and best
practices recommended or commonly accepted in authoritative literature.

There are two distinct data points for each participant, one for the first lab and another for the
second lab, so we never conduct multiple pairwise comparisons with overlapping data. Conse-
quently, there is no risk of inflating the family-wise error rate, and no correction factor (such as
Bonferroni or Holm) is needed.

Correctness. To analyze the differences in terms of Correctness, we looked at the frequencies of
correct/wrong tasks and we used a test on categorical data, because the tasks can be either correct
(completed successfully) or incorrect (completed unsuccessfully). In particular, we used Fisher’s
exact test [Dev07] that is applicable to categorical data (correct/wrong answers). Fisher’s exact
test is more accurate than the χ2 test for small sample sizes, which is another possible alterna-
tive to test the presence of differences in categorical data. The same analysis was conducted
in [CDPF+14].

Time. To test the differences in Time, we perform the two-tailed Mann-Whitney U test on all
samples [She07]. This test is applicable to compare (time duration) samples of two populations.
As a non-parametric test, Mann-Whitney U test does not require data to be normally distributed.

45

Effect size.To quantify the magnitude of differences among the two treatments, we used two
kinds of effect size measures, the odds ratio for the categorical variable Correctness and the
Cliff’s delta effect size [GK05] for Time. An odds ratio of 1 indicates that the condition or event
under study is equally likely in both groups (participants using TRlist and those using TRhint).
An odds ratio greater than 1 indicates that the condition or event is more likely in the first group.
An odds ratio less than 1 indicates that the condition or event is less likely in the first group. For
independent samples, Cliff’s delta provides an indication of the extent to which two (ordered)
data sets overlap, i.e., it is based on the same principles of the Mann-Whitney test. Cliff’s Delta
ranges in the interval [−1, 1]. It is equal to +1 when all values of one group are higher than the
values of the other group and −1 when the opposite is true. Two overlapping distributions would
have a Cliff’s Delta equal to zero. The effect size is considered small for 0.148 ≤ d < 0.33,
medium for 0.33 ≤ d < 0.474 and large for d ≥ 0.474 [Coh88].

Co-factors. The analysis of other factors (participants’ background, the system, the lab) that
could have influenced the Correctness and Time is performed using the Generalized Linear Mixed
Model [Jia07] (GLMM for short). GLMM extends the Generalized Linear Model (GLM) by
adding random effects to the linear predictor (GLM only supports fixed effects). Random effects
are particularly appropriate with repeated measures design, i.e., when different data points are
collected for the same participant (in our design, each participant worked at two tasks). GLMM
incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA,
ordinary linear regression, t-test and F-test. It consists in fitting a linear model of the dependent
output variables (Correctness or Time) as a function of the independent input variables (all fac-
tors, including the treatment, i.e., the vulnerability detection tool). GLMM is capable of testing a
dependent output variable (experiment outcome) on many input variables (factors) and it allows
to test the statistical significance of the influence of each factor separately.

GLMM requires to specify the exponential-family distribution based on the domain of the out-
come. We have chosen:

• the binomial family with logit link function to fit the Correctness, as it corresponds
to a logistic regression that is appropriate for a binary outcome (correct/wrong task);

• a Gamma family for fitting the Time, as it is appropriate for fitting a time duration that can
be a positive decimal value.

As other models could have been used to fit the Time, we use the Akaike Information Criterion
(AIC for short) to check that the chosen model (i.e., the Gamma exponential-family distribution)
was the most appropriate to fit our data [SKvW+14]. AIC is founded on information theory and
it entails balancing the trade-off between the goodness of fit of the model and the size of the
model.

Surveys. Two statistical tests have been used on the survey questionnaire. Fisher’s exact test
is applied to categorical data in order to compare the frequency of yes/no responses among

46

participants who utilized various tools. The Mann-Whitney U test is used to analyze answers to
general questions (not specific to a lab) that were formulated using a Likert scale, checking for
the null-hypothesis that the average answer was negative or neutral.

3.3.2.4 Threats to Validity

The main threats to the validity of this experiment belong to the internal, construct, conclusion
and external validity threat categories [Car01].

Internal validity threats concern external factors that may affect the independent variable. The
chosen design allowed us to control a number of factors, namely participants background, sys-
tem and learning across experimental sessions. Participants were not aware of the experimental
hypotheses, not rewarded for the participation in the experiment and not evaluated on their per-
formance in doing the experiment.

Construct validity threats concern the relationship between theory and observation. As described
in Section 3.3.2.2, we considered real vulnerabilities and we used a sound procedure to objec-
tively evaluate whether the fixes were correct.

The background of participants was estimated according to their academic background and their
technical knowledge.

Conclusion validity threats concern the relationship between treatment and outcome. We used
statistical tests to draw our conclusions on the correctness and the time required to fix TLS
misconfigurations. The adopted statistical tests are particularly robust (i.e., they do not give false
rejections of the null hypothesis) under deviations from normality.

External validity concerns the generalization of the findings. In our experiments we consid-
ered two major attacks related to a TLS configuration, namely BREACH and CRIME. Although
different attacks might occur, the results obtained with these already support well our interpreta-
tions.

Our experiment exploited one real-world web application running in a web server (i.e., Apache
HTTP). Despite we consider that this web server is representative of other web servers (e.g.,
NGINX), in principle different results could be obtained for different web servers.

The study was performed in an academic environment, which may differ substantially from an
industrial setup. However, we mitigate this threat by using subjects with different background
and different seniority, including Bachelor and Master students, some of which with experience
with TLS, Apache HTTP and Unix. Moreover, we considered their seniority as a factor to detect
any influence on the results.

47

Table 3.8: Correctness in fixing an incorrect TLS configuration
TRlist TRhint

Correct 40 (67%) 61 (98%)
Wrong 20 (33%) 1 (2%)

Table 3.9: Analysis of correctness (GLMM)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.26 14.49 1.05 0.2923
Treatment -14.12 4.28 -3.30 0.0010
System -0.72 2.34 -0.31 0.7596
Lab 0.43 2.34 0.18 0.8534
Seniority -6.07 13.78 -0.44 0.6598
Year 3.66 7.07 0.52 0.6048

3.3.3 User Study Results

This section presents the data collected during the experimental validation. After analyzing data
with reliable statistical methods, we formulate answers to the two research questions presented
in Section 3.3.2.

3.3.3.1 Analysis of Correctness

Table 3.8 shows the distributions of correct/wrong answers when using testssl.sh’s reports
(TRlist) and the actionable reports (TRhint).

When provided with mitigations and code snippets, almost all participants were able to correctly
patch the vulnerability; only one participant was unsuccessful. Conversely, when participants
were provided only with the list of vulnerabilities,5 just 40 were able to complete a correct
vulnerability patch.

We apply Fisher’s test to check if the observed trend is statistically significant. The difference
is statistically relevant (p-value< 0.001, and we recall that we assume significance when p-
value< α, with α = 0.05) with a large effect size (odds ratio = 30).

Table 3.9 reports the analysis of correctness with GLMM. The model takes into account not only
the effect of the main treatment (i.e., availability of mitigation hints) but all the other factors that

5The number of participants who worked with TRlist does not sum to 62, because two participants attended only
the first lab.

48

we considered in our experimental design, i.e., the System, the Lab, the profile of the participants
(the Year attended and their Seniority). The random-effects term is the participant who took parts
in the two labs.

Statistically significant cases are in boldface. Consistently with the Fisher’s test, we can observe
that the availability of mitigation hints significantly influences the correctness of a task related to
fixing a TLS configuration file, as Pr(>|z|)= 0.0010. However, it is the only significant factor.

The probability of committing type-II error obtained from GLMM power analysis is 0.05, which
is smaller than 0.20 So, we can claim that the missing significance is not due to insufficient
experimental data points, but to missing causal correlation between independent and dependent
variables.

System has no significant effect on the Correctness of tasks, so we can conclude that the two
applications and the two corrective tasks were well-balanced, with neither being more difficult
nor simpler to fix. Moreover, the Lab is not a significant factor, so there is no discernible learning
effect between the two experimental sessions. This means that performing a first lab does not
improve the accuracy in the second lab, and we only measure the actual difference caused by the
independent variable (i.e., the presence of mitigation hints).

Based on these results, we can answer the research question RQ1 (see beginning of Section 3.3.2)
as follows:

Providing a text description together with a code snippet of the mitigation increases
the capability of a system administrator to patch the defect in the TLS configuration.
In fact, we observed that participants deliver correct fixes in 98% of the cases when
this additional information has been included in the security reports, while the rate of
correct fixes drops to 67% when no mitigation is provided.

3.3.3.2 Analysis of Time

We now analyze the time taken to fix a TLS configuration. We only consider time information for
those participants who correctly fixed TLS configurations, and we discard data for incomplete
and wrong tasks.

Figure 3.9 shows two box-plots of the time (in minutes) taken to fix a TLS configuration. De-
scriptive statistics (number of data points, mean, median and standard deviation) are summarized
in Table 3.10. On average, when testssl.sh is used (TRlist) fixing a wrong configuration takes 23
minutes. When using the actionable reports (TRhint) the amount of time, on average, is reduced
to less than 8 minutes.

According to the result of the Mann-Whitney test, this difference is statistically significant (p-
value< 0.001) with a large effect size (Cliff’s Delta = 0.8819).

49

●

●

●

10

20

30

40

50

TR−list TR−hint
Treatment

T
im

e
[m

] Treatment

TR−list

TR−hint

Figure 3.9: Time (in minutes) to fix a security issue

Table 3.10: Time (in minutes) to fix a security issue
TRlist TRhint

n 40 61
Mean 23.2 7.9
Median 24 6
SD 9.51 3.66

Table 3.11 reports the analysis of Time with GLMM, the statistically significant cases are shown
in boldface. Consistently with the results of the Mann-Whitney test, GLMM confirms that the
availability of mitigation hints significantly influences the time needed to fixing a wrong TLS
configuration file. Similarly to what previously observed for the Correctness, other factors have
no significant influence on the Time to fix.

In this case, however, the probability of a type-II error obtained from GLMM power analysis
is larger than 0.20. So, differently than the analysis of Correctness, the missing significance of
cofactors influence (e.g., System and Lab) on Time cannot be interpreted as considerations on the
experimental design.

Eventually, considering that this GLMM model could have been computed with different expo-
nential family distributions, we need to check that our choice was the most appropriate to fit
our data. To this aim, we used the Akaike Information Criterion (AIC). This consists in fitting
our data with other models and compare their AIC value. AIC values for other models are the
following: 681.33 for Gaussian, 614.64 for Gamma and 631.43 for Poisson. As we can see, our

50

Table 3.11: Analysis of time (GLMM)
Estimate Std. Error t value Pr(>|z|)

(Intercept) 0.04 0.03 1.39 0.1637
Treatment 0.09 0.01 12.55 <0.0001

System -0.01 0.01 -1.57 0.1176
Lab 0.01 0.01 1.02 0.3077

Seniority -0.02 0.02 -0.79 0.4274
Year 0.00 0.01 0.39 0.6954

Table 3.12: Analysis of survey questionnaire (Fisher’s test)
Question TRlist TRhint P-value

Yes No Yes No
Enough time 40 20 61 1 <0.0001
No difficulty 18 42 57 5 <0.0001
Online search 53 7 3 59 <0.0001

<60% ≥60% <60% ≥60%
Configuration 53 7 41 21 0.0048
Documentation 24 36 61 1 <0.0001

choice is confirmed, because the AIC value for the Gamma family is much lower than those of
the other models.

Providing a text description together with a code snippet of the mitigation decreases
the time needed by a system administrator to patch the defect in the TLS configuration.
In fact, we observed that in average it took 8 minutes to fix a misconfiguration when
this additional information has been included in the security reports, while on average
it took 23 minutes when no mitigation is provided.

3.3.3.3 Analysis of Survey Questionnaire

The survey questionnaire (available in [MCSR21b]) is composed of three parts and is meant to
collect the participants opinion on the experiment.

3.3.3.3.1 First Part The objective of the first section is to collect participant feedback on
the security reports in order to compare them indirectly. Answers to this first part are reported

51

Table 3.13: Analysis of survey questionnaire
Question TRlist TRhint

Most useful 18 41
Most easy to read 7 52
Most complex to understand 53 6

in Table 3.12. For the first three questions, the table reports the number of yes/no answers for
participants who worked just with the list of vulnerabilities (2nd and 3rd columns, respectively)
and with the mitigation actions within the actionable reports (4th and 5th columns).

The fourth and fifth questions asked participants to report the percentage of their lab time spent
on specific tasks. Answers are in Likert scale (“< 20%”, “≥ 20% and < 40%”, “≥ 40% and <
60%”, “≥ 60% and < 80%” and “≥ 80%”). The table reports the number of participant who
answered when a task took less than 60% or more than 60% of the lab time. The last column
of Table 3.12 reports the significance (i.e., p-value) computed by applying the Fisher’s test to
each question, to reveal statistical significance for the various answers. Significant cases are
highlighted in boldface.

According to the first question, participants working with the actionable reports (i.e., TRhint)
considered that the time allocated to the task was enough, while time was short for participants
assigned TRlist. This result is consistent with the analysis of Time, of Section 3.3.3.2, where
participants who worked with no mitigation hints took longer to complete their tasks.

Consistently, the responses to the second question reveal that only participants who worked with
actionable reports had no trouble completing the tasks. The difficulty of completing tasks in-
creased when participants were only provided with a list of security flaws.

Considering the responses to the third question, we see that the majority of participants who
worked solely with the list of vulnerabilities conducted online searches (53 positive answers
versus 7 negative answers). In contrast, when the actionable reports were utilized, the majority
of participants did not conduct online searches (3 positive answers versus 59).

Moving on to the next two time-related questions, we observe a different strategy for completing
the assigned task. 53 participants assigned to TRlist spent less than 60% percent of the lab time
examining TLS configuration code, indicating that they did not attempt to comprehend how TLS
was configured and instead focused on looking for the solution online or in the TLS report. In
contrast, almost none of the participants who utilized the actionable reports searched online for
TLS documentation.

3.3.3.3.2 Second Part The second section of the survey is a more direct comparison between
the two alternative approaches. In fact, we asked participants to make an explicit decision about

52

Table 3.14: Analysis of survey questionnaire (Mann-Whitney test)
Question Strongly disagree Disagree Neutral Agree Strongly agree P-value

Mitigations hints useful 0 3 15 21 20 <0.0001
Code snippets useful 1 1 10 15 32 <0.0001

the two reports. For each question, Table 3.13 reports the number 6 of decisions that participants
formulated about tasks supported by TRhint and TRlist.

The first question asked which report was the most useful when correcting the configuration
error. The majority of respondents (41) found the actionable reports to be the most beneficial.

The second question investigated the readability of security reports. The reports with mitigations
were considered easier to read than the bare list of vulnerabilities.

The third question dealt with complexity of understanding. Consistently with the previous an-
swers, the report not containing mitigations (i.e., TRlist) was considered more complex to under-
stand than when mitigations were included (in TRhint).

Table 3.14 reports the answers to two other direct questions about mitigation hints and code
snippets. Many participants strongly agree (20) or agree (21) that the textual mitigation hints
were useful to complete the corrective task. A similar trend can be observed for the next ques-
tion, participants strongly agree (32) or agree (15) that code snippet were useful to complete the
corrective task. The result of Mann-Whitney test (null-hypothesis mean answer ≤ “Neutral”)
confirms that this trend is statistical significant.

3.3.3.3.3 Third Part This last section, with only open questions, let participants write free
text as feedback to the experiment. Its analysis would require a fundamentally different approach,
mostly bases on grounded theory [GS67, SC90] and is thus left for future work.

3.4 Lessons Learned and Discussion

We observed that mitigation hints help to patch defects in TLS configurations, by reducing the
probability of error by 30 times and the time to complete the fix by 3 times.

In the following, we report the implications and general observations that we can formulate,
based on the objective and quantitative results presented in the previous section.

6We consider only 59 participants as two did not attend the second lab and a third one did not answer the 2nd
part of the survey questionnaire.

53

Limited information: Automated security tools convey insufficient information. A TLS config-
uration is quite complex as it contains many properties that may not be immediately understand-
able; therefore, a simple list of security issues is insufficient to allow a system administrator to fix
it. Indeed, additional information is required to fill in the gaps of a security report and assist the
system administrator in determining the necessary changes. In our experiment, the participants
who received the list of vulnerabilities had to search online to understand how to fix security de-
fects, while this was not required to those who worked with actionable hints (see Section 3.3.3.3
and Table 3.12).

Correctness and Time: Actionable maintenance hints improve correctness and time to fix. De-
spite the fact that multiple tools identify the same vulnerabilities, it is crucial how these are
communicated to system administrators. When actionable hints are available, a security report is
more usable, user-friendly and able to guide system administrators towards a mitigation (see Ta-
ble 3.9) in a timely manner (see Table 3.11 and Figure 3.9). Researchers and practitioners should
keep this result in mind when developing new automated security tools. Scan results should
be complemented with explanations and operational suggestions on how to solve the security
problem or, at least, where to find additional information for guidance towards the solution.

Perceived effect: Mitigations hints are easier to read and more useful than the list of vulner-
abilities. When performing corrective maintenance, a flat list of detected vulnerabilities is not
regarded as particularly useful, likely because it is neither informative nor simple to read. This
leaves system administrators with no idea where to look for the required information or how to
differentiate between relevant and irrelevant data gleaned from, for example, online searches.
Consequently, additional information must be gathered by spending time on the code or by read-
ing additional documentation. Conversely, system administrators are aware of the benefits of
actionable mitigation hints because they are considered easier to read, more useful to support
a fixing task and do not require additional time to fill knowledge gaps (see Survey Question-
naire [MCSR21b] and Table 3.13).

54

Chapter 4

TLS Vulnerabilities and Threat
Intelligence

In this chapter, we present the integration of TLSAssistant [Sec] in the FINSEC platform [FIN],
which is a framework for predictive and collaborative security of financial infrastructures. The
goal of the integration was to potentially improve the functionality of the other integrated services
by combining multiple sources of security intelligence and providing vulnerability evaluation and
scoring. The following sections will (i) describe the context in which this integration took place,
(ii) provide an overview of the FINSEC platform by describing its structure, how it works and
the parties involved, (iii) illustrate how we overcame the challenges posed from the integration,
(iv) further detail the information exchange with the Risk Assessment Engine as implemented
in FINSEC and (v) discuss the lessons learned.

4.1 Context and Motivation

Under the revised Payment Services Directive (PSD2) [Eur], Account Servicing Payment Ser-
vice Providers (ASPSP) are required to provide an interface for third parties to access account
information and perform operations (e.g., payments) on behalf of the account holder.

The “Access to Account (XS2A) Framework” [Ber] provides a detailed description of REST-
ful Application Programming Interfaces (APIs) and their usage for authentication of involved
parties and authorization to access service resources, including account information, payment
initiation, and confirmation of funds. Both the transport and application layers contribute to the
APIs’ security. The first core technology identified explicitly by the guidelines is the TLS proto-
col: specifically, “the communication between the Third Party Provider (TPP) and the ASPSP is
always secured by using a TLS-connection using TLS version 1.2 or higher.” [Ber]. Recommen-

55

Figure 4.1: FINSEC reference architecture

dations for security and identification standards in XS2A have been published by Open Banking
Europe [PRE], which explicitly assume the use of TLS to ensure confidentiality and integrity.
The use of TLS is also assumed by the Financial-grade API (FAPI) specification [Ope] for au-
thentication and authorization. While PSD2 APIs are one of the most recent examples of online
financial services that rely on the security of TLS, there are several other examples such as home
banking web and mobile applications; is also explicitly cited as an example of how to comply
with the Payment Card Industry Data Security Standard (PCI-DSS) [PCI22] Requirement 4.1,
to “Use strong cryptography and security protocols to safeguard sensitive cardholder data during
transmission over open, public networks”.

Beyond online services, TLS is deployed in a wide range of IoT devices [SM17] and client-end
TLS proxies (e.g., in anti-virus products) [WMY18]. Vulnerabilities in their TLS configuration
and implementation can significantly downgrade the overall cyber and physical security, affect-
ing many different enterprise sectors. For instance, in the financial sector, CCTVs are crucial for
ATM surveillance.

56

Figure 4.2: FINSEC Dashboard

4.2 FINSEC Project

FINSEC (Integrated Framework for Predictive and Collaborative Security of Financial Infras-
tructures) is a Horizon 2020-funded project developed by a consortium of 23 international part-
ners [FIN]; its objective is to provide an integrated service platform for the cyber-physical secu-
rity of critical financial infrastructures.

Figure 4.1 shows a version of the FINSEC architecture [FIN19a] updated to October 2019. It
can be seen as a three-layered set of components with different roles:

Presentation Layer composed by a Dashboard and any External Services with access to the
APIs. In particular, the Dashboard is an interactive interface developed within the FIN-
SEC project capable of showing the overall security status of the infrastructure and its
assets (see Figure 4.2);

57

Threat actor Intrusion set

Behaviors

Resources

Tool Malware

Identity Vulnerability

Attack
pattern

targets
uses

Indicator Campaign

attributed to

directly detects

might indicate presence of

targets

may support or be affiliated with various

Course of
Action

mitigates

Observed
Data

sighting of

on deployment

on scan

Figure 4.3: A simplified STIX SDO ecosystem with its possible relationships

Service Layer contains the services integrated in the FINSEC platform. These can either be
called on-demand or have an ongoing monitoring activity (e.g., the Risk Assessment En-
gine);

Data Layer hosts a collection of security policies, vulnerabilities (i.e. imported CVE), system
logs, and additional intelligence. It is where all knowledge is stored and retrieved by enti-
ties in higher layers. Its content is written in FINSTIX, a proprietary extension of the STIX
language (see [FIN19b]). STIX (Structured Threat Information eXpression) is a standard
language, created by the OASIS Cyber Threat Intelligence Technical Committee to en-
able organizations to share threat intelligence data in a machine-readable and consistent
format [OAS23]. Each data can be represented with a combination of objects and their de-
scriptive relationships. The STIX Domain Objects (SDOs) and STIX Relationship Objects

58

Mitigation

Dashboard

Risk
Assessment

Engine

SECaaS	API

...

Data	Access	API

External	Services

TLSAssistant...

Se
rv
ic
e	
La

ye
r

Data	Layer

... ...

Figure 4.4: A simplified FINSEC architecture

(SROs) are visually summarized in Figure 4.3.

From a developer’s perspective, the FINSEC platform has a microservice architecture. This
means that each integrated service is fully virtualized, independent of the others, and must man-
age its own dependencies and deployment. In FINSEC, this has been accomplished by leveraging
the containerization technology provided by Docker. Due to the high level of independence, this
method aims to simplify both the overall management and the work of each individual main-
tainer, provided they handle their containers as if they were partially cloud-deployed. This is
because, despite the fact that each service can maintain its own private state, it must store all
pertinent data in the shared database and manage its own access queue.

The communication among containers is managed through the use of REST APIs that each main-
tainer must provide. The set of APIs exposed by the services is called SECaaS API while the
one provided to access the Data Layer is called Data Access API.

4.3 Planning and Integration

TLSAssistant was developed outside of the FINSEC context, with design decisions driven by
the use case of a system administrator who wants to check his own TLS deployment by down-
loading TLSAssistant and using it offline. Unlike the FINSEC platform, this specific use case
resulted in (i) the creation of an internal database containing mitigations for vulnerabilities and
other information that helps address the issues, (ii) the ability to run a single analysis at a time
and (iii) the generation of a human-readable report.

We decided to integrate our tool within the Service Layer (see Figure 4.4) to offer an on-demand
analysis to both other services and the dashboard. To maintain TLSAssistant’s independence

59

while being able to satisfy all the FINSEC requirements, the integration was separated in three
phases:

1. extension of TLSAssistant’s output capabilities to provide an option for STIX-generated
reports;

2. creation of a Connector able to translate TLSAssistant’s STIX output in FINSTIX and to
link our tool with the FINSEC’s Data Layer, avoiding data redundancy and to maintain
consistency across multiple analysis;

3. creation of a set of REST APIs and of a queue manager to allow concurrent requests to be
served sequentially.

The following sections will detail these phases.

4.3.1 STIX Output in TLSAssistant

Sharing intelligence with automated services required producing structured data that are con-
sumable by other services through a persistent data store. For this reason, starting from version
v1.2, TLSAssistant is able to export the analysis result in STIX (see Section 4.2). Figure 4.5
illustrates, for the Bar Mitzvah attack, how the TLSAssistant report has been modified to map
the vulnerability and mitigation output to STIX objects and relationships. After each scan and
for each vulnerability discovered, TLSAssistant generates a JSON file containing the following
entries:

vulnerability is an SDO that indicates a weakness that can be used by an attacker to com-
promise a system. The CVE ID [MIT] that provides a common name for known vulnerabil-
ities is usually present in the external references property. In TLSAssistant, the
vulnerability SDO contains the name and description of the detected vulnerability.

course of action is an object used to suggest actions that may be taken in response to a
CTI. It describes technical responses (such as patches) or actions at a higher level (e.g.,
policy changes). In TLSAssistant, the course of action SDO contains the textual
description of the mitigation (in the description field) and the actionable mitigation
in the form of code snippets (in the x actions custom field).

relationship is an SRO used to link together two SDOs or STIX Cyber-observable Objects
(SCOs) in order to describe how they are related to each other. STIX defines many rela-
tionship types, e.g. uses, targets, mitigates. In TLSAssistant, a course of
action is linked with a vulnerability through the mitigates relationship type.

60

Type: course-of-action
Id: course-of-action--655febbb-2063-4a01-87c0-
Created: 2020-04-20T13:19:25.347Z
Modified: 2020-04-20T13:19:25.347Z
Name: Bar Mitzvah_coa
Description: Disable the RC4 stream cipher.

X actions:

 1. open your Apache configuration file (default:
 /etc/apache2/sites-available/default-ssl.conf);
 2. find the line starting with: SSLCipherSuite;
 3. add the string :!RC4 at the end.

N.B. restart the server by typing: sudo	service
apache2	restart.

Type: observed-data

Id: observed-data--4c487cd2-c9d8-4592-
af05-f3f36b2ffdbc

Created: 2020-04-20T13:16:49.836Z
Modified: 2020-04-20T13:16:49.836Z
First observed: 2020-04-20T09:16:49.834124Z
Last observed: 2020-04-20T09:16:49.834124Z
Number observed: 1

Objects:
{"0": {
 "type": "url",
 "value": "www.example.com"
 }}

Type: sighting

Id: sighting--c892b89a-af13-4efe-
ad16-851949831e47

Created: 2020-04-20T13:16:49.837Z
Modified: 2020-04-20T13:16:49.837Z

Sighting of: vulnerability--1a2c1635-6923-
472d-8d32-1a90d80decd8

Observed
data:

observed-data--4c487cd2-
c9d8-4592-af05-f3f36b2ffdbc

Bar Mitzvah

Bar Mitzvah_coa

sighting

observed-data

sighting-of

mitigate
s

obse
rved

Type: vulnerability

Id: vulnerability--1a2c1635-6923-472d-8d32-
1a90d80decd8

Created: 2020-04-20T13:19:25.347Z

Modified: 2020-04-20T13:19:25.347Z
Name: Bar Mitzvah

Description:

By exploiting the invariance weakness of the RC4
stream cipher, an attacker is able to retrieve the
session cookie by guessing the LSBs (least
significant bits) of the keystream. After a phase in
which the attacker sniffs the connection between
two parties, it detects a weak key usage and tries
to exploit the weakness.

Figure 4.5: STIX output for the Bar Mitzvah attack

observed data is an SDO that contains information about entities (e.g., files and systems)
using the SCOs to provide supporting context. It is not an intelligence assertion, it is
simply the raw information without any context for what it means. In TLSAssistant, the
observed data SDO contains info about the asset observed (e.g., the URL analyzed
and the timestamp of the scan).

sighting is an SRO that denotes the belief that something in CTI was seen. In TLSAssistant,
the sighting SRO links the vulnerability SDO and the observed data SDO
through the observed and sighting of relationship types.

61

Server related
Developer

Mallodroid
(Android)

testssl.sh

+

+

Others

ANALYZER

EVALUATOR

Vulnerability
Enumerator

Report Handler

Mitigation
Report

URL/IPAndroid
APK

Report
options

Vulnerability List

Tools report(s)

tlsfuzzer

HTTPS/HSTS
checker

Custom
attack trees

Textual
Description

Mitigations

Code
Snippets

Graphic

Attack Trees

STIX
bundles

Final
report

NEW

Figure 4.6: TLSAssistant v1.2 architecture

4.3.2 FINSEC Connector

The Connector is a Python script written to integrate TLSAssistant in the FINSEC platform.
Figure 4.3 shows its two modes of operation: on deployment and on scan.

on deployment the Connector is invoked once during the deployment phase of the container.
In order to avoid data inconsistencies or duplicates, it checks if a deployment has already
occurred upon invocation. In this mode, the connector’s responsibility is to connect TL-
SAssistant ’s intelligence to Data Layer content. In particular:

1. it exports TLSAssistant’s internal database. This will create a set of STIX bundles
(see Section 4.3.1) containing three objects: a vulnerability, a course of
action, and a relationship of type mitigates;

62

2. using the exported vulnerabilities, it retrieves their IDs from the Data Layer then edits
all the relationship objects. By doing this, each course of actionwill be
linked with the proper object within the shared database. Two edge cases can occur:

• if a single course of action is able to mitigate more than one vulnerabil-
ity, the connector will create an “aggregated” vulnerability object and link
it to the mitigation (to avoid SRO redundancy);

• if a vulnerability extracted from TLSAssistant does not have a CVE (hence
the Data Layer will not contain its object), a new vulnerability will be
created and uploaded;

3. it extends the structure of each course of action by adding FINSTIX proper-
ties (see Section 4.2). These (e.g., ’x subtype’ = ’to dashboard’) are used
to extend the STIX language and manage the integration with the Dashboard;

4. lists all the created and linked vulnerabilities in a file stored locally (this is the file
whose existence will be checked on startup) and uploads all course of action
and mitigates objects.

on scan the Connector is called after every completed scan. Once started, the connector re-
trieves the JSON files generated by TLSAssistant (see Section 4.3.1), and performs the
following operations (for each file):

1. extracts the sighting, the observed data (see Figure 4.5) and the name of the
detected vulnerability;

2. matches the name of the vulnerability and links the sighting to its ID in the Data
Layer (value retrieved or generated during the deployment);

3. tags each sighting object with a custom scan id field so that the initiating ser-
vice could retrieve the results;

4. finally, it uploads both sighting and observed data to the Data Layer, al-
lowing the Dashboard, the initiating service, and any other entity to retrieve the scan
results, now available within the shared database.

4.3.3 API and Queue Handling

Each TLSAssistant scan can take anywhere between 1 and 5 minutes, and an installation of TL-
SAssistant was never designed to handle concurrent requests. Making the service available
therefore required not only the definition of an API to initiate scans, but also a message queue
for requests to be passed to worker threads, and a data store for states and results to be queried.

Figure 4.7 shows a component diagram of TLSAssistant integrated in the FINSEC platform,
with our contribution (colored) composed of the following:

63

Data Layer
API

Service
API

retrieve

scan

TLSAssistant service

Dashboard

result

Rabbitmq
broker

Redis
worker state

state

insert

TLS Assistant
scan and course of action

Connector

Data layer

Figure 4.7: Integration of TLSAssistant in the FINSEC architecture

• TLSAssistant+ Connector to analyze the deployments and interact with the Data Layer
(see Section 4.3.2);

• a set of Service APIs exposed using Flask [Pal] and leveraging the Celery [Sol] task queue;

• rabbitmq broker for scan requests;

• redis to store scan states.

In detail, our service exposes the following Service APIs:

POST /scan a JSON object with a url key on which to initiate a vulnerability scan; returns
a scan id - a UUID as per RFC 4122.

GET /state/{scan id} returns the current scan state as reported by Celery (e.g. pending,
success and failure).

GET /result/{scan id} retrieves all sighting for the given scan id, and all associ-
ated objects such as vulnerability and course of action, from the Data Layer.

64

Finally, enhancing the functionality of other services to achieve a synergy beyond their con-
sumption of the generated STIX objects required individual integration, e.g. Risk Assessment -
see Section 4.4.

4.4 Integration with Risk Assessment

As mentioned at the beginning of the chapter, one of the most significant benefits of integrating
a tool such as TLSAssistant into the FINSEC platform is that it improves the functionality of
other services. Providing a comprehensive assessment of the security risks posed by an infras-
tructure or system is crucial for any security platform. We thus consider how TLSAssistant can
contribute information to refine the calculation of the Risk Assessment Engine (RAE) available
in the FINSEC platform in order to support a continuous risk evaluation process.

The RAE is designed to support a continuous monitoring of assets; this allows a Security Officer
at a financial institution to maintain a list, for instance, of TLS servers in their infrastructure, in-
cluding but not limited to Online Banking or PSD2 API servers, and have them regularly scanned
for vulnerabilities. While changes to server configurations should only occur infrequently and
as a result of manual intervention by a system administrator, a regular scan mitigates against
undetected malicious changes, unintended consequences e.g. of upgrades to dependencies, and
automated changes. Regular scans may reveal vulnerabilities that necessitate a reassessment of
the current risk level. If the vulnerabilities are associated with a particular CVE, this can be
cross-referenced with those potentially present on the asset by manufacturer and model, and its
impact can be evaluated using CVSS scores.

The RAE integrated in the FINSEC platform [FIN20] takes an approach based on graphical risk
modeling described in [uEG+18]. This entails the creation of a CORAS model [LSS11] based
on an understanding of the overall risk pattern to be modeled, as well as the definition of risk
assessment algorithms - Bayesian networks in R and decision diagrams in DEXi [Boh22] - for
an automated quantitative and qualitative risk assessment.

The RAE has been adapted to consume STIX sighting objects to trigger re-evaluation of risk
models. As noted in Section 4.3.1, TLSAssistant produces sighting objects linked to cyber
observables; the RAE however measures risks associated with an x-asset object, developed
specifically for the FINSTIX data model [FIN19b]. This object links specific cyber-physical
entities, e.g. servers, with their cyber-physical address (e.g. LAN IP) and/or physical loca-
tion, as well as parameters relevant to risk assessment. A synergy between our vulnerability
scanning service and the RAE can be achieved by (a) linking each scan of an address with a
known x-asset, on the part of the scanning service, and (b) adding sighting of the rele-
vant vulnerability objects to the RAE risk models.

The following modifications were made specifically to integrate with the RAE:

65

CORAS Indicators

Compliance

Insufficient
hardening

Attacker

Data
compromised

Session
hijacking

Integrity Confidentiality

Firewall

Access Control

Settings (non-intrusive)

Asset

Incident

Threat scenario

Unauthorized
access

TLS compression

HTTP compression

Scans (non-intrusive)

XSS possible

TLSAssistant

Network monitoring (intrusive)

XSS attempts

Figure 4.8: Integration of TLSAssistant in a Risk Assessment Engine model

x-asset objects in the Data Layer had a url property added;

scan/ API endpoint calls can be made with an x-asset-id JSON element; the API will
retrieve the corresponding object from the Data Layer and read its url property;

x-asset-id provided to the API is added to the x asset refs[] property in sighting
objects produced by TLSAssistant;

CORAS risk models were updated to include some of the specific CVE that TLSAssistant can
produce sighting of. A simplified model of how sighting of vulnerabilitymay
be represented in CORAS is shown in Figure 4.8.

4.5 Lessons Learned and Discussion

Combining diverse security services and integrating their results into a single Dashboard presents
a number of intriguing challenges and opportunities. We addressed these issues by extending TL-

66

SAssistant’s capabilities and bridging its core to FINSEC’s Service Layer, allowing it to process
concurrent requests and exchange cyber threat intelligence.

We began this work with the intention of integrating our tool to combine multiple sources of se-
curity intelligence, but discovered indirectly how difficult it is to integrate a standalone tool into
a distributed framework without substantially modifying the tool. This was especially difficult
in our case due to the fact that TLSAssistant was written in Bash and therefore does not benefit
from object-oriented programming or modularity. The difficulties we encountered during this
process made clear the need to completely redesign the architecture of the tool. By considering
modularity, extensibility, and the possibility of future integration, future users should be able to
easily integrate our tool into their pipeline. Following upgrades and research-driven design deci-
sions, the following chapter describes the procedure that led to the redesign of TLSAssistant.

67

Chapter 5

From Standalone Tool to Collaborative
Framework

With TLS serving as a centerpiece for numerous modern technologies, the ability to provide an
“overall assessment” of a system, analyze evolving risks, and monitor new vulnerabilities is of
primary importance. This conflicted with the limitations imposed by the original TLSAssis-
tant architecture.

In this chapter, we will (i) discuss the challenges and limitations encountered while working
on TLSAssistant over the years, (ii) introduce a new architecture for TLSAssistant v2, de-
signed to be modular and easily extendable, and (iv) review the main changes, including a sum-
mary of the available features.

5.1 Discussion: Challenges and Limitations

As anticipated in Section 4.5, TLSAssistant development started in 2018 with a specific set of
features in mind and to cover a specific set of use cases. With each new piece of work, new
research questions arose, and the desire to improve its capabilities and research impact led to
an unanticipated increase in code size and complexity. As TLSAssistant was created using the
scripting language Bash, it could not take advantage of the decoupling capabilities that an object-
oriented programming language could offer. This resulted in frequent micro-redesigns of subsets
of the code for each incremental change. The integration into the FINSEC platform was the final
straw when we realized that our original design for a standalone tool prevented us from sharing
threat intelligence with other systems.

With the emergence of new research lines and the desire to extend TLSAssistant’s capabilities
to aid in their study, we decided to build the tool from scratch. The goal was to develop a

68

5. Generate

 Output

3a. Pre Analysis

(Populate cache)

6. Receive

 Output

1. Give input

Create

Module

CreateMitigation

Analysis Modules

Weak Algorithms

Conf
POODLE

tlsfuzzer
SLOTH

Unsecure

TrustManager
Mallodroid

SUPERAnalyzer

Other modules

testssl.shTLS-Scanner

ALPACA

Raccoon
TLS-Scanner

TLS-Scanner

Core Output

End-User

PDF,

HTML,

Attack Trees,

RAWtestssl.sh

2. Load Modules

3b. Exec Analysis

4. Obtain Refined Results

 from Analysis Modules

URL, IP,

Configuration,

APK

Developer

New Module

Parse Input

TLS-Scanner

Figure 5.1: TLSAssistant v2 architecture

modular, extensible framework for the creation of new analysis approaches and tools that would
enable us to perform various checks not only on the protocol itself, but also on other aspects
such as the analysis of: (i) client-side applications (ii) TLS libraries (such as OpenSSL), (iii)
certificates’ validity, and (iv) TLS enforcement policies (e.g., HTTP Strict Transport Security).
Thus, we established a primary structural objective: to make TLSAssistant modular, with the
ability to add new features without substantially modifying the source code. As non-functional
requirements, we desired a portable tool that is versatile, quick, and simple to operate.

The benefits of a modular and extensible framework are twofold: (i) the ability to streamline the
upgrade process, allowing third-parties and internal contributors to rely on a reliable core system
capable of automatically integrating new modules; and (ii) the ability to easily integrate with
other cybersecurity tools or platforms.

5.2 Architecture Definition

Originally, the TLSAssistant architecture consisted of two main components that exchanged in-
formation by creating local files and invoking different scripts to generate a report that highlights
detected vulnerabilities and provides information for their mitigation. As the code was written
in Bash, the addition of new capabilities required extensive refactoring. As a result, we decided
to redesign TLSAssistant as a modular system (see Figure 5.1), with components encapsulated
by type: Analysis modules to check for vulnerabilities, Core modules for information exchange
between modules, and Output modules to provide properly formatted output for the user.

The users of our tool are the third-party developer who will create new modules and the end-

69

users who will analyze TLS-related vulnerabilities using the tool.

Flow for the Developer To add a new Analysis module (see left of Figure 5.1), the developer
must create it according to the provided specifications. By doing so, the Core module will
recognize and incorporate the new feature. In addition to providing the code implementing the
checks for detecting a vulnerability, if a mitigation is known, the developer must create a JSON
file describing it according to the mitigation’s standard (see Section 5.2.2 for details).

Flow for the End-User The usage of the tool can be split in two steps. In Step 1 (see right
of Figure 5.1), the end-user chooses which modules to employ in the analysis by supplying a
configuration file or command line list. Each configuration file contains a list of modules that
conduct a particular kind of analysis (e.g., checking for vulnerabilities related to weak TLS ci-
phers). Step 2 involves the Core loading the configuration (if provided) and modules (from the
command line list or configuration) to ensure they are relevant to the requested type of analy-
sis. TLSAssistant v2 currently supports four types of analyses.

Single Host TLSAssistant v2 selects and executes the necessary modules. Every tool re-
peatedly connects to the target webserver by sending multiple specially crafted Client
Hello messages. By analyzing the webserver’s response, each tool is capable of passively
recognize the active configuration. The Output module then parses and collects the results
collected from each module;

Multiple Hosts We perform a Single Host analysis on each one of the webservers specified in an
input list. Each result is concatenated and provided as a single output to the Output mod-
ule;

TLS Configuration and Fixes If a configuration file is provided, its content is analyzed by all
available modules. Alternately, if a configuration file and a valid hostname are supplied,
a Single Host analysis is conducted, and the fixes are then incorporated into the provided
TLS configuration;

Single APK If the user provides an APK file, TLSAssistant v2 decompiles its source code and
executes each Android-related module (e.g., unsecure TrustManager wrapped from Mal-
loDroid and KeyStore disclosure from SUPERAndroidAnalyzer) to check for potential
security flaws.

The Analysis modules will return the refined results (analysis results and related mitigations, if
applicable) to the Core (Step 4), which will group them and supply the Output module with all
the merged outputs (Step 5). The latter concludes the execution of the analysis by providing the
user with the requested output type, properly combined and formatted in a single file (Step 6).

To provide a more extensible, versatile, and cross-platform tool, Python 3 was chosen as the
reimplementation language. In addition, we selected JSON as the primary communication lan-
guage for both inter-module communications and configuration files because it is interoperable,

70

(almost) human-readable, and Python-compatible. We have decided to allow developers to in-
stall new dependencies by providing a link to their source code on the dependencies.JSON

file and defining their respective types. Then, the dynamic installer will retrieve and install the
necessary files.

5.2.1 Modules Characterization

To make TLSAssistant v2 more flexible, the software was organized into modules. Contextu-
ally, a module is a collection of objects and classes stored in the same file (i.e. the type of vul-
nerability analyzed). Each module adheres to standards1 designed to make rewriting or adding
new features quick compatible to the Core.

5.2.1.1 Core Module

This is the central module that receives the user’s analysis request, loads the configuration (if any)
along with the Analysis modules, and then calls the Output module with the newly obtained
results. As with the previous version of TLSAssistant, the analysis can be performed on a
single host or APK, with the added ability to analyze a list of domains obtained from a file
and apply fixes to a TLS configuration. We will now discuss the three primary categories of
analysis: BlackBox, WhiteBox, and Hybrid.

5.2.1.1.1 BlackBox Analysis For performing a BlackBox analysis of a given hostname (i.e.
detecting vulnerabilities and various configuration issues by repeatedly connecting to the target
server and evaluating its responses), the Core of the framework is equipped with a configuration
system that permits the end-user to fine-tune the software. Each configuration includes a list
of Analysis modules that are parsed and utilized by the Core. The user can provide (e.g., --
modules poodle mitzvah 3shake) or remove (e.g., --exclude sloth) a set of modules
via the command line. We have added the command line interface for less experienced users so
that they can perform precise and selective analysis without having to modify configurations. TL-
SAssistant v2 will adopt the default configuration based on the type of analysis the user wishes
to perform (server or APK) if the user does not provide a configuration. This configuration is
called default_[TYPE].JSON (see Listing 5.1).

1 {
2 ”name” : ” s e r v e r d e f a u l t c o n f i g u r a t i o n ” ,
3 ” d e s c r i p t i o n ” : ” D e f a u l t s e r v e r c o n f i g u r a t i o n ” ,
4 ” modules ” : [

1Analysis modules must comply with the standards (see Section 5.2.2), while Output/Wrapper modules might
comply with the standards but are not required to.

71

5 ” 3 shake ” ,
6 ” b e a s t ” ,
7 ” b r e a c h ” ,
8 ” c c s i n j e c t i o n ” ,
9 ” c e r t i f i c a t e t r a n s p a r e n c y ” ,

10 ” c r ime ” ,
11 ” drown ” ,
12 ” f r e a k ” ,
13 ” h e a r t b l e e d ” ,
14 ” h s t s p r e l o a d i n g ” ,
15 ” h s t s s e t ” ,
16 ” h t t p s e n f o r c e d ” ,
17 ” log jam ” ,
18 ” lucky13 ” ,
19 ” mi t zvah ” ,
20 ” nomore ” ,
21 ” p f s ” ,
22 ” p oo d l e ” ,
23 ” r e n e g o t i a t i o n ” ,
24 ” r o b o t ” ,
25 ” s l o t h ” ,
26 ” swee t32 ” ,
27 ” t i c k e t b l e e d ”
28]
29 }

Listing 5.1: default server.json

A configuration may contain a second one, allowing an expert user to nest and reuse configura-
tions with minimal modifications. To illustrate the benefits of a nested approach, consider the
following scenario: a system administrator is required by internal policies to check the security
posture of new endpoints, and a cyber risk assessment team (CRT) provides the policy compli-
ant configuration to be executed with TLSAssistant. This approach places the responsibility of
providing a correct configuration on the team of experts, relieving the system administrator of
almost all policy definition responsibilities and leaving him or her with the task of running the
analysis with TLSAssistant.

If the configuration contains an include directive, the software loads the included configuration
recursively. After the include chain has been completed, the presence of a remove field is
examined. The remove field will have a (complete or partial) configuration portion, and all
corresponding values found within the (partial) configuration in this field will be removed from
the recursively included configuration. Upon completion of this final step, the presence of an add
field is verified. Similar to the preceding step, the add field will contain a configuration (total

or partial) that will be appended to the included configuration. It is essential to note that the
execution order is as shown, i.e. include then remove and then add. Listing 5.3 shows a
configuration including a second one (Listing 5.2).

72

In the previous example, a company could have two configurations: one for general use and one
for specific services. If the CRT must configure an endpoint with specific security restrictions,
it will only need to merge the two configurations (applying changes to the first, generic one).
By using the directives2 correctly, the CRT will be able to generate a new configuration for the
specific use case without modifying either of the two source files directly. The same procedure
can be repeated for each endpoint by contextually adapting the directives to the selected use case.

In terms of analysis types, this category of analysis relates to the “Single Host” and “Single
APK”.

1 {
2 ’ name ’ : ’ Compl iance ’ ,
3 ’ modules ’ : [’ Compl iance ’ , ’ s t i x ’] ,
4 ’ a r g s ’ :{
5 ’ s t i x ’ : [’ c : / / dkgd / f i l e . o u t ’] ,
6 ’ Compl iance ’ : [’ G e n e r i c ’]
7 }
8 }

Listing 5.2: Generic configuration

1 {
2 ’ name ’ : ’AGID Compliance ’ ,
3 ’ i n c l u d e ’ :{
4 ’ f i l e ’ : ’ c o m p l i a n c e . j s o n ’ ,
5 ’ remove ’ :{
6 ’ modules ’ : [’ s t i x ’] ,
7 ’ a r g s ’ ,
8 } ,
9 ’ add ’ : {

10 ’ modules ’ : [’TLS ’] ,
11 ’ a r g s ’ :{
12 ’TLS ’ : [’ d ’ , ’ 1 9 2 . 1 6 8 . 1 . 1 ’ , ’ c o m p l i a n c e ’] ,
13 ’ Compl iance ’ : [’AGID ’]
14 }
15 }
16 }
17 }

Listing 5.3: Configuration including Listings 5.2

5.2.1.1.2 WhiteBox and Hybrid Analysis with Automatic Fixing By having access to the
TLS configuration, we can analyze it for misconfigurations and immediately implement vulner-
ability fixes. In addition, we have chosen to perform a complete analysis by default whenever a
TLS configuration is provided, allowing the user to choose between applying the fix immediately

2include, add and remove

73

or saving it to a separate file. We proceeded in this manner because the elimination of a single
vulnerability may not necessarily result in a secure configuration. The user could, for instance,
run the analysis and fix only the POODLE attack, but this would not secure the configuration
against a SLOTH attack [Duc] (an attack that exploits the availability of weak hash functions).

For the TLS configuration flow we have two types of analysis that can be performed:

WhiteBox: the user provides a TLS configuration as input. The provided configuration is ana-
lyzed and the fix is applied at the discretion of the user;

Hybrid: the user provides a TLS configuration and a hostname for analysis as inputs. The speci-
fied hostname is analyzed using a standard Single Host analysis (i.e. a BlackBox analysis).
Then, as a configuration is provided to apply the fixes, TLSAssistant could directly (at the
discretion of the user) apply the fixes related to the detected and reported vulnerabilities
on the requested port.

Since we do not know what non-standard ports the user is employing, we have decided to retain
the default ports for certain checks. For instance, to determine whether HTTPS is enforced
during a WhiteBox TLS configuration analysis, we will examine the virtual host (i.e., the single
endpoint specified in the configuration file) with port 80, if present. In the event that the analysis
is Hybrid, the port can be specified and this issue will not arise.

The vulnerabilities detected by TLSAssistant v2 can be divided into two groups: those that
can be resolved by updating the TLS configuration file and those that require an upgrade to
the cryptographic library. We decided to differentiate the former by adding a conf attribute
to modules that manage them (e.g., POODLE in Figure 5.1). During TLS configuration anal-
ysis, Analysis modules with this attribute are selected. The attribute will perform the simple
virtual host analysis of a configuration for the selected vulnerability and fix it3 by automatically
replacing the misconfigured line of code with the correct version, per the Analysis module’s
instructions.

As for the latter group of vulnerabilities, many of which are no longer exploitable in newer ver-
sions of OpenSSL, we address them by requesting that the user update the cryptographic library.
In addition to performing checks for each TLS configuration vulnerability, we analyzed which li-
brary version is deemed “safe” by examining the provided changelog [Ope22]. In the changelog,
we determined when a given cipher and/or protocol is deemed deprecated and removed from
the OpenSSL version, leaving the configuration vulnerable only if the OpenSSL library is re-
compiled. In order to take into account this aspect, the interface also includes an OpenSSL
attribute. The user must specify on the command line whether to run an analysis for a specific
OpenSSL version with --openssl [VERSION] or to completely ignore the OpenSSL check
with --ignore-openssl. If the user requests to ignore OpenSSL, the most vulnerable version

3If requested by the user by using --apply-fix [path/to/conf].

74

of OpenSSL is assumed during analysis. The OpenSSL version check is performed if the user
provides a version of OpenSSL and the provided TLS configuration is vulnerable. If the provided
version is lower than the one deemed secure for the analyzed module, the TLS configuration is
deemed insecure and a mitigation is displayed.

We have decided to force the user to choose between providing an OpenSSL version and ignoring
OpenSSL checks, so that the user is aware of the relationship between vulnerability results and
OpenSSL version. OpenSSL was selected as the cryptographic library of choice because it is
included by default in the Linux kernel and is regarded as one of the fundamental building blocks
of the Internet’s cryptographic infrastructure [Dat23]. Individual modules can still be excluded
with the proper command, allowing an expert user to fine-tune the analysis he or she is not
interested in.

5.2.1.2 Analysis Modules

This type of modules conduct the analysis by invoking the integrated cutting-edge tools and then
refining the results. Wrapper refers to submodules that call external software or dependencies.
These “wrappers” produce a raw output that should never reach the Output module directly.
The Analysis modules perform the scan, either by passing through a wrapper or by implement-
ing the logic necessary to conduct the analysis themselves. They accept parameters as input,
invoke the corresponding wrapper module (if any), refine the raw output of wrappers by adding
mitigations, and pass the refined output to the Core, which in turn lends it to the Output mod-
ule. tlsfuzzer, for instance, performs the analysis on SLOTH. Through the “tlsfuzzer” wrap-
per, TLSAssistant v2 will launch the external tool. The Analysis module receives the raw
results and, if the webserver is vulnerable, refines them by adding mitigations and delivering
them to the Core module. In light of the fact that the majority of Analysis modules use the same
wrappers with different arguments, we created template modules through inheritance. By act-
ing as interfaces, these modules override methods to set mitigations and parameters for wrapper
methods invoked to transform raw data into contextual data for the specified module.

5.2.1.2.1 Refining the concept of wrapper An external application or API service is con-
tained by a wrapper module. Each wrapper includes a caching mechanism that enables the tool
to analyze the same domain (or IP) multiple times during the same use session. Despite the
fact that invoked tools are rarely detected by Intrusion Detection Systems (IDS), they may be if
they are utilized repeatedly. This effect is mitigated by the use of a cache because it is unlikely
that the server configuration will change during the same usage session (which, in most cases,
takes only a few minutes). The “force” parameter allows module developers to reset the cache
if necessary. When the developer needs to perform multiple analyses on the same hostname in
order to compare results, forcing the analysis is useful. For instance, a developer could create a
module that verifies the supplied hostname, collects data, and then waits until the user certifies

75

that the vulnerability has been patched. The following paragraphs describe how different tools
(described in Section 3.1) were integrated using wrappers.

5.2.1.2.2 tlsfuzzer tlsfuzzer is a test suite for SSL and TLS implementations. Given the
number of available scripts and in an effort to simplify the integration of new modules, we chose
to create an interface that allowed us to provide the names of a series of scripts to be executed
with their arguments. Given the set A of input scripts for analysis by the module and the set B
of scripts whose results are cached, the tlsfuzzer wrapper module performs A \B to identify the
missing scripts. The missing scripts will be executed, and the cache will be updated by adding
the scripts’ new results. Finally, the module will return the result to the Analysis module that
requested the wrapper.

5.2.1.2.3 testssl.sh testssl.sh is a free command line tool which checks a server’s service
on any port for the support of TLS/SSL ciphers, protocols as well as recent cryptographic flaws
and more. To be able to use this Bash-based tool, we had to create a wrapper that, when given a
list of arguments to execute and a hostname and port, calls the tool with the provided arguments
on the specified hostname:port.

Since testssl.sh analyzes the majority of vulnerabilities checked by TLSAssistant v2, the wrap-
per module will benefit most from the cache system. Due to the webserver connections opened
by testssl.sh, the boot time would be a few seconds (≃ 3 sec4) whenever a testssl.sh-related
module is executed. Therefore, we had to strike a balance between module atomicity, efficiency,
and execution speed. For this purpose, we developed a method in the Core that, for each pro-
vided module, determines whether or not it is related to testssl.sh. In this case, the method
collects the arguments used by the module to perform the analysis with the wrapper testssl.sh,
and the vulnerability analysis associated with testssl.sh is performed prior to calling the individ-
ual methods, during a single run of the tool. This populates the cache of the testssl.sh wrapper
so that any module using the wrapper does not need to rerun the analysis and wait for boot time
because the results are already cached. Thus, we preserve the atomicity of the individual mod-
ules and, since the Core already knows which modules will be executed, we save time by having
it perform the pre-analysis.

5.2.1.2.4 TLS-Scanner TLS-Scanner is a state-of-the-art vulnerability scanner that can
detect a wide variety of flaws. While it was not initially included in our tool comparison, it
has recently been added due to its capacity to detect newly discovered TLS vulnerabilities (i.e.
ALPACA and Raccoon). We take the result printed on the console and parse it by extracting the

4Benchmarked using “Multipass” software from Canonical to virtualize Ubuntu 20.04 LTS with 1GB of RAM
with an Intel i5-8250U (8) @ 3.400GHz processor

76

required information such as the result of the vulnerability scans, and the list of unsafe ciphers if
we are scanning for Padding Oracle or Raccoon vulnerabilities.

TLS-Scanner set of features make it a suitable replacement for testssl.sh in future releases.

5.2.1.2.5 Certificate The wrapper module communicates with the crt.sh API. By providing
the hostname to check, this method returns the JSON value of valid certificates for the domain
and its subdomains. By obtaining the data of all certificates organized by domain and subdomain,
we can verify their validity and signature and obtain an immediate list of valid certificates. This
wrapper is also useful for subdomain enumeration because it obtains all certificates associated
with a (sub)domain.

5.2.1.2.6 HSTS HTTP Strict Transport Security (HSTS) is an HTTP response header field
that specifies that a website can only be accessed through secure connections. Once activated,
the directive remains in effect until the specified age is not reached [HJB12].

The “HSTS” wrapper makes raw header calls to the requested hostname specifying the type of
result we want to get:

• HTTPS enforced we can test for HTTPS enforcement by analyzing the response header
of an HTTP port connection. If the status code is 301 (permanently moved) or 302 (tem-
porarily moved) and the location field leads to an HTTPS page, no HTTP connections will
be allowed;

• HSTS Set it checks for the presence of a valid strict-transport-security directive
in the header;

• HSTS Preloaded the analysis of HSTS preloading is performed by comparing two lists:
Mozilla’s [Moz19] and Google’s [Goo22].
Since the Google list is included in the Chromium project’s source code, the tool will
automatically download a base64-encoded file from the Google API during the installation
process. This file will be rendered usable and converted to JSON at runtime by the specified
wrapper module. The Mozilla list, on the other hand, is easily readable and accessible via
an API call made by the installer;

• Server Info we can request server information to determine whether the used webserver is
Apache or NGINX. This is used to select customized mitigations based on the webserver
type. If neither the tool nor the server supports the vulnerability, a generic mitigation is
displayed.

77

Figure 5.2: TLSAssistant v2 report (excerpt)

5.2.1.2.7 MalloDroid MalloDroid is a small tool built on top of the Androguard reverse
engineering framework able to analyze Android apps for broken TLS certificate validation. To
simplify the integration of this tool, we developed an internal API that allows MalloDroid to
be called both as a script and as an embedded application. We then developed a wrapper to
maximize its potential. The wrapper makes a call to the tool and parses the requested APK file
by passing the file’s path and execution arguments. When the analysis is complete, the results
are cached. The results can be accessed using the APK’s path as the cache is index. Given the
single execution implementation (since the cache is stored in RAM, it is cleared whenever the
tool is restarted), the path is regarded as unique for the tool.

5.2.1.2.8 SUPERAndroidAnalyzer SUPER is a command-line application that analyzes
.apk files in search of vulnerabilities by decompressing APKs and applying a series of rules to
detect a set of known vulnerabilities (see Table 3.1).

78

Figure 5.3: TLSAssistant v2 scoreboard

To create this wrapper, we employed a parser that removes all non-TLS-related detections (such
as Android Manifest file-related checks) by formatting and loading them into the cache. To
provide a failsafe mechanism, we made two calls to the tool: if SUPER partially decompresses
the APK due to a decompilation error, it will analyze the partial sources (if any) instead of
attempting to decompress it again. After executing the tool on the APK file, a recursive search
is conducted on all subfolders of the specified temporary folder to save the results. Similar
to MalloDroid, the file path is utilized using the same logic and motivations.

5.2.1.3 Output Module

This module receives the results from the Core module and generates the output that is readable
by the end user. After performing the analysis, the Core provides the Output module with the
concatenated output of each executed analysis. Following the Core’s instructions, this module
returns the output in the format specified by the user (i.e. HTML, PDF, STIX [OAS23], RAW
or Attack Tree [Sch]). Each vulnerability is accompanied by a mitigation description that will
assist the user in resolving the issue, as well as a CVE value that can be used by the end-user to
conduct a risk assessment (see Figure 5.2).

Given the ability to conduct a multi-domain analysis, it is probable that one or more mitigations
will be repeated in the final report. To circumvent this issue, users can group their data “by
module” and generate a list of vulnerable endpoints for each threat. If the user chooses to retain
the default “by host” grouping, a summary scoreboard (see Figure 5.3) will be displayed to help
quickly determine which hosts are susceptible to the detected vulnerabilities. In the case of
automatic repair, the TLS configuration changes made by the tool will be included in the final
report.

79

5.2.2 Standards

With the development of TLSAssistant v2, we created a set of standards capable of regulating
and facilitating future integrations and extensions. The three available specifications govern
module development, the formulation of new mitigations and the structuring of a configuration.

5.2.2.1 Module Definition

5.2.2.1.1 Module rules A module:

• Must

– have a configuration file;

– have a main class, which must have:

* .input(*args) method;

* .output(*args) method;

* .run(*args) method;

– be commented properly;

– use the same file (except for submodules, these can be in different files);

– if a module is server related:

* have hostname parameter;

* have port parameter;

– if a module is android related:

* have a path parameter;

– if a module is wrapper and if possible:

* have a caching system.

• Can

– have submodules;

– be the union of some modules;

– have more than one class;

– have more than one object;

– have conf attribute of type Config base()

* needed to enable APACHE/NGINX config parsing

80

* use inheritance to create a proper condition() method

– have a stix attribute of type Bundled()

• Should

– have a mitigation in output if it is not a wrapper module;

– be as independent as possible.

5.2.2.1.2 Configuration file The configuration file must define:

• Input: can have multiple inputs:

– Short description of the input;

– Type (file, string, integer, others);

– path to the file, from the root folder of the project;

– class name as the main class name (case sensitive);

• Output: must have a single output at time, should be mutual (OR only):

– Short description of the output;

– Type (file, string, integer, others).

An example of these files, that will be stored in configs/modules, can be seen in Listing 5.4.
1 {
2 ’ i n p u t ’ :
3 [
4 {
5

6 ’ name ’ : ’ a ’ ,
7 ’ t y p e ’ : i n t ,
8 ’ d e s c r i p t i o n ’ : ’ does x , y wi th z ’ ,
9 ’ r e q u i r e d ’ : ’ F a l s e ’

10

11 } ,
12 {
13 ’ name ’ : ’ sum ’ ,
14 ’ t y p e ’ : S t r ,
15 ’ d e s c r i p t i o n ’ : ’ Needed f o r . . . ’ ,
16 ’ r e q u i r e d ’ : ’ True ’ ,
17 ’ a r g s ’ : [’ sum ’ , ’ s ’]
18 }
19] ,

81

20 ’ d e s c r i p t i o n ’ : ’ Bla Bla Bla ’ ,
21 ’ p a t h ’ : ’ modules / a n d r o i d / s u p e r . py ’ ,
22 ’ c l a s s n a m e ’ : ’ Super ’
23 ’ o u t p u t ’ :
24 [
25 {
26 ’ name ’ : ’ x ’ ,
27 ’ t y p e ’ : S t r ,
28 ’ d e s c r i p t i o n ’ : ’ Keks ’
29 }
30]
31 }

Listing 5.4: TLSAssistant v2 module configuration example

5.2.2.1.3 How to communicate between modules

• use JSON or

• use a dict().

5.2.2.1.4 Output of a module The output

• Must (unless it is a wrapper module)

– contain the problem title;

– contain the problem description;

– contain a mitigation;

– use the following structure:

{
’title of the vulnerability’:{

’description’:’desc’,
’mitigation’:{

[...]
}

}
}

• Can

– have a personalized entry.

82

5.2.2.2 Standard Mitigations

5.2.2.2.1 Default Name While creating a mitigation, one must:

• set the name of the mitigation coherent to the module;

• set the file name in upper case;

• use instead of space;

• use json;

• set the extension of the file in .json lowercase.

For example, the rabbit hole module will have a RABBIT HOLE.json file as a mitigation. The
template for all mitigation files is the following:

1 {
2 ” E n t r y ” : {
3 ”Name” : ” The name of t h e v u l n e r a b i l i t y ” ,
4 ” ExtendedName ” : ” The e x t e n d e d name of t h e v u l n e r a b i l i t y (can be t h e

same as t h e Name) ” ,
5 ” D e s c r i p t i o n ” : ” D e s c r i p t i o n o f t h e v u l n e r a b i l i t y ” ,
6 ” M i t i g a t i o n ” : {
7 ” T e x t u a l ” : ” T e x t u a l m i t i g a t i o n . ” ,
8 ” S n i p p e t ” : {
9 ” ServerWeType1 ” : ” S n i p p e t ” ,

10 ” ServerWebType2 ” : ” S n i p p e t ”
11 }
12 }
13 } ,
14 ” #comment ” : ” a ” ,
15 ” #comment1 ” : ” b ”
16 }

5.2.2.3 Configuration Requirements

5.2.2.3.1 Definition Each config file

• Must

– have a name;

– list all the employed modules.

• Can

83

– have personalized entries;

– import other configurations;

– specify the args of each module.

5.2.2.3.2 Additional Notes

• if include is used, modules and other entries are ignored, except for name, include;

• The execution priority is:

1. include file

2. include remove

3. include add

• every item inside add or remove is optional and it follows a generic configuration:

– add: adds the entries to the already included;

– remove: removes the entries received with the include statement;

• every other unknown entry can be added in add;

• if an unknown entry is added and no module processes it, nothing happens.

5.3 Discussion

In 2018, TLSAssistant development began with a particular set of features in mind and to ad-
dress a specific set of use cases. New research questions arose with each new piece of work, and
the desire to improve its capabilities and research impact resulted in an unanticipated increase
in code size and complexity. Due to this and the lack of a future-proof design, we accumulated
technical debt over the years. To overcome the technical limitations that arose over time, we
decided to redesign and rebuild TLSAssistant. Furthermore we switched from a monolithic to
a modular structure gaining the following benefits:

Extensibility

• changes to a module have no effect on other modules, which drastically improves their
maintainability and upgradeability;

• developers can design and implement modules that are automatically recognized by the
Core and usable out-of-the-box and without any modification to other modules.

84

Figure 5.4: TLSAssistant v2 logo

Interoperability

TLSAssistant v2 can now be seamlessly integrated by exchanging threat intelligence using
STIX or by easily developing a bridge module that can generate an output in the desired format.

Usability

• users can now choose which modules to execute on each analysis by creating custom con-
figurations that can be combined and serve multiple use cases;

• developers that whish to create new modules can now benefit from a set of consistent
standards that enable them to easily.

TLSAssistant v2 current set of features can be summarized as follows:

• vulnerability analysis on:

– a single or multiple deployed webserver(s) (BlackBox analysis) with the generation
of an actionable report;

– a configuration file (WhiteBox analysis) with the possibility to automatically apply
the suggested mitigations;

– a single APK file, generating an actionable report containing suggestions and best
practices on how to fix the detected configuration issues;

• actionable report generation containing:

– the full list of detected misconfigurations (the full set of detectable misconfiguration
can be seen in Tables 3.3 and 3.4);

85

– an explanation on how the attack works and its impact;

– a brief explanation in natural language on how to mitigate it;

– a set of webserver-specific actionable hints able to guide both system administrators
and app developers towards the securing of the target;

– optional highlighted attack trees to show the full attack of the detected issues.

• standalone STIX bundles generation containing a:

– vulnerability SDO;

– course of action SDO;

– relationship SRO;

– observed data SDO;

– sighting SRO.

Lastly, TLSAssistant v2 also received an official logo (shown in Figure 5.4).

86

Chapter 6

An Assisted Methodology to Evaluate
Security Compliance

Administrators tasked with configuring TLS servers must make numerous decisions (e.g., se-
lecting the appropriate ciphers, signature algorithms, and TLS extensions), and it may not be
obvious, even to security experts, which decisions may expose to attacks. Heartbleed [Sho22b],
an attack discovered in 2014 that exploits an insecure implementation of the Heartbeat TLS
extension [Syn14], can still compromise the privacy of approximately 203,000 websites, for in-
stance [Sho22b].

Based on RFC documents and IANA public registries for standards and parameters [IAN], (in-
ter)national bodies such as PCI [PSSC22], European Commission [Com22], and cybersecurity
agencies such as US NIST [U.S22] and Italian AgID [Pre22] issue guidelines to define the use
and configuration of TLS in various contexts. Absence of support for these standards and guide-
lines may result in a reduction of the security threshold recommended by technical agencies, fines
from supra-governmental organizations, or even exclusion from international payment systems.
Therefore, it is extremely important to assist system administrators in configuring webservers to
conform to these standards.

In this chapter, we will (i) introduce a set of banking standards and security guidelines issued
to regulate TLS configurations in different scenarios, (ii) present the state-of-the-art in terms of
TLS compliance assessment tools, (iii) describe a methodology that can be used to assess the
compliance of a target webserver against various agency-issued guidelines, and (iv) describe the
work done on prototyping it.

87

6.1 Banking Standards

Banking activities are regulated on multiple levels and by various institutions, ranging from
individual states to supranational organizations. In past years, we have decided to investigate how
two banking-related standards, PSD2 [Com15] and PCI-DSS [PCI18], regulate communication
security.

6.1.1 PSD2

The European Directive 2015/2366, also known as the revised Payment Services Directive (ab-
breviated as PSD2), makes it mandatory for banks and other entities that manage the financial
accounts of their customers to open and make easily accessible their information to third party
service providers in a secure manner, with the customer’s consent. In order for banks to comply
with PSD2, they must adhere to the Regulatory Technical Standards (RTS) [Com17], which es-
tablish security requirements (such as the use of strong customer authentication) and guidelines
for open interfaces. Section 2 of the RTS contains the following security-related articles:

• Article 30 - General obligations for access interfaces

– the integrity and confidentiality of the personalized security credentials and of au-
thentication codes transmitted by or through the payment initiation service provider
or the account information service provider shall be ensured;

– Account Servicing Payment Service Provider (ASPSP) shall ensure that their inter-
faces follow standards of communication which are issued by international or Euro-
pean standardization organizations;

– Competent authorities shall ensure that ASPSP comply at all times with the obliga-
tions included in these standards in relation to the interface(s) that they put in place;

• Article 34 - Certificates

– For the purpose of identification [...] Payment Service Provider (PSP) shall rely on
qualified certificates for electronic seals as referred to in Article 3(30) of Regulation
(EU) No 910/2014 or for website authentication as referred to in Article 3(39) of that
Regulation;

• Article 35 - Security of communication session

– ASPSP, PSP issuing card-based payment instruments, Account Information Service
Provider (AISP) and Payment Initiation Service Provider (PISP) shall ensure that,
when exchanging data by means of the internet, secure encryption is applied between

88

the communicating parties throughout the respective communication session in order
to safeguard the confidentiality and the integrity of the data, using strong and widely
recognized encryption techniques.

6.1.2 PCI-DSS

The Payment Card Industry Data Security Standard (PCI DSS) - created by Visa, MasterCard,
Discover, and American Express in 2004 [Tea19] - is a widely accepted set of policies and
procedures designed to optimize the security of credit, debit, and cash card transactions and
protect cardholders’ personal information from misuse. Its primary document, “Requirements
and Security Assessment Procedures”, contains a list of 12 requirements that must be met for a
system to be deemed compliant. Each requirement is divided into sub-requirements that describe
the testing procedure and the rationale for the requirement (e.g., intent or security objective). As
the set of requirements is very extensive and covers various aspects of a company’s assets, the
following TLS-related requirements were extracted:1

• Requirement 1: Install and maintain a firewall configuration to protect cardholder data

– Identify insecure services, protocols, and ports allowed; and verify that security fea-
tures are documented for each service;

• Requirement 2: Do not use vendor-supplied defaults for system passwords and other secu-
rity parameters

– Identify any enabled insecure services, daemons, or protocols and interview person-
nel to verify they are justified per documented configuration standards;

– Inspect configuration settings to verify that security features are documented and
implemented for all insecure services, daemons, or protocols;

– Examine the system configuration standards to verify that common security parame-
ter settings are included;

• Requirement 4: Encrypt transmission of cardholder data across open, public networks

– Select and observe a sample of inbound and outbound transmissions as they occur;

– Examine keys and certificates to verify that only trusted keys and/or certificates are
accepted;

– Examine system configurations to verify that the protocol is implemented to use only
secure configurations and does not support insecure versions or configurations;

1Even though PCI-DSS v4.0 was published in March 2022, we refer to v3.2.1, the most recent version available
when conducting this analysis. PCI-DSS v3.2.1 will remain active for two years after v4.0 is published.

89

– Examine system configurations to verify that the proper encryption strength is imple-
mented for the encryption methodology in use;

– For TLS implementations, examine system configurations to verify that TLS is enabled
whenever cardholder data is transmitted or received;

• Requirement 6: Develop and maintain secure systems and applications

– For public-facing web applications, address new threats and vulnerabilities on an
ongoing basis and ensure these applications are protected against known attacks by
either of the following methods [...];

• Requirement 11: Regularly test security systems and processes.

– Run internal and external network vulnerability scans at least quarterly and after any
significant change in the network:

– Review output from the four most recent quarters of external vulnerability scans and
verify that four quarterly external vulnerability scans occurred in the most recent
12-month period.

6.1.3 Discussion

As PSD2 articles cannot be implemented as a set of technical checks, the directive creates a gray
area between an ideal security level and a webserver’s actual configuration. The stated safety
requirements are ambiguous due to the absence of specific security threshold indications. In ad-
dition, the articles’ legalese language makes it easy for system administrators to make subjective
configuration choices that cannot be supported or discouraged by third parties.

In contrast to PSD2, PCI-DSS provides a document mapping the “Requirements and Security
Assessment Procedures” to the NIST Cybersecurity Framework [NIS22] and other standards.
This does not, however, facilitate the translation of each requirement into a technical test (as it
does not, for example, map to SP 800-52 Rev. 2, a set of guidelines that will be introduced in
the next section). We decided to abandon these standards in favor of national TLS recommenda-
tions for this reason. While their impact diminishes, they can be translated into defined checks,
bringing the work closer to our previous field of work.

6.2 National TLS Guidelines

TLS guidelines are documents that establish a level of security by enumerating a list of require-
ments. These requirements specify how a deployment should be configured to avoid insecure

90

Table 6.1: RFC 2119 requirement levels meaning
Keyword Meaning

MUST / REQUIRED / SHALL Absolute requirement
MUST NOT / SHALL NOT Absolute prohibition
RECOMMENDED / SHOULD There may exist valid reasons to ignore a particular item
NOT RECOMMENDED / SHOULD NOT There may exist valid reasons when the particular behav-

ior is acceptable
MAY / OPTIONAL Truly optional

configurations. Theoretically, each guideline can regulate every configurable element of a web-
server, indicating a level of requirement for each element (e.g., for the NIST guideline the TLS
version 1.2 MUST be supported). The level is assigned by considering published standards, dep-
recated features, and known attacks.

To comply with a given guideline, a system administrator must examine each element covered
by the set of requirements and verify that its value corresponds to the expected value (e.g., if the
deployment has to be made compliant with the French guidelines, the Heartbeat TLS extension
SHOULD be disabled).

We manually reviewed five technical guidelines issued by four states (i.e., US, Germany, France
and Italy):

NIST SP 800-52 Rev. 2 The United States’ SP 800-52 Rev. 2 [NIS19b], released in August
2019, is the most recent revision of a special publication that was first issued in 2005
[CEFR05]. It recommends the selection and configuration of TLS implementations em-
ploying Federal Information Processing Standards [NIS19a] and NIST-recommended cryp-
tographic algorithms. In addition, it specifies its recommendations for government-only
and citizen-facing applications and offers guidance on TLS extensions and certificates with
security implications.

It uses specific keywords associated with RFC 2119 [Bra97], a technical standard that de-
fines the meaning of a set of words in the context of IETF documents (see Table 6.1).
The RFC defines two absolute requirements that cannot be ignored (i.e. MUST and MUST
NOT), two relative requirements that can be ignored if the context of their use requires it
(i.e. SHOULD and SHOULD NOT), and a fifth requirement that expresses complete option-
ality;2

BSI TR-02102-2 and TR-03116-4 German BSI TR-02102-2 ver.2022-01 [BSI22b] and TR-
03116-4 [BSI22a], both of which were last updated in January 2022 and existing since

2While RFC 8174 [Lei17] specifies that only all capital words have the meaning specified by RFC 2119, this
chapter will indiscriminately use uppercasing and sentence casing.

91

Table 6.2: TLS protocol compliance across guidelines (excerpt)
NIST (user-facing) BSI (user-facing) ANSSI AgID

TLS 1.0 Not recommended Not recommended Must not Not recommended
TLS 1.1 Not recommended Not recommended Must not Not recommended
TLS 1.2 Must Recommended Optional Must
TLS 1.3 Recommended Recommended Recommended Must

2020 [BSI20], are two documents that cover roughly the same number of features as SP
800-52, while maintaining the separation between federal and citizen-facing applications.
The first document (TR-02102-2) provides general recommendations for the use of TLS
cryptographic protocol, while the second (TR-03116-4) narrows them in the case of au-
thentication within federal projects;

ANSSI 1.2 French ANSSI 1.2 [ANS20], published in March 2020, is the second version of the
French security recommendations for TLS use (first published in 2016 [ANS16]). ANSSI,
unlike US and German guidelines, defines a set of “target” recommendations referred to as
Rx. Any deviation from these recommendations will result in a Rx-, a configuration with
a reduced level of security.

AgID ver.2020-01 AgID ver.2020-01 [Age20] is the first document covering TLS guidelines
issued by the technical agency of the Presidency of the Italian Council of Ministers, pub-
lished in November 2020.3 It is intended to provide general guidance on the proper use
of the TLS suite and heavily relies on a second set of guidelines, the Mozilla recommen-
dations for server-side TLS v5.6 [Moz20]. In fact, whereas AgID itself only regulates the
protocol version and a subset of the available TLS extensions, the remaining features (e.g,
ciphers, curves, signatures) are covered by Mozilla guidelines. Mozilla defines three “Pro-
files” based on the amount of legacy compatibility provided by the webserver: Modern,
Intermediate and Old.

Furthermore, Italian guidelines employ a translated set of the RFC 2119-defined keywords,
enabling a more precise comparison and definition of the requirement levels.

6.3 Challenges

At the international level, NIST guidelines are regarded as the primary reference standard on
the subject of security. In an EU context, one must take into account the possibility that each

3We met with AgID in March 2021 to discuss potential inconsistencies in the guidelines. The meeting’s outcome
will be discussed in Section 7.4.

92

member state has its own recommendations, in its own language and with potentially different
approaches when it comes to their application.

Furthermore, the existence of multiple binding guidelines may result in contradictory require-
ments when a system administrator attempts to comply with multiple sets of requirements. Ob-
serving Table 6.2, for instance, reveals how the acceptance level of TLS 1.1 varies across multiple
authorities. In particular, its use may be permitted in the United States (in certain cases) but is
strictly prohibited on French websites. What is the process for making a webserver compliant in
both states? We must adhere to the requirements levels established by both agencies. The use
of TLS 1.1 is considered both an absolute prohibition and acceptable under certain conditions;
which requirement should “win”? And what if we must manage two contradictory requirement
levels (e.g., SHOULD and SHOULD NOT)?

This is not only of academic interest, but may also have implications for the creation of solutions
for the entire single market. We examined the state-of-the-art in compliance analysis tools to
determine which tools are currently available to assist with addressing these issues, and then we
developed a methodology capable of facilitating the implementation of the following use cases:

Single Guideline

• compare-to-one: compare an already existing configuration against a single guideline.
The output consists of a report that highlights the differences between the current and the
target configuration and guides the system administrator towards closing the gap;

• generate-after-one: generate a working configuration compliant with a single guideline;

Multiple Guidelines

• compare-to-many: similar to the compare-to-one but considering multiple guidelines;

• generate-after-many: similar to the generate-after-one but considering multiple guide-
lines.

The functionality of these use cases is contingent upon two conditions: the ability to translate all
requirements to a common set of keywords and the capacity to compare different requirements in
order to establish an ordering. The first condition can be satisfied by utilizing RFC 2119, the doc-
ument on which the majority of the guidelines under consideration base their recommendations
(see Section 6.2). While NIST and AgID use these keywords, ANSSI and BSI do not, therefore
we must find a way to align their recommendations with RFC keywords.

Furthermore, while the definitions for each keyword is exhaustive and unambiguous, the RFC
does not define any binary relationship between them, making it more difficult to satisfy the sec-
ond condition. This necessitates defining an ordering among the available keywords (discussed
in Section 6.5.3).

93

Figure 6.1: sslyze compliance output (excerpt)

6.4 Related Work: Tools for Compliance Analysis

There are numerous online and downloadable tools whose features can assist system administra-
tors in assessing the webserver’s compliance. Here are the advantages and disadvantages of each
one:

• sslyze, already introduced in Section 3.1 is a downloadable tool for determining whether
a server employs strong encryption settings and is vulnerable to a subset of known TLS
attacks. Since version 5.0.0 (released in November 2021), sslyze can compare a server’s
configuration (only) to Mozilla’s recommended configurations [Moz20]. The output (see
Figure 6.1) is a bulleted list containing a simple list of unmet requirements;

• TLS Profiler [Fet21] is an analysis tool based on sslyze that can compare the config-
uration of a server with Mozilla’s profiles. While TLS Profiler is based on sslyze, its
implementation predates the latter, as its development began in September of 2019. The
tool, which can be downloaded or utilized as a web application, generates a list of bul-
let points highlighting the differences between the current Mozilla profile and the desired
profile. The list is comparable to the one shown in Figure 6.1, but each divergent setting
is displayed separately from its class; for instance, even though cipher suites are typically
configured in bulk, TLS Profiles displays a bullet point for each one. Regardless of the
output format difference, this tool shares the same limitations as sslyze;

94

• Discovery is a free online server analyzer [Cry22a] made available by Cryptosense
[Cry22b], a company that focuses on secure cryptography deployments. It compares the
target webserver against a set of current (i.e. ANSSI [ANS20]) and outdated guidelines
(such as NIST SP 800-57 Revision 3 [BBB+12] rather than Revision 5 [Bar20], and
ECRYPT 2016 report [ECR16]). Its report is clear and concise and every detected setting
is rated on a scale from A to F. By selecting the unmet requirements, the website redirects
the user to the technical documentation. This feature can help to pinpoint the issue, but
passes the burden of understanding the issue (and related technical documentation) to the
system administrator. Moreover, while it does check against multiple guidelines, it does
not perform a cross evaluation. This deprives system administrators of a way to understand
if the evaluated webserver can, with an appropriate set of changes, become compliant with
more than one guideline at the same time;

• testssl.sh is a command-line tool already introduced in 3.1. A March 2016 issue on
GitHub proposed the addition of a compliance check against NIST SP 800-52. The pro-
posed changes are currently on hold because a proper integration will require a greater
number of modifications [Coo21];

• TLS-Scanner is a research tool developed by Ruhr-Universität Bochum to assist in eval-
uating TLS deployments [Ruh22]. With the release of version 4.2.0 in June 2022, TLS-
Scanner gained the capability to compare a webserver configuration against NIST and
BSI-issued guidelines, SP 800-52r2 and TR02102-2, respectively. At the time of writing,
the compliance checks only consist of a counter that shows the number of passed, skipped
and failed checks:

--|Guideline BSI TR-02102-2
Passed: 18
Skipped: 0
Failed: 6
Uncertain: 0

--|Guideline NIST SP 800-52r2
Passed: 25
Skipped: 6
Failed: 8
Uncertain: 0

Without a way to understand which tests have failed, it is impossible for a system admin-
istrator to understand which requirement has not been met and, consequently, how to fix
it.

95

Figure 6.2: TLS-Scanner output fragment

However, it is possible to increase the level of verbosity and receive more information
by using the ALL/DETAIL reporting levels, although this is not explicitly stated in the
readme. Figure 6.2 shows the extended output and much more precise indications of which
elements are currently available but must be modified to achieve compliance.

• Immuniweb SSL Security Test is an online test suite [Imm22] capable of perform-
ing PCI-DSS 3.2.1 (see Section 6.1) and NIST compliance checks, among other security-
related analyses. It labels each detected cipher and protocol, indicating whether it is part
of a good configuration or a major compliance issue. It does not describe how to correct
the detected misconfigurations, but it is more comprehensive than the previously described
analyzers;

• Observatory [Moz22a] is a Mozilla project designed to help system administrators con-
figure deployments securely. Specifically, the “TLS Observatory” tab makes use of the
Immuniweb engine and displays a summary of the proximity to a Compatibility Level,
which is another name for the TLS profiles defined in [Moz20]. However, if the configu-
ration deviates significantly from a Profile, the tool returns “Non-compliant”. This makes
it impossible to determine how much the detected configuration deviates from the target
configuration and, consequently, provides no indication of how to close the gap;

96

Table 6.3: TLS extensions recommendations across guidelines (excerpt)
NIST BSI ANSSI AgID

extended master secret Must Recommended Recommended Not mentioned
heartbeat Not mentioned Not recommended Not recommended Not recommended
post handshake auth Optional Not mentioned Optional Must not
renegotiation info Must Recommended Recommended Must
supported groups Must Recommended Recommended Not mentioned
truncated hmac Optional Not recommended Not recommended Not mentioned

• SSL Configuration Generator [Moz22b] developed by Mozilla. It is the only tool
capable of generating working configurations for a large number of webservers, taking
into account the TLS library version, the selected profile (i.e. Modern, Intermediate
and Old), and additional configurable elements. The configuration includes blanks for
the system administrator to fill in with platform-specific settings (e.g., certificate path,
redirection policies).

While there exist numerous tools capable of performing compliance-related checks, each one
is specialized for specific use cases. In addition, they frequently only compare against a single
guideline, and the reports frequently lack clarity because they do not specify which changes
are required (e.g., MUST) and which offer some degree of flexibility (e.g., RECOMMENDED). In
addition, none of the presented tools cover compliance with the numerous guidelines outlined in
the preceding section, which are highly recommended for transnational services.

6.5 Compliance Methodology

In this section, we describe the process of collecting a set of recommendations from multiple
agency-issued guidelines, including the mapping that was performed to make them comparable
and homogeneous. In addition, we will introduce a methodology that can be used to assess the
compliance of a target webserver against a single or multiple guidelines, thereby enabling the
implementation of the use cases described in Section 6.3

6.5.1 Recommendations Collection

To map all recommendations extracted from various guidelines into a common set of keywords,
we had to analyze each document, manually parse their content (as all of them, with the exception
of Mozilla’s, are not available in a machine-readable format), and then map it using RFC 2119
keywords.

97

Table 6.4: Supported groups recommendations across guidelines (excerpt)
NIST BSI (federal applications) ANSSI Mozilla (modern)

secp256r1 / P-256 Recommended Must Recommended Recommended
secp384r1 / P-384 Recommended Recommended Recommended Recommended
ffdhe2048 Optional Recommended Optional Not recommended
brainpoolP256r1 Not mentioned Must Optional Not recommended
x25519 Not mentioned Not mentioned Optional Recommended

The extraction of recommendations from NIST’s and AgID’s guidelines was straightforward
because their documents already used standard keyword references (see Section 6.2). As the
structure of BSI documents is comparable to that of the aforementioned ones, we decided to
use the official English translation of TR-02102-2 [BSI22c] and map its RFC-like keywords to
the standard ones. Due to its extensive use of adjectives that a non-native speaker cannot map
directly, the ANSI guideline was the most challenging to map. To standardize the keyword set
for this document type, we used the Discovery’s report (see Section 6.4) in conjunction with our
previously mapped guidelines to select the most precise keyword. The set of extracted recom-
mendations can be divided into groups regulating the following elements:

• protocols (see Table 6.2);

• cipher suites;

• TLS extensions (see Table 6.3);

• supported groups (see Table 6.4);

• signature algorithms;

• hash algorithms;

• certificate signatures;

• key lengths;

• various certificate details.

The information extracted from the guidelines constitutes our recommendations dataset; for each
configurable element, it specifies the level of requirements mandated by each agency-issued
guideline. The full set of machine-readable recommendations, compiled by reviewing NIST,
BSI, ANSSI, AgID and Mozilla guidelines, is made available in [Man23] for external verifi-
cation and crowdsourcing. With this material, we overcome one of the major limitations of
the guidelines, namely a lack of consistent notation and structuring, and are able to propose a
methodology to perform compliance analysis against a single guideline or multiple guidelines.

98

6.5.2 Single Guideline

Table 6.5: Single Guideline - Compliance evaluation

Requirement level
Compare-to-one Generate-after-one

Element detected Element missing Include element?

Must / Required / Shall Do nothing ERROR: enable Yes
Must not / Shall not ERROR: disable Do nothing No
Recommended / Should Do nothing ALERT: enable Yes
Not recommended / Should not ALERT: disable Do nothing No
May / Optional Do nothing Do nothing No
Not explicitly mentioned Guideline-dependent Do nothing No

When a single guideline is considered, the act of determining if a deployment is compliant with
a given set of requirements (compare-to-one scenario) and the process of generating a compli-
ant configuration (generate-after-one scenario) can be accomplished by scrolling through each
requirement and acting according to the requirement level.

In Table 6.5, we propose a methodology defining how to act in these two use cases. The first col-
umn indicates the requirement level an agency assigns to a given element, such as the presence
of a specific extension or the availability of a given protocol or cipher; the next two columns
describe how to behave if a given element is detected or absent, respectively, in the target con-
figuration; and the fourth column describes how to generate a new configuration compliant with
a target standard. Consider, as an example, a fragment of the compare-to-one scenario that only
takes into account protocol compliance. If a system administrator wishes to make his or her
deployment NIST-compliant (see the second column of Table 6.2), and assuming that the web-
server already supports both TLS 1.1 and 1.3, our methodology would direct the administrator
to:

• disable TLS 1.1 unless there exists a valid reason that requires it to be enabled (i.e. protocol
NOT RECOMMENDED);

• enable TLS 1.2 as it MUST be available;

• keep TLS 1.3 enabled as it is RECOMMENDED.

Theoretically, each guideline can regulate every configurable aspect; however, this is not always
the case, and it may occur that a particular element is enabled in a configuration but is not
governed by the guideline. To address this edge case, we designed a specific behavior that
operates as follows: if the element is not explicitly covered, but the document contains a policy
for such circumstances, the policy is applied. Otherwise, its availability should be evaluated on
an individual basis. The following are the observed policies for non-covered elements:

99

NIST all cipher suites not explicitly mentioned MUST NOT be used;

ANSSI all cipher suites not explicitly mentioned SHOULD NOT be used;

MOZILLA all protocols not explicitly mentioned MUST NOT be used.4

In the generate-after-one scenario, the process of building a configuration can be handled by list-
ing all the MUST and RECOMMENDED guideline requirements. With NIST as the target guideline,
a newly generated configuration file would only enable TLS1.2 and TLS 1.3.

6.5.3 Multiple Guidelines

Comparing multiple guidelines is not straightforward because RFC 2119 provides no relationship
between the requirements, making it impossible to compare two of them directly without defining
a consistent methodology.

With the aim to close this gap and enable the possibility to check for compliance against mul-
tiple guidelines (compare-to-many and generate-after-many use cases), we define two partially
ordered sets (posets). A poset P = (S,≺) consists of a set S and a binary relation ≺ that orders
certain pairs of elements - i.e., a partial order. The partial order relation is a homogeneous rela-
tion that is transitive and antisymmetric. A pair of elements a, b ∈ P is comparable if a ≺ b or
b ≺ a. The relation a ≺ b can be read as “a precedes b”, and similarly b ≻ a can be read as “b
succeeds a”, where ≻ is the dual of ≺.

Our sets S are composed of the keywords defined by RFC 2119 while the orderings can be
schematically summarized as follows:

• Security wins

– MUST ≻ RECOMMENDED ≻ OPTIONAL

– MUST NOT ≻ NOT RECOMMENDED ≻ OPTIONAL

– NOT RECOMMENDED ≻ RECOMMENDED

• Legacy wins

– MUST ≻ RECOMMENDED ≻ OPTIONAL

– MUST NOT ≻ NOT RECOMMENDED ≻ OPTIONAL

– RECOMMENDED ≻ NOT RECOMMENDED

4Policy inferred from [Moz22b].

100

MUST NOT

RECOMMENDED

MUST

NOT RECOMMENDED

OPTIONAL

(a) Security wins.

MUST NOTMUST

NOT RECOMMENDED

OPTIONAL

RECOMMENDED

(b) Legacy wins.

Figure 6.3: Defined partial orders

We decided to define two distinct posets because indiscriminately considering any RECOMMENDED
requirement to be stronger than a NOT RECOMMENDED one (i.e. RECOMMENDED ≻ NOT
RECOMMENDED) could result in extremely strict configurations, while doing the opposite (i.e.
NOT RECOMMENDED≻ RECOMMENDED) would result in configurations containing insecure or
deprecated features. By developing two options, we enable a configuration to reflect the system
administrator’s particular preferences. The proposed orders can also be represented by Hasse
diagrams (see Figure 6.3), graphical representations in which every comparable element of the
set is connected to another using a segment that indicates a relation. Hasse diagrams have an
implied upward orientation; therefore, if x ≺ y, x appears below y in the drawing; for instance,
in the Hasse diagram illustrating the Security wins approach, OPTIONAL appears lower than
RECOMMENDED because OPTIONAL≺RECOMMENDED.

In both orders, OPTIONAL is the least element as it precedes all other elements. This means
that, when compared to any element with a higher position, the OPTIONAL recommendation is
ignored. Meanwhile, MUST and MUST NOT are the maximal elements, as they succeed all other
elements.

MUST and MUST NOT are not part of the defined ordering because they are both absolute re-
quirements; as a result, they cannot be objectively compared, and there is no segment connecting
them in Figure 6.3. Considering these guidelines, no evaluation of a requirement can result in a
MUST vs. MUST NOT comparison. To make our methodology future-proof and aid in the man-

101

Figure 6.4: Comparison approaches

agement of such scenarios, we introduce the concept of a custom guideline: this can be used to
compare an organization’s security policy, or to narrow an existing guideline by incorporating
additional threat assumptions. To provide a consistent method for managing multiple guidelines
while accounting for any possible comparison, we propose the following method:

Order wins the user explicitly chooses which authority should take precedence when comparing
their set of recommendations. By doing so, the first authority’s decisions on MUST and
MUST NOT requirements directly reflects on the final output, ignoring the second authority
choice.

Figure 6.4 illustrates its application for a subset of possible cases. Using TLS 1.3 as an example,

102

Figure 6.5: Compliance module architecture

its MUST requirement level would lose to a MUST NOT if it were placed second, but it would
win if it were placed first.

In the event that an element is not mentioned in the guideline, we extend the methodology out-
lined in Section 6.5.2 and treat any missing requirement level as OPTIONAL. Thus, the element
not covered by the guideline cannot override the defined one, but it is still considered in spe-
cific edge cases, such as when a non-covered element appears in a configuration (compare-to-
many scenario) but neither guideline covers it.

6.6 Prototyping

To facilitate the adoption of the proposed methodology in the real world, we developed mul-
tiple prototypes incorporating various technologies and approaches. The goal is to release a
compliance-checking module for TLSAssistant v2 that includes an internal database containing
formalized set requirements extracted from the reviewed guidelines (see Figure 6.5). On each
run, the user can either

• provide an URL or configuration file. The module compares the current state of each
configurable element and returns a set of actionable hints to make the webserver compliant
(compare-to-one and compare-to-many scenarios);

• specify a target webserver (i.e. Apache or NGINX) and a set of additional constraints.

103

Table 6.6: SAT solvers evaluation
Solver Last release AllSAT Unsat-core

Boolector [Vv.22a] May 2021 No No
CVC4 [Vv.21] May 2021 No Yes
MathSAT [Fon22] November 2022 Yes Yes
PicoSAT [Joh16] January 2016 No Yes
Yices 2 [SRI22] October 2021 No Yes
Z3 [Mic22b] September 2022 Yes Yes

The module generates a configuration file that can be used to deploy an out-of-the-box
compliant webserver (generate-after-one and generate-after-many scenarios).

The sections that follow will describe the technologies considered when designing the first two
prototypes and two reference scenarios demonstrating their potential application.

6.6.1 SAT

SAT solvers were the first technology we attempted to implement when designing our first com-
pliance analysis prototype.

6.6.1.1 Background

A SAT solver is an algorithm capable of determining whether there exists a solution that satisfies
a given Boolean formula (i.e., a formula containing binary variables connected by logical rela-
tions). Specifically, the solver returns SAT (satisfiable) if it discovers a combination of variables
that can satisfy the formula, and UNSAT (unsatisfiable) if it demonstrates that no such combi-
nation exists. If the formula can be satisfied, the solver returns a Model containing the boolean
value of each variable that satisfies it. In addition, some SAT solvers offer the AllSAT and
Unsat-core features. The former returns the entire set of Models that satisfy a given formula,
whereas the latter, in addition to declaring the overall formula as Unsatisfiable, returns a minimal
subset of constraints that, if removed, makes the formula satisfiable.

6.6.1.2 Prototyping Work

We compared the state-of-the-art in terms of SAT solvers in order to find the one that best met
our necessities (i.e., availability of the AllSAT and Unsat-core features as we were not de-
manding on the performance side). We were especially interested in these two features because

104

their automation would have facilitated the integration process. In particular, the AllSAT output
can be used to generate all possible configurations beginning from a given set of constraints (a
combination of extracted recommendations and system administrator preferences), providing as
output a suggested configuration and possible alternatives (generate-after-one and generate-after-
many cases). Instead, the Unsat-core output would have automatically identified the config-
uration features that rendered a webserver non-compliant, enabling us to easily generate an ac-
tionable output describing configuration changes (compare-to-one and compare-to-many cases).

pySMT [Vv.22b], the Python library we decided to use as an abstraction layer, supported all of
the evaluated solvers. Z3 and MathSAT were the tools who stood out from the comparison (see
Table 6.65). We preferred MathSAT because the research unit that created it is located in the
same research foundation as us, making it easier to obtain direct support.

However, the use of a SAT solver for compliance presented an unexpected set of difficulties.
Initially, the integration of SAT solver in a hybrid scenario (i.e., SAT constraints within a Python
script) made debugging difficult, and the absence of adequate documentation for pySMT con-
tributed to the overall slowness of implementation. In addition, the conversion of the method to
compare against single guidelines (see Table 6.5) into dynamic boolean formulas proved to be
more difficult, verbose and time-consuming than anticipated. Listing 6.1 shows a fragment of
the code with lines 8-17 defining the compliance rule (expressed on line 16). In light of these
considerations, we decided to move away from SAT solvers in favor of other methods that would
provide an equally potent comparison with a shorter development time.

1 d e f t l s r e q u i r e m e n t (s e l f , s c a n r e s u l t s t l s) :
2 ””” AgID r e q u i r e m e n t 2 . 1
3 [MUST] Use TLS 1 . 2 o r h i g h e r v e r s i o n s
4 [SHOULD] R e j e c t TLS v e r s i o n s p r i o r t o 1 . 2
5 ”””
6 s o l v e r = S o l v e r (name=” msat ”)
7

8 s h o u l d n o t u s e p r o t o c o l s = [
9 Not (s e l f . t l s v e r s i o n s [”SSLv2”]) ,

10 Not (s e l f . t l s v e r s i o n s [”SSLv3”]) ,
11 Not (s e l f . t l s v e r s i o n s [”TLSv1 . 0 ”]) ,
12 Not (s e l f . t l s v e r s i o n s [”TLSv1 . 1 ”]) ,
13]
14

15 m u s t u s e p r o t o c o l s = [s e l f . t l s v e r s i o n s [”TLSv1 . 2 ”] , s e l f . t l s v e r s i o n s [”
TLSv1 . 3 ”]]

16 # c o m p l i a n c e r u l e : (! s s l 2 && ! s s l 3 && ! t l s 0 && ! t l s 1) && (t l s 2 | | t l s 3)
17 c o m p l i a n c e r u l e = And (And (* s h o u l d n o t u s e p r o t o c o l s) , Or (*

m u s t u s e p r o t o c o l s))
18

19 s o l v e r . a d d a s s e r t i o n (c o m p l i a n c e r u l e)
20 f o r p r o t o c o l i n s c a n r e s u l t s t l s : # add each d e t e c t e d c o n s t r a i n t

5Since our first comparison on May 2021, CVC4 got succeeded by cvc5 but its evaluation is outside our scope.

105

21 s o l v e r . a d d a s s e r t i o n (I f f (s e l f . t l s v e r s i o n s [p r o t o c o l] , Bool (True)))
22 i f s o l v e r . s o l v e () :
23 p r i n t (” S u g g e s t e d c o n f i g u r a t i o n : ”)
24 f o r p r o t o c o l i n s e l f . t l s v e r s i o n s :
25 v a l u e = (
26 ”DISABLED”
27 i f s o l v e r . g e t v a l u e (s e l f . t l s v e r s i o n s [p r o t o c o l]) . i s f a l s e ()
28 e l s e ”ENABLED”
29)
30 p r i n t (f ”\ t { p r o t o c o l } = { v a l u e }”)
31 e l s e :
32 p r i n t (”UNSAT”)

Listing 6.1: Protocol compliance with a SAT solver

6.6.2 JSON Schema

1 {
2 ” p r o t o c o l s ” : [
3 ”SSLv2” ,
4 ”SSLv3” ,
5 ”TLSv1 . 2 ” ,
6 ”TLSv1 . 3 ”
7] ,
8 ” c i p h e r s 3 ” : [
9 ” TLS AES 128 CCM 8 SHA256 ” ,

10 ”TLS AES 128 GCM SHA256” ,
11 ”TLS AES 256 GCM SHA384” ,
12 ”TLS CHACHA20 POLY1305 SHA256”
13] ,
14 ” c i p h e r s 2 ” : [
15 ”ECDHE−ECDSA−AES256−GCM−SHA384” ,
16 ”ECDHE−RSA−AES256−GCM−SHA384” ,
17 ”ECDHE−ECDSA−CHACHA20−POLY1305”
18] ,
19 ” c e r t i f i c a t e s i g n a t u r e s ” : [
20 ”ECDSA (P −256) ”
21] ,
22 ” t l s c u r v e s ” : [
23 ” X25519 ”
24] ,
25 ” d h p a r a m e t e r s i z e ” : 2 0 4 8 ,
26 ” h s t s m a x a g e ” :63072000 ,
27 ” c e r t i f i c a t e l i f e s p a n ” : 9 0 ,
28 ” c i p h e r p r e f e r e n c e ” : ” c l i e n t ” ,
29 ” s e c u r e r e n e g o t i a t i o n u s e ” : t r u e ,
30 ” l e g a c y r e n e g o t i a t i o n ” : f a l s e ,

106

31 ” c l i e n t i n i t i a t e d r e n e g o t i a t i o n ” : f a l s e ,
32 ” pos t −handshake − a u t h e n t i c a t i o n ” : t r u e ,
33 ” c o m p r e s s i o n u s e ” : f a l s e ,
34 ” h e a r t b e a t − e x t e n s i o n − use ” : f a l s e
35 }

Listing 6.2: JSON instance describing a server’s configuration

JSON Schema is a declarative language for validating and annotating JSON documents [AWH].
It specifies a format for describing the structure of JSON data, including how a document should
appear, how to extract data from it, and how to interact with it. Schemas may be expanded
through the definition of additional vocabularies or, less formally, through the definition of addi-
tional keywords outside of any vocabulary.

Validation of JSON Schema imposes constraints on the structure of instance data [AWD]. If all
of the instance’s data satisfy all of the asserted constraints, the instance is valid according to the
schema. This validation resembles the evaluation we attempted to replicate using SAT solvers
for compliance analysis (see Section 6.6.1). Therefore, we map the required concept to the JSON
schema and utilize its functionality to identify “invalid data” (i.e., the set of unmet requirements).
Specifically, we created a JSON instance that mimics a webserver configuration (see Listing 6.2)
and a schema that describes the structure expected by a specific guideline (see Listing 6.3). Each
protocol found in the JSON instance that does not match the list provided on lines 7-14 of the
schema will be reported as “invalid data” Consequently, the invalid data set will correspond to
the Unsat-core exported by a solver. Only MUST NOT requirements are addressed by the
schema’s current structure. It will therefore require an additional evaluation step to refine its
results and account for non-absolute keyword phrases (e.g., RECOMMENDED).

The JSON Schema prototyping is currently capable of comparing the provided instance to the
AgID specification and generating a report indicating which parts of the webserver configuration
must be modified to achieve compliance (compare-to-one scenario). The prototype can also
generate a simple list containing the AgID-required elements (generate-after-one scenario). This
needs to be converted to webserver-specific language before it can be used as a configuration file.

1 {
2 ” $ i d ” : ” h t t p s : / / example . com / p e r s o n . schema . j s o n ” ,
3 ” $schema ” : ” h t t p s : / / j son −schema . o rg / d r a f t /2020 −12/ schema ” ,
4 ” t i t l e ” : ”AgID I n t e r m e d i a t e schema ” ,
5 ” t y p e ” : ” o b j e c t ” ,
6 ” p r o p e r t i e s ” :{
7 ” p r o t o c o l s ” :{
8 ” t y p e ” : ” a r r a y ” ,
9 ” i t e m s ” :{

10 ”enum” : [
11 ”TLSv1 . 2 ” ,
12 ”TLSv1 . 3 ”
13]

107

14 } ,
15 ” d e s c r i p t i o n ” : ” The l i s t o f a v a i l a b l e p r o t o c o l s . ”
16 } ,
17 ” s e c u r e r e n e g o t i a t i o n u s e ” :{
18 ” t y p e ” : ” b o o l e a n ” ,
19 ” c o n s t ” : t r u e ,
20 ” d e s c r i p t i o n ” : ” Se cu r e r e n e g o t i a t i o n use . ”
21 } ,
22 ” l e g a c y r e n e g o t i a t i o n ” :{
23 ” t y p e ” : ” b o o l e a n ” ,
24 ” c o n s t ” : f a l s e ,
25 ” d e s c r i p t i o n ” : ” Legacy r e n e g o t i a t i o n . ”
26 } ,
27 ” c l i e n t i n i t i a t e d r e n e g o t i a t i o n ” :{
28 ” t y p e ” : ” b o o l e a n ” ,
29 ” c o n s t ” : f a l s e ,
30 ” d e s c r i p t i o n ” : ” Accept c l i e n t − i n i t i a t e d r e n e g o t i a t i o n . ”
31 } ,
32 ” pos t −handshake − a u t h e n t i c a t i o n ” :{
33 ” t y p e ” : ” b o o l e a n ” ,
34 ” c o n s t ” : t r u e ,
35 ” d e s c r i p t i o n ” : ” Al lowing pos t − handshake a u t h e n t i c a t i o n . ”
36 } ,
37 ” c o m p r e s s i o n u s e ” :{
38 ” t y p e ” : ” b o o l e a n ” ,
39 ” c o n s t ” : f a l s e ,
40 ” d e s c r i p t i o n ” : ” Al lowing TLS c o m p r e s s i o n . ”
41 } ,
42 ” h e a r t b e a t − e x t e n s i o n − use ” :{
43 ” t y p e ” : ” b o o l e a n ” ,
44 ” c o n s t ” : f a l s e ,
45 ” d e s c r i p t i o n ” : ” H e a r t b e a t e x t e n s i o n use . ”
46 }
47 }
48 }

Listing 6.3: JSON Schema for AgID guideline (excerpt)

6.6.3 Reference Use Cases

In the following, we present two reference use cases that illustrate how the prototypes can be
used to perform a compliance analysis.

108

6.6.3.1 Local Public Administration

Consider a non-specialist system administrator tasked with deploying a TLS server for a local
Italian public administration service, thus advised to meet the AgID recommendations. Without
the assistance provided by our methodology, the system administrator will need to manually
review the AgID-issued documentation and spend time learning the technical requirements and
how to apply them by configuring the server appropriately. This process is time-consuming even
for skilled users [MCSR21a] and error-prone, which could slow down the overall creation of a
secure and compliant webserver.

Using our module, the system administrator will be able to generate a working configuration from
scratch by merely specifying the target guideline and the webserver for which the configuration
file is needed. Figure 6.6 depicts a sample of the output of this generate-after-one scenario.

6.6.3.2 European Social Media Platform

To extend the preceding real-world scenario, we can consider a hypothetical social media plat-
form built in Germany, with a pre-existing webserver that is already compliant with BSI guide-
lines, but with the intention of becoming available in France and compliant with its set of recom-
mendations. The system administrator responsible for the upgrade must become familiar with
both BSI and ANSSI guidelines and find a way to make the platform compliant in both states.

Without the methodology, the process will be time-consuming because a German speaker will
first need to learn and comprehend a French-written technical document, the structure of which
does not conform to RFC 2119 (see Section 6.2). In addition, the system administrator will need
to combine the reviewed requirements with those of the previously deployed platform, attempting
to strike a balance between both specifications. With our prototype, the system administrator will
instead run the script on the target webserver, specifying the desire to make it compliant with
both ANSSI and BSI (compare-to-many scenario; see Figure 6.7), and then follow the report to
change the configuration with minimal effort and seamless integration.

6.7 Discussion

Due to the nuances within the various documents, the process of making a webserver compliant
with standards and guidelines issued by international bodies and cybersecurity agencies can be
complex and time-consuming. We assist system administrators in completing this delicate task
by:

• manually reviewing five technical guidelines issued by four states (i.e., US, Germany,

109

Figure 6.6: generate-after-one Apache output fragment

France and Italy), extracting their recommendations into a machine-readable format, and
making them publicly available for external verification and crowdsourcing;

• defining a methodology for analyzing compliance with a single or multiple guidelines.
It can be utilized to compare an existing deployment to agency-issued guidelines or to
generate a configuration that is compliant-by-design;

• implementing the defined methodology through the creation of multiple prototypes that
incorporate various technologies. The prototyping serves as a foundation for the devel-
opment of a compliance-checking module for TLSAssistant v2 that can assist system
administrators with the configuration process.

110

Chapter 6 — An Assisted Methodology to Evaluate Security Compliance 111

Figure 6.7: compare-to-many Apache report fragment

Chapter 7

Impact on Collaborations

This chapter will focus on the scientific, technical, and social impact of a series of collaborations
that have taken place over the past three years.

7.1 eIDAS Authentication Scheme

In a joint collaboration between FBK and IPZS (acronym for “Istituto Poligrafico e Zecca dello
Stato”) [Ist], which is the Italian state printing office and mint, in 2018 we have designed and
deployed a mobile authentication mechanism that uses the Italian electronic identity card (CIE
3.0 - Carta d’Identitá Elettronica) [Minb]. The card, which is an NFC-readable plastic document,
can perform both personal identification and online authentication (exploiting a stored key pair
and related X.509 certificate). The designed infrastructure (see Figure 7.1) is composed of two
elements managing the authentication process: an Android app, called CieID [Ist], able to inter-
act with the CIE and an identity provider (IdP) that authenticates users combining a challenge-
response protocol with SAML 2.0 [Mina]. In the scenario, the user connects to a service provider
(SP) using a browser. In order to access the available services, the user needs to be authenticated
thus the SP redirects it towards the IdP that will handle the procedure. More specifically, user
authentication is performed by establishing a one-way TLS session between the IdP (server) and
the mobile application (client). Within this secure channel, the app transmits the user’s X.509
together with a message signed with the user’s private key to authenticate the user towards the
IdP.

Being the use of TLS the basic building block of the solution, any unpatched vulnerability may
compromise the entire authentication process. We subsequently performed a security assessment
of the implemented solution before its submission for the eIDAS notification [Eic]. The assess-
ment included TLSAssistant’s analysis. We discovered that the first release of the infrastructure

112

User CIE

SPServer

IdPServer

TLS

TLS

Mobile device

CieID

Browser

Figure 7.1: CIE ID infrastructure (simplified)

was prone to Lucky 13, 3SHAKE and an incorrect certificate handling on the mobile side. Af-
ter sharing the generated report with the developers, they promptly patched the two server-side
issues, replaced the mobile TLS library with a stronger one and reported back that the TLSAs-
sistant actionable report was both easy to understand and complete.

The secured authentication scheme was then submitted and notified by the European Union in
September 2019 [Par].

7.2 Sensitive SaaS Configuration

The term Software as a Service (SaaS) refers to a cloud distribution model in which the provider
offers its services via Internet. By removing the burden to install, maintain and protect the infras-
tructure from the users’ shoulders, these services appeal to big organizations. Being reachable by
web browsers, these services (e.g., used to keep track of medical data or whistleblowing) require
both data confidentiality and integrity and thus a correct TLS configuration is mandatory.

There are different types of service integration but we focus on two: the first (see Figure 7.2(a))
requires employees to contact an external website to access the company-customized service
(e.g., fbk.SERVICE.com) while the second (see Figure 7.2(b)) appears within the company
domain (e.g., SERVICE.fbk.eu) but then redirects the users to a third-party managed server.
These approaches come with the same set of benefits and threats but with different responsibil-
ities, to assess this we analyzed two different deployments of the same service used within our
organization.

In 2021, we ran TLSAssistant on two Fondazione Bruno Kessler’s internal websites. The tool
reported that both of them were prone to a series of attacks and, among these, the major threat

113

COMPANY network

 *.COMPANY.COM

COMPANY.SERVICE.COM
Web service

Web service

Web service
Client

External provider

Web service

Web Server

(a) Externally-hosted

COMPANY network

 *.COMPANY.COM

SERVICE.COMPANY.COM

Web service

Web service

Web service
Client

External provider

Web service

Web Server

(b) Externally-redirected

Figure 7.2: Examples of SaaS integrations

came from the possibility to mount a Stripping attack. An SSL Stripping attack [Mar] can break
the message confidentiality between parties. Even if the attack can only be mounted in the time
frame between a browser’s first boot and its reception of the HSTS [IET] directive, this is still an
exploitable vulnerability especially in the analyzed SaaS (as in both cases, the provided service
is only accessed once for specific operations). The suggested mitigation for this threat is the
inclusion of the website in the Chrome HSTS preload list [Goo], a set of hostnames hardcoded
within web browsers that will always be contacted only via HTTPS.

To perform a responsible disclosure, we shared each report with the respective provider and
interacted with them to streamline the mitigation process. In the case of externally hosted ser-
vices (i.e. SERVICE.com), we have seen a quick follow-up from the developers that promptly
fixed the vulnerabilities using our mitigations and started the procedure to preload HSTS. After
exchanging a few mails with the developers, we also discovered that they already used online
scanners to evaluate their TLS soundness. By integrating state-of-the-art TLS analyzers, TL-
SAssistant has proven to be able to detect and provide appropriate mitigations to a wider range
of vulnerabilities when compared to the online scanners used by the third-party company. In the
other case (i.e. SERVICE.fbk.eu), despite the same mitigations, the situation was different.
Specifically, eliminating the SSL Stripping attack was highly counter-intuitive because, being
shown under our company’s hostname, we needed to request the inclusion within Chrome’s list,
thus fixing a security flaw caused by an external SaaS.

With a growing interest toward SaaS usage, companies aim for simplicity but this may pave the
way to expose their customers to unexpected security flaws and privacy violations because of the
lack of a confidential channel. With TLSAssistant we showed that the choice of a cloud service
provider and its consequent integration must be done in an accurate manner to preemptively
protect the employees from any threat that can be involuntarily inherited.

114

Figure 7.3: Grafana output for a single host (excerpt)

7.3 Continuous Monitoring of Enterprise Infrastructures

In April 2022, thanks to the results achieved by analyzing a subset of internally deployed SaaS
(see Section 7.2), we launched an internal collaboration to incorporate TLSAssistant v2 into
the IT monitoring platform of Fondazione Bruno Kessler. After a few technical meetings to
comprehend what our tool could provide and the IT infrastructure, we agreed to extend TLSAs-
sistant v2’s output as a probe to Prometheus [Auta]. Prometheus is a monitoring system and
time series database that can collect metrics from specific targets at specified intervals, display
their results, and generate alerts when certain conditions are met. It is used in combination with
Grafana, a visualization platform that acts as a dashboard when connected to a monitoring system
like Prometheus [Lab].

The IT department suggested that we connect TLSAssistant with an output module capable of
printing the following line for each analyzed website:

tls_check{vhost=hostname_analyzed,vulnerability=Module_name} VAL

followed by the value “1” if the target webserver is vulnerable and “0” otherwise. Due to TLSAs-
sistant v2 modularity, the extension was written quickly and connected to Prometheus without
difficulty. A portion of a standard analysis output can be seen in Listing 7.1.

115

1 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = f r e a k } 0
2 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = h e a r t b l e e d } 0
3 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = h s t s p r e l o a d i n g } 1
4 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = h s t s s e t } 0
5 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = h t t p s e n f o r c e d } 1
6 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = log jam } 1
7 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = lucky13 } 1
8 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y = mi t zvah } 0
9 t l s c h e c k { v h o s t =REDACTED. fbk . eu , v u l n e r a b i l i t y =nomore} 0

Listing 7.1: Prometheus output module fragment

The equivalent output can be displayed in Grafana by using a view that lists all the issues detected
for a single host (see Figure 7.3) or by summing the results per analyzed host (see Figure 7.4).

7.4 Feedback on Agency-issued TLS Guidelines

AgID ver.2020-01 [Age20] is the first document covering TLS guidelines issued by the Italian
public administration, published in November 2020. We reviewed its content immediately after
its publication and discovered that it was a hybrid set of recommendations, as some of them refer
to Mozilla’s recommendations for server-side TLS. One of the suggestions drew our attention be-
cause it could have resulted in configuration inconsistencies. Section 3.1 of [Age20] references
RFC5746 [RRDO] and states that “a server SHOULD reject a client-initiated session renegoti-
ation”. The recommendation did not include Secure Client-Initiated Renegotiation, which was
developed in response to CVE-2011-1473 but is not directly mentioned in RFC5746 [MIT19].

After expressing our findings, the authors of the guideline confirmed the existence of ambiguity
and stated that its resolution would be published in a revised version of the document.

116

Chapter 7 — Impact on Collaborations 117

Figure 7.4: Grafana output summed per-host (excerpt)

Chapter 8

Conclusions and Future Work

Managing TLS configurations is a difficult task because the numerous configurable elements
have varying and significant effects on system security. System administrators - which are typi-
cally not required to have in-depth knowledge of TLS or its vulnerabilities - may not be familiar
with all of these components. This issue has been observed in the context of multiple collabo-
rations, demonstrating that it is not merely theoretical. Although numerous tools can detect the
same set of vulnerabilities, the manner in which they inform the user does not allow the user to
comprehend the repercussions of a potential attack or, more importantly, how to fix the issue in
a timely manner.

To assist system administrators and Android developers, we designed TLSAssistant. TLSAssis-
tant is an open source modular framework capable of detecting a large number of vulnerabilities.
It is based on the analysis capabilities of several cutting-edge tools. This information can be uti-
lized to generate an actionable report for the user. A report containing a list of vulnerabilities and
a guide that instructs the user on how to correct them as quickly and efficiently as possible. TL-
SAssistant is capable of dynamically loading new modules, performing custom analyses, and
integrating with third-party systems due to its modularity. To evaluate its usability and real-world
impact, we designed a study in which participants received generic and actionable TLSAssis-
tant output. We observed that mitigation hints help to patch defects in TLS configurations, by
reducing the probability of error by 30 times and the time to complete the fix by 3 times.

In addition, we have taken an important first step toward simplifying the process of making web-
servers compliant with a set of national and supranational guidelines by developing a methodol-
ogy that can direct users towards a common objective. The methodology can be used to manage
an existing deployment or to generate a new configuration that is compliant out of the box.

118

8.1 Future Work

As we move forward with TLSAssistant v2 as our new baseline, we have several future direc-
tion that we want to pursue. On one hand, we plan to further enhance our tool’s set of features
and on the other we want to extend the research topic covering tangent topic. On the TLSAs-
sistant v2 enhancement side, our main goal is to integrate the proposed compliance-analysis
methodology. To aid in identifying potential vulnerabilities and implementing necessary secu-
rity measures, we also intend to create a ”dashboard” feature that can evaluate whether the target
webserver is following the best practices on network security, such as those listed in the OWASP
cheatsheet [Tea]. This dashboard will provide an easy-to-read overview of the server’s security
status.

In our efforts to continually enhance the comprehensiveness and effectiveness of the tool, we plan
to incorporate mitigations that require a higher level of expertise to implement, such as those that
require recompilation or patching of downloadable sources. This will enable end users to patch
vulnerabilities that may require more effort. To further improve the correctness of the output,
we will integrate additional TLS analyzers with intersecting analyses, reducing the amount of
false positives and improving accuracy. Moreover, to ensure that the tool remains up-to-date and
effective, we will automatically collect the most recent vulnerabilities and implementation issues
by monitoring CVEs, mailing lists, and other similar sources.

Regarding new research directions, we intend to concentrate our efforts on PKI-related issues.
With the availability of cross-signed certificates, we plan to investigate how to correctly validate
them by examining all possible paths leading up to all available signing roots. Furthermore, we
aim to create a user-friendly yet highly customizable TLS flow library that will aid us in test-
ing webservers and TLS libraries for implementation vulnerabilities that could compromise the
security of a transmission between two parties. The library extension will also be capable of gen-
erating a human-readable message sequence chart flow that can be used to debug implementation
issues and expand the educational perspective of our work.

By incorporating these features into our tool, we aim to provide a powerful and comprehensive
solution that can assist in the evaluation and enhancement of webserver and Android app security.

119

Bibliography

[ABC+17] Luca Allodi, Silvio Biagioni, Bruno Crispo, Katsiaryna Labunets, Fabio Massacci,
and Wagner Santos. Estimating the assessment difficulty of cvss environmental
metrics: An experiment. In Tran Khanh Dang, Roland Wagner, Josef Küng, Nam
Thoai, Makoto Takizawa, and Erich J. Neuhold, editors, Future Data and Security
Engineering, pages 23–39, Cham, 2017. Springer International Publishing.

[ABF+16] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,
and Christian Stransky. You get where you’re looking for: The impact of informa-
tion sources on code security. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 289–305, 2016.

[ACMS20] Luca Allodi, Marco Cremonini, Fabio Massacci, and Woohyun Shim. Measuring
the accuracy of software vulnerability assessments: experiments with students and
professionals. Empirical Software Engineering, 25, 01 2020.

[Age20] Agenzia per l’Italia Digitale. Raccomandazioni agid in merito allo standard trans-
port layer security (tls). https://cert-agid.gov.it/wp-content/
uploads/2020/11/AgID-RACCSECTLS-01.pdf, November 2020.

[ANS16] ANSSI. Recommandations de sécurité relatives à tls. https://www.ssi.
gouv.fr/uploads/2016/09/guide_tls_v1.1.pdf, August 2016.

[ANS20] ANSSI. Recommandations de sécurité relatives à tls. https://www.ssi.
gouv.fr/uploads/2020/03/anssi-guide-recommandations_
de_securite_relatives_a_tls-v1.2.pdf, March 2020.

[AP13] N. J. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In IEEE Symposium on Security and Privacy, SP, pages 526–
540, 2013.

[Ass18] Association for Computing Machinery. Acm code of ethics and professional con-
duct. https://www.acm.org/binaries/content/assets/about/
acm-code-of-ethics-booklet.pdf, 2018.

120

https://cert-agid.gov.it/wp-content/uploads/2020/11/AgID-RACCSECTLS-01.pdf
https://cert-agid.gov.it/wp-content/uploads/2020/11/AgID-RACCSECTLS-01.pdf
https://www.ssi.gouv.fr/uploads/2016/09/guide_tls_v1.1.pdf
https://www.ssi.gouv.fr/uploads/2016/09/guide_tls_v1.1.pdf
https://www.ssi.gouv.fr/uploads/2020/03/anssi-guide-recommandations_de_securite_relatives_a_tls-v1.2.pdf
https://www.ssi.gouv.fr/uploads/2020/03/anssi-guide-recommandations_de_securite_relatives_a_tls-v1.2.pdf
https://www.ssi.gouv.fr/uploads/2020/03/anssi-guide-recommandations_de_securite_relatives_a_tls-v1.2.pdf
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-booklet.pdf
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-booklet.pdf

[Auta] Prometheus Authors. Prometheus - monitoring system and time series database.
https://prometheus.io.

[Autb] The Graphviz Authors. Graphviz. https://graphviz.org.

[AWD] Ben Hutton Austin Wright, Henry Andrews and Greg Dennis. Json schema valida-
tion: A vocabulary for structural validation of json. https://json-schema.
org/draft/2019-09/json-schema-validation.html.

[AWH] Henry Andrews Austin Wright and Ben Hutton. Json schema: A media type for
describing json documents. https://json-schema.org/draft/2020-
12/json-schema-core.html.

[Bar20] Elaine Barker. Recommendation for key management, part 1: General (re-
vision 5). https://csrc.nist.gov/publications/detail/sp/
800-57-part-1/rev-5/final, 05 2020.

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles
Smid. Recommendation for key management, part 1: General (revision
3). https://csrc.nist.gov/publications/detail/sp/800-
57-part-1/rev-3/archive/2012-07-10, July 2012.

[BCC+20] Andrea Bisegna, Roberto Carbone, Mariano Ceccato, Salvatore Manfredi, Silvio
Ranise, Giada Sciarretta, Alessandro Tomasi, and Emanuele Viglianisi. 6. auto-
mated assistance to the security assessment of api for financial services. Now
Publishers, 2020.

[BDLP+15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Alfredo Pironti, Adam Lang-
ley, and Marsh Ray. Transport layer security (tls) session hash and extended mas-
ter secret extension. https://www.rfc-editor.org/rfc/rfc7627,
September 2015.

[BDM+21] Marcus Brinkmann, Christian Dresen, Robert Merget, Damian Poddebniak, Jens
Müller, Juraj Somorovsky, Jörg Schwenk, and Sebastian Schinzel. ALPACA:
Application layer protocol confusion - analyzing and mitigating cracks in TLS
authentication. In 30th USENIX Security Symposium (USENIX Security 21), pages
4293–4310. USENIX Association, August 2021.

[Ber] Berlin Group. NextGenPSD2 Access to Account Interoperability Framework -
Implementation Guidelines V1.3.4. https://www.berlin-group.org/
nextgenpsd2-downloads.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of 64-
bit block ciphers: Collision attacks on http over tls and openvpn. In Proceedings of

121

https://prometheus.io
https://graphviz.org
https://json-schema.org/draft/2019-09/json-schema-validation.html
https://json-schema.org/draft/2019-09/json-schema-validation.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-3/archive/2012-07-10
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-3/archive/2012-07-10
https://www.rfc-editor.org/rfc/rfc7627
https://www.berlin-group.org/nextgenpsd2-downloads
https://www.berlin-group.org/nextgenpsd2-downloads

the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 456–467, New York, NY, USA, 2016. Association for Computing
Machinery.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
rsa encryption standard pkcs #1. In Hugo Krawczyk, editor, Advances in Cryp-
tology — CRYPTO ’98, pages 1–12, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[Boh22] Marko Bohanec. Dexi: A program for multi-attribute decision making. https:
//kt.ijs.si/MarkoBohanec/dexi.html, 2022.

[Bra97] Scott Bradner. Key words for use in rfcs to indicate requirement levels. https:
//www.rfc-editor.org/rfc/rfc2119, March 1997.

[BSA+19] Matthew Bernhard, Jonathan Sharman, Claudia Ziegler Acemyan, Philip Kortum,
Dan S. Wallach, and J. Alex Halderman. On the usability of https deployment. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, CHI ’19, page 1–10, New York, NY, USA, 2019. Association for Computing
Machinery.

[BSI20] BSI. Bsi tr-02102 cryptographic mechanisms. https://web.archive.
org/web/20200511084108/https://www.bsi.bund.de/EN/
Publications/TechnicalGuidelines/tr02102/tr02102_node.
html, May 2020.

[BSI22a] BSI. Bsi-tr-03116-4. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/
TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile&v=3,
January 2022.

[BSI22b] BSI. Technical guideline tr-02102-2 cryptographic mechanisms: Recommen-
dations and key lengths. https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/TechGuidelines/TG02102/
BSI-TR-02102-2.pdf?__blob=publicationFile&v=3, January
2022.

[BSI22c] BSI. Technical guideline tr-02102-2 cryptographic mechanisms: Recommen-
dations and key lengths. https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/TechGuidelines/TG02102/
BSI-TR-02102-2.pdf?__blob=publicationFile&v=4, January
2022.

122

https://kt.ijs.si/MarkoBohanec/dexi.html
https://kt.ijs.si/MarkoBohanec/dexi.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://web.archive.org/web/20200511084108/https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://web.archive.org/web/20200511084108/https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://web.archive.org/web/20200511084108/https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://web.archive.org/web/20200511084108/https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116-4.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=4

[BSY18] Hanno Böck, Juraj Somorovsky, and Craig Young. Return of Bleichenbacher’s
oracle threat (ROBOT). In 27th USENIX Security Symposium (USENIX Security
18), pages 817–849, 2018.

[BTPL15] Richard Barnes, Martin Thomson, Alfredo Pironti, and Adam Langley. Depre-
cating secure sockets layer version 3.0. https://www.rfc-editor.org/
rfc/rfc7568.txt, June 2015.

[Car01] Michelle Cartwright. Experimentation in software engineering: An introduction.
by claes wohlin, per runeson, martin höst, magnus c. ohlsson, björn regnell and an-
ders wesslén. published by kluwer academic publishers, norwell, massachusetts,
u.s.a., 1999. isbn: 0-7923-8682-5, 204 pages. price: U.k. ?83.00, u.s.a. $120.00,
hard cover. Software Testing, Verification and Reliability, 11(3):198–199, 2001.

[CDPF+14] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. A family of experiments to assess the effective-
ness and efficiency of source code obfuscation techniques. Empirical Software
Engineering, 19(4):1040–1074, 2014.

[CEFR05] C M Chernick, III Edington, C, M J Fanto, and R Rosenthal. Guidelines for the
selection, configuration, and use of transport layer security (tls) implementations.
https://dx.doi.org/10.6028/NIST.SP.800-52, 2005.

[CFN+19] Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Rabitti, and Marco
Squarcina. Postcards from the post-http world: Amplification of https vulnera-
bilities in the web ecosystem. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 281–298, 2019.

[CMM+15] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D Nguyen, and
Paolo Tonella. Do automatically generated test cases make debugging easier? an
experimental assessment of debugging effectiveness and efficiency. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 25(1):1–38, 2015.

[Coh88] J. Cohen. Statistical power analysis for the behavioral sciences (2nd ed.).
Lawrence Earlbaum Associates, Hillsdale, NJ, 1988.

[Com15] European Commission. Payment services (psd 2) - directive (eu) 2015/2366.
https://eur-lex.europa.eu/eli/dir/2015/2366/oj, 2015.

[Com17] European Commission. Commission delegated regulation (eu) 2018/389.
https://eur-lex.europa.eu/eli/reg_del/2018/389/oj, 2017.

[Com22] European Commission. European commission. https://ec.europa.eu/
info/index_en, 2022.

123

https://www.rfc-editor.org/rfc/rfc7568.txt
https://www.rfc-editor.org/rfc/rfc7568.txt
https://dx.doi.org/10.6028/NIST.SP.800-52
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://eur-lex.europa.eu/eli/reg_del/2018/389/oj
https://ec.europa.eu/info/index_en
https://ec.europa.eu/info/index_en

[Coo21] David Cooper. Test for conformance to nist sp 800-52. https://github.
com/drwetter/testssl.sh/issues/333, 2021.

[Cry] Cryptosense. Discovery. https://discovery.cryptosense.com.

[Cry22a] Cryptosense. Cryptosense discovery. discovery.cryptosense.com/,
2022.

[Cry22b] Cryptosense SA. Cryptosense. https://cryptosense.com/, 2022.

[CS16] Mariano Ceccato and Riccardo Scandariato. Static analysis and penetration testing
from the perspective of maintenance teams. In Proceedings of 10th International
Symposium on Empirical Software Engineering and Measurement, ESEM 2016,
pages 25:1–25:6, Ciudad Real, Spain, 2016. ACM.

[DA99] Tim Dierks and Christopher Allen. The tls protocol version 1.0. https://www.
rfc-editor.org/rfc/rfc2246.html, January 1999.

[Dat18] IETF Datatracker. Rfc 8446 - the transport layer security (tls) protocol version
1.3. https://datatracker.ietf.org/doc/rfc8446/history/,
August 2018.

[Dat22] Datanyze. Web and application servers market share report. https://www.
datanyze.com/market-share/web-and-application-servers,
2022.

[Dat23] Datanyze. Openssl market share and competitor report. https://www.
datanyze.com/market-share/other-it-infrastructure-
software, 2023.

[Des] A. Desnos. Github: Androguard. https://github.com/androguard/
androguard.

[Deva] Android Developers. Android keystore system. https://developer.
android.com/training/articles/keystore.

[Devb] Android Developers. Cryptography. https://developer.android.com/
guide/topics/security/cryptography.

[Devc] Android Developers. Security with network protocols. https://developer.
android.com/training/articles/security-ssl.

[Devd] Android Developers. Sslcertificatesocketfactory. https:
//developer.android.com/reference/android/net/
SSLCertificateSocketFactory.

124

https://github.com/drwetter/testssl.sh/issues/333
https://github.com/drwetter/testssl.sh/issues/333
https://discovery.cryptosense.com
discovery.cryptosense.com/
https://cryptosense.com/
https://www.rfc-editor.org/rfc/rfc2246.html
https://www.rfc-editor.org/rfc/rfc2246.html
https://datatracker.ietf.org/doc/rfc8446/history/
https://www.datanyze.com/market-share/web-and-application-servers
https://www.datanyze.com/market-share/web-and-application-servers
https://www.datanyze.com/market-share/other-it-infrastructure-software
https://www.datanyze.com/market-share/other-it-infrastructure-software
https://www.datanyze.com/market-share/other-it-infrastructure-software
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/reference/android/net/SSLCertificateSocketFactory
https://developer.android.com/reference/android/net/SSLCertificateSocketFactory
https://developer.android.com/reference/android/net/SSLCertificateSocketFactory

[Dev07] Jay L. Devore. Probability and Statistics for Engineering and the Sciences.
Duxbury Press; 7 edition, 2007.

[Die14] Tim Dierks. Security standards and name changes in the browser
wars. https://tim.dierks.org/2014/05/security-standards-
and-name-changes-in.html, 2014.

[Diq22] Alban Diquet. Sslyze. https://github.com/nabla-c0d3/sslyze,
2022.

[Dor] W. Dormann. Announcing CERT Tapioca 2.0 for Network Traffic Analysis.
https://insights.sei.cmu.edu/cert/2018/05/announcing-
cert-tapioca-20-for-network-traffic-analysis.html.

[DR06] Tim Dierks and Eric Rescorla. The transport layer security (tls) protocol ver-
sion 1.1. https://www.rfc-editor.org/rfc/rfc4346.html, April
2006.

[DR08] Tim Dierks and Eric Rescorla. The transport layer security (tls) protocol ver-
sion 1.2. https://www.rfc-editor.org/rfc/rfc5246.html, Au-
gust 2008.

[Duc] P. Ducklin. The SLOTH attacks: why laziness about cryptography puts security
at risk. https://nakedsecurity.sophos.com/2016/01/08/the-
sloth-attacks-why-laziness-about-cryptography-puts-
security-at-risk/.

[ECR16] ECRYPT. Algorithms, key size and protocols report. https://www.ecrypt.
eu.org/csa/publications.html, 2016.

[Eic] Marie Eichholtzer. Italy - eID. https://ec.europa.eu/cefdigital/
wiki/display/EIDCOMMUNITY/Italy+-+eID.

[Eur] European Parliament. Directive (EU) 2015/2366 of the European Par-
liament and of the Council on payment services in the internal mar-
ket, amending Directives 2002/65/EC, 2009/110/EC and 2013/36/EU and
Regulation (EU) No 1093/2010, and repealing Directive 2007/64/EC.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/
?uri=CELEX:32015L2366&from=EN.

[Fet21] Daniel Fett. Tls profiler. https://github.com/danielfett/
tlsprofiler, 2021.

125

https://tim.dierks.org/2014/05/security-standards-and-name-changes-in.html
https://tim.dierks.org/2014/05/security-standards-and-name-changes-in.html
https://github.com/nabla-c0d3/sslyze
https://insights.sei.cmu.edu/cert/2018/05/announcing-cert-tapioca-20-for-network-traffic-analysis.html
https://insights.sei.cmu.edu/cert/2018/05/announcing-cert-tapioca-20-for-network-traffic-analysis.html
https://www.rfc-editor.org/rfc/rfc4346.html
https://www.rfc-editor.org/rfc/rfc5246.html
https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-laziness-about-cryptography-puts-security-at-risk/
https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-laziness-about-cryptography-puts-security-at-risk/
https://nakedsecurity.sophos.com/2016/01/08/the-sloth-attacks-why-laziness-about-cryptography-puts-security-at-risk/
https://www.ecrypt.eu.org/csa/publications.html
https://www.ecrypt.eu.org/csa/publications.html
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Italy+-+eID
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Italy+-+eID
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://github.com/danielfett/tlsprofiler
https://github.com/danielfett/tlsprofiler

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An anal-
ysis of android ssl (in)security. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pages 50–61, 2012.

[FIN] FINSEC. Integrated Framework for Predictive and Collaborative Security of Fi-
nancial Infrastructures. https://www.finsec-project.eu/.

[FIN19a] FINSEC D2.5. FINSEC Reference Architecture II, 10 2019.

[FIN19b] FINSEC D3.9. Finance Sector Security Knowledge Base I, 10 2019. Due to be
updated in Deliverable D3.10 in 2021.

[FIN20] FINSEC D4.5. Risk Assessment Engine for Critical Infrastructures in the Finan-
cial Sector II, 03 2020. Due to be updated in Deliverable D4.6 in 2021.

[Fon22] Fondazione Bruno Kessler and DISI-University of Trento. Mathsat 5 - an smt
solver for formal verification & more. https://mathsat.fbk.eu, 2022.

[GHP12] Y. Gluck, N. Harris, and A. Prado. Breach: reviving the crime attack. https:
//breachattack.com/, 2012.

[GIW+18] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Sebas-
tian Möller, Yasemin Acar, and Sascha Fahl. Developers deserve security warn-
ings, too: On the effect of integrated security advice on cryptographic API misuse.
In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), pages
265–281, Baltimore, MD, August 2018. USENIX Association.

[GK05] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2nd edition edition, 2005.

[Goo] Google Open Source. HSTS Preload List. https://hstspreload.org.

[Goo22] Google. Hsts list. https://www.chromium.org/hsts, 2022.

[Gre] M. Green. Attack of the week: Logjam. https://blog.
cryptographyengineering.com/2015/05/22/attack-of-week-
logjam/.

[Gre11] Matthew Green. A diversion: Beast attack on tls/ssl encryption.
https://blog.cryptographyengineering.com/2011/09/21/
brief-diversion-beast-attack-on-tlsssl/, 2011.

[GS67] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory. Aldine,
Chicago, 1967.

126

https://www.finsec-project.eu/
https://mathsat.fbk.eu
https://breachattack.com/
https://breachattack.com/
https://hstspreload.org
https://www.chromium.org/hsts
https://blog.cryptographyengineering.com/2015/05/22/attack-of-week-logjam/
https://blog.cryptographyengineering.com/2015/05/22/attack-of-week-logjam/
https://blog.cryptographyengineering.com/2015/05/22/attack-of-week-logjam/
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/
https://blog.cryptographyengineering.com/2011/09/21/brief-diversion-beast-attack-on-tlsssl/

[HJB12] Jeff Hodges, Collin Jackson, and Adam Barth. Http strict transport security (hsts).
https://www.rfc-editor.org/rfc/rfc6797.txt, November 2012.

[HRW00] Martin Höst, Björn Regnell, and Claes Wohlin. Using students as subjects—a
comparative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214, 2000.

[IET] IETF. HTTP Strict Transport Security (HSTS). https://tools.ietf.org/
pdf/rfc6797.pdf.

[IET22] IETF. Ietf — internet engineering task force. https://www.ietf.org, 2022.

[Imm22] Immuniweb. Ssl security test. https://www.immuniweb.com/ssl/,
2022.

[Inc22] Yahoo Inc. Netscape - internet service. https://isp.netscape.com/,
2022.

[ISO18] Iso 9241. ergonomics of human-system interaction — part 11: Usability: Defini-
tions and concepts, 2018.

[Ist] Istituto Poligrafico e Zecca dello Stato S.p.A. CieID. play.google.com/
store/apps/details?id=it.ipzs.cieid.

[Jia07] Jiming Jiang. Linear and generalized linear mixed models and their applications.
Springer Science & Business Media, 2007.

[Joh16] Johannes Kepler Universität Linz. Picosat. http://fmv.jku.at/
picosat/, 2016.

[Kar22] Hubert Kariom. Ssl and tls protocol test suite and fuzzer: tlsfuzzer. https:
//github.com/tlsfuzzer/tlsfuzzer, 2022.

[KBP+19] Katharina Krombholz, Karoline Busse, Katharina Pfeffer, Matthew Smith, and
Emanuel von Zezschwitz. ”if https were secure, i wouldn’t need 2fa” - end user
and administrator mental models of https. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 246–263, 2019.

[KFLS15] Anton Kühberger, Astrid Fritz, Eva Lermer, and Thomas Scherndl. The signifi-
cance fallacy in inferential statistics. BMC research notes, 8(1):84, 2015.

[KMSW17] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
”i have no idea what i’m doing” - on the usability of deploying HTTPS. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1339–1356, Vancou-
ver, BC, August 2017. USENIX Association.

127

https://www.rfc-editor.org/rfc/rfc6797.txt
https://tools.ietf.org/pdf/rfc6797.pdf
https://tools.ietf.org/pdf/rfc6797.pdf
https://www.ietf.org
https://www.immuniweb.com/ssl/
https://isp.netscape.com/
play.google.com/store/apps/details?id = it.ipzs.cieid
play.google.com/store/apps/details?id = it.ipzs.cieid
http://fmv.jku.at/picosat/
http://fmv.jku.at/picosat/
https://github.com/tlsfuzzer/tlsfuzzer
https://github.com/tlsfuzzer/tlsfuzzer

[KRA+18] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal
study of tls deployment. In Proceedings of the Internet Measurement Conference
2018, IMC ’18, page 415–428, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[Lab] Grafana Labs. Grafana: The open observability platform. https://grafana.
com.

[Lei17] Barry Leiba. Ambiguity of uppercase vs lowercase in rfc 2119 key words.
https://www.rfc-editor.org/rfc/rfc8174, May 2017.

[Lin19] LinkedIn Corp. Github: Quick android review kit. https://github.com/
linkedin/qark, 2019.

[LMP+17] Katsiaryna Labunets, Fabio Massacci, Federica Paci, Sabrina Marczak, and
Flávio Moreira de Oliveira. Model comprehension for security risk assessment: an
empirical comparison of tabular vs. graphical representations. Empirical Software
Engineering, 22(6):3017–3056, Feb 2017.

[LMPT13] Katsiaryna Labunets, Fabio Massacci, Federica Paci, and Le Minh Sang Tran.
An experimental comparison of two risk-based security methods. In 2013 ACM /
IEEE International Symposium on Empirical Software Engineering and Measure-
ment, pages 163–172. IEEE, Oct 2013.

[LRM+19] Frank Li, Lisa Rogers, Arunesh Mathur, Nathan Malkin, and Marshini Chetty.
Keepers of the machines: Examining how system administrators manage software
updates for multiple machines. In Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), Santa Clara, CA, August 2019. USENIX Association.

[LSS11] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-driven risk analysis.
https://dx.doi.org/10.1007/978-3-642-12323-8, 2011.

[Man] Itsik Mantin. Bar mitzvah attack. https://www.blackhat.com/docs/
asia-15/materials/asia-15-Mantin-Bar-Mitzvah-Attack-
Breaking-SSL-With-13-Year-Old-RC4-Weakness-wp.pdf.

[Man23] Salvatore Manfredi. Companion Page: automated assistance for actionable secu-
rity: Security and compliance of tls configurations. https://st.fbk.eu/
complementary/UNIGE2023_MANFREDI, 2023.

[Mar] M. Marlinspike. New Tricks For Defeating SSL In Practice. https:
//www.blackhat.com/presentations/bh-dc-09/Marlinspike/
BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf.

128

https://grafana.com
https://grafana.com
https://www.rfc-editor.org/rfc/rfc8174
https://github.com/linkedin/qark
https://github.com/linkedin/qark
https://dx.doi.org/10.1007/978-3-642-12323-8
https://www.blackhat.com/docs/asia-15/materials/asia-15-Mantin-Bar-Mitzvah-Attack-Breaking-SSL-With-13-Year-Old-RC4-Weakness-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Mantin-Bar-Mitzvah-Attack-Breaking-SSL-With-13-Year-Old-RC4-Weakness-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Mantin-Bar-Mitzvah-Attack-Breaking-SSL-With-13-Year-Old-RC4-Weakness-wp.pdf
https://st.fbk.eu/complementary/UNIGE2023_MANFREDI
https://st.fbk.eu/complementary/UNIGE2023_MANFREDI
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

[MBA+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes
Mittmann, and Jörg Schwenk. Raccoon attack: Finding and exploiting most-
significant-bit-oracles in tls-dh(e). In Proceedings of the 30th USENIX Security
Symposium, Proceedings of the 30th USENIX Security Symposium, pages 213–
230. USENIX Association, 2021.

[MCSR21a] Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise. Do
security reports meet usability? lessons learned from using actionable mitigations
for patching tls misconfigurations. In Proceedings of the 16th International Con-
ference on Availability, Reliability and Security, ARES 21, New York, NY, USA,
2021. Association for Computing Machinery.

[MCSR21b] Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise. Repli-
cation Package: do security reports meet usability? lessons learned from using
actionable mitigations for patching tls misconfigurations. https://st.fbk.
eu/complementary/ETACS2021, 2021.

[MCSR22] Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta, and Silvio Ranise. Em-
pirical validation on the usability of security reports for patching tls misconfig-
urations: User- and case-studies on actionable mitigations. Journal of Wire-
less Mobile Networks, Ubiquitous Computing, and Dependable Applications,
13(1):56–86, Mar 2022.

[MDK] B. Möller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting The SSL
3.0 Fallback . https://www.openssl.org/˜bodo/ssl-poodle.pdf.

[MI14] Microsoft-Inria. Triple handshakes considered harmful: Breaking and fix-
ing authentication over tls. https://www.mitls.org/pages/attacks/
3SHAKE, 2014.

[Mic22a] Microsoft. Microsoft. https://www.microsoft.com, 2022.

[Mic22b] Microsoft Research. Z3 theorem prover. https://github.com/
Z3Prover/z3, 2022.

[Mig] Matt Might. The illustrated guide to a ph.d. https://matt.might.net/
articles/phd-school-in-pictures/.

[Mina] Ministero Dell’Interno. Accesso ai servizi in rete mediante la CIE 3.0. https://
www.cartaidentita.interno.gov.it/CIE3.0-ManualeSP.pdf.

[Minb] Ministero dell’Interno. La carta di identità elettronica (cie). https://www.
cartaidentita.interno.gov.it.

129

https://st.fbk.eu/complementary/ETACS2021
https://st.fbk.eu/complementary/ETACS2021
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.mitls.org/pages/attacks/3SHAKE
https://www.mitls.org/pages/attacks/3SHAKE
https://www.microsoft.com
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://matt.might.net/articles/phd-school-in-pictures/
https://matt.might.net/articles/phd-school-in-pictures/
https://www.cartaidentita.interno.gov.it/CIE3.0-ManualeSP.pdf
https://www.cartaidentita.interno.gov.it/CIE3.0-ManualeSP.pdf
https://www.cartaidentita.interno.gov.it
https://www.cartaidentita.interno.gov.it

[MIT] MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.
org/.

[MIT19] MITRE. Cve-2011-1473. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=cve-2011-1473, 20119.

[MIT09] MITRE. Cve-2009-3555. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-3555, 2009.

[MIT14a] MITRE. Cve-2014-0224. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0224, 2014.

[MIT14b] MITRE. Cve-2014-3566. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=cve-2014-3566, 2014.

[MIT15] MITRE. Cve-2015-0204. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=cve-2015-0204, 2015.

[Moz19] Mozilla. Hsts list. https://wiki.mozilla.org/
SecurityEngineering/HTTP_Strict_Transport_Security_
(HSTS)_Preload_List, 2019.

[Moz20] Mozilla Foundation. Security/server side tls. https://wiki.mozilla.
org/Security/Server_Side_TLS, July 2020.

[Moz22a] Mozilla Foundation. Mozilla observatory. https://observatory.
mozilla.org, 2022.

[Moz22b] Mozilla Foundation. Ssl configuration generator. https://ssl-config.
mozilla.org, 2022.

[MRS19] Salvatore Manfredi, Silvio Ranise, and Giada Sciarretta. Lost in tls? no more!
assisted deployment of secure tls configurations. page 201–220. Springer Interna-
tional Publishing, 2019.

[MRST20] Salvatore Manfredi, Silvio Ranise, Giada Sciarretta, and Alessandro Tomasi. Tl-
sassistant goes finsec a security platform integration extending threat intelligence
language. In Cyber-Physical Security for Critical Infrastructures Protection: First
International Workshop, CPS4CIP 2020, Guildford, UK, September 18, 2020, Re-
vised Selected Papers, page 16–30, Berlin, Heidelberg, 2020. Springer-Verlag.

[NDG+19] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, and
Matthew Smith. ”if you want, i can store the encrypted password”: A password-
storage field study with freelance developers. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New
York, NY, USA, 2019. Association for Computing Machinery.

130

https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-1473
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-1473
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204
https://wiki.mozilla.org/SecurityEngineering/HTTP_Strict_Transport_Security_(HSTS)_Preload_List
https://wiki.mozilla.org/SecurityEngineering/HTTP_Strict_Transport_Security_(HSTS)_Preload_List
https://wiki.mozilla.org/SecurityEngineering/HTTP_Strict_Transport_Security_(HSTS)_Preload_List
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://observatory.mozilla.org
https://observatory.mozilla.org
https://ssl-config.mozilla.org
https://ssl-config.mozilla.org

[NDT+17] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. Why do developers get password storage wrong? a
qualitative usability study. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 311–328, New York,
NY, USA, 2017. Association for Computing Machinery.

[Net] Netscape Communications. The Secure Sockets Layer (SSL) Protocol Version
3.0. https://tools.ietf.org/pdf/rfc6101.pdf.

[NIS12] NIST. Cve-2012-4929. https://nvd.nist.gov/vuln/detail/CVE-
2012-4929, 2012.

[NIS19a] NIST. Compliance faqs: Federal information processing standards (fips).
https://www.nist.gov/standardsgov/compliance-faqs-
federal-information-processing-standards-fips, November
2019.

[NIS19b] NIST. Guidelines for the selection, configuration, and use of transport layer se-
curity (tls) implementations. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-52r2.pdf, August 2019.

[NIS22] NIST. Cybersecurity framework. https://www.nist.gov/
cyberframework, 2022.

[Now17] NowSecure. Fully validate ssl/tls. https://books.nowsecure.com/
secure-mobile-development/en/sensitive-data/fully-
validate-ssl-tls.html, 2017.

[OAS23] OASIS Open. STIX - A structured language for cyber threat intelli-
gence. https://oasis-open.github.io/cti-documentation/
stix/intro, 2023.

[Ope] OpenID Foundation. Financial-grade API (FAPI).

[Ope22] OpenSSL. Changelog. https://www.openssl.org/news/
changelog.html, 2022.

[Pal] Pallets. Welcome to flask. https://flask.palletsprojects.com/
en/2.2.x/.

[Par] European Parliament. Document 52019xc0913(02). https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:
OJ.C_.2019.309.01.0009.01.ENG&toc=OJ:C:2019:309:TOC.

131

https://tools.ietf.org/pdf/rfc6101.pdf
https://nvd.nist.gov/vuln/detail/CVE-2012-4929
https://nvd.nist.gov/vuln/detail/CVE-2012-4929
https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://www.nist.gov/cyberframework
https://www.nist.gov/cyberframework
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://books.nowsecure.com/secure-mobile-development/en/sensitive-data/fully-validate-ssl-tls.html
https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
https://www.openssl.org/news/changelog.html
https://www.openssl.org/news/changelog.html
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.309.01.0009.01.ENG&toc=OJ:C:2019:309:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.309.01.0009.01.ENG&toc=OJ:C:2019:309:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.309.01.0009.01.ENG&toc=OJ:C:2019:309:TOC

[PCI18] PCI. Recommendation for key management, part 1: General (revision
3). https://docs-prv.pcisecuritystandards.org/PCI%20DSS/
Standard/PCI_DSS_v3-2-1.pdf, may 2018.

[PCI22] PCI Security Standards Council. Document library. https://www.
pcisecuritystandards.org/document_library, 2022.

[Por] Thomas Pornin. What is DROWN and how does it work? https://
security.stackexchange.com/a/116140/186367.

[PRE] PRETA Open Banking Europe. Security and Identification Standards for
APIs & Communications. https://www.openbankingeurope.eu/
media/1398/oasis-obe-api-identification-and-security-
standards-for-apis-and-communications.pdf.

[Pre22] Presidenza del Consiglio dei Ministri. Agid - agenzia per l’italia digitale. https:
//www.agid.gov.it, 2022.

[PSSC22] LLC. PCI Security Standards Council. Official pci security standards council site.
https://www.pcisecuritystandards.org, 2022.

[Qua22a] Qualys. Ssl pulse. https://www.ssllabs.com/ssl-pulse/, 2022.

[Qua22b] Qualys. Ssl server test. https://www.ssllabs.com/ssltest/, 2022.

[rbs17] rbsec. sslscan. https://github.com/rbsec/sslscan/releases/
tag/1.11.11-rbsec, 2017.

[Res18] Eric Rescorla. The transport layer security (tls) protocol version 1.3. https:
//www.rfc-editor.org/rfc/rfc8446, August 2018.

[Ris22] Ivan Ristić. Ssl/tls and pki history. https://www.feistyduck.com/ssl-
tls-and-pki-history/, 2022.

[RMSR22a] Matteo Rizzi, Salvatore Manfredi, Giada Sciarretta, and Silvio Ranise. Demo:
Tlsassistant v2: A modular and extensible framework for securing tls. In Pro-
ceedings of the 27th ACM on Symposium on Access Control Models and Tech-
nologies, SACMAT ’22, page 271–272, New York, NY, USA, 2022. Association
for Computing Machinery.

[RMSR22b] Matteo Rizzi, Salvatore Manfredi, Giada Sciarretta, and Silvio Ranise. A modular
and extensible framework for securing TLS. In Proceedings of the Twelveth ACM
Conference on Data and Application Security and Privacy. ACM, apr 2022.

132

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI_DSS_v3-2-1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/document_library
https://security.stackexchange.com/a/116140/186367
https://security.stackexchange.com/a/116140/186367
https://www.openbankingeurope.eu/media/1398/oasis-obe-api-identification-and-security-standards-for-apis-and-communications.pdf
https://www.openbankingeurope.eu/media/1398/oasis-obe-api-identification-and-security-standards-for-apis-and-communications.pdf
https://www.openbankingeurope.eu/media/1398/oasis-obe-api-identification-and-security-standards-for-apis-and-communications.pdf
https://www.agid.gov.it
https://www.agid.gov.it
https://www.pcisecuritystandards.org
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssltest/
https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec
https://github.com/rbsec/sslscan/releases/tag/1.11.11-rbsec
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://www.feistyduck.com/ssl-tls-and-pki-history/
https://www.feistyduck.com/ssl-tls-and-pki-history/

[RRDO] Eric Rescorla, Marsh Ray, Steve Dispensa, and Nasko Oskov. Transport Layer
Security (TLS) Renegotiation Indication Extension. https://www.rfc-
editor.org/rfc/rfc5746.

[Ruh22] Hackmanit GmbH Ruhr University Bochum, Paderborn University. Tls-scanner.
https://github.com/tls-attacker/TLS-Scanner, 2022.

[SAW08] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. Using students as subjects
- an empirical evaluation. In Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’08,
page 288–290, New York, NY, USA, 2008. Association for Computing Machin-
ery.

[SC90] A. Strauss and J. Corbin. Basics of Qualitative Research: Grounded Theory Pro-
cedures and Techniques. Sage, London, 1990.

[Sch] B. Schneier. Attack Trees. https://www.schneier.com/academic/
archives/1999/12/attack_trees.html.

[Sch99] Bruce Schneier. Attack trees. https://www.schneier.com/academic/
archives/1999/12/attack_trees.html, 1999.

[Sec] Security & Trust Research Unit. Tlsassistant. https://github.com/
stfbk/tlsassistant.

[Ser22] Amazon Web Services. Alexa top sites. https://aws.amazon.com/
alexa-top-sites/, 2022.

[She07] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures (4th Ed.). Chapman & All, 2007.

[Sho22a] Shodan Search Engine. ssl.version:sslv3. https://www.shodan.io/
search?query=ssl.version%3Asslv3, 2022. Accessed on 15.12.2022.

[Sho22b] Shodan Search Engine. vuln:cve-2014-0160. https://www.shodan.
io/search?query=vuln%3ACVE-2014-0160, 2022. Accessed on
15.12.2022.

[Sho22c] Shodan Search Engine. vuln:cve-2016-2183. https://www.shodan.
io/search?query=vuln%3ACVE-2016-2183, 2022. Accessed on
15.12.2022.

[SKvW+14] Benjamin Saefken, Thomas Kneib, Clara-Sophie van Waveren, Sonja Greven,
et al. A unifying approach to the estimation of the conditional akaike information
in generalized linear mixed models. Electronic Journal of Statistics, 8(1):201–
225, 2014.

133

https://www.rfc-editor.org/rfc/rfc5746
https://www.rfc-editor.org/rfc/rfc5746
https://github.com/tls-attacker/TLS-Scanner
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://github.com/stfbk/tlsassistant
https://github.com/stfbk/tlsassistant
https://aws.amazon.com/alexa-top-sites/
https://aws.amazon.com/alexa-top-sites/
https://www.shodan.io/search?query=ssl.version%3Asslv3
https://www.shodan.io/search?query=ssl.version%3Asslv3
https://www.shodan.io/search?query=vuln%3ACVE-2014-0160
https://www.shodan.io/search?query=vuln%3ACVE-2014-0160
https://www.shodan.io/search?query=vuln%3ACVE-2016-2183
https://www.shodan.io/search?query=vuln%3ACVE-2016-2183

[SM16] Janet M. Six and Ritch Macefield. How to determine the right number of
participants for usability studies. https://www.uxmatters.com/mt/
archives/2016/01/how-to-determine-the-right-number-
of-participants-for-usability-studies.php, 2016.

[SM17] N. Samarasinghe and M. Mannan. Short paper: TLS ecosystems in networked
devices vs. web servers. In Financial Cryptography and Data Security - 21st
International Conference, FC 2017, pages 533–541, 2017.

[SMJ15] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students represen-
tatives of professionals in software engineering experiments? ICSE ’15, page
666–676, Florence, Italy, 2015. IEEE Press.

[Sol] Ask Solem. Celery - distributed task queue. https://docs.celeryq.dev/
en/stable/.

[Squ22] Square. Okhttp. https://square.github.io/okhttp/, 2022.

[SRI22] SRI International’s Computer Science Laboratory. The yices smt solver. https:
//github.com/SRI-CSL/yices2, 2022.

[SUP18] SUPERAndroidAnalyzer. Github: Secure, unified, powerful and extensible rust
android analyzer. https://github.com/SUPERAndroidAnalyzer/
super, 2018.

[SWJ13] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analysis versus
penetration testing: A controlled experiment. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, Nov 2013.

[Syn14] Synopsys, Inc. The heartbleed bug. https://heartbleed.com, 2014.

[Tea] OWASP CheatSheets Series Team. Transport layer protection cheat
sheet. https://cheatsheetseries.owasp.org/cheatsheets/
Transport_Layer_Protection_Cheat_Sheet.html.

[Tea19] Worldpay Editorial Team. What’s the history of pci dss? https:
//www.fisglobal.com/en-gb/insights/merchant-solutions-
worldpay/article/pci-dss-history-everything-you-need-
to-know, 2019.

[THKvZ20a] Christian Tiefenau, Maximilian Häring, Katharina Krombholz, and Emanuel von
Zezschwitz. Security, availability, and multiple information sources: Exploring
update behavior of system administrators. In SOUPS @ USENIX Security Sym-
posium, 2020.

134

https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://www.uxmatters.com/mt/archives/2016/01/how-to-determine-the-right-number-of-participants-for-usability-studies.php
https://docs.celeryq.dev/en/stable/
https://docs.celeryq.dev/en/stable/
https://square.github.io/okhttp/
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/yices2
https://github.com/SUPERAndroidAnalyzer/super
https://github.com/SUPERAndroidAnalyzer/super
https://heartbleed.com
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://www.fisglobal.com/en-gb/insights/merchant-solutions-worldpay/article/pci-dss-history-everything-you-need-to-know
https://www.fisglobal.com/en-gb/insights/merchant-solutions-worldpay/article/pci-dss-history-everything-you-need-to-know
https://www.fisglobal.com/en-gb/insights/merchant-solutions-worldpay/article/pci-dss-history-everything-you-need-to-know
https://www.fisglobal.com/en-gb/insights/merchant-solutions-worldpay/article/pci-dss-history-everything-you-need-to-know

[THKvZ20b] Christian Tiefenau, Maximilian Häring, Katharina Krombholz, and Emanuel von
Zezschwitz. Security, availability, and multiple information sources: Exploring
update behavior of system administrators. In Sixteenth Symposium on Usable Pri-
vacy and Security (SOUPS 2020), pages 239–258. USENIX Association, August
2020.

[uEG+18] Ales̆ C̆ernivec, Gencer Erdogan, Alejandra Gonzalez, Atle Refsdal, and Antonio
Alvarez Romero. Employing graphical risk models to facilitate cyber-risk moni-
toring - the WISER approach. In Graphical Models for Security (GraMSec) 2017,
volume 10744 of LNCS, pages 127–146, 2018.

[U.S22] U.S. Department of Commerce. National institute of standards and technology.
https://www.nist.gov/, 2022.

[utd15] utds3lab. Github: Smv-hunter. https://github.com/utds3lab/
SMVHunter, 2015.

[VP] M. Vanhoef and F. Piessens. RC4 NOMORE (Numerous Occurrence MOnitoring
& Recovery Exploit). https://www.rc4nomore.com/.

[Vv.21] Vv.Aa. Github: Cvc4. https://cvc4.github.io, 2021.

[Vv.22a] Vv.Aa. Github: boolector. https://github.com/Boolector/
boolector, 2022.

[Vv.22b] Vv.Aa. Github: pysmt. https://github.com/pysmt/pysmt, 2022.

[Wet22] Dirk Wetter. /bin/bash based ssl/tls tester: testssl.sh. https://testssl.sh,
2022.

[WMY18] L. Waked, M. Mannan, and A. M. Youssef. The sorry state of TLS security in
enterprise interception appliances. CoRR, abs/1809.08729, 2018.

[WSF] Wsf15 - the 2015 workshop on security frameworks. https://www.dmi.
unict.it/giamp/wsf/15edition.php.

[You] C. Young. TLS Extended Master Secret Extension: Fixing a Hole in TLS.
https://www.tripwire.com/state-of-security/security-
data-protection/security-hardening/tls-extended-
master-secret-extension-fixing-a-hole-in-tls/.

135

https://www.nist.gov/
https://github.com/utds3lab/SMVHunter
https://github.com/utds3lab/SMVHunter
https://www.rc4nomore.com/
https://cvc4.github.io
https://github.com/Boolector/boolector
https://github.com/Boolector/boolector
https://github.com/pysmt/pysmt
https://testssl.sh
https://www.dmi.unict.it/giamp/wsf/15edition.php
https://www.dmi.unict.it/giamp/wsf/15edition.php
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/
https://www.tripwire.com/state-of-security/security-data-protection/security-hardening/tls-extended-master-secret-extension-fixing-a-hole-in-tls/

Appendix A

Survey Questionnaires’ Content

Table A.1 shows the three parts of the survey questionnaire.

Table A.1: Questions in the survey questionnaire

Question Answer
First part
Lab 1

1 I had enough time to perform the task [1-5] Likert scale
2 I experienced no difficulty in patching the vulnerability

given the report
[1-5] Likert scale

3 How much time (in terms of percentage) did you spend
looking at the TLS configuration code

[≤≥a] Likert scale

4 How much time (in terms of percentage) did you spend
looking at online documentation on TLS vulnerabilities

[≤≥a] Likert scale

5 Provide some examples of online queries you used to search
the vulnerabilities online (e.g. keywords used)

[None]/free text

6 Which steps did you take to perform the tasks? (e.g. run
command Y, opened file X, ..)

[None]/free text

Lab 2
1 I had enough time to perform the task [1-5] Likert scale
2 I experienced no difficulty in patching the vulnerability

given the report
[1-5] Likert scale

3 How much time (in terms of percentage) did you spend
looking at the TLS configuration code

[≤≥a] Likert scale

4 How much time (in terms of percentage) did you spend
looking at online documentation on TLS vulnerabilities

[≤≥a] Likert scale

Continued on next page

136

Table A.1 – Continued from previous page
Question Answer
5 Provide some examples of online queries you used to search

the vulnerabilities online (e.g. keywords used)
[None]/free text

6 Which steps did you take to perform the tasks? (e.g. run
command Y, opened file X, ..)

[None]/free text

Second part
1 Which report did you find more useful? Lab1/Lab2
2 Which report did you find more easy to read? Lab1/Lab2
3 Which report did you find more complex to understand? Lab1/Lab2
4 The textual description of the mitigation is useful to com-

plete the tasks
[1-5] Likert scale

5 The code snippet is useful to complete the tasks [1-5] Likert scale
6 How did you use the code snippet? [None]/free text
Third part

1 Would you use it for your work? [None]/free text
2 Motivate your answer (to the previous question) [None]/free text
3 Do you know any tool that performs similar tasks? [None]/free text
4 Do you have any suggestion related to the tool usage? [None]/free text
5 Do you have any suggestion related to the amount of infor-

mation provided by the tool’s report (Report.md)?
[None]/free text

137

Appendix B

Leaves Content of TLS Attack Trees

B.1 Break Confidentiality

The following table depicts a detailed view of the leaves shown in Figure 3.5.

Table B.1: Break Confidentiality - Full Leaves

Leaf Prerequisites Attack Steps Final iteration

DROWN

--RSA-generated
session-key
AND
- SSLv2 available
on the target
server
OR
- Same private
key used by a
parallel server
that supports
SSLv2

1. Sniff packets autonomously gen-
erated by the victim
OR
1. Sniff packets generated through a
controlled JavaScript (within the vic-
tim’s browser)
2. Repeatedly initiate SSLv2 con-
nections using (export-grade) RSA
and a peculiar ClientMasterKey
3. Bruteforce server’s responses to
leak information
4. Exploit the server’s response to re-
cover the MasterSecret
5. Use the MasterSecret to decrypt
the transmission

Continued on next page

138

Table B.1 – Continued from previous page
Leaf Prerequisites Attack Steps Final iteration

ROBOT

RSA key ex-
change negoti-
ated

1. Sniff the victim’s transmissions
(ClientKeyExchange included)
2. Repeatedly generate and send
ClientKeyExchange messages with
different padding
3. Check if the server accepted the
request (padding correctly guessed)

Use the guessed
pre-master secret to
generate the shared
key

3SHAKE

--Renegotiation
available
--Resumption
available
--RSA-key-
exchange-
negotiated

1. Wait for a client-initiated hand-
shake
2. Connect to the server (sharing the
parameters, different tls-unique)
3. Wait for a session resumption by
the client
4. Resume the connection to the
server (same tls-unique)
5. Optionally inject a malicious re-
quest
6. Trigger the server to request a
client certificate
7. Forward client’s handshake mes-
sages to the server
8. Snoop the connection exploiting
the same origin policy

139

B.2 Break Authentication

The following table depicts a detailed view of the leaves shown in Figure 3.7.

Table B.2: Break Authentication - Full Leaves

Leaf Prerequisites Attack Steps Final iteration

BREACH

HTTP com-
pression
enabled

1. Gain JavaScript control on the vic-
tim’s browser
2. Inject different characters into the
client’s messages

Retrieve parts of the
cookie by analyzing
the response size

CRIME

TLS compres-
sion enabled

1. Gain JavaScript control on the vic-
tim’s browser
2. Inject different characters into the
client’s messages

Retrieve parts of the
cookie by analyzing
the response size

Lucky 13

- CBC mode ci-
pher negotiated
--HMAC-
SHA1 negoti-
ated

1. Gain JavaScript control on the vic-
tim’s browser
2. Tweak and truncate the encrypted
packets
3. Analyze the time the server needs
to detect the error

Retrieve parts of the
cookie by measur-
ing the response de-
lay over every itera-
tion

Sweet32

3DES cipher
negotiated
(64-bit blocks)

1. Gain JavaScript control on the vic-
tim’s browser
2. Repeatedly query the server (232

requests)

Check-for col-
lisions-with-a-
known-block

Bar Mitzvah

RC4-cipher ne-
gotiated

1. Sniff the victim’s transmissions
2. Detect the use of a weak key (in-
variance weakness)
3. Predict the LSBs of the keystream
4. Try to decrypt the related plaintext
5. Use the cookie to impersonate the
client

RC4 NOMORE

RC4-cipher ne-
gotiated

1. Gain JavaScript control on the vic-
tim’s browser
2. Force the client to contact the
server
3. Capture the encrypted requests
4. Calculate the candidate tokens
(using the Fluhrer-McGrew biases)

Check which token
is the correct one

CA impairment
1. Acquire the CA’s signing key
2. Sign a fake certificate
3. Impersonate the server

Continued on next page

140

Table B.2 – Continued from previous page
Leaf Prerequisites Attack Steps Final iteration

Certificate
spoofing

1. Generate a fake self-signed certifi-
cate
2. Impersonate the server

Truncation
attack

--Ongoing
parallel con-
nections
--Incorrect
handling of
the termination
protocol (server
side)
--Victim us-
ing a shared
terminal

1. Identify and drop the client’s lo-
gout request
2. Exploit the connection kept open
using the shared terminal

POODLE

- SSLv3 avail-
able
- CBC mode ci-
phers available

1. Force SSLv3 with a CBC cipher
(via MITM)
2. Repeatedly replace the cipher-
text’s padding
3. Send the crafted requests
4. Check if the server accepted the
request (padding correctly guessed)
5. Rebuild the cookie two bytes at
time

SLOTH

--RSA-MD5
certificate
signature sup-
ported
--Client-uses
the-same
certificate
with multiple
servers-(one
malicious)

1. Receive the victim’s ClientHello
2. Perform the handshake until the
key exchange
3. Compute a chosen-prefix collision
of two strings
4. Send a crafted hello to the server
5. Perform the handshake until the
key exchange
6. Send a crafted certificate request
to the client (containing the other
strings) [the hashes will now coin-
cide]
7. Forward the server’s HelloDone to
the client
8. Forward the client’s messages to
the server
9. Impersonate the client

141

	List of Figures
	List of Tables
	Chapter Introduction
	Goals and Contributions
	Thesis Structure

	Chapter Background
	Historical Notes
	Transport Layer Security
	TLS Handshake

	Misconfigurations and Vulnerabilities

	Chapter Actionable Hints for Configuring TLS
	Related Work: TLS Analyzers
	Mobile Clients
	Report Snippet

	Actionable Mitigations
	Mitigations Identification
	Initial Tool Design and Assumptions
	Attack Trees

	Usability and Impact of Assisted Mitigations
	Related work: Usability Studies
	User Study Design
	User Study Results

	Lessons Learned and Discussion

	Chapter TLS Vulnerabilities and Threat Intelligence
	Context and Motivation
	FINSEC Project
	Planning and Integration
	STIX Output in TLSAssistant
	FINSEC Connector
	API and Queue Handling

	Integration with Risk Assessment
	Lessons Learned and Discussion

	Chapter From Standalone Tool to Collaborative Framework
	Discussion: Challenges and Limitations
	Architecture Definition
	Modules Characterization
	Standards

	Discussion

	Chapter An Assisted Methodology to Evaluate Security Compliance
	Banking Standards
	PSD2
	PCI-DSS
	Discussion

	National TLS Guidelines
	Challenges
	Related Work: Tools for Compliance Analysis
	Compliance Methodology
	Recommendations Collection
	Single Guideline
	Multiple Guidelines

	Prototyping
	SAT
	JSON Schema
	Reference Use Cases

	Discussion

	Chapter Impact on Collaborations
	eIDAS Authentication Scheme
	Sensitive SaaS Configuration
	Continuous Monitoring of Enterprise Infrastructures
	Feedback on Agency-issued TLS Guidelines

	Chapter Conclusions and Future Work
	Future Work

	Bibliography
	Appendix Survey Questionnaires' Content
	Appendix Leaves Content of TLS Attack Trees
	Break Confidentiality
	Break Authentication

