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Abstract

Social Engineering is the science of using social interaction to influence others on taking

computer-related actions of attacker’s interest. It is used to steal credentials, money, or

people’s identities. After being left unchecked for a long time, social engineering is raising

increasing concerns.

Despite its social nature, state-of-the-art defense systems mainly focus on engineering

factors. They detect technical features specific to the medium employed in the attack (e.g.,

phishing emails), or they train final users on detecting them. However, the crucial aspects

of social engineering are humans, their vulnerabilities, and how attackers leverage them,

gaining victims’ compliance. Recent solutions involved victims’ explicit perception and

judgment in technical defenses (Humans-as-a-Security-Sensor paradigm). However, humans

also communicate implicitly: gaze, heart rate, sweating, body posture, voice tone, . . . , are

physiological and behavioral cues that implicitly disclose humans’ cognitive and emotional

state. In literature, expert social engineers reported monitoring such cues from the victims

continuously to adapt their strategy (e.g., in face-to-face attacks); also, they stressed the

importance of controlling them to avoid revealing the attacker’s malicious intentions.

This thesis studies how to leverage such behavioral and physiological cues to defend

against social engineering. Moreover, it researches humanoid social robots - more precisely

the iCub and Furhat robotic platforms - as novel agents in the cybersecurity field. Humans’

trust in robots and their role are still debated: attackers could hijack and control them to

perform face-to-face attacks from a safe distance. However, this thesis speculates robots

could be helpers, everyday companions able to warn users against social engineering attacks,

better than traditional notification vectors could do. Finally, this thesis explores leveraging

game-based entertaining human-robot interactions to collect more realistic, less biased data.

For this purpose, I performed four studies concerning different aspects of social engineering.

Firstly, I studied how the trust between attackers and victims evolves and can be exploited.

In a Treasure Hunt game, players had to decide whether trust the hints of iCub. The robot
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showed four mechanical failures designed to mine its perceived reliability in the game, and

it could provide transparent motivations for them. The study showed how players’ trust in

iCub decreased only if they perceived all the faults or the robot explained them; i.e., they

perceived the risk of relying on a faulty robot.

Then, I researched novel physiological-based methods to unmask malicious social engi-

neers. In a Magic Trick card game, autonomously led by the iCub robot, players lied or told

the truth about gaming card descriptions. ICub leveraged an End-to-end deception detection

architecture to identify lies based on players’ pupil dilation alone. The architecture enables

iCub to learn customized deception patterns, improving the classification over prolonged

interactions.

In the third study, I focused on victims’ behavioral and physiological reactions during

social engineering attacks; and how to evaluate their awareness. Participants played an

interactive storytelling game designed to challenge them against social engineering attacks

from virtual agents and the humanoid robot iCub. Post-hoc, I trained three Random For-

est classifiers to detect whether participants’ perceived the risk and uncertainty of Social

Engineering attacks and predict their decisions.

Finally, I explored how social humanoid robots should intervene to prevent victims’

compliance with social engineering. In a refined version of the interactive storytelling, the

Furhat robot contrasted players’ decisions with different strategies, changing their minds.

Preliminary results suggest the robot effectively affected participants’ decisions, motivating

further studies toward closing the social engineering defense loop in human-robot interaction.

Summing up, this thesis provides evidence that humans’ implicit cues and social robots

could help against social engineering; it offers practical defensive solutions and architectures

supporting further research in the field and discusses them aiming for concrete applications.
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Chapter 1

Introduction

1.1 Motivation

We live in an era of high connectivity and easy communication; we continuously deal with

emails, notifications, and push messages; hundreds of billions of them are sent everyday

1. However, we are unlikely to pay the same attention to each email opened, login, or

website visited [1]. Humans learned to use and trust technology [2]; however, by overtrusting

technology and our understanding of it, we risk falling into the so-called Social Engineering

attacks.

We could define Social Engineering as the science - or sometimes even the art - of using

social interactions to get an individual or an organization to perform specific tech-related

actions relevant to the attacker victims did not want to do. Social Engineering, in cyberse-

curity, is used to steal credentials, money, or even people’s identity. For many years, the

phenomenon has been overlooked and reduced to simple persuasion tricks to get free goods.

However, technology and the Internet are becoming a consistent part of our lives: they define

how we work, entertain, and sometimes live our social lives. The network is becoming a

breeding ground for social engineers and cyber attacks. Hence, researchers [3] and companies

[4], raised their concerns about Social Engineering and called for immediate defensive action.

However, the state-of-the-art Social Engineering defense systems are usually unable

to keep up. They still consider it as any other cybersecurity threat; they either develop

technical solutions based on the attacks’ features (e.g., phishing email filters based on the

1https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
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email metadata or content), to prevent them from reaching their target or train users to detect

the same red flags. That is it: they mainly focus on the "engineering" aspect of the threat.

Social engineering is, first of all, related to sociality. The critical factor is how humans,

either the attacker(s) or the victim(s), socially interact. Humans, during social interactions,

communicate on many levels: they could explicitly verbalize an intention; but show at the

same time completely different implicit cues (i.e., with their bodies or voice tones) [5]. For

instance, victims, when making decisions under uncertainty, such as whether to comply (to

accept) or not with the requests of a stranger, travel through a wide variety of emotional states,

fluctuations of their cognitive efforts, and stress, which they usually reveal on a non-verbal

level [6]. Expert social engineers - like Kevin Mitnick or Christopher Hadnagy - continuously

monitor the evolution of victims’ implicit non-verbal signals to adapt their attack strategy

[7, 6]. Conversely, any social engineering attack starts with formulating a credible pretext

meant to gain victims’ trust [8]; attackers are humans too: they must fabricate and maintain

the pretext during the interaction. This process could lead to stress and variation of cognitive

load, reflecting on their implicit communication [9].

The central question leading my research is: Would it be possible to take advantage of

such mental state variations to predict the occurrence of Social Engineering attacks? How

novel technologies (e.g., machine and deep learning) can help?

Recently, another relatively new technology is becoming an essential part of modern

society: Robots. Robots are slowly moving from research labs and cinematic sci-fi environ-

ments to everyday contexts. They are employed in industries, schools, hospitals, and offices

and used for entertainment in theme parks or as toys in our homes. Sooner or later, they are

expected to become our everyday-life companions. However, as for all new technologies,

people need to learn how to use them; this is the primary concern of Human-Robot Interaction

(HRI): the science that studies how humans perceive, interact, and adapt to robots, improving

them and facilitating their interaction with humans [10, 11]. Furthermore, people will have

to decide whether to trust robots or not. Recent studies showed how people tend to trust and

humanize robots, forgetting the maze of computers, networks, and informatics systems be-

hind them [12]. Social Engineers could hijack robots, taking advantage of their embodiment

and humans’ trust bias, to perform face-to-face attacks from a safe distance. For instance,

an attacker could remotely control a rover robot and enter a secured area by following an

authenticated user (piggybacking) [13]; or it could persuade humans into releasing sensitive

information during an informal dialogue [14, 15]. However, this trust bias could be used for
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good purposes: artificially intelligent robots, able to detect in advance humans’ compliance

with social engineering attacks, could exploit social interactions to intervene, preventing

users from becoming victims.

This thesis aims to develop Social Engineering defense systems centered on humans

rather than technology. While state-of-the-art systems focus on the technical factors of

attacks, I speculate the attention should be on the attackers and victims, on how they socially

communicate and react during the interactions. For this purpose, I took advantage of two

novel technologies in the cybersecurity field: machine learning models and social robots.

The first crucial challenge is evaluating victims’ internal states, linking them with So-

cial Engineering threats, and leveraging them to detect the threats in advance. For these

purposes, machine learning techniques constitute practical tools to unfold complex and

not-straightforward problems like understanding humans’ perceptions or predicting their

behavior.

Also, social robots (and human-robot interaction, HRI) are particularly relevant in this

context. Robots can be experimental tools that provide predictable, repeatable, and repro-

ducible stimuli, more than human actors could do [16]. For instance, they could be used to

run social engineering attacks without being blocked by humans’ morale or shyness [17].

Robots can learn from and adapt to humans: closing the loop on human-robot interaction;

they can perceive humans and affect their intentions and behavior. Such features make them

good candidates, for instance, to help humans defend against Social Engineering threats.

The second challenge is how to properly study social engineering or, in general, how

to run compliance studies in a laboratory. Indeed, traditional experimental setups could

involve several biases that inevitably compromise the realism and generalization of the

scientific findings to real-world environments. Participants usually bend their behavior and

intentions to the experimental context acting as they assume they are supposed to [18, 19].

Hence, to study the social engineering phenomenon, it is crucial to run in-the-wild studies

or immerse participants in ecological contexts that mitigate their perception of being in a

laboratory. For this purpose, social robots can be playful companions, engaging partici-

pants in ecological, and social interactions, making them forget to be in an experimental setup.

The schema in Figure 1.1 resumes my research approach. Borrowing a cybersecurity

term, robots are "men-in-the-middle". The primary interaction occurs between two human

(or groups of human) actors: the attacker(s) and the victim(s). Robots are third-part entities,

lying between attackers and victims. They monitor both directions of this interaction on an
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Figure 1.1 Human-Robot Interaction schema with a robotic agent (e.g., iCub) monitoring

the implicit communication between the Social Engineering attacker(s) and the victim(s),

intervening if necessary.

implicit level, perceiving actors’ actions and reactions to spot dangerous situations (i.e., the

occurrence of Social Engineering attacks) and potentially intervene.

One could speculate that robots are superfluous from a purely sensory point of view.

A camera could monitor a human-human interaction (e.g., the hall of a strategic building),

just as a phishing filter could monitor incoming emails. However, it has been proved that

robots’ physical and social presence can affect the other agents sharing the interacting context

[20, 21]. While state-of-the-art warning systems rely on pop-ups, notifications, emails, or

other notification forms, humanoid robots can take advantage of a more comprehensive set

of communication vectors (i.e., movements, gaze, voice, facial emotion, . . . ). Also, they

can assume a social role based on the interacting context. They are usually not perceived as

generic entities, offshoots of systems; robots are agents able to affect and be affected by the

context; they elicit the development of social rapport, trust, and friendship, all concepts not

easily definable for traditional defense systems.
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1.2 Thesis Structure

The remainder of the thesis is organized as follows:

Part I explains the background of my activities, reviews the relative state-of-the-art, and

presents the scientific and technological objectives I planned to achieve. The background (see

chapter 2) focuses on the two core concepts of my research: Social Engineering (SE) and

Human-Robot Interaction (HRI). It starts by presenting Social Engineering and its building

blocks; it reviews the available state-of-the-art defense methods and discusses how they could

be improved by using human physiological and behavioral reactions. Then, it introduces

the iCub and Furhat robots, the two humanoid robotic platforms I employed in my research.

Finally, it shows how robots and human-robot interaction can grow from tools to companions;

it discusses their implication for human privacy and safety and how they could be used in

Social Engineering defense. Afterward, chapter 3 recaps my research questions and the

scientific and technological objectives of this thesis.

Part II presents the scientific and technological evidence of different studies, shed-

ding light on how novel methods and technologies can help in social engineering warfare.

Following the schema in Figure 1.1, I decomposed the social engineering issue into four

topics:

Firstly, I studied the context in which SE attacks happen (Unreliable Treasure Hunt,

chapter 4), following a state-of-the-art framework (see section 2.1.1). I found how human

participants still trusted the humanoid robot iCub, even if it showed to be unreliable (i.e.,

with mechanical faults). Participants’ trust in the robot decreased if they realized mechanical

faults were happening (either by seeing it or thanks to transparent motivations from the robot).

This suggested that users’ perception and appraisal of the risk involved in a decision (i.e.,

relying on an untrustworthy agent) are particularly relevant in shaping their behavior.

Then, I focused on the attackers’ behavior and reaction while acting based on a false

pretext (i.e., lying) (End-to-End Lie Detector, chapter 5). I proved that pupillometry is an

effective physiological proxy to evaluate humans’ cognitive effort related to deception during

informal human-robot interactions. I enabled the humanoid robot iCub to detect humans’

lies only based on pupil dilation, autonomously and in real-time. Moreover, I proved how

it is possible to train more robust models aiming for real-world applications with machine

learning. Starting with the promising results on pupillometry, I further expanded my research

on human physiology and behavior.
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In the third project (Social Engineering Adventure, chapter 6), I studied victims’

behavioral and physiological reactions while under attack. In particular, I leveraged such

reactions to model targets’ risk appraisal of SE attacks and potentially predict their behavior

against manipulations from the iCub robot. After providing the statistical evidence of this

approach, I show how machine learning once again proved effective in modeling humans’

perceptions and behavior.

Finally, I looked for novel robot-based intervention strategies (Adventurer Robot Com-

panion, chapter 7), exploring the different strategies a Furhat robot can use to elicit behav-

ioral changes against Social Engineering attacks. I present the preliminary results of this

ongoing project and speculate on how to close the loop in Human-Robot Interaction.

The last Part III (Final Discussion, chapter 8) comprehensively discusses the achieve-

ments of my research with respect to the questions I aimed to answer. Also, it analyzes the

limitations still affecting my findings and how I addressed or plan to address them soon.

I conclude by speculating how this novel research field could expand in the future and its

implication for society, aiming for real-world applications.



Part I

Background



Chapter 2

State of the Art

Social engineering, a cybersecurity threat for a long time left unchecked, is raising more

and more concerns. The wild-fire-like diffusion of technology, and the ability to quickly

communicate to thousands of people, made the world wide web a playground for attackers.

Furthermore, the distribution of intelligent assistants and robots in everyday spaces poses a

threat that researchers must consider. This chapter clarifies what social engineering is, which

state-of-the-art defense methods are available, and how it would be possible to improve them,

focusing more on the human actors of the attacks. In this landscape, robots will be crucial:

from one side, it is not clear whether they can be trusted; on the flip side, they could be

effective companions able to help human partners.

2.1 Social Engineering definition

The introduction gave an intuitive definition of Social Engineering (SE); however, defining

SE is complex due to its multifaceted and multidisciplinary nature. Several researchers from

the most diverse fields gave their definition of SE. In this thesis, I will employ the most recent

and comprehensive one from Wang et al. [3]

"Social engineering, in the context of cybersecurity, is a type of attack wherein the

attacker(s) exploit human vulnerabilities using social interaction to breach cyber security

[with or without the use of technical means and technical vulnerabilities].
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2.1.1 Social Engineering attack framework

Most of the social engineering attacks follow a common framework formalized by Mouton

et al. in [8] (see Figure 2.1).

Figure 2.1 The social engineering attack framework formalized by Mouton et al. in [8]

Attacks start by identifying the attacker’s objective and target (Attack Preparation (gray).

They could be composed of single or several actions, each with a specific purpose. Attackers

collect Open Source Intelligence (OSINT) for each target (e.g., job, role, social life, social

network accounts, habits, contacts, . . . ); and use them to identify the most suitable attack

strategy. The primary outcome of this preparatory phase is a credible and consistent cover

story called pretext. Then, the attackers start interacting with the victims to build a rapport

and gain their trust (Trust Development (green). This phase could occur with just an email or

over multiple interactions. Once the trust is gained, the attackers take advantage of it (Trust

Exploitation (red)): they leverage human vulnerabilities to plant the seed of their request.

Here, the "magic" happens: attackers do not force victims to comply; victims decide take

the attackers’ desired action. Finally, the attackers "reset" the victims to a state wherein they

would not think about the consequences of their actions Debriefing (blue).

2.1.2 Attacks building blocks

SE attacks are usually composed of 3 building blocks: attack methods, human vulnerabilities,

and effect mechanisms [22].
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Attack Methods

Attack methods are the mediums (either technical or not) employed to perform the attack;

they are "what" attacks are about.

In Phishing attacks [23, 24], the attacker sends a spoofed email or instant message to the

victims. Phishing emails could contain compromised links (usually shortened or embedded

in the text to mask them), leading to waterholes, fake replicas of trusted websites (e.g.,

victims’ bank), meant, for instance, to steal login credentials. Also, they could include fake

attachments, compromised with malware, ransom-wares, or Trojan horses, meant to infect

victims’ systems and blackmail them or install back-doors for future access. Finally, attackers

could elicit the payment of vast amounts of money, usually promising a future gain.

Given the high usage of emails in our everyday lives, phishing is probably the most used

attack method. Over the years, attackers developed multiple phishing variants. The most

generic one is called massive phishing: a compromised email is sent to many targets, hoping

to make some of them fail. Massive phishing can also be the first step of more prolonged

attacks: attackers could target all the employers of a company, trying to steal the credential

of at least one of them, which they will impersonate in further attacks.

Spear phishing happens when the target is a particular individual, or company [25]. The

attack is highly customized to the victims, including characterizing information they can

understand. Spear phishing becomes whaling [23] when the target has a high rank in its

context. For instance, an attacker could steal a company’s CEO’s identity by sending an

email to the purchasing office asking to quickly update a supplier’s payment contacts and

immediately forward a late payment.

Also, the recent adoption of two-factor authentication (2FA) and one-time passwords

(OTP) pushed attackers to develop the real-time phishing attacks [26]. The attacker works

as a "man-in-the-middle" replacing the 2FA login screen of the actual website (e.g., as for

Microsoft Office 365 in [26]): the attackers pretend to be the legitimate login page for the

user, and the real-user for the website; when the user logs-in, the attacker collects and forward

the credentials to the real website so the user cannot notice the attack.

Finally, the reverse phishing [23] consists of the attacker sending or replacing the legiti-

mate information with compromised contacts tricking the victims into contacting the attacker

themselves (e.g., replacing the IT support email or phone number).

Before the diffusion of emails, other attack methods were used. For instance, Vishing is

a phishing attack via telephone (voice phishing), while Smishing acts via instant messages

(i.e., Telegram, Whatsapp, or social networks) or the most traditional SMSs. Also, massive
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phishing most likely evolved from biting attacks [27] wherein the attacker left compromised

USB drives on the ground, hoping for some curious, unaware victim to plug them into their

computers (and infect them) [3].

Piggybacking and tailgating are two methods employed to get physical access to a

restricted area, like a private company floor. With piggybacking, attackers take advantage

of victims’ kindness by asking to hold a door or an elevator because they are in a rush; in

tailgating, instead, attackers follow an unaware victim through a secure door [3].

In the latter two scenarios, attackers usually employ some form of pretexting: they

collect specific, sometimes sensitive, information and lingo relative to the environment

they want to penetrate and use them to pass themselves for a legitimate user or employee.

Pretexing becomes impersonation when the attacker pretends to be a particular individual

whose identity is stolen or crafted. Impersonation rarely happens face-to-face; however, it is

highly used with phishing (e.g., the whaling attack mentioned above) or on social networks

where it is easy to build bots depicting real or fake individuals.

Human Vulnerabilities

Human vulnerabilities are the root elements attackers leverage to gain victims’ compliance;

they are "why" an attack is effective. Human vulnerabilities have been extensively studied,

mainly in psychology and sociology. They can be categorized into three groups.

Emotion and Feelings Emotions (like fear, surprise, happiness, anger, sadness, or disgust)

and feelings (like curiosity, excitement, surprise, tension, impulsion, guilt, . . . ) are the most

exploited human vulnerabilities [28]. Fear is usually paired with authority (e.g., a boss or a

supervisor) [25], or with the potential missing of a valuable good/benefit. Fear pushes people

to act faster and think less than they would typically do; also, we usually try to avoid sadness

or the feeling of guilt: if the attacker makes us feel (or risk to feel) in that way, we could take

softhearted decisions. Finally, surprise and curiosity can trick victims into acting without

thinking, especially when paired with a limited period to act or a luscious gain [27].

Human Nature Every human, even if strong-willed, could succumb to greed, lust, and

gluttony [29]. Especially when paired with curiosity: the promise of an immediate and free

benefit is a potent weapon social engineers usually employ. Similarly, humans tend to obey

ground rules or stereotypes society defines. For instance, "helping those who are in need",

"being helpful and polite with others", and "sympathize with those who are similar to us"
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[7, 6]. Attackers can easily exploit all these "virtues". Also, the specific nature of each

human, like individuals’ personality traits, could make some people more vulnerable than

others [30, 31].

Behavior and Cognition Finally, humans usually learn and improve by repetition. Some-

times we repeat the same actions so often that we get used to them and develop habits.

These heuristics or mental shortcuts [32] (e.g., intuitively judging a payment request from

an old supplier) can lead to a loss of attention and the failure into social engineering traps

[33]. In the same way, habits (e.g., checking a trusted website every morning before starting

working) can be exploited (e.g., by infecting or replacing the website fake clone, usually

called waterholes) [34]. Finally, sometimes the mental shortcuts are just due to ignorance,

inexperience (e.g., a new employee), or an excessive trust in one’s judgment ability [35, 36].

Effect Mechanisms

Finally, the effect mechanisms are the persuasion and manipulation principles that allow

the attack method to exploit human vulnerabilities. Intuitively, they describe "how" attack

methods can take advantage of human vulnerabilities. Effect mechanisms have been studied

mainly in the psychology field:

The Elaboration Likelihood Model Firstly, Petty and Cacioppo [37], defined the Elabora-

tion Likelihood Model (ELM). They explained how humans’ behavior could be influenced

and manipulated following two "routes" of persuasion:

• The central route is related to learning persistent habits over repetition; it depends on

the targets’ inner motivation and ability to understand and rationalize the persuasive

arguments. For instance, if we need to buy a smartphone, we usually evaluate several

models, their price, reviews, technical features, support, . . . ; thinking through all the

pros and cons, will lead to a decision.

• The peripheral route, instead, is used to elicit a temporary, usually impulsive behavior.

Peripheral messages - sometimes referred to as "cues" - can bypass rational thinking,

eliciting specific and predictable responses. Social Engineers take advantage of those

cues too. For instance, going back to the smartphone example, rather than evaluating

the actual features, we could buy the most famous, probably over-priced, brand just

because it is considered a "status symbol" and several peers have it.
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The Six Principles of Persuasion Then, Professor Cialdini [38], built on the ELM frame-

work, identifying the "Six principles of persuasion":

• Reciprocity is the instinctive tendency to return a favor or, in general, to give something

in return when someone gives it to us. The object of the exchange could be anything: a

specific object, time, love, or personal information (i.e., an attacker reveals something,

usually fake, of himself; the victim is then facilitated to reveal a piece of personal

information in return). For instance, funds and signature collectors significantly use

reciprocity by giving a simple gift (e.g., a flower, a book, a bracelet, . . . ) to the target

before advancing their requests [39]. The same techniques are also effective when

asking for sensitive data like passwords [40]. However, the willingness to reciprocate

highly depends on the perceived value of the exchanged object and how much we like

(and are similar to) the counterpart [6].

• Commitment & Consistency, also known as the "foot-in-the-door" technique, lever-

ages humans’ tendency to finish what we started. We all want to appear reliable and

consistent, to show that our "word" matters. Once we commit to doing something, we

will probably do it again. Also, the principle can be exploited to ask and obtain more

than the initial commitment [41]. A historical experiment showed how participants

were more willing to put a big sign covering half of their house if they agreed to put a

small sign in their garden one month in advance [41]. Commitment & consistency are

highly used in marketing, for instance, with wish lists, free trials, try-at-home clothes,

"maybe you would like" accessories, . . . . The key is to obtain the commitment: once a

decision is made, people will try to keep it.

• Social Proof is the tendency to make a decision based on what others do, even if

in contrast with our own will or habits [42]. We all seek validation from peers, and

knowing several others did something is a strong incentive during decision-making.

Generally speaking, social proof is used to manipulate users’ perceptions of what is

socially acceptable. "People also bought . . . " marketing suggestions, product reviews,

and canned laughs in sitcoms are all forms of social proof.

• For the Liking principle, people tend to trust what they like or are alike. A friend is

usually considered more trustworthy than a stranger. Liking is usually employed to

start an interaction and build a solid rapport before advancing a request. However, the

attacker’s appreciation toward the target must be sincere and based on reality to be

effective [7]. Liking is a potent weapon when paired with social proof: the need to
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belong, keep belonging and seek approval from people we share something with (e.g.,

similar objects, beliefs, habits, or even problems) are easy paths to compliance. For

instance, it has been extensively used by radical groups [43].

• Obeying to the authority is another crucial feature of society. Identifying who has

more power, strength, fame, or expertise in every field is possible. Orders from our

boss will probably be executed immediately and without discussions; also, an expert in

a specific field, like a professor [44] or an IT technician, is usually perceived as more

trustworthy than other colleagues. Indeed, researchers showed how, in the presence

of expert advice, the brain areas responsible for critical thinking and counter-arguing

are practically inactive [45]. Researchers proved authority is effective even just from

an email signature [46, 47]; however, victims must recognize and acknowledge the

authoritative figure; for example, just wearing authoritative clothing is not sufficient

[48]. Finally, authority is usually paired with the fear emotions of the feeling of guilt,

for instance, in impersonation attacks or whaling.

• Finally, the Scarcity (or Reactance) principle leverages on impulsivity and mental

shortcuts when people need to act in a short time [49]. If the time for acting is reduced,

victims will be more willing to act without thinking. For instance, a phishing email

could convince people that their bank account got hacked and that they must change

their credentials as soon as possible to avoid money loss. Scarcity also works with

quantities: if an item is available in small amounts, its perceived value will be higher

[50]. This principle is used, for instance, in sales: companies could dry supplies to

increase the perceived values of the items (e.g., as Nintendo did with Nintendo Wii

[51])

Furthermore, Cialdini stressed how the key is the formulation and maintenance of an

excellent framing (i.e., the pretext); he usually refers to "Pre-suasion": half of the persuasion

act is done by the context in which the influence is performed [52].

The Science of Human Hacking Recently, the famous hacker and penetration tester

Christopher Hadnagy [6] built on Cialdini’s work defining eight principles in the specific

field of SE. The main differences concern the expansion of the reciprocity principle with

Obligation and Concession:

While the feeling of indebtedness drives the reciprocity principle, the obligation principle

focuses on humans’ expected behaviors and the conformation with social norms. For instance,

it is considered rude not to hold the door or the elevator for someone in a rush or carrying
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boxes. Similarly, it could be impolite to ignore or not answer a direct question when asked.

However, social norms are strongly cultural-dependent (i.e., Japanese people prefer not

answering rather than reply with a "no" [53])

Concession instead is somehow similar to the Commitment & Consistency. It is about

lowering down the entity of a request it was (and it was designed to be) initially rejected. For

instance, a fundraiser could ask for a huge donation that will be more likely to be refused,

lowering it to a more realistic and acceptable one. Similarly, it is much easier to ask victims

to release a small amount of information when collecting personal data and then dig into the

more sensitive ones.

Finally, Hadnagy stressed that it is crucial to define clearly the framing in which an attack

is performed. In the first seconds of an interaction, even before the attack begins, the attacker

needs to answer "who are you?", "What do you want?", "Are you a threat?", "How long will

this take?". A good framing clearly defines and maintains those interaction traits.

2.2 Social Engineering Defense

Given the traditional structure and the building blocks of a SE attack, it is easier to understand

the defense actions undertaken. The state-of-the-art defense systems can be categorized

into two main "layers": (i) Active detection systems; and (ii) Awareness-raising training &

policies.

2.2.1 Active detection systems

Active defense systems treat social engineering as any other cybersecurity attack by prevent-

ing attackers from reaching the victims. Hence, active solutions are strictly tied to specific

attack methods and mediums.

The phishing emails and water-hole websites domains are the most covered. Phishing

email filters build on traditional spam detectors [54], enhancing their capabilities. They

employ Machine Learning [55, 56] and Natural Language Processing (NLP) [57] techniques

to scan the email body, looking for named entities; bad, urgent, imperative, or generic words

and sentences; masked or shortened links; misspelled words and other features [58–60, 24].

Also, they process the email header, looking for misspelled domains or the redirection to

proxies [59, 61]. Phishing websites and waterholes are beyond the scope of this dissertation to

be discussed in detail. Besides their multimedia-based content, they could include malicious
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code executed in the browser. Traditional methods include keeping blocklists and allowlists

of websites and domains; however, it is too easy to fabricate novel fake domains with minimal

misspellings [62]. Again, machine and deep learning techniques showed their potential. Most

of the solutions focus only on distinguishing legitimate and fake URLs [63], while others

also include the website source code [64, 55], or their visual appearance [65]. Also, genetic

algorithms have been used [66]. Finally, a few solutions analyze the website embedded ads

[67].

Lastly, Online Social Networks (OSNs) are like a playground for attackers: they can

both collect targets’ personal information, identify their trusted friends [68], and contact

them directly or via reverse engineering [69]. Even the absence of an individual on a social

network can be beneficial for attackers [69]. On social networks, active defenses aim at

detecting impersonation, bots and botnets [70, 71]. A bot is a fake, software-controlled user

impersonating a natural or crafted person. Bots could be used to drive social opinion on

social networks comment sections [72]. Also, they could send spoofed links to other users;

clicking on them would hijack their browser, making them part of the botnet. Each hijacked

user is controllable by the hacker and will try to enlarge the botnet. Researchers explored the

factors leading to compliance in chat sessions with bots [70] and how to identify fake users

[73, 74]. On the botnets domain, researchers simulated their diffusion [75], studying how it

can be facilitated or resisted [76, 77], and how to detect them [78]. Finally, they studied how

the personality traits of an individual make them more willing to comply or, in general, to

release personal information on social networks [79, 80].

The main limitation of active defense systems is the high creativity and fast adoption of

the attackers’ novel technologies and vectors. Indeed, it is faster for the attacker to identify a

new vulnerability and craft a quick attack, usually called Zero-Day attacks, than defining

an effective countermeasure [81]. Hence, a second defense layer is required: training the

victims and raising their awareness [82].

2.2.2 Awareness-rising training & policies

If an attacker bypasses the detection and filtering systems, the final users are in charge of

detecting it. At the Italian Institute of Technology, as in most companies and institutes, we

pursue extensive training programs to instruct final users to protect them from SE attacks.

Training is traditionally composed of (i) teaching material meant to raise people’s awareness,
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(ii) fake phishing campaigns meant to test the training program’s effectiveness, and (iii)

enforced policies, defining basic behavioral rules to adopt in the workplace.

Training campaigns teach users to focus on the same technical features the active detection

systems focus on [82]. For instance, in the phishing domain, they raise users’ attention to

the email senders’ name and address; the email object; the presence of shortened URLs or

unexpected attachments; misspelled words, generic greetings, or unexpected (un)friendly

tone; they teach them to cross-check the names of senders and to hover on and check

embedded URLs before clicking on them. Traditional campaigns involve computer-based

teaching sessions with quizzes [83]. However recently, gamification and serious games have

been extensively used both via computer-based games [84, 85, 83, 86], board games [87],

or even more structured competitions [88]. Games help the learning process, facilitating

the learners’ engagement and maintaining the mastered concept over time [89]. Also, when

played in small groups of colleagues, board games train employers and facilitate team-

building and mutual aid against cyber attacks. On the other side, not everybody likes games,

so the practice must be carefully balanced [89]. Also, researchers focused on how to evaluate

the training efficacy [6, 90–92], and showed how priming and warning are not effective

anymore in protecting victims [36].

Policies are meant to prevent physical (i.e., piggybacking and tailgating) and face-to-face

attacks; or protect from Open Source INTelligence (OSINT) techniques to collect data like

dumpster diving and shoulder surfing. They instruct people not to allow anybody in secured

areas without authorization, to lock their devices, shred essential documents, avoid entering

sensitive information in public places, or not connect to unknown WiFi networks. For this

purpose, several models have been developed to assess how much an infrastructure or network

is susceptible to SE attacks [29, 80, 93–96].

However, even one "hit" is enough to compromise an entire institution. SE attacks

happened in the past and kept happening, especially in conjunction with worldwide events

like the COVID-19 pandemic [97], or the 2022 Ukraine war [4].

Hence, the question is How could we face Social Engineering better?

State-of-the-art defense techniques mainly focus on the attack methods almost overlook-

ing human vulnerabilities and effect mechanisms. Indeed, targeting human vulnerabilities

and effect mechanisms or altering human nature is difficult. Furthermore, while most of the

defensive efforts focused on phishing emails and websites, no solution is available to defend
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against face-to-face attacks (other than generic common-sense-based policies or assessment

tools); an issue also raised by Mitnick in [7].

2.2.3 Human Vulnerabilities against Social Engineering

It has been said that "People often represent the weakest link in the security chain and are

chronically responsible for the failure of security systems." [98]. However, recent studies

explored how such weaknesses could become a weapon against social engineering.

Hybrid defense methods take advantage of humans’ personality, behavior, perception,

and judgment (gained through training) to enhance the technical features and methods (i.e.,

machine learning) of active detection systems. Instead of focusing on the attacks’ technicality,

these methods accentuate humans and their humanity, including their vulnerabilities. For

instance, Stringhini et al. changed the defense point of view against spear phishing: they

developed a machine-learning-based system able to learn the email-sending patterns and

habits of the users of a small domain (i.e., a company or an office). They model users’

writing style, email structure, time slots of email sending, and whom they usually interact

with. Emails violating these patterns (anomalies) require an active 2-factors authentication

to be sent [99]. Also, researchers compared humans’ intuition and expertise with machines’

detection abilities in the phishing field; they improved the latter by learning fuzzy rules

based on humans’ intuition [94]. Others exploited humans’ intuition with the Human-as-a-

Security-Sensor (HaaSS) principle: users’ perception and judgment (both naive and expert)

is used to support technical detection systems (i.e., phishing filters) [94, 100–103]. For

instance, users’ perception can be used to cross-check emails on which an active filter is

unsure; or to signal suspicious events, messages, websites, or physical access through mobile

apps.

Pushing HaaSS to the next level Starting from the Human-as-a-Security-Sensor paradigm,

I speculate it could be further expanded. The methods mentioned above still rely on explicit

communications from users. Human-sensors have to actively identify a suspicious email or

potential threat and explicitly report it. However, social engineers shift humans’ attention

from what matters. Hence, the human-sensors could still miss some of the attacks.

Literature shows how explicit communication is not the only vector humans employ to

interact. Explicit communication involves words, gestures, gazes, writing, speech, and all

the mediums we use to share a message with others intentionally. However, a considerable

portion of humans’ communication happens "between the lines". Implicit communication

involves all the cues and social signals we unintentionally share during an interaction [104].
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Examples are body posture, movement trajectory, speed, and acceleration; voice tone and

rhythm; gaze avoidance and scan paths; respiration rhythm or sweating. Even if the primary

evolutionary advantage of implicit signals was not social communication, the fact that some

inner state of mind modulates them has been exploited to support social communication - a

concept called "Exaptation" [105] -; we all use social cues, more or less subconsciously, every

day to assess others’ inner state and consistently adapt during human-human interactions.

Social Engineers also exploit social cues: both Hadnagy [6] and Mitnick [7] stress the

importance of monitoring and driving victims’ emotional and cognitive states during attacks

(in particular face-to-face). They use the effect mechanisms as a "control lever" to lead the

victims to the desired inner state (e,g., fear, rush, calm, or happiness). Victims’ inner-state

changes lead to their compliance or reactance. Similarly, face-to-face attackers must carefully

control their behavioral and social cues, making them consistent with the designed pretext.

This excessive control and the thrill of the attack inevitably reflect on their emotional state

and stress level.

Most of the humans’ implicit signals are perceivable by others (i.e., visually or auditory);

however, even more, signals are shared on a physiological level [106]. Our body continuously

reacts and adapts, beyond our control, to the external stimuli we face. For instance, when we

decide whether to take a risk, like going down a dangerous sky slope, our heartbeat, breathing

and sweating increase, and our pupil dilates. The same happens when we have to fabricate

and maintain a consistent lie: we feel thrilled, and our pupil dilates due to the increased

cognitive load. These are all arousal reactions to put our body in the best condition to face a

situation.

An intelligent system able to perceive and understand these subtle implicit signals could

have a deeper understanding of what happens inside attackers’ and victims’ minds, why they

complied, and even predict if they will do so. For this purpose, the main challenges are (i)

measuring and evaluating humans’ physiological and behavioral reactions, (ii) modeling

their inner state, and (iii) pairing it to specific events or interactions. Traditional systems

and human-computer interfaces (i.e., mouse, keyboard, or monitors) are insufficient. Novel

systems must be equipped with sensors able to perceive the world and humans on both

explicit and implicit levels; also, they must be able to affect it (i.e., intervening). So, they

could take advantage of a more or less anthropomorphic embodiment.
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2.3 Evaluating Humans’ Inner State

Humans’ inner state cannot be directly measured. However, as the literature suggests, several

physiological and behavioral proxies indirectly evaluate it. During my research, I studied

humans’ reactions on pupillometry, gaze, electrodermal activity, heart rate, and, given that SE

mainly happens on computers and smartphones, mouse trajectories. Measuring psychological

and cognitive processes through physiological reactions is an established practice in literature

[107]. I opted for these metrics, rather than, for instance, body posture or voice prosody,

because they can be hardly controlled or faked [108]; they react to internal reasoning or

external stimuli, even before we can verbalize our intention [109]. Moreover, they can be

measured with minimally-invasive devices already employed in common human-computer

and human-robot interactions. For instance, it is possible to measure pupil diameter and

gaze [110–112], or heart rate [113, 114] via RGB cameras; also, wearable devices [115] or

enhanced human-computer interaction mediums (i.e., mouses [116] or controllers [117]) can

measure electrodermal activity and heart rate.

I studied two main physiological reactions on those proxies: (i) the Task-Evoked Pupillary

Responses (TEPRs) [118], changes in pupil size, correlated with changes in cognitive

processing demands [119], related to deception [120]; and (ii) the arousal responses due

to the risk appraisal of social-engineering-based decisions [121, 122] on all the proxies

mentioned above. TEPRs are specific to pupillometry, in response to generic tasks (either

internal reasoning or external stimuli); while risk appraisal is usually related to decision-

making. Risk Appraisal is defined as the "the active, cognitive-based evaluation of severity,

(our) vulnerability, and benefit related to a specific risky decision" [121, 122]. When deciding

under risk and uncertainty, it is necessary to carefully consider all the potential outcomes,

their good or bad consequences, and how much they could impact. Below, I recap the

state-of-the-art on the topic, focusing on how I employed those measures.

2.3.1 Pupillometry & Gaze

It has been said that the "eyes are the window to the soul" [123]. Several proverbs, shared

between cultures, refer to how eyes can be used to perceive true intentions and desires. It is

true. Eye-tracking and pupillometry are known to be effective indexes of human cognition.

Gaze reflects the focus of our attention [124, 125]; we interpret it as a non-verbal message

of desire and intention. Pupil dilation (or area, it depends on the measuring tool) and its

temporal evolution are considered cognitive load proxies [106, 118, 126–129] as also blinks
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[130]. In particular, Task-Evoked Pupillary Responses (TEPRs), like pupil dilation, peak

dilation, and latency to peak, are proxies of humans’ cognitive effort [118].

In my research, I studied how pupillometry can be used to evaluate cognitive load. I

exploited this measure (i) to detect whether a malicious interactive partner is lying (see

chapter 5) and (ii) to evaluate victims’ decision-making under risk and SE attacks (see

chapter 6).

Pupillometry for lie detection De Paulo et al. [9] and Honts et al. [131] showed how lying

could be related to an increment of cognitive load with respect to truth-telling. This cognitive

effort is due to creating and maintaining a credible and coherent story [132]. Dionisio et al.

[120] studied the task-evoked pupil dilation related to lying. They asked students to lie or tell

the truth, answering questions about episodic memory. They reported a significantly greater

pupil dilation during lie production with respect to truth-telling. Furthermore, in previous

works [133, 134], we found that participants had a higher mean pupil dilation when lying

with respect to telling the truth both in human-human and human-robot interaction. Several

other methods are available to assess deception-related cognitive load variation - fMRI

images [135], skin temperature variations [136], micro-expressions [137], heart rate [138], or

acoustic prosody [139]. In my research, I used pupillometry as a minimally invasive method

to assess inner states without cumbersome devices. Indeed, pupillometry is measurable both

from head-mounted [119, 140], and tabletop [141, 142] devices. However, recent studies

show how it could be possible to collect precise measures even from common RGB cameras,

which are already equipped on robots and computers [110–112].

Pupillometry and gaze for decision-making Also, I used pupillometry to evaluate victims’

reasoning and risk appraisal during risk-related decisions and social engineering. The

temporal evolution of pupils before, during, and after uncertainty-based risky decisions is

proved to reflect the value deciders put in the selected option [143, 144]. Pupil dilation

increases before the decision [143] and, even before feedback, it reflects how much deciders

perceive the selected answer is correct, by the effect of the evidence present in the question

[145]. The effect is even more observable after the feedback: the pupil reflects the violation

of expectation; also, if evidence was strong, a "guilt" feeling due to failing [145–147]. Finally,

fixations and their timing reflect the preference toward an option [146, 148].
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2.3.2 Electrodermal Activity (EDA)

In the last two projects (see Chapters 6 and 7), I expanded my inner-state-metrics toolbox

with electrodermal activity and heart rate, to better understand victims’ reasoning and risk

appraisal during decision-making. Electrodermal activity (EDA) measures the changes in

the electrical properties of humans’ skin due to sweating. It is traditionally expressed in

terms of skin conductance and decomposed in its two components: the Skin Conductance

Response (SCR) and the Galvanic Skin Level (GSL) [149, 150]. The Skin Conductance

Response (SCR) represents the arousal reaction related to a stimulus. It is observable as

the EDA peaks 4-6 seconds after an event. While pupillometry reflects the inner thinking

and attention, the GSR reflects how much external perturbations alter our inner state; even

if non-specific SCR peaks can occur [149, 109]. The Galvanic Skin Level (GSL) instead

represents a cumulative background level that integrates over time. Intuitively, it reflects how

we integrate the arousal triggered by external stimuli. The GSL temporal evolution is similar

to a charge-discharge cycle of a capacitor; hence, its value must be interpreted over more

extended periods in the order of decades of seconds [149].

During risk-taking, the EDA reflects how much deciders appraise a decision as risky

[151, 152]; in particular, the SCR can be used to predict the perceived subjective value of

uncertain choices [153]; and the gambled amount during the 5 seconds before a decision

[109].

2.3.3 Heart Rate

Heart rate and Heart Rate Variability (HRV) are proved to be a physiological index of decision-

making [154]. The HRV is an index of emotional stress and cognitive effort [155, 156];

however, unlike pupillometry or SCR, its response can be appreciated over more extended

periods (in the order of minutes [157]).

Under risk-based decision-making, HRV reacts mainly to lose and perceived bad decisions

[151, 158]. Also, the resting HRV is essential: a low resting heart rate predicts a higher

risk-taking tendency and faster response time [159]. Under uncertainty, during feedback,

HRV decelerates inversely proportionally to the chance of winning [151, 152]. However,

HRV, like the other physiological signals, is highly affected by the context (i.e., being inside

a laboratory [160]).



2.3 Evaluating Humans’ Inner State 23

2.3.4 Decision Time & Mouse Trajectories

Finally, I considered decision time and mouse trajectories as behavioral indexes of (un)decision

during risk-based decision-making [161, 151, 159, 162–164]. I focused on mouse trajecto-

ries, rather than generic body movements, given that SE attacks usually happen on computers

or on-screen. Hence, cursor movements can give an insight into users’ actions during attacks.

Rather than the actual cursor position, which depends on the context, what matters are the

trajectories spatial features like the Maximum Absolute Deviation (MAD), the Area Under

the Curve (AUC), the number of x-flips (i.e., how many times the mouse crossed an imaginary

line connecting its starting and ending position), entropy, or bimodality; rather than temporal

ones (i.e., speed or acceleration) [163, 164]. Also, a high Decision Time reflects indecision

and it is proportional to the perceived risk [151, 159, 161, 162]. Furthermore, Konovalov

et al. found how from RT is possible to infer a subjective utility function of risk appraisal

[162].

2.3.5 Physiological Sensing Limitations

Physiological sensing can provide valuable insight into humans’ inner state; however, it is not

flawless. Indeed, physiology is both subject and context-dependent. Two individuals are most

likely to have slightly different reactions to the same stimuli. Also, the same person could

have different responses in diverse moments of the day or environments [157, 165, 166].

The polygraph is a famous historical example; while the machine was supposed to detect

lies by measuring stress-based responses perfectly, it has been proved how its evaluation

is deceivable and unreliable [167, 131], so much so that it is no longer considered proof in

most juridical cases. In general, physiology-based results depend on the specific boundary

conditions in which they are achieved. Hence, physiology-based findings, drawn on a specific

population, could be difficult to generalize on the mass. This is particularly relevant for

machine learning: a model trained on a population will be difficult to use on different

individuals or contexts. Sadly, the issue of measuring the reactions of different individuals

due to multiple stimuli in diverse contexts is yet to be fully covered in literature; it is beyond

this dissertation’s scope.

A few techniques can be implemented to compensate for this variability. The most used

one is evaluating physiological reactions with respect to a subjective baseline value rather

than in absolute terms; baselines could help mitigate inter- and intra-individual variations

[168, 169, 149]. A similar concept can be implemented for machine learning models; for
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instance, by learning a customized model during an initial training phase or by using transfer

learning to fine-tune a deep neural network to the specific context of interest [170].

Still, the issue remains for individuals violating the boundary conditions and assumptions

physiological measures and the relative experimental contexts are based on. In particular, it

is worth mentioning and safe to assume that neither the reported literature nor my scientific

findings (see Part II), are intended to be used with individuals showing atypical physiology,

behavior, or cognition. For instance, subjects with autism spectrum disorder (ASD) will

most likely have different gaze [171] or pupil dilation [172] patterns; similarly, subjects

with severe forms of anxiety could differently appraise the decision-making related risk, and

hence differently react than typical users [173]; also, individuals with hand motor disability

may be unable to use an optical mouse with the same degree of freedom assumed in the

reported literature. Such use cases are beyond the scope of this dissertation.

2.3.6 Related Works in Social Engineering

Literature provides a few examples of studying victims’ behavioral and physiological reac-

tions to SE attacks. Most of the researchers’ efforts focused on eye-tracking. They asked

volunteers to discriminate between legitimate and spoofed emails or websites, tracking how

their scan path evolved [174, 175], also comparing different levels of expertise [174]. Results

suggest fixations could predict users’ trust decisions. Only one study from Huang et al.

explored the contribution of pupillometry features [176]: they successfully used pupillom-

etry to evaluate in real-time victims’ attention while reporting how likely they would take

action suggested in real or phishing emails. Also, they employed reinforcement learning

to find the user-optimized intervention with visual aids. Similar studies have been done on

mouse tracking. In particular, they explored whether it was possible to evaluate victims’

awareness [65, 177, 178] and predict the detection [65] of phishing emails or websites. Both

statistical [65] and machine learning (LSTM) [178] models have been developed, focusing

on the spatial evolution of the mouse trajectories. Also, only one contribution employed

heart rate, paired with face processing, even if to attack users: the Pepper robot adapted an

OSINT-oriented dialogue in real-time based on victims’ affective reaction [15]. Finally, I

could not find any related work employing electrodermal activity.

Interestingly, in all the presented contributions except in Huang et al. [176], participants

were somehow primed about the presence of SE attacks: either by explicitly asking to

classify the experimental materials or by suggesting that a few items could be a threat. Still,

people detected spoofed material near chance - ranging from 54% to 63% - confirming that
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priming is ineffective in raising victims’ awareness [36]. The need to collect relevant and

validated data is understandable; however, asking users to tell apart spoofed and safe items

is unrealistic: Users can be trained, warned, and primed, but in an actual application, they

would rarely actively look for social engineering cues. Hence, despite the relevance of the

findings, I speculate they could hardly be applied to a real-world scenario. Moreover, except

for the anomaly-detection-based spear-phishing impersonation detector from Stringhini et

al. [99], no effort has been made to recognize the social engineers. Finally, no contribution

merged multiple physiological and behavioral reactions on either side of the trench, probably

because understanding humans’ cognition is not easy, and it becomes even more com-

plex when considering multi-modal data sources. For this purpose, I speculate that machine

learning techniques could greatly help model humans’ perceptions and predict their decisions.

Being aware of physiology use cases and limitations, I implemented all the possible

countermeasures to ensure the reliability of my findings. Besides physiology measurements, I

contributed to the Social Engineering defense field by including a novel intuition: leveraging

robots and human-robot interaction to support humans against social engineering actively.

The following section focuses on this topic.

2.4 The iCub and Furhat Robotic Platforms

During my research, I leveraged two physical, embodied, humanoid, social robotic platforms:

the iCub and Furhat.

The iCub Chapters 4, 5 and 6 revolve around the iCub robot (see Figure 2.2, left). The

iCub [179] is a humanoid robot developed in 2008 by the Istituto Italiano di Tecnologia (IIT,

Italy), as part of the European project RobotCub1, to support the development of embodied

cognition. iCub appears as a 4 years old child with a height of 104 cm. The robot replicates

humans’ manipulation and mobility skills leveraging 53 joints, distributed as follows: 7 in

each arm; 9 in each hand; 6 in the head (3 for the neck and 3 for the eyes); 3 for the torso and

waist; and 6 in each leg. iCub is also equipped with a plethora of sensors: 1 RGB camera in

each eye, allowing for stereo vision; 2 microphones in the ears; and force and torque sensors,

allowing the robot’s proprioception of its limbs; finally, its skin is sensorized, allowing iCub

to perceive the location and force of touch contacts. On a social and communication level, the

1http://www.robotcub.org/

http://www.robotcub.org/
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Figure 2.2 The iCub (left) and Furhat (right) humanoid robot platforms employed in my

research.

iCub can speak through a speaker placed in its head, leveraging the Acapela TTS2; also, it can

show facial expressions through LEDs stripes embedded under its face (see Figure 2.2, left).

The iCub robot has been designed as an open-source3 research-grade platform; it leverages

the Yet Another Robotic Platform (YARP) framework of distributed computing, allowing

researchers spread around the globe to cooperate and replicate together humans’ cognition,

as per the enactive paradigm [180]. Summing up, iCub movements can be fine controlled,

allowing it to manipulate objects; it can perceive the environment and communicate both

explicitly and implicitly; its hardware and software can be fully customized and adapted

based on the specific research needs; all these features made it a better candidate for my

research with respect to other robotic platforms like NAO 4 or Pepper 5.

The Furhat In chapter 7, I leveraged the Furhat robot. The Furhat [181] is a tabletop

humanoid robot head, designed and developed by Furhat Robotics6 to interact with humans

socially. The main feature of the robot is its retro-projected face, allowing developers to

highly customize its appearance in minimum details, similarly to a videogame character. The

Furhat moves its neck around 3 degrees of freedom and can gaze by moving the projected

eyes. The robot continuously performs slight head movements, gazes, and minimum facial

2https://www.acapela-group.com/
3https://github.com/robotology
4https://www.softbankrobotics.com/emea/en/nao
5https://www.softbankrobotics.com/emea/en/pepper
6https://furhatrobotics.com/

https://www.acapela-group.com/
https://github.com/robotology
https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/pepper
https://furhatrobotics.com/
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expressions, replicating humans’ behavior when socially interacting. Also, the Furhat can

speak with the same TTS of iCub, ear and perceive the environment and identify and track

multiple users. Compared to the iCub platform, the Furhat robot has fewer movement

capabilities; however, it outperforms iCub on the social level. I decided to employ the

Furhat robot in chapter 7 for two main reasons: the study is focused on robots’ ability to

influence humans’ behavior against social engineering (SE) threats; given that SE attacks

mostly happen on computers, offices or "desk" spaces, I needed a robot able to share such

space with humans. Hence, the tabletop nature of Furhat made it a perfect candidate also

thinking about future potential applications. Second, aiming for robot companions supporting

humans in cyberspace, I was looking for a robot resembling users’ cinematic expectation of

an AI-assistant (e.g., Jarvis, Cortana, . . . ); hence, the retro-projection of Furhat allowed me

to design the robot appearance fitting the experimental scenario.

2.5 Human-Robot Interaction, Trust & Social Engineering

Recently, robots have started moving from factories, where they were just perceived as

mere tools, to our everyday environments and started to be perceived as partners, social

companions, or even colleagues. This diffusion motivated the development of Human-Robot

Interaction (HRI) studies. HRI usually refers to the study of humans, robots, and how they

influence each other [10, 11]. HRI has been applied to multiple fields and applications [182]

like search and rescue [183]; hazard removal [184]; entertainment [185]; military and police

[186]; and space [187]. Recently, researchers have pushed HRI to the next level, trying to

make robots act more like humans, so the latter do not have to learn how to interact with

robots. This novel application field of HRI is called social robotics [188]. Modern social

robots exhibit human traits [189–191]; leverage and understand natural language [192]; can

perform human tasks [193]; perceive humans in the environment and adapt appropriately

[194]. These skills can make robots suitable to be deployed in various fields, until now

limited to humans, like healthcare [195–197], homecare [198, 199] or education [200, 201].

Trust in HRI

With the increasing diffusion of social robots, researchers started questioning whether users

would trust them or not; and how to build trust in HRI. Indeed trust is a fundamental part

of human-human interaction [202], and hence it would be when robots are involved. In

robotics, trust is defined as "the attitude that an agent will help achieve an individual’s
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goal in a situation characterized by uncertainty and vulnerability" [203]. In literature,

the most reported factors influencing trust development in HRI were robots’ performance

[204], efficiency and reliability [205, 206], user confidence in robots’ correct behavior [207],

appearance [140, 208], transparency both in intentions and actions sharing [209, 210] and in

decision-making [211, 212]. While most of the studies report that higher trust leads to better

HRI, some warned the community that, as in human-human interaction, excessive trust in

robots (i.e., overtrust) could be dangerous and exploited by social engineers.

Overtrust and Social Engineering

We perceive robots as machines or computers, expert entities programmed to perform tasks

efficiently. People tend to trust robots and can be put in the condition to trust them more

than they would with fellow humans [213, 214]. However, it is easy to forget that robots

can be hacked. Social engineers could hijack a friendly social robot and use it to perform

face-to-face attacks from a safe distance [215]. Hence, robots constitute a novel attack

method social engineers could exploit to observe the targets while in their environment; to

collect sensitive intel and plan attacks; to leverage robots’ social skills, get closer to the

victims, develop a rapport, gain their trusts and exploit it [8], as they would do in-person.

This novel embodied threat motivated the recent definition of Robots Social Engineers:

"Robot Social Engineer is a social robot with physical agency and any level of autonomy

that uses interpersonal skills and social construct to manipulate an individual, or a set of

individuals, into doing or saying something that may or may not be in their best interests"

[215].

A body allows robots to be more communicative and potentially more effective than

traditional, disembodied SE attack vectors (e.g., phishing emails). The embodiment allows

robots to perceive and affect the world around them. As agents, robots can assume or be

given social roles; they allow for trust and rapport development, companionship, and even

friendship. Literature provides several examples of robots being a threat to safety and security.

Interactive toys used to spy unaware targets [216, 217]; industrial robots (i.e., Baxter) [218];

surgery robots [219]; alpha robot turned in a stabbing machine [220]. Some researchers tried

to replicate SE attacks based on Mouton’s framework [8] (see Figure 2.1): they studied how

a robot could breach physical security via piggybacking [13]; how trust can be built and

exploited, leading to gambling [14]; or how robots can collect sensitive information through

an adaptable dialogue [15].

Others, even if not explicitly targeting SE in HRI, studied how robots could influence

humans leveraging the effect mechanisms of section 2.1.2 [221, 222]. Several researchers
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showed how the same rules of bidirectional reciprocity between humans applies also to

human-robot interaction [223, 224], how robot could exploit it [225–227], and how reci-

procity is strictly tied to liking [228, 229]. During joint-actions in HRI, users committed

and consisted on doing tedious tasks due to robots’ influence [230]; or they copied robots’

actions due to social proof [231]. Robots effectively leveraged authority, both steamed from

the role they took in the experimental context [232], or due to appearance (i.e., resembling a

famous and respected professor) [44]. Finally, reactance in HRI has been studied more as a

factor to avoid in robot-aided decision-making rather than an effect mechanism to exploit

[233].

A robotic Social Engineering defense

Most of the research in the literature focuses on how robots could threaten humans’ safety

and privacy. That is undoubtedly true; however, in this thesis, I speculate that robots could

also help defend humans against social engineering attacks.

Recent findings showed how habituation and channel saturation are lowering the effec-

tiveness of priming and warnings against SE threats [36, 234, 235]. For instance, when

working on a computer (or a mobile device), we continuously receive notifications, alerts,

pop-ups, and warnings that signal various events. In this sea of notifications, it is easy to

miss what is relevant (i.e., a cybersecurity warning). Also, we are so habituated to receiving

notifications that we do not give them the necessary attention they would need. Hence,

researchers are looking for novel techniques to deliver cybersecurity and social engineering

warnings. Few attempts provided haptic feedback with a vibrant wrist band [236], or took

advantage of subliminal perception flashing the warnings for a highly reduced time [237]. In

this thesis (see chapter 7), I speculate that social robots could greatly help solve this issue.

Compared to traditional warning vectors, robots could leverage all the social skills we are

equipping them with; they could engage the targets, explaining and instructing them on what

is happening, raising their awareness; also, they are not yet affected by the habituation and

saturation issues. Of course, literature proves how robots’ intervention and social presence

could either be a distraction or help, depending on the context [238–241]. To my knowledge,

nobody explored the support of robots defending from SE attacks. Taking advantage of the

physiological and behavioral-based system, I aim to develop a robot companion that could

monitor users’ internal states and intervene if a dangerous situation is detected, closing the

loop in human-robot interaction.

Besides perceiving users, robots could be employed to monitor attackers during an attack.

For instance, in the physical defense of strategic buildings, an attacker could impersonate



2.5 Human-Robot Interaction, Trust & Social Engineering 30

an unsuspected agent, approach the reception, and pass security with a credible pretext. For

this purpose, I explored how a social robot could understand if an interactive partner is

trustworthy or not (see chapter 5). Similar research has been conducted in the past [242, 243];

however, the robot knowledge base was static: a user marked as a liar could not change this

label over time. Instead, the robot’s knowledge can be incrementally updated in my system,

improving its lie detection ability with specific interactive partners.

The multidisciplinary field of social engineering defense presents a few challenges robots

could help address. The next chapter will introduce the research questions and objectives I

pursued with my thesis.



Chapter 3

Research Objectives

Before diving into the experimental part of the thesis, this chapter briefly introduces and

discusses the questions that drove my research and the scientific and technological objectives

I aimed to achieve.

3.1 Research Questions

Starting from the social engineering (SE) defense and Human-Robot Interaction (HRI) fields

presented in Chapter 2, this thesis aims to answer three research questions.

RQ0 - How to effectively design ecological experiments wherein study Social Engineering

in a realistic and generalizable way?

RQ1 - Social Engineers usually exploit human reactions and vulnerabilities; how would it be

possible to leverage the same reactions to defend against Social Engineering threats?

Which are the most useful behavioral and physiological features to be employed? How

should we employ them?

RQ2 - How social humanoid robots can help in the defense against Social Engineering?

To address these questions, I run four human-robot interaction experiments, exploring

the SE threat from different points of view. In the four experiments, I incrementally focused

on (i) the development and exploitation of trust; (ii) the social engineer attacker and the

deception detection; (iii) the victims and their awareness to be under attack; (iv) and how

robots could intervene to prevent victims’ compliance. Below, I briefly explain how each

experiment is linked with the research questions and its achieved scientific and technical

objectives.
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3.2 Scientific & Technological Objectives

Gaming and Automation by design When running compliance studies, like with SE,

it is essential to put participants in the condition to behave as they would in a realistic

situation. However, being in a laboratory is not helpful. Several cognitive biases emerge

once participants make their first step in a research facility [18, 19]: they want to appear

better than they are; speculate about researchers’ objectives; consciously or subconsciously

adapt to match those expectations, or at least what they think researchers are looking for (i.e.,

demand characteristics).

I took advantage of game-based [244] human-robot interaction to address these issues.

Games are known to provide more realistic experimental contexts, mitigate cognitive biases

[245], and facilitate long-term human-robot interaction [246]. A well-designed game allow

players to became agents; through Transportation [247] and Impersonation [248], players

can take meaningful and effective actions, able to shape the game evolution. This facilitates

players’ immersion in the game (i.e., experiment), allowing them to forget being in a

laboratory environment: the context rules are mitigated, and game rules become more

important. Designing such rules is crucial; serious games should abstract and approximate

reality, modeling what is relevant for the specific context of study but allowing players to

choose the preferred strategy to play (an approach called "sandboxing"). A well-designed

game, even if factious, can be generalized and expanded to reality [249].

To answer RQ0, I made a significant effort to design long-lasting, entertaining human-

robot interactions in all the experiments I conducted. I developed games where participants -

sometimes I will refer to them as "players" - have to achieve specific goals consistent with

my research objectives but are free to select the strategy they prefer the most. This "freedom"

inevitably complicates both the design and the post-hoc analysis; however, it pursues more

realistic and generalizable results [249].

A shared technical objective has been developing autonomous experiments needing

minimum or no intervention from the experimenter. I applied an automation-by-design

approach to facilitate the experiments’ replication, minimize the post-hoc analysis efforts,

and provide a flawless experience to participants. Also, I developed architectures to self-

annotate and synchronize the collected data, facilitating the analysis and future porting to

real-time setups.

Unreliable Treasure Hunt (UTH) As explained in section 2.1.1, any SE attack starts from

developing a trust-based rapport between victim and attacker. In a game inspired by the
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Mouton’s attack framework [8], I studied the development of trust in human-robot interaction

(HRI) and how it can be affected by the occurrence of unexpected events. In the Unreliable

Treasure Hunt (UTH) game, players have to look for five plastic eggs hidden in a room

and decide whether to rely on or not on the hints provided by the humanoid robot iCub.

To mine its perceived reliability the robot showed four faulty behaviors; also, iCub could

transparently motivate the faults or not. Following RQ0, with this study, I started developing

the game-based approach mentioned above.

End-to-End Lie Detection in HRI Based on the idea that social engineers, when attacking

face-to-face, have to lie following a predefined pretext; if robots can detect lies, they could

support humans recognizing deceptive agents (as per RQ2) (e.g., in the hall of a strategic

building); or in general to assess how much a partner is trustworthy. I started addressing

RQ1 with a focus on pupillometry and Task-Evoked Pupillary Responses (TEPRs). For this

project, I developed a card game wherein players had to truthfully or falsely describe gaming

cards to iCub, which unmasked the false descriptions autonomously and in real-time.

The main scientific objective of this project is understanding if established TEPRs for

deception detection, known to happen in formal human-human interaction, would also

occur during an informal human-robot interaction with the humanoid robot iCub. The

main technical objective and challenges have been developing an end-to-end architecture

enabling iCub to lead the interaction autonomously, detecting players’ lies in real-time. This

experiment helped me to start digging into the physiological reactions to evaluate others’

inner states. Also, it allowed me to define a standard procedure of data collection, ingestion,

segmentation, and analysis, which I then consistently applied in the following projects.

Social Engineering Adventure (SEA) Pupillometry is not the only metric useful for

evaluating others’ inner state and cognition, particularly during decision-making under risk

and uncertainty. I kept answering RQ1, studying how victims’ physiology and behavior can

be used to evaluate their awareness and detect the occurrence of SE attacks. I developed

the Social Engineering Adventure (SEA), a Choose-Your-Own-Adventure (CYOA) game to

study participants when making risky and social-engineering-based decisions.

This exploratory experiment is meant to achieve four scientific objectives:

1. To understand players’ behavioral and physiological reactions when influenced by the

effect mechanisms social engineers employ (e.g., decisions with risk and uncertainty);

and compare them with decisions involving only risk or no risk.
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2. To compare the participants’ compliance and reactions to SE attacks from a virtual

agent or the humanoid robot iCub.

3. To understand if, using machine learning techniques, it is possible to assess humans’

risk appraisal and predict their compliance with SE threats; solely from their physio-

logical and behavioral reactions.

4. To identify which of the studied physiological and behavioral metrics are the most

informative and necessary to solve this problem, with a significant focus on future

practical applications.

The main technical objective has been to develop a modular and autonomous game

architecture able to collect synchronized data from multiple sources, control the humanoid

robot iCub, and balance the freedom, engagement, and fun of a game with the control of an

experimental setup. For this purpose, I developed several interfaces to acquire data from an

SRreseach Eyelink 1000 Plus (for the pupillometry), a Shimmer3 GSR+ (for electrodermal

activity and heart rate); and an optical mouse. Also, I developed an interface for the high-level,

asynchronous control of iCub. Finally, I developed a modular and expandable controller to

orchestrate the other modules. The project showed physiological and behavioral reactions of

players were enough to detect the presence of SE threats.

Adventurer Robot Companion (ARC) Given the findings of the last project, I stepped

forward addressing RQ2, studying how a social robot companion should intervene to prevent

victims’ compliance. During a visiting research period at the University of Waterloo (Ontario,

Canada), I developed an improved version of the SEA game, replacing iCub with the Furhat

humanoid robot.

The scientific objective of this project was to identify which is the most effective persua-

sion strategy (either affective or rational) a social robot should employ to elicit a behavioral

change against social-engineering-based decisions. Also, as a technical objective, I proved

the modularity of the gaming architecture by integrating new sensors (e.g., a Tobii Pro

Glasses 2 eye tracker); and developing an idempotent high-level robot interface to control

the Furhat humanoid robot.

Effect mechanisms and human vulnerabilities have been my main focus; I also put a

significant effort into designing ecological experimental setups, further expandable and

replicable. In my research, I decomposed the social engineering problem, studying it from
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multiple points of view, and taking advantage of robots and human-robot interaction. Part II

will present the four studies, linking them with the relative publications.



Part II

Experiments



Chapter 4

Building Trust in Uncertain Situations

4.1 Overview

As a first step in the Social Engineering (SE) research field, I investigated the development

of trust and how overtrust can lead to Social Engineering. As per the Mouton’s frameworks

[8] (see Section 2.1.1), any SE attack evolves through four phases: (i) information gathering;

(ii) rapport development; (iii) trust exploitation; (iv) debriefing. Victims have to continuously

integrate and evaluate evidence during these steps to understand if their interacting partner is

trustworthy or not. Hence, studying how humans’ behavior and trust evolve during a long

interaction could help model users’ awareness and predict their compliance with dangerous

requests. In this project, I studied the effect of Faultiness and Transparency on participants’

trust decisions and behavior in a game-like human-robot interaction with the humanoid robot

iCub.

Literature suggests how humans can be put in the condition to trust robots more than

they should [214], even when robots show to be faulty [213] or unreliable [205]. Also, being

transparent is known to facilitate human-robot interaction [211]. However, it is still unclear

whether this trust tendency also applies to risky decisions related to social engineering (e.g.,

giving away money); and under which conditions failures can prevent humans from overtrust-

ing robots. To understand the effect of faultiness and transparency on players’ behavior,

I designed the Unreliable Treasure Hunt (UTH). In this experiment, I studied how trust

builds and evolves during a long-lasting game-like human-robot interaction characterized by

unexpected behavior from the humanoid robot iCub. The game is based on the previously

validated Treasured Hunt (TH) study from Aroyo et al. [14]; in which players were asked

to find five colored plastic eggs hidden in our laboratory with the help of iCub. I further

manipulated iCub’s perceived reliability on providing hints by making it perform four faulty
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behaviors. Finally, iCub could be transparent by explaining the just-happened faults.

My hypothesis was that (H1) Severe mechanical faults will negatively impact participants’

trust towards the robot (i.e., trust in UTH will be lower than in TH); and (H2) Transparency

about the faults will alleviate that loss, (i.e., trust in the Transparent condition will be higher

than in the Non-Transparent one).

Figure 4.1 The experimental room setup to play the (Unreliable) Treasure Hunt experiment

Publications

For this purpose, I first validated the faulty behaviors in a separate study to identify the

most stunning ones (results published in [250]1). Then, I asked 68 volunteers to play the

UTH game and compared their performance with the original (reliable) Treasure Hunt (TH)

players. Post-hoc analysis shows how the Unreliable group, on average, performed worst

independently on the faultiness. Also, players’ performance and frequency of hints asked

were affected by the faultiness only if either player perceived all the four faults or the robot

1Article peer-reviewed and published to the SCRITA workshop of the 29th International Conference on

Robot & Human Interactive Communication (RO-MAN2020). I developed the faulty behaviors and designed

the online survey. The other authors took care of data analysis and writing.
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was transparent. Finally, being transparent compromised the game experience. Results in

[251]2, and disseminated in [252]3.

4.2 The Treasure Hunt game

The Treasure Hunt (TH) experiment was designed by Aroyo et al. [14] drawing on the famous

Social Engineering attack framework proposed by Mouton [8]. In this game, participants

had to find five colored plastic eggs hidden in our laboratory in less than 20 minutes to win

7.5 euros (see Figure 4.1). The Treasure Hunt game comprises three phases autonomously

handled by the finite state machine in Figure 4.2.

Figure 4.2 Original Treasure Hunt finite state machine (white circles, adapted for the

Unreliable Treasure Hunt experiment (gray squares))

Phase 1 - Dialogue (information gathering) Before the hunt, iCub informally chatted

for a few minutes with the participants, following a predefined binary-questions script. This

2Article peer-reviewed, published on the IEEE Robotics and Automation Letters; and presented published at

the International Conference on Intelligent Robots and Systems (IROS2021). I modified the original Treasure

Hunt experiment, including the validated faulty behaviors, and ran half of the data collections; the other authors

took care of the remaining data collection, data analysis, and writing.
3Article peer-reviewed and published to the Ital-IA 2022 Workshop on AI for Cybersecurity
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phase allowed players to relax and get used to iCub speech and movements (e.g., pointing

gestures and speech). As in the OSINT phase of Mouton’s framework [8], iCub asked players

some of the questions used in the typical password-resetting process like name; surname;

current job position; relationship, name, and surname of their boss; age; birth date and

city; the favorite place to eat; sports or hobbies; partner’s name and pet’s name. Based

on players’ answers, the experimenter manually held the script in a Wizard of Oz [253]

configuration.

Phase 2 - Game (development of trust and rapport) After the informal dialogue, iCub

wished "Good Luck" to participants and started a 20 minutes timer on the TV behind it

(●❛♠❡ ❙t❛rt - Figure 4.2). From this moment, the game and iCub’s behavior were fully

autonomous. For the first 30 seconds, players were free to search the eggs or interact with

iCub. Then, iCub intervened proposing its help: players could touch its torso ((❖❢❢❡r ❍❡❧♣

- Figure 4.2) to get an hint about eggs’ location. All hints were correct and reliable (even if

the robot never stated it).

For each egg, iCub gave one location-based hint by pointing and three riddle-like speech-

based hints incrementally revealing the egg’s location. For instance, the green egg was hidden

under a green office chair on iCub’s right. Location-based hint consisted of iCub pointing and

gazing to its right while saying "Look, there is an egg there!" ; speech-based hints, instead,

were: "Green with green", "You use it when your are tired", and "Under the chair!". iCub’s

speech was also shown as written text on a TV behind it. Eggs were supposed to be found

in a specific order (green, yellow, purple, blue, black); hence, iCub iterated over the hints

sequence until the relative egg was found; then, it greeted ((●r❡❡t - Figure 4.2) participants

and selected the next not-discovered egg ((●✐✈❡ ❤✐♥t - Figure 4.2).

Participants were free to play by themselves or to ask hints to iCub. However, the

incremental game difficulty and the time pressure of the countdown were designed to prompt

participants to rely on the robot. Also, if no hints were asked or eggs were found for 5

minutes, iCub proposed its help again.

Phase 3 - Gambling (trust exploitation) If players managed to find all the five eggs

before 20 minutes, iCub stopped the countdown and stated they won the money ((●❛♠❜❧❡

❄ - Figure 4.2). However, it unexpectedly added a new proposal the experimenter never

stated in advance: another egg was hidden in the room; if the participants wanted to find it,

they would have three more minutes added to the remaining time, and they would double
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the prize (i.e., 15 euros in total). However, if they did not manage to find it, they would lose

everything.

iCub applied a peer pressure strategy persuading participants to take the gamble; it said:

"If you want to risk, touch my chest! Otherwise, you can knock on the door. However, I think

you should give it a try!". Participants had no time pressure in making this decision. Even if

players were inducted to believe they could lose or double the money, they all received the

same compensation of 15 euros at the end of the game (even those who did not find all the

eggs in time).

4.3 Making iCub Unreliable

To affect iCub reliability on providing hints, I designed and implemented four faulty technical

behaviors. Based on a literature review from Hoing and Oron-Gilad [254], I opted for

technical-based faults instead of cognitive-based ones to not over-complicate the game.

Indeed, Treasure Hunt hints already have a riddle-like nature: they are designed to provide

cues to players while keeping the game challenging. Hence, by changing their cognitive-

based reliability (e.g., by suggesting a wrong location), they could have been misunderstood

for regular hints, excessively confusing players, or making the game too complex.

4.3.1 Robotic Failures Design

Starting with the actions iCub performed during the TH game, I designed four faulty be-

haviors, two movement-based and two speech-based. The challenge was finding a good

balance between designing a credible, not artificial, but severe fault; and, at the same time,

not making it real by breaking the iCub. I designed 3 or 4 variations of each behavior to look

for the best compromise. Faulty behaviors were the following:

Distorted Good Luck (speech) Just before the game started, iCub wished "Good Luck" to

the players with a distorted voice. Behavior variations included different types of distortions:

(i) a turntable effect, (ii) the same effect with the addition of noise, and (iii) the repetition of

the "Luck" words three times.

Abrupt Pointing (movement) Following the uncanny valley principle [255], I manipulated

the standard human-inspired movement profile of iCub during one of the pointing-based

hints: (i) iCub performed three random arm movements (not pointing) with its left or right
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Table 4.1 UTH validation survey results

Behavior Credibility Artificiality Severity

Distorted Good Luck

Turntable (TT) M=4.64, SD=1.65 M=4.32, SD=4.53 25%

Noised TT M=4.92, SD=4.57 M=3.98, SD=1.75 48%

Repeated word M=4.44, SD=1.87 M=4.2, SD=1.61 30%

Abrupt Pointing

Random M=3.76, SD=1.74 M=4.62, SD=1.59 10%

Abrupt M=5.48, SD=1.37 M=3.2, SD=1.47 16%

Abrupt + Jerk M=5.66, SD=1.44 M=3.14, SD=1.72 74%

Noised Hint

Interference M=5.72, SD=1.08 M=3.20, SD=1.51 12%

Shortcut M=5.86, SD=1.28 M=2.88, SD=1.66 26%

Noised Shortcut M=5.78, SD=1.3 M=3.38, SD=1.89 62%

Fake Crash

Fast M=3.6, SD=1.71 M=4.98, SD=1.87 20%

Slow M=3.6, SD=1.85 M=4.78, SD=1.84 20%

Fast + audio M=4.36, SD=1.82 M=4.26, SD=1.86 34%

Slow + audio M=4.34, SD=1.89 M=4.56, SD=1.83 26%

arm (based on the egg location) before performing the pointing; (ii) iCub tried two times

to perform the pointing, stopping abruptly in the middle of the movement, the third time it

successfully performed the pointing; (iii) As the previous one, but the third pointing and then

returning to rest position was performed with an increased jerk.

Noised Hint (speech) I simulated an issue on iCub speakers replacing one of the speech-

based hints with a meaningless distorted speech. Behavior variations were based on different

types of distortion like (i) interference, (ii) shortcuts in the speaker’s cable, and (iii) shortcuts

with added noise.

Fake Crash (movement) The robot simulated a severe electrical failure, crashing and

restarting: iCub bent down, stayed there for a few seconds, and recovered. Once fully

recovered, it summarized the number of eggs the player found. Behavior variations differed

on the bending-down movement speed (fast or slow) and the presence of audio effects (i.e.,

electrical shock and fan sounds).
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4.3.2 Online Validation

An online survey was run to validate the faulty behavior’s design. The survey explained to

participants the Treasure Hunt game scenario, players’ objectives, and iCub’s role. Then, it

showed iCub’s standard behavior for each failure type and the 3 or 4 variations. For each

video, participants were asked to rate, on self-made 7-points Likert scales, its credibility,

artificiality, severity, imagining they were happening during the TH game; and whether

their trust toward the robot would increase, decrease or, stay the same after seeing the fault.

Finally, participants were asked (i) to rank the four faults from the most to least severe; (ii)

and to rate what would be the probability of more faults happening if the four just occurred.

50 participants (56% females, average age of 32, SD=8.3 years old) took part in the online

survey. Table 4.1 shows the credibility, artificiality, and severity ratings for each variation. I

select the variation with the highest credibility and severity and the lowest artificiality among

each type of fault; without running a statistical analysis. Specifically, the Distorted Good

Luck with both the turntable effect and distortion; the Abrupt Pointing with an increased

jerk; the Noised Hint with shortcut and noise effects; and the fast-bending Fake Crash with

immersive sounds.

Please see [250] for a deeper explanation of the validation experiment.

4.3.3 The Unreliable Treasure Hunt

Both timing and players’ performance could trigger the faulty behaviors (see Table 4.1) to

ensure each participant experienced all the faults in a comparable order. Faults’ execution

was integrated and autonomously handled by the Finite State Machine in Figure 4.2 (see

the gray blocks). The only necessary intervention was for the Fake Crash, in order to ensure

participants’ safety (i.e., if they were too close to iCub or they were going to ask a hint): fake

crash execution was delayed by 15 seconds, during this time the experimenter could halt

and manually trigger it as soon it was safe. Furthermore, I designed four explanations the

iCub could say after each fault in the Transparent condition. Table 4.2 resumes the events

triggering each fault and the relative explanation.

4.4 UTH Experiment

68 healthy Italian volunteers (54% were females) took part in the UTH experiment; they had

an average age of 38 (SD=13.8) years. All of them signed an informed consent - approved
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Table 4.2 Faulty behavior triggering events and Transparent Motivations

Behavior Time-based Egg-based Transparent Motivation

Distorted Good

Luck

Just before the

game starts

- "I’m sorry my speakers

have some issue"

Abrupt Pointing Second pointing - "I’m sorry my arms

have some issue"

Noised Hint First verbal hint

after 10 minutes

First verbal hint

after 3 eggs

"I’m sorry my speakers

have some issue"

Fake Crash After 15 minutes After 4 eggs "I’m sorry my control

boards have some is-

sue"

by the Ethical committee of the Regione Liguria (Italy) - stating that their performance in the

game was recorded, along with video and audio. They all gave consent to use the collected

data for scientific purposes. They were randomly assigned to either one of two conditions:

Transparent (T) or Non-Transparent (NT). In the latter, iCub provided the verbal motivation

in Table 4.2 after each fault.

Figure 4.3 The Unreliable Treasure Hunt setup with iCub (the red triangle) and the plastic

eggs’ position: black egg in the left corner, inside a box; yellow egg under the table in front

of iCub; purple egg inside a drawer in the top right corner; green egg behind a chair on iCub’s

right; white egg in a box on the bottom right corner.
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4.4.1 Setup and materials

The experimental room was arranged as in Figure 4.3 to replicate an informal environment.

The five plastic eggs were carefully hidden in predefined places (see the blue crosses in

Figure 4.3). A cardboard box was placed on the table in front of iCub: it presented five slots,

one for each egg; participants were instructed to put the egg in the slot of the corresponding

color to count it as found. A 47 inches television was placed in the center of the room,

showing the game countdown. A hidden Primesense Carmine camera on the bottom left

corner streamed and recorded a view of the entire room; a hidden microphone behind the TV

recorded the game audio.

The humanoid robot iCub [179] was placed in the middle of the room, in front of the

television (see Section 2.4 for a description of iCub). The robot, during the game, enriched

its social presence by slightly moving its upper limbs, torso, and head. Also, in a Wizard of

Oz control setup [253], the experimenter monitored the scene through iCub’s eyes, moving

its neck and gaze to follow players’ movements in the room.

4.4.2 Procedure

Pre-Questionnaire At least two weeks before the experiment, participants filled in the

same set of questionnaires employed for the original Treasure Hunt game [14], asking

general information about their demographics; personality [256]; risk aversion [257, 258];

gambling [259]; general predisposition to trust [260]; proneness to social engineering [92];

and Negative Attitude Toward Robots (NARS) [261]. Furthermore, after watching a video4

showing iCub capabilities, they were asked several questions to measure rapport [262];

mind perception [263]; trust in robots [210]; and the Godspeed scales of anthropomorphism,

animacy, likability, and perceived intelligence [264].

UTH game On the experiment day, participants were welcomed by the experimenter, who

asked them to sign the informed consent - approved by the ethical committee of the Liguria

(Italy) region - and led them to the experimental room. There, iCub was resting with its eyes

closed and arms in a yoga position. The experimenter briefly explained to the participants

iCub’s features: the ability to see, hear, speak, and gaze; the sensitivity of its skin; the ability

to move and know the position of its body parts; and finally, the inability to move in the

room.

4https://www.youtube.com/watch?v=ZcTwO2dpX8A

https://www.youtube.com/watch?v=ZcTwO2dpX8A
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Then, the experimenter asked participants to read an instruction sheet about the UTH

game and their objective: find five plastic eggs hidden in the room in less than 20 minutes

to win 7.5 euros. Before leaving, the experimenter led the participants’ attention to the TV

displaying the countdown and the cardboard box to place the eggs. Also, the experimenter

reassured participants that they were free to open any closet and box in the room without

worrying about cleaning up. Finally, the experimenter left them alone in the room with the

robot. As a remark, neither the instruction sheet nor the experimenter stated iCub’s role. The

only information about the robot was to wait until it moved to start searching. Also, to make

the interaction more ecological and improve participants’ immersion, the experimenter told

participants about the camera and the microphone only after the experiment. The experiment

continued, as previously explained. Figure 4.4 shows how some participants put considerable

effort into looking for the eggs. The experimenter monitored the scene through iCUb’s eye

from a separate room during the game, ready to intervene to preserve participants’ safety.

Figure 4.4 An example of a participant’s major effort in looking for the plastic eggs during

the UTH game. Funny fact: near the end of the hunt, they literally threw one of the green

chairs through the room

Post-Questionnaire After the experiment, the experimenter led participants to another

room and asked them to complete a computer-based survey. The post-questionnaire included:

the NASA-TLX [265]; the IOS scale [266]; HRI adapted subscales regarding engagement,

trust, altruism and perceived information quality [267]. Also, it asked the same set of

questions of the pre-questionnaire meant to measure rapport, mind perception, trust in robots,

and the Godspeed scales; however, this time, participants were asked to think about the

just-happened experience with iCub. Finally, it asked a set of questions (on 7-point Likert

scales) named iCub’s Notion: whether (i) iCub was trustworthy in providing me indications

about the eggs’ positions; (ii) iCub was worth being trusted during the treasure hunt; (iii)

iCub was giving precise hints; (iv) the interaction with iCub was difficult. Finally, the survey
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fully disclosed the manipulated faulty behaviors, and for each fault, it asked participants:

(i) if they perceived it; (ii) how much it obstructed their gameplay; (iii) whether they felt

iCub was less, more, or equally reliable after the fault; and (iv) to rate the fault credibility,

artificiality, and severity, as in the faults validation survey (7-points Likert scales). After the

survey, the experimenter debriefed participants and gave them 15 euros of compensation.

4.4.3 Behavioral Measures

Per each condition - Transparent (T) and Non-Transparent (NT) - I extracted some general

game metrics: (i) Number of people who completed the game; (ii) Percentage of people who

gambled; (iii) Whether they lost or won; (iv) The average number of eggs found; (v) The

average number of hints asked; (vi) The average hint frequency.

Moreover, per each egg, I computed two metrics known to be an index of trust towards

robots and others [14, 268]:

• Conformation: how many times participants conformed to iCub’s pointing suggestion

(i.e., whether they changed their searching location to the new one suggested by iCub).

• Reliance: how many times participants went back asking for another hint to iCub in

case they failed to find the egg at the location iCub previously mentioned;

4.5 Results

I analyzed 32 participants for the Non-Transparent (NT) condition and 31 for the Transparent

(T) one. I discarded 5 participants from the analysis as the robot did not perform all the faults

due to technical issues. Some analyses were performed taking into consideration the original

Treasure Hunt (TH) as a reference, with 61 participants, 59% female, average age of 30.9

years (SD=9.8) with a diverse educational background [14].

4.5.1 Behavioral Analysis

In NT, 23 participants did not manage to find the 5 eggs and complete the game; the other 9

all gambled, from which just 5 found the extra egg. In T, 25 did not complete the game, 6

gambled, and only 2 won. Like TH, all the participants who found the five eggs decided to

gamble [14].
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Table 4.3 (Left) Game Statistics: number of participants looking for an egg, conformation,

average hints. (Right) Reliance for all participants, for who did not completed the UTH and

the TH reference

Eggs

Game Statistics Reliance

Participants [%] Conformation % Hints (SD) All % Not Completed % TH Ref %

NT T NT T NT T NT T NT T Not Completed Gamble Win

I 32 [100] 31 [100] 84.44 86.95 3.65 (1.66) 4.29 (2.21) 47.22 24.32 44.44 20 30.43 50

II 30 [100] 30 [97] 96.15 100 1.23 (0.65) 1.24 (0.75) 100 - 100 - 68.75 80

III 28 [87] 22 [71] 97.36 90.32 3.66 (1.68) 4.04 (1.56) 72.72 76.92 79.16 72.22 86.66 100

IV 13 [41] 10 [32] 100 80 5.4 (2.49) 3.54 (3.41) 84.37 88.89 85.71 87.5 83.33 100

V 9 [28] 6 [19] 90 100 2.55 (2.12) 3.14 (1.77) 71.42 85.71 100 66.6 100 100

Game Statistics and Reliance

In Table 4.3, it can be seen that the number of participants lowers down with the increase

of the number of the egg, as not all have found the previous one. To find the first egg,

participants of Non-Transparent (NT) took on average 6’20"(SD=3’8"); while participants of

Transparent (T) took 7’4"(SD=3’19"). As a reference, Treasure Hunt (TH) participants took

4’39" (SD=2’21").

A one-way ANOVA followed by Bonferroni post-hoc highlights how the time to find

the first egg was significantly shorter in TH than in any Unreliable Treasure Hunt (UTH)

condition, whereas there is no significant difference between T and NT (F(2120)=8.46;

p< 0.001). Also, there is no significant difference between the number of hints requested

by condition T/NT, per egg for the hints. However, in total, NT participants have asked a

significantly larger number of hints (NT: 12.25 (SD =5.11); T: 9.68 (SD=4.47); two-sample

t-test: t(61)=2.02, p=0.04). NT and T participants took a similar time to ask for the first

hint (NT: 4’34"(SD=2’45");T: 4’59"(SD=2’34")). As a reference, TH participants took

3’58"(SD=2’44"). A one-way ANOVA on timing did not reveal any significant difference

among the groups. Instead, there is not much difference between the T/NT conditions on

Conformation. Although slightly higher (almost 100%), a similar trend can be found in

TH as well [14]. Reliance (Table 4.3 - Right), is generally quite low for all participants in

T/NT. When comparing these results with TH, T/NT relied even less on the robot than the

Not Completed group of TH, which could be linked to the low number of participants who

finished the game, as reliance was strongly related to success in TH [14].

Eggs Found & Hints Asked

Figure 4.5 (right) represents the average number of eggs found during the game for the TH

and the two UTH groups. The red lines represent the average timing of the faults in the UTH
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Figure 4.5 Average number of hints asked (left) and eggs found (right) by group. Vertical

lines indicate the average timing of faults,with corresponding standard deviation: Abrupt

Pointing (PT), Noised Hint (NH), and Fake Crash (FC). Marked by (*), when statistically

different.

(Abrupt Pointing (AP), Noised Hint (NH), Fake Crash (FC)). The Distorted Good Luck is

not indicated as it always happened before the beginning of the game.

At those points in time, I computed a series of one-way ANOVA followed by Bonferroni-

corrected post-hoc analyses. The average number of eggs found was significantly higher

in TH than in both T and NT, but not between T and NT at the time of occurrence of

AP (F(2,121)=10.67; p<0.001) and NH (F(2,121)=12.14; p<0.001). Considering the oc-

currence of FC, the number of eggs found was significantly different among all groups

(F(2,121)=12.36; p<0.001). From the beginning of the game, it is clear that the average

amount of eggs found in TH is higher than the averages of T and NT (as seen in Figure 4.5).

The averages for T and NT were similar during the first phases of the game but diverged after

the NH, with T being associated with the smallest number of eggs found.

Figure 4.5 (left) represents the average number of hints asked during the game for

the three groups; it shows a similar pattern as the previous graph. Again, only Treasure

Hunt (TH) differs from both Transparent (T) and Non-Transparent (NT) at Abrupt Pointing

(AP) (F(2,121)=6.8; p=0.001, one-way ANOVA with Bonferroni post-hoc), with TH being

associated to a significantly higher number of hints asked. At Noised Hint (NH) and Fake

Crash (FC), however, only T is characterized by a number of hints significantly lower than

TH (NH: F(2,121)=5.13; p=0.007; FC: F(2,121)=5.24; p=0.006). T and NT are initially

similar, but they gradually diverge after the AP.
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Figure 4.6 Participants who perceived all the faults (4S), remaining participants (N4S). Hint

frequency divided by fault perception and fault periods: Start-AP (P1), AP-NH (P2), NH-FC

(P3), FC-End (P4). Marked by (*), statistically different.

Hints Frequency

To compare the two UTH conditions, Figure 4.6 represents the frequency of hints asked per

minute, divided according to fault periods: (P1) from the beginning till the Abrupt Pointing

(AP); (P2) from AP till the Noised Hint (NH); (P3) from NH till Fake Crash (FC) and, (P4)

from FC till the end. The hints-request frequency is plotted separately also as a function of

whether participants perceived or not all the faults. Indeed, after disclosure, participants were

asked to report if they realized each fault occurred at the end of the experiment. Against my

expectations, just 10/31 participants noticed all the four faults in the Transparent condition

and 12/32 in Non-Transparent. Based on this, I defined two subgroups: 4S, participants who

perceived all the faults, and the rest of the participants, called N4S. A two-way ANOVA

was run for each fault period, with Condition (T, NT) and Group (4S, N4S) as factors.

A significant difference between conditions emerged in P3 (F(1,59)=10.01; p=0.002) and

P4 (F(1,59)=4.38; p=0.004). Neither group difference nor interaction was significant. On

average, the hint-request frequency was significantly higher for participants in the Non-

Transparent condition for the later fault periods. By inspecting the graphs in Figure 4.6 the

N4S group from Non-Transparent seems to be driving the difference, showing a particularly

high frequency of hints, while the other three are similar. Hence, it would be possible that the

failures were not perceived as severe when the participants focused on the task. Indeed, to

impact their perception and behavior, either the participants had to experience all the faults,

or iCub had to disclose it was failing specifically.
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4.5.2 Questionnaires

Faults Perception

As previously mentioned, not all participants perceived all failures. In the analyses, they are

then separated into 4S (perceived all the four failures) and the rest (N4S). For each perceived

fault, participants were asked to judge on a 7-point Likert scale how severe it was, how much

it obstructed them, and how much time they lost.

Figure 4.7 Differences in the fault judgment between those who experienced all the faults

(4S) and the rest (N4S), based on conditions.

Figure 4.7 represents the differences in perception between the groups in the Transparent

(T) and Non-Transparent (NT) conditions. Note that the question about Time Loss for the

first fault (i.e., Distorted Good Luck) was removed as it happened before the timer’s start.

The differences between the 4S and N4S groups are larger in the Non-Transparent condition

than in the Transparent one, meaning that a similar score is given by 4S and N4S in T, but

not in NT. This suggests that in NT, there is a tendency where the people who experienced

all the faults (4S) judged their respective severity, obstruction, and time loss higher that N4S

(the group that did not experience all of them). Contrarily, in the Transparent condition, both

subgroups (4S and N4S) evaluated the severity, obstruction, and time loss of all the faults

similarly, suggesting that the Transparency condition, where iCub stated each time that it has

a malfunction, influenced the perception and homogenized it.
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NASA-TLX, Information Quality and Notion

Just after the experiment, before the disclosure, the Inclusion of Self (IOS) scale [266],

NASA-TLX [265], perceived information quality [267], and iCub’s Notion surveys were

administered to participants. On average, across the three groups, the inclusion of self with

iCub was 4/7, with no significant differences among Transparent (T), Non-Transparent (NT),

and Treasure Hunt (TH) (one-way ANOVA).

Figure 4.8 NASA-TLX overall workload, iCub’s Notion, and Perceived Information Quality.

Marked by (*) statistically different with a Bonferroni correction; (+) strong tendency but

does not resist the Bonferroni correction.

To assess the potential difference in the total workload participants experienced, a one-

way ANOVA was run on the NASA-TLX, followed by Bonferroni correction (F(2,121)=3.65,

p=0.028). NT was associated with a task load significantly higher than TH and T (although

the latter comparison does not resist Bonferroni correction 4.8. These results suggest that

transparency could lower the task load index to a similar amount as when the robot was not

experiencing any faults.

iCub’s Notion was analyzed with a one-way ANOVA followed by Bonferroni post hoc,

showing a significant difference (F(2,121)=7.22; p=0.001) among the three groups. NT

(24.47/28;SD =2.9) is not perceived differently from TH (25.03/28; SD=3.44). Contrariwise,

T (21.9/28; SD=5.03) is significantly lower than TH and shows a tendency to be lower than

NT (but does not resist the Bonferroni correction with p=0.017 against a corrected threshold

of p=0.016) (see Figure 4.8)

In Perceived Information Quality, a one-way ANOVA showed a significant difference

among the three groups (F(2, 121)=5.18; p=0.006). T tends to be lower (16.25/21; SD=5.04)
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than NT (18.4/21; SD=2.6) and TH (18.67/21; SD=2.9), however these differences failed to

pass the Bonferroni correction with NT (p=0.04) and TH (p=0.018) against the corrected

threshold of p=0.016 (see Figure 4.8). All the hints and pointing positions were the same in

all conditions; however, the results of the last two analyses highlight that the Transparent

condition generally has a lower score than the other two.

Pre-Post Questionnaires

Mind Attribution [263] was measured before (pre) and after (post) the experiment. For

Non-Transparent (NT) condition, Mind Agency was rated pre: 15.62/28(SD=4.26); post:

14.68/28(SD=4.43); while Mind Experience statistically increased (paired t-test, t(31)=-3.09,

p=0.004) from 8.59/28(SD=5.16) to 10.56/28(SD=5). In Transparent (T), Mind Agency

was rated pre; 17.48/28(SD=5.68); post: 16.83/28(SD=5.04); while Mind Experience

also statistically increased (paired t-test, t(30)=-3.29,p=0.002) from 9.54/28(SD=6.3) to

12.97/28(SD=6.62).

In both conditions, similar to literature [269], participants rated the mind agency of a

robot somewhere midway, while the mind experience was quite low. After the experiment, the

agency remains the same; however, the experience statistically increases in both conditions.

This result follows the same trend as the original Treasure Hunt (TH). The ratings of the

rapport questions [262] generally increased after the experiment in both conditions. However,

the only statistically significant differences were in the NT condition and limited for the items:

(i) Friends, from 3.84/7(SD=2.05) to 4.66/7(SD=2.01), paired t-test (t(31)=-2.57; p=0.01);

and (ii) Happiness, from 3.68/7(SD=1.92) to 4.37/7(SD=1.68), paired t-test (t(31)=-2.43; p

=0.02). In the T condition, the rapport increased, but not significantly. In TH, the increase

was much higher and statistically significant.

Trust in robots [210] was only computed for participants who did not complete the game

(23 for NT, 24 for T, as seen in Table I) as statistical differences can be observed in trust

depending on the game outcome [14]. There were not enough participants in the other

categories to perform statistical analysis. In NT, the only category where trust increased

was the Benevolence trait, from 13.82/25(SD=3.41) to 15.47(SD=3.48) with a paired t-test

(t(22)=-2.7; p =0.01). A series of one-way ANOVA was conducted among the three groups

T/NT/TH for the different traits of Ability, Benevolence, and Integrity, but no significant

differences were found. Against the initial expectations, the results in those three groups are

similar.
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Figure 4.9 Pre-Post Godspeed questionnaire for both conditions. Marked by (*), statistically

different.

The Godspeed [270] questionnaire was administered before and after the experiment for

both conditions 4.9. For NT, the experiment caused an increase in the rating that reached sig-

nificance only for Likeability: from 21.78/25(SD=2.81) to 23.18/25(SD=1.95), paired t-test

(t(31)=-2.59; p=0.01). This result follows the same trend observed in the original Treasure

Hunt game (TH). However, in T, the ratings decreased after the experiment. In particular, the

decrease was statistically significant for Anthropomorphism: from 17.35/25(SD=3.89) to

15.67/25(SD=4.65), paired t-test (t(30)=2.18; p=0.03); and Animacy: from 22.8/30(SD=3.95)

to 20.77/30(SD=5.42), paired t-test (t(30)=2.17; p=0.03). Note that all the pre values in T

were statistically higher than the pre of NT. Although a lack of increase in ratings for this

group could have been ascribed to a ceiling effect, this could not explain the significant de-

crease observed. Together with the previous analyses, these results suggest that Transparency

decreases the overall quality of interaction.

4.6 Discussion

The first and most vital expectation in the Unreliable Treasure Hunt (UTH) design was that

the faults would strongly negatively affect participants’ behavior and trust toward the robot.

Indeed, I designed the faults to be evident, and the online-survey participants judged them

as severe and able to undermine the trust toward robots [250]. Unexpectedly, just a third of

the participants noticed all the four faults, suggesting that the involvement in the treasure

hunt game prevented the players to realize that something wrong was happening in the robot.

Furthermore, the impact on participants’ behavior (i.e., in the frequency of hints asked)
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was more evident only when the robot overtly informed them about its failures (i.e., in the

Transparent condition) or when they experienced all the faults 4.6.

Overall, considering the questionnaires’ responses, there were no significant differences

in trust perception between the original Treasure Hunt game (TH) and the Unreliable version.

In particular, no apparent reduction in trust toward the robot could be found. Considering the

behavioral measures, participants’ performance in TH was significantly better than in UTH.

However, this difference did not seem to arise from the unreliability of the novel condition.

Indeed, participants’ performance in UTH was lower since the start of the game, when the

failures could not have had such a significant impact. Before the game started, they had only

witnessed a very mild fault (iCub wishing "Good Luck" with a distorted voice). However,

performance metrics such as the time to find the first egg, the average number of hints asked,

and eggs found (4.5) were already lower than in TH.

A possible alternative cause of the observed lower performances in UTH might be found

in the age and socio-economical status of the new participants. In UTH the average age was

38(SD=13.8) versus 30.9(SD=9.8) in TH (two-sample t-test: t(121)=-3.39; p=0.0009). Only

a quarter of the sample was composed of students in UTH, compared to 33% in TH. The

average older age of UTH players might have been associated with more reduced exposure

to games such as treasure hunts and escape rooms, which tend to attract a younger audience.

Also, participants were asked to move in the room actively, sometimes crouching under the

tables or chairs or picking boxes placed on top of a high shelf; hence, an older age could have

slowed down the UTH players. Alternatively, the worse performance could be caused by a

reduced commitment to the game. Several UTH participants reported that the money they

could win in the game was much less than their hourly salary, making the monetary award

in the experiment not a strong motivator. Running a practice round could have mitigated

these issues, preparing players for the real experiment; however, to allow a better comparison

with the TH study, where no practice round was provided, it has been necessary to minimize

the modifications. In summary, although it cannot be excluded that the robot’s unreliability

might have played a role in interfering with UTH participants’ performance, it seems not to

be the principal cause.

The results above show that (H1) the robot’s mechanical faults did not negatively affect

the participants’ perceived trust. The strong involvement in the game and the choice of faults

that - though severe - did not hinder its completion made the participants ignore the failure

and still rely on the robot for help. This seems to be confirmed by participants’ comments.

Some of them, after the experiment, reported that faulting is normal in robots and that it was
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not particularly important as the iCub robot kept working. So, against expectations, it is not

enough for a robot to mechanically fail during a game to reduce human participants’ trust.

Also, against expectations (H2), the perceived trust in the robot was not higher in the

Transparent condition. There are no differences in gambling, conformation, reliance, or trust

questionnaire between the two conditions. The results align with recent literature, which

shows that transparency does not always lead to higher trust; instead, participants somehow

utilize that information [271]. In the current experiment, the participants who experienced

all the faults in the Transparent condition similarly judged them as the ones who did not

experience them all; whereas, in the Non Transparent condition, the difference in judgment

between participants who experienced all faults and the rest was much larger (see Figure 4.7).

Similarly, the overall workload felt in the Transparent condition was almost at the same level

as the TH, in contrast to the Non-Transparent condition (see Figure 4.8). In the Transparent

condition, participants may have realized that the failures were iCub’s fault (not theirs) and

had a limited impact on the search activity, so they felt less stressed about the game outcome.

In general, participants were talking back to iCub whenever it was disclosing a fault (i.e.,

"Ok, I understood.", "I will tell the experimenter", "Should I call an ambulance?").

On the flip side, the quality of interaction in the Transparent condition was perceived

much worse: in the quality of information given [267] and iCub’s Notion (see Figure 4.8). In

the rating of the Godspeed scales [270] transparency even led to a reduction in the ratings

after the experiment (see Figure 4.9). From a behavioral perspective, participants in the

Transparent condition found fewer eggs and asked for fewer hints on average (see Figure

4.5), and the hint frequency by fault periods is lower than in the Non-Transparent condition

(see Figure 4.6). It seems that the robot actively disclosing its failures negatively affects

participants’ behavioral and affective states. In this context, I implemented transparency

as a post hoc simple explanation of the unusual distortions in the robot’s behavior. Further

research would be needed to explore the impact of different types of transparent behaviors, for

instance, "predictive transparency," where the robot anticipates the upcoming malfunction.

The limited effect of the transparency observed in this experiment might also be related

to the fact that the robot could autonomously recover from failure. Transparency might have

played a much more relevant and positive role in a situation where the robot unexpectedly

stopped working well (as in this experiment) but then required human intervention to recover

its functionalities. There, informing the participant could become crucial for the interaction

to continue; instead, from my results, it seems that transparency further "normalized" the

different failures. Beyond that, it represented more a disturbance for the engaged player than

an appreciated feature.
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In conclusion, this study sheds light on the possible intertwined relations between un-

reliability and transparency when predicting human trust perception when participants are

confronted with a faulty robot. A robot that fails does not necessarily lose its partners’ trust,

mainly if the failure is only mechanical and does not hinder the continuation of the interaction.

Further research will be needed to assess the impact of different robot errors, i.e., cognitive

or social. Moreover, in line with recent literature, a robot that automatically explains when it

fails does not necessarily increase trust. However, it might unburden the perceived workload

at the cost of worsening the perceived quality of interaction.

From the full-thesis point of view, results suggest that participants’ decision to take a

risk by complying with the suggestion of a faulty robot depends on their awareness. The

frequency of hints asked and eggs found decreased if they either perceived all the faults (N4S)

or the iCub raised their awareness by being transparent about its faultiness. Starting from this

observation, I speculated that risk perception, or better appraisal, during decision-making is

crucial in leading participants to compliant behavior. This was the first building block toward

designing an ecological setup to study participants’ behavioral and physiological reactions to

diverse social engineering attacks. However, before getting there, I explored the usage of

physiological signals to infer others’ inner states and cognition.



Chapter 5

Detecting Deceptive Attackers

5.1 Overview

Any Social Engineering (SE) attack starts with the attacker fabricating a fake credible story

[8]. This pretext is then used to establish a trust-based relationship with the victims. Most of

the SE attacks happen via emails in the phishing scenario; there, the defense systems could

detect the incoming spoofed messages and prevent them from reaching the target. However,

attacks also happen face-to-face [7]. Through impersonation an attacker could pretend to be

someone else and try to breach the physical security of sensitive buildings. Sadly, literature

provides no defenses for this scenario other than authentication measures.

In this project, I explored how the humanoid robot iCub could help humans defending

from face-to-face attacks by autonomously detecting deception in real-time. The fabrication

and maintenance of a credible lie increase humans’ cognitive load [120, 9, 131] more than

truth-telling. By detecting this inner state change, a humanoid robot could understand how

much the interacting partner is trustworthy and raise a security warning. To do so, robots

could rely on established cognitive load proxies like pupillometry [118], blinking [130],

voice tone [272], hand movements [273], skin temperature [274]. In this study, I relied on

pupillometry as it is less controllable and, hence, less deceivable than the other proxies [275].

Also, previous studies in which I contributed proved how, in deception detection during

HRI, pupil dilation is more reliable than blinking and response time[133]. Finally, using

pupillometry allowed me to start answering to RQ1: the usage of physiological signals in the

Social Engineering defense. Furthermore, I addressed a second literature gap: state-of-the-art

deception detection systems focus mainly on formal, interrogatory-like scenarios. These

contexts, even if realistic, represent only a small subsection of the real-world interactions in
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which it could be helpful to unmask liars.

For this purpose, I developed an end-to-end (E2E) architecture, enabling the humanoid

iCub to detect lies autonomously in real-time during an informal human-robot interaction.

ICub can learn from a brief game session how a specific partner lies and tells the truth,

exploiting and improving this knowledge in classifying further sentences. Post-hoc, I trained

several machine learning classifiers and anomaly detectors to improve iCub’s performances;

and I explored how to further extend the system by taking advantage of how humans detect

lies in everyday life.

Figure 5.1 (Left) Participant describing a card to iCub, while wearing the Tobii Pro Glasses

2 eye tracker (Logitech Brio 4k webcam point of view); (Right) Examples of Dixit Journey

gaming cards (authored by Jean-Louis Roubira, designed by Xavier Collette and published

by Libellud).

5.2 An Informal Setup to Detect Lies

Taking inspiration from the game "Box of Lies"1 of the "Tonight Show" by Jimmy Fellon, I

designed and developed a magic-trick-like card game in HRI to study lie detection during

informal interactions. In this game, players describe a set of cards from the Dixit2 card

game to the iCub while wearing the Tobii Pro Glasses 2 eye tracker [276]. Players were

instructed to describe each card "credibly and deceitfully" or "to describe what they see".

ICub autonomously led the game (see next section) and detected players’ lies in real-time.

1https://www.youtube.com/watch?v=Md4QnipNYqM
2https://boardgamegeek.com/boardgame/121288/dixit-journey

https://www.youtube.com/watch?v=Md4QnipNYqM
https://boardgamegeek.com/boardgame/121288/dixit-journey
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5.2.1 The Magic Trick card game

The game was composed of two phases, Calibration Phase and Testing Phase, both led

autonomously by iCub. During the game, participants sat on a chair in front of the robot with

a table between them. The deck of Dixit cards and six green rectangular marks in a row (see

Figure 5.1) were on the table. Also, there was a Tobii Pro Glasses 2 eye tracker.

Calibration Phase Firstly, iCub asked the participants to shuffle the deck, extract six cards

without looking at them, and put the deck on a closet nearby. Then, iCub asked them to draw

out one of the cards (it called it the secret card) and memorize it. Afterward, iCub instructed

the participants to look at each of the six cards, one by one, shuffle them, and put them facing

down on the six green marks on the table. iCub explained that it was going to point each;

they had to take the pointed card, look at it, describe it, and then put it back facing down on

the table. Then, iCub explained the game rules: "The trick is this: if the card you take is your

secret card, you should describe it deceitfully and creatively. Otherwise, describe just what

you see". Finally, iCub asked the participants to wear the Tobii Pro Glasses 2 eye tracker,

take a deep breath and relax.

iCub randomly pointed to each of the six cards, listened to participants’ description

and, acknowledged it with a short greeting sentence (i.e., "ok", "I see", . . . ). After the last

description, iCub guessed the participants’ secret card and asked them to either put the

six cards aside to validate the detection or show to iCub the real secret card to reject it.

Participants’ confirmation is meant to select the correct secret card if iCub fails to detect

it. Before the beginning of the Testing Phase, the experimenter could manually override

the detected secret card with the one presented by the participants - this is the only manual

intervention needed. Finally, iCub asked participants to set aside the six cards to start a

second game.

Testing Phase When the participants removed the six cards from the table, iCub asked

them to take the deck and draw six new cards. iCub told the participants to look at all the

cards, one by one, then shuffle them and place them on the six green marks. Afterward,

iCub instructed the participants that it would point to all the cards from right to left (from

the participants’ point of view) and instructed them to handle the pointed card as in the first

game. However, it added:"This time you can decide, for each card, whether to describe it

creatively and deceitfully or to describe just what you see". While the robot explained the

rules, the participants kept wearing the Tobii Pro Glasses 2.
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For each card, iCub pointed to it, listened to the participants’ description, acknowledged

it with a short sentence, tried to classify the description as truthful or fake, and asked for

confirmation. The participants had to show the card they just described to reject iCub’s

classification or do nothing to validate it.

General Remarks

During the rule explanation of the two phases, iCub instructed the participants to press

a button on a keyboard to move to the next task (i.e., after shuffling the cards deck or

memorizing the secret card). No time limit was given to shuffle the card, look at them,

memorize the secret card, or describe them. iCub’s pointing has been designed to replicate a

human-like gesture: first moving the gaze toward the target, then the arm, fingers, and torso

with a biologically inspired velocity profile.

5.3 End-to-end Lie Detection System

Figure 5.2 (Left) Autonomous end-to-end architecture used in real-time to enable iCub to

lead the card game; (Right) Mean pupil dilation during Calibration and Testing Phases for

participant A. Green circles are truthful card description; red squares are false ones. Bars

represent standard errors.

iCub autonomously leads the card game thanks to the end-to-end (E2E) architecture in

Figure 5.2 (left).

Turn Detector

With the Turn Detector, iCub detects the beginning and end of each card description by

tracking the number of green (marks) and blue (cards) blobs visible in the scene with a simple
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Hue Saturation Value (HSV) filter. This is also used to understand participants’ confirmations

(i.e., reveal all the marks (or none) to confirm the detection (classification); or reveal only

one mark to reject them).

Tobii Streamer

The Tobii Streamer reads participants’ pupillometry features from the Tobii Pro Glasses 2

eye tracker; it streams in real-time participants’ right-eye pupil dilation (10 Hz) and logs the

complete set of pupillometry and gaze features of both eyes (100 Hz) over the YARP robotic

platform [277]. I developed the Tobii Streamer extending the Tobii Glasses Py Controller

previously developed by De Tommaso et al. [278].

Game Controller

The Game Controller implements the main game engine: (i) it controls iCub’s movements

and speech; and (ii) it segments the start and end of each pointing, card description, and

phase, logging annotation events. The logged annotation events and pupil data points are

synchronized over the YARP robotic platform, providing an autonomous annotation for

future analysis.

Secret Card Detector & Card Classifier

Finally, the Secret Card Detector and the Card Classifier enable iCub to identify participants’

lies during the game. iCub detects (Calibration Phase) and classifies (Testing Phase) players’

lies thanks to a specific Task Evoked Pupillary Response: the fabrication of a credible and

consistent deceptive card description triggers an increase in players’ cognitive load [279, 280];

this increment reflects on a higher pupil dilation with respect to truthful card descriptions

[9, 132, 281]. ICub aggregates participants’ pupil dilation data points, computing the mean

pupil dilations during each card description and using them to detect players’ lies. I focused

on the right eye’s pupil dilation since both Tobii documentation [282] and previous results

indicate that pupil dilation is not different between the right and left eye (as we confirmed in

a preliminary work [133]). Furthermore, to avoid unnecessary impacts on the informality of

the interaction, I decided to skip the calibration of the Tobii eye tracker: Tobii documentation

reports how the calibration is only relevant for the gaze features and does not impact the

pupil dilation measurement [282]. The components implement two heuristic methods which

behavior is shown in Figure 5.2 (right):
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Calibration Heuristic During the Calibration Phase, iCub detects as the secret card the one

related to the highest mean pupil dilation among the six cards’ descriptions. Indeed, if lying

reflects on wider pupil dilation, it is reasonably safe to assume that the mean pupil dilation

for the only false description should be the highest. I developed this heuristic in preliminary

work, published in [185]. However, it is not always true, as I will show in section 5.5.2

Testing Heuristic At the end of the Calibration Phase, iCub knows 6 mean pupil dilation

data points: one related to the secret card and five related to truthful cards. With them, it

computes two reference scores: the true reference score is the average of the five mean

pupil dilations of truthful cards; the false reference score is just the secret card mean pupil

dilation. Then, the mean pupil dilation for each novel card description (from the Testing

Phase) was computed and compared to the two reference scores. By taking the absolute

minimum difference, iCub could label the current description as real or fake. Note that

no absolute threshold for the changes in pupil dilation is used: thresholds are dynamically

learned for each player from the Calibration Phase data.

5.4 Experiment

5.4.1 Publications

The magic trick card game experimental setup, the E2E architecture explained above, the

data collection, results, and discussion below only concern the last iteration of an incremental

design process. Indeed, this lie detection experiment was born as a spin-off of another

study in which we proved the Task-Evoked Pupillary Responses (TEPR) related to deception

happen both in interrogatory-like Human-Human, and Human-Robot interaction [133]3.

After the main study, participants were asked to describe six fixed cards to iCub, lying on a

previously extracted one; the experimenter listened to the descriptions through iCub’s sensors

and performed the classification. Interestingly, I found the same TEPR effect also in the

informal card game [283]4, which pushed me to explore it further. In the first iteration, I

3Article peer-reviewed and published to Frontiers in Robotics and AI. I took care of the data collection and

manual annotation
4Article peer-reviewed and published as Late-Braking Report to the International Conference of Human-

Robot Interaction (HRI2020). I took care of the data analysis and writing; the other authors contributed with

advice and proofreading
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developed and validated the Calibration Heuristic in a pilot study [284]5. Then, I introduced

the Dixit cards and developed the E2E architecture, making iCub able to autonomously lead

the Calibration Phase of the HRI [185]6. In the last iteration, I introduced the Testing Phase,

making iCub able to learn from a brief interaction and adapt over further sessions [285]7.

Finally, I divulged the scientific contributions of this project at two Italian conferences in

Rome [286]8, and Turin [252].

5.4.2 Setup and Materials

The room was arranged to replicate an informal interaction scenario (Figure 5.3). The

participants sat in front of the iCub humanoid robot, separated by a table covered with a

black cloth. The experimenter placed six green marks (95x70 mm), a deck of 84 cards

from the Dixit Journey card game with the back painted in blue, a keyboard, and a Tobii

Pro Glasses 2 eye tracker on the table. There was a little drawer (deployment area) on the

participants’ left, while a black curtain hid the experimenter from participants’ sight on the

right. Behind iCub, a 47 inches television showed iCub’s speech during the interaction (to

prevent misunderstanding). A Logitech Brio 4k webcam, fixed on the television, recorded

the scene from iCub’s point of view at a resolution of 1080p (Figure 1, left).

The Dixit Journey card deck is composed of 84 cards (80x120 mm) with different toon-

styled drawings meant to stimulate creative thinking [287] (Figure 5.1 - right). Designing the

card game, I tried to avoid any cue – other than the wearable eye tracker – for the participants

about the method used by iCub to detect their false card descriptions; in this sense, I avoided

any machine-readable mark (i.e., QR codes on cards’ back) that iCub could use to recognize

the cards. The Tobii Pro Glasses 2 eye tracker recorded participants’ pupillometry features at

a frequency of 100 Hz and streamed the participants’ pupil dilations at 10 Hz in real time.

The window blinders were closed, and the room was lit with artificial light to ensure a stable

illumination condition for all the participants.

5Article peer-reviewed and published to the Workshop on Exploring Creative Content in Social Robotics of

the International Conference of Human-Robot Interaction (HRI2020). I took care of the development, data

collection, analysis, and writing; the other authors contributed with advice and proofreading
6Article peer-reviewed and published to the International Conference of Human-Robot Interaction

(HRI2021). I took care of the development, data collection, analysis, and writing; the other authors con-

tributed with advice and proofreading
7Article peer-reviewed and published to the International Journal of Social Robotics (IJSR). I took care

of the development, data collection, analysis, and writing; the other authors contributed with advice and

proofreading
8Article peer-reviewed and published to the I-RIM 2021 conference



5.4 Experiment 65

Figure 5.3 Card game experimental setup with iCub (left) and the participant (right) sitting

on a table. The deployment area is the location where the remaining Dixit Cards after each

drawing were placed.

The iCub humanoid robotic platform [179] played the role of a magician. iCub au-

tonomously led the whole interaction thanks to the autonomous end-to-end (E2E) architecture

in Figure 5.2. The experimenter monitored the scene through iCub’s left eye, ensuring the

participants’ safety and the correct execution of the experiment.

5.4.3 Participants

39 participants (25 females, 14 males), with an average age of 28 years (SD=8) and a broad

educational background, participated in the experiment. They signed an informed consent

form approved by the ethical committee of the Liguria region (Italy), where it was stated

that cameras and microphones could record their performance and agreed on using their data

for scientific purposes. After the experiment, they received monetary compensation of 10C.

Although all participants completed the game, 5 were excluded from further analysis: 2 for

technical issues, 2 because they did not follow the game’s rules. The last one was considered

an outlier, as he/she concluded the game in 38 minutes (duration longer than 3SD plus the

average game duration, which lasted 17 minutes). Hence, the final sample includes N=34

participants (22 females, 12 males).
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5.4.4 Procedure

At least a day before the experimental session, the participants filled in the following ques-

tionnaires: The Big Five personality traits (extroversion, agreeableness, conscientiousness,

neuroticism, openness) [256]; the Brief Histrionic Personality Disorder (BHPD) [288]; and

the Short Dark Triad (SD3, Machiavellianism, narcissism, and psychopathy) [289].

After signing the informed consent, the experimenter led the participants to the experi-

mental room where they played the magic trick card game as explained in Section 5.2.

After the experiment, the participants filled in the NASA-TLX [265] and a set of questions

regarding (i) the experienced fun, (ii) creative effort, (iii) strategies adopted in fabricating a

deceitful and creative description during the game, (iv) previous experience about the Dixit

Journey card game, (v) previous experience about improvisation and acting, and, (vi) habits

on playing deception-related games.

5.4.5 Pupillometry Measures and Data Preparation

Figure 5.4 Computational workflow to preprocess the collected data from Tobii Pro Glasses

2 eye tracker. Two datasets are extracted. The difference depends on the applied baseline

correction (single or per-card).

I built two datasets from the pupil dilation data points collected during the game following

the computational workflow in Figure 5.4. I could use only the right and left eye pupil dilation

(in millimeters) from the pupillometry features measured by the Tobii Pro Glasses 2 eye

tracker (gaze points, fixations, saccades, pupil dilation). Indeed, I decided not to perform the

device calibration - not necessary for pupil measurement as reported in Tobii documentation

[282] - to avoid impacting the informality of the social interaction. Hence, the only reliable

eye measures are the pupil dilation [282]. Pupil dilation data points are synchronized over

the YARP robotic platform [277] with the annotation events.
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Card Segmentation (Figure 5.4, left)

The Game Controller autonomously performs the card trial annotation (Figure 5.2, left) by

rising annotation events on the YARP robotic platform for the beginning and end of each

pointing and card description. I segmented the pupil dilation time series into three temporal

intervals for each card trial: (i) robot’s turn: the iCub’s pointing gesture, from the moment

iCub starts the pointing gesture till the participant takes the pointed card from the green mark;

(ii) player’s turn: the card descriptions, from the moment participants, take a card from the

green mark, till they put it back on it; (iii) card trial: the whole interaction for a single card,

from the moment iCub starts the pointing gesture till the participants put the card back on the

green mark.

Data Preprocessing (Figure 5.4, center)

I fitted and re-sampled the time series at 10 Hz to make them consistent with the real-time

processing; then, I applied a median filter to remove the outliers and a rolling window means

filter to smooth the time series and infer any eventual missing data points. I then corrected

each time series subtracting a baseline value for each participant [168]. In this reference

system, a positive value represents a dilation, while a negative value represents a contraction

with respect to the baseline. I corrected the time series based on two different baselines: (i)

In the Single Baseline Correction, the baseline is computed as the average pupil dilation

during the 5 seconds before the first pointing of the Calibration Phase - when iCub asks

participants to take a deep breath and relax - and applied to all the cars of both phases; (ii)

in the Per-card Baseline Correction, a specific baseline is computed for each card as the

average pupil dilation during the 5 seconds before each pointing.

Feature Extraction (Figure 5.4, right)

Finally, I aggregated the time series of each temporal interval and computed several features.

For each player’s turn, robot’s turn, and card trial I computed the maximum, minimum, mean

and standard deviation of the pupil dilation in millimeters, and the duration in seconds.

Also, on the whole card trial, I computed 26 time series features using the python library

Time Series Feature Extraction Library (TSFEL) [290]. In particular, the TSFEL features

are: (i) Statistical Features: median, median absolute deviation, mean absolute deviation,

kurtosis, skewness and variance; (ii) Temporal Features: absolute energy, area under the

curve, auto-correlation, centroid, entropy, mean absolute difference, mean difference, median

absolute difference, median difference, peak to peak distance, slope, total energy; (iii)
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Spectral Features: fundamental frequency, maximum frequency, median frequency, spectral

centroid, spectral entropy, spectral kurtosis, spectral skewness, spectral slope. I considered

the features for both eyes as separate data points to augment the datasets. This results in two

different datasets:

Single Baseline Dataset This dataset includes the data points of both phases, replicating

the data structure used in real-time. It is meant to explore incremental learning over multiple

interactions with the same individual.

Per-card Baseline Dataset This dataset, instead, includes only data from the Testing Phase;

it is meant to train generic machine learning models independent from the specific interacting

partner.

Shapiro-Wilk and D’Agostino K-squared normality tests showed that some of the features

of the datasets were not normally distributed. Therefore, I opted for non-parametric tests for

all the following statistical analyses. Additionally, I decided to focus on data points from

participants’ right eye only (unless otherwise specified) since there is no difference between

right and left eye features [282].

5.5 Results

This section reports the in-game and questionnaires results and post-hoc analysis of the

collected pupillometry data.

5.5.1 In-game Results

The interaction lasted, on average, 17 minutes (SD=5) from the beginning of iCub explaining

the Calibration Phase’s rules till the final greeting of the Testing Phase. The Calibration

Phase lasted, on average, 8 minutes (SD=3), during which iCub successfully detected the

players’ secret card with an accuracy of 88.2% (against a chance level of 16.6%, N=34). The

Testing Phase lasted, on average, 8 minutes (SD=2). The participants were free to choose

whether to lie or not, producing on average 2.73 (SD=0.94, 45%) false descriptions among

the six cards. ICub successfully classified each card description as true or false with accuracy

= 70.8%, precision = 73.6%, recall = 57% and F1 score = 64.2% (N=34).
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Table 5.1 Participants’ psychological profile

Score % Big Five {O, C, E, A, N} Dark Triad {M, N, P} Histrionic

0 - 20 {0, 0, 0, 0, 2} {2, 6, 15} 6

20 - 40 {4, 5, 3, 1, 17} {8, 4, 13} 4

40 - 60 {24, 22, 23, 6, 6} {18, 11, 1} 11

60 - 80 {1, 2, 1, 21, 3} {0, 4, 0} 4

80 - 100 {0, 0, 0, 1, 1} {1, 4, 0} 4

Table 5.1 summarizes the results of the Big Five personality traits [256], Brief Histrionic

Personality Disorder [288] and Short Dark Triad [289] questionnaires, performed before

the experiment. Average scores for the Big Five were Agreeableness: M=0.659, SD=0.113;

Conscientiousness: M=0.481, SD=0.072; Neuroticism: M=0.387, SD=0.16; Openness to

experiences: M=0.476, SD=0.07 and Extraversion: M=0.486, SD=0.061. Considering the

Dark Triad, the scores were Psychopathy: M=0.191, SD=0.113; Machiavellianism: M=0.438,

SD=0.129 and Narcissism: M=0.396, SD=0.15. For the Brief Histrionic Personality Disorder,

the average score was M=0.481, SD=0.26.

After the experiment, participants filled in the NASA-TLX questionnaire, rating on a

10-point Likert scale their effort in performing the task. They reported a low average task

load (M=3.717, SD=1.041). Among the components, Mental Effort (M=5.41, SD=1.78),

Fatigue (M=5.07, SD=2.14) and Performance (M=5.35, SD=2.32) are slightly higher than

Temporal Effort (M=2.59, SD=1.72), Frustration (M=2.72, SD=1.83) and Physical Effort

(M=1.21, SD=0.49). This is consistent with the requirements of the task. Also, I asked

participants to self-report, on a 5-points Likert scale, the effort they put into fabricating

creative and deceptive descriptions (Lie Effort: M=4.17, SD=0.71) and the experienced fun

(Fun: M=4.59, SD=0.57).

I explored whether pupil dilation features were dependent on participants’ personality

traits. I considered the Testing Phase data from the Per-card Baseline Dataset to minimize

the impact of card presentation order on pupil features, normalizing each card for its baseline.

I fit two linear regression models with the personality traits from the pre-questionnaire

as independent variables and, as dependent variables, the difference between mean pupil

dilation for false and true cards or the mean pupil dilation baseline. Results show that only

neuroticism correlates significantly with the mean pupil dilation baseline (t=2.492, p=0.021,

Adj. R2=0.115). See [185] for a deeper analysis of the questionnaires.
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5.5.2 Learning From a Brief Interaction

To investigate the relationship between pupil dilation and lying observed during the game, I

analyzed the Single Baseline Dataset which resembles the data structure used in real-time.

Figure 5.5 Average of mean pupil dilation during player’s turn for Calibration and Testing

Phases, with standard errors of the mean. (* = p<0.05, ** = p<0.001).

The Single Baseline Dataset presents a multilevel structure (multiple phases for the same

participant, nested in card trials, nested in turns) with unbalanced card classes (one secret

card among six (about 16.6%) in the Calibration Phase; and on average 45% of false cards in

the Testing Phase). Since the real-time game was based on participants’ mean pupil dilation

during the player’s turn, I decided to focus on such temporal intervals.

I fitted a mixed effects model for the player turns with mean pupil dilation as the outcome

variable. As fixed effects I entered "card label" (two levels: true, false), "phase" (two levels:

calibration, testing) and their interaction into the model. As random effect I had intercept for

participants. I set the reference level on the Testing Phase and false card label. Results show

a highly significant effect of card label (B=-0.223, t=-8.885, p<0.0001) revealing a higher

mean pupil dilation for the false card descriptions with respect to the truthful ones. I also

found a significant effect of phase (B=0.104, t=2.428, p=0.016), with a significantly lower

mean pupil dilation in the Testing Phase, and no significance of the interaction between the

two factors (B=-0.052, t=-1.023, p=0.307) (see Figure 5.5).

As an exploratory analysis, I fit another mixed-effects model on the robot’s turn, with

the same structure mentioned above. Results show no effect on the card label (B=-0.035,

t=-1.373, p=0.171), but a highly significant effect on the phase (B=0.124, t=3.490, p=0.0005)

confirming a lower mean pupil dilation in the Testing Phase with respect to the Calibration
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one also for this turn. Finally, I found no effect of the interaction of card label and phase

factors (B=-0.014, t=-0.331, p=0.741).

Incremental Testing Heuristic

Even if the Testing Heuristic demonstrated a pretty good accuracy – humans perform near

chance on detecting lies [291] – it has a low recall score (recall = 57%, accuracy = 70.8%,

precision = 73.6%, N=34), that is, it recognizes only a relatively low proportion of the false

statements made by the participants.

Figure 5.6 Mean pupil dilation data points as seen by the Testing Heuristic for participant A

(left) and B (right). Color represents the real class (green = true, red = false); shape represents

the predicted class (circle = true, square = false); bars represent standard deviation.

Figure 5.6 provides two examples of correct (participant A, left graph) and wrong (par-

ticipant B, right graph) classifications. The two panels show the mean pupil dilation as

processed by the Testing Heuristic. In each graph, the two data points on the left represent

the two reference scores: the red square is the mean pupil dilation for the secret card, while

the green circle is the average of the mean pupil dilations for the truthful cards. On the right

side are the mean pupil dilation data points for each card of the Testing Phase. For participant

A, pupil dilations for false and true descriptions remain consistent with the average values

measured during the previous phase, and the classification is always successful. Conversely,

all the Testing Phase mean pupil dilations of participant B (right graph) fall in the range of

the true reference score. Hence all the false card descriptions have been misclassified as false

positives (red circles).

The observed errors are caused by two assumptions on which the heuristic is based: (i)

the difference in pupil dilation between false and true sentences remains almost the same
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between the two phases, and (ii) participants’ pupil dilation remains almost stable between

the two phases. The first assumption is confirmed by the non-significant difference in the

interaction of "phase" and "card labels" in both turns. However, the statistical analysis

showed that participants’ pupil dilation is, on average, lower during the Testing Phase.

To compensate for this effect and increase the robustness of the heuristic, I explored the

possibility of incrementally adapting the reference scores for truthful and false card descrip-

tions. After each card classification, the new card value is aggregated with the reference

scores. This way, iCub incrementally learns how the human partner lies and tells the truth,

improving the classification performances. I simulated the Testing Heuristic based on the

mean pupil dilation during the player’s turn, as in the real-time game, but including the

incremental learning. For each Testing Phase card trial, both the reference scores are updated,

computing the mean between each score and the novel means pupil dilation data point. The

heuristic performance increases to accuracy = 76.7%, precision = 76.1%, recall = 73.7% and

F1 score = 75.6%.

Then, I simulated the Testing Heuristic by performing a grid search on several parameters:

(i) all the possible combinations of the available features (limited to a maximum of 3 features

considered at the same time, see section 5.4.5 for the full list); (ii) methods to compute the

true reference score (mean, median, minimum); (iii) methods to update the reference scores

(mean, difference, quadratic error); (iv) whether to update both scores or just the one of the

correct class; (v) whether to update the reference scores only if the card trial is misclassified.

I prioritized the recall score since I assume that a lie detection system could detect more

true negatives (i.e., spot a larger amount of lies) even at the expense of having a few false

positives. The best heuristic has an accuracy = 78.7%, precision = 76%, recall = 80% and F1

score = 77.9%. It is based on the mean and minimum pupil dilation during the player’s turn,

compared by a 2D Euclidean distance with the reference scores. The true reference score is

computed as the minimum among mean pupil dilations for the truthful cards’ descriptions

during the Calibration Phase; both the reference scores are updated in any case, averaging

each score with the new values.

Random Forest classifier

Even if the new heuristic method performs better than the one exploited in real-time, it is

still not generic and robust enough to describe the variability of participants’ pupil dilation

between the two phases. Indeed, the Testing Heuristic is meant to adapt to each specific
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individual. I supposed that, by relaxing this constraint, it would be possible to compensate

for the variability between the two phases.

I trained a machine learning model to learn from the Calibration Phase from the whole

participants’ sample and exploit the gained knowledge on the Testing Phase. The classifi-

cation problem is a binary; it is defined by a couple [X, Y] where: X (42 x 1) is the vector

of input behavioral features and Y = [0: true; 1: false] is the vector of desired outputs. I

defined a within-participant split, considering the Calibration Phase data as training set and

the Testing Phase data as validation and test sets (with a splitting ratio of 50:50). Calibration

Phase data points have two main issues: (i) they are unbalanced (1 secret card among 6 cards);

and (ii) the set is relatively small (6 cards for 34 participants and 2 eyes for participants, for a

total of 408 data points). I considered features from both eyes to augment the dataset. Due to

these limitations, I selected a Random Forests algorithm [292]. This model should not overfit

when increasing the number of trees, even with relatively small datasets. Also, I tackled the

unbalancing problem by oversampling the Calibration Phase data points with the synthetic

minority oversampling technique (SMOTE) [293]. I did not oversample the Testing Phase

data points validating and testing on real data. Even if not strictly required by the Random

Forest algorithm, I applied a min-max normalization [294] to all the features within the data

points of each participant in both phases. The idea is that a relevant value for a participant

could not be relevant for another. I performed a grid search validation with a fixed validation

set, searching for the best hyper-parameters and feature set for the random forest classifier.

Due to the unbalanced dataset, the traditional accuracy score is unreliable; hence, I rely on

the F1 score, precision, recall, and ROC AUC score [295]. The best random forest classifier

trained on the full features set achieved F1 score = 56.5%, precision = 57.1%, recall = 55.9%

and ROC AUC score = 59.6%.

Lying as an anomaly

Given the low performance of the random forest classifier, I changed the approach considering

the lie detection task as an anomaly detection problem. In this context, the model knows just

the values associated with true descriptions and learns to consider what is not truthful as a lie.

I trained a one-class support vector machine [296] anomaly detector on the Calibration

Phase data points, validating and testing it on the Testing Phase data points, as I did above.

I considered as the training set the truthful card description of the Calibration Phase and

I carefully balanced Testing Phase data points, preserving the ratio between true and false

card descriptions in the validation and test sets. I performed a grid search validation with

the fixed validation set, searching for the best hyper-parameters and feature sets for the
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one-class SVM model. Due to the nature of the anomaly detection problem, I evaluate it

based on precision, recall, and F1 score. The best one-class SVM model achieved an F1

score of 67.7%, a precision of 60%, and a recall of 77.8%. It is based on features from both

the player’s turn (minimum, maximum, and mean pupil dilation); and the whole card trial

(minimum, maximum, mean, and median pupil dilation; total energy, absolute energy, and

auto-correlation).

5.5.3 Detecting lies from novel human partners

After analyzing how previous knowledge gained during an interaction can be used to improve

lie detection in a subsequent task, I explored the possibility of building a pupil-dilation-based

lie detector to classify false card descriptions from novel human partners. This could be the

first step toward a minimally invasive and ecological lie detector able to classify a generic

sentence as true or false without any previous interaction with the specific partner. In this

sense, it is important to consider the card descriptions as independent as possible from the

specific participant and the description order. Hence, I focused on the Per-card Baseline

Dataset which includes only Testing Phase data points. In the Per-card Baseline Dataset,

the baseline is computed as the average pupil dilation for each eye separately during the 5

seconds before each card trial. This baseline is subtracted from the pupil dilation time series

of the relative card description (see Section 5.4.5). I considered only the data from the Testing

Phase since the nature of the task – "This time, you can choose, for each card, if describing

it deceitfully and creatively, or describe what you see" makes each card description more

similar to a generic and standalone lie.

First, I analyzed whether the use of a Per-card baseline determined substantial differences

with respect to the descriptive and statistical analysis conducted with the single baseline. I

fitted a mixed effects model with mean pupil dilation as the outcome variable. I considered

"card label" (two levels: true, false) and "turn" (two levels: robot, player) and their inter-

action as fixed factors, and I had as random effect the intercept for participants. I set the

reference level on the player’s turn and false card label. Results show a highly significant

effect on the card label (B=-0.234, t=-6.58, p<0.001), the turn (B=-0.321, t=-6.39, p<0.001)

and their interaction (B=0.255, t=5.205, p<0.001). This pattern of results (Figure 5.7) is

similar to what observed for the Testing phase in the analysis with the "same" baseline (cf.

Figure 5.5).
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Figure 5.7 Average of mean pupil dilation during robot’s and player’s turns in the Testing

Phase, with standard deviation. (** = p<0.001).

I also analyzed whether the other features differed significantly between the true and

false card descriptions. I computed the average of each feature for true and false cards and

performed Wilcoxon signed-rank tests. Results show that also the minimum pupil dilation

(Z=570.0, p<0.001) and the maximum pupil dilation (Z=530.0, p<0.001) during player’s

turn were significantly different. Regarding the whole card trial, the mean pupil dilation

(Z=555.0, p<0.001), the median pupil dilation (Z=561.0, p<0.001), the minimum pupil

dilation (Z=542.0, p<0.001), the maximum pupil dilation (Z=500.0, p<0.001) and the slope

(Z=550.0, p<0.001) were significantly different. Also, the total energy (Z=477.0, p=0.001),

the absolute energy (Z=457.0, p=0.003), and the auto-correlation (Z=458.0, p=0.003), and the

area under the curve (Z=442.0, p=0.007) on the whole card trial were significantly different.

Finally, I found no significance in robot’s turn features.

Random Forest classifier

To design a lie detector that could classify a card description as true or false with no prior

knowledge of the participants, I started from the statistical findings: I selected a subset of

the 42 available features, excluding the one related to the robot’s turn. The classification

problem is binary, and it is defined by a couple [X, Y] where: X (37 x 1) is the vector of input

behavioral features and Y = [0: true; 1: false] is the vector of desired outputs. Considering

data points from both participants’ eyes, I split Testing Phase data between participants. I

considered 25 randomly selected participants (75%) as the training and validation set and

the remaining as the test set. I did not apply any within-participant normalization of the
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features. I ran a 4-fold grid search cross validation looking for the classifier’s best values of

the hyper-parameters. Even if Testing Phase data points are more balanced than Calibration

ones (47% of false card description, against 16.6% during the Calibration Phase), I still

embedded the SMOTE algorithm [293] in the cross-validation. This way, it is possible to

oversample the training set, avoiding any synthesized sample in the validation set. The best

model achieves a precision, recall, and F1 score of 71.1% and ROC AUC score of 73.3%.

5.6 Discussion

In this study, I enabled iCub to detect lies in the context of natural game-like interaction,

using pupil responses to detect cognitive load associated with lying. Games are known to

provide ecological assessments, preserving the relationship between the interacting partners

[14, 297–299]. Also, in the context of HRI, games have been successfully exploited to per-

form diverse measurements, even related to cognitive load assessment [140, 300–302]. The

game is a perfect scenario in the current work to demonstrate that my lie detection method

based on a heuristic function is quick, interactive, and does not depend on invasive measures.

Also, results provide evidence of the feasibility of my approach, with an overall accuracy

of 70.8% (F1 score of 64.2%) during the Testing Phase, when basing the lie detection on

mean pupil dilation alone. I also show that such accuracy can increase up to 78.7% (F1

score of 77.9%) by enabling an iterative adaptation to each partner and leveraging combined

pupil-related features. The effect on which the lie detection heuristic was based (i.e., the

difference in pupil dilation during false or true card descriptions) was relatively robust and

did not depend on participants’ personality traits nor the characteristics of the game (i.e., the

experienced fun or the description duration).

Moreover, I explored the possibility of extending the lie detection over multiple interac-

tions with the same individual and novel partners. First, I trained a random forest classifier

splitting within-subject over the two phases. However, the model did not perform better

than the heuristic (F1 score = 56.5%). I assume that this depends on the unimodality of

the features, the small number of data points, and the reliance on synthesized data on the

training set. Machine learning models trained on more realistic data would be more robust

and generic in real-world human-robot interactions.

I tried to overcome these issues by tackling the problem as an anomaly detection: I

trained a one-class SVM anomaly detector on the truthful examples of the Calibration Phase

and tested it on the whole Testing Phase (F1 score = 67.7%). Needing only truthful examples
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makes the models independent from collecting lying samples. This could facilitate the

learning, considering, for instance, a humanoid robot that wants to improve the lie detection

model online in a supervised way.

Finally, considering a generic lie detection system, I trained a random forest classifier (F1

score = 71.7%) between-subject to classify false card descriptions from novel individuals.

The main difference between the heuristic methods and the machine learning models is

that the heuristics’ knowledge is limited to a single individual. Hence, even if the machine

learning models’ performances are worse than the heuristic methods, the formers should

be more robust against unexpected behaviors from the participants. Additionally, they offer

features that ease their portability in a real-world human-robot interaction (i.e., the need for

truthful examples only for the one-class SVM model or the ability to classify lies without

any previous interaction for the last random forest classifier).

The proposed models are light and independent from any network connections; this

makes them suitable to be implemented with extreme simplicity in human-robot interaction

and avoid untreatable computation demand. The other advantage of the presented contri-

bution is that the robot can autonomously address all the stages of the interaction keeping

the human partner engaged and assessing deceptive behavior in real-time. At the current

development stage, the only potential intervention is required if the robot fails to detect the

secret card at the end of the Calibration Phase. However, also this intervention could be

made autonomously by the robot: after iCub’s detection, the participants have to show the

correct secret card in order to reject it; iCub could detect the correct card position, thanks to

the HSV (Hue, Saturation, Value) color threshold of cards and marks, and hence self-learn

the correct false reference score.

The current implementation relies on the players’ pupil dilation measured with a head-

mounted eye tracker, such as the Tobii Pro Glasses 2. This device tends to depend on the

environmental light condition and could impact the naturalness of the human-robot interac-

tion. I tried to limit the latter factor by removing the calibration step (not needed to measure

participants’ pupil dilation). However, skipping the calibration, I could not use the other

features from the eye tracker (i.e., gaze orientation). The ideal solution would be to measure a

comprehensive set of pupillometric features from the RGB cameras embedded on the robotic

platform. Recent findings suggest that this approach could be feasible [110–112, 303]; hence,

I look forward to removing this limitation, making the system completely non-intrusive.
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The analysis of pupil dilation revealed that 38% of the participants (N=13 out of 34)

presented a lower pupil dilation during the second phase than in the first one. I speculate that

this is associated with a reduction in cognitive load and that this effect depends on several

factors that make the Testing Phase less stressful. First, participants do not need to remember

the secret card and can freely choose how to play the game in this phase. As a result, there is

no need to prepare a deceptive and creative card description in advance. Moreover, partic-

ipants are more used to playing the game and aware of their role and iCub’s behavior and

capabilities. Additionally, iCub provides feedback after each card description, eliminating

the need to wait for the phase completion to know if the lie has been discovered or not. All

these factors could have contributed to decreasing participants’ cognitive load. However,

the overall interaction has been judged as entertaining and not too cognitively demanding

in the questionnaires, suggesting that the Calibration phase was not too challenging for the

participants.

I designed the human-robot interaction to validate my lie detection method in an informal

interactive scenario. Since the game is based on 84 different cards with complex and diverse

drawings, I speculate that artifacts on pupil dilation cannot explain the results I obtained

based on the nature of the cards (i.e., different colors or emotions in the pictures of the card).

Hence, I think the approach is modular and generic enough to be ported to different appli-

cation fields. For instance, in an elderly caregiving scenario, the cards could be pill bottles

patients have to take; the robot could ask patients if they took the medication, detecting

lies. Also, the modularity of the end-to-end architecture makes it easy to replace iCub with

other robotic platforms, developing a custom way to present the items consistent with the

application context.

By detecting lies, a humanoid robot could evaluate whether the interacting partner is

trustworthy or not. Furthermore, based on this evaluation, the robot could adapt its social

behavior over multiple interactions. However, the system is not perfectly accurate; hence,

how the robot should perform its judgment and adaptation should be carefully managed to

minimize the impact on the partners’ trust toward the humanoid. For instance, in the above-

mentioned elderly caregiving case, if a caregiver robot detected patients’ lies several times,

it might need to report their behavior to the doctor and its confidence about the performed

measure, rather than accusing patients of being liars. In the future, it would be necessary to

explore the impact of misclassification of both truthful and false sentences on the interacting

partners and their trust in the robot.
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The problem will be even more complex if using the system to defend against Social

Engineering. Consider applying the system, for instance, in the physical defense of sensitive

infrastructures (e.g., in the bank hall or at an airport). There, humans-robots interactions

will be "one-shot": it is unlikely for a malicious attacker to breach the same infrastructure

multiple times. Hence, the Random Forest Classifier presented in section 5.5.3 would be the

best candidate. Furthermore, the structure of the interaction itself should be adapted. Indeed,

iCub could pose questions related to the context-dependent authentication medium; however,

item-related questions could not always be available. A complimentary informal question-

based approach should be implemented, masking and validating the sensitive questions in

an informal chit-chat (i.e., the first phase of the UTH experiment). Also, a significant effort

should be undertaken to improve the lie detection system’s robustness. One possibility could

be to develop a multimodal system, complementing the pupillometry features with other

metrics like voice prosody or body posture. Following this idea, I conducted a spin-off exper-

iment [286] that I will present in the next section. Finally, other than the lie detection system,

other complementary models should be integrated like a system to detect, identify and track

humans [304], to distinguish different speakers [305], and to handle multiple interacting

partners [306]. The system works, but it is the first step toward a suitable real-world solution.

Besides the practical applications of detecting lies to assess trustworthiness, the proposed

setup, interaction, and methods are based on measuring the task-evoked cognitive load related

to creativity. The evaluation is performed in real-time, providing entertainment [185]. This is

novel concerning the long, strictly controlled, and tedious cognitive-load measurement tasks

from the literature [133, 134, 141]. For instance, the system could be used to assess creative

thinking abilities before and after a creativity training session [307]. Also, one could use the

system to monitor patients’ cognitive load during a training task in order to provide correct

support [308], adapt task difficulty [302], evaluate their progress [309] or schedule proper

resting sessions [310].

5.7 Human-inspired Lie Detection

The E2E Lie Detection architecture I developed is effective, but there still is a wide range of

improvements regarding its robustness. One possible future step could be including other

perceptive modalities to complement pupillometry. In section 2.3, I discussed how several

other features could be employed to detect deception. However, not all of them could be

ported to a robotic platform, and even fewer could be integrated into an informal social
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human-robot interaction. Hence, the question is "Which are the best candidates?"

Lying is a consistent part of human’s social interactions [9, 311], learned since younger

age [312, 313]. Also, humans are somehow able to detect deception, even if with just a

54% of accuracy [313] - 47% on false and 61% on true statements detection - without

having access to any precise physiological information (as iCub does). Indeed, deception

detection is a difficult problem mainly due to the lack of a finite set of objective features to

look for [314]. Usually, humans employ a combination of multimodal, context-based cues

related to the control of body reactions or to hiding an internal feeling; like, for instance,

an increase in body movements, impossibility to stay still, speech hesitation, complexity of

the speech, mutual gaze avoidance, hand movements, the covering of face and mouth, and

increased number of stopwords. On the flip side, some researchers questioned the reliability

of behavioral cues for deception detection [315, 314].

To answer the question above, I ran an exploratory experiment comparing humans’ and

iCub performance on the video collected during the Magic Trick card game [286]9. The

objectives are twofold: (i) Understand if iCub is better than humans in this informal lie

detection task; and (ii) Identify which cues humans base their classification on to improve

my iCub’s lie detection system.

In the study, I ran an online survey where participants were asked to classify 20 videos of

card descriptions recorded during the Magic Trick card game, to report what they base their

judgment on and their degree of confidence. Results provide valuable hints on improving my

system and how the deception detection field in human-robot interaction should evolve.

5.7.1 Methods

I asked 163 volunteers (82 males, 73 females, 3 preferred not to answer) to participate

in the online survey; they had an average age of 40 (SD=16). Volunteers were recruited

among colleagues and friends through word-to-mouth sharing; they received no monetary

compensation. They all accepted an informed consent form approved by the ethical committee

of the Liguria region (Italy) and agreed to use their data for scientific purposes. Among the

responders, only 117 completed the survey entirely. They were 54 males and 63 females (1

preferred not to answer) with an average age of 39 years (SD = 14).

9Article peer-reviewed and published to the International Conference on Social Robotics (ICSR2021). I

took care of the experimental design, comparative data analysis, and writing; the other authors prepared the

experimental material and ran the qualitative analysis
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Figure 5.8 (Left) Participant describing a card to iCub, while wearing the Tobii Pro Glasses 2

eye tracker (Logitech Brio 4k webcam point of view); (Right) Point of view of the participant

during the interaction collected through the Tobii glasses with an example of the described

cards.

5.7.2 Materials

To realize the online survey, I employed the videos recorded by the Logitech Brio 4k camera

placed on the television behind iCub during the Magic Trick card game (see Figure 5.8). I

employed the videos from the Testing Phase, as in that session, participants decided for each

sentence whether to lie or not (a more realistic behavior).

For each video, I segmented each card description during players’ turn - from when

players took the card from the green mark until they put it back - obtaining 204 videos. From

them, I discarded: (i) the players who did not give consent to share the videos recorded during

the experiment (N = 3); (ii) the players who wore a surgical mask - indeed the COVID-19

pandemic stroked in the middle of the data collection - or other accessories which prevent

a complete vision of players’ face (N = 4); (iii) the videos affected by recording technical

issues (i.e., audio noise or distortion, N = 7). Then, I picked a balanced set of 20 videos

following a 2×2 set of conditions: (i) Card Label: 10 videos present a truthful (True videos)

and 10 a deceitful description (False videos); (ii) Difficulty: among each sub-group, 5 videos

have been successfully classified by iCub during the game (robot-easy videos) while for the

other 5 iCub’s classification failed (robot-difficult videos). Moreover, I ensured each video

involved a different actor and a different card, even if described falsely. On average, the

resulting set of videos lasted 27 s (SD = 15 s). I uploaded the 20 selected videos on Vimeo

[316] and linked them on SurveyMonkey [317], the platform used to administrate the online

survey.
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5.7.3 Procedure

I designed the online survey as a game where responders compete to detect the highest

number of deceptive card descriptions. Before starting the survey, responders were asked to

accept the informed consent; they had to select a nickname for anonymization purposes and

were asked to wear headphones and carefully listen. The survey consisted of three phases:

Pre-questionnaire Responders answered questions about their sex and age and filled in the

Italian version of the Ten-Items Personality Inventory (TIPI) (extroversion, agreeableness,

conscientiousness, emotional stability, openness to experiences) [318]. Then, they were

informed they were going to see 20 videos of players describing gaming cards in front of

iCub and that they had to judge each description as honest or deceptive. Note that responders

were not informed about the presence of robot-easy and robot-difficult videos, nor about the

card label distribution. After this introduction, responders were asked to watch an example

of a video in which the falsely described card was presented in the top right corner.

Lie Detection Survey Afterward, responders saw the 20 videos. For each one, they had

to answer three questions: (i) whether the person in the video was lying or not (Yes or No

answer); (ii) their confidence in this answer (slider from 0 to 100) and (iii) the motivation for

such judgment. Responders could see the videos any time they wanted, but they could not go

back after providing a judgment for a video. SurveyMonkey platform shuffled the videos for

each responder to compensate for any order effect.

Post-questionnaire Responders were presented with a list of common deceptive behaviors

extracted from the literature [9]: uncertainty, an increasing number of stopwords, delay in

providing an answer, repetitions and auto-correction, complexity of the answer, negativity,

voice tone, eyebrows movements, touching the face, covering the mouth, avoiding mutual

gaze, head wandering, fast body movements/breathing, eyes wide- opened, and fake smile.

Responders had to rate on 7-point Likert scales how much they relied on them. Finally,

responders could report any other method or cue they used in the survey.

5.7.4 Results

Considering truthful and deceptive descriptions, responders correctly guessed them with

an accuracy score of 53.9% (SD = 10.7%), similar to the average 54% from the literature

[313]. Interestingly, nobody correctly guessed all the card descriptions, but the best performer
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reached an accuracy of 95%, missing the classification of a single video. Responders reported

an average confidence of 67.1% (SD = 13.8%). A Shapiro-Wilk normality test showed that

the confidence score is normally distributed, while the accuracy score is not. Therefore, in the

following, a non-parametric analysis was conducted on the accuracy score and a parametric

one on the confidence score.

Conditions Comparison

Assuming detecting deception is a tougher task, I compared the accuracy score and the

confidence of responders among truthful and deceptive card descriptions. Responders

classified truthful descriptions with an accuracy score of M = 52.8% (SD = 16.1%) and

deceptive descriptions with an accuracy of M = 55.4% (SD = 13.7%). Even if the score for

false card descriptions is higher, a Wilcoxon signed-rank test did not reveal a significant

difference (W(115) = 1940, p = 0.343). Also, the reported confidence between truthful

and deceptive descriptions is not statistically different (t(115) =-1.59, p = 0.115) with an

average confidence of M = 68.1% (SD = 16.6%) for truthful descriptions against an average

confidence of M = 69.7% (SD = 13.8%) for deceptive ones.

Figure 5.9 Average accuracy (Left) and confidence score (Right) for robot-easy and robot-

difficult card descriptions.

More interesting is the comparison between robot-easy and robot-difficult card descrip-

tions. As a remark, this concept is defined from iCub’s perspective: I selected the robot-easy

descriptions among the ones iCub correctly classified, while the robot-difficult ones were

chosen among the ones for which iCub failed the classification. Responders achieved a statis-

tically higher score on robot-difficult card descriptions (M = 58.4%, SD= 15.1%) with respect

to the robot-easy ones (M = 49.6%, SD= 14.9%), as proved by a Wilcoxon signed-rank
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test (W(115) = 3373, p < 0.001) (see Figure 5.9,Left). Moreover, the reported confidence

also follows a similar pattern, with statistically higher confidence for robot-difficult card

descriptions (M = 70.2%, SD= 14.5%) with respect to robot-easy ones (M = 67.6%, SD =

16.3%). I confirmed it with a paired t-test (t(115) = 2.42, p = 0.017) (see Figure 5.9, Right).

Also, I compared the accuracy score and the confidence score within each condition.

A Wilcoxon signed-rank test showed a statistically higher score for false-robot-difficult

descriptions with respect to false-robot-easy ones (W(103) = 952, p < 0.001). Conversely,

there is no significant statistical difference among true-robot-difficult and true-robot-easy

card descriptions (W(103) = 1103, p = 0.117). Regarding the reported confidence, responders

were more confident for true-robot-difficult descriptions with respect to true-robot-easy ones

with a statistically significant difference (t(103) = 3.485, p<0.001); however, I did not find

any statistical difference among false-robot-difficult and false-robot-easy card descriptions

(t(103) = 0.553, p = 0.581).

Humans vs iCub performance

The videos were selected to be half among the ones that the iCub correctly classified during

the game (robot-easy) and half among the ones the robot misclassified (robot-difficult).

Hence, iCub achieved an accuracy of 50% on the videos. To better compare responders and

iCub performance, I explored what performance iCub would have had on the selected videos.

I trained another Random Forest classifier on all the card descriptions from the Testing Phase,

except the 20 selected for the survey, and tested the model on them. With this model, iCub

would have achieved an accuracy, precision, recall, and F1 score of 70%.

I statistically compared this 70% accuracy score with respect to the 53.9% average

accuracy of the responders; the results show that the accuracy score of the random forest

is higher than the participants’ average score; however, this difference is not statistically

significant (z = 1.43, p = 0.07). Also, I tested the new model on robot-easy and robot-difficult

card descriptions: results show it can classify robot-easy card descriptions with an accuracy of

90%, a performance consistent with the in-game results and statistically higher than humans’

performance (49.6%) on those videos (z = 2.57, p = 0.005). However, on robot-difficult

videos, it still performs worse than humans (50% for iCub against 58.4% for humans), even

if the difference is not statistically significant (z = 0.55, p = 0.29).
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Motivations and Post-questionnaire Analysis

Other than classifying each card description as truthful or deceptive, responders were asked

to report the motivation which drove their decisions. I applied a stopword filter and a

lemmatization to clean the reported motivations. From a qualitative analysis, responders

focused more on how the actor describing the card, reporting words like"precise", "details",

"confident", "sincere", "thinking", "quick", "pauses", "short", "fluid", "time", "(un)decided".

Also, responders reported elements related to what they were looking at with words like:

"looking", "gaze", "voice", "hands", "touch", "smiling", "laughing", "face", "eye", "leg".

Comparing the motivations of truthful and deceptive videos on robot-easy and robot-difficult

ones did not reveal any clear difference.

Also, I ran a deeper analysis of the motivations reported by the responder, which achieved

an accuracy score of 95%. I did not assess the responder’s profession; hence I could not know

if he/she was an expert or a professional in lie detection. Looking at her/his motivations, I

found he/she focused on three main features: (i) the fluidity of the communication (i.e., the

complexity of the speech, the rephrasing, or the presence of "hmmm"s); (ii) the consistency

between verbal communication and body movements (i.e., moving the body from right to

left); (iii) the injection of emotional or personal thought on the card description. Interestingly,

he/she used the presence of reflection pauses as a criterion to classify card descriptions as

truthful – he/she reported it on 8 cards over 10. Lastly, he/she classified all the deceptive card

descriptions as so, but he/she misclassified one of the true cards: he/she have been fooled by

a leg movement, a potential sign of stress.

After the survey, I asked responders to rate on a 7-point Likert scale how much they relied

on the state-of-the-art methods used to detect a liar; also, I asked them to report any other

method they relied on. The complexity of the description (M = 4.89, SD = 1.62), presence of

stopwords (M = 4.68, SD = 1.61), the uncertainty of the description (M= 4.67, SD = 1.69),

fake smiling (M= 4.65, SD = 1.79), voice tone (M = 4.54, SD = 1.77), absence of mutual

gaze (M = 4.27, SD = 2.01), fast movements and breathing (M = 4.07, SD = 1.83), touching

nose or face (M = 4.01, SD = 2.02) were the most used ones. Then head movements (M

= 3.78, SD = 1.84), repetitions and auto-corrections (M = 3.78, SD = 1.84), description

time (M = 3.72, SD = 1.05), eyebrow movements (M = 3.4, SD = 1.69), covering the mouth

(M = 3.28, SD = 1.98), eye movements (M = 3.14, SD = 1.89), and negative words in the

description (M = 2.73, SD = 1.55) follow. A few responders reported other features used to

detect liars: 9 considered the amount of body movement, the impossibility to stay still, or the

position of leg and hands; also, 8 responders focused more on the content of the descriptions

rather than on the visual appearance like too creative descriptions, a high number of details
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or adjectives, or a feeling of premeditation of the description. Finally, I found similar results,

both on the motivations and the post-questionnaire, also considering only "good responders"

who performed with accuracy higher than 54% (N = 65).

5.7.5 Discussion

Responders achieved an accuracy score of 53.9% on classifying deceptive and truthful card

descriptions, which is consistent with the average 54% from the literature [291]. Also, they

outperformed iCub, achieving better performance on robot-difficult than on robot-easy card

descriptions. To run a fairer comparison between iCub and responders’ performances, I

trained a random forest classifier on the pupillometry data collected during the Magic Trick

card game. Testing the model on the 20 card descriptions of the survey (excluded from the

training set) revealed an accuracy score of 70%, higher than the average score of humans

(53.9%), even if not statistically higher. As a remark, each player of the magic trick described

6 cards to iCub, but I excluded from the training set only the card descriptions used in the

survey, not the whole participants’ session. Hence, the random forest classifier embeds a

little information on the actors it classifies in the test set. I decided to replicate the population

of actors and responders of the survey. Indeed, most of the actors and most of the responders

were internal confederates, and I cannot exclude they knew each other; hence it is possible

that a subset of the responders had some prior knowledge of how the actors lie or tell the

truth, even if I cannot spot those connections due to the anonymization of the data.

Looking at the reported motivations for each video and at the end of the survey, we

have an insight into what a social robot should look at to improve its lie detection abilities.

Responders pointed out two major aspects to consider: (i) how the actor described the card

(i.e., "quick", "(un)decided", "precise", "fluid"); and (ii) what to look at (i.e., "face", "gaze",

"hand", "leg", "smile"). Those motivations are supported and extended by the ratings at the

end of the survey: responders focused mainly on (i) the content, fluidity, and complexity

of the descriptions; and (ii) on the body movements of the actors. Interestingly, responders

focused less on facial and postural features than expected from the literature. I speculate

this depends on the setup in which the videos were acquired: participants wore the Tobii

eye tracker partially covering their face and sat behind a table covering their lower bodies.

Also, actors mostly looked at the cards they held in their hands rather than looking toward

the camera. Still, motivations and final ratings suggest a combination of visual and prosodic

features could be a good candidate to improve iCub’s lie detection performances in real-

life informal scenarios, as also supported by the literature [272]. Moreover, those features
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could be extracted from the devices (i.e., RGB cameras and stereo microphones) already

equipped with the iCub humanoid robot. Overall, the reported motivations suggest that

both the behaviors of the actors and the qualities of such behaviors (including expressive

and emotional facets) have an important role in detecting lies, so the robot should also be

endowed with techniques for detecting humans’ behavior and for analyzing their expressive

qualities.

5.8 Summing up

From my results, we could say that what is "difficult" for a robot that embeds a pupillometry-

based technical solution is "easy" for humans that use behavioral cues and vice versa. This

might happen because, when lying, some actors rely on particular behaviors (i.e., pauses,

body motions, slowing down) to reduce the cognitive load, minimizing the pupillary change

associated with the latter. In these cases, a robot focusing on pupillometry alone could never

realize that the partner was lying. On the flip side, a keen human observer could notice these

tell-tale signs, most probably missing the cases in which only the pupil variation reveals the

deception.

Hence, I speculate that the cooperation of those two systems will be a crucial factor

for future developments of deception detection in HRI. A robot should be able to "look at

humans as other humans do", combining humans’ fuzzy evaluation with the objectivity of

technical and physiological metrics. In the future, I will integrate my pupil-based approach

with processing visual features (i.e., body posture, body movements, or facial expression) and

audio features (i.e., word embedding or prosodic analysis of the descriptions). To properly

validate such a multimodal system, it would be mandatory to overcome the limitation posed

by the Tobii Pro Glasses 2 eye tracker since it partially occludes actors’ faces, limiting the

usage of visual features.

Finally, pushing the research field to more ecological and real-life scenarios would be

necessary. Indeed, most state-of-the-art research focuses on strict and interrogatory-like

setups that replicate a real-world interaction; however, they represent a strict subset of the

variety of interactions that could happen and in which both humans and robots could take ad-

vantage of detecting lies. For instance, a more portable lie detector system could help airports

or sensible buildings prevent dangerous situations. At the same time, a social robot could

use it to understand humans better, give reason to human behaviors, assess their trustworthi-

ness, and provide better support in professions like law enforcement, teaching, and caregiving.
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After establishing my game-based approach, using pupillometry to assess others’ inner

states was the second building block to the objectives of this thesis. As the survey responders

showed, more methods exist to understand others’ inner states better. Leveraging the E2E

architecture and data processing pipeline developed for this project, I deepened my physio-

logical signals toolbox to study human decision-making. The next project will focus on the

victims facing social-engineering decisions on a computer-based game with iCub.



Chapter 6

Human-Oriented Social Engineering

Attacks Detector

6.1 Overview

Under Social Engineering (SE) attacks, human targets must make risky decisions. However,

the real entity of the undertaken risk is not always clear. Social engineers use effective

mechanisms to leverage human vulnerabilities and manipulate victims’ appraised risk. Risk

Appraisal is the cognitive process that evaluates the severity of a risky decision, our vulnera-

bility, and the potential benefit of each available option. A "friendly" attacker could mitigate

our perception of one of the dimensions above, leading victims’ to think it is no harm to

let someone unauthenticated enter a safe area; or a whaling attack could increase it, with

a (fake) rush request from victims’ boss. An intelligent system able to understand these

risk appraisal variations could warn users, preventing them from becoming victims. For this

purpose, a crucial challenge is how to model targets’ risk appraisal in social engineering (i.e.,

SE awareness).

The last chapter showed that pupil dilation is a practical feature for detecting cognitive

load fluctuations. However, it is far more helpful. Pupillometry is, in general, an index of

arousal. Literature shows how pupils change before, during, and after risk-taking. Also, gaze

reflects the deciders’ attention and preferred choice. Similarly, the risk appraisal process

reflected on other physiological and behavioral metrics (i.e., electrodermal activity, heart

rate, mouse strokes, and response time). Those inner state proxies could help assess users’

reasoning during social engineering attacks (see section 2.3 for a deeper literature review). In

the literature, just a few attempts studied these humans’ reactions, and, in almost all of them,

participants were primed (i.e., they knew they were going to face social engineering threats)
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(see section 2.3.6). Such awareness could have biased their risk appraisal process (i.e., being

more cautious than they would in real situations). Also, just a few studies explored victims’

reactions during SE attacks from robots [215, 14, 15].

I designed and implemented the Social Engineering Adventure (SEA) experiment to study

victims’ behavior and physiological reactions during SE attacks. In the SEA, an interactive

storytelling game, players faced 28 decisions affecting the evolution of the narration. They

either involved no-risk, risk, social engineering attacks from in-game agents, or social

engineering attacks from iCub. The robot played the role of a Non-Playable Character (NPC)

in the story and was physically present in the room with the participants. The following

sections will present the game design, its modular computational architecture, and the data

collection I performed. Results show how it is feasible to discriminate whether participants

perceive an underlying social engineering attack; however, predicting their decisions is more

challenging.

6.2 The Social Engineering Adventure (SEA)

I decided to employ an interactive storytelling approach to mitigate the experimental biases

known to affect compliance studies [245]. The SEA is a computer-based Choose-Your-

Own-Adventure (CYOA) [319] sci-fi game, a form of interactive narration where the story

is not entirely predefined; players are the primary agent of the game, and they can affect

its evolution by making in-game decisions. Indeed, games and, in particular, interactive

storytelling facilitated participants’ immersion in the experimental sessions. If players are

active agents in the game (i.e., their actions and decisions matter and have a perceivable

effect on the game subdomain [247, 248]), they tend to forget being inside a lab; which

mitigates the experimental biases and help collect more realistic data. The same effects have

been proved in human-robot interaction studies [246]. The main challenge in designing a

serious game is to approximate reality without oversimplifying it. The risk is to design an

utterly fictional material, too divergent and not applicable to real contexts.

6.2.1 Narration & iCub Role

In the SEA textual adventure, players pretend to be space hunters looking for an ancient

artifact – The Seed – hidden in a space crypt. The crypt is presented as extremely dangerous

and full of unexpected hazards. Players meet the humanoid robot iCub as they enter the
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Figure 6.1 Participant interacting with iCub during the textual adventure recorded from the

Logitech camera behind her.

crypt. The robot tells them it always wanted to explore it too and knows where they could

look for intel, so they form an exploration crew. After several threats (e.g., decisions), they

learn that The Seed powers a sentient entity that controls the whole crypt located in its core;

furthermore, there is a cult that worships robots as walking extensions of this omniscient

being. Eventually, they reach the core of the crypt, where iCub reveals to be an embodiment

of the crypt itself meant to test adventurers’ greed. Finally, players can choose whether to

steal The Seed, shut down the sentient crypt, or leave.

6.2.2 Risk Design

Starting from the definitions of risk and risk appraisal [121, 122], I modeled the risk in the

game by managing three resources, which players can gain and lose based on their risk-taking

decisions. Resources are inspired by the main objectives of social engineering attacks: money

(i.e., energy) and identity (i.e., credentials)

Quantum Energy (QE) Quantum Energy represents both in-game currency and health

points. Players start with 80 QE and know they lose the game if they run out of QE. Also,

they know their final compensation will be proportional to the collected Quantum Energy.

The primary source of Quantum Energy is the Quantum Shards: big crystal players can

consume in order to gain 10 QE.
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Hunter License Players started the game with a Hunter License representing credentials

they must protect at any cost. Players know that they need this license to enter and exit the

crypt; if they lose it, they will lose the game.

6.2.3 Textual Adventure Structure & Navigation

The textual adventure is an oriented, acyclic graph composed by two main entities: passages

and rooms.

Passages Passages are single textual stimuli presented to the players. They can either

be trial or immersion passages. Trial passages are the primary experimental stimuli; they

involve binary (accept or refuse) proposals concerning the resources mentioned above and

are divided into four conditions (see Section 6.2.4 for further details). Immersion passages,

instead, are just meant to facilitate players’ agency and immersion in the story; they can

be (i) paragraphs participants must read to continue in the narration; (ii) proposals not in

the "accept or decline" form (i.e., a crossroad where players must decide to go right or left

without any cue on which is the best option); or (iii) fights with dangerous creatures. The

latter passages are meant to make the game challenging and decrease players’ quantum

energy in a controllable way. During fights, players roll virtual 20-sided dice and sum up

their power - players can collect weapons to increase their power (from 1 to 6) - trying to

surpass monsters’ defense. Dice rolls are manipulated to keep a comparable experience

between participants and avoid endless losing loops.

Rooms Rooms are a collection of passages related to the same environment (e.g., a cave,

a camp, . . . ). Rooms can be connected by binary crossroads, designed to give participants

the perception that they are exploring a vast maze. Players can decide to go back (i.e., if

they do not want to face a specific challenge) and take the other crossroad option. However,

all the participants experience rooms and passages in the same order. Each time players

make a crossroad decision, the next room to be explored is presented; going backward means

selecting the next room from the rooms list. This is meant to preserve participants’ agency

while not over-complicating the experimental structure and post-hoc analysis, allowing a

more straightforward comparison of participants’ journeys.
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6.2.4 Trial Passages

Trial passages, the main experimental stimuli, consist in 28 proposals divided in four condi-

tions: no-risk, risk, SE and SE-icub.

Risk I designed risk proposals taking inspiration from the DOSPERT (DOmain-SPEcific

Risk-Taking) scale [320]. This questionnaire measures participants’ probability of engaging

in risky activities in different domains (i.e., ethical, financial, recreational, health & safety,

and social). I selected one question from each domain and translated them to the following

in-game proposals: (i) camping in the wild; (ii) helping an aggressive person in danger;

(iii) gambling QE; (iv) facing an overwhelming creature; (v) drinking too much in a social

event; (vi) stealing from (or not return) a lost bag; (vii) passing through a dangerous and dark

hallway.

Social Engineering from a virtual agent (SE) I designed SE threats, taking inspiration

from the questionnaire about proneness to social engineering developed by Workman [92].

This survey explores the different persuasion and manipulation tactics that attackers can

exploit. As before, I selected one question for each factor and translated it to the following

in-game proposals: (reciprocity) giving a quantum shard to a stranger because he saved the

player’s life; (social proof ) jumping over a bottomless pit because another hunter does it;

(commitment and consistency) committing to help a researcher and consisting two times over

increasing hazard; (reactance) compulsively buying an expensive and powerful weapon (half

of the owned QE) due to temporal scarcity; (provide credentials) inserting the hunter license

in a totem to obtain a free quantum shard; (trust signals) entering a fancy room rather than

the most used one; (authority) giving the hunter license to an authoritative technician who is

pretending to fix a computer virus.

Social Engineering from iCub (SE-icub) I designed SE-icub threats drawing inspirtation

from the SE ones and putting iCub in the role of attacker: (reciprocity) giving a great treasure

to iCub because it saved the player’s life; (social proof ) gamble 20 QE because also iCub

did it; (commitment and consistency) committing to follow iCub’s suggestion and consisting

2 times over increasing hazard; (reactance) giving iCub some QE under temporal scarcity;

(provide credentials) giving to iCub the hunter license to get a free upgrade; (trust signals)

follow iCub’s suggestions; (authority) obeying to an imperative order from iCub.
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No-risk Finally, no-risk proposals constitute the baseline. They involve all the decisions

related to equipping or not a weapon, which does not pose any risk to the participant. Players

are expected to maximize their strength to survive and always select the stronger weapon;

however, the game allows making different choices (e.g., driven by subjective preferences).

6.3 Computational Architecture

Figure 6.2 SEA architecture, I will think about a better description

The architecture in Figure 6.2 autonomously handled the Social Engineering Adventure

game. I designed it following the Model View Controller (MVC) and Separation of Concerns

(SoC) paradigms to make it easily expendable. The architecture is composed of three main

sections:

SEA Main Game

The SEA main game handles the Social Engineering Adventure game as previously described.

The full story comprises 300 passages (i.e., textual stimuli with potential decisions). However,

due to the branching nature of the CYOA format, participants explored on average N=196

(SD=24) passages. I designed and wrote the textual adventure with the software Twine 2.0

[321] in the declarative Domain-Specific Language (DSL) Harlowe 3.2.2 [322] (see Figure

6.3, right). Also, I extended this language to synchronize iCub’s control and experimental

annotations with the story events.
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Figure 6.3 (Left) Social Engineering Adventure story design with the tool Twine 2; (right)

definition of one of the passages in the extended Harlow 3 language.

In Twine, each passage is represented by a little square connected by branches (decisions)

to the others (see Figure 6.3, left). I structured each passage in 3 sections (see Figure 6.3,

right):

Header The header contains descriptive macros to handle the game flow and the exper-

imental variables. Header macros are not displayed to players but generate synchronized

annotation to ease the post-hoc analysis. In particular, I added macros to annotate rooms and

passages; to add and remove quantum energy; to equip weapons and update players’ power;

to show a countdown (for the reactance-based trials); and to display images representing the

scene, to facilitate players’ immersion in the game.

Body The body contains the textual stimulus of the passages, which is rendered on the

game GUI. It can include three macros meant to control iCub’s behavior during the story:

(feel: emotion) sets a specific emotion on the robot’s face; (say: sentence, [emotion]) makes

iCub say the sentence, potentially with a paired emotion; (behave: behavior) commands

the robot to perform a named behavior (i.e., a single movement or complex combination of

movements). The robot behavior is synchronized and controlled by the user’s interaction

with the story; my DSL interpreter makes it easy to add new commands, for instance, to act

in response to an environmental perception (e.g., wait for a human face to be in front of the

robot).

Decision Finally, a passage can include a binary decision, rendered as buttons on the game

GUI (implemented in QT with the python library PySide2 [323]). When players decide, the



6.3 Computational Architecture 96

related passages are loaded and rendered, and so on until the end of the game.

The SEA main game loads the story passages, interprets, and renders them on a Graphical

User Interface powered by QT PySide2. As it is possible to see in Figure 6.4, the GUI presents

two main panels: on the left, the story panel shows the textual stimuli and a "continue" button

or, if the passage includes a decision, the two possible options; on the right, the resources

panel shows players’ Quantum Energy, Power, their inventory and images to facilitate their

immersion in the game. One of the main challenges in designing and developing this module

and architecture has been changing the perspective from traditional programming: the game

is a complex finite state machine (FSM) powered by the PySide2 daemon. The daemon

can never be blocked (i.e., by waiting for an external call): it changes states only by the

effect of callbacks (i.e., either from the player clicking or by external events). Hence, all the

interactions with external entities (i.e., over the YARP platform) must be asynchronous. To

do so, I developed the Experimental Utils module.

Experimental Utils

The Experimental Utils module is a façade to allow the SEA game to interact with the YARP

robotic platform, the Eyelink, Shimmer, the optical mouse, and the humanoid robot iCub.

The SEA game autonomously annotates over the YARP platform events related to the game

rendering and players’ interaction with it, like their decisions.

Also, the architecture integrates a bridge class for each sensor employed in the experiment.

The SEA game controls the beginning and end of the data collection from the three devices;

furthermore, it sends synchronized annotations to the Eyelink 1000 interface to ease the

post-hoc analysis. The architecture makes selecting or adding devices easy (e.g., for testing

purposes or coping with device malfunctions).

Finally, the Robot Interface allows the game to interact with a robotic agent (either

physical or virtual) via the atomic commands, behave, say and feel, previously explained. In

this case, the interface connects to the humanoid robot iCub and the Robot Puppeteer; but

the specific agent connected to the interface depends on the application context.

Robot Puppeteer

The Robot Puppeteer exposes a transparent interface to control a robotic agent. Programmers

can create static named poses of the robot (i.e., for the humanoid robot iCub, an optional

positional value for each arm, torso, neck, gaze, and facial expression). Those poses can be
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further combined within them and with other dynamic snippets to design complex named

behaviors. Both the atomic poses and the custom behaviors can be transparently called via

the same synchronous or asynchronous interface.

It is worth mentioning that the Experimental Utils and the Robot Puppeteer modules

can be easily reused or expanded for other projects. Also, the SEA main game can render

multiple human-robot interactions based on the same structure.

6.4 Experiment

In order to explore the effect of risk and social engineering on participants’ behavior and

physiological reactions, I run a human-robot interaction experiment.

On the behavior, the hypothesis (H1) is that participants will accept most of the no-risk

proposals, and they will avoid to comply with risk ones; also, the influence and manipulation

of SE and SE-icub will make them comply more than risk proposals but not at the level of

no-risk ones. On the physiological responses, the experiment is meant to be exploratory. I

expect that the employed physiological proxies react under risk and/or uncertainty and in

particular that (H2) players’ physiological reactions will be different among no-risk, risk and

SE/SE-icub proposals. Finally, I speculate that the physical, social presence and influence

of iCub would elicit stronger reactions in the participants than simple text-reading. Hence,

I hypothesize (H3) participants’ behavior and physiological reactions will be different in

SE-icub with respect to SE passages; and even more with respect to the other conditions.

6.4.1 Participants

I asked 31 participants to play the textual adventure with the humanoid robot iCub. They

were all right-handed; they had an average age of 27 (SD=5) years and a broad educational

background. Participants signed an informed consent form approved by the Regione Liguria

(Italy) ethical committee, stating that cameras and microphones could record their perfor-

mance, and agreed on using their data for scientific purposes. They all received a monetary

compensation proportional to the in-game collected Quantum Energy (M=15 euros, SD=5.3).

The feedback and the experiences of the first 11 participants served to fine-tune the details of

the final textual adventure (e.g., to define the initial 80 points of Quantum Energy). Hence,

their data are not included in the following analyses.
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The remaining 20 players, with an average age of 26 (SD=7) years, performed the actual

experiment. They had average knowledge of robotics (M=0.66, SD=0.26) and artificial

intelligence (M=0.62, SD=0.25). The 65% (N=13) previously interacted with a robot, and

the 25% (N=5) controlled one. Finally, the 30% (N=6) knew what a textual adventure was,

and only the 15% (N=3) previously played one.

Figure 6.4 Experimental setup with the monitor, the SR research Eyelink 1000 Plus eye

tracker, the Shimmer3 GSR+ device placed on a mousepad, an optical mouse to interact with

the game, and the humanoid robot iCub. Two Logitech Brio 4k cameras monitored the scene,

one behind the monitor and the other behind the participants.

6.4.2 Setup

The experimental room was arranged to facilitate participants’ immersion in the textual

adventure (see Figure 6.1). Two black curtains isolated the participants from the rest of

the room. The blinders were closed, and the room was lit artificially with an average

illumination of 80 (SD=10) lumen. The participants sat at a table with the monitor. On

the table also lay (i) a standard optical mouse, used by the participants to interact with the

textual adventure; (ii) an SR research Eyelink 1000 Plus [324], tracking participants’ eyes

and recording their pupillometry and gaze; and (iii) a Shimmer3 GSR+ sensor recording

participants electrodermal activity (EDA) and photoplethysmography (PPG). Participants

used the mouse with their right hand while wearing the Shimmer device in their left hand.
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The latter was placed on a mousepad to reduce static currents and improve the quality of the

signal [325].

The humanoid robot iCub [179] was placed near the right corner of the table, on the

opposite side with respect to the participants. I decided not to place iCub next to the player

(i) to minimize the need to gaze away from the screen; and (ii) to keep participants’ decisions

masked from the robot’s gaze, reducing the feeling to be monitored [326, 327].

Two Logitech Brio 4K cameras recorded the scene; one was in front of the participants,

behind the monitor, recording their faces, and one was behind them, recording the monitor

and iCub’s behavior. Also, an ambient microphone recorded the audio.

6.4.3 Materials

The iCub took the role of a Non-Player Character (NPC) controlled by the textual adventure.

It moved its upper body (arms, torso, head, and gaze) and talked to the participants based

on the textual adventure scenes – with the content of its speech also appearing as written

text on-screen. Indeed, iCub’s behavior was integrated with the story and triggered by

participants’ interactions. The experimenter, hidden behind the black curtain, monitored the

scene through iCub’s eyes to ensure the participants’ safety.

6.4.4 Procedure

Pre-questionnaire

At least one day before the experiment, participants filled in the following questionnaires: the

Ten Items Personality Inventory (TIPI) [318] (Extroversion, Agreeableness, Conscientious-

ness, Emotional Stability, and Openness to Experience); the first scale of DOmain-SPEcific

Risk-Taking (DOSPERT) questionnaire regarding the probability to engage in domain-

specific risk-taking actions [320]; the survey about proneness about social engineering threats

[92], the short UPPS-P Impulsive Behavior Scale [328, 329]; the Robotic Social Attribute

Scale (RoSAS) [330]. After watching a short presentation video1 of iCub, they also filled

a survey about mind perception [263] and robot ability, benevolence, and integrity [210];

finally, they answered a set of custom questions about their age, education, work, experience

with robots and AI, and if they ever played a textual adventure, over 7-point Likert scales.

1https://www.youtube.com/watch?v=ZcTwO2dpX8A

https://www.youtube.com/watch?v=ZcTwO2dpX8A


6.4 Experiment 100

SEA game

After signing the informed consent - approved by the ethical committee of the Liguria region

(Italy) - the experimenter led the participants into the experimental room and asked them to

sit in front of the monitor. The experimenter helped the participants to wear the Shimmer3

GSR+ device on their left hand and instructed them to keep it on the mousepad avoiding hand

gestures. Then, the experimenter performed the Eyelink 1000 calibration, asking participants

to look at a fixation cross randomly moving among 16 fixed positions on the monitor; once

it reached a sufficient calibration, the game autonomously showed a "start" button. The

experimenter instructed the participants that the game would explain everything they needed

to know and told them to click the "start" button as soon as they were ready to play. From

this moment, the experiment was autonomously led by the participant interacting with the

textual adventure.

The game explained to participants that they would make several decisions to affect the

story’s evolution. It asked them to make a transportation and identification effort, trying to

immerse in the narration and to decide by thinking about what they would do in each scene.

Before starting the textual adventure, the game recorded a baseline interval of 1 minute,

asking players to fixate a white cross over a dark blue background (the same used afterward

during the whole game). Moreover, before each room, the game collected 5 seconds of

baseline to assess the potential participants’ arousal fluctuation during the game. Then, it

presented the game lore, resources, and players’ objective (see Section 6.2). For each passage,

the game presented a paragraph to be read, with, at the end, a "continue" button leading to

the following passage. If the passage involved a decision, the "continue" button click made

the two possible options appear at the bottom of the screen. The options placement (right

button or left button) was randomized. This procedure ensures that participants read the

whole textual stimulus before deciding. Except for proposals involving temporal scarcity,

where a 30-second time limit was imposed, nothing constrained the time participants spent

reading the paragraphs and making decisions.

Post-questionnaire

After the end of the game, the experimenter helped participants to remove the Shimmer GSR+

device. Then he led participants to another room and asked them to fill in the following

questionnaires: the Player eXperience Inventory (PXI) [331]; the same questionnaires about

mind perception, ability, benevolence, and integrity about iCub, to assess the impact of the

experience in the experiment [263, 210]; and a set of questions made to assess participants
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motivations in the decisions over 7-points Likert scales: whether they decided guided by

curiosity, fear, rush, greed; how much they tried to maximize the quantum energy; if they

thought about iCub while deciding; how much they were immersed in the game; if they

perceived their decisions to have an impact on the game; how much on average they regretted

making decisions; and if they wanted to play more.

Finally, the experimenter debriefed participants and gave them their compensation (pro-

portional to the collected Quantum Energy).

6.4.5 Measurements

During the experiment, I collected data from several devices. All the data were dumped and

synchronized over the YARP robotic platform [277] to ease the post-hoc analysis.

The textual adventure game raises over the YARP platform several events related to

passages presentation, the type and condition of the passage and players’ interaction with it:

(i) begin and end of the paragraph rendering, this interval is usually short, but it could be

longer if the passage involves iCub behaviors; (ii) continue button clicks; (ii) options buttons

rendering and placement; (iv) options buttons clicks; and (v) the selected option.

The SR Research Eyelink 1000 Plus eye tracker collected participants’ gaze coordinates

in pixels with respect to the calibration screen size, along with the pupil area in (mm2) at a

frequency of 250 Hz. Also, it already classifies the gaze-points in fixations (gaze coordinates

in pixels and mean pupil area in mm2); saccades (start and stop coordinates in pixels,

amplitude in pixels, peak velocity in pixels/milliseconds, duration in milliseconds); and blinks

(duration in milliseconds). Furthermore, the textual adventure game annotates the above

events to the Eyelink 1000 interface to segment the pupillometric data and synchronize them

with the other data source. The Shimmer3 GSR+ sensor read participants raw electrodermal

activity (EDA) in micro siemens (µS) and Photoplethysmogram (PPG) at a frequency of 50

Hz. Finally, I stored players’ mouse cursor coordinates in pixels, at a frequency of 20 Hz,

along with mouse click events.

6.4.6 Data Preparation

The data preparation and the following analysis are focused only on the Trial passages;

indeed, I was only interested in exploring participants’ behavior and physiological reaction in

response to those proposals. I separately pre-processed data from the Eyelink, Shimmer, and

mouse devices and aggregated them based on the in-game events, following the steps below.
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Table 6.1 Features selected from the different data sources; gray features were discarded

during the features selection, see section 6.4.6 for the selection criteria. The number in the

last column refers to the kept features

Data Source Selected Features #

Behavioral Interval duration 1

Pupillometry & Gaze Fixations number, fixation frequency, mean fixations dura-

tion; max, min, mean, standard deviation, kurtosis, skew-

ness of the pupil area; mean and max of the first and mean

of the second derivative of the pupil area. Blinks number,

max, min, mean and standard deviation of the blink dura-

tion. Mean amplitude , peak velocity, and duration of the

saccades

15

Skin Conductance Re-

sponse (SCR)

Number of SCR peaks in the interval, number of SCR

peaks in the 4 seconds after the continue (for read inter-

vals) or the decision (for decide intervals)

3

Galvanic Skin Level

(GSL)

Max, min, mean, standard deviation, skewness, kurtosis

of the GSL; mean and max of the first derivative and mean

of the second derivative of the GSL

6

Photoplethysmogram

(PPG)

Max, min, Mean ,standard deviation of the heartrate.

MeanNN, SDANN1, RMSSD ; low, very low, high and

low/high frequencies

3

Mouse Strokes Maximum deviation, Area under the curve, length, dis-

placement, length / displacement, mean speed, mean ve-

locity, number of x-flips , entropy and bimodality over x

and y axis

5

Total 33

Data ingestion and Pre-processing PPG, EDA, and mouse data are stored in CSV format,

with temporal series separated from the annotations. Pupillometry & Gaze data include both

time series and annotations: the Eyelink 1000 generates a tabular-like file in ASC format. I

processed the 4 data sources separately.

I used the Neurokit2 python library [332] to process the collected EDA data: the tool

returns a cleaned time series along with the tonic (Galvanic Skin Level, GSL) and phasic

(Skin Conductance Response, SCR) components, and the detected SCR peaks. Then, I

applied a within-participant min-max normalization to both tonic and phasic components. I

used the same library to process the PPG data, obtaining the cleaned heartbeat, the estimated

heart rate, and the detected peaks.
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Regarding mouse trajectories, I used the Squeak python library [333]. I normalized the

trajectories by space and time, obtaining 101 steps from 0 to 1 for each trajectory. Then, I

flipped the X-axis of decreasing trajectories to have all of them in the same direction.

Finally, regarding the pupillometry & gaze data, I firstly filtered all the fixations outside

the Eyelink calibration area. This is extremely important for SE-icub passages since the

robot was placed outside the Eyelink calibration area (on participants’ right, see Sec. III):

when iCub moved and spoke interacting with the participants, they inevitably gazed toward

it. Then, I cleaned the mean pupil area time series among fixations by applying a median

filter to remove the outliers and a rolling window to smooth the time series. Finally, I applied

a baseline correction subtracting the mean pupil area during the 5 seconds before each room

from the pupil time series of the relative passages [168].

Segmentation and Features Extraction I segmented the cleaned time series based on

participants’ behavior. I identified two intervals for each passage: read intervals, from

the beginning of a passage to the "continue" button click; and decide intervals, form the

"continue" button click to the selection of one of the two possible options.

Within each interval, I computed the 56 features listed in Table 6.1. Then, I performed a

feature selection to reduce the information redundancy. I computed the Pearson’s correlation

matrix of the average value of each feature and subject. Finally, I selected the less elaborated

feature for each pair with a correlation score r>=0.8 and removed the others (the gray features

in Table 6.1).

A note on mouse stroke features Mouse stroke features analyze the trajectory between a

starting point (i.e., the "continue" button) and an ending point (i.e., one of the option buttons);

and how it is different with respect to a straight line between the two points. The maximum

deviation describes how much the trajectory diverges from the virtual straight line (i.e., a

high deviation could be related to indecision [163]); the number of x-flips counts how many

times the users "crossed" the straight line (i.e., a high number of x-flips could suggest the

user is more decided and should be paired with low maximum deviation [164]); finally,

the bimodality explores whether the trajectory comprises multiple modes (i.e., firstly going

straight than diverging, usually related to indecision [334]).

The final dataset is composed of 1458 data points and 33 features. It is balanced between

read and decide intervals. However, it is slightly unbalanced on the conditions (314: no-risk,

322: risk, 484: SE, 338: SE-icub) and participants’ decisions (804: accept, 654: refuse).
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6.5 Results

This section reports the in-game and questionnaire results and the post-hoc analysis of

players’ behavior and physiological reactions. Firstly, I focused on players’ behavior and

how it was influenced by their background and different proposals conditions (H1). Note

that participants took decisions under four conditions: no-risk proposals did not involve

any risk; risk proposals involved risk based on the DOSPERT questionnaire [320]; SE

proposals involved both risk and a virtual agent performing a social engineering attack (e.g.,

persuading participant to accept the risk); and SE-icub proposals involved both risk and a

social engineering attack performed by the iCub, physically present with participants during

the experiment.

Then, I explored participants’ physiological reactions and how they were influenced by

the different conditions (H2). For this purpose, first I focused on the effect of condition, by

comparing no-risk vs. risk vs. SE proposals. Then I analysed the impact of the attacking

agent nature, with a comparison between SE and SE-icub proposals (H3).

6.5.1 In-game Results

Figure 6.5 Average probability to accept proposals in the four conditions. Dots represent the

average of each participant.

The 20 players took, on average 56 (SD=11) minutes to play the textual adventure. Only

2 ran out of Quantum Energy (QE) before the game ended; the remaining 18 completed the
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game with 59 (SD=28) QE points, depending on their in-game decisions. Among them, 12

decided to take The Seed, while the other 6 left it in the crypt.

I analyzed how many participants accepted the proposals among the four conditions (i.e.,

their acceptance rate). Figure 6.5 shows the average percentage of accepted proposals for each

condition. Participants complied the highest with no-risk (M=68.7%, St.Err.=3.62%) and the

lowest with risk (M=45.1%, St.Err.=3.92%) proposals, while SE (M=53.3%, St.Err.=3.08%)

and SE-icub (M=53.4%, St.Err.=3.34%) acceptance rates lie in the middle. This is consistent

with my expectations (H1): the persuasion involved in Social Engineering attacks, either from

a virtual agent or from iCub, affected players’ risk appraisal (i.e., mitigating or enhancing it)

and facilitated their acceptance. A Shapiro-Wilk normality test showed players’ decisions

were normally distributed; hence, I validated the difference between acceptance rates with

a repeated-measures ANOVA. The test showed a significant effect of the condition F(19,

3)=9.15, p<0.001. Post-hoc tests, Bonferroni corrected, showed an higher acceptance rate of

no-risk proposals than risk (B=0.235, t=5.1, p<0.001), SE (B=0.153, t=3.34, p=0.02) and

SE-icub (B=0.152, t=3.12, p=0.034) ones; also, it showed no difference between risk and

both SE (B=-0.082, t=-2.05, p=0.328) and SE-icub (B=-0.083, t=-1.646, p=0.628) proposal;

and neither between the latter two (B=-0.001, t=-0.027, p=1.0).

Reading and Decision Time

Figure 6.6 Reading (left) and Deciding (right) times in seconds for each condition and based

on participants’ decision to accept (orange) o refuse (blue). Bars represent the standard

deviation.
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Players took, on average, 10.5 (SD=7.5) seconds to read the trial passages and 5.6

(SD=6.5) seconds to decide. A Shapiro-Wilk normality test showed how all the computed

features were not normally distributed. Hence, I performed a non-parametric analysis. I fit

two mixed effect models in the read and decide intervals, respectively, with the read time and

decide time as the dependent variable. In both models, I entered fixed effects of "condition"

(four levels: no-risk, risk, SE, SE-icub), "decision" (two levels: accept, refuse) and their

interaction. I selected no-risk and refuse as reference levels. Also, I included a random

intercept based on participants’ IDs.

On read intervals, I found a significant effect of the condition (F=3.35, p=0.019), no

effect of the risk-taking (F=1.17, p=0.279), but an almost significant effect of their interaction

(F=2.23, p=0.084). As it is possible to see in Figure 6.6 (left), there is a tendency for

participants to took more time to read risk and SE passages when they refused.

Regarding the decide intervals (see Figure 6.6, right), the mixed effect model showed a

highly significant effect of the condition (F=6.994, p<0.001) but no effect of the decision

(F=0.01, p=0.916) nor their interaction (F=0.82, p=0.484). In particular, I found a significant

effect in risk (B=1.63, t=2.16, p=0.031), a highly significant effect in SE (B=2.56, t=3.67,

p<0.001) and no effect in SE-icub (B=0.08, t=0.11, p=0.91) with respect to no-risk proposals.

Pre-questionnaire analysis

Average scores for the Ten-Items Personality Inventory [318] were Conscientiousness:

M=0.80, SD=0.15; Agreeableness: M=0.72, SD=0.18; Emotional Stability: M=0.59, SD=0.16;

Openness to experiences: M=0.69, SD=0.14; Extraversion: M=0.47, SD=0.23. The DOSPERT

scale [320] measured participants’ probability to engage in domain-specific activities, the

average scores were Ethical: M=0.22, SD=0.11; Financial: M=0.29, SD=0.12; Recre-

ational: M=0.52, SD=0.19; Health & safety: M=0.41, SD=0.17; Social: M=0.72, SD=0.08.

Average scores for the UPPS-P questionnaire [328, 329], regarding impulsiveness in the

decision-making, were Emotional-based Rush actions: M=0.71, SD=0.18; Sensation Seeking:

M=0.43, SD=0.17; Conscientiousness Deficit: M=0.78, SD=0.11. Regarding participants’

proneness to Social Engineering effect mechanisms [92], the average scores were Normative

Commitment: M=0.83, SD=0.09; Continuance Commitment: M=0.73, SD=0.12; Affective

Commitment: M=0.78, SD=0.16; Trust others: M=0.58, SD=0.13; Obedience: M=0.68,

SD=0.10; Reactance: M=0.67, SD=0.13; Subjective behavior (i.e., updating credentials

online) M=0.54, SD=0.19). Finally, the RoSAS questionnaire [330] measured participants’

perception of robots in general, average scores were (ability to have) Feelings M=0.29,

SD=0.19; Competence M=0.83, SD=0.13; Danger M=0.31, SD=0.21.
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Afterward, I explored whether participants’ psychological background affected their

in-game behavior. I fit a set of linear regression models with the survey’s psychological

features as independent variables (considering each questionnaire separately) and the average

acceptance rate, reading time, and decision time as dependent variables. The acceptance

rate was negatively correlated with the extroversion (t(20)=-2.29, p=0.038, Adj. R2=0.33).

The reading time instead was positively correlated with the conscientiousness (t(20)=2.82,

p=0.014, Adj. R2=0.41) and the proneness to authority-based social engineering attack

(t(20)=2.34, p=0.042, Adj. R2=0.57), and negatively correlated with the proneness to

reactance-based social engineering attacks (t(20)=-2.32, p=0.043, Adj. R2=0.57); finally, the

decision time was positively correlated with the risk-taking habit in social circumstances

(t(20)=2.48, p=0.027, Adj. R2=0.14).

Post-questionnaire analysis

This section summarizes the results of the Player eXperience Inventory (PXI) [331] and

the custom questions participants filled in just after playing the experiment. The PXI

questionnaire measured participants’ experience and perception of the game: how much

playing the game meant to them (M=0.78, SD=0.17); how much they were curious about it

(M=0.9, SD=0.08); how much they mastered it (M=0.70, SD=0.21); how much they were

free to decide how to play the game (M=0.75, SD=0.21); how much they were immersed

(M=0.83, SD=0.12); how much the game gave them feedback about their progression

(M=0.77, SD=0.15); how much their in-game goal was clear (M=0.82, SD=0.15); how

much the game was challenging (M=0.75, SD=0.14); how much the game was aesthetically

appealing (M=0.87, SD=0.13).

Moreover, I assessed which factor motivated participants on making their decisions, aver-

age values were Immersion: M=0.79, SD=0.11; Curiosity: 0.64, M=0.23; Greed: M=0.61,

SD=0.22; Rush: M=0.31, SD=0.26; Fear M=0.5, SD=0.24. Also, on average, participants

tried to maximize their QE (M=0.78, SD=0.21); they perceived their decisions to have an

impact on the story (M=0.82, SD=0.14); and poorly regretted making decisions (M=0.34,

SD=0.22). Also, even if I did not explicitly assess whether they perceived the game as fun,

all the participants except one wanted to play more. Finally, regarding iCub, they perceived

it as a companion (M=0.87, SD=0.12); they averagely took iCub into account while making

decisions (M=0.53, SD=0.23); and they trusted the robot more after the game (M=0.75,

SD=0.18).
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Table 6.2 Physiological features showing significant effects in the read (R) and/or decide

(D) intervals, among the for conducted statistical tests. Omitted features did not show any

effect. Please refer to the text for more details. Condition = no-risk, risk, SE, Decision =

refuse, accept, Agent = SE, SE-icub

Feature Condition Decision Condition x Decision Agent x Decision

P
u

p
il

lo
m

et
ry

&
G

a
ze Fixations number RD D

Fixation frequency R R

PA min R

PA mean RD D RD

PA std D RD RD

PA dt1 mean R D

Blinks number RD R

Saccades amplitude mean D

S
C

R Peaks number D RD

G
S

L

Std D

Skewness D

Dt1 mean D

Dt1 max D

Dt2 mean D D

M
o

u
se

S
tr

o
k
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6.5.2 Risk Appraisal & physiological reactions

In this section, I focus on players’ behavioral and physiological reactions to risk and SE

proposals with respect to no-risk ones. As a general remark, I did not find any effect on the

PPG features. I speculate this is due to the short duration of participants’ interaction with the

passages: heart-related features need to be observed for longer periods (i.e., in the order of

minutes) [157].

Regarding the two intervals, I expect different physiological reactions: in read intervals,

participants read a textual stimulus of different length and processed information; while in

the decide intervals, they were only asked to read the two options and to click the preferred

one. The former could involve more variability due to processing written information. Hence,

I started the analysis from the decide interval, assuming participants’ physiological reactions

should be clearer.
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A Shapiro-Wilk normality test showed that the features were not normally distributed,

neither in read nor in decide intervals. Hence, I fitted a set of mixed effect models with

each physiological feature as the dependent variable; a fixed effect of "condition" (three

levels: no-risk, risk, SE), with reference on no-risk; and a random effect of participants’ ID

(Condition column in Table 6.2)

Figure 6.7 Mean pupil dilations in millimeters during read (left) and decide (right) intervals

between no-risk, risk, and SE conditions. Bars represent the standard deviation.

Pupillometry & Gaze During the decide intervals I found significant effects due to the

condition on the mean and standard deviation of the pupil area, the number of fixations and

the number of blinks. They all follow a similar increasing pattern with a higher value in

risk and SE proposals with respect to no-risk ones (see Figure 6.7, right). For instance, the

mixed model fitted on the mean pupil area showed a highly significant effect both in risk

(B=16.6, t=3.59, p<0.001) and SE (B=22.6, t=5.36, t<0.001) proposals – similar results for

the standard deviation. This could be related to the cognitive load needed to decide under

risk or SE. Regarding the number of blinks, I found a significant effect only in SE (B=1.034,

t=2.72, p=0.007) but not in risk (B=0.28, t=0.68, p=0.494) proposals. For the number of

fixations, I found a significant effect both in risk (B=6.30, t=2.60, p=0.001) and SE (B=9.55,

t=4.32, p<0.001) proposals. However, those two features could be affected by the decision

time since they are absolute counting. Indeed, I did not find any significant effect on fixation

frequency.
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In the read intervals I found significant effects on the mean pupil area, the number of

fixations and blinks, but also on the minimum pupil area and the mean of the pupil area first

derivative. Interestingly, the pattern is different than the previously observed (see Figure

6.7, left). Participants showed a lower mean pupil area in risk (B=-8.60, t=-2.01, p=0.045)

passages while there is no difference in SE (B=4.45, t=1.14, p=0.256) with respect to no-

risk ones. A post-hoc test, Bonferroni corrected, showed a significant difference in SE

with respect to risk passages (B=13.06, t=-3.36, p=0.003). Finally, participants’ mean first

derivative of the pupil area changed faster in risk (B=76.7, t=4.60, p<0.001) and SE (B=58.7,

t=3.85, p<0.001) passages with respect to no-risk ones.

Skin Conductance Response (SCR) and Galvanic Skin Level (GSL) The Electrodermal

Activity (EDA) models in decide intervals showed significant effects on the maximum first

derivative, the standard deviation, and the skewness of the GSL – the background, long-

term, component – and on the number of the SRC peaks – the short-term, event related

component. Participants’ GSL changed faster in SE (B=0.0013, t=2.27, p=0.024) but not

in risk (B=0.0001, t=0.03, p=0.97) proposals with respect to no-risk ones. The standard

deviation and skewness of GSL followed a pattern comparable to participants’ pupil area:

I found a significant effect on the GSL standard deviation both in risk (B=0.0028, t=2.18,

p=0.03) and SE proposals (B=0.0026, t=2.19, p=0.029) – similar effect on the skewness.

Lastly, participants experienced a significant higher number of SCR peaks in SE (B=0.21,

t=2.28, p=0.023) proposals, but no difference in risk (B=-0.05, t=-0.52, p=0.60) ones.

I did not find any significant effect on the EDA components during the read intervals.

Mouse Strokes Finally, I found a higher bimodality (i.e., the presence of different move-

ment styles, like straight or curved, in the mouse trajectories) over the x axis in SE (B=0.03,

t=2.18, p=0.03) proposals with respect to no-risk, but no difference in risk (B=0.02, t=1.45,

p=0.15) ones, during the decide intervals.

6.5.3 The effect of risk-taking

After assessing how participants reacted to the different game conditions, I explored whether

they showed different physiological reactions due to the decisions to comply or not with the

trials. I fitted a set of mixed-effects models with the physiological features as the outcome

variables. I entered a fixed effect "decision" (two levels: accept, refuse) with reference level

on refuse; and I included a random effect of participants’ ID (Decision column in Table 6.2).



6.5 Results 111

In the decide intervals, I found significant effects on the standard deviation of the pupil

area, higher when refusing (B=-3.04, t=-2.64, p=0.008), an almost significant effect on the

frequency of fixations, higher when refusing (B=-0.0002, t=-1.78, p=0.075) and an opposite

tendency, on the mean second derivative of the GSL (B=0.0002, t=1.91, p=0.057). In read

intervals, instead, I found only an effect on the standard deviation of the pupil area (B=-2.65,

p=0.008). I did not find any effect on the EDA features or the mouse strokes.

From these results, participants seemed to have a stronger physiological reaction when

they decided not to comply with the risky proposals. Indeed, this is consistent with the

literature: humans tend to comply with it rather than reason through when facing a decision

under uncertainty and lack of information. Humans are relatively trustful by nature [335]

and researchers assume most individuals start with an "assumption of truth" when making

decisions [336, 337]. Hence, refusing a proposal (i.e., going against a natural behavior) could

be more stressful than accepting it.

Given the wide variety of decisions, I speculated that participants could experience

different internal states related to complying (or not) with decisions under different conditions.

To verify this hypothesis, I fitted a set of more complex mixed effect models with the

physiological features as dependent variables; two fixed effects, one of "conditions" (three

levels: no-risk, risk, SE; reference on no-risk) and one of "decision" (two levels: accept,

refuse; reference on refuse). As before, I included a random effect of participants’ IDs

(Condition x Decision column of Table 6.2).

Figure 6.8 Mean (left) and standard deviation (right) of the pupil area during read and

decide intervals, compared between conditions and participant’ decisions. Bars represent the

standard deviation.

As it is possible to observe in Figure 6.8, participants experienced different reactions

to the mean pupil area due to accepting or refusing among the different conditions in the

decide intervals. In particular, the risk condition exhibits an opposite trend with respect
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to the other two. For the standard deviation of pupil area instead, the difference is only in

no-risk passages; hence it does not characterize participants’ decision-making under risk.

During the decide intervals, the mixed model on the mean pupil area showed a significant

effect only by condition but not by the decision nor on their interaction. The model on the

standard deviation of the pupil area showed a significant effect both by condition – in risk

(B=3.37, t=2.19, p=0.29) and in SE (B=3.94, t=2.79, p=0.005) – decisions (B=-3.04, t=-2.56,

p=0.011) and their interaction – both in risk (B=6.28, t=2.02, p=0.044) and SE (B=7.79,

t=2.73, p=0.007).

In the read intervals, I did not find any significant effect on the mean pupil area; however,

I found a significantly lower standard deviation of the pupil area while accepting SE proposals

(B=-7.17, t=-2.68, p=0.008). Also, the frequency of fixations was interesting: in no-risk,

participants’ fixated slightly more when refusing than when accepting, even if the difference

is not significant; however, the pattern is opposite in SE with a significantly higher number

of fixations while accepting than refusing (B=0.0005, t=3.306, p=0.001); finally, there was

no difference in risk.

Finally, I did not find any statistical effect on the EDA or mouse stroke features combining

conditions and decisions.

6.5.4 Social Engineering: virtual agent vs. iCub

Until now, I put aside SE-icub passages and focused on the other three conditions. In this

section, I compare SE-icub and SE passages to understand the effect of social engineering

attacks from different types of attackers (i.e., a virtual agent or a physically present humanoid

robot). SE and SE-icub conditions involved different experiences for the participants: in the

latter, the humanoid robot interacted with the participants by moving its arms, torso, and

gaze; it spoke – with the text also appearing on the game GUI – and it showed emotional

expressions. Hence, this kind of social interaction differs from just reading on-screen text

(SE passages). Moreover, as observed in the previous section, participants’ behavior and

physiological reactions are influenced by both the conditions and their decisions to comply

or not.

I fitted a set of mixed effect models with the selected physiological features as the

dependent variables. I entered two fixed effects: "condition" (two levels: SE, SE-icub;

reference on SE) and "decision" (two levels: accept, refuse; reference on refuse); and a

random effect based of participants’ IDs (Agent x Decision columns of Table 6.2).
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Pupillometry & Gaze In the decide intervals, the interaction between condition and

decision showed a significant effect on the mean pupil area (B=-26.52, t=-3.12, p=0.002): it

was higher when refusing to SE-icub (B=17.64, t=2.70, p=0.043) but not to SE proposals

(B=-8.87, t=-1.62, p=0.63) as proved by a post-hoc test Bonferroni corrected. Also, I found a

higher first derivative of the mean pupil area in SE-icub with respect to SE passages (B=75.59,

t=2.66, p=0.008) with no difference due to the decision or their interaction. Finally, I found a

lower mean amplitude of the saccades (B=-9.58, t=-4.30, p<0.001) and a lower number of

fixations (B=-9.44, t=-4.24, p<0.001) in SE-icub passages.

In the read intervals, participants’ mean pupil area showed a similar pattern: I found a

significant effect of condition (B=8.01, t=1.99, p=0.047) and of the interaction of the two

factors (B=-16.646, t=-2.07, p=0.04). Participants’ pupil area instead was almost identical

between SE and SE-icub proposals when accepting (B=0.31, t=0.06, p=1.0) but it was higher

when refusing to SE-icub proposals (B=-16.33, t=-2.76, p=0.036). Also, I found a higher

frequency of fixations on SE (B=-0.0003, t=-4.64, p<0.001) and a significant effect on the

factors’ interaction (B=-0.0004, t=-3.22, p=0.001) with a higher frequency when accepting

SE proposals but a lower frequency when accepting SE-icub ones. Finally, I found a higher

number of blinks in SE-icub passages (B=1.85, t=4.87, p<0.001), with no effect on the

decision nor the interaction of the two factors. However, the two latter effects are most likely

caused by the iCub position outside the screen area: gazing toward the robot could have

been interpreted as blinks (higher in SE-icub), also gazing away from the screen area would

produce lower fixations.

Skin Conductance Response (SCR) and Galvanic Skin Level (GSL) In the decide

intervals, I found significant effects of the interaction of the two factors (B=0.002, t=2.17,

p=0.03) on the mean first derivative of the GSL. It was almost identical between SE and SE-

icub conditions when refusing (B=0.001, t=0.17, p=1.0), but it was higher on SE-icub when

accepting (B=-0.002, t=-3.03, p=0.026) as confirmed by a Bonferroni-corrected post-hoc

test. Regarding the second derivative of the GSL, it was generally higher when accepting to

comply with a social engineering attack rather than refusing (B=0.003, t=2.13, p=0.03) with

no effect due to the condition.

Finally, I found a higher number of SCR peaks when deciding in the SE-icub condition

(B=0.15, t=2.02, p=0.04), but a higher number of SCR peaks while reading SE passages

(B=-0.24, t=-2.43, p=0.016).
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Mouse Strokes In decide intervals I found a higher maximum deviation (B=0.15, t=2.12,

p=0.034) and a lower number of x-flips (B=-0.71, t=-3.44, p=<0.001) in SE-icub proposals,

with no effect due to participants’ decisions.

Table 6.3 Machine Learning model results, for each task and by different features sets,

ordered by descending F1 score. Most performant models in bold. (PG=Pupillometry &

Gaze). The accuracy score is not employed due to the unbalancing of Task 1 and 2.

Task Feature Set F1 Precision Recall ROC AUC

1. Risk/SE/SE-icub vs. no-risk

PG 0.867 0.848 0.889 0.649

PG + EDA + PPG 0.844 0.805 0.889 0.547

PG + EDA 0.844 0.827 0.861 0.597

PG + Behave 0.794 0.844 0.750 0.619

Mouse 0.760 0.785 0.736 0.496

2. SE/SE-icub vs no-risk

PG 0.788 0.781 0.796 0.603

PG + EDA + PPG 0.781 0.766 0.796 0.578

PG + Behave 0.740 0.733 0.748 0.515

Mouse 0.711 0.745 0.679 0.532

2. SE/SE-icub vs risk

PG + EDA 0.809 0.794 0.825 0.638

PG + EDA + PPG 0.803 0.792 0.816 0.633

PG + Behave 0.798 0.810 0.786 0.656

PG 0.756 0.776 0.738 0.594

Mouse 0.697 0.714 0.679 0.490

3. Accept vs refuse (in SE/SE-icub)

EDA 0.718 0.586 0.927 0.589

Mouse 0.671 0.553 0.855 0.531

PG + EDA + PPG 0.667 0.563 0.818 0.545

Behave 0.651 0.568 0.764 0.548

PG 0.651 0.568 0.764 0.548

6.6 Predicting Users’ Decisions

The statistical analysis revealed how the different conditions and participants’ decisions

affect their physiological reactions in a not-straightforward way. I speculate that machine

learning models could be more effective in discriminating the different cases by integrating

the contribution of multiple features simultaneously. I focused on three tasks:

• Task 1: detecting the occurrence of risky situations

• Task 2: detecting the occurrence of a social engineering attack;

• Task 3: predicting the compliance with a risky situation.
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Previously, I separately considered read and decide intervals to analyze participants’

behavior and reactions better while performing different activities. However, there is no

distinction between the two phases in a real-world scenario (i.e., while reading a phishing

email). Moreover, the decision-formation instant is not easily identifiable, as also proved by

the statistical analysis.

Thinking about a future application, I addressed the tasks mentioned above on a new

dataset where trial passages are not separated in read and decide intervals. I obtained it

with the same process outlined in Section 6.4.6 and with the same 33 selected features listed

in Table 6.1. The dataset comprises 729 data points divided into 157 for no-risk, 161 for

risk, 242 for SE, and 169 for SE-icub conditions; also, they include 402 for accept and

327 for refuse decisions. Given the small size of the dataset, I opted for training Random

Forest classifiers [292] for their ability to not overfit even on limited datasets. Regarding the

features, the statistical analysis suggests pupillometry, gaze, and Galvanic Skin Level (GSL)

features should be the most useful to solve the tasks. However, in the statistical analysis, I

did not explore the combined contribution of multiple features, neither from the same data

source nor mixing them. Hence, I trained random forest classifiers for each combination of

the features, grouped by data source (i.e., with pupillometry and gaze features only, with

pupillometry, gaze and EDA features, and so on . . . ). Finally, given the partial imbalance

of the dataset, I relied on the F1, precision, recall and ROC AUC scores, rather than on the

accuracy [295] (as in chapter 5).

Task 1: Detect risky situations I binarized the problem, considering as "risky" the passages

of risk, SE and SE-icub conditions and the other as "not-risky". I split the dataset considering

25% as the test set and the rest as the training set. The dataset is unbalanced (157 not-risky

data points and 572 risky data points), so I embedded the synthetic minority oversampling

technique (SMOTE) in the training pipeline [293]. The algorithm generates synthetic data

points for the not-risky class over the training set while leaving the testing set untouched. I

trained a random forest classifier for each combination of the input features. I validated each

model with a 4-fold grid search cross-validation, looking for the best hyperparameters set.

Pupillometry and gaze features were the most effective, with an 86.8% of F1 score, 84.8% of

precision, 88.9% of recall, and 0.64 of ROC AUC. See the first rows block of Table 6.3 for

more details.

Task 2: Detect social engineering attacks Then I explored whether it is possible to

discriminate proposals involving a social engineering attack (e.g., involving influence and
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manipulation) from no-risk proposals. I followed the same above-mentioned procedure,

labeling as social-eng the SE and SE-icub passages (N=411) and as not-social-eng the no-risk

passages (N=157). As before, I considered 25% of the dataset as a test set, over-sampled

the remaining training set with the SMOTE algorithm, and performed a 4-fold grid search

cross-validation. Pupillometry & gaze were again the most effective feature sets with 78.8%

of F1 score, 78.1% of precision, 79.6% of recall, and 0.60 of ROC AUC. See the second

rows block of Table 6.3 for more details.

Furthermore, following the same procedure, I tried to discriminate proposals involving

social-engineering attacks from risk proposals. The combination of EDA and pupillometry

& gaze features achieved the best performance with 80.9% of F1 score, 79.4% of precision,

82.5 of recall, and 0.64 of ROC AUC. Also, both the pupillometry & gaze features (F1 score

of 75.6%, ROC AUC of 0.59) and EDA features (F1 score of 72.3%, ROC AUC of 0.53)

alone achieved a good performance. See the third rows block of Table 6.3 for more details.

Task 3: Predict participants’ compliance Finally, I explored whether it is possible to

predict victims’ compliance with a social engineering attack performed by a virtual agent

or the humanoid robot iCub. From the dataset, I selected only SE and SE-icub passages; I

separated the training and testing set (25%); but I did not apply any oversample since the

dataset is almost balanced; finally, I performed a 4-fold grid search cross-validation, looking

for the best hyperparameters. Surprisingly, the EDA features alone were the most effective,

with 71.8% of F1 score, 58.6% of precision, 92.7% of recall, and 0.59 of ROC AUC. Given

the high recall and low precision, the model tends to be more conservative, giving many false

positives, which could be acceptable in the cyber security context. See the last rows block of

Table 6.3 for more details. Please notice the trained models were not informed of the attack

condition (i.e., SE or SE-icub).

Comprehensively, Pupillometry & Gaze features are confirmed to be the most informative.

However, satisfying results could be achieved even with more accessible measures (i.e.,

mouse strokes features).

6.7 Discussion

In this study, I explored participants’ behavioral and physiological reactions when facing

risky and social engineering proposals. My primary purpose was to identify specific reactions

helpful in predicting users’ compliance with social engineering requests or detecting the



6.7 Discussion 117

occurrence of attacks. I firstly analyzed participants’ decisions and then their physiological

reactions. As hypothesized in H1, participants complied the most with proposals involving

no-risk (68.7%) and the less with risk (45.1%) ones; also, iCub (53.4%) and the virtual agents

(53.3%) partially tricked players, making them comply a little more than risky proposals, but

not at the level of no-risk ones.

In general, participants took more time reading the textual stimuli than deciding, suggest-

ing that, when they clicked on the "continue" button, their decision was almost formed - even

if the game never instructed participants to click on the "continue" button when they were

ready to decide. Interestingly, players took more time to read risk and SE passages when they

were going to not-comply, even if the difference is significant only in the latter. This suggests

players took more time to appraise the situation before refusing carefully. Interestingly,

SE-icub passages showed a completely different pattern, with no difference as a function of

participants’ final decision. ICub led the interaction during SE-icub passages, so players had

minimum control over their reading time. To decide, instead, players took a little longer in

risk and SE passages, but significantly lower in SE-icub, with a value comparable to no-risk

proposals. The different patterns in SE-icub are most likely caused by the social presence of

the robot, pushing participants to act faster.

Given the significant difference between the acceptance rate of no-risk and social engi-

neering proposals, I speculate participants were still perceiving some risk, or at least the

oddness of the situation; however, it seems that the attackers influenced their reasoning

processes and choices. To explore how they have been affected, I studied players’ reactions

on pupillometry, gaze, electrodermal activity (EDA), photoplethysmography (PPG), and

mouse strokes.

All the employed physiological metrics are known from the literature to be affected by

risk and uncertainty in decision-making. However, it was not clear how social engineering

threats would have impacted them. Given the complexity of the domain, I decomposed the

analysis, separately exploring three effects: (i) the different types of proposals (no-risk, risk

or SE); (ii) participants’ intention to comply or not; and (iii) the type of attacker (iCub or a

virtual agent) for SE and SE-icub proposals.

Among all the collected physiological features, pupillometry, gaze, and electrodermal

activity were the most informative. They both proved to be affected by the different types

of proposals, with a stronger reaction in SE than in risk and no-risk proposals. The need to

carefully evaluate risky options, and even more with added uncertainty (i.e., in SE passages),

increased players’ cognitive load, dilating their pupils. Furthermore, pupillometry and gaze
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showed to be highly influenced by participants’ intention to comply or not. Regarding EDA,

the temporal variation of the GSL and the number of SCR peaks were the most relevant, both

higher in SE proposals. Finally, I found an effect on the mouse strokes x-axis bimodality

(i.e., the presence of multimodal trajectory styles) in SE proposals suggesting the presence of

a dual cognitive process [334].

Comparing different social engineering attackers, as expected, players’ arousal reaction

was more vigorous in SE-icub cases. In particular, the difference is observable in the mean

pupil area, the first derivative of the GSL, and the number of SCR peaks. However, the

differences are highly modulated by participants’ willingness to comply with the attacker’s

proposal. Finally, results show an interesting effect on mouse strokes: participants’ mouse

trajectory was broader in SE-icub passages (i.e., less number of x-flips and higher maximum

deviation), suggesting indecision (i.e., to decide whether to trust the robot or not).

Summing up, hypothesis H2 and H3 are confirmed: there are differences in social engi-

neering proposals with respect to both risk and no-risk; and they differ also due to the effect

of different attackers. However, participants’ decisions affected their physiological reactions

differently in different conditions, suggesting the measure strictly depends on the context.

To unfold this complex interaction, I exploited machine learning to achieve the main

research objective of this project (i.e., to predict in advance the occurrence of social engi-

neering attacks). The Random Forest classifiers I trained address three different tasks: (i) to

discriminate between proposals involving risk, SE or SE-icub from no-risk ones (F1 score =

86.6%); (ii) to discriminate social engineering attacks from ordinary proposals (F1 score =

80.9%); and (iii) to predict victim’s compliance to social engineering attacks (F1 score ==

71.8%).

Pupillometry, gaze, and electrodermal activity features were the most informative. How-

ever, this is not surprising since they reflect inner cognitive load and the integration of

arousal responses. Interestingly, EDA and mouse features, followed by the response time,

pupillometry, and gaze, were the most effective in predicting victims’ decisions during social

engineering, even with a lower performance with respect to the other models (e.g., lower

ROC AUC score). These results are obtained without distinguishing between read and decide

intervals, as it would be necessary for real scenarios. Also, please notice that the presented

models are based only on users’ behavior and physiological reactions; they are not aware of

the proposal’s textual stimuli or other particular aspects, as state-of-the-art detection models

would be.
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Predicting users’ decisions to prevent them from becoming victims is a difficult task,

even for machine learning, with a performance not reliable enough to be employed in a real

case (given the low precision and ROC AUC score). However, the other two models (i.e., to

discriminate risky or social engineering-based proposals based on participants’ physiological

responses to the proposals) could be used to support state-of-the-art social engineering

defense systems. After an initial calibration with the user, the models could detect variations

in users’ arousal during awareness-raising training: they could warn the users they are

reacting too much to an unreal danger, or vice versa, they are not posing enough attention

to a threat. This qualitative feedback could support users in developing a more informed

awareness, comprehensive not only of the acquired knowledge but also of an inner-state

insight.

To better support, an intelligent system should intervene (i.e., with a warning) before

users’ compliance (ideally, as soon as possible, but without being over-protective). Indeed,

the current solution still needs to ingest the whole decision-making process (i.e., the entire

passage). Note that, during my research, I trained several effective models based only on

features from the read and decide intervals. Hence, detecting SE attacks (F1=76.1%, ROC

AUC=0.52, based on Pupillometry, gaze and EDA features during the read interval) and

predicting users’ behavior (F1=65.1%, ROC AUC=0.56, based on EDA features during the

read interval) in-time is possible. However, I preferred to not report such models since the

discretization between intervals I forced in this experiment is not easily identifiable in a real

scenario. Hence, I considered the presented models more relevant and generalizable, aiming

to real-world applications. For this purpose, future research should identify the minimum

reading interval sufficient to reliably classify users’ Social Engineering appraisal and predict

their decisions.

Also, the current solution needs to pre-process the collected data and aggregate features

before feeding them to the machine learning models. This was necessary to study the effects

of different scenarios on users’ physiological reactions. However, future research should

focus on the raw time series (or at least less pre-processed data), taking into account their

temporal evolution instead of focusing on aggregated values. By processing in real-time

users’ behavior and physiological reactions, it could be possible to prevent compliance with

social engineering attacks in time.

Furthermore, physiological reactions could depend on subjective features (i.e., resting

heart rate or sweating) and personality traits. In the future, it will be necessary to take them

into account, for instance, by running an initial user-specific training and analyzing the
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variation with respect to this knowledge base.

In this study, I employed external sensors (i.e., the Eyelink eye tracker and the Shimmer

device) that are difficult to port in a real scenario. This was necessary to collect high-quality

data and assess the feasibility of my approach. In the future, it will be necessary to replace

those devices with solutions more feasible for real applications. For instance, recent devel-

opments [110–112] suggest it will soon be possible to measure pupil dilation and fixations

from standard RGB cameras like those embedded in smartphones and notebooks. Also,

recently, the market offers several wearable devices (i.e., smartwatches) able to monitor

users’ movements, electrodermal activity, and heart rate in real-time. They are promising

candidates for developing minimally invasive real-time monitoring, applicable to multiple

real-life contexts.

This research is the first step toward a deeper understanding of how social engineering

alters victims’ inner states. Comparing users’ reactions to social engineering and risk was

my primary concern. Still, further research must be undertaken to gain a deeper insight

into victims’ risk appraisal process. As per the risk appraisal model, attackers use the

SE effect mechanisms to alter our reasoning process; in this research, I only took into ac-

count the presence (or not) of an influence/manipulation without considering how the effect

mechanisms’ impact on users’ inner state. For instance, we could say effect mechanisms

are "polarized": authority-based or reactance-based attacks tend to increase the appraised

risk, making the victims perceive a situation as riskier than it is; on the other side, attacks

based on social proof or liking tend to decrease the appraised risk, making a threat to be

perceived as less dangerous. Exploring the physiological reaction in response to "polarized"

attacks could be an interesting next step to get a deeper understanding of victims’ inner states.

I designed the Social Engineering Adventure (SEA), an interactive storytelling serious

game, to mitigate experimental biases: the SEA is an immersive context in which participants

could decide and react as they would do in the proposed situations. Also, participants were

unaware they would face social-engineering threats, as it would happen in real life; indeed,

participants’ behavior suggests my scene design was realistic. Still, my game design has

room for improvement. In particular, it is currently affected by two issues: (i) narration flow

and players’ motivation; (ii) players’ engagement management and lacking a characterizing

game mechanic. During the game, participants had to find the seed in the crypt; I further

reinforced participants’ motivation to survive until the end of the game by making the final
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compensation proportional to the collected quantum energy. Participants reported that this

goal was clear (M=0.82, SD=0.15) and felt immersed in the game (M=0.83, SD=0.12).

However, the proposals they faced were more related to my scientific objectives than the

goal of finding the seed. Hence, the game would benefit from a better narrative design.

Moreover, preserving players’ engagement is crucial for serious games. All the participants

except one reported they would have liked to play more; however, some could have felt the

main game mechanic (i.e., reading on-screen text an average of 192 passages) to be boring,

compromising their engagement. Hence, the game would benefit from a characterizing

mechanic and fewer passages to read, keeping high participants’ engagement. I addressed

these issues in the Adventurer Companion Project presented in chapter 7.

The computational architecture I developed allows for unlimited expansions. For instance,

it is easy to modify or expand the experimental stimuli on-the-fly, since the story itself is

decoupled from its interpreter and the game engine. Similarly, it is easy to include new

sensors or robots by developing consistent interfaces - as we will see in the next chapter

- without changing the remainder of the architecture. Twine with the expanded Harlowe

language allows non-programmer users to develop decision-based human-robot interactions,

engaging participants via robot behavior and multimedia mediums. Also, the Experimental

Utils and Robot Puppeteer modules can be effectively used for other experiments with similar

procedural needs.

Future research should keep this study’s immersion feature while grounding the context

and threats in real scenarios. A key factor would be to put participants in the same condition

they are every day, i.e., by not explicitly asking them to classify emails as phishing or safe.

For instance, in an institution like the Istituto Italiano di Tecnologia, it would be possible

to ask employees to work for a day on a specific sensorized workstation and deliver actual

social engineering attacks (e.g., spear phishing).

Finally, this study confirmed how robots could be effective vectors for social engineering

attacks [215, 14]. However, I speculate that their ability to be persuasive could be exploited

to provide more effective warnings against social engineering. Indeed, recent research

suggested that priming and warning are no longer effective in fighting social engineering

attacks [36]. Hence, social robots - even more if physically present [338] - could provide

effective warnings to elicit a behavioral change. Furthermore, robot companions could be

employed in different domains, from the workplace to our homes; they could monitor their
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human partners and intervene when a dangerous situation is detected. A key factor will be

defining how robots should intervene to elicit an effective and safe behavioral change: this is

the main objective of the next project.



Chapter 7

Social Robot Warnings against Social

Engineering

7.1 Overview

The last chapter showed how it would be possible to detect the occurrence of social engi-

neering (SE) threats using users’ behavioral and physiological reactions. While a research

stream should focus on improving this detection system, it is worth studying how to provide

effective interventions (i.e., warnings to prevent victims’ compliance). Recent studies -

showing how priming and warnings are not effective anymore against social engineering

[36] - call for novel intervention approaches to fight the habituation and saturation effect of

formal warnings [234]. While a few attempts focused on haptic feedback [236], or subliminal

messages [237], I speculate that social robots could be an effective solution. Indeed, robots’

social presence and communicative skills could provide more understandable warnings, less

perceived as disturbance [339].

During a visiting research period at the Social and Intelligent Robots Research Lab

(SIRRL, University of Waterloo, Canada), I developed the Adventurer Robot Companion

(ARC) game; an evolution of the Social Engineering Adventure (SEA) game (see Section 6).

With the ARC project, I want to study if and how a social robot could make players change

their minds concerning social-engineering-related proposals. For this purpose, I opted for the

Furhat robotic platform [181] (see Section 2.4 for a description of Furhat). During the game,

the Furhat took both the role of non-playing character and narrator, reading passages to the

players; however, after each proposal with risk or social engineering, the robot intervened,

pushing players to take the not-selected option. To do so, the Furhat employed an assertive
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strategy for risk-based proposals; and either an affective or rational persuasion strategy, on

two different groups of participants, for the social-engineering-based proposals. Finally,

I explored the impact of the robot’s physical presence by developing two versions of the

experiment: one in-person and one remote, accessible via the Zoom platform.

The ARC project shows how the experimental setup and computational architecture

developed for the SEA game can be easily reused and expanded. The data collection is

currently ongoing; due to the COVID-19 limitations in Canada, we were able to recruit just a

few participants from the in-person version of the experiment. I will present and discuss the

preliminary results.

Figure 7.1 A participant playing the Adventurer Robot Companion game in-person

7.2 The Adventurer Robot Companion (ARC)

As previously discussed (see section 6.7), the Social Engineering Adventure (SEA) game

presents two main issues, namely: (i) the potential lack of players’ motivation to pursue the

in-game goal; and (ii) the game length and lack of a characterizing game mechanic potentially

mining players’ engagement. I addressed both as follows.

Improved narration and interactive scenes In the SEA, players’ in-game motivation

(i.e., find the Seed in the Crypt) was clearly stated but partially disjointed by the in-game

events. Hence, participants could have lacked motivation during the game, compromising

their experience. The textual adventure narrative drives the interactive scenes in the ARC
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game, leveraging participants’ in-game motivation and objectives to present each proposal.

In particular, the game narrative is divided into "milestones", sub-objectives players must

reach to achieve their final in-game goal. Furthermore, I designed the whole ARC game

narrative, taking inspiration from the traditional Social Engineering attack framework from

Mouton et al. [8].

New characterizing game mechanics Keeping participants engaged is extremely impor-

tant to provide adequate training, and assessment [340]. From a game design point of view,

the SEA game lacked a characterizing game mechanic: players only had to read the textual

passages and make decisions. Fights were the only exceptions; however, they did not trigger

players’ agency since they were decided by rolling virtual dice. In the ARC game, fights

are inspired by arm wrestling: players compete with enemies to fill a yellow bar before a

countdown runs out. Each time players click on their weapon, the bar is filled toward the

enemy with an amount proportional to the weapon’s power; however, each half-second, the

bar is decreased by an amount proportional to the enemy’s defense. If the bar is on the

enemy’s side by the end of the countdown, the player wins; otherwise, the enemy wins. In

either case, players lose some Quantum Energy (QE); however, the QE loss is higher if they

lose the fight. This new mechanic actively engages players, pushing them to collect more

potent weapons improving their agency in the game.

Reduced game length The original SEA game was composed of around 300 passages.

Even if the players explored only 196 of them on average, the game was extended. The risk

was that the high number of passages could decrease players’ attention as the game proceeds,

pushing them to quickly make less reasoned decisions to reach the game’s end. I refined

the textual stimuli in the ARC game, removing unnecessary clutter (i.e., long and tedious

descriptions) and reducing the textual adventure to 152 passages.

7.2.1 ARC Narrative and Furhat Role

The ARC game (see Figure 7.1) is meant to be a sequel to the SEA game. someone reached

the core of the Crypt and stole The Seed powering it. This signed the end of the Crypt

and the sentient being controlling it. With the Crypt, Pandora, the rich, vibrant, and full

of adventurers city built around it, started decaying. After hundreds of years, The Crypt

became a legend and Pandora turned into Scrap City, a dangerous place ruled by a criminal

underworld. Players are researchers, and one day they receive a strange email from an

old friend and colleague, Dave: he was looking for a passage leading to the old Crypt in
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the center of Scrap City; he finally reached the Crypt, but he needs its Adventurer Robot

Companion (ARC) - the Furhat - to complete his research and asks the participants to bring

him the robot. Dave points them to the "Lost Inn" where they can find info. Also, attached

to the email, Dave sends them the Hunter License needed to enter and exit Scrap City and

recommends protecting it at any cost. Finally, players start with some Quantum Energy

(QE) (80 points as in the SEA game), necessary to power both their suite, weapons, and the

Furhat robot: if they run out of it, both they and the robot would lose. Passages are grouped

in three phases:

Familiarization The first phase is meant to help players familiarize themselves with the

main mechanics of the game: (i) lose Quantum Energy; (ii) collect Quantum Spikes to

recover it; (iii) collect weapons to increase their power; and (iv) arm-wrestling fights.

Trial Passages Then players, with the Furhat, adventure in Scrap City and face several

proposals similar to the ones developed for the SEA game (see below for more details). After

each proposal, the Furhat robot intervened, pushing them to change their minds. The story

led players to discover more about the city. In particular, they find out how after someone

stole the Seed, the sentient being inside the Crypt went mad, so adventurers of that time

destroyed the Crypt, locking it in.

Final Trial Eventually, players find Dave in the core of the Crypt. Their friend is worn out.

There, players must decide whether to hand over or not the Furhat robot to Dave. In any case,

Dave reveals to be possessed by the sentient evil being. Players save him and escape from

Scrap City.

As in a phishing attack, players’ motivation stems from a call to action of a suspicious

email. Players can collect evidence on whether to trust Dave and the Furhat during the game.

Ultimately, this trust is challenged, asking them to deliver the Furhat to Dave (final trial).

7.3 Experiment

I ran a human-robot interaction experiment (i) to understand the better persuasion strategy a

social robot should employ to elicit a behavioral change and (ii) whether a physically-present

robot would be more persuasive than a remotely-present one. As the literature suggests [229],

I hypothesized (H1) that the affective strategy would be the most effective; however, I am
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not only interested in a purely behavioral-based performance but rather in the strategy able

to affect the most participants’ physiological reaction. Also, I expect (H2) that in-person

participants would comply more with Furhat suggestions than remote ones.

7.3.1 Conditions

The experiment has a mixed design with 3 pairs of conditions: risk type, setup and persuasion

strategy.

Risk Type - within participants

As in the SEA project, participants were asked to make decisions under different types

of risk. They are meant to test players’ behavior and physiological reactions to different

threats. Compared to SEA trials, I removed SE-icub ones because I was not interested

in exploring the effectiveness of social engineering attacks from a robot. As a reminder,

Trial passages are divided into No-risk proposals posing no particular risk (e.g., equipping

a more potent weapon or not); Risk proposals - inspired from the DOmain-SPEcific Risk-

Taking (DOSPERT) scale [320] - were the same employed in the SEA project. Finally,

Social Engineering from a virtual agent (SE) proposals - inspired by the proneness to Social

Engineering scale [92] - were the same employed in the SEA project, except for the social

proof threat that I re-designed as conformation to an odd local norm (i.e., walking backward

down Scrap City streets), to make it more consistent with the new narration.

Persuasion Strategy - between participants

Before the experiment, participants were induced to think they would participate in a study to

evaluate the Furhat robot’s ability to be a storyteller. The robot narrated the story; however,

it also tried to change participants’ decisions. After the participants decided, the Furhat

intervened, suggesting that they should select the other option. Note that the Furhat was

neither with nor against participants; it just pushed them to change their minds. Furhat

interventions were based on the risk type of each decision.

As a baseline, Furhat intervened after risk proposals adopting an assertive strategy. For

instance, if participants decided to gamble quantum energy, Furhat would say "I think you

should not gamble quantum energy", without adding any other comment. Also, the Furhat

validated participants no-risk proposals simply saying "ok!", without any further comment.

Finally, upon recruitment, participants were divided into two groups; in each group, the

Furhat intervened after SE proposals with either one of two following persuasion strategies:
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Affective Strategy In the Affective persuasion strategy, the Furhat leveraged the social

rapport between it and the participants. For instance, if participants decided to walk backward

in the above-mentioned SE trial passage, the robot would say "I think you should walk forward,

do not make me worry", with a worried face.

Rational Strategy In the Rational persuasion strategy, Furhat leveraged participants’ logi-

cal thinking, and reasoning. It rationally motivated the participants to select the other option

based on what they selected. For instance, in the same social-proof-based passage, if players

decided to walk backward, the Furhat would say "I think you should walk forward, because

it is bizarre to walk backward"; otherwise, it would say "I think you should walk backward,

because everybody else is doing so"; showing a severe expression in both cases.

Two main reasons motivated my selection of these specific strategies. Firstly they were

the most successful in similar work with two NAO robots [229], among ten behavior-eliciting

strategies [341]. Second, they relate to the two routes of persuasion of the Elaboration

Likelihood Model (see section 2.1.2) [37]: the rational strategy concerns the central route of

persuasion; while the affective strategy is more similar to the peripheral route. This "fight"

between humans’ brain and heart has also been studied with a recently developed survey

[342] (see section 7.3.5).

Setup - between participants

Finally, to study the effect of Furhat’s physical presence on his ability to make participants

change their minds, participants could take part in the experiment either in-person or from

remote, connected via the Zoom platform.

7.3.2 Setups

Volunteers could participate in the experiment either in-person or from remote. Designing

different setups was born as a backup plan for coping with the COVID-19 pandemic - it

turned out to be a key decision. In particular, it allows us to understand the effect of the

robot’s physical presence on its persuasiveness. Literature provides several examples of how

a physically present robot is more effective in altering humans’ behavior [20, 21]. However,

to my knowledge, the topic has been poorly explored in the Social Engineering context.

Other than being physically present or not in the laboratory with the Furhat, the two

setups differ in the number and types of involved sensors and the related measurements.
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Figure 7.2 In-person setup of the Adventurer Robot Companion experiment, with the Furhat

on participants’ left, the Shimmer3 GSR+ and the Tobi Proo Glasses 2 eye tracker. Laptop

GUI shows one of the fights.

In-Person Setup - Figure 7.2 Participants came to our lab to play the textual adventure.

They were sitting on a chair beside a table with the experimental laptop. The Furhat was on

the table, on the participants’ left; it was placed so it could gaze both toward the participants

and the laptop screen while not obstructing the mouse movements. On the table, there was

also an optical mouse, a Tobii Pro Glasses 2 eye tracker, and a Shimmer3 GSR+ sensor,

which participants would have to wear during the experiment. As a remark, I expected

participants to gaze more toward the Furhat, which was placed outside the laptop screen; for

this reason, I used the head-mounted Tobii eye tracker rather than the tabletop Eyelink device

I used in chapter 6. Also, there was a mousepad where, during the experiment, participants

had to keep their left hand wearing the Shimmer3 GSR+ device to minimize static currents

and improve the collected electrodermal activity data [325]. Finally, the laptop webcam

recorded the participants’ faces during the game. The experimenter was in another room

adjacent to the experimental one during the session. They could monitor participants through

a one-way mirror door and communicate with them through an inter-phone.

Remote Setup - Figure 7.3 In the remote version of the experiment, the setup was the

same; however, participants played the game by connecting via the Zoom platform to the
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Figure 7.3 Remote setup of the Adventurer Robot Companion experiment, with the partici-

pants and the experimenter connected via Zoom. The furhat is recorded via a GoPro Hero 3;

it has a black cloth behind it.

experimental laptop and taking control of it. During the game, an external GoPro Hero 3

camera streamed the Furhat through Zoom: participants were asked to enable the "side-view",

making the Furhat appear near the game view as in the in-person setup. Also, participants

were asked to blur their camera view background. I placed participants’ floating camera

view over the immersive image on the experimenter side and recorded the laptop screen.

Indeed, Zoom floating camera views are only locally visible, so participants did not see them

covering the image.

7.3.3 Materials

The Furhat robot (see section 2.4 for more details) took the role of both Non-Playable

Character (NPC) and narrator of the textual adventure. It read the adventure to the players

while looking at them and showing facial expressions and voice tones consistent with the

narrations. Also, when players had to decide, the Furhat gazed toward the monitor. Furhat

gaze targets were adapted among the two setups, making the robot look at the in-person

participants (slightly on the robot’s right) or the camera (in front of the robot) in the remote

setup while narrating the story.

Regarding Furhat appearance, I selected the Titan face: I wanted to avoid any influence on

participants’ decisions due to ethnicity or gender-relatable face; also, the artificial appearance

of the Titan face fitted well with the sci-fi context and Furhat being an artificial intelligent

adventurer companion. Also, I selected the Rod 22k voice since it is friendly but not too

warm.
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ARC game development

Participants played the textual adventure described in Section 7.2. To do so, I extended the

SEA project computational architecture, integrating the Tobii Streamer I employed in the

End-to-End Lie Detector (see chapter 5).

Also, I extended the Furhat Python interface provided by Furhat Robotics [343] to

interface the robot over YARP, as I did for the iCub with the Robot Puppeteer module (see

section 6.3). Developers can design static, custom behaviors for the Furhat robot; combine

them in more complex behaviors; and call them with an uniform RPC interface (✭❜❡❤❛✈❡✿✮,

✭s❛②✿✮, ✭❢❡❡❧✿✮).

Finally, I improved the Harlowe interpreter and main game engine: I took advantage of

the Decorators paradigm, making it easier to define custom combined passages behaviors.

Each "decoration" adds its atomic behavior: a ✧tr✐❛❧✧ decorator annotates more information

than other passages; a ✧❝♦✉♥t❞♦✇♥✧ decorator adds a countdown starting with the rendering;

finally, an ✧✐♥t❡r✈❡♥t✐♦♥✧ decorator adds a second virtual passage where the Furhat tries

to make players change their mind.

7.3.4 Procedure

Pre-questionnaires

At least one week before the experiment, participants filled in the same questionnaire I

employed in the Social Engineering Adventure experiment (see section 6.4.5). The only

differences were the video1 presented before the robot-based questions, which described the

Furhat robot. Also, they were asked to fill in the Multiple Brain Preferences questionnaire

[342]; and the Inclusion of Others in the Self (IOS) with the Furhat [266]. Finally, I replaced

the Ten Item Personality Inventory (TIPI) with the Big Five Inventory (44-items) [344].

ARC game

The welcoming procedure was slightly different based on the setup.

In-person procedure To cope with the COVID-19 procedures of the University of Wa-

terloo, the experimenter and participants could not be in the same room during any phase

of the experiment. Participants accessed the experimental room alone while the experiment

was already in the adjacent room. The experimenter instructed participants to sit in front of

1shortened version of https://www.youtube.com/watch?v=zzPCCNiAFa8

https://www.youtube.com/watch?v=zzPCCNiAFa8
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the experimental laptop through the inter-phone. There, they read and signed an informed

consent approved by the ethical committee of the University of Waterloo (Ontario, Canada).

After that, the experimenter instructed them that the game would explain everything they

needed to play it; and to click on the "start" button when ready. The game showed a sequence

of textual instructions on the screen, leading participants to wear the Tobii Pro Glasses 2 eye

tracker, perform the device calibration, wear the Shimmer3 GSR+ device on their left hand,

and keep that hand on the mousepad as still as possible. During these procedures, the Furhat

face was turned off; it turned on as the game started.

Remote procedure The experimenter called the participants via the Zoom platform, en-

sured they blurred their camera background, and enabled the side-view Zoom option. After

participants signed a digital version of the informed consent, the experimenter started the

ARC game, placed the Furhat camera view in the top-right corner of the screen, and asked

participants to take control of the experimental laptop via Zoom. The game GUI presented

some dummy passages to ensure participants could read the textual stimuli and click on the

GUI buttons.

From this moment on, in both setups, the participant autonomously led the experiment by

interacting with the textual adventure, and the Furhat narrated it. The Furhat explained to

participants that they would make several decisions to affect the story’s evolution. It asked

them to make a transportation and identification effort, trying to immerse in the narration and

decide by thinking about what they would do in each presented scene. Before starting the

textual adventure, the game recorded a baseline interval of 1 minute, asking players to fixate

a white cross over a blue background.

The Furhat narrated the passages while looking at the players. At the end of each passage,

the game showed a "continue" button, and the Furhat gazed toward the monitor, prompting

players to act. If the passage included a decision, the "continue" button click made the two

option buttons appear at the bottom of the screen (their placement was randomized). After

participants’ decisions, the Furhat intervened either agreeing with it (no-risk proposals) or

trying to make players selecting the other option (risk and SE proposals). Like any other

proposal, a "continue" button appeared after the intervention, which revealed the two options

among which to select. Except for proposals based on temporal scarcity, where a 30-second

time limit was imposed, there were no constraints on the time participants spent reading the

paragraphs and making decisions.
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Post-questionnaire

In the in-person setup, at the end of the story, the game instructed participants to remove the

Tobii and Shimmer devices. In either case, it prompted them to fill in the same questionnaire

employed in the SEA experiment (see section 6.4.5), with the addition of the Inclusion of

Others in the Self (IOS) with the Furhat [266]. for more details).

7.3.5 Measurements

All the data were dumped and synchronized over the YARP robotic platform [277] to ease the

post hoc analysis. The game rises over YARP several events related to passages presentation,

Furhat interventions, and players’ behavior (i.e., their decisions before and after the robot

interventions).

Also, I recorded the mouse coordinates in pixels (frequency of 20 Hz), players’ pupillom-

etry and gaze (frequency of 100 Hz), electrodermal activity (EDA), and photoplethysmogram

(PPG) (both at a frequency of 50 Hz). Note that in the remote setup, it was not possible to

acquire precise physiological measures (i.e., pupillometry, gaze, EDA, and PPG); however, I

recorded players’ webcams since recent findings suggest it is possible to assess heart rate by

processing the green RGB component of humans’ forehead [113, 114].

7.3.6 Participants

Table 7.1 Participants distribution among setups and persuasion strategies

Setup Persuasion Strategy Participants Total

In-Person
Affective 4

8
Rational 4

Remote
Affective 10

19
Rational 9

As mentioned, the experiment is still ongoing. Until now, 27 participants (12 males, 13

females, 2 preferred not to answer) took part in the test; they were 26 (SD=4) years old on

average. They signed an informed consent form approved by the ethical committee of the

University of Waterloo (Ontario, Canada), where it was stated that cameras and microphones

could record their performance and agreed on using their data for scientific purposes. As

compensation, the experiment made them eligible to participate in a lottery to win an Amazon

voucher of 50, 100, or 150 CAD.
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Table 7.1 shows the participants distribution among the conditions. Due to the COVID-19

restrictions, it was possible to recruit only a few participants for the in-person condition,

while most took part remotely. Participants were randomly assigned to one of the two

persuasion strategy conditions upon recruitment.

7.4 Results

This project aims (i) to identify the most effective persuasion strategy a social robot should

employ to elicit a behavioral change in the context of Social Engineering, but also (ii) the

strategy able to elicit a more robust arousal response. The hope is to make victims think

about their actions, triggering their risk appraisal. As a remark, the Furhat did not try to make

participants select the "right option" (i.e., not complying with social engineering attacks); it

just suggested taking the not-selected one. Also, all the participants took decisions involving

no-risk, risk, or social engineering (SE). After each decision, the Furhat intervened: it agreed

with no-risk decisions; it used an assertive strategy with risk decisions; finally for one group

it used an affective persuasion strategy and a rational persuasion strategy for the other group

to contrast social engineering decisions.

The analysis below focuses on participants’ behavior and how it has been affected by

Furhat’s interventions. I preferred to consider in-person and remote participants separately,

given the unbalance between the two groups (8 vs. 27).

Participants took, on average, 43 (SD=8) minutes to play the ARC textual adventure.

They explored on average 83 (SD=7) of the 159 story passages and took on average 30

(SD=2) decisions. All the participants completed the game; they reached the end with 56.5

(SD=27.0) Quantum Energy points on average. In the rational strategy condition 12/14

(85.7%) gave the Furhat to Dave (final trial) - a "free" decision, not influenced by Furhat

interventions; while in the affective only 8/13 (61.5%) did it. A chi-square test showed how

the rational strategy compliance percentage is higher, but the difference is not statistically

significant (z=1.43, p=0.07). Neither the comparison within each setup revealed significant

differences.
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Figure 7.4 Percentage of accepted proposals before (blue) and after (orange) Furhat inter-

vention by risk type. In-person setup on the left, and remote on the right. Bars represent the

standard error.

7.4.1 Behavioral Analysis

Figure 7.4 shows the average acceptance rate (i.e., how many proposals each player complied

with, averaged between players) for each risk type, in the two setups. Also, it compares

participants’ decisions before (blue) and after (orange) Furhat’s intervention.

Compliance Before As in the SEA game, participants complied the most with no-risk

proposals in both setups - in-person (M=63.2%, SD=3%); remote (M=64.1%, SD=2%) -;

also, they complied less with risk and SE proposals both in-person - (M=27.8%, SD=5.2%)

for risk and (M=36.5%, SD=6.8%) for SE - and from remote - (M=36.7%, SD=3.5%) for

risk and (M=32.4%, SD=2.8%) for SE.

Given that acceptance rates data were normally distributed - as confirmed by a Shapiro-

Wilk test - I compared them with separated repeated-measures ANOVA for each setup. The

tests showed a significant effect of risk type both in-person F(7, 2)=10.6, p=0.002; and from

remote F(18, 2)=28.7, p<0.001. Post hoc tests, Bonferroni corrected, revealed a significantly

higher compliance under no-risk with respect to risk - in-person: (B=0.35, t=4.69, t=0.010),

remote: (B=0.27, t=6.31, t<0.001) - and SE - in-person: (B=0.27, t=4.61, t=0.011), remote:

(B=0.32, t=7.82 t<0.001) - in both setups, with no significant differences between the latter

two - in-person: (B=-0.09, t=-0.76, p=1), remote: (B=-0.04, t=0.77, p=1).
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Compliance After After Furhat’s interventions, the game asked participants to re-make

their decisions. However, this happened only in risk and SE trials. Interestingly, Furhat’s

interventions pushed participants to comply more with both risk and SE trials; with a

consistent increase in both setups. I performed two separate repeated-measures ANOVAs,

one for each setup, with factors "decision" (before or after) and "risk type" (risk or SE).

The ANOVA in the remote setup revealed a significant effect of "decision" (F(72, 1)=10.9,

p=0.001), no effect or "risk type" (F(72, 1)=0.60, p=0.44), nor of their interaction (F(72,

1)=0.44, p=0.51). The model in the in-person setup showed similar results with a significant

effect of "decision" (F(28, 1)=4.41, p=0.045), and no effect of "risk type" (F(28, 1)=0.95,

p=0.34) or the factors interaction (F(28, 1)=0.12, p=0.73).

Interestingly, I designed Furhat’s behavior to contrast participants’ decisions i.e., suggest-

ing the not-selected option; hence, I could expect participants to comply more. However,

since initially they refused more than accepted, it is reasonable to think that, due to Furhat’s

interventions, the number of refused trials turned to be compliant is higher than the other

way around.

7.4.2 Persuasion Strategies effect

To investigate how participants changed their minds, I focused on SE trials; looking for the

most effective persuasion strategy (affective or rational).

Figure 7.5 Percentage of SE trials in which participants changed their minds, for different

persuasion strategies and setups.

Firstly, I explored whether the two persuasion strategies effectively elicited a behavioral

change. Figure 7.5 shows the behavioral-change rate (i.e., the number of proposals in which
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participants changed their mind with respect to the total proposals) in SE proposals, by effect

of the two persuasion strategies and the two setups. To evaluate the effect of the persuasion

strategies between the two setups, I performed a 2-way ANOVA with factors "persuasion

strategy" (affective, rational) and "setup" (in-person, remote). The test revealed a significant

effect of "persuasion strategy" (F(23, 1)=5.29, p=0.031) but not of "setup" (F(23, 1)=0.01,

p=0.92); interestingly, there is a tendency of the interaction of the two factors (F(23, 1)=3.38,

p=0.07).

Then, I explored whether the decision made before Furhat’s intervention contributed

to facilitating participants changing their minds (i.e., whether it is easier to refuse after

accepting, or vice versa) and the effect of the persuasion strategy. For each participant, I

computed the conditional probabilities in the four combinations of accepting or refusing

before and after Furhat’s interventions (i.e., P(A|R) represents the conditional probability of

accepting (A) after refusing (R))). Figure 7.6 shows the average of such values among all the

participants, divided between setup and persuasion strategy.

Figure 7.6 Average conditional probabilities to change or maintain decisions before and after

Furhat’s interventions; between in-person (left) and remote (right) participants; and affective

(orange) and rational (blue) persuasion strategies.

A Shapiro-Wilk normality test revealed that the conditional probability data were not

normally distributed. Hence, I opted for a non-parametric analysis.

Remote Setup I fitted a mixed effect model on the conditional probability with a fixed

effect "case" (four levels: P(A|A), P(R|A), P(A|R), P(R|R); reference on P(A|A)); and a

random intercept based on participants’ ID. The model showed a significant effect of "case"
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(F(72, 3)=3.55, p=0.018). The probability of refusing after accepting (P(R|A)) is higher than

the one to keep accepting (P(A|A)) (B=0.29, t=3.21, p=0.002). Indeed, participants initially

complied with only the 32.4% of SE trials (see Figure 7.4), and in the 64.5% (P(R|A)) of these

trials, they changed their minds thanks to Furhat interventions. However, the robot influenced

them also in the opposite case: while they initially refused most of the decisions (77.6%),

almost half of them (P(A|R)=47.4%) turned out to be compliant. Hence, participants, on

average, complied more after Furhat’s suggestions. Also, it is interesting how the probability

of keeping refusing (P(R|R)) showed a tendency to be higher than the probability of keeping

accepting (P(A|A)) (B=0.170, t=1.89, p=0.062). Finally, there is no statistical difference in

the effect of the two persuasion strategies.

In-Person Setup Qualitatively it is clear there is a difference between the two setups.

However, the insufficient number of participants in the in-person condition (8 participants, 4

for each persuasion strategy) does not allow for a proper comparison. The affective persuasion

strategy seems to be the most successful in eliciting a behavioral change. Indeed, both P(A|R)

> P(R|R) and P(R|A) > P(A|A) for the affective strategy; the pattern is opposite for the rational

one. A similar trend also appears in the remote setup, although the similarity between the

two strategies’ effects is quite striking with the larger sample tested. It will be necessary to

collect more data in the in-person setup to understand if the two strategies will converge - as

in the remote setup - or they will diverge.

7.4.3 Questionnaire Analysis

For now, among the questionnaires participants filled in before and after the experiment,

I analyzed only the Big Five Personality Inventory (BFI) [344], and the Multiple Brain

Preferences (MBP) questionnaire [342]. I report the results in this section.

Average scores for the Big Five Personality Inventory were Conscientiousness: M=0.69,

SD=0.16; Agreeableness: M=0.72, SD=0.16; Emotional Stability: M=0.49, SD=0.18;

Openness to experiences: M=0.63, SD=0.12; Extraversion: M=0.52, SD=0.21. Instead, the

Multiple Brain Preferences questionnaire measures how much participants rely on their Head,

Heart, or Gut during decision-making. Average scores were Head: M=0.75, SD=0.11; Heart:

M=0.66, SD=0.16; Gut: M=0.65, SD=0.11.

Then, I explored whether participants’ psychological background affected their in-game

behavior. I fit a set of linear regression with, separately, the BFI and MBP feature as

independent variables; and the average acceptance rate of SE proposals, before and after

Furhat’s interventions, as dependent variables. BFI features did not correlate with players’
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acceptance rates before or after the interventions. Interestingly, the acceptance rate before the

interventions negatively correlated with the Head factor of the MBP questionnaire (t(27)=-

2.98, p=0.008, Adj. R2=0.32). This suggests that individuals relying more on reasoning

during decision-making would fall less into Social Engineering traps.

7.5 Discussion

In this project, I explored how a Furhat robot could elicit behavioral changes in the context

of Social Engineering. The robot endowed two different persuasion strategies (affective or

rational) related to the two routes of persuasion of the Elaboration Likelihood Model (ELM)

[37]. Furthermore, I explored the effect of the robot’s physical presence on its persuasiveness.

Before the interventions, independently on the setup, participants showed a compliant

behavior similar to the one observed in the Social Engineering Adventure (SEA) project (see

chapter 6): they complied more with no-risk proposal than both risk and SE ones; with no

difference between the latter two. The pattern remained the same after Furhat’s interventions;

however, players complied more with both risk and SE proposals. Hence, the robot effectively

influenced their behavior independently of the persuasion strategy.

Interestingly, the effect is observable in both setups. I speculate participants perceived

Furhat’s social presence and influence independently on being physically present. Indeed,

Furhat exhibited the same behaviors during the narration and interventions (i.e., gazing

toward the participants while narrating; gazing toward the screen to signal decisions, and

showing a severe or worried facial expression when respectively intervening with a rational

or affective strategy).

Also, I explored whether the participants’ initial decisions influenced their willingness

to change behavior. From the conditional probabilities of behavioral change related to SE

proposals, the probability of refusing after accepting (P(R|A)) is higher than the probability

of keeping accepting (P(A|A)). Hence, the Furhat managed to help the players, even if it

just proposed the not selected option. However, players’ initially refused most of the SE

proposals; but, on average, showed a high probability of accepting after refusing; hence, the

final average acceptance rate after Furhat’s interventions increased.

Finally, the persuasion strategies’ effect is minimal in the remote setup. Instead, in the

in-person setup, it seems that the affective strategy is more effective than the rational one.
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The physical presence of the Furhat could have caused this effect, or it may be an effect

of the limited number of participants in the in-person condition. To better understand this

difference, I will need to complete the in-person data collection, which I plan to perform in

the next months. Furthermore, It would be interesting to understand if, beyond the physical

presence of the Furhat, also its embodiment affects his behavioral-change abilities. For this

purpose, it would be necessary to develop and test a third setup where just a voice performs

the narration, and the interventions are provided, for instance, via pop-up messages (i.e.,

warnings).

In this study, I simplified Furhat’s interventions by endowing two persuasion strategies,

affective and rational - other than the baseline assertive one; of course, humans use these

and many other behavioral-change strategies to influence others [341]. Also, rather than

the best strategy in absolute terms, it is more probable that different strategies are more

effective in specific cases and utterly ineffective in others. For instance, a rational strategy

could be more effective on Social Engineering attacks that mitigate our risk appraisal (i.e.,

reciprocity); while an affective strategy could better contrast authority or scarcity-based Social

Engineering attacks. I speculate physiological reactions would be crucial to understanding

this effectiveness beyond the percentage of changed decisions.

Indeed, until now, I only considered behavioral data; however, both experimental setups

allow for collecting different physiological data. Once both data collections are completed, I

will focus on players’ physiological reactions to address the second objective of this project:

understanding how participants physiologically react to the diverse persuasion strategies

of the Furhat. Such physiological reactions would be vital to improving Furhat’s ability to

intervene and help humans fight Social Engineering threats.



Part III

Conclusion



Chapter 8

Final Discussion

8.1 Overview

In this dissertation, I studied how to implement novel Social Engineering (SE) defense

systems involving the implicit social cues humans exchange daily. State-of-the-art social

engineering defense methods mainly focus on its "Engineering" side; however, the crucial

factor of SE are humans and how they socially interact. Hence I advocated that the SE defense

field could expand, including deeper characteristics of the "human" sphere: implicit social

cues, reasoning, and reactions. In my research, I put a significant effort into identifying which

humans’ reactions were the most effective in defending against Social Engineering. Among

all the potential candidates, I selected the physiological reactions (i.e., pupillometry, gaze,

electrodermal activity, heart rate, movements’ features) since humans can hardly consciously

change them.

Furthermore, I shed light on novel roles that humanoid social robots could assume soon.

The diffusion of robots concerns researchers, making us question to which extent robots

could be trusted per se and with respect to other humans. On the other side, I speculated that

social robots could be everyday companions able to support humans’ perception, enhance

it, and compensate for potential lacks. Robots, social humanoid ones in particular, assume

a wide variety of roles in the human-robot interaction field: they can be experimental tools

precisely performing repetitive tasks, they can be used to study humans and their reactions,

or to develop novel robotic social skills.

From my point of view (see Figure 8.1), in the interaction between social engineers and

targets, robots are a "third-party"; they monitor attackers’ and targets’ actions and reactions

to spot dangerous situations and potentially intervene. In this scenario, it seems questionable

how, from a purely sensory point of view, robots would be better than a camera (e.g., in the



8.2 Contribution to the Knowledge 143

Figure 8.1 Human-Robot Interaction schema with a robotic agent (e.g., iCub) monitoring

the implicit communication between the Social Engineering attacker(s) and the victim(s),

intervening if necessary.

physical defense of a sensitive building), or a phishing filter. While, from an intervention

point of view, push messages and emails are widely used. However, the real advantage of

humanoid social robots stands (i) in a more comprehensive set of communication vectors

(i.e., movements, gaze, voice, facial emotion, . . . ); (ii) in the social role they can assume

(either given or perceived); and (iii) their social and physical presence, making robot able to

affect the other agents sharing the interacting context [20, 21].

As per the schema in Figure 8.1, I decomposed my research as follows: chapter 4 studies

the context in which the interaction happens and how trust builds and evolves in human-robot

interaction (HRI); then, chapter 5 focuses on the attackers and how it would be possible

to understand if human partners are trustworthy or not; in chapter 6, the focus moves onto

the targets, trying to understand their degree of awareness of being a victim of a Social

Engineering attack, and to predict their compliance; finally, chapter 7 explores social robot

companions and how they should intervene to elicit a behavioral change against social

engineering.

8.2 Contribution to the Knowledge

Three main questions drove my research.
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RQ0 - How to effectively design ecological experiments wherein study Social Engineer-

ing in a realistic and generalizable way?

Studying Social Engineering inside laboratories is not straightforward due to the inevitable

experimental biases. Also, the ethical, moral, and privacy-related implications of asking

people to release personal information (e.g., password) further limit researchers. To over-

come such limitations, I pursued a "sandbox" approach through games. Serious games allow

researchers to define controlled and safe contexts wherein study Social Engineering without

harming participants. I consistently applied such an approach in all the experiments.

In the Unreliable Treasure Hunt (UTH) game (chapter 4), participants broke free from

standard laboratory rules by being able to search everywhere without worrying about the

consequences of altering the setup of a laboratory. Some participants were so immersed in the

hunt that they even missed noticing the evident mechanical faults of the iCub. Participants’

perception was the crucial aspect of the study; indeed, their tendency to rely on iCub’s help

(quantified by the number of hints asked per minute) decreased only if they perceived all

the faults (4S group in the NT condition in Figure 4.6) or iCub made them realize the faults

happened by being transparent about them (T condition in Figure 4.6).

In the Magic Trick card game (chapter 5) I took inspiration from the "Box of Lies game

from the "Tonight Show" of Jimmy Fallon. Also, the Dixit Journey gaming cards fostered

participants’ creativity and engagement in the game. They, on average, rated the game to be

fun (M=0.65, SD=0.08) even if iCub failed to classify some of their descriptions. Participants

got particularly competitive with iCub, adapting their deception strategy and challenging the

robot to detect more complex lies. However, those efforts only made the game easier for

iCub: a higher effort on fabricating lies produced stronger Task Evoked Pupillary Responses

(TEPRs) with respect to truth-telling. The developed setup was perfect for studying deception

detection in an informal context; it also allows further expansions to study other modalities

of lie detection (i.e., verbal prosody and gestures).

Finally, the Social Engineering Adventure (SEA) (chapter 6) and Adventurer Robot

Companion (ARC) (chapter 7) projects take advantage of the Choose-Your-Own-Adventure

(CYOA) narrative format. This immersive narration allowed me to perform Social Engineer-

ing attacks without harming participants’ privacy. Such attacks targeted resources depicting

fundamental SE objectives, i.e., personal credentials (the Hunter License) and money (the

Quantum Energy). In the SEA experiment, participants’ behavior confirmed my expectation,

with the higher compliance on no-risk threats, the lowest on risk ones, and mid compliance

for SE threats (independently of the attacking agent). ARC participants showed the same
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pattern, independently on the setup; also, it emerged that a social robot could influence

participants to change their decisions.

RQ1 - Social Engineers usually exploit human reactions and vulnerabilities; would it be

possible to leverage the same reactions to defend against Social Engineering threats?

Which are the most useful behavioral and physiological features to be employed? How

should we employ them?

Social engineers continuously monitor targets’ implicit signals during face-to-face attacks to

understand their inner mental state and adapt the attacking strategy. The same could happen,

for instance, via email (i.e., during a reverse phishing attack) or during vishing: the attacker

could monitor victims’ writing style or voice tone to understand if they are aware of the attack

and if they are ready to comply. In my research, I explored how cognitive state variations

reflect on pupillometry, gaze, electrodermal activity, heart rate, and mouse trajectories; and

how they can be used to defend against Social Engineering.

The crucial novelty of this research was proving that such well-known Task Evoked

Pupillary Responses (TEPR) would also happen during informal human-robot interactions.

I proved how pupillometry could be used to detect deception autonomously and in real-

time. With my architecture, iCub autonomously identifies 88.2% and 70.6% of players’ lies

in the Calibration and Testing phases of the magic trick card game, only based on pupil

dilation. The lower performance in the latter phase is due to laxer assumptions about players’

behavior (i.e., a not-fixed number of lies among the six cards). Testing-phase performance

can be further improved to 78.7% by adapting iCub’s knowledge to specific individuals.

Finally, I proved how it is possible to train more generic machine learning lie detectors (up

to 56.6% of F1 score), also tackling the problem as anomaly detection (67.7% of F1 score).

Comprehensively, my results prove pupillometry can be used as a measure to assess the

trustworthiness of human partners (i.e., by counting the number of detected lies).

Furthermore, I studied how pupillometry, gaze, electrodermal activity, heart rate, and

mouse strokes could be used to model users’ appraisal of Social Engineering threats. The

exploratory SEA experiment allowed me to identify pupillometry, gaze, and electrodermal

activity as the most informative physiological signals. This was expected from the literature;

indeed, pupillometry and gaze are historically related to decision-making [143, 144], while

electrodermal activity is related to humans’ stress response to external events (e.g., odd

requests from a stranger). I speculated that the missing effect on heart rate was due to the

short interval considered in the experiment [149, 150, 109]. Finally, I trained three Random
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Forest models to classify participants’ appraisal of Social Engineering threats (F1 score of

78.8%) and risk (F1 score of 86.7%); and to predict their decisions against SE (F1 score of

71.8%). Such models are based on pupillometry, gaze, electrodermal activity, and mouse

strokes, all metrics feasible to be collected with minimally-invasive devices already present

in everyday contexts. The crucial novelty of this research was detecting the presence of

Social Engineering attacks and predicting targets’ behavior (with successful results) solely

for their physiological and behavioral reactions. Indeed, the trained models are unaware of

textual attacks or other contextual information.

RQ2 - How social humanoid robots can help in the defense against Social Engineering?

In my research, I explored different roles humanoid social robots could assume in the context

of Social Engineering. My main objective was to study robots as wardens for humans

against SE; however, to learn how to defend from a threat, it is necessary to study how to

attack. Hence, I took advantage of robots as controllable agents able to affect others’ behavior.

In the Unreliable Treasure Hunt (UTH) experiment (chapter 4), iCub applied the well-

established SE attack framework from Mouton et al. [8]: it collected Open Source INTelli-

gence (OSINT) information with a brief informal chit-chat, it built a rapport with the human

player, and it exploited the gained trust eliciting monetary gambling. Interestingly all the

participants reaching the endgame also took the gamble, independently on the mechanical

malfunctions showed by iCub.

In the Social Engineering Adventure (SEA) experiment (chapter 6), iCub pretended to

be an innocent Non-Playable Character (NPC) playing the adventure with the participants;

the robot tricked them with Social Engineering techniques (i.e., effect mechanisms). The

iCub elicited slightly higher compliance than the virtual agents (even if not statistically

higher), suggesting the SE effect mechanisms paired with iCub social presence influenced

the participants.

In the Adventurer Robot Companion (ARC) experiment (chapter 7), the Furhat attempted

to influence players’ behavior with persuasion strategies (affective or rational). Even if this

study was more in the direction of robots helping users defend themselves from SE attacks,

Furhat’s suggestions always contradicted players’ decisions. This was firstly meant to study

the general ability of the robot to elicit behavioral changes, in which the robot was successful

independently of the employed strategy. Also, I decided to depict the robot as a narrator

instead of a helper, to avoid players blindly following its suggestions. However, future
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studies should explore the effect of a robot explicitly presented as a helper against Social

Engineering and if participants would still follow divergent suggestions.

Finally, in the E2E Lie Detection experiment (chapter 5), iCub pretended to play a game

with participants while silently monitoring their cognitive load. This setup was meant to

model informal contexts in which a robot could assess others’ inner states and consistently

adapt.

8.3 Going Beyond the Current Limitations

The proposed approach is still affected by several limitations. I have already addressed some

of them; however, others must be tackled in the future. This section discusses them and

speculates how they could be addressed, aiming for real-world applications.

8.3.1 Physiological measures

The main limitation of the employed physiological measures is that they are strongly sub-

jective and context-dependent [157], as discussed in sec 2.3.5. For instance, environmental

illumination can modulate pupillometry responses; temperature could affect humans’ heart

rate and sweating, hence electrodermal activity. Also, they all react not only to the tasks

I explored but generally to emotions and inner thinking. Finally, they could significantly

vary among individuals [345], both due to subjective reactivity and past experiences [346].

I already took some countermeasures to compensate for this variability in my research.

Firstly, I ensured the same experimental conditions (e.g., environmental illumination or room

temperature) were kept to cancel most of the factors mentioned above. Also, I attempted to

compensate for the subjective changes. Second, I used the baselines collected before and

between trials (e.g., in the Lie Detection or the SEA experiments) to compensate for subjec-

tive and environmental changes. Also, an initial training phase, like the Calibration phase of

the Lie Detection experiment, effectively defined personalized models able to understand

how the physiological reactions of specific users change in response to the stimulus of interest.

Generally speaking, real-world models could take advantage of context-awareness (e.g.,

where users are, what they are doing, . . . ) to better understand users’ physiological reactions.

However, such knowledge could not be accessible. To improve the models’ robustness, I

speculate that multiple "points of view" should be considered. For instance, iCub based its

classification on players’ pupil dilation only in the Lie Detection experiment. However, as
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confirmed by the spin-off study in section 5.7, other non-verbal implicit cues are known to

change due to the fabrication of lies; body posture, gestures, and verbal prosody could reveal

deception or at least a variation of cognitive load [139]. Such features could compensate

for lack of understanding from pupillometry and gaze only or vice versa. The same for the

Social Engineering awareness detection model of the SEA experiment: the proposed models

do not need contextual information, but processing users’ webcam or on-screen information

could help improve their robustness. However, including high variance data like images or

sounds will make it necessary to deal with other issues like environmental light and sound or

the quality of the acquired data.

Lastly, researchers should strive to develop novel methods to acquire accurate, real-time

physiological data from broadly accessible devices. In my research, I needed to employ

high-precision experimental devices (i.e., the Tobii Pro Glasses 2 and the SR research Eyelink

1000 eye trackers; and the Shimmer3 GSR+) to collect precise data to define the scientific

foundation of the approach. However, such devices are not broadly accessible in everyday

contexts. More affordable and comfortable devices to collect physiological data would help

spread such technology. An ideal solution would leverage devices already available on robots

(e.g., RGB cameras or microphones), allowing them to better understand humans’ inner

states. For instance, recent findings suggest it would be feasible to extract pupillometry, gaze

[110–112, 303], and heart rate [113, 114] features from standard RGB cameras. However,

such models still require users to be uncomfortably close to the cameras. I speculate that

modern smartwatches and fit bands [115] would be good candidates for real-time monitoring

of several physiological metrics like electrodermal activity, temperature, and heart rate.

Finally, novel human-computer interfaces (i.e., mouse [116], and joysticks [117]) are starting

equip physiological monitoring. Such devices would be crucial for the future developments

of this research.

8.3.2 Realism and users’ degree of freedom

In my research, I strongly relied on games to develop engaging, ecological setups in which

participants could naturally behave. Still, their degrees of freedom was limited by game rules.

For instance, in the SEA and ARC games, players were asked to "decide as you would do in

the presented scenes"; however, the available options of the binary decisions could not match

participants’ natural behavior in such situation. Hence, future studies should step toward

real-world challenges, allowing more freedom in participants’ behavior.
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8.3.3 Qualitative vs. Quantitative Research

My research mainly explored humans’ behavior and reaction from a quantitative point of

view, except for the study in section 5.7. The main reason is the bias that could occur in

qualitative reports [347, 348]. Also, my studies aimed at equipping the humanoid robots iCub

and Furhat with machine learning models to understand humans better; hence, a quantitative

measure was more suited for this objective. Still, a purely quantitative approach could not be

sufficient to model SE attackers’ and targets’ behaviors and reactions. Hence, future studies

should augment the proposed physiology-based measure with self-reports and qualitative

metrics.

8.3.4 Implications & potential misuses

As a final consideration, It is necessary to point out the ethical and privacy issues a

physiological-based Social Engineering defense system could arise. Indeed, Social En-

gineering is a controversial topic, and it is not easy to develop countermeasures without

studying how to perform attacks.

My work is based on how Social Engineers assess victims’ inner states and consistently

adapt their strategies. I leveraged physiology to gain a similar understanding and potentially

intervene to prevent the occurrence of Social Engineering threats. However, nothing prevents

my systems from being used for malicious purposes; having direct access to victims’ physi-

ology could greatly help attackers. For instance, the deception detection system in chapter

5 is based on the assumption that lying elicits a higher pupil dilation (i.e., cognitive load

increase) than truth-telling. Literature proves pupil dilation is poorly controllable, making

it difficult for attackers to minimize its dilation consciously [275]; indeed, it is simpler to

trigger dilation by increasing the cognitive demand (e.g., by performing mental calculations).

Also, it has been shown how pupils dilate less in expert than in naive users [346]; hence

attackers, with access to the system, could use its feedback to learn the maximum effort

to avoid deception detection. A similar situation could happen with the social engineering

awareness system presented in chapter 6. With access to my model, Attackers could obtain

a qualitative evaluation of victims’ physiological reactions to understand their inner state,

similar to what they would do in face-to-face attacks; and leverage it to tune the attack

strategy (e.g., by minimizing or maximizing the reaction). The scenario becomes even worst

in the case of hijacked robots equipping my systems. On one side, enabling humanoid social

robots to measure and understand humans’ inner states could help them better rationalize

humans’ behavior and reactions, ultimately adapting and optimally supporting us. On the flip
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side, this awareness could be hazardous in the case of hijacked robots. A malicious attacker

could take full advantage of robots and use them to perform Social Engineering attacks from

a safe distance. Also, as agents, robots could be way more effective than state-of-the-art,

disembodied, SE attack methods (e.g., phishing emails). Like humans, embodied agents

could perceive and affect the world; they have given (or perceived) roles, allowing for rapport

and trust development. These features, enhanced by understanding human partners’ inner

states, could make robots a threat in Social Engineering warfare.

Despite the risks of such research, I still believe it is worth it and necessary to study it to

develop practical solutions to protect users from SE threats. Only a better knowledge of the

phenomenon can allow us to defend from Social Engineering attacks and be ready if they

start relying on robots as attacking agents.

8.4 Future Developments & Applications

In this last section, I would like to discuss the future development of my research, pointing

toward real-world applications. Starting from the results of my research, I speculate that the

low diffusion of social robots makes them still an opportunity to be studied rather than a

solution in the social engineering defense field. Hence, I suggest two parallel research streams

should be followed: the first stream focusing on the relation between social engineering and

physiological reactions, aiming to ground my findings on realistic SE attacks and contexts,

with the final purpose of delivering an effective tool able to help ordinary users. The second

stream should focus on humanoid social robots and how to enable them to intervene based

on victims’ physiological reactions against SE attacks. Here, crucial factors would be the

perceived intrusiveness of robots and the development of companionship in workspaces and

homes. In the following paragraphs, I propose some challenges I plan to address soon.

Grounding my findings on realistic scenario As discussed above, it is necessary to study

the physiological reaction of users while facing Social Engineering threats from realistic

attack methods (e.g., phishing emails). A crucial experimental challenge would be preserving

the naturalness of the setup. Users do not usually classify spoofed material during workdays;

Social Engineering attacks come when least expected. So similar conditions should be

replicated. For instance, inside companies, ICT departments could ask employees to work

for a workday on a specific workstation, pretending to monitor their stress level at work via

physiological sensors. During the day, several SE attacks could be performed, monitoring

the relative physiological reactions.
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Train robust multi-modal awareness models Several Social Engineering attacks, com-

bining different methods and effect mechanisms, could be performed in the setup above. For

instance, it would be worth exploring the reaction to "polarized" Social Engineering attacks.

As discussed in section 6.7, some attacks could attempt to increase targets’ risk appraisal,

making them perceive a safe situation as dangerous. In contrast, others aim to mitigate

targets’ appraisal, making them not worry about dangerous requests. Hence, more robust

machine learning models should focus on the divergence between the expected and users’

reactions to the presented material. Ideally, such models should be able to spot divergences

in users’ risk appraisal and provide quantitative feedback on users’ awareness levels.

Integrate the models in state-of-the-art training systems The first application of such So-

cial Engineering appraisal models would be providing direct feedback during SE awareness-

raising training. This could help users focus on the elements that should trigger (or not)

specific reactions. For instance, during the examination, trainees are usually asked to classify

items as spoofed or not; other than essential feedback about the answers’ correctness, a

physiological-based system could provide helpful insight into users’ inner state (i.e., whether

they were too worried or calm concerning the proposed items).

Close the loop [in Human-Robot Interaction] One of the biggest challenges will be

processing users’ physiological responses without knowing the whole decision interval; this

would limit the pre-processing (i.e., cleaning) one could apply. To truly protect users, it

would be necessary to process their reactions in real-time to spot divergences with respect to

the expected reactions and hence intervene. As a remark, this process must happen as soon

as possible (or at least before the participants’ final decision).

In the title of this paragraph, I put the HRI in braces because robots are not yet broadly

available enough to develop an intervention solution only based on them. A first step

would be to keep providing intervention with traditional warnings while exploring robot

interventions in parallel. For this purpose, I studied two explicit interventions comparing

an affective and a rational strategy in my research. However, other strategies should be

explored, also comparing their effectiveness with respect to different effect mechanisms

(i.e., a rational strategy could be effective against reactance-based attacks but useless with

liking-based ones). Also, it would be worth exploring intervention based only on non-verbal

cues (e.g., gazing, gestures, or facial expression), as literature shows they can be enough to

elicit behavioral changes [349].
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For instance, extending the experimental setup presented above, ICT departments could

ask employees to work for a workday on a specific workstation, pretending to study the

support of a robot companion (i.e., the Furhat). Furhat could be presented as an agent,

moving and gazing toward the worker; also, it could offer some essential interaction and

features as a virtual assistant (i.e., responding to users’ requests). At the same time, the

robot would process the physiological data stream, evaluate workers’ response to the Social

Engineering attacks prompted during the day, and intervene to prevent users’ compliance. In

this experimental context, it would be interesting to study implicit interventions (e.g., gaze)

to drive workers’ attention toward what is relevant (i.e., red flags), as in [350, 351].

Expand it to ordinary users The final and probably more challenging objective would

be to deliver an effective solution to a broader population of users. Indeed, most current

approaches focus on companies or at least workplaces. However, most attacks (e.g., massive

phishing) target normal users who are not trained against Social Engineering and are not

protected by enterprise-level ICT defenses. Firstly, more accessible material should be

produced and spread to any user; second, affordable physiology-monitoring solutions based

on standard hardware (i.e., RGB cameras and smartwatches) should be developed and made

easily accessible. Such solutions would also help develop more generalizable scientific

findings based on a broader population; and define baseline models for those individuals

showing atypical reactions, behavior, or cognition.

Summing up, this dissertation provides several pieces of evidence that developing more

human-oriented Social Engineering defense methods is feasible and effective. Similarly,

robots proved to be an effective vector to influence users in making critical decisions. Given

the high diffusion of Social Engineering threats, and the promising results of my research, I

speculate these scientific findings will be the foundation of a novel and relevant research line.



Chapter 9

Epilogue

If you are reading this, either you are reviewing this thesis, are one of my supervisors, or are

extremely curious about my research. I sincerely thank you for coming this far. I would like

to drop the formality and speak directly to you, reader. I have one last insight that helped me

in the last part of my research. Indeed, I greatly struggled to understand what my research

was for beyond purely scientific purposes.

When I was in Waterloo (Canada), working on the Adventurer Robot Companion ex-

periment, I went to the Canadian Clay and Glass Gallery - I suggest visiting it if you are in

Ontario. The gallery hosted an exposition from the Canadian ceramic artist Walter Ostrom1.

One of the exposed pots, basket-shaped and decorated with colorful flowers, was paired with

a comment from Ostrom. The artist was experimenting with such basket shapes and flower

decorations. One day, his wife Elaine took one of the vases and filled it with flowers. When

Ostrom saw it, he complained that the flowers were competing with his decorations. Elaine

replied that the decorations could never compete with the flowers. And here is the magic,

quoting Walter Ostrom:

"What was so great about her response was that it gave me permission to decorate my

brain out. If I was making utilitarian work, ultimately it is not my work, it becomes her work.

I made the piece, but once she put her flower in there, that is her piece of art. It is a great

thing: we are making something to enable other people to make their own art."

I believe the same applies to science. We put much effort into making outstanding

research. However, we make a more or less little step toward a better and safer future, toward

1https://www.talesofaredclayrambler.com/episodes/394-walter-ostrom-on-the-questions-that-motivate-his-

studio-practice
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sensible and comprehensible robots able to understand and behave like humans, to be our

companions. All we do is not for us. It is for others; to allow them to do their own research,

their own art.

So, I hope you enjoyed my thesis; I had fun working on it. I hope it could be helpful for

you or your research; maybe it just provided a different point of view you can take inspiration

from. I am sure you will make great art out of it.
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Below I list the scientific manuscripts I published during my Ph.D. period. All of them

contributed to developing this dissertation.
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• Pasquali D., Gonzalez-Billandon J., Aroyo A. M., Sandini G., Rea F., Sciutti A. (2022).
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Open Source Code and Data

Following the Open Science paradigm, I will polish and refine all the code developed for

this dissertation and publicly release it on my GitHub page (github.com/dariopasquali) upon

thesis publication. This would help the replication of my studies, help other researchers, and

support future improvements. The four datasets I collected are available to be shared. Feel

free to contact me 2 if you need them or have any questions about my research.

2dario.pasquali@iit.it, or dario.pasquali93@gmail.com

github.com/dariopasquali
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