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Abstract

As human beings, having social connections plays a crucial role in our lives, and our
interactions are based on communication. Much of the exchange of information occurs in a
non-verbal way through what can be described as implicit communication. Indeed, we are
exceptionally skilled at reading the unspoken from other people’s actions: gaze direction,
gestures rhythm, or body posture for instance reveal, even unintentionally, the intentions,
mood, or urgency of others’ actions. Also when manipulating objects, the way we do it can
make explicit otherwise hidden characteristics, such as weight or fragility.

My Ph.D. research focuses on the implicit communication of object properties in the con-
text of human-robot interaction. Collaborative robots can benefit significantly from exploiting
implicit communication channels as humans do, allowing for more natural, spontaneous, and
safe interactions. The main scientific question I aim to answer is whether it is possible to
automatically detect features of the carried objects from human movements and, on the other
hand, communicate the same information exploiting the robot embodiment. My approach
exploits the kinematics modulations that naturally occur when transporting objects: it is
precisely the way we interact with them that makes their characteristics understandable to an
external observer, resolving at the same time all the possible misunderstandings due to shape,
size, or occlusions.

To detect and study the kinematics in human actions, I resorted to and compared motion
capture systems, inertial sensors, and cameras, exploiting machine learning algorithms to
classify the observed motion. To reproduce communicative movements on the robot, I
controlled the end-effector kinematics, by modulating its velocity to follow synthetic profiles,
automatically generated after training on real human examples.
As regards the property to detect and express, I focused mainly on the carefulness associated
with object manipulation, i.e., to assess and implicitly communicate if any caution is required
to handle the carried item.

Findings prove that it is possible exploiting features such as the movement velocity, re-
trieved with various sensors, to classify online whether an action is careful or not. Exploiting
a generative strategy to produce robot motions successfully delivers the intended carefulness
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and can be applied to different trajectories and robots, even those not humanoid. Moreover,
the modulation in the robot’s actions also induces a spontaneous motor adaptation in how
participants perform their tasks, matching the robot’s attitude. Such findings prove that
information can be exchanged with robots through implicit cues embedded in the actions,
opening a channel of communication that relies on a core human interaction ability.

Given the adaptability of the approach to different robots and the non-invasive sensing
methods, an industrial field of application seems feasible, beyond the one of social robotics.
The ability of the robot to automatically perceive and express the carefulness feature could
improve the safety and efficiency of collaborative object manipulation tasks. Future devel-
opments of this work may include other object properties in the framework, such as the
weight or the temperature, and could exploit additional cues to the kinematics, to expand the
possible field of application.
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Chapter 1

Introduction

1.1 Motivation

Human-robot interaction (HRI) has become a rapidly growing field in recent years, as
advancements in technology have led to the increasing presence of robots in various domains,
including industry, healthcare, and education. However, the obstacles to integrating robots
into our society are still widely present and difficult to overcome. Among the others, one
issue is represented by the challenges of communicating smoothly and directly with an
artificial agent.

Standard means of communication that are being implemented on robots use speech or
explicit gestures, or others which can be mediated by additional devices such as tablets or
augmented reality visors [23, 97, 133]. However, we communicate only partially through
words and we tend to rely on a whole set of additional cues that convey information and help
the coordination with the partner: gaze direction, walking pace, body posture, or gestures
rhythms are just examples [141]. Resorting to this way of implicitly communicating can
be intentional: in this case, it is commonly referred to as signaling [125]. It represents
an intentional strategy that supports social interaction, especially when the context makes
actions or intentions difficult to interpret. For example, when dancing, a slight tilt of the head
or a weight shift can signal the next move.

Other adaptations occur naturally, even if we do not think about it and we are acting alone:
for instance, we tend to direct our gaze towards the object before grasping it. Or we bend our
knees and move slowly when carrying a particularly heavy package. These modulations are
functional and optimize the completion of the action but, even if we do not explicitly want to
communicate anything, an external observer can infer a discrete amount of information on
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our intentions, objectives, and internal state. This favors immediate coordination between the
agents, that can efficiently collaborate to complete the task [83].

My Ph.D. thesis sits within this context. Knowing how human-human interaction works
should guide us in designing artificial agents able to interact with us most spontaneously and
naturally. Such an objective cannot overlook a whole sphere of information exchange that
resides in implicit communication. Many works have investigated how to exploit robots to
complete a task efficiently: a defined assembling task carried out by a robot is sometimes
performed quicker, faster, and safer than a human will ever be able to do. However, if
robots should truly coordinate with us and support our activities, especially in unconstrained
environments, then the human aspect becomes central: coordination can emerge only from
reciprocal understanding [149].

The focus of this work is centered in particular on common daily activities, where robots
and humans can often be requested to collaborate, such as handling and transporting objects.
In this case, non-verbal communication is associated with the properties of the object that
is being moved: its weight, fragility, danger, or assembly state, for instance, may influence
how it is carried around [22, 45, 181]. The application of this concept to robotics is twofold:
both the perception of the objects’ features and their expression to the human partner needs
to be tackled. As regards understanding the characteristics of an unknown item, most of
the approaches presented in Section 2.2 base the inference on its appearance: size, material,
shape, and color can be informative of certain aspects, but they risk being misleading when
deciding how to transport the object. The novelty of the proposed approach is inspired by
human behavior and resides in using movement kinematics and modulation as a source of
information on the item properties. Moreover, being detached from the exterior aspect allows
generalization over novel and unknown objects. Inspiration from humans is also taken when
it comes to generating expressive movements with the robots: communication is therefore
seen as an additional layer that modulates the action without changing its goal [42, 82].

Using different methodologies and approaches, this thesis contributes to pursuing a final
goal: to apply the implicit communication associated with carrying objects to interact with
robots, drawing inspiration from the natural mechanisms that shape human behavior. This
objective encompasses several challenges that can be summarized in three key points: i)
study the human strategies to handle objects with variable features, focusing on the transport
phase ii) find solutions to let the robot autonomously infer the properties of the objects when
observing the action performed by the partner, ideally relying on its own sensors; iii) identify
approaches to generate robots’ actions which are expressive of specific object characteristics
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while being task oriented. This is also declined in studies investigating how the modulation
of the robot motions and its embodiment impacts the interaction.

In the chapters that follow, I will go into detail about why each of these factors should be
taken into account as well as the novel contributions this thesis aims to make in each case.

A recurrent case of use in this thesis is the manipulation and transport of items that
required different levels of care to be moved and whose weight could be variable. Specifically,
we constrained the concept of carefulness to that required to move a container full of liquid
while avoiding spills, by assuming that appropriate orientation and grip force are applied
and studying the modulations in the transport velocity. Although this narrows the field
with respect to all the possible characteristics that a commonly used object can have, it still
represents a good example for studying the effect of a specific property on how we handle the
object. In fact, it is suitable to be used as a proof of concept to test the automatic detection
of motion characteristics and at the same time its artificial expression through the robot’s
movements. In any case, the generalization potential of this approach will be proven by
testing different sensors, robotic platforms, and use cases.

1.2 Research overview

Many works have studied the relevance of implicit communication as a part of the broader
spectrum of non-verbal communication, and its potential applications in robotics, exploring
the possibility for artificial agents to express or interpret non-verbal cues (for an extensive
review, see Chapter 2).

This thesis aims to provide additional contributions to this field, particularly addressing
the challenges of associating implicit communication to object transport and manipulation
with robotic platforms. In this Section, I will provide a breakdown of my research path.

The first step of my work consisted in investigating human behavior in the context of
object handling. Regularities in how the arm moves within specific tasks, e.g. writing, are
well established [53, 87, 167, 126]. Several studies proved how informative our movements
can be, to the point that the intention of drinking or pouring from a bottle can be anticipated
by looking at a few frames of the action [26]. As regards the interaction with objects,
kinematics modulations emerged for instance depending on the weight of the object lifted
[16, 150]. My contribution to achieving a better understanding of how multiple features
of the object influence the action started from the collection of a comprehensive dataset.
The future application to HRI was planned from the beginning and, for this reason, the
structure of the dataset was designed to be extremely controlled with respect to the objects
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employed (common plastic cups), while varying the direction and the considered combination
of features (weight and carefulness required for the movement, demanded by the possible
presence of liquid inside). Indeed, we privileged a controlled scenario to isolate the effect of
the features of the object on the action, avoiding variability that objects with different shapes
or uses could introduce. Moreover, the dataset involved a set of synchronized sensors, for
later studying the typologies of information that could be extracted from each of them and
their relevance in describing and understanding the motion. Inertial sensors, cameras, and
motion capture system confirmed their usefulness in tracking the actions, with the latter being
chosen as ground truth for the accuracy and detail. By analyzing the transport kinematics,
we observed how the carefulness required, obtained by filling the cups with water, was
responsible for most of the action modulation. Careful transport actions were characterized
by longer duration, lower maximum velocities, and an asymmetric and prolonged deceleration
phase.

From the dataset acquisition, we measured how object features impacted the motion. The
next challenge was then to design and implement an architecture to automatically detect such
properties relying on the kinematics of the action. We started by determining which features
of the motion could be extracted depending on the sensor considered and we privileged
motor descriptors validated in literature and easily interpretable also from the human eye.
By exploiting the dataset acquired, several classifiers were tested offline to discriminate
the weight of the carried object and the carefulness adopted by the handler, comparing the
performances obtained with different sensors’ training data. Our findings showed how the
detection of the carefulness in the motion was reliable, even using a single noisy sensor such
as the robot camera as a source of information. The weight perception was instead more
challenging, and we ascribed it to the nature of the dataset where, as already mentioned, the
presence of water required more adaptation in the actions than the weight difference. We
confirmed that the velocity of the action is particularly informative on the attitude of the
manipulation, which shall be interpreted not as a constant value, referred for instance to peak
velocity, but as a time series with a specific dynamic and temporal evolution.

In light of these results, we decided to design a complete architecture for autonomously
discriminating the carefulness online, relying exclusively on the robot camera, and testing
it in different scenarios. Even if some limiting assumptions were made, such as the robot
head being fixed, to the best of our knowledge this is the first attempt at detecting object
properties through the robot sensors relying on the action kinematics. This represents a
contribution towards robots being autonomously able to perceive and interpret implicit cues
when interacting with a person. Without requiring cumbersome equipment to measure
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the action kinematics, our solution seems promising to be adapted to a more practical and
unconstrained environment where humans and robots need to collaborate to handle objects,
allowing for natural coordination.

In the first part of my Ph.D. I focused on the inference process that the robot could
perform starting from human movement. However, I was well aware that communicating
is a bi-directional process, which also applies when robots are involved. Therefore, I then
addressed the dual problem of generating expressive robots’ actions, always linked to object
manipulation. Design and implementing robotic movements is a classic, well-known, and
extremely broad question, that can be approached from many angles depending of course on
the robotic platform, the context of use, the task to accomplish, and many other variables.
Previous studies, when describing proficient human-robot collaboration, highlighted the
importance of following bio-inspired rules in motion design such as minimizing the jerk.
Regarding implicit communication, the relevance of generating legible robot movements
turned for instance on appropriately deforming the trajectory to make the robot’s intention
and final goal clearer to an observer. All these insights are derived from deeply studying
what characterizes the human motion pattern.

Inspired by human behavior, the aim of this work is to build up on existing control
strategies to add an additional layer to enrich the robotic action with a human-like expressive
attitude, without disrupting the designated tasks. According to my knowledge, this represents
the first attempt at modulating how a robot transports an object to reveal its features implicitly.
Based on our findings when studying careful transportation, our choice fell on controlling the
velocity profile bell followed by the end-effector. However, we did not want to merely copy
previously recorded human actions; instead, we wanted to learn what truly distinguishes a
careful action from a not careful one. Hence, exploiting once more the dataset collected in the
beginning, we resorted to generative models. After being trained on human examples, they
can capture the distribution of the time series and then produce novel velocity profiles relevant
to the desired attitude. We then tested this method by controlling with the synthetic data the
end-effectors of different robots, even those not humanoid. Indeed, using the velocity profile
to depict the motion makes our approach freely generalizable to different robotic platforms
and trajectories, after appropriately rescaling them. After validating from a technical point of
view that the robots’ actions followed the planned profiles, it remained to validate whether
indeed the modulation we implemented was expressive and communicative.

To understand how the generated actions were perceived, we resorted to two complemen-
tary strategies: conducting questionnaires and measuring how participants in our experiments
performed their tasks. We conducted three studies, one involving iCub [109] and Baxter
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[52], and the two others with a Kinova Gen3 manipulator. These latter were designed and
conducted at the Institute for Systems and Robotics of Instituto Superior Técnico of Lisbon,
where I spent a visiting research period. We found proof that the communicative intent
was achieved and, even more interestingly, that a spontaneous motor contagion emerged:
when the robot, either humanoid or not, displayed what we designed to be a careful action,
also participants slowed down and diminished their maximum speed. In a human-to-robot
handover task, a facilitation effect was measured when the robot adopted an expressive
motion controller and adapted to the properties of the handled object.

To conclude, in this thesis I show how it is possible to open an additional channel of
communication to interact with robots, exploiting implicit cues embedded in the movement.
As the area of designated application, it was chosen the innovative one of perceiving and
transmitting the properties of objects involved in transport actions. The leading idea and
the whole framework of this work are inspired by human behavior and interaction abilities.
This could be seen as a limitation for some specific application areas, where the speed of
execution and strength of robots reach levels unimaginable for a human being. However, if
we want to build robots able to share the social sphere with us and truly interact seamlessly, I
believe there is no other possible way but to be inspired by what happens on the biological
level.

1.3 Structure

The thesis is composed of 10 Chapters and is structured as follows:
This was Chapter 1, where I introduced the rationale and the overview of my Ph.D.

work.
Chapter 2 provides a general background of the research, starting with an overview of

what non-verbal communication means, with a special focus on implicit communication (see
Section 2.1). Then, a survey of methods for understanding object properties is provided,
together with a section on the generation of expressive actions with robots. Finally, in Section
2.4, I go through methods for quantitatively evaluating Human-Robot Interaction (HRI). In
the various scenarios addressed, the aspect of an application in robotics is always kept in
mind.

In Chapter 3, I present the organization and the content of a multimodal dataset acquired
to study how humans deal with containers with different characteristics. In particular,
I discuss the effect of properties such as the presence of a liquid inside the cup on the
kinematics of human actions. This dataset will be extensively exploited in my research to
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study the perception and the generation of communicative movements associated with object
transportation.

In Chapter 4 and 5, I address strategies to automatically detect features of the objects
involved in the action by observing the human movements and their kinematics modulation.
In Chapter 4, I assess different models and data sources in an offline study design. In
Chapter 5 I present a computational architecture used to provide the robot iCub with the
ability to autonomously detect online the carefulness in the observed gestures. By doing so,
we replicate what happens in human-human interaction, and we show how the amount of
information implicitly embedded in human movements can be exploited for practical tasks
with a non-invasive approach.

In Chapter 6 and 7 I address the generation of robots’ actions which can implicitly
convey the carefulness of the object transport, mimicking what happens in human transport
motions. In Chapter 6, we present a generative architecture to produce synthetic velocity
profiles after training on human examples. In Chapter 7, we expand the generative approach
and show how to control different robots to follow the desired velocity profiles associated
with careful and not careful object manipulation.

In Chapter 8 and 9, I study the effect and the impact of modulating robots’ actions to
convey implicitly the carefulness required by the object to be moved. In Chapter 8 I present
an experimental work where the perception of the robots’ movements and its effect on the
interaction was studied through questionnaires and videos. Then, Chapter 9 describes two
studies conducted during my period abroad at the Institute for System and Robotics in Lisbon.
The approach of generating expressive movements is here applied to a robotic manipulator,
investigating its effect on a dyadic interaction.

In conclusion, Chapter 10 summarizes the findings and the limitations of the thesis and
outlines potential future research areas based on the progress made in this work.



Chapter 2

Background

Given the multidisciplinary structure of this work, I have included references to the most
relevant literature in each area of study. The background starts with an overview of non-
verbal communication, distinguishing between explicit and implicit signals, reasoning on the
biological basis of coordination, and presenting the available applications in human-robot
interaction (Section 2.1). Then, the state of the art of the key topics addressed in the thesis will
be presented (with reference to the specific application context), such as: object properties
recognition (Section 2.2); robotic movements generation (Section 2.3) and strategies to assess
the interaction with robotic agents (Section 2.4).

2.1 Non-verbal communication

In recent years, the use of robots in different fields, including industry, healthcare, and
education, has increased. However, challenging barriers remain in place for integrating robots
into our society. The difficulties in having direct and clear communication with an artificial
agent stand out among the others. Standard communication mediums in robotics are based
on speech [23], or explicit gestures [97, 95], while more recent approaches investigate new
technologies such as augmented reality headsets [101, 133]. However, an often overlooked
channel of communication is the non-verbal one. Indeed, as humans, we communicate
only partially through words; we heavily rely on subtle cues to collect from our peers a
spectrum of information, ranging from internal status to intentions or needs [141]. Broad
psychology reviews [63, 102] define non-verbal communication as behavior that includes
all communicative acts except speech, involving cues from many modalities such as face,
voice, body, touch, and interpersonal space. A distinction needs to be made between explicit
and implicit non-verbal communication. The first encloses a series of para-verbal signals
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that can integrate or substitute the spoken word; the latter, on the contrary, is made of all
those modulations and cues that characterize our actions often against our conscious will,
and that are present even without an observer. What they have in common is promoting a
smooth, immediate, and effective interaction based on mutual understanding. In the following
paragraphs, I will describe in greater detail these two aspects, focusing in particular on the
knowledge regarding implicit communication, which is the main focus of this thesis.

2.1.1 Explicit communication and signaling

Explicit non-verbal communication refers to all those social signals that are intentionally

performed to share information or make it more understandable. A classic example is a
pointing gesture: it may substitute words or accompany a sentence, but it would never be
performed by a person alone in a room: it is justified only by social interaction. Gestures
either enrich or replace spoken communication, often serve as a shortcut, and even contribute
to the comprehension of each other’s interior state [97]. Para-verbal cues are used in
conversations to indicate acceptance, comprehension, or continuous attention, providing
silent feedback to the speaker as it happens in backchannelling, which effects have also been
studied in robotics [18, 115]. Always in a conversation, when miscommunication happens,
the speaker tends to raise the hands concurrently, and this can be exploited to automatically
detect disfluencies in the communication [183]. These signals may be emphasized with a
social purpose to make the action even more predictable and readable by a collaborator: this
is referred to as the signaling theory [125]. It is the deliberate, yet often unconscious, change
of one’s own conduct to send information to another person, usually a co-actor. The signaler
typically has the communicative aim of influencing the co-belief actor’s (e.g., facilitating
his comprehension of the signaler’s goals) in combination with a pragmatic purpose (e.g.,
executing the joint task). Joint action optimization comes with a cost to pay in terms of
action performance: for instance, exaggerating the trajectory to make it more predictable may
require an additional effort. After all, cooperation is inherently part of our being, to the extent
that we prefer to cooperate even when individual performance would be higher [35]. The
effect of the intention to communicate has been proved, for instance, on grasping gestures,
where the emerging kinematic pattern differed between individual and social conditions
[143], or when playing a musical instrument, where modulations in the kinematics were
used to simulate participants playing alone or in synchrony with others [107]. The signaling
theory is also corroborated by the so-called motionese [19], the attitude that mothers show
in modulating their infant-directed actions in ways that help infants process human action.
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Implementing such mechanisms in robotics is a step toward a shared comprehension of a
joint task with an artificial agent [41, 43, 106, 159].

2.1.2 Implicit communication

Implicit communication refers to all those modulations that occur in our gestures indepen-
dently of our will or consciousness. Coordination emerges from the interaction precisely
because of the implicit signals [83], giving rise to a series of mutual synchronization and
anticipation phenomena that drastically reduce the need for complex verbal instructions
and the resulting delays [15]. Before going into details and examples of how implicit cues,
particularly kinematics ones, contribute to the flow of information, I will dedicate a para-
graph to describe historic and well-established knowledge of the motion of the human arm.
Indeed, the way we act grants reciprocal understanding: thanks to the product of motor
resonance, observing an action triggers the same set of neurons, providing a common ground
for understanding others [132].

The arm kinematics follow specific regularities when moving. The minimum-jerk model,
presented by Flash and Hogan in 1985 [53], hypothesizes a relation between the trajectory
and the velocity of the action: unconstrained point-to-point motions are approximately
straight with bell-shaped tangential velocity profiles; curved motions show a reduction in
the tangential velocity at points of high curvature instead. The optimization of the cost of
the movement results in a trajectory with minimum jerk. The so-called Two-Third Power
Law [87, 167] was firstly observed in drawing movements and states that the instantaneous
tangential velocity of the hand is proportional to the third root of the radius of curvature of
the trajectory: again, the result is that the velocity increases when the trajectory becomes
straighter. These two findings correlate well [166] and are strictly linked to the kinematic
configuration of the human arm. Human motor performance is also characterized by Fitts’
law [51, 126], which relates the speed of a movement with its accuracy: when moving
from target A to B, the time required depends on the distance between the points and their
width. Intentional violations of this law have been used to implicitly transfer information
to the partner in a joint task [163]. The understanding of action is greatly facilitated by
the consistency with the constraints of these three laws (Fitts’ law, minimum-jerk, and the
two-thirds power law), and this also applies to robotics [68]; even passively following the
trajectory of a manipulator requires less force exchange if the path respect the constraints of
the Two Third power law, and the adaptation to other dynamics demands effort and training
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from the user [105]. Strategies to generate plausible robot actions will be addressed in detail
in Section 2.3.

The human brain is remarkably effective at processing the biological motion it observes,
and this ability starts at birth [153]. Even if only a point-light sequence is shown, as long
as the motion respects some of the properties mentioned before of biological motion, the
characteristics or purpose of the action can be interpreted [68]. It should be emphasized,
however, that this ease is present only if one observes a movement, even if it was only a
tenth of a second: from a static representation of point-lights, it is difficult to distinguish a
meaningful representation [79]. As a result, there is a plethora of information encoded in the
way individuals move that other humans automatically analyze during action observation or
cooperation.

Body movement can help in prospective planning by revealing the intentions of others,
and conveying information regarding why the action is being performed [141]. Kinematic
features of reach-to-grasp actions, such as velocity, trajectory, and finger position, can vary
based on the intended use of the grasped object, making it possible to distinguish between
grasping to pour, to drink, or to place [26, 85]. Also the intention to initiate a handover can
be predicted from implicit cues [155]. Social intentions, such as competition or cooperation,
also impact the kinematics of the action [104], and information embedded in the action is so
powerful that it can be used to distinguish even between different intentions (to teach or to
perform a joint task) [107].

A classic example of an implicit exchange of information is gaze-mediated communica-
tion [24], since we cannot avoid looking, in an anticipated way, toward the area of interest.
This can be used to simplify the interaction with robots with a reduced effort from the user
side, to build mechanisms for shared attention [144], or to predict the intention of reaching
for a particular object [94]. A recent work presents a model for a robot that can correctly un-
derstand human action from gaze signals, modify its gaze fixation based on human eye-gaze
behavior, and convey nonverbal messages that match with the robot’s own action intentions
[127]. Findings also show that intention anticipation is often based on the combination of
multi-modal cues: if the gaze is used at the onset of the action, then other motor cues such as
hand pre-shape or arm trajectory contribute more to the inference [5].

Body movements also help to regulate the timing of the interaction, enabling two partners
to get a common, coordinated rhythm [99] or revealing the position and the timing of the
handover [156]. Moreover, the execution timing of a discrete movement is automatically
influenced by observing the speed of others, even unrelated, as long as they respect biological
motion laws [170]. Modulating the duration of a specific action with a deviation from its
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predicted duration can establish a channel of communication to pass otherwise inaccessible
information to the partner [163];

Finally, automatic kinematics adaptations occur when transporting an object, reaching for
something, or preparing to pass it and are useful for an observer to understand the properties
of the item and consequently design an appropriate motion plan. Body motions can reveal
hidden aspects of the item to be handled, such as the force required to raise it [135]. This
can be explained with a straightforward example: imagine taking a carton of juice out of the
refrigerator and discovering it is almost empty. This may lead to an awkward movement, as
one’s expectations of the container’s weight are not met. The exterior of the carton does not
provide information regarding its content, thus one may rely on prior experiences to infer the
quantity of juice remaining. However, after observing someone else lifting it before pouring
a glass, the amount of juice inside would become immediately clear.

The perception of an object’s weight from the modifications that it causes to the handling
has been extensively studied. When lifting an object, our velocity is linked to its mass, and
if we observe someone else doing the same, we automatically use a similar weight-speed
rule to assess how heavy the burden they are carrying [16, 134]. The weight and the size of
unknown objects are therefore implicitly communicated to the observer by the action itself
[22]. When inferring the weight of an object, observers seem to rely mostly on the duration
of the lifting movement: the longest it takes, the heavier it is [64], and even children showed
the ability to read the weight from motion alone [151]. When pretending to grasp an item,
without actually touching it, the action still retains information about object weight, although
to a lesser extent [6].

When an action occurs, it is also deeply influenced by the carefulness that the person
decides to adopt. Many reasons may require to do so: from the context where the action
takes place, to the properties of the object involved such as its fragility, precarious balance,
or content about to spill (these implications will be further discussed in Chapter 8). Moving
a cup very slowly while passing it to someone could convey that it has a high personal value:
even the knowledge of the ownership status of objects influences the visuomotor process
[32]. In any case, the effect on the movement is an overall slowdown with alterations in the
velocity and acceleration profiles [45]. Given the difficulty in framing this characteristic, not
many studies explicitly refer to it, although it is addressed, for example, in the handling of
filled containers [111, 113, 123, 140, 178].

From this overview, we can understand how informative our actions are, especially from
the kinematics point of view. The richness in the human motor repertoire lends itself to be
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exploited to understand more about the actions considered, by processing the embedded
implicit cues.

2.2 Understanding object properties

In this Section, I will summarize possible strategies and techniques to identify object proper-
ties that can be applied in robotics. A distinction will be made between those that involve
direct examination of the object, for instance visual, and those that rely instead on indirect
cues for the inference process. Moreover, I will examine the sensors and models that enable
feature classification.

When describing the interaction with objects, a key concept is the one of affordances.
This term was first coined by Gibson [60]. Surveys from Jamone et al. [78] and, more
recently, Hassanin et al. [66], also describe the application in robotics. Without going
into details, the idea is that, when observing an object, the agent perceives the possibilities
offered by it without the need for constructing a detailed model: what the agent can do, its
motor capabilities, influence the perception, which happens in a self-centered and action-
centered way through a sensorimotor learning process. Regarding object manipulation, object
affordances were popularized in robotics and linked to (i) the action associated with the
object, (ii) a physical property, or (iii) the type of behavior required to manipulate the object
[78, 142]. The theory of affordances can be used as inspiration to guide the development
of perceptual systems in robotics: the goal of perception is to allow the agent to act on the
environment effectively and it is deeply influenced by the action itself. In this thesis, I explore
the possibility of developing the robot perception regarding specific properties of the objects
as mediated by their effect on human actions.

2.2.1 Inference methods

Object detection is a crucial issue in computer vision that has received a great amount of
attention in recent decades (see [171, 180] for recent reviews). If a robot needs to interact
with an object, it must first isolate it and locate it in space, then it needs to understand the
object category and its affordances to perform adequate grasping and task-planning [30, 103].
All these steps demand solving many different problems, often requiring the availability of a
labeled dataset, and the generalization over new and unseen items is not trivial [30, 84, 179].

Focusing on specific properties of an object to detect, a well-studied topic is the un-
derstanding of a container’s capacity and filling, where visual or audio cues represent the
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main modality for the estimation. The recent CORSMAL challenge [173] aimed indeed
at building a framework for robots to recognize physical objects’ properties of previously
unseen containers using multi-modal sensory data, to achieve smooth handover tasks from a
human to a robot. Pang et. al. [123] proposed a framework to design secure human-to-robot
handovers by estimating the physical features of novel cups and assessing hand position from
images of a person handling the container, without using scanned 3D models or additional
equipment such as motion capture markers. However, the cups’ features are estimated from
the appearance by predicting the content type (mass and density) and filling level for each
frame and each view with a Convolutional Neural Network (CNN) classifier [111]. Other
approaches to determine the filling level exploit audio modality [77] or combinations of audio
and visual features [76]. Ishikawa et al. [77] rely on audio spectrogram data to classify the
content type by using CNN, and the percentage of filling with a Long-Short Term Memory
(LSTM) classifier; the estimation of container’s capacity and shape is performed instead
through RGB 3D point cloud. Iashin et al. [76] combined instead audio, RGB, infrared, and
depth information and opted for the late fusion of the predictions from the different sensors,
in a complex architecture including Recurrent-CNN (R-CNN), Gate Recurrent Units (GRU)
and Random Forest classifiers. CNN and impact audio information have also been exploited
to determine the surface material of an object, retrieved from human or robotic actuators
hitting specific items [39]. Other works proposed to determine the container localization
and empty mass estimation resorting to a CNN architecture trained on RGB-D data [9], or,
by using a single RGB image and the 3D models derived from it, to estimate the volume,
the content, and the prediction of the pouring action for different containers [113]. Finally,
another approach for reactive handovers of unknown objects focuses not specifically on their
properties, but on their shape and avoidance of collision with the human hand using point
clouds obtained from RGB-D images [176]. Exploiting a 6-Degrees-of-Freedom (DOF)
GraspNet, the system selects the best grasp and executes the handover [114].

The results obtained by the presented works are remarkable. However, they strongly rely
on the availability of abundant and precise multi-modal data and often base the detection
on the appearance of the object. This makes them prone to failure in case the container is
opaque or translucent and can suffer from illumination variations and occlusions, caused
either by the human or the robot. Such approaches can be adequate for certain contexts and
tasks, but difficult to apply in other, more natural settings where some sensors may not be
available or fail. Identifying general rules to act on a set of objects, independently from their
use, shape, or material, helps to design the behavior of an artificial agent appropriately, and
one possible strategy to do so is to observe and learn from human strategies.
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Sanchez-Matilla et al. [140] introduced a benchmark where, using only two RGB
cameras, a robotic manipulator can receive objects of unknown dimensions and handover
location, assuming that the item is a symmetric cup initially on the table. The distance
between the giver-receiver is modeled as Gaussian Mixture Model (GMM) trained on a
dataset of human-to-human handover trajectories, and the end-effector is controlled to follow
a human-like path. However, in this study, the inference of the cup mass or filling is out of
scope, so they accept the risk that the controller can produce motions that spill the content.
Another study based the handover framework on the analysis of human behavior, by tracking
the skeleton and the object using the robot cameras alone to determine where, when, and how
to grasp, assuming again that the object is initially placed on the table [28].

Reading human motion proved useful also to discriminate if a transported cup was full
of liquid, therefore soliciting a careful motion, or empty. Two dynamical systems, modeled
as GMM and trained on features such as the wrist velocity, describe careful and not-careful
behavior; the wrist velocity during the manipulation is compared to the velocities of the
models, for the classifier to provide a label: tracking the kinematics of the wrist, naturally
modulated as a function of the cup content, allows for its discrimination [45]. A recent work
analyzed full-body kinematics during common interaction with objects and related tasks,
showing that the motion is highly dependent on the item’s latent properties, which can be
inferred from 3D skeleton sequences [181]. For instance, it was possible to classify through
Convolutional-GRU fed with skeleton sequences, different levels of object weight, content
amount, type of liquid, and even softness of a chair for seating actions.

The studies presented in this Section show different strategies for understanding object
features, often designed to ensure safe and efficient human-to-robot handovers. Some rely
on explicit information available, such as the appearance, or cues available during the
manipulation, as the sound produced. Observing how humans deal with an object represents
a valid shortcut: it dispenses with numerous sensors, a camera often being sufficient; it
preserves the naturalness of interaction, and it ensures generality with respect to unknown
objects, despite allowing to detect with less precision certain details.

2.3 Robotic movements generation

The problem of generating robotic human-like movements has been addressed from different
perspectives. Some strategies resort to optimizing motion primitives such as the jerk [53,
65]; others make use of animation techniques or exploit learning from demonstration (see
respectively [147] and [129] for a review). Two main approaches can be distinguished when
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generating robotic non-verbal behaviors: rule-based and data-driven. Rule methods require
strategies to encode expert knowledge and perform well in specific contexts, but allow for
limited adaptability [3]; directly learning from data allows for more variability but requires
the acquisition of appropriate datasets [86].

In Section 2.1 we examined the importance of implicit cues in everyday communication,
when time constraints often do not allow for explicit verbal negotiation or reduce its effec-
tiveness. As pointed out by Pezzulo [125], an action may contain two levels of interpretation:
a functional component that achieves the goal and a communicative one which, intended or
not, expresses some information to the co-actor. Its interpretation leverages a shared ground
that should be extended to artificial agents: introducing biologically realistic adjustments to
movement kinematics in robots could make them more understandable and transparent, for
humans to use their internal models to interpret the action and engage with more ease. In this
sense, implicit communication is particularly relevant for robotics actions, because it allows
adding an expressive layer without modifying the overall goal or requiring cumbersome
training and adaptations from the human side.

Most of the approaches that will be presented build on the knowledge of how human-
human interaction and implicit communication work, either prior or investigated for a specific
task, to develop models and algorithms to produce expressive robotic motions.

The concept of legibility associated with robot actions was first introduced by Dragan et al.

[43] and it is distinguished from predictability. A direct reaching motion is predictable, hence
not communicative; a curved trajectory, instead, helps to identify the target of a reaching
action in an anticipated way - it is legible. A legible motion designed to express the robot’s
intent grants more fluent collaborations than a motion planned to meet the collaborator’s
expectations [42]. There is a trade-off between the action efficiency and its communication
bundle: the robot should be able to automatically define the range of the most comprehensible
but still realistic paths, obtained through a functional gradient optimization in the space of
trajectories. Additional formalizations inspired by this theory have been presented, describing
how the communicative channel can be used on top of normal functional actions for robots to
work more effectively with human partners [82]. Drawing upon human sensibility to physical
movements and dynamic affordances, effectively-designed robot motions can communicate
and engage, going beyond the robot’s outward appearance or practical motion trajectories
[71]. Venture and Kulić proposed a recent and complete survey on expressive robot motions
summarizing how the embodiment can be used to generate expressive movements while
achieving a task [162]; Lohan et al. [96] addressed how the adaptation of movement and
behavior can favor communication in HRI. As pointed out by Sandini et al. [141], the
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challenge of generating plausible motions with a humanoid robot can be even greater: from
one hand, their shape can solicit the same coordination mechanisms emerging in humans, but
it also creates an expectation of competency that may be easily disrupted.

2.3.1 Joint actions

Considering joint actions, if the robotic agent contradicts human movement traits, such as
by adopting incorrect speed, velocity profile, or timing, the anticipation from the human
side will be compromised, resulting in a slow and inefficient interaction [34]. As a practical
example, the domestic scenario of unloading dishes from a rack was studied to develop a
computational coordination model, using an RGB-D camera to track the user’s body joints,
extracting features to describe the action and predicting the user’s current state using K-
Nearest Neighbor (KNN) algorithm. The framework was then implemented on a Kinova
MICO robotic arm to perform the handover task, finding that the efficiency is improved if the
awareness of the partner’s task is incorporated into the artificial agent’s planning [72]. The
handover scenario has been extensively investigated also from the point of view of non-verbal
communication. The initial part of the carrying phase indicates the intention to hand over,
whereas the remaining movement sequence is used to position the object; this and many
other associated findings are summarized in [156]. This work also highlights the steps to
consider to design an effective robot-to-human handover. The robot should transport the
object in a distinctive carrying posture while approaching the person, and look for signs of
shared attention such as mutual gaze and availability. If the conditions are met, the robot
should reach out with the object toward the torso of the person or, if the person is faster, the
robot should act in response. External RGB-D cameras, robot’s camera, and tactile force
sensors were employed depending on the specific study. The manipulator reaching action
could be controlled via joint velocities knowing the initial configuration of the arm and
the target pose [110]. Rasch et al. [128] assumed that the robot should mimic humans as
much as possible to maintain the feeling of safety and simplified the problem by focusing
exclusively on the handover phase, considering the object properties as known. Joint angles
movement primitives were elaborated with OpenPose and Convolutional Pose Machine from
human-human handovers recorded through RGB-D cameras. Each primitive movement
corresponded to a motion function that was re-mapped sometimes arbitrarily, after scaling, to
the robot’s joints, enhancing the perceived human-likeness and safety of a Kuka manipulator.
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2.3.2 Manipulating objects

Coming to generating motions suitable for object manipulation, an interesting posture-based
motion planning algorithm was recently proposed by Gulletta et al. [62] for the upper limb
of anthropomorphic robots, optimizing a task-dependent hierarchy of spatial and postural
constraints. During reach-to-grasp movements, human wrist velocity typically shows a
single-peaked, bell-shaped profile, with a longer deceleration phase, especially for delicate
and precise movements. By decomposing the interaction with the object in sub-phases
(e.g. transport, approach, retreat, and more granular descriptions), the robot action can be
appropriately planned, knowing the start position, velocity, and acceleration of each joint
provided by the encoders and the pose and size of any object in the workspace provided by
the vision system. The timing and duration of the action are instead optimized according to
Fitts’ law [51].

Timing is often overlooked with respect to trajectory planning; nevertheless, it represents
an important constraint to respect to avoid the robot to adopt unrealistic velocities in its
gestures. By keeping the path constant and arbitrarily modulating only the timing of the
action (i.e. acting on the adopted velocity profile and eventual pauses), users interpreted
the carrying of a cup as more or less confident, natural, animated, or perceived the object
involved as heavier [182]. From spotlight observations, they built mathematical models that
correlate with the perceptions of the users to express naturalness, confidence, or weight.
The idea is that robots could optimize their timing, given a path, to purposefully convey a
specific message. Additional studies correlated the expression of objects’ weight with the
action timing. In [150], it is shown that modulating the velocity profile of lifting actions, in
particular associating an increase in weight with smaller vertical velocity, allows users to
estimate the weight from humanoid action observation. Moreover, they exploit this implicit
information to plan appropriate grasping forces.

2.3.3 Generative models for movements design

As previously discussed, the generation of movements can be seen as learning a set of fixed
parameters, goal-oriented, together but independently from an additional layer of parameters
that describe how the task should be accomplished. Motion Primitives are versatile units
that can be combined to create complex behaviors, learned from given demonstrations and
adapted to new instances of a task [145]. Generative approaches such as Task Conditioned
Variational Autoencoder (TC-VAE) have been proposed in this sense to generate for instance
pouring actions: if the pouring location must match the container and is a strong constraint
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for the action success, other features such as the duration of the action or the pouring angle
can vary depending on the context and should be adjustable [122]. Generative algorithms,
such as Generative Adversarial Networks (GANs) were first used to produce synthetic
images or for data augmentation, however, they can also produce time-series [177, 48] and
be applied to action generation to produce socially acceptable approach trajectories [175],
continuous movements [119], or social interactions [21]. However, there are no previous
mentions of generative models to create implicitly expressive robot movements related to
object manipulation, which is one of the objectives of my thesis. The advantage of resorting
to generative methods is that can produce synthetic non-stereotyped data, capturing the
distribution of the training set and therefore accounting for the natural variance that affects
human actions [61]. Variability plays a key role in a joint action indeed, to the point that
it is a predictor of how fast the motor task will be learned, as long as the co-actor gestures
preserve a certain degree of predictability [136].

2.4 Evaluating HRI

In the previous Sections, we examined methods for the perception of implicit cues, the gener-
ation of expressive actions, and their deployment in the context of robotics. Assessing the
effect of these applications during the interaction with a robot is however not trivial. Indeed,
if the employed algorithms and models can be extensively tested in terms of performance
and success rate, the quality and efficacy of the interaction is a sum of multiple contributions
difficult to measure quantitatively: fluency, acceptance, trust, legibility, resonance, safety, and
much more. In the following paragraphs, I will present strategies to evaluate the outcomes of
interacting with a robot, distinguishing between explicit and implicit measurements.

Probably the most widely adopted method to assess HRI is questionnaires. They represent
a direct, explicit measure of users’ perception yet, for this reason, they need to be attentively
calibrated to avoid possible bias in the answers. The Godspeed questionnaire for instance,
introduced by Bartneck et al. in 2008 [11], is a standardized measurement tool for HRI
with scales to measure five key concepts in HRI: anthropomorphism, animacy, likeability,
perceived intelligence and perceived safety. Another scale, the Trust-Perception Scale-
HRI, was instead proposed to measure trust over time and across robotic domains [146].
Often, questionnaires are developed ad hoc to obtain an assessment of specific experimental
conditions: to measure the attribution of emotional valence and trust towards movements
of a non-humanoid robot [92], to study the effect on perceived predictability and trust of
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dominant and submissive movement strategies in a cooperation scenario [131], or yet to
collect feedback on a handover task [176].

One weakness of questionnaires is that they only examine conscious judgments of robotic
systems, making it difficult to quantify HRI thoroughly. For instance, they allow only for
a posteriori evaluation, with the risk of missing important reactions and events that may
occur during the interaction itself. For this reason, they are often paired with other objective
metrics.

To evaluate the fluency of the interaction, experimenters used scales and general measures
such as the idle time of the two agents, the robot functional delay, and the percentage of
concurrent activity; these are detached from specific tasks and suitable for any shared-
location collaborative activity [70]. In another study, they were interested in assessing if the
robot mood displayed while executing a functional task could be recognized and produce a
congruent mood state in the partner, through a contagion effect [174]; the affective state was
expressed by arousal and valence values for both the agents - observed and self-reported -
collected through questionnaires, while the task performance was measured as the percentage
of correct imitations during each session. In an experiment where participants interacted with
objects after seeing a humanoid robot do the same with expressive vitality forms, kinematics
information such as the hand speed and the finger aperture were collected together with open
comments about the experiment [160]. Kinematics metrics are indeed particularly insightful
to assess the interaction and can prove useful to measure the engagement: body posture
variation, head movements, synchronous events, imitation cues, and joint attention naturally
arise in response to the robot’s behaviors [8].

Physiological measures such as skin conductance, electromyogram, ocular or brain
activity can be a precious source of information during the interaction but require of course a
more structured and invasive framework. They have been proposed for instance, together
with questionnaires, to estimate the level of ease of participants, declined as motion legibility,
safety (level of stress or arousal), and physical comfort [36]. Functional Magnetic Resonance
Imaging (FMRI) activation patterns represent an access point to the deep processes of
the brain, allowing to compare at the most primitive level reactions to human and robotic
behaviors. For instance, they have been used to verify whether observing vitality forms
expressed by a humanoid robot solicited the same circuits of human-human interaction [38],
or if listening to action and abstract verbs pronounced by a human or a robotic voice produced
similar activation patterns [37].

Reasoning on the brain functioning associated with HRI, leads to a discussion of the
concepts of motor resonance and interference. Motor resonance is the automatic activation



2.4 Evaluating HRI 21

of the observer’s motor control system during action perception [132]. When observing an
action, the two motor brains “sound” together because they share a similar motor knowledge,
which is a fundamental component of human social behavior [148]. In connection to this,
observing another individual performing an action facilitates the execution of a similar action,
whereas interference in completing a task may occur when observing an incongruent gesture,
for instance in the form of delay or diminished performance. Awareness of these phenomena
has often been leveraged to have implicit measures of spontaneous adaptations, since it
allows investigating the unconscious human responses to robotic agents.

Such mechanisms are particularly suitable for assessing the plausibility of generated robot
movements. Chaminade et al. [27] reported an increase in the variance of action execution, a
measure of motor interference, when participants observed a humanoid agent performing
incongruent actions only when it followed a realistic model of human kinematics. Similar
findings emerged when observing pick-and-place actions: participants’ motion velocity was
influenced by both the human and the robot partner, as long as the artificial agent respected
the biological laws of motion. Such motor contagion might modulate the spontaneity and
the pleasantness of the interaction, whatever the nature of the communication partner [17].
Reaction time is also a revealing measure of action facilitation. To enhance the importance
of adopting robots’ biologically plausible motion, a comparison between human-human
and human-robot handovers was carried out, where the robot adopted either a conventional
trapezoidal joint velocity profile or a minimum-jerk optimization at the end-effector [75];
the reaction time with the human-inspired controller was significantly shorter and also the
reported sense of safety was higher in this case. Interestingly, the human-human interaction
was optimized in the post-handover phase, not in the reaction time.

A sign of having generated a successful interaction with a robot is its similarity with a
human-human exchange. This also means that the same level of information should flow and
be available to the two agents. For instance, provided a well-thought robot’s action, humans
can use the estimated weight of the object, retrieved from observing the robot moving, for
planning their own lifting action appropriately [150].
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Recognizing object properties from
human manipulation



Chapter 3

On the effects of object characteristics on
human manipulations: a multimodal
dataset

The following is an elaboration and integration of an article submitted to:

International Journal on Robotics Research

Designing social robots requires considering all the possible forms of communication
that humans exploit to exchange information, which add to the verbal one. Section 2.1
extensively remarked how an implicit communication method is central to human social
abilities. Aiming at a more seamless and natural interaction with artificial agents, an effort is
needed to integrate non-verbal cues associated with daily activities such as object handling.
For these reasons, one of the first objectives of my thesis was to investigate the adaptation of
human movements to the properties of manipulated objects. Gaining a better understanding
of how the kinematics of the gestures is modulated as a function of the object characteristics
is crucial to developing algorithms to interpret our actions. The core idea is that a robot,
simply observing how the human acts, can obtain essential information on the object involved
in the scene, that may be otherwise inaccessible or misleading due to obstructions, shape,
and appearance.

The first step towards this goal is to study how humans handle objects with different
properties. Previous works investigated the effect of weight on human actions, showing that
the weight of an object directly relates to the speed adopted to lift and transport it, therefore
influencing the kinematics of the movement [16]. In particular, the duration of the early part
of the lift movement contributes most to the observer’s judgment of the weight of the lifted
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object [64]. Recently, there has been a growth of research interest in solutions to estimate
the physical characteristics of objects when humans manipulate them. The main insight is
that a correct estimate of object properties would allow a robot to interact with a human
more appropriately, especially when physical interactions are involved, e.g., an handover.
Researchers explored using deep neural networks to estimate container capacity, dimension
and weight while observing human manipulations with RGB-D [9, 168] or even simple
RGB cameras [123]. Since most of these studies rely on data-driven approaches, datasets
must ground the learning process. Moreover, a comprehensive dataset is needed to detect
object properties based on how humans manipulate them. The literature presents different
examples of datasets for the study of object manipulations [73], most of the time focusing on
the interaction between the humans and the objects in specific applications, e.g., activities
of daily living [74], kitchen-related actions [158, 154, 118], or handovers [25]. A recently
published dataset, the CORSMAL Container Manipulation [173], collects actions such as
pouring and handover initiations with containers with various shapes, materials, and content
recorded with RGB-D cameras and microphones.

The motivation to acquire a novel dataset was brought by the interest in investigating
the human behavior associated with the transport of objects of different weights and which
required, or not, carefulness in being handled due to their content. Such property, the careful-
ness, is particularly intriguing because, as we will see, it is difficult to define unambiguously
or measure and, nevertheless, it strongly affects the way we move. Then, it is challeng-
ing for a robot to detect it automatically, yet quite crucial to be able to collaborate in an
unconstrained environment. Specifically, in the unfolding of this thesis we will address
in detail the concept of carefulness associated with the transport of water-filled containers.
Differently from the datasets already available, the one proposed narrows the focus on human
pick-and-place actions of transparent containers, with or without water filling and balanced
weights, including synchronized complementary sensors and the robot point of observation
on the scene.

Research questions and objectives

For the reasons mentioned above, before designing any intelligent system to detect object
properties from human manipulation, I decided to acquire an organized multimodal dataset
(i) to investigate how humans actions are affected by the carried items, (ii) to assess how
eventual kinematics modulation can be captured by different sensors and, finally, (iii) to
start making assumptions on how the findings can be applied to improve human-robot
interaction. The proposed dataset involves multiple subjects performing pick-and-place tasks
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and can also be suitable for tackling more general learning problems in the hand-object
interaction domain with applications in the robotic field. The data has been collected thanks
to a multimodal set-up composed of multiple cameras, observing the actions from different
perspectives, a motion capture system, and a wrist-worn inertial measurement unit. All the
objects manipulated in the experiments are identical in shape, size, and appearance but differ
in weight and carefulness required for their handling. I chose to favor an organized structure
with movements in multiple directions over a large variability of objects to keep differences
in weight and carefulness manageable.

In this Chapter, I introduce such novel dataset involving pick-and-place actions performed
with a glass of different weights and water fillings, recorded with a multisensory setup, i.e.,
motion capture system (MoCap), cameras, and wrist-worn inertial measurement units (IMUs).
Section 3.1.1 describes the study design, while the data acquisition process with the details
on the used sensors can be found in Section 3.1.2. In Section 3.1.3 we present a description
of the dataset and its organization. Finally, in Section 3.1.4 we assess the quality of the
acquired data. To conclude, Section 3.2 opens to possible scenarios where the acquired data
can be exploited.

3.1 Methods

3.1.1 Study Design

As already anticipated, the concept of carefulness associated with motions has many facets,
and objects may demand careful manipulation for different reasons. A glass full of water
requires carefulness to avoid spilling, while a ceramic vase requires carefulness to avoid
breaking it. Likewise, the different reasons inducing carefulness also influence its physical
manifestation. The careful manipulation of a glass of water would manifest in slow motions
with constant orientation and appropriate gripping force. Instead, carefully manipulating
a ceramic vase would maximize the distance to nearby objects to avoid collisions. To
summarize, some properties of the object can be affected and irreparably changed by the
manipulation: an agent displaying careful behavior should adopt from time to time the most
suitable pose, speed, trajectory, and strength so as not to alter them.

Given the limitations of previous research in the field, we decided to narrow the study
limiting the notion of carefulness to the one induced by the need to move a container filled
with a liquid while avoiding spills, hence by adopting appropriate pose and transport velocity.
In particular, the human actions recorded in the dataset consist of reaching, transportation,
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and departing movements involving four possible objects. In order to allow for simple
reproduction of the experiments, we chose plastic glasses, which are easy to manipulate and
of everyday use. The glasses, identical in shape and material, differed in their contents. In
order to induce careful behavior in the recorded actions, we filled two of the glasses with
water to the brim so that they required a high level of carefulness. Two different weights
are considered: light (W1: 167 grams) and heavy (W2: 667 grams). Such values were
determined by the fact that we wanted the light and heavy objects to be consistently different
(500 grams) while balancing the presence or the absence of water in containers with the
same volume. The desired weights were obtained by adding screws and coins inside the
glasses, until reaching W1 or W2, balancing the presence of water. In this way, we defined
four classes of actions, depending on the properties of the manipulated object, namely light
and not careful (W1-NC), light and careful (W1-C), heavy and not careful (W2-NC), heavy
and careful (W2-C). See Table 3.1 for a summary of the object properties.

Table 3.1 Glasses characteristics and corresponding abbreviations

Abbreviation Weight (gr) Carefulness level
W1-NC 167 low – no water
W2-NC 667 low – no water
W1-C 167 high – full of water
W2-C 667 high – full of water

The sequence of performed actions is the same for every participant. It is designed to
alternate the manipulation of the four categories of objects together with the direction of the
movements.

At the beginning of the experiment, the volunteer seats at a table, with their hands resting
on it. On the table, covered with a black cloth, there is one shelf at each end, a scale right in
front of the subject, and a keyboard on the left side, see Figure 3.1 and Figure 3.2. Each shelf
has four possible positions, denoted by a letter marked on the frontal edge of the shelf, where
the glasses could be positioned, i.e., two on the bottom level and two on the upper one, see
Figure 3.1d. The shelves measure 36×23 cm, the top level is 36 cm above the bottom one
and there is a border of 6 cm, delimiting each shelf and constituting an obstacle. The two
positions on each shelf level are indicatively 18 cm apart. A blue cross on the table marks
the resting position that the participants’ dominant hand should reach after each movement,
see Figure 3.1a. The distance between the starting position and the shelves is indicatively 50
cm. The humanoid robot iCub [109] is placed in front of the table and passively records the
scene with its left camera. The robot is not introduced to the participants, and it shows no
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(a) Robot view (b) Lateral view

(c) Back view (d) Frontal view

Figure 3.1 The three points of view of the experiment: the resting position as seen by
the iCub robot (3.1a), a transportation movement towards the right shelf (3.1b), and the
positioning of a glass on the scale (3.1c). In (3.1d) the labels which identify the 8 positions
on the shelves.

interactive behavior. As in the CORSMAL dataset [173], we are interested in acquiring a
realistic view of the operating area from the robot perspective for future applications.

Participants did not receive any specific instruction on how to perform the pick-and-place
actions with the different objects. They were asked to follow the indications provided from
time to time by a synthetic voice from two audio speakers, which specified from which
position to take the cup and, later, where to put it down. The underlying assumption is
that motions performed this way are natural and automatically modulated according to the
glass filling. Given the passive role of the robot, which can be treated as an element of the
laboratory, we believe that participants perform the actions – autonomously – as if they were
on their own. The additional modulation of the actions with communicative intent, predicted
by the signaling theory in a collaborative scenario [125], should therefore not be solicited;
thus, the pick-and-place is influenced only by the cups’ properties. The volunteers interacted
with the items with their right hand and received instructions on the next movement to
perform by pressing a key on the keyboard with their left hand. Hence, they perform a series
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Figure 3.2 Top view of the experimental setup. In dark grey the cameras from the Optotrak
motion capture system used to detect the active markers, while in black the two high resolution
cameras.

of reaching, transportation, and departing movements of the four glasses. The experiment is
set up as summarized in Figure 3.3:

1. The experiment starts with the volunteer in the resting position and with the four
objects distributed on the shelves.

2. When a key of the keyboard is pressed, a synthetic voice indicates the position on the
shelf of the object to be transported. The position is referred to using the corresponding
letter.

3. The volunteer reaches for the glass and grasps it in the specified location (reaching
phase), as in Figure 3.1b.

4. In the transportation phase, the volunteer moves the glass from the shelf (shelf initial
position) to the scale.

5. The volunteer releases the glass and returns with the dominant hand to the resting
position.

6. The volunteer presses the key a second time, and the synthetic voice suggests where
the glass should be placed on the other shelf. The shelf spot chosen this time is vacant.

7. The volunteer reaches for the scale and takes the glass, see Figure 3.1c.
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(a) Transport from shelf to scale

(b) Transport from scale to shelf

Figure 3.3 The structure of each trial falls within two possibilities, whereby the main action
is the glass transportation: in (3.3a) are shown the steps for taking a glass from the shelves
and placing it on the scale, while in (3.3b) those for putting back the glass from the scale to
the shelf.

8. The volunteer moves the glass from the scale to its final location on the shelf, perform-
ing a transportation action.

9. The volunteer places the glass down and returns to the resting position.

The order in which the volunteers performed the experiment is detailed in Table 3.2. The
first sixteen trials were used as a practice before the main experiment started. In the main
experiment, each volunteer performed 64 reaching movements, 64 transportation movements,
and 64 departing movements to the resting position. After the 16th and the 48th trial, the
objects’ position is changed by an experimenter to maintain the properties of the manipulated
objects and the initial position of the glasses equally balanced.
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Table 3.2 Movements sequence performed by each participant. The first column refers to the
ID used to identify each trial. The second and third columns specify the characteristics of the
object handled in the trial, which could be light (W1) or heavy (W2) and require carefulness
(C) or not (NC). The last two columns refer to object positions: they indicate whether the
glass to grab was placed on the shelf or on the scale, and the shelf position where the glass
needed to be taken from or put down.

Trial ID Weight Care
Object Initial
Position

Shelf
Position

P
ra

ct
ic

e

1 W1 NC Shelf Z
2 W1 NC Scale K
3 W2 NC Shelf H
4 W2 NC Scale U
5 W1 C Shelf S
6 W1 C Scale M
7 W2 C Shelf C
8 W2 C Scale T
9 W1 NC Shelf K
10 W1 NC Scale Z
11 W2 NC Shelf U
12 W2 NC Scale H
13 W1 C Shelf M
14 W1 C Scale S
15 W2 C Shelf T
16 W2 C Scale C

1st
Se

ss
io

n

17, 33 W1 NC Shelf H
18, 34 W1 NC Scale U
19, 35 W2 NC Shelf Z
20, 36 W2 NC Scale K
21, 37 W1 C Shelf M
22, 38 W1 C Scale S
23, 39 W2 C Shelf T
24, 40 W2 C Scale C
25, 41 W1 NC Shelf U
26, 42 W1 NC Scale H
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27, 43 W2 NC Shelf K
28, 44 W2 NC Scale Z
29, 45 W1 C Shelf S
30, 46 W1 C Scale M
31, 47 W2 C Shelf C
32, 48 W2 C Scale T

2nd
Se

ss
io

n

49, 65 W1 NC Shelf S
50, 66 W1 NC Scale M
51, 67 W2 NC Shelf C
52, 68 W2 NC Scale T
53, 69 W1 C Shelf U
54, 70 W1 C Scale H
55, 71 W2 C Shelf K
56, 72 W2 C Scale Z
57, 73 W1 NC Shelf M
58, 74 W1 NC Scale S
59, 75 W2 NC Shelf T
60, 76 W2 NC Scale C
61, 77 W1 C Shelf H
62, 78 W1 C Scale U
63, 79 W2 C Shelf Z
64, 80 W2 C Scale K

3.1.2 Data Acquisition

The data collection process involved 15 healthy right-handed participants (8 males, 7 females,
age: 28.6±3.9). The participants are part of our research organizations, but none of them is
directly involved in this research. Liguria Regional Ethical Committee approved the research
protocol for this study (protocol 396REG2016 of July 25th, 2019), and all participants
provided written informed consent to publish the collected data. The framework adopted
during the experiment was designed to ensure a high degree of automation in the acquisition
phase. Most sensors were directly interfaced with the YARP middleware [108], allowing
timestamp synchronization, whereas the wrist-worn IMU was using a Robot Operating
System (ROS)-YARP interface.
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Figure 3.4 Marker positions on the participant’s right arm and hand. The smartwatch
equipped with inertial sensors is visible on the wrist.

The data have been segmented to separate each action presented in Figure 3.3. The
MoCap and the IMU segmentation have been performed automatically, exploiting the par-
ticipants’ pressures on the key. Instead, the camera images were organized offline into
separate folders according to the saved timestamps. For each participant, we saved a log file
containing information on the experiment. These log files contain the YARP timestamp of
each instruction communicated by the synthetic voice and the time for each key’s pressures.

Motion Capture System As a motion capture system (MoCap), we used the Optotrak
Certus®, NDI, with active infrared markers. In total, we recorded the signal from 15
markers. As pictured in Figure 3.4, the five markers on the hand were placed, respectively,
on the metacarpophalangeal joints of the index and the little finger, on the diaphysis of
the third metacarpal, and on the smartwatch in correspondence to the radial and ulnar
styloid. Additionally, two markers were positioned on the watch strap, one per side, to better
characterize wrist movements. Even though the main focus of the recording was to acquire
hand and wrist motions, we decided to position a few markers on the participants’ arm and
forearm. We used two rigid cardboards where we put four markers each. See Figure 3.4 for
reference. The frequency of the acquisition is 100 Hz. For every frame, the three-dimensional
coordinates of every marker (in millimeters) were saved into the file associated with the trial.
Moreover, the timestamp at the beginning and the end of each trial was saved. This was used
to retrieve the timestamp corresponding to each frame by applying linear interpolation.
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Inertial Sensors On the right wrist of the volunteers, we mounted an LG G Watch R
smartwatch equipped with a 6-axis IMU. The sampling rate was 71 Hz. As for the MoCap
data, a separate file was created for each trial, whenever the key on the keyboard was pressed
at the end of the departing movement. The file was saved in json format containing the
ROS and YARP timestamps at each sample, the internal Android timestamp, and the three
components of the linear acceleration in m/s2 and those of the angular velocity in rad/s.
The data were published by the Android app on ROS for the smartwatch acquisition and then
saved. Through the ROS-YARP interface, the corresponding YARP timestamp was sent to
ROS at each key’s pressure and written on the json file.

Cameras Two cameras with a resolution of 1920×1080 pixels were positioned in the room
where the experiments took place. The former was placed at the back of the participant’s
chair and recorded the scene from an overhead viewpoint, remaining elevated by 130 cm

with respect to the table. The latter was on the left side of the participants, with an oblique
point of view, 65 cm higher than the table with a distance from the hand starting position of
circa 140 cm. The reader is referred to the scheme in Figure 3.2 for reference. The frame
rate was set to 30 Hz. The last sensor used in the experiment was iCub’s left camera. The
robot was located opposite the table, in front of the volunteer, with a complete perspective
of the table and the shelves. The camera’s resolution was 320×240 pixels, and the frame
rate was 22 Hz. As previously mentioned, the images acquired with the cameras were not
automatically segmented during the acquisition. Segmentation occurred afterward using the
YARP timestamps, which were saved for each image from each camera in a log file. Indeed,
each saved camera frame was associated with a YARP timestamp, making it possible to relate
the acquired images with the events triggered by the key’s pressure.

3.1.3 Data Records

The described dataset has been made available on Kaggle1, while software utilities can be
found on GitHub2. While we used MATLAB as a reference software to create the utility
functions, we chose to make sensory data available in a non-proprietary format (log, csv,
json, or jpg, depending on the sensor). The provided utilities allow to simply import and
visualize the data of the desired sensors. A comprehensive table with a summary of performed
movements, with the details about their direction and the properties of the object involved is

1https://tinyurl.com/5jzzf9p3
2https://github.com/lindalastrico/objectsManipulationDataset

https://tinyurl.com/5jzzf9p3
https://github.com/lindalastrico/objectsManipulationDataset
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available in the utilities, also with a machine-readable structure. Table 3.2 summarizes the
characteristics of each trial. The same sequence was performed by each participant.

In the repository, the data are organized into separate folders on a sensor basis. Inertial and
MoCap recordings can be found in folders data/inertial and data/mocap, respectively.
While cameras recording are divided in three folders according to the following naming:

• data/cam_0: low resolution frontal images from the iCub left camera,

• data/cam_1: high resolution lateral camera,

• data/cam_2: high resolution images from behind.

The main folder also includes one folder data/log, which contains the experiments log
files. They report the YARP timestamp corresponding to the key’s pressures at the end of
each trial, together with the information relative to the transport movement: the instruction
given by the synthetic voice is reported as “sending speech: Prendi/Metti in {Position letter}”.
The verbs “Prendi” and “Metti” mean, respectively, “Take from” and “Put in” in Italian, and
were used to tell participants where to take the glass from or where to put it back on the shelf,
using the letter corresponding to the position, as in Figure 3.1d.

Each one of the described folders is organized into sub-folders named from P001 to
P015, containing the files associated with each participant. In the case of MoCap and inertial
sensors, the files are sequentially named from trials 1 to 80.

Instead, the camera folders are divided, for each subject, into 80 subfolders (one for each
trial), e.g., the folder data/cam_1/P001/P001_Trial_001 contains the images from the
lateral high resolution camera for the first trial of the first subject. The same sub-folders
also contain a data.txt file reporting the correspondence between the YARP timestamps and
image names for the specific trial.

The MoCap raw data are organized in csv files, with 62 columns and as many rows as
the samples in the trial. The first column contains a progressive ID, and the second one the
YARP timestamp for each sample. As previously mentioned, this timestamp was computed
after the acquisition by linearly interpolating the timestamps indicating the start and the end
of the trial. The remaining columns represent triplets of three-dimensional trajectories (x,y,z
coordinates) followed by an additional column for each marker containing 0, if the marker
was visible in that particular frame, or 1 if not. The order in which the markers appear in
the files follows the numbering introduced in Figure 3.4, therefore the first triplet being the
coordinates of the marker on the metacarpophalangeal joint of the index, the second triplet
the marker on the joint of the little finger, and so on.
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Figure 3.5 Box plots of each sensor recording frequency. The red lines represent the medians,
the blue rectangles limit the 25th and 75th percentiles.

Regarding the inertial sensor raw files, they are saved in json format. For each sample,
the available information is the ROS timestamp, the YARP timestamp, the Android one, and
the three components of linear acceleration and angular velocity.

3.1.4 Data Assessment

A first evaluation of the quality of the provided data is related to their frequency. As already
mentioned, the acquisition frequency depends on the specific sensor, and it is 100 Hz for the
MoCap, 71 Hz for the inertial sensor, 30 Hz for the cameras, and 22 Hz for the robot camera.
Figure 3.5 represents the frequencies for the sensors considering the whole experiment for
all the participants. Even though some outliers are present, a possible solution could be
downsampling the data to the lowest frame rate (22 Hz), allowing for automatically cleaning
them and keeping a frequency still well above the range of human motion, which is generally
below 10 Hz [81] and lies in the interval [0.3,4.5] Hz for hand motion [172]. In any case, in
the dataset available online, the original sample rates are preserved.

An in-depth kinematics analysis can be carried out to study how the properties of the
different objects affect the movement of the arm and condition how the transport action
is completed. Our dataset allows not only to calculate different kinematic parameters but
also to compare the information which can be retrieved from the different sensors. Proof
of the richness of representations allowed by our dataset is shown in Figure 3.6. As an
exemplification, we chose a W1-NC trial and a W2-C one, from the scale toward the upper
shelf on the participant’s left. The same pick-and-place action is represented by the 3D hand
trajectory from the MoCap system, by the norm of the linear acceleration computed from
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Figure 3.6 Synchronized data representations from MoCap, IMU sensor, and optical flow
extracted from robot camera for two sample trials. The hand trajectories recorded with an
infrared marker, the norm of the linear acceleration from the inertial sensor on the wrist,
and the apparent velocity extracted from the optical flow, are shown together with the robot
perspective on the scene.

the triaxial components of the IMU on the wrist, and by the velocity of the region in motion
extracted by applying an optical flow algorithm to the scene recorded with the robot camera
(see Chapter 4 and Section 4.1.1 for more details on Optical Flow computation).

Figure 3.7 compares instead the kinematics parameters extracted from the synchronized
MoCap and inertial sensors during the transportation of the four glasses. In detail, in
Figure 3.7a are shown the median, the 25th and the 75th percentiles of the hand velocity
calculated deriving the 3D position of one of the markers placed on the volunteer’s hand
(markers 1 to 4, see Figure 3.4 for reference). According to the Kruskal-Wallis test for
non-normal distributions, we found a significant difference in the velocity adopted for
transporting the glasses between those filled with water (W1-C and W2-C) and those empty,
with simply a weight difference (W1-NC and W2-NC). Even though a trend is visible, no
significant difference was found concerning weight. The same results emerge in Figure 3.7b
as well, where the wrist’s mean angular velocities are recorded with the inertial sensor in the
smartwatch. Again, a significant difference in the magnitude of the angular velocity appears
between the careful and not careful transport motions. These findings can be qualitatively
appreciated by the representation in Figure 3.8, with the hand velocities acquired through the
Mocap system, as described before. To create such a global representation, the mean of the
hand velocities of all the trials, separated into the four classes of motion, was computed for
every time instant, together with its standard deviation. The reaching phase, represented by
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(a) Mean velocity of the participants’ hand
while manipulating the four different glasses,
acquired through active infrared markers.

(b) Mean angular velocity during the glasses
transportation as recorded by the smartwatch
on the participants right wrist.

Figure 3.7 Kinematics parameters during the transport movements for the four different
classes, retrieved for motion capture data (3.7a) and inertial sensor data (3.7b). The red lines
represent the medians, the blue rectangles limit the 25th and 75th percentiles, and ∗ indicates
a significant difference according to the Kruskal-Wallis test.

the first peak of velocity, is uniform for all the glasses, either full, empty, heavy, or light; also
the direction of the reaching action, which was performed towards the scale on the table in
front of the participant or towards the different positions on the shelves, does not influence
the hand velocity according to its standard deviation. The difference in how the glasses were
manipulated is confirmed, as in Figure 3.7, between the glass with and without water, so for
that movement feature that we interpret as carefulness. It was already clear (see Figure 3.7
that the speed of the movement was reduced in presence of water and also, to a smaller extent,
by the weight. However, in Figure 3.8, it can be noted how not only the peak of velocity is
reduced when transporting the W1-C and W2-C glasses, but also the shape of the velocity
profile is modulated. Indeed, where for glasses without water the velocity is bell-shaped,
the careful transport movements present an anticipated peak with a prolonged deceleration
phase, especially for the full, heavy container. Participants tended to be especially cautious
in the final phase of the movement, gently leaning the glass so as not to spill the content.
In the initial phase of the movement, the derivative of the velocity is by far steeper for the
empty glasses, indicating higher acceleration in moving the object only slightly modulated
by the weight.
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Figure 3.8 Hand mean velocities and standard deviation, in transparency, associated with
the reaching (first peak) and transportation movements (second peak) of the four different
glasses.

3.2 Applications

The presented multimodal dataset contains human object pick-and-place tasks under different
experimental conditions. In particular, the dataset describes the effect of object weight and
associated carefulness on human motions during a pick-and-place. The dataset is collected in
a controlled environment, where the variability in the direction of the actions (height and
regions of grasping and delivering) and the synchronization between multiple sensors is
privileged. These qualities make the dataset useful for a series of possible applications. The
data are acquired through multiple cameras with different perspectives, IMU, and MoCap
sensors, thus providing the possibility of integrating and comparing the diverse sensing
modalities. Each sensor presents some specific advantages that can be exploited depending
on the context of application: the IMU is not affected by occlusions, whereas the motion
capture represents the ground truth in the study of human motion, and the different resolutions
offered by the webcams and the robot camera can represent a useful baseline for computer
vision applications. For example, having data from multiple cameras and a motion capture
system, can be used to study view-invariant action recognition or to compare marker-based
and marker-less methods for motion analysis. It can also be exploited to build classification
models to distinguish the weight and the associated care in the handling, namely carefulness,
of an object or to discriminate between different actions (reaching for, grasping, transporting,
dropping) and appropriate labeling is provided in this sense. The features of the manipulated
items, for example, can be automatically detected by training models with the available data



3.2 Applications 39

acquired during the transportation movements performed by humans, either relying on robot
cameras, motion capture system, or inertial sensors. The human motions during the pick and
place task can also be used as a reference for robot motion generation with the appropriate
attitude, granting consistency with the context and the properties of the object and exploring
the potentiality of robotic implicit communication. Furthermore, given the variety in the
directions and elevations of the gestures, the dataset is suitable for creating predictive models
of human behavior; for instance, to anticipate the direction of hand movements allowing the
robot to react quickly and efficiently to human actions. Finally, the dataset could be used to
evaluate humans’ capability to anticipate action or understand the final goal or direction of
an action when presented with a video picturing a portion of a motion.
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Given how much humans rely on implicit communication to interact with each other,
in HRI a consistent effort is directed toward developing robots’ ability to understand im-
plicit signals and subtle cues that naturally characterize our movements. This becomes of
critical importance for robots to support human partners in daily activities, especially in
unconstrained environments as in manufacturing, helping human operators to lift loads, or
assisting the elderly. One of the most common tasks we accomplish every day is interacting
with objects. Humans can easily manipulate items they have never used before: at first,
by inferring their properties such as the weight, the stiffness, and the dimensions, also
from the observation of others manipulating them; at a later time, using tactile and force
feedback to improve the estimation. If we consider a scenario where the robot acts as a
partner, it acquires great importance to endow it with the ability to correctly estimate the
characteristics of the handled objects; consequently, the robot can plan a safe and efficient
motion action. Replicating this behavior in robotic systems is challenging, and a complete
framework would require integrating vision, force, and tactile sensors, allowing the robot to
inspect the object independently. Preliminary results have been achieved in estimating objects
physical properties, relying on inference-based vision strategies [46, 140]. We propose an
approach to automatically detect object features inspired by what happens in human-human
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interaction. Indeed, when we do not have direct access to the item, the most reliable source
of information on its characteristics is watching another person lifting and transporting it.
Not only that, observing how another person handles the object allows overcoming all those
misconceptions related to the exterior appearance of the object, such as shape or size. In this
chapter, I present how a robot can automatically assess an object’s features just by seeing
it transported by a human partner. Inferring those properties from the human kinematics
during the manipulation of the objects, rather than from their appearance, grants the ability
to generalize over previously unseen items. Of course, the robot could refine its assumption
in a second moment by directly touching the item. Still, this approach mediated by the
partner’s actions is safe, immediate, and inspired by human behavior. In particular, I focus
on the features of human motor actions that communicate insights on the weight of the object
and the carefulness required in its manipulation. From the dataset presented in Chapter 3,
I explore how the different sensors can be used to detect the mentioned properties offline,
extracting information on the human kinematics and exploiting machine learning algorithms
to perform the classification. This represents the first step towards automatically detecting
the degree of care required in object handling and the discrimination of the item weight on a
robotic platform, during a dyadic interaction. Indeed, multiple steps need to be accomplished
to have the robot discriminate the carefulness or the weight, possibly simply by using its
camera to observe the human, granting the most natural interaction. In the first place, it
requires to be assessed which kinematic features are obtainable from the different sensors,
how they can be extracted, and their reliability and quality with respect to the task. Then,
different machine learning methods will be tested, and the classification outcomes will be
discussed. According to the findings, the online implementation of the framework will be
presented in the next Chapter.

Research questions and objectives

Suppose to transport a glass full to the brim with water: safely manage it without spilling
a drop requires accurate planning in terms of grasping strategy, orientation and velocity
adopted. If we want a robot to perform the same action, the first step would be to give
the robot the capability of recognizing the intrinsic difficulty of the task; if we consider a
hand-over task between a human and a robot, the latter should be aware that it is about to
receive an object that requires a certain degree of carefulness in the handling. Moreover,
assessing the object’s weight would allow an efficient lift. These features could be estimated
from the human motion and ideally should be available before the end of the observed action,
to trace the human abilities and to allow the robot to prepare for the possible handover.
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Differently from the weight, the concept of carefulness is not trivial. Previous studies have
dealt with delicate objects but focused more on robotic manipulation: the difficulty in the
addressed tasks was given by the item’s stiffness or deformability; tactile sensors were used
for estimating the necessary force to apply a proper grasp [157, 139]. Our study considers
the carefulness necessary to move an item from a broader perspective. Indeed, not only
the object’s stiffness but also its fragility, the content about to be spilled, or its sentimental
value may lead a person to perform a particularly careful manipulation. In those real-life
cases, we would like the robot to successfully estimate the carefulness required just by
observing the human kinematics. Using the dataset presented in Chapter 3, which consists
of transportation movements involving glasses that vary in weight and level of care, we
developed kinematic features representative of human motion. These features were used
to train classifier algorithms. We obtained multiple features from a motion capture system,
a robot camera, and an inertial sensor worn on the wrist. The goal is to determine which
sensing approach is best suited for understanding the properties of objects from human
movement and whether fusing information from different sensing modalities can help. To do
this, we conducted an offline comparison of different classification approaches and sensor
performances, with the ultimate goal of implementing these techniques online on the robot.
The questions we aim to answer are: (H1) can we detect the presence or absence of care
associated with the object transport, and (H2) can we detect the two levels of weight that the
glasses can have?

4.1 Methods

These studies aim at evaluating and comparing the performances of different sensors and
classifiers to infer the weight and the carefulness required during the transport motions of four
different glasses. We focus on transport motions because of the direct influence of the objects’
physical characteristics, given by the contact presence, on how the action is performed. We
begin by evaluating how the same classifier model performs in discriminating the carefulness
with various sources of data used for the training, comparing motion capture system, inertial
sensor, robot camera, and their combination. Then, we compare the performances of different
classifiers trained on the same subset of features extracted from specific sensors.
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4.1.1 Data pre-processing

The data presented in Chapter 3 needed some pre-processing before being used as training
data for the object properties classifier. The following paragraphs will present the specifics
of each sensor data and the pre-processing techniques which involve segmentation, feature
extraction, data filtering, resampling, data normalization, and padding.

Motion capture system data The data acquired by the motion capture system consisted of
the tridimensional coordinates of each marker with respect to the coordinate reference frame
of the Optotrak. Occlusions limited the MoCap visibility for specific parts of the human
movement. In our experiment, the main source of occlusion was given by the presence of the
shelves, in particular for the lower right positions. To partially overcome this problem, after
a preliminary analysis, we chose to consider for each trial the most visible marker among the
subset of four placed on the hand of the participants as representative of the movement. Two
different cubic interpolations, inpaintn [56] and interp1 of MATLAB ver. R2019b, have been
used to reconstruct the data missing because of the occlusions, respectively for the initial
part of the trials and the central one. The data was filtered with a second-order low-pass
Butterworth filter with a cutoff frequency of 10 Hz. Some trials have been excluded from
the data set because of inconsistencies in the segmentation among the acquired sensors or
because of errors of the subjects in pressing the key at the right moment, i.e. when their right
hand was lying on the table in the resting position. Overall only 1.25% of the total acquired
trials have been removed. Since our hypothesis is that it is possible to distinguish the features

Figure 4.1 Example of the velocity patterns from motion capture (in blue) and optical flow
data (in red). The peaks characterizing the three phases of the trial (reaching, transportation
and departing) are visible.

of the object being transported, it was necessary to isolate the transportation movement in
every trial. To do so, we took advantage of the experiment design. Indeed, as shown in
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Figure 4.1, each trial contains a pick-and-place action divided into three identifiable phases:
a reaching action, from the resting pose to the position occupied by the glass (either on the
shelf or on the scale), a transportation movement and finally the departing. At the beginning
and the end of the transportation, the subject hand stops to grasp and release the object. Our
segmentation assumed that the start and end of the transportation phase are associated with a
lower norm velocity of the hand, with a peak in between. Therefore, the segmentation was
performed by placing a threshold of 5% on the peak of the norm of the velocity extracted
from the MoCap data, after filtering it with a fourth-order filter with a cutoff frequency of 5
Hz. The timestamps corresponding to the onset and the offset of the transport actions were
saved to later segment the inertial sensors and camera data. After isolating the transport
motion of the glass in every trial, we chose to compute the first and second derivative of the
marker tri-dimensional trajectory, obtaining the hand triaxial linear velocity and acceleration.

Camera data and optical flow extraction As motion descriptor, from the saved raw
images of the robot camera (see Fig. 4.2 for an example) we chose to compute the Optical
Flow (OF), following an approach already tested [165]. In this method, the optical flow is
computed for every time instant using a dense approach [49], which estimates the apparent
motion vector for each pixel of the image. The magnitude of the optical flow is thresholded to

(a) View from the iCub perspec-
tive

(b) OF moving towards the right
of the image

(c) OF moving towards the left of
the image

Figure 4.2 Example of iCub view of the scene and the extracted OF. The colors codify for
the direction of the movement: red is for motion towards the right part of the image (4.2b),
blue for motion towards the left (4.2c).

consider only those parts of the image where the change is significant. A temporal description
of the motion happening in the derived region of interest is then computed by averaging the
optical flow components. On the velocity extracted, a second-order low-pass Butterworth
filter with a cutoff frequency of 4 Hz was applied to remove the noise (see Fig. 4.1). The
data described by the optical flow was segmented using the timestamps related to the start
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Table 4.1 Motion features computed from motion capture (u, v, z components of the velocity)
and optical flow data (u, v components of the velocity)

Motion feature Analytical expression

Tangential velocity Vi(t) = (ui(t),vi(t),zi(t),∆t)

Tangential velocity magnitude Vi(t) =
√

ui(t)2 + vi(t)2 + zi(t)2 +∆2
t

Acceleration Ai(t) = (ui(t)−ui(t −1),vi(t)− vi(t −1),zi(t)− zi(t −1),0)

Curvature Ci(t) =
∥Vi(t)×Ai(t)∥

∥Vi(t))∥3

Radius of curvature Ri(t) = 1
Ci(t)

Angular velocity Ai(t) =
Vi(t)
Ri(t)

and end of the transportation, obtained from the motion capture system. Indeed, even if
an independent segmentation of the movement from the optical flow was achievable, we
preferred to use the ground-truth data to avoid introducing noise and variability for the sake
of comparison.

From the optical flow, it was then necessary to further pre-process the data to obtain a
motor descriptor of the action. As set of features representing the region in movement, we
chose: the velocity Vi(t), the curvature Ci(t), the radius of curvature Ri(t) and the angular
velocity Ai(t). Their analytical expression is stated in Table 4.1 and two components of the
velocity on the screen (horizontal u and vertical v) were computed. As shown in [165], these
data representations have been successfully used to discriminate online between biological
and non-biological motion and to facilitate coordination in human-robot interaction [130]. In
addition, kinematics properties, such as velocity, have been shown to be relevant in human
perception of object weight [16]. The proposed descriptors can be updated at every time
instant, and allows to progressively gather an increasing amount of information about the
observed movement. This would then grant the robot the ability to discriminate online the
characteristics of the object handled by the human partner.

Inertial sensor A smartwatch equipped with a 6-axis IMU provided inertial data at a
sampling rate of 71 Hz. As for the images from the robot’s camera, the transport action
was isolated by exploiting the YARP timestamps retrieved from the threshold segmentation
applied to the motion capture data. As features for later training the classifier, we used the
raw data, i.e., linear acceleration and angular velocity. The resulting sequences are then
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scaled using min-max normalization to decrease the difference in scale between the features.
For the IMU, we selected as maximum and minimum values the full-scale range of the
sensors, i.e., ± 2g for accelerations and ± 8.73 rad/s (± 500 deg/s) for the angular velocities.

We applied to every temporal sequence from the 3 considered sensors a first-order But-
terworth filter with a threshold frequency equal to the original sampling rate of the sensor
(i.e., 71 Hz for the IMU, 100 Hz for the MoCap, and 22 Hz for the camera). To simplify
the comparison and easily combine information from the different sources, we resampled
the IMU and MoCap data to match the camera sampling frequency. This choice also finds
support in previous research suggesting that 20 Hz is an ideal sampling frequency for the
perception of human daily activities [7]. To perform the resampling, we interpolated the data
and used the camera timestamp to extrapolate the new data.

Due to the characteristics of the glasses and the intrinsic variability of the task, the
duration of the transport movement varied consistently among the trials (i.e. the duration
of the movement is consistently longer when the moved glass is full of water, belonging
to the high carefulness class). For this reason, to exploit the ability of certain models to
handle temporal sequences of different lengths and use batch training, we adopted common
zero-padding and masking techniques. Therefore, the shorter temporal sequences were
completed with zero values, which were then ignored during the training, while the length of
the longest transport movements was preserved. In particular, we used pre-padding since it is
considered more robust to the noise introduced by the zeros [47]. Using a padding technique
allows also for a smoother transition to an online application, where the beginning and the
end of the transportation phase are not available a priori, making the re-sampling of the
time-series difficult to handle.

The actions of the dataset presented in Chapter 3 involved four identical plastic transparent
cups which differed in weight and attention required to be moved. Two glasses were full
of water to the brim, requiring carefulness, and weighted either 167 gr (W1-C) or 667 gr

(W2-C). As we have detailed before some sequences had to be removed for inconsistencies
in the segmentation. This led to a slightly unbalanced data set, containing more examples for
specific classes. Indeed, class W1-NC had 235 sequences, class W2-NC 239, class W1-C
238, and class W2-C had 236. Although cardinally the difference is minimum, to preserve
the balance of the dataset we decided to fix the maximum number of sequences for each
class to 235 and we have randomly selected the sequences for W2-NC, W1-C, and W2-C.
Notice that the four classes were characterized only by the weight and the carefulness level.
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Table 4.2 Summary of the implemented classifiers. For each model, are indicated the sensors
used as data source for the training set and the corresponding time-series considered as
features.

Model Classification Data source Features (time-series) #

Classifier 1 LSTM Carefulness

MoCap Triaxial velocity and triaxial acceleration 6

IMU Triaxial angular velocity and triaxial linear acceleration 6

OF Curvature, Radius of Curvature, Velocity, Angular Velocity 4

IMU + OF Combination 10

Classifier 2 CNN-LSTM-DNN Carefulness or Weight
MoCap

Curvature, Radius of Curvature, Velocity, Angular Velocity 4
OF

Classifier 3 LSTM-DNN Carefulness or Weight
MoCap

Curvature, Radius of Curvature, Velocity, Angular Velocity 4
OF

Therefore other variables, such as the initial and final position of the glass and the direction
of the movement, are not considered in the classification.

4.1.2 Classifiers

The first attempt to tackle the detection of objects’ features from implicit cues focused on
carefulness. It involved a simple model, Classifier 1, which learned from the three available
sensors or their combination. After preliminary findings, we investigated two possible
architectures in more detail, trying to discriminate not only the carefulness but also the
weight of the glasses. Classifier 2 relied on re-sampled features, while Classifier 3 used
the original data with variable lengths and padding techniques. As for the data sources, we
compared the motion capture system as ground truth and the robot camera, which would be
the preferred choice in an online interaction, being available on the robot and not invasive at
all. Moreover, to better compare the performance achieved by Classifiers 2 and 3 and have
more precise control over the information used during the learning process, we decided also
to uniform the features extracted from the two sensor typologies and used in the training
phase. From the robot camera images, we used the four features extracted from the optical
flow on the image plane: the norm velocity, the angular velocity, the curvature, and the radius
of curvature. The same subset was also computed from the hand tri-dimensional trajectory
recorded with the moCap system, where the third component z was considered (see Table
4.1 for reference). Refer to Table 4.2 for a comprehensive overview of the implemented
classifiers, the data used to train them, and the selected features.
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Classifier 1 – Long-Short-Term-Memory model We trained the same binary classifier
with multiple training set: one for each sensor (i.e., camera, IMU and MoCap) and the fourth
by using both IMU and camera data. The idea of combining IMU and camera data arose to
determine if an autonomous robot could leverage its standard perception system, the camera,
with a wearable sensor, unaffected by occlusions, for a more reliable perception. Previous
research has suggested that Long-Short Term Memory (LSTM) networks are effective models
for learning long-term temporal dependencies and dynamics; this is because they are a type of
Recurrent Neural Network (RNN) that can handle a full sequence of data and are well-suited
for classifying and processing time-series data [40, 69, 117].

We designed a simple model implemented in Python using layers provided by Keras1 li-
braries. The LSTM layer has 64 hidden units and an input shape equal to [sequence_length×
n_ f eatures], where the sequence length is fixed to 132 samples (maximum sequence length
after padding the data). The number of features varies according to the data source: 6 for
MoCap (triaxial linear acceleration and velocity) and IMU (triaxial linear acceleration and
angular velocity), 4 for the camera (norm of the velocity, angular velocity, curvature and
radius of curvature, see Table 4.1) and 10 for IMU plus camera. The following layer is fully
connected, with 32 neurons, and it is preceded and followed by dropout layers with a value of
0.5. The output layer is another fully connected one with two output neurons corresponding
to the two classes: careful and not careful. Given the double output, we chose a softmax
function for the activation and the categorical cross-entropy to evaluate the loss. An L1-L2
kernel regularization was added to the last layer to prevent the model from overfitting with
L1 = 0.001 and L2 = 0.001 as parameter values. The chosen optimization algorithm was
AdamOptimizer, with a learning rate of 0.0002 and batch size of 16.

For each of the four models, we carried out the training and testing phases by adopting
the Cross-Validation with a Leave-One-Out approach to test the ability of the model to gener-
alize over different participants. Therefore, to split the 1200 sequences (15 participants×
80 sequences) into training, validation, and test sets, we adopted the following procedure.
One at a time, the data of each participant were used as a test set, and the remaining 14
were further divided, 80% for the training and 20% for the validation. The validation set has
been picked randomly from the 14 volunteers. The models have been trained for 100 epochs
using an early stopping on the validation loss with patience set to 5 epochs to avoid overfitting.

1https://keras.io/

https://keras.io/
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Classifier 2 – Convolutional, Long-Short-Term-Memory and Deep Neural Network

The combined use of Convolutional Neural Network (CNN), Long-Short Term Memory
(LSTM) and Deep Neural Networks (DNN) is a good solution for classifying time-dependent
data, such as speech or motion kinematics [137, 117]. This model was inspired by [137] and
consisted of two time distributed 1-D convolutional layers (that took as input 4 subsequences
of 8 frames each), a max pooling and flatten layers, a 100 neurons LSTM, a 100 neurons
Dense layer, and a 2 neurons output layer with a sigmoidal activation function. A Leave-
One-Out approach was adopted, to test the ability of the model to generalize over different
participants. Thus, for each one of the 15 folds, the data from 14 subjects were used as
training set and the data of the fifteenth participant as test set. The 20% of the data for
each training set was kept for validation, and early stopping was implemented according
to the validation loss function (with a patience parameter set to 5 epochs): this allowed to
obtain good accuracy without incurring in overfitting. The batch size was fixed to 16. The
model was fit with ADAM optimization algorithm and categorical cross-entropy as loss
function. With respect to the model described in [137] some regularizers were added to avoid
overfitting and make the network less sensitive to specific neurons weights. A L1-L2 kernel
regularization was added to the two 1D convolutional layers (l1 = 0.001, l2 = 0.002) and a
L2 kernel regularizer (l2 = 0.001) was added to the fully connected DNN layer; moreover,
0.5 dropouts were introduced. Since the required masking layer was not supported by the
Keras implementation of the CNN layer, we resorted to re-sample to obtain sequences with
the same number of samples for each trial. We used the interp1 function of MATLAB and the
number of samples was selected considering the class associated with the shorter duration
of the transport phase, W1-C, and computing the median value among all its trials. The
resulting value was 32. Therefore, the dataset to train this model was composed of two data
structures: one derived from the MoCap data and the other one from the OF. Both structures
had dimensions 940 trials×32 f rames×4 f eatures

Classifier 3 – Long-Short-Term-Memory and Deep Neural Network

This model strictly resembles Classifier 1, with a 64 neurons LSTM, followed by a 32 neurons
dense layer and a 2 neurons output layer with a sigmoidal activation function; also in this
case L1-L2 regularization and 0.5% dropout were used to avoid overfitting. The optimization
algorithm, the loss function and the validation approach with early stopping were the same
as before. We used zero-padded data in a structure: 940 trials×132 f rames×4 f eatures.
This model grants the possibility of learning independently from the length of the temporal
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sequence and that is why it is suitable to be implemented on the robot; indeed, no previous
knowledge of the duration of the movement would be required to perform the classification,
since the model is trained on variable temporal sequences.

4.2 Results

The results obtained for the carefulness and the weight detection are presented separately,
commenting on the performances obtained by the tree classifiers.

4.2.1 Carefulness level

We trained the model presented as Classifier 1 separately on kinematic features extracted
from the motion capture system, optical flow, inertial sensor, and a combination of the last
two. The results for these four classifiers are shown in Figure 4.3 using box plots that repre-
sent the accuracy in classification and show the median, average, and distribution of values
for each data source. The overall performance of the models is comparable, with 91.3% for
the IMU, 91.4% for the camera, 91.6% for the MoCap, and 91.1% for IMU plus camera. This
suggests that the four data sources are nearly equivalent for classification purposes. However,
if we exclude outliers, the minimum values shown in the chart seem to indicate some dif-
ferences between the models. The lowest accuracy achieved using camera and MoCap data
is around 84%, while the lowest accuracy achieved using IMU data is approximately 82%.
The combination of IMU and camera data had the lowest accuracy at 75%. This suggests
that combining IMU and camera data may not be particularly effective for estimating motion
carefulness, as it increases the variability of the classification. However, all the single classi-
fiers achieved high performances, and it may be possible to use an autonomous system that
combines the results of different classifiers with a voting system, to obtain more stable and
reliable inferences. The accuracy obtained with the optical flow was particularly promising,
as it would allow for property detection during one-to-one interaction without requiring the
human to wear any sensors, enabling natural and spontaneous collaboration.

The results obtained with Classifier 1 confirmed already the possibility of discriminating
(H1) the carefulness level associated with the object offline; we then assessed two additional
classifier models to understand how the same set of interpretable kinematics features, ex-
tracted from different sensors, would impact on their performance. Indeed, for comparison
purposes, all of the following results are based on the same set of kinematic features (see
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Figure 4.3 Boxplots expressing the results of Classifier 1 trained with data coming from
different sensors and combinations in terms of accuracy. The yellow line represents the
median, while the green arrow indicates the average.

Table 4.1) extracted from the optical flow or the motion capture system, which we considered
as ground truth.

Table 4.3 shows the performance of Classifier 2, the Convolutional LSTM model, in
detecting the level of care when trained on resampled time-series data. When performing
the Leave-One-Out cross validation we noticed that the classification accuracy on the test
set associated with volunteer 8 was significantly lower than the average accuracy obtained
in the remaining folds with other participants’ data as test set (MoCap test without vol8:

91.68±5.00, vol8: 51.62; OF test without vol8: 90.54±6.46, vol8: 77.42). Examining the
experiment videos we noticed that volunteer 8 was particularly careful even when handling
the glasses not containing water. Our impression was confirmed after computing the median
duration of the not careful movements among the subjects. The duration for volunteer 8
(2.04±0.18 seconds, median and median absolute deviation) differed significantly from the
ones of the other participants, as for the rest of the group the median duration resulted in
1.47±0.15 seconds (Kruskal-Wallis test: χ2(14,N = 480) = 136.8, p < .01). In Table 4.3
we have reported in brackets the results when including this subject in the training set and
using its data as test set. As can be observed, when this outlier was included, the classification
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Table 4.3 Model accuracy (%, mean and standard deviation) on carefulness level classification
with Classifier 2, the CNN-LSTM-DNN model. In brackets are the results when volunteer 8
was included in the data set

Motion capture Optical flow

Training 92.15(92.00)±2.14(3.42) 94.03(92.18)±1.05(1.00)

Test 91.68(90.97)±5.00(11.12) 90.54(89.43)±6.56(7.59)

accuracy was lower, and the variance on the test increased significantly for each of the sensing
modalities.

Figure 4.4 shows the trend of the accuracy over the epochs for the validation set of each
one of the folds. Comparing the graphs for the two sources of data ((a) motion capture, (b)
optical flow) it can be noticed how the first one reaches an accuracy above the 80% in less
than 10 epochs, while, using the features from the optical flow, more training is necessary to
reach the same level of accuracy (over 20 epochs). Furthermore, the accuracy trend of the
motion capture features is more stable.

(a) MoCap accuracy (b) OF accuracy

Figure 4.4 Carefulness classification accuracy over epochs on the validation set for each one
of the 15 folds, obtained with Classifier 2 based on a CNN-LSTM-DNN model. Accuracy
from motion capture (4.4a) and from optical flow features (4.4b).

Similarly, the performance in detecting the carefulness of Classifier 3, a simpler LSTM
model fed with the original temporal sequences of variable lengths, is shown in Table 4.4.
As before, the variability in the test accuracy was reduced when volunteer 8 was excluded
from the dataset, and the overall accuracy improved for both the sensing modalities. With
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this model, compared to the values in Table 4.3, the accuracy achieved with the MoCap data
is higher, while the one of the OF is slightly reduced.

Table 4.4 Model accuracy (%, mean and standard deviation) on carefulness level classification
for Classifier 3, based on a simpler LSTM-DNN model. In brackets the results considering
volunteer 8

Motion capture Optical flow

Training 96.57(94.32)±1.19(1.77) 92.10(90.39)±4.58(2.56)

Test 95.17(92.66)±5.46(8.49) 88.38(86.50)±8.68(10.75)

4.2.2 Weight

We used the same models to investigate the ability to discriminate between the weight level,
again training them with resampled data (for Classifier 2) or padded data (for Classifier

3) from the robot camera or hand tracking markers. In Table 4.5 are shown the results for
the classification of the weight achieved with re-sampled data on Classifier 2. In this case,
volunteer 8 did not present any peculiarity and was therefore included in the dataset. As we
can observe in Table 4.5, the accuracy with the motion capture data is above 60% and is
higher than the one obtained from the optical flow.
We have noticed that, despite adopting the same approach, the accuracy of the weight
classification is not as satisfying as the one achieved for carefulness. A possible explanation
of these results could be related to the different effects of weight on different transport
movements. Possibly the weight influence varies if the transportation is from top to bottom
or vice-versa. Furthermore, the presence of water in some of the glasses may have led
the subjects to focus mainly on the carefulness feature, unconsciously overlooking the
weight difference. Therefore, we add two specifications of the second hypothesis (H2) about
the feasibility of detecting the two levels of weight: (H2.1) the influence of the weight
during the transportation is dependent on the trajectory of the motion; (H2.2) when an
object is associated with a high level of carefulness, the weight has a limited influence on
the transportation movement. Both hypotheses were tested with Classifier 2, which gave
better results for the weight classification. Concerning the first hypothesis, we reduced the
variability in the movements and tried to discriminate the weight in the subset of transport
movements from the scale towards the shelves (MoCap: Tr: 68.90±2.68 Test: 63.42±8.96;
OF: Tr: 59.10± 4.27 Test: 55.17± 6.24); there is a slight improvement for both the data
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Table 4.5 Models accuracy (%, mean and standard deviation) on weight classification for the
CNN-LSTM-DNN model (Classifier 2), fed with re-sampled data, and for the LSTM-DNN
model (Classifier 3), trained on zero-padded data

Model Motion Capture Optical Flow

Classifier 2
Training 64.10±2.34 55.24±2.37

Test 61.83±7.16 54.47±4.29

Classifier 3
Training 54.95±2.66 55.30±1.95

Test 54.75±5.27 53.29±3.59

sources compared to the values in Table 4.5. Notice that the trajectories still have a discrete
amount of variability since the position to reach on the shelf could be left or right, high or low.
The second hypothesis was investigated by testing the weight discrimination within the subset
of objects which required the same carefulness level: low (MoCap: Tr: 64.49±5.24 Test:
61.93±6.86; OF: Tr: 62.52±3.53 Test: 56.84±6.77) or high (MoCap: Tr: 62.72±3.65
Test: 59.03± 8.73; OF: Tr: 57.92± 1.31 Test: 53.48± 7.63). The results for both tests
are inconclusive since the classification accuracies have not changed much with respect to
the ones reported in Table 4.5. It should be noted though that the dimension of the dataset
used to validate hypotheses (H2.1) and (H2.2) halved, which has an impact on the statistical
relevance of the results.

4.3 Discussion

In this chapter, we introduced various methods for detecting the properties of transported
objects. While the sources of information and the specific classifiers may vary, the underlying
concept behind our approach is the ability to infer characteristics of the objects indirectly, by
observing the spontaneous changes and modulation in hand kinematics during the action.
The first attempt to classify the carefulness in the observed actions was successful for all
the tested sensors as sources of information, with scores above 90% as reported in Figure
4.3. Differently from what was hypothesized, the combination of features from IMU and
robot’s camera did not improve the classification accuracy of Classifier 1, leading instead to
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an increase in its variance. However, when using one sensor at a time, the performance was
totally comparable.

Two classifiers, one based on a CNN-LSTM model trained with resampled features
(Classifier 2) and one on a LSTM trained with padded sequences (Classifier 3), were then
tested to separately detect the care and the weight. In this case, we used the same time-
series (velocity norm, angular velocity, curvature, and radius of curvature) extracted from
the optical flow and the moCap for a better comparison of the models. Regarding the
carefulness feature, as reported in Table 4.3, Classifier 2 can correctly discriminate if the
transportation of the object requires carefulness or not, independently from the sensing
modality used. Considering the performance of the data coming from the two sources, no
significant difference is detected between them. Therefore, not only by using an accurate
system, such as motion capture, that integrates sensory inputs from different locations to
estimate the position in the space of the target but also using the camera of the robot (single
point of view), it is possible to extract features to discriminate between careful and not careful
motions. Figure 4.4 shows insight on how the learning process advanced for the two data
sources. Even though the final performances are comparable, it can be appreciated how the
model trained with the features from the motion capture converges quicker to an accuracy
value above 80%.

The approach adopted with Classifier 3 is more general, in the sense that data are not
re-sampled to have the same dimension. Still, the variability in their duration is taken into
account. Even though this model is simpler, with just one LSTM and one dense layer, the
performance on the carefulness classification considering the MoCap data increased (see
Table 4.4 for reference). Although the accuracy using the optical flow is slightly lower, we
consider this a promising step toward implementing the same algorithm on the robot.

The accuracy achieved for both sensing modalities and both models in discriminating
between weights was lower than the accuracy achieved for detecting the level of care (see
Table 4.5 for reference). In Section 4.2.2, we formulated two additional hypotheses to
explain this outcome. (H2.1) was inspired by [150], where it was proposed that the vertical
component of velocity during the manipulation of an object is perceived by humans as
informative about its weight. Since the trials in our dataset explored a variety of directions
and elevations, this introduced a great deal of variability in the vertical component of
velocity. (H2.2), on the other hand, was based on the idea that the greatest challenge for
the volunteers during the experiment was to safely handle glasses full of water, and that
the difference in weight between the objects was not as noticeable as the stark contrast
between objects with and without water. As mentioned in Section 4.2.2, Classifier 2 was
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tested against these hypotheses, but no significant improvements in accuracy were achieved.
Based on the results of our experiment, we cannot validate hypothesis (H2). Still, since
we have only explored a subset of possible kinematic features, we cannot argue against it
either. Objects can have multiple concomitant features, which do not always have the same
effect on kinematics. It may be the case that the interaction between two or more of these
features leads to the attenuation of their effect as compared to when considered individually.
The proposed approach supports research in human-robot interaction, particularly in the
context of addressing complex situations in realistic settings (e.g., industrial environments,
construction sites, home care assistance, etc.). In these situations, the robot can autonomously
leverage insights inferred from implicit signals, such as the level of care required to move an
object, to facilitate cooperation with the human partner. Moreover, in a collaborative setting,
human actions can become even more expressive of the object properties to favor mutual
understanding, thanks to the phenomenon of signaling [41, 125], and this may improve the
classification performance.

Given the promising results obtained offline in detecting the level of care in actions, in
the next Chapter we will present an online application of the same approach, using the robot
camera and a LSTM model trained with padded sequences. We will not address the problem
of weight classification, as the available dataset is mostly representative of care in motion.



Chapter 5

Online recognition of carefulness from
human kinematics

Elaboration of an article published in:

International Conference of Social Robotics (ICSR 2021) [88]

When manipulating objects, humans fine-tune their motions to the characteristics of
what they are handling. This allows an attentive observer to infer hidden properties of the
manipulated object, such as its weight, temperature, and even whether it requires special care
in manipulation. This chapter presents a step towards endowing a humanoid robot with this
capability. Specifically, we study how a robot can infer online, from vision alone, whether or
not the human partner is being careful when moving an object. We define carefulness as the
caution and attention that humans exercise when handling an object. This qualitative property
is influenced both by the object’s physical characteristics (e.g., fragility) and by other factors
such as emotional attachment or economic value. For example, consider a robot that is asked
to receive a glass of water from a human. It should recognize the human’s carefulness in
manipulating the glass without spilling water. The ability to promptly recognize the level of
care in a human’s movement by observing their actions can allow robots to adapt their actions
accordingly, making them safer and, in the future, display the same level of care as their
human partners. Carefulness has been explored in studies of human-human handovers to
teach robots how to correctly transfer objects (e.g., [140, 45]), using motion capture sensors
to monitor human movements. In Chapter 4, we demonstrated that it is possible to train a
classifier to distinguish between careful (C) and non-careful (NC) human motions using data
from a low-resolution camera like the one on a robot. However, our carefulness recognition
method was tested offline on precisely segmented data in a single experimental scenario. In
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this chapter, we will present: (i) an online implementation of our method for carefulness
recognition, (ii) a study to demonstrate its online performance, and (iii) a study to evaluate
the generalization of the method in new scenarios. Although we are aware that carefulness
only partially accounts for all possible properties of an object, this work is an important step
towards a global approach for robots to interpret human movements using vision alone

5.1 Methods

The objective of this paper is to prove that a robot, in particular the humanoid iCub, can
distinguish online and in different scenarios whether a human is performing a careful transport
motion or a not careful one, relying on the kinematics modulation in the human gesture
perceived through its camera.

5.1.1 Software Architecture

Aiming at the presented goal, we developed, using the YARP middleware [108], the software
architecture shown in Figure 5.1.

As first step, the robot camera captures images from the scene with a resolution of
320×240 pixels and a 22 Hz frame rate. Then, the following module computes the optical
flow (OF) using a dense approach [49], and applies a threshold on the OF magnitude to
consider only the parts of the image where the change is significant. This choice introduces
the strong assumption that, in the robot’s field of view, relevant motions are the ones that
generate the largest OF. However, choosing the OF to characterize human motion, grants
the system robustness to small changes in the point of view. The OF is a suitable tool for
human motion description, for common daily activities such as cooking [58, 130], but also
for understanding the meaning of hand gestures [100, 29].

The components of the motion velocity (horizontal u and vertical v) are extracted from
the OF, as described by Vignolo et al. [165], and used to compute the norm of the tangential
velocity, as in Eq. 5.1. The architecture extracts this feature with a frequency of 15 Hz.

V (t) =
√

u(t)2 + v(t)2 +∆2
t (5.1)

The segmentation module implements a heuristic threshold mechanism to consider only
significant data: it detects the start of a motion when the velocity V (t) overcomes a threshold
τ and the end when the velocity becomes lower than τ . Once the end of the movement is
detected, the segmentation module has two alternatives. If the temporal length is below 1
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Figure 5.1 The system’s architecture structure gathers images from the robot camera and
extracts features from the computed optical flow to discriminate between careful (C) and not
careful (NC) motions.

second, the motion is discarded. Otherwise, the temporal sequence of size 1×K is fed to the
classifier. The minimum duration was set to 1 second since in the training set NC movements,
which were the shortest, had a median duration of 1.2 seconds and the minimum duration
was 1.1 seconds.

5.1.2 Model training and dataset description

The classifier model is inspired by the work presented in the previous Chapter 4 where
a Long-Short Term Memory (LSTM) neural network showed promising results for the
classification of temporal sequences of tangential velocity between careful and not careful
motions. In this study, we adopted a neural network with one hidden layer followed by an
output layer. The hidden layer is a 32-neuron bidirectional LSTM, while the output layer has
two neurons and a sigmoidal activation function. The training has been performed using the
ADAM optimization algorithm, binary cross-entropy loss function, exponential decay of the
learning rate, and a batch size of 30. An early stopping condition on the validation loss, i.e.,
patience set to 5, has been introduced to prevent over-fitting. A zero-padding and masking
technique has been adopted for the training to handle sequences with different temporal
lengths.

The dataset, used to train and preliminarily test the model, had been collected asking 14
volunteers to displace four glasses in front of iCub. It is the same dataset presented in Chapter
3 and exploited for the training of the models in Chapter 4, where the outlier data from one
participant was discarded. The glasses differed in weight, light (167 gr) or heavy (667 gr),
and content, since two of them were filled with water till the brim, to induce careful motions.
Even though we consider the carefulness in the gesture as the feature to be detected, the 500
grams weight difference was kept to increase the dataset variance. The dataset contains 878
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segmented sequences, 438 for each class (C and NC). Preserving the class balance, we used
72% of the data for the training, 8% for the validation, and 20% for the test. The trained
model got an accuracy of 95.14% on the test set, in line with the results of our previous work
(90.5%). Furthermore, following a statistical analysis of the available data, we determined
the threshold value τ for the segmentation module as 5.25 pixels/s.

5.1.3 System evaluation

Given the system presented in Section 5.1.1 for the discrimination of careful and not careful
motions, we performed new experiments to test its performance. In particular, the objectives
to assess are:

O1 The possibility for the system to work online, providing the C/NC label when a human
completes a transportation motion.

O2 The ability of the system to generalize over unknown human subjects.

O3 The possibility for the system to generalize over new kinds of transportation motions.

Eleven healthy subjects, members of our organizations, voluntarily agreed to participate
in the data collection (7 females, 4 males, age: 28.0±2.4); none of them is author of this
research. All participants used their dominant hand in the experiment and only one was
left-handed. We divided the volunteers into two groups G1 (4 females, 1 male, age 27.8±3.6,
one left-handed) and G2 (3 females, 3 males, age 28.2±1.3). We purposely chose different
participants from those included in our training set to grant a wider variability in the new
data collection and assess O2.

The experiment consists of a series of structured transportation movements of four glasses
performed by the participants while sitting at a table. The robot iCub is positioned on the
opposite side of the table and perceives the scene through its camera; replicating the same
setup presented in Chapter 3, iCub is passive, does not show any interactive behavior and
is not introduced to the participants. We use four glasses identical to those in the training
set, representative of two classes, namely C and NC, according to the presence or absence
of water inside. Throughout the experiment, a synthetic voice from two nearby external
speakers instructs the participant on which object to grasp and where to place it. Placing
positions in the scenario are identified with letters (see Figure 5.2). To receive instruction on
the next transportation, the participant presses a key on a keyboard with their non-dominant
hand. In between each transport motion, the volunteer rests their hands on the table. To
investigate the system’s ability to generalize over new transportation trajectories (O3), we
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have designed three experimental scenarios, namely: Shelves, Simple Table and Advanced

Table.

Shelves. The first scenario replicates the one used to collect the training set. This scenario
allows for testing the online performance of the classifier (O1) and the system’s generalization
over new subjects (O2). The objects are transported back and forth from a fixed position on
the table, delimited by a scale, to two shelves located on the right and left side of the table
(see Figure 5.2a). Eight positions where the objects can be grasped or placed are defined
on the two shelves. Both G1 and G2 completed the experiment in this scenario, and each
participant performed 32 transport movements (16 careful and 16 not careful).

Simple Table. This scenario is aimed at assessing the system’s capability to generalize on
a new set of movements (O3) and has been performed only by the 5 volunteers in G1 group.
The glasses are moved from the scale in front of the participant to four positions on the table,
delimited by a container, or vice-versa (seen Figure 5.2b). Each volunteer performed 32
transport movements (16 for each class).

Advanced Table. This setup tests the system’s capability to generalize over more ample and
complex transport movements (O3). In this scenario, the glasses are moved between positions
defined on the table, i.e., the scale is removed. In this way, the transportation motion is no
more towards and away from the volunteer. Three containers are placed on the table, with
two possible positions each, and columns are mounted on their frontal corners (see Figure
5.2c). The columns obstacle the transportation, making the experiment more challenging.
This more complex setup was designed after a preliminary analysis of the classification
results with the Simple Table task, therefore only volunteers from G2 experimented with this
scenario, and each of them performed 16 transport movements (8 for each class).

5.2 Results

Throughout all the experiments described, the recognition architecture described in Section
5.1.1 was running, recognizing careful and not careful motions. We analyze these results
for each scenario, focusing on the system accuracy and the recognition time (i.e., the time
between the motion end and the system recognition). Furthermore, we performed a statistical
analysis of the velocities extracted from the OF to highlight possible differences between the
three scenarios.



5.2 Results 62

(a) Shelves

(b) Simple Table

(c) Advanced Table

Figure 5.2 Setups of the different scenarios explored for the system evaluation. The Shelves
scenario replicates the training condition (5.2a). Simple Table (5.2b) and Advanced Table
(5.2c) scenarios are introduced to evaluate the generalization performance.
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Table 5.1 Shelves. Confusion matrix for the transportation movements performed by the 11
volunteers. The dark grey cell shows the overall accuracy

(a) MD (b) AD / MD

Figure 5.3 Shelves. Box plots of the Movement Duration (5.3a) and the Acceleration
Duration over the Movement Duration of the velocity profiles (5.3b) for careful (C) and not
careful (NC) transport motions. The red lines represent the medians, the blue rectangles
limit the 25th and 75th percentiles, and ∗ indicates a significant difference according to the
Wilcoxon test.

5.2.1 Shelves Task

We report in Table 5.1 the confusion matrix related exclusively to the glasses transportation
movements performed by the 11 participants, with a F1-Score of 72.9%. In this scenario, the
classifier has been invoked correctly for all the 352 transport movements (32 movements of
11 volunteers) with a median recognition time below 150 ms (136.6±18.8 ms - median and
median absolute deviation). However, because of the system design, the classifier was called
not only when a transport movement happened, but every time a velocity above threshold
persisted at least for more than one second. Indeed, 300 more movements were detected
and classified as NC 89.3% of the times. These movements are those that the volunteer
performs to reach the glass and go back to the resting position. Since these movements are
not transportations, it is reasonable that the majority of them are classified as NC; however,
they were not included in the confusion matrix results.

Finally, we characterized the velocity profiles using two metrics, i.e., the transport
movement duration (MD, proposed as significant to investigate the carefulness by [45]), and
the asymmetry of the velocity peak (AD/MD, see Eq. 5.2). This last metric is expressed as
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(a) MD (b) AD/MD

Figure 5.4 Simple Table. Box plots of the Movement Duration (5.4a) and the Acceleration
Duration over the Movement Duration of the velocity profiles (5.4b) for careful (C) and not
careful (NC) transport motions. The graphical conventions are the same as in Figure 5.3.

the acceleration duration (AD) over the movement duration (MD), and it is widely used to
characterize arm movements [116, 59].

AD/MD =
indexV max

MD
(5.2)

Since the populations were not normally distributed, in order to test if these two metrics
showed any significant differences between C and NC motions, we used a Wilcoxon Signed
Rank test. Considering all the 11 participants who performed the Shelves Task, we report
for the MD a p− value: < .01, while for the AD/MD a p− values: < .05. In Figure 5.3 are
shown the corresponding ranges of movement duration and velocity asymmetry.

5.2.2 Simple Table Task

This scenario entailed movements that differed from those included in the training set, and
only G1 experienced it. The online classifier did not achieve a good performance. We report
an F1-Score of 66.09% with 96.25% recall and 50.33% precision values. The system tended
to classify as not careful most movements, correctly identifying only 2.5% of the careful
trials. However, the classifier was rightfully called at the end of every one of the 160 transport
movements, with a median recognition time of 137.8± 21.4ms. Regarding the motions
detected beyond the transport ones, the classifier was called 77 times, giving an NC label in
96.1% of the cases.

Interestingly, analyzing the MD and AD/MD metrics (see Figure 5.4), which we use
as distance measures between the careful and not careful movements, the Wilcoxon Rank
Signed test reported p-values > .2 for both. Thus, according to the chosen metrics, no
significant difference in the velocity profiles was detected between the C and NC groups
in this scenario. These results suggest that for short transportations (about 40cm) with no
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Table 5.2 Advanced Table. Confusion matrix for classifying transport movements performed
by G2 in the generalization task. The dark grey cell shows the overall accuracy.

(a) MD (b) AD/MD

Figure 5.5 Advanced Table. Box plots of the movement duration (5.5a) and asymmetry
of the velocity profiles (5.5b) for careful (C) and not careful (NC) transport motions. The
graphical conventions are the same as in Figure 5.3.

obstacles, the kinematics properties do not change significantly between careful and not
careful motions.

5.2.3 Advanced Table Task

This scenario was designed to test the generalization capability of the model further. Glasses
handling has been made more difficult by introducing obstacles and forcing longer paths
between the grasping and release positions. In Table 5.2 is shown the confusion matrix for
the transportation movements in this scenario, where our system reaches an F1-Score of
82.4%. The classifier output was available for every one of the 96 glass manipulations with a
recognition time of 145.3±16.3ms (median and median absolute deviation). Regarding the
143 other movements that the classifier evaluated, the given label was NC for 97.9% of them.
Finally, concerning the parametric measures (shown in Figure 5.5), both differences between
C and NC were statistically significant (MD: p < .01, AD/MD: p < .05).
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5.3 Discussion

The proposed approach allows a robot to identify, online, whether an object is being handled
with care simply by observing the human movements. Optical flow is an effective motion
descriptor for this purpose because it provides a comprehensive evaluation of the entire
movement and is resistant to small, quick occlusions caused by obstacles such as shelves
(see Figure 5.1). However, when the movements are slow, such as when handling glasses
full of water, image obstructions may be prolonged and have a greater impact. The proposed
architecture generated a classifier output for every glass transportation, ensuring that no
transport movements went undetected. The model output was available at the end of the
transportation, with a median recognition time of 135.9±17.9ms for all tasks. The system
also detected movements beyond the transport ones, such as reaching and departing actions
to grasp the glass or return to the resting position. In these instances, since no object was
being carried, it is reasonable that the classifier returned a "not careful" label in 92.7% of the
occurrences. This result implies that when the system returns the "careful" label, it has high
confidence. In the Shelves scenario, which replicates the training conditions, the performance
of the overall online classifier is lower than that obtained with offline testing (which gave
90.5%, see Chapter 4). However, considering the novel testing conditions (e.g., different
lighting and perspective) and the fact that motion velocities were segmented online, these
results suggest that our system can work online (O1) while generalizing over new subjects
(O2).

In contrast, our architecture did not perform well in the Simple Table scenario. We
attribute this to the setup design, which required shorter movements without any obstacles
compared to the Shelves and Advanced Table scenarios (see Figure 5.2 for reference). This
result leads us to speculate that the boundary conditions of the external environment can
emphasize the impact of carefulness. Therefore, it may be easier to detect the presence
of carefulness in more complex scenarios. This hypothesis is supported by analyzing
the distance metrics of the velocity profiles shown in Figure 5.2.2. In the Simple Table
scenario, there was no significant difference in movement duration (MD) or the asymmetry
of the velocity peaks (AD/MD). These results leave us with two potential explanations: (i)
volunteers did not act with particular care when transporting the glasses full of water in the
Simple Table scenario, or (ii) tangential velocity alone is not sufficient to distinguish between
careful and non-careful motions in this case, and additional data such as the actor’s gaze
pattern may be needed.
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Finally, we obtained the best results when monitoring a completely new scenario (see
Table 5.2). As we hypothesized, this result is linked to the extra care the volunteer needs
to take in transporting the glass of water in a more complex setup. This is supported by
the significant difference in the MD and AD/MD metrics (see Figure 5.5) between the two
classes. These results demonstrate the ability of our system to work online (O1) and to
generalize to new subjects (O2). We also showed that the system could generalize to new
scenarios if transportation carefulness is evident (O3). It’s worth noting that we tested our
system with non-interactive actions (i.e., the participants perform the task alone, with the
robot acting as an observer). An interactive context might facilitate carefulness recognition,
as participants would more explicitly convey this information, similar to how humans signal
to each other during tasks [43, 41, 125].

To determine the fragility of objects, we used the information naturally embedded in
human kinematics during manipulation, extracted using vision alone. This approach is
intended for use when the robot collaborates with a human partner, such as during handover
tasks, where the human’s movements can be observed. During the interaction, the robot can
detect the care taken by the human partner and adjust its own manipulations accordingly
without needing prior knowledge of the object or visual detection of its physical properties.
Since the robot’s ability to detect carefulness is independent of the external appearance of
the objects, it can be generalized to previously unseen objects. In order to improve the
interaction, it would also be useful for the robot to adapt online and modulate its movements
to be consistent with the properties of the object, mimicking natural human behavior and
conveying the same information about the object’s features. This would greatly facilitate
natural, implicit communication between humans and robots and address the dual problem
of generating communicative robot actions in the following chapters
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Chapter 6

A generative approach for
property-aware robot object
manipulation

Elaboration of an article published in:

International Conference on Development and Learning (ICDL 2021) [57]

Best Paper Nominee

The previous chapters presented possible approaches to automatically detect object
properties by relying on the natural kinematics modulations occurring during their transport
motion. The second part of my thesis will focus on the dual problem of making robots’
actions more legible, appropriate, and communicative when coming to object manipulation.
Indeed, when transporting an object, we unconsciously adapt our movement to its properties,
for instance by slowing down when the item is fragile. The most relevant features of an
object are immediately revealed to a human observer by the way the handling occurs, without
any need for verbal description. In a social context, such kind of natural, implicit information
can be purposely emphasized to make our actions or future intentions more readable by the
partner [125]. It would greatly facilitate collaboration to enable humanoid robots to perform
movements that convey similar intuitive cues to the observers. Indeed, in human-robot
collaboration settings, it is relevant that also robots master this form of communication,
modulating their goal-oriented actions to make them more intuitively legible to the human
partner [43]. In particular, if we consider the scenario where humans and robots interact
with the same set of objects, a robot should be able to both infer object properties from
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the observation of how the partner manipulates them and to select and perform the suitable
manipulation action.

We focused then on how to generate robot motion adapted to the hidden properties
of the manipulated objects, such as their weight and fragility. The core idea behind the
implementation is to achieve a modulation of their gesture similar to the one that occurs in
humans without necessarily copying and scaling the action to adapt to the robot kinematic
chain. This would help to achieve a two-fold outcome: (i) each object would be handled
accordingly to its features, therefore mimicking natural human behavior, and (ii) the gesture
performed by the robot would convey the same information about the object features,
being, therefore, more transparent and readable for the human partner. To allow robots to
communicate with their actions, we decided to modulate the strategy to transport objects
with the end-effector, specifically shaping its velocity to replicate natural human behavior.
Indeed, from our previous studies on how humans move objects, it was the velocity in the
action which was mostly influenced by their properties: not only in the absolute magnitude
but also in its shape, depending on the acceleration and deceleration phases, to the point
that this feature can be used to automatically detect the carefulness in human actions (see
Chapter 4 and 5). In the studies presented in the previous Chapters, we evaluated if the
complete velocity profile of the action is communicative of the carefulness; this is in line with
other works considering the same kinematic feature in the context of object manipulations
[45, 46]. Actually, it is not completely clear what the communicative part of the velocity
profile is: it may be sufficient to modulate on the robot only the average speed of the
motion, or the duration of the action. However, having in mind as our ultimate goal to create
movements communicative of the carefulness with different robotic platforms, and aware of
the importance of biological plausibility [17, 27, 75, 148], we chose to follow an approach
as human-inspired as possible. For this reason, we decided to have the robots’ end-effector
move following human-like trajectories, taking care to fully reproduce human-inspired time-
series. This choice should also ensure the final achievement of our first objective. Indeed,
if humans successfully handle an object by adopting a certain velocity profile, the same
mechanism should be mimicked to allow a robot to do the same. The first problem to
address was how to create velocity profiles to later use to control the robot end-effector,
which resembled the human distribution while being novel and not stereotyped. We decided
to leverage a generative approach to produce new and consistent movement patterns with
a distribution of velocity profiles comparable to the human one, applicable over different
trajectories while preserving the informative content of the actions. In particular, we exploit
Generative Adversarial Networks (GANs), which can synthesize new actions coherent with
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the object’s properties after being trained on human examples. Human motion kinematics
are an example of a time-series, from which it is possible to extract descriptive features like
velocity, acceleration profile, or the curvature radius associated with the trajectory. We posit
that generative models can be used to “learn" such time-dependent patterns, where the model
is not only tasked with capturing the distributions of features within each time point, but it
should also capture the potentially complex dynamics of those variables across time [177].
In this Chapter, we present the training of GANs to produce velocity profiles associated with
object manipulation and their assessment through qualitative and quantitative metrics.

6.1 Methods

As training data for the generative networks, we exploited once again the dataset described
in Chapter 3. The goal of this work is to design a method to automatically generate synthetic
velocity profile norms consistent with the ones generated by a person manipulating an object
with specific properties. The experimental setup intrinsically allows for great variability in
the performed gestures: the trajectories could be directed towards the left or the right side,
towards lower or higher shelves and the direction of the motion could be either abductive or
adductive. This We considered 1001 total object transportation movements (W1-NC: 248,
W2-NC: 251, W1-C: 254, W2-C: 248 trials), where the transportation phase was isolated
in each trial by placing a threshold equal to the 5% of the corresponding velocity peak, as
already described in the Methods of Chapter 4. The sampling rate of the acquisition was 22
Hz.

In order to obtain a first corroboration for our hypotheses, for each transport movement,
we considered the norm of the velocity, computed as in (6.1), from the three velocity
components Vx(t),Vy(t),Vz(t) at each time instant.

V (t) =
√

Vx(t)2 +Vy(t)2 +Vz(t)2. (6.1)

Considering the norm as a feature, we trained a TimeGAN[177] on all the transportation
actions in the dataset. The choice of using the norm of the velocity grants the detachment
from any particular trajectory, therefore the generality of the further generated movements;
moreover, such feature had already proved to be insightful when detecting the characteristics
of the manipulated object, being representative of the action kinematics. We trained four
different models, one for each object class, generating as many velocity profiles as the
ones fed to each GAN. Since the duration of the movements was characterized by limited
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variability, we decided to pad the time series in each class with zeros to the length of the
longest sequence. Although more sophisticated approaches are possible, this simple solution
seems adequate in our case. This resulted in velocity profiles of length 55 for (W1-NC), 50 for
(W2-NC), 127 for (W1-C) and 131 for (W2-C). All the TimeGAN models were implemented
with 3-layer Gate Recurrent Units (GRU), each one with 28 neurons (an extensive explanation
of the architecture is provided by [177]). The training phase lasted 2000 epochs, and was
performed with batches of size 15.

6.1.1 Metrics for generated data assessment

To assess the quality of the generated data, we computed different metrics, inspired by those
proposed by [177, 48]:

1. Data distribution: the synthetic data population should be distributed to match real
data samples.

2. Data discriminating power: a classifier trained to discriminate among the different
object typologies on synthetic data should perform equally well when tested on real
data and vice versa (i.e., train-on-synthetic, test-on-real approach).

3. Features preservation: from synthetic data, it should be possible to extract kinematics
features similar to the ones originating from real data.

Data Distribution

In order to understand how the time series of the different classes could be globally visualized,
we performed a manifold analysis to reduce their dimensions. This approach shows the
inherent structure of the data by representing them in a two-dimensional space, allowing
us to qualitatively evaluate whether the generated data are consistent with the original
examples. More specifically, flattening the temporal dimension, we computed Principal
Component Analysis (PCA), which is a linear projection of the data along the directions of
their maximum variance, and t-distributed Stochastic Neighbor Embedding (t-SNE), which
highlights non-linear local structures.

Data Discriminating Power

To quantitatively measure the similarity between original and generated data for each category,
we decided to assess the performance of a classifier in discriminating the velocity profiles
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associated with the transport movements of careful/not careful and light/heavy glasses. To
this aim, and referring to [48], we introduce two evaluation methods. The first metric is called
Train on Real, Test on Synthetic (TRTS), meaning that the model is trained and validated on
real data and then tested on artificial data to discriminate either the carefulness or the weight
of the transported glasses. Mirror-wise, the second evaluation metric consists in training and
validating the model on the synthetic dataset, then testing it on the original dataset, and it is
referred to as Train on Synthetic, Test on Real (TSTR). For the sake of comparison, all the
classification tasks were addressed by using the same Long Short-Term Memory (LSTM)
model with an architecture having an input layer, a bidirectional LSTM with 64 hidden units
and 2 fully connected layers, followed by an output layer with softmax as activation function.
All the sequences were restored to their original length, by removing the values under a
velocity threshold of 0.005 m/s. For each training session, we split the training data into
Training Set plus Validation Set by using a 5-folds cross-validation. In Table 6.1 we report in
parentheses the performance of the Validation Set. The Test Set was instead considered as
all real data (TSTR) or all synthetic data (TRTS).

Features Preservation

Another interesting aspect that must be considered when generating new velocity examples
is feature preservation. Even though deep learning is widely applied for its ability to
extract features in an unsupervised way, our goal is to generate data that preserve specific
characteristics (features) of the movements. Indeed implicit information about the object we
are manipulating is naturally embedded in the kinematics of our movements. The final goal
of generating synthetic velocity profiles inspired by humans is to endow robots with the same
communicative ability while performing their movements. Therefore, it seems paramount
that synthetic data preserve those features associated with specific object properties.

Similarly to [45], we want to generate data preserving such characteristics as Movement

Duration (MD), Peak Amplitude (PA), and asymmetry in the velocity profiles. This last
parameter, which we will refer to as AD/MD, represents the Acceleration Duration (AD)
in relation to the full movement duration and is commonly used to describe arm movement
kinematics [116, 59]. It gives a percentage value for how far the velocity peak is ahead of or
behind in relation to the MD, therefore indicating a longer or shorter deceleration period.
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Figure 6.1 Velocity profiles of real (red) and synthetic (blue) data for each object class. The
thick line represents the mean value, while the coloured area the standard deviation.

6.2 Results

In Figure 6.1 are shown global velocity profiles, obtained by calculating the mean and the
standard deviation over the samples of every trial, for each of the four object classes. We
have based all the subsequent analyses on these data. The tails visible on the original velocity
profiles are due to an overall number of 21 trials (equal to 2.10% of the entire dataset)
which differed in the movement duration from the mean of each class (W1-NC: 1.44±0.17,
W2-NC: 1.61±0.19, W1-C: 2.62±0.63, W2-C: 3.04±0.69 [s]) for more than three times
the respective standard deviation. Therefore, such movements can be considered outliers,
and it is fair to assume that the GANs did not capture them, which is the reason why the
generated velocity profiles (in blue) are more consistent with each other.

Data Distribution

In Figure 6.2 are shown Principal Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE) projections for real and synthetic data, divided according to
the weight and the carefulness associated with the transported glasses. The synthetic data
for each class are those generated by the corresponding GAN. This representation allows
appreciating how similar and overlapping the original and the synthetic distribution are.
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Table 6.1 Accuracy values training a classifier on real data and then testing it on synthetic
data (TRTS) and vice versa (TSTR). TRTS and TSTR analysis has been carried out also on
subsets of the original dataset: considering separately only the heavy and the light objects or
the C and NC movements.

Dataset Detection Classifier Validation (%) Test (%)

All

Weight
TSTR 97.40±1.08 62.76±1.01

TRTS 70.53±3.04 75.18±6.17

Carefulness
TSTR 98.10±1.64 92.97±1.36

TRTS 96.40±1.92 92.53±1.57

Heavy

Carefulness

TSTR 99.00±0.71 87.29±4.42

TRTS 96.99±2.36 94.15±3.17

Light
TSTR 98.21±0.84 94.13±2.31

TRTS 96.81±1.31 93.47±1.07

Careful

Weight

TSTR 87.65±3.91 61.39±5.29

TRTS 71.51±2.60 74.74±5.41

Not Careful
TSTR 95.99±2.36 73.03±3.05

TRTS 78.35±3.89 79.60±6.77
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Figure 6.2 Data distribution: PCA and t-SNE projections for each movement category.
The real and the synthetic data are superimposed.

Figure 6.3 t-SNE representation for the two data sources. The four colors depict the glasses’
properties: red and green for the objects which did not require care (red - light, green - heavy),
blue and yellow for those to be moved carefully (blue - light; yellow - heavy).

To assess the separability among the different movements, we again used the t-SNE
projection; the whole dataset (synthetic and real) is represented in Figure 6.3, where the
different colors highlight the four distinct classes of movements. This allows evaluating
which classes are more similar to each other according to their velocity profiles and whether
the generated data reflect the same tendency. It can be noticed how the clusters linked to the
care in the gestures are generally clearly separated. At the same time, those which differ
only for the weight are largely overlapped, especially considering the portion of careful
motions. Synthetic data appear even more strongly separable according to carefulness, and
considering only the NC movements, the light (in red) and heavy (in green) objects seem to
be distinguishable.
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(a) Movement Duration

(b) Acceleration Duration / Movement Duration

(c) Velocity Peak Amplitude

Figure 6.4 Kinematics features distribution for each object category for the Real (in red)
and Synthetic (in blue) data. The y-axis represents the number of trials with a given MD
(6.4a), AD/MD (6.4b) or Velocity Peak (6.4c) value.
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Data discriminating power

The results reported in Table 6.1 refer to multiple classification tasks performed using either
the real data as training set (TRTS) or the synthetic data (TSTR) for the same purpose. As
explained before, two main features simultaneously characterized the handled glasses: the
weight and the carefulness required by the presence of water. Even though the care in the
manipulation seemed the prevalent feature, we decided to test the possibility of discriminating
the weight or the care in the gestures separately.

We trained the same binary classifier model using the whole dataset (real or synthetic)
to discriminate the carefulness or the weight, then testing it on the dual source of data.
The corresponding accuracies are reported in Table 6.1. The performance is better when
discriminating the carefulness (above 92%), with comparable results on both the test sets.
The results on the weight classification are worse, however satisfying when training on real
and testing on synthetic data, with an overall accuracy above 70%. The TSTR approach
on the weight discrimination reveals a remarkable disparity between the accuracy obtained
on the synthetic validation set (97.40±1.08%) and the one on the real data used as test set
(62.76±1.01%).
We also assessed the separability using as training set a halved dataset, to reduce a variability
factor: the ability to discriminate the weight was evaluated using separately only the careful or
the not careful velocity profiles; symmetrically, the possibility of classifying the carefulness
was verified exploiting only the heavy or the light glasses. The second half of Table 6.1
shows the matching results. In particular, concerning the carefulness classification, the mean
accuracy slightly improved for every combination, except for the TSTR when using only
the simulated manipulations of heavy glasses. When discriminating the weight relying on
the subset of not careful movements, the performances improved in particular for the TRTS,
reaching a 79.60±6.77% accuracy. The most critical result, even though above chance level
(61.39±5.29%), is the one related to the weight discrimination on the careful subset when
training on synthetic data.

Features preservation

The last analysis we performed is meant to evaluate the persistence of meaningful properties.
We assessed how close the real and synthetic distributions were according to some parameter
characteristics of the kinematics of the movement: the MD, the AD/MD (i.e., the asymmetry
in the velocity profile), and the Peak Amplitude. We report in Figure 6.4 the histograms
corresponding to each one of the parameters. In detail, Figure 6.4a shows the duration of the
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transport movements. This feature cannot be generally considered as significant to detect
the carefulness in a gesture or the weight of the item, since it is strongly dependent on the
length of the trajectories: a glass full of water can be moved on a very short path, therefore
the duration of that careful movement can be shorter than the one corresponding to the
transportation of an empty glass for a more extended trajectory. However, in our dataset the
paths covered with the four glasses were altogether the same, therefore we can consider the
MD as characteristic of the object type. For the same distance covered, the durations for
careful movements are markedly longer.

Concerning the AD/MD parameter reported in Figure 6.4b, the difference among the
four classes is less striking; it can be noticed that for the careful gestures, the distribution
of the synthetic data is less wide than the one of the original dataset, presenting a marked
peak slightly before the 50% of the profile. This means that the generated data, in this case,
tend to show a more symmetrical acceleration and deceleration phase. Finally, observing
the histograms for the Velocity Peak Amplitude (Figure 6.4c), it can be noticed how such a
parameter shows lower values in the careful manipulations and that the synthetic data can
capture such a tendency.

6.3 Discussion

From a qualitative point of view, it is possible to notice that the synthetic velocity profiles
are generated consistently with the real data distribution. This is supported by the mean
velocity profiles in Figure 6.1, by the linear and non-linear manifold analysis in Figure 6.2,
and by the kinematic parameters distributions of Figure 6.4. However, it must be stressed
that the purpose of the work is not aiming at a perfect overlapping, which would mean a
trivial copy of the data. Still, we are interested in a coherent representation of the distribution
of the original data. The scope is to allow in the future the autonomous generation of
appropriately communicative manipulation movements by robots, such as the humanoid
iCub. When all the classes are visualized using a t-SNE representation, in Figure 6.3, it is
possible to notice that both real and synthetic data share the same structure: careful actions
(C) and not careful actions (NC) appear to be separable with overlapping in their sub-classes
representing the carrying of light (W1) and heavy (W2) objects. It is worth considering that
each class was generated independently from the others, training the GAN model using only
the corresponding subset of original trials, without any knowledge of the velocity profiles
of the other classes. The overlapping patterns emerging from the manifold analysis of the
independently generated data strictly resemble the ones of the original dataset, meaning that
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the information was embedded in the data themselves. The proposed GANs were able to
capture the characteristics of the original dataset, without any need to force the learning in a
particular direction.

The difference between C/NC classes in synthetic data may be due to the fact that our
model learned the most salient characteristics of these actions, overlooking the variability
typical of the real data. A clearer separability seems to be present, according to the t-
SNE representation of Figure 6.3, even between the generated movements performed with
heavy (green) or light (red) objects in the NC class. It is reasonable to assume that the
original transportation movements were largely influenced by the presence or absence of
water inside the glasses; when this “disturbing” factor was not present, that is when the
gestures were not careful, it was the weight that played a role in influencing the movement
kinematics. The GANs have captured this occurring, and the corresponding W1-NC and
W2-NC velocity profiles are less overlapped in the synthetic manifold representation. The
easier discrimination of weight when the gestures are not careful is also supported by the
classifier results presented in Table 6.1. As suggested by the t-SNE representation, the easier
separability between light and heavy objects in the synthetic dataset results in a validation
accuracy of 95.99±2.36%, which drops to 73.03±3.05% when testing the model on the
NC original data, which are more overlapped. After these considerations, we hypothesize
that the real actions embed a degree of variability that is not descriptive of the class, but
which may be ascribed to the natural variations in how humans perform a repeated gesture.
Indeed, Table 6.1 shows, in general, how models trained on real samples are robust when
tested on synthetic actions. When the classifier is instead trained on the synthetic data, there
is a drop in the test accuracy over the original data, which are naturally noisier. This claim is
also supported by the distributions of the kinematics features in Figure 6.4, where it can be
noticed how the real data present a broader base with less pronounced peaks.

The proposed strategy aims to enrich the robots’ movements with a communicative
intention. Indeed, even a child-shaped robot like iCub would be able to move objects without
difficulties in the range of weights we considered. However, our purpose is to deliberately
design legible movements to improve human-robot interaction. Other strategies could be
investigated and may prove effective in expressing carefulness in robotic actions, such as
identifying and strictly reproducing only the key communicative factors in the kinematics.
However, GANs can fully capture and reflect the global distribution of human kinematics
during different object manipulations and seem appropriate to reproduce it in an original way.
GANs represent a human-inspired approach that grants biological plausibility, and they allow
preserving in the robot moves the implicit information on the properties of the handled object.
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Thus, by making the robot movements not only effective but also readable and informative
for the human partner. The following Chapters will present the application of the generative
approach on different robots, exploring the implementation of the movements and the effect
of such modulation of the movements during the interaction.



Chapter 7

Synthesis and Execution of
Communicative Robotic Movements with
Generative Adversarial Networks

Manuscript under preparation

Multiple communication channels can be used to share information between robots
and humans: synthetic speech, light-based, digital display, mixed or augmented reality
[54, 101, 133]. However, we believe that whenever it is possible, depending on the context
and the task to accomplish, the most spontaneous form of implicit communication should be
pursued, which is the one mediated by movement. In the context of human-robot collaboration
in object manipulation tasks, it would improve safety and efficiency if the robot could adjust
its motor actions based on the item’s properties. Humans naturally modulate their movements
to reveal information about the context or characteristics of the objects they interact with.
Even though planning movements which are goal-oriented and optimized for efficiency, they
still convey additional information to observers.

In the previous Chapter, we focused on how to create synthetic velocity profiles, suitable
for different object characteristics, using Generative Adversarial Networks (GANs): for
each object feature considered, namely the weight and the carefulness required, we trained
a separate model, resulting in four separate generative networks able to produce velocities
associated with the transport of light/heavy× careful/not objects. The core idea was that,
after adequate training with movements acquired during the manipulation of objects by
humans, GANs could generalize and autonomously generate sufficiently communicative
movements, belonging to the desired class, without having to copy human ones exactly.
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GANs have been commonly used in several research domains, especially in the computer
vision one [169], since they can create novel realistic data after being trained on a set of real
samples. However, their application in the generation of multivariate time series, as human
motion kinematics in our case, has been explored only to a limited extent [20, 177, 48, 112].
In particular, there are a few examples of GANs being used to generate motion in the context
of human interaction [119, 21, 175].

In this Chapter, (i) we introduce a novel conditional generative architecture for synthesiz-
ing velocity profiles associated with the manipulation of objects with different properties;
in particular, the transportation of glasses which required careful (C) or not (not careful,
NC) handling, given the presence or absence of water inside them. We focused on the
carefulness feature to investigate the potential of having a single network producing, if
appropriately conditioned, two distinct classes of data. The same network can be exploited to
generate intermediate and completely new data with respect to the two classes used to train
the network. The communicative effectiveness at the time of movement execution will be
evaluated in the following Chapters, where we will assess if the reproduced movements are
communicative enough of the carefulness property, if the reactions elicited depend on the
modulation of the velocity profile, and finally, how the different embodiment of the robots
influence the interaction. Moreover, (ii), we focus here on the control aspects, transferring
the planned movements on two different robots: iCub [109] and Baxter [52]. These two
platforms show remarkable differences in their appearance and dimension, in the distribution
of the degrees of freedom (kinematic chain), in typologies of actuators and control strategies;
however, they are both provided with two arms and offer the possibility of transporting
objects with their end-effectors. For these reasons, they are particularly suitable for testing
the replicability of our approach, comprising both motor action generation and motor control
and its generalization potential. We evaluate the performances of the two robots in following
the desired trajectories while modulating the velocity of their end-effector according to the
selected velocity profile. In this thesis, we do not explore the control of the secondary joints
of the kinematic chain, but focus exclusively on the trajectories of the end-effector. This
simplification, while it may have an impact on communication, allows us to quickly extend
our approach to different robotic platforms and replicate what happens in human motion.

Why a generative approach

A natural interaction with robots requires them to have a rich motor repertoire. This is
because stereotyped and repetitive movements can make the interaction less natural and fluid.
If we take for example any action performed with an arm, it can be executed with many
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trajectories and different velocity profiles. Although in the literature there are already works
that have attempted to generate movements with different trajectories [119, 175, 21], to the
best of our knowledge, there are no studies on producing movements purposely generating
the velocity profiles, especially if the velocity modulation is aimed to implicitly describe an
emotional state or the properties of the manipulated object. One possible approach to generate
communicative movements would be to perform pre-recorded human movements on the
robots. However, this solution would not make the robots truly “autonomous”. For this reason,
we tried to fill this gap by developing a generative neural network capable of synthesizing new
velocity profiles that are descriptive of the properties of an object manipulated by the robot.
The first goal of our generative model is to obtain synthetic data which preserves the temporal
dynamics of the original time-series. To produce velocity profiles that reflect the two original
classes, C and NC, we exploit a two-step training process. At first, we train an autoencoder
to learn embedded representations of the original time-series. Then, such embeddings are
used to train our cGAN, which generates new synthetic embeddings. The generator can be
conditioned to output embeddings belonging to one of the two classes by giving as input
a vector of labels and a random time-series noise (see Figure 7.1). Finally, a decoder is
employed to reconstruct the time-series from the generated embedded representations. The
main advantage of a generator that directly outputs in the embedded space is that in this way
we encourage the model to focus on the relevant features of the dataset rather than on the
samples themselves [177].

7.1 Methods

In this section I will first present the generative problem statement and the details of the
network design and training. Then, the implementation on the two robots of the movements
following the desired velocity profiles, with a communicative intent, will be addressed.

7.1.1 cGAN design and implementation

Generative problem statement

Suppose to have a distribution pA of time series that describes the process A and another
distribution pB that describes the process B. We want to learn a Generator distribution
pg(z|y), where z is random noise from a normal distribution, that is conditioned by some
extra information y, for example a numerical label describing the target class we want to
generate. Then pg(z|y) can be learned by a generator G(z,y;θg) whose output x should lie in



7.1 Methods 85

(a) Autoencoder Pretraining

(b) Inference

Figure 7.1 Proposed architecture: in (7.1a) is represented how is performed the training
of the encoder/decoder network, to represent the time series in the embedded space. In
(7.1b), are shown the steps for synthesizing a new velocity profile: our model takes as input
random noise and a conditioning label, then the generator outputs in an embedding space
that represents the characteristics of the signal we want to generate. Finally, the previously
trained decoder translates the desired embedded properties into a time series

pA or pB based on the condition y. This learning process is supervised by a Discriminator
D(x,y;θd), which outputs a single scalar representing the probability that x came from
training data rather than pg(z|y).
We propose a conditional model for the generation of time series. Our model consists of four
network components: encoder, decoder, sequence generator, and sequence discriminator (see
Figure 7.1). The training of the first two components allows learning encoded representations
of the time series in the dataset. The adversarial network (generator + discriminator) is
exploited to learn to generate embedded representations in the latent space. These synthetic
embeddings can then be used by the decoder to reconstruct plausible time series. To speed up
the training, all velocity profiles were downsampled and eventually zero-padded to one-third
of the original duration.
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(a) Not careful

(b) Careful

Figure 7.2 Comparison between real and synthetic data: representation of a subset of
the original velocity profiles that constitute the training data (real) and of the time series
synthesized by the GAN, for both the not careful (7.2a) and careful (7.2b) classes. Please
note that there is no one-to-one correspondence between each Real and Synthetic sample:
they are randomly selected to give a qualitative overview of the original and synthetic dataset.
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Figure 7.3 PCA: principal component analysis of the original and synthetic data distributions.
The synthetic samples are close to the target classes but without overlaps, meaning that they
are not copying the originals.

Encoder/Decoder networks

The encoder/decoder networks are jointly trained as an autoencoder before starting the
adversarial training of generator and the discriminator. The encoder/decoder (Figure
7.1a) provide mappings between original time series and latent space, enabling then the
adversarial network to learn about the data underlying temporal dynamics through lower-
dimensional learning. The goal is to learn an embedded representation of the original data.
This compressed representation, together with the output of the discriminator, is used as a
supervision signal during training. In our work we implemented a simple LSTM with one
encoder layer and one decoder layer. The latent dimension of the LSTM encoder was 16.

Generator/Discriminator networks

After the training of the encoder/decoder networks, the generator and the discriminator are
trained. In the generator the prior input noise pg(z) and the conditioning label y (either 0
or 1) are combined in a joint hidden representation. The label is embedded into a vector of
the same size as z, by using a Keras embedding layer, and then multiplied by the z vector,
by using a multiplication layer. The result is fed to the generator which is composed of 1
LSTM layer and returns an embedding. In our case the dimension of z was equal to the
downsampled velocity profiles lengths (43) and the desired embedding dimension was 16.
This compressed representation is exploited for computing the supervised loss as shown in
Eq.7.1.
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argmin
G

max
D

V (D,G) = LGAN(G,D)+λLL2(G) (7.1)

where:
LGAN(G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(z,y))] (7.2)

and:
LL2(G) = Ex,y,z[∥x−G(z,y)∥2] (7.3)

The loss function is composed of two terms, (i) the output of the discriminator, that needs
to be fooled, and (ii) the l2 norm between the embeddings generated and those obtained by
encoding the original data through the pretrained encoder. For stability reasons the L2 loss
can be modulated by a constant factor lambda (λ ), in our experiments equal to 100.

The discriminator takes as input the time-series and the associated label. The label
is again turned into a dense vector of size z (43) by using a Keras embedding layer. The
embedded label is concatenated with the time-series and passed to one GRU layer of size
32 and finally to a densely connected NN layer. This latter outputs the probability that a
given velocity profile belongs to the target class defined by the associated label. We adopted
a learning rate of 0.01 and Adam optimizer with β1 = 0.9 and β2 = 0.999 for both generator
and discriminator. The batch size was 32 and the training lasted 60 epochs. These parameters
might have to be fine-tuned appropriately depending on the considered dataset and domain
of application. At inference time the embeddings produced by the generator can be finally
reconstructed by the decoder. See Figure 7.1b for reference. Some of the velocity profiles
generated by our model are shown in Figure 7.2, while Figure 7.3 offers a 2D visualization
of how the synthetic samples match the original data distributions.

Dataset

We focused on the generation of velocity profiles associated with the transportation of objects
with different properties, exploiting the same dataset presented in Chapter 3, involving four
glasses, identical in shape and appearance, but differing in weight (light: 167 gr; heavy: 667
gr) and content: two of them were completely filled with water, necessitating extra caution
to be moved. The hand kinematics during the transport of the glasses was recorded with a
sampling rate of 22 Hz with active infrared markers. In Chapter 6 we showed how we trained
separate networks for each of the four classes of motion, considering 1001 total transport
movements. In this case, for training the GAN, we considered as feature the carefulness
required and, as dataset, we used the subset of the 502 transport motions involving the light
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Figure 7.4 Robots’ movements direction: the three planes along which the motions were
generated, namely frontal, sagittal and oblique with respect to the robots’ reference frame,
are marked with white arrows.

glasses. This choice was made to avoid extra variability in the data attributed to the weight
difference, while preserving instead the variance associated to multiple movement directions.

7.1.2 Robots’ movements generation

The second part of this work focuses on the possibility of replicating the desired velocity
profiles with the robots end-effector. Independently from the nature of the velocity profile
(either synthetic or recorded from human examples), we want the robots to accurately repro-
duce the desired velocity profiles at the end-effector, following distinct spatial trajectories
and maintaining the most communicative characteristics of the movement. We considered
two robots, the humanoid robot iCub [109] and the collaborative robot Baxter [52], in order
to perform rigorous analysis independently of the kinematics and control of the robots.
Although these two robotic platforms present significant differences in terms of appearance
and kinematics (e.g. spatial configuration of the Degrees Of Freedom) they both share the
ability to interact with humans and to manipulate objects. To assess the ability of the robots
to follow a generic velocity profile, we randomly selected three examples generated among
the careful class (ProfileC1, ProfileC2, ProfileC3), and three among the not careful class
(ProfileNC1, ProfileNC2, ProfileNC3). We also decided to evaluate the movement executions
along three different planes: frontal, sagittal and oblique (intermediate between the other
two). For a graphical intuition, see Figure 7.4. Due to the different kinematic configurations
of the robots, their range of motion and workspace differed. All trajectories generated for
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Baxter covered a path of 60 cm, while those performed by iCub were about 30 cm, depending
on the plane on which the movement occurred. Finally, for each of the six selected velocity
profiles and of the three trajectories, we executed the same movement ten times, to measure
the robots’ consistency in repeating the actions. See robotMovements-videos1 for a clear
view of the generated movements. To avoid any risk of damaging the robots’ electronics with
water, in the demonstrative videos we opted for showing a soft cube to represent a not careful
transport motion and a pair of glasses as an example of a delicate object to move with caution.
For both robots, we saved the end-effector Cartesian position during the trajectory execution
for subsequent analyses. In particular, we computed the tangential velocity magnitude of the
end-effector to compare it with the one planned by the controllers.

Baxter robot

We decided to control the Baxter Robot with MoveIt!, the standard ROS motion planning
framework [31]. This framework is familiar to all those who use Baxter without necessarily
installing additional software or possessing advanced knowledge of control theory. We
first remapped the selected velocity profiles to fit the desired movement length, we kept
constant the temporal duration of the action while modulating the magnitude of the velocity.
This operational choice is supported by the isochrony principle. In human actions, the
average speed of point-to-point movements rises with distance, and movement duration
is only slightly dependent on movement range [166]; indeed, there are multiple proofs of
time-invariance in the upper limb movements [4, 10].

Since our conditional network produced velocity profile norms, they were independent
of the spatial trajectory. Fixed the desired start and end point of the trajectory, in Cartesian
coordinates, we used Moveit! to plan the intermediate spatial points that the end-effector
had to go through. Such desired trajectory consisted of n Cartesian points equally spaced by
0.01 m. The choice of using a fixed spatial step, while intervening on the temporal execution
was driven by the MoveIt! controller implementation. MoveIt! was asked to plan a joint
trajectory defined by these Cartesian points, as a sequence of poses in the joints space. Then,
knowing the number of samples generated by Moveit and the velocity profile that we wanted
the end-effector to follow, we computed the timestep by which each trajectory point had to
be reached. By doing this, it was possible to define the Cartesian velocity of each spatial
step and the desired velocity profile was replicated. Finally, we gave as input to the ROS

1Movements execution on Baxter and iCub robots
https://www.youtube.com/playlist?list=PL9sy5y8WKC4kX4AMGCdXYneK6-VqaR4M5

https://youtube.com/playlist?list=PL9sy5y8WKC4kX4AMGCdXYneK6-VqaR4M5
https://www.youtube.com/playlist?list=PL9sy5y8WKC4kX4AMGCdXYneK6-VqaR4M5
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Joint Trajectory controller2 the sequence of joints to be reached, defined by Moveit!, and the
vector of timesteps.

iCub robot

Similarly to Baxter, we controlled the iCub robot with its default “Cartesian Controller"
developed by Pattacini et al. [124]. Also on iCub we have implemented movements that
preserved the duration of the synthesized velocity profile; for this reason, the number of
samples and the magnitude of the velocity norm had to be scaled to adapt to the different
Cartesian trajectories. On iCub, the end-effector controller required to maintain a constant
timestep between adjacent trajectory points: in order to replicate the desired velocity profile,
we then varied the Euclidean distance between the spatial Cartesian points.

7.2 Results

7.2.1 Robots’ Movements Assessment

To assess the performances of the controller in replicating our reference velocity profiles, we
compared the executed movements with the desired ones. First, in Sec. 7.2.1, we provide a
qualitative overview of the performed motions. Then, we compare the maximum velocity
amplitude reached with the desired one; this, to investigate whether the robots can reach the
same range of velocity that humans apply when manipulating objects, delicate or not (see
Sec. 7.2.1). Finally, we compute the Pearson correlation between each executed velocity
profile and the planned one (see Sec. 7.2.1).

As previously explained in Sec. 7.1.2, we randomly selected from our dataset three
velocity profiles to exemplify the C class and three for the NC one. We then considered
three possible directions for the robots’ end-effectors to move: along the frontal, sagittal, and
transverse planes. Each velocity profile was rescaled according to the selected trajectory, and
each movement was repeated ten times, to assess the robot’s repeatability. This led us to
have, for each one of the three directions, ten repetitions of the same movement for each of
the considered velocity profiles.
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(a) Not careful - ProfileNC2 (b) Careful - ProfileC1

Figure 7.5 Baxter executed velocity profiles: The represented profiles are respectively
ProfileNC2 for the not careful class (7.5a) and ProfileC1 for the careful one (7.5b). Ten
repetitions of such profiles are executed along three different movement directions: frontal,
sagittal and oblique. The mean of the velocity executions is a solid line, while the standard
deviation is a more transparent area of the same color. The desired velocity profile is dashed
and it is identical in the three directions, since the distance covered by the Baxter robot was
the same.

(a) Not careful - ProfileNC3 (b) Careful - ProfileC3

Figure 7.6 iCub executed velocity profiles: The represented profiles are respectively
ProfileNC3 for the not careful class (7.6a) and ProfileC3 for the careful one (7.6b). Ten
repetitions of such profiles are executed along three different movement directions: frontal,
sagittal and oblique and the graphical conventions are the same of Figure 7.5, with the desired
velocity profiles dashed.

Movement execution

In Figure 7.5 is shown how the Baxter robot executed, along the three different planes,
one among the three selected not careful (7.5a) and careful (7.5b) velocity profiles. Even
though the movement repetitions along the same direction are comparable, with a very low
intra-class variability, some trajectories appear more suitable than others in reproducing the
velocity at the end-effector; it can be noticed how, for the not careful movements (Figure
7.5a), along the frontal plane the velocity peak reaches the desired one, while in the sagittal
one it remains lower. The execution of the careful movements (Figure 7.5b) shows no delay
with respect to the planned velocity, with the profile peak and shape preserved for all the
movement directions.

2http://wiki.ros.org/joint_trajectory_controller

http://wiki.ros.org/joint_trajectory_controller
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(a) Baxter robot (b) iCub robot

Figure 7.7 Amplitude of the velocity peaks: the desired amplitude is marked with a black
dashed horizontal line for Baxter (7.7a) robot, while it follows the color code for iCub (7.7b):
blue for frontal movements, orange for oblique and green for the sagittal ones. The red lines
in the boxplots represent the medians, the black rectangles limit the 25th and 75th percentiles
of the executed velocities. Since iCub covered paths of varying length, depending on the
direction, we report in Figure 7.7b the boxplot for each plane.

Regarding iCub, in Figure 7.6 are represented two other velocity profiles among the
selected ones, different from those represented for Baxter in Figure 7.5, one for the NC (7.6a)
and one for the C (7.6b) class. On this robot, the shape of the not careful profiles is well
aligned with the planned movement, and the velocity amplitude almost meets the desired
one. Considering Figure 7.6b, a small delay between the planned and executed movements
can be noticed for the Oblique and Sagittal directions.

Maximum velocity

In Figure 7.7 is represented as a boxplot the maximum speed reached by the two end-effectors
for the three careful and not careful selected velocities among all the repetitions. The planned
maximum velocity is represented as a dashed line. The color code distinguishes the planes of
the action execution: green along the sagittal plane, orange for the oblique and blue in the
frontal.

For the Baxter robot (Figure 7.7a), the desired maximum speed is indicated by a single
black horizontal bar; since the trajectories along the three planes covered the same distance
of 60 cm, the associated velocity profiles were rescaled in the same way by the controller.
Therefore, the Baxter robot was required to reach the same maximum speed independently
from the movement direction. While the distribution of NC movements do not reach the
desired speed, for most of the trials, the careful amplitudes are generally comparable with
the planned one, with some variability depending on the trial considered. As anticipated
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by Figure 7.5, some trajectories are more suitable than others in reproducing the desired
speed, and this reflects also in the maximum peak distributions. Indeed, Baxter reached
different maximum speeds depending on the direction: for both the NC and C classes, and
independently from the selected velocity profiles, the movements along the sagittal plane, in
green, have the lowest maximum speed, followed by the ones in the oblique plane and lastly
by the ones in the frontal plane, in blue, which are closest to the desired maximum speed.
This reveals a trajectory dependency in the Baxter performances, that should be taken into
account when generating new movements.

Considering iCub, the path covered along the three planes differed, due to the range
of motion of each joint in the kinematic chain: the workspace along the three planes was
different. Therefore, the same original velocity profile was rescaled differently for the three
movements (see Figure 7.6, where examples of the desired velocity profiles for the NC and
C classes are mapped in the three directions). Figure 7.7b reports the speed distributions
with colored dashed lines indicating the desired values; it can be appreciated how, in most
of the cases, the distribution associated with each direction of motion is comparable with
the corresponding planned values. In particular, the oblique direction in orange required
faster movements, while the sagittal one in green was the slowest. This was deliberately
planned in advance for the iCub robot, according to the trajectory, as confirmed by the dotted
reference lines. However, it can be noticed how, for the NC class, iCub executed peaks are
systematically lower than the desired ones, with the exception of the oblique trajectories with
ProfileNC2, which are totally satisfying.

Pearson Correlation Coefficient

Finally, in Figure 7.8, we considered the Pearson correlation coefficient to evaluate how well
the executed velocities are related to the planned ones. In Figure 7.8a are represented the
correlation coefficients for every trial obtained with Baxter robot. For the not careful class,
the median correlation settles in the 94−95% range, while in the careful class is above the
98% in all the three trials. Baxter robot efficiently explored the trajectories, maintaining
a good correlation with the desired velocity, especially in the careful movements, which
required lower speeds. The same reasoning was applied for iCub robot, and the resulting
correlation coefficients are represented in Figure 7.8b. Differently from Baxter, the best
results were obtained in the not careful, faster movements, with a median correlation above
98%. The careful executed movements were however well correlated with the planned
ones, even though ProfileC3 showed a wider distribution. This example is the same whose
velocity profiles are reported in Figure 7.6b, where a delay between the planned and executed
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(a) Baxter robot (b) iCub robot

Figure 7.8 Pearson correlation on Baxter (7.8a) and iCub (7.8b) robot. For every movement,
the correlation has been calculated between the planned and the executed velocity profile.
The graphical conventions are the same as in Figure 7.7, with blue dots for frontal movements,
orange for oblique and green for the sagittal ones.

movements can be detected in the sagittal and oblique trajectories. This reflects in the Pearson
correlation.

7.3 Discussion

We can identify two main goals in this Chapter: (i) to artificially generate velocity profiles
associated to the manipulation of object properties, exploiting generative networks and (ii)

to assess whether two different robots can replicate human-like velocity profiles.
Regarding (i), we proposed a novel conditional GAN architecture that generates new

synthetics embeddings, belonging to the C and NC class, depending on the provided condi-
tioning label. We showed that our network is able to generate meaningful synthetic profiles,
belonging to the same distribution of the original ones without exactly replicating them.
Having a network producing artificial samples, instead of simply copying human examples,
grants an unlimited source of movements, always different and unique, yet consistent with the
object’s properties and as communicative as human ones. Moreover, by using a conditional
network, we could potentially generate data intermediate to the two initial classes, therefore
completely new for the velocity profiles used to train the model. However, the meaning of
such intermediate profiles, also in the execution phase, should be properly investigated and
assessed in future studies.

Concerning (ii), we controlled two quite different robots in performing movements
following the selected velocity profiles, proving that it is possible to replicate the same
kind of movements with their end-effectors. From the analyses presented in Sec. 7.2.1, we
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can generally conclude that both the robots successfully executed the trajectory with the
desired velocities. The other considerations are tailored to the two robots, but are meant to
discuss what kind of robot characteristics can impact the synthesis of communicative robotic
movements. The amplitude of the executed movements was different between the two robots,
due to their dimension, shape, and structural design. While all Baxter trajectories covered
60 cm, iCub (a smaller robot) trajectories ranged around 30 cm, with variability depending
on the considered plane. For this reason, even though the original velocity profiles were the
same, they were re-scaled differently on the two robots, to cover a different distance with the
same duration. Considering the two classes, C and NC, we detected a difference in the robots’
executions. Indeed, according to the Pearson correlation coefficient in Figure 7.8, Baxter
performed better in replicating the careful profiles, with lower accelerations and intensity,
while iCub correlation with respect to the desired profile was higher for the not careful class.
Figure 7.7 helps better understand the distinction between the two robots. Baxter presents
a strong variability in the maximum velocity reached depending on the three directions of
movement and, especially for the NC class, it fails to meet the planned magnitude. iCub
shows more uniform performance with respect to the movement directions, however in the
NC class we notice again a disparity between executed and planned velocity peaks. This is
an important result for future interaction experiments, where the movement directions should
be chosen along the most appropriate plan.

The lower performance detected with Baxter may be attributed to a combination of some
mechanical limits of its actuators and of MoveIt!. Indeed, Baxter is a low-cost manufacturing
platform with well-known constraints, due to the choice of prioritizing safety over accuracy
in its movements [33]. The discrepancy detected on the planes where the movement occurs
can be explained by a different involvement of the joints during the action. Such difference is
noticeable, especially for the NC movements, which required higher accelerations (see Figure
7.5a). Baxter, in the first part of the movement, is not able to keep up with the acceleration
of the planned profile, causing a delay of the moment when the maximum peak speed is
reached. According to the available information [1], Baxter is able to reach speeds up to 1
m/s, hence the generated NC profiles are in the correct range, however it may need a longer
time to achieve such magnitudes.

We can conclude that our approach successfully generates meaningful velocity profiles,
and that it is possible to reproduce with different robotic platforms movements belonging
either to the C or NC class. However, robots limitations should be taken into account when
pursuing a similar approach. The advantage of using MoveIt! to control Baxter is that our
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method can be easily exported to any other robotics platform based on a ROS framework, for
further testing with robots with different characteristics.

Even though the tested movements were associated with the manipulation of objects
with peculiar properties, our approach offers a much broader perspective on the generation
of communicative movements. Indeed, the controllers we designed can potentially follow
any kind of velocity profile, obviously staying within the motion limits of the robots. For
this reason, given the availability of a proper dataset to generate the velocity input, the
end-effector could be controlled to communicate other objects’ properties, such as the weight,
or even an emotional attitude in the gesture, such as a gentle or a rude one.

In this work, we chose to focus on the trajectory of the end-effector to extend the domain
of applicability of our approach: a one-to-one mapping of the human motion would be
feasible only for those robots with a strictly human-like kinematic chain. Instead, the
modulation of the end-effector motion is possible on most robotic platforms, exploiting
standard algorithms to solve the inverse kinematics and motion planning. The following
Chapter will address how the movements generated with iCub and Baxter are perceived
by humans. Indeed, it remains to be assessed whether is sufficient to modulate the end-
effector adopted velocity to communicate the carefulness in the gestures or if other joints
in the kinematic chain should be properly controlled. Given the implementation on two
quite different robots (iCub, humanoid, and Baxter, collaborative but with an arm kinematic
chain far from the human one), their movements, even if controlled with the same principle,
could produce a very different effect on the interaction. Alongside the perception of the
communicative intention of the robot, we will investigate its effect on how humans interact
with the robot and carry out their own tasks.



Part III

The effect of implicit communication:
towards the interaction



Chapter 8

Robots with different embodiments can
express and influence carefulness in
object manipulation

Elaboration of an article published in:

International Conference on Development and Learning (ICDL 2022) [91]

8.1 Introduction

The previous Chapter presented two main contributions: a novel generative network for
producing velocity profiles associated with the transport of an object and the control of
different robotic platforms to reproduce with their end-effector the desired time-series. Such
an approach arose from the necessity of producing communicative robot motion associated
with manipulating objects with certain characteristics, in particular, to show carefulness, or
its absence, in the gesture. However, if, from a technical point of view, the strategy proved to
be solid, it still has to be assessed its efficacy in communicating the desired attitude of the
robot.

As a broad review by Venture and Kulić points out [162], robots can exploit their
embodiment to be communicative while performing a task to transmit more information to
their partner. In particular, research on implicit communication focuses mainly on two goals:
conveying the robot’s intentionality or affective/emotional attitude. Another context where
robots’ communicative potential has been explored is the co-verbal one: generating human-
like gestures correlated with speech makes the robot more understandable and perceived
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positively [138, 164]. In this Chapter, we want to investigate implicit communication
associated with object manipulations performed by two robots with different embodiments,
designing their movements to express carefulness or not during the transportation of objects.

Research questions and objectives

To provide the same amount of information about the object they are carrying, robots
should modulate their kinematics accordingly, improving the task’s safety and efficiency.
Although from a technical point of view, we showed how robots could replicate those motions
preserving the original kinematic qualities, we have no evidence that this allows robots to
communicate the carefulness associated with an object to a human. To the best of our
knowledge, there are no works in literature where the perception of the robot arm kinematics
modulation, associated with the transport of objects with specific characteristics, has been
investigated. In this context, the research questions we aim to target are the following:

1st Research Question (RQ1): Are human-derived motions enough for the robot to
communicate the carefulness required to transport an object?

2nd Research Question (RQ2): Can the carefulness demonstrated by a robot influence
how humans handle objects?

3rd Research Question (RQ3): Do different robot embodiments affect the carefulness
perceived by humans?

To explore these research questions, we deployed the solution proposed in the previous
Chapter to generate transportation motions on two different robotic platforms: iCub and
Baxter. Due to their different conformation, these two platforms are suitable for exploring the
possible effect of the embodiment RQ3. Videos recorded with the two robots have been used
to investigate RQ1 through an online questionnaire and RQ2 with an in-presence experiment.
Even though we are aware that the physical presence of robots has a stronger effect on the
interaction [93], using videos allowed us to test simultaneously, if and how the appearance of
the robot would influence the same set of participants.

8.2 Methods

We decided to address RQ1 by preparing a questionnaire including a few videos of Baxter
and iCub transporting a blurred object, with what we programmed as a careful (C) or not
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careful (NC) attitude. Participants were asked to evaluate the movement’s carefulness, on a
five-points Likert scale from “Not careful" to “Careful" (carefulness score). Moreover, we
presented a list of common-use objects and asked how careful we should be in transporting
such items on the same scale. This is to clarify the concept of carefulness and to under-
stand which attributes make an object more or less delicate to carry from the participant’s
perspective. Indeed, even though we generate robot motions focused on respecting the
appropriate velocity profile, it could be necessary to consider other factors according to the
object characteristic inducing carefulness. For example, while manipulating fragile objects,
we want to minimize the risk of collisions.

Concerning RQ2, we opted for a within-subject in-presence experiment. In this case,
participants transported a sensorized cube after watching videos of one of the robots carrying
the same item, again either with a C or NC attitude. The experiment allowed us to investigate
if participants, with no prior knowledge of the robots’ attitude, would be influenced by their
movement to the point of modulating their kinematics.
Both the experiments, relying on videos realized with different robotics platforms, will also
allow quantifying RQ3. In the following part, we will give a short overview of how we
generated iCub and Baxter movements. Then, we will describe the questionnaire. Finally,
we will present the in-presence experiment setup.

Generating communicative movements on robots

To produce the movements of the two robots along the frontal plane, we followed the approach
described in Chapter 7. We selected a subset of careful and not velocity profiles and controlled
the robots’ end-effectors to follow them. To prepare the stimuli for the questionnaire and
the in-presence experiment, we recorded videos of iCub and Baxter moving the same object,
a green cube, along the frontal plane. In particular, we used 2 distinct velocity profiles
per condition (C/NC) per robot, resulting in 8 videos for the online questionnaire, while
6 videos for each combination for the experiment, resulting in 24 different videos. Baxter
trajectories had a range of 60 cm. Instead, iCub ones were shorter, around 20 cm, due to its
kinematic configuration and, since the movement’s original duration was preserved, slower
than Baxter ones. Indeed, the movements in the videos were characterized by a maximum
velocity reached by the end-effector in the not careful condition of 0.281±0.037 m/s for
iCub, and of 0.871± 0.080 m/s for Baxter. In the careful videos instead, iCub reached a
maximum velocity of 0.145±0.061 m/s, while Baxter of 0.312±0.049 m/s. Regarding the
end-effector mean velocity, we report in the not careful condition for iCub 0.137±0.023
m/s, while for Baxter 0.348±0.129 m/s. In the careful videos, iCub had a mean velocity
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(a) Baxter robot

(b) iCub robot

Figure 8.1 Frames of the videos portraying the transport of a green cube along the frontal
plane. Baxter (8.1a) is at the beginning of the movement, while iCub (8.1a) at its end. The
dashed arrows represent the trajectory of the movement, which starts from the white dot and
develops in the direction of the arrow.

of 0.076±0.032 m/s, while Baxter of 0.132±0.048 m/s. As an example, in Figure 8.1 are
shown two images taken from the videos.

8.2.1 Online questionnaire

At the beginning of the questionnaire, we asked participants their age, gender, and general
knowledge about robotics, with possible answers going from 1 (“None - I have no idea what it
is") to 5 (“Professional - I work, or worked, in the area of robotics"). In the first part, we asked
them to observe the 8 C/NC videos of Baxter and iCub moving their end-effector, presented
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(a) Participant watching one of the iCub’s
videos where it transports the sensorized cube

(b) The participant places the cube in the indi-
cated position, after watching the video

Figure 8.2 Example of the experimental setup where the participants were asked to manipu-
late the cube (8.2b) after watching a video of one of the robots transporting it (8.2a).

in random order. In the questionnaire, the videos of Baxter’s and iCub’s movements had the
same setting as in Figure 8.1, but the end-effector was blurred. For each video, participants
had to rate from 1, “Not careful" to 5 “Careful" the observed action, answering the question
“How attentive was the robot in moving the object?". Indeed, they were told the robot was
moving a cubic container, and since the end-effector was blurred, they could not see what was
inside it. In the second part, we proposed a list of 12 items and asked to imagine they would
have to be carried around. The instructions to this part stated ‘For each of them, evaluate
how much attention and care should be associated with the manipulation", again on a scale
from 1, “Not careful" to 5 “Careful". We chose the items among everyday use objects, and
they were: glass full of water till the brim, rubber ball, pair of scissors, worn out pelouche,
lit candle, wooden cube, origami, plastic bottle, crystal cup, USB charger, face mask and a
pair of glasses. 49 people (age: 25.5±5.7, 25 females, 23 males, 1 non-binary/genderfluid)
freely chose to answer the questionnaire.

8.2.2 In-presence experimental setup

We ran an in-person experiment to see if, beyond understanding the carefulness in the robots’
movements when explicitly questioned about it, observing the robots’ actions could influence
how a person carries an object. The experiment involved 11 healthy right-handed subjects that
voluntarily agreed to participate in the data collection (8 females, 3 males, age: 26.5±3.1).
All volunteers are members of our organization, but none is implicated in the research.
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For this study, we used 6 videos per robot per condition, for a total of 24 trials, reproduced
in casual order and with casual direction of the robot movement: always on the frontal plane,
but going either from right to left or vice versa, by mirroring the video.
During the experiment, participants were asked to look carefully at the video displayed on
the monitor in front of them (see Figure 8.2a) and afterward, following the instruction given
by a synthetic voice, to move the cube they would find in front of them either to position A
or B, marked by a colored paper square on the table (see Figure 8.2b). The object they had to
move was the iCube, a green sensorized cube of side 5 cm [152].

Each participant was asked to read the same instructions carefully designed so as not to
introduce bias in the experiment. In particular, we explained that they would watch videos
of the robots transporting the iCube. We used several prototypes of this cube, aesthetically
indistinguishable but more or less delicate depending on their assembly state and internal
components. At this point, we showed a box containing three iCubes to be used for the
experiment. Even though we actually used only one of them, the purpose of having three
was to avoid participants assuming a priori a binary interpretation of the videos (C or NC,
even though this was exactly what we implemented in the robot actions). At the end of each
trial, the participants were asked to close their eyes, for the experimenter to place a new cube
in the starting position without influencing them with how the cube was moved. A sound
informed the subject to open their eyes and prepare to watch a new video. We explained that
the purpose of the experiment was to simulate a collaboration between the robot in the video
and the participant. So, they were asked to imagine that, in every trial, the cube on the table
was the one manipulated by the robot in the video, who virtually deposited it on the table
for them to grab. To avoid a simple copy of the observed movement, as already proposed in
other studies [98], while the robots’ actions occurred in the frontal plane, the participants
moved the iCube in the sagittal direction. Before starting with the video reproduction, we ran
a baseline of 6 trials with no stimuli, for the participants to familiarize with moving the cube
from the starting position to the ones in A or B. To precisely record the hand kinematic during
the transport of the cube, we used active infrared markers from the Optotrak Certus®, NDI,
motion capture (MoCap) system, which gave the 3D position of each marker with respect
to a common reference frame, with a frequency of 100 Hz. We positioned four markers on
the metacarpal bones of the right hand and considered for further analyses the most visible
one in each trial. For the purpose of this study and the sake of space, we report the results of
the analysis of the kinematics data coming from the motion capture system and not those
recorded through the iCube.
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8.3 Results

To analyse the acquired data, we used Jamovi software [2], in particular the GAMLj module
[55] for mixed models.

8.3.1 Online questionnaire

To assess if the implicit information embedded in the robots’ movements is communicative
of their carefulness, we first evaluated the responses regarding the perceived carefulness in
the videos observed by the participants. Considering that two videos were presented for
each robot in the C and NC conditions, each participant evaluated 8 videos, resulting in
a total of 392 carefulness scores, ranging from 1 (NC) to 5 (C). From these data, we ran
a mixed model assuming the carefulness Score as dependent variable, the robot type, the
condition and their interaction as factors, and the subjects as cluster variables. The resulting
metrics are shown in Figure 8.3. The effect of condition resulted significant (NC −C,
estimate =−1.041, SE = 0.0878, t =−11.85, p < 0.001) as well as the effect of the robot
(iCub−Baxter, estimate = 0.429, SE = 0.0878, t = 4.88, p < 0.001). Moreover, also the
interaction between robot and condition is significant (care f ul ·Baxter, estimate = 0.531,
SE = 0.1756, t = 3.02, p = 0.003). These results indicated that the videos showing what
we planned as careful movements were significantly perceived as more careful, getting a
score higher by 1.041. Also, iCub was generally perceived as more careful than Baxter.
The carefulness score attributed to Baxter videos covered a wider range, with a stronger
difference between the C and NC conditions (see Figure 8.3). For both robots, the not careful
movements were perceived as rather neutral on the Likert scale.

Regarding the carefulness score associated with the proposed 12 items, the results are
shown in Figure 8.4. The answers allowed to create a scale going from the objects which
were considered not critical to be transported, such as the rubber ball, to the one which
requires the highest attention in the manipulation, that is the glass of water full till the brim.
Bringing together the results of the carefulness scores attributed to the robots’ videos, in
Figure 8.3, and to the proposed objects, in Figure 8.4, we could evaluate for which items
on the list the robots’ movements might be considered suitable. On average, none of the
robots’ movements seem adequate to move the items evaluated as delicate as the Lit Candle,
onwards. iCub NC movements obtained a carefulness Score which could match the Scissors

and Pair of Glasses. Even though we did not ask specifically about the item, we can posit
that iCub NC movements are suitable, in general, to manipulate objects with an equivalent
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fragility. Following the same reasoning, Baxter NC attitude seems suitable for those objects
which obtained a neutral evaluation, as the Origami.

Figure 8.3 Carefulness perception of Baxter and iCub videos proposed in the questionnaires.
Both robots were perceived as significantly more careful when executing the movements
planned as careful. Moreover, there is a significant difference in the perception of the two
robots in both conditions, more striking in the not careful one.

Figure 8.4 Carefulness score obtained by each item proposed in the questionnaire. The
colored boxes represent the 25th and 75th percentiles, the black horizontal line the median.
The single dots are outliers.
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8.3.2 In-presence experiment

From the results presented in the previous part, we verified that the movements produced
with iCub and Baxter were indeed perceived as more or less careful, and coherently with
what we planned. The aim of the in-presence experiment was to go a step further and to
investigate whether the carefulness modulation of robot motion was sufficient to affect how
participants performed their own movements. To answer this question, we computed the
hand velocity norm from the components of the velocity, obtained by deriving the three-
dimensional position of the considered marker. As a metric to quantify the modification
of human movement, we considered the maximum velocity reached and the duration of
the transport movement performed after watching the video. Indeed, previous studies [45]
and our findings in Chapter 6 showed that the velocity peak is a significant measure to
distinguish between careful and not careful movements: in particular, careful movements are
characterized by lower velocities and longer durations.

Figure 8.5 Kinematics modulation of the cube transport movements performed by partici-
pants. The hand velocity is significantly modulated by the condition of the video associated
to the movement: when the robot performed a not careful movement, participants reached a
significantly higher maximum velocity than when the robots showed a careful attitude. There
is also a significant effect of the robot.

In the in-presence experiment, six videos were presented for each robot in the C and
NC conditions, for a total of 24 trials for each of the 11 participants. We ran a mixed
model assuming the magnitude of the velocity peak as the dependent variable and the robot
type, the condition and their interaction as factors, and the subjects as the cluster variable.
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The effect of condition resulted significant (NC−C, estimate = 0.0841, SE = 0.0127, t =

6.60, p < 0.001) as well as the effect of the robot (iCub−Baxter, estimate = −0.0608,
SE = 0.0128, t = −4.77, p < 0.001). The interaction between robot and condition was
instead not significant (care f ul · Baxter, estimate = −0.0266, SE = 0.0255, t = −1.04,
p = 0.297). The results are shown in Figure 8.5. It can be noticed that the transport
movements performed after a careful video stimuli have indeed lower peaks of velocity,
with an estimate of the velocity reduction equal to 0.841 cm/s. There is also an effect of
the robot, with the videos of iCub soliciting slower movements, with an average reduction
in the peak speed of −0.608 cm/s, with respect to Baxter. This is in agreement with what
we found from the questionnaires, where iCub movements got a higher carefulness score
(see Figure 8.3). For the duration of the movement, we ran the same mixed model using
the temporal duration as dependent variable. Again, we found a significant effect of the
condition (NC−C, estimate = −0.1796, SE = 0.0233, t = −7.70, p < 0.001) and of the
robot (iCub−Baxter, estimate = 0.0886, SE = 0.0233, t = 3.80, p < 0.001), not of their
interaction (care f ul ·Baxter, estimate = 0.0758, SE = 0.0466, t = 1.63, p = 0.105). When
moving the cube from the starting position to the final one, the covered distance was always
about 30 cm, so the time difference detected depends on how the participants modulated their
movement speed. Confirming our hypothesis, after observing careful robot manipulations,
participants moved the cube in a slower way, with an estimated increase of duration of 179.6
ms. Analogous considerations were verified as well for other kinematics metrics, such as the
mean velocity of the transport or its maximum acceleration.

As an additional control, we also compared the movement duration and the velocity peak
of the transport after the video stimuli with those of the cube manipulation in the initial
baseline, when no videos were presented and participants performed a simple pick and
place of the cube. We ran two mixed models, one for each kinematic metrics as dependent
variable, the condition (baseline, C or NC) as factor, and the subjects as cluster variable.
The results for the velocity peak metrics are shown in Figure 8.6. For both the metrics, we
obtained a significant difference between the Baseline and the careful condition (Movement
duration, C−Baseline: estimate= 0.1296, SE = 0.0282, t = 4.59, p< 0.001; Velocity peak,
C−Baseline: estimate =−0.0644, SE = 0.0163, t =−3.94, p < 0.001). This shows that
when the robots displayed an attentive attitude, the participants moved significantly slower
than they would have naturally. Instead, the models did not evidence a significant difference
between the Baseline and the NC condition, even though, as shown in Figure 8.6, participants
produced slightly faster and shorter movements than during the baseline (Movement duration,
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NC −Baseline: estimate = −0.0497, SE = 0.0282, t = −1.76, p = 0.08; Velocity peak,
NC−Baseline: estimate = 0.0196, SE = 0.0163, t = 1.20, p = 0.231).

Figure 8.6 Comparison of the maximum velocity reached during the cube transportation in
the different phases of the experiment: the baseline, when no stimuli was provided, and the
main part where either careful or not careful videos were presented. There is a significant
difference between the baseline and the careful condition.

8.4 Discussion

In this Chapter, we aimed to answer three main research questions: RQ1 assess if the implicit
information embedded in the robots’ movements is perceived; RQ2 evaluate the potential
modulation produced by the robot movements on how humans handle objects and, RQ3,
investigate whether the robots’ embodiment affects how their actions are perceived.

Even though the idea of carefulness associated with object manipulation has already been
explored, it is not easy to give an unequivocal definition of the term. For instance, unlike
weight, carefulness cannot be measured with a defined scale. From the questionnaire answers
in Figure 8.4, about grading the carefulness required for manipulating common-use objects,
what emerges is that the concept of carefulness does exist and it is shared among people.
Moreover, the emerging gradation correlates with distinct attributes of the items, which
may contribute to making an object delicate to handle: the content (glass with water), the
material (crystal), the preservation of the object state (lit candle), the value (pair of glasses)
or the potential danger (scissors). The questionnaires outcomes positively confirmed that
the movements we produced, with both the robotic platforms, were indeed communicative
of the desired feature, that is the presence or absence of a careful attitude in the action (see
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Figure 8.3). Moreover, the robots’ gestures proved to be efficient in soliciting a motor change
in the participants: the simple request to imagine a collaboration with the robot, such as
virtually carrying the same object, was enough to bring out a motor adaptation, even along
a different direction with respect to the plane where the robot action took place. In a real
one-to-one human-robot collaboration, the modulation of human movements in response to
the robot ones could become even stronger. Interestingly, we found an effect of the robot:
iCub was perceived as generally more careful in its movements, while Baxter presented a
more marked difference between the two conditions. The same result also emerged when
comparing the kinematics metrics of the in-presence experiment, presented in Section 8.3.2:
iCub videos solicited slower actions by the participants, i.e., more careful manipulation of the
cube they found on the table. We can ascribe this to two main factors: how the movements
were generated and the embodiment of the robots. As explained in Section 8.2 and in the
previous Chapter with more detail, when controlling the robot end-effector to follow the
desired trajectory with a velocity profile of choice, in our implementation, the duration of
the original movement is preserved; this means that for longer trajectories the velocity of
the movement needs to be higher, whereas for shorter paths the original velocity profile
is stretched. The different sizes of the two robots cause the trajectories covered by iCub
to be shorter and lower the speed of its movements. iCub’s appearance is more human
than Baxter’s, not only in the hand shape but also in the kinematic configuration of its arm;
this could lead people to identify themselves more with its movements and perceive them,
regardless, as more delicate. However, the difference between the C and NC conditions
in both robots was significant for the carefulness score attributed to the videos and for the
kinematic measures of motor contagion. Hence, even with a platform not designed to have
an anthropomorphic shape - such as Baxter - a bioinspired modulation of movement speed
effectively communicates motion carefulness. The movements we implemented were rated
as going from a rather careful attitude to a neutral one. Indeed, what we labeled as not careful
movements, were perceived as neutral and Figure 8.6, allows to better understand better how
a C or NC movement is modulated with respect to standard baseline actions. In everyday life,
moving objects in a not careful manner seems to be the natural way of transporting them: the
kinematics modulation emerges when we are challenged with a difficult task or if we want to
show caution. This seems reasonable to optimize the actions’ efficiency and should also be
considered when programming robots’ behavior.

In the next Chapter we will present how the same approach can be applied to a robotic
manipulator, with kinematics far from the human one, studying an in-presence dyadic
interaction.



Chapter 9

The effect of robot communicative
motions in a joint task

Elaboration of two articles
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The studies presented in this Chapter were conducted at the Institute for Systems and
Robotics (ISR), Instituto Superior Técnico (Universidade de Lisboa), Lisbon, Portugal, with
the supervision of Professor José Santos-Victor and the collaboration of Nuno Ferreira Duarte,
whom I would like to thank sincerely.

9.1 Introduction

How we perform our actions naturally embeds information on the features of the object trans-
ported. Collaborative robots can transmit information in an analogous way by modulating
the strategy used to transport objects with their end-effectors, as explored in Chapter 8. This
possibility can promote spontaneous interactions by making an implicit yet effective com-
munication channel available. In this Chapter, we investigate if humans correctly perceive
the implicit information shared by a robotic manipulator through its movements during a
dyadic collaboration task and the eventual advantages of using an expressive controller with
respect to a neutral one. Hence, we move a step forwards by applying the generative methods
presented in Chapters 6 and 7, to produce communicative motions with a robot that is not
humanoid and whose arm configuration and kinematics are distant from the human one.
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We designed two collaborative experiments.
In the first one, the robot was tasked with grasping a set of plastic cups and passing them to
the human partner, who needed to sort the simulated characteristics of the glass based on the
robot’s behavior. This allowed us to investigate not only the perception of the robot’s attitude
but also to measure the effect, if any, of the communicative modulation on the human task.
Indeed, with respect to the study presented in the previous Chapter, which was carried out
through videos, having a real dyadic interaction grants a stronger assessment of the implicit
communication going on.

In the second one, we propose a novel and realistic interaction between humans and
robots where the parts have to collaborate in handling cups with different content: empty or
filled with water almost to the brim. The robot receives the cups from the human and sorts
them, adopting a neutral motion controller or our proposed expressive one that generates
movements designed according to the cup content, depending on the experimental condition.
In this case, we studied the human kinematics adaptation in the reaching and transport of
the cups, the efficacy of the robot in completing such a challenging task, and participants’
preferences between the two experimental conditions.

It must be mentioned that in the same work, it was also validated an online classifier
to differentiate careful/not careful human movements, associated with the cups’ content.
Results showed that the carefulness during the handover of full cups can be reliably inferred
online, well before action completion. However, the classifier design and development were
defined independently from my thesis work [44, 45], hence its detail will not be reported.

Research questions and objectives

We explore the following research questions in the first scenario of robot-to-human handovers
S1. First, RQ1.1, whether the attitude conveyed by the robot’s movements is perceived as
expected, i.e., if our controller correctly expresses the carefulness (or its absence); in this
sense, we hypothesize H1.1 that participants would correctly classify if the observed actions
were careful or not, even if a not-humanoid robotic manipulator performed the communica-
tive movement. We also verify RQ1.2 if a robot transporting objects and expressing the
appropriate human-like behavior can invoke motor adaptation in the human response. We
assume H1.2 that, if a contagion emerges, careful actions from the robot will elicit slower
movements in the human, and vice versa. An insight in this direction was already presented
in Chapter 8; however, a further investigation in this direction is worthwhile, given the direct
interaction with a non-humanoid robot presented in this case.
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In the second scenario S2, the two agents collaborate in handling cups empty or filled
with water. With the first research question RQ2.1, we evaluate human kinematics before and
during the object manipulation, to observe how the movement is modulated in the context
of interaction with a robot and expand previous knowledge on careful handling [45, 89]. In
this sense, we hypothesize H2.1: to measure motor adaptations analogous to those observed
in Chapter 3, with full cups eliciting slower actions, which may be affected by the dyadic
interaction context. A within-subject study design, comparing our proposed “expressive”
controller against a neutral motion controller, was chosen to answer the second research
question RQ2.1 on the advantages of deploying communicative action generations in an HRI
context. Hence, we test our hypotheses H2.2 through questionnaires, assuming that partici-
pants would prefer the expressive condition and that it would also improve task efficiency.

In the following, I will present the two studies separately, going over their methods, re-
sults, and discussion.

9.2 Methods – S1

The objective of our study is to assess whether, in a one-to-one interaction, the generated
robot’s movements are informative of the properties of the transported object. Moreover, we
evaluate if robot behavior affects how humans perform their tasks.
We will first explain how we synthesized the required velocity profiles and controlled a
Kinova Gen3 robot with 7 degrees of freedom to execute them; then, we will describe the
experimental setup and design.

9.2.1 Generating communicative movements on the robot

To have the robot communicate through its movements the object properties, the robot’s
end-effector followed the velocity profiles generated by the Generative Adversarial Networks
(GANs) model. Our interest is in generating movements to convey whether the transported
object requires caution and care to be transported (careful movement) or it is safe to move
without any particular concern (not careful movement). Previous studies [45, 140] and
Chapters 3-5 assessed this kind of object manipulation and showed a marked difference in
the kinematics of the human hand associated with the two classes of motions, exploiting it to
automatically detect the carefulness in the action.
To define meaningful movements associated with the properties of the carried object, we
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Figure 9.1 Velocity profiles generated by the GANs associated to not careful (NC) and
careful (C) transportation of objects. These velocity profiles were used to control the robot
during the human-robot experiment.

modulated the velocity profile adopted by the robot end-effector, following the approach
explained in detail in the previous Chapters. The robot task consisted in grasping a cup
from a table and handling it over to the participant, adopting the designed communicative
motion in the porting action. For this specific study, from the trained GANs, we synthesized
ten velocity profiles for each of the two classes to be replicated by the Kinova robot. A
representation of the generated data is available in Figure 9.1.

The Kinova Gen3 robot was controlled using ROS and the package kortex_ros1. Such
package provides a velocity controller in Cartesian space, which moves the end-effector
at 40 Hz in linear (m/s) and angular (rad/s) velocities. Attached to the end-effector is the
Robotiq 85 two-finger gripper2 used to grasp the cups. This work applies two high-level
controllers: (i) a velocity PI controller and (ii) a velocity GAN controller. The first controller
is responsible for picking the cups from the table, and the second is for transporting and
handing over the cups to the participant. The former generates a constant velocity profile
throughout the trials, while the latter follows one of the 20 GAN velocity profiles selected
(10 careful and 10 not careful) during the experiment. For each GAN motion trajectory,
the velocity profile is decomposed into the 3D Cartesian velocity coordinates by setting the
current location and final location (handover point) at each time step. The handover location
was fixed in advance to avoid any variability that could influence participants during the
experiment. The position of the participant’s wrist was tracked with the motion capture
system, while the position of the gripper is computed by the robot’s forward kinematics given

1Official repository of the Kinova Gen3 ROS package: https://github.com/Kinovarobotics/ros_kortex
2Official website of the gripper: https://robotiq.com/products/2f85-140-adaptive-robot-gripper

https://github.com/Kinovarobotics/ros_kortex
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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the known joint angles and the location of the robot base also tracked with the motion capture
system. More details on the sensors are provided in the following Section. The handover
release moment was obtained by applying a threshold: the robot opened the gripper to release
the cup whenever the distance between the gripper and the participant’s wrist was below a
fixed value. This simple design was enough to grant a smooth and reactive handover required
for our experiment.

9.2.2 Setup and experiment design

(a) Setup frontal view (b) Setup lateral view

Figure 9.2 Setup: when interacting with the Kinova Gen3 robot, participants were seated at
a table. Once grasped the cup from the robot gripper, they had to put it down on one of the
three areas delimited on the table. The motion capture markers used to analyse the human
kinematics are visible on the participants’ right wrist.

Participants were asked to sort the items handled by the Kinova Gen3 robot by positioning
them on the appropriate areas marked on the table where they were seated. We designed the
experiment for the participants to focus on the robot’s behavior and not on the characteristics
of the items. For this reason, we used identical plastic cups: in the instructions, we explained
that we were simulating a cocktail bar scenario, where the robot and the human had to
collaborate in sorting the glasses between those full to be served to the clients, and the used
and empty ones, to be washed; in such context, the cups were meant to be either full of a
liquid or empty: however, we explained to the participants that due to the danger of having
a robot transporting water, all the cups were empty. This granted that participants could
not rely on any visual cue or the actual object features to decide where to place the cup.
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In every trial, the Kinova robot grasped a cup from the table next to it (see Figure 9.2b)
and transported it towards the participant, following either a careful (or not) velocity profile
generated by the GANs (associated respectively, to the transport of a full or empty glass).
The task for the participants was then to grasp the cup from the robot gripper and place it in
the appropriate area on the table: on the “To be served” area, on the right, if they thought that
the cup was actually meant to be full, or on the “To be washed” area, in case they assumed
the cup was indeed empty. A third area, in the middle, was available to place the cups whose
virtual content was not clear to the participant to avoid forcing them into making a decision.
They were not informed about the modulation of the robot transport movements and, since
the cups were all the same, they had to rely on the robot behavior to make their decision3.
We used Optitrack4 motion capture system (MoCap), with an acquisition frequency of 120
Hz, to track the position of the participant wrist and shoulder.

Twelve healthy participants, all members of Instituto Superior Técnico, voluntarily took
part in the experiment. Each evaluated 20 robot movements, where the sequence of careful
and not careful modulation was randomized once and then maintained for every participant.
The interactions were organized as five blocks of a sequence of four trials. At the end of each
block, the experimenter put the cups on the table next to the robot. This resulted in a total of
240 movements evaluated, equally balanced between careful or not robot behavior.

9.3 Results – S1

One of our aims was to verify whether modulating the robot end-effector velocity to express
carefulness can inform participants about the virtual content of the manipulated glasses.
Figure 9.3 shows the participants’ accuracy in evaluating, for each trial, if the observed
transportation motion was meant to be associated with a delicate object, i.e., careful robot
movement, or not. We represented with a dark bar the percentage of correct answers the
participants gave, i.e., when they correctly interpreted the robot’s attitude. Considering
the total number of evaluated trials (240), 189 were correctly classified with no indecision,
resulting in an accuracy of 78.75%. The transparent colored bars represent the misclassified
movements. For instance, when we generated a robot action modulated to communicate a
not careful attitude, while participants associated it with the transport of a full cup. As can
be noticed, misunderstanding a not careful action for a careful one was the most frequent
occurrence, especially in the first trials. In detail, 90% of the careful robot movements were

3Sample video of the human-robot interaction: https://www.youtube.com/watch?v=HVahS-0tn6g
4Optitrack website: https://optitrack.com/cameras/flex-13/

https://www.youtube.com/watch?v=HVahS-0tn6g
https://optitrack.com/cameras/flex-13/
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Figure 9.3 Perception of robot’s movements: Percentage of correct interpretation of the
robot’s transportation movements during the experiment. When the robot performed careful
movements, in blue, they were correctly perceived 90% of the times. NC motions required
more trials to be consistently classified. The dark bars represent the percentage of correct
classification of the movement from the participant, the transparent bars the percentage
of wrong attribution; finally, the light gray bars with a wavy pattern, the percentage of
“Unknown” answers in each trial.

perceived as such, whereas 75% of the not careful ones were correctly interpreted. Finally,
the grey bars with a wavy pattern represent those trials where participants preferred not to
make a choice and placed the cup on the neutral area on the table. Also, these occurrences,
which happened in 9 trials out of 240, decrease as the experiment progresses.

Another aspect we were interested in investigating is whether the robot’s two attitudes
had any effect on how participants performed their tasks. An exploratory inspection of the
hand velocity data encouraged us to deepen this intuition: Figure 9.4 reports an example
of the velocity adopted by one participant when reaching for the cup in the robot gripper.
A noticeable modulation in the participant’s movements correlates with the attitude shown
by the robot. When the robot handled the cup with a caring attitude, also the participant
reached for it with slower and prolonged action compared to the not careful situation. To
assess this modulation quantitatively in human actions, we considered the duration and
median velocity of the movements as relevant features. It should be noted that the trajectories
covered by participants with their hand to reach the robot gripper were comparable between
the conditions, being the handover location fixed and the starting position on the table.
Therefore, duration and velocity metrics are meaningful to compare the two conditions given
the same traveled distance. To perform statistical analyses on the acquired data, we used
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Figure 9.4 Velocity reaching movement: profiles adopted by one participant when reaching
for the cup in the robot gripper. It is noticeable a modulation of both the duration and the
maximum velocity depending on the style of the movement adopted by the robot: not careful
(NC) or careful (C). The colormap is associated to the trial numbers, in order.

(a) Reaching duration (b) Reaching median velocity

Figure 9.5 Reaching movement: in (9.5a) mean duration of the participants reaching move-
ments towards the robot’s gripper. When the robot performs a careful (C) transportation
movement, participants are significantly slower in reaching for the cup. Also the median
velocity adopted in the reaching movements (9.5b) is modulated by how the robot moved
when transporting the cup. The mean values for each participant are represented in a different
color. The thick black lines represent the mean over the twelve participants, with the standard
error. The star indicates a significant difference with p < 0.001.
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Jamovi software5, in particular the GAMLj module6 for mixed models. Figure 9.5a shows
the mean durations of the participants reaching movements toward the robot gripper. We
ran a mixed model assuming the duration of the participants’ reaching movements as the
dependent variable, the carefulness in the robot movement as a factor, and the subjects as
cluster variables. The effect of condition resulted significant (C−NC, estimate = 0.443,
SE = 0.055, t = 8.00, p < 0.001), indicating that when the robot end-effector was following
a careful velocity profile, the subsequent human reaching action was longer, with an extended
duration estimate of 0.443 seconds. A second mixed model was used to evaluate the median
velocity adopted by the participants when reaching the robot gripper (see Figure 9.5b), using
this time the median velocity as dependent variable: when the robot was careful, participants
significantly diminished their median velocity, with an estimated reduction in speed of
0.055m/s (C−NC, estimate = 0.055, SE = 0.012, t =−4.60, p < 0.001). These findings
prove that the modulation of the robot movements affected how participants moved to reach
and take the cup from the robot. This happened even when there was no reason to adapt to
the object properties since we consider a reaching movement and all the cups had exactly the
same characteristics. We also verified, for both the duration and the median velocity of the
reaching movements, if there was an interaction with the participants’ accuracy in evaluating
the robot’s behavior in every trial. We used the accuracy in their classification as an additional
factor in the mixed model, but we found no interaction with how they performed the reaching
duration or velocity. The modulation in response to the robot attitude also occurred when
participants did not recognize it explicitly.

9.4 Discussion – S1

We exploited a generative approach to produce robot movements that could implicitly
communicate if a handled object required or not carefulness to be transported. To avoid
influencing the choice, all the items transported by the Kinova robot were identical (empty
plastic cups). The participants had to decide if they were supposed to be virtually full or
empty, without any particular hint or instruction on how to proceed. Firstly, we assessed
RQ1.1 whether our controller can express caution in the gestures or its absence. According
to the results shown in Figure 9.3, our hypothesis H1.1 was verified: we notice that the
careful robot actions have been perceived as such since the first trials of the experiment.
Regarding not careful actions, there is a learning trend in how they were perceived during

5Jamovi software website: https://www.jamovi.org
6General analyses for linear models Jamovi module: https://gamlj.github.io/

https://www.jamovi.org
https://gamlj.github.io/
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the experiment. In the first trials, they were sometimes mistaken for actions associated
with transporting a full cup. As the experiment progressed, the difference between the
two modulations became more evident, with an accuracy in the participants’ choices above
80%. Reflecting on the original dataset (see Chapter 3) of human movements used to train
the GANs associated with the transport of full and empty cups, we can observe that a not

careful attitude is the standard in our actions. Indeed, when no particular circumstances are
forcing us, for instance when picking and placing an ordinary object, we tend to move in
a “neutral” way, and we can shortly describe our approach as not careful. This was also
confirmed by the findings of Chapter 8, where we showed that the actions performed during
the baseline and after watching an inattentive attitude were comparable. On the contrary, a
strong kinematics modulation appears when we are paying attention to not spill the contents
of a glass. This careful kinematics shaping is what we truly modeled in the communicative
robot’s movements, and it is rewarding that careful movements were perceived correctly
from the beginning.

This study also allows us to evaluate RQ2.1, the effect that the implicit modulation of
the robot actions has on the interaction. Even though participants knew from the beginning
that the plastic cups were all the same and all empty, there was a modulation in how they
approached the robot gripper, confirming our second hypothesis H2.1. We gave an overview
of this phenomenon in Figure 9.4 and a quantitative assessment in Figure 9.5. If the robot
manifested a careful attitude, adopting a lower magnitude in the velocity profile and a longer
duration of the movement (see Figure 9.1 for reference), also the reaching movement of the
humans was significantly slower. Interestingly, this also happened when participants had
trouble explicitly recognizing the motion style and classifying the cup: the contagion in how
they performed the reaching task was still present. This result emphasizes how important it is
to modulate the actions of robots appropriately, with a view toward collaborative interaction.
Indeed, we proved a motor contagion from the robot to the human, even if there was no need
for the participants to directly associate with the task and adapt their motor strategy. We
observed natural coordination emerging from such a simple task, where the pace of the human
spontaneously adapted to the robot one, mimicking, even unconsciously, the attitude observed.
Human-robot motor contagion on velocity was already observed whenever the robot velocity
profile is biologically plausible [17, 161, 170]. In our approach, the reasonableness of the
velocity profiles was granted using a generative network trained on human examples. The
findings in our study extend the existing evidence of motor contagion in Human-Robot
Interaction, proving that robotics arms can also leverage it to convey appropriate ways
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(a) Handover (b) Pouring (c) Dropping

Figure 9.6 Sequence of actions by the human and robot. From left to right: human-to-robot
handover of a full cup (9.6a); robot pouring the water content into the orange bucket (9.6b);
robot placing the emptied cup in the blue box (9.6c). When manipulating an empty cup, after
the handover (9.6a), the robot directly drops the cup in the blue container (9.6c). Human is
wearing an eye-tracking device, infrared motion tracking markers, and an IMU sensor on the
wrist.

of handling fragile objects. Through motion alone, it was possible to open a channel of
communication between the two agents, with measurable effects on the interaction.

Finally, it should be noted that we obtained these results by modulating the movements
of a 7 degrees of freedom robotic manipulator, not a humanoid robot. Nevertheless, even
though its kinematics was far from the one of a human arm, it was possible to achieve the
desired communication intent by simply modulating the end-effector control. This proves the
power of the proposed approach and its potential scalability in other contexts and with other
robots, also industrial ones, where implicit communication through motion could improve the
efficiency and safety of a joint collaborative task. Given these findings and observations, we
then planned to exploit the same controller and have the robot actually manipulate full and
empty cups, to assess how the movement’s modulation affects trust, perceived competency,
and efficiency in a dyadic interaction while facing a challenging task. This is the core of our
second study with Kinova Gen3 robot, which will be presented in the following.

9.5 Methods – S2

This section describes the human-robot interaction experiments, details the sensors used for
the dataset acquisition, and presents the administered questionnaires.
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9.5.1 Setup and experiment design

Participants stand in front of a table with four identical plastic cups placed in a row, equidis-
tant from each other. These cups differ in content, being two empty and two filled with
water almost to the brim, constituting two types of objects to be handover: empty or full.
Participants faced a Kinova Gen3 robot fixed to a table with two distinct recipients at the
robot side. As seen in Figure 9.6, on the left side of the robot, there is an orange bucket meant
to contain water, while the blue drawer on the right stores the empty (or emptied) cups.

The experiment is presented as a collaborative task, where the human should help the
robot clean the table by handing over the cups, from the rightmost cup to the leftmost, one at
a time. The robot receives the cup (see Figure 9.6a); in case the cup contains water, it pours
the content into the orange bucket (Figure 9.6b), and finally, it places the empty cup in the
blue drawer (see Figure 9.6c).

We adopted a within-subject study design where participants are exposed, in a randomized
order, to two conditions associated with the controller used by the robot to complete the
task: a neutral motion and an expressive motion. In each condition, participants completed
12 handovers to the robot, divided into three blocks, with the experimenter resetting the
setup and the four cups on the table at the end of each block. The sequence of empty and
full cups to be handed over was balanced but changed in every block. The naturalness of
the human-to-robot handover was made possible by constantly tracking the 3D wrist pose
with a motion capture system, without requiring a pre-determined and fixed location. As
explained in the previous study, the robot’s gripper position was computed using forward
kinematics, and a threshold was set to grasp the cup when the distance between the gripper
and the participant’s wrist was below a certain value.

Our study involved 15 right-handed participants (8 females, 7 males, 26.6±6.2 years old)
who provided written informed consent. They were all naive regarding the purpose of the
experiments and not directly involved in our research. The self-reported level of knowledge
in robotics was: 40.0% professional or advanced, 33.3% average, and 26.7% little or none.

Sensors and Data Description

Movements’ kinematics and visual information were recorded throughout the experiment.
Pupil Labs head-mounted glasses [80] were used to track eyes’ movements providing 2D
gaze fixation on a POV perspective and information on pupil dilation. For more information
on the Pupil Labs data acquisition, consult the repository7. We used again the OptiTrack

7Pupil-Labs software repository: https://docs.pupil-labs.com/core/software/pupil-player

https://docs.pupil-labs.com/core/software/pupil-player/#raw-data-exporter
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Table 9.1 Sensor specifications and size of recordings.

Sensor Type of data Frequency (Hz) Total Size

OptiTrack Motion Tracking 120 ∼1.1 GB

Pupil Labs Eye Tracking {30, 120} ∼100 GB

LPMS-B IMU 400 ∼320 MB

GoPro Video output 60@1080p ∼40 GB

Note: The PupilLabs streams 30 Hz@720p for the gaze fixation and
120 Hz@320p for the pupil detection system of each eye.

MoCap, consisting of 12 infrared cameras around the room, tracked the position of head,
shoulder, and wrist, through reflective rigid bodies suitably designed. Additionally, an Inertial
Measurement Unit (IMU), LPMS-B model8, was placed on the participants’ wrists. The
acquisition with the three sensors was synchronized through ROS, providing a synchronized
timestamp. Moreover, the main events in each trial were manually annotated during the
experiment, providing labels for human grasping, handover, robot pouring, and object release.
Finally, an external RGB camera recorded the experiments from the viewpoint pictured in
Figure 9.6. Table 9.1 presents the sampling frequency for each sensor and the corresponding
total amount of data9. 360 actions (15 participants× 12handovers× 2conditions) were
recorded and performed successfully without dropping the cup or spilling the content. Due to
ambiguities or missing data from the MoCap system, in the kinematic analyses of the current
study, we considered a total of 310 trials, 76 and 82 handovers for empty cups, respectively,
in neutral and expressive conditions, and 70 and 82 trials, involving full cups for neutral and
communicative, respectively.

9.5.2 Questionnaires

Together with a quantitative kinematic description of the human motion, we were interested
in investigating if and how the controller conditions would affect how participants explicitly

perceived the task. For this reason, we conducted a pre-questionnaire to understand the
general perception and propensity to robotics; we then administered the same set of scales
after each of the two robot controller conditions and finally conducted a post-questionnaire

8IMU sensor datasheet: https://www.lp-research.com/wp-content/uploads/2013/06/LpmsBUsersGuide1.2.7.pdf
9The human-to-robot handover actions dataset is made publicly available on the institution’s website

https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#hcups_water

https://www.lp-research.com/wp-content/uploads/2013/06/LpmsBUsersGuide1.2.7.pdf
https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#hcups_water


9.5 Methods – S2 124

to assess the global perception of the experimental conditions. All the items were based on a
5-point Likert scale, except for the post-questionnaire. Indeed, at the end of the experiment,
we asked participants to think about the two interactions experiences they had with the robot
and express their preferences concerning a list of 9 items, such as “In which one of the two
parts you were more comfortable in interacting with the robot?” or “Which one of the two
parts of the interaction you enjoyed the most?”. We also included a speed-bump item in
the questionnaires after each interaction to check the participants’ level of attention during
the completion. See Section 9.6.2 and Table 9.2 for further details on the scales. We used
Jamovi software to analyze the data collected in the survey by using Wilcoxon rank-sum
tests, correlation analysis, and binomial proportion tests.

9.5.3 Robot Motion Controller

We designed two conditions, neutral and expressive, to compare the efficacy and the effect on
the interaction of adding a communicative layer to the generated actions. We used again the 7
Degrees of Freedom (DOF) Kinova Gen3 robotic manipulator to accomplish the challenging
task of handling cups that may be filled with water. The ROS architecture was the same
already presented in Section 9.2.1.

Our primary interest is to test and deploy a controller that mimics what happens naturally
in human manipulations, being communicative of the object properties while remaining
task-oriented. Its expressive ability has already been tested in S1 [90], where participants
could grasp the implicit message conveyed by the robot’s gestures and even showed the
effects of motor contagion, although the robot was not humanoid. In this case, participants
act instead as givers and perfectly know the characteristics of the object beforehand. Hence,
the impact of the robot’s implicit communication is reduced. However, even in a context
where the manipulator’s role is passive, we hypothesize that human-inspired motions can
benefit the interaction, making it more fluid, smooth, and desirable to the human partner.

Neutral condition (NEU)

In the neutral condition, the actions were always designed with the same approach, generating
a constant velocity profile throughout the trials with a simple proportional controller. The
value of the adopted velocity was empirically chosen to be suitable for transporting all the
cups. The choice of always using the same constant velocity granted the successful transport
of all the full cups without any content spilling but was not optimized for the transport of the
empty ones, which posed no risk instead.
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Expressive condition (EXP)

To produce the robot’s actions adapted to the properties of the object involved - careful if
full of water, not careful if empty - we modulated the end-effector velocity, using velocity
profiles norms generated by the Generative Adversarial Networks (GANs) replicating the
approach described in Section 9.2.1. However, in this specific study, to avoid introducing
a not controlled variable that may impact the comparison with the neutral condition, we
randomly selected one velocity profile for careful and one for the not careful movement to be
replicated by the Kinova robot. We used a careful attitude to transport the full cup from the
handover position to the orange bucket, where the robot emptied the content. The designed
not careful velocity profile was used instead to take the empty cups from the handover
position or the orange bucket to the blue drawer where the cup is released.

9.6 Results – S2

In this section, we will present our findings relative to the analysis of human kinematics
during the task, the results from the questionnaires, and the metrics assessing task efficiency.

9.6.1 Human motion

Figure 9.7 represents participants’ hand velocity when moving towards the cup to grasp it
(first velocity peak) and then its transportation toward the robot gripper (second peak). This
representation results from applying a second-order Butterworth low pass filter with a cut-off
frequency of 8 Hz to the hand velocities derived from the 3D trajectories recorded with the
MoCap system for each trial. The velocity profiles were resampled to the median duration for
each class, and their mean was computed for every time instant, together with the standard
deviation. A noticeable difference in the velocity adopted depends on the cup involved:
empty cups, associated with not careful motions, elicit quicker motions with higher speed
magnitude. Instead, full cups require careful actions to avoid spilling the content, resulting in
slower movements with lower accelerations. The robot controller does not influence how
participants took the cup and handed it over, as could be expected from their role as givers. In
Figure 9.7, the two distributions are distinguished by the content of the glass and not by the
controllers applied on the robot, which are quite overlapped instead. These observations from
Figure 9.7 were confirmed by running a mixed model with Jamovi GAMLj module separately
on the reaching and the transport actions. We assumed the maximum velocity of participants’
movements as the dependent variable, the subjects as cluster variables, and the content of
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Figure 9.7 Hand mean velocities and standard deviation, in transparency, associated with
the reaching (first peak) and transportation phase (second peak) of full and empty cups, in
shades of blue and red, respectively. The robot controller used to transport the cup at a later
time did not influence the human behavior as giver.

the cup, requiring or not care, the controller type, and their interaction as a factor. The
effect of condition resulted significant for both the action phases (Reaching: Full −Empty,
estimate = −0.202ms−1, SE = 0.032, t = 56.6, p < 0.001, Transport: Full − Empty,
estimate = −0.276ms−1, SE = 0.037, t = −7.49, p < 0.001). This result shows that the
modulation in human action appears not only when directly interacting with the object, when
we observe a decrease of the velocity magnitude of 0.276ms−1 if the cup content is full,
but even before touching the object; indeed, participants adapt the motion according to the
presence of water, with an estimate of 0.202ms−1 of velocity reduction when preparing
to grasp a full cup. These observations confirm previous results in the analysis of human
kinematics associated with the carefulness feature [45, 89], but interestingly extend the effect
of object properties also to the kinematics of reach-to-grasp actions. Observing the first
velocity peak in Figure 9.7, the adjustment in the reach-to-grasp action is principally related
to the magnitude of the velocity, as mentioned previously, whereas its duration is comparable
for empty and full cups, differently to what happens during the transportation phase. It is the
first time we have observed anticipated motor adaptation in this context; further investigations
need to be conducted to understand why this anticipatory effect arose: it may be ascribed to
the standing posture of participants or, even more interestingly, to the collaborative setting.
Indeed, the intention to communicate and make predictable and readable gestures in a social
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context is well-described by the signaling theory [125]. For instance, it has been proved that
the emerging kinematic pattern in grasping gestures differs between individual and social
conditions [143].
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9.6.2 Questionnaires

Figure 9.8 Post-questionnaire preferences between the Neutral and the Expressive GAN-
based robot conditions.

The items used in the questionnaires were short versions adapted from validated scales.
Cronbach’s α was used to evaluate the internal consistency and reliability of each of them
and is reported in Table 9.2. If the value of α was above 0.60, unit indices were produced
by averaging the responses to the individual items included in each scale. The “NARS”
and “Affective Trust in HRI” scales presented a low Cronbach’s value (α = 0.02;0.51
respectively); hence they were not considered in the analyses. We also ran Shapiro-Wilk’s
tests to verify the normality of the samples. When the distribution resulted gaussian, we
employed parametric tests; otherwise, we used the non-parametric versions. Before starting
the experiment, we asked participants to answer a few items to characterize the population
sample better. Their mean values are reported at the beginning of Table 9.2. Not surprisingly,
we found a positive correlation between the self-reported knowledge of robotics and the
PARS scale (Spearman’s rho: 0.457, p < 0.05). By administering a set of scales after
each interaction with the robot, we wanted to assess if the participants perceived the two
conditions differently. As previously mentioned, the order of the conditions was balanced
and randomized to avoid introducing possible bias; however, as reported in Table 9.2, we
found no significant difference. Only the Cognitive Trust in HRI scale reported a slight
preference for the expressive condition, but still not statistically meaningful. Considering
separately single items and using again a Wilcoxon rank sum test to compare the two
conditions, we found two significant differences: “This robot would act consistently” (NEU :
3.73±1.03, EXP: 4.20±0.68, p < .05); “The robot moved too slowly” (NEU : 2.80±1.20,
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EXP: 2.20±0.78, p < .05). The percentages associated with participants’ preferences in the
post-questionnaire, after experiencing the two experimental conditions in random order, are
reported in Figure 9.8. In this case, the distribution of the answers was binomial, so we ran a
two outcomes proportion test. We found a significant difference in the item “In which one of
the two parts was the robot more efficient in transporting the empty cups?” (p < .05). The
robot was perceived as more efficient when controlled with the not careful GAN’s velocity
profile. We can also observe a tendency to choose the neutral controller instead when dealing
with the full cup. This can be understood by referring to Section 9.5.3, where we explained
that in the design of the neutral condition, we chose a velocity profile intermediate between
careful and not that still allowed to complete the task successfully with no spilling; in this
sense, the neutral robot was faster when transporting the cup with water. A trend is also
noticeable in the Comfort and Proficiency items, where the participants well received the
expressive controller.

The general questionnaire’s outcome does not allow us to conclude about a strong prefer-
ence of participants between the two conditions. The experiment design required the two
agents to collaborate in any case, and the drive to comply and adapt may have overshadowed
the differences in robot movements. At the end of the experiment, 12 participants out of
15 reported perceiving a distinction between the two blocks, but only 7 (46.7%) attributed
it to a difference in the velocity; the others referred, for instance, to the pouring angle, the
gripper strength, or the position of emptying or handover, which did not actually change.
However, we can further reason that participants did not consciously recognize or, at least,
did not explicitly appreciate the added value of communicative movements. In study S1 [90],
where the robot had the active role of giver, its human-inspired actions accomplished the
goal of communicating carefulness associated with object properties and even elicited motor
adaptation. In the current scenario, the participants’ role as givers made them fully aware
of the object’s properties. In this sense, the robot had nothing to communicate except to
accomplish the task without failures, which happened in both conditions. Therefore, in such a
collaborative task, the robot must first function properly to be accepted, while communicative
movement is not necessarily perceived overtly as better.

9.6.3 Global metrics

One of our hypotheses when designing a human-inspired robot controller was that it would
improve the smoothness and efficiency of the interaction when adopting the appropriate level
of carefulness. For this reason, we decided to examine a quantitative metric: the interaction
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Figure 9.9 Difference in the block duration considering only the human contribution.

duration over the block of four consecutive cup handovers. In this case, we are interested in
a fluency metric that, regardless of the time taken by the robot, which can vary depending
on the condition and the cup handed, measures the human efficiency in the task. Hence,
we annotated from videos the duration of the robot’s action. We considered the net time by
subtracting from the total duration of each block the time taken by the robot’s movements
from each completed handover to the end of the trial, i.e. when it released the empty glass
into the blue container. Figure 9.9 illustrates the corresponding results, where we find a
significant difference in the net duration of the blocks, in seconds, confirmed by a Wilcoxon
rank sum Test (NEU : 49.5±4.35, EXP: 44.4±3.06, p < .001). This result is extremely
interesting because it proves that, even if not consciously perceived by participants, the
expressive modulation of the robot’s actions makes the overall interaction smoother and more
fluid, with a reduction of 5 seconds on the net duration. The impression we had observing the
videos is that when the robot exhibited a human-inspired behavior, the latency time between
each trial was reduced.

9.7 Discussion – S2

In this study, we presented a realistic scenario where a human and a robot successfully
collaborate in handling full and empty cups, with the goal of understanding how to infer
human carefulness during handover actions, as well as to generate similarly “expressive”
robot movements.

We explore the natural adaptations that occur in human motion when handling cups with
different filling levels which we observed, for the first time, not only during the transportation
but also in the reach-to-grasp movements, confirming our first hypothesis H2.1. This result
could allow the classifier to detect the care adopted and the related object properties in
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advance, allowing the robot to prepare the most appropriate motion strategy. We found
interesting insights comparing a proportional neutral controller and our human-inspired
expressive one.

When the robot was not expressive, keeping the same velocity for the whole experiment
regardless of the cup content, participants perceived it as less consistent and found its actions
generally too slow. Compared to an oblivious robot that makes no assumptions about the cup’s
properties, our approach mimics the human strategy: being careful when needed and speeding
up otherwise. Although participants have not acknowledged this difference explicitly, we
found a quantitative measure of the interaction efficiency in the experiment duration. Indeed,
with the robot showing human-like behavior, humans reduce the time required to complete
their tasks, thus improving the fluency and smoothness of the collaborative interaction. Our
second hypothesis H2.2 is therefore partially verified: participants did not broadly prefer our
expressive motion controller, yet we found measurable facilitation from its deployment.

To conclude, this study validates a framework for action perception and generation in
HRI. In future works, the complete architecture should be tested in a dyadic interaction where
both the human and the robot have an active role in carrying objects. In such a context, the
classification output (see [44, 45] for implementation details) could be directly used to plan
adequate robot motions with GANs. Indeed, in this experiment, we wanted to avoid the risk
of spilling water and compromising the interaction. To assess separately how participants
perceived the two conditions and the detection performances, the classifier label was not
used to decide the most proper attitude the robot should adopt.



Part IV

Conclusion



Chapter 10

Final discussion

10.1 Overview

In this thesis, we discussed the importance of implicit communication in supporting a
successful exchange of information between two agents, human or artificial. Robots can
greatly benefit from resorting to this additional means of communication; it is complementary
to other forms of dialogue, and it grants immediate and natural reciprocal understanding by
relying on the fundamental mechanisms of social interaction. Given these considerations,
we aimed to tackle several conceptual and technological open issues targeting, in particular,
the common but challenging task of manipulating objects and understanding their latent
properties. The global objective of this work is to contribute to the design and development
of robots able to interact with us more smoothly and seamlessly. This goal is in the interest
of human-robot collaboration and, by exploiting some principles of social robotics, it can be
suitable for HRI scenarios such as industry or assistive contexts. Indeed, with the increasing
expansion of robot use in our society, it becomes paramount that they can communicate
clearly, quickly, and efficiently with us, for a safe and fruitful collaboration. We believe
that the easiest and most effective way of achieving so, is to take inspiration and mimic
those mechanisms that regulate human-human communication: being automatic, they do not
require any additional training from the human side. Indeed, if we want robots to become
collaborators, the effort of the interaction cannot rely entirely on the human, who otherwise
would only be a user.

This broad perspective has been applied in this thesis to the communication of object
properties, and the philosophy behind the work has always been to take inspiration from
human behavior. Indeed, if we observe another person dealing with an object, we can make
some assumptions about their goal, intention, and also on hidden features of the item they
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are transporting. The same happens if we are the active agent: although we often do it
unconsciously, the way we move is revealing and for instance helps our co-actors to plan
for a handover appropriately. On this reasoning is based a key observation exploited in
this research: observing a closed container on a table may not be informative enough to
understand how to lift and transport it properly. Of course, we could estimate its weight based
on the size and the material, and plan a grasp according to its shape and affordances; however,
we could easily be misled by its external appearance and overlook the latent properties of
the object. As humans, we tend to overcome this issue by relying on a huge amount of prior
experience and quick adaptations to the context. However, for a robot, doing the same is
particularly challenging and prone to errors and safety risks.

The solution can be found in human-robot interaction itself. It is precisely how we deal
with an object that reveals its latent properties. Robots can exploit the cues that are naturally
embedded in our motions to foster the inference process. Although their perceptive system
differs from ours, they nonetheless have access to the surroundings through appropriate
sensors and models. Hence, developing a framework for the automatic detection of latent
features, such as the carefulness of human gestures, is in the scope of this work.

To promote reciprocal information exchange, also the robot’s actions should account
for the properties of the object they are transporting and, once again, mimicking human
kinematics can be a winning strategy. Indeed, it accomplishes two main purposes: the
generated actions are well-suited, safe, and efficient in dealing with a specific object, granting
the successful execution of the task; moreover, an external observer can easily interpret the
motion features and its associated meaning, by relying on the same neural circuits of motor
resonance. In this way, as it happens in our actions, the two layers of executing goal-oriented
and legible actions would automatically match.

The following sections will provide a summary of the main findings and contributions to
knowledge relative to human actions understanding, robotic expressive motions generation,
and effects on the interaction, linked to the manipulation of objects with different properties.

10.1.1 Perception

At the beginning of our work, we investigated the impact of manipulating objects with
different characteristics on action kinematics. Indeed, as mentioned before, the common
thread of our research is first to learn human strategies, then try to transfer them to robotic
agents. By collecting a purposefully designed dataset, described in Chapter 3, we focused on
two specific properties that affect object handling: the weight and the care required for the
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manipulation, obtained by filling plastic cups with water. Subsequent analyses confirmed not
only that the different features had an impact on the transport actions, but that such effect
was measurable with multiple sensors and particularly striking for the presence or absence of
carefulness.

Given these considerations, we worked on possible algorithms to indirectly infer the
characteristics of the various objects by looking at how participants moved them. Our
innovative contribution relies exactly in this approach: instead of addressing the question
by treating it as a classical object recognition problem, we opted to exploit the information
coming from the manipulation and use it as a shortcut. By doing so, elements such as the
exterior appearance of the objects were completely disregarded, granting flexibility to our
method, which can thus be applied to unknown objects. Ultimately, we are not directly
interested in understanding the object itself, but more in learning the impact its manipulation
has on our kinematics. Of course, many technical challenges must be sorted out before
achieving the final goal. First, it needed to be established which kinematics features could
be used for the discrimination and how two retrieve them from the different sensors. In
Chapter 4 we addressed them by focusing on the offline detection of observed carefulness
and weight on specifically segmented transport actions. In a very promising way, we verified
that kinematic information such as the adopted velocity profile was relevant in constructing a
classifier. Moreover, such a feature was also easily extracted using only the robot’s camera
and calculating the optical flow of the scene. In Chapter 5 we defined a complete framework
for online detection by having the robot observe the scene, with no additional sensors, in
an ecological interaction scenario. We tested the architecture also with modified tasks with
respect to those present in the original training set, achieving an accuracy up to 81.3%.
However, we made the decision to disregard the weight of the cups, while keeping it as an
element of variability in the experiments. Indeed, both the initial analysis of the human
kinematics and the results with the offline classifiers showed that the weight difference in our
dataset was somehow masked and overcome by the presence or absence of water in the cups.
With this first part of the research, we collected evidence that the kinematics during the
action is indeed a reliable source of information on the object manipulated by a human and
that it is possible for the robot to automatically extract some motor descriptors to use in an
inference process. However, in these experiments, the robot’s role was limited to being a
passive observer. There was still work to be done to get to a real interaction with the robot,
where the exchange of implicit signals happens in a bidirectional way.
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10.1.2 Action

When addressing the problem of generating expressive robot motions, we took inspiration
once again from human behavior. We were interested in finding a method that could be as
flexible as possible while allowing for capturing the essential kinematics features that make an
action communicative. The studies on motion kinematics and carefulness detection allowed
us to identify as a key feature of the transport action the hand velocity profile, considered as
a time-series with its full dynamics. Therefore, following immediate parallelism, the idea
was to modulate the speed of the robot’s end-effector, working in the Cartesian space. This
approach simplifies the problem by taking into account only the end-effector’s dynamic,
which needs to be attentively controlled to replicate the desired velocity profile, while the
other joints of the kinematic chain move to follow without the need for a complex one-to-one
mapping from the human arm. Hence, from a technical point of view, this approach can be
easily applied to different robotic platforms, independently from the configuration of their
chain, as presented in Chapter 7.

To implement this approach, it was necessary to identify velocity profiles that the robots
could follow. For this task, I collaborated with another Ph.D. student, Luca Garello, who had
greater expertise in artificial intelligence and learning methods. For our method to be general,
we wanted to avoid a direct copy of the human motion and we decided to resort to Generative
Adversarial Networks, as described in Chapter 6. These models, able to synthesize new
data after appropriate training, have been extensively used for data augmentation and image
generation; however, their application in robotics has been limited. We explored different
implementations and we converged on using a single conditioned model which outputs a
careful or not velocity profile according to the chosen label (see Chapter 7). Indeed, the
network was trained with the hand velocity profiles during the transport actions included in
the dataset, and we assessed its capability to learn the original distribution and produce novel
but meaningful velocity profiles, with kinematics characteristics that respected the human
ones. An interesting aspect of this approach is that it granted to capture not only the two
classes of motions, but also their intrinsic variability. Repeated human actions, while being
task-oriented and efficient, are nonetheless never exactly the same [61], and we wanted to
transport the same natural fluctuations also in the robot’s gestures. Variability plays such
a key role in joint actions, to the point that is a predictor of how fast a motor task will be
learned [136].

The second part of my Ph.D. journey allowed me to face the challenges of generating
robotic actions following a human-inspired approach. From a technological standpoint, we
succeeded in producing transport actions that matched the desired speed pattern on two
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different robots, humanoid and not. However, it remained to be assessed the communicative
efficacy of our method: could the human co-actors perceive the intended robot attitude? The
final part of this research aimed to address this question.

10.1.3 Interaction

To evaluate the efficacy and the impact of action modulations on the interaction, we conducted
a series of experiments with different setups and robotic platforms. In Section 2.4, we
introduced possible strategies to assess HRI and their pro and cons quantitatively. In our
experiments, we combined videos and questionnaires with kinematics metrics to detect
eventual motor contagion. Indeed, the first allows for an explicit measure of the interaction
perception. At the same time, the latter gives insights into deeper adaptations happening
during the collaboration, based on the fundamental resonance phenomena that regulate
human perception-action mechanisms.

In Chapter 8, we presented a first experiment involving the two robots iCub and Baxter.
From an online questionnaire showing videos of transport actions performed by the two
robots, we confirmed that the two designed conditions careful and not careful were indeed
distinguishable. We also observed how the iCub robot was in general perceived as more
careful than Baxter. This could be linked to its human-like embodiment, which may be
perceived as more delicate when moving. However, a precise choice in the movement design
may have played a decisive role; indeed, the velocity profiles produced with the GANs are
intended as norms, therefore detached from a specific trajectory. When controlling the robot
end-effector to move from point A to B, the velocity profile needs to be re-scaled to cover
the desired path appropriately. Inspired by the time-invariance and isochrony principles
[4, 10, 166] we decided to maintain the original duration of the movement while scaling the
velocity amplitude; this lead, for iCub shorter trajectories (given its child-like dimensions),
to slower movements compared to Baxter’s.

We also monitored participants’ pick-and-place actions after watching videos of the two
robots moving the same object. We found an impact of the robots’ attitude on the velocity
they adopted in their own task: if the robot was careful, they automatically slowed down
the transport action. This indicates a contagion phenomenon between the robot’s observed
actions and the motor plan on the human side, which is an implicit measure of resonance
and adaptation between the two agents [17, 27, 148]. We also confirmed the insight from
the questionnaires, which displayed iCub as more careful. Another interesting finding from
this experiment was that not careful actions were perceived as rather neutral. This was found
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both in the questionnaires and in the kinematics analysis of participants’ transport actions:
after observing a not careful motion, their motor response was comparable to the one in
the baseline, when no stimuli were provided. In the original dataset, what we described as
not careful movements were optimized standard actions, smooth and quick, for transporting
empty plastic cups. It is with particular requirements and constraints in place, such as the
risk of spilling the content of a full cup, that a strong kinematics modulation appears in our
gestures.

Two other studies, presented in Chapter 9, were conducted at the Institute for Systems
and Robotics of Instituto Superior Técnico during my research period in Lisbon.
In the first experiment, the underlying research questions remained the same, but we designed
a dyadic robot-to-human handover interaction with a robotic manipulator. This was important
not only to test the action generation approach on a completely different kinematic chain, but
also to assess if the communicative effect was still in place with such robot embodiment. We
found that motions designed to be careful were correctly perceived from the beginning, with
an accuracy of 90%, whereas the classification error on not careful actions diminished as
the experiment progressed, obtaining an overall accuracy of 75%. This still can be related
to the previous discussion of not careful movements being actually standard in our motion
planning and perception. We detected a form of motor adaptation again, in this case in the
reaching actions towards the robot gripper: participants tended to match the velocity profile
displayed by the robot, even if the objects involved in the handovers did not require any
specific modulation, always being the same. This is a particularly relevant result. First, it
was observed during the interaction with a robotic manipulator, with an embodiment far from
the human one. Secondly, despite this difference in appearance, it was possible not only to
open an implicit channel of communication with the human but this had also a measurable
impact on the task. Previous studies explained that phenomena such as motor contagion are
observable in human-robot interaction, preferably with humanoid-shaped robots, as long
as the behavior displayed by the agent respects the laws that regulate biological motions
[17, 27, 148]. In the proposed strategy, the robots’ motion plausibility is granted by using
human-derived velocity profiles to control their end-effectors.

In the second experiment, we studied the mirrored scenario of human-to-robot handovers
of empty and completely full cups, where the manipulator carried and sorted them appropri-
ately without ever spilling their contents. We implemented two controllers to be compared:
a neutral one, which mimicked an oblivious attitude from the robot and transported all the
cups with the same constant velocity; and the expressive controller based on GANs, already
used in the first study, that replicates the human strategy: being careful when needed and
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speeding up otherwise. Analyzing human motion, we confirmed the usual modulation in
the action kinematics to the content of the cup. However, for the first time, we observed
an adaptation that anticipates the physical interaction with the object for what regards the
maximum velocity of the reach-to-grasp motions. In this sense, it may be that the collabora-
tive context, induced participants to be more communicative, as hypothesized by [125]. A
more prudent explanation is that such preparatory motions respected the already mentioned
principles of time invariance [4, 10, 166], being their duration comparable regardless from
the cup, but were slowed down to grasp the full cup more precisely. Participants did not
perceive a marked difference between the two robot conditions. It must be considered that
in this task the robot’s role was exclusively passive, and participants, as givers, perfectly
knew the cups’ content beforehand. In this sense, the impact of implicit communication in
the robot gestures seems reduced, and the collaboration with the robot was generally well
perceived in any case. However, from a quantitative point of view, we proved that when
interacting with the robot showing an adaptive behavior, the overall task duration diminished,
improving the efficiency of human actions and the smoothness of the collaboration.

10.2 Final considerations, limitations, and future works

The work presented in this thesis aims to contribute to the knowledge of the use of implicit
communication for object manipulation in HRI context. It focuses on a specific topic, which
is the manipulation of objects and, in particular, the effect their properties have on the motion.
In this regard, the number of features considered was limited. We analyzed the effects of
the weight and the content of cups on the manipulation, later focusing only on the latter to
study the attitude we defined as carefulness, required to avoid spilling the cup’s content. This
study lays the foundation for an approach that is grounded on human behaviors and proposes
methods to transfer the same mechanisms to artificial agents, but it would greatly benefit
from an extension of the properties examined and their interaction; for instance, how do
features such as the temperature or the shape of an object affect in-hand manipulation? Is
their effect impactful enough to be detectable from the arm kinematics, or can other motion
phases, such as the reaching, be taken into account for proper recognition? It has also been
observed how other factors, such as emotional attitudes and vitality forms, affect how we
handle objects [38, 160], and it may be interesting to follow the same approach we proposed,
to allow the robot to recognize them and eventually plan an appropriate reaction.

Our strategy to recognize the carefulness in the motion is non-invasive and quite easy
to deploy, requiring a simple RGB camera to observe the scene; moreover, it completely
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disregards the object’s external appearance and is quite robust to obstructions as well. It
performs a continuous classification of the movements observed through the optical flow.
Still, it is also based on the assumption that the main source of movement in the scenario is
the object manipulation itself. Additional algorithms should be developed to address those
cases when the human is walking around the room, other users are present, or the robot is
moving around (ego-motion filtering). A possible solution would be to integrate into the
framework an additional sensor, such as a wrist-worn inertial sensor, which has already
proved to be a valuable source of information for detecting carefulness; while making the
setup a bit more invasive, it would still be tolerable even in industrial work environments.

Most of our work dealt with the concept of carefulness. We started by defining it
as the attitude displayed when moving a cup full of water, supported by other studies
[45, 46, 140, 111]. However, we are aware that this definition is limited. Other factors
may induce a person to perform a careful manipulation. In Chapter 8, we started to shed
some light on the matter, but further work is needed to come to a shared and unambiguous
definition of carefulness. A starting point could be, once again, to study human behavior
and observe how different elements, such as the potential danger, fragility, assembly state,
or material of an object play a role. Regarding the generation of expressive movements,
we resorted to generative networks and focused on controlling the robots’ end-effectors
to follow velocity profiles belonging to the desired distribution. Indeed, previous findings
suggested that most of the communicative power of the motion is contained in its velocity
dynamic. This strategy grants both a manipulation suitable for the specific object, which will
be handled properly, and the expression of the communicative intent. Such an approach also
has the advantage of being independent of a specific kinematic chain and, therefore, suitable
to be applied on various robotics platforms. However, depending on the specific robot and
task, it may arise the need to optimize the trajectory of secondary joints to avoid uncanny
motions that could be detrimental to the interaction and the conveyed implicit message.
Moreover, generative methods are data-driven, and this represents an advantage since the
underlying learning process is automated; however, they require new datasets to be collected
whenever a new class of motion needs to be added. A conditional approach, as the one we
described in Chapter 7, could be however exploited to produce intermediate classes. In our
attempt to design generic robotic actions communicative of carefulness, we privileged the
biological plausibility and followed an approach as human-inspired as possible by replicating
the complete dynamics of the velocity profile. However, it may be sufficient to transfer on the
robot only specific key factors, such as the average speed of the motion, or the duration of the
action, to obtain the same communicative effect. Is it the full dynamic of the motion velocity
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that matters, or can it be simplified by modulating a single factor? In future studies, it could
be interesting to verify it by adjusting, rather than the complete motion profile, only the speed
(absolute or relative between trials) with the standard robot controllers of the different robots.
In the last experiment, we observed that the standard neutral controller was successful in
completing the task; yet, the collaboration was smoother when the robot showed flexibility
and adopted biologically inspired velocity profiles. This is a preliminary result that suggests
how following the human-inspired road, however challenging, still adds something to the
interaction.

To conclude, in this thesis we presented implicit communication applied to action per-
ception and generation. The two aspects are obviously strictly linked. A comprehensive
experiment where the robot perceives online the carefulness in the partner’s gestures and uses
the classification output to promptly react, by planning an adequate handover and transport
action, needs to be realized. By deploying the complete framework we could gather definitive
insights into how implicit communication fosters and promotes safe, efficient, and smooth
interactions.
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(2020). Imitating by generating: Deep generative models for imitation of interactive tasks.
Frontiers in Robotics and AI, 7:47.

[22] Campanella, F., Sandini, G., and Morrone, M. C. (2011). Visual information gleaned
by observing grasping movement in allocentric and egocentric perspectives. Proceedings
of the Royal Society B: Biological Sciences, 278(1715):2142–2149.

[23] Cangelosi, A. and Ogata, T. (2019). Speech and Language in Humanoid Robots, pages
2261–2292. Springer Netherlands, Dordrecht.

[24] Canigueral, R. and Hamilton, A. F. D. C. (2019). The role of eye gaze during natural
social interactions in typical and autistic people. Frontiers in Psychology, 10.

[25] Carfì, A., Foglino, F., Bruno, B., and Mastrogiovanni, F. (2019). A multi-sensor dataset
of human-human handover. Data in Brief, 22:109–117.

[26] Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., and Becchio, C. (2016). Decoding
intentions from movement kinematics. Scientific Reports, 6:37036.



References 148

[27] Chaminade, T., Franklin, D., Oztop, E., and Cheng, G. (2005). Motor interference
between humans and humanoid robots: Effect of biological and artificial motion. In
Proceedings. The 4th International Conference on Development and Learning, 2005,
pages 96–101.

[28] Chan, W. P., Nagahama, K., Yaguchi, H., Kakiuchi, Y., Okada, K., and Inaba, M.
(2015). Implementation of a framework for learning handover grasp configurations
through observation during human-robot object handovers. In 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids), pages 1115–1120.

[29] Chang, J.-Y., Tejero-de Pablos, A., and Harada, T. (2019). Improved optical flow for
gesture-based human-robot interaction. In 2019 International Conference on Robotics
and Automation (ICRA), pages 7983–7989.

[30] Chu, F.-J., Xu, R., Seguin, L., and Vela, P. A. (2019). Toward affordance detection
and ranking on novel objects for real-world robotic manipulation. IEEE Robotics and
Automation Letters, 4(4):4070–4077.

[31] Coleman, D., Sucan, I., Chitta, S., and Correll, N. (2014). Reducing the barrier to entry
of complex robotic software: a MoveIt! case study. arXiv.

[32] Constable, M. D., Kritikos, A., and Bayliss, A. P. (2011). Grasping the concept of
personal property. Cognition, 119(3):430–437.

[33] Cremer, S., Mastromoro, L., and Popa, D. O. (2016). On the performance of the Baxter
research robot. In 2016 IEEE International Symposium on Assembly and Manufacturing
(ISAM), pages 106–111.

[34] Curioni, A., Knoblich, G., and Sebanz, N. (2019). Joint Action in Humans: A Model
for Human-Robot Interaction, pages 2149–2167. Springer Netherlands, Dordrecht.

[35] Curioni, A., Voinov, P., Allritz, M., Wolf, T., Call, J., and Knoblich, G. (2022). Human
adults prefer to cooperate even when it is costly. Proceedings of the Royal Society B:
Biological Sciences, 289(1973):20220128.

[36] Dehais, F., Sisbot, E. A., Alami, R., and Causse, M. (2011). Physiological and subjective
evaluation of a human–robot object hand-over task. Applied Ergonomics, 42(6):785–791.

[37] Di Cesare, G., Errante, A., Marchi, M., and Cuccio, V. (2017). Language for action:
Motor resonance during the processing of human and robotic voices. Brain and Cognition,
118:118–127.

[38] Di Cesare, G., Vannucci, F., Rea, F., Sciutti, A., and Sandini, G. (2020). How attitudes
generated by humanoid robots shape human brain activity. Scientific Reports, 10(1):16928.

[39] Dimiccoli, M., Patni, S., Hoffmann, M., and Moreno-Noguer, F. (2022). Recognizing
object surface material from impact sounds for robot manipulation. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 9280–9287.

[40] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,
Saenko, K., and Darrell, T. (2017). Long-term recurrent convolutional networks for
visual recognition and description. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):677–691.



References 149

[41] Donnarumma, F., Dindo, H., and Pezzulo, G. (2018). Sensorimotor communication for
humans and robots: Improving interactive skills by sending coordination signals. IEEE
Transactions on Cognitive and Developmental Systems, 10(4):903–917.

[42] Dragan, A. D., Bauman, S., Forlizzi, J., and Srinivasa, S. S. (2015). Effects of robot
motion on human-robot collaboration. In Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’15, page 51–58.

[43] Dragan, A. D., Lee, K. C. T., and Srinivasa, S. S. (2013). Legibility and predictability
of robot motion. In Proceedings of the 8th ACM/IEEE International Conference on
Human-Robot Interaction, pages 301–308, Tokyo, Japan.

[44] Duarte, N. F., Billard, A., and Santos-Victor, J. (2022a). The Role of Object Physical
Properties in Human Handover Actions: Applications in Robotics. IEEE Transactions on
Cognitive and Developmental Systems, pages 1–1.

[45] Duarte, N. F., Chatzilygeroudis, K., Santos-Victor, J., and Billard, A. (2020). From
human action understanding to robot action execution: how the physical properties
of handled objects modulate non-verbal cues. In 2020 Joint IEEE 10th International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages
1–6.
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[162] Venture, G. and Kulić, D. (2019). Robot expressive motions: A survey of generation
and evaluation methods. J. Hum.-Robot Interact., 8(4).

[163] Vesper, C., Schmitz, L., and Knoblich, G. (2017). Modulating action duration to
establish non-conventional communication. Journal of Experimental Psychology: General,
146(12):1722–1737.

[164] Viet Tuyen, N. T., Elibol, A., and Chong, N. Y. (2020). Learning from humans to
generate communicative gestures for social robots. In 2020 17th International Conference
on Ubiquitous Robots (UR), pages 284–289.

[165] Vignolo, A., Noceti, N., Rea, F., Sciutti, A., Odone, F., and Sandini, G. (2017).
Detecting biological motion for human–robot interaction: A link between perception and
action. Frontiers in Robotics and AI, 4:14.



References 158

[166] Viviani, P. and Flash, T. (1995). Minimum-jerk, two-thirds power law, and isochrony:
converging approaches to movement planning. Journal of experimental psychology.
Human perception and performance, 21 1:32–53.

[167] Viviani, P. and Schneider, R. (1991). A developmental study of the relationship
between geometry and kinematics in drawing movements. Journal of experimental
psychology. Human perception and performance, 17 1:198–218.

[168] Wang, H., Zhu, C., Ma, Z., and Oh, C. (2022). Improving generalization of deep
networks for estimating physical properties of containers and fillings. In the 32nd IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
9147–9151, Singapore.

[169] Wang, Z., She, Q., and Ward, T. E. (2021). Generative adversarial networks in
computer vision: A survey and taxonomy. ACM Comput. Surv., 54(2).

[170] Watanabe, K. (2008). Behavioral speed contagion: Automatic modulation of move-
ment timing by observation of body movements. Cognition, 106(3):1514–1524.

[171] Wu, X., Sahoo, D., and Hoi, S. C. (2020). Recent advances in deep learning for object
detection. Neurocomputing, 396:39–64.

[172] Xiong, Y. and Quek, F. K. H. (2006). Hand motion gesture frequency properties and
multimodal discourse analysis. International Journal of Computer Vision, 69:353–371.

[173] Xompero, A., Donaher, S., Iashin, V., Palermo, F., Solak, G., Coppola, C., Ishikawa,
R., Nagao, Y., Hachiuma, R., Liu, Q., et al. (2022). The corsmal benchmark for the
prediction of the properties of containers. IEEE Access.

[174] Xu, J., Broekens, J., Hindriks, K., and Neerincx, M. (2015). Mood contagion of robot
body language in human robot interaction. Autonomous Agents and Multi-Agent Systems,
29:1216–1248.

[175] Yang, F. and Peters, C. (2019). Appgan: Generative adversarial networks for gener-
ating robot approach behaviors into small groups of people. In Proceedings of the 28th
IEEE International Conference on Robot and Human Interactive Communication, pages
1–8, New Delhi, India.

[176] Yang, W., Paxton, C., Mousavian, A., Chao, Y.-W., Cakmak, M., and Fox, D. (2021).
Reactive human-to-robot handovers of arbitrary objects. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 3118–3124.

[177] Yoon, J., Jarrett, D., and van der Schaar, M. (2019). Time-series generative adversarial
networks. In Proceedings of 33rd Conference on Neural Information Processing Systems,
Vancouver, Canada.

[178] Yu, L.-F., Duncan, N., and Yeung, S.-K. (2015). Fill and Transfer: A Simple Physics-
Based Approach for Containability Reasoning. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 711–719, Santiago, Chile. IEEE.



References 159

[179] Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., Ma, D., Taylor,
O., Liu, M., Romo, E., Fazeli, N., Alet, F., Dafle, N. C., Holladay, R., Morona, I., Nair,
P. Q., Green, D., Taylor, I., Liu, W., Funkhouser, T., and Rodriguez, A. (2022). Robotic
pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain
image matching. The International Journal of Robotics Research, 41(7):690–705.

[180] Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Object detection with deep
learning: A review. IEEE Transactions on Neural Networks and Learning Systems,
30(11):3212–3232.

[181] Zheng, Q., Wu, W., Pan, H., Mitra, N., Cohen-Or, D., and Huang, H. (2021). In-
ferring object properties from human interaction and transferring them to new motions.
Computational Visual Media, 7.

[182] Zhou, A., Hadfield-Menell, D., Nagabandi, A., and Dragan, A. D. (2017). Expressive
robot motion timing. In Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’17, page 22–31.

[183] Özkan, E. E., Gurion, T., Hough, J., Healey, P. G., and Jamone, L. (2021). Specific
hand motion patterns correlate to miscommunications during dyadic conversations. In
2021 IEEE International Conference on Development and Learning (ICDL), pages 1–6.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Research overview
	1.3 Structure

	2 Background
	2.1 Non-verbal communication
	2.1.1 Explicit communication and signaling
	2.1.2 Implicit communication

	2.2 Understanding object properties
	2.2.1 Inference methods

	2.3 Robotic movements generation
	2.3.1 Joint actions
	2.3.2 Manipulating objects
	2.3.3 Generative models for movements design

	2.4 Evaluating HRI

	I Recognizing object properties from human manipulation
	3 On the effects of object characteristics on human manipulations: a multimodal dataset
	3.1 Methods
	3.1.1 Study Design
	3.1.2 Data Acquisition
	3.1.3 Data Records
	3.1.4 Data Assessment

	3.2 Applications

	4 Observation of human movements to estimate objects properties
	4.1 Methods
	4.1.1 Data pre-processing
	4.1.2 Classifiers

	4.2 Results
	4.2.1 Carefulness level
	4.2.2 Weight

	4.3 Discussion

	5 Online recognition of carefulness from human kinematics
	5.1 Methods
	5.1.1 Software Architecture
	5.1.2 Model training and dataset description
	5.1.3 System evaluation

	5.2 Results
	5.2.1 Shelves Task
	5.2.2 Simple Table Task
	5.2.3 Advanced Table Task

	5.3 Discussion


	II Design of Communicative Robot Movements
	6 A generative approach for property-aware robot object manipulation
	6.1 Methods
	6.1.1 Metrics for generated data assessment

	6.2 Results
	6.3 Discussion

	7 Synthesis and Execution of Communicative Robotic Movements with Generative Adversarial Networks
	7.1 Methods
	7.1.1 cGAN design and implementation
	7.1.2 Robots' movements generation

	7.2 Results
	7.2.1 Robots' Movements Assessment

	7.3 Discussion


	III The effect of implicit communication: towards the interaction
	8 Robots with different embodiments can express and influence carefulness in object manipulation
	8.1 Introduction
	8.2 Methods
	8.2.1 Online questionnaire
	8.2.2 In-presence experimental setup

	8.3 Results
	8.3.1 Online questionnaire
	8.3.2 In-presence experiment

	8.4 Discussion

	9 The effect of robot communicative motions in a joint task
	9.1 Introduction
	9.2 Methods – S1
	9.2.1 Generating communicative movements on the robot
	9.2.2 Setup and experiment design

	9.3 Results – S1
	9.4 Discussion – S1
	9.5 Methods – S2
	9.5.1 Setup and experiment design
	9.5.2 Questionnaires
	9.5.3 Robot Motion Controller

	9.6 Results – S2
	9.6.1 Human motion
	9.6.2 Questionnaires
	9.6.3 Global metrics

	9.7 Discussion – S2


	IV Conclusion
	10 Final discussion
	10.1 Overview
	10.1.1 Perception
	10.1.2 Action
	10.1.3 Interaction

	10.2 Final considerations, limitations, and future works

	Publications
	References


