
UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Robotic Perception and Manipulation: Leveraging
Deep Learning Methods for Efficient Instance

Segmentation and Multi-fingered Grasping
by

Federico Ceola

Thesis submitted for the degree of Doctor of Philosophy (36◦ cycle)

March 2024

Dr. Lorenzo Natale Supervisor
Prof. Lorenzo Rosasco Supervisor

Prof. Paolo Massobrio Head of the PhD program

Thesis Reviewers:
Prof. Georgia Chalvatzaki, Technische Universität Darmstadt External examiner
Prof. Marcello Restelli, Politecnico di Milano External examiner

Department of Informatics, Bioengineering, Robotics and Systems Engineering

I would like to dedicate this Thesis to the people who supported me during the Ph.D.
Your kind words have been the best relief during hard times.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Federico Ceola
March 2024

Acknowledgements

First and foremost, I would like to thank Dr. Lorenzo Natale for giving me the opportunity to
pursue the Ph.D. in the Humanoid Sensing and Perception group at the Italian Institute of
Technology. I am deeply grateful for the guidance and for the freedom to pursue my research
ideas over the last three years.

A special thanks to Prof. Lorenzo Rosasco for giving me the opportunity to be part of
the MaLGa center at the University of Genova. The exposure to the theoretical aspects of
Machine Learning and the research discussions enhanced the level of the work done during
my Ph.D.

I would like to thank Prof. Niko Sünderhauf and Dr. Krishan Rana for hosting me at the
QUT Centre for Robotics. The months spent at the Queensland University of Technology
enriched me both personally and professionally, giving me different perspectives about my
research.

I am grateful to Dr. Elisa Maiettini and Dr. Giulia Pasquale for mentoring me. Thanks
for guiding and supporting me throughout the challenges of the Ph.D. journey.

Finally, I would like to thank all the colleagues and friends that I met in the HSP, MaLGa
and QCR groups during the Ph.D. Thank you for all the chats, the shared experiences, and
the kind moments spent together.

Abstract

The ability to adapt to perceive and manipulate novel objects is an important requirement
for robots operating in unstructured dynamically-changing environments like the ones we
live in. Autonomous perception and manipulation of objects in the environment surrounding
the robot requires processing sensor data, including images, depth information and tactile
feedback. Extracting meaningful semantic and geometric information from such data is per
se a challenging open problem, which becomes even more pronounced in the considered
scenario. In this setting, the target task of the robot may be not known in advance, requiring
continuous adaptation of the robot perception system and control policies.

The Deep Learning breakthrough provided great improvements both in the Computer
Vision literature and on some open problems in robotics. While these approaches have shown
huge potential to be applied in robotic tasks and to overcome some problems related to
the use of classical methods, their application is constrained by some limitations which are
intrinsic in the Deep Learning based approaches, such as the requirement of huge amounts of
training data and the need of long training sessions to optimize such models. The aim of this
Thesis is to overcome these limitations, allowing robots to perform tasks that would not be
achievable leveraging only classical methods.

The proposed methods aim at making Deep Learning approaches for the visual task of
instance segmentation and for multi-fingered grasping suitable for training on real robotic
platforms. In this perspective, I firstly proposed a hybrid method that leverages a pre-trained
Convolutional Neural Network for feature extraction and Kernel-based classifiers for fast
adaptation of an instance segmentation model in the presence of novel objects or different
visual domains. Secondly, I proposed a Residual Reinforcement Learning method with the
purpose of learning multi-fingered grasping of novel objects on the real robot. This relies on
a policy pre-trained in simulation with a Deep Reinforcement Learning from Demonstration
approach which has also been presented in this Thesis. Furthermore, I contributed to a
community-driven effort aimed at providing a generalist policy for robotic manipulation by
collecting a dataset for language-guided long-horizon manipulation tasks.

List of Publications

Included Publications

This Thesis is based on the work presented in the following papers:

1. F. Ceola, E. Maiettini, G. Pasquale, L. Rosasco, and L. Natale. Fast Object Segmenta-

tion Learning with Kernel-based Methods for Robotics. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 13581–13588, 2021.

2. F. Ceola, E. Maiettini, G. Pasquale, G. Meanti, L. Rosasco, and L. Natale. Learn

Fast, Segment Well: Fast Object Segmentation Learning on the iCub Robot. IEEE
Transactions on Robotics, 38(5):3154–3172, 2022.

3. F. Ceola, E. Maiettini, L. Rosasco, and L. Natale. A Grasp Pose is All You Need:

Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and

Touch. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2023.

4. F. Ceola, L. Rosasco, and L. Natale. RESPRECT: Speeding-up Multi-fingered Grasping

with Residual Reinforcement Learning. In IEEE Robotics and Automation Letters
(RA-L), 2024.

5. F. Ceola, L. Natale, and N. Sünderhauf, K. Rana. LHManip: A Dataset for Long-

Horizon Language-Grounded Manipulation Tasks in Cluttered Tabletop Environments.
Submitted to International Journal of Robotics Research (IJRR), 2023.

Excluded Publication

During the Ph.D., I also contributed to the following paper, although it is not included in the
Thesis:

vi

• Open X-Embodiment Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley, A.
Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid, B.
Burgess-Limerick, B. Kim, B. Schölkopf, B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C.
Chi, C. Huang, C. Chan, C. Pan, C. Fu, C. Devin, D. Driess, D. Pathak, D. Shah, D.
Büchler, D. Kalashnikov, D. Sadigh, E. Johns, F. Ceola, F. Xia, F. Stulp, G. Zhou, G.
S. Sukhatme, G. Salhotra, G. Yan, G. Schiavi, H. Su, H. S. Fang, H. Shi, H.B. Amor,
H. I. Christensen, H. Furuta, H. Walke, H. Fang, I. Mordatch, I. Radosavovic, I. Leal,
J. Liang, J. Kim, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Wu, J. Luo, J. Gu,
J. Tan, J. Oh, J. Malik, J. Tompson, J. Yang, J. J. Lim, J. Silvério, J. Han, K. Rao, K.
Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund,
K. Kawaharazuka, K. Zhang, K. Majd, K. Rana, K. Srinivasan, L. Y. Chen, L. Pinto,
L. Tan, L. Ott, L. Lee, M. Tomizuka, M. Du, M. Ahn, M. Zhang, M. Ding, M. K.
Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N.
Suenderhauf, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, P. R. Sanketi, P.
Wohlhart, P. Xu, P. Sermanet, P. Sundaresan, Q. Vuong, R. Rafailov, R. Tian, R. Doshi,
R. Martín-Martín, R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S.
Kirmani, S. Levine, S. Moore, S. Bahl, S. Dass, S. Song, S. Xu, S. Haldar, S. Adebola,
S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Dasari, S. Belkhale, T. Osa, T.
Harada, T. Matsushima, T. Xiao, T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong,
T. Darrell, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Wang,
X. Zhu, X. Li, Y. Lu, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Xu, Y. Wang, Y. Bisk, Y. Cho,
Y. Lee, Y. Cui, Y. H. Wu, Y. Tang, Y. Zhu, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Xu, and Z.
J. Cui. Open X-Embodiment: Robotic Learning Datasets and RT-X Models. In 2024
IEEE International Conference on Robotics and Automation (ICRA), 2024.

Table of contents

List of figures xii

List of tables xiv

List of acronyms xvi

I Introduction 1

1 Motivation 2

2 Research Objectives 4

3 State-of-the-art 5
3.1 Robotic Visual Object Perception Learning 5
3.2 Learning for Multi-fingered Grasping . 6
3.3 Robotic Manipulation Datasets . 8

4 Thesis Outline 10

II Background 11

5 Instance Segmentation 12
5.1 Mask R-CNN . 13
5.2 FALKON . 15
5.3 On-line Object Detection . 16

6 Reinforcement Learning 18
6.1 Model-Free Deep Reinforcement Learning Algorithms 20

Table of contents viii

6.1.1 Policy-Gradient Methods . 20
6.1.2 Value-Based Methods . 21
6.1.3 Actor-Critic Methods . 22

6.2 Soft Actor-Critic . 23
6.3 Reinforcement Learning from Demonstration 25

6.3.1 Pre-training from Demonstration 26
6.3.2 Learning to Imitate Demonstrations 26

6.4 Residual Reinforcement Learning . 27

III Contributions 28

7 Fast Instance Segmentation 29

8 Multi-fingered Grasping with Deep Reinforcement Learning 32

9 Toward Long-Horizon Manipulation Tasks 36

IV Included Publications 38

10 Fast Object Segmentation Learning with Kernel-based Methods for Robotics 39
10.1 Introduction . 40
10.2 Related Work . 42

10.2.1 Object Instance Segmentation . 42
10.2.2 Fast Object Detection Methods in Robotics 43

10.3 Methods . 44
10.3.1 Overview of the Pipeline . 44
10.3.2 On-line Learning Strategy . 45

10.4 Experiments . 47
10.4.1 Experimental Setup . 47
10.4.2 Benchmark on the YCB-Video Dataset 48
10.4.3 Ablation Studies . 50

10.5 Conclusions . 51

11 Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub
Robot 52
11.1 Introduction . 53

Table of contents ix

11.2 Related Work . 55
11.2.1 Instance Segmentation . 55
11.2.2 Instance Segmentation in Robotics 56

11.3 Methods . 58
11.3.1 Overview of the Pipeline . 59
11.3.2 Bounding Box Learning . 59
11.3.3 On-line Segmentation . 62
11.3.4 Training Protocol . 63

11.4 Experimental Setup . 64
11.4.1 Off-line Experiments . 64
11.4.2 Datasets . 65
11.4.3 Robotic Setup . 66

11.5 Results . 66
11.5.1 Benchmark on YCB-Video . 67
11.5.2 Benchmark on HO-3D . 67

11.6 Fast Region Proposal Adaptation . 68
11.6.1 Is Region Proposal Adaptation Key to Performance? 68
11.6.2 Approximated On-line Training: Speed/Accuracy Trade-off 69

11.7 Stream-based Instance Segmentation . 71
11.8 Robotic Application . 74

11.8.1 Incremental Instance Segmentation Learning 76
11.8.2 Discussion and Qualitative Results 77

11.9 Conclusions . 79
11.10Appendix A . 80
11.11Appendix B . 81
11.12Appendix C . 82
11.13Appendix D . 83
11.14Appendix E . 86
11.15Appendix F . 87
11.16Appendix G . 88

12 A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep
Reinforcement Learning from Vision and Touch 89
12.1 Introduction . 90
12.2 Related Work . 92

Table of contents x

12.2.1 Multi-fingered Grasping . 92
12.2.2 Deep Reinforcement Learning from Demonstrations 93

12.3 Methodology . 93
12.3.1 Grasping Pipeline . 93
12.3.2 Policy Training . 97

12.4 Experimental Setup . 98
12.4.1 Simulated Environment . 98
12.4.2 Training Hyperparameters . 98

12.5 Results . 99
12.5.1 Baselines . 99
12.5.2 Discussion . 100

12.6 Conclusions . 103

13 RESPRECT: Speeding-up Multi-fingered Grasping with Residual Reinforcement
Learning 104
13.1 Introduction . 105
13.2 Related Work . 106
13.3 Methodology . 108

13.3.1 Grasping Pipeline . 108
13.3.2 Residual Policy Training . 109

13.4 Experimental Setup . 110
13.4.1 Real Robot Setup . 111

13.5 Results . 112
13.5.1 Baselines . 113
13.5.2 Simulation Results . 114
13.5.3 Real Robot Results . 115

13.6 Limitations . 116
13.7 Conclusion . 117
13.8 Appendix I . 118
13.9 Appendix II . 118
13.10Appendix III . 118
13.11Appendix IV . 119

14 LHManip: A Dataset for Long-Horizon Language-Grounded Manipulation
Tasks in Cluttered Tabletop Environments 120
14.1 Introduction . 121

Table of contents xi

14.2 Related Work . 122
14.3 LHManip . 123

14.3.1 Experimental Set-Up and Data Collection 123
14.3.2 Dataset . 125

14.4 Conclusion . 128

V Conclusion 129

15 Conclusion 130

References 133

List of figures

5.1 Exemplar instance segmentation input and output. 12
5.2 Region Proposal Network architecture. 13
5.3 Mask R-CNN detection and segmentation heads. 14

6.1 Reinforcement Learning state-action-reward loop. 18

7.1 On-line Object Segmentation pipeline. 29
7.2 On-line Object Segmentation and Region Proposal learning pipeline. 30

8.1 G-PAYN and RESPRECT grasping pipeline. 32
8.2 G-PAYN DRL policy. 33
8.3 RESPRECT DRL policy. 34

9.1 Exemplar LHManip episode. 36

10.1 On-line Object Segmentation pipeline. 44
10.2 On-line Object Segmentation: predictions on the YCB-Video dataset. 49
10.3 On-line Object Segmentation: sampling factor evaluation for the On-line

Segmentation Module. 49

11.1 On-line Object Segmentation and Region Proposal learning pipeline. 58
11.2 On-line RPN. 60
11.3 On-line Segmentation Module. 62
11.4 On-line Object Segmentation and Region Proposal learning training protocol. 63
11.5 On-line Object Segmentation and Region Proposal learning serial training

protocol. 69
11.6 On-line Object Segmentation and Region Proposal learning evaluation on

YCB-Video in the stream-based setting. 72

List of figures xiii

11.7 On-line Object Segmentation and Region Proposal learning evaluation on
HO-3D in the stream-based setting. 73

11.8 On-line Object Segmentation and Region Proposal learning robotic pipeline. 75
11.9 On-line Object Segmentation and Region Proposal learning qualitative eval-

uation of the incremental robotic application. 78
11.10On-line Object Segmentation and Region Proposal learning qualitative eval-

uation of false positives management in the incremental robotic application. 78

12.1 iCub simulated environment. 91
12.2 G-PAYN grasping pipeline. 94
12.3 G-PAYN hand reference frames for different grasp pose generators. 96
12.4 G-PAYN quantitative evaluation. 101
12.5 G-PAYN qualitative evaluation. 102

13.1 RESPRECT DRL policy. 109
13.2 RESPRECT: G-PAYN feature extractors evaluation for base-policy pre-training.111
13.3 RESPRECT quantitative evaluation. 113
13.4 RESPRECT qualitative evaluation. 115
13.5 RESPRECT success rate on the real iCub robot. 116
13.6 RESPRECT grasping sequence on the real iCub robot. 116
13.7 RESPRECT: Fine-Tuning success rate for different number of gradient steps. 118
13.8 RESPRECT: Reptile success rate for different number of gradient steps. . . 118
13.9 G-PAYN evaluation with different visual feature extractors. 119
13.10RESPRECT: overview of the Residual baseline. 119

14.1 LHManip: robot and environment setup used for data collection. 121
14.2 LHManip: motion capture setup. 124
14.3 LHManip: exemplar episode decomposition into sub-task. 124
14.4 LHManip: exemplar task variations. 124

List of tables

10.1 On-line Object Segmentation: quantitative evaluation on the YCB-Video dataset. 48
10.2 On-line Object Segmentation: ablation study using Mask R-CNN pre-trained

on YCB-Video for feature extraction. 50

11.1 On-line Object Segmentation and Region Proposal learning: benchmark on
YCB-Video. 67

11.2 On-line Object Segmentation and Region Proposal learning: benchmark on
HO-3D. 67

11.3 On-line Object Segmentation and Region Proposal learning: comparison
with O-OS on YCB-Video. 68

11.4 On-line Object Segmentation and Region Proposal learning: comparison
with O-OS on HO-3D. 68

11.5 On-line Object Segmentation and Region Proposal learning: comparison
with the serial training protocol on YCB-Video. 70

11.6 On-line Object Segmentation and Region Proposal learning: comparison
with the serial training protocol on HO-3D. 70

11.7 On-line Object Segmentation and Region Proposal learning: overview ot the
training protocols considered for quantitative evaluations. 80

11.8 On-line Object Segmentation and Region Proposal learning: object detection
and segmentation metrics taxonomy. 80

11.9 On-line Object Segmentation and Region Proposal learning: comparison
with different configurations of the Mask R-CNN baselines on YCB-Video. . 82

11.10On-line Object Segmentation and Region Proposal learning: comparison
with different configurations of the Mask R-CNN baselines on HO-3D. . . . 82

12.1 G-PAYN training hyperparameters. 99

13.1 RESPRECT training hyperparameters. 110

List of tables xv

14.1 LHManip: tasks overview. 125
14.2 Items considered in the LHManip dataset. 126
14.3 LHManip: observation and action spaces overview. 127

List of acronyms

BC Behavior Cloning

CNN Convolutional Neural Network

DMP Dynamic Movement Primitive

DoF Degree of Freedom

DRL Deep Reinforcement Learning

FCN Fully Convolutional Network

FPN Feature Pyramid Network

G-PAYN A Grasp Pose is All You Need

HRI Human-Robot Interaction

IK Inverse Kinematics

IoU Intersection over Union

KL Kullback-Leibler

KRR Kernel Ridge Regression

LHManip Long-Horizon Manipulation dataset

LLM Large Language Models

MAE Masked Autoencoder

mAP mean Average Precision

MDP Markov Decision Process

MetaRL Meta Reinforcement Learning

MoCap Motion Capture

MSO MuJoCo Scanned Objects

O-OD On-line Object Detection

O-OS On-line Object Segmentation

RESPRECT RESidual learning with PREtrained CriTics

RL Reinforcement Learning

RLfD Reinforcement Learning from Demonstration

List of acronyms xvii

RLS Regularized Least Squares

RoI Region of Interest

RPL Residual Policy Learning

RPN Region Proposal Network

RRL Residual Reinforcement Learning

SAC Soft Actor-Critic

TAMP Task and Motion Planning

Part I

Introduction

Chapter 1

Motivation

“Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion
years of experience about the nature of the world and how to survive in it. The deliberate process we
call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is supported
by this much older and much more powerful, though usually unconscious, sensorimotor knowledge.
We are all prodigious olympians in perceptual and motor areas, so good that we make the difficult look
easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not
yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.”

Hans Moravec, Mind Children: The Future of Robot and Human Intelligence, 1998

Extraction of meaningful information and manipulation of objects in unstructured and
dynamically changing environments are key components to enable robots to autonomously
operate in cooperation with humans, interact with unknown objects, or perform tasks in new
environmental conditions.

Research in classical control in constrained environments allowed the deployment of
robotic industrial and manufacturing systems [13]. In these settings, robots are programmed
to execute sets of pre-defined tasks with a high level of precision. The deployment of
these approaches in environments like those in which we live, however, is hampered by
the difficulty of extracting precise visual and physical information of unseen objects and
environment conditions that change over time [205].

The latest research on Deep Learning methods for Computer Vision and robot control

problems exhibits remarkable performance. They solve visual perception tasks, such as
image classification [216, 83, 140], object detection [165, 18] or instance segmentation [66]
when trained on large datasets composed of thousands or millions of images. Similarly,
Imitation Learning or Reinforcement Learning approaches have been deployed for example
to control robotic arms used to solve manipulation tasks [77, 231], in whole-body control

3

problems such as legged locomotion [33, 119], or to navigate in the environment [215].
However, the deployment of these approaches on real robotic platforms is hindered by the
requirement of huge amounts of training data and interactions with the environment, and by
the necessity of ground-truth information [138] or dense rewards [195], which are difficult to
obtain.

Motivated by the success of Deep Learning methods in off-line settings and robotic
simulators, and by evidence that their on-line adaptation can improve performance [64,
217], with this Thesis I aim at addressing the problem of deploying such methods on real
robotic platforms. Extracting information from models pre-trained on huge amounts of data
offers the opportunity to speed-up the training on novel tasks [143], either leveraging on
features extracted with a pre-trained model, or using pre-trained policies as base sub-optimal
controllers. A widely used approach for adaptation of pre-trained models is fine-tuning
them on the novel tasks. However, this approach comes with some limitations that hinder its
application in the tasks considered in this Thesis.

I will focus on the tasks of instance segmentation and multi-fingered grasping, investigat-
ing the limitations of current state-of-the-art methods for deployment of these tasks on the
iCub [123] humanoid. I will leverage multi-modal sensory information to reduce the burden
deriving from data labeling or to gather precise descriptions of the environment, without
considering information that would be available only in simulated environments. Starting
from this information, I will propose novel methods that can be trained on the real robot,
being much faster than existing methods for the tasks at hand.

Finally, I will consider an additional limitation of current learning-based approaches for
robotic manipulation tasks. Typically, these methods solve short-horizon tasks that require
few steps to be completed [92, 14]. These tasks, however, are not representative of the those
that are typically expected to be performed by a robot in everyday environments. While
approaches based on Hierarchical Reinforcement Learning [130, 218] have been extensively
studied to solve long-horizon tasks, their deployment on real robots is limited by the lack
of real-world datasets. To address this limitation and motivated by the long-term reasoning
capabilities of Large Language Models [1], I will present a new dataset for long-horizon
language-guided manipulation tasks.

Chapter 2

Research Objectives

In this Thesis, I pursued several research objectives to provide methods for the tasks of in-
stance segmentation and multi-fingered grasping trainable as fast as possible on the iCub [123]
humanoid.

I started my Ph.D. project working on the task of instance segmentation. The first
objective was to design a new method trainable on novel classes, keeping the performance
of state-of-the-art Deep Learning approaches, but reducing the training time as much as
possible. I then considered the problem of rapidly adapting the segmentation model also
to novel visual scenarios. After achieving these objectives by designing a training pipeline
which was suitable for training on off-line datasets, the deployment of this pipeline on the
robot became the target of the project. To this aim, the first objective was to design a training
protocol that could perform some operations while acquiring data from the robot and then to
adapt it to an incremental setting, since the robot may be required to learn to segment novel
objects at different times.

Then, I moved to the task of multi-fingered grasping with Deep Reinforcement Learning.
I started the project with the aim of learning grasping policies in a simulated environment,
but using only information available also on the real robot. Relying on policies trained with
this approach, I finally focused on the goal of speeding-up the training to learn to grasp new
objects on the real robot.

As an additional contribution to the Thesis, I acquired a dataset for real world long-
horizon robotic manipulation tasks from a single language instruction. The development
of learning-based methods for such tasks may be the key component for the deployment of
robot in everyday environments.

Chapter 3

State-of-the-art

3.1 Robotic Visual Object Perception Learning

Perception of the environment is a long-standing problem in robotics. While being strictly
related to the Computer Vision literature, methods for robotic visual perception have different
requirements, depending on the target applications.

Computer Vision methods that require long training sessions and huge amounts of labeled
training data for the tasks of object detection and instance segmentation [165, 66, 18, 201]
are suited for applications that either involve a pre-defined set of objects or do not require
specific knowledge of the unknown objects. For example, [39] presents an approach to
grasp unknown objects, after segmenting them with a modified Mask R-CNN [66] trained on
synthetic depth data. The approach in [198], instead, jointly learns instance and semantic
segmentation for pick-and-place of 40 objects.

The latest research on Open World learning of visual perception tasks addresses the
problem of detecting [74, 211, 232] or segmenting [203, 208] objects belonging to classes
unseen during training. These methods first detect unknown objects from the background,
and then incrementally learn the discovered ones. While showing promising performance,
they do not always focus on accelerating the training process or reducing the number of
training images containing objects belonging to the unknown classes, which may be a critical
requirement in robotics.

Few-shot incremental learning methods learn to detect [150, 47] and segment [57, 78]
new objects, reducing the number of training images as much as possible. Some of these
approaches have been deployed to solve robotic tasks. For example, [44] relies on a few-shot
incremental object detector to learn to grasp new objects. These methods are closely related
to the ones proposed in the instance segmentation project described in this Thesis, in that they

3.2 Learning for Multi-fingered Grasping 6

focus on reducing the number of training images. However, few-shot incremental learning
methods usually do not specifically aim at accelerating the training procedure, which may be
critical in robotic applications.

Open Vocabulary [209] vision-language models trained on large datasets have shown
remarkable generalization properties to unknown object instances. These approaches for
object detection or instance segmentation first predict visual class embeddings for each
bounding box or mask in an image. Subsequently, the visual embeddings are compared to a
set of language embeddings representing different classes computed with a language model,
such as CLIP [156]. Representative Open Vocabulary methods for the task of detection
are OWLv2 [127] and BARON [210]. OpenSD [96] and Semantic-SAM [94], instead,
simultaneously detect and segment objects. While overcoming the limitations of models
trained on a closed set of classes, these approaches are not suited for robotic applications
requiring to learn specific objects during robot operations.

The two approaches for fast instance segmentation and region proposal learning presented
in this Thesis (see Chapter 7) target robotic applications aimed at learning unknown objects as
fast as possible. Therefore, they differ from the state-of-the-art, in that they focus on reducing
the time required by a robot to learn new objects in possibly different visual domains.

3.2 Learning for Multi-fingered Grasping

Multi-fingered grasping is an intrinsically challenging task that requires controlling tens of
degrees of freedom and taking into account object-finger interactions that may occur during
grasp execution. It represents a key task in robotics, not only for pick-and-place, but also to
enable robots to perform more sophisticated tasks, such as object re-orientation [4, 29], food
preparation, or clothes folding [133].

The problem of grasping with anthropomorphic hands has been historically addressed
with analytical methods that consider the geometrical and physical properties of both the
hand and the object [7]. Due to the difficulty of estimating such properties in practice, and
thanks to the development of reliable depth sensors such as the Microsoft Kinect, data-driven
approaches have found widespread application for the estimation of grasp poses, and grasp
execution [8]. In the last decade, Deep Learning methods have become the dominant trend
for grasp synthesis [133]. However, these mainly focus on generating grasp poses for two-
fingered grippers [11, 28]. Methods proposed in [230, 95], instead, start from pointcloud
information to generate multi-fingered grasp candidates by computing hand-object contact
points. In practice, these methods are difficult to apply because they do not take into account

3.2 Learning for Multi-fingered Grasping 7

the hand-object interactions occurring during grasp execution and are constrained to the
hardware used for training.

The work in [101] and DexPoint [154] propose to overcome these limitations by learning
grasping policies with Deep Reinforcement Learning. [101] computes the grasp pose for a
Shadow hand with an external algorithm and relies on synergies to reduce the number of
degrees of freedom to control the fingers during grasp execution. The policy is trained using
tactile information, joint angles and torques as input. While moving toward the development
of policies for grasp execution, rather than focusing on grasp synthesis, this approach is
limited by the use of torque information as input, that is not always available in other robotic
hands. Moreover, the approach in [101] does not consider information about the object
during policy execution, which may prevent it to grasp the object if the initial grasp pose is
unfeasible. DexPoint [154], instead, trains policies in simulation to grasp objects and open
doors from pointclouds. While demonstrating that the policies can be transferred to the real
robot without fine-tuning, this transfer can be strongly affected by the quality of the sensors.

The latest research on robot learning of large models via Imitation Learning [14, 231,
138, 137, 226, 54, 10] has shown remarkable performance on several manipulation tasks
using two-fingered grippers. The deployment of these methods for multi-fingered tasks
is, to the best of my knowledge, still unexplored and can represent an interesting future
research direction, but is hindered by the requirement of huge amounts of training data.
These data may be difficult to obtain, and their collection can require expensive hardware
and be time consuming. Moreover, Behavior Cloning approaches are known to suffer from
the mismatch between the training data and the estimated policy used in practice. This leads
to compounding errors that are challenging to address [167].

To reduce the effort required for collecting data for robot policy learning, approaches
such as those presented in [155, 178, 202] leverage human demonstrations. This represents
an interesting research direction for scaling-up data collection, but these approaches usually
require either a simulated environment to address the human-to-robot visual gap or to fine-
tune a policy pre-trained on human data with robot demonstrations collected via teleoperation.
Furthermore, they are poorly suited for collection of different data modalities, such as tactile
data, which may be crucial for tasks like multi-fingered grasping.

In this Thesis, I present two methods for learning multi-fingered grasping with Deep

Reinforcement Learning (see Chapter 8). The former, G-PAYN, leverages automatically
collected demonstrations to learn grasping policies in simulation from visual, tactile and
proprioceptive information. The latter, RESPRECT, learns to grasp novel objects both in
simulation and on the real robot with a Residual Reinforcement Learning approach, leveraging

3.3 Robotic Manipulation Datasets 8

a G-PAYN policy pre-trained on a large dataset of different objects. Differently from the
state-of-the art, they have been designed with the final goal of learning the task on the real
robot as fast as possible with Deep Reinforcement Learning to avoid compounding errors
and the requirement of real grasping demonstrations typical of Imitation Learning methods.

3.3 Robotic Manipulation Datasets

The availability of diverse and heterogeneous datasets has been the key to achieve the latest
success in Natural Language Processing [1] and Computer Vision [156, 82] both for large-
scale training on such datasets and for fine-tuning pre-trained models on small-scale datasets.
For example, image classification models pre-trained on large and heterogeneous data from
ImageNet [43] and fine-tuned on different and smaller datasets, overall perform better than
the same models trained from scratch on the target data [84].

Collecting datasets that demonstrate robots performing real manipulation tasks to train the
equivalent for robotics of a Computer Vision model pre-trained on ImageNet has been a long-
standing open problem due to the complexity of collecting real robotic data. The problem has
recently been tackled by the Open X-Embodiment project [138]. This collaboration between
21 institutions aimed to collect a dataset showing 22 different robots demonstrating 527 skills,
corresponding to 160266 tasks. The experimental evaluation in [138] assesses performance
on different small-scale datasets. This compares the original methods presented together with
the datasets, RT-1 [14] models trained on each dataset, and an RT-1 model, named RT-1-X,
which was trained on a mixture of datasets that includes the small-scale datasets considered
to evaluate performance. Results show that, overall, RT-1-X outperforms the considered
baselines on tasks with limited data, benefiting from co-training on the mixture of datasets.

The Open X-Embodiment dataset comprises a large number of state-of-the-art datasets
for robotic manipulation with two-fingered grippers. Among others, it includes datasets
such as Jaco Play [41] and BridgeData V2 [199] showing robots performing tasks in kitchen
environments, data used to train VINN [142] to open cabinet doors, and a dataset for cable
routing [111]. I contributed to the project with the LHManip dataset (see Chapter 9). I
collected the dataset via teleoperation, showing the robot performing long-horizon tabletop
tasks. LHManip differs from the other datasets in Open X-Embodiment in that they mostly
show robots performing tasks that require few steps to be completed. It also advances the
state-of-the-art of long-horizon datasets, which are usually collected either in simulation [224]
or simplified environments [68].

3.3 Robotic Manipulation Datasets 9

One common limitation of the datatsets in the Open X-Embodiment collaboration is
that they generally consider two-fingered grippers, and tasks are performed with a single
arm and limited sensor multi-modality (visual and proprioceptive data). While recent work
provides data for bi-manual tasks [226, 54] or datasets considering visual, tactile and language
data [53], large-scale heterogeneous datasets with similar features are still not available.

Chapter 4

Thesis Outline

The Thesis is organized as follows:

• Part II provides an overview of the background necessary to understand the key
concepts and methodologies relevant to the research work presented in this Thesis.
Specifically, in Chapter 5, I describe the background for the fast instance segmentation
learning project. In Chapter 6, I provide an overview of the Reinforcement Learning

algorithms and methodologies underlying the proposed approaches for multi-fingered
grasping.

• In Part III, I summarize the scientific contributions provided with the work done in
this Thesis. Specifically, in Chapter 7, I report the contributions for the fast instance
segmentation learning project. In Chapter 8, I describe the work carried out for
the multi-fingered grasping with Deep Reinforcement Learning project. Finally, in
Chapter 9, I overview the key features of the dataset that I collected for language-guided
long-horizon manipulation tasks.

• Chapters in Part IV correspond to the five publications included in this Thesis. Each
Chapter is self-contained and includes all the components of the corresponding paper.

• In Part V, I conclude the thesis, summarizing the results achieved with my Ph.D.
project and discussing directions for future work.

Part II

Background

Chapter 5

Instance Segmentation

Figure 5.1 Exemplar instance segmentation input and output1.

Instance Segmentation is a Computer Vision task that consists in classifying every pixel
of an image, taking into account different instances of the same class, as for example the
people in Fig. 5.1. The problem can be formalized as follows:

• Given an input image I represented as a matrix of pixels, where I(x,y) represents the
pixel value at coordinates (x,y).

• Supposing that there are N objects in the image, and that each object is associated with
a unique label li with i ∈ {1,2, . . . ,N}.

• The objective is to assign every pixel (x,y) in the image I to one of the object instances
or to the background. Formally, this corresponds to find a map S such that S : {(x,y)}→
{l1, l2, . . . , lN ,background}.

In the literature, this problem has been addressed with three different kinds of approaches:
1Source: https://github.com/facebookresearch/Detectron. Accessed on: 23/12/2023.

https://github.com/facebookresearch/Detectron

5.1 Mask R-CNN 13

Figure 5.2 Region Proposal Network (RPN). For each location in the feature map, the RPN
computes 2k classification values and 4k regression values, where k is the number of anchors
representing bounding boxes with fixed aspect ratio. The classification values represent
whether, for a given anchor in the given location, the feature map represents an object. The
regression values are used to refine the bounding boxes, starting from the fixed bounding
boxes represented by each anchor2.

• Detection-based Methods: these approaches build on top of approaches for object
detection, by adding a branch for mask prediction within the bounding boxes proposed
by the detector. Three exemplar methods are Mask R-CNN [66] that extend the
two-stage object detector Faster R-CNN [165], YOLACT [9] that builds on top of a
single-stage RetinaNet-like [103] detector, and the extended version of the transformer-
based DETR [18].

• Semantic Segmentation-based Methods: these approaches cluster into instances
pixels of the same class as predicted by a semantic segmentation method. SSAP [58]
and InstanceCut [81] are two approaches in this class.

• Dense Sliding Window Methods: approaches as DeepMask [153] and Instance-
FCN [36] simultaneously predict mask instances and their class-agnostic or class-
specific scores.

In Sec. 5.1, I will describe in details Mask R-CNN. At the beginning of the project aimed
at accelerating instance segmentation learning, it represented the state-of-the-art for the task,
and I built my methods on top of it.

5.1 Mask R-CNN

2Source: [165].

5.1 Mask R-CNN 14

Figure 5.3 Detection and segmentation heads in Mask R-CNN with ResNet backbone.
For each RoI, Mask R-CNN computes a mask of size 14× 14 for each of the considered
classes. In the figure, masks are computed for each of the 80 classes in the MS COCO [105]
dataset3.

Mask R-CNN extends Faster R-CNN by adding, in parallel with the branches for classification
and bounding box regression, a branch for predicting segmentation masks on each Region of

Interest (RoI). Given an input image, Mask R-CNN detects objects and computes masks as
follows:

• The image is processed by a backbone ResNet [67] or ResNeX [216] convolutional
neural network (CNN) for feature extraction.

• The feature map computed by the backbone is then processed by the Region Proposal

Network (RPN) to generate a set of RoIs, representing bounding boxes which are
candidate to contain on object. Fig. 5.2 shows how the RPN works.

• For each RoI, the feature map is cropped and resized with the RoI Align to a smaller
feature map with a fixed spatial extent. Each of these per-RoI feature maps is further
processed by other convolutional layers.

• Two fully connected layers in the detection head classify the per-RoI feature maps and
refine their bounding box.

• Finally, in parallel to the detection head, the segmentation head processes the feature
maps with a small CNN and predicts the segmentation mask for each object. Fig. 5.3
shows the architecture of Mask R-CNN’s detection and segmentation heads.

3Source: figure adapted from [66].

5.2 FALKON 15

While Mask R-CNN represents the state-of-the-art for the task of instance segmentation,
its adoption in robotics is hampered by the fact that the end-to-end training requires long
time, particularly when it is trained from scratch. This limitation hinders its use in robotic
applications requiring fast adaptation to novel objects and visual scenarios. To overcome
this limitation, in my works, I proposed to rely on Mask R-CNN for feature extraction while
replacing the final layers of the RPN and of the segmentation head with FALKON [169]
classifiers, and to rely on the method in [114] for adaptation of the detection head. I will
describe FALKON and the method for On-line Object Detection (O-OD) [114, 115] in the
following sections.

5.2 FALKON

FALKON is a kernel method that solves Kernel Ridge Regression (KRR) [173] for large-scale
problems. It combines Nyström subsampling [206] to approximate the KRR problem and
efficiently computes a preconditioning for optimization via conjugate gradient [171].

Kernel methods consider a space F of functions

f (x) =
n

∑
i=1

αiK(x,xi), (5.1)

where n is the number of points in the dataset {(x1,y1), . . . ,(xn,yn)} and K is a positive
definite kernel. Coefficients α1, . . .αn are typically derived by solving a convex optimization
problem. If this solved using the square loss, the KRR estimator is defined as

f̂n,λ = argmin
f∈F

(
1
n

n

∑
i=1

(f (xi)− yi)
2 +λ∥ f∥2

F

)
, (5.2)

where λ is the regularization parameter. With this formulation, the solution of the problem is
reduced to the solution of the linear system

(Knn +λ I)α = ŷ, (5.3)

where Knn is an n× n matrix defined by (Knn)i j = K(xi,x j) and ŷ = (y1, . . . ,yn). Solving
Eq. 5.3 requires O(n2cK + n3) in time (with cK , assumed constant, the time for kernel
evaluation), which may is not suitable for problems that require fast learning on large-scale
datasets.

5.3 On-line Object Detection 16

To overcome this problem, FALKON approximates the problem in Eq. 5.1 as

f̃λ ,M(x) =
M

∑
i=1

α̃iK(x, x̂i), with {x̃1, . . . , x̃M} ⊆ {x1, . . . ,xn}. (5.4)

This approximation considers a subset of M training points (Nyström centers) uniformly
sampled from the dataset. By solving the problem using the square loss as in Eq. 5.2, and
choosing M = Õ(

√
n) to preserve the optimal statistical guarantees of the exact KRR [168],

the computational time for kernel evaluations is reduced to O(n
√

n) and the time complexity
to solve the problem to O(n2), which still may not be suitable for fast learning on large-scale
datasets.

By preconditioning the linear system in Eq. 5.3 and solving the preconditioned problem
via conjugate gradient [171], a fast iterative gradient method that does not require to set the
step-size, FALKON reduces the time complexity to O(nMt +M3), where t is the number
of training iterations. Approximately logn iterations are sufficient for preserving optimal
statistical properties, decreasing the computational time requirements for optimal accuracy to
Õ(n
√

n). This results in a training time reduction of a factor Õ(n
√

n) with respect to standard
kernel-based classifiers, and of a factor Õ(

√
n) with respect to other Nyström approaches.

5.3 On-line Object Detection

The approach for O-OD proposed in [114, 115] leverages a pre-trained Faster R-CNN [165]
for feature extraction and FALKON [169] for on-line learning of object detection on new
classes. O-OD extracts per-RoI features from the penultimate layer of the Faster R-CNN
detection head (see Fig. 5.3) and trains N, with N the number of the novel classes, FALKON
binary classifiers to replace the class layer in Fig. 5.3, and 4N Regularized Least Squares
(RLS) for bounding box refinement (box layer in the figure).

The key component to train the FALKON classifiers is the proposed Minibootstrap

algorithm. This is an iterative training procedure that addresses the problem of hard negatives
mining [187, 59] in object detection. Minibootstrap selects a subset of hard negative samples
to balance the training sets associated to each of the N classes. At the beginning of the
training, Minibootstrap initializes the set P of positive examples and nB batches of negative
samples Ni with i = 1, . . . ,nB for each class. Then, at each training iteration i, Minibootstrap

performs the following steps for each of the N classifiers:

5.3 On-line Object Detection 17

• It selects hard negatives (i.e. negatives whose classification score is above a threshold
tH according to a given classifier) NH

i from Ni using the classifier Mi−1 trained at
iteration i−1 and adds them to the train set Di. This is now composed of P, NH

i and
the hard negatives chosen at iteration i−1 Nchosen,i−1 (see the last point).

• It trains the new classifier Mi using the dataset Di. Mi is a FALKON classifier, but the
Nyström centers are not uniformly sampled from the whole training dataset as in the
original FALKON sampling procedure. In the the Minibootstrap, M Nyström centers
are chosen such that they are composed of a set of P′ = min(|P|, M

2) positive examples
uniformly sampled from P, and of a set of M−P′ negatives uniformly sampled from
the negative examples in Di.

• It computes Nchosen,i by removing easy negatives (i.e. negatives whose classification
score is below a tE threshold according to a given classifier) from Di using Mi.

The full Minibootstrap procedure is reported in [115] and in Sec. 11.14.
O-OD allows to train detection models in few seconds. This makes it suitable for robotic

applications that require fast adaptation in dynamically changing environments.

Chapter 6

Reinforcement Learning

Figure 6.1 Reinforcement Learning state-action-reward loop.

Reinforcement Learning (RL) is a learning paradigm where an agent learns by interacting
with the environment. Differently from the supervised learning framework, where the agent
is trained to mimic actions to be executed in a given state from a labeled dataset, the agent is
trained to maximize the cumulative long-term reward obtained throughout an episode of the
task at hand.

An RL problem involves an agent, the robot in Fig.6.1, interacting with the environment,
the world in the figure. In this framework, the agent performs a sequence of actions to
solve a task. At a given timestep, the agent executes the action at predicted by its current
policy, given the observed state st as input. After the execution of the action, the environment

transitions to a new state st+1, and the agent receives a reward rt , which evaluates the action.
An RL problem can be formalized as a Markov Decision Process (MDP), which is defined

by a tuple (S,A,Psa,R), where:

• S is a set of states.

19

• A is a set of actions.

• Psa : S ×A×S → [0,∞) is the transition probability that defines the probability
P(st+1|st ,at) of transitioning from state st to state st+1 after taking action at .

• R : S ×A→ R is the reward function, where R(st ,at) = rt is the immediate reward
received after transitioning from state st with action at .

The transition probability Psa can be either known (model-based RL) or unknown (model-

free). In this Thesis, I will always consider Psa as an unknown probability distribution that
can be accessed only by sampling.

A key feature of an MDP is the Markov property. This asserts that the probability of
transitioning to the state st+1 depends only on the current state st and the taken action at ,
and not on the sequence of the previous states and actions. Formally, the Markov property
is given by the following conditional probability, defined for any sequence of timesteps
t1 < t2 < .. . < tn:

P(stn |stn−1 ,atn−1) = P(stn|stn−1,atn−1, . . . ,st1,at1). (6.1)

This property allows the agent to make decisions based only on the current state, without
the need to remember the past state-action pairs, significantly simplifying the learning
process.

The objective in an MDP is to find a policy π : S → A that maximizes the expected
cumulative reward obtained transitioning the environment from timestep 0 to timestep T .
This is expressed as the maximization of the discounted expected return given by

Rt =
T−1

∑
t=0

γ
trt , (6.2)

where γ ∈ [0,1] is the discount factor, which weights future and immediate rewards in the
discounted return. In infinite-horizon tasks (i.e. T = ∞) γ < 1 is necessary to make the sum
in the equation finite.

The goal of RL is to find a policy π∗ that maximize the discounted expected return in
Eq. 6.2. This can be formally expressed as:

π
∗ = argmax

π
∑
t
E(st ,at)∼ρπ

[γ trt], (6.3)

6.1 Model-Free Deep Reinforcement Learning Algorithms 20

where ρπ denotes the state-action marginal of the trajectory distribution induced by a policy
π .

In this Thesis, I will consider only Deep Reinforcement Learning (DRL) algorithms.
These algorithms define the policy π as a neural network parameterized by a set of weights θ .
Hereinafter, I will refer to a generic DRL policy as πθ . Consequently, if we define a trajectory
τ = ((s0,a0,r0), . . . ,(st ,at ,rt), . . . ,(sT−1,aT−1,rT−1)) as the sequence of state-action-reward
tuples obtained during execution of a policy πθ , the probability of starting the trajectory from
state s0 as p(s0), the probability distribution over trajectories induced by a policy πθ as

P(τ|πθ) = p(s0)∏
t

P(st+1|st ,at)πθ (at |st), (6.4)

and we express the cumulative reward defined in Eq.6.2 as

R(τ) = ∑
t

γ
trt , (6.5)

we can define the expected discounted return over trajectories induced by a policy πθ as:

J(πθ) = Eτ∼πθ
[R(τ)]. (6.6)

Therefore, the goal of a DRL policy can be expressed as follows:

π
∗
θ = argmax

πθ

J(πθ). (6.7)

6.1 Model-Free Deep Reinforcement Learning Algorithms

Model-free DRL algorithms can be divided into three categories: Policy-Gradient, Value-

Based and Actor-Critic methods. These methods differ on the optimization target to learn the
DRL policy.

6.1.1 Policy-Gradient Methods

Policy-gradient methods are a class of RL algorithms that directly optimize the policy. These
methods adapt the parameters of the policy θ to maximize the expected cumulative reward.
Eq. 6.7 can be equivalently formulated as follows:

θ
∗ = argmax

θ

J(πθ). (6.8)

6.1 Model-Free Deep Reinforcement Learning Algorithms 21

The optimization of the parameters θ to improve the policy is usually performed via gradient
ascent:

θnew = θold +α∇θ J(θold), (6.9)

where α denotes the learning rate. The gradient of the objective function ∇θ J(θ) can be
computed as described in the REINFORCE algorithm [207, 188]:

∇θ J(θ) = Eτ∼πθ

[
∑
t

∇θ logπθ (at |st)γ
tRt(τ)

]
, (6.10)

where Rt(τ) is the return received after timestep t in a trajectory τ and is defined as:

Rt(τ) =
T−1−t

∑
k=0

γ
krt+k. (6.11)

Policy-gradient methods directly optimize the policy. In principle this can lead to
stable learning, but this class of algorithms suffers from high variance for policy-gradient
estimation, thus requiring several policy evaluations for an effective estimate of such value.
This process, often involving multiple interactions with the environment, can result in
significant computational overhead and sample-inefficiency. Algorithms like TRPO [174]
and PPO [175] limit this issue by constraining policy updates.

6.1.2 Value-Based Methods

Value-based RL algorithms focus on estimating the value function of a policy - a measure of
how good it is to be in a given state or to perform a certain action in a state. These algorithms
do not explicitly maintain a policy, which is implicitly derived from the value function.

If the value function is computed to evaluate the expected return by executing the action
a when the environment is in state s, we define the action-value function for a policy π as:

Qπ(s,a) = Eπ

[
∞

∑
k=0

γ
krt+k | st = s,at = a

]
. (6.12)

Instead, the state-value function representing the expected return when the environment is in
state s is defined as:

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k | st = s

]
. (6.13)

6.1 Model-Free Deep Reinforcement Learning Algorithms 22

An important property of the value functions is that they can be expressed in a recursive way.
Eq. 6.14 and Eq. 6.15 are known as Bellman equations [6] of Qπ and V π .

Qπ(s,a) = Eπ [rt + γQπ(st+1,at+1) | st = s,at = a] (6.14)

V π(s) = Eπ [rt + γV π(st+1) | st = s] (6.15)

From the definitions of Qπ and V π derives also the definition of the advantage function Aπ .
This is used to estimate the advantage of taking an action a over the expected return from
state s. Aπ is defined as:

Aπ(s,a) = Qπ(s,a)−V π(s). (6.16)

For value-based methods, the agent selects the action that has the highest estimated value in
the current state. Therefore, the resulting optimal policy can be expressed as:

π
∗(s) = argmax

a
Qπ∗(s,a). (6.17)

DRL value functions are defined as neural networks parameterized by a set of parameters
φ . These algorithms are usually off-policy (i.e. they can learn from state-action-reward
tuples that are not derived from the current policy) and optimize φ on batches of transitions
sampled from the replay buffer. The latter stores transitions (st ,at ,rt ,st+1) accumulated
during training.

An exemplar value-based DRL algorithm is Deep Q-learning [128, 129]. This algorithm
samples a set of transitions (s j,a j,r j,s j+1) from the replay buffer and defines the target for
Qπ

φ
, y j, as:

y j =

r j for terminal s j+1

r j + γ max
a

Qπ
φ
(s j+1,a) otherwise

(6.18)

Then, it minimizes the loss (y j−Qπ
φ
(s j,a j))

2, also known as Bellman error minimization,
to find the optimal weights φ for Qπ∗ . Algorithms like Double DQN [194] and Dueling
DQN [204] improve Deep Q-learning limitations. Despite their simplicity, it is impractical
to scale these algorithms to environments with large or continuous action and state spaces.

6.1.3 Actor-Critic Methods

Actor-critic algorithms combine the advantages of policy-gradient and value-based methods.
These algorithms use two models: the actor representing the policy and the critic to estimate

6.2 Soft Actor-Critic 23

the value function. The training for these methods is an alternating procedure where the
critic is updated to improve the prediction of the expected returns, while the actor is updated
relying on the critic’s value estimates.

A representative DRL actor-critic method is DDPG [102]. Under the assumption that the
policy πθ is deterministic, i.e. at = πθ (st), and that the expectation in Eq. 6.14 depends only
on the environment E, which may be stochastic, DDPG estimates the action-value function
as:

Qπθ

φ
(st ,at) = Ert ,st+1∼E

[
rt + γQπθ

φ
(st+1,πθ (st+1))

]
. (6.19)

Since the expectation depends only on the environment, it is possible to learn Qπθ off-

policy, i.e. using transitions which are generated from a different stochastic behavior policy
π . Optimization of Qπθ

φ
is performed as described in Sec. 6.1.2 for the Deep Q-Learning

algorithm. Qπθ

φ
is then used to update the actor weights θ of the policy πθ via gradient

ascent, as defined in Eq. 6.9. The gradient of the expected cumulative reward with respect to
the parameters φ of the policy is estimated as:

∇θ J ≈ Est∼ρπ

[
∇θ Qπθ

φ
(s,a)|s=st ,a=πθ (st)

]
= Est∼ρπ

[
∇aQπθ

φ
(s,a)|s=st ,a=πθ (st)∇θ πθ (s)|s=st

]
,

(6.20)

where st ∼ ρπ represents a state st sampled from the state visitation distribution ρπ for
a generic policy π . Optimization of parameters φ and θ is alternated and repeated until
convergence.

Actor-critic DRL algorithms are more sample-efficient than policy-gradient methods,
often providing faster convergence. Furthermore, they can handle continuous action spaces
effectively, making them more suitable for robotic applications than value-based methods.
TD3 [55] and Soft Actor-Critic (SAC) [61, 62] (which I will describe in details in Sec. 6.2)
are two additional actor-critics algorithms largely used in DRL applications.

6.2 Soft Actor-Critic

The interplay between the deterministic actor network and the deep Q-function makes DDPG
highly sensitive to hyperparameters and difficult to stabilize. It is therefore difficult to to
use in practice for high dimensional tasks. SAC overcomes this limitation by combining
off-policy actor-critic training with a stochastic actor, and maximizing the entropyH of the
actor during training. To this end, SAC extends the RL problem formulation in Eq. 6.3 to

6.2 Soft Actor-Critic 24

find the policy π∗ that maximizes the target J(π) defined as:

J(π) =
∞

∑
t=0

E(st ,at)∼ρπ

[
∞

∑
k=t

γ
k−tEsk∼Psa,ak∼π [rk +αH(π(·|sk))]

]
(6.21)

where ρπ denotes the state-action marginal of the trajectory distribution induced by a policy
π as in Eq. 6.3 and α is a learned temperature parameter. The description of the optimization
procedure for this parameter is out of the scope of this Thesis. I refer the reader to [62] for
its derivation. To compute the action-value of a policy π , SAC computes the soft Q-value
iteratively, starting from any function Q : S ×A→ R and repeatedly applying a modified
Bellman backup operator T π given by:

T πQ(st ,at)≜ rt + γEst+1∼Psa [V (st+1)] , (6.22)

where
V (st) = Eat∼π [Q(st ,at)−α logπ(at |st)] (6.23)

is the soft state-value function. The soft Q-function for any policy can be obtained by
repeatedly applying T π for any policy π .

In SAC, the soft Q-function Qφ is parameterized by a neural network with weights
φ . These can be optimized to minimize the soft Bellman residual. This is computed for
state-action tuples sampled from the replay buffer D and defined as:

JQ(φ) = E(st ,at)∼D

[
1
2

(
Qφ (st ,at)−

(
rt + γEst+1∼p

[
Vφ̄ (st+1)

]))2
]
, (6.24)

where the value function V is implicitly parameterized by the parameters of the soft Q-
function, as described in Eq. 6.23. Computation of the value function makes use of a
soft Q-function parameterized by a set of parameters φ̄ . These weights are obtained as an
exponentially moving average of φ . JQ(φ) can be optimized with stochastic gradient descent.
The gradient of JQ(φ) can be estimated as:

∇̂φ JQ(φ) = ∇φ Qφ (at ,st)(Qφ (st ,at)− (rt + γ(Qφ̄ (st+1,at+1)−α log(πθ (at+1|st+1)))).

(6.25)
In practice, SAC makes use of two soft Q-functions parameterized by weights φi, with

i ∈ (1,2), and trains them independently to optimize JQ(φi). The minimum of the the soft
Q-functions is then used for the gradient estimations in Eq. 6.25 and Eq. 6.29.

6.3 Reinforcement Learning from Demonstration 25

To improve the policy, SAC updates πθ towards the exponential of the new Q-function in
terms of Kullback-Leibler (KL) divergence. This choice guarantees to obtain an improved
policy in terms of its soft value. The objective function Jπ(θ) can be obtained by directly
minimizing the expected KL-divergence as

Jπ(θ) = Est∼D
[
Eat∼πθ

[
α log(πθ (at |st))−Qφ (st ,at)

]]
. (6.26)

Policy optimization is then performed applying the reparameterization trick. The policy
is reparameterized as:

at = fθ (εt ;st), (6.27)

where εt is an input noise vector sampled from a fixed distribution N . Eq. 6.26 can be
rewritten with πθ implicitly defined in terms of fθ as:

Jπ(θ) = Est∼D,εt∼N
[
α logπθ (fθ (εt ;st)|st)−Qφ (st , fθ (εt ;st))

]
, (6.28)

and the gradient can be approximated as:

∇̂θ Jπ(θ) = ∇θ α log(πθ (at |st))+(∇at α log(πθ (at |st))−∇at Q(st ,at))∇θ fθ (εt ;st), (6.29)

where at is evaluated at fθ (εt ;st). SAC outperforms state-of-the-art model-free algorithms
as PPO [175], DDPG [102] and TD3 [55] in terms of training stability, number of training
timesteps and average return. However, the timesteps required for training are still unfeasible
for the target multi-fingered grasping task presented in this Thesis. I will address this problem
by proposing two methods based on SAC: the first leverages on grasping demonstrations, the
second is a Residual Reinforcement Learning (RRL) approach.

6.3 Reinforcement Learning from Demonstration

Reinforcement Learning from Demonstration (RLfD) accelerates the learning process for a
DRL policy by providing the agent with demonstrations of the task at hand. Demonstrations
are typically used in RLfD either to:

• Pre-train the agent to imitate the demonstrations. This model is then fine-tuned through
a traditional DRL method.

6.3 Reinforcement Learning from Demonstration 26

• Guide the exploration process of the agent during training. This is usually implemented
by modifying the loss functions of traditional DRL algorithms to imitate the behavior
of the expert demonstrator.

6.3.1 Pre-training from Demonstration

Pre-training of a DRL policy on demonstrations can be performed either via Behavior Cloning

(BC) or with off-line RL approaches. An exemplar method of the first class of algorithms is
DAPG [159], which after the pre-training with BC, fine-tunes the policy with an augmented
loss for NPG [76] to stay close to the demonstrations. This loss mitigates the distribution
shift between the demonstrations and the data acquired during training. AWAC [131], instead,
is a state-of-the-art actor-critic off-line RL algorithm. The optimization of the critic network
parameterized by φ is performed by minimizing the Bellman error presented in Sec. 6.1.2.
Instead, the actor parameters θ are updated, both during off-line and on-line training, as
follows:

θk+1 = argmax
θk

E(s,a)∼D

[
logπθk(a|s)exp

(
1
λ

Aπk(s,a)
)]

, (6.30)

where Aπk is the advantage function for the policy after k training iterations and λ a constant
Lagrangian multiplier. In the first part of the training, performed off-line, the replay buffer

D is composed of the off-line demonstrations. In the last stage of the training, transitions
acquired during on-line training are added toD. This allows to keep the policy during on-line
training close to the off-line demonstrations, guiding the policy to perform better action if the
action-value estimate is informative, cloning the behavior of the demonstrations otherwise.

6.3.2 Learning to Imitate Demonstrations

RL methods that imitate the demonstrations during training usually load transitions in the
replay buffer at the beginning of the training, and keep them throughout all the optimization
procedure. Two exemplar methods are DDPGfD [195] and the one presented in [132]. The
latter optimizes the actor parameters by maximizing the expected return and minimizing a
BC loss component. This is a modified version of the standard BC loss. It considers only
state-action pairs si and ai sampled from the set of demonstrations whose Q-value is greater
than the Q-value estimated for the same state, but with the action predicted by the policy.
This is done to avoid cloning suboptimal actions. The modified BC loss is defined as:

LBC =
ND

∑
i=1
∥πθ (si)−ai∥2 1Qφ (si,ai)>Qφ (si,πθ (si)). (6.31)

6.4 Residual Reinforcement Learning 27

The policy is updated with a gradient that combines the gradient of the BC loss with the
gradient used to update the actor parameters θ , as described in Sec. 6.1.3. This can be
expressed as:

λ1∇θ J−λ2∇θ LBC. (6.32)

In Eq. 6.32, ∇θ J is the gradient with respect to θ of the DDPG actor loss as described in
Eq. 6.20, and λ1 and λ2 are scalar weighting coefficients. This gradient formulation allows
to maximize the expected return, while also minimizing the BC loss.

6.4 Residual Reinforcement Learning

RRL is a class of RL methods that aim at improving base policies that may be non-
differentiable by adding a residual policy trained with RL on top of them. The RRL paradigm
has been introduced with Residual Policy Learning (RPL) [185] to improve imperfect con-
trollers in simulated manipulation tasks. RPL starts from an initial policy π : S →A and
learns a residual function fθ to obtain an improved final policy πθ (s) = π(s)+ fθ (s). Since
π(s) does not depend on θ , the gradient of πθ (s) can be defined as

∇θ πθ (s) = ∇θ fθ (s), (6.33)

and πθ (s) can be learned with policy-gradient methods even if π is not differentiable.
The initial policy π together with an MDP M = (S,A,Psa,R) induces a residual MDP

M(π) = (S,A,Pπ
sa,R), where:

Pπ
sa(s,a,s

′) = Psa(s,π(s)+a,s′). (6.34)

M(π) can be treated as a standard MDP, and the residual policy fθ is a policy within this
MDP that can be learned with standard RL techniques.

RRL approaches have proven effective to improve on base policies and to be more data-
efficient than learning policies from scratch. Extensions of RPL have been proposed to solve
both manipulation [73, 172] and navigation [161] tasks in robotics. However, they share the
common limitation of relying on a classical controller as base policy π .

Part III

Contributions

Chapter 7

Fast Instance Segmentation

Contributions for the fast instance segmentation learning project are presented in the papers
Fast Object Segmentation Learning with Kernel-based Methods for Robotics [21] (Chapter 10)
and Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub Robot [19]
(Chapter 11).

Figure 7.1 On-line Object Segmentation pipeline.

In Fast Object Segmentation Learning with Kernel-based Methods for Robotics, I pro-
posed a method for fast learning of the task of instance segmentation on novel classes. This
approach for On-line Object Segmentation (O-OS) is composed of three main components:

• The module for feature extraction, represented in green in Fig. 7.1. This is composed
of the first layers of a pre-trained Mask R-CNN [66] architecture. This is used to
extract convolutional feature maps for a set of RoIs.

30

• The module for on-line object detection, trained on the new classes, uses the per-region
features computed by the feature extractor to predict their class and to refine their
bounding box with O-OD [114, 115].

• The proposed On-line Segmentation Module predicts masks of the new objects. This
is composed of N FALKON [169] binary classifiers, being N the number of the new
classes. The classifiers are trained on the per-pixel convolutional features computed by
the first layers of the Mask R-CNN segmentation head for each RoI. Each classifier
predicts whether the pixel in the considered location represents the corresponding class
or the background.

O-OS has been validated on the YCB-Video [212] dataset. It achieves similar performance
to the fine-tuning of Mask R-CNN, with a significant reduction (∼ 6×) of the training time.
The pipeline has also been implemented on the R1 [144] robot1, showing the feasibility of
the approach for on-line learning of new objects on a real robot.

Figure 7.2 On-line Object Segmentation and Region Proposal learning pipeline.

I then extended the O-OS pipeline for on-line adaptation to novel visual domains in Learn

Fast, Segment Well: Fast Object Segmentation Learning on the iCub Robot. This is done by
replacing the last layers of the RPN in Mask R-CNN with the proposed On-line RPN. This
is composed of k FALKON classifiers, being k the number of anchors in the RPN, and 4k

RLS regressors for classification of bounding boxes that may contain an object of interest
and RoIs refinement. Regions proposed by the On-line RPN are then classified and refined
by O-OD [114, 115]. Within the regions classified as one of the N objects of interest, the

1https://youtu.be/Q0g9k8taLHc

https://youtu.be/Q0g9k8taLHc

31

proposed approach computes the mask of the object with the On-line Segmentation Module

presented above. The full pipeline is shown in Fig. 7.2.
Adaptation of the On-line RPN improves performance, but leads to a more complex and

longer training pipeline if addressed naïvely. This would require two feature extraction steps:
the first to train the On-line RPN and the second for On-line Detection Module and On-line

Segmentation Module training. This would prevent the deployment of the pipeline on the
robot, where data are received in stream. To overcome this limitation, I also proposed an
approximated training protocol for adaptation of the three on-line modules in few seconds.
This simultaneously extracts features for the On-line RPN, and for the On-line Detection

Module and the On-line Segmentation Module. Features for training the last two modules are
computed considering RoIs from the pre-trained RPN of Mask R-CNN. This approximation
in the training protocol led to a moderate drop in performance, but played a central role in
the deployment of the pipeline on the real robot.

Finally, I adapted the training pipeline to an incremental setting where the robot is
required to learn objects at different times. The incremental training pipeline differs from the
off-line training protocol in the computation of the Minibootstrap batches for On-line RPN

and On-line Detection Module. However, I showed that each tensor of features has the same
probability of being considered for training with the two protocols. This adaptation allowed
to reduce the amount of false positive predictions at inference2.

2https://youtu.be/eLatoDWY4OI

https://youtu.be/eLatoDWY4OI

Chapter 8

Multi-fingered Grasping with Deep
Reinforcement Learning

Work done in the project for learning multi-fingered grasping with DRL resulted in the
proposal of two methods for such task: G-PAYN, presented in the paper A Grasp Pose is All

You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision

and Touch [22] (Chapter 12) and RESPRECT, described in the paper RESPRECT: Speeding-

up Multi-fingered Grasping with Residual Reinforcement Learning [24] (Chapter 13).

Figure 8.1 G-PAYN and RESPRECT grasping pipeline.

G-PAYN and RESPRECT are two methods to train DRL-based closed-loop grasping
policies. DRL policies trained with the two methods form part of the pipeline presented in
Fig. 8.1 which has been deployed on the iCub [123] humanoid for grasping objects. This is
composed of two stages:

• It starts by computing a grasp pose for the object of interest with an external algorithm
for grasp pose synthesis (Superquadrics [196] or VGN [11]). The end-effector is then
moved to a pre-grasp pose close to this latter.

33

• Starting from the pre-grasp pose, the DRL policy predicts cartesian end-effector
displacements and finger joint offsets until the grasp is executed.

The two approaches have been designed to be deployed on the real robot without adapting
state and action spaces with respect to the policies trained in simulation.

Figure 8.2 G-PAYN DRL policy.

As shown in Fig. 8.2, G-PAYN learns grasping policies from RGB images (processed
through CLIP [156] for visual feature extraction), proprioceptive information from the
robot (the cartesian pose of the end-effector and the position of finger joints), binary tactile
information from sensors mounted on the fingertips of the robot, and an estimate of the pose
of the object to grasp (this is computed at the beginning of the grasping episode and kept
constant during grasp execution). Starting from this information, G-PAYN learns the weights
of two fully-connected layers to predict cartesian and finger joint displacements. This is done
in two steps:

• It firstly fills a replay buffer of grasping demonstrations acquired with an automatic
procedure for collection of such data. This procedure starts from the same pre-grasp
pose used for the DRL policy, approaches the object on a straight line, and finally
closes the fingers to grasp the object. This addresses the problem of collecting grasping
demonstrations for example via teleoperation.

• Starting from this replay buffer, it trains grasping policies with SAC [62].

For G-PAYN training and evaluation, I deployed a MuJoCo [193] simulated environment
for the iCub, which has been made publicly available as a further contribution of the paper.

34

G-PAYN outperforms all the DRL baselines and achieves a similar success rate to the demon-
strations acquired for training initialization, outperforming them in half of the experiments.
Furthermore, policy trained in simulation with G-PAYN can be deployed on the real robot
without requiring any adaptation of action and state spaces1.

Training policies with G-PAYN is unfeasible on the real robot due to the requirement
of filling a replay buffer with real grasping demonstrations and for the amount of training
timesteps necessary for policies optimization (∼ 5M).

To overcome these limitations, I proposed RESPRECT, an RRL method to learn a residual
grasping policy for a new object on top of a policy pre-trained in simulation with G-PAYN on
a large dataset of different objects.

Figure 8.3 RESPRECT DRL policy.

Training a residual policy on top of another policy trained with DRL allows to learn
residual policies for tasks where a classical base controller is not available, but also to further
speed-up the training by leveraging some components of the base policy. The DRL policy
proposed in RESPRECT is presented in Fig. 8.3. RESPRECT’s state and action spaces are
the same as in G-PAYN, with the exception of the visual feature extractor.

While the weights of the pre-trained policy remain fixed throughout the training of the
residual policies, RESPRECT’s residual policies are trained with a modified version of
SAC [62].

• For the residual Actor, I consider as input the concatenation between the state st as
shown in Fig. 8.3 and the action produced by the pre-trained policy. This allows the
policy to compute the residual action conditioned not only to the current state of the
system, but also to the action produced by the pre-trained component.

• Critics in the residual policy, instead, are fed with the state st and the sum of the actions
predicted by the pre-trained and residual policies. This allows to train the residual

1https://youtu.be/qc6gksKH3Mo

https://youtu.be/qc6gksKH3Mo

35

Critics starting with the weights of the pre-trained counterpart and to speed-up the
initial stage of the training.

I experimentally validated RESPRECT both in simulation and on the real iCub. In
simulation, it trains policies five times faster than G-PAYN, without using any grasping
demonstrations, outperforming Meta Reinforcement Learning [160] and fine-tuning baselines.
Finally, I showed that RESPRECT can be effectively used to learn a multi-fingered grasping
policy on the real iCub robot, starting from the same base policy pre-trained in simulation used
for the simulated evaluation, and using only visual, tactile and proprioceptive information
from the robot2.

2https://youtu.be/JRsBLVclhpg

https://youtu.be/JRsBLVclhpg

Chapter 9

Toward Long-Horizon Manipulation
Tasks

In the perspective of proposing new methods for learning long-horizon manipulation tasks, I
collected a dataset, LHManip, for such tasks. This has been presented in the paper LHManip:

A Dataset for Long-Horizon Language-Grounded Manipulation Tasks in Cluttered Tabletop

Environments [23].

Figure 9.1 Exemplar LHManip episode.

I collected LHManip via teleoperation, tracking human fingers and wrist motion with
a Motion Capture system to guide the end-effector and the gripper opening of a Franka

Panda [63] manipulator. The main features of LHManip are the following:

• It comprises 200 episodes, demonstrating 20 different manipulation tasks of everyday
objects performed in a cluttered tabletop environment. Each of these tasks is described
through a single natural language instruction, and different episodes of the same task
either present differences in the manipulated objects, or in the environment. Fig. 9.1
shows some images from an episode in LHManip.

• Each observation in the dataset is composed of RGB-D images from a wrist-mounted
and two static cameras, and proprioceptive information of the robot. Each action

37

describes the cartesian displacement of the end-effector of the robot and the position
offset applied to the gripper opening.

LHManip is part of the Open X-Embodiment [138] dataset. This has been collected in a
collaboration between 21 institutions with the aim of learning a generalist policy for robotic
manipulation tasks.

Part IV

Included Publications

Chapter 10

Fast Object Segmentation Learning with
Kernel-based Methods for Robotics

Federico Ceola, Elisa Maiettini, Giulia Pasquale, Lorenzo Rosasco and Lorenzo Natale

ABSTRACT

Object segmentation is a key component in the visual system of a robot that performs

tasks like grasping and object manipulation, especially in presence of occlusions.

Like many other computer vision tasks, the adoption of deep architectures has made

available algorithms that perform this task with remarkable performance. However,

adoption of such algorithms in robotics is hampered by the fact that training requires

large amount of computing time and it cannot be performed on-line.

In this work, we propose a novel architecture for object segmentation, that overcomes

this problem and provides comparable performance in a fraction of the time required

by the state-of-the-art methods. Our approach is based on a pre-trained Mask R-CNN,

in which various layers have been replaced with a set of classifiers and regressors

that are re-trained for a new task. We employ an efficient Kernel-based method that

allows for fast training on large scale problems.

Our approach is validated on the YCB-Video dataset which is widely adopted in the

computer vision and robotics community, demonstrating that we can achieve and

even surpass performance of the state-of-the-art, with a significant reduction (∼ 6×)

of the training time.

The code to reproduce the experiments is publicly available on GitHub1.
1https://github.com/robotology/online-detection

https://github.com/robotology/online-detection

10.1 Introduction 40

10.1 Introduction

Object segmentation is a key task in computer vision and robotics. A precise localization of
the object on the image plane is key to solve problems like pose estimation [212, 219, 200],
refinement [100, 118] and grasping or manipulation [45].

Like many other computer vision tasks (e.g., image classification and object detection),
for decades this was mostly addressed with feature extraction (e.g., sparse coding [72], Fisher
vectors [151]) followed by Kernel methods [56] or structured prediction approaches [85, 109].
In recent years, instead, end-to-end training of deep architectures became mainstream since
it showed to provide superior performance [108, 66, 126].

However, deep learning is known to require large training data to optimize complex
architectures with expensive and long training procedures. While the problem of training
data has recently been alleviated by synthetic image generation [164, 46], the computational
burden remains.

Lately, the literature of one-shot and few-shot object segmentation in video [15] pre-
sented methods based on the idea of fine-tuning only part of the network on-line [197, 134].
This approach can learn to segment novel objects in shorter time than standard end-to-end
approaches, while keeping performance. However, the procedure of fine-tuning a deep
network in general does not guarantee generalization properties, since it involves a non
convex optimization and several hyper-parameters, while it can be still prohibitive for robotic
settings which require learning to happen very fast (e.g., in seconds or minutes).

Recently, it was shown that pre-trained deep features can be efficiently re-used also to
train Kernel-based methods for tasks like image classification [25] object detection and even
segmentation [51, 59]. The advantage of Kernel-based methods, among others, is that the
number of hyper-parameters to tune is smaller (e.g. in [169], one regularization parameter,
one Kernel parameter) and convergence and generalization properties are guaranteed [169].
This approach was recently adopted to achieve high performance and remarkably faster
training times in interactive object learning applications for object recognition [145] and
detection [115] in robotics. By relying on the above pipelines, a robot can observe a
short image sequence of the objects of interest and seamlessly train to detect them right
afterwards2,3.

In this paper, we build on this prior work and present a method to re-use general-purpose
deep features (e.g., pre-trained on COCO [105]) to train Kernel methods for the dense task of
image segmentation. As evidenced from prior work [115, 59, 51], the main challenge lies in

2https://youtu.be/HdmDYIL48H4
3https://youtu.be/eT-2v6-xoSs

https://youtu.be/HdmDYIL48H4
https://youtu.be/eT-2v6-xoSs

10.1 Introduction 41

the difficulty of training a non-linear classifier over the large training sets that characterize
object detection and segmentation problems (where each sample is a region or a single pixel
in an image).

To this end, we feed deep features to FALKON [169], a recently proposed Nyström-based
Kernel method optimized for large-scale problems. We instantiate one per-pixel FALKON
classifier for every class and train it on pixel-wise features extracted from the second-last
layer of the network.

We first solve the detection task by applying the same approach, which was presented
in [115]. Then, we feed the dense features extracted from the detected regions to FALKON
classifiers to perform figure-ground segmentation within each region. To tackle the well-
known problem of dataset (positive-negative) imbalance which characterizes the task of
object detection, we use the bootstrapping technique from [115]. Instead, to manage the
great quantity of data in the figure-ground segmentation task, we apply data subsampling in
our training procedure.

As network, we use the region-based Mask R-CNN [66], to which we basically replace
every output layer with a set of FALKON classifiers or regressors. The resulting architecture
is clean and flexible, allowing to easily train accurate instance segmentation on small datasets
in a few minutes, but possibly also on large ones.

We benchmark our method on the YCB-Video dataset [212], a state-of-the-art benchmark
for pose estimation and tracking in challenging conditions for robotics, featuring clutter and
occlusion across varied objects. In fact, while pose estimation results are widespread over this
latter, but also other robotics datasets (see, e.g., the BOP challenge [69]), it is less common
for robotic papers to present the partial results over the segmentation task –which, however,
is almost always part of their pipelines. Hence, we also hope that this work could pave the
way to other works in robotics, to present not only pose estimation but also intermediate
segmentation results.

The remaining of this paper is organized as follows. In Sec. 10.2 we review the state-
of-the-art in the fields of instance segmentation and efficient learning strategies for visual
tasks in robotics. Then in Sec. 10.3, we describe the proposed approach and in Sec. 10.4 we
report on the performed empirical validation. Finally, in Sec. 10.5, we summarize the main
contributions and identify directions for future works.

10.2 Related Work 42

10.2 Related Work

In this section, we overview the main state-of-the-art approaches for object segmentation
(Sec. 10.2.1), then we present the literature that tackles the problem of fast adaptation of
robotic vision systems to novel tasks (Sec. 10.2.2).

10.2.1 Object Instance Segmentation

The task of instance segmentation [126] aims at classifying all the pixels in an image, while
identifying different instances of the categories of interest. Note that, this task is different
from semantic segmentation, which has the similar objective of classifying every pixel
of an image but not being aware of the different instances. While the field of semantic
segmentation is mainly dominated by approaches based on Fully Convolutional Networks
(FCNs) [108, 179], the literature in instance segmentation can be divided in the following
three groups.
Region-based approaches. Methods in this group split the segmentation task into four main
stages: (i) a convolutional feature map is generated by a FCN applied to the whole image,
(ii) a list of Regions of Interest (RoIs) is generated by a region proposal method, (iii) a RoI
pooling layer [165] warps each RoI and extracts per-RoI features from the convolutional
map and, finally, (iv) two sibling shallow Neural Networks predict detections and masks
for each feature map. The main representative example of this group is Mask R-CNN [66]
which extends the object detection architecture Faster R-CNN [165] by adding, in parallel
to the final detection layers, a further output layer for binary mask prediction. Note that,
this is in contrast to latest approaches [37, 99, 152], where the classification depends on the
prediction of the masks. Mask R-CNN is devised as a monolithic architecture which trains
end-to-end, via stochastic gradient descent and back-propagation, all the components for
region proposals and feature extraction, object detection and segmentation. The network
optimization is carried out by minimizing a “multi-task loss" [165, 66], which accounts
for the contribution of classification, bounding box and mask precision (see [165, 66] for
details).
Pixel-based approaches. Methods of this group predict a so-called “auxiliary" information
for each pixel (like, e.g, energy levels [5]) and then a clustering algorithm groups pixels into
object instances based on such information. An example of this approach is presented in [5],
where the watershed transform is combined with a deep convolutional network to produce an
energy map of the image where object instances are represented as energy basins. Then, they

10.3 Methods 43

perform a cut at a single energy level to yield connected components corresponding to object
instances.
Snake approaches. Methods of this group deform an initial coarse contour to the object
boundary by optimizing a handcrafted or learned energy measure with respect to the contour
coordinates. In [106], for instance, the presented pipeline uses a graph convolutional network
to predict vertex-wise offsets for contour deformation. In [149], instead, the object’s contour
is not treated as a general graph, but it leverages the cycle graph topology and uses the
circular convolution for efficient feature learning on a contour.
All the aforementioned methods of the state-of-art are “monolithic” deep architectures,
trained end-to-end via back-propagation and stochastic gradient descent, with long training
times that are not suited for on-line robotic applications. In this work, we propose a region-
based method for object segmentation that, building on previous work [115], addresses this
issue, allowing for fast model learning.

10.2.2 Fast Object Detection Methods in Robotics

Fast and efficient adaptation to novel tasks is critical for robots that need to operate in
unconstrained environments. Previous works in robotics analyze this problem and propose
solutions for object recognition [145] and object detection [114, 115]. In both cases, the
proposed pipelines rely on hybrid architectures that integrate deep Convolutional Neural
Network’s (CNN) feature descriptors with efficient “shallow" Kernel-based methods (like,
e.g., FALKON [169]) for respectively classification or detection. In these works, the key
aspect to achieve on-line training time is to decouple the learning of the features and region
proposals extractor from the optimization of the Kernel-based methods. Moreover, in [115]
an approximated bootstrapping procedure for selecting hard negative samples has been
proposed, to address the well-known foreground-background imbalance problem in object
detection.

In this work, we extend the pipeline proposed in [115], to also perform object segmenta-
tion. Following the same principle as in [115], in our proposed approach, the training of the
features and region proposals extractor is decoupled by the optimization of the detection and
segmentation methods, allowing for a fast model re-adaptation.

10.3 Methods 44

Figure 10.1 Overview of the proposed pipeline. The Feature Extraction Module is composed
of Mask R-CNN’s first layers trained off-line on the FEATURE-TASK. For each input image,
it extracts per RoI features to train on-line on the TARGET-TASK the On-line Detection
Module and the On-line Segmentation Module. The On-line Detection Module classifies the
RoIs and predicts the corresponding detections. The On-line Segmentation Module predicts
masks for each detection. Note that the picture represents the pipeline at training time. At
test time, the detection output is fed as input to the RoI Align.

10.3 Methods

In this work, we present an instance segmentation method, which allows to learn to predict
masks of previously unseen objects (referred to as TARGET-TASK) in a fraction of the time
required by state-of-the-art approaches. To do this, it relies on some components of a deep
learning based instance segmentation network trained once and off-line on the available data,
depicting a different set of objects (referred to as FEATURE-TASK).

In this section, we describe the proposed approach. Sec. 10.3.1 provides an overview
of the pipeline, while in Sec. 10.3.2 the proposed on-line learning strategy for instance
segmentation is described.

10.3.1 Overview of the Pipeline

The pipeline proposed in this work is mainly composed of three modules, as depicted in
Fig. 10.1:

• The Feature Extraction Module employs the first layers of the Mask R-CNN archi-
tecture, trained on the FEATURE-TASK, to extract two sets of convolutional features
for a set of RoIs, one for On-line Detection and one for On-line Segmentation.

10.3 Methods 45

• The On-line Detection Module uses the per-region features computed by the feature
extractor to predict their class and to refine their bounding box with the approach
described in [115].

• The On-line Segmentation Module, instead, predicts the masks of the instances
contained in the RoIs with the approach proposed in this work and described in
Sec. 10.3.2. As the previous module, also this module is trained on the TARGET-
TASK.

The main contribution relies on the latter module. Indeed, we propose a fast and efficient
learning strategy that allows to update the instance segmentation model in few minutes.
Moreover, we integrate it in the on-line detection pipeline presented in [115], extending it
and proposing a novel approach. This permits fast adaptation time as new data is available
for both object detection and segmentation.
Learning protocol. Our learning procedure is composed of two stages. Firstly, Mask
R-CNN is trained off-line on the FEATURE-TASK via backpropagation, following the
training protocol proposed in [66]. Then, the on-line training of both the detector and the
mask predictor on the TARGET-TASK are performed in three sub-steps. First, some of
the layers of the Mask R-CNN architecture learned in the first phase on the FEATURE-
TASK (specifically the backbone, the RPN and the convolutional layers following the Roi
Align, depicted as green blocks in Fig. 10.1), are used to jointly extract the two sets of
features needed to train the On-line Detection Module and the On-line Segmentation Module

(represented by yellow blocks in Fig. 10.1). These two modules are then sequentially trained
with the on-line learning strategy described in Sec. 10.3.2.

10.3.2 On-line Learning Strategy

As mentioned in Sec. 10.3.1, the trainings of the On-line Detection Module and of the On-line

Segmentation Module are performed by employing two different sets of features computed
by the Feature Extraction Module. These are extracted in two different points of the Mask
R-CNN architecture. Specifically, features necessary to train the On-line Detection Module

are extracted from the set of one-dimensional tensors, which in Mask R-CNN are given as
input to the last fully connected layers of the detection head. Features necessary to train
the On-line Segmentation Module, instead, are contained in the convolutional feature maps
produced as output by the penultimate convolutional layer of the mask head in Mask R-CNN.
Once the sets of features are extracted for all the training images, the On-line Detection

10.3 Methods 46

Module and the On-line Segmentation Module can be trained with the procedures described
below.
On-line Detection. For the training of the On-line Detection Module, we adopt the method
described in [115], but we use the improved implementation of the Feature Extraction Module

proposed in [20]. Indeed, such improvement allows to increase the quality of the features,
due to the substitution of the first layers of Faster R-CNN [165], with the ones from Mask
R-CNN [66]. As in [115], the last fully connected layers of the detection head in Mask
R-CNN are substituted with N FALKON [169, 120] binary classifiers (N being the number of
classes of the TARGET-TASK) for class prediction, and by N×4 Regularized Least Squares
(RLS) regressors for the refinement [59] of the RoIs proposed by the RPN. To deal with the
well-known problem of foreground-background imbalance and with the high redundancy
among the negative examples in object detection problems [103], the N FALKON classifiers
are trained with the Minibootstrap proposed in [115]. This procedure is an adaptation of the
Hard Negatives Mining strategy [59] and it allows to train the classifiers in a few seconds by
visiting a random subset of negative examples.
On-line Segmentation. In Mask R-CNN [66], the mask head is a shallow Fully Convolu-
tional Network (FCN), which for every RoI computes N squared masks (one for each of the
N classes) of fixed size s× s. In particular, the last layer of the segmentation branch (i.e.,
the per-pixel mask predictor) is a convolutional layer with N channels, kernel size 1 and
stride 1 that receives as input a convolutional feature map of size s× s× f (where f is the
number of channels). Therefore, the output tensor of the segmentation head has dimension
s× s×N and the i jnth element of such tensor represents the probability of the pixel in the
location i j of belonging to an instance of the nth class. In this work, we substitute the N

kernels for per-pixel classification with N FALKON binary classifiers. We flatten the s×s× f

feature map into a list of s× s feature tensors of size f associated to specific locations in
the RoIs and use them as samples to train the FALKON classifiers. At training time, we
consider the ground-truth bounding boxes as RoIs. The i jth element of the input feature map
of size s× s× f is considered as a positive training sample for the nth classifier if the i jth

pixel of the associated ground-truth mask belongs to the foreground and the ground-truth
class is n. Otherwise, if it is a background pixel within a ground-truth bounding box of
class n, it is considered as a negative sample for the nth classifier. To speed-up the training
procedure, both the positive and the negative instances are subsampled by a fixed factor r.
We employ FALKON to address the per-pixel classification problem since, as shown in [115]
(specifically, refer to Tab. 6 in [115]), among other equivalent choices, it allows to achieve
the best time-accuracy trade-off (refer to [169] for details).

10.4 Experiments 47

Hyper-parameters. For both the detection and segmentation modules, we use FALKON
with a Gaussian Kernel. The main hyper-parameters of the proposed method are:

• The standard deviation σ of the Gaussian Kernel, the regularization parameter λ and
the number of Nyström centers M of the FALKON classifiers of both the On-line

Detection Module and the On-line Segmentation Module.

• The Minibootstrap parameters to train the On-line Detection Module, i.e., the number
of batches nB and the size of such batches BS.

• The sampling factor r of the training examples in the On-line Segmentation Module.

For our experiments, we rely on the criterion proposed in [115] to set the Minibootstrap’s
parameters, we cross-validate the FALKON’s parameters as explained in Sec 10.4.1 and we
report on an empirical analysis of the impact of the sampling factor r.

10.4 Experiments

In this section, we report the experiments performed to validate the proposed approach.
In Sec. 10.4.1, we describe the experimental setup. In Sec. 10.4.2, we provide the results
obtained on the YCB-Video benchmark. Finally, in Sec. 10.4.3, we report on ablation studies
to analyze our approach.

10.4.1 Experimental Setup

In this work, we consider Mask R-CNN as baseline for comparison with the proposed pipeline
(Ours). We start with Mask R-CNN trained on the FEATURE-TASK and we fine-tune the
output layers on the TARGET-TASK (i.e., the fully connected layers for detection and the last
convolutional layer for masks prediction). We refer to this architecture and training method
as Mask R-CNN (output layers). We use ResNet50 [67] as backbone of Mask R-CNN
for both the Mask R-CNN (output layers) baseline and the Feature Extraction Module of
the proposed approach (Ours). To set the training hyper-parameters, for both methods we
perform a cross-validation on a validation set. Specifically, the model chosen for the Mask
R-CNN (output layers) baseline has been trained for the minimum number of epochs at
which the highest segmentation accuracy is achieved on the validation set. In Ours, instead,
the validation set is used to select σs and λ s of the FALKON classifiers, both in the On-line

Detection Module and in the On-line Segmentation Module. To compare the performance

10.4 Experiments 48

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (output layers) 76.87 74.12 68.56 64.80 1h 57m 1s

Ours 76.46 74.66 68.71 64.96 19m 32s

Table 10.1 Benchmark on the YCB-VIDEO dataset. We compare the accuracy achieved by
(Mask R-CNN (output layers)) (first row) and by the proposed approach (Ours) (second
row).

between the two approaches, we consider three metrics: the mean Average Precision (mAP),
as defined in [50] of the predicted detections (mAP bbox(%)) and of the predicted masks
(mAP segm(%)) and the training time. Concerning the bounding boxes and masks IoU to
be considered as positives matches in the mAP computations, we set the thresholds to 50%
and 70%. As regards the training time4, for Mask R-CNN (output layers) it is the time
necessary to fine-tune Mask R-CNN via backpropagation. For Ours, instead, it is composed
of the feature extraction time and of the training time of the on-line modules. The former one
in practical robotic applications can happen during the data acquisition phase2,3, which can
be performed, for instance, as in [146, 113, 213, 186], where the ground-truth is collected
with automatic procedure.
Datasets. In our experiments we consider the YCB-Video [212] dataset. Specifically, we
use as training set a sample of the 80 training sequences, by selecting one every ten frames,
resulting into a set of 11320 images. For testing, instead, we use the 2949 images included
in the keyframe set. To select the training hyper-parameters, according to the training
protocol described in Sec.10.4.1, we use a set of 1000 images, randomly sampled from the
12 test sequences, which are not included in the keyframe set. The 80 categories in the MS
COCO [105] dataset, instead, compose the FEATURE-TASK in some of our experiments.

10.4.2 Benchmark on the YCB-Video Dataset

We validate the proposed on-line segmentation approach by considering the 21 objects
from the YCB-Video dataset as TARGET-TASK and MS COCO as FEATURE-TASK. As
described in Sec. 10.4.1, we compare the performance obtained by our approach (Ours),
with the Mask R-CNN (output layers) baseline. As in [115], to train the On-line Detection

Module we set the Minibootstrap’s batch size BS to 2000, but, given the higher amount of
training images with respect to the benchmark reported in [115] (Table 2), we increase the
number of batches nB to 15. The number of Nyström centers M of the FALKON classifiers
of both the On-line Detection Module and the On-line Segmentation Module is set to 2000.

4All the experiments reported in this paper have been performed on a machine equipped with Intel(R)
Xeon(R) E5-2690 v4 CPUs @2.60GHz, and a single NVIDIA(R) Tesla P100 GPU.

10.4 Experiments 49

Figure 10.2 Randomly chosen predictions of Ours on the YCB-Video key f rame set.

(a) (b)

Figure 10.3 Segmentation mAPs and training time for increasing values of the sampling
factor r.

The sampling factor r of the segmentation training samples is set to 0.3 (refer to Sec. 10.4.3
for an analysis of the impact of this parameter).

Results reported in Tab. 10.1 show that our approach, while being∼6 times faster than the
baseline, outperforms Mask R-CNN (output layers) in the segmentation accuracy computed
with both IoU thresholds, while achieving comparable performance in terms of detection
mAP. Train time of Ours is composed of 18min:23s for feature extraction, 35s to train the
On-line Detection Module and 34s to train the On-line Segmentation Module. This shows
that, once the features are extracted, the TARGET-TASK can be learned extremely fast. We
report in Fig. 10.2, some random images from the test set with the overlaid predicted masks.

10.4 Experiments 50

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%)
Mask R-CNN (full) 89.76 91.29 86.05 80.41

Ours 90.98 92.28 86.90 80.17
Table 10.2 Ablation study with YCB-VIDEO dataset used as both FEATURE-TASK and
TARGET-TASK. We compare the results of the full training of Mask R-CNN (Mask R-CNN
(full)) (first row) with the proposed approach (Ours) (second row) considering as feature
extractor the weights learned with the training in the first row.

10.4.3 Ablation Studies

In this section, we provide three ablation studies of the proposed pipeline to further validate
our approach. Firstly, we evaluate segmentation accuracy by decoupling such task from the
detection one. Then, we analyze the impact on accuracy and training time of the sampling
factor r (see Sec. 10.3.2). Finally, to compare the accuracy of our method with the one of
Mask R-CNN fully trained on the TARGET-TASK, we benchmark our approach in a scenario
in which FEATURE-TASK and TARGET-TASK correspond.
Segmentation of ground-truth bounding boxes. In Mask R-CNN [66] and in our pipeline,
the segmentation performance depends on the detection. To separately evaluate the segmenta-
tion errors, we consider the ideal case in which the bounding boxes proposed by the detection
branch correspond to the ground-truths. FEATURE-TASK and TARGET-TASK are the same
as the ones considered in Sec. 10.4.2. The achieved segmentation mAP is 94.66 and 81.78
when the IoU thresholds are set respectively to 50% and 70%. We compare the obtained
results with Mask R-CNN (last layers) as in Sec. 10.4.2 where, as for Ours, we consider
the ground-truth boxes as proposed detections. For the baseline, the segmentation mAP is
93.70 and 79.46 when the IoU thresholds are set to 50% and 70%, showing the effectiveness
of the proposed On-line Segmentation Module.
Training samples vs. training time and mAP. Since the time required to train the On-line

Segmentation Module is critical in robotic applications, we provide an analysis of how the
choice of the sampling factor r affects both the training time and the segmentation accuracy
of such module. As it can be observed in Fig. 10.3 (a), the sampling factor r can be pushed
to the extreme while preserving the segmentation accuracy in terms of both the considered
IoU thresholds. By using a small fraction of training examples, the training times can be
reduced until they become in the order of a few seconds, as it can be noticed in Fig. 10.3 (b).
When the sampling factor r is 0.01, the number of per class positives and negatives training
samples is ranging from ∼1k to ∼4k.
YCB-Video for both FEATURE-TASK and TARGET-TASK. The goal of this work
is to quickly learn to segment previously unseen objects. To this aim, in Sec. 10.4.2 we

10.5 Conclusions 51

showed the efficiency of the proposed approach when the TARGET-TASK is different
form the FEATURE-TASK. Nevertheless, to further validate our pipeline, we evaluate the
performance of our method when the two tasks correspond. In particular, we set them by
considering the 21 object identification task in the YCB-Video dataset (the TARGET-TASK
defined in Sec. 10.4.1). In this case, we train, as baseline, the entire Mask R-CNN network
(starting from the weights pre-trained on the COCO dataset) on the TARGET-TASK (Mask
R-CNN (full)). Then, we use such weights to extract the features needed to train the On-line

Detection Module and the On-line Segmentation Module with the approach described in
Sec. 10.3.2 (Ours). The obtained accuracy are reported in Tab. 10.2. Since the full training
of Mask R-CNN on the TARGET-TASK is necessary both to obtain a baseline for our
comparison and subsequently to train our pipeline, for this experiment the training times
cannot be compared. Results reported in Tab. 10.2 show that, as in previous experiments, our
approach provides comparable performance with respect to the baseline in terms of detection
and segmentation mAP with both the IoU thresholds.

10.5 Conclusions

Fast learning and efficient adaptation are fundamental for robots that need to quickly adjust
their vision systems to ever-changing environments. In this perspective, this work presents
a system for instance segmentation that extends and improves previous on-line learning
approaches for object detection [115]. The proposed method combines Mask R-CNN for
feature extraction and two sets of FALKON classifiers to efficiently perform object detection
and segmentation. The resulting pipeline allows for fast adaptation to novel tasks in a
fraction of the time of the deep learning based counterparts, representing a step toward the
implementation of more adaptive robotic vision systems.

In Sec. 10.4.3, we showed that we can achieve high per-pixel prediction accuracy with
few training samples. We believe that this can be pushed to the extreme by integrating
few-shots learning techniques in the proposed pipeline. Moreover, given the importance of
instance segmentation for other more complex tasks, such as 6D pose estimation and object
grasping, the proposed approach may represent a starting point towards the on-line adaptation
of such tasks.

Chapter 11

Learn Fast, Segment Well: Fast Object
Segmentation Learning on the iCub

Robot

Federico Ceola, Elisa Maiettini, Giulia Pasquale, Giacomo Meanti, Lorenzo Rosasco and
Lorenzo Natale

ABSTRACT

The visual system of a robot has different requirements depending on the application:

it may require high accuracy or reliability, be constrained by limited resources or

need fast adaptation to dynamically changing environments. In this work, we focus

on the instance segmentation task and provide a comprehensive study of different

techniques that allow adapting an object segmentation model in presence of novel

objects or different domains.

We propose a pipeline for fast instance segmentation learning designed for robotic

applications where data come in stream. It is based on an hybrid method leveraging on

a pre-trained CNN for feature extraction and fast-to-train Kernel-based classifiers. We

also propose a training protocol that allows to shorten the training time by performing

feature extraction during the data acquisition. We benchmark the proposed pipeline

on two robotics datasets and we deploy it on a real robot, i.e. the iCub humanoid. To

this aim, we adapt our method to an incremental setting in which novel objects are

learned on-line by the robot.

The code to reproduce the experiments is publicly available on GitHub1.
1https://github.com/hsp-iit/online-detection

https://github.com/hsp-iit/online-detection

11.1 Introduction 53

11.1 Introduction

Perceiving the environment is the first step for a robot to interact with it. Robots may be
required to solve different tasks, as for instance grasping an object, interacting with a human
or navigate in the environment avoiding obstacles.

Different applications have different requirements for the robot vision system. For
example, for an application in which a robot interacts with a predefined set of objects, fast
learning is not the primary requirement. On the other hand, when a robot is operating in a
dynamic environment (for instance a service robot operating in a hospital, a supermarket or a
domestic environment), fast adaptation is fundamental.

The computer vision literature is progressing at fast pace providing algorithms for object
detection and segmentation that are remarkably powerful. These methods, however, are
mostly based on deep neural networks and quite demanding in terms of training samples
and optimization time. For this reason, they are badly suited for applications in robotics that
require fast adaptation. Because the dominant trend in computer vision is to push performance
as much as possible, comparably little effort is spent to propose methods that are designed to
reduce training time. To fill this gap, in this work, we propose a comprehensive analysis in
which we study various techniques for adaptation on a novel task. In particular, we consider
approaches based on deep neural networks and on a combination of deep neural networks
and Kernel methods, focusing on the trade-off between training time and accuracy.

We target the instance segmentation problem which consists in classifying every pixel of
an image as belonging to an instance of a known object or to the background. In particular,
we consider the scenario in which the robot encounters new objects during its operation and
it is required to adapt its vision system so that it is able to segment them after a learning
session that is as short as possible. We observe that this scenario offers opportunities to
shorten the training time, for example if we are able to perform some of the training steps
(i.e., feature extraction) already during data acquisition, and we propose a new method that is
specifically optimized to reduce training time without compromising performance.

Specifically, we propose an instance segmentation pipeline which extends and improves
our previous work [21]. In [21], we proposed a fast learning method for instance segmentation
of novel objects. One limitation of that method was to rely on a pre-trained region proposal
network. In this work, we address this by making the region proposal learning on-line
too. While this improves performance, it leads to a more complex and longer training
pipeline if addressed naïvely as it is done in [20]. To this aim, we propose an approximated
training protocol which can be separated in two steps: (i) feature extraction and (ii) fast

11.1 Introduction 54

and simultaneous training of the proposed approaches for region proposal, object detection
and mask prediction. We show that this allows to further reduce the training time in the
aforementioned robotic scenario.

In addition, we provide an extensive experimental analysis to investigate the training
time/accuracy trade-off on two public datasets (i.e., YCB-Video [212] and HO-3D [65]).
In particular, we show that our method is much more accurate than [21], while requiring a
comparable training time. Moreover, the proposed method allows to obtain accuracy similar
to conventional fine-tuning approaches, while being trained much faster.

In summary, the contributions of this work are:

• We propose a new pipeline and training protocol for instance based object segmentation,
which is specifically designed for fast, on-line training.

• We benchmark the obtained results on two robotics datasets, namely YCB-Video [212]
and HO-3D [65].

• We provide an extensive study to compare our pipeline against conventional fine-tuning
techniques, with an in-depth analysis of the trade-off between the required training
time and the achieved accuracy.

• We deploy and demonstrate the proposed training pipeline on the iCub [123] humanoid
robot, adapting the algorithm for an incremental setting where target classes are not
known a-priori.

This paper is organized as follows. In Sec. 11.2, we review state-of-the-art approaches
for instance segmentation, focusing on methods designed for robotics. Then, in Sec. 11.3,
we describe the proposed training pipeline for fast learning of instance segmentation. In
Sec. 11.4, we report on the experimental setup used to validate our approach. We then
benchmark our approach on the two considered robotics datasets in Sec. 11.5. In Sec. 11.6,
we specifically quantify the benefit of the adaptation of the region proposal. In Sec. 11.7,
we simulate the robotic scenario in which data come into stream and we discuss various
performance trade-offs. Then, in Sec. 11.8, we describe an incremental version of the
proposed pipeline and we deploy it on a robotic platform. Finally, in Sec. 11.9 we draw
conclusions.

11.2 Related Work 55

11.2 Related Work

In this section, we provide an overview of state-of-the-art methods for instance segmentation
(Sec. 11.2.1), focusing on their application in robotics (Sec. 11.2.2).

11.2.1 Instance Segmentation

Approaches proposed in the literature to address instance segmentation can be classified in
the following three groups.
Detection-based instance segmentation. Methods in this category extend approaches for
object detection, by adding a branch for mask prediction within the bounding boxes proposed
by the detector. Therefore, as for object detection methods, they can be grouped in (i)

multi-stage (also known as region-based) and (ii) one-stage. Methods from the first group
rely on detectors that firstly predict a set of candidate regions and then classify and refine
each of them (e.g. Faster R-CNN [165] or R-FCN [38]). One-stage detectors, instead, solve
the object detection task in one forward pass of the network. Differently from multi-stage

approaches, they do not perform any per-region operation, like e.g. per-region feature
extraction and classification (see for instance, EfficientDet [190] and YOLOv3 [163]).
The representative method among the multi-stage approaches is Mask R-CNN [66] that
builds on top of the detection method Faster R-CNN [165], by adding a branch for mask
prediction (segmentation branch) in parallel to the one for bounding box classification and
refinement (detection branch). In Mask R-CNN, input images are initially processed by a
convolutional backbone to extract a feature map. This is then used by the Region Proposal
Network (RPN) to propose a set of Regions of Interest (RoIs) that are candidate to contain
an object, by associating a class-agnostic objectness score to each region. Then, the RoI

Align layer associates a convolutional feature map to each RoI by warping and cropping the
output of the backbone. These features are finally used for RoIs classification, refinement and,
subsequently, for mask prediction. In the literature, many other state-of-the-art multi-stage

approaches for instance segmentation build on top of Mask R-CNN, like Mask Scoring
R-CNN [70] or PANet [107].
YOLACT [9] and BlendMask [26] are representative of one-stage methods. YOLACT [9] ex-
tends a backbone RetinaNet-like [103] detector with a segmentation branch. BlendMask [26],
instead, extends FCOS [192] for mask predictions. An alternative paradigm for instance seg-
mentation based on the one-stage detector CenterNet [228] is Deep Snake [149]. Differently
from the methods mentioned above that predict per-pixel confidence within the proposed

11.2 Related Work 56

bounding boxes, it exploits the circular convolution [149] to predict an offset for each mask
vertex point, starting from an initial coarse contour.
Labelling pixels followed by clustering. Approaches in this group build on methods for
semantic segmentation, which is the task of classifying each pixel of an image according to
its category (being thus agnostic to different object instances). Building on these methods,
approaches in the literature separate the different instances by clustering the predicted pixels.
As an example, SSAP [58] uses the so-called affinity pyramid in parallel with a branch for
semantic segmentation to predict the probability that two pixels belong to the same instance
in a hierarchical manner. This is done with the aim of grouping pixels of the same instance.
InstanceCut [81], instead, exploits an instance-agnostic segmentation and an instance-aware
edge predictor to compute the instance-aware segmentation of an image. Finally, the method
proposed in [5] learns the watershed transform with a convolutional neural network, the
Deep Watershed Transform, given an image and a semantic segmentation. This is done to
predict an energy map of the image, where the energy basins represent the object instances.
This information is then used, with a cut at a single energy level, to produce connected
components corresponding to different object instances.
Dense sliding window. These approaches simultaneously predict mask instances and their
class-agnostic or class-specific scores. For instance, DeepMask [153] predicts in parallel a
class-agnostic mask and an objectness score for each patch of an input image with a shallow
convolutional neural network. InstanceFCN [36], alternatively, predicts an instance sensitive
score map for each window of the considered input image. This method exploits local
coherence for class-agnostic masks prediction, and, as DeepMask, per-window class-agnostic
scores. Similarly, TensorMask [30] predicts class-agnostic instance masks, but it leverages
on the proposed mask representation as a 4D tensor to preserve the spatial information
among pixels. Moreover, the classification branch of the proposed approach outputs a class-
specific score, thus improving the class-agnostic predictions provided by DeepMask and
InstanceFCN.

11.2.2 Instance Segmentation in Robotics

The instance segmentation task plays a central role in robotics, not only for providing an
accurate 2D scene description for a robot, but also to support other tasks like 6D object pose
estimation [212] or computation of grasp candidates [183]. In the literature, the problem is
tackled in different ways, depending on the target application. In [198] and [93] the problem
is addressed in cluttered scenarios, while [97] and [39] propose adopting synthetic data (both

11.2 Related Work 57

images and depth information) for training. In this work, instead, we focus on learning to
segment previously unseen objects. In the following paragraphs, we will cover the main
literature on this topic.

Some works propose to generalize to unseen objects in a class-agnostic fashion. However,
these methods either focus on particular environments, such as tabletop settings, as in [213]
and [214], or require some post-processing [89] which may be unfeasible during the robot
operation.

Approaches as the ones proposed in [147] and [49] learn to segment new objects instances
by interacting with them. Nevertheless, similarly to the class-agnostic approaches, they are
constrained to tabletop settings.

The latest literature on Video Object Segmentation provides some methods for learning
to segment a set of previously unseen objects in videos. They deal with the problem either
in a semi-supervised way [141], leveraging on the ground-truth masks of the objects in
the first frame of the video, or in an unsupervised fashion [170]. They allow to learn to
segment new object instances in a shorter time than that required by the fully supervised
approaches presented in Sec. 11.2.1. They typically rely on pre-training a network for instance
segmentation and on the subsequent fine-tuning on the target video sequence frames [197].
Some of these approaches have been targeted for robotic scenarios. For instance, the method
in [184] proposes to learn to segment novel objects in a Human-Robot Interaction (HRI)

application, leveraging only on objects motion cues. Nevertheless, these approaches are
known to suffer from changes of the objects appearance through the video sequence and
error drifts [141].

We instead focus on learning to segment novel objects in a class-specific fashion, keeping
the performance provided by the state-of-the-art but reducing the required training time. All
the approaches mentioned in Sec. 11.2.1 rely on convolutional neural networks that require to
be trained end-to-end via backpropagation and stochastic gradient descent. Despite providing
impressive performance, they require long training time and large amounts of labeled images
to be optimized. These constraints make the adoption of such approaches in robotics difficult,
especially for robots operating in unconstrained environments, that require fast adaptation to
new objects.

Incremental learning aims at learning new objects instances without degrading perfor-
mance on the previously known classes. Nevertheless, these approaches rarely focus on
speeding up the training of the models, which may be crucial in robotic applications. More-
over, the current literature in this field mainly focuses on object recognition [17, 116], object
detection [180, 150] or semantic segmentation problems [124], while we target an instance

11.3 Methods 58

Figure 11.1 Overview of the proposed pipeline. The Feature Extraction Module is
composed of Mask R-CNN’s first layers trained off-line on the FEATURE-TASK. The
three sets of features for (i) region proposal (Fr), (ii) object detection (Fd) and (iii) instance
segmentation (Fs) are fed to (i) the On-line RPN, (ii) the On-line Detection Module and
(iii) the On-line Segmentation Module. At inference time, we substitute the final layers of
the Mask R-CNN’s RPN with the On-line RPN trained on the TARGET-TASK and, as in
Mask R-CNN, the output of the On-line Detection Module is fed as input to the RoI Align to
compute the objects masks within the proposed bounding boxes.

segmentation application. As we show in Sec. 11.8, we deploy the proposed pipeline on the
iCub humanoid robot, adapting it to an incremental setting, where the target classes are not
known a-priori.

In this work, we propose a pipeline and a training protocol for instance segmentation
which is specifically designed to reduce training time, while preserving performance as much
as possible. This approach is based on Mask R-CNN [66], in which the final layers of the
RPN and of the detection and segmentation branches have been replaced with “shallow”
classifiers based on a fast Kernel-based method optimized for large scale problems [169, 120].
The backbone of the network is trained off-line, while the Kernel-based classifiers are adapted
on-line. In this paper, we build on our previous work [21], in that we include the adaptation
of the region proposal network and a novel training protocol which allows to further reduce
the training time. This makes the pipeline suitable for on-line implementation.

11.3 Methods

The proposed hybrid pipeline allows to quickly learn to predict masks of previously unseen
objects (TARGET-TASK). We rely on convolutional weights pre-trained on a different set of

11.3 Methods 59

objects (FEATURE-TASK) and we rapidly adapt three modules for region proposal, object
detection and mask prediction on the new task. This allows to achieve on-line adaptation on
novel objects and visual scenarios.

11.3.1 Overview of the Pipeline

The proposed pipeline is composed of four modules, which are depicted in Fig. 11.1. They
are:

• Feature Extraction Module. This is composed of the first layers of Mask R-CNN,
which has been pre-trained off-line on the FEATURE-TASK. We use it to extract the
convolutional features to train the three on-line modules on the TARGET-TASK. In
particular, we use it to extract the features Fr, Fd and Fs from the penultimate layers of
the RPN, and of the detection and segmentation branches, respectively.

• On-line RPN. This replaces the last layers of the Mask R-CNN’s RPN to predict a
set of regions that likely contain an object in an image, given a feature map Fr. We
describe the training procedure in Sec. 11.3.2.

• On-line Detection Module. This is composed of classifiers and regressors that, starting
from a set of feature tensors Fd , classify and refine the regions proposed by the On-line

RPN. See Sec. 11.3.2 for the description of the training procedure.

• On-line Segmentation Module. Given a feature map Fs, this module predicts the
masks of the objects within the detections proposed by the On-line Detection Module.
We describe the training procedure in Sec. 11.3.3.

In the three on-line modules described above, we use FALKON for classification. This is
a Kernel-based method optimized for large-scale problems [169]. In particular, we use the
implementation available in [120].

11.3.2 Bounding Box Learning

The prediction of region proposal candidates and object detection are problems that share
similarities. In both cases, input bounding boxes are classified and then refined, starting from
associated feature tensors as input. In our pipeline, these problems are carried out by the
On-line RPN and the On-line Detection Module, which are implemented by Nc FALKON
binary classifiers and 4Nc Regularized Least Squares (RLS) regressors [59]. Specifically, Nc

11.3 Methods 60

Figure 11.2 On-line RPN. Given the feature map Fr, this is unrolled into h×w tensors of
features of size f (Fr Unrolled). A subset of these features is chosen to train a FALKON
classifier and four RLS regressors for each anchor.

represents: (i) the number of anchors for the On-line RPN (see the following paragraphs) or
(ii) the number of semantic classes of the TARGET-TASK for the On-line Detection Module.
In both the on-line modules, we tackle the well known problem of foreground-background
imbalance of training samples in object detection [103] by adopting the Minibootstrap

strategy proposed in [114, 115] for FALKON training. The Minibootstrap is an approximated
procedure for hard negatives mining [187, 59] that allows to iteratively select a subset of hard
negative samples to balance the training sets associated to each of the Nc classes. We report
the pseudo-code of the Minibootstrap procedure in App. E in Sec. 11.14. The RLS regressors
for boxes refinement, instead, are trained on a set of positive (foreground) instances.

In the On-line RPN, the classifiers are trained on a binary task to discriminate anchors
representing the background from those representing RoIs, i.e., containing an instance of any
of the TARGET-TASK classes. An anchor [165] is a bounding box of a predefined size and
aspect ratio centered on an image pixel. For each pixel, there are a fixed number of anchors
of different form factors and one classifier is instantiated for each of them. In the On-line

Detection, instead, a binary classifier is instantiated for each class. Each classifier is trained
to discriminate regions proposed by the On-line RPN depicting an object of its class from
other classes or background.
On-line RPN. In Mask R-CNN’s RPN, the classification is performed on a set of anchors
A (i.e., Nc = A). Given the input feature map computed by the backbone of height h, width

11.3 Methods 61

w and with f channels, the RPN firstly processes it with a convolutional layer to obtain a
feature map Fr of the same size (h×w× f). Then, Fr is processed by two convolutional layers.
One is composed of A convolutional kernels which compute the objectness scores of each
considered anchor. This layer computes an output tensor of size h×w×A, in which the i jath

element is the objectness score of the ath anchor in the location (i, j). The other output layer,
instead, is composed of 4A kernels for the refinement of such bounding boxes. It computes
h×w×4A values for the refinement of the regions associated to the anchors at each location
(i, j). Both the output convolutional kernels have size 1 and stride 1.
As shown in Fig. 11.2, we replace the A convolutional kernels for the computation of the
objectness scores with A FALKON binary classifiers and we train them with the Miniboot-

strap. We use the h×w tensors of size f resulting from the flattening of the feature maps
Fr as training features. The considered positive features are those associated to a specific
location of an anchor whose Intersection over Union (IoU) with at least a ground-truth
bounding box is greater than 0.72 (in case there are no anchors overlapping the ground-truth
bounding boxes with IoU > 0.7, the ones with the highest IoU are chosen as positives). The
feature tensors for the background, instead, are those whose IoU with the ground-truths is
smaller than 0.3. Similarly, we replace the 4A convolutional kernels for the refinement of the
proposed regions with 4A RLS regressors (4 RLS for each anchor). We consider as training
samples for the 4 regressors associated to each anchor a set of features chosen as the positive
samples for the FALKON classifiers, but setting the IoU threshold to 0.63.
On-line object detection. We train the On-line Detection Module with the strategy illustrated
above, considering the N classes of the TARGET-TASK (i.e., Nc = N). As training samples,
we consider the tensors of features produced by the penultimate layer of the Mask R-CNN’s
detection branch (Fd) associated to each RoI proposed by the region proposal method. In
particular, we consider as positive samples for the nth FALKON classifier, those RoIs with
IoU > 0.64 with a ground-truth box of an instance of class n (n ∈ [1, . . . ,N]). The same
positive samples are also used for training the nth RLS regressor3. Then, as negative samples,
we consider the RoIs with IoU < 0.35 with the ground-truths of class n.

2For the On-line RPN, we set the positive and negative thresholds for the classifiers as in Mask R-CNN’s
RPN [66].

3We set the value of the IoU threshold for the RLS regressors as in R-CNN [59].
4We consider as positive samples for the classifiers in the On-line Detection Module the training features for

region refinement as in [66].
5For the classifiers in the On-line Detection Module we define the negative samples as in [59].

11.3 Methods 62

Figure 11.3 On-line Segmentation. Given the feature map Fs associated to a RoI of class
i, this is unrolled into s×s tensors of features of size f (Fs Unrolled) from which positive
and negative features are sampled to train the ith FALKON per-pixel classifier. Note that this
procedure is performed for each RoI of the N classes.

11.3.3 On-line Segmentation

In Mask R-CNN, in the configuration that does not use the Feature Pyramid Network

(FPN) [104] in the backbone, the segmentation branch is a shallow fully convolutional
network (FCN) composed of two layers that takes as input a feature map of size s×s× f

associated to each RoI. The first layer processes the input feature map into another feature
map Fs of the same size. The last convolutional layer, instead, has N channels (one for each
class of the TARGET-TASK) and kernel size 1 and stride 1. Therefore, the output of the
Mask R-CNN’s segmentation branch is a tensor of size s×s×N, where the i jnth value of such
tensor represents the confidence that the pixel in the location (i, j) of the RoI corresponds to
the nth class.

For the fast learning of the On-line Segmentation Module, we rely on the first layer of
the segmentation branch for feature extraction, but we substitute the last convolutional layer
for per-pixel prediction with N FALKON binary classifiers. To train such classifiers, we
consider the ground-truth boxes of each training image, we compute the feature map of size
s×s× f for each of them and we flatten each of such feature maps into s×s tensors of size
f , as shown in Fig. 11.3. Among these tensors, we consider as positive samples for the nth

classifier the features associated to the pixels in the ground-truth masks of class n. Instead,
we consider as negative samples the features associated to the background pixels contained
in ground-truth bounding boxes of class n. Given the great amount of training samples, to
speed-up the training procedure, we randomly subsample both the positive and the negative
features by a factor r. According to the analysis provided in [21], we set r to 0.3.

11.3 Methods 63

Figure 11.4 Ours training protocol. We rely on the feature extraction layers of Mask R-CNN
pre-trained on the FEATURE-TASK to simultaneously extract Fr, Fd and Fs. We then use
these features to train the three on-line modules on the TARGET-TASK. The values on the
arrows correspond to the training steps in Sec. 11.3.4.

11.3.4 Training Protocol

In this work, we propose a training protocol that allows to quickly update the On-line RPN,
the On-line Detection Module and the On-line Segmentation Module. The proposed method
(referred to as Ours) starts with the weights of Mask R-CNN pre-trained on the FEATURE-
TASK and adapts the on-line modules on the TARGET-TASK. This is composed of the two
steps depicted in Fig. 11.4:

1. Feature extraction. This is done with a forward pass of the pre-trained Mask R-CNN
feature extractor to compute Fr, Fd and Fs.

2. On-line training. The set of features Fr, Fd and Fs are used to respectively train (i) the
On-line RPN, (ii) the On-line Detection Module and (iii) the On-line Segmentation

Module on the TARGET-TASK.

The training features fed to the On-line Detection Module are those associated to the
regions proposed by the Mask R-CNN’s RPN pre-trained on the FEATURE-TASK. These
regions are different (and therefore sub-optimal) with respect to the ones that would be
proposed by a region proposal method that has been adapted on the TARGET-TASK. Training
the On-line Detection Module using features extracted from the On-line RPN after its
adaptation is possible. This, however, would require two feature extraction steps (one for
training the On-line RPN and the other to train the On-line Detection Module and the On-line

Segmentation Module), which is computationally expensive. For this reason, we consider the
On-line Detection Module obtained with Ours as an approximation of the one that would
be provided by the serial training (see Sec. 11.6.2). Instead, the adaptation of the On-line

Segmentation Module is not affected by this approximation, since we sample the training
features for this module from the ground-truth bounding boxes.

While this approximation is a key component of the proposed training protocol, at
inference time features fed to the On-line Detection Module and to the On-line Segmentation

11.4 Experimental Setup 64

Module are those associated to the regions proposed by the On-line RPN trained on the
TARGET-TASK, as depicted in Fig. 11.1.

In this work, we show that a single feature extraction step can be performed paying a
small price in terms of accuracy (see Sec. 11.6.2), allowing to further improve the training in
the on-line implementation (see Sec. 11.7 and Sec. 11.8).

11.4 Experimental Setup

In this section, we report on the experimental settings that we employ for validating the
proposed approach. We first evaluate our approach in an off-line setting (Sec. 11.5, 11.6 and
11.7), analyzing performance on two different robotics datasets. Then, we validate it in a
real robotic application (Sec. 11.8), i.e., in an on-line setting. Therefore, in this section, we
firstly report on the off-line experimental setup (Sec. 11.4.1) and the datasets (Sec. 11.4.2)
that we use in our experiments. Then, in Sec. 11.4.3, we describe the settings considered for
the deployment in a real robotic scenario.

11.4.1 Off-line Experiments

For our experiments, we compare the proposed method, Ours, with two Mask R-CNN [66]
baselines. In particular, we consider:

• Mask R-CNN (output layers): starting from the Mask R-CNN weights pre-trained
on the FEATURE-TASK, we re-initialize the output layers of the RPN and of the
detection and segmentation branches, and we fine-tune them on the TARGET-TASK,
freezing all the other weights of the Mask R-CNN network.

• Mask R-CNN (full): we use the weights of Mask R-CNN pre-trained on the FEATURE-
TASK as a warm-restart to train Mask R-CNN on the TARGET-TASK.

Specifically, we rely on Mask R-CNN [66], using ResNet-50 [67] as backbone, for the feature
extraction of Ours and for the baselines. In App. A in Sec. 11.10, we report a summary of
the training protocols used in this work.

In all cases, we choose hyper-parameters providing the highest performance on a vali-
dation set. Specifically, for Ours we cross-validate the standard deviation of FALKON’s
Gaussian kernels (namely, σ) and FALKON’s regularization parameter (namely, λ) for the
On-line RPN, the On-line Detection Module and the On-line Segmentation Module. Regard-
ing the baselines, instead, for the experiments in Sec. 11.5 and 11.6, we train Mask R-CNN

11.4 Experimental Setup 65

(output layers) and Mask R-CNN (full) for the number of epochs that provides the highest
segmentation accuracy on the validation set.

For Ours, we set the number of Nyström centers M of the FALKON classifiers composing
the On-line RPN, the On-line Detection Module and the On-line Segmentation Module to
1000, 1000 and 500, respectively. Moreover, to train both the On-line RPN and the On-line

Detection Module, we set to 2000 the size of the batches, BS, considered in the Minibootstrap.
Evaluation metrics. We consider the mean Average Precision (mAP) as defined in [50] for
both object detection and segmentation. Specifically, the accuracy of the predicted bounding
boxes will be referred to as mAP bbox(%) and the accuracy of the mask instances as mAP
segm(%). For each of them, we consider as positive matches the bounding boxes and the
masks whose IoU with the ground-truths is greater or equal to a threshold. In our experiments
we consider two different thresholds to evaluate different levels of accuracy, namely, 50%
(mAP50) and 70% (mAP70). In App. A in Sec. 11.10 we overview the acronyms considered
for mAP computation. We also evaluate the methods on the time required for training6. For
the Mask R-CNN baselines, the training time is the time needed for their optimization via
backpropagation and stochastic gradient descent. As regards Ours, instead, except where
differently specified, it is the time necessary for extracting the features and training the
on-line modules. For each experiment, we run three trials for each method. We report results
in terms of average and standard deviation of the accuracy and of average training time.

11.4.2 Datasets

In our experiments we consider three datasets. Specifically, we use MS COCO [105] as
FEATURE-TASK and the two datasets YCB-Video [212] and HO-3D [65] as TARGET-
TASKs to validate our approach. We opted to validate our system on these datasets, which are
composed of streams of frames in tabletop and hand-held settings, to be close to our target
application. These datasets are usually considered for the task of 6D object pose estimation,
however, they are annotated also with object masks. Specifically:

• MS COCO [105] is a general-purpose dataset, which contains 80 objects categories,
for object detection and segmentation.

• YCB-Video [212] is a dataset for 6D pose estimation in which 21 objects from the
YCB [16] dataset are arranged in cluttered tabletop scenarios, therefore presenting
strong occlusions. It is composed of video sequences where the tabletop scenes are

6All the off-line experiments have been performed on a machine equipped with Intel(R) Xeon(R) W-2295
CPU @ 3.00GHz, and a single NVIDIA Quadro RTX 6000.

11.5 Results 66

recorded under different viewpoints. We use as training images a set of 11320 images,
obtained by extracting one image every ten from the total 80 training video sequences.
As test set, instead, we consider the 2949 keyframe [212] images chosen from the
remaining 12 sequences. For hyper-parameters cross-validation, we randomly select a
subset of 1000 images from the 12 test sequences, excluding the keyframe set.

• HO-3D [65] is a dataset for hand-object pose estimation, in which objects are a subset
of the ones in YCB-Video. It is composed of video sequences, in which a moving
hand-held object is shown to a fixed camera. For choosing the training and test sets,
we split the available annotated sequences in HO-3D7, such that, we gather one and at
most four sequences for testing and training, respectively. In particular, we use 20156
images as training set, which result from the selection of one every two images from 34
sequences. Instead, we consider as test set 2020 images chosen one every five frames
taken from other 9 sequences. For hyper-parameters cross-validation, we consider
2160 frames chosen one every five images, from a subset of 9 sequences taken from
the training set (see App. B in Sec. 11.11 for further details).

11.4.3 Robotic Setup

We deploy the proposed pipeline for on-line instance segmentation on the humanoid robot
iCub8 [123]. It is equipped with a Intel(R) RealSense D415 on a headset for the acquisition
of RGB images and depth information. We rely on the YARP [122] middleware for the
implementation and the communication between the different modules (see Sec. 11.8). With
the exception of the proposed one, we rely on publicly available modules9. We set all the
training hyper-parameters as described in Sec. 11.4.1.

11.5 Results

In this section, we benchmark the proposed approach on YCB-Video (Sec. 11.5.1) and
HO-3D (Sec. 11.5.2).

7Note that, in HO-3D, the annotations for instance segmentation are not provided for the test set. Therefore,
we extract training and test sequences from the original HO-3D training set.

8We run the module with the proposed method on a machine equipped with Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz, and a single NVIDIA RTX 2080 Ti.

9https://github.com/robotology

https://github.com/robotology

11.5 Results 67

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 89.66 ± 0.47 91.26 ± 0.56 84.67 ± 0.81 80.26 ± 0.59 1h 35m 42s

Mask R-CNN (output layers) 84.51 ± 0.40 81.70 ± 0.17 75.81 ± 0.30 70.46 ± 0.24 2h 57m 12s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

Table 11.1 Benchmark on the YCB-Video dataset. We compare the proposed approach Ours
to the baseline Mask R-CNN (output layers) and to the upper bound Mask R-CNN (full).

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s

Mask R-CNN (output layers) 88.05 ± 0.32 86.11 ± 0.29 74.75 ± 0.19 65.04 ± 0.62 1h 50m 33s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

Table 11.2 Benchmark on the HO-3D dataset. We report on the performance obtained with
Ours and we compare it to Mask R-CNN (output layers) and Mask R-CNN (full) for the
analysis in Sec. 11.5.2.

11.5.1 Benchmark on YCB-Video

We consider the 21 objects from YCB-Video as TARGET-TASK and we compare the
performance of Ours against the baseline Mask R-CNN (output layers). We also report the
performance of Mask R-CNN (full), which can be considered as an upper-bound because,
differently from the proposed method, it updates both the feature extraction layers and the
output layers (i.e., the backbone, the RPN and the detection and segmentation branches)
fitting more the visual domain of the TARGET-TASK. In Ours, we empirically set the
number of batches in the Minibootstrap to 10, to achieve the best training time/accuracy
trade-off (see Fig. 11.6 for details).

Results in Tab. 11.1 show that Ours achieves similar performance to Mask R-CNN
(output layers) in a fraction (∼12.8× smaller) of the training time. In comparison with
the upper bound, Ours is not as accurate as Mask R-CNN (full) (∼9.0% less precise if we
consider the mAP50 segm(%)), but is trained ∼6.9× faster.

11.5.2 Benchmark on HO-3D

We evaluate the proposed approach on the HO-3D dataset. As in Sec. 11.5.1, we compare
Ours with Mask R-CNN (output layers) and we consider Mask R-CNN (full) as upper
bound. For this experiment, we empirically set the number of the Minibootstrap batches
of the On-line RPN and of the On-line Detection Module in Ours to 12 and we report the
obtained results in Tab. 11.2.

Similarly to the experiment on YCB-Video, Ours can be trained ∼2.3× and ∼6.6×
faster than Mask R-CNN (full) and Mask R-CNN (output layers), respectively. Models
obtained with Ours are slightly less precise than those provided by Mask R-CNN (output

11.6 Fast Region Proposal Adaptation 68

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 89.66 ± 0.47 91.26 ± 0.56 84.67 ± 0.81 80.26 ± 0.59 1h 35m 42s

O-OS 76.15 ± 0.31 74.44 ± 0.11 68.06 ± 0.34 63.90 ± 0.36 11m 14s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

Table 11.3 Comparison between Ours, Mask R-CNN (full) and O-OS trained on YCB-
Video. For O-OS, we reproduce the experiment of Tab. I in [21], but we run the experiment
three times (reporting mean and standard deviation of the obtained results) on the hardware
used for this work and we set the training hyper-parameters as described in Sec. 11.6.1.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s

O-OS 75.27 ± 0.26 77.42 ± 0.45 57.89 ± 0.24 57.86 ± 0.21 13m 31s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

Table 11.4 We report on the performance obtained on HO-3D with Ours and we compare it
to Mask R-CNN (full) and O-OS for the analysis in Sec. 11.6.1.

layers) for the task of instance segmentation, while they are ∼15.3% less accurate if we
consider the mAP70 bbox(%). We will show in Sec. 11.6.2 that this gap can be recovered
with a different training protocol (Ours Serial in Sec. 11.6.2). However, Ours, achieves the
best training time with an accuracy that is close to the state-of-the-art.

11.6 Fast Region Proposal Adaptation

In this section, we investigate the impact of region proposal adaptation on the overall perfor-
mance. In particular, in Sec. 11.6.1, we show that, with respect to our previous work [21],
updating the RPN provides a significant gain in accuracy, maintaining a comparable train-
ing time. Then, in Sec. 11.6.2 we analyze the speed/accuracy trade-off achieved with the
proposed approximated training protocol.

11.6.1 Is Region Proposal Adaptation Key to Performance?

The adaptation of the region proposal on a new task provides a significant gain in accuracy
for object detection (in this paper we report some evidence while additional experiments can
be found in [20]). In particular, adapting the region proposal is especially effective when
FEATURE-TASK and TARGET-TASK present a significant domain shift (which represents a
common scenario in robotics). In this section, we show that better region proposals improves
also the downstream mask estimation.

11.6 Fast Region Proposal Adaptation 69

Figure 11.5 Ours Serial training protocol. We rely on the feature extraction layers of Mask
R-CNN pre-trained on the FEATURE-TASK to extract Fr and we train the On-line RPN on
the TARGET-TASK. Then, we rely on the feature extraction layers of Mask R-CNN and on
the On-line RPN trained on the TARGET-TASK to extract Fd and Fs. Finally, we train the
On-line Detection Module and the On-line Segmentation Module on the TARGET-TASK.
The values on the arrows correspond to the training steps in Sec. 11.6.2.

For testing performance under domain shift, we consider as FEATURE-TASK the catego-
rization task of the general-purpose dataset MS COCO. Instead, we consider as TARGET-
TASKs the identification tasks of the YCB-Video and HO-3D datasets, which depict tabletop
and in-hand scenarios, respectively.

We consider Mask R-CNN (full) as the upper bound of the experiment, since it updates
the entire network on the new task. We compare Ours with the method proposed in [21]
(Sec. III), namely O-OS10, in which the RPN remains constant during training on the
TARGET-TASK. For a fair comparison, we set O-OS training hyper-parameters according
to Sec. 11.4.1 (i.e., changing the number of Nyström centers of FALKON in the On-line

Detection Module and in the On-line Segmentation Module with respect to [21]).
Results in Tab. 11.3 and in Tab. 11.4 show that, as expected, there is an accuracy gap

between Mask R-CNN (full) and all the other considered methods (Ours and O-OS).
However, notably, the adaptation of the region proposal on the TARGET-TASK in Ours
allows to significantly reduce the accuracy gap between Mask R-CNN (full) and O-OS.
Moreover, Ours outperforms the accuracy of O-OS with a comparable training time. For
instance, in the HO-3D experiment (see Tab. 11.4), the segmentation mAP50 obtained with
Ours is, on average, ∼7.1 points greater than O-OS, with a difference in training time of
only 3m 20s.

11.6.2 Approximated On-line Training: Speed/Accuracy Trade-off

In this section, we evaluate the impact of the approximation in Ours. To do this, we compare
it with a different training protocol (referred to as Ours Serial). This relies on the same
on-line modules as Ours. However, Ours Serial performs two steps of feature extraction,
one to train the On-line RPN and the other for the On-line Detection Module and the On-line

10In [21], O-OS is referred to as Ours.

11.6 Fast Region Proposal Adaptation 70

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (output layers) 84.51 ± 0.40 81.70 ± 0.17 75.81 ± 0.30 70.46 ± 0.24 2h 57m 12s

Ours Serial 83.97 ± 0.59 83.00 ± 0.78 75.06 ± 0.88 69.12 ± 0.56 24m 42s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

Table 11.5 Comparison between the proposed approach Ours, the baseline Mask R-CNN
(output layers) and Ours Serial trained on YCB-Video. Refer to Sec. 11.6.2 for further
details.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
Mask R-CNN (output layers) 88.05 ± 0.32 86.11 ± 0.29 74.75 ± 0.19 65.04 ± 0.62 1h 50m 33s

Ours Serial 88.70 ± 0.43 87.87 ± 0.37 71.65 ± 0.93 64.76 ± 0.70 37m 18s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

Table 11.6 We report on the performance obtained on HO-3D with Ours and we compare it
to Mask R-CNN (output layers) and Ours Serial for the analysis in Sec. 11.6.2.

Segmentation Module. This latter is done after region proposal adaptation and allows to use
better RoIs to train the module for on-line detection, improving the overall performance of
the pipeline. In details, Ours Serial is composed of the four steps depicted in Fig. 11.5:

1. Feature extraction for region proposal. This is done to extract Fr (see Sec. 11.3.1) on
the images of the TARGET-TASK.

2. These features are then used to train the On-line RPN on the TARGET-TASK, as
described in Sec. 11.3.2.

3. The new On-line RPN is used to extract more precise regions and the corresponding
features for detection and segmentation (respectively, Fd and Fs).

4. Fd and Fs are used to train the On-line Detection Module and the On-line Segmen-

tation Module on the TARGET-TASK, as described in Sec. 11.3.2 and Sec. 11.3.3,
respectively.

We evaluate Ours and Ours Serial in the same setting used for previous experiments
(Sec. 11.5 and Sec. 11.6.1). In Ours Serial, we set the Nyström centers of the FALKON
classifiers and the batch size BS considered in the Minibootstrap to train the On-line RPN

and the On-line Detection Module as described in Sec. 11.4.1. Moreover, we empirically set
the number of Minibootstrap iterations nB to 8 and 7 in the experiments on YCB-Video and
HO-3D, respectively.

We report results in Tab. 11.5 (YCB-Video) and in Tab. 11.6 (HO-3D). Specifically, the
first one shows that the accuracy of Ours in the YCB-Video experiment is comparable to the
one of Ours Serial, demonstrating that the approximated training procedure substantially

11.7 Stream-based Instance Segmentation 71

does not affect performance in this case. Instead, in the HO-3D experiment (see Tab. 11.6),
Ours is slightly less precise than Ours Serial for the task of instance segmentation, while
being ∼11.6% less accurate if we consider the mAP70 bbox(%). However, Ours is trained
∼1.8× and∼2.2× faster than Ours Serial in the YCB-Video and in the HO-3D experiments,
respectively.

Still, with respect to Mask R-CNN (output layers), Ours Serial achieves comparable
performance, but with training time that is much shorter. However, the approximated training
protocol proposed in this paper allows further optimization which is discussed in the next
section.

11.7 Stream-based Instance Segmentation

We now consider a robotic application, in which the robot is tasked to learn new objects
on-line, while automatically acquiring training samples. In this case, training data arrive
continuously in stream, and the robot is forced to either use them immediately or store them
for later use. We investigate to what extent it is possible to reduce the training time and how
this affects segmentation performance.

Because data acquisition takes a considerable amount of time, there is the opportunity to
perform, in parallel, some of the processing required for training. In the proposed pipeline,
for example, the training protocol Ours has been designed to separate feature extraction
and the training of the Kernel-based components. In this case, feature extraction can be
performed while images and ground-truth labels are received by the robot. In this section, we
investigate to what extent this possibility can be exploited also with the conventional Mask
R-CNN architecture.

We compare the proposed Ours with three different Mask R-CNN baselines. Specifically,
we consider Mask R-CNN (full) and two variations of Mask R-CNN (output layers) as
presented in Sec. 11.4.1.

Because images arrive in a stream, similar views of the same objects are represented in
subsequent frames. In App. C in Sec. 11.12 we show that a proper training of Mask R-CNN
(full) and Mask R-CNN (output layers) requires that the images are shuffled randomly.
This requires storing all images and waiting until the end of the data acquisition process,
before starting the training. We hence consider an additional baseline, Mask R-CNN (store
features), in which, similarly to Mask R-CNN (output layers), we fine-tune the output
layers of the RPN and of the detection and segmentation branches. In this case, however, we
compute and store the backbone feature maps for each input image during data acquisition to

11.7 Stream-based Instance Segmentation 72

Figure 11.6 Detection and segmentation mAPs for increasing number of Minibootstrap
iterations for Ours and for increasing training time of the Mask R-CNN baselines, considering
YCB-Video as TARGET-TASK. The plots show the average and the standard deviation of
the accuracy obtained over three training sessions with the same parameters.

save time. This can be done because, during the fine-tuning, the weights of the backbone
remain unaltered.

Both Ours and Mask R-CNN (store features) can perform the feature extraction while
receiving the stream of images: this allows to further reduce the training time. This is possible
because the frame rate for feature extraction in both cases is greater than the frame rate of
the stream of incoming data. For instance, with Ours, we extract features at 14.7 FPS for
YCB-Video while the stream of images that is used for training has a frame rate of 3 FPS
(note that the dataset has been collected at 30 FPS, but we use one image over ten to avoid
data redundancy). This allows to completely absorb the time for feature extraction in the
time for data acquisition for both approaches. Since the time required for the data acquisition
is the same for the two compared methods, we remove it from the training time computation,
therefore comparing only the processing time that follows this phase. This represents the
time to wait for a model to be ready in the target robotic application. As explained above, the

11.7 Stream-based Instance Segmentation 73

Figure 11.7 We consider HO-3D as TARGET-TASK and we report the average and the
standard deviation of the mAPs over three training sessions with the same parameters for
increasing number of Minibootstrap iterations for Ours, and for increasing training time of
Mask R-CNN (full), Mask R-CNN (output layers) and Mask R-CNN (store features).

time required for feature extraction cannot be removed in the case of Mask R-CNN (full)
and Mask R-CNN (output layers).

We present results for this experiment for YCB-Video and HO-3D in Fig. 11.6 and in
Fig. 11.7, respectively. Specifically, we compare the performance of the four considered
methods for increasing training time. For the Mask R-CNN baselines, we take the accuracy
in different moments of the fine-tuning, while, for Ours, we increase the number of iterations
of the Minibootstrap from 2 to 15. In both Fig. 11.6 and Fig. 11.7, we report in the first row
the mAP trends at IoU 50% while in the second row we report the results for IoU 70%, for
both detection and segmentation.

As it can be noticed, Ours achieves the best accuracy for short training time. For instance,
in the YCB-Video experiment, if we consider a training time of ∼20s, which is the necessary
training time if we set the minimum number of Minibootstrap iterations nB=2, Ours achieves
a mAP for instance segmentation of (i) ∼82.2 and (ii) ∼67.9 for the IoU thresholds set to (i)

50% and (ii) 70%. With a similar optimization time, the Mask R-CNN baselines perform

11.8 Robotic Application 74

quite poorly. For example, Mask R-CNN (full) (which is the best among the baselines)
reaches a mAP of (i) ∼53.9 and (ii) ∼39.8 for the IoU thresholds set to (i) 50% and (ii)

70%.
Moreover, the plots show that, for all the experiments, Mask R-CNN (output layers)

achieves the worst performance, while Mask R-CNN (store features) has a steeper slope.
This is due to the fact that this method does not perform the forward pass of the Mask R-CNN
backbone for feature extraction. On the contrary, Mask R-CNN (full) presents a better trend
than Mask R-CNN (output layers) and Mask R-CNN (store features). This might be
due to the following reasons. Firstly, Mask R-CNN (full) optimizes more parameters of
the network. While requiring more time for each training step, this allows to speed up the
optimization process, requiring less iterations on the dataset to achieve comparable accuracy.
Secondly, Mask R-CNN (full) performs a warm restart of the the output layers of the RPN,
while in the other baselines they are re-initialized from scratch. However, to achieve a similar
performance to Ours, Mask R-CNN (full) requires ∼75s for the YCB-Video experiment
and ∼50s on HO-3D.

Finally, as it can be noticed, the standard deviations of most of the Mask R-CNN baselines
are greater than the ones of Ours. This derives from the fact that while Ours samples features
from all the training images, the Mask R-CNN baselines are optimized only on a subset
of them due to time constraints (e.g. in the YCB-Video experiment Mask R-CNN (full)
processes images at ∼8.0 FPS when trained for 1 minute). Reducing the number of training
images increases the variability of the results.

In the video attached as supplementary material to the manuscript11, we show qualitative
results to compare Ours to Mask R-CNN (full) when trained for the same time.

11.8 Robotic Application

In this section, we describe the pipeline based on the proposed method, that we developed
for the iCub [123] robot. We set our application in a teacher-learner scenario, in which the
robot learns to segment novel objects shown by a human. The proposed application depicts a
similar setting to the experiments on HO-3D showing the effectiveness of the approach to
learn new objects also in presence of domain shift.

While in the off-line experiments all the input images and the object instances are fixed
beforehand, in the application this information is not known in advance. New objects may
appear in the scene and, while learning to segment them, the robot has to keep and integrate

11https://youtu.be/eLatoDWY4OI

https://youtu.be/eLatoDWY4OI

11.8 Robotic Application 75

Figure 11.8 Overview of the proposed robotic pipeline for on-line instance segmentation.
At training time (solid arrows), a human teacher shows a new object to the robot, which
automatically acquires the ground-truth annotations exploiting the depth information. Then,
it extracts the features to train the on-line modules. At inference time (dashed arrows), the
robot employs such modules to predict the masks of the images acquired by the camera.

the knowledge of the classes that are already known. We therefore propose a strategy to
process the incoming images and extract corresponding features such that, for each new
class, a detection model is trained with Ours, integrating the knowledge of old and new
objects. This is done by first training new classifiers on the new classes, considering also the
information from the objects already known. Then, the classifiers previously trained on the
old classes are updated using features of the new classes.

The proposed application consists of four main modules (the blocks depicted in Fig. 11.8).
It allows to train and update an instance segmentation model by: (i) automatically collecting
ground-truth for instance segmentation with an interactive pipeline for incoming training
images, (ii) extracting corresponding features and aggregating them such that the information
of old and new objects are integrated in the Minibootstrap and (iii) updating the On-line RPN,
the On-line Detection Module and the On-line Segmentation Module. In the next paragraphs,
we provide further details for each of the main blocks.
Human-Robot Interaction (HRI). This block allows the human to give commands to the
robot with a module for speech recognition (Speech Recognition in Fig. 11.8), triggering
different states of the system. This allows the user to either teach the robot a new object,
by presenting and rotating it in front of the camera (train) or to perform inference, i.e., to
segment objects already known in the scene.
Automatic Data Acquisition. When the state of the system is set to train, this block extracts
a blob of pixels representing the closest object to the robot [146]. This is used as ground-truth
annotation for the new object that is presented by the human. This blob is computed by
exploiting the depth information to segment the object from the background (Automatic

GT Extractor). Moreover, in order to enhance the background variability in the training
images, the extracted blob is also used by the robot to follow the object with the gaze (Gaze

Controller). To deal with noise in the depth image, we post-process the masks to ensure

11.8 Robotic Application 76

spatio-temporal coherence between consecutive frames. Specifically, we consider as valid
ground-truth masks those overlapping over a certain threshold with the ones of previous and
subsequent frames.
Feature Extraction. It is used to extract the features to train the three on-line modules.
It relies on the ground-truth masks provided by the Automatic GT Extractor and on the
corresponding image collected by the robot. This block implements the Feature Extraction

Module as described in Sec. 11.3.1, with some modifications introduced to adapt it to the
interactive setting of the demonstration. We describe the major differences in Sec. 11.8.1.
On-line Segmentation. This block is trained with the proposed approach Ours (see
Sec. 11.3.4) relying on the features extracted by the Feature Extraction block. At inference
time, it predicts objects masks on a given image. To do this, similarly to Ours, it relies
on Mask R-CNN pre-trained on the MS COCO dataset for feature extraction and on the
proposed on-line modules as described in Sec. 11.3.1.

11.8.1 Incremental Instance Segmentation Learning

When a new object has to be learned, the three on-line modules need to be updated. However,
only for the On-line RPN and the On-line Detection Module specific operations are required
to integrate the knowledge of the old classes with the new one and to re-train the two
modules with the updated information. Instead, for the On-line Segmentation Module only
the classifier of the novel class must be trained. This is due to the fact that, for each class, the
latter extracts masks labels from the ground-truth bounding boxes for that class, while the
other modules use all the images in the dataset (see Sec. 11.3.2 and Sec. 11.3.3 for details).

To this end, in the following paragraphs we describe how we adapt the feature extraction
procedures for the On-line RPN and the On-line Detection Module reported in Sec. 11.3.2
such that past and novel classes can be properly integrated for the training. We refer the
reader to App. D in Sec. 11.13 for the probabilistic equivalence between the feature sampling
procedures of the two on-line modules described in Sec. 11.3.2 and the ones presented
in this section. Please note that, for each module, we consider training features sampled
independently from each training image.

For the sake of simplicity, in the following analysis, we consider a single incremental
task scenario where a sequence of images representing an instance of a new class is shown
to the robot, which is required to learn the new object at the end of the demonstration.
Specifically, the robot has already been trained on N−1 classes and must learn the Nth object.
However, Alg. 2 and Alg. 3 describe in detail the general procedures, which are suitable also

11.8 Robotic Application 77

if multiple objects must be learned simultaneously. Once the training features for these two
modules have been computed with the described approaches, they can be trained with the
same procedure described in Sec. 11.3.2, namely with the steps 2 and 3 of the Minibootstrap

procedure (see App. E in Sec. 11.14).
Positive samples for the Nth object, as defined in Sec. 11.3.2 for FALKON classifiers and

RLS regressors in the On-line RPN and in the On-line Detection Module, are taken from
the current image stream and are not affected by previous sequences. Therefore, we stick
to the method described in Sec. 11.3.2 for their extraction. Instead, for the computation of
the negative features we design two different procedures that we describe in the following
paragraphs.
On-line RPN. When learning the Nth class, we first collect features for On-line RPN training
for that class. We do this by extracting convolutional features from the images of the
associated sequence and sub-sample them as described in Sec. 11.3.2. Then, we need to
integrate the extracted features with those from the previous N−1 classes for each anchor,
such that (i) the number and size of Minibootstrap batches are kept fixed and (ii) the number
of negative samples per-image is kept balanced. To this end, we randomly remove a fraction
of the samples collected for the Minibootstrap batches of the previous N− 1 classes and
substitute them with those for the Nth class. More details about this procedure can be found
in App. F in Sec. 11.15.
On-line Detection. Similarly to what is done for the On-line RPN, when the Nth class arrives,
we extract convolutional features from the images of the associated sequence and sub-sample
them as described in Sec. 11.3.2. Then, the extracted features have to be integrated with those
from the previous N−1 classes. This is done in a twofold way: (i) we create the Nth dataset
to train a classifier for the new object integrating the extracted features with a subset of the
previous N−1 ones and (ii) we update the N−1 datasets for training the previous classes
with features from the Nth. As for the On-line RPN, the number and size of Minibootstrap

batches are kept fixed and we balance the number of per-image negative samples. More
details about this procedure can be found in App. G in Sec. 11.16.

11.8.2 Discussion and Qualitative Results

We design the incremental feature extraction procedures for the On-line RPN and the On-

line Detection Module to be analogous to the ones used in the off-line experiments (batch
procedures), such that, training the on-line modules with Minibootstrap batches obtained
with the former, provides comparable models to the ones obtained with the batch procedures

11.8 Robotic Application 78

Figure 11.9 Predictions on test images from the incremental application deployed on the
iCub.

Figure 11.10 Dealing with False Positives. Left image: an unknown object (a glass) is
misclassified (as a masterchef). Center: training. The robot is provided with the correct label
and a demonstration of the object. Right: after training the new object is correctly classified.

(and therefore, comparable accuracy). This is due to the fact that a set of negative samples
has the same probability to end up in the Minibootstrap batches of a classifier (either of
the On-line RPN or of the On-line Detection Module), either using the batch pipelines as
described in Sec. 11.3.2 or the incremental procedures presented in the previous section. This
is demonstrated in App. D in Sec. 11.13. Specifically, we demonstrate that the per-image
negative selection probabilities with the two procedures are equivalent, because each image
is considered independently in both cases. This proves their equivalence.

We qualitatively show the effectiveness of the incremental pipeline by deploying it on
the iCub robot. We train ten object instances and we report the results of the inference on
some exemplar frames in Fig. 11.9. A video of the complete demonstration, comprising the
training of all the considered objects and the inference of the trained models, is attached
as supplementary material to the manuscript11. In Fig. 11.10, we show how the proposed
incremental approach allows to deal with false positive predictions. Key to achieve this is the
re-training of the N−1 classifiers for previous classes when the Nth object arrives. Indeed,
integrating data from the Nth object when updating the previous N− 1 allows to strongly
reduce the amount of false predictions at inference time.

11.9 Conclusions 79

11.9 Conclusions

The ability of rapidly adapting their visual system to novel tasks is an important requirement
for robots operating in dynamic environments. While state-of-the art approaches for visual
tasks mainly focus on boosting performance, a relatively small amount of methods are
designed to reduce training time. In this perspective, we presented a novel pipeline for fast
training of the instance segmentation task. The proposed approach allows to quickly learn to
segment novel objects also in presence of domain shifts. We designed a two-stage hybrid
pipeline to operate in the typical robotic scenario where streams of data are acquired by
the camera of the robot. Indeed, our pipeline allows to shorten the total training time by
extracting a set of convolutional features during the data acquisition and to use them in a
second step to rapidly train a set of Kernel-based classifiers.

We benchmarked our results on two robotics datasets, namely YCB-Video and HO-3D.
On these datasets, we provided an extensive empirical evaluation of the proposed approach
to evaluate different training time/accuracy trade-offs, comparing results against previous
work [21] and several Mask R-CNN baselines.

Finally, we demonstrated the application of this work on a real humanoid robot. At this
aim, we adapted the fast training pipeline for incremental region proposal adaptation and
instance segmentation, showing that the robot is able to learn new objects following a short
interactive training session with a human teacher.

11.10 Appendix A 80

11.10 Appendix A

Method Training Protocol Section

Ours
This is the proposed approach. It is composed of two steps. One for feature extraction
and one for simultaneous on-line training of the proposed methods for region proposal,
object detection and mask prediction.

11.3.4

Ours Serial

It is composed of the same modules as Ours, but it differs on the training protocol.
This is composed of two steps for feature extraction, one for the on-line training of
the proposed method for region proposal and one to train the modules for on-line
detection and segmentation.

11.6.2

O-OS
This is the approach proposed in [21]. It is composed of two steps. One for feature
extraction and one for on-line training of the modules for object detection and mask
prediction.

11.6.1

Mask R-CNN (full) This protocol relies on Mask R-CNN pre-trained on the FEATURE-TASK as a warm-
restart to train Mask R-CNN on the TARGET-TASK. 11.4.1

Mask R-CNN (output layers)
Starting from the Mask R-CNN weights pre-trained on the FEATURE-TASK, it fine-
tunes the output layers of the RPN and of the detection and segmentation branches on
the TARGET-TASK.

11.4.1

Mask R-CNN (store features)

Similarly to Mask R-CNN (output layers), it fine-tunes the output layers of the RPN
and of the detection and segmentation branches. However, since the weights of the
backbone remain unaltered, it computes and stores the backbone feature maps for each
input image during data acquisition.

11.7

Table 11.7 Training protocols overview.

Intersection over
Union (IoU) with

ground-truth
Object Detection Instance Segmentation

50% mAP50 bbox(%) mAP50 segm(%)
70% mAP70 bbox(%) mAP70 segm(%)

Table 11.8 Object detection and segmentation metrics taxonomy.

In Tab. 11.7 and in Tab. 11.8, we overview the training protocols and the acronyms for
mAP evaluation used in this work.

11.11 Appendix B 81

11.11 Appendix B

In this appendix, we report the sequences considered in the experiments on the HO-3D
dataset.

• Training sequences: ABF10, ABF11, ABF12, ABF13, BB10, BB11, BB12, BB13,
GPMF10, GPMF11, GPMF12, GPMF13, GSF10, GSF11, GSF12, GSF13, MC1,
MC2, MC4, MC5, MDF10, MDF11, MDF12, MDF13, ShSu10, ShSu12, ShSu13,
ShSu14, SM2, SM3, SM4, SMu1, SMu40, SMu41.

• Validation sequences: ABF13, BB13, GPMF13, GSF13, MC5, MDF13, ShSu14, SM4,
SMu41.

• Test sequences: ABF14, BB14, GPMF14, GSF14, MC6, MDF14, SiS1, SM5, SMu42.

11.12 Appendix C 82

11.12 Appendix C

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
1 Epoch Mask R-CNN (full) 89.21 ± 0.77 90.75 ± 0.80 83.27 ± 0.54 78.83 ± 1.70 35m 8s

Mask R-CNN (output layers) 82.78 ± 0.50 79.38 ± 0.40 75.04 ± 0.97 68.42 ± 0.55 26m 48s
1 Epoch

No Shuffling
Mask R-CNN (full) 46.29 ± 1.26 43.93 ± 0.84 28.66 ± 1.89 32.83 ± 1.37 33m 41s

Mask R-CNN (output layers) 69.63 ± 0.48 66.03 ± 0.68 38.48 ± 2.88 54.70 ± 0.46 26m 39s
Ours 83.66 ± 0.84 83.06 ± 0.92 72.97 ± 1.02 68.11 ± 0.29 13m 53s

Table 11.9 Comparison between the training of Ours and the Mask R-CNN baselines trained
for one epoch and for one epoch without shuffling the input images, considering YCB-Video
as TARGET-TASK.

Method mAP50 bbox(%) mAP50 segm(%) mAP70 bbox(%) mAP70 segm(%) Train Time
1 Epoch Mask R-CNN (full) 92.21 ± 0.88 90.70 ± 0.17 86.73 ± 0.71 77.25 ± 0.62 38m 38s

Mask R-CNN (output layers) 86.77 ± 0.68 85.45 ± 0.64 70.57 ± 0.41 63.57 ± 0.43 17m 53s
1 Epoch

No Shuffling
Mask R-CNN (full) 6.72 ± 2.35 6.53 ± 2.33 6.24 ± 2.21 6.01 ± 2.18 37m 30s

Mask R-CNN (output layers) 19.28 ± 2.33 21.01 ± 0.75 11.03 ± 1.70 16.74 ± 1.26 17m 52s
Ours 83.63 ± 1.64 84.50 ± 1.63 63.33 ± 1.65 61.54 ± 0.33 16m 51s

Table 11.10 Comparison between the training of Ours and the Mask R-CNN baselines trained
for one epoch and for one epoch without shuffling the input images, considering HO-3D as
TARGET-TASK.

In the stream-based scenario, data is used as soon as it is received (Sec. 11.7). In this
case, the Mask R-CNN baselines can be trained only for one epoch and their weights can
be updated only when a new image is received. Therefore, we compare the performance
achieved by Ours against the Mask R-CNN baselines, training Mask R-CNN (output
layers) and Mask R-CNN (full) for one epoch and without shuffling the input images.

Result are reported in Tab. 11.9 for YCB-Video and in Tab. 11.10 for HO-3D. As it can
be noticed, while training the Mask R-CNN baselines for just one epoch allows to achieve a
performance similar to the one provided in the benchmarks (Sec. 11.5), shuffling the input
images turns out to be crucial. Indeed, in both cases, the accuracy provided by the Mask
R-CNN baselines drops when the input images are not shuffled, while Ours is not affected
by this constraint. Moreover, shuffling is particularly critical for the Mask R-CNN baselines
on the HO-3D dataset because training objects are shown subsequently, one by one, as in
the target teacher-learner setting (Sec. 11.8). Therefore, in the stream-based scenario, such
baselines cannot be trained in practice.

11.13 Appendix D 83

11.13 Appendix D

In this appendix, we prove the probabilistic equivalence of the two sampling procedures
which are used in the Minibootstrap and in the incremental feature extraction pipelines for
both the On-line RPN and for the On-line Detection Module.

We consider a pool of tensors S0 and a set of tensors Ŝ⊆ S0. We compute the probability
of sampling Ŝ from S0 with the two following procedures:

• We sample |Ŝ| tensors from S0. We refer to the probability that the sampled tensors are
equal to Ŝ as P(Ŝ∼ S0).

• We recursively sample m sets from S0 and we obtain the pools S1, ..,Sm such that
|S0| ≥ |S1| ≥ ... ≥ |Sm| ≥ |Ŝ|. Namely, for each Si, with i in 0, ...,m− 1, Si+1 is a
random sample of size |Si+1| of Si. Finally, we sample |Ŝ| tensors from Sm. We refer to
the probability that the sampled tensors are equal to Ŝ as P(Ŝ∼ Sm).

We note that, for the On-line RPN and for the On-line Detection Module, the pool of
tensors S0 represents the whole set of features associated to an image. S1, ..,Sm, instead,
represent consecutive sub-samples of S0 in the incremental feature extraction pipelines.
Finally, Ŝ correspond to the final per-image set of features chosen for training the on-line
modules either with the Minibootstrap (as presented in 11.3.2) or with the incremental
pipelines.

We prove that P(Ŝ∼ S0) is equal to P(Ŝ∼ Sm).

Proof. P(Ŝ∼ S0) can be computed as follows:

P(Ŝ∼ S0) =
1(|S0|
|Ŝ|
) (11.1)

Instead, due to the law of total probability, we can decompose P(Ŝ∼ Sm) as follows (note
that if Ŝ is not a subset of Sm, P(Ŝ∼ Sm|Ŝ ̸⊆ Sm) = 0):

P(Ŝ∼ Sm) = P(Ŝ∼ Sm|Ŝ⊆ Sm)×P(Ŝ⊆ Sm) (11.2)

Again, due to the law of total probability, we can decompose P(Ŝ⊆ Sm) from equation 11.2
as follows (note that, for each i in 0, ...,m−1, P(Ŝ⊆ Si|Ŝ ̸⊆ Si−1) = 0):

11.13 Appendix D 84

P(Ŝ⊆ Sm) = P(Ŝ⊆ Sm|Ŝ⊆ Sm−1)×P(Ŝ⊆ Sm−1)

=
1

∏
k=m

P(Ŝ⊆ Sk|Ŝ⊆ Sk−1)×P(Ŝ⊆ S0)
(11.3)

Note that P(Ŝ⊆ S0) = 1 by definition (i.e., Ŝ is always in S0). Therefore:

P(Ŝ⊆ Sm) =
1

∏
k=m

P(Ŝ⊆ Sk|Ŝ⊆ Sk−1) (11.4)

We note that
(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
is the total number of feasible samples s.t. Ŝ ⊆ Sk given that

Ŝ⊆ Sk−1. Namely, we fix Ŝ in Sk and we compute the number of possible combinations of
the remaining |Sk|− |Ŝ| tensors that can be in Sk sampled from the remaining pool of size
|Sk−1|− |Ŝ|. Therefore:

P(Ŝ⊆ Sk|Ŝ⊆ Sk−1) =

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|
) (11.5)

We can decompose the component in the product as follows:

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|
) =

(|Sk−1|− |Ŝ|)!
(|Sk|− |Ŝ|)!

× |Sk|!
|Sk−1|!

(11.6)

Note that, for each of these elements with k ̸= 1 and k ̸= m, if we multiply it by the element
at k−1 and by the element at k+1, all the elements are simplified. Therefore, we can rewrite
P(Ŝ∼ Sm) from equation 11.2 as:

11.13 Appendix D 85

P(Ŝ∼ Sm) = P(Ŝ∼ Sm|Ŝ⊆ Sm)×P(Ŝ⊆ Sm)

=
1(|Sm|
|Ŝ|
) × 1

∏
k=m

(|Sk−1|−|Ŝ|
|Sk|−|Ŝ|

)
(|Sk−1|
|Sk|
)

=
(|Sm|− |Ŝ|)!×|Ŝ|!

|Sm|!
× |Sm|!× (|S0|− |Ŝ|)!

(|Sm|− |Ŝ|)!×S0!

=
|Ŝ|!× (|S0|− |Ŝ|)!

|S0|!

=
1(|S0|
|Ŝ|
)

(11.7)

This concludes our proof, since:

P(Ŝ∼ S0) = P(Ŝ∼ Sm) (11.8)

11.14 Appendix E 86

11.14 Appendix E

Algorithm 1 Minibootstrap Pseudo-code for the Minibootstrap in the off-line experiments.
See [115] for further details.
Input: BS, nB: size and number of Minibootstrap batches

I: set of training images
N: number of classes

Output: M: N trained classifiers
Stage 1: Feature extraction
for n = 1 to N do ▷ Initialize N empty sets of per class positives and negatives features

Pos[n]← /0; Neg[n]← /0
end for
for i = 1 to |I| do

for n = 1 to N do
if (I[i] has positives of class n Posi,n) then

Pos[n]← Pos[n]
⋃

Posi,n ▷ Add positives for class n from the ith image
end if
Neg[n]← Neg[n]

⋃
Sample(Negi,n,⌈ nB×BS

|I| ⌉) ▷ Add negatives for class n from the ith image
end for

end for
Stage 2: Shuffling and batches creation
for n = 1 to N do

Neg[n]← Sample(Neg[n],nB×BS)
Neg[n]← Split(Neg[n],nB,BS) ▷ Split Neg[n] in nB batches of size BS

end for
Stage 3: Classifiers training
for n = 1 to N do

F [n]← Pos[n]
⋃

Neg[n][1]
M[n]←TrainClassifier(F [n]) ▷ Train classifier using the first batch
Negchosen[n]← PruneEasy(M[n],Neg[n][1]) ▷ Prune easy negatives from Neg[n][1] using M[n]
for j = 2 to nB do

NH ← SelectHard(M[n],Neg[n][j]) ▷ Select hard negatives from Neg[n][j] using M[n]
F [n]← Pos[n]

⋃
Negchosen[n]

⋃
NH ▷ Add hard negatives from Neg[n][j] to the training set

M[n]←TrainClassifier(F [n]) ▷ Train classifier using the new dataset
Negchosen[n]← Negchosen[n]

⋃
NH ▷ Update the chosen negatives

Negchosen[n]← PruneEasy(M[n],Negchosen[n]) ▷ Prune easy negatives from Negchosen[n] using M[n]
end for

end for
Return M ▷ Return the final classifiers

In Alg. 1, we report the pseudo-code of the Minibootstrap [115] procedure. Note that,
we use the Sample(Set, Sample size) function to extract Sample size random tensors from the
given Set. We will use this function also in Alg. 2 and Alg. 3.

11.15 Appendix F 87

11.15 Appendix F

Algorithm 2 Incremental RPN Pseudo-code of the incremental feature extraction procedure
for the On-line RPN.
Input: BS, nB: size and number of Minibootstrap batches

Post−1, Negt−1: positive and per-image negative features at iteration t−1 for a generic anchor a
It : tth sequence of training images
#IMGt = #IMGt−1+ |It |: total number of training images seen in the previous iterations and in this sequence

Output: Post , Negt : positive and per-image negative features at iteration t for anchor a
Stage 1: Sample negative features from the ones at iteration t−1
for j = 1 to #IMGt−1 do

Negt [j]← Sample(Negt−1[j],⌈ nB×BS
#IMGt ⌉)

end for
Stage 2: Append new features from sequence It

Post ← Post−1

for i = 1 to |It | do
if It [i] has positives for anchor a PosIt [i] then

Post ← Post⋃PosIt [i] ▷ Add positives for anchor a from the image It [i]
end if
Negt ← Negt⋃ Sample(NegIt [i],⌈ nB×BS

#IMGt ⌉) ▷ Add negatives for anchor a from the image It [i]
end for
Return Post ,Negt ▷ Return positive and negative features at iteration t

We report the pseudo-code for the incremental feature extraction pipeline for the On-line

RPN. Since the procedure is equal for all the considered anchors, in Alg. 2 we report the
algorithm for a generic anchor a.

11.16 Appendix G 88

11.16 Appendix G

Algorithm 3 Incremental On-line Detection Incremental feature extraction pseudo-code
for the On-line Detection Module.
Input: BS, nB: size and number of the Minibootstrap batches

Nt : number of classes. It comprises the Nt−1 classes known at iteration t−1 and the novel classes at iteration t
Post−1, Imgt−1

Neg: sets of Nt−1 (one for each class) positive and per-image negative features at iteration t−1
Imgt−1

Bu f : set of per-image buffer features at iteration t−1
It : tth sequence of training images
#IMGt = #IMGt−1 + |It |: total number of training images in the previous iterations and in this sequence

Output: Post , Negt : Nt sets of positive and negative training features at iteration t
Stage 1: Sample negative per-image features from the previous sequences
for i = 1 to #IMGt−1 do

for n = 1 to Nt do
if n≤ Nt−1 then

Imgt
Neg[n][i]← Sample(Imgt−1

Neg[n][i],⌈
nB×BS
#IMGt ⌉)

else
Imgt

Neg[n][i]← /0 ▷ Set per-image negatives of the old sequences to an empty set for the new classes
end if

end for
Imgt

Bu f [i]← Sample(Imgt−1
Bu f [i],⌈

nB×BS
#IMGt ⌉)

end for
Post ← Post−1⋃⋃Nt−Nt−1

i=0 /0 ▷ Compute Post from Post−1 adding an empty set for each new class
Stage 2: Sample features from the tth sequence of images
for i = 1 to |It | do

for n = 1 to Nt do
if It [i] has positives of class n PosIt [i],n then

Post [n]← Post [n]
⋃

PosIt [i],n ▷ Add positives for class n from It [i]

Imgt
Neg[n]← Imgt

Neg[n]
⋃

Sample(NegIt [i],n,⌈ nB×BS
#IMGt ⌉) ▷ Add per-image negatives for class n

else
Imgt

Neg[n]← Imgt
Neg[n]

⋃
/0

end if
end for
Imgt

Bu f ← Imgt
Bu f

⋃
Sample(All_ f eatIt [i],⌈ nB×BS

#IMGt ⌉) ▷ Add per-image buffer negatives from It [i]
end for
Stage 3: Fill negative batches
for n = 1 to Nt do

Negt [n]← /0
for i = 1 to #IMGt do

if (ImgNeg[n][i] ̸= /0) then ▷ If any, add to the negatives of class n, per-image negatives for class n
Negt [n]← Negt [n]

⋃
Imgt

Neg[n][i]
else ▷ Otherwise, add to the negatives of class n, per-image buffer negatives

Negt [n]← Negt [n]
⋃

Imgt
Bu f [i]

end if
end for

end for
Return Post ,Negt ▷ Return positive and negative features at iteration t

In Alg. 3, we report the pseudo-code for the incremental feature extraction pipeline for
the On-line Detection Module.

Chapter 12

A Grasp Pose is All You Need: Learning
Multi-fingered Grasping with Deep

Reinforcement Learning from Vision and
Touch

Federico Ceola, Elisa Maiettini, Lorenzo Rosasco and Lorenzo Natale

ABSTRACT

Multi-fingered robotic hands have potential to enable robots to perform sophisticated

manipulation tasks. However, teaching a robot to grasp objects with an anthropomor-

phic hand is an arduous problem due to the high dimensionality of state and action

spaces. Deep Reinforcement Learning (DRL) offers techniques to design control

policies for this kind of problems without explicit environment or hand modeling.

However, state-of-the-art model-free algorithms have proven inefficient for learning

such policies. The main problem is that the exploration of the environment is unfea-

sible for such high-dimensional problems, thus hampering the initial phases of policy

optimization. One possibility to address this is to rely on off-line task demonstrations,

but, oftentimes, this is too demanding in terms of time and computational resources.

To address these problems, we propose the A Grasp Pose is All You Need (G-PAYN)

method for the anthropomorphic hand of the iCub humanoid. We develop an ap-

proach to automatically collect task demonstrations to initialize the training of the

policy. The proposed grasping pipeline starts from a grasp pose generated by an

external algorithm, used to initiate the movement. Then a control policy (previously

12.1 Introduction 90

trained with the proposed G-PAYN) is used to reach and grab the object. We deployed

the iCub into the MuJoCo simulator and use it to test our approach with objects

from the YCB-Video dataset. Results show that G-PAYN outperforms current DRL

techniques in the considered setting in terms of success rate and execution time with

respect to the baselines.

The code to reproduce the experiments is released together with the paper with an

open source license1.

12.1 Introduction

Robotic grasping is one of the most important manipulation tasks, due to its importance for
other downstream tasks such as pick-and-place [35], in-hand manipulation [29], or objects
stacking [90].

While two-fingered grasping has been extensively studied in the literature [112, 191, 92,
75], grasping with multi-fingered robotic hands is still an open problem. Although grasping
with two-fingered grippers is easier to plan and execute, anthropomorphic hands offer the
opportunity to perform dexterous tasks such as objects re-orientation [139], and enable robots
to use tools such as hammers [159]. However, due to the intrinsic difficulty of the task,
which requires controlling tens of degrees of freedom (DoFs) finding suitable manipulation
strategies is challenging.

The latest advancements in the DRL literature provide tools to design high-dimensional
control policies without requiring specific environment and hand modeling. State-of-the-art
model-free algorithms such as SAC [62] or PPO [175], have proven inefficient to learn
policies on multi-fingered manipulation tasks. This is due to the fact that, in these cases, an
efficient exploration of the environment at the beginning of policies optimization is unfeasible
due to the high dimensionality of the problem. Some recent methods propose to address
this problem leveraging on data acquired from off-line task demonstrations, and to combine
them with data acquired on-line during policy training. While these approaches have shown
promising results, collection of demonstrations is a non-trivial procedure which requires
appropriate tools, such as MoCap [189] or Virtual Reality [88] systems.

Another problem with state-of-the-art methods is that they typically use information such
as poses and velocities of joints and objects that are difficult to obtain, or that can be noisy in
practice [159, 40, 87].

1https://github.com/hsp-iit/rl-icub-dexterous-manipulation

https://github.com/hsp-iit/rl-icub-dexterous-manipulation

12.1 Introduction 91

Figure 12.1 iCub simulated environment.

In this work we we aim at overcoming these limitations by proposing a grasping method
for the iCub [123] humanoid robot based on DRL that leverages on automatically collected
demonstrations. To our knowledge, this is the first method that learns this task from RGB
data, tactile and proprioceptive information. We start from a grasp pose generated by an
external algorithm, using it as a prior information for our task. We assume that this initial
pose is inaccurate and should be refined given the specific object and grasping hand. For
this reason, the robot first moves the end-effector close to this pose to start the grasping
movement, and then uses a separate policy to approach and grasp the object. We train
the policy with the proposed G-PAYN. The method firstly automatically acquires a set of
demonstrations leveraging on a given grasp planner, and then it trains a policy starting from
the data originating from the execution of such demonstrations. We design a reward function
for the training process that uses a measure of grasp success or failure, but also takes into
consideration intermediate steps of the grasping movement. For example, we use information
from the tactile sensors, and a positive reward for those hands configurations that increase
the number of contacts to achieve a more stable grasp.

We test our approach on five objects from the YCB-Video [212] dataset and we consider
two different grasp pose generators to evaluate how their choice affects performance. We
benchmark our method against three DRL baselines, outperforming them in all the experi-
ments. Moreover, we compare the success rate of the proposed grasping pipeline against the
baseline used to generate the task demonstrations in the proposed G-PAYN. Experiments

12.2 Related Work 92

show that the learned policies surpass the baseline in half of the cases and perform compara-
bly well in the remaining instances. This demonstrates that the proposed G-PAYN does not
just imitate the behavior of the off-line demonstrations but it refines the movements, adapting
them to the specific object.

We run our experiments in a simulated tabletop setting. To this aim, we deployed a
MuJoCo [193] model for the iCub humanoid, which, as a further contribution of this paper,
we also make publicly available together with the code to reproduce the experiments. In
Fig. 12.1, we show a snapshot of the simulated environment.

Finally, in the video attached as supplementary material to the manuscript2, we show a
grasping demonstration on the real iCub humanoid, relying on a policy trained in simulation.

12.2 Related Work

We propose a DRL-based application for multi-fingered grasping, leveraging on automatically
collected demonstrations to train our policy. In the following subsections, we cover the main
literature on multi-fingered grasping and on DRL from demonstrations.

12.2.1 Multi-fingered Grasping

Multi-fingered grasping is a challenging task due to the high number of DoFs involved
and complex hand-object interactions. Some recent works [230, 95] propose methods for
multi-fingered grasp synthesis starting from pointcloud information. These methods are
difficult to apply because they are constrained to the hardware that is used for training,
and they do not take into account the hand-object interactions during grasp execution. The
approach described in [101] deals with the high number of DoFs in the Shadow hand with a
PCA-based hand synergy. Then, similarly to our solution, it trains a DRL policy to grasp an
object starting from a grasp pose given by an external algorithm. However, this method uses
as input to the policy binary tactile information, joint torques (which might not be available
in all the robots) and hand joint positions, without considering any information of the object
(e.g. object position or visual feedback) that would allow grasp recovery if the grasp pose
is not suitable. Other approaches, such as the one in [31], instead learn grasping policies
using data collected with a MoCap system, with the aim of reducing the amount of training
data, since the data collection procedure for multi-fingered grasping is challenging. In our

2https://youtu.be/qc6gksKH3Mo

https://youtu.be/qc6gksKH3Mo

12.3 Methodology 93

approach, we propose a method to overcome this issue by automatically collecting off-line
demonstrations.

12.2.2 Deep Reinforcement Learning from Demonstrations

Methods that learn DRL policies leveraging on demonstrations can be grouped in two
categories. The first is composed of methods that use demonstrations throughout the training.
Two exemplar methods are DDPGfD [195] and the approach proposed in [132]. Both
methods modify the DDPG [102] algorithm to leverage on the demonstrations included in the
replay buffer. The second class of methods uses the demonstrations for pre-training a policy,
either with behavior cloning or with DRL, and then fine-tunes such policy on data acquired
on-line. Two exemplar approaches are DAPG [159] and AWAC [131]. The former learns
several dexterous manipulation tasks, leveraging on pre-training from demonstrations with
behavior cloning and then fine-tuning the policy with an augmented loss to stay close to the
demonstrations. The latter mitigates the distribution shift between the off-line demonstrations
and the data acquired on-line during training. In this work, we consider an approach from
each of the above classes as baselines for our experiments, namely [132], adapted to the
considered setting, and AWAC [131].

12.3 Methodology

12.3.1 Grasping Pipeline

We propose a modular pipeline for grasping an object with the iCub humanoid (see Fig. 12.2).
Our approach is composed of two stages. We firstly compute a suitable grasp pose with an
external algorithm and we move the end-effector of the robot in a pre-grasp pose spaced 5cm

from the one given by the algorithm. Then, starting from this configuration, we rely on a
DRL policy to move the end-effector in the cartesian space and to control the positions of the
finger joints in order to accomplish the grasp and lift the object.

Grasp Pose Computation

We rely on two different algorithms for grasp pose computation:

• The approach based on superquadric models proposed in [196]. This is specifically
designed to compute a grasp pose for the iCub humanoid.

12.3 Methodology 94

Figure 12.2 Overview of the proposed grasping pipeline. We rely on a Grasp Pose
Generator to compute a suitable grasp pose for the considered object. Then, we move the
end-effector of the robot to a Pre-Grasp Pose close to the previously generated grasp pose.
Finally, we use a DRL Policy to predict cartesian offsets to move the end-effector toward the
object and offsets in the joint space of the fingers to grasp it. We repeat this procedure until
the grasp is executed.

• The state-of-the-art grasp pose generator VGN [11]. This approach computes grasp
poses for a two-fingered gripper mounted on a Franka Emika Panda robot. To compute
a feasible grasp pose for the iCub, we post-process the grasping candidates proposed
by VGN by rotating the original grasp pose of 45°, see Fig. 12.3 (b). We then analyze
the reachability of the rotated grasp poses in decreasing order of confidence until a
suitable candidate is found.

Grasp Execution

We model the grasp execution task as a Markov Decision Process (MDP) {S,A,T,r}. At
each timestep t, the robot observes the state st ∈ S of the system. This has five components:

• A visual information of the environment. This is computed starting from the RGB
image acquired by the camera mounted on the iCub’s head at a given timestep t. We
process this with the ViT-B/32 model3 pre-trained with CLIP [156] to extract a latent
representation of the image. Finally, to encode temporal information, we combine this
latter with the latent representations obtained at the timesteps t−1 and t−2 with the
Flare architecture [177].

• The cartesian pose of the end-effector.

• Finger joint positions (qpos).

• A binary tactile value for each of the fingertips of the iCub hand, encoding the infor-
mation of the contact with the object to grasp.

3We rely on the pre-trained models available at https://github.com/openai/CLIP.

https://github.com/openai/CLIP

12.3 Methodology 95

• The center of the superquadric that fits the object to be grasped, or the median point of
object’s pointcloud for VGN. This value is taken at the beginning of the episode and
remains unchanged throughout its duration. We estimate the center of the object in this
way because on the real robot the actual position of the object is not available. This
estimate may be error prone and non-deterministic (e.g. due to the random sampling
of the pointcloud for superquadrics estimation), and therefore it may affect the trained
policies. However, we show that our approach is able to learn grasping policies using
the considered, possibly imprecise, estimation of the center of the object.

At each timestep t, given the current state of the system st , the robot acts in the envi-
ronment with unknown dynamics T , according to a policy π(at |st). Specifically, the action
at ∈ A has two components:

• A cartesian offset that represents the movement that the end-effector of the robot needs
to accomplish w.r.t. its current cartesian pose. This is used to reach the object in a
suitable configuration, starting from the pre-grasp pose.

• The movement that the finger joints have to perform w.r.t. the current qpos. This is
needed to close the fingers and grasp the object.

We learn the policy π∗ with the SAC [62] algorithm by maximizing the maximum entropy
objective:

π
∗ = argmax

π
∑
t
E(st ,at)∼ρπ

[r(st ,at)+αH(π(·|st))], (12.1)

This adds a weighted entropy component αH(π(·|st)) to the standard action-value
function argmaxπ ∑t E(st ,at)∼ρπ

[r(st ,at)], where ρπ denotes the state-action marginal of the
trajectory distribution induced by a policy π , with the aim of encouraging exploration during
training. Specifically, for our task, we design the reward function r(st ,at) in eq. (12.1),
which evaluates the outcome of action at when the state of the environment is st , as the sum
of the following components:

• r f ingers = f (t +1)− f (t), where f denotes the number of fingers in contact with the
object at the given timestep.

• rdist_ob ject_center guides the end-effector to approach the object. It considers the distance
d, measured in cm, of the object position estimated at the beginning of the episode

12.3 Methodology 96

Figure 12.3 (a) iCub hand reference frame. (b) VGN grasp transformation for the iCub
hand. We rotate the grasp pose generated for the Franka Emika Panda gripper by 45° to
obtain the corresponding grasp pose for the iCub hand.

w.r.t. the x and y axes of the iCub hand reference frame (red and green axes in Fig. 12.3
(a)). Specifically, for the superquadrics-based approach, we consider the center of
the superquadric, while we use the median point of the object’s pointcloud, when
considering VGN. The value of this component is equal to d(t +1)−d(t) if f (i)< 2
for all the timesteps i ∈ 0, ..., t +1, otherwise it is equal to 0.

• rob ject_height : this component rewards the difference of the object height h measured in
mm with respect to the table between two consecutive timesteps, t +1 and t, therefore
evaluating whether the object has been lifted from the table in that time frame. We
consider this term only from the moment when at least two fingers touch the object.
Specifically, if f (t + 1) ≥ 2 and h(t + 1)− h(t) > 0, or f (i) ≥ 2 for at least one
timestep i ∈ 0, ..., t +1 and h(t + 1)− h(t) < 0, rob ject_height = f (t + 1) ∗ (h(t + 1)−
h(t)), otherwise rob ject_height = 0.

• rend_o f _episode evaluates the termination of the episode. An episode might end in one
of the following cases: (i) the object is grasped and uplifted by 10cm, (ii) the object is
moved too far from the initial position, (iii) the inverse kinematic solver cannot find a
solution for the required configuration of the end-effector, or (iv) the current timestep
is equal to the maximum number of allowed timesteps per episode. In the first case,
the robot has successfully grasped the object and the term rend_o f _episode is equal to 1.
In all other cases, the episode is considered a failure and thus the term is equal to −1.

12.3 Methodology 97

Algorithm 4 G-PAYN Pseudo-code for policy training.

1: Let at ∈ R15 = aEEF_POS_t ∈ R3⋃aEEF_RPY _t ∈ R3⋃aFINGERS_t ∈ R9

2: Let qposOPEN ∈ R9 and qposCLOSE ∈ R9 be the finger joint positions with open and close hand, respec-
tively.

3: #Steps = 0
4: RB = /0 ▷ Initialize an empty replay buffer.
5: while #Steps < RB_size do ▷ Collect demonstrations.
6: Compute grasp x̄GP_POSE = x̄GP_POS

⋃
x̄GP_RPY and pre-grasp x̄PGP_POSE = x̄PGP_POS

⋃
x̄PGP_RPY

poses.
7: Move the end-effector to x̄PGP_POSE .
8: #ep_steps = 0
9: tmp_aFINGERS = [0, ...,0]

10: while not done do
11: if #ep_steps < 100 then ▷ Approach the object.
12: aEEF_POS_t =

x̄GP_POS−x̄PGP_POS
100

13: aEEF_RPY _t = [0,0,0]
14: aFINGERS_t = [0, ...,0]
15: else if #ep_steps < 600 then ▷ Close fingers.
16: aEEF_POS_t = [0,0,0]
17: aEEF_RPY _t = [0,0,0]
18: Let qpost ∈ R9 be the finger joint positions at timestep t.
19: aFINGERS_t_1 =

qposCLOSE−qposOPEN
250

20: aFINGERS_t_2 = qposOPEN + (#ep_steps−100)(qposCLOSE−qposOPEN)
500 −qpost

21: aFINGERS_t =
9⋃

i=1
min(aFINGERS_t_1[i],aFINGERS_t_2[i])

22: tmp_aFINGERS = aFINGERS_t
23: else ▷ Lift the object.
24: aEEF_POS_t = [0,0,0.002]
25: aEEF_RPY _t = [0,0,0]
26: aFINGERS_t = tmp_aFINGERS
27: end if
28: Execute action at from the current state st , observe st+1, and compute reward r(st ,at).
29: #ep_steps = #ep_steps+1
30: #Steps = #Steps+1
31: RB = RB

⋃
{(st ,at ,r(st ,at),st+1)}

32: end while
33: end while
34: Initialize SAC’s replay buffer with RB.
35: Train SAC for 5M timesteps, initializing episodes with the procedure in lines 6 and 7.

12.3.2 Policy Training

We propose a two-stage algorithm to learn the grasping policy described in Sec. 12.3.1: we
first design an automatic procedure for the acquisition of grasping demonstrations, and then
we learn the policy with the SAC [62] algorithm, leveraging on the previously acquired data.

The proposed pipeline for demonstrations collection is composed of three steps. Firstly,
once the end-effector has reached the considered pre-grasp pose (as described in Sec. 12.3.1),
we move it toward the grasp pose on a straight line by splitting the trajectory in 100 waypoints,

12.4 Experimental Setup 98

keeping the fingers of the hand open. Then, we adaptively close the fingers in 500 steps,
maintaining the end-effector in the grasp pose. Finally, we uplift the object from the table by
increasing the height of the end-effector by 2mm for each step, until the object is uplifted by
10cm.

We then train our grasping policy with a modified version of the SAC [62] algorithm.
Instead of starting with an empty replay buffer, we fill the initial replay buffer with demon-
strations collected with the pipeline described above. We found this strategy particularly
effective and easy to implement. It can be potentially applied to all the off-policy DRL
algorithms without requiring any adaptation of the loss function to manage the distribution
shift between the off-line demonstrations and the transitions acquired during training. The
pseudo-code of the whole training procedure is reported in Alg. 4.

12.4 Experimental Setup

12.4.1 Simulated Environment

To learn our task, we deployed a simulated environment for manipulation tasks with the
iCub humanoid using the MuJoCo [193] simulator (see Fig. 12.1). We implemented our
environment as a Gym [12] interface to train policies with the main libraries implementing
state-of-the-art DRL algorithms (e.g. Stable-Baselines3 [158]).

We designed the model of the simulated iCub to be as similar as possible to the real robot,
to reduce the sim-to-real gap. For example, in our environment, we simulate the Intel(R)

RealSense D415 headset mounted on the real iCub robot that acquires RGB and depth images.
Moreover, we implemented fingers actuation as in the real robot, e.g. using a tendon to
simulate the actuator that controls the six joints in the little and ring fingers.

Finally, we integrated the iKin [148] and iDynTree [136] libraries in our environment for
inverse kinematics computation, and we adapted the models of the YCB-Video [212] objects
to perform manipulation tasks and benchmark our results.

12.4.2 Training Hyperparameters

We train our policy with the implementation of the SAC [62] algorithm available in the
Stable-Baselines3 [158] library. We report the considered training hyperparameters in
Tab. 12.1. While most of the parameters are the same as the ones in the original SAC [62]
implementation, we increase the number of hidden layers units to 1024 to deal with the

12.5 Results 99

Parameter Value
Optimizer Adam [80]

Learning Rate 3 ·10−4

Discount (γ) 0.99
Replay Buffer size 106

Number of Hidden Layers (all networks) 2
Number of Hidden Units per Layer 1024
Number of Samples per Minibatch 256

Entropy Target −15
Non-linearity ReLU

Target Smoothing Coefficient (τ) 0.005
Target Update Interval 1

Gradient Steps 1
Training Frequency 10 Timesteps

Total Environment Timesteps 5 ·106

Table 12.1 G-PAYN Training Hyperparameters.

high-dimensionality of our state space and we increase the training frequency to 10 timesteps
to avoid implicit underparameterization [86].

12.5 Results

We benchmark our approach on five objects from the YCB-Video [212] dataset. Specifically,
we consider the 004_sugar_box, the 006_mustard_bottle, the 010_potted_meat_can, the
021_bleach_cleanser, and the 035_power_drill. We chose these objects, that are graspable
with the iCub hand, to evaluate our approach on different types of grasps. For exam-
ple, when considering the superquadrics-based approach for grasp pose computation, the
004_sugar_box is grasped from a top-down direction, while the 021_bleach_cleanser is
grasped from a lateral configuration. We show results in Fig. 12.4, where we evaluate the
grasping success rate for increasing environment timesteps (see Tab. 12.1) for different
objects and grasp pose generators. For each experiment, we set the object in a random
initial position that is reachable by the iCub, and we randomly rotate it around the axis
perpendicular to the table.

12.5.1 Baselines

We compare the proposed G-PAYN (blue line in Fig. 12.4) to four different baselines:

12.5 Results 100

• Demonstrations Pipeline (orange line in Fig. 12.4): this is the approach described
in Sec. 12.3.2 that is used to automatically collect the demonstrations for the training.
Since this method does not require training, it has a constant success rate. We consider
the success rate obtained while acquiring demonstrations to fill the replay buffer for
the corresponding experiment.

• SAC (green line in Fig. 12.4): this is the standard SAC [62] algorithm trained with
the hyperparameters in Tab. 12.1. Differently from G-PAYN, it starts with an empty
replay buffer.

• OERLD (red line in Fig. 12.4): we train a grasping policy with the loss function
proposed in [132]. For a fair comparison with the other methods, differently from
the approach in [132], we combine the behavior cloning loss with the actor loss of
the SAC [62] algorithm. Moreover, since we designed our task with a dense reward
function with a well defined goal state, we do not apply the procedure to overcome the
problem of sparse rewards described in [132], and called resets to demonstration states

by the authors. As for the other approaches, we consider as the demonstrations replay
buffer the same replay buffer used at the beginning of the G-PAYN training. At every
training step, we sample 256 transitions from the replay buffer and 32 transitions from
the demonstrations.

• AWAC (purple line in Fig. 12.4): this is the approach proposed in [131]. We rely on the
implementation in [176]. For training, we consider the default hyperparameters, setting
the batch size to 256 and the number of per layer hidden units to 1024. During off-line
training, we use as demonstrations data the same replay buffer used for G-PAYN’s
warm start. Fig. 12.4 reports the success rate for increasing timesteps of the on-line
training stage.

12.5.2 Discussion

Results in Fig. 12.4 show that G-PAYN achieves at least a comparable success rate to
the Demonstrations Pipeline, with the exception of the 021_bleach_cleanser experiment
when using VGN as grasp pose generator. More importantly, in half of the experiments
G-PAYN surpasses Demonstrations Pipeline, and in some cases, e.g. in the 010_pot-

ted_meat_can+VGN or in the 021_bleach_cleanser+Superquadrics experiments, its success
rate outperforms the baseline by a large margin (∼ 0.3 and ∼ 0.15 gap in the success rate for

12.5 Results 101

Figure 12.4 Results. We compare the considered methods for grasping execution on different
objects and different grasp pose generators. In the first row we consider the approach based
on superquadric modeling proposed in [196] for grasp pose generation. In the second row,
instead, we use VGN. In each column, we report results for different YCB-Video objects.

the two experiments, respectively). Notably, G-PAYN outplays all the DRL baselines. SAC,
due to the high dimensionality of the problem, suffers from the lack of initial demonstra-
tions in the replay buffer and achieves a comparable success rate to G-PAYN in only three
experiments. Moreover, in these three cases, SAC requires a significantly higher number of
training timesteps to achieve the same success rate as G-PAYN. OERLD, instead, achieves
an acceptable success rate only in the 006_mustard_bottle+Superquadrics experiment. In
all the other cases, despite the initial highest success rate obtained thanks to the behavior
cloning component in the loss function, this method is not able to improve the performance
throughout the training. Finally, AWAC achieves the worst results among the considered
methods. In preliminary experiments, we noticed that training a policy on the task at hand
with SAC [62] or behavior cloning on off-line data is impractical. This motivates the low
success rate achieved by AWAC, since at the beginning of the optimization it is trained
off-line on the demonstrations.

Results in Fig. 12.4 show also the importance of the initial grasp pose used as a prior
information by all the considered methods. Experiments with the 021_bleach_cleanser

provide evidence of this. In fact, the 021_bleach_cleanser+Superquadrics policy achieves a
success rate close to 1, while the success rate of the 021_bleach_cleanser+VGN experiment
is close to 0. This is due to the fact that, for the 021_bleach_cleanser, grasp poses generated
by the superquadrics-based algorithm are always feasible for the iCub (see also the qualitative
evaluation in Fig. 12.5), while VGN predicts top-down grasp poses which, especially for
tall objects, are difficult to reach by the iCub, and add a degree of complexity to the task,
requiring a much more precise grasping procedure. This aspect further motivates the need

12.5 Results 102

Figure 12.5 Qualitative evaluation. We show examples of our method on two of the five
objects considered in the experiments (the 004_sugar_box and the 021_bleach_cleanser)
using the approach based on superquadrics for grasp pose generation. We show that the
learned policies manage to successfully approach the objects, grasp and uplift them.

for the robotics community to develop methods that strive for both accurate grasp poses
synthesis and grasp execution, as we aim to do with the proposed G-PAYN.

Qualitative results reported in Fig. 12.5 show that policies obtained with G-PAYN behave
differently from the ones collected with the Demonstrations Pipeline. Indeed, instead
of splitting the grasp execution in three phases as explained in Alg. 4, G-PAYN policies
perform a continuous movement that closes the fingers already while approaching the object.
Moreover, the trained policies manage to solve the task in fewer steps (∼ 100 steps for
G-PAYN vs. ∼ 650 steps for the Demonstrations Pipeline). This indicates that G-PAYN,
while benefiting from the demonstrations as a warm start for the training, is able to learn
policies that effectively optimize the task-specific reward function, instead of just imitating
the off-line data. This further supports our choice to use demonstrations only as a warm
start for policy training in contrast to those methods that are instead constrained to off-line
data such as OERLD and AWAC. Indeed, the former attempts at imitating the off-line data
throughout the entire training session with the loss component for behavior cloning. The
latter, instead, learns a policy only from the demonstrations during the off-line training phase.
This aspect leads to poor results for both methods, compared to the performance of our
approach.

Finally, we qualitatively evaluate the 006_mustard_bottle +Superquadrics policy trained
in simulation on the real iCub11, without any fine-tuning. While the deployment of a sim-to-
real method for transferring policies on the real robot is out of the scope of this paper and left
as future work, we show that our policies can be deployed on the real robot without requiring
any adaptation of action and state spaces.

12.6 Conclusions 103

12.6 Conclusions

Multi-fingered grasping is an important task for robots that need to perform dexterous
manipulation tasks. However, due to the difficulty of designing grasping strategies to control
robotic hands with tens of DoFs, solving this task is still an open problem.

To fill this gap, we propose G-PAYN, a DRL approach that leverages on automatically
collected demonstrations and on an initial grasp pose generated by an external algorithm for
grasp synthesis. We learn the task using visual, tactile and proprioceptive information as
inputs, and we show that our approach outperforms all the considered DRL baselines. Our
approach also outperforms the success rate achieved by the pipeline for collection of off-line
demonstrations in half of the experiments, achieving a comparable performance in almost all
the remaining instances.

With our experiments, we highlight the importance of a suitable initial grasp pose to
effectively learn the task. As a future work, we plan to improve our approach by developing
a learning method that integrates different approaches to generate initial grasp poses and then
selects the best one based on past experience.

While our approach has shown its effectiveness to learn the multi-fingered grasping task,
we plan to further improve our method by speeding-up the training procedure and making it
feasible on the real robot. At this aim it could be beneficial to incorporate a component for
behavior cloning in the loss function during the initial learning steps, to take advantage of
the steep learning curve demonstrated by OERLD. Finally, we plan to extend our approach
to deal with distractors in the environment and with external forces.

Chapter 13

RESPRECT: Speeding-up Multi-fingered
Grasping with Residual Reinforcement

Learning

Federico Ceola, Lorenzo Rosasco and Lorenzo Natale

ABSTRACT

Deep Reinforcement Learning (DRL) has proven effective in learning control policies

using robotic grippers, but much less practical for solving the problem of grasping

with dexterous hands – especially on real robotic platforms – due to the high dimen-

sionality of the problem.

In this work, we focus on the multi-fingered grasping task with the anthropomorphic

hand of the iCub humanoid. We propose the RESidual learning with PREtrained

CriTics (RESPRECT) method that, starting from a policy pre-trained on a large set of

objects, can learn a residual policy to grasp a novel object in a fraction (∼ 5× faster)

of the timesteps required to train a policy from scratch, without requiring any task

demonstration. To our knowledge, this is the first Residual Reinforcement Learning

(RRL) approach that learns a residual policy on top of another policy pre-trained

with DRL. We exploit some components of the pre-trained policy during residual

learning that further speed-up the training. We benchmark our results in the iCub

simulated environment, and we show that RESPRECT can be effectively used to

learn a multi-fingered grasping policy on the real iCub robot.

The code to reproduce the experiments is released together with the paper with an

open source license1.
1https://github.com/hsp-iit/rl-icub-dexterous-manipulation

https://github.com/hsp-iit/rl-icub-dexterous-manipulation

13.1 Introduction 105

13.1 Introduction

Learning dexterous manipulation tasks is an open challenge in robotics [4]. These tasks
require controlling tens of degrees of freedom (DoFs), to deal with possibly imprecise
perception of the environment, and to manage hand-object interactions. Grasping is the
key task to enable the execution of other dexterous manipulation tasks such as object re-
orientation [4, 29].

The latest model-free DRL approaches, such as SAC [62] or PPO [175], are feasible
options to learn problems with high-dimensionality. However, their deployment on real
robotic platforms is difficult due to the huge amount of timesteps required to explore the
environment at the beginning of the training. A major trend in the literature to overcome this
problem is to train a policy in simulation and transfer it on the real robot [154]. However,
the success of these approaches depends on the sim-to-real gap between the simulated and
the real environments. With our work, we aim at overcoming this limitation by proposing a
method for fast learning of the multi-fingered grasping task.

The contribution of this paper is a method that we call RESPRECT. The core of this
algorithm is an RRL method that leverages on a pre-trained base policy to learn a residual
additive policy on a novel object. In contrast to existing residual learning methods, which
usually rely on classical closed-loop controllers as base policies, we show that it is possible
to learn a residual policy also if a hand-tuned closed-loop base controller is unavailable, as
for the considered multi-fingered grasping task.

As a further contribution, we propose to exploit pre-trained components to speed-up the
residual training. We initialize the SAC Critics components in the residual policy using the
weights of the pre-trained policy. In the experimental section we show that this leads to a
significant reduction of the training time, making it suitable for learning policies directly in
the real world.

We benchmark our results against conventional fine-tuning and Meta Reinforcement
Learning (MetaRL) approaches in a simulated environment with the 9-DoFs hand of the
iCub humanoid [123], surpassing all the considered baselines in most of the experiments.
Furthermore, the experimental results show that RESPRECT achieves the same success rate
as the state-of-the-art method for multi-fingered grasping G-PAYN [22], while requiring
only a fraction of the training timesteps (1M compared to 5M). Notably, differently from
G-PAYN [22], RESPRECT accomplishes this without the need for grasping demonstrations
to initialize the training process. While these requirements prevent G-PAYN [22] from

13.2 Related Work 106

learning grasping policies on the real robot, we deploy RESPRECT on the real iCub, showing
that it can learn a grasping policy for two new objects in ∼ 2.5 hours and ∼ 30 minutes.

To the best of our knowledge, this is the first DRL algorithm that has been successfully
used to solve the problem of grasping with an articulated hand with several DoFs directly
on the real robot from visual, tactile and proprioceptive data, and without the need for task
demonstrations.

13.2 Related Work

Multi-fingered Grasping The literature mainly focuses on grasp poses generation [196]
or detection of finger-object contact points [229, 95], whereas the deployment of efficient
control strategies to perform the grasp has received less attention. Recent work proposes
to solve the problem with DRL-based approaches. The work in [101] starts from a grasp
pose given by an external algorithm, and relies on synergies to reduce the number of DoFs to
control the fingers of a Shadow hand. The policy is trained on a multi-modal input comprising
tactile information, joint angles and torques, which are not always available in other robotic
hands. Moreover, it does not take into account information about the object (e.g., visual
feedback of the environment or object pose) during grasp execution to allow grasp recovery
if the initial grasp pose is unfeasible. G-PAYN [22], instead, considers as proprioceptive
information the cartesian pose of the end-effector and finger joint positions, relying on visual
feedback from the head-mounted camera of the robot. However, training is performed in
simulation with long training sessions relying on huge amounts of grasping demonstrations,
and therefore it cannot be performed on the real robot. DexPoint [154], instead, learns to
grasp and open a door from pointclouds, showing that sim-to-real transfer can be obtained
without fine-tuning. While being an interesting research direction, this transfer is strongly
affected by sensors quality. This is particularly evident with objects in proximity to depth
sensors. We overcome these limitations providing a method that can be deployed on a real
robot for fast learning of multi-fingered grasping from visual, tactile, and proprioceptive data.
Notably, differently from the state-of-the-art G-PAYN [22], RESPRECT does not require
any task demonstration, while being trained much faster.
Fast DRL State-of-the-art DRL algorithms, e.g. SAC [62] or PPO [175], are sample-
inefficient and require huge amounts of training episodes to be optimized, hindering their
application on tasks that require to be trained on real robots. Some methods adapt standard
DRL algorithms leveraging off-line task demonstrations to overcome this limitation. [195,
132] adapt DDPG [102] to exploit task demonstrations: DDPGfD [195] leverages on a

13.2 Related Work 107

prioritized replay mechanism to sample transitions between demonstrations and agent data,
while [132] adds a Behavior Cloning (BC) loss component to the one of DDPG [102]
to mimic demonstrations. DAPG [159], instead, fine-tunes a DRL policy pre-trained on
demonstrations with imitation learning. Off-line DRL approaches as AWAC [131], instead,
pre-train a policy with DRL on demonstrations and then adapt it on-line on the robot.
Results in [22] show that these approaches are not suited for multi-fingered grasping from
visual, tactile, and proprioceptive data. A different approach to adapt a DRL policy is fine-
tuning. [225] compares fine-tuning to several MetaRL approaches. While being promising
for fast adaptation of DRL tasks, MetaRL algorithms are often difficult to use in practice due
to their complexity. For example, PEARL [160] requires learning an additional network for
task context inference, which is used to condition the trained policy. In some cases, MetaRL
methods can be employed only with on-policy DRL algorithms [52]. We benchmark our
method against fine-tuning and MetaRL baselines.
RRL RRL methods aim at speeding-up policy learning. They are designed to predict a
residual action, that is added to the output of an existing controller. The first RRL approach
was introduced in [185] to improve imperfect controllers in simulated manipulation tasks,
such as object pushing or pick-and-place. [73, 172] propose RRL methods for insertion
tasks on real robots, either from observable and measurable states, or from raw pixels. [162]
proposes to modify also the signal to a base feedback controller to avoid the feedback
distribution shift caused by the residual policy, which the base controller tries to resist. These
approaches share a common limitation, in that they rely on manually designed conventional
controllers, which are difficult to design for a multi-fingered grasping task. [42] overcomes
this limitation learning a residual policy to solve insertion tasks on top of Dynamic Movement
Primitive (DMP) base policies extracted through BC. However, learning DMPs from visual,
tactile and proprioceptive data is impractical. [3] proposes an RRL method to improve
a policy trained with BC by superimposing a residual policy trained with DRL on seven
simulated manipulation tasks (the same tasks used for BC training). This removes the
dependency on hand-engineered base controllers, but requires task demonstrations which
are difficult to obtain on the real robot. This challenge becomes even more pronounced
in the context of this work, where we aim at learning multi-fingered grasping policies on
objects unseen during base policy training. Furthermore, evidence from previous work [22]
shows that training policies on the task at hand with BC is impractical. Residual learning
has also found application on different robotic tasks, such as object throwing [222], where
the residual throwing velocity is regressed and superimposed on the velocity predicted by an

13.3 Methodology 108

ideal physics controller, or to learn navigation strategies [161], where a classical controller
serves as the base policy.
We overcome the limitations of the state-of-the-art, which either depend on classical base
controllers (unavailable for the considered multi-fingered grasping task), or rely on a policy
trained with BC on the same task. The goal of the proposed algorithm is to allow the robot
to quickly learn to grasp unseen objects, starting from a DRL policy that is pre-trained on
a set of generic objects. To achieve this, we use visual features obtained from a backbone
pre-trained on a dataset including egocentric images from everyday tasks, without making
any assumption on the target object to be grasped. We leverage the pre-trained DRL policy
even further: the residual Critics component is initialized using the pre-trained weights of
the base policy, significantly speeding-up the training. These enhancements are inherently
unattainable using the base policies employed in existing literature.

13.3 Methodology

13.3.1 Grasping Pipeline

We rely on the grasping pipeline introduced in [22], and consider the right hand of the
iCub humanoid robot. This is actuated by 9 motors and is equipped with tactile sensors
on the fingertips. The pipeline includes two main phases. In the initial phase, the end-
effector is moved in a pose spaced 5cm from a grasp pose generated by an object agnostic
algorithm. This is either an algorithm based on superquadrics [196], hereinafter referred to
as Superquadrics, or VGN [11]. Subsequently, we employ a DRL policy, trained with the
proposed RESPRECT, to approach and lift the object. The DRL policy controls the 6 DoFs
of the end-effector’s pose and the 9 finger joints to approach the object and finally lift it.

We consider five elements as the state of the Markov Decision Process (MDP) underlying
the DRL policy at hand. We use the visual Flare [177] features extracted with the ViT-Large

model from the Masked Autoencoder presented in [157] (MAE). This model was trained
on several real-world visual datasets, comprising Ego4D [60] that well represents the type
of visual feedback acquired by the robot head-mounted camera. We also consider a binary
tactile value for each fingertip, the cartesian pose of the end-effector, finger joint positions
and an estimate of the initial pose of the object to grasp (the latter computed as the center of
the superquadric, or the center of the segmented pointcloud, when considering VGN for grasp
pose synthesis). The DRL policy outputs a 15-dimensional vector that represents offsets for
moving the end-effector and finger joints. The policy is trained with a reward function that

13.3 Methodology 109

Figure 13.1 RESPRECT overview. We compute state st from RGB images at timesteps
t, t− 1 and t− 2 (processed through the MAE in [157] and combined with Flare [177]),
end-effector cartesian pose, tactile information and finger joint poses. We compute action at
(composed of cartesian offsets for the end-effector and finger joint offsets) combining the
outputs aPRE,t of the pre-trained policy and aRL,t of the residual policy. Note that aRL,t is the
output of the residual policy Actor, given the concatenation of st and aPRE,t into sRL,t . We
train only the two 2048-dimensional fully connected layers in the residual Actor and Critics.
For the latter, we start from the Critics weigths of the pre-trained policy (orange outline). For
the sake of clarity, we do not report the input of the Critics in the pre-trained policy, and the
output of both the Critics being the same as the ones in SAC [62].

considers: the pose of the hand with respect to the estimated initial position of the object,
the number of fingers in contact with the object (detected in the case of tips-object meshes
contact in simulation, or when tactile sensors on the real robot are triggered), the position
of the object when lifted, and the terminal condition of the episode. An episode is regarded
as successfully terminated if the object is grasped and uplifted by 10cm. Conversely, an
episode is deemed a failure if the object is moved too far from the initial position, the inverse
kinematics (IK) solver cannot find a solution for the specified configuration, or the number
of timesteps exceeds the designated maximum threshold. For further details, we refer the
reader to the description in [22].

13.3.2 Residual Policy Training

To train the grasping policy we propose a novel RRL method. This leverages on two
components: a policy that is pre-trained with G-PAYN [22] in simulation, and a residual,
object-specific, policy trained with a modified version of SAC [62]. The former is trained for
two million timesteps using the MuJoCo models of the Scanned Objects Dataset (MSO) [48,
220]. In the simulated experiments, the latter is trained on seven YCB-Video [212] objects,
while in the real world experiment it is trained on the 006_mustard_bottle and on the
021_bleach_cleanser (also taken from YCB-Video). Given the state of the system st at time

13.4 Experimental Setup 110

Parameter Value
Optimizer Adam

Learning Rate 3 ·10−4

Discount (γ) 0.99
Replay Buffer size 106

Number of Hidden Layers (all networks) 2
Number of Hidden Units per Layer 1024
Number of Samples per Minibatch 256

Entropy Target −15
Non-linearity ReLU

Target Smoothing Coefficient (τ) 0.005
Target Update Interval 1

Gradient Steps 10
Training Frequency 10 Timesteps

Total Environment Timesteps 1 ·106

Entropy Coefficient 0.01
Table 13.1 RESPRECT Training Hyperparameters.

t, our approach outputs an action at for the robot. This is the sum of two components: the
action aPRE,t predicted by the pre-trained policy, and the action aRL,t predicted by the residual
policy. While training the residual policy, the weights of the pre-trained policy remain fixed,
and this is used only to predict aPRE,t which is needed for the optimization of the residual
policy. As shown in Fig. 13.1, we modify the standard SAC [62] inputs for the Actor and
Critics components in the residual policy. Specifically, for the Actor, we compute the state
sRL,t as the concatenation between the state st and the action produced by the pre-trained
policy aPRE,t . This allows the policy to compute the residual action aRL,t conditioned not
only to the current state of the system, but also to the action produced by the pre-trained
component. The Critics are fed with the state st and the action at , instead of aRL,t and sRL,t

as in the standard SAC [62] algorithm. This allows training the residual Critics starting with
the weights of the pre-trained counterparts and to speed-up the initial stage of the training as
demonstrated by the experiments.

13.4 Experimental Setup

We validate our approach in the MuJoCo [193] simulated environment customized for the
iCub robot in [22]. We train all the policies by adapting the SAC [62] implementation in the
Stable-Baselines3 [158] library. For RESPRECT, we consider training hyperparameters as

13.4 Experimental Setup 111

Figure 13.2 We compare the success rate obtained with different visual backbones (MAE
and CLIP) when learning with G-PAYN [22] on the MSO dataset for 2M timesteps. We
report in separate plots the cases in which we use Superquadrics and VGN for the initial
grasp pose synthesis. We also report the average success rate of the Demonstrations used to
initialize the G-PAYN replay buffer. Note that they slightly differ for CLIP and MAE due to
the random initialization of each episode to collect demonstrations.

the ones in [22], but we increase the number of gradient steps to 10 and we set the initial
entropy coefficient for SAC [62] to 0.01. We provide a complete overview of the training
hyperparameters in Tab. 13.1.

Both for RESPRECT and the baselines (see Sec. 13.5.1), we improve the visual feature
extractor with respect to [22] by replacing the pre-trained ViT-B/32 CLIP [156] model with
the pre-trained ViT-Large model of the MAE in [157] and we increase the number of hidden
units in the 2 layers of the SAC [62] Actor and Critics to 2048. The reason for this change is
that the ViT-Large model of the MAE led to higher success rate of the pre-trained policy. In
Fig. 13.2 we compare G-PAYN trained on MSO with the two different feature extractors.

13.4.1 Real Robot Setup

We deploy our method on the real iCub2 [123] humanoid. The robot is equipped with
an Intel(R) RealSense D405 on a headset for the acquisition of RGB images and depth
information (the latter is not used by the DRL algorithm but only during the approach
phase to compute the initial grasp pose). We rely on the YARP [122] middleware for the

2We run the module for training the grasping policy on a machine equipped with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz, and a single NVIDIA RTX 2080 Ti.

13.5 Results 112

implementation and the communication between the different modules. For policy training,
we adapt some components of the simulated training pipeline:

• We use as input RGB image to the MAE the central crop of size 320× 240 of the
image acquired by the camera of the robot to match the real and simulated visual fields
of view.

• We adapt some components of the reward function and some of the terminal conditions,
since the precise position of the target object is difficult to obtain on the real robot.
Specifically, to reward the position of the object along the axis perpendicular to the
table (rob ject_height in [22]), we consider the z-component of the position of the end-
effector of the robot, once it has touched the object with at least two fingers. While
this is sufficient to evaluate whether an episode ends positively (i.e. the object has
been grasped), it does not allow to determine failure cases when the object falls off the
table or moves away from its initial condition. We overcome this problem by manually
sending a notification to the learning module.

• We assume that a finger is in contact with the object when the tactile sensors mounted on
the fingertip is triggered. If a fingertip is in contact with other parts of the environment
(e.g. the table or other fingers in possibly dangerous configurations) we consider this
as a possibly unsafe state for the robot, and we manually terminate the execution of
the grasping episode.

• We move the end-effector of the robot both to initialize the grasping (i.e. in a pose
spaced 5cm from the one estimated by the Superquadrics) and during policy execution
via a cartesian controller that performs IK and trajectory computation [148]. We set
the fixation point of the gaze of the robot to the center of the object, which is randomly
placed on the table in a graspable configuration at the beginning of the grasping episode,
as it is estimated by the Superquadrics.

We refer the reader to the code released together with the paper for the implementation
details of RESPRECT on the real iCub.

13.5 Results

To evaluate the effectiveness of our approach, we benchmark our results in the scenar-
ios proposed in [22], using seven objects from the YCB-Video dataset chosen to repre-

13.5 Results 113

Figure 13.3 Results. We compare the success rate achieved by RESPRECT to the baselines
for 1M environment timesteps. We benchmark the performance over seven YCB-Video
objects (on different columns) starting from grasp poses generated either by Superquadrics
or VGN (on different rows).

sent various grasp types (the 004_sugar_box, the 005_tomato_soup_can, the 006_mus-

tard_bottle, the 008_pudding_box, the 010_potted_meat_can, the 021_bleach_cleanser, and
the 035_power_drill). As in [22], for each object, we employ two different methods for
the computation of the initial grasp pose: Superquadrics and VGN. We then evaluate our
approach training a policy to grasp a 006_mustard_bottle and a 021_bleach_cleanser on the
real iCub robot.

13.5.1 Baselines

We benchmark RESPRECT (blue line in Fig. 13.3), comparing the success rate for increasing
environment timesteps against the following:

• G-PAYN (orange line in Fig. 13.3): this is the approach proposed in [22]. For a
fair comparison, we train from scratch G-PAYN on the considered objects using the
pre-trained MAE [157] as feature extractor, and we increase the dimension of the two
fully connected layers in the SAC Actor and Critics networks to 2048.

• Demonstrations (green line in Fig. 13.3): this is the pipeline proposed in [22] that is
used to collect the demonstrations for the training of G-PAYN. We report the success
rate of the demonstrations collected to fill the initial replay buffer in the G-PAYN
experiment.

• Residual (red line in Fig. 13.3): this is a similar approach to RESPRECT, but we
do not initialize the SAC Critics of the residual policy with the weights of the SAC
instance pre-trained on MSO. We provide an overview of this approach in App. IV in
Sec. 13.11. Note that Residual is a contribution itself over pre-existing methods that

13.5 Results 114

rely on classical base controllers, which, to the best of our knowledge are unavailable
for the considered multi-fingered grasping task.

• Fine-Tuning (violet line in Fig. 13.3): we start from the policy pre-trained with G-
PAYN on the MSO dataset and we fine-tune the fully connected layers in the Actor

and Critics on the considered YCB-Video object. Differently from RESPRECT and
Residual, we perform one gradient step at each training iteration. In App. I in Sec. 13.8,
we compare the obtained success rate to the one achieved when performing 10 gradient
steps.

• Reptile (brown line in Fig. 13.3): this is an adaptation for the SAC [62] algorithm
of the meta learning approach proposed in [135]. We modify the original Reptile

algorithm as in [225], filling the initial replay buffers for the pre-training on MSO as
in G-PAYN. We chose this method because, according to the results shown in [225],
it is the most competitive among the considered MetaRL baselines on the robotic
benchmark RLBench [71]. As for Fine-Tuning, we perform one gradient step at each
training iteration (see App. II in Sec. 13.9).

• Pre-Trained (pink line in Fig. 13.3): we compute the success rate achieved by the
policy pre-trained on MSO over 100 randomly initialized episodes.

13.5.2 Simulation Results

Results in Fig. 13.3 show that RESPRECT and Residual constantly outperform the success
rate obtained with Pre-Trained. This demonstrates the effectiveness of the proposed RRL
approach.

RESPRECT manages to achieve in one million environment timesteps a comparable
success rate as G-PAYN when the latter is trained for five million timesteps (we refer the
reader to the results in App. III in Sec. 13.10 for a comparison with the full training of G-
PAYN), and outperforms it when the training is stopped after one million timesteps. We also
show that our approach manages to achieve a comparable success rate as the Demonstrations
baseline in twelve experiments out of fourteen, outperforming it in seven task instances.

Compared to fine-tuning and MetaRL based approaches for fast task adaptation of a
pre-trained policy, overall, RESPRECT performs much better than Fine-Tuning and Reptile.
The only exception is represented by the 035_power_drill+VGN experiment, where Fine-
Tuning outperforms all the other considered methods, and the full training of G-PAYN.
In those cases in which the baselines achieve a similar success rate to RESPRECT, they

13.5 Results 115

Figure 13.4 Qualitative evaluation of the proposed RESPRECT. We compare it to the pre-
trained policy in the same experiment. We show how the residual output of RESPRECT
allows to solve the task.

require a larger number of timesteps, see for instance the 010_potted_meat_can+VGN and
the 004_sugar_box+VGN experiments.

In most of the experiments, for example the 004_sugar_box+VGN, the success rate of
RESPRECT in the initial training timesteps has a steeper slope than Residual, which is
crucial to speed-up the training procedure. Moreover, we noticed that Residual tends to have
higher Critics losses, which may lead to training instability. This occurs, for example in the
021_bleach_cleanser+Superquadrics experiment, where there is a performance drop after
∼ 300k timesteps.

In Fig. 13.4, we show a qualitative evaluation of RESPRECT in the iCub simulated
environment. We report an exemplar sequence in which the residual policy successfully
grasps the target object, while the pre-trained policy fails starting from the same object
configuration.

13.5.3 Real Robot Results

We train RESPRECT to grasp the 006_mustard_bottle and the 021_bleach_cleanser starting
from grasp poses given by Superquadrics on the real iCub humanoid. For these experiments,
we consider as base policy the same policy pre-trained on the simulated MSO dataset used
for the experiments in simulation. In Fig. 13.5, we report the success rate for increasing robot
training time. Results show that after∼ 2.5 hours (∼ 10k timesteps) and∼ 30 minutes (∼ 1.5k

timesteps), the robot manages to successfully (with success rate ∼ 0.9 and ∼ 0.8) grasp
the 006_mustard_bottle and the 021_bleach_cleanser. In Fig. 13.6, we show a successful
grasping sequence during the 006_mustard_bottle training. We refer the reader to the

13.6 Limitations 116

Figure 13.5 RESPRECT success rate (averaged over the last 30 training episodes) for
increasing training time on the real iCub robot.

Figure 13.6 Object grasping with the iCub humanoid robot. In this exemplar sequence the
policy was trained to grasp the 006_mustard_bottle with RESPRECT on the real robot.

video submitted as supplementary material3 which shows two successful grasps on the two
considered objects and illustrates the whole training process for the 006_mustard_bottle.

13.6 Limitations

With the proposed method, we managed to speed-up the training for a multi-fingered grasping
task by a factor of 5, while also removing the need for task demonstrations. However, training
a model for grasping a single object for 1M timesteps still requires a considerable amount of
time, especially if these must be executed on the real robot.

From a qualitative analysis of the residual policies, we noticed that they struggle to
react to failures during grasp execution. We believe that this is the reason why their overall
success rate is comparable to the open-loop pipeline Demonstrations. We plan to further
improve the reward function, adding components for adapting the position of the fingers
once grasp failure is detected. Moreover, in the current problem setting, the observation of

3https://youtu.be/JRsBLVclhpg

https://youtu.be/JRsBLVclhpg

13.7 Conclusion 117

the environment comprises an estimate of the initial position of the object, which is kept
constant throughout the grasping episode. We plan to integrate a class-agnostic tracker to
keep updating the estimated position of the object. This can help obtaining more reactive
grasping policies.

Finally, while we show that RESPRECT does not need a hand-tuned controller, and
that this has some advantages with respect to the state-of-the-art, it is fair to say that our
method requires a suitable base policy pre-trained with an Actor-Critic DRL algorithm, such
as SAC [62] or G-PAYN [22].

13.7 Conclusion

Grasping with multi-fingered robotic hands is an important task for dexterous manipulation.
State-of-the art DRL approaches that tackle this problem suffer from data-inefficiency and
are difficult to deploy on real robots. Some recent works propose to train a policy only with
simulated data, and to transfer the trained policy on the real robot without any adaptation.
However, these approaches are highly dependent on the quality of the simulated environment,
and may not be suitable for those cases in which there is a large sim-to-real gap. In addition,
these approaches are intrinsically off-line and do not allow the robot to adapt after its
deployment. In this perspective, we propose RESPRECT, with the aim of speeding-up the
training of DRL policies to grasp novel objects. The proposed approach learns a residual
policy for the object at hand on top of a policy pre-trained on a different set of objects.
In contrast to existing RRL methods that leverage model-based controllers, we employ a
pre-trained policy. This allows to use the weights of the latter to warm start some components
of the residual policy to significantly speed-up the training.

We show that RESPRECT achieves a comparable success rate as G-PAYN [22] in
a fraction of the training timesteps and without using task demonstrations. Moreover,
RESPRECT outperforms two fine-tuning and MetaRL baselines for adaptation of a pre-
trained policy on a new target object both in terms of success rate and training steps required
to achieve comparable performance.

Finally, we deploy the proposed RESPRECT on the real iCub [123] humanoid, showing
that it is possible to obtain a policy that is trained directly on the real robot.

As a future work, we plan to improve the grasping pipeline to obtain policies which are
more reactive to failures.

13.8 Appendix I 118

13.8 Appendix I

In Fig. 13.7, we compare the success rate achieved by Fine-Tuning updating the policies for
one and ten gradient steps at each training iteration.

Figure 13.7 We evaluate Fine-Tuning considering one and ten gradient steps at each training
timestep.

13.9 Appendix II

In Fig. 13.8, we evaluate Reptile updating the policies for one and ten gradient steps at each
training iteration.

Figure 13.8 We evaluate Reptile considering one and ten gradient steps at each training
timestep.

13.10 Appendix III

In Fig. 13.9, we compare the success rate achieved by G-PAYN trained with different visual
backbones for 5M environment timesteps.

13.11 Appendix IV 119

Figure 13.9 We evaluate G-PAYN trained with different visual backbones (MAE and CLIP)
for 5M environment timesteps.

13.11 Appendix IV

In Fig. 13.10, we overview the Residual approach used to compare results obtained with
RESPRECT in Sec. 13.5.

Figure 13.10 Residual overview. We compute state st from RGB images at timesteps t,
t−1 and t−2, end-effector cartesian pose, tactile information and finger joint poses. We
compute action at (composed of cartesian offsets for the end-effector and finger joint offsets)
combining the outputs aPRE,t of the pre-trained policy and aRL,t of the residual policy. Note
that aRL,t is the output of the residual policy Actor, given the concatenation of st and aPRE,t
into sRL,t . We train only the two 2048-dimensional fully connected layers in the residual
Actor and Critics. For the sake of clarity, we do not report the input of the Critics in the
pre-trained policy, and the output of both the Critics being the same as the ones in SAC [62].

Chapter 14

LHManip: A Dataset for Long-Horizon
Language-Grounded Manipulation Tasks

in Cluttered Tabletop Environments

Federico Ceola, Lorenzo Natale, Niko Sünderhauf and Krishan Rana

ABSTRACT

Instructing a robot to complete an everyday task within our homes has been a long-

standing challenge for robotics. While recent progress in language-conditioned

imitation learning and offline reinforcement learning has demonstrated impressive

performance across a wide range of tasks, they are typically limited to short-horizon

tasks – not reflective of those a home robot would be expected to complete. While

existing architectures have the potential to learn these desired behaviours, the lack

of the necessary long-horizon, multi-step datasets for real robotic systems poses

a significant challenge. To this end, we present the Long-Horizon Manipulation

(LHManip) dataset comprising 200 episodes, demonstrating 20 different manipulation

tasks via real robot teleoperation. The tasks entail multiple sub-tasks, including

grasping, pushing, stacking and throwing objects in highly cluttered environments.

Each task is paired with a natural language instruction and multi-camera viewpoints

for point-cloud or NeRF reconstruction. In total, the dataset comprises 176,278

observation-action pairs which form part of the Open X-Embodiment dataset. The

full LHManip dataset is made publicly available here.

https://github.com/fedeceola/LHManip

14.1 Introduction 121

Figure 14.1 Robot and environment setup used for data collection.

14.1 Introduction

Solving long-horizon manipulation tasks is crucial for addressing real-world applicability
of robotic problems. Many practical tasks and activities, such as meal preparation, room
cleaning, or workspace organization, involve a sequence of actions performed over an
extended period. These tasks are inherently more complex than the short-term ones, as they
require robots not only to manipulate objects but also to plan and execute actions across
multiple steps. Long-horizon manipulation datasets have potential to allow the development
of algorithms capable of generalizing across diverse scenarios, adapting to new settings, and
addressing the challenges posed by tasks that require several steps to be executed.

Long-horizon manipulation tasks bring forth the importance of perceptual skills in
robotic systems. While requiring to execute low-level control policies to solve the sub-tasks
in which they are decomposed, these tasks also require high-level planning and reasoning
capabilities. Furthermore, as robots become increasingly integrated into human-centered
settings, they will be required to understand and follow natural language instructions for
such tasks. Understanding natural language instructions offers the opportunity to develop
robotic systems that are capable of autonomously learning, generalizing and adapting to novel
settings and environments, rather than being explicitly programmed for each task [181, 231].

The wide availability of datasets for short-horizon manipulation tasks fostered the de-
velopment of effective learning-based approaches for such tasks [92, 77]. In contrast, the

14.2 Related Work 122

robotics literature lacks real-world datasets for long-horizon tasks. With LHManip, our objec-
tive is to address this existing gap in the robotics literature, providing data to develop novel
approaches to solve real-world long-horizon manipulation tasks, benchmark existing methods
for such tasks evaluated only in simulation [218] on real data, and evaluate generalization
properties of state-of-the-art approaches [27]. Our dataset consists of 20 tabletop manipu-
lation tasks involving 33 everyday objects. For each of these tasks, we provide a natural
language description and 10 different demonstrations collected via teleoperation. Different
demonstrations of the same tasks either involve manipulation of different object instances
(e.g. objects with different texture or size) or consider different environment conditions (e.g.
different distractors on the table or different initial configurations of the objects involved in
the tasks). For each demonstration, we provide visual RGB and depth observations from a
wrist-mounted and two static cameras, and robot proprioceptive information. Furthermore,
for each timestep of the episode, we provide the cartesian displacement of the end-effector of
the robot and the position offset applied to the gripper. Fig. 14.1 shows a visual observation
in LHManip from one of the two external static cameras. This dataset forms part of the larger
effort by the Open X-Embodiment collaboration project [138], and this dataset paper serves
to provide full details of our contribution.

14.2 Related Work

Long-horizon manipulation tasks are challenging robotics problems because they require
both high-level reasoning capabilities to decompose the tasks in sequences of sub-tasks
and low-level reasoning to solve the short-horizon subtasks. Existing approaches based
on Hierarchical Reinforcement Learning [130, 218] have been extensively studied to solve
long-horizon tasks, but their application in real robotic tasks is hampered by the need of
huge amounts of real training data. Other approaches solve long-horizon tasks with methods
based on Imitation Learning [117], combinations of Task and Motion Planning (TAMP)
and Reinforcement Learning (RL) [32], or skills learning with Large Language Models

(LLM) [223], and would benefit from the availability of real-world data for training.
While it has been shown in the literature the benefit of using real robotic datasets to learn

short-horizon manipulation tasks such as grasping [92], pick and place [14], pouring and
scooping [227], object pushing [34], or combinations of different tasks [199], datasets for
long-horizon tasks are mainly provided in simulated environments. For example, the IKEA
furniture assembly environment [91] provides simulated environments for assembly tasks
that require long-horizon manipulation skills. CALVIN [121], instead, provides a dataset

14.3 LHManip 123

and a benchmark for language-guided long-horizon tasks with the aim of evaluating robot
capabilities of learning new skills. This differs from the ALFRED [182] benchmark, that
combines seven predefined skills described through language instructions for navigation and
manipulation tasks. LoHoRavens [224], instead, is a simulated benchmark composed of ten
long-horizon language-conditioned tasks that require at least five pick-and-place steps to be
achieved.

To overcome the limitations of learning robotic tasks in simulated environments, Fur-
nitureBench [68] proposes a benchmark for long-horizon assembly tasks, such as lamp
screwing and assembling table legs. While providing a huge amount of real teleoperated data
(5100 demonstrations), the considered environments are constrained to tabletop settings with
3D-printed objects with multiple markers attached on them. The dataset used to benchmark
results in [166], instead, composes short-horizon language-guided tasks demonstrations
into long-horizon tasks in constrained tabletop environments. With our dataset, we aim
at overcoming these limitations and to provide a language-grounded dataset to perform
cluttered tabletop manipulation tasks on everyday objects, relying only on a single language
description for task description, multiple RGB-D observations of the environment and the
proprioceptive state of the robot.

14.3 LHManip

14.3.1 Experimental Set-Up and Data Collection

We collect data via teleoperation, tracking the movements of a human operator via 10
OptiTrack Motion Capture (MoCap) cameras. Fig. 14.2 (a) shows the set-up. We equip the
operator with three different sets of markers to track their movement in the cartesian space
of the wrist, used to move the robot end-effector, and to measure the distance between the
human thumb and index fingers, used to measure the robot gripper aperture. Fig. 14.2 (b)
shows the sets of markers used to capture the motion of the operator.

We perform the tasks on a Franka Panda 7-DoF arm [63] mounted on a LD-60 Omron
mobile base1, keeping the mobile base fixed throughout data collection.

We teleoperate the end-effector of the Panda arm relying on the servo implementation of
the armer2 library. Specifically, we move the robot to mimic the human movement in the x,
y, z position coordinates and the yaw orientation of the end-effector, i.e. the rotation around

1https://www.ia.omron.com/products/family/3664/dimension.html
2https://github.com/qcr/armer

https://www.ia.omron.com/products/family/3664/dimension.html
https://github.com/qcr/armer

14.3 LHManip 124

(a) (b)

Figure 14.2 (a) Motion capture and robot setup. (b) The robot was teleoperated by a human
operator equipped with a motion capture system for hand gestures and movements detection
in the 3D space.

Figure 14.3 Sub-tasks decomposition of a sequence from the Place the bowl on the plate
and the cup in the bowl matching the color task.

Figure 14.4 Tasks variations: we consider different plate-bowl colors for the Place the bowls
on the appropriate plates task (left) and different plates for the Dry the plate task (right).

the axis perpendicular to the floor. Furthermore, we perform position control of the gripper
joints, to mimic the fingers aperture performed by the operator.

We perform all the tasks in the dataset in the cluttered tabletop setting shown in Figs. 14.1,
14.3, and 14.4. We record proprioceptive information from the robot, and acquire visual
and depth information from the environment. Specifically, we acquire RGB and depth
information from an Intel(R) RealSense D435 mounted on the wrist of the robot and from
two external Intel(R) RealSense D455. We refer the reader to the Observation and Action

Space section for a detailed description of the information provided with the dataset.

14.3 LHManip 125

Task Success Condition

Clean the pan. The robot picks the sponge and performs a movement on the pan.

Cook the capsicum and place it on a
plate.

The robot picks the capsicum, puts it in the pan, and then places it
on a plate.

Cook the vegetables. All the vegetables are in the pan.

Dry the plate. The robot grasps a tissue and performs a movement on the plate.

Hide the teddy bear in the red bowl. The teddy bear is in the red bowl, and there is an object on it.

Match the cups with the appropriate
bowls. The cups are in the bowls of the same color.

Place the bowl on the plate and the
cup in the bowl matching the color.

The bowl is on the plate of the same color, and the cup is in the
bowl of the same color.

Place the bowls on the appropriate
plates. The bowls are on the plates of the same color.

Prepare two cups of tea. The two tea bags are placed in two different cups.

Put a highlighter on each book. There is a highlighter on each book.

Put the ball in the red pot. The ball is in the red pot.

Roll the dices in the bowl. The dices are thrown in the bowl.

Serve the vegetables in different
plates. The vegetables in the pan are moved to different plates.

Set the table. The fork and the spoon are to the right of the plate, and the cup is
beyond the plate from the robot’s point of view.

Sort the balls from left to right in
order of size.

The balls are sorted in decreasing order from left to right in the
robot’s point of view.

Stack green blocks. The three green blocks are stacked.

Stack the bowls. The three bowls on the table are stacked.

Stack the cups. The three cups on the table are stacked.

Throw away the rubbish paper. The rubbish paper is in the trash bin.

Water the potted plant and put the
can on the plate.

The robot performs a movement with the can close to the potted
plant and then puts the can on the plate.

Table 14.1 Tasks Overview. We provide the list of tasks in the dataset, specifying the
conditions that must be met to consider the task execution successful.

14.3.2 Dataset

The proposed dataset consists of 20 long-horizon tabletop manipulation tasks. In the follow-
ing we describe the tasks and the information that we make available to the users.

14.3 LHManip 126

LHManip Items

Ball Block Book
Bowl Capsicum Cob
Cup Dice Eggplant

Fennel Fork Highlighter
Ladle Lizard Marker
Mug Pan Plate

Plug Adapter Plush Dog Pot
Potted Plant Rubbish Paper Sippy Cup

Spatula Sponge Spoon
Tea Bag Teddy Bear Tissue Box

Trash Bin Watering Can Zucchini

Table 14.2 Items considered in the LHManip dataset.

Tasks

We report in Tab. 14.1 an overview of the 20 tasks considered in our dataset. The tasks are
performed in a highly-cluttered tabletop environment and require the robot to manipulate
everyday objects. We provide the list of objects used in the dataset in Tab. 14.2. The
considered tasks are composed by at least two sub-tasks that the robot must complete to
successfully achieve the task. We report in Fig. 14.3 an exemplar sequence from the Place

the bowl on the plate and the cup in the bowl matching the color task. As it can be noticed,
to achieve the task, the robot needs to perform several sub-tasks: it firstly grasps the orange
bowl and places it on the orange plate. Then it picks the orange cup and places it in the
orange bowl.

Furthermore, with our dataset we aim at providing data to solve tasks that require high-
level reasoning capabilities. In that we specify the task at hand via a natural language
instruction, without providing any other low-level environment descriptions (i.e. object
details like shape, spatial information, or color). We believe that the robot must be able
to infer this information autonomously from the environment. For these reasons, for each
task, we provide different variations of either the initial placement of the objects in the
environments or variations of the objects involved to achieve the task. Fig. 14.4 shows two
exemplar task variations for two different tasks, where the robot is required to solve the same
task with different objects.

14.3 LHManip 127

Observation Description Details
Main static RGB camera 640×480×3
Main static Depth camera 848×480×1

Cameras Secondary static RGB camera 640×480×3
Secondary static Depth camera 848×480×1

Wrist-mounted RGB camera 640×480×3
Wrist-mounted Depth camera 848×480×1

End-effector position (x, y, z) w.r.t. root_frame
End-effector orientation (x, y, z, w) quaternion w.r.t. root_frame

Proprioceptive Robot joint angles 7 values in rad
Gripper position 2 values in [0, 0.0404]

Robot joint velocities 7 values in rad/s
Instruction Natural language instruction String

Action Description Details
End-effector position displacement (x, y, z) w.r.t. root_frame

Robot Action
End-effector orientation

displacement
(x, y, z, w) quaternion w.r.t. root_frame

Gripper opening displacement 1 value in [-0.0808, 0.0808]
Table 14.3 Observations and Actions provided in LHManip.

Observation and Action Space

LHManip provides a set of visual and proprioceptive information that captures the robot
movement and the action that the robot is required to perform via teleoperation. In the dataset,
we provide for each timestep observations and actions as reported in Tab. 14.3. We control
the robot in a non-blocking mode at 30 Hz.

While we control the cartesian end-effector of the robot and the aperture of the gripper,
in the dataset, we also provide joint-level information such as joint positions and velocities.

Please note also that, while we provide the full quaternion displacements at each timestep,
we control only the rotation of the end-effector around the axis perpendicular to the floor
(z quaternion value). Values different from zero in the other coordinates, therefore, aim
at correct the error between the real orientation of the end-effector measured via Forward

Kinematics and the desired null orientation around the x and y axes.

Dataset Access

The LHManip dataset is publicly available3 and can be downloaded as a single .zip file. We
provide data in .png format for RGB and Depth images, and in .pkl files for numerical and

3https://www.dropbox.com/scl/fi/6t717h5mo5kyhq521qavb/long_horizon_
manipulation_dataset.zip?rlkey=rk4wsxp464x5bt4a8tgz563ne&dl=0

https://www.dropbox.com/scl/fi/6t717h5mo5kyhq521qavb/long_horizon_manipulation_dataset.zip?rlkey=rk4wsxp464x5bt4a8tgz563ne&dl=0
https://www.dropbox.com/scl/fi/6t717h5mo5kyhq521qavb/long_horizon_manipulation_dataset.zip?rlkey=rk4wsxp464x5bt4a8tgz563ne&dl=0

14.4 Conclusion 128

textual information. We provide a Python snippet code and the instructions to parse the
dataset on GitHub4. Furthermore, LHManip is included as part of the larger dataset released
in the Open X-Embodiment project [138]. We release additional depth and the unprocessed
sensory data together with this white paper, as well as the code to preprocess this dataset5

back into the desired RLDS6 data format as required by the Open X-Embodiment project.

14.4 Conclusion

The resolution of long-horizon tasks is crucial for integrating robots performing everyday
tasks in our homes. Motivated by the success of learning-based approaches from short-
term manipulation datasets, we presented LHManip, a dataset for long-horizon robotic
manipulation tasks, with the aim of addressing the current gap in the literature where such
datasets are lacking.

In the perspective of developing robots that can interact with humans in everyday environ-
ments, we believe that they must possess the ability to address long-horizon tasks based on a
single high-level natural instruction, relying solely on visual and proprioceptive feedback.
Existing real datasets are either constrained to simplified environments or have long-horizon
instructions composed of short-horizon task descriptions. LHManip, instead, presents several
challenges, such as natural language instruction understanding, visual perception of the
environment in the presence of changing challenging conditions, and learning of low-level
control policies for sub-tasks execution.

We hope that our work will motivate the need for more datasets, benchmarks and method-
ologies to learn long-horizon manipulation tasks, thereby taking a significant stride toward
the integration of robots into human-centered environments.

4https://github.com/fedeceola/LHManip
5https://github.com/fedeceola/rlds_dataset_builder
6https://github.com/google-research/rlds

https://github.com/fedeceola/LHManip
https://github.com/fedeceola/rlds_dataset_builder
https://github.com/google-research/rlds

Part V

Conclusion

Chapter 15

Conclusion

In this Thesis, I presented new methods for the visual problem of instance segmentation
and multi-fingered grasping, and a dataset for long-horizon language-guided manipulation
tasks. These have been proposed with the aim of enabling robots to autonomously operate
in everyday environments. To satisfy this requirement, robots need to rapidly adapt to
dynamically changing unconstrained environments and to solve long-horizon tasks with
minimal human supervision, such as a single high-level language instruction.

I started my project by proposing two methods for fast learning of instance segmentation
also in presence of domain shifts. They rely on a state-of-the-art CNN-based architecture
for feature extraction and train kernel-based classifiers for learning novel classes and for
adaptation to different visual domains. The proposed approaches achieve similar accuracy to
the state-of-the-art model used for feature extraction, requiring a fraction of the training time,
and making the deployment of such methods feasible for robotic applications that require fast
adaptation. In this part of the project, I focused on speeding-up the training, without reducing
the amount of data required for optimization. The proposal of a few-shot approach [98]
could further accelerate the training. Another interesting future direction is the extension of
the proposed approaches by integrating them with the latest transformer-based methods for
image segmentation. These latter, e.g. SAM [82] or approaches based on Visual Language

Models like CLIPSeg [110], provide impressive zero-shot performance. However, learning to
segment specific objects may still be a requirement for several robotic applications. Extension
of the proposed methods building on top of models for zero-shot segmentation is a research
direction toward the deployment of robotic systems that are both general and adaptable to
new environment conditions.

Then, I worked on multi-fingered grasping proposing G-PAYN, a DRL from demonstration
method, and RESPRECT, an algorithm based on RRL, to learn the task. G-PAYN learns to

131

grasp objects from visual, tactile and proprioceptive information in simulation. It achieves
a higher success rate than all the considered DRL baselines, and can be deployed on the
real robot without adapting state and action spaces. RESPRECT learns a residual policy on
top of a base policy pre-trained with G-PAYN. It leverages some components of the base
policy to further speed-up the residual training, and can be used for training multi-fingered
grasping policies on the real robot. Experimental evaluation of the two approaches show
the importance of starting the grasping from a suitable pose for the end-effector of the
robot and the development of new algorithms for generation of grasping candidates could
improve the performance of the proposed methods. Moreover, improving the reward function
considered for training, could make the policies more reactive to failures. In the perspective
of learning downstream tasks, such as in-hand manipulation [29], or to perform tasks in
collaboration with humans, the integration of the proposed approaches with affordance
models [2] could further improve G-PAYN and RESPRECT. Finally, the deployment of
large-scale feature extractor to compute spatial information from visual observations of the
environment could help improving the grasping policies. The deployment of such methods
is currently limited [221], and extracting features from NeRF [125] reconstructions of the
environment, or methods that embed semantic features into NeRF models, e.g. LERF [79],
could be an interesting research direction.

Finally, I collected LHManip, with the aim of providing a dataset composed of real data
for long-horizon manipulation tasks that a robot would be required to accomplish in everyday
environments. Data have been collected via teleoperation and each task is described with
a natural level instruction. LHManip is part of the Open X-Embodiment [138] dataset and
can be used for co-training or fine-tuning Behavior Cloning policies as in [138] for a large
number of manipulation tasks. LHManip can also be used to validate existing approaches
for long-horizon manipulation tasks benchmarked only in simulation and to evaluate long-
horizon reasoning capabilities of Large Language Models. An interesting research direction
that can be pursued leveraging LHManip as training set is the development of an off-line

RL approach for long-horizon tasks to overcome the limitations of the models trained with
Behavior Cloning.

In conclusion, the methodologies and the dataset presented in this Thesis explored
different aspects of the problem of enabling robot to operate in everyday environments.
Approaches proposed for the tasks of instance segmentation and multi-fingered grasping have
been designed to speed-up training of specific objects, but can benefit from the deployment
of methods trained on large and general datasets. Integration of pre-trained general models

132

and methods for fast adaptation of such models could be the key for the deployment of
autonomous, flexible and efficient robotic systems in real-world environments.

References

[1] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

[2] Agarwal, A., Uppal, S., Shaw, K., and Pathak, D. (2023). Dexterous functional grasping.
In Tan, J., Toussaint, M., and Darvish, K., editors, Proceedings of The 7th Conference
on Robot Learning, volume 229 of Proceedings of Machine Learning Research, pages
3453–3467. PMLR.

[3] Alakuijala, M., Dulac-Arnold, G., Mairal, J., Ponce, J., and Schmid, C. (2021). Residual
reinforcement learning from demonstrations. arXiv preprint arXiv:2106.08050.

[4] Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., et al. (2020). Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39(1):3–20.

[5] Bai, M. and Urtasun, R. (2017). Deep watershed transform for instance segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5221–5229.

[6] Bellman, R. (1957). A markovian decision process. Journal of mathematics and
mechanics, pages 679–684.

[7] Bicchi, A. and Kumar, V. (2000). Robotic grasping and contact: A review. In Proceedings
2000 ICRA. Millennium conference. IEEE international conference on robotics and
automation. Symposia proceedings (Cat. No. 00CH37065), volume 1, pages 348–353.
IEEE.

[8] Bohg, J., Morales, A., Asfour, T., and Kragic, D. (2014). Data-driven grasp synthesis—a
survey. IEEE Transactions on Robotics, 30(2):289–309.

[9] Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2019). YOLACT: Real-time instance
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9157–9166.

[10] Bousmalis, K., Vezzani, G., Rao, D., Devin, C. M., Lee, A. X., Villalonga, M. B.,
Davchev, T., Zhou, Y., Gupta, A., Raju, A., Laurens, A., Fantacci, C., Dalibard, V.,
Zambelli, M., Martins, M. F., Pevceviciute, R., Blokzijl, M., Denil, M., Batchelor, N.,
Lampe, T., Parisotto, E., Zolna, K., Reed, S., Colmenarejo, S. G., Scholz, J., Abdolmaleki,
A., Groth, O., Regli, J.-B., Sushkov, O., Rothörl, T., Chen, J. E., Aytar, Y., Barker, D.,
Ortiz, J., Riedmiller, M., Springenberg, J. T., Hadsell, R., Nori, F., and Heess, N. (2024).

References 134

Robocat: A self-improving generalist agent for robotic manipulation. Transactions on
Machine Learning Research.

[11] Breyer, M., Chung, J. J., Ott, L., Roland, S., and Juan, N. (2020). Volumetric grasping
network: Real-time 6 dof grasp detection in clutter. In Conference on Robot Learning.

[12] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

[13] Brogårdh, T. (2007). Present and future robot control development—an industrial
perspective. Annual Reviews in Control, 31(1):69–79.

[14] Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan,
K., Hausman, K., Herzog, A., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jackson, T., Jesmonth,
S., Joshi, N., Julian, R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, K.-H., Levine, S., Lu,
Y., Malla, U., Manjunath, D., Mordatch, I., Nachum, O., Parada, C., Peralta, J., Perez, E.,
Pertsch, K., Quiambao, J., Rao, K., Ryoo, M., Salazar, G., Sanketi, P., Sayed, K., Singh,
J., Sontakke, S., Stone, A., Tan, C., Tran, H., Vanhoucke, V., Vega, S., Vuong, Q., Xia, F.,
Xiao, T., Xu, P., Xu, S., Yu, T., and Zitkovich, B. (2022). Rt-1: Robotics transformer for
real-world control at scale. In arXiv preprint arXiv:2212.06817.

[15] Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K.-K., and Van Gool,
L. (2019). The 2019 davis challenge on vos: Unsupervised multi-object segmentation.
arXiv:1905.00737.

[16] Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., and Dollar, A. M. (2015).
The YCB object and model set: Towards common benchmarks for manipulation research.
In 2015 international conference on advanced robotics (ICAR), pages 510–517. IEEE.

[17] Camoriano, R., Pasquale, G., Ciliberto, C., Natale, L., Rosasco, L., and Metta, G.
(2017). Incremental robot learning of new objects with fixed update time. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 3207–3214.

[18] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In European conference on computer
vision, pages 213–229. Springer.

[19] Ceola, F., Maiettini, E., Pasquale, G., Meanti, G., Rosasco, L., and Natale, L. (2022).
Learn fast, segment well: Fast object segmentation learning on the icub robot. IEEE
Transactions on Robotics, 38(5):3154–3172.

[20] Ceola, F., Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2020). Fast region
proposal learning for object detection for robotics. arXiv preprint arXiv:2011.12790.

[21] Ceola, F., Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2021). Fast object
segmentation learning with kernel-based methods for robotics. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 13581–13588.

[22] Ceola, F., Maiettini, E., Rosasco, L., and Natale, L. (2023a). A grasp pose is all you
need: Learning multi-fingered grasping with deep reinforcement learning from vision
and touch. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Sysems
(IROS).

References 135

[23] Ceola, F., Natale, L., Sünderhauf, N., and Rana, K. (2023b). Lhmanip: A dataset for
long-horizon language-grounded manipulation tasks in cluttered tabletop environments.
arXiv preprint arXiv:2312.12036.

[24] Ceola, F., Rosasco, L., and Natale, L. (2024). Resprect: Speeding-up multi-fingered
grasping with residual reinforcement learning. IEEE Robotics and Automation Letters,
pages 1–8.

[25] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil
in the details: Delving deep into convolutional nets. In British Machine Vision Conference.

[26] Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., and Yan, Y. (2020). BlendMask:
Top-down meets bottom-up for instance segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8573–8581.

[27] Chen, L., Bahl, S., and Pathak, D. (2023a). Playfusion: Skill acquisition via diffusion
from language-annotated play. In Conference on Robot Learning, pages 2012–2029.
PMLR.

[28] Chen, S., Tang, W., Xie, P., Yang, W., and Wang, G. (2023b). Efficient heatmap-
guided 6-dof grasp detection in cluttered scenes. IEEE Robotics and Automation Letters,
8(8):4895–4902.

[29] Chen, T., Xu, J., and Agrawal, P. (2022a). A system for general in-hand object re-
orientation. In Conference on Robot Learning, pages 297–307. PMLR.

[30] Chen, X., Girshick, R., He, K., and Dollár, P. (2019). TensorMask: A foundation for
dense object segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2061–2069.

[31] Chen, Z. Q., Van Wyk, K., Chao, Y.-W., Yang, W., Mousavian, A., Gupta, A., and Fox,
D. (2022b). Dextransfer: Real world multi-fingered dexterous grasping with minimal
human demonstrations. arXiv preprint arXiv:2209.14284.

[32] Cheng, S. and Xu, D. (2023). League: Guided skill learning and abstraction for
long-horizon manipulation. IEEE Robotics and Automation Letters, 8(10):6451–6458.

[33] Cheng, X., Shi, K., Agarwal, A., and Pathak, D. (2023). Extreme parkour with legged
robots. In Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition
@ CoRL2023.

[34] Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., and Song, S. (2023).
Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS).

[35] Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada, K.,
Rodriguez, A., Romano, J. M., and Wurman, P. R. (2018). Analysis and observations
from the first amazon picking challenge. IEEE Transactions on Automation Science and
Engineering, 15(1):172–188.

[36] Dai, J., He, K., Li, Y., Ren, S., and Sun, J. (2016a). Instance-sensitive fully convolutional
networks. In European Conference on Computer Vision, pages 534–549. Springer.

References 136

[37] Dai, J., He, K., and Sun, J. (2016b). Instance-aware semantic segmentation via multi-
task network cascades. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3150–3158.

[38] Dai, J., Li, Y., He, K., and Sun, J. (2016c). R-FCN: Object detection via region-based
fully convolutional networks. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 29, pages
379–387. Curran Associates, Inc.

[39] Danielczuk, M., Matl, M., Gupta, S., Li, A., Lee, A., Mahler, J., and Goldberg, K.
(2019). Segmenting unknown 3d objects from real depth images using Mask R-CNN
trained on synthetic data. In 2019 International Conference on Robotics and Automation
(ICRA), pages 7283–7290. IEEE.

[40] Dasari, S., Gupta, A., and Kumar, V. (2022). Learning dexterous manipulation from
exemplar object trajectories and pre-grasps. arXiv preprint arXiv:2209.11221.

[41] Dass, S., Yapeter, J., Zhang, J., Zhang, J., Pertsch, K., Nikolaidis, S., and Lim, J. J.
(2023). Clvr jaco play dataset.

[42] Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., and Ramamoorthy, S. (2022).
Residual learning from demonstration: Adapting dmps for contact-rich manipulation.
IEEE Robotics and Automation Letters, 7(2):4488–4495.

[43] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255.

[44] Deng, J., Zhang, H., Hu, J., Zhang, X., and Wang, Y. (2023). Class incremental robotic
pick-and-place via incremental few-shot object detection. IEEE Robotics and Automation
Letters, 8(9):5974–5981.

[45] Deng, X., Xiang, Y., Mousavian, A., Eppner, C., Bretl, T., and Fox, D. (2020). Self-
supervised 6d object pose estimation for robot manipulation. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 3665–3671.

[46] Denninger, M., Sundermeyer, M., Winkelbauer, D., Olefir, D., Hodan, T., Youssef
Zidan and, M. E., Knauer, M., Katam, H., and Ahsan, L. (2020). Blenderproc: Reducing
the reality gap with photorealistic rendering. In RSS 2020.

[47] Dong, N., Zhang, Y., Ding, M., and Lee, G. H. (2023). Incremental-detr: Incremental
few-shot object detection via self-supervised learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 543–551.

[48] Downs, L., Francis, A., Koenig, N., Kinman, B., Hickman, R., Reymann, K., McHugh,
T. B., and Vanhoucke, V. (2022). Google scanned objects: A high-quality dataset of 3d
scanned household items.

[49] Eitel, A., Hauff, N., and Burgard, W. (2019). Self-supervised transfer learning for
instance segmentation through physical interaction. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4020–4026. IEEE.

References 137

[50] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).
The pascal visual object classes (voc) challenge. International Journal of Computer Vision,
88(2):303–338.

[51] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning hierarchical fea-
tures for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1915–1929.

[52] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR.

[53] Fu, L., Datta, G., Huang, H., Panitch, W. C.-H., Drake, J., Ortiz, J., Mukadam, M.,
Lambeta, M., Calandra, R., and Goldberg, K. (2024a). A touch, vision, and language
dataset for multimodal alignment. arXiv preprint arXiv:2402.13232.

[54] Fu, Z., Zhao, T. Z., and Finn, C. (2024b). Mobile aloha: Learning bimanual mobile
manipulation with low-cost whole-body teleoperation. In arXiv.

[55] Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation
error in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR.

[56] Fulkerson, B., Vedaldi, A., and Soatto, S. (2009). Class segmentation and object
localization with superpixel neighborhoods. In 2009 IEEE 12th International Conference
on Computer Vision, pages 670–677.

[57] Ganea, D. A., Boom, B., and Poppe, R. (2021). Incremental few-shot instance seg-
mentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1185–1194.

[58] Gao, N., Shan, Y., Wang, Y., Zhao, X., Yu, Y., Yang, M., and Huang, K. (2019). SSAP:
Single-shot instance segmentation with affinity pyramid. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 642–651.

[59] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[60] Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Hamburger,
J., Jiang, H., Liu, M., Liu, X., et al. (2022). Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18995–19012.

[61] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR.

[62] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H.,
Gupta, A., Abbeel, P., et al. (2018b). Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905.

References 138

[63] Haddadin, S., Parusel, S., Johannsmeier, L., Golz, S., Gabl, S., Walch, F., Sabaghian,
M., Jähne, C., Hausperger, L., and Haddadin, S. (2022). The franka emika robot: A
reference platform for robotics research and education. IEEE Robotics & Automation
Magazine, 29(2):46–64.

[64] Haldar, S., Pari, J., Rai, A., and Pinto, L. (2023). Teach a Robot to FISH: Versatile
Imitation from One Minute of Demonstrations. In Proceedings of Robotics: Science and
Systems, Daegu, Republic of Korea.

[65] Hampali, S., Rad, M., Oberweger, M., and Lepetit, V. (2020). HOnnotate: A method
for 3D annotation of hand and object poses. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3196–3206.

[66] He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask r-cnn. 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2980–2988.

[67] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[68] Heo, M., Lee, Y., Lee, D., and Lim, J. J. (2023). Furniturebench: Repro-
ducible real-world benchmark for long-horizon complex manipulation. arXiv preprint
arXiv:2305.12821.

[69] Hodaň, T., Sundermeyer, M., Drost, B., Labbé, Y., Brachmann, E., Michel, F., Rother,
C., and Matas, J. (2020). BOP challenge 2020 on 6D object localization. European
Conference on Computer Vision Workshops (ECCVW).

[70] Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X. (2019). Mask Scoring
R-CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6409–6418.

[71] James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. (2020). Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026.

[72] Jianchao Yang, Kai Yu, Yihong Gong, and Huang, T. (2009). Linear spatial pyramid
matching using sparse coding for image classification. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1794–1801.

[73] Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A., Loskyll, M., Ojea, J. A., Solowjow,
E., and Levine, S. (2019). Residual reinforcement learning for robot control. In 2019
International Conference on Robotics and Automation (ICRA), pages 6023–6029. IEEE.

[74] Joseph, K. J., Khan, S., Khan, F. S., and Balasubramanian, V. N. (2021). Towards open
world object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR 2021).

[75] Joshi, S., Kumra, S., and Sahin, F. (2020). Robotic grasping using deep reinforcement
learning. In 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE), pages 1461–1466.

References 139

[76] Kakade, S. M. (2001). A natural policy gradient. Advances in neural information
processing systems, 14.

[77] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly,
E., Kalakrishnan, M., Vanhoucke, V., and Levine, S. (2018). Scalable deep reinforcement
learning for vision-based robotic manipulation. In Billard, A., Dragan, A., Peters, J., and
Morimoto, J., editors, Proceedings of The 2nd Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pages 651–673. PMLR.

[78] Kang, D. and Cho, M. (2022). Integrative few-shot learning for classification and
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9979–9990.

[79] Kerr, J., Kim, C. M., Goldberg, K., Kanazawa, A., and Tancik, M. (2023). Lerf:
Language embedded radiance fields. In International Conference on Computer Vision
(ICCV).

[80] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR).

[81] Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C. (2017). In-
stanceCut: from edges to instances with multicut. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5008–5017.

[82] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R. (2023). Segment
anything. arXiv:2304.02643.

[83] Kolesnikov, A., Dosovitskiy, A., Weissenborn, D., Heigold, G., Uszkoreit, J., Beyer,
L., Minderer, M., Dehghani, M., Houlsby, N., Gelly, S., Unterthiner, T., and Zhai, X.
(2021). An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations (ICLR).

[84] Kornblith, S., Shlens, J., and Le, Q. V. (2019). Do better imagenet models transfer
better? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[85] Krähenbühl, P. and Koltun, V. (2011). Efficient inference in fully connected crfs with
gaussian edge potentials. In Advances in neural information processing systems, pages
109–117.

[86] Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. (2021). Implicit under-
parameterization inhibits data-efficient deep reinforcement learning. In International
Conference on Learning Representations.

[87] Kumar, V., Hermans, T., Fox, D., Birchfield, S., and Tremblay, J. (2019). Contextual
reinforcement learning of visuo-tactile multi-fingered grasping policies. arXiv preprint
arXiv:1911.09233.

[88] Kumar, V. and Todorov, E. (2015). Mujoco haptix: A virtual reality system for hand
manipulation. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pages 657–663.

References 140

[89] Kuo, W., Angelova, A., Malik, J., and Lin, T.-Y. (2019). ShapeMask: Learning
to segment novel objects by refining shape priors. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9207–9216.

[90] Lee, A. X., Devin, C. M., Zhou, Y., Lampe, T., Bousmalis, K., Springenberg, J. T.,
Byravan, A., Abdolmaleki, A., Gileadi, N., Khosid, D., Fantacci, C., Chen, J. E., Raju, A.,
Jeong, R., Neunert, M., Laurens, A., Saliceti, S., Casarini, F., Riedmiller, M., Hadsell, R.,
and Nori, F. (2021a). Beyond pick-and-place: Tackling robotic stacking of diverse shapes.
In 5th Annual Conference on Robot Learning.

[91] Lee, Y., Hu, E. S., and Lim, J. J. (2021b). Ikea furniture assembly environment for
long-horizon complex manipulation tasks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6343–6349.

[92] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection.
The International journal of robotics research, 37(4-5):421–436.

[93] Li, A., Danielczuk, M., and Goldberg, K. (2020a). One-shot shape-based amodal-to-
modal instance segmentation. In 2020 IEEE 16th International Conference on Automation
Science and Engineering (CASE), pages 1375–1382. IEEE.

[94] Li, F., Zhang, H., Sun, P., Zou, X., Liu, S., Yang, J., Li, C., Zhang, L., and Gao,
J. (2023a). Semantic-sam: Segment and recognize anything at any granularity. arXiv
preprint arXiv:2307.04767.

[95] Li, K., Baron, N., Zhang, X., and Rojas, N. (2022). Efficientgrasp: A unified data-
efficient learning to grasp method for multi-fingered robot hands. IEEE Robotics and
Automation Letters, 7(4):8619–8626.

[96] Li, S., Li, M., Wang, P., and Zhang, L. (2023b). Opensd: Unified open-vocabulary
segmentation and detection. arXiv preprint arXiv:2312.06703.

[97] Li, S., Zhou, J., Jia, Z., Yeung, D.-Y., and Mason, M. T. (2020b). Learning accurate
objectness instance segmentation from photorealistic rendering for robotic manipulation.
In Xiao, J., Kröger, T., and Khatib, O., editors, Proceedings of the 2018 International
Symposium on Experimental Robotics, pages 245–255, Cham. Springer International
Publishing.

[98] Li, W., Wang, Z., Yang, X., Dong, C., Tian, P., Qin, T., Huo, J., Shi, Y., Wang, L., Gao,
Y., and Luo, J. (2023c). Libfewshot: A comprehensive library for few-shot learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(12):14938–14955.

[99] Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. (2017). Fully convolutional instance-aware
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2359–2367.

[100] Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018). Deepim: Deep iterative
matching for 6d pose estimation. In Proceedings of the European Conference on Computer
Vision (ECCV).

References 141

[101] Liang, H., Cong, L., Hendrich, N., Li, S., Sun, F., and Zhang, J. (2021). Multifingered
grasping based on multimodal reinforcement learning. IEEE Robotics and Automation
Letters, 7(2):1174–1181.

[102] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2016). Continuous control with deep reinforcement learning.

[103] Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P. (2017a). Focal loss for dense
object detection. In IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 2999–3007.

[104] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017b).
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2117–2125.

[105] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), Zürich. Oral.

[106] Ling, H., Gao, J., Kar, A., Chen, W., and Fidler, S. (2019). Fast interactive object
annotation with curve-gcn. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5257–5266.

[107] Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for
instance segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8759–8768.

[108] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440.

[109] Lucchi, A., Li, Y., Smith, K., and Fua, P. (2012). Structured image segmentation using
kernelized features. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., and Schmid,
C., editors, Computer Vision – ECCV 2012, pages 400–413, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[110] Lüddecke, T. and Ecker, A. (2022). Image segmentation using text and image prompts.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7086–7096.

[111] Luo, J., Xu, C., Geng, X., Feng, G., Fang, K., Tan, L., Schaal, S., and Levine, S. (2024).
Multistage cable routing through hierarchical imitation learning. IEEE Transactions on
Robotics, 40:1476–1491.

[112] Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Aparicio, J., and
Goldberg, K. (2017). Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. In Proceedings of Robotics: Science and Systems,
Cambridge, Massachusetts.

[113] Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2017). Interactive data
collection for deep learning object detectors on humanoid robots. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), pages 862–868.

References 142

[114] Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2018). Speeding-up object
detection training for robotics with falkon. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[115] Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2019). On-line object
detection: a robotics challenge. Autonomous Robots.

[116] Maltoni, D. and Lomonaco, V. (2019). Continuous learning in single-incremental-task
scenarios. Neural Networks, 116:56–73.

[117] Mandlekar, A., Xu, D., Martín-Martín, R., Savarese, S., and Fei-Fei, L. (2020). GTI:
Learning to Generalize across Long-Horizon Tasks from Human Demonstrations. In
Proceedings of Robotics: Science and Systems, Corvalis, Oregon, USA.

[118] Manhardt, F., Kehl, W., Navab, N., and Tombari, F. (2018). Deep model-based 6d
pose refinement in rgb. In Proceedings of the European Conference on Computer Vision
(ECCV).

[119] Margolis, G. B., Fu, X., Ji, Y., and Agrawal, P. (2023). Learning to see physical
properties with active sensing motor policies. In Tan, J., Toussaint, M., and Darvish, K.,
editors, Proceedings of The 7th Conference on Robot Learning, volume 229 of Proceedings
of Machine Learning Research, pages 2537–2548. PMLR.

[120] Meanti, G., Carratino, L., Rosasco, L., and Rudi, A. (2020). Kernel methods through
the roof: handling billions of points efficiently. arXiv preprint arXiv:2006.10350v1.

[121] Mees, O., Hermann, L., Rosete-Beas, E., and Burgard, W. (2022). Calvin: A bench-
mark for language-conditioned policy learning for long-horizon robot manipulation tasks.
IEEE Robotics and Automation Letters, 7(3):7327–7334.

[122] Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: Yet another robot platform.
International Journal of Advanced Robotics Systems, 3(1):43–48.

[123] Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C.,
Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano, L. (2010). The
iCub humanoid robot: an open-systems platform for research in cognitive development.
Neural networks : the official journal of the International Neural Network Society, 23(8-
9):1125–34.

[124] Michieli, U. and Zanuttigh, P. (2019). Incremental learning techniques for semantic
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops.

[125] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,
R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In
ECCV.

[126] Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., and Terzopou-
los, D. (2020). Image segmentation using deep learning: A survey. arXiv preprint
arXiv:2001.05566.

References 143

[127] Minderer, M., Gritsenko, A., and Houlsby, N. (2023). Scaling open-vocabulary object
detection. Advances in Neural Information Processing Systems, 36.

[128] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. NIPS Deep
Learning Workshop.

[129] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. nature, 518(7540):529–533.

[130] Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical
reinforcement learning. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

[131] Nair, A., Gupta, A., Dalal, M., and Levine, S. (2020). Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359.

[132] Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018).
Overcoming exploration in reinforcement learning with demonstrations. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 6292–6299. IEEE.

[133] Newbury, R., Gu, M., Chumbley, L., Mousavian, A., Eppner, C., Leitner, J., Bohg,
J., Morales, A., Asfour, T., Kragic, D., Fox, D., and Cosgun, A. (2023). Deep learning
approaches to grasp synthesis: A review. IEEE Transactions on Robotics, 39(5):3994–
4015.

[134] Newswanger, A. and Xu, C. (2017). One-shot video object segmentation with iterative
online fine-tuning. The 2017 DAVIS Challenge on Video Object Segmentation - CVPR
Workshops.

[135] Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning algo-
rithms. arXiv preprint arXiv:1803.02999.

[136] Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., and Pucci, D. (2015).
icub whole-body control through force regulation on rigid noncoplanar contacts. Frontiers
in Robotics and AI, 2(6).

[137] Octo Model Team, Ghosh, D., Walke, H., Pertsch, K., Black, K., Mees, O., Dasari,
S., Hejna, J., Xu, C., Luo, J., Kreiman, T., Tan, Y., Sadigh, D., Finn, C., and Levine, S.
(2023). Octo: An open-source generalist robot policy. https://octo-models.github.io.

[138] Open X-Embodiment Collaboration, Padalkar, A., Pooley, A., Jain, A., Bewley, A.,
Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Singh, A., Brohan, A., Raffin, A., Wahid,
A., Burgess-Limerick, B., Kim, B., Schölkopf, B., Ichter, B., Lu, C., Xu, C., Finn, C., Xu,
C., Chi, C., Huang, C., Chan, C., Pan, C., Fu, C., Devin, C., Driess, D., Pathak, D., Shah,
D., Büchler, D., Kalashnikov, D., Sadigh, D., Johns, E., Ceola, F., Xia, F., Stulp, F., Zhou,
G., Sukhatme, G. S., Salhotra, G., Yan, G., Schiavi, G., Su, H., Fang, H.-S., Shi, H., Amor,
H. B., Christensen, H. I., Furuta, H., Walke, H., Fang, H., Mordatch, I., Radosavovic, I.,
Leal, I., Liang, J., Kim, J., Schneider, J., Hsu, J., Bohg, J., Bingham, J., Wu, J., Wu, J.,

https://octo-models.github.io

References 144

Luo, J., Gu, J., Tan, J., Oh, J., Malik, J., Tompson, J., Yang, J., Lim, J. J., Silvério, J., Han,
J., Rao, K., Pertsch, K., Hausman, K., Go, K., Gopalakrishnan, K., Goldberg, K., Byrne,
K., Oslund, K., Kawaharazuka, K., Zhang, K., Majd, K., Rana, K., Srinivasan, K., Chen,
L. Y., Pinto, L., Tan, L., Ott, L., Lee, L., Tomizuka, M., Du, M., Ahn, M., Zhang, M.,
Ding, M., Srirama, M. K., Sharma, M., Kim, M. J., Kanazawa, N., Hansen, N., Heess,
N., Joshi, N. J., Suenderhauf, N., Palo, N. D., Shafiullah, N. M. M., Mees, O., Kroemer,
O., Sanketi, P. R., Wohlhart, P., Xu, P., Sermanet, P., Sundaresan, P., Vuong, Q., Rafailov,
R., Tian, R., Doshi, R., Martín-Martín, R., Mendonca, R., Shah, R., Hoque, R., Julian, R.,
Bustamante, S., Kirmani, S., Levine, S., Moore, S., Bahl, S., Dass, S., Song, S., Xu, S.,
Haldar, S., Adebola, S., Guist, S., Nasiriany, S., Schaal, S., Welker, S., Tian, S., Dasari,
S., Belkhale, S., Osa, T., Harada, T., Matsushima, T., Xiao, T., Yu, T., Ding, T., Davchev,
T., Zhao, T. Z., Armstrong, T., Darrell, T., Jain, V., Vanhoucke, V., Zhan, W., Zhou, W.,
Burgard, W., Chen, X., Wang, X., Zhu, X., Li, X., Lu, Y., Chebotar, Y., Zhou, Y., Zhu, Y.,
Xu, Y., Wang, Y., Bisk, Y., Cho, Y., Lee, Y., Cui, Y., hua Wu, Y., Tang, Y., Zhu, Y., Li, Y.,
Iwasawa, Y., Matsuo, Y., Xu, Z., and Cui, Z. J. (2024). Open X-Embodiment: Robotic
learning datasets and RT-X models. In 2024 IEEE International Conference on Robotics
and Automation (ICRA).

[139] OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B.,
Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., and Zaremba, W. (2018). Learning dexterous in-hand
manipulation. CoRR.

[140] Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., Howes, R., Huang, P.-Y., Xu, H.,
Sharma, V., Li, S.-W., Galuba, W., Rabbat, M., Assran, M., Ballas, N., Synnaeve, G.,
Misra, I., Jegou, H., Mairal, J., Labatut, P., Joulin, A., and Bojanowski, P. (2024). Dinov2:
Learning robust visual features without supervision.

[141] P. Zhang, L. Hu, B. Z. and Pan, P. (2020). Spatial constrained memory network for
semi-supervised video object segmentation. The 2020 DAVIS Challenge on Video Object
Segmentation - CVPR Workshops.

[142] Pari, J., Shafiullah, N. M., Arunachalam, S. P., and Pinto, L. (2021). The surprising
effectiveness of representation learning for visual imitation.

[143] Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta, A. (2022). The unsurprising
effectiveness of pre-trained vision models for control. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 17359–17371. PMLR.

[144] Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M., Maggiali,
M., Pattacini, U., Lehmann, H., Tikhanoff, V., Domenichelli, D., Cardellino, A., Congiu,
P., Pagnin, A., Cingolani, R., Natale, L., and Metta, G. (2017). The design and validation
of the r1 personal humanoid. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 674–680.

[145] Pasquale, G., Ciliberto, C., Odone, F., Rosasco, L., and Natale, L. (2019). Are we
done with object recognition? the icub robot’s perspective. Robotics and Autonomous
Systems, 112:260 – 281.

References 145

[146] Pasquale, G., Mar, T., Ciliberto, C., Rosasco, L., and Natale, L. (2016). Enabling
depth-driven visual attention on the icub humanoid robot: Instructions for use and new
perspectives. Frontiers in Robotics and AI, 3:35.

[147] Pathak, D., Shentu, Y., Chen, D., Agrawal, P., Darrell, T., Levine, S., and Malik,
J. (2018). Learning instance segmentation by interaction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 2042–2045.

[148] Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). An experimental
evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In 2010
IEEE/RSJ international conference on intelligent robots and systems, pages 1668–1674.
IEEE.

[149] Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., and Zhou, X. (2020). Deep snake for real-
time instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8533–8542.

[150] Perez-Rua, J.-M., Zhu, X., Hospedales, T. M., and Xiang, T. (2020). Incremental
few-shot object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13846–13855.

[151] Perronnin, F., Sánchez, J., and Mensink, T. (2010). Improving the fisher kernel for
large-scale image classification. In Daniilidis, K., Maragos, P., and Paragios, N., editors,
Computer Vision – ECCV 2010, pages 143–156, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[152] Pinheiro, P. O., Collobert, R., and Dollar, P. (2015). Learning to segment object
candidates. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 28, pages 1990–1998. Curran
Associates, Inc.

[153] Pinheiro, P. O., Lin, T.-Y., Collobert, R., and Dollár, P. (2016). Learning to refine
object segments. In European conference on computer vision, pages 75–91. Springer.

[154] Qin, Y., Huang, B., Yin, Z.-H., Su, H., and Wang, X. (2023). Dexpoint: Generalizable
point cloud reinforcement learning for sim-to-real dexterous manipulation. In Conference
on Robot Learning, pages 594–605. PMLR.

[155] Qin, Y., Wu, Y.-H., Liu, S., Jiang, H., Yang, R., Fu, Y., and Wang, X. (2022). Dexmv:
Imitation learning for dexterous manipulation from human videos. In European Confer-
ence on Computer Vision, pages 570–587. Springer.

[156] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pages
8748–8763. PMLR.

[157] Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., and Darrell, T. (2023).
Real-world robot learning with masked visual pre-training. In Conference on Robot
Learning, pages 416–426. PMLR.

References 146

[158] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8.

[159] Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., and
Levine, S. (2018). Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania.

[160] Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). Efficient off-
policy meta-reinforcement learning via probabilistic context variables. In International
conference on machine learning, pages 5331–5340. PMLR.

[161] Rana, K., Talbot, B., Dasagi, V., Milford, M., and Sünderhauf, N. (2020). Residual
reactive navigation: Combining classical and learned navigation strategies for deployment
in unknown environments. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 11493–11499.

[162] Ranjbar, A., Vien, N. A., Ziesche, H., Boedecker, J., and Neumann, G. (2021).
Residual feedback learning for contact-rich manipulation tasks with uncertainty. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2383–2390. IEEE.

[163] Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement. CoRR,
abs/1804.02767.

[164] Remez, T., Huang, J., and Brown, M. (2018). Learning to segment via cut-and-paste.
In Proceedings of the European Conference on Computer Vision (ECCV).

[165] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time
object detection with region proposal networks. In Neural Information Processing Systems
(NIPS).

[166] Rosete-Beas, E., Mees, O., Kalweit, G., Boedecker, J., and Burgard, W. (2022). Latent
plans for task agnostic offline reinforcement learning.

[167] Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 627–635. JMLR
Workshop and Conference Proceedings.

[168] Rudi, A., Camoriano, R., and Rosasco, L. (2015). Less is more: Nyström computa-
tional regularization. Advances in Neural Information Processing Systems, 28.

[169] Rudi, A., Carratino, L., and Rosasco, L. (2017). Falkon: An optimal large scale kernel
method. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages
3888–3898. Curran Associates, Inc.

[170] S. Garg, V. G. and Kumar, S. (2020). Unsupervised video object segmentation using
online mask selection and space-time memory networks. The 2020 DAVIS Challenge on
Video Object Segmentation - CVPR Workshops.

References 147

[171] Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

[172] Schoettler, G., Nair, A., Luo, J., Bahl, S., Ojea, J. A., Solowjow, E., and Levine, S.
(2020). Deep reinforcement learning for industrial insertion tasks with visual inputs and
natural rewards. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5548–5555. IEEE.

[173] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press.

[174] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust
region policy optimization. In Bach, F. and Blei, D., editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 1889–1897, Lille, France. PMLR.

[175] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[176] Seno, T. and Imai, M. (2022). d3rlpy: An offline deep reinforcement learning library.
Journal of Machine Learning Research, 23(315):1–20.

[177] Shang, W., Wang, X., Srinivas, A., Rajeswaran, A., Gao, Y., Abbeel, P., and Laskin,
M. (2021). Reinforcement learning with latent flow. Advances in Neural Information
Processing Systems, 34:22171–22183.

[178] Shaw, K., Bahl, S., and Pathak, D. (2023). Videodex: Learning dexterity from internet
videos. In Conference on Robot Learning, pages 654–665. PMLR.

[179] Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks for
semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):640–651.

[180] Shmelkov, K., Schmid, C., and Alahari, K. (2017). Incremental learning of object
detectors without catastrophic forgetting. In Proceedings of the IEEE international
conference on computer vision, pages 3400–3409.

[181] Shridhar, M., Manuelli, L., and Fox, D. (2023). Perceiver-actor: A multi-task trans-
former for robotic manipulation. In Conference on Robot Learning, pages 785–799.
PMLR.

[182] Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer,
L., and Fox, D. (2020). Alfred: A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[183] Shu, X., Liu, C., Li, T., Wang, C., and Chi, C. (2018). A self-supervised learning
manipulator grasping approach based on instance segmentation. IEEE Access, 6:65055–
65064.

[184] Siam, M., Jiang, C., Lu, S., Petrich, L., Gamal, M., Elhoseiny, M., and Jagersand, M.
(2019). Video object segmentation using teacher-student adaptation in a human robot
interaction (hri) setting. In 2019 International Conference on Robotics and Automation
(ICRA), pages 50–56. IEEE.

References 148

[185] Silver, T., Allen, K., Tenenbaum, J., and Kaelbling, L. (2018). Residual policy learning.
arXiv preprint arXiv:1812.06298.

[186] Suchi, M., Patten, T., Fischinger, D., and Vincze, M. (2019). Easylabel: a semi-
automatic pixel-wise object annotation tool for creating robotic rgb-d datasets. In 2019
International Conference on Robotics and Automation (ICRA), pages 6678–6684. IEEE.

[187] Sung, K. K. (1996). Learning and Example Selection for Object and Pattern Detection.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. AAI0800657.

[188] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
Second Edition. MIT press.

[189] Taheri, O., Ghorbani, N., Black, M. J., and Tzionas, D. (2020). Grab: A dataset of
whole-body human grasping of objects. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pages 581–600.
Springer.

[190] Tan, M., Pang, R., and Le, Q. V. (2020). EfficientDet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790.

[191] ten Pas, A., Gualtieri, M., Saenko, K., and Platt, R. (2017). Grasp pose detection in
point clouds. The International Journal of Robotics Research, 36(13-14):1455–1473.

[192] Tian, Z., Shen, C., Chen, H., and He, T. (2019). FCOS: Fully convolutional one-stage
object detection. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9627–9636.

[193] Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems,
pages 5026–5033. IEEE.

[194] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 30.

[195] Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl,
T., Lampe, T., and Riedmiller, M. (2017). Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817.

[196] Vezzani, G., Pattacini, U., and Natale, L. (2017). A grasping approach based on
superquadric models. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 1579–1586.

[197] Voigtlaender, P. and Leibe, B. (2017). Online adaptation of convolutional neural
networks for the 2017 davis challenge on video object segmentation. The 2017 DAVIS
Challenge on Video Object Segmentation - CVPR Workshops.

[198] Wada, K., Okada, K., and Inaba, M. (2019). Joint learning of instance and seman-
tic segmentation for robotic pick-and-place with heavy occlusions in clutter. In 2019
International Conference on Robotics and Automation (ICRA), pages 9558–9564. IEEE.

References 149

[199] Walke, H., Black, K., Lee, A., Kim, M. J., Du, M., Zheng, C., Zhao, T., Hansen-
Estruch, P., Vuong, Q., He, A., Myers, V., Fang, K., Finn, C., and Levine, S. (2023).
Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot Learning
(CoRL).

[200] Wang, C., Xu, D., Zhu, Y., Martin-Martin, R., Lu, C., Fei-Fei, L., and Savarese, S.
(2019). Densefusion: 6d object pose estimation by iterative dense fusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[201] Wang, C.-Y. and Liao, H.-Y. M. (2024). YOLOv9: Learning what you want to learn
using programmable gradient information.

[202] Wang, J., Qin, Y., Kuang, K., Korkmaz, Y., Gurumoorthy, A., Su, H., and Wang,
X. (2024). CyberDemo: Augmenting Simulated Human Demonstration for Real-World
Dexterous Manipulation. arXiv preprint arXiv: 2402.14795.

[203] Wang, W., Feiszli, M., Wang, H., Malik, J., and Tran, D. (2022). Open-world
instance segmentation: Exploiting pseudo ground truth from learned pairwise affinity. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4422–4432.

[204] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016). Du-
eling network architectures for deep reinforcement learning. In International conference
on machine learning, pages 1995–2003. PMLR.

[205] Wen, B., Tremblay, J., Blukis, V., Tyree, S., Müller, T., Evans, A., Fox, D., Kautz,
J., and Birchfield, S. (2023). Bundlesdf: Neural 6-dof tracking and 3d reconstruction of
unknown objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 606–617.

[206] Williams, C. and Seeger, M. (2000). Using the nyström method to speed up kernel
machines. Advances in neural information processing systems, 13.

[207] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8:229–256.

[208] Wu, J., Jiang, Y., Yan, B., Lu, H., Yuan, Z., and Luo, P. (2023a). Exploring transformers
for open-world instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6611–6621.

[209] Wu, J., Li, X., Xu, S., Yuan, H., Ding, H., Yang, Y., Li, X., Zhang, J., Tong, Y., Jiang,
X., et al. (2024). Towards open vocabulary learning: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[210] Wu, S., Zhang, W., Jin, S., Liu, W., and Loy, C. C. (2023b). Aligning bag of regions
for open-vocabulary object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 15254–15264.

[211] Wu, Z., Lu, Y., Chen, X., Wu, Z., Kang, L., and Yu, J. (2022). Uc-owod: Unknown-
classified open world object detection. In European Conference on Computer Vision,
pages 193–210. Springer.

References 150

[212] Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2018). Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes. In Robotics: Science
and Systems (RSS).

[213] Xie, C., Xiang, Y., Mousavian, A., and Fox, D. (2020). The best of both modes: Sepa-
rately leveraging rgb and depth for unseen object instance segmentation. In Conference
on robot learning, pages 1369–1378. PMLR.

[214] Xie, C., Xiang, Y., Mousavian, A., and Fox, D. (2021). Unseen object instance
segmentation for robotic environments. IEEE Transactions on Robotics.

[215] Xie, L., Wang, S., Rosa, S., Markham, A., and Trigoni, N. (2018). Learning with
training wheels: speeding up training with a simple controller for deep reinforcement
learning. In 2018 IEEE international conference on robotics and automation (ICRA),
pages 6276–6283. IEEE.

[216] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500.

[217] Xiong, H., Mendonca, R., Shaw, K., and Pathak, D. (2024). Adaptive mobile manipu-
lation for articulated objects in the open world. arXiv preprint arXiv:2401.14403.

[218] Yang, X., Ji, Z., Wu, J., Lai, Y.-K., Wei, C., Liu, G., and Setchi, R. (2022). Hierarchical
reinforcement learning with universal policies for multistep robotic manipulation. IEEE
Transactions on Neural Networks and Learning Systems, 33(9):4727–4741.

[219] Zakharov, S., Shugurov, I., and Ilic, S. (2019). Dpod: 6d pose object detector and
refiner. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV).

[220] Zakka, K. (2022). Scanned Objects MuJoCo Models.

[221] Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong,
T., Krasin, I., Duong, D., Sindhwani, V., and Lee, J. (2021). Transporter networks:
Rearranging the visual world for robotic manipulation. In Kober, J., Ramos, F., and
Tomlin, C., editors, Proceedings of the 2020 Conference on Robot Learning, volume 155
of Proceedings of Machine Learning Research, pages 726–747. PMLR.

[222] Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2020). Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics,
36(4):1307–1319.

[223] Zhang, J., Zhang, J., Pertsch, K., Liu, Z., Ren, X., Chang, M., Sun, S.-H., and Lim,
J. J. (2023a). Bootstrap your own skills: Learning to solve new tasks with large language
model guidance. In 7th Annual Conference on Robot Learning.

[224] Zhang, S., Wicke, P., Şenel, L. K., Figueredo, L., Naceri, A., Haddadin, S., Plank, B.,
and Schütze, H. (2023b). Lohoravens: A long-horizon language-conditioned benchmark
for robotic tabletop manipulation. arXiv preprint arXiv:2310.12020.

References 151

[225] Zhao, M., Abbeel, P., and James, S. (2022). On the effectiveness of fine-tuning
versus meta-reinforcement learning. Advances in Neural Information Processing Systems,
35:26519–26531.

[226] Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. (2023). Learning Fine-Grained
Bimanual Manipulation with Low-Cost Hardware. In Proceedings of Robotics: Science
and Systems, Daegu, Republic of Korea.

[227] Zhou, G., Dean, V., Srirama, M. K., Rajeswaran, A., Pari, J., Hatch, K., Jain, A., Yu,
T., Abbeel, P., Pinto, L., Finn, C., and Gupta, A. (2023). Train offline, test online: A
real robot learning benchmark. In 2023 IEEE International Conference on Robotics and
Automation (ICRA).

[228] Zhou, X., Wang, D., and Krähenbühl, P. (2019). Objects as points. arXiv preprint
arXiv:1904.07850.

[229] Zhu, T., Wu, R., Hang, J., Lin, X., and Sun, Y. (2023). Toward human-like grasp:
Functional grasp by dexterous robotic hand via object-hand semantic representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–14.

[230] Zhu, T., Wu, R., Lin, X., and Sun, Y. (2021). Toward human-like grasp: Dexterous
grasping via semantic representation of object-hand. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 15741–15751.

[231] Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker,
S., Wahid, A., Vuong, Q., Vanhoucke, V., Tran, H., Soricut, R., Singh, A., Singh, J.,
Sermanet, P., Sanketi, P. R., Salazar, G., Ryoo, M. S., Reymann, K., Rao, K., Pertsch, K.,
Mordatch, I., Michalewski, H., Lu, Y., Levine, S., Lee, L., Lee, T.-W. E., Leal, I., Kuang,
Y., Kalashnikov, D., Julian, R., Joshi, N. J., Irpan, A., Ichter, B., Hsu, J., Herzog, A.,
Hausman, K., Gopalakrishnan, K., Fu, C., Florence, P., Finn, C., Dubey, K. A., Driess, D.,
Ding, T., Choromanski, K. M., Chen, X., Chebotar, Y., Carbajal, J., Brown, N., Brohan,
A., Arenas, M. G., and Han, K. (2023). Rt-2: Vision-language-action models transfer
web knowledge to robotic control. In Tan, J., Toussaint, M., and Darvish, K., editors,
Proceedings of The 7th Conference on Robot Learning, volume 229 of Proceedings of
Machine Learning Research, pages 2165–2183. PMLR.

[232] Zohar, O., Lozano, A., Goel, S., Yeung, S., and Wang, K.-C. (2023). Open world
object detection in the era of foundation models. arXiv preprint arXiv:2312.05745.

	Table of contents
	List of figures
	List of tables
	List of acronyms
	I Introduction
	1 Motivation
	2 Research Objectives
	3 State-of-the-art
	3.1 Robotic Visual Object Perception Learning
	3.2 Learning for Multi-fingered Grasping
	3.3 Robotic Manipulation Datasets

	4 Thesis Outline

	II Background
	5 Instance Segmentation
	5.1 Mask R-CNN
	5.2 FALKON
	5.3 On-line Object Detection

	6 Reinforcement Learning
	6.1 Model-Free Deep Reinforcement Learning Algorithms
	6.1.1 Policy-Gradient Methods
	6.1.2 Value-Based Methods
	6.1.3 Actor-Critic Methods

	6.2 Soft Actor-Critic
	6.3 Reinforcement Learning from Demonstration
	6.3.1 Pre-training from Demonstration
	6.3.2 Learning to Imitate Demonstrations

	6.4 Residual Reinforcement Learning

	III Contributions
	7 Fast Instance Segmentation
	8 Multi-fingered Grasping with Deep Reinforcement Learning
	9 Toward Long-Horizon Manipulation Tasks

	IV Included Publications
	10 =Fast Object Segmentation Learning with Kernel-based Methods for Robotics
	10.1 Introduction
	10.2 Related Work
	10.2.1 Object Instance Segmentation
	10.2.2 Fast Object Detection Methods in Robotics

	10.3 Methods
	10.3.1 Overview of the Pipeline
	10.3.2 On-line Learning Strategy

	10.4 Experiments
	10.4.1 Experimental Setup
	10.4.2 Benchmark on the YCB-Video Dataset
	10.4.3 Ablation Studies

	10.5 Conclusions

	11 =Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub Robot
	11.1 Introduction
	11.2 Related Work
	11.2.1 Instance Segmentation
	11.2.2 Instance Segmentation in Robotics

	11.3 Methods
	11.3.1 Overview of the Pipeline
	11.3.2 Bounding Box Learning
	11.3.3 On-line Segmentation
	11.3.4 Training Protocol

	11.4 Experimental Setup
	11.4.1 Off-line Experiments
	11.4.2 Datasets
	11.4.3 Robotic Setup

	11.5 Results
	11.5.1 Benchmark on YCB-Video
	11.5.2 Benchmark on HO-3D

	11.6 Fast Region Proposal Adaptation
	11.6.1 Is Region Proposal Adaptation Key to Performance?
	11.6.2 Approximated On-line Training: Speed/Accuracy Trade-off

	11.7 Stream-based Instance Segmentation
	11.8 Robotic Application
	11.8.1 Incremental Instance Segmentation Learning
	11.8.2 Discussion and Qualitative Results

	11.9 Conclusions
	11.10 Appendix A
	11.11 Appendix B
	11.12 Appendix C
	11.13 Appendix D
	11.14 Appendix E
	11.15 Appendix F
	11.16 Appendix G

	12 =A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and Touch
	12.1 Introduction
	12.2 Related Work
	12.2.1 Multi-fingered Grasping
	12.2.2 Deep Reinforcement Learning from Demonstrations

	12.3 Methodology
	12.3.1 Grasping Pipeline
	12.3.2 Policy Training

	12.4 Experimental Setup
	12.4.1 Simulated Environment
	12.4.2 Training Hyperparameters

	12.5 Results
	12.5.1 Baselines
	12.5.2 Discussion

	12.6 Conclusions

	13 =RESPRECT: Speeding-up Multi-fingered Grasping with Residual Reinforcement Learning
	13.1 Introduction
	13.2 Related Work
	13.3 Methodology
	13.3.1 Grasping Pipeline
	13.3.2 Residual Policy Training

	13.4 Experimental Setup
	13.4.1 Real Robot Setup

	13.5 Results
	13.5.1 Baselines
	13.5.2 Simulation Results
	13.5.3 Real Robot Results

	13.6 Limitations
	13.7 Conclusion
	13.8 Appendix I
	13.9 Appendix II
	13.10 Appendix III
	13.11 Appendix IV

	14 =LHManip: A Dataset for Long-Horizon Language-Grounded Manipulation Tasks in Cluttered Tabletop Environments
	14.1 Introduction
	14.2 Related Work
	14.3 LHManip
	14.3.1 Experimental Set-Up and Data Collection
	14.3.2 Dataset

	14.4 Conclusion

	V Conclusion
	15 Conclusion
	References

