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“The noblest pleasure is the joy of understanding”  

(Leonardo da Vinci) 
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Abstract 

The continuous growth of MV overhead distribution systems requires a constant improvement 

in terms of security and power quality. One of the most critical event that can cause the fault of 

a distribution line is represented by the atmospheric discharges and, among them, the most 

dangerous one is no-doubt the lightning stroke. 

In the transmission and distribution systems, lightning transients can be caused by either direct 

or indirect strikes. Indirect strikes are much more frequent than direct strikes and can cause 

flashovers, especially when the line insulation level is low.  

The computation of the lightning induced-voltages (i.e. the one related to the indirect strikes, 

which represent the most critical issue in distribution systems)  is a very complicated task for 

two main reasons: 1) the number of uncertain parameters is high: it involves a correct 

representation of the current that flows in the lightning channel as well as a correct 

representation of the soil conductivity where the power line is located. 2) The computational 

complexity of the calculations that allow evaluating the final overvoltage is high because in this 

case we are dealing with the computation of electromagnetic fields and with the effect of such 

fields on the power line. 

Concerning the protecting measures the most widely employed are the use of shield wires, surge 

arresters and the increase of the line insulation level.  

This thesis aims at improving the problem of the lightning-induced voltages in overhead 

distribution lines in terms of three main concepts: 1) innovation of the existing models, 2) 

optimization of the computational effort and 3) introduction of innovative tools for the 

protecting scheme. In this framework, the thesis proposes a new channel-bae current model (1), 

an analytical technique for the electromagnetic fields computation (2), a new scheme for the 

lightning-induced voltages computation (2), a new approach for reducing the computational 

effort of the lightning performance computation (2 and 3) and an innovative approach for the 

evaluation of the mitigation effect of shield wires on the lightning-induced voltages (3).  
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1 Introduction  

The continuous growth of medium voltage (MV) overhead distribution systems requires a 

constant improvement in terms of security and power quality. One of the most critical events 

that can cause the fault of a distribution line is represented by the atmospheric discharges and, 

among them, the most dangerous one is no-doubt the lightning stroke. In MV overhead 

distribution systems, lightning transients can be caused by two main categories: direct and 

indirect strokes. The first category represents that type of lightning events that directly hit the 

power line, while the second category represents the ones striking the ground around the 

distribution line, causing possible overvoltages due to the coupling effect with the 

electromagnetic fields. Direct strikes are obviously much more dangerous although less 

probable, while indirect strikes are much more frequent than direct strikes and can cause 

flashovers especially when the line insulation level is low [1]. Direct strikes are modelled 

placing a current source taking the channel base current in parallel with the channel impedance 

in the point of the line in which the lightning is supposed to strike, while the computation of the 

effect of indirect strikes is much more complicated and takes into account many different 

aspects and parameters. 

The computation of the lightning induced-voltages is a very complicated task for two main 

reasons: 1) the number of uncertain parameters is high: it involves a correct representation of 

the current that flows in the lightning channel as well as a correct representation of the soil 

conductivity where the power line is located (Section 1.1). 2) The computational complexity of 

the calculations that allow evaluating the final overvoltage is high because in this case we are 

dealing with the computation of electromagnetic fields and with the effect of such fields on the 

power line (Sections 1.2 and 1.3).  

The goal of the evaluation of lightning-induced voltages is no-doubt the protection of overhead 

distribution lines. As proposed in Section 1.4 the main protecting techniques are based on the 

installation of surge arresters and shield wires, while the most important instrument for the 

evaluation of the effectiveness of such protecting techniques is the lightning performance 

procedure (Section 1.5).   

1.1 The lightning current 

The representation of the current flowing in the lightning channel has been an important topic 

involving many researchers. Different approaches have been presented in literature to model 

such current. According to [2], they can be divided into four categories: 
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1) Gas dynamic or physical models [3-5] which require the solution of three hydrodynamic 

equations representing the conservation of mass, momentum and energy and coupled to 

two equations of state with the input parameter being an assumed channel current versus 

time. 

2) Electromagnetic models that consider the lightning channel as a lossy thin wire antenna 

[6, 7]. The solution of the resulting Maxwell equations (typically performed by means 

of the method of moments) provides the complete channel current (that is to say 

including both transmission line mode and antenna mode current [8]) 

3) Distributed circuit models which are an approximation of the electromagnetic models 

and adopt the telegrapher equations to represent the lightning channel[8]. The major 

limitation of this model is that analytical solutions are available only in the case of 

constant per-unit-length parameters, which is not the case of the lightning channel. 

Moreover, the validity of the Transverse Electro-Magnetic (TEM) assumption is 

questionable in particular near the return stroke tip where a relatively large longitudinal 

component of the electric field is present 

4) Engineering models that basically provide an equation relating the channel current 

( ', t)I z   at any time t and height 'z  to the channel base current (0, )I t  . 

For the purpose of the overvoltage analysis, the engineering models are the most widely adopted 

because of the compromise they guarantee between computational efforts and ability to 

adequately represent the electromagnetic fields at low to medium distances. 

As mentioned and as will be shown in Section  2.1, the common idea is based on dividing the 

representation of the current in two main parts: i) the behaviour at the channel-base and ii) its 

propagation while it flows along the channel. Concerning the first issue, it has been possible to 

obtain reliable data thanks to the measurements obtained in different countries [9-13] and 

thanks to triggered lightning experiments [14]; according to these measurements many models 

have been developed trying to represent the channel-base current in an accurate and fast way 

[15-18]. The representation of the propagation along the lightning channel is a much more 

problematic task. This is mainly due to the fact that up to now it is not possible to measure what 

happens inside the lightning channel. The main idea of the researchers has been to try to invent 

a model representing how the current propagates along the channel that can match as well as 

possible the electromagnetic fields measurements. This task has led to the definition of  many 

different models [19].  
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1.2 The electromagnetic fields 

As will be proposed in Section 2.2 a first possibility for the computation of the electromagnetic 

fields is to assume that the ground is a perfect conductor and the lightning channel is vertical; 

in these conditions, expressions for the electromagnetic fields involving an integral over the 

channel have been derived both in the frequency and in the time domain [20, 21]. However, it 

has been shown that the ground finite conductivity plays an important role especially in the 

evaluation of the radial component of the electric field. The exact expressions of the field in 

presence of a lossy ground involves the so-called Sommerfeld integrals, whose exact 

computation, performed in [22-24], results prohibitive from a computational point of view. For 

this reason, an approximate approach has been proposed by Cooray and Rubinstein in [25, 26] 

in the frequency domain and then some alternative expressions in the time domain have been 

presented in [27-30]. However, to evaluate the overvoltage generated by one lightning strike 

on a line it is necessary to calculate the radial component of the electric field in the points in 

which the line is discretized and the vertical component of the electric field at the line 

extremities [31]. Moreover, when one aims at evaluating the lightning performance of a 

distribution system (Section 1.5), a statistical analysis has to be conducted according to which 

some thousands of lightning events have to be randomly generated characterized by different 

points of impact and different parameters of the channel base current [32-35]. From these 

considerations it is apparent that a huge number of field calculations is required, which makes 

the computational performance of such calculation a crucial aspect for this kind of application. 

In literature many approaches have faced this problem: in [36], analytical expressions for the 

fields were developed relying on the assumption of trapezoidal channel base current, while on 

the other hand in [35] a field database was developed. Unfortunately, the first solution can 

generate unacceptable deviations especially when the presence of surge arresters and flashovers 

occurrence is taken into account [37]. On the other hand, the field database does not completely 

solve the computational problems, because when one has to account for the main features of 

the channel base current waveform, the dimension of the database would be prohibitive. 

1.3 The lightning-induced voltages 

Once the electromagnetic fields are known, their effect on the power lines must be computed. 

Many models have been developed since 1957 [38],  but the most commonly-used TL-based 

model to describe lightning electromagnetic fields coupling to overhead lines is the one 

proposed by Agrawal et al. in 1980 [31]. Since then, different implementations of this model 

have been proposed in literature that can be basically divided into two categories: analytical 

[39-44] and numerical [34, 35, 45-50]. The most popular methods belonging to the analytical 
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group are [40-44], where a mixed time-domain/frequency-domain approach is proposed. Many 

different approaches have been proposed on the numerical side, but the most widely employed 

computer code is LIOV [45-47] that has been improved over time in order to take into account 

more complex distribution systems [48]. LIOV has been interfaced both with EMPT-RV and 

with SymPower Systems program in the MATLAB Simulink environment. Recently, an 

advanced coupling code that can be interfaced with the PSCAD-EMTDC platform has been 

developed by the researchers of the University of Genoa [34, 35].  

1.4 Protection of MV overhead distribution lines 

The protection of MV overhead distribution lines from the lightning-induced voltages has been 

faced in many IEEE and CIGRE standards [1, 51] as well as in many research papers. The main 

protective measures against short interruptions and voltage sags can be identified as 1) 

increasing of the line insulation level and/or 2) the use of shielding wires and/or 3) the use of 

surge arresters. 

1.4.1 Line insulation level 

 As pointed out in [1], the estimation of the line insulation level is not an easy task due to the 

atmospheric conditions (air density, humidity, rainfall), the polarity and rate of rise of the 

voltages and physical factors such as insulator shape, shape of metal hardware and insulator 

configuration. The total line insulation level (also known as Critical Flashover Voltage-CFO) 

of a distribution structure can be estimated by the knowledge of the contribution of each 

additional insulation component to the total CFO of the combination and by estimating the total 

CFO of the combination knowing the CFO of the insulation components.  

1.4.2 Shield wires 

The experience in using shield wires in MV distribution systems has been successful in the 

USA and South America thanks also to their combined use with surge arresters that provide 

complementary protection [1]. In some European countries, such as Italy, the introduction of 

shield wires is generally not used in MV distribution networks even though their effectiveness 

have been shown in some studies (e.g., [52]). Many papers have dealt with the use of shield 

wires, discussing the effect of parameters such as the distance between two subsequent 

grounding points [38, 53, 54], or presenting experimental results to assess their effectiveness 

[55-58]. The studies presented in [54] have focused on the parameters that affect the 

effectiveness of shield wires on the mitigation of lightning-induced voltages. The results 

obtained have demonstrated that the most relevant ones are the relative position of the shield 
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wire with respect to the phase conductors, the grounding interval and the ground resistance, but 

a thorough analysis is still missing.  

1.4.3 Surge arresters 

Arresters may be used to protect distribution line insulation by reducing the occurrence of 

flashovers and circuit interruptions. Several different types of arresters, such as internally 

gapped silicon carbide, internally, externally or non-gapped metal-oxide, have been used over 

time. From the point of view of protection, all perform in a similar manner. Differences in 

discharge voltage characteristics will cause only a small difference in the protection of 

insulation [1].  

1.5 Lightning performance of overhead distribution lines 

In order to evaluate the effectiveness of the aforementioned protection strategies, it is necessary 

to find adequate instruments.  

One of the most important instrument for the protection of overhead distribution lines is 

represented by the lightning performance procedure.  

The lightning performance procedure provides, for a power line, the number of dangerous 

events per square kilometer per year. In order to evaluate it is extremely important to have 

reliable data in terms of the parameters that characterize a lightning stroke and its incidence on 

the territory where the line is located. Among them, it is important to cite the peak current, the 

front duration, the maximum steepness, the total charge, the time-to-half value and the Ground 

Flash Density (GFD).  

In literature many approaches have been proposed [1, 32-34, 59], but all of them rely on the 

same procedure based on the Monte-Carlo method, here briefly recalled: 

1. A large number of lightning events is randomly generated 

2. Each event is characterized by a point of impact, a channel-base peak current, front 

duration, maximum steepness, total charge and time-to-half value according to the 

probability density functions (PDF) taken into account.  

It is important to remind that usually the point of impact coordinates are uniformly 

distributed, while the other parameters follow the PDFs of the measurements [9]. In 

principle all the aforementioned parameters should follow their PDF, but usually the 

maximum steepness, the total charge and the time-to-half-value are not taken into 

account in the Monte-Carlo procedure and thus considered as constant values.  

3. The ElectroGeometric Model (EGM) [60] distinguishes if the selected event is a direct 

or indirect stroke.  
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4. The overvoltage on the distribution line is computed. If it is a direct event, the 

computation procedure is simple and based on placing a current source taking the 

channel-base current in parallel with the channel impedance in the point of the line in 

which the lightning is supposed to strike. If the event is indirect,  the computation is not 

an easy task and can be evaluated with a simplified formula [38] or with dedicated codes 

as mentioned in Section 1.3. 

5. The overvoltage is compared with the line CFO and considered as dangerous if it 

overcomes that threshold.  

6. The ratio between the number of dangerous events and the total number of events is 

computed and multiplied by the GFD.  

It is important to remind that, in order to have a good convergence of the Monte-Carlo method, 

a high number of events is usually considered (>10000). This leads to an important problem in 

terms of computational effort, especially because each time that a different front duration is 

considered from the Monte-Carlo procedure, it is necessary to evaluate again the 

electromagnetic fields, which represent the most cumbersome part.  

1.6 The goal of the proposed work 

This thesis aims at improving the problem of the lightning-induced voltages in the overhead 

distribution lines in terms of three main concepts: 

 Models innovation 

 Computational effort optimization 

 Introduction of innovative tools  

1.6.1 Models innovation 

1.6.1.1 A new channel-base current 

According to Section 1.1, many models have been already introduced for describing the 

channel-base current. However, as described in the next paragraphs, each one of them has some 

advantages and disadvantages that need to be discussed deeply. This has led the author to 

introduce a new model for the channel-base current able to adequately describe the 

measurements with a few number of parameters. Section 2.1  describes deeply the existing 

models, while Section 3  introduces the theory of the new proposed model with the validation 

against the already existing ones. 
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1.6.2 Computational effort optimization 

1.6.2.1 Electromagnetic fields computation 

The computation of electromagnetic fields is probably the most cumbersome part in the 

lightning performance computation and more in generally, when one has to face the lightning-

induced voltages problem. The well-known approach requires, for each time step, the solution 

of the integrals in the channel vertical coordinate (Section 2.2). In Section 4 a new approach, 

based on few assumptions is proposed and validated with the traditional method, focusing on 

the important reduction of the computational efforts. 

1.6.2.2 A new scheme for the lightning-induced voltages computation 

The majority of the codes for the lightning induced voltages computation are based on the 2D-

FDTD schemes [61, 62]. The FDTD schemes are mainly based on the discretization of the 

problem in two dimensions: the space and the time. As will be proposed in Section 2.3.2, these 

schemes can be useful, but presents some limits that can introduce numerical instability. In 

order to overcome these limits, the most used technique is based on decreasing the time 

discretization step, which enlarges the computational effort. In Section 5 a possible solution for 

such numerical problems will be proposed and validated guaranteeing a decreasing of the 

computational effort with respect to the classical methods. 

1.6.2.3 A new approach for reducing the computational effort of the lightning performance 

computation 

As proposed in Section 1.5, the lightning performance requires a high computational effort, 

because for each power line, it is necessary to generate a high number of events in order to have 

a good convergence of the Monte-Carlo procedure.  

In section 6, a methodology for reducing the computational effort of the lightning performance 

procedure is proposed and validated against the traditional method. The results will show that 

the proposed approach have the same validity of the most cumbersome methods. 

1.6.3 Introduction of innovative tools 

1.6.3.1 A innovative approach for the evaluation of the mitigation effect of shield wires on 

lightning-induced voltages 

One of the most important protecting measurements against lightning-induced voltages is the 

shield wire (Section 1.4.2). Its effectiveness depends on many parameters, such as the height, 

the grounding interval, the grounding resistance and the position of the shield wire with respect 

to the phase conductors. The individual effect of each parameters is well described in [1, 54, 

63] but a thorough analysis is still missing. In section 7 a new tool for evaluating the 
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effectiveness of such parameters on the ability of reduction lightning-induced voltages is 

proposed. 
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2 State of the art 

The aim of this chapter is to describe the state of the art in the lightning-induced voltages theory 

starting from the models for the description of the lightning current, focusing on the 

computation of the electromagnetic fields with the traditional technique and finally concluding 

with the theory of the field-to-line coupling and its numerical implementation.  

2.1 The lightning return stroke current 

As mentioned in Section 1.1, the most-used representation for the lightning return stroke current 

in the engineering application is the engineering model. From now onwards, for sake of brevity, 

it will be referred to the lightning return stroke current as the “lightning current”. In other, 

words, as commonly admitted, the electromagnetic radiation from lightning channel is 

essentially due to the return stroke phase. 

An engineering model disregards the physics of the lightning processes and  aims at  producing  

lightning electromagnetic field results at various distances from the lightning stroke as close as 

possible to the experimentally measured ones, just by using a simple mathematical formulation 

of the lightning channel current and applying basic electromagnetic theory relations. 

The necessity of such type of model is mandatory because the other three categories require a 

wide computational effort to evaluate the channel current while for the engineering models the 

lightning current is achieved just by knowing the channel base current time domain waveform 

and employing a small number of adjustable parameters. 

According to [64, 65], the engineering models can be grouped into two broad categories: 

 the Transmission Line type models 

 the Traveling Current Source type models 

In the following subsections, the main features of the two groups are briefly recalled. 

2.1.1 Engineering models 

2.1.1.1 Transmission Line Type Models 

Transmission line type models assume that the channel current I (z’, t) is a function of height z’ 

and time t which depends on the channel-base current I0 (t) = I(0,t) and on the attenuation 

function P(z’). The channel current is given by: 

    0

' '
', '

f

z z
I z t I t P z u t

v v

  
         

  (1) 
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being u(t) the Heaviside unit function, vf the return stroke speed and v the current wave 

propagation speed. 

The most widely employed models belonging to this group are: 

 TL model [66], according to which v=vf  and  ' 1P z   

 MTLL model [67], according to which v=vf  and  
'

' 1
z

P z
H

    

 MTLE model [68], according to which v=vf  and  
'

' exp
z

P z


 
  

 
,  being the 

current decay factor 

 

(a) 

 

(b) 

 

(c) 

Figure 1 propagation of the current along the channel according to the TL model (a), the MTLL model (b) 

the MTLE model (c). Channel-base waveform adopted: Heidler’s first stroke [15]. 

In Figure 1 an illustration of the propagation of the current along the channel according to the 

three above models is presented, highlighting the attenuation predicted by the MTLL and the 

MTLE with respect to the TL. 
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In [69] other four models that differ from the previous ones for the expression of the attenuation 

function P have been presented. 

 MTLTCOS model, according to which v=vf and 

 
' '

' 0.95 0.95 0.05cos 5
z z

P z
H H


 

    
 

 

 MTLTSIN model  according to which  v=vf and 
' 3 '

( ') 1 0.1sin
z z

P z
H H

 
    

 
  

 MTLT model, according to which v=vf and  
3

'
' 0.5 1 1 2

z
P z

H

  
    

   

 

 MTLT2 model, according to which v=vf and  

2
3

'
' 0.25 1 1 2

z
P z

H

  
    

   

 

In Figure 2 an illustration of the propagation of the current along the channel is sketched 

according to the four models proposed in [69].  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2 propagation of the current along the channel according to the MTLTCOS model (a), MTLTSIN 

model (b) the MTLT model (c) the MTLT2 model (d). Channel-base waveform adopted: Heidler’s first 

stroke [15]. 

2.1.1.2 Traveling Current Source Type Models 

The basic idea of these models is that the return stroke current is generated at the upward 

moving return stroke front and propagates downward. The most widely employed models 

belonging to this category are: 

 The BG model[2], which assumes that: 

    0

'
',

f

z
I z t I t u t

v

 
   

 
  (2) 

 The TCS model [70] proposed by Heidler according to which: 
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   0

' '
',

f

z z
I z t I t u t

c v

  
         

  (3) 

 The DU model proposed by Diendorfer and Uman in [71] 

  

  
'

0 0 *

' ' '
', e

D
f

z
t

v

f

z z z
I z t I t I u t

c v v


 
  
 
 

                       

  (4) 

The BG model is based on the idea that no propagation exists, thus it has no physical validity 

and can be seen as a special case of the TL model with v equal to infinity. In the model proposed 

by Heidler in [70], the current may be viewed as a downward propagating wave originating at 

the upward moving front. This model has some physical lacks related to the instantaneous 

charge absorbed into the return stroke front, but nevertheless, it produces reasonable fields for 

the first few microseconds. To overcome this problem the DU model has been proposed, where 

f f
v cv c v * / ( )  and τd is a positive number. 

The first term of the DU model is the TCS formula, while the other is an opposite polarity 

current which has the aim of eliminating any current discontinuity at the front by arising 

instantaneously to the value equal in magnitude to the current at the front and then decaying 

according to τd. 

In Figure 3, an illustration of the propagation of the current along the channel is sketched 

according to the three traveling current source models. It can be seen that, differently form the 

Transmission Line type models, a distortion in the current waveform appears in all the three 

Traveling Current Source models.  
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(a) 

 

(b) 

 

(c) 

Figure 3 propagation of the current along the channel according to the BG model (a), the TCS  model (b) 

the DU model (c). Channel-base waveform adopted: Heidler’s first stroke [15] 

2.1.1.3 The channel base current 

Both the Transmission Line and the Traveling Current Source models need as input the 

knowledge of the channel base current. The most widely adopted analytical expressions are: 

 The double exponential waveform (DEXP)  proposed by Golde in 1977 

  

    0

t t

mI t I e e      (5) 

where α and β are suitable constants, while Im is the normalization factor that can be adjusted 

in order to impose the current peak  

 he well-known  Heidler’waveform proposed in  [15]



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
22 

  

   21

0

1

1

n

t

S

n

t

I
I t e

t




 
 
 


  

  
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  (6) 

where IS is a constant affecting the peak value of the current, 

1

1 2

2 1

exp
n

n

 
   

     
   

 

 and n, τ1 and 

τ2 are constants whose values have to be adjusted to mimic measured channel base currents. 

 The formula proposed by Javor in [17] 

  

 

 
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0 1

1

0 1
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
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
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




  (7) 

where a is a coefficient that can be adjusted in order to represent the maximum steepness of the 

current, τ is defined as the ratio between t and the time in which I0=Im and n,ci,bi are coefficients 

that tune the decaying part of the waveform. 

 The formula proposed by Andreotti in [16] 
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  
    
   
  

   
 

  (8) 

where τ1 is the time to peak value, 1

2

a



   and τ2 is a parameter which tunes the decay time and 

n is the steepness factor 

 The formula proposed by Andreotti in [72] 

    
 

 
0

11

1

0 01 1

t t t

a

mI t I a e e u t t




 
 

 
 
    
  

  (9) 

where τ1 is the time to peak value, t0 is an offset time, 1

2





 and a is evaluated solving the 

following equation: 
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e
a




 
 

  
  

 
  (10) 

2.1.2 Typical validation of the engineering models 

The validation of engineering models can be obtained following two different approaches[2]. 

Both are based on the comparison between the calculated and measured electromagnetic fields, 

but they differ for the input data necessary for the electromagnetic fields calculation. In the first 

approach, the electromagnetic fields computation is evaluated through the engineering model 

considered where the channel base current waveform and the propagation speed are measured, 

while the second approach assumes a typical channel base current waveform and a typical 

propagation speed. If, from one side, the first approach has a stronger validity, on the other 

hand, it is feasible only in case of triggered lightning events, where the channel base current 

can be measured. 

As can be expected, the “typical” validation has been more widely employed, leading to the 

following conclusions. According to [73], four main characteristics can be seen in the lightning 

electromagnetic fields: 

 a sharp initial peak that varies approximately as the inverse distance beyond a 

kilometre or so in both electric and magnetic fields 

 a slow ramp following the initial peak lasting less than 100 µs for electric fields 

measured within a few tens of kilometres 

 a hump following the initial peak in magnetic fields within a few tens of kilometres 

 a zero crossing within tens of milliseconds of the initial peak in both electric and 

magnetic field at 50 to 200 km 

If the first feature is reproduced by all the described models, the second one is not captured by 

the TL. The hump in the magnetic field is not represented adequately by the MTLE which, on 

the other hand, provides reasonable zero crossing time (which is not the case for the BG, the 

TL and the TCS models). Moreover, according to [69], the new functions MTLTSIN, 

MTLTCOS, MTLT and MTLTS are able to reproduce all the desired features. 

2.1.3 Engineering models effects on the induced voltages 

This section is aimed at showing the induced voltage on a distribution line, whose details are 

given in Table 1. The induced voltages have been calculated with the ten engineering models 

presented in the previous section, using the coupling code developed in [34]. The return stroke 
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speed and the current wave propagation speed are  
8 11 10fv v ms    [62], the channel height 

is 8 km, the decay factor λ is 2000 and τd is 1µs. 

Table 1 – Distribution line details 

Length 1200m 

Number of 

conductors 

1 

Conductor 

height 

10 m 

 

Conductor 

diameter 

1 cm 

Four different configurations for the selected distribution line have been taken into account (see 

Table 2). They differ from each other for the line terminations and the ground conductivity. In 

particular, in the Tests 3 and 4 a lossy ground with  conductivity σ=0.01 S/m and ground relative 

permittivity εr=10 has been considered. According to Figure 4 the lightning stroke location is 

at distance d=100 m from the central point of the line. The calculation point is located at the 

central point of the line (0, d, h). The matching resistors value is 498 Ω. 

 

Figure 4 Lightning return stroke channel nearby an overhead line  
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Table 2 – Test Details 

Test Ground  Terminations 

1 Perfect Matched/ Matched 

2 Perfect Matched/ Open 

3 Lossy Matched/ Matched 

4 Lossy Matched/ Open 

The induced voltages for cases 1-4 are presented in Figure 5-Figure 8. 

 

Figure 5 Induced Voltages Test 1 
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Figure 6 Induced Voltages Test 2 

 

Figure 7 Induced Voltages Test 3 
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Figure 8 Induced Voltages Test 4 

The comparison among the Transmission Line type models suggests that they all provide 

similar results for what concerns the rising part of the overvoltage and the peak value. Some 

differences appear in the tails and it can be observed that the higher the attenuation of the current 

(see Figure 1 and Figure 2) the slower the decrease of the overvoltage time profile. 

Induced voltages predicted by the TCS and the DU models are characterized by faster rising 

and falling time than the Transmission Line type ones. A possible explanation is the following. 

While in the TL models the direction is upward and thus the current at a height z'1 reaches its 

peak afterwards the peak occurrence at z'2< z'1, in the TCS and DU models the direction is 

downward and thus the current at the height z'1 reaches its peak before the one at z'2. These 

considerations on the current propagation can be easily extended to the electric field because it 

is the result of the integration of all the fields produced by different current dipoles placed along 

the channel. Consequently, the TCS and DU models produce fields that have faster rise time 

and thus also the overvoltage waveform is faster than the other ones. 

Tests 2 and 4 present the effect of the line termination opening. In each case, the waveform 

presents two voltage peaks according to the reflection phenomenon occurring at 

t=1200/(3*108)=4  µs after the starting of the overvoltage wave in the central point of the line.  

The effect of the finite ground conductivity can be appreciated comparing Test 1 with 3 and 

Test 2 with 4. As outlined in [74] the lossy ground influences more the (radial) field calculation 
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than the coupling process, even though a term containing the finite ground conductivity appears 

both in the fields formulas and in the coupling equations. Anyway, the final result is an 

enhancement of the overvoltage peak in accordance to what concluded in [75] (see Figure 7 

and Figure 8), where the voltage increases with respect to the perfectly conducting ground 

cases). 

2.2 The electromagnetic fields 

The aim of this chapter is to calculate the lightning electromagnetic fields starting from the 

return stroke current (Section 2.1).  

In several studies the ground is assumed to be a perfect conductor, even if the ground 

conductivity is very important for both irradiated electromagnetic fields and determination of 

parameters. Unfortunately, the electromagnetic fields depend on the ground conductivity, but 

the exact evaluation of such field implies the evaluation of the slowly converging Sommerfeld 

integrals [76] that do not present an explicit expression in the time domain. In order to overcome 

this difficulty, simplified models are generally used [25, 26, 60, 76-78]. 

In this framework, the approach proposed in this chapter is to: 

1) present the complete field problem 

2) present and solve a simplified problem that will be useful to solve the original one 

3) solve the problem for the case of perfectly conducting ground and present the most 

commonly used approximate expression to deal with ground finite conductivity (i.e. the 

Cooray-Rubinstein formula) 

2.2.1 Formulation of the complete field problem 

Let us consider the situation depicted in Figure 9, where a vertical dipole taking a current I lays 

at a height z’ over a conducting ground. 
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Figure 9 Geometry of the problem 

The Maxwell’s equations in the time domain can describe the electromagnetic fields at point P 

in an open space:  

 
; ;

; 0

B E
E H J E

t t

D B

 



 
      

 

   

  (11) 

Where: E  is the electric field, D  the electric induction, H  the magnetic field, B  the magnetic 

induction, F the rotor of a generic field F  , F  its divergence  , and F  its gradient. 

E  and D  ,  B  and H   are linked by the constitutive equations: 

 

D E

B H









  (12) 

  being the magnetic permeability and   the electric permittivity.  

In the vacuum, one has: 
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  (13) 

In the frequency domain, the expressions of fields have been derived assuming for all variables 

a time-harmonic dependence of the kind 
j te 

: 

 E j B j H      (14) 

 H J E j E        (15) 

 ; 0D B      (16) 

 ; 0E H



        (17) 

As can be seen from (11) the main sources of H


 and E  are respectively the density current 

2

A
J

m

 
 
 

 and the charge density 
3

C

m

 
 
 

. 

J  and   are related by the following formula, called continuity equation: 

 J j     (18) 

Introducing the potential vector A


 such that AH





1
, (11) becomes:  

  0 0E j A E j A           (19) 

As one can see, the field AjE


  is irrotational and so the scalar potential   can be defined 

as: 

 E j A      (20) 

so, the fields can be expressed as a function of the scalar and vector potential, as follows: 

 
1

;E j A H A 


       (21) 

So, the field problem is solved whenever one is able to determine   and A


, which can be done 

as follows: 

    
1 1

H A A A
 

        
 

  (22) 
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  A A H J E j E               (23) 

       A A J j E J j j A                       (24) 

      A A j j A J j                    (25) 

Imposing the Lorentz  Gauge Condition stating that: 

  A j         (26) 

one has that: 

  2A j A J          (27) 

Now, as the geometry depicted in Figure 9 presents two half spaces (air and ground), two cases 

have to be separately analyzed: 

1) For the air, 

0  , 0   and 0   and  ' 3J r r e    

 being the Dirac operator and  (’) the spherical coordinates radius of the observation point 

(source point). Consequently, (27) becomes: 

  2 '

0 0 0 0 3A A J e                (28) 

As the definition of the wave number in air is: 

 0 0k
c


      (29) 

 equation (28) becomes 

  2 '

0 3A k A e          (30) 

Once the vector potential is at disposal, the electric field can be calculated as follows: 

 
      2

0 0 0 0( )

A A A k A
E j A j A j A

u j j j
   

     

      
       

  
  (31) 

As can be seen from Figure 9, the cylindrical symmetry allows to state that 
zezrAA


),( , for 

this reason: 

 
A

A
z


  


  (32) 

Consequently, 
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  
2

2r z
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A e e

r z z

 
   
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  (33) 

which allows to split the electric field in the two nonzero components zE  and rE : 

 
2

2
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1
z

A
E k A

z j 

 
  
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  (34) 
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   
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  (35) 

while the only component of magnetic field is:  

 
0 0

1 1 A
H A

r


 

 
    

 
  (36) 

2) For the ground,  

0   , 0 r , 0   and 0J    

AE represents the potential vector of the ground and with the same previous assumptions, the 

equation becomes: 

 2

0 0 0E EA j A           (37) 

As the definition of the wave number in the ground is: 

 2 2

0 0Ek j       (38) 

and 
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E
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k

  


    
       (39) 

Consequently (37) becomes: 

 
2 0E E EA k A     (40) 

while the electrical field becomes  
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  (41) 

whose components are:  
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  (43) 

while the only component of magnetic field is: 

 
0

1 EA
H

r





 


  (44) 

2.2.1.1 Boundary conditions 

The boundary condition that guarantees the uniqueness of the problem solution was firstly 

found by Sommerfeld and is known as the Radiation Condition. 

 lim 0
r

r jkA
r

 
  

 
  (45) 

The physical meaning of (45) is that the vector potential wave must propagate from the source 

(the dipole) outwards. 

2.2.1.2 Interface conditions 

It is known that at the interface between two different media the tangential component of the 

electric and magnetic fields is continuous, so: 

 the continuity of the tangential component of the magnetic field reads EHH    for z=0 

where: 
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
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
 


  (46) 

and 

 
0

1 A
H

r





 


  (47) 

That leads to 

 
0 0

1 1EA A

r r 

 
  

 
  (48) 

that implies that, at the ground level, A=AE as the fields and the potential are null for r . 

 The continuity of the tangential component of the electric field reads rE rE E for z=0 

where: 
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  (49) 

and 

 
2

1
rE

k r z




 
  (50) 

that produces 

 
2 2

1 1E

Ek r z k r z

 

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  (51) 

In view of limit for r , the following equation is obtained:  

 2

2 2

1 1E E

E

AA
n

k z k z z z

  
  
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  (52) 
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Summarizing, the problem of Figure 9 is described by the following equations: 

2

2 2

1 1E E

E

AA
n

z z z zk k

  
  

   
 for z > 0, P(x,y,z) = generic point of observation, 

                                                                         P’(0,0,z’) = source point 

                                                                         δ = Dirac pulse  

2 0E E Ek                                for z < 0        (53)

    

lim 0r r jkA
r



 
  

 
              Radiation Condition 

2 En
z z




 
                                for z = 0 ; interface condition 

EA A                        for z = 0;  interface condition 

being: ω = angular frequency, k = ω/c wave number in air, kE = wave number in the ground, n= 

refractive index of the ground, kE
2 = εμ0ω

2 + j μ0σω, n2= kE
2 / k2, σ = ground conductivity, μ0 = 

magnetic permeability in the vacuum, ε0 = permittivity in the vacuum, ε = permittivity in the 

ground (ε ≈ 10ε0). 

2.2.2 Solution of the simplified problem 

Sommerfeld has shown that the solution of problem (53) can be faced starting with the solution 

of the following simplified problem, in which a vertical dipole lays in the free space (the dipole 

is placed in the origin of a system of spherical coordinates ())  
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Figure 10 Geometry of the simplified problem 

The equations that govern the problem are: 

 

2 2

0 ( )

lim 0

k A

j kA


  




   

  

   
 

  (54) 

It should be noted that the radiation condition assumes a different form, as it depends on the 

adopted coordinate system and that the relationship between spherical and cylindrical 

coordinates radii is given by 2'2 )( zzr  . 

For the symmetry of the problem, one can assume that the vector potential depends only on the 

radius, that is to say A = A(ρ). As a consequence, the first of (54) becomes: 

 

 2

2

2

1
0

0

A
k A



 



 
    



  (55) 

The solution of (54) is: 

 1 2

jk jkC e C e
A

 



 
   (56) 

Imposing the radiation condition, one has that: 
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1 2

1 2

1 1 2 2 1 22

1 1 22

1 1

1 1
lim 0

1 1 1 1 1 1
lim 0

1 2 1
lim

jk jk

jk jk

jk jk jk jk jk jk

jk jk jk

C e C e

jk C e C e

C e jkC e C e jkC e jkC e jkC e

C e jkC e C e

 

 



     



 



 


  


     


  







  



 



  
   

          
 
 

 
        
 

    0 
 

 

 

 (57) 

That is satisfied if  C1 = 0. Then: 

 2 jkC
A e 


   (58) 

which claims for the evaluation of C2. Integrating the first of (54) on a sphere with radius a→0 

and centered in the origin, the right hand side is:  

 0 0( )
s

dV        (59) 

On the other hand, integrating the left-hand side, one has: 

  2 2

s s s

A k A dV AdV k AdV         (60) 

Recalling (58), the second term in (60) becomes: 

  

 

2

2 2 2 22 2

0 0 0

sin

a

jk jk

s s

C C
k AdV k e k e d d d

 

     
 

    
       

    
       (61) 

which approaches zero as a → 0. 

As far as the first letter in (60) is considered, the following holds true:  
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 
2

2

0 0

2
2

2

0 0

2

2

2 2

0 0

2

2

0 0

2

sin

sin

sin

sin

(cos 0 co

s

jk

jka
jk

jka

jka

A
A dV A nd a d d

C
e

a d d

e jk
C e a d d

a a

C e d d

C e

 


 





 

 



 

   



  



  

  

 
      

 

  
  
   

 
 
 

  
      

  

  
     

  

  

   

 

 

 

 

2

0

2

2

0

2

s )

2

2 2

jka

jka

d

C e d

C e





 





 
 

 

 
   

 

  





  (62) 

that allows to state: 

 
2 04 jkaC e    (63) 

Now, taking the limit for 0a    one has that 0
2

4
C




 . 

As a consequence, the final solution is:  

 0

4

jkA e 


   (64) 

Sommerfeld showed that both (64) and the complete field problem solution can be written as a 

superposition of the eigenfunctions of the homogeneous Helmholtz problem; the only 

difference lays in the values of the linear combination coefficients. This is beyond the scope of 

this thesis; anyway, the solution of the simplified problem has been found because it can be 

easily used for the solution of the original field problem in the case of ideal ground. As well-

known, when the ground is perfectly conducting, all the fields must be zero in the lower half 

space. Consequently, the interface conditions state that the tangential components of both 

electric and magnetic fields at ground level must be zero even in the upper half space. This 

suggests the possibility of adopting the image method and to replace the ground with another 

vertical dipole placed at a height -z’ and taking the same current at the original one (Figure 11). 
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Figure 11 

So, the solution of the complete problem for the case of ideal ground is given by: 

  
2 ' 2 2 ' 2( ) ( )

0

2 ' 2 2 ' 2
, , '

4 ( ) ( )

jk r z z jk r z z
e e

A r z z
r z z r z z





    
  
     

  (65) 

in which cylindrical coordinates have been adopted due to the different symmetry of the system. 

2.2.3 The electromagnetic fields radiated by the lightning current in presence of an ideal 

ground 

Since in all the typical return stroke models the lightning discharge channel is considered as a 

vertical antenna, it can be modeled as the sum of infinitesimal dipoles as illustrated in Figure 

11, where the air is the half-space z > 0 and is characterized by 0, 0,  = 0 and the perfectly 

conducting ground is the other half-space, described by 0, and 0. 

Introducing a system of cylindrical coordinates (r, , z), the vector potential can be expressed 

integrating (65) along the channel, that is to say: 
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 

 

2 ' 2 2 ' 2

2 ' 2

( ) ( )
' '0

2 ' 2 2 ' 2
0

( )
' '0

2 ' 2

( , ) ,
4 ( ) ( )

,
4 ( )

H jk r z z jk r z z

H jk r z z

H

e e
A r z I z dz

r z z r z z

e
I z dz

r z z











   

 



 
   
     


 





  (66) 

and the current flowing in the lightning channel (and in its image), in the frequency domain, is 

given by the Fourier transform of (1), that is to say: 

      
'

' , 0, '

z
j

vI z I P z e


    (67) 

recalling now (34)-(36), one can finally evaluate the lightning electromagnetic fields, as 

follows: 

 

2
2

2 2

2

2

0

1

z

r

j A
E k A

k z

j A
E

k r z

A
H

r








  
   

 
 


 


  


  (68) 

Inserting (66) into (68), one has: 

 

     
 

       
 

 

z 'R2 22 2H 2 j
c v

z 4 5 2 3

0 H

z 'RH j
c v

r 4 5 3

0 H

z 'R
j

c v

3 2

I 0, 2 z z ' r 2 z z ' r r
E j e P z ' dz '

4 cR j R c R

I 0, 3r z z ' 3r z z ' r z z '
E j e P z ' dz '

4 cR j R cR

I 0, r r
H j e

4 R cR

 
   
 



 
   
 



 
 
 



     
     

    

    
     

   

  
     





 
H

H

P z ' dz '


















 

 (69) 

The inverse Fourier transform of (69) can be performed analytically. The range of integration 

is (–vt, vt) instead of (–H, H), since the current I(z’,t) is identically zero for z’>vt,  thus 

obtaining: 
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 
 

 
 

2 2

4

0

2 2 2

5 2 3

0

2 ' '1
0,

4

'
0,

2 ' '
0, ' '

vt

z

vt

t

z z r zR
E t I t

cR c v

zR
I t

c vz z r zR r
I s ds P z dz

R c v c R t




   
     

  

 
    

            






  (70) 

 

 
   

 
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2 3
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I 0, t
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c R t
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     
          

     

 
    

   




 

 

 (71) 

 
 

vt

2 3

vt

z 'R
I 0, t

c v z '1 r r R
H t I 0, t P(z ')dz '

4 cR t R c v




  
    

           
 
  

   (72) 

2.2.3.1 The lossy ground case 

In case of a lossy ground, zE  and H
 are not so much affected by the finite ground conductivity 

and so they can be well approximated by its ideal expressions (70) and (72). Unfortunately, rE  

can strongly depend on the ground conductivity, but the exact evaluation of such field implies 

the evaluation of the slowly converging Sommerfeld integrals that do not present an explicit 

expression in the time domain. In order to overcome this problem, some approximate 

approaches have been developed; among them the most effective one is the so-called Cooray-

Rubinstein correction that has been proposed in the time domain. The time domain expression 

is represented below: 

  
t

0
rL r

0

z ' z ' z '
E (z, r, t) H 0, r, K t t dz ' E z, r, t

v v v


      
           

       
   (73) 

The first member of the R.H.S. is an empirical correction factor, where the integral kernel K is 

defined as: 
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  
2

0 1
2 2 2

g

g

t
g g g

g g g

K t e I t I t



  

  

    
     

   
     

  (74) 

In being the modified Bessel function of first type and order n. 

2.3 The field-to-line coupling problem 

The aim of this chapter is i) to derive the exact equations that describe the problem of the field 

to line coupling starting from the Maxwell equations and ii) to introduce the approximations to 

this exact formulation that allow to obtain the classical TL approach. Such approach is used to 

describe the interaction between lightning electromagnetic fields and power transmission lines. 

For the sake of simplicity, the equations will be derived for a case of a single conductor over a 

perfectly conducting ground. The case of a Multi-Conductor Transmission Line (MTL) system 

over a finitely conducting ground will be just indicated as a straightforward generalization of 

the first simple case. 

Let us consider a finite line of length 2L  and radius a laying at a height h over a perfectly 

conducting ground. The line is considered as a perfect conductor, while the upper half space 

(air) presents electrical conductivity equal to zero.  

As shown in Section 2.2, the vector potential to the problem source (i.e. the current density can 

be evaluated from the solution of the following differential equation: 

  2

0k    A A J   (75) 

i.e. 

 0

4

jkR

V

e
dV

R




 A J   (76) 

where the integration is carried out along the object carrying the current that generates the 

electromagnetic fields and is R the distance between the generic point P’ belonging to V and 

the observation point P. 

The problem can be solved using the image method. The situation is equivalent to another one 

in which the ground is removed and another line is placed at a height equal to –h parallel to the 

original one and taking a current opposite to the one flowing in the source. 

As a consequence, indicating with I(x’) the current flowing in the source at the point x’, (76)

becomes: 

        0, , , , ', , ' '
4

L

x x

L

x y z A x y z g x x y z I x dx





  A e e   (77) 
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g having the following expression: 

  
   

   

   

   

2 2 2 22 2' '

2 2 2 22 2

', ,

' '

j x x y z h j x x y z h
e e

g x x y z

x x y z h x x y z h

       

  

       

  (78) 

When the line is illuminated by an incident electric field Einc, the induced currents and charges 

produce a scattered field Esca so that the total tangential component of the electric field on the 

surface of the wire is zero, that is to say: 

   0inc sca x
 E E   (79) 

Now recalling (31) one has that 

  
2

2

0 0

1
sca x

A
j A

j x


 

 
 


E   (80) 

A  being: 

      0 ' ' '
4

L

L

A x g x x I x dx





    (81) 

With g expressed as: 

  
 

 

   

   

2 2 22' ' 2
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e e

g x x

x x a x x h

   

  

   

  (82) 

It should be noted that, in order to avoid singularities in the Green function g, the so-called thin 

wire approximation has been done, which assumes the following. In the evaluation of the source 

contribution to the scattered electric field, the source point is assumed to be placed in the line 

axis, while the observation one is placed on the line surface so that the distance between them 

can never be zero. 

As a consequence, (79) becomes: 

  
2 2

2

2 inc x

A jk
k A

x 


 


E   (83) 

that, combined with (81), gives origin to the integer-differential equation that links the incident 

field to the induced current. 

      
2 2

2

2

0

4
' ' '

L

inc x

L

jk
k g x x I x dx

x



 


   
    

  
 E   (84) 

A few comments on equation (81): the physical meaning of the formula implies that the vector 

potential at a certain point x depends not only on the current in the same point but also on the 
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current in any other point of the line. However, observing that the Green function is decreasing 

in amplitude, one can do the following two approximations [79, 80]: 

1. the Green function becomes sufficiently small if its argument becomes greater 

than 2h 

2. the current does not vary significantly in the range (0,2h), which is true if the 

line height h is small with respect to the wavelength associated to the frequency 

of the incident field 

such approximations allow to rewrite (81) as follows: 

          
 

 
2

00 0

0

' ' ' ' ' ' ' '
4 4 4

L h

L

I x
A x g x x I x dx g x x I x dx g x x dx

 

  



 

         

 (85) 

The physical meaning of the approximation (85) is that the vector potential at the generic 

abscissa x depends only on the current at the same abscissa and not on the whole distribution 

of the current in the line. The last integral in (85) can be solved analytically (at least for k=0) 

leading to the following approximate expression: 

    A x LI x   (86) 

Being: 

 0 2
ln

2

h
L

a





 
  

 
  (87) 

Now, in the antenna theory, it is common to introduce the concept of the scattered voltage 

defined as: 

    ,sV x x z h    (88) 

So, the x-component of (20) becomes: 

 
 

   s

inc x

dV x
j LI x

dx
  E   (89) 

while (26) reads: 

  0 0 0s

dI
L j V x

dx
     (90) 

that can be rearranged as follows: 

 
 

  0s

dI x
j CV x

dx
    (91) 

having posed 
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 02

2
ln

C
h

a




 
 
 

  (92) 

The system (89)-(91) can be written also in time domain apply the inverse Fourier transform to 

all quantities, thus leading to: 

 
   

  
, ,

,
s

inc x

V x t I x t
L x t

x t

 
 

 
E   (93) 

and 

 
   , ,

0
sI x t V x t

C
x t

 
 

 
  (94) 

where, for the sake of simplicity, the time dependence has been explicitly indicated but no new 

symbols have been introduced to indicate time domain variables. 

Equations (89) and (91) (and its time domain counterpart (93)-(94)) represent the classical 

Agrawal formulation of the transmission line theory for illuminated lines in the case of a single 

conductor [31]. Such formulation involves the scattered voltage and the line tangential 

component of the electric field.  

Equivalent approaches have been developed that use the total voltage V, related to the scattered 

one by means of the following expression (here reported in the frequency domain, but easily 

extended to the time domain): 

          ,

0

,

h

s inc s z incV x V x V x V x E x z dz       (95) 

having indicated with Ez,inc the vertical component of the incident electric field. 

In order to solve (89)-(91), it is necessary to introduce suitable boundary conditions expressing 

the link between voltage and current at the line extremities. If, for example, two linear networks 

(Thevenin equivalents VA,ZA and VB, ZB) are connected at the line extremities, one has to pose: 

 
   

   
A A

B B

V L V Z I L

V L V Z I L

   


 
  (96) 
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2.3.1 The Multi-Conductor Transmission Line (MTL) Case 

Let us consider the situation depicted in Figure 12, in which an MTL is illuminated by an 

external field 

 

Figure 12 MTL Geometry 

One can calculate the induced voltages and currents thanks to the well-known Agrawal model 

that is here written only in the time domain and suitably extended to take into account the 

presence of a finite conducting ground, that, in the time domain, basically consists of adding a 

current dependent voltage source Vg in the first equation; 

 

     

   

, ,

1

1

, , ( , ) ,

, , 0

s M
j gi

ij i inc x i

j

sM
ji

ij

j

IV
x t L x t V x t E x t

x t

VI
x t C x t

x t






  

 



 

  





  (97) 

where 

      
0

, ,

t

g i i
i g

I
V x t t s x s ds

s



 

   (98) 
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Here  ,s

iV x t  ,  ,iI x t  and  , , ,inc x iE x t  denote the scattered voltage, the current and the 

tangential component of the exciting electric field on the ith conductor at distance x from its left 

terminal and at time t, respectively. Moreover, Lij and Cij are the entries of the inductance and 

capacitance matrices [8] and g

i  is the time domain expression of the ground impedance [81] 

 

   0 0

2

441
min , Erfcx 1

4

gi gig

i

i g i

t
h t t

  


   

    
           

  (99) 

in which 2

0i g ih    and Erfcx is the scaled complementary error function. Finally, the total 

voltage Vi can be obtained starting from the scattered one as follows: 

          , , ,

0

, , , , , ,
ih

s s

i i inc i i inc z iV x t V x t V x t V x t E x z t dz       (100) 

where  , , , ,inc z iE x z t  is the vertical component of the exciting electric field calculated at time t, 

height z from the ground and abscissa x. The vertical component of the exciting electric field 

being nearly invariant as a function of height above ground, it is useful consider the following 

acceptable approximation: 

      , ,, , ( ),0,s

i i i inc z i iV x t V x t h E r x t    (101) 

2.3.2 The FDTD Code 

The solution of (97) is typically achieved by mean of the finite-difference-time-domain (FDTD) 

technique [31]. In this chapter, a second-order scheme (the most used) is implemented 

following the results derived in [46] and [34]. To do this, (97) has to be discretized defining 

suitable samples both for time and space.  

Once that the time step Δt is chosen, one can define the following discrete sequence: 

 nt n t    (102) 

The spatial step Δx has to be chosen according to the well-known Courant stability condition, 

i.e. 

 0c t C x     (103) 

where C<1 being a suitable constant depending on the adopted discretization scheme. For the 

first-order FDTD scheme, C=1 and the choice of the equality in (103) originates the so-called 

magic step that produces no discretization error. In the following, a second order scheme will 

be chosen with C=0.3 In this way, one has that: 
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0

,
1

m

m

L LC
x K

K c t

 
    

  
  (104) 

   being the floor function. As a consequence, each line of the MTL will be sampled according 

to the following rule: 

  1 , 1...k mx k x k K      (105) 

According to this discretization scheme and to the second order FDTD defined in [46] and [34], 

if one defines  ,

, ,s n s

i k i k nV V x t ,  ,

, ,g n g

i k i k nV V x t ,  , ,n

i k i k nI I x t and  ,

, , ,e n e

i k x i k nE E x t , the 

finite-difference solutions of (97) become  

 

, 1 , 1, 1 , 2

, , 0 ,

1

, , , , , , , 2
, 1 , , 1 , 1 , 1 , 1 , 12

0 2

, ,

, 1 , 11 , 2

, , 0 , ,

1

2

2

2 2 2

2

n nM
j k j ks n s n

i k i k i j

j

s n s n s n g n g n e n e n

i k i k i k i k i k i k i k

s n s nM
j k j kn s n g

i k i k i j i k

j

I I
V V c L t

x

V V V V V E E t
c

x x x

V V
I I c C V

x

 



     

 




   



     
       


  





 , ,

,

, , 1 , , 1

, , , ,

2
, 1 , , 12

0 2

                       
2 2

2
                +

2

n h n

j k

g n g n e n e n

j k i k j k j k

n n n

i k i k i k

E

V V E E
t

x

I I I t
c

x

 

 


 



 
   



   
   

  (106) 

Equation (106) allows us to evaluate the scattered voltage and current at the point xk and at the 

time step tn+1 as a function of the same quantities at points xk-1, xk and xk+1 at time step tn. 

Moreover, one has to know the tangential component of the electric field e
xE  and the function 

g
iV  at time steps tn  and tn-1 in the points xk-1, xk and xk+1. 

It is apparent that (106) cannot be used for the two ends of each conductor, as one of the 

neighbor points does not exist; moreover, such points are not governed by the original 

differential equations as they are the ones in which the boundary conditions should be imposed. 

To cope with this, the currents in the first and in the last point can be updated by means of a 

linear extrapolation, as follows: 

 

1 1 1

,1 ,2 ,3

1 1 1

, , 1 , 2

2

2
m m m

n n n

i i i

n n n

i K i K i K

I I I

I I I

  

  

 

  


 

  (107) 

Such currents represent the output of the FDTD scheme that are passed to the external circuit 

(it can be modelled in different software such as PSCAD, EMTP, Simulink) that models the 
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boundary conditions and produces the update of the voltages 
, 1

,k

ext n

iV 
 , according to the specific 

lumped parameters network that represents the power system one wants to analyze. In formulas, 

 1, mk K    

 
, 1 ext, 1 inc, 1

, , ,

s n n n

i k i k i kV V V      (108) 

Moreover, each line can present many different points at which it is connected to the ground by 

means of suitable devices (e.g. arresters). In order to avoid to define one FDTD scheme for each 

portion, one can treat each of these discontinuity points in the same way as for the termination. 

In other words, if for any d=1…D one gives the abscissas xd of the D discontinuity points and 

defines the corresponding index 1d
d

x
k

x

 
   

 , it is possible to evaluate the left and right limits 

of the currents x approaching xd by means of a linear extrapolation. Then, the KCL allows us to 

find out the update of the current flowing in the devices connected to the line in the point xd 

that is to say 

 

1 2

1 2

, 1 1 1

,k ,k ,k

, 1 1 1

,k ,k ,k

, 1 , 1 , 1

,k ,k ,k

2

2

d d d

d d d

d d d

d n n n

i i i

d n n n

i i i

d n d n d n

i i i

I I I

I I I

I I I

 

 

   

   

    

  


 


 

  (109) 
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3 A new function for the channel base current 

The aim of this chapter is to propose a new channel base current for lightning studies, able to 

represent the characteristics of the measured lightning strokes. 

In literature, many models have been proposed that can be divided in two main categories:  

1. Channel-base-current (CBC) functions made by a unique algebraic expression. Among 

them, the most well-known are the double-exponential (DEXP)[82], the Heidler 

function, [15] the pulse function [83] and a recent one proposed in [16]. 

2. CBC piecewise functions made by two or more parts. Among them the most popular 

ones are the functions proposed by Javor in [17] and Andreotti in [72]. 

The DEXP [82], the oldest one, presents a discontinuous time derivative at t=0 and its tuning 

parameters are not decoupled, i.e. both of them act on the rising part and decay portion of the 

curve. Recently, the function proposed in [16] introduces a new CBC model, which better 

decouples the parameters affecting the rising part and the decay portion; however, this model 

shows three main drawbacks: i) the first-order derivative is still discontinuous in the origin, ii) 

some parameters have to be evaluated in a numerical way, iii) a procedure for the setting of the 

maximum steepness is not shown and iv) the peak value is slightly higher than the desired value.  

Among the first group, the most-used and famous model is no-doubt the Heidler’s function 

[15]. It can meet a high number of the aforementioned requirements and has a continuous first-

order derivative, but, as pointed out in [17] and [72], it includes the calculation of the peak-

correction factor from the expression involving other three parameters. Moreover, i) the  

parameters’choice (described in [84])  is not trivial as based on the solution of a numerical 

system and ii) the time integral solution requires the use of special functions  [85]. 

The pulse function [83] has the same pros and cons of the Heidler’s function, except for the 

possibility of calculating the time integral with an analytical formula. However, the parameters 

identification proposed in [83] is based on the minimization of a functional through the least 

squares fitting method. This aspect reduces the appeal of the approach especially when 

statistical studies require to change the current parameters at each lightning event simulation 

(see e.g. [1, 32, 34, 35]). 

The CBC functions of the second group show an easier setting of the parameters and a 

continuous first-order derivative in the entire domain. In [17], Javor et al. represented the 

current with two functions: one before the time-to-peak and one after. With this approach, the 

authors proposed a detailed procedure to evaluate the functions parameters to reproduce the 

measured properties.  



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
51 

Even if each of these model has many advantages, there are some drawbacks. In the following 

the main drawbacks of each model are described in order to try to find a new model that 

overcome them. 

The same approach has been faced by the authors of [72], using a piecewise function that 

changes its expression  slightly later its time-to-peak value. 

Unlike [83] the procedures to set the function parameters in [15, 17] and [72] do not need any 

optimization algorithm. Among the measured characteristics, one of the crucial properties is 

the maximum steepness. The authors of [86] show that the model proposed in [17] (and 

consequently also in [72]) cannot represent waveforms whose ratio between the maximum 

steepness and the mean steepness is lower than 1.7. According to Fig. 4 of [84], the limit value 

of the same quantity for the Heidler’s formula is higher than 2.5.  

A detailed comparison among the aforementioned models can be found in Table 3, focusing on 

the possibility of setting the measurements properties in analytical or numerical way as well as 

on the closed forms of the specific energy, time integral and Fourier Transform. 

Table 3 Comparison among the existing CBC functions (X-Opt: parameters obtained through 

optimization program) 

Function Continuous 

Derivative 

Measurements that can be set Specific 

Energy 

Fourier 

Transform 

Time 

Integral 
Peak value Time-to-

peak 

Maximum 

Steepness 

/ Front 

duration  

Time-

to-half 

value 

Total 

Charge 

DEXP [82]  X     X X X 

Heidler [15] X X 

 

X - 

Numerical 

X - 

Numerical 

with limit 

 X -  

Numerical 

 X   

Feizhou [83] X X – Opt. X – Opt. X – Opt.  X – Opt.  X X 

Andreotti 

[16] 

 Slightly 

overestimated 

X   X – 

Numerical 

 X X 

Javor [17] X X X X – with 

limit 

X   X – with 

the use of 

Gamma 

functions 

X 

Andreotti 

[72] 

X X X X – with 

limit 

X X – 

Numerical 

(alternative 

to time-to-

half value) 

. 

 

X X X 
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This chapter aims at overcoming the actual limits of the proposed CBC functions, introducing 

a piecewise function made by three expressions. In particular, the new approach is  able to: 1) 

reproduce analytically all the measured properties, 2) enlarge the range the ratio between the 

maximum steepness and the mean steepness can belong to ,3) provide closed-form expressions 

for the Fourier transform, time integral and specific energy, 4) have the continuity of the first-

order time derivative in all its domain. 

The chapter is organized as follows: Section 3.1 introduces the proposed function and provides 

the procedure for the analytical computation of the parameters, while Section 3.2 derives 

expressions for Fourier Transform, time integral and specific energy. Comparison of the 

proposed model with functions of Table 3 is shown in Section 3.3, while in Section 3.4 the 

parameters of the proposed function are given for different measured datasets. 

3.1 Model definition 

Let us consider the model proposed in the following equation 

 2 2

2 2

1 1 1

0 ( )

2 2 4 1

( )

3 3 5

0 0

( ) : 0
( )

( ) :

( ) :

M

M

n

a t t

M

b t

M

n

t

t

f t k t t t
I t

f t k e k t t t

f t k e t tk

 

 




  
 

   
   

  (110) 

where, Mt  is the time-to-peak1, 1t  is a time instant lower than Mt , , 0a b  , 1 2 3 4 5, , , ,k k k k k   

and n . Let us now introduce 50t  as the time-to-half value and   as the maximum steepness. 

All the parameters involved in (110) are computed taking into account the following 

constraints: 

1. 
0I  is a continuous and differentiable function in  

2. 
0I  assumes the current-peak value MI  at time Mt   

3. 
0I  assumes the maximum steepness   at time  *

1, Mt t t . 

4.  0limt refI t I  , where 
refI  is the steady-state value of the current (usually zero). 

5. one of the following two conditions is satisfied 

i.  0 50
2

M refI I
I t


  

ii.  0

0

I t dt Q



 , being Q the total charge.  

                                                 
1 Please note that tM  can be usually obtained from the equivalent linear front duration ( 10/90dt ) as proposed in [1]
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To satisfy constraint 1 let us compute the derivative of 1 2 3, ,f f f  as: 

 
1

1 1( ) n nf nkt t     (111) 

 
2 2

2 ( )

2 2( ) 2 ( ) Ma t t

Mf t k a t t e      (112) 

 
2 2( )

3 3

2( ) 2 ( ) Mb t t

Mf t k b t t e       (113) 

Proof of the continuity and derivability in 0t   as well as the derivability in Mt t  is trivial. 

The continuity and derivability in 1t t  and the continuity in Mt t  together with condition 2 

lead to equations (114)-(116).  

 
2 2

1( )

1 1 2 4
Mn a tn tk t k e k 

    (114) 

 
2 2

12 ( )1

1 1 2 12 ( ) Ma t tn

M

nnk t k a t t e      (115) 

 2 4 3 5 MIk k k k     (116) 

In order to impose the maximum steepness, the maximum value of 2f   is obtained studying the 

sign of 2f  : 

 
2 2( )2

2 2

2 2( ) 2 1 2 ( ) Ma t t

Mf t k a a t t e          (117) 

It is possible to notice that 2 ( ) 0f t   if and only if 2 21 2 ( ) 0Ma t t    , and consequently the 

maximum value of 2f   is reached at time 

 * 1

2
Mt t

a
    (118) 

The condition that *

1t t  implies that 

 1

1
( )

2
Ma t t    (119) 

and the constraint *

0 ( )I t    becomes: 

 
1/2

22k ae     (120) 

Moreover, it is easy to observe that  10,t t   

      1

1 1 1 2 1 1 1

n nf t nk t f t f t         (121) 

Constraint 4 is satisfied if: 

 5 refk I   (122) 
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For what concerns the 5th condition, one can choose to give priority to the time-to-half value 

(5a) or to the total charge (5b)2. Condition 5a implies:  

  
2 2

50( )

2
M

refMb t t

M er f re f

I
I

I
I I e

 



    (123) 

which can be analytically solved for the parameter b: 

 
50

ln 2

M

b
t t




  (124) 

while condition 5b can be solved analytically only if 0refI   and implies: 

 

1

1
1 2 3

0

2 3

1 1
1

( ) ( ) ( )

                    Erf( ( ))
3 2 2

M

M

t t

t t

M

Q f t dt f t dt f t dt

k t
a t t

a b

 



   

   

  
  (125) 

where Erf is the usual Error Function. Eq. (125) can be analytically solved in b: 

 
2

1
3

1 1
1Erf( ( ))

2 3 2
M

k t
b Q a t t

a

 


 



 


    (126) 

Once k3, k5 and b are known, Equations (114)-(116)  represent a linear system in the unknown 

parameters 1 2,nk k  and 4k , whose solution is  

 

2

1

2

2 2

1
2 ( )

1 1

4 2

( )

1
1 2 1

2

2

1

(2 ( ) )

( )

M

M

M

a t t

M

M

a t
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n

nI
k

a t t t n e n

k I k

a t t e
k k

nt

 

 




  

 




  (127) 

It is important to notice that the third relation of (127)  is solvable if the right hand side is 

positive; so k2 must be positive, hence from the first of (127): 

     
22

12

1 1 1
2

Ma t t

M

n
a t t t e


     (128) 

Eq. (128) is always verified because the left-hand side is always positive, while the right-hand 

one is always negative. Consequently, equations (127) lead always to acceptable values for any 

choice of the involved parameters. At this point, if one knows the values of a and t1, (127) 

                                                 
2 Both conditions cannot be satisfied contemporarily as, after having determined k3 and k5 only parameter b is 

actually available 
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allows to find the values of 1 2,nk k  and 4k to obtain the complete set of parameters in (110). 

Guidelines on the choice of a are provided in what follows. 

Introducing  

  1: Mx a t t    (129) 

one easily gets by (119) that 1/ 2x  ; then, substituting the first of (127) in (120), one has: 

 2 2 2

1/2

1

2

2

( 2 ) ( 1)x x x
MM

xe

nIt ne n x e nt e



  


   
  (130) 

Hence, for any assigned value * 1/ 2x   equation (130) can be analytically solved with respect 

to 1t : 
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
 

  (131) 

where 1/2 2e   . Then a can be found thanks to (129). 

According to (110) it must be verified that 10 Mt t  , which leads to the following condition 

on the ratio 
/ MM

K
tI


  between the maximum and the mean derivative: 

    2 2
* *

* **

*

: :
1 2x x

x n
f x K g x

e x e

 
 

   


  (132) 

Figure 13 shows the graph of f and g with n=2. A numerical approach permits to find that the 

minimum value assumed by f is 1.344 at min

* 1.121x  , while g is unbounded. Consequently, 

whatever value of the maximum steepness   greater than 1.344 M

M

I

t
 verifies (132). Please note 

that 1.344 is lower than the boundary conditions obtained in [17, 84].  
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Figure 13 Limits of the ratio between the maximum derivative and the mean derivative as a function of x 

In principle, there are infinite possibilities for the choice of *x here it will be chosen by solving 

  *f x K   (133) 

Unfortunately (133) does not have analytical solution; so f is here approximated with a 

piecewise linear function defined  f  as follows3:  

 

min

* 1

min

2 2 * 2

3 3 2

1 1

( )

x x x

p x d x x x

p x d x

p

x

x d

f x

  


  
  





   (134) 

where 1x  solves   1.5f x   while 2x  solves   2f x   and the parameters, obtained with a 

interpolation procedure, appear in Table 4. It is important to highlight that, as f is only function 

of *x , the interpolation procedure can be performed only once. Please note that due to the 

concavity of f  the interpolated curve f  is always above f.    

                                                 
3 The interpolated curve can be obtained as a generic piecewise linear function defined in N parts. In this work 

N=3 is assumed, which leads to a very good approximation of f  
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Table 4 Interpolation parameters of f 

Parameter Value 

1p   0.2860 

2p   0.7167 

3p   0.8558 

1d   1.0356 

2d   0.3365 

3d   0.0137 

1x   1.6233 

2x  2.3210 

Consequently, *x  can be evaluated as follows: 

 

1

1

2*

2

3

3

1.344 1.5

1.5 2=

2

K d
K

p

K d
Kx

p

K d
K

p


 




 

 




  (135) 

As a conclusion of this section, let us summarize the steps that one has to follow in order to 

obtain the function parameters (supposing K>1.344) 

1. Evaluate *x  according to (135) 

2. Choose n. Typical value can be n=2, but in principle any value of n satisfies the 

requirements. 

3. Evaluate 1t  according to (131) 

4. Evaluate a according to (129) 

5. Evaluate k2 according to the first of (127) 

6. Evaluate k4 according to the second of (127) 

7. Evaluate 1

nk  according to the third of (127). 

8. Evaluate k5 according to (122) 

9. Evaluate k3 according to (116) 

10. Evaluate b according to  

a. (124), if the time-to-half value is considered 

b. (126),if the priority is given to the total charge 
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3.2 Time integral, Fourier transform and specific energy 

3.2.1 Time Integral 

The time-integral of the new function is trivial and involves the Erf function. 
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where 
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3.2.2 Fourier Transform 

Similarly to the computation of the time integral, it is possible to obtain the Fourier Transform 

 0Î  , supposing k5=0. More precisely if the functions 1 2 3, ,f f f  introduced in Eq. (110) are 

extended to  as null function value, then: 

        0 1 2 3
ˆ ˆ ˆÎ f f f        (138) 
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3.2.3 Specific energy 

The specific energy W/R represents the Joule losses per unit resistivity. It can be calculated as 

follows, where k5 = 0, in order to have a convergence of the integral. 
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3.3 Comparison with the existing Channel-base functions 

This section shows the comparison of the proposed model with other CBC functions. According 

to the considerations provided previously, the comparison will be made among the functions 

that are able to provide a continuous first-order derivative and whose parameters computation 

are not obtained through an optimization algorithm (as in [83]), i.e. the Heidler’s function [15] 

and the functions proposed by Javor and Andreotti in [17, 72]. The comparison is obtained 

using the lightning parameters of the IEEE Standard [1], here provided in Table 5.  

Table 5 Median values of IEEE standard data 

Parameter Negative 

first 

Negative 

subsequent 

MI  [kA] 31.1 12.3 

10/90dt   [µs]  5.63 0.75 

max'I  [kA/ µs] 24.4 39.9 

50t  [µs] 77.5 30.2 

Q [C] 4.65 0.938 
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The new function is implemented following the approach provided in Section 3.1, using the 

time-to-half value criterion for tuning the decaying part and with n=2. 

Figure 14-Figure 16 show the comparison of the negative first stroke in the rising part, decaying 

part and derivative. As can be noticed, Javor and Andreotti functions are similar in the rising 

part, while they have a different behavior in the decaying part. In this framework, as shown in 

Figure 16, each model is able to reproduce the maximum derivative provided in [1]. 

On the other hand, Figure 17-Figure 19 show the comparison of the negative subsequent stroke. 

In this case, the Heidler’s function is not able to reproduce the maximum derivative as the 

numerical system of [84] has no solution . This behavior is due to the low ratio between the 

maximum derivative and the mean derivative: according to [1], such ratio is 2.43. 

 

Figure 14 Rising part of negative first stroke 
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Figure 15 Decaying part of negative first stroke 

 

Figure 16 Negative first stroke derivative 
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Figure 17 Rising part of negative subsequent stroke 

 

Figure 18 Decaying part of negative subsequent stroke 
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Figure 19 Negative subsequent stroke derivative 

As mentioned before, one of the main advantages of the proposed CBC function is the 

possibility of representing waveforms characterized by a low value of the ratio between the 

maximum derivative and the mean derivative. Table 7 and Table 8 show the minimum value of 

 that can be reached according to different cases characterized by different values of front 

duration and peak current. In particular, the values corresponding to the 30th , 50th and 70th 

percentile of the cumulative distribution of the front duration and peak current (provided in [1]) 

have been used and are here reported in Table 6.  
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Table 6 Percentiles of the distributions of front duration and peak 

 30th 

percentile 

50th 

percentile 

70th 

percentile 

Front 

duration – 

first stroke 

4.16 µs 5.63 µs 7.61 µs 

Front 

duration – 

subsequent 

stroke 

0.46 µs 0.75 µs 1.21 µs 

Peak current 

– first stroke 

24.12 kA 31.1 kA 40.08 kA 

Peak 

current- 

subsequent 

stroke 

9.32 kA 12.3 kA 16.24 kA 

Table 7 and Table 8 show that the proposed model can reach lower values with respect to the 

ones proposed in [15] ,[17] and [72]. In particular, the proposed function can reach lower 

percentiles of the probabilistic function of the maximum derivative according to the distribution 

proposed in [1].  
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Table 7 Comparison of the minimum values of the maximum derivative that can be described by different 

models – First strokes 

 Minimum value of the maximum 

derivative [kA/ µs] and corresponding  

minimum percentile 

Peak 

current 

[kA] 

Front 

duration 

[µs] 

Heidler[15] Andreotti 

[72]and 

Javor [17] 

Proposed 

function 

24.12 4.16 15.07 21th 9.91 7th  7.77 3rd 

24.12 5.63 11.14 10th 7.33 3th  5.74 1st 

24.12 7.61 8.23 4th  5.41 1st 4.25 1st 

31.1 4.16 19.42 36th  12.77 14th  10.01 7th 

31.1 5.63 14.36 19th  9.44 6th  7.40 2nd 

31.1 7.61 10.62 9th  6.98 2nd 5.47 1st 

40.08 4.16 25.04 52th  16.47 26th  12.90 14th 

40.08 5.63 18.51 33th  12.17 13th 9.54 5th 

40.08 7.61 13.68 17th  9.00 5th 7.05 2th 
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Table 8 Comparison of the minimum values of the maximum derivative that can be described by different 

models – Subsequent strokes 

 Minimum value of the maximum 

derivative [kA/ µs] and corresponding 

minimum percentile 

Peak 

current 

[kA] 

Front 

duration 

[µs] 

Heidler[15] Andreotti 

[72]and 

Javor [17] 

Proposed 

function 

9.32 0.46 52.34 63th  34.43 44th  26.98 32nd 

9.32 0.75 32.29 41th  21.24 23th  16.64 15th 

9.32 1.21 19.92 21th  13.10 10th 10.27 5th 

12.3 0.46 69.11 74th  45.45 57th 35.62 44th 

12.3 0.75 42.64 53th  28.04 34th 21.98 24th 

12.3 1.21 26.30 32th  17.30 17th 13.56 10th 

16.24 0.46 91.25 84th  60.02 69th 47.03 57th 

16.24 0.75 56.30 67th  37.03 47th 29.01 35th 

16.24 1.21 34.74 44th  22.84 26th 17.90 17th 

3.4 Standard parameters of the proposed CBC function 

This section aims at providing the parameters of the proposed CBC function in accordance to 

different standards or measurements. 

3.4.1 Berger’s data 

The data are taken from the median values of negative and positive strokes described in [9] in 

terms of peak current, front duration, maximum derivative, time-to-half value and total charge 

(Table 9).  
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Table 9 Berger’s median values 

Parameter Negative 

first 

Negative 

subsequent 

Positive 

MI  [kA] 30 12 35 

Front duration 

[µs]  

5.5 1.1 22 

 [kA/ µs] 12 40 2.4 

50t  [µs] 75 32 230 

Q [C] 5.2 1.4 80 

 

The parameter of the function are provided in Table 10: 

Table 10 Proposed function parameters with Berger’s data 

Parameter Negative 

first 

Negative 

subsequent 

Positive 

2
1k  [kA/µs2] 1.204 8.55 10-7 0.757 

2k  [kA] 30.0162 12 36.570 

a [1/ µs] 0.466 3.886 0.765 

3k  [kA] 30 12 35 

4k  [kA] -0.0162 0 -1.570 

5k  [kA] 0 0 0 

b [1/ 

µs] 

50t

priority 

0.0012 0.027 0.004 

Q 

priority 

0.005 0.007 0.0004 

1t [µs]  0.0176 0.001 0.291 

Mt [µs] 5.89 1.32 23.33 

n 2 2 2 
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3.4.2 IEEE Standard [1] 

In this section the parameters of the channel-base current are given for first and subsequent 

negative strokes according to the data provided in [1] and presented also in Table 5.  

Table 11 Proposed function parameters with IEEE standard data 

Parameter Negative 

first 

Negative 

subsequent 

2
1k  [kA/µs2] 1.23 10-7 19.649 

2k  [kA] 31.1 12.304 

a [1/ µs] 0.911 3.78 

3k  [kA] 31.1 12.3 

4k  [kA] 0 -0.004 

5k  [kA] 0 0 

b [1/ 

µs] 

50t

priority 

0.011 0.028 

Q 

priority 

0.0059 0.011 

1t [µs]  0.0047 0.0022 

Mt [µs] 5.63 0.75 

n 2 2 
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3.4.3 Society of Automotive Engineers (SAE) standard 

In this section the parameters of the new CBC function are proposed in order to reproduce the 

CBC provided in the standard used in the lightning protection of aircraft vehicles, commonly 

known as ABCD current, whose properties can be found in Table 12 [87]. 

Table 12 ABCD parameters  [87] 

Standard 

component 

Peak 

[kA] 

Charge 

[C] 

Action 

Integral 

[A2s] 

Duration 

A 200 N/A 2 106 < 500 µs 

B 2 

(average) 

10 N/A < 5 ms 

C 0.2-0.8 200 N/A 0.25 -1s 

D 100 N/A 0.25 106 < 500 µs 

The ABCD current refers to two strokes in a flash: the components ABC refer to the first stroke 

while the component D refers to the subsequent stroke.  

Since our CBC function represents the channel-base current of a single stroke, in the following, 

only ABC components are accounted.   

In this case the CBC is not expressed in terms of the values shown in the other standards (front 

duration, maximum steepness,…) but as the peak current, total charge, action integral and total 

duration of each component (Table 12).  Consequently the procedure proposed in Section II for 

the computation of the CBC parameters cannot be adopted. In the following, the parameters of 

the proposed function are evaluated through an optimization procedure which receives as input 

the lightning data of Table 12. Results appear in Table 13.  



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
70 

Table 13 Proposed function parameters with SAE standard data 

Parameter Value 

2
1k  [kA/µs2] 5.33 10-7 

2k  [kA] 199.99 

a [1/ µs] 0.025 

3k  [kA] 198 

4k  [kA] 0.01 

5k  [kA] 2 

b [1/ µs] 0.025 

1t [µs]  146 

Mt [µs] 285 
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4 Analytical expressions for the lightning 

electromagnetic fields 

In some applications, such as the lightning performance, a huge number of field calculations is 

required, which makes the computational performances of such calculation a crucial aspect for 

this kind of application. Two main solutions have been adopted in literature: i) analytical 

formulas for the electromagnetic fields over a perfectly conducting ground have been derived 

in [36] assuming that the channel base current is a trapezoidal; ii) a field database is constructed 

in [35] where electromagnetic fields generated by a current with a specified time domain 

waveform with unitary peak at different distances are computed. The fields necessary to input 

the coupling equations are then calculated interpolating the database elements. According to 

[37], the first approach can fail when the presence of arresters and flashovers is accounted. On 

the other hand, the database approach exploits the linear relationship between current peak and 

electromagnetic fields; but, when one aims at accounting for the front time effect, the 

computational convenience of the method falls because one database should be constructed for 

any considered value of the front time. 

This chapter proposes analytical formulas for lightning electromagnetic fields generated by an 

arbitrary shaped channel base current over perfectly conducting or lossy ground. The idea of 

the method consists of dividing the channel into intervals in which the distance between the 

source and the observation field points can be approximated with a linear function of the time 

and of their spatial coordinates. Sections 4.1, 4.2 and 4.3 present the theory of the proposed 

formulation, while 4.4 and 4.5 show the validation and the computational performances. 

4.1 Lightning electromagnetic fields over an ideal ground 

The present section derives the analytical expressions for lightning electromagnetic fields over 

an ideal ground, starting with the magnetic field (subsection 4.1.1) necessary to evaluate the 

electric one (subsection 4.1.2). 

4.1.1 Magnetic field 

Let us consider the situation depicted in Figure 20 representing the lightning channel (H being 

its height).  
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Figure 20 Geometry of the problem 

Assuming a perfect ground conductivity and supposing that the lightning current starts 

propagating from the channel base (z’=0) at t=0 and applying the method of images, the 

azimuthal component of the magnetic field produced in the observation point ( , , )Q r z  is given 

by [20]: 
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where 
0

( ') | '
)

|
( ',

R z z
t t

c v
z   ; c0 and v are the speed of light in vacuum and the return stroke 

speed; P is the attenuation function [2];  1 t is the Heaviside function, 0 ( )i t  is the channel base 

current(supposed to be zero for negative time) and 0i  its first derivative; R is the distance 

between the source and the observation point, defined as 

    
22' 'R z r z z     (143) 

It can be shown that, after some algebraic manipulations and assuming P(z’)=1, the magnetic 

field can be written as : 
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Introducing 
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where 
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having posed  

 ,

0

0

, , ( , )) (i

r z t

r z rx
t t f x

c v
x


     (148) 

and 

 

   

   

0

0

0

,0 ,0

, , , ,

,0 ,0

, , , ,
0

1

                          +

( , ) ( , )

( , ) ( , )1

s s

r z t rzsource

r

H

z t

s s

r z t r z t

z

r

I r i t t dx

r i t t

x x

dx xx

 

 





  

 





  (149) 

having posed 

 ,

0

0

, , ( , )) (s

r z t

r z rx
t t f x

c v
x


     (150) 

Relation (149) is separated in two parts, corresponding to positive and negative values of the 

integration variable; this will be useful in the following description of the procedure. 

The main problem in analytically solving integrals in (147) and (149) is that f is a nonlinear 

function of x. If this was not the case, one could i) analytically solve the inequalities expressing 

the condition for the Heaviside function not to be zero and ii) perform a linear change of variable 

in the argument of 0i  for the calculation of the integral. So, the main idea of the method is to 

divide the channel and its image into N+1 intervals; in each of them f can be approximated by 



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
74 

the secant passing through its extremes. This introduces a piecewise linear function g, defined 

as 

 

1 1 0 1

1

1 1 1

( )
N N N N

N N N N

a x b x

g x
a x b x

a x b x

 

 

 



  

   



 
  

   

  (151) 

where 0 0   and 1N A   4. Imposing that    j jf g   for any 1, , 1j N    one has 

 
1

1

( ) ( )
and    ( )j j j

j j

j

j

j

j

f f
a b f a

 
 

 






  


  (152) 

From here on we will use the approximate formulas 
, ,

i

r z t  for ,0

, ,

i

r z t  and 
, ,

s

r z t  for ,0

, ,

s

r z t  obtained 

inserting g defined in (151) instead of f into (148) and (150). Please note that (145) has the 

advantage that the piecewise linear approximation g of the function f has to be done just once 

no matter the coordinates of the observation point. Details on the approximation and on the 

choice of the intervals are provided in Section 4.3, while a graphical sketch of the whole 

procedure can be found in Figure 21. 

                                                 
4 A should be chosen such that g approximates f along all the portion of the channel that contributes to the field 

in the desired time window. Details on the choice of A will be provided in the following sections. 
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Figure 21 Definition of the intervals in which the channel is divided 

Let’s start with the calculation of the image channel contribution to the magnetic field (Eq.(147)

). Due to the Heaviside function, (147) is not trivial if 
, , ( ) 0i

r z t x  , which, at fixed r and z,  

defines the region depicted in Figure 22. 
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Figure 22 Graphical view of the region , , ( ) 0i
r z t x   for fixed r and z when j*=3 

First of all, one has to find the interval in which /x z r   lays, i.e. find
* {1, , }j N   such 

that * * 1
/

j j
z r 


      (in Figure 22, j*=3). Then the time instant 

*
t before which the fields 

in Q are zero can be found as follows: 

 
*

*

*

*

0

, ,

0

0
j ji

r z t

b az
t r z

r c c


 
     
 

  (153) 

Moreover, the time instants i

jt  for which the dipole at point j  contributes to the fields in Q 

are given by: 

  
,

0
,

0
1

i
j

i j j ji

r t j jz

i
a b

t r z
c v v







 
   

 
     (154) 

This defines the following sequence of time instants * *j

i i

Nt t t    

Finally, for a fixed time 
*t t  the portion of the image that contributes to the fields in Q is given 

by solving the following inequality: 

  
,

0
,

0i
j

ji

i

i

r z t

jA rb z
x t x

r c v

z
x

r


 
        

 
  (155) 
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where 

1

0

1
 i j

j

a
A

c v



 
 
 

 ,  

At this point,  (147) can be separated in all the intervals that provide a contribute, partly or 

totally, to the fields. The linearity of , ,
i
r z t  permits to analytically solve the integral in (147) as  

 

   

* *

* *

*

*

*

1

1 1 1

1

0

,

,

   + , ,

i i i

j

iimage

j

j

j

h j

j
i i i i i

h h j j j

h j

t t

z
I x t t t

r

I z
I

r

I I x t t t



  


  

 

 
 
 



   



  
     




     




  (156) 

in which one has defined for any 1 2 0y y  : 

  
2

1
1 2 0

0

 ( , ) j j

y
i

j
y

r z rx
I y y r i t a x b dx

c v

 
     
 

   (157) 

which is analytically solvable. More precisely, quantities in (156) can be calculated as: 

 

 

 

* *

* * * *

0 *

0 0 *

1 0 0 1

1 0 1

, ( )

, ( ) ( )

, ( ) ( )

, ( )

i i i

j j

i i i

j j

i i i i

h h h h

i i i i

j j j j

j j

h h

z
I x A i t t

r

z
I A i t t i t t

r

I A i t t i t t

I x A i t t



 



 

 

  

             

       

  

 
 
 

  (158) 

(156) can  be rewritten in a more compact form recalling that 0 ( ) 0i t   for 0t  , as follows: 

      *

*

1

0 * 1 0

N

h hj

i i i i

image h

h j

I A i t t A A i t t






       (159) 

Physical interpretation of formula (156) is the following. If *t t  the propagation of the current 

along the channel and of the fields along the air is not sufficient to produce a nonzero magnetic 

field in point Q; if **

i

j
t t t   only part of the first interval * * 1

,
j j

 


  
 

 belonging to the 

image channel contributes to it; if 1

i i

j jt t t    all the intervals  1,h h     with  *,..., 1h j j 

and part of the interval 1,j j  
     produce field in point Q. 
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Now, let’s move to the source contribution in (149) which is not trivial if 
, , ( ) 0s

r z t x  , So, at 

fixed r and z, this condition defines the region depicted in Figure 23 (in this case * 3j  ). 

 

Figure 23 Graphical view of the region , , ( ) 0s
r z t x   for fixed r and z when j*=3 

As before, the following time sequence can be defined *

,2 ,2 ,1 ,1

0 0 1 *

s s s

jN

st t t t t


    where 

,2 ,1

0 0

s st t  is the time at which the dipole placed at 0x   starts giving contribution to the field 

and can be obtained solving:  

 ,1
0

,1

, , 0

0

1 1
(0) 0s

s

r z t

st r z
c v

      (160) 

Similarly, the time instants ,1s

jt  (for *1, , 1j j    and * 1j  ) and ,2s

jt  (for 1, ,j N  ) 

necessary for the fields generated at points j  and j  to reach point Q are obtained 

respectively solving: 

 ,1

0
,

1

,

, 1
( ) 0s

j

j j j js

j jr

s

z t

a
t z

c v

b
r

v
 

  



  

 
     (161) 

 ,2

2

,

,

,
0

1
( ) 0s

j

j j j js

j jr z t

s
a

t z
c v v

b
r

 


 
   





    (162) 
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Hence, for ,1

* 0

st tt  , only part of the source channel with 0x   contributes to the field in 

point Q, more precisely it is given by solving the following inequality:  

 

,

0

,

1

, ( ) 0 /
js

r z t

s

jsx x
A rb z

z r x t
r c v


 

      


 


   (163) 

where 
 
 and 

,1

1

0

1
 

js

j

a
A

c v



 
 
 
 

 

Otherwise, if ,1 ,2

0 0

s st tt    all the source channel with 0x   and part of the source channel with 

0x   contribute to the field in point Q. So, there exists {1,..., }j N  such that ,2 ,2

1

s s

j jt t t   and 

portion of the source channel with 0x   that produces non zero field in Q is given by solving 

the following inequality: 

 

,

0

,

2

, ( ) 0 0

s

js js

r z t

A rb z
x x tx

r c v


 
     


 


  (164) 

where 
,2

1

0

1
 

js

j

a
A

c v



 
 
 
 

. 

As in the case of the image contribution, the first integral in (149), (from now on ,1sourceI ), can 

be analytically solved as follows 

 

   

 

* *

* *

*

*

* *

*

,1 ,1

* 1

,1

1

,1

1
,1 ,1 ,1 ,1

1

1

1
,1 ,1 ,1

1

1

01
1

0

,

,

+ , ,

, ,

s s s

j

s

j

source

s s s s s

h h

j

j

h jj

h j

s

j j

j

hj

s s

h hj
h

j

t t

z
I x t t t

r

z
I

rI

I I x t t t

z
I I t t

r



  

  









 










  

  


     

     




   
  




 
 
 











 
 





  (165) 

in which one has defined: 

 
2

1

,1

1 2 0

0

( , ) ( )j

s

j

y

j
y

r z rx
I y y r i t a x b dx

c v


 
 




 


   (166) 

that is analytically solvable. Quantities in (165) can be explicitly calculated as: 

 * ,1{ 0,..., 1 :max  0,.. , }.k

sh j tj k ht   
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 

   

     

   

*

* *

*

* *

,1

0 *

,1 ,1

0 0 *1 1

,1 ,1 ,1

1 0

,1

,1

,1

,

1 0

, ,

0

11 1

,

,

,

,

s s

j

s s

j

s s s

h h h

s s s

j

s

j

s

j j j

s

h h h

s

j j j

z
I x i t t

r

z
I i t t i t t

r

I i t t i t t

I x i t t

A

A

A

A



 



 

 

 
 
 

   
   

   

     

     

   



 
 

  (167) 

Exploiting again that 0 ( ) 0i t   for 0t  , one gets the following expression for (165) : 

 

 

     

*

*

,1

,1 ,1 ,1 ,1 ,1

0

1

,1 0 *

1

1 0 1 0                       +

s

j

s s s s s

sour

j

h

h

ce

hh

I A i t t

A A i t t A i t t






  

   
  (168) 

Physical interpretation of formula (165) is the following: if *t t , the propagation of the current 

along the channel and of the fields along the air is not sufficient to produce a nonzero magnetic 

field in point Q; if *

,1

* 1j

st t t


  , only part of the interval between ground and the first point in 

which g is sampled contributes to the field in point Q; if
,1 ,

1

1s

j j

st t t   , with *1,..., 1j j   all the 

intervals  1,h h     with  *2,..., 1h j   and part of the interval  1,0  produce fields in 

point Q, finally if ,1

0

st t  all the source channel  / ,0z r  gives a contribution to the magnetic 

field.  

The second term in (149) (from now on ,2sourceI ) is much easier to evaluate because this part of 

the channel is all in the air and all characterized by positive value of the integral variable x. As 

a consequence, as before, one has that: 

 
   ,2

0

1 1

,2

1
,2 ,2

0

,2

1

0

, ,
source

j

h j

s

s s s s

h h j

h

I

t t

I I x t t  




 



 



 



  (169) 

where 

 
2

1

,2

1 2 0

0

( , ) ( )j

s

j

y

j
y

r z rx
I y y r i t a x b dx

c v

 
    
 

   (170) 

that is analytically solvable, as  

 
     

   

,2

1 1

,2 ,2 ,2

0 0

,2 ,2

01 1

,2

,

,

s ss s

h h hh h

s s

h

s

j j

s

j j

I i t t i t t

tA i

A

I x t

 



 

 

 


 


    

  (171) 
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Finally, recalling again that 0 ( ) 0i t   for 0t  , one gets that (169) becomes: 

      ,2 ,2 ,2 ,2

1

,2

,2 0 0

1

1 0+
N

s

source h

s s s

h

s

h hI A i t t A A i t t



      (172) 

and its physical interpretation is the same as before.  

In spite of the cumbersome derivation of such formulas, its application is very easy and can be 

summarized in the following steps: 

 divide the channel according to the method proposed in 4.3 and evaluate points j  and 

coefficients ,j ja b  

 calculate *t  with (153), 
i

jt  with (154), 
,1 ,2

0 0

s st t  with (160), ,1

j

st  with (161) and ,2

j

st  with 

(162)  

 apply (159) to evaluate the integral in (147) and (168)-(172) to evaluate the two integrals 

in (149). 

4.1.2 Electric field 

Maxwell equations applied to the geometry of Figure 20 allow to state that the vertical and 

radial components of the electric fields can be calculated as [8] 

 

2

0 0
0

2

0 0
0

( )

( )1
( )

id
t

id

r

id
t

id

z

H
E t c d

z

rH
E t c d

r r





 

 


 












  (173) 

It is sufficient to derive the magnetic field with respect to either r and z and to integrate along 

the time. The dependence on the spatial variables r and z, contained in the definition of the time 

instants (153)-(154), (160)-(161) and (162), is linear; this allows to apply the derivation and 

integration rules for constant functions and solve analytically (173) integrals  as follows: 

 

0
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0
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2 2 0 0
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2 (0)
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  (174) 

and 

 

0
0

0

0

2 2 0 0
0

( )1 1 (0)

2 (0)

1 1
          

4

id
t

t timage source

rH R
d i t

r r vR c

Ic I
d d

r c v r r






 


   
 

 

   
   

 

 


 
  

 



 

  (175) 
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Indicating with   the spatial variable ( r   or z  ) 

 *

*

1
*

0 * 1 0
0

( ) ( ) ( )
iNt image i i i i

h
h

h hj
h j

I tt
d A i t t A A i t t

  
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



 
     
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   (176) 
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Derivatives contained in the above formulas are all constants and can be easily calculated by 

(153)-(154), (160)-(161) and (162). 

4.2 Cooray-Rubinstein Formula 

In [27], it was shown that the ground finite conductivity can be accounted if the ideal horizontal 

electric field is added to the term: 
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where k  is the solution of the linear differential equation: 
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Coefficients ck and rk appear in Tab.1 of [27], NRA=12 and /G   . So, the time domain 

analytical expression for the Cooray-Rubinstein formula can be obtained if one solves (180). 

Adopting the previously developed formulas to calculate the magnetic field at the ground level, 

it readily follows that    ,2,0, ,0,image sourceI r t I r t  and  ,1 ,0, 0sourceI r t  , thus: 
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where for sake of simplicity we define 
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and ,2

| 0j z

st 
 is obtained by (160) and (162) evaluated for 0z  , i.e. 
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Analytical solution of (180) reads: 
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Assuming now that the channel base current can be expressed as the sum of NG exponential 

terms of the kind: 

 0

1

( ) e 1( )
G

h

N
s t

h

h

i t q t


   (185) 

and inserting (185) into (184), integral in (181) can be analytically solved, so one gets: 
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where  
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with  

 k
kh h

G

c
F s


     (189) 

Please note that (185) is reasonable for the most widely adopted expressions for the channel 

base current. It obviously holds true if one uses the Double EXPonential (DEXP [18]) and   only 
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9 terms are required to properly represent the Heidler’s current, by using the Prony’s expansion 

( see [88] for details). 

4.3 Piecewise linear approximation of the distance between source and 

observation points 

If 0A  and 
2:[0, ] 1 [0, )f A x x   , let g be a piecewise linear approximation as in 

(151), with N a suitable positive integer, 0 0  , 1N A    and ,  j ja b  as in (152) for any 

1,..., 1j N  . Since f  is a convex function, for any 1,..., 1j N   it follows that ( ) ( )f x g x  

for 1[ , ]j jx   . Then one can prove the following two properties: 

1. For any 1,..., 1j N    

 0 1ja    (190) 

and  

 
0 0

1 1
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c v c v
      (191) 

Proof. Since f  is increasing, the first inequality is obvious. As far as the second is concerned, 

using the definition in (152) one has 2 2

1 1
1 1

j jj j
   

 
     . So taking the square of 

both (positive) members, one gets 2 2

1 1
1 1 1

j jj j
   

 
     and taking again the square one 

obtains  
2

1
0

jj
 


  , which holds true as 1j j    Moreover recalling that 0v c , 

inequalities (191)immediately follow  

2. For any 1,..., 1j N   the function  ( ) ( )j j jx a x b xH f    reaches its maximum 

value in 1[ , ]jj   in 
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Proof. Note that 1( ) ( ) 0j jj jH H     and 
1

1([ , ])j j jH C   . So the Weierstrass [89] and 

Rolle [90] theorems ensure that the maximum exists and corresponds to the point xj for which 

the first derivative of jH is zero. 

The problem one has to face at this point is the following: given a number of points N define a 

criterion on how to choose them to guarantee the best approximation of function f. For each 
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interval 1[ , ]jj  , a way to obtain the best approximation is to minimize the maximum value 

of function jH  (that is to say, to minimize the maximum difference between function f and its 

linear approximation). So, the following constrained optimization problem can be set up. Find 

 1 2, , , N   that minimize 
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s.t. 

 1 20 N A        (194) 

and  
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  (195) 

4.4 Validation  

The proposed method, from here onward called “analytical method” will be compared with the 

results of the so-called “numerical method”, i.e. with that the numerical integration of i) the 

classic formulas for the ideal fields [20, 21] and ii) the time domain expression for the Cooray-

Rubinstein formula. In the following, the comparison will take into account different ground 

conductivities and different expressions for the channel base current (Figure 24). For each of 

the proposed configuration, the electromagnetic fields will be evaluated at three different 

distances, i.e. 50 m, 200 m and 2000 m and at a height of 10 m. The details of each test are 

proposed in Table 14. The height of the return stroke channel is supposed to be 8 km, while the 

return stroke propagation velocity is c0/2.   
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Table 14 Details of the comparison tests. Heidler First (Subsequent) indicates the Heidler’s formula with 

parameters typical of first (subsequent) stroke currents. Measured current is taken from a set of 

Lightning Measurements taken at Mount Säntis Station in Switzerland 

Test Details 

Test r [m]  Channel base 

current 

Ground 

Conductivity 

[mS/m] 

T1-A 50 Heidler First 

[15] 

Perfect 

conductor 

T1-B 200 Heidler First Perfect 

conductor 

T1-C 2000 Heidler First Perfect 

conductor 

T2-A 50 Heidler 

Subsequent 

[15, 84] 

Perfect 

conductor 

T2-B 200 Heidler 

Subsequent 

Perfect 

conductor 

T2-C 2000 Heidler 

Subsequent 

Perfect 

conductor 

T3-A 50 Measured 

subsequent 

stroket [88] 

Perfect 

conductor 

T3-B 200 Measured 

subsequent 

stroke 

Perfect 

conductor 

T3-C 2000 Measured 

subsequent 

stroke 

Perfect 

conductor 

T4-A 50 Heidler First 1 

T4-B 200 Heidler First 1 

T4-C 2000 Heidler First 1  

T5-A 50 Heidler First 10  

T5-B 200 Heidler First 10 

T5-C 2000 Heidler First 10 
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Figure 24 Considered current waveforms 

Tests T1, T2 and T3 aim at validating the developed analytical formulas for ideal fields with 

different channel base currents, while tests T4 and T5 are performed to show the accuracy of 

the proposed expression of the Cooray Rubinstein formula.  

Since the aim of this section is to validate the method without optimizing the computational 

effort, in this framework N=50 and 

 
max

159.80 50
8000 10

39.95 200

3.99 2000

r m
H z

x r m
r r

r m


  

   
 

  (196) 

are chosen. 

According to the procedure described in Section 4.3, the discretizing points αj  (with j=1…N+1) 

are plotted in Figure 25 with the three different values of r (50, 200 and 2000 m). 
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Figure 25 Discretizing points of f 

 As shown in the following figures, there is an excellent agreement between the proposed 

approach and the numerical calculation in all cases, with some slight deviations in case of a 

measured current [88].  Please note that the proposed approach does not need the knowledge of 

the time derivative of the current, which, especially with measured data, is noisy and not so 

easy to sense.  
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Figure 26 Test T1-A 

 

Figure 27 Test T1-B 
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Figure 28 Test T1-C 

 

Figure 29 Test T2-A 
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Figure 30 Test T2-B 

 

Figure 31 Test T2-C 



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
92 

 

Figure 32 Test T3-A 

 

Figure 33 Test T3-B 
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Figure 34 Test T3-C 

 

Figure 35 Test T4-A 
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Figure 36 Test T4-B 

 

Figure 37 Test T4-C 
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Figure 38 Test T5-A 

 

Figure 39 Test T5-B 
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Figure 40 Test T5-C 

4.5 Computational Performances 

In this section, some considerations on the computational effort of the proposed method are 

proposed. It is important to notice that the computational effort is strictly related to the 

discretization of the function f. As highlighted in Section 4.4, two main factors can affect it: the 

choice of the maximum value xmax and the number N of intervals in which the function is 

discretized. 

In the first part (sub-section 4.5.1) the focus will be on the choice of xmax, while in the second 

one (sub-section 4.5.2) the results of the proposed method for different values of N will be 

analysed and discussed, showing the strength of the proposed method in terms of reduction of 

the computational time.  

4.5.1 The choice of xmax 

Please note that, as highlighted in Section 4.4, the value of xmax changes according to the 

coordinates of point Q. This means that, in principle, the discretization of f changes according 

to r and z. This represents a big issue especially when dealing with multiple fields calculation 

(e.g. in any field-to-line coupling problem) because it would imply solving an optimization 

problem for each horizontal distance and height. 
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This problem can be overcome setting xmax to the maximum value it can assume in the domain 

of interest of the observation point Q. From (196) it is easy to notice that, for an assigned return 

stroke channel height H, it corresponds to the minimum horizontal distance rmin and to the 

minimum height zmin. In case of induced effects of lightning on power lines, usually a distance 

from the striking point closer than rmin=20 m is never considered because this would lead to a 

direct event and the height of a power line is never lower than zmin =5 m. With this choice, for 

all the other observation points xmax corresponds to a point outside the channel which is of no 

useful for the fields calculation. This means that, in principle, for all the other observation 

points, the points j do not optimize the objective function defined in the previous sub-sections. 

However, in what follows, it is shown that such error has a negligible impact on the final result. 

Let us reconsider Figure 25. Despite the different values of xmax (i.e. 159.80, 39.95 and 3.99), it 

can be noticed that in each case the optimization procedure sets the majority of the discretizing 

points close to x=0. This can be well explained by the graph of f (Figure 41), which exhibits the 

maximum rate of change of its first derivative in the neighbourhood of the origin, requiring 

there a higher number of secants to obtain a proper fitting with linear functions.   

 

Figure 41 Graph of the function f 

To give further evidence to this concept, let us set min
max

min

399.75
H z

x
r


  ; the optimization 

procedure leads to the discretizing points plotted with the purple dots in Figure 42, which are 

not so different from the other ones, confirming the aforementioned considerations.  
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Figure 42 Discretizing point for N=50 and different values of xmax 

Finally, the impact of  xmax on the fields is shown in Figure 43, which is relevant to Test T1-A 

considering N=50 and the following two values:  

 
max
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159.80

399.75

H z

r
x

H z

r


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 


 


  (197) 

As shown, this different choice does not affect at all the final solution.  
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Figure 43 Test T1-A Comparison with different values of xmax 

4.5.2 Computational effort of the proposed method 

The computational effort is strictly related to the choice of N, because it represents the number 

of intervals in which the function f is discretized.  

In the following, attention is focused on the influence of N on the computational effort and on 

the accuracy of the method.  

For each field (Hφ, Er, Ez) the deviation (eψ) between the proposed approach and the numerical 

integration is computed as follows: 
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  (198) 

where ψp(n) is the generic field calculated with the proposed (numerical) approach. 

The computational gain G with respect to the numerical solution is computed as the ratio 

between the CPU time τnumerical required by the numerical method and the time τproposed required 

by the proposed approach.  
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 numerical

proposed

G




   (199) 

Gτ represents how fast the proposed approach is with respect to the numerical solution. 

Let us consider Test T1-A and Test T4-A (these two cases have been chosen to account both 

for a perfect ground conductor and a finite conductivity). Table 15/Figure 44 and Table 

16/Figure 45 express eψ of each field and Gτ as a function of N. In the following, it has been 

chosen to decrease N until one of the fields deviations overcomes 1%. 

Table 15 Fields deviation and computational effort gain as a function of N – Test T1-A 

N  
Ere  [%] Eze  [%]  He  [%] G   

50 0.077748 0.085537 0.003387 2760 

40 0.078207 0.134100 0.003913 3175 

30 0.079566 0.229514 0.004975 4003 

20 0.082886 0.451393 0.056404 5276 

10 0.103967 1.220471 0.160328 9400 

Table 16 Fields deviation and computational effort gain as a function of N – Test T4-A 

N  
Ere  [%] Eze  [%]  He  [%] G   

50 0.086965 0.085537 0.003387 211 

40 0.087366 0.134100 0.003913 227 

30 0.088601 0.229514 0.004975 241 

20 0.094305 0.451393 0.056404 259 

10 0.128086 1.220471 0.160328 277 
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Figure 44 Fields deviation and computational effort gain as a function of N – Test T1-A 

 

Figure 45 Fields deviation and computational effort gain as a function of N – Test T4-A 

As can be noticed, N can be strongly reduced without causing a high increase in the deviation. 

Moreover, the last columns of Table 15 and Table 16 underline that even with high values of N 
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the computational time is reduced of more than 200 times, which represents a really impactful 

advantage of the proposed method. A stronger reduction of the computational time can be 

observed in case of perfect ground conductor. 

In order to provide a comprehensive approach for the reader who wants to evaluate the 

electromagnetic fields with the approach proposed in this thesis, the discretizing points αi and 

the coefficients ai, bi, necessary for the implementation of the proposed procedure, are here 

provided in Table 17 with N=30, which represents a good compromise between the fields 

deviations and the computational effort gain (note that xmax is chosen as in sub-section 4.5.1). 

Table 17 Discretizing points αi and coefficients ai, bi with N=30 

i αi ai bi 

1 0.0815 0.0407 1 

2 0.1639 0.1217 0.9933 

3 0.2479 0.2015 0.9803 

4 0.3344 0.2793 0.9610 

5 0.4245 0.3545 0.9358 

6 0.5191 0.4263 0.9053 

7 0.6196 0.4944 0.8700 

8 0.7273 0.5582 0.8305 

9 0.8440 0.6174 0.7874 

10 0.9717 0.6717 0.7415 

11 1.1129 0.7211 0.6935 

12 1.2707 0.7656 0.6440 

13 1.4490 0.8052 0.5937 

14 1.6528 0.8400 0.5433 

15 1.8884 0.8703 0.4932 

16 2.1643 0.8964 0.4440 

17 2.4918 0.9185 0.3961 

18 2.8863 0.9370 0.3501 

19 3.3690 0.9522 0.3061 
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20 3.9704 0.9646 0.2645 

21 4.7350 0.9744 0.2255 

22 5.7300 0.9820 0.1893 

23 7.0614 0.9878 0.1561 

24 8.9026 0.9921 0.1259 

25 11.5559 0.9951 0.0989 

26 15.5829 0.9972 0.0751 

27 22.1294 0.9985 0.0545 

28 33.8382 0.9993 0.0373 

29 58.0277 0.9997 0.0233 

30 = N 121.7485 0.9999 0.0127 

31 = N+1 399.750 0.9999 0.0053 
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5 On the stability of FDTD-based numerical codes 

to evaluate lightning-induced overvoltages in 

overhead distribution lines 

Section 2.3.2 has proposed the well-known scheme for the solution of the field-to-line coupling 

problem by the discretization in time and space domains. According to equation (106), the 

solution is achieved through a second-order FDTD scheme for the points inside the line and 

with a linear extrapolation at the extremities of the line (Eq. (107)).  

We will show in what follows that the approach proposed in section 2.3.2 could exhibit 

numerical stability problems, even though the Courant condition (Eq.(103)) is satisfied (Section 

5.1).  

Later, in Section 5.2 a numerically stable algorithm based on the method of characteristics 

(briefly presented in Section 5.4) is presented and applied to a simplified case of a single 

conductor line and finally in Section 5.3 the extension of the proposed approach to a more 

realistic MTL system over a lossy ground is proposed and validated. 

In the following the FDTD scheme of Section 2.3.2 is coupled with the external circuit provided 

by the software PSCAD-EMTDC. 

5.1 The stability problem of the numerical field-to-line coupling codes 

To highlight the stability problem, first a very simple geometry is considered that allows to 

evaluate voltages and currents at the line extremities also in a (semi-)analytical way [8]. As 

shown in Figure 46, a single-conductor line of length L=63m with diameter a=0.02 m lays over 

a perfectly conducting ground at a height h=10 m and is connected to ground with two equal 

resistances R0=RL=10  at its extremities.  
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Figure 46 Single conductor line 

The line is illuminated by an electromagnetic field due to a lightning discharge striking the 

ground 30 m from the middle of the line, i.e. PF=(31.5, 30.0, 0.0). The lightning current 

propagation along the channel is described with the MTLE engineering model [15, 91] while 

the channel-base current is represented by a sum of two Heidler’s functions [51].  

The time step 10t ns   and the spatial step 9mx   have been set so that condition (103) is 

satisfied (with 1 / 3C  ).  

In Figure 47, the voltages at both extremities of the line are plotted as computed with the FDTD-

PSCAD approach and via the characteristic method (see Section 5.4 for details); the exam of 

the figures highlights the unstable oscillations of the numerical approach, while the 

characteristic method appears to be stable. 
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Figure 47 Voltage at the beginning of the line (V0) and at the end of the line (VL) obtained with the FDTD-

PSCAD approach (solid line) and via characteristic method (dashed line). Here 10t ns   and 9mx  . 

Simulations have suggested that instability phenomena seem to be related to the ratio /L x ; as 

a matter of fact, decreasing by ten times both the time and the space step ( 1t ns   and 0.9mx 

), it is possible to observe that analytical (method of characteristics) and numerical solutions 

are in perfect agreement (see Figure 48).  

 

Figure 48 Voltage at the beginning of the line (V0) and at the end of the line (VL) obtained by the FDTD-

PSCAD approach (solid line) and via the method of characteristics (dashed line). Here 1t ns   and

0.9mx  . 

A possible explanation of this behaviour lays in the fact that the ratio /L x  intrinsically 

influences the updating procedure (107) of the currents at the line extremities: the smaller is the 
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spatial step, the more accurate is (107). To confirm this hypothesis, Figure 49 plots the 

numerical solution of the problem with time step 10t ns   and the spatial step 9mx  but with 

analytical imposition of the boundary conditions (i.e., 1 0 1
n nV R I   and 

m m

n n
K L KV R I ). In this case, 

substantially, the characteristic method, which requires the knowledge of the voltage-current 

law at the extremities, is used in order to evaluate the current at the extremities which are then 

passed, for each time step, to the coupling code instead of those calculated with the 

extrapolation. The perfect agreement with the analytical solution allows to state that the 

numerical instability problem occurs when (107) is used to update the currents at the line 

extremities and the ratio /L x  is not sufficiently small. 

 

Figure 49 Voltage at the beginning of the line (V0) and at the end of the line (VL) obtained by the FDTD-

PSCAD approach (solid line) with analytical imposition of boundary conditions, and via characteristic 

method (dashed line). Here 10t ns    and 9mx   . 

The presented analysis suggests that, whenever it is not possible to impose boundary conditions 

in analytical way, a very small time and space has to be used in order to make the extrapolation 

(107) effective. However, this might require too high computational effort. 

5.2 Proposed solution for a single conductor line 

As the numerical instability problem depends mostly on the use of extrapolation (107) when 

the space step is not sufficiently small with respect to the line length L, it is necessary to use 

another method to update the currents in the first and in the last point of the line (and in all the 

eventual discontinuities). The approach proposed in the present thesis provides the current 

updating applying the characteristics method [8] in the first and in the last line segments.  

The main requirement is that there exists an integer NT s.t.  
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0

T

x
N t

c


    (200) 

In this way the travel time T defined in (213) is an integer multiple of the time step, so that 

applying (211) and (212) one gets 
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   
  (202) 

As can be seen from (201)-(202), the method of characteristics basically defines two Thévenin 

equivalents of the analyzed line at its extremities. So, in order to know the voltage/current at 

such extremities, the functional relationship between them as dictated by the external circuit 

should be known, which is not possible when dealing with a numerical electromagnetic 

simulator. To solve this problem, one can suppose that 

 ext, 1 ext, ext, 1 ext,

1 1    and     
m m

n n n n

K KV V V V     (203) 

Inserting (203) into (201)-(202), it is possible to write the following updating relations for 

currents 
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  (205) 

If one updates the currents with (204)-(205) instead of (107), even with 10t ns   and 9mx  , 

a perfect agreement between the proposed approach (labeled as FDTD-PSCAD (new) in the 

following) and the analytical solution is obtained for the case presented in Section 5.1 (see 

Figure 50).  

The reason why this approach is more effective than the previous one probably lies in the fact 

that the only condition to be satisfied is that the voltage does not change much from one time 

step to the subsequent one in order to make (203) hold. This hypothesis is typically satisfied 

with time steps normally adopted in these studies (about 10 ns necessary to correctly reproduce 

the waveform of the lightning electromagnetic fields). 
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Figure 50 Voltage at the beginning of the line (V0) and at the end of the line (VL) obtained by the FDTD-

PSCAD (new) approach (solid line) and via characteristic method (dashed line). Here 10t ns   and 9mx   

5.3 Generalization to a MTL over a conducting ground and discontinuities 

along the line  

Although the method of characteristics is applicable only to a single conductor line over a 

perfectly conducting ground, one can assume that the proposed strategy (201)-(202) for 

updating currents is still valid also for a MTL system over a lossy ground. This hypothesis 

basically neglects the effect of: i) the line ohmic, ii) the finite ground conductivity in the 

coupling equations and  iii) the inductive coupling among conductors. Notwithstanding the 

above, the hypothesis can be considered as reasonable since it applies only to a small portion 

of the whole system.  

Starting from this assumption, the generalization of (201)-(202) is very simple: for the i-th 

conductor one has: 
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  (207) 

,C iZ  being the characteristic impedance of the i-th conductor, evaluated for the case of a lossless 

wire.  
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In the case of discontinuities (i.e., points connected to the ground by means of suitable devices 

like arresters or line junctions), the same procedure can be adopted, treating each of these 

discontinuity points in the same way as the terminations. Following [34], if one indicates with 

xd the abscissa of the generic discontinuity point (d=1..D) and defines the corresponding index 

/ 1d dk x x   , it is possible to evaluate the left and right limits , 1

, d

n

i kI    and , 1

, d

n

i kI    of the current for 

x approaching xd by means of (206) and (207). More precisely,  
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  (209) 

Then, the KCL allows to find out the update of the current flowing in the device connected to 

the line in the point xd as: 

 1 , 1 , 1

, , ,d d d

n n n

i k i k i kI I I        (210) 

The validation of the proposed approach has been performed on a realistic Italian distribution 

network MTL (see Figure 12) consisting of 3 conductors of length L=189m, whose details are 

summarized in Table 18. 

Table 18 Geometry of the MTL system 

 Cond. 1 Cond. 2 Cond. 3 

height from ground 8.0 m 8.0 m 8.6 m 

distance from y axis −1.2 m 1.2 m 0.0 m 

conductor diameter 0.64 cm 0.64 cm 0.64 cm 

A lossy (g=0.005 S/m) ground has been considered with a relative dielectric constant equal to 

10. Regarding the terminations, two cases are presented: 1) each conductor is terminated at both 

ends with a 10  resistor and connected to ground every 63 m with a 20  resistor, and 2) each 

conductor is  connected to ground every 63 m through a typical 10 kV surge arrester [92] (Figure 

51 shows its V-I characteristic), so that the line has four surge arresters: two at the terminations 

and two at the discontinuities 

Such MTL is illuminated by an electromagnetic field due to a lightning return stroke that occurs 

30m far from the middle of the line, i.e. PF=(94.5, 30.0, 0.0) with the current distribution 

modeled as in the previous section.  
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For the numerical simulation of the FDTD-PSCAD (new) approach, again 10t ns   and 9mx   

have been considered.  

In order to test its performances, the FDTD-PSCAD with extrapolation presented in [34] has 

been used with 1t ns   and 0.9mx   for guaranteeing stable results, as proved at the beginning 

of this contribution in Figure 48.  

Figure 52 and Figure 53  present the voltages in four points on the first half of the line for cases 

1) and 2), respectively. Note that the symmetry of the considered geometry allows to state that 

the other half line exhibits the same behaviour. For both cases, a perfect agreement between the 

benchmark and the new approach can be observed, with a meaningful reduction in the 

computational effort. In particular, a simulation performed with the time and spatial steps here 

presented (i.e. 10 ns and 9 m) requires about 1/8 of the time required by a simulation performed 

with a time step of 1 ns and a spatial step of 1 m.  

 

Figure 51 Surge arrester V-I characteristic 
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(a) 

 

(b) 

 

(c)  

 

(d) 

Figure 52 Case 1) Voltages for the three conductors at the distances of:  0m (a), 36m (b), 54m (c) and 90m 

(d) from the beginning of the line. The solid lines are obtained by using the FDTD-PSCAD (new) approach 

with 10t ns   & 9mx  . The FDTD-PSCAD (unstable) plot (dash-dotted lines) and the FDTD-PSCAD 

(benchmark) one (dashed lines) have been both obtained using the FDTD-PSCAD approach with 10t ns 

& 9mx   and 1t ns  & 0.9 mx   respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 53 Case 2) Voltages for the three conductors at the distances of:  0m (a), 36m (b), 54m (c) and 90m 

(d) from the beginning of the line. The solid lines are obtained by using the FDTD-PSCAD (new) approach 

with 10t ns   & 9mx  . The FDTD-PSCAD (unstable) plot (dash-dotted lines) and the FDTD-PSCAD 

(benchmark) one (dashed lines) have been both obtained using the FDTD-PSCAD approach with 10t ns 

& 9mx   and 1t ns  & 0.9 mx   respectively. 

5.4 Appendix - the method of characteristics  

Let us consider a single conductor line of extremities A and B and length LAB which lays over a 

perfectly conducting ground at height h and at distance y from the reference system. The method 

of characteristics [8] states that the voltages ( , )V t  and the currents ( , )I t  at the line extremities 

are related by: 
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where CZ  is the characteristic impedance of the line [8], T is the travel time defined as: 

 
0

ABL
T

c
   (213) 

and finally, as usual, 1( )t  is the Heaviside function, i.e. 

 
1 0

1( )
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  (214) 

The quantities 
, ;

fw

A B y  and 
, ;

bw

A B y  are completely defined by the incident electric field according 

to the following 
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where 

 
, ( , ) ( ( , ), )1( )e

T y zx t hE r x y t tE   (217) 

and ,L yE  is the projection onto the line of the radial component of the electric field, i.e.  

 , ( , ) ( ( , ), ) 1( )
( , )

F

L y r

x x
x t E r x y t t

r x y


E   (218) 

The presence of the function 1(t) accounts for the fact that the lightning is supposed to strike at 

t=0. The function    
2 2

( , ) F Fr x y x x y y     is the distance of the generic point (x,y) belonging 

to the line from the lightning impact point PF=(xF,yF,0). Notice that for a single conductor the 

x-axis of the reference system typically coincides with the line, so that y=0. The presence of the 

distance y is important for the generalization to a MTL system.  
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6 An approximate formula for the evaluation of the 

lightning-induced overvoltages distribution on 

overhead distribution lines applicable to lightning 

performance procedure 

When we deal with lightning-induced overvoltages on distribution lines the most impactful 

analysis is no-doubt the lightning performance [1, 32, 33, 35, 37]. Being the maximum 

lightning-induced overvoltage a function of the return stroke current peak, front time, 

engineering model, point of impact and velocity, if one wants to evaluate the lightning 

performance of a distribution line, he has to [35, 51]: i) generate a large number of lightning 

events, each one characterized by a peak current, a point of impact, a front time and a return 

stroke velocity extracted according to their probability density functions. The return stroke 

model is usually chosen from one of the EM deeply studied in literature [2]; ii) Compute the 

maximum lightning-induced overvoltage occurred on the considered line associated to each 

event; iii) Compare the maximum overvoltage with the line Critical Flashover (CFO); iv) 

Compute the ratio between the number of events that exceed the CFO and the total number of 

events and v) Multiply the value obtained for the Ground Flash Density. This procedure would 

imply a high computational effort. 

In order to simplify it, it is well-known that the return stroke velocity does not significantly 

affect the maximum lightning-induced overvoltages [51, 93], thus it can be neglected in the 

lightning performance procedure. However, even with this assumption, the computational effort 

is still high, in particular because the return stroke front time affects the computation of 

electromagnetic fields, which is no-doubt the heaviest part. 

In order to reduce the computational effort, the lightning performance computation can be 

evaluated through the use of some analytical formulas [1],[77, 78] or with the use of the 

methodologies proposed in [33, 35] for the evaluation of the maximum induced voltage. The 

advantages of the analytical methods rely on the low computational effort but they are valid 

only with some assumptions, such as the presence of only one infinite line. On the other hand, 

the methodologies proposed in [33, 35] are able to account for complex line topology, but still 

have a high computational effort.  

In this section the author proposes a methodology for the evaluation of the maximum lightning-

induced overvoltage suited for the lightning performance computation, based on a few number 

of field-to-line coupling simulations. With respect to the analytical methods, it takes into 

account all the selected variables (peak current, front time and stroke location) and is able to 

evaluate the results also in presence of a non-infinite line. On the other hand, the computational 
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effort is extremely reduced with respect to [33, 35]. Moreover, being based on the coupling 

code presented in [34] (and in principle it can be applied to any numerical method), it can 

consider any input current and any connections type at the line terminals and discontinuities. 

Section 6.1 presents the preliminary analysis aimed at getting some insight on the functional 

relationship between stroke location, current peak and front duration and the system 

overvoltage. Section 6.2 describes the proposed methodology, Section 6.3 is devoted to the 

validation. 

6.1 Preliminary analysis 

The main aim of the chapter is to obtain an approximate formula linking lightning striking point 

(xF, yF), current peak (I) and front time (τd) with the maximum induced overvoltage (V) 

experienced by a power (distribution) system.  

This is done postulating a functional relationship among such quantities and then performing a 

(reduced) number of simulations to determine the numerical values of the involved parameters. 

To do this, one should first get a physical insight on how the system maximum overvoltage 

depends on the aforementioned parameters. The present section aims at reaching this goal 

considering one variable at a time.  

Let us consider a 15 kV single conductor line of length L=1 km, diameter d=0.64 cm, connected 

at both extremities to two surge arresters (with V-I characteristic of [92]) and lying at height 

h=8 m over a ground with a conductivity σ= 1 mS/m and relative permittivity εr=10. 

Introducing a Cartesian coordinate system such that the line ends are points (0,0,h) and (L,0,h), 

then yF basically measures the distance between the line and the lightning channel. The well-

known Rusck’s formula states that the overvoltage peak is proportional to the inverse of such 

distance; so, once fixed xF, I and τd, let’s try to use a quadratic fitting in the variable 1/yF, i.e.  

 

2

,0 ,1 ,2

1 1
y y y

F F

V a a a
y y

   
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   
  (219) 

where ay,i (i=0,1,2) are suitable coefficients to be fixed. To verify this, simulations have been 

performed with the code described in [34] and presented in Figure 54 (blue stars). 

For this test we supposed I=30 kA, τd=5.5 µs (corresponding to the median values of Berger’s 

distribution for first strokes), three horizontal positions xF=500 m (outside the line), xF=0 m 

(left end of the line) and xF=500 m (middle point of the line) with ten values of yF in the range 

[50m, 1000m]. Applying a fitting procedure to function (219), the red lines reveal an excellent 

agreement with complete simulation results for point xF=0 and xF=500 m, while some 

deviations occur if the lightning strikes outside the line. Repeating the analysis with I=12 kA 



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
117 

and τd=1.1 µs (median values of subsequent strokes of Berger’s distributions), one gets similar 

results (Figure 55). This confirms the initial guess to consider a second order polynomial 

expression in the variable 1/ Fy  could be employed to derive the final formula. 

 

Figure 54 First stroke – yF  influence 
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Figure 55 Subsequent stroke – yF influence 

Moreover, the Rusck’s formula states that the overvoltage is proportional to the current. 

However, to account saturation behavior introduced by non-linear devices, one can suppose 

that, at fixed xF, yF and τd, the overvoltage appears again as a quadratic polynomial in the 

variable I , i.e 

  
2

,0 ,1 ,2I I IV a a I a I     (220) 

where aI,i (i=0,1,2) are suitable parameters to be fixed. Assessment of relationship (220) can be 

done again with simulation supposing τd=5.5 µs (first stroke), four stroke positions 

characterized by the following coordinates ([500m, 60m], [0m, 60m], [0m, 300m], [500m, 

300m]) and six values of current in the range (5-30 kA) obtaining the blue stars of Figure 56. 

The fitting algorithm produces the red curves that are always in excellent agreement with the 

simulation assessing the possibility of considering a relationship of the kind (220). Repeating 

the analysis for τd=1.1 µs (subsequent stroke) one can draw the same conclusions (Figure 57). 



Università degli Studi di Genova – Scuola Politecnica  

 

 

 

    

 
119 

 

Figure 56 First stroke - I influence 

 

Figure 57 Subsequent stroke – I influence 

The dependence on the front time is a bit more complicated, first of all because no simplified 

formulas to rely on are at disposal. Similarly to the previous analysis, once fixed I, xF and yF, a 
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different behavior for first and second stroke current has been observed. More precisely, 

considering the same striking points as before a quadratic behaviour 

  
1 1 1

2

,0 ,1 ,2d d dd dV a a a        (221) 

in the variable τd of the overvoltage seems to be a good choice as shown in Figure 58, for first 

stroke currents characterized  1.1 ,18d s s   . On the contrary, a quadratic behavior  

 
2 2 2

2

,0 ,1 ,2

1 1
d d d

d d

V a a a  
 

 
    

 
  (222) 

on the variable 1/ d  seems to be optimal, as shown in Figure 59 for describing second stroke 

currents characterized by  0.22 , 4.5d s s   .  

 

Figure 58 First stroke – τd influence 
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Figure 59 Subsequent stroke – τd influence 

Finally, as concern the lightning horizontal position xF overvoltage dependence, a more 

complex scenario appears, for example, due to the line ends and/or discontinuities inside the 

line. For this reason, a different approach has been adopted, which will be described in the next 

section.  

As a conclusion, one can guess that, for fixed xF, the overvoltage peak could be described with 

a second order polynomial in the variables 
1

Fy
,

d , I  for the first stroke and 
1

Fy
,

1

d
, I for the 

subsequent one.   

6.2 Derivation of the approximate formula 

The aim of the present section is to describe the approximate formula that links the lightning 

strike point and current parameters to the system overvoltage. This has been done in two steps: 

the first the method to describe such formula for fixed xF has been presented (subsection 6.2.1), 

and then the dependence on the lightning horizontal position xF has been analyzed in subsection 

6.2.2. 
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6.2.1 Approximate function at assigned xf  

The preliminary analysis conducted in the previous section allows to postulate, for an assigned 

F Fx x , a formula of the kind 

 

  0 1 2

23 33
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  (223) 

with k=1 for first stroke and k=1 for subsequent stroke. 

Such formula should be valued in a specific domain  ,min ,max ,min ,max min max, , ,d d F FD y y I I          . 

Upper and lower bounds for peak current and front time can be evaluated according to their 

classical distribution (e.g 5th percentile and 95th percentile of Berger’s distributions for first and 

subsequent strokes). Maximum and minimum distances can be evaluated as proposed in [35]. 

However, two considerations can be done on the domain of interest of (223). 

1. The Electro-Geometric Model (EGM) or any other attachment model establishes a 

relationship between distance and peak current of the kind  , 0Ff y I  . Such function 

defines a surface that divides D in two zones: one (D1) in which only direct strikes 

occur and the other (D2) characterized by indirect strikes (Figure 60). Of course, the 

evaluation of (223) is of interest only in D2 
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Figure 60 τ section of the domain D and subdivision between direct strokes and indirect strokes areas. 

2. The Rusck-Darveniza formula [60] provides a (conservative) estimation of peak 

voltage as a function of I and yF. So, once the line CFO is known, the following 

inequality defines a region D3 in which indirect strikes can cause dangerous 

overvoltage (see Figure 60) 

 

0.15
38.8

F

g

I CFO

y
h




 
 
 
 

  (224) 

where h is the conductors height, and  the ground conductivity. 
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Figure 61 τd section of the domain D and subdivision according to Rusck’s formula 

As a consequence the domain of interest where (223) has to be evaluated is 2 3D D .  

The key point is to evaluate the best values of coefficients appearing in the formula. This is 

done performing complete simulations with the code [34] for a set of KHL  specified points  

  , ,, , 2 3k d h F lI y D D     (225) 

for 1,...,h H , 1,...,k K  and 1,...,l L . The variables appearing in (223) are normalized in such 

a way that D is mapped into      1,1 1,1 1,1      and a least square method is applied to find the 

coefficients that minimize the difference between the exact values of V coming out of the 

simulations and the ones predicted by (223) in the K H L  chosen points. Empirical evaluations 

have shown that K=L=3 and H=2 provide a good fitting if points have been chosen according 

to Figure 62 in correspondence of τd,min and τd,max. Please note that the points chosen on the y-

axis correspond to the minimum, mean and maximum values of the stroke location 

corresponding to the minimum, median and maximum value of the current distribution. In this 

way, the described procedure requires only 18 code runs. 
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Figure 62 τd section of the domain D and points of evaluation of the exact formula 

6.2.2 Dependence of the overvoltage on the horizontal position 

The dependence on the horizontal position can be treated as proposed in [35].  

Let us suppose to choose an initial guess sequence , , 1,...,F mx m M  such that ,1 ,minF Fx x  and 

, ,maxF M Fx x (choice of ,minFx and ,maxFx  can be done as in [35]). Then, for m=1,…,M1 calculate 

the middle point , , 1

2

F m F mx x 
 of the mth interval and evaluate for any 1,...,h H , 1,...,k K  and 

1,...,l L  

 
, , 1

, ,, , ,
2

F m F m

khl k d h F l

x x
V V I y 

  
 

  (226) 

and the corresponding “exact” values , , 1

, , ,, , ,
2

F m F m

exact khl exact k d h F l

x x
V V I y

 
  

 
 by means of 

simulation. 

Then, for all the values that could be potentially dangerous (i.e. above a specified threshold VT), 

calculate the deviation between exact and approximate values, i.e. 

 
,1

0

exact khl T

khl

if V V
if

otherwise


 


  (227) 
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and evaluate the 
%e  error as  

 
,

%

1 1 1 ,

100
K L H

exact khl khl khl

k l h exact khl

V V f
e

V  


    (228) 

If e% is higher than a threshold eT, one has to continue in the “bisection” procedure, else it is 

possible to stop the process. The whole process appears in the flowchart of Figure 63. 
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Figure 63 Flowchart 

For each one of the intervals in which 
,min ,max,F Fx x    is divided, two formulas of the kind (223) 

are available corresponding to the two extremes of the interval itself. A linear interpolation 
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between them is then sufficient to calculate the overvoltage in any position xF belonging to such 

interval. 

6.3 Validation of the proposed method 

Let us consider the distribution line presented in Section 6.1. The validation consists of two 

different analyses: 

1. Comparison of the proposed method with the exact one, computed with the coupling 

code in terms of punctual values of the maximum lightning induced overvoltages. 

2. Comparison of the proposed method with the exact results, computed with the coupling 

code in terms of probability density functions of the maximum lightning induced 

overvoltages. 

It is important to remind that 1) overcomes the aim of the proposed methodology. In fact, the 

analytical formula’s main aim is to provide a simplified and fast formula for the overvoltage 

analysis in a probabilistic framework. 

As outlined before, the knowledge of the input data in terms of current and front time 

distributions is mandatory. In this work the well-known distributions proposed by Berger are 

used [9]. 

Due to the fact that the proposed methodology provides an analytical formula as a function of 

4 variables, in order to represent the comparison it has been chosen to keep constant xF to three 

different values (500m, 0m, 500m) and to keep constant τd to the values corresponding to the 

5th, 50th and 95th percentile of its distribution. The following figures show the curves  FV y  

parametrized to different values of I . 

As apparent looking at Figure 61, the domain of each one dimensional curve depends on the 

current. So, for the sake of clarity, such curves are depicted in Figure 64 on a normalized range 

(0,1). 

Figure 64 shows the results of the first validation for the negative first and subsequent strokes. 

The continuous line represents the approximate method, while the “stars” are the results of the 

exact one.  

Horizontal line represent the 50 kV level (value chosen for VT in the procedure of the previous 

section) because the whole algorithm has been designed to adequately reproduce voltages 

greater than such VT. Thus, the curves have to be judged above this line. 

The exam of Figure 64 suggests that: i) when a lightning strikes outside the line the agreement 

between simulations and the proposed approach is quite good but, in any case, the induced 

overvoltages are quite far from assuming dangerous values (panels A and B); ii) for point of 

impact abscissa equal to the line end, there are some differences for very close distances 
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between line and stroke location, but it never happens that the proposed approach predicts 

values below the threshold and simulation above it or vice versa (panels C and D); iii) if the 

lightning strikes in the middle of the line, there is a good agreement between the two approaches 

with some overestimation of the approximate method (panels E and F a part from the case of 

18d s  , which, by the way, does not produce dangerous overvoltages). 

Figure 65 and Figure 66 present the validation of the proposed approach in terms of probability, 

considering 10000 events of first/subsequent strokes extracted inside the domain of Figure 61. 

The Probability Density Functions (PDF) and the Cumulative Density Functions (CDF) of the 

maximum voltage are shown, confirming a good agreement between the two approaches. Table 

19 shows the results of Figure 66 in terms of intersections with the 5th, 50th and 95th percentile.  

 

A) 

 

 

B) 
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C) 

 

D) 

 

E) 

 

F) 
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Figure 64 A), B) xF= -500m First and Subsequent strokes C), D) xF= 0m First and Subsequent strokes E), 

F), xF= 500m First and Subsequent strokes 

 

Figure 65 PDF of the maximum voltage occurred on the line 

   

Figure 66 CDF of the maximum voltage occurred on the line 
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Table 19 Validation in terms of probability 

 Negative first Subsequent 

 Proposed approach Classical approach Proposed approach Classical approach 

5th percentile 8.65 kV 8.73 kV 9.6 kV 9.8 kV 

50th percentile 18.01 kV 19.3 kV 36.2 kV 37.5 kV 

95th percentile 143 kV 136.1 kV 119 kV 120.8 kV 

P(Vmax>50 kV) 18.1% 17% 32% 34% 

 

The initial number of selected horizontal points is M=4 and the iterative process of Figure 63 

leads to M=6, considering eT=5%. So, the number of code calls is 18x6. This requires less than 

15 minutes, while the exact evaluation of voltage PDF needs more than 16 hours.  These results 

have been obtained using a Microsoft Windows 10 PC equipped with 16 Gb of RAM and Intel 

Core i7-2600 CPU at 3.4GHz. 

The obtained validation in terms of pdf of the induced voltage is extremely important because 

allow to say that the proposed formula can be used in the lightning performance procedure 

where it is then necessary to multiply the obtained result for the GFD. 
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7 Mitigation of lightning-induced overvoltages using 

shield wires: application of the Response Surface 

Method (RSM) 

Many papers have dealt with the use of shield wires, discussing the effect of parameters such 

as the distance between two subsequent grounding points [38, 53, 54], or presenting 

experimental results to assess their effectiveness [55-58]. 

The studies presented in [54] have focused on the parameters that affect the effectiveness of 

shield wires on the mitigation of lightning-induced voltages. The results obtained have 

demonstrated that the most relevant ones are the relative position of the shield wire with respect 

to the phase conductors, the grounding interval and the ground resistance. The individual effect 

of each parameter is well described in [1, 54], but a thorough analysis on their combined effect 

is still missing. Moreover, the aforementioned papers presented the effectiveness of the shield 

wire calculating the overvoltage in the point closest to the strike location and not in the overall 

system.  

In this context, a statistical approach that takes into account all the involved parameters effects 

can be very useful in designing the lightning protection system of MV networks. 

RSM represents a very powerful tool to analyse how the response of a very complex system 

depends on its input parameters without requiring a prohibitive number of runs of the numerical 

simulation to describe the response of the system [94]. This method has been frequently applied 

in reliability analysis (e.g., [95-99]) and has found some applications also in power system [100-

102] and control analysis [103]. In [100], the size of a PV/wind hybrid energy conversion 

system with battery storage is optimized using RSM based on an hourly operating cost. The 

work in [101] presents a new probabilistic power flow method based on the Stochastic Response 

Surface Method (SRSM), while the same method is used in [102] for the evaluation of optimal 

power flow with wind generators.  

This chapter proposes an analysis in which the RSM is used to evaluate the lightning 

performance of a realistic distribution network equipped with shield wires, and how their 

configuration (position, grounding spacing and grounding resistance) affects their performance.  

The proposed approach is efficient from a computational point of view because the RSM 

method requires a limited number of simulation runs. Furthermore, the lightning performance 

computation for different shield wire configurations dictated by the RSM method is performed 

using an efficient code described in [35] and [34]. The main advantages of the proposed method 

are: the possibility of dealing with a realistic configuration, accounting for the probability 
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distribution functions of both the current peak and the lightning strike position, and modelling 

the lightning channel base current with any desired expression (in the chapter, the well-known 

Heidler’s formula is used [15]). Moreover, the use of a statistical approach allows not to limit 

the lightning performance analysis to the overvoltage experienced by the point of the line 

closest to the lightning strike location (which is not guaranteed to be the maximum system 

overvoltage), but rather to consider all the points along the overall system.  

Finally, the method allows obtaining a simple formula linking the system response (the 

overvoltage reduction or the lightning performance) to the shield wires parameters. Such 

formula can be used: i) to find an estimate of the optimal shield wires configuration together 

with its confidence strip, ii) to perform a sensitivity analysis on the dependence of the response 

on each input variable, iii) to evaluate the effect of the interactions among the variables and iv) 

to check whether some of them do not influence the reduction on the system overvoltage in a 

meaningful way. The chapter is organized as follows: Section 7.1 is dedicated to an overview 

of the RSM method. Section 7.2 describes the test case network and the shield wires parameters. 

Section 7.3 illustrates the application of the RSM method to assess the effectiveness of shield 

wires in the mitigation of lightning induced overvoltages. Section 7.4 presents a sensitivity 

analysis on the shield wire parameters.  

7.1 Overview of the RSM Method 

The RSM aims at describing the response of a complex process by means of a polynomial 

relation, providing also an estimation of the error due to the use of the obtained approximate 

model. A complete description of the RSM can be found in [94]. The aim of this section is to 

provide the reader with an overview of the method, whose conceptual flowchart, consists of the 

following steps: 

1. Definition of the input variables and their domain 

The first step consists of defining the n variables zi that affect the system response estimation 

y  together with their physical domain [zimin, zimax]. The choice of the domain is crucial as the 

response surface, being calculated starting from the system response at the domain boundaries, 

strongly depends on it. For the future derivation, for each variable zi, a linear transformation is 

needed that maps [zimin, zimax] into [−1,1], leading to the definition of n new variables xi: 

  min

max min

2
1i i i

i i

x z z
z z

  


  (229) 

2. Model definition 
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Typically, the considered models for describing the response surface are polynomial models, 

more precisely: a first order model (230), a first order model with interaction (231) (where 

binary interactions are included), and a complete second-order model (232):  

 0

1

n

i i

i

y a a x


    (230) 

 0

1 , 1

n n

i i ij i j

i i j
i j

y a a x a x x
 



      (231) 

 2

0

1 , 1 1

n n n

i i ij i j ii i

i i j i
i j

y a a x a x x a x
  



        (232) 

ai being the unknown tuning coefficients. 

3. Number of observations definition 

In order to estimate the tuning coefficients, a number of system response observations yp 

(function of the selected model) has to be provided. The choice of the optimal number of the 

provided observations and their position in the space is a crucial point. It was established [94] 

that the best choice to fit a second order model is to consider:  

 the vertexes of the hyper-cube  1,1
n

 , i.e. all the 2n points  11 1( ) , , ( ) n
   with  0 1,

i
   

for all 1, ,i n ; 

 the center of the hypercube, i.e. the point  0 0, , ; 

 the 2n points  0 0n, , , ,  and  0 0n, , , , , or  0 1 0, , , , , whenever one of them 

is not physically consistent, that correspond to the 2n points on the smallest sphere that 

contains the cube. 

 the central point of the corresponding face of the hypercube 

In this way 2n+2n+1 observations are at disposal. It should be observed that, when dealing with 

experimental campaigns, each observation consists of a measurement. Here, this will be 

surrogated by numerical simulations [34] and extrapolating the desired system response, as will 

be detailed later in the chapter. 

4. Estimation of the tuning parameters 

Equations (230)-(232) represent multiple regression models with n independent variables. It 

can be observed that, introducing the 2( 3 2) / 2 1N n n     coefficients 
i  such that 

 i ia  for any 1, ,i n  
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 ni j ija   for any 1, ,i n and i j  

 2( )/2 iii n n
a

 
 for any 1, ,i n  

and similarly the new N coordinates 
i  such that 

 i ix  for any 1, ,i n  

 ni j i jx x   for any 1, ,i n and i j  

 2
2

( )/2 ii n n
x

 
 for any 1, ,i n  

the model presented in (230)-(232) can be written in the linear form: 

 0

1

N

i i

i

y a  


    (233) 

The tuning coefficients are then estimated with the well-known least squares method, that 

consists of choosing the set  0 1, ,...,α
T

Na    which minimizes the sum of squares L of the errors 

vector, defined in (234), where P is the number of observations,  1, ,y
T

Py y  collects the P 

observations and  ,1 ,, ,p p nx x  corresponds to the p-th observation 
p

y   

 

2

0 ,

1 1

P N

p i p i

p i

L y a  
 

 
   

 
    (234) 

The minimum occurs in correspondence of the values of α that nullify the gradient of L [94], 

that is to say:  

 2 2T TL
  


Ξ y + Ξ Ξα 0

α
  (235) 

where 
1,1 1,

,1 ,

1

1

Ξ

N

P P N

 

 

 
 

  
 
 

. The solution of (235) provides the values of the tuning coefficients 

α  that minimize L: 

  
1

T T


α Ξ Ξ Ξ y   (236) 

5. Choice of the  meaningful variables 

In order to check whether the variables zi contribute significantly to the regression model, a 

procedure, called extra sum of squares method, is used. This procedure is completely described 

in [94] and allows to reject all the variables that do not affect the system response in a 

meaningful way. 
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6. Check of the model adequacy 

Once the response surface is available, it is necessary to have some indicators on the goodness 

of the used methodology. In particular, for any  0 1,   the 100(1−)% confidence intervals of 

the regression coefficients and of the system mean response  at the point  0,1 0,, ,0x nx x  can 

be evaluated according to the procedure described in [94]. 

More precisely, if Cii is the ii-entry of matrix Ξ Ξ
T  and  represents the variance estimate, 

provided by    /y y α X y
T T T P N    , then the 100(1−)% confidence interval for the 

coefficient i is given by: 

 2 2

/2, 1 /2, 1i P N ii i i P N iit C t C              (237) 

where t is the Student’s t-distribution with P−N−1 degrees of freedom. 

Similarly, the 100(1−)% confidence interval for the system mean response  at the point 

 0,1 0,, ,0x nx x  is given by: 

 
 

 

1
2

0 /2, 1

1
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ˆ

ˆ                      
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P N

y t
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



 





 



 

 
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0 0
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ξ Ξ Ξ ξ

  (238) 

where 0
ˆ

0
α ξ

Ty   and 0,1 0,1, , ,
0
ξ

T

N      is the column vector associated to 0x .   

7.2 The MV network test case 

Let us consider the line topology shown in Figure 67, where a main feeder of length 1200 m 

and three laterals (at 300 m, 600 m and 900 m from the beginning of the feeder), each one of 

length 300 m, have been considered. Table 20 reports the main geometrical parameters of each 

of the lines appearing in Figure 67 and Figure 68. 

Table 20 Line Details 

Name Description / Value 

Conductor diameters 2 cm 

Line configuration 3 phase 

Phase conductor height 10 m 

Phase distance 75 cm 
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Figure 67 Line topology 

 

Figure 68 Line cross section 

According to [54], four parameters that affect the performance of the shield wires have been 

considered in the proposed model: the shield wire height h, the distance between two 

subsequent grounding points Delta, the ground resistance Rg and the horizontal distance y of 

the shield wire from the middle phase conductor. The chosen range of variability of each 

parameter is shown in Table 21, where zi is the generic name given to each parameter, as 

described in Section 7.1.  
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Table 21 Range of variability of the parameters affecting the shield wire performance 

Name DESCRIPTION Min Max 

Delta (z1) 
Distance between two 

subsequent groundings 
100 m 300 m 

Rg (z2) ground resistance 1  200  

h (z3) height of the shield wire 7 m 12 m 

y (z4) 

Horizontal distance of 

the shield wire from the 

middle phase conductor 

-0.75 m 0.75 m 

7.3 Shield wire efficiency assessment 

In this section, the RSM method is applied to assess the effectiveness of the shield wires in 

mitigating lightning induced overvoltages. The first important point is to define the “system 

response”. In the present analysis, two possibilities are considered. The first is aimed at 

checking whether the shield wires are always effective in reducing the induced overvoltages no 

matter their configurations and for any possible lightning strike. The second follows the 

objective of enhancing the system lightning performance.  

7.3.1 Reduction of the maximum overvoltage 

The first analysis is performed according to the following steps: 

1) Consider the test case of Figure 67 without any shield wires. 

2) Define a domain D for the lightning point of impact. The present choice is to consider 

the region limited by the red and the blue lines in Figure 69. The red line delimits the 

zone in which the probability of a direct stroke is greater than 99.9% according to the 

Electrogeometrical Model (EGM) [51]. The region outside the blue one, on the other 

hand, is characterized by a probability of having an overvoltage greater than the network 

Critical Flashover Voltage (CFO) smaller than 0.1%. These two regions have been 

obtained as follows: a) the red area has been computed with the EGM  inputted with the 

line details and with the current representing the first thousandth of the cumulative 

probabilistic distribution (i.e., the 99.9% of the currents are higher than that value); b) 

the blue area has been computed with the Rusck’s model [38] inputted with the line 

details and with the current representing the 999th thousandth of the cumulative 

distribution function (i.e. the 0.1% of the currents are higher than that value).  
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Figure 69 Coordinates domain 

Concerning the ground electrical parameters, they in principle depend on the frequency 

[104, 105] and on the ground stratification. However, these effects have been not 

considered firstly because this would be quite complex [24, 34, 35] and case dependent, 

secondly because most of the studies dealing with the lightning performance analysis of 

power lines assume constant and frequency-independent ground electrical parameters. 

Thus, the soil is supposed to be characterized by a conductivity equal to 5∙10-3 S/m, while 

the conductor lines are supposed to be perfect conductors, as the wire impedance is 

generally negligible with respect to the ground impedance. 

3) Define a sequence of points of impact Phk=(xh,yk) inside the domain (in the present 

analysis, 4526 points have been considered) 

4) For each of these points, run the code developed in [34] to calculate the maximum 

overvoltage max ( , , )noSW

h k FV x y I  occurring in the whole system assuming a Heidler’s 

waveform [15] for the lightning channel-base current with a peak value equal to IF and 

front time of about 3.2 μs (the other parameters are the ones taken from [32]). 

5) Consider the presence of the shield wires, repeat point 4 for all the 42 2 4 1 25     

combinations of the shield wire parameters appearing in Table 22 and evaluate the 

corresponding maximum overvoltage 
,

max ( , , ) 1, , 25TEST j

h k FV x y I j   
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Table 22 25 Test details (the values of the parameters, after the transformation (229) correspond to the 

points defined in section 7.1. 

Test Delta (m) Rg (Ohm) h (m) y (m) 

Test 1 100.0 1.0 7.0 -0.75 

Test 2 100.0 1.0 7.0 0.75 

Test 3 100.0 1.0 12.0 -0.75 

Test 4 100.0 1.0 12.0 0.75 

Test 5 100.0 200.0 7.0 -0.75 

Test 6 100.0 200.0 7.0 0.75 

Test 7 100.0 200.0 12.0 -0.75 

Test 8 100.0 200.0 12.0 0.75 

Test 9 300.0 1.0 7.0 -0.75 

Test 10 300.0 1.0 7.0 0.75 

Test 11 300.0 1.0 12.0 -0.75 

Test 12 300.0 1.0 12.0 0.75 

Test 13 300.0 200.0 7.0 -0.75 

Test 14 300.0 200.0 7.0 0.75 

Test 15 300.0 200.0 12.0 -0.75 

Test 16 300.0 200.0 12.0 0.75 

Test 17 100.0 100.5 9.5 0.00 

Test 18 400.0 100.5 9.5 0.00 

Test 19 200.0 1.0 9.5 0.00 

Test 20 200.0 299.5 9.5 0.00 

Test 21 200.0 100.5 7.0 0.00 

Test 22 200.0 100.5 14.5 0.00 

Test 23 200.0 100.5 9.5 -1.50 

Test 24 200.0 100.5 9.5 1.50 

Test 25 200.0 100.5 9.5 0.00 
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6) Calculate the following Key Performance Indicators (KPIs) choosing them as the 

system response: 

 
min

0

( ) min ( , ; )
hk

F

hk F
P D
I

KPI j f P I j



   (239) 

 
max

0

( ) max ( , ; )
hk

F

hk F
P D
I

KPI j f P I j



   (240) 

where 

 max max

max

( , , ) ( , , )
( , ; )

( , , )

noSW TESTj

h k F h k F
hk F noSW

h k F

V x y I V x y I
f P I j

V x y I


   (241) 

It should be observed that the chosen test case networks do not contain any nonlinear device 

(e.g. surge arresters) because the aim of the chapter is to assess the effectiveness of the shield 

wires. If a combined protection system was used (shield wires + arresters), the procedure could 

be repeated without any meaningful modification. 

Let us observe that, due to the symmetry of the chosen network, the domain D can be reduced 

to the positive region for the y coordinate. More precisely, let us split D D D
 

  , where 

 0( , ) :D x y D y

   , and  0( , ) :D x y D y


   . In this framework, 

 

min

0 0

*

0 0

( ) min min ( , ; ), min ( , ; )

min min ( , ; ), min ( , ; )

hk hk

F F

hk hk

F F

hk F hk F
P D P D
I I

hk F hk F
P D P D
I I

KPI j f P I j f P I j

              f P I j f P I j   

 

 

 
 

 
 

  
  

  

  
  

  

  (242) 

Where test *j  represents the symmetric configuration with respect y to test j, i.e.  

 

 

 

 

*

1 1,3,5,7,9,11,13,15,23

1 2,4,6,8,10,12,14,16,24

17,18,19,20,21,22,25

j j

j j j

j j

 


  
 

  (243) 

The values of the two chosen KPIs are reported in Table 23, where one can appreciate that, no 

matter its configuration, the shield wire is always effective, since KPImin is always positive. The 

evaluation of KPImin can be used in those cases when a certain threshold of positive effect has 

to be reached, while KPImax has to be used when the maximum positive effect is necessary. 

Applying the RSM to this problem, it is possible to obtain the coefficients of the polynomial 

relationship (232) between the KPIs and the four above defined parameters (see Table 24). 
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Table 23 Maximum overvoltage reduction – KPI results 

Test KPIMIN KPIMAX 

Test 1 0.04 0.16 

Test 2 0.04 0.16 

Test 3 0.08 0.30 

Test 4 0.08 0.30 

Test 5 0.04 0.10 

Test 6 0.04 0.10 

Test 7 0.08 0.20 

Test 8 0.08 0.20 

Test 9 0.02 0.12 

Test 10 0.02 0.12 

Test 11 0.04 0.25 

Test 12 0.04 0.25 

Test 13 0.01 0.06 

Test 14 0.01 0.06 

Test 15 0.03 0.13 

Test 16 0.03 0.13 

Test 17 0.08 0.25 

Test 18 0.03 0.22 

Test 19 0.08 0.34 

Test 20 0.07 0.13 

Test 21 0.04 0.10 

Test 22 0.06 0.18 

Test 23 0.05 0.16 

Test 24 0.05 0.16 

Test 25 0.07 0.21 
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Table 24 Coefficients for system response (239) and (240) 

 Value 

Coefficients KPImin KPImax 

a0 0.068640 0.235366 

a1 -0.017030 -0.020256 

a2 0 -0.046689 

a3 0.016268 0.058405 

a4 0 0 

a12 0 0 

a13 -0.004372 0 

a14 0 0 

a23 0 -0.013147 

a24 0 0 

a34 0 0 

a11 -0.004807 0 

a22 0 0 

a33 -0.013100 -0.047513 

a44 -0.005185 -0.019616 

Examining Table 24, the following considerations can be made: 

 The KPImin appears to be independent from the ground resistance, which implies that a 

minimum benefit due to the introduction of the shield wire in the system is guaranteed 

independently of the value of this parameter. 

 The effect of the interactions among the variables is quite modest 

 The dependence of the system response on the spacing is almost linear, while the other 

two parameters (height and horizontal position) affect the KPIs in a quadratic way. This 

sounds reasonable especially for the horizontal position due to the symmetry of the 

configuration. 

The optimal point, the best KPI value and its confidence strip at 95% level of confidence are 

reported in for both cases. 
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Table 25 Optimal point, best value and confidence strip for system response (239) and (240) 

Case OPTIMAL POINT BEST VALUE 
CONFIDENCE STRIP 

(95%) 

KPImin 

Delta = 100.0 m 

Rg = - 

h = 11.4 m 

y = 0.00 m 

0.089 [0.083, 0.095] 

KPImax 

Delta = 100.0 m 

Rg = 1.0 Ω 

h = 11.4 m 

y = 0.00 m 

0.329 [0.310, 0.349] 

The RSM ensures that the best performances (a reduction of at least 9%) can be obtained with 

the configuration reported in Table 25. The two optimal points are very close to each other and 

lead substantially to the same practical configuration, characterized by Delta = 100.0 m, h = 

11.4 m, y = 0.0 m, and Rg = 1  (as KPImin does not depend on Rg, one can choose the one that 

maximizes KPImax). This confirms the results reported in [54] according to which the smaller 

the grounding spacing and resistance, the more effective the shield wire action. Such best value 

ensures that, no matter the lightning point of impact, a reduction of the maximum overvoltage 

is guaranteed between 9% and 32%. Moreover, the two confidence strips show the reliability 

of the results.  

Another case has been considered in which the front time is about 0.4 µs (typical of a subsequent 

stroke), while the ground wire parameters still vary according to Table 21 . The exam of Figure 

70, plotting the two KPIs, highlights that KPImax does not change significantly, while KPImin is 

much smaller in all the analyzed cases, which means that decreasing the lightning current front 

time makes the ground wire action less effective. This is related to the fact that the proposed 

front time is fast enough so that the induced voltage peak will not see the grounding effect. As 

far as the tuning parameter analysis is concerned, the application of the RSM method (whose 

details are not reported for the sake of brevity) shows that the optimal configuration in terms of 

ground wire parameters is the same as the other case. 
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Figure 70 KPIs with front time of 3.2 µs (test 1 - blue dots) and 0.4 µs (test2 – red dots) 

7.3.2 Lightning performance enhancement 

In the following, the system lightning performance (i.e. the probability 
•

max( )DP V CFO to have 

an overvoltage Vmax greater than a prefixed value of the line CFO when the stroke impact point 

belong to the region D) has been computed according to the approach presented in [35]. A 

uniform distribution for the stroke position and a log-normal distribution for its peak current 

have been considered [35] [51]. Consequently, the lightning performance enhancement can be 

measured by the following KPI that quantifies the gain, in terms of probability, in the j-th test 

with respect to the base configuration without shield wire: 

 max max

max

( ) ( )
( , )

( )

noSW TESTj

D D

noSW

D

P V CFO P V CFO
KPI j CFO

P V CFO

  



  (244) 

Also for this KPI, exploiting the symmetry of the network, the domain D can be reduced again 

to the D+ region defined earlier, considering that 

 

*

max max

max

( ) ( )
( )

2

TESTj TESTj

D DTESTj

D

P V CFO P V CFO
P V CFO  

  
    (245) 

where j* is related to j according to (243). 

Three different values for CFO have been considered, respectively 50, 100 and 150 kV [32], 

leading to the KPI values appearing in Table 26. 
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Table 26 Lightning performance enhancement – KPI results 

 KPI 

Test CFO = 50 kV CFO = 100 kV CFO = 150 kV 

Test 1 0.17 0.36 0.59 

Test 2 0.17 0.35 0.69 

Test 3 0.30 0.65 0.79 

Test 4 0.30 0.62 1.00 

Test 5 0.13 0.22 0.57 

Test 6 0.13 0.24 0.47 

Test 7 0.21 0.39 0.73 

Test 8 0.21 0.56 0.88 

Test 9 0.12 0.32 0.21 

Test 10 0.12 0.28 0.50 

Test 11 0.24 0.47 1.00 

Test 12 0.24 0.55 0.88 

Test 13 0.10 0.12 0.11 

Test 14 0.10 0.16 0.55 

Test 15 0.17 0.31 0.64 

Test 16 0.17 0.33 0.58 

Test 17 0.28 0.51 0.95 

Test 18 0.21 0.46 0.82 

Test 19 0.28 0.58 0.77 

Test 20 0.18 0.38 0.76 

Test 21 0.13 0.31 0.60 

Test 22 0.19 0.36 0.64 

Test 23 0.15 0.31 0.38 

Test 24 0.15 0.40 0.80 

Test 25 0.22 0.43 0.75 
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Analysing the entries of Table 26, one can observe that the lightning performance is at least 

enhanced by 10%. Moreover, for very high CFO values, a 100% improvement is possible; this 

is basically due to the fact that, when the line insulation level is high, the base case probability 

is already very small, so that any reduction of the probability can change the KPI in a 

meaningful way. 

By applying the RSM to this problem, it is possible to obtain the coefficients of the 

polynomial relationship (232) between the KPI and the four above defined parameters (Table 

27) for each CFO case.  

Table 27 Lightning performance enhancement – KPI coefficients 

 Value 

Coefficients CFO = 50 kV CFO = 100 kV CFO = 150 kV 

a0 0.237176 0.462358 0.839519 

a1 -0.023223 -0.048304 -0.066079 

a2 -0.027930 -0.078856 -0.057290 

a3 0.052172 0.112425 0.171244 

a4 0 0 0 

a12 0.003848 0 0 

a13 0 -0.016998 0.040552 

a14 0 0 0 

a23 -0.012015 0 -0.033096 

a24 0 0 0 

a34 0 0 0 

a11 0.005313 0.016199 0 

a22 0 0.012907 0 

a33 -0.039791 -0.084549 -0.135868 

a44 -0.021842 -0.029747 -0.063644 

The relation that links the KPI to the ground wire parameters can be easily obtained from (229) 

and (232) as follows: 

 
4 4 4

2

0

1 , 1 1

i i ij i j ii i

i i j i
i j

y a a x a x x a x
  



        (246) 
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where 

 
   

 

1 2

3 4

200 /100 2 201 /199

2 19 / 5 4 / 3

gx Delta x R

x h x y

   

  
  (247) 

The exam of the coefficient suggests the following considerations: 

 No matter the line insulation level, the functional dependence of the system response on 

the shield wire parameters has always the same form, in which the interaction among 

the variables is negligible 

 As earlier, the dependence of the lightning performance enhancement on the grounding 

spacing and resistance is almost linear, while the relationship with the horizontal 

position is purely quadratic so that a symmetry with respect to the axis is confirmed 

As in the previous section, for each case an optimal point can be calculated in order to maximize 

the defined KPI. Table 28 reports the optimal point, the best value and its confidence strip at 

95% level of confidence. 

Table 28 Lightning performance enhancement: optimal point, best value and confidence strip 

Case OPTIMAL POINT BEST VALUE 
CONFIDENCE STRIP 

(95%) 

CFO = 50 kV 

Delta = 100.0 m 

Rg = 1.0 Ω 

h = 11.5 m 

y = 0.00 m 

0.323 [0.316, 0.331] 

CFO = 100 kV 

Delta = 100.0 m 

Rg = 1.0 Ω 

h = 11.4 m 

y = 0.00 m 

0.668 [0.646, 0.691] 

CFO = 150 kV 

Delta = 100.0 

Rg = 1.0 Ω 

h = 11.0 m 

y = 0.00 m 

1.012 [0.952, 1.072] 

The proposed KPI, in spite of being strongly dependent on the CFO, leads substantially to the 

same optimal configuration for the shield wires in all the three cases. Moreover, the optimal 

point is practically the same as the one of the previous analysis. Indeed, from a physical point 

of view, the RSM method looks for the configuration that minimizes the system overvoltage. 
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The lightning performance evaluation basically consists of a comparison between such 

overvoltage and a specified threshold (the CFO). As a consequence, it can be expected that the 

value of the KPI changes, but the values of the shield wire parameters in correspondence of 

which such value occurs remain essentially the same. 

7.4 Sensitivity analysis  

In order to assess the individual effect of each parameter, some one-dimensional plots are here 

reported, in which three variables are set to the best value, while the fourth has been varied 

along the chosen range. 

7.4.1 Effect of the grounding spacing 

 

Figure 71 Grounding spacing effect. 

In Figure 71 the effect of the grounding spacing on the proposed KPI is presented for each case 

of CFO. As already highlighted examining the RSM coefficients, the waveform is practically 

linear with a (negative) mean slope that depends on the CFO. For example, at 50 kV the mean 

slope is 0.03%/m, which means that, increasing the grounding spacing from 100 m to 200 m, 

the enhancement in the lightning performance moves from about 32% to about 29%. 
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7.4.2 Effect of the grounding resistance 

In Figure 72 the effect of the grounding resistance on the proposed KPI is presented for each 

case of CFO. As already highlighted examining the RSM coefficients, the waveform is 

practically linear with a (negative) mean slope that depends on the CFO. For example, at 50 kV 

the mean slope is 0.04%/Ω, which means that, increasing the grounding resistance from 1  to 

100  the enhancement in the lightning performance moves from about 32% to about 28%. 

 

Figure 72  Grounding resistance effect. 

7.4.3 Effect of the shield wire height 

Figure 73 shows that, for the considered range of shield wire heights, the best results are 

obtained when the shield wire is posed over the phase conductors, but the exam of the figure 

allows to conclude that between 10 and 12 m there are no significant variations in the shield 

wire effectiveness 
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Figure 73 Shield wire height effect 

7.4.4 Effect of the shield wire horizontal position 

Concerning the horizontal position of the shield wire, as confirmed by the results of Table 28, 

the best position is when the shield wire is above the middle phase conductor, with a reduction 

in the overvoltage mitigation occurring when the shield wire is moved from this position. 

However, as can be seen from Figure 74, such reduction is quite small, especially for low CFO 

levels. 
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Figure 74 Shield wire horizontal position effect 
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8 Conclusions 

This thesis has focused on improving the problem of the lightning-induced voltages evaluation 

in the overhead distribution lines in terms of three main concepts: models innovation, 

computational effort optimization and introduction of innovative tools.  

The model innovation is discussed with the proposal of a new channel base current model 

aiming at representing in the best way the characteristics of the measured lightning strokes. The 

validation has shown a good agreement with the already existing models and the main 

advantages and drawbacks of the new model have been pointed out. 

The computational effort optimization has been faced in three different topics: an analytical 

expression for the electromagnetic fields induced by the lightning current, a new FDTD scheme 

for the improvement of the stability problem in FDTD-based numerical codes that compute the 

lightning-induced voltages in distribution lines and the evaluation of a new approach for 

reducing the computational effort in the lighting performance procedure.  

On one side the analytical expression for the electromagnetic fields allows the user to reduce 

the computational time of at least two orders without losing the precision with respect to the 

numerical method. On the other hand, the new scheme for the improvement of the stability 

allows keeping constant the spatial and temporal discretization step in the FDTD scheme even 

if the considered distribution line is short or present a huge number of discontinuities (poles, 

surge arresters, …). Finally, the new approach for reducing the computational effort in the 

lightning performance procedure allows to find a simplified formula for the induced-voltage in 

a distribution line based on a few number of field-to-line coupling simulations. 

The introduction of innovative tools is discussed with the introduction of the application of the 

RSM method in the mitigation of lightning-induced voltages using shield wires. The method 

can be used to find the optimal configuration of the shield wire in terms of height, distance from 

the other conductors, grounding location and grounding resistance. 
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