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Transportation infrastructure systems are one of the cornerstones on which
modern societies are founded. They allow the movement of people and
goods by enabling business activities, the setting up of supply chains, and
they provide access to vital resources and services. It is commonly be-
lieved that due to their vast scale and complexity, transportation systems
are among the most vulnerable infrastructures in the occurrence of a dis-
ruption, i.e. an event that involves extensive damage to people or physical
facilities.

The growing awareness about this issue in recent years has led to a
growing body of literature on the topic of performance evaluation of trans-
portation networks when affected by disruptive events, aimed at provid-
ing adequate estimations of network operability in such contexts. A pecu-
liarity of transportation is to be a socio-technical system where the trans-
portation supply, represented by the infrastructure and related services, in-
teracts with the transportation demand, consisting of all those individuals
who access the infrastructure at any given time. This property makes such
systems inherently complex and consequently an analysis of their vulner-
ability in the face of disruptive events needs to be able to account for these
interactions.
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The aim of the present thesis is therefore to develop methodologies ca-
pable of convincingly portraying the reaction of such systems in the face of
disruptive events by modeling the dynamics that emerges between users
and the infrastructure. It is reasonable to assume that travelers due to
changed system conditions will adapt their behavior to some degree in
order to mitigate the consequences of such events. In this regard, three
modeling approaches are presented in this manuscript to address the need
to represent this reaction phenomenon.

The first approach involves the use of an inter-period traffic assignment
model able to represent the evolution of users” mobility choices in a dy-
namic context. For each period, the users’ reaction is estimated by solving
an assignment model thus computing the optimal flow distribution given
the current congestion conditions. User habits are taken into account by
appropriately limiting the extent of flow redistributions in order to repre-
sent the gradual adaptation of the system to the new situation.

Large perturbations can trigger modal shift phenomena between one
transport sub-system and another. In this regard, a multi-modal multi-
class scenario analysis model is then presented. Railway and road trans-
port sub-networks are thus embedded into an extended hyper-network to
model flow exchanges between this two sub-systems. Class-specific as-
signment models are employed to determine the choice behavior for pas-
senger flows and freight flows. The results of these choices are then routed
through the network by means of a discrete-time dynamic flow model.

Finally, the idea that users’ behavior may be influenced by their habits
is further explored within a path-based inter-period assignment model.
It is suggested that users’ route choice process is not only influenced by
the travel costs of available alternatives but also by users’ familiarity with
them. More specifically, if changing traffic conditions suddenly make a
specific route disadvantageous, users will tend to prefer those that are most
topologically similar to the one they are abandoning. This assumption is
then investigated by demonstrating that it implies considering a rationally
bounded user choice process. The steady state reached by the system as a
result of the equilibration process is then detailed and a rigorous proof is
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provided to show that it is equivalent to a Boundedly Rational User Equi-
librium.

All three approaches has been successfully applied on appropriate test
networks where a disruption is simulated by altering the network topol-
ogy.

These models can provide an important contribution to transportation
network vulnerability and resilience analyses willing to take into account

the interaction between the infrastructure and users.
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Our societies and economies rely on a number of critical infrastructure
systems in the absence of which they simply could not operate. These sys-
tems ensure the supply of a variety of energy sources (e.g. power grids,
gas pipelines), the continuous provision of essential resources (e.g. water
supply), the information transferability and storage (e.g. information and
communication systems) and the mobility of people and goods (e.g. trans-
port systems), among others. All these systems have grown in scope and
complexity over time to serve the needs of an increasingly dynamic and
global society. Countless other higher level systems rely on these phys-
ical infrastructures such as supply chains, finance and healthcare, social
and knowledge networks to name a few. The increase in complexity has
made this fundamental systems more vulnerable and their highly interde-
pendent nature implies that a failure of any of them has the potential to
reverberate across the others.

Unfortunately, out of similar and equally crucial systems transport net-
works are among the most suffered infrastructure systems in exogenous
(e.g. natural disasters) or endogenous (e.g. accidents, technical failures)
disruptions. Network failure can have more or less severe consequences
depending on the nature of the disruption. Interrupted road sections, trains
break down or flight cancellations are all events that imply an immediate
increase in travel time for people and goods and have a direct or indirect
impact in terms of economic and social costs, unfortunately also extremely
severe. Since the transportation network is one of the backbones of our
society, it is not surprising that considerable research has developed over
the years aiming to understand the mechanisms of its systemic function-
ing and the underlying reasons for its vulnerability in order to identify,
predict and possibly alleviate this issue. This challenge is greatly hardened
because transportation systems are inherently complex due to the fact that
they consist of several different elements interacting in a variety of ways
where only a fraction can be considered "technical” and thus governed by
physical laws peculiar to more classical engineering disciplines. As a con-
sequence, the local manifestation of a disruption may alter the normal op-
eration level of a transportation network far beyond its epicenter and the
propagation dynamics of the effects may be complex and counterintuitive.
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Several frameworks and concepts have been developed to investigate
the performance evolution of a transportation system when exposed to
various types of disturbances from day-to-day fluctuations to actual large-
scale disasters. Among these are reliability analysis, robustness and vul-
nerability analysis and resilience analysis. The effectiveness of these method-
ologies, taking into account their peculiarities, can vary considerably due
to the amount of information available for the analysis. A conventional
approach, as will be illustrated in this chapter, is to rely on a represen-
tation, more or less abstract depending on the context, of the transporta-
tion network and, based on its topology, the analysis is performed and the
corresponding metrics are estimated. But as mentioned, on its own, the
topology of a transport network represents a partial information. Equally
important is the behavior that emerges as a result of the combined choices
of a multitude of individuals who at any given time have access to the
transportation infrastructure.

In light of these considerations, the purpose of this thesis is to provide
models able to convincingly represent the complex interaction that takes
place between users and the transport system. A transportation infras-
tructure is by definition a "scarce" resource, in the sense that at any given
time it is able to provide a limited level of performance. The more people
who want to exploit the resource at a given time, the more the cost of the
resource increases. The cost to be paid in this case is a travel cost, often
travel time, and the scarcity of the transportation resource takes the form
of "congestion" or " disservice". Given a transport infrastructure and a mo-
bility demand, an implicit trade-off between all users is then reached. In
the transportation science, this trade-off is called equilibrium. The main ob-
jective of this thesis is therefore to represent the equilibration process that
arises when the transportation infrastructure undergoes a significant vari-
ation in the level of service caused by a disruption. Such a perturbations
alters the system status quo and it is reasonable to assume that users will
react accordingly by adapting their choices in the immediate future, for ex-
ample by changing their usual home-to-work route or choosing a different
transportation mode. Representing this phenomenon can provide valuable

information for developing a wide variety of network analyses.
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The rest of the chapter is organized as follows. In section 1.1 the issue
of network disruption analyses is introduced with particular attention for
transportation networks. The various approaches and the related available
metrics for assessing the state of the network are presented. Following,
section 1.2 is devoted to introducing the existing approaches for estimat-
ing the necessary data required to formulate the analyses. In particular,
the use of traffic assignment techniques is discussed in detail. Finally, in

section 1.3, the overall structure of the present thesis is summarized.

1.1 Network-disruption analysis

Network-disruption analysis embodies a multitude of methodological ap-
proaches that have been widely used in a variety of contexts including
transportation planning and infrastructure maintenance when operating
at a subnormal functional level. The main objective is to identify the most
critical portions of a network, i.e. those links or nodes that induce serious
repercussions on the entire network (Sullivan, Aultman-Hall, and Novak,
2009). Network disruption analysis is a research area that has seen a signif-
icant increase in attention in recent years, sadly due to a series of disasters
that have impacted businesses, infrastructure and entire communities such
as the earthquake of Kobe in Japan (1995), the attack on the World Trade
Center (2001), the I-35 Minneapolis bridge collapse (2007), the earthquake
in Téhoku Japan (2011) and the Polcevera Viaduct collapse in Genoa (2018),
to name a few. In the Technical Report 13/2010 of the European Environ-
ment Agency (EEA) titled "Mapping the impacts of natural hazards and
technological accidents in Europe", it is reported that the number and the
magnitude of disasters increased in Europe during the decade 1999-2009.
Primarily, it is important to distinguish between the various typologies
of disruption because, especially in the case of a transportation network,
the assumptions related to the disruptive event are fundamental to the
formulation of the analysis results (Sullivan et al., 2010). A preliminary
classification can be drawn between internal (endogenous to the system)

or external (exogenous to the system) causes and between accidental or
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Cause Accidental Intentional
Internal ~ Technical failures, mishaps Labour market conflicts
Esternal Natural disasters Sabotage, attacks

TABLE 1.1: Characterization of causes of threats and dis-
ruptions to the transport system (Adapted from Mattsson
and Jenelius (2015))

intentional disruptions (Mattsson and Jenelius, 2015), as summarized in
Table 1.1.

Internally originated disruptions can be induced by human errors (by
staff or users), infrastructure over-utilization, malfunctions or complete
subsystem failures. They may also be intentional, like sabotage actions
instigated as an act of protest resulting from internal labor market conflict
for example.

Externally originated disruptions, when unintentional, can be a conse-
quence of natural disasters of various kinds such as earthquakes, tsunamis,
hurricanes, wildfires, storm rains, to name a few. Conversely, when inten-
tional, an external threat may be embodied in an actual infrastructure at-
tack such as sabotage, a terrorist attack or an act of war. As a matter of fact,
transportation systems, considering how crucial they are in the daily lives
of people and their activities, are often the perfect target of all the actions
whose goal is to provoke as much damage as possible to a community. This
class of disruptions is harder to handle than the others since it is extremely
complex to build valid predictive models able to determine the place and
time of an intentional attack while in other contexts, such as natural dis-
asters, it is still possible despite several difficulties to collect statistically
relevant data to be used for predictive and hopefully prevention purposes.

Hasan and Foliente (2015) propose to classify disruptive events accord-
ing to two dimensions: the time available to prepare for the event (related
to its predictability) and the duration of the event (related to its magni-
tude). Therefore, the depth and sophistication of the analysis will depend
on the amount of time available, while model features and period of study
will depend on the type of disruption and the estimated duration. The du-
ration of a disruption in turns depends not only on the span of its physical
manifestation (e.g. few seconds for an earthquake or few days for a flood)
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but also on the duration of the post-event recovery phase resulting from
the interaction between the event itself and the local systems and commu-
nities involved. Furthermore, the authors emphasize the centrality of both
the magnitude and the probability associated with the event. Many dis-
ruptive events are associated with low occurrence probability but at the
same time with potentially devastating effects. Within the context of risk
analysis, the authors point out that in recent years the researchers’ effort
has largely focused on the study of those events that are extremely rare
("black swan") but associated with severe consequences.

Finally in the context of transport networks, Calvert and Snelder, 2018
emphasize the difference between local and global disturbances where the
former have a limited range while the latter have the potential to involve
extensive portions of the network. However, distinguishing in advance
between the two is not trivial. Events all in all limited may result in ex-
tensive cascading effects because of the complex interdependence between
infrastructure and transportation demand.

The performance of a transportation network in relation to the occur-
rence of a disruptive event has been studied employing multiple different
methodologies and as many different concepts. They can be clustered into
three macro groups according to the time scale, the magnitude and the du-
ration of network performance fluctuations: (1) the concept of reliability is
associated with frequent but contained fluctuations; (2)the concept of vul-
nerability and its complementary robustness are associated to significant but
rare performance fluctuations lies ; (3) the newer concept of resilience is
related to both the magnitude and the duration of the fluctuations lies.

1.1.1 Reliability

The concept of reliability is commonly employed in risk analysis and refers
to "the probability that a system will operate adequately for the time period
intended under the operating conditions encountered" (Wakabayashi and
lida, 1992). In the transportation domain, reliability is associated with the
concepts of stability, certainty and predictability of travel conditions and
thus intrinsically linked to probability theory. As Berdica (2002) pointed
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out, reliability analysis almost exclusively consist of likelihood estimation.
That is because the phenomena under study are associated with daily and
relatively minute variations in travel conditions. In other words, the focus
is on those events that occur extremely frequently but do not involve major
system performance degradations but rather frequent and localized fluctu-
ations. A transportation system, or a portion of it, is therefore defined as
unreliable if it is prone to frequent performance fluctuations. Methodologi-
cally, reliability is related to the standard deviation, variance, or some other
dispersion measures estimated for the statistical distribution of travel times
or generalized travel costs according to a specified perturbation (Bell, 1999;
Tu, Lint, and Zuylen, 2008; Jong and Bliemer, 2015; Taylor, 2013; Zheng et
al., 2018).

Although it is not always easy to draw a clear line, reliability is a fun-
damentally different concept compared to vulnerability and resilience, re-
lated mostly to rare events. In reliability analysis, it is relatively easy to
collect data on travel time or cost variations due to the high frequency of
the events. Consequently, establishing appropriate probability distribu-
tions related to such events is quite reasonable. Similarly, a traveler who is
subject to these kinds of fluctuations is also able to gain sufficient experi-
ence and adapt his or her behavior accordingly. As suggested by Nicholson
et al. (2003), it is therefore legitimate to assume that traveler’s choices will
be influenced by the reliability of the alternatives available to him. For
this reason, multiple methodologies have been developed to represent the
travelers’ choice behavior when dealing with an unreliable network (Nie,
Zhang, and Lee, 2004; Shao, Lam, and Tam, 2006; Jiang, Mahmassani, and
Zhang, 2011; Taylor, 2013; Kato et al., 2021).

1.1.2 Vulnerability and Robustness

Unlike reliability, several definitions of vulnerability can be found in the lit-
erature. Berdica (2002) suggests that "vulnerability in the road transporta-
tion system is a susceptibility to incidents that can result in considerable
reductions in road network serviceability". Such a definition highlights the
fundamental aspects underlying the concept of vulnerability, namely that
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there is an initial failure or accident that undermines the usual functioning
of a system and that the consequences of this may be significant. Extend-
ing the vulnerability concept to the entire transport system, Jenelius and
Mattsson (2015) define "transport system vulnerability as ... society’s risk
of transport system disruptions and degradations".

Husdal et al. (2004) distinguish between structural-based vulnerabil-
ity, natural-based vulnerability and traffic-based vulnerability. Structural-
based vulnerability concerns the way the network is built and thus to its
functional characteristics not limited to its topology. In other words, every-
thing related to the physical nature of the infrastructure such as the state
of the road body, its geometry, slope, presence of tunnels, bottlenecks or
bridges is considered within the model formulation. Natural-based vul-
nerability, on the other hand, deals with the features of the land crossed by
the road network. The orographic, seismic, hydrological or climatic prop-
erties of the territory are linked to the likelihood of events such as rock falls,
earthquakes, floods or heavy rains and snowfall. Lastly, traffic-related vul-
nerability concerns the relationship between the infrastructure and the mo-
bility demand. It assesses, for example, the ability of the network to handle
unexpected spikes of demand and may relate to the system’s ability to take
quick action after an incident.

Vulnerability analysis deals with potentially catastrophic but also ex-
tremely rare phenomena and it should therefore proceed in three direc-
tions answering three key questions (Kaplan and Garrick, 1981) "What will
happen? What are the chances? What will be the consequences?" whose
answers provide a description of the scenario, the associated probability
and the consequences. As pointed out by Jenelius, Petersen, and Matts-
son (2006), estimating the probability associated with rare events can be
extremely problematic due to the scarcity of empirical data. Going further,
Taylor and D’este (2003) propose to focus the anlysis exclusively on event
repercussions while ignoring the odds .

Complementary to vulnerability lies the more recent concept of robust-
ness, defined as "the ability of the system to cope changes without altering
its configuration" (Wieland and Wallenburg, 2012). In the context of road
networks, this definition is declined by Snelder, Van Zuylen, and Immers
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(2012) as "how well a network, under predefined circumstances, is able to
maintain the operation level for which it was originally designed". The
concepts of vulnerability and robustness are basically interchangeable at
least until the likelihood of the event plays a predominant role in the anal-
ysis. The concept of robustness is mostly related to the system’s response
to disruption and thus the magnitude of its effects. A robust network is
therefore able to resist to a disruption effectively while avoiding a signifi-
cant overall drop in performance.

The research related to vulnerability analysis has been developed over
the years on two parallel and barely interacting paths. One is topological
vulnerability analysis, which focuses on defining metrics and methodolo-
gies derived from graph theory in order to correlate the quality of a net-
work to its topological features omitting its functional properties and the
interaction with users The second stream, on the other hand, is system-
based vulnerability analysis, which while still relying on a graph represen-
tation details its properties by employing the functional characteristics of
the real network such as the actual link lengths and estimated travel costs.

Topological Vulnerability Analysis

In topological vulnerability analyses, the transport network is represented
by an abstract graph consisting of nodes and links. Depending on the gran-
ularity level, the graph can be direct or indirect while the links weighted
or unweighted. The analysis typically assesses the degree of connectivity
and efficiency of the network as well as the relative importance of individ-
ual components according to topological measures such as the beetwennes
centrality. Network efficiency is defined as the average distance between
each nodes while link’s beetweeness centrality is represented by the frac-
tion of shortest paths that make use of that link. Latora and Marchiori
(2005) use the betweenness centrality to investigate the vulnerability level
of a public transportation network against intentional attacks. Applying
the methodology to the Boston subway network the authors estimate that
damaging the most critical elements results in a loss of network efficiency

of nearly 30%. Similarly, Demgar, Spatenkov4, and Virrantaus (2008) apply
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the same metric to identify the most critical cuts in the Helsinki road net-
work. Berche et al. (2009) estimate the vulnerability of public transporta-
tion networks in 14 major cities when impacted by accidental or intentional
disruption. Efficiency drop is then evaluated when network elements are
removed randomly (accidental disruption) or according to their between-
ness centrality (intentional disruption). The authors show that a strategy
based on intentional damages based on betweenness centrality is able to
result in significant efficiency losses even when the number of elements
involved is relatively small. Duan and Lu (2014) come to a similar result
in the context of road networks by pointing out, however, that vulnerabil-
ity analysis may lead to different assessment even for the same network
depending on the granularity of the representation. More recently, Bell et
al. (2017) employed spectral analysis to assess the most critical network
cuts. A cut link is a link that if removed makes the network disconnected.
Besides being computationally efficient, this type of analysis allows the
identification of potential bottlenecks for traffic flows. Finally, Li, Rong,
and Yan (2019) extends the concept of efficiency to entire areas. An area
is represented by a subnetwork and is all the more critical the higher the
population density, economic development and criticality of the network
elements within it. The criticality of a network element is once again evalu-

ated according to the network efficiency loss in the absence of that element.

System-based vulnerability analysis

System-based analysis, while still making use of graph theory and simi-
lar metrics, as in the case of topological-based analysis, incorporates into
the models other types of data such as the transportation demand and
the functional characteristics of the network. The graph itself is generally
closer to the real network morphology with nodes and links correspond-
ing to real network components and where link weights are obtained ac-
cording to roads length or estimated travel times or travel costs on the
corresponding road sections. A conventional method of carrying out this
analysis is to compare some generalized cost metrics before and after dis-

ruption. These metrics typically are based on estimating link travel times,
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traffic flows, link capacities, availability of alternative routes or the increase
of user travel time. Jenelius, Petersen, and Mattsson (2006) suggest the use
of the increase in generalized travel costs in conjunction with the estimated
portion of unsatisfied demand following a disruption as an indicator of
network vulnerability. The network links are then ranked according to
their importance while the areas according to their level of exposure, i.e.
how serious the consequences may be for the specific area. This approach
is then expanded by also taking into consideration the number of alterna-
tive roads and the duration of the disruption (Jenelius, 2010). A link is
therefore particularly critical when the disruption may be long lasting and
there is a lack of alternatives. Sullivan et al. (2010) propose an analysis that
also accounts for partial link disruption, i.e. link disruption levels below
100% (equivalent to a link removal) are allowed in order to account for
partial capacity losses.

A different approach is proposed by Rupi et al. (2015) where the local
and global importance of a link is emphasized. The local importance of
a link is deduced from the amount of daily traffic flow crossing it while
the global importance, in line with other approaches, is related to the in-
crease in travel time and the amount of unsatisfied demand as a result of
disruption.

Taylor, Sekhar, and D’Este (2006) rather propose to assess the vulnera-
bility of a network by exploiting an accessibility index, meaning the abil-
ity to reach a given area of the network from the others while also taking
into account the time required. Consequently, a node is vulnerable if the
partial or total degradation of a small number of other network compo-
nents degrades its accessibility. Conversely, a link is defined as critical if
as a consequence of a substantial performance degradation of it, several
nodes experience a drop in accessibility level. Similarly, Chen et al. (2007)
develop a model comprising demand estimation, mode choice and route
choice behavior in order to compute the equilibrium state reached by the
system a sufficient amount of time after the disruption, i.e. when traffic
flows distribution is assumed to have return to a sufficiently steady state.
Therefore, corresponding travel times are utilized to assess network vul-

nerability based on an accessibility index.
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Somewhat complementary to the concept of accessibility, Taylor et al.
(2012) propose the concept of remoteness. The corresponding metric is re-
lated to the level of network disjunction, defined in terms of the travel time
required to reach each portion of the network from the others. An area
is vulnerable if following a disruption its remoteness increases substan-
tially. More recently, Garcia-Palomares et al. (2018), as part of a vulnerabil-
ity analysis of the Spanish road network, introduced a vulnerability met-
ric based on three different measures of accessibility namely population-
weighted travel time, potential accessibility capacity and daily accessibil-
ity. The potential accessibility capacity of a destination is defined as the
sum of the ratios between the amount of population at the destination and
the distance (in terms of travel time) required to reach it from another node
while the daily accessibility of a node is related to the ability to reach other
nodes within a certain time range. The significance of a destination is rep-
resented by the size of its population and consequently a node with high
daily accessibility provides quick access to other densely populated nodes.
Finally Almotahari and Yazici (2020) conducting a comparative analysis of
several metrics employed for link criticality ranking showed that usually
link criticality is strongly correlated with traffic flow under normal operat-

ing conditions making this information a valid proxy in various context.

1.1.3 Resilience

Initially introduced in the study of ecological systems (Holling, 1973), the
concept of resilience has been applied to multiple areas of study from eco-
nomics to social sciences and in transportation and civil infrastructure among
others. Although a multitude of domain-specific definitions exists, the
shared idea behind most of them is that resilience should be related to the
system’s ability to return to an acceptable level of operation after a disrup-
tion altered its state (Hosseini, Barker, and Ramirez-Marquez, 2016). In the
context of transportation systems, Murray-Tuite (2006) has been one of the
first to define resilience and to propose a series of measures including ten
attributes, from the ability of the system to maintain a certain level of op-
eration when hit, to the speed at which it is able to return to an acceptable
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level of performance.

The majority of resilience mode-specific definitions (Liao, Hu, and Ko,
2018; Beiler et al., 2013; Baroud, Barker, Ramirez-Marquez, et al., 2014; Bha-
vathrathan and Patil, 2015) are mostly based on the same overall concept
and the associated analyses quantify resilience from two different perspec-
tives (Zhou, Wang, and Yang, 2019): (1) the ability to maintain an accept-
able level of operation when hit (associated with the system’s vulnerability
and robustness); (2) the amount of time and resources required to retrieve
lost performance. As shown in Fig. 1.1, performance loss as a result of
disruption consists of two main phases. The earliest one coincides with the
disruption duration where generally there is a drastic drop in performance
(from P(t)) to P(t1)). The concepts of system robustness and redundancy
are tied to this phase, where the former concerns the system’s ability to
withstand the event-induced damages while the latter reflects the availabil-
ity of alternatives. Following, there is a recovery phase when the system
regains partial or complete operability (from P(t;) to P(t2)). Tied to this
second phase it is possible to define the properties of resourcefulness and
rapidity where the former is related to the availability of resources at the
affected sites while the latter assesses the system’s ability to exploit those
resources

The significant difference between resilience and vulnerability is that,
for the former, the time dimension of the phenomenon is also taken into
account, and in particular the time taken by the system to at least partially
recover its performance. Thus a system may not be robust (hence vulner-
able) and suffer a significant performance loss but still be considered re-
silient if it is able to recover in a sufficiently limited time. Resilience then is
a broader system property that incorporates vulnerability within it but is
not limited to it.

Similarly to vulnerability analysis, resilience metrics can be divided
into different categories: topological metrics, attribute-based metrics, and

performance-based metrics.
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FIGURE 1.1: Two phases of resilience measurement
(Adapted from Twumasi-Boakye and Sobanjo (2018))

Topological Metrics

Topological metrics aim to estimate the resilience of a network by exploit-
ing its structure while ignoring its dynamic properties. Similar to topolog-
ical vulnerability analysis, the network is represented by an abstract graph
whose relative structural properties are then studied. These graph-based
properties may be betweenes centrality, efficiency, size of giant component
or average shortest path length, where the last two are usually the most
commonly employed (Zhou, Wang, and Yang, 2019).

Schintler et al. (2007), implying a raster-based geographic information
techniques, estimate network resilience by simulating a series of failures by
sequentially removing critical nodes and evaluating the variation in con-
nectivity and shortest path length. Testa, Furtado, and Alipour (2015) ap-
ply topological analysis to coastal transportation networks to assess their
resilience against particularly adverse climatic conditions. In addition to
employing graph-based metrics such as connectivity and average short-
est path length, they propose to consider network redundancy, defined in
terms of the average number of paths connecting a node to the neighbors
of its neighbor. In the context of public transport, Chopra et al. (2016)
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assess the resilience of the London Underground network by looking at
whether it exhibits small-world properties, namely a network where nodes
while poorly directly connected can be indirectly reached in a small num-
ber of steps. More recently, Aydin et al. (2018) integrate graph theory with
a stress test methodology in order to asses network resilience. Sequentially,
the scenario to be represented is determined and the difference in the val-
ues assumed by several metrics before and after disruption are computed.
Among the employed metrics are efficiency, betwennes centrality, and size
of giant components, i.e. the number of nodes within the largest connected
subnetwork.

Attribute-based Metrics

As pointed out previously, the concept of resilience is comprehensive of
different partial attributes such as robustness, redundancy, resourcefulness
and rapidity (Twumasi-Boakye and Sobanjo, 2018). Attribute-based mea-
sures generally focus on one or a subset of these properties, and resilience is
estimated based on attribute variations between specific periods. Although
robustness and redundancy are certainly quite important features of a net-
work, what distinguishes the concept of resilience from vulnerability is the
focus on the system’s ability to recover part of the lost performance. For
this reason, in this kind of analysis emphasis is placed on the temporal di-
mension of the phenomenon. Following this approach, Adams, Bekkem,
and Toledo-Durédn (2012) define appropriate performance reduction and
recovery metrics. Referring to Fig. 1.1, the reduction metric is defined as
follows

P(ty) — P(t)

1.1
Po— (1.1)

Reduction =
where P(ty) and P(t;) are the performance before the advent of the dis-
ruption and during the initial shock, respectively. Equation (1.1) evaluates
the ratio between the net performance loss and the elapsed time. A large

performance loss occurring in a short time implies a significant reduction
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index. Similarly, a recovery metric is also defined as follows

P(t2) — P(t)

Recovery = —
2—0h

(1.2)
where P(t,) is the level of performance achieved by the system a sufficient
amount of time after the advent of disruption. Large performance gains
occurring in a short period of time imply a high recovery index. D’Lima
and Medda (2015) suggests using the time required for returning to equi-
librium after a shock as a metric for assessing the resilience of a system.
The authors then apply the methodology to the analysis of the London Un-
derground network portrayed by means of a mean-reversion model, i.e. a
system that tends to return to its average operational level after a sufficient
amount of time.

Expanding the concept of resilience, Murray-Tuite (2006) recommend
employing other metrics to assess additional relevant aspects of a trans-
portation system. Therefore, in addition to a recovery and efficiency metric
they also propose a safety metric based on the estimated average number

of incidents that occur within the network in a given time frame.

Performance-based Metrics

Performance-based metrics evaluate the variation in system performance
across the whole period during which the effects of the disruption still per-
sist. As a function of the magnitude and duration of performance losses,
the resilience is then estimated.

The index of degradation of system quality over time first, firstly pro-
posed by Bruneau et al. (2003), is one of the most widely adopted performance-
based resilience metric due to its versatility. Let Q(t) be the index for sys-
tem’s quality at time ¢, ¢y the time at which disruption occurs and 7 the
duration of effects, resilience index R is calculated based on the total qual-
ity loss throughout the whole time horizon.

to+T
R = / [100 — Q(#)]dt (1.3)

to
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The metric defined in (1.3) has therefore been adopted to estimate the re-
silience of road traffic networks (Bocchini and Frangopol, 2012a; Bocchini
and Frangopol, 2012b), rail networks (Adjetey-Bahun et al., 2016), and sub-
ways and public transportation networks (Zhu et al., 2016).

Adjetey-Bahun et al. (2016) proposed a modified version of (1.3) where
the quality loss is normalized over the length of the disruption period as
shown in (1.4).

to+T
100 — Q(t
T
fo
The characterization of the quality index depends on the domain in
which the analysis is performed. For example within the maritime context,
Omer et al. (2012) employ the ratio between travel time before disruption
and travel time after disruption between two nodes as an estimator of qual-

ity loss as shown in tot.

to+T

R— / tij(before ShOCk)dt (15)
t; j(after shock)

A similar approach is proposed by Faturechi and Miller-Hooks (2014) and
Bhavathrathan and Patil (2015) in the context of road networks where total

travel time is employed as system’s quality index.

1.2 Data requirements and modeling approaches

The approaches to estimate the response of a network system when af-
fected by a disruptive event exploiting exclusively topological features have
the great advantage of requiring limited input data. The resilience or vul-
nerability assessment is then obtained by designing appropriate scenarios
where a series of network components are removed randomly or accord-
ing to some attack pattern based on some criticality measure. This advan-
tage makes topological metrics-based approaches particularly suitable for
the study of large transport network especially when the aim is to inspect
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the criticality of each network component which necessitates the sequen-
tial removal of all links or nodes. However, the simplicity and level of
abstraction involved in these approaches also bring significant drawbacks.
In reality, it is likely that the consequences of a disruption will depend on
several other factors besides the infrastructure topology such as the du-
ration of the event, how many users will be directly affected, how many
alternatives they have in terms of destinations, routes or modes but most
importantly how they will react. Furthermore, topological approaches still
fail to capture the dynamics of the system’s response. Beyond its morphol-
ogy, equally important are the congestion propagation towards network
areas not directly involved in the disruption and the behavior of users in
the face of these changes.

Approaches employing some kind of performance metric (i.e. system
based, attributes based and performance based analysis) represent an at-
tempt to overcome these limitations at the price of requiring much more
data. Information associated with transport demand estimation, functional
characteristics of the network as well as the formulation of assumptions
about user behavior are necessary ingredients for the proper calibration of
this type of model.

The approaches for estimating resilience metrics or for vulnerability
analysis can be divided into: optimization models, simulation models and
data-driven models.

Optimization models Optimization models are employed in order to es-
timate traffic conditions (flow distribution and travel times on the
network) through solving appropriate traffic assignment problems
(Patriksson, 2015). They are also used for the definition of optimal
strategies related to mitigation, preparedness, and recovery opera-
tions in response to a disruption (Nair, Avetisyan, and Miller-Hooks,
2010; Faturechi and Miller-Hooks, 2014; Azad, Hassini, and Verma,
2016).

Simulation models Simulation models make use of highly accurate rep-
resentation even down to individual elements (such as vehicles in

a road network). They are generally used for reliability evaluations
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and more generally for modeling the impact of frequent and local-
ized phenomena (Gauthier, Furno, and El Faouzi, 2018). Neverthe-
less they are sometimes employed for estimating equilibrium traffic
conditions (Murray-Tuite, 2006; Osei-Asamoah and Lownes, 2014).

Data-driven models Data-driven models, as the name suggests, represent
the most data-hungry methodology with the advantage of not hav-
ing to represent the internal system mechanisms. This class of ap-
proaches makes use of a huge amount of appropriately processed
empirical data in order to estimate performance variations under dif-
ferent scenarios. Generally, some proxies are used to estimate system
properties such as passenger count (D’Lima and Medda, 2015), vehi-
cle counts and speed measure (Adams, Bekkem, and Toledo-Durén,
2012), reconstruction time and cost (Mojtahedi, Newton, and Von
Meding, 2017), and shifts in modal choices (Stamos et al., 2015).

1.2.1 Traffic Assignment Models

One way to estimate the conditions of a transportation network under a
certain scenario is to make use of appropriate traffic assignment models.
Belonging to the class of optimization models, a traffic assignment can be
defined in the simplest terms as a methodology that allows, given the mo-
bility demand and the functional characteristics of the network, to estimate
how users will spread across it on their way to their respective destinations
according to some behavioral assumptions. Mobility demand is usually
expressed in the form of an origin-destination matrix whose elements rep-
resent the amount of flow that seeks to travel between a pair of network
nodes. On the other hand, network functional characteristics refer to all the
features that make it possible to model the interaction between infrastruc-
ture and users such as its topology, capacity and arc length, to name a few
(see section 2.2). Essential within the network state estimation process is
the set of assumptions related to the users’” behavioral model, different as-
sumptions about the underlying motivations involved in the users’ choice
process lead to the different flow pattern estimation. A standard way of
proceeding is to assume that users perform a choice in order to minimize
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their travel cost or travel time to commute from their origin to their desti-
nation (see section 2.3). If users also dispose of accurate information about
the network condition, it is reasonable to assume that they will choose the
minimum-cost path. Furthermore, if it is assumed that the network has in-
finite capacity, i.e. it can handle all traffic demand without any degradation
in performance level, then a traffic assignment is equivalent to routing all
flows on the shortest paths between each origin node and each destination
node (see subsection 2.4.1). Typically, a transportation infrastructure does
not exhibit this property but rather the level of service it is able to provide
is inversely dependent on the amount of mobility demand. At any given
time, the higher the demand, the lower the overall system performance
will be. In traffic networks such performance degradation takes the form
of increased congestion and consequently a dilation of travel time. In this
setting, the choice of one traveler influences the choice of others as they all
contribute to the increase in congestion. The state where each user is on
his/her minimum-cost path given everyone else’s choices is referred to as
User Equilibrium (see section 2.5).

Flow

Time

FIGURE 1.2: Static Traffic Assignment Models (STA)
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A feasible way, given the demand and functional characteristics of the
network, to estimate the flow distribution corresponding to such a state is
to solve an appropriate optimization problem (see subsection 2.5.1). On
the other hand, when information is imperfect and consequently the users’
perception of traffic conditions is affected by an error, the state where each
user is on his/her lowest perceived cost path is called Stochastic User Equi-
librium (see subsection 2.4.4).

As depicted in Fig. 1.2, such approach involves estimating the average
traffic flow distribution across the network within a certain period of time.
Any flow fluctuationa is omitted from this analysis since no time dimen-
sion is taken into account. It is assumed that if both the demand and the
infrastructure have been steady for a sufficient amount of time, the actual
state of the network at any given time will oscillate somewhere near the
equilibrium. For this reason, this class of models is referred to as Static
Traffic Assignment Models (see chapter 2).

In the context of vulnerability and resilience analyses, static assignment
models are typically employed in order to compute the travel time or cost
under different scenarios. Since the time dimension is neglected, this ap-
proaches consist of comparing the different network equilibria before and
after the disruption. The increase in travel time or cost is then utilized as a
proxy for the degree of network vulnerability or resilience (Murray-Tuite,
2006; Scott et al., 2006; Chen et al., 2012). For example, Murray-Tuite (2006)
employ the DYNASMART-P simulator in order to assess the resilience de-
gree of a network when it is in a user equilibrium or a system optimum
state. A system optimum corresponds to a flow pattern where the total cost
or travel time of the overall system is minimized (see section 2.5). Chen et
al. (2012) rather employ a reliability-based user equilibrium traffic assign-
ment (Shao et al., 2006) for estimating the state of the network. Here as
part of the choice process, users also evaluate the reliability level of links.
A road with relatively low average travel times but subject to wide fluc-
tuations may be perceived by users as more expensive than another with
slightly higher average travel times but with less variability.

Dynamic traffic assignment models (see chapter 3) can be considered a
generalization of static models where the time variable and the evolution
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FIGURE 1.3: Fully Dynamic Traffic Assignment Models
(DTA)

of quantities related to it are considered. This class of models can further
be divided into fully dynamic (or intra-periodic) traffic assignment mod-
els (DTA) and semi-dynamic (or inter-periodic) traffic assignment models
(DTD).

DTA models are employed to represent network evolution in real time,
or at least in the order of minutes (see section 3.1). To this end, those fluc-
tuations that typically occur in traffic flow due to local micro conditions
cannot be ignored. For that purpose, DTA models typically consist of two
main components namely a user route choice model and a network loading
model. Route choice models derived from those employed in static models
with the difference being that a choice dimension may be added consisting
of the time departure selection and additionally users may change path
even during the trip. On the other hand, network loading models make
use of some traffic flow model in order to account for local phenomena
such as unexpected capacity drops or queue spill-backs. As depicted in
Fig. 1.3, DTA models are the most capable at tracking real flow dynamics
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but at the price of a significantly higher computational effort (Knoop et al.,
2012). Therefore, they are usually less frequently employed in vulnerabil-
ity or resilience analyses when dealing with large-magnitude events whose
effects last a long time. On the other hand, they are employed when in-
vestigating fluctuations in traffic conditions due to local phenomena with
fast dynamics or when the effects of disruption are short-lasting and the
system returns to normal operating conditions in a short amount of time
(Alam, Habib, and Quigley, 2017; Aslani, Mesgari, and Wiering, 2017; Gau-
thier, Furno, and El Faouzi, 2018). Sacrificing the scale, this type of analysis
allows a significantly finer event representation.
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FIGURE 1.4: Semi-dynamic Traffic Assignment Models
(DTD)

The class of semi-dynamic models (see section 3.2) lies somewhere in
between static and fully dynamic models. The prefix "semi" refers to the
fact that these models attempt to capture the equilibration process of the
whole system as a series of static assignments associated with subsequent
periods. For this reason, they are also referred as inter-periodic or day-to-
day traffic assignment models (DTD). When the network due to significant
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variations in demand or supply falls into a state of disequilibrium, it is rea-
sonable to assume that users will react by possibly changing their choice.
For example, if due to a significant change in the infrastructure the travel
cost for a certain group of users suddenly increases it is likely that in the
future they will shift to routes that now, given the new conditions, have be-
come attractive. Compared with DTA models, the representation of traffic
flow dynamics is usually neglected. Rather, the average flow distribution
that arises as a reaction to a changing environment is estimated for each
period, as depicted in Fig. 1.4. DTD traffic assignment models are con-
sidered to be the most appropriate class of models for representing traffic
equilibration processes because of their intuitive formulation and ability
to accommodate a wide variety of user’s choice rules and traffic modeling
approaches (Watling and Hazelton, 2003).

Recently DTD models have been employed to assess the long-lasting
impact that a disruption have on a traffic network. He and Liu (2012) are
probably among the first to employ a DTD assignment model adapted ex-
plicitly to analyze the reaction of a traffic network when subjected to a
disruptive event. The authors calibrate and validate the model with em-
pirical data collected over 15 days after the collapse of the I-35W bridge
in Minneapolis showing a good fit between estimated average daily flows
and actual data. Following a similar approach, Wang et al. (2015) propose
a day-to-day tolling scheme aiming to increase the rapidity of the system
in recovering the the performance lost after a disruption. Finally, Guo and
Liu (2011a) investigate the possibility that following significant or long-
lasting changes to the network infrastructure, the state of the system may
never return to its initial values despite the changes being revoked. For
example, the authors hypothesize that following an extended link closure
the pattern of flows may permanently change even after reopening. The
authors substantiate their argument by showing how after the reopening
of the I-35W Bridge, the flows crossing it dropped by 20% despite an un-
changed mobility demand. Therefore, this irreversibility phenomenon is
modeled within the framework of Bounded Rationality (Mahmassani and
Chang, 1987). Itis assumed that users, for a variety of reasons related to the
complexity of the choice or the pressure of habits, may not exhibit perfect
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rationality, i.e. their choice strategy may not pursue utility maximization
or disutility minimization (see chapter 4). One of the most widely adopted
formulations is to consider an indifference band. In other words, travel-
ers are insensitive to excessively minute variations in travel costs and thus
unable to distinguish between qualitatively close though not equal alterna-
tives. The resulting implications on the system’s steady state are discussed

in section 4.2.

1.3 Thesis overview and research questions

The objective of this thesis is to develop methodologies designed to esti-
mate the evolution of a transportation network when impacted by a dis-
ruptive event which significantly alters its topology. As highlighted in
the introduction, purely topological approaches though widely adopted
cannot provide a representation for the interaction dynamics emerging be-
tween the infrastructure and the mobility demand. Therefore, the main
research question of the present thesis can be summarized as follows.

How to macroscopically represent the evolution of a transportation
network when affected by substantial structural alterations, taking
into account the interaction between supply and demand?

In light of the premises highlighted in the introduction, the approach
followed for this thesis is based on dynamic assignment methods, espe-
cially inter-periodic ones which provide an appropriate trade-off between
the need to represent macroscopically the reaction of travelers on the one
hand but without the computational burden associated with more detailed
simulation models on the other.

The present thesis is structured as follows. In chapter 2, the state of
the art and major contributions to static assignment models theory are
presented. Firstly, the traditional framework of transportation analysis
and the methods used to represent a transportation network are exposed,
with special emphasis on the assumptions regarding users’ choice behav-
ior. Subsequently, the literature of deterministic and stochastic static as-
signment models is reviewed in detail. In section 2.5, the characterization
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of deterministic equilibrium steady state is discussed in detail and a viable
optimization-based methodology for its computation is presented.

In chapter 3 the state of the art regarding dynamic assignment models is
reviewed. The main approaches are discussed and contextualized to their
respective application domains. Inter-periodic (or day-to-day) assignment
models are then explored in more detail and two main frameworks are
introduced and discussed.

In chapter 4 an in-depth review of travelers’ bounded rationality con-
cept is carried out. Major empirical evidence supporting this idea is re-
ported alongside the main contributions regarding day-to-day assignment
models integrating bounded rationality. A formal characterization of the
resulting equilibrium configurations is then provided and compared with
the counterparts from traditional assignment models.

The second part of the present thesis is devoted to the exposition of
three main contributions. The first contribution is presented in chapter 5
where the primary research question is further specified in the following
sub-question.

How to account for user inertia associated with supply side variation
by employing static assignment models within a dynamic framework?

To this end, a link-based day-to-day traffic assignment model is pre-
sented and discussed in detail. The model portrays the flow re-equilibration
mechanism of a transportation network affected by a disruptive event. The
peculiarity of the approach is that it takes into account user habits that are
assumed to affect the evolution of the system following the disturbance.
The users’ choice selection process is typically represented by multi-path
assignment, i.e. the flows from each origin to each destination are dis-
tributed over multiple paths depending on traffic conditions. In order to
reflect users’ inertia towards adaptation, the proposed model constrains
a series of successive assignments to specific subsets of paths which over
time tend to enlarge if the increase of user travel costs exceeds a certain
tolerance threshold.

When a transportation system undergoes a particularly significant dis-
ruptive event, a partial modal shift is likely to occur if the transportation
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system enables it. In this regard, the following research sub-question is
formulated.

How to take into account the interdependence between different trans-
portation modalities?

In chapter 6, this shift dynamics is investigated for a multi-modal multi-
class transport network. The travel modes considered are road and rail
transport. The model represents how passenger flows and freight flows
react to disruption according to different behavioral logics. The model in-
cludes two stages. In the first one, two traffic assignments are performed
for passenger flows and freight flows, where in the first one users aim to
minimize their individual travel cost while in the second one freight ve-
hicles move in order to minimize a generalized fleet cost. At the second
stage, traveler decisions are implemented and traffic flows loaded onto the
network by employing a discrete-time dynamic flow model. The model is
then tested in two scenarios prior to and after a disruption. Employing a
multi-modal network allows to represent the potential shifts in transporta-
tion modality, while adopting a dynamic model allows for more accurate
estimation of traffic status-related quantities such as average speeds and
pollutant emissions.

Traditionally, users’ bounded rationality is represented by means of an
indifference band that prevents them from reacting when the stimulus vari-
ation is excessively small. In the transportation context, this results in trav-
elers who are insensitive to excessively minute changes in travel costs. In
the literature it is also pointed out that users may be affected by "choice
supportive bias", i.e. users are inclined to associate positive attributes to
the choices they have made while, conversely, they are more likely to as-
sociate negative attributes to the alternatives they have not chosen. Within
the route choice process, a clear correlation is detected between travel time
overestimation and whether a route was chosen or not. Based on these

observations, the following sub-questions are formulated.

How to account for user inertia associated with routes topology?
Does favoring a route over another partly on the basis of its topology
prefigure a bounded rationality route choice process?
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To this end, in chapter 7 a path-based proportional-switch day-to-day
assignment model is presented. In the present work, it is suggested that
users operate their travel choices influenced not only by the actual path
travel costs but also by the topological similarity between them. In other
words, if changing traffic conditions on a path leads a user to reconsider
his travel choice, he will prefer shifting towards those paths most similar
to the one he is abandoning. It is thus shown that such preference im-
plies a bounded rationality behavior. More specifically, a rigorous proof is
provided showing that a steady state achieved by the system necessarily
corresponds to a Boundedly Rational User Equilibrium (see section 4.2).
Furthermore, a method for estimating the relative indifference band is pro-
posed. The model is then applied to two networks affected by a disruption
and the results are discussed.

Finally, in chapter 8 some final conclusions and potential research ex-

tensions are outlined.
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The study of a traffic network requires the planners to be able to predict
the state/s that would most likely occur in case a certain scenario arises.
Such a knowledge can be used whenever the infrastructure is involved in
significant changes or when it is necessary to predict the users-network in-
teraction when certain conditions vary. In order for any of these analyses
to be reliable, it is necessary to approach the problem in the most holistic
way possible, once the increase in complexity is taken into account while
considering multiple elements within the system description. The amount
of traffic flowing at any given time along any street, intersection or square
emerges from the simultaneous choices made by a multitude of individuals
deciding when to leave, where to go and how to get there. In turn, indi-
vidual choices are interdependent and the resultant outcome is a trade-off
between multiple individual wills grappling with a limited resource. The
"finiteness" of the infrastructure resource takes the form of congestion. The
more users decide to use the infrastructure at the same time the more the
system performance will degrade. This effect in turn changes user behav-
ior within a circular dynamics. There is therefore a mutual dependence
between user mobility demand on one hand and mobility offer provided
by the transportation system on the other (Cascetta, 2013). Together these
two components determine the level of congestion, which retroactively in-
fluences user choices leading to the actual traffic flow pattern. In the trans-
port engineering field such a flow pattern is denoted as equilibrium.

Equilibrium analysis is therefore a viable approach to study transporta-
tion networks and to understand their essential characteristics in order to
be able to predict, to some extent, their evolution when a variety of factors
change. Equilibrium refers to the state at which there are no net forces at
work pushing the system towards another state. At the same time, if the
system at a certain instant is in a state of disequilibrium, we expect that
it will be attracted to the state of equilibrium and will be able to reach it
in a certain finite amount of time. While in reality the degrees of freedom
available to the user’s would prefigure a potentially infinite amount of out-
comes, both in the destination location as well as in the ways to get there,
several daily’s contingencies together with a natural tendency to minimise

the travel cost, make the user’s behaviour on the network predictable, at
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least on average, especially when the estimation process covers highly ag-
gregate measures. This allows a number of simplifying assumptions to be
introduced during the analysis process, including considering a limited
number of origin and destination points or establishing a universal be-
havioural logic that determines how users will move between these points,
being confident of obtaining estimations sufficiently close to the real data.

Defining the most convenient set of assumptions for the case study and
computing the resulting traffic equilibrium state falls to traffic assignment
models. Give, as input the functional characteristics of the network and the
transportation demand, a traffic assignment model allows to estimate the
traffic flow load on each arc of the network according to a certain mathe-
matical rationale designed to represent the users” behaviour.

2.1 Preliminaries

Traffic assignment models constitute the fourth stage within the traditional
transportation planning process characterized by the following four steps
(Potts and Oliver, 1972; Cascetta, 2013):

1. Trip Generation: estimate of the amount of trips, usually expressed in
terms of flows, that are generated and/or attracted by specific region
of the network. The estimation relates the trip generation to specific
variables such as demographics, income, etc. acquired throw sur-

veys.

2. Trip Distribution: using the output produced by the previous step, the
trips between each origin region and each destination region of the
network are estimated. The result is usually expressed in terms of an
origin-destination (OD) matrix. Several methodologies have been de-
veloped for estimating the mobility demand such as entropy models
(Wilson, 1967), gravity models (Voorhees, 2013), the Hitchcock model
(Hitchcock, 1941) or the opportunity model (Stouffer, 1940).

3. Modal Split: the flows between each origin-destination pair are split be-
tween different travel modes such as car, train, bus, bicycle,... based
on discrete choice theory (Ben-Akiva and Steven, 1985).
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4. Traffic Assignment: the flows of each OD couple are loaded on the net-
work according to some mathematical principle designed to repre-
sent the route choice behaviour of users and as a consequence the
amount of flow on each link is estimated.

The whole four-step process is suitable for long-term planning consid-
ering the amount of effort required to deliver it. Nevertheless, it represents
an essential base for a series of real-time oriented estimations needed when
the system undergoes a highly dynamic phase due to sudden changes in
conditions.

Traffic assignment models are extensively used in a wide variety of
areas from transportation planning (Overgaard, 1967; Eash et al., 1979;
Bliemer et al., 2017; Black, 2018), to transportation network resilience anal-
yses and /or enhancement (Zhang, Mahadevan, and Goebel, 2019; Kaviani,
Thompson, and Rajabifard, 2017; Murray-Tuite, 2006), to applications for
environmental impact mitigation (Wang et al., 2018), to parking process
optimization (Zhang, Mahadevan, and Goebel, 2019; Pel and Chaniotakis,
2017; Chaniotakis and Pel, 2015), to location problem for electric vehicle
charging stations (Huang and Kockelman, 2020; Ferro et al., 2021).

The application of assignment models is not limited to road networks,
but has its place in a huge range of problems involving other modes of
transportation. In the railway field, Lansdowne (1981) proposed an assign-
ment model for routing freight over rail network which is controlled by
several carriers. The objective is to minimize the number of interline trans-
fers. Lin, Fang, and Huang (2019) analyzed how to exploit the railway sys-
tem to its maximum potential by increasing its performance through ticket
price adjustments while Wu et al. (2013) formulated a day-to-day assign-
ment model based with boundedly rational travelers. Through relaxing
the rational behaviour hypothesis, the authors try to capture correlations
over time of users’ route choice within the field of railway transport. Xu
et al. (2017) proposed a dynamic traffic assignment model for urban rail
networks that considers the effects of congestion on queueing dynamics.
Moreover, Shengguo and Zhong (2011) illustrated a path flow estimation
method that exploits users” entry and exits time records at each station.
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Furthermore in shipping, assignment methods have been integrated for
example within the berth problem by Venturini et al. (2017). A freight as-
signment model and a ship routing method are integrated and applied to
the Northen Sea Route problem by Lin and Chang (2018). Agrawal and
Ziliaskopoulos (2006) developed a dynamic freight assignment model in
order to investigate the market equilibrium that emerges from shipper-
carrier relationship when no shipper is able to reduce its cost by choosing
another carrier. This shipper-carrier relationship is modelled similarly to
travellers-road infrastructure interaction.

In the field of air transport, assignment models are generally used within
strategies for reducing environmental noise (Gani¢ et al., 2018; Netjasov,
2008) or lowering pollutants (Mirosavljevi¢, Gvozdenovi¢, and Cokorilo,
2011).

Finally, there are plenty of studies where assignment models are ap-
plied to networks integrating two or more transportation modes. Dafer-
mos (1982b) proposed for the first time a general model with the aim of
studying the equilibrium of multi-modal transport networks by incorpo-
rating the Modal-split, the third phase of the transport planning process,
directly into the assignment model. An exhaustive comparative study of
existing multi-modal models based on their computational complexity is
proposed by Nagurney (1984). In the study by Jourquin and Limbourg
(2006), the advantages of using equilibrium analysis on multi-modal net-
works in the case of freight transport is compared against the application of
all-or-nothing assignments. Yamada et al. (2009) designed a bi-level model
for the optimal design of a multi-modal freight transportation network. At
the lowest level a multi-modal multi-class traffic model is executed while
the top level determines the best set of actions in order to maximize the
benefit-cost ratio of freight transport. In the work by Bingfeng et al. (2017)
the overall impact of dedicated bus lanes on a multi-modal network equi-
librium is investigated. In order to account for the road capacity reduc-
tion for private vehicles, the impedance of the network arcs is modulated.
Moreover, a control model applied to a multi-modal network is defined
by Si et al. (2012) with the objective of maximizing a social-cost System
Optimum function that takes into account not only the total travel time of
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the network but also other externalities such as pollutants and greenhouse
gases emissions.

2.2 Network Representation

Modeling a traffic network first requires partitioning the area of analysis
into sub-parts called zones. Depending on the model scale, a zone may
represent a single neighbourhood as well as an entire city. The study area
is then represented through the mathematical concept of a graph, typically
oriented. Let G = (N, A) be an oriented graph where N and A are the set
of nodes and the set of links, respectively. Each traffic zone is collapsed into
a centroid which models all possible origins and /or all possible destinations
taking place within the corresponding traffic zone. Each graph node can
represent a specific piece of the physical network, such as intersections,
squares, or other transportation facilities. However, centroids are those
nodes from which or to which traffic flows move. The former are called
source nodes R C N, the latter destination nodes S C N'. It is then possible
to define a set of origin-destination (OD) pairs H = R x S.

Any properly defined assignment model needs to take the user choice
process into account to some extent. Thus, any macroscopic estimation
and prediction of the state of traffic on each of the links in the network
must be based on some behavioural principle emerging as a result of a set
of assumptions made and a set of functional determinants specific to the
network that relate to this behaviour. Although different factors may in-
fluence users’ route choice decisions, as investigated by Prato, Bekhor, and
Pronello (2012), it is also true that the level of congestion, the length of an
arc and the time needed to travel it represent the main components in the
perceived travel cost. In traffic assignment, the fundamentals component
that model these three essential aspects are the link performance functions,
relating the travel cost of a link to the level of congestion on it. They in-
corporate more or less directly the physical and functional characteristics
of the specific road section in a function which is typically positive and
strictly increasing with the flow. Therefore, the cost of travelling along the

link increases as the congestion on the link increases.
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Let x, be the traffic flow on arc a € A and consequently x = {x, : a €
A} be the link flow vector. The link cost functions can be decomposed in
the following three terms:

Ca(x) =1 tu(x) +ap- wa(x) +az- Cma(x) 2.1)
where:

* t,(x) is the functions that relates the congestion on links with the

resulting travel time.

* w,(x) is the function linking the waiting time on the link to the link

flows vector.

e cm,(x) is the monetary cost function a priori defined as a function the
link flows vector. It can be further subdivided into the following two
components: the toll cost cm’ and the cost of fuel cm{;u (x), which

may depend on the level of congestion.

w; coefficients are the function parameters having the double purpose of
determining the reciprocal weight of the three cost component and at the
same time making them homogenous and therefore comparable. In many
formulations, the cost of the link is considered to be the travel time, as it is
generally the determining component of user behaviour. Several empiri-
cal studies seem to suggest that it is the primary factor in flow deterrence,
although it is not the only one (Sheffi, 1985). In addition, multiple other
factors are strongly correlated with travel time and thus mirror its pat-
tern. In practice, the remaining two components are defined as constants
on the basis of average values estimated empirically on a case-by-case ba-
sis. Therefore without loss of generality in the following we concentrate on
mere travel times.

A preliminary formulation of link performance functions when consid-

ering exclusively travel times is as follow:
t (xa) =, + ,Ba : x;’ (2.2)

where «;, B; and -y are the model parameters. If the intent is to represent
the actual travel times and not just the average, an additional error compo-
nent €, can be added. Setting v implies choosing the model’s order while
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«, and B, can be estimated through least squares by using empirical mea-
surements. Another viable approach is to rely on a priori proposed model,
for example, one of those proposed in the widely adopted Highway Ca-
pacity Manual (HCM, 2000). The following formulation is recommended
for highway sections:

L, L, L, X\
ta(xﬂ) = W +(5<quax - Vdfree> (qZIﬂX) (2.3)

a

max

where L, is the length and g is the capacity of the link a, while V,if " and
mex are the average speed when the link is unoccupied (free-flow speed)
and when the flow is equal to the link capacity, respectively. It is worth
noting that (2.2) and (2.3) are equivalent once it is defined that «, = %

a

7
and B, = ¢ (JZM - V%J;ee> (qml,,x> . A similar function is suggested by the

Federal Highway Administration and reported in (2.4).

X, P
ta(xq) = 19 [1 +a<qu> } (2.4)

a

In this case 0 is the free-flow travel time. It worth noting however that ) =
%. Although identical in principle, the latter two formulations allow to
relate the model parameters to quantities that are fairly simple to estimate.
For numerous other formulations designed ad-hock for specific scenarios,

see HCM, 2000.

2.3 Wardrop’s Principles

Having introduced the concepts of congestion and link performance func-
tions constitute the fundamental elements of any route decision model, it
is then necessary to establish how the user relates to these factors. In other
words, it is necessary to define what guides the decisions of the user mov-
ing through the traffic network. In the following, the two famous prin-
ciples by Wardrop (1952) on which almost all travel choice models have
traditionally been developed are stated.

Wardrop’s first principle : Travellers choose the route that minimizes their
own travel cost.
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Wardrop’s second principle : Travellers choose the route that contributes,
along with the choices of all the others, to minimize the total travel
cost.

The first principle states that the ultimate goal of each user on the net-
work is to choose a route that guarantees him/her, given the choices of all
other users, a minimum travel cost. Then if all users possess complete in-
formation about the state of the network it follows that all "non-minimum
travel cost" paths will not be used by any user and at the same time those
actually used must share the same minimum travel cost. This is a state
where no user has, unilaterally, any incentive to change routes because,
from his/her point of view, he/she is already on the shortest path possi-
ble. In literature this state is often called "user optimum" or "User Equilib-
rium" (UE). The former refers to the fat that the user is maximally satisfied.
The latter, on the other hand, emphasises the equilibrium (asymptotically
stable) nature of this state. In fact, if for some reasons a portion of the flows
deviates from a minimum travel time path to another, the congestion of the
latter would increase and so would travel times, while the former see its
travel time reduced. Users would then have an incentive to return to their
initial route. Due to this, after a certain period of time, a redistribution of
flows would bring the system back to its original equilibrium. This is of
course provided that users make rational choices, based on the first prin-
ciple and that they have complete and accurate information, as mentioned
previously. By relaxing the assumption of perfect information, we assume
that users” estimation regarding the state of the network is inaccurate. The
resulting equilibrium state at which each user experiences the lowest pos-
sible perceived travel cost is called Stochastic User Equilibrium (SUE) (Da-
ganzo and Sheffi, 1977). Either way, the first principle tries to establish the
rationale behind the personal and to some extent egoistic choices of users
and for this reason it underlies all the models whose aim is to intercept this
kind of attitude.

The second principle, on the other hand, depicts a scenario in which
the combined choices of users lead to a state where the average travel cost
is the minimum possible. In other words, the flow-weighted average of
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the travel times of all users on the network is minimum. This "System Opti-
mum'" (SO) state generally does not coincide with the "optimum for users"(
i.e. the UE), as already demonstrated in the field of economics by the fa-
mous work by Pigou, 1920. This only occurs when link travel costs do not
depend on the flows, i.e. when no congestion exists. In order to achieve
this state regardless of the type of network, it is therefore necessary to in-
fluence users choices in some way. Two are the viable strategies: the first
involves forcing users to choose the desired paths. This strategy is men-
tioned as "involuntary system optimum". This approach can be found in the
filed of industrial logistics, where a central decision maker chooses which
routes to use in order to minimize some kind of global cost function. Other
examples can be found in railways and communications network. This
strategy is also applied in some traffic management systems during excep-
tional circumstances (Patriksson, 2015). The second strategy, in the absence
of any direct power over users, is "persuasive”. By modifying the paths’
cost function, e.g. introducing/changing a toll according to a congestion
pricing strategy (an extensive review can be found in De Palma and Lind-
sey (2011)), it is possible to drive the free-will of users in such a way as to
favour a more efficient use of the system. The resulting traffic state is usu-
ally defined as "voluntary system optimum". The state reached is typically
not an equilibrium and, when the control action stops, observed flows are
likely to return to the user optimum.

2.4 Literature Review

The vast literature concerning traffic assignment models can be organized
on the basis of several criteria. Typically these are: whether link per-
formance functions depend on flows (congested network) or not (uncon-
gested networks), the set of assumptions regarding user choice behaviour
(perfect information, rationality, ...), whether such choice models are ap-
plied indiscriminately to all users (single-class models) or different mod-
els are applied to different group of users (multi-class models), whether
the transport demand is considered fixed (inelastic ) or travel cost depen-

dent (elastic), if one or more travel modes are considered (mono-modal or
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multi-modal) and, finally and most importantly, how the time variable is
accounted within the traffic assignment model (static or dynamic models).

In this chapter, an overview of static assignment models is presented.
The most classical deterministic network loading models and their further
development for congested networks, i.e. deterministic equilibrium mod-
els, are therefore presented. For completeness, stochastic network loading
models and the corresponding equilibrium models for congested networks
are also provided. Finally, a more in-depth discussion is reserved for the
User Equilibrium and System Optimum models.

24.1 Deterministic Network Loading Models

The first attempts to estimate traffic flows on arterial roads date back to
the first half of the last century. At a time of rapid expansion of the road
infrastructure, the aim of these early studies was to estimate the amount of
flow that would spill over from older arterial roads onto newer high-speed
ones. Meanwhile, in the '50s considerable progress was made in defining
efficient algorithms for detecting shortest paths within a network (Moore,
1959; Bellman, 1958; Dijkstra et al., 1959). Such techniques allowed mini-
mum routes to be identified within a network with fixed link weights. At
the end of the decade, the staff of the Chicago Area Transportation Study
and the Armour Research Foundation developed the first fully computer
aided traffic assignment based on the algorithm by Moore (1959). This
type of assignment was of the all-or-nothing type, i.e. the mobility demand
of each origin-destination pair is loaded onto the shortest fixed-cost route
joining the origin with the destination node (Carroll Jr, 1959). The main
advantage of these models lies in obtaining an assignment in a single step,
once the minimum cost path is computed, which makes them extremely
advantageous from both a computational and a conceptual point of view.
The major drawback stems from the fact that the interaction between con-
gestion and network link performance is not taken into account (uncon-
gested network), which significantly compromises the results produced by
such methods in most real scenarios.
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A generic algorithm for all-or-nothing assignments can be condensed as
follows (Sheffi, 1985):

Step 0 (Shortest Paths): For each origin-destination pair compute the min-
imum fixed cost path.

Step 1 (Flow Loading): Load each origin-destination pair mobility demand
onto the found paths.

The three major drawbacks are: (1) not being a robust model. Small
variations in the estimated link costs can lead to completely different min-
imum path sets and thus totally different assignments; (2) the choice be-
tween two or more shortest paths is completely arbitrary; (3) the rela-
tionship between congestion and network performance is not taken into
account and for this reason the estimated flows differ widely from those
actually observed. Despite not being used as stand-alone methods, all-or-
nothing procedures are an essential component of many traffic assignment
algorithms widely adopted by researchers and practitioners alike.

In order to partially overcome the above-mentioned limitations, an at-
tempt was made to take into account the impact of congestion through the
definition of link’s performance functions (refer to Section 2.2 for a more in-
depth discussion). Briefly, a performance function relate the congestion
of a road section with the associated travel cost (usually in the form of
travel time). Making use of such link characterization allow to introduce a
series of models that iteratively make use of the network travel times up-
dated against the estimated state at the previous iteration and thus actually
take into account the congestion and remaining capacity of the network
links. At each iteration an all-or-nothing assignment is performed and the
travel times of the arcs are consequently updated using performance func-
tions and used as input for the assignment at the next iteration and so on.
This category of assignments is referred to as capacity-restrained methods.
The quantal loading procedure, developed under the Chicago Area Trans-
portation Study (1960), is an early example of this category of models. The
procedure involves zoning the network and then representing it by nodes,
each one associated with a specific zone. A source node is then chosen ran-
domly and by an all-or-nothing assignment the demand is routed to the
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corresponding destination nodes. The travel times are then updated ac-
cording to the accumulation of flows on the links. Another origin node is
therefore selected from the remaining ones and the procedure is then re-
peated. The methodology differs from a pure all-or-nothing assignment
only in the set of travel times used, which in this case evolves at each it-
eration, and for this reason the computational effort is basically the same.
Although quantal loading represents nonetheless an evolution, for each
OD pair the demand is still assigned to one path only and, in addition, the
estimated flow pattern is highly dependent on the source node sequencing
within the procedure.

A possible extension of this model is the one proposed by the Bureau
of Public Road reported into the Manual of Traffic Assignment (1964). The
steps of the algorithm are as follows: using an all-or-nothing assignment
the demand of each OD pair is routed over the network based on the free-
flow travel times of the arcs. The congestion level of each arc is then up-
dated and travel times are then recalculated. At the next step the procedure
is repeated and the demand of all origin-destination pairs is reassigned to
the shortest paths in the network. The procedure stops when a predeter-
mined number of steps has been reached or if the routes selected for each
pair do not change between one step and the next. The implicit assump-
tion of this type of procedure is that all users of all origin-destination pairs
eventually decide to change route if the shortest one turns out not to be the
one used in the previous iteration. The main weakness of this methodology
is that no convergence is guaranteed and indeed, depending on the com-
plexity of the network, it is common that after a certain number of steps the
estimated flow patterns repeat according to an oscillatory dynamic (Van
Vliet, 1973). To overcome this issue, new procedures have been developed
where, between one step and the next, only a fixed portion of the users is
reassigned. Given an assignment represented by the link flow pattern x",
at the n-th iteration, once the travel time are updated, a second assignment
y" is then computed. The network state at iteration n + 1 is obtained as
follows:

X" =x"(1—a)+y"a (2.5)
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where &« > 0 represents the portion of users who have changed paths. In
“Traffic assignment: methods, applications, products” 1972 the number of
steps is fixed a priori at a certain value K and consequently « = 1/K. In this
case therefore, (2.5) is in fact a smoothing process. Almond (1965) adopted
a similar approach but without fixing the number of steps a priori. Several
researchers have pointed out that, when the number of steps is sufficiently
high, the oscillatory phenomenon reappears. To overcome this problem
Smock (1963) proposed that the coefficient « decreases as the number of
steps increases, i.e. that « = 1/k at the k-th iteration. Almond (1967) sug-

gested a further generalization where (2.5) is replaced with
X = ax™ + Bry” (2.6)

where aj + B < 1 for the first iterations. Requiring the sum of the coeffi-
cients to be strictly lower than one for the first iterations is meant to implic-
itly represent the fact that only a fraction of the mobility demand actually
enters the network at a given time while the remaining portions enter only
at a later time. It should be pointed out that the aim of these methods is
not to represent a realistic time-varying dynamics of the evolution of the
network, but rather to roughly incorporate some elements of this dynam-
ics, with the aim of obtaining a more realistic final estimation. As pointed
out by Patriksson (2015), these first heuristics are remarkably similar to the
famous Frank Wolfe algorithm by (Frank and Wolfe, 1956) one of the most
widely adopted methods for computing equilibrium assignments where
the only difference lies in the choice of the step size «.

Parallel to the previous heuristics, there is the category of incremental as-
signment methods which attempt to solve the main problem of the previous
methods: the demand of each origin-destination pair is routed only on one
path. Munby (1968) and Ruiter (1968) approached the problem in the fol-
lowing way: at each iteration only a predetermined fraction of the demand
is assigned for all pairs. If the number of iterations and the fraction of de-
mand assigned at each iteration are chosen appropriately, the final state of
the network computed approximates an equilibrium much better than any
single-route assignment. However, the problem of defining a generalized
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strategy for determining the fraction and the number of steps remains un-
solved. In addition, once a given percentage of demand has been allocated
on a route, it can no longer be removed. Vliet (1976) tried to alleviate this
shortcoming by removing the worst paths computed by the procedure in

favour of a partial flow redistribution to the currently shortest ones.

2.4.2 Deterministic Equilibrium Models

Equilibrium assignments can be interpreted as a variation of capacity-restricted
models. Similarly, they make use of a series of all-or-nothing assignments
where at each iteration the link travel times are updated according to the
new network configuration. The key difference, however, lies in the choice
of algorithm step size. The network states estimated by this category of
models generally correspond to one of the two Wardrop (1952) principles.
As already mentioned, the first establishes that the users organize them-
selves on the network in such a way as to minimize their own individual
travel cost and this leads to a network state known as User Equilibrium
(or User Optimum). The second establishes that the users behave in such
a way as to minimize the network’s total travel cost resulting in a System
Optimum state.

The fundamental work by Beckmann, McGuire, and Winsten (1956)
redefines the two principles in terms of convex optimization problems.
Wardrop’s principles correspond in fact to the optimal solution of a con-
vex optimisation problem with linear flow conservation constraints. At
the same time, an iterative algorithm for solving convex quadratic opti-
mization problems is presented (Frank and Wolfe, 1956). This algorithm
has been and still is widely used for solving traffic assignment problems in
the form of optimization problems. Its great popularity is due to its rela-
tively easy implementation for traffic assignment problem where the algo-
rithm turns out to consist of a series of all-or-nothing assignments coupled
with one dimension optimization problems to determine the optimal step
size. The calculation of an optimal step, as already mentioned, is in fact the
real novelty of this algorithm compared to capacity-restrained heuristics.
Briefly, at each iteration for each origin-destination pair, the shortest path
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is identified and all traffic demand is loaded onto it. The algorithm is then
updated again by using a formulation analogous to (2.5), where in this case
the new all-or-nothing assignment is represented by y”. The key difference
is that a is determined at each iteration by solving an optimization prob-
lem in order to get the best step towards the optimum. Given its centrality
within the discipline of traffic assignment, a discussion of UE and SO and
the related Beckmann problems is given in section 2.5.

Although these papers were published alongside the development of
the heuristics described above, their exploitation for solving traffic assign-
ment problems did not take place until 10 years later and through the work
of operational researchers. According to Boyce (1984), the lack of a rigor-
ous scientific approach by transport planners is the reason for the delay
between formulation and actual adoption of more sophisticated methods.

These fundamental results have sparked off a prolific line of research.
Dafermos and Sparrow (1969) formalized the necessary and sufficient con-
ditions for the existence, uniqueness and stability of the solutions for SO
and UE problems. The authors show how, given an SO problem, it is possi-
ble to define an associated "UE type" problem and vice versa. This impor-
tant result allowed to apply the same solution methods to the two classes
of problems indiscriminately. Smith (1979) and Dafermos (1980) discussed
the existence, uniqueness and stability of solutions of traffic equilibrium
problems via variational inequalities. The variational inequalities formu-
lation allows to deal with a wider range of networks characterized by non-
separable not symmetrical link cost functions. Non-separable means that
the travel time (or travel cost) of a link may also depend on the amount
of congestion on other links. Non-symmetrical means that the relationship
between one link and another may not be symmetric. A traffic equilibrium
model for single-mode and a general multi-modal network is proposed
by Dafermos (1982a) while Fisk and Nguyen (1982) analyze and compare
the performance of the most common traffic assignment algorithms. Fisk
and Boyce (1983) presented an alternative equilibrium-travel choice model
which extends the result even when performance functions are not invert-
ible while Nagurney (1984) conducted a performance comparison of the
two most widely used methods for solving equilibrium traffic assignment
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problems for multi-modal networks are compared: relaxation and projec-
tion methods. Since both have to solve an optimisation problem at each
iteration, the author also compares the performance when adopting the
Frank Wolfe and Dafermos-Sparrow algorithms. Hammond (1984) and
Marcotte and Guélat (1988) quantify and tested the computational effi-
ciency of various algorithms for solving traffic assignment problems for-
mulated as variational inequalities against network scale and the link per-
formance functions amount of asymmetry. Finally, Gabriel and Bernstein
(1997) proposed an assignment model considering also non-additive path
travel costs, i.e. with path travel costs not exclusively dependent on the
aggregate travel costs of the individual links.

Alongside the research backbone represented by the above-mentioned
works, a further one has been explored where other factors potentially af-
fecting the route choice process of users in addition to travel time are taken
into account and explored. When users are concerned about arriving on
time, the resulting traffic equilibrium is defined as Risk User Equilibrium.
Each driver considers a safety margin, intended as an extra path travel
time, in order to increase the chance of arriving at the destination on time.
This concept has been formulated on effective travel time (Hall, 1993) or
travel time budget (Lo, Luo, and Siu, 2006) rather than travel times as for
the UE. An effective travel time is defined as the sum of the expected travel
time plus a safety margin. When on all paths of the same origin-destination
pair the effective travel time is the same then the system is at the equi-
librium. Uchida and Iida (1993) portray risk users” aversion by defining
route cost functionals as the sum of the actual travel time plus the variance
of travel times multiplied by a certain coefficient representing users” risk
aversion. Moreover, the authors reformulate the SO into the risk system op-
timum mutating the same concept. A similar formulation is proposed by
Larsson and Patriksson (1995). Peeta and Ziliaskopoulos (2001) rephrase
the same concept of travel time reliability by defining a reliability index
RI, calculated on the basis of the probability that the travel time of route p
ends up been greater than a certain tolerance threshold. For a risk-neutral
user RI, = 0 for each route, while the coefficient grows as the user’s risk

aversion increases resulting in an higher perceived path cost. An extension
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of the aforementioned model in proposed by Nie, Zhang, and Lee (2004)
where, in addition to the travel time mean and variance a delay penalty is
also considered within users’s route choice process.

In addition to the above mentioned studies, the two concepts of risk
adverse user equilibrium (Bell and Cassir, 2002) and robust user equilibrium
(Ordoéniez and Stier-Moses, 2007) have been also proposed. Despite having
quite different formulations, both approaches model users who make their
decisions based on worst-case travel times. In the first one, the formulation
is based on a Nash game where two different types of players, travelers and
demons, compete against each other. Travelers make decisions in order to
minimize their travel time while conversely, demons act with the aim of
maximizing it. The solution of the game and the related assignment model
thus translate into a min max problem. In the second, each user is provided
with a travel time budget. For each route, the worst-case travel time is
computed by adding up the maximum travel time of each arc composing it.
A user does not choose those routes whose worst-case travel time exceeds
the budget. A larger budget implies a less risk-averse user.

2.4.3 Stochastic Network Loading Models

Originally, the first stochastic network loading models were developed to
overcome the intrinsic limitations of all-or-nothing ones. The main criti-
cism leveled at this class of models is that they do not take unpredictable
user behaviour into account in any way. In reality, users do not necessar-
ily choose the shortest path when a number of available alternatives have
similar travel times/costs and this is even assuming that users make their
decisions in order to maximize their utility (or minimize their disutility).
The assumption behind stochastic models is that users may not have ac-
curate information of the traffic conditions or sufficient knowledge of the
network and therefore their perception of travel times/costs on network
links may be imprecise. Despite this key difference, the reasons underly-
ing the user choice process remain similar to those of deterministic mod-

els. Again, users are supposed to move across the network in an attempt to
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minimize their own or collective travel time/cost. The deterministic mod-
els presented so far can be rephrased as special instances of the stochastic
ones where the probability assigned to the selection of the shortest paths
is equal to 1 while the probability assigned to all the others is 0. Stochastic
network loading models on the other side assign a non-zero chance of been
selected even to suboptimal paths. For this reason the traffic demand of
each OD pair spread among multiple paths, generally favoring the shorter
ones. For this reason, in contrast to all-or-nothing network loading models,
stochastic ones are also referred to as multi-path models.

In order to represent the imperfect perception of users, travel times/costs
are therefore separated into objective costs, which can somehow be mea-
sured or estimated by the observer, and a perception error, which cannot be
directly observed and is therefore modeled by a zero mean random vari-
able. Consequently, average costs are equivalent to objective costs while
residuals are independent random variables, identically distributed accord-
ing to a certain probability function. Stochastic network loading models
are usually based on one of the following approaches: path enumeration or
path diversion.

Path enumeration: The travel times of links are realizations of random
variables. At each iteration, a launch is performed and the travel
times of all links are determined. At this point a deterministic assign-
ment model is used. The entire procedure is then executed several
times so that link travel times cover sufficiently well the probability

distribution of the random variables of which they are realizations.

Path diversion: The probability associated with the choice of each route is
estimated in advance using some method. The traffic demand is then
distributed over the various routes in proportion to the computed
probabilities.

Regarding the first category, a first attempt to overcome the limitations
of deterministic load models was proposed by Falkenhausen (1968). As-
suming that users’ perception is imperfect, the link travel times are not
defined as constant but are extracted from a log-normal probability distri-
bution. Burrell (1968) fully formalized this idea. The link impedance is
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assumed to be a random variable, characterized by a certain average i.e.
the objective cost, and distributed according to a uniform discrete distribu-
tion. The path enumeration is obtained by defining a different set of links
for each source node. The ratio between the standard deviation and the
actual travel time of each link in the same set is equal. The costs associated
with each link are then defined as follows:

C=C(1+v-D) 2.7)

where C is the random cost of the link, C is the actual travel cost, -y is the
random variable of mean zero and variance unity and D is the diversion
factor specific to each source nodes. Mason (1972) reformulate the diver-
sion factor D as the ratio between the standard deviation and the square
root of the actual travel cost. In both cases the diversion factor is scaled
according to the actual travel cost. As a consequence, between two alter-
natives, the impact that a given divergence between their respective travel
costs has in determining the choice depends on the two actual travel cost.
A deviation of e.g. 20% may be insignificant if the actual travel costs are
very small to begin with. On the other hand, if the actual travel times on
the two paths are substantial, a deviation of the same magnitude may be
crucial in shifting the choice in favour of the cheapest one. The stochastic
assignment algorithm is characterized by the following steps: (1) at each it-
eration a source node is selected from those not yet explored; (2) Link costs
are randomized using the diversion factor associated to the chosen source
node; (3) a minimum-path tree to all other nodes is calculated; (4) flows
are routed accordingly. The procedure ends when all nodes have been ex-
plored. The aforementioned algorithm can also be used for congested net-
works, i.e. where the interaction among users and the consequent impact
on network performance is not negligible. In addition to this, the same
author proposes to include the algorithm within a capacity-restrained pro-
cedure where at each iteration only a portion of the demand is actually
loaded onto the network and the actual link travel costs are recalculated
accordingly to the amount of congestion.

The Dial (1971) algorithm, also known as STOCH algorithm, belongs to
the category of path diversion models. It has gained great interest among
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researchers as it provides a convenient analytical method for estimating the
probabilities associated with the use of each path. The objective of the al-
gorithm is to allocate the demand for each origin-destination pair over the
possible paths according to certain probability values obtained by replicat-
ing a certain logistic distribution. To this end, the residuals of the path cost
functions are assumed to be independent and identically distributed Gum-
bell random variables. The resulting traffic flows attributed to each k route
(fx) are then obtained by allocating the OD demand (d) in proportion to the
estimated probabilities (Py).

fe=4d-P (2.8)

As pointed out by several researchers (Florian and Fox, 1976), Dial’s algo-
rithm is in fact a deterministic procedure and the probabilities estimated in
practice assume the role of proportion coefficients. More relevant is the
problem related to the assumption of independence regarding the vari-
able’s random components. The more two paths overlap and thus share
a larger portion of the network, the more unreasonable it is to consider
them uncorrelated. The resulting effect is that the model overestimates the
probability associated with the choice of those strongly overlapping paths
(Mayberry, 1973; Daganzo, 1977). Gunnarson (1972) and Tobin (1977) pro-
posed a variant of the STOCH algorithm in an attempt to alleviate its short-
comings. A number of notable variants have been proposed as the C-Logit
model (Cascetta et al., 1996), nested logit model (Bekhor, Reznikova, and
Toledo, 2007), cross and generalized nested models (Prashker and Bekhor,
1998; Bekhor and Prashker, 2001), the path-size logit model (Ben-Akiva
and Bierlaire, 1999; Bovy, Bekhor, and Prato, 2008) as well as the webit-
based assignment models (Castillo et al., 2008; Kitthamkesorn and Chen,
2013).

Multi-nominal probit (MNP) is another category of discrete choice mod-
els designed to overcome the limitations of logit ones. The random vari-
ables are now distributed according to a normal distribution. Daganzo
and Sheffi, 1977 formulated a probit route choice model where the per-

ceived travel time of link 4, named T,, is extracted from a tg mean normal
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distribution with a variance of B - 0, thus T, ~ N(#),8-t0). The coeffi-
cient B represents the perception uncertainty per unit of travel time. On
these premises the travel cost of a route, also a normally distributed ran-
dom variable, can be derived as the sum of the its link random travel times.
Due to the properties of the normal distribution it is possible in this case
to establish a correlation between paths sharing one or more links, thus
overcoming the limitations of the logit distribution. Unfortunately, it is
not possible to determine the probability of choosing a specific route in a
closed form. To this end, the authors propose an algorithm incorporating
a Monte Carlo simulation. Maher (1992) partially overcome this limita-
tion proposing a stochastic network loading method where discrete choice
probabilities are estimated using Clark’s approximation (Clark, 1961). This
method, although not requiring explicit path enumeration, is computation-
ally onerous and at the same time becomes less precise when the number
of available choices (paths) increases (Sheffi, 1985). For these reasons, in a
scenario with a real network, it is generally preferable to rely on some sort
of simulation.

2.4.4 Stochastic Equilibrium Models

Similarly to deterministic models, stochastic network loading models have
also been used as a component of various methods to handle congested
networks. For the first time Daganzo and Sheffi (1977) proposed the con-
cept of Stochastic User Equilibrium (SUE) as the state where each user cannot
further unilaterally decrease his/her perceived travel time/cost. The au-
thors show how SUE is a general case of the more classical UE and how
it converges to it when the variance of cost random components fades
to zero. Sheffi and Powell (1982) proposed a mathematical programming
problem involving SUE computation with a path-flow based formulation
while Sheffi, Hall, and Daganzo (1982) exploited a time based formulation.
In order to compute the SUE state, Fisk (1980) formulated the Method of
Successive Averages (MSA). The algorithm can be briefly summarized as
follows: at the n iteration, a stochastic network loading assignment is per-

form based on the current set o travel times {¢/ }. This results in finding a



2.4. Literature Review 53

target assignment {y”}. In order to find the next actual flow pattern it is
sufficient to set: x"*1 = x + &, (y" — x*) where a,, is the move size at itera-
tion n. At the next iteration travel times are updated again and a new target
assignment is computed. The process stops when convergence is met. To
ensure algorithm convergence, it is necessary that the move size series is
not convergent while the squared move size series is convergent. Given
these conditions, it is common to set a;, = 1/n (Powell and Sheffi, 1982). In
order to compute the assignments, any stochastic network loading model
can be used. As noted by Patriksson (2015) this algorithm resembles the
ones employed in incremental assignment estimation by Almond (1967).

The stochastic models presented so far assume the imperfect travel cost
perception of users as the only source of stochasticity while the actual link
travel costs are known by the modeler and constant. Mirchandani and
Soroush (1987) presented a stochastic loading model where an additional
source of stochasticity is considered besides the one arising from the users’
imperfect perception. In this case it is the network itself that is represented
as a stochastic system. In other words, the travel times of each link in the
network are inherently stochastic, plus the users” random perception of
travel times according to a defined probability distribution that differs for
different classes of users. Users therefore associate the intrinsic stochastic-
ity of a route with the risk of choosing it and thus they make their choice
accordingly. A similar approach is followed by Shao et al. (2006) where
the variability of travel times is determined by daily demand fluctuations.
Users tend to prefer those routes with less travel time variability i.e. with
higher reliability.

Several works have attempted to incorporate the heterogeneity of users
into the choice functions. Dial (1997) discussed the mathematical prop-
erties and solution algorithm of a bi-criterion stochastic equilibrium traf-
fic assignment where users perceive differently travel times depending
on level of information, habit and individual characteristics. A stochastic
probit-based model for public transport network is proposed by Nielsen
(2000) which takes into account heterogenous choice functions for passen-
gers while Jou (2001) modeled the impact that pre-trip information has in
influencing the choice behaviour of different classes of users
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Although SUE models overcome the limitations of the overly rigid de-
terministic counterpart in determining which paths should or should not
be used, they simultaneously introduce another problem. A SUE model
assigns non-zero probability (and thus an equivalent portion of demand)
to all paths regardless of cost. In many choice problems this would not be
a problem, unfortunately path choice problems may involve a large num-
ber of alternatives. Choosing the right subset of alternatives, or Master
Choice Set, is not obvious and can significantly influence the outcome of
the prediction. The explicit generation of the paths belonging to this set
may therefore be computationally expensive. At the same time, however,
it allows greater freedom in the definition of path choice behaviour (Bovy,
2009). Several strategies have been employed for the pre-determination of
this set. In Leurent (1997), the set is delimited by distance. Only routes that
do not exceed a maximum distance should actually be considered while
in Leurent (2005) only the paths with a cost not exceeding the absolute
minimum are taken into account and, similarly, in De La Barra, Perez, and
Anez (1993) a heuristics is proposed to compute a set of k-shortest paths.
A probabilistic set generation technique based on the concept of interme-
diate degrees of availability /perception of each alternative is proposed in
Cascetta and Papola, 2001. The utility functions of the paths are augmented
by means of a logarithmic component called inclusion function, which is
linked to the particular path and thus reshapes its probability of choice. In
Bekhor, Toledo, and Prashker (2008) the convergence and processing time
of path-based assignment models is analyzed in relation to the route choice
model and the the choice set size.
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2.5 User Equilibrium and System Optimum Traffic As-

signment

The User Equilibrium assignment model, alongside with its System Opti-
muim variant, is discussed in detail in this section.

Consider a fully connected oriented graph G(N/, A) where N defined
the set on nodes while A the set of links. Considering the subsets of all
origin nodes R C N and all destination nodes S C N, it is possible to
define the mobility demand vector q = {g;, : h € H} associated with
each origin-destination (OD) pair h € H : R x S. In other words, it is
assumed that g; represents the total number of trips that in a defined time
span take place between the origin node and the destination node of OD
pair h. The sets of all possible loop-free paths connecting an origin node
with a destination node is then defined as K. A path k € K is uniquely
identified by the set of links it consists of. The link-path incidence matrix
A = {64 :a € A k € K} defines this relationship: é,x = 1if link a is part of
the path k and J,x = 0 otherwise. Similarly, let us define the OD pair-path
incidence matrix & = {&jx : k € K, h € H} where §j = 1if k € K is a path
connecting OD pair i € H and zero otherwise.

Regarding traffic flows, letx = {x, : a € A} and f = {f; : k € K} be the
link flow vector and path flow vector respectively while ¢ = {c, : a € A}
and C = {Ci : k € K} be the link travel time(cost) vector and the path
travel time(cost) vector respectively. If only additive path costs are con-
sidered, i.e. equal to the sum of the travel costs of their links, the relation
between the two vectors can be expressed using the link-path incidence
matrix C = A’c, where A’ is the transposed incidence matrix.

A feasible link-path flow pattern (x, f) is then defined as follows:

x = Af (2.9)
q=Cf (2.10)
£>0 2.11)

where (2.9)-(2.11) establish the link-path flow relationship, the travel de-
mand satisfaction and the non negativity of flows. The set of all feasible
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flow patterns @ can therefore be defined as follows:
O ={(x,f):(29) — (2.11) hold} (2.12)

Let the vector of absolute minimum travel costs be defined as t = {1, :
h € H}, where 71, is the minimum travel cost for the OD pair h. Thus, it is
possible to define a user equilibrium network state.

Definition 1. A network flow pattern (x, f) is a User Equilibrium if and only if
the following holds:

fi>0 = C= E;(TL' Vk € K (2.13)
fi=0 = C>Em Vk € K (2.14)

where F; is the k-th row of the transposed OD pair-path incidence ma-
trix, therefore &, 7t = 71y, if k is a path connecting OD pair . Let us define
f,f = fr: ¢ = 1 and C,’z = Cr : Cpr = 1, then (2.13) and (2.14) can be
reformulated as:

fi>0 = Cl=m, Vk € K, Vh € H (2.15)
fil=0= Cl>m, Vk € Ky Vh € H (2.16)

where (2.15) implies that if a path k of the pair & is used by users, the travel
cost on it must be equal to the minimum possible travel cost for the pair,
denoted by 7tj,. At the same time, unused paths cannot have a travel cost
lower than the absolute minimum as defined in (2.16).

Noting that a user equilibrium must also be feasible, the conditions
expressed in (2.13)-(2.14) can be summarize in matrix form as follows:

fo(C—E'm)=0 (2.17)
C-Zm>0 (2.18)
(x,f) €O (2.19)

where operator o is an Hadamard (element-wise) product. The same con-

ditions can be expressed alternatively using the notation introduced in
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(2.15)-(2.16):

fCE =) =0 Vk € Ky, h € H (2.20)
Cp > Vk € K, h € H (2.21)
(xf) €© (2.22)

where (2.20) states that if the flow on a route is strictly greater than zero,
its travel cost must be equal to the minimum. Conversely, if the travel cost
is strictly greater than the minimum, the flows on that route must be equal
to zero. Condition (2.21) implies that 77, must be the minimum travel cost
for the OD pair h while (2.22) implies the feasibility of a user equilibrium.
It should be noted that the conditions given in (2.20)-(2.22), or equiva-
lently the definition in (2.15)-(2.16), presuppose users whose behavior fol-
lows the Wardrop’s first principle. If that holds for all users then the equi-
librium is stable. Since users act with the aim of minimizing their travel
costs and since at equilibrium they are already on the cheapest possible
path, any unilateral deviations from the equilibrium necessarily lead to an
increase in travel costs and thus an incentive to move back towards the

equilibrium.

Definition 2. A network flow pattern (x, f) is a System Optimum if and only if
x'c is minimized.

In other words, a flow patter is a System Optimum if it minimizes the
total travel cost of the network:

x'c = Z Xg - Ca(%q) (2.23)
acA

and simultaneously it is feasible, i.e. (x,f) € ©.

2,51 UE Mathematical Program

A viable approach which allows finding the link flow pattern xUE satisfy-
ing all the conditions given in (2.17)-(2.19) or equivalently in (2.20)-(2.22) is
to solve the following mathematical program.
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Problem 1.
X
minz(x) = /ca(w)dw (2.24)
aeAy
subject to
q== (2.25)
£f>0 (2.26)

The definitional constraint

x = Af (2.27)

The problem requires minimizing a function z(x) which is the sum over
all links of the integrals of the respective performance functions c,(-) of the
type described in section 2.2, while conditions (2.24)-(2.27) identify once
more the set of feasible flow patterns ©®.

By adopting Lagrange multipliers, problem (2.24)-(2.26) can be refor-
mulated as a problem with only non-negativity constraints. Let the vector
of multipliers be defined as u = {u, : h € H}, the equivalent optimization

problem is defined as follows:

Problem 2.
minz[x(f)] + u'[q — Ef] (2.28)
subject to
f>0 (2.29)

It should be noted that the Lagrangian in (2.28) is expressed in terms of
path flows using the relation defined in (2.27).
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Equivalency Conditions

First-order conditions at a stationary point of the Lagrangian described in
(2.28) with nonnnegativity constraints (2.29) are given:

=0 Vk e I (2.30
fi—y 2 (2.30)
JL(f,u)
>0 Vk e K (2.31
oy @31
oLfu) _ Vi e H (2.32)
auh

The condition expressed in (2.32) implies that at the stationary point the
flow conservation between the vectors q and f must hold, i.e. the demand
of each pair & must be satisfied. With regard to the conditions (2.30) and
(2.31), let us first compute the term oL(f, u) /0 f.

JL(f,u) oz[x(f)] ou'[q— Ef]
= + Vke K (2.33
fr o fr (239
Let the two addends of the right-hand side of the equation be calculated
separately. Starting with 0z[x(f)] /9 fx:

oz[x(f)] oz[x(f)] dxp

9fx = 0, ofk

Vk € K (2.34)

The element on the right-hand side of the equation can be rewrite as fol-

lows:
az[x(f)] 9 /
= ca(w)dw =c Vbe A (2.35
axb axb ago ( ) b ( )

axb aAbf d
_ = Y ufi=0 Vk € K (2.36
afk afk afk lek blfl bk ( )

where Ay in (2.61) is the b-th row of the link-path incidence matrix. It is
then possible to redefine (2.34) taking into account the results in (2.35) and
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(2.61) as follows.

9z[x(f)] = Y oo = Ale = Gy Vk € K (2.37)
9fk beA

where as previously mentioned Cy is the travel cost associated with path
kelk.

Regarding the second addend of the right-hand term of (2.33), it can be
firstly noted that:

i {1 1=k (238)

fc |0 otherwise

consequently:
[9f1/0f | [0]

;;k = Bfk%afk = 1 (2.39)
sl Lo

Taking into account that q is constant and the multipliers u do not de-
pend on f, therefore ou’[q — Ef] /9 fy can be computed as follows.

Ju'[q — Ef] ;o Of ek

—N—— = —UWE-—=—-u& 2.40
where ZF refers to the k-th column of the OD pair-path incidence matrix.
Noticing that =k = B! holds, from (2.40) follows:

Ju'[q — Ef]

— = -Fu 241
7 k 241)



2.5. User Equilibrium and System Optimum Traffic Assignment 61

Then the partial derivate of the Lagrangian in (2.33) can be rewritten con-
sidering (2.37) and (2.40).

dL(f,u)
ofx

With regard to the partial derivative with respect to multipliers dL(f, u)/duy,

= Cy — Eju (2.42)

introduced in (2.32), the calculation is rather straight forward:

OL(f,u) oJu'[q— Ef]
8uh - E)uh

=qy — &t Vh € ‘H (2.43)

where, as defined previously, g;, represents the mobility demand for the
OD pair h while 5, is the h — th row of the OD demand-path incidence
matrix.

It is therefore possible to explicitly obtain the first-order conditions
stated in (2.30)-(2.32) for Problem 2:

fo(C—Eu)=0 (2.44)
C—Zu> (2.45)
q—ZEZf=0 (2.46)

where (2.44) and (2.45) are obtained by incorporating (2.42), formulated for
all paths, into (2.30) and (2.31) respectively, while (2.46) is obtain exploiting
the result from (2.43), formulated for all OD pairs, into (2.32).

According to condition (2.45), for each OD pair the path costs cannot
be less than their respective multipliers. In other words, each multiplier
represents the minimum possible travel cost for the respective OD pair.
Thus, the first-order conditions in (2.44)-(2.45) are equivalent to the User
Equilibrium conditions expressed in (2.17)-(2.19), once it is noted that an
optimal flows pattern must also be a feasible one and therefore (2.22) holds.
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Uniqueness conditions

To ensure that an optimal solution for the Problem 1 is also unique, it is
necessary that the performance functions of the arcs ¢,(x,) are monotoni-
cally increasing with respect to the flows x, and fully separable. In other

words, the following two conditions must hold:

dca(x,)

Ir >0 Va € A (2.47)
dea(xa)

where (2.47) define the monotonicity of performance functions while (2.48)
the full-separability, i.e. a performance function of one link does not de-
pend on the flows of the other links.

The requirement for this condition arises once the Hessian of the func-
tion z(x) is calculated using (2.47)-(2.48).

(dat) 90
dey(xg)
H, ) = (.) 5?” o (.) (2.49)
dea
|0 0o ... CAT?‘A)

The Hessian is diagonal with positive diagonal elements, therefore H, () >
0. Once taken into account that ® is a convex set, it can be stated that an
optimal solution x* for Problem 1 is necessarily unique.

The uniqueness of the solution is guaranteed with respect to link flow
patterns x, not with respect to path flow patterns f. The link-path incidence
matrix A does not necessarily have full rank and as a consequence having
fixed a link flow pattern, the linear system in (2.9) can admit infinite solu-
tions with respect to f.
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2.5.2 SO Mathematical Program

Similar to the User Equilibrium, one viable approach to determine a Sys-

tem Optimum flow pattern is by solving the following minimization prob-

lem.
Problem 3.
minz(x) = Y x4 - ca(x4) (2.50)
ac A
subject to
q==C (2.51)
£f>0 (2.52)

The definitional constraint

x = Af (2.53)

where Z in (2.50) is the network total travel cost while (2.51)-(2.53) de-
termine again the feasible set ®. Making use of Lagrangian multipliers
a = {ii, : h € H}, it is possibile to define the following equivalent mini-

mization problem.

Problem 4.
minZ[x(f)] + @'[q — Ef] (2.54)
subject to
f>0 (2.55)

Following the use of the Langragian, Problem 4 has only non-negativity
constraints. Below are the first- and second-order conditions regarding the

existence and uniqueness of the solution respectively.



64 Chapter 2. Static Traffic Assignment Models

First Order Conditions

First-order conditions at a stationary point of the Lagrangian described in
(2.54) with non-nnegativity constraints (2.55) are given:

fkaL(f’u) =0 Vk € K (2.56)
df
OL(f, 1)
>0 Vk e K (2.57
oy @57)
OL(f, 1)
T 0 Vh e H (2.58)

Firstly, the partial derivative of the Langragian with respect to path flows
OL(f, ) /0f} is calculated.

OL(f,5) _ dz[x(f)] , du'[q — =]
e 3 3fe

The evaluation of the second addend of the right-hand term is identical to

Vk € K (2.59)

(2.42) except that the multipliers are defined as 1 instead of u. With regard
to 9z[x(f)]/9fi:

oZ[x(f)] _ - 9z[x(f)] oxp Vk € K (2.60)
9 fi beA Xb 9fi
once taken into account (2.61) the following hold.
oz[x(f)] 9x,  0z[x(f)] d
— s = —— " = Opk— Y XaCa(Xg
X afk X bk b;‘l bk X a; ( )
= Z Opk [cb(xb) + xbw] Vk € I (2.61)

beA dxy

The term within square brackets in (2.61) can be interpreted as marginal
total travel cost. Let us define this term as ¢,(xy), therefore it can be stated
the following:

oz[x(f)] _ Y Sucy(xp) = C Vk € K (2.62)
afk be A
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where C; can be defined by analogy with ¢ as the marginal total travel cost
for path k.

The computation of the partial derivatives of the Lagrangian with re-
spect to iy, as in condition (2.58), is analogous to (2.43). Therefore, it is
possibile to define the first-order conditions for Problem 4:

fo(C—Ei)=0 (2.63)
C-Za>0 (2.64)
q—Ef=0 (2.65)

where C = {C; : k € K} is the marginal total travel cost vector. Equations
(2.63)-(2.65) state that at the optimum, the total travel marginal cost on each
used path for each OD pair must be the minimum, otherwise the path is
not used.

The first-order conditions for SO optimization problem are fundamen-
tally equal to those in (2.44)-(2.46) regarding the UE problem, although
defined on different performance functions. This fact has an important
consequence. It is possible to compute an SO exploiting Problem 1 once

link performance functions have been expressed in terms of marginal costs

Ca(xq).

Second Order Conditions

In order for an optimum of Problem 3 to be unique, it is sufficient to show
that the Hessian of Z(x), with respect to x, is positive defined given the
same conditions as in (2.47)-(2.48). Let us first compute the partial deriva-
tives 0Z(x) /dxy:

9Z(x) _ dey (xp)
XaCa(Xg) cp(xp) + xp (2.66)
axh ax agél bg dx Xp
and
Pa(x) _ 2 T ifb=a 2.67)

0xp0X, 0 otherwise
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The Hessian matrix is diagonal, with diagonal elements described by (2.67).
If the performance functions are convex and they satisfy the conditions in
(2.48) then the diagonal elements are also positive. For this reason we can
conclude that Hz(,) > 0. Once taken into account that © is a convex set,
it can be stated that an optimal solution x* for Problem 3 is necessarily
unique.

2.6 Equilibrium assignment and network criticality as-

sessment

As illustrated in chapter 1, the criticality of a transport network in terms
of vulnerability, robustness or resilience is generally evaluated following
two main approaches: topological-based or system-based methods. Topo-
logical methods have the advantage of being computationally highly effi-
cient and scaling well with network size. On the other hand, not taking
flow dynamics into account, they do not necessarily reproduce realistic re-
sults when applied to transportation networks. System-based criticality
approaches incorporate traffic characteristics (such as travel times, gener-
alized travel costs, flows, etc.) within criticality metrics and thus overcome
the shortcomings of purely topological analyses. In order to estimate traf-
fic characteristics, assignment models are generally used, which on the one
hand guarantee results closer to the real system but on the other hand in-
troduce additional modeling complexity and computational burden. In
light of these premises, it is not surprising how a considerable effort has
been devoted to reducing the computational burden both for equilibrium
computation and for its exploitation for network criticality assessments.
The algorithm by Frank and Wolfe (1956) [FW] has been one of the most
widely adopted approaches to solve the deterministic traffic assignment
problem. Its strengths are that it requires low memory, no path enumera-
tion is needed, and the implementation procedure is straightforward, char-
acterized by a sequence of all-or-nothing assignments. At the same time, it
has a significant drawback. Once in the proximity of the optimum, the al-
gorithm asymptotically converges sub-linearly, since the descent directions

tend to become normal to the gradient resulting in a zig-zagging behavior.
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To overcome these limitations, several link-based algorithms have been de-
fined to enhance local convergence (Fukushima, 1984; Hearn, Lawphong-
panich, and Ventura, 1985; Florian, Gualat, and Spiess, 1987) as well more
recent path-based ones (Bar-Gera, 2002; Dial, 2006; Florian, Constantin,
and Florian, 2009; Kumar and Peeta, 2010; Gentile, 2014; Galligari and
Sciandrone, 2018; Babazadeh et al., 2020). Recent advances in computer
science and particularly in primary memory technologies have enabled the
emergence of increasingly efficient path-based solutions.

One way to efficiently compute the equilibrium is to decompose the
problem into subproblems each one dealing with a single OD pair (Larsson
and Patriksson, 1992; Jayakrishnan et al., 1994; Chen, Jayakrishnan, and
Tsai, 2002; Florian, Constantin, and Florian, 2009; Kumar and Peeta, 2010;
Kumar and Peeta, 2014b; Galligari and Sciandrone, 2018). In each subprob-
lem, flows are shifted from the most expensive routes onto the cheapest
ones. Depending on the algorithm employed, the flow transfer may occur
between paths with higher-than-average cost to those with lower-than-
average cost (Florian, Constantin, and Florian, 2009; Kumar and Peeta,
2010), by comparing at each iteration sequentially the costs of only two
paths within the same OD pair (Kumar and Peeta, 2014a) or by select-
ing the maximum cost path and a lower cost path (Javani and Babazadeh,
2017). The path choice between which flows are transferred determines the
algorithm descent direction. Equally important for the overall efficiency
is the line search that determines the step-size and therefore the amount
of flow transferred at each iteration. Jayakrishnan et al. (1994) and Kumar
and Peeta (2010), for example, employed a constant step length while Chen
et al. (2013) exploit a self-adaptive strategy based of Armijo-Goldstein con-
dition (Armijo, 1966; Goldstein, 1965) aiming to find acceptable step sizes.

Another viable approach is that followed by origin-based algorithms
(Bar-Gera, 2002; Dial, 2006; Bar-Gera, 2010; Gentile, 2014; Zheng, 2015).
As the name suggests, in this case the assignment problem is divided into
subproblems where the flow of a single origin node is assigned to all its
destinations. These algorithms exploit the fact that flows move on bushes
rooted in origin nodes each of them constituting an acyclic subnetwork. At
each iteration a bush is equilibrated, i.e. finding UE flow pattern on the
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bush. Flows are transferred from longest paths onto the shortest ones, and
without cycles the related computations become highly efficient, enabling
their use on large-scale networks. Finally, Gentile (2014) proposed an al-
ternative origin-based algorithm where the assignment problem is parti-
tioned with respect to destination nodes.

Regarding system-based metrics estimation, a traffic assignment model
is generally applied iteratively. Some global metric, such as total travel
time/cost, is computed for the complete network and then, removing the
links one by one (full-scan), for each disrupted networks. Following each
link removal, a traffic assignment is computed over again thus obtaining
the appropriate metrics. These approaches require at least as many assign-
ments as the number of links forgoing exploring all those scenarios where
more than one link may be damaged at any given time. Even a full-scan
analysis on a large-scale network by removing every combinations of link
pairs appears to be computationally infeasible.

Therefore multiple approaches have been developed in an attempt to
mitigate this deficiency, such as approaches based on network partition
(Erath et al., 2009; Chen et al., 2012) or sensitivity analysis (Luathep et al.,
2011). More specifically, Erath et al. (2009) limits the computational bur-
den by restricting the computation to a subnetwork close to the epicen-
ter of the disruption. Conversely, Luathep et al. (2011) avoid the repeated
use of traffic assignments by mutating the idea of sensitivity analysis. The
chosen system index is computed by means of a single traffic assignment
performed on the complete network. After that, the same index in a dis-
rupted scenario is obtained through the application of a first-order Taylor
approximation by means of Clark’s method (Clark and Watling, 2002) for
sensitivity derivatives calculations.

The set of most vulnerable links in the case of simultaneous failure may
not simply be the combination of the most critical links in the case of a sin-
gle link failure, and the set may not be constituted necessarily by connected
links or even in close proximity to each other. For this reason, Wang et al.
(2016) propose a mixed-integer non-linear program with equilibrium con-
straints, aiming to determine the combination of links whose deterioration

would induce the most increase in total travel cost in the network. The
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program is solved applying a piecewise linearization approach and range-
reduction technique. Following the idea that a particularly severe disrup-
tion is likely to affect a localized portion of the network however wide,
Jenelius and Mattsson (2012) propose a grid-based approach where instead
of assessing the importance of individual nodes or links, the impact result-
ing from the disruption of an entire cell (consisting of several links and
nodes) is evaluated. More recently, Xu, Chen, and Yang (2017) developed
a binary integer bi-level program to estimate the upper and lower bounds
of network vulnerability avoiding a full-scan approach. The upper-level
subprogram maximizes or minimizes the remaining network throughput
with a given number of disrupted links, which corresponds to the upper
and lower vulnerability thresholds. The lower-level subprogram verifies
the connectivity of OD pair under a network disruption scenario without
requiring path enumeration.

Over the past two decades greatly progress has been made on the side
of computational efficiency for equilibrium estimation and the use of such
techniques for assessing transport network criticality. However, the use
of equilibrium assignments remains somewhat problematic when dealing
with large-scale transportation networks vulnerability assessments due to
full or partial scan of links. One promising direction might be exploiting
the vast amount of data now available (Anda, Erath, and Fourie, 2017; Zhu
etal., 2018) to bridge the gap between purely topological and system-based
analyses by being able to relate the topology of a network to a prediction,

even an approximate one, of user response under different scenario.
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Dynamic Traffic Assignment Models can be considered a generaliza-
tion of the static models discussed in chapter 2. Static traffic assignment
models, especially equilibrium-based ones, aim to find stationary flow con-
figurations where demand flows, path flows and link flows are distributed
on the network congruently to link (path) costs. They consist of finding a
flow vector that, given a demand model and a supply model, reproduces
itself. On the other hand, dynamic models are not limited to the estimation
of network equilibrium configurations but rather they are able to intercept
changes in flows distribution within the period of study, whether when
they are caused by exogenous or endogenous factors. This ability makes
their deployment necessary when the aim is to investigate the time-varying
dynamics that emerges from demand-supply interaction.

There are many dimensions over which different subcategories of dy-

namic assignment models can be identified. The most relevant are:

Choice Dimension Assignment models can be divided into those where
the path is the only choice available to users (Ben-Akiva, De Palma,
and Isam, 1991; Lo and Szeto, 2002; Pel, Bliemer, and Hoogendoorn,
2009) or, alternatively, into those where user’s choice regards exclu-
sively the departure time (Vickrey, 1969; Small, 1982). In addition,
there are models where users make joint travel choices across both
domains (Mahmassani and Herman, 1984; Szeto and Lo, 2004).

Nature of the time variable Depending on how time is represented, a dis-
tinction can be made between continuous (e.g. Lam and Huang,
1995) and discrete models (e.g. Szeto and Lo, 2006).

Demand elasticity Depending on whether or not the transport demand is
globally affected by changes coming from the supply side, models
can be divided between those with fixed or inelastic demand (Szeto
and Lo, 2004) and those with variable or elastic demand (Tong and
Wong, 2000).

Scale of the time variable Depending on the granularity of the time vari-
able, models can be distinguished between intra-periodic or fully
dynamic (Szeto and Lo, 2004) and inter-periodic or semi-dynamic
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(Cascetta, 1989) models. For the former, the time unit generally ranges
from a few seconds to a handful of minutes, while for the latter, even

an entire day.

Among the above classifications, the most important is probably the last
one, i. e. the "scale" of temporal variable representation and it will therefore
be further detailed.

When the phenomena under study are characterized by fast and local-
ized dynamics (e.g. queue spill back, rapid speed variations), fully-dynamic
traffic assignment models (DTA) are typically applied. They are referred to as
"fully dynamic" because they make use of both a travel choice model and
a network loading model which directly represents traffic flow moving on
the network. Given the time scale of the representation, ranging from a
few seconds to a few minutes, they are also referred to as intra-periodic or
within-day dynamic traffic assignments denoting the representation of the
demand-supply interaction occurring on an instant by instant basis.

On the other hand, when an event produces macroscopic, global and
long-lasting effects on the network, semi-dynamic models are generally used,
allowing to study the long-term average consequences of the events. The
prefix "semi" refers to the fact that these models attempt to capture the
global evolution of traffic patterns as a series of static assignments asso-
ciated with subsequent periods. For this reason, they are also referred
as inter-periodic or day-to-day traffic assignment models (DTD). Here it is as-
sumed that due to significant changes in the demand or in the supply, the
system may be in different feasible states where flow patterns are not nec-
essarily congruent with travel costs (in the sense used for static models).

This chapter is devoted to outlining the main literature pertaining dy-
namic traffic assignment models. First an overview of DTA models is pro-
vided in section 3.1 and then a focus on DTD models is outlined in sec-
tion 3.2.
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3.1 DTA Models

DTA assignment models are designed to track users’ reactions to real-time
changes in traffic conditions. To this end, it is essential to provide a con-
vincing representation of flow propagation over the network. These mod-
els are therefore composed of the following two fundamental components:
a travel choice model and a network loading model. Travel choice models, as
mentioned earlier, may include a time departure choice models or a route
choice models or both. Each decision depends on time-varying quantities
such as the OD matrix and the current flow distribution whose estimation
is delegated to the network loading model. The modeling approaches and
network loading models most commonly used in the definition of DTA are
presented in the following.

In order to represent users’ travel choices, two approaches are com-
monly used within DTA models (Szeto and Wong, 2012): analytical ap-
proaches or simulative approaches. The extension of static models into dy-
namic ones implies, with reference to a particular flow, the need to know
when it will leave its origin and when it will be on a specific link. The
addition of the temporal dimension greatly complicates the mathematical
formulation of any attempt to extend static models while at the same time
leading to the non-convexity of related optimization problems (Rakha and
Tawfik, 2019). For this reason, scientific research covering DTA models
has followed two different approaches. On the one hand, analytical ap-
proaches attempt to retain most of the features from static models, such as
being able to prove the existence and uniqueness of solutions while making
compromises regarding the representation of traffic phenomena and user
behavior. On the other hand, simulative approaches move in the oppo-
site direction by characterizing traffic phenomena more precisely but at the
same time forgoing any closed-form resolution of the problem or establish-
ing any theoretical properties. In this case, all traffic phenomena and the
resulting constraints such as the link-path incidence, vehicle movement,
and flow conservations are obtained by simulation.

Analytical approaches extend the concepts developed for static assign-
ments into a time-varying framework. An early attempt to extend the SO
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formulation to a dynamic context was proposed by Merchant and Nemhauser
(1978). The model is formulated as a discrete-time mathematical program-
ming problem limited to the fixed demand and single destination case. The
model makes use of static performance functions in order to extract travel
costs from traffic flow patterns. Birge and Ho (1993) extended Merchant
and Nemhauser’s model by developing a non-linear, non-convex stochas-
tic multi-level mathematical programming problem. Friesz et al. (1989)
proposed an optimization approach inspired by the objective functions
from the Beckmann UE mathematical formulation in order the compute
a Dynamic User Equilibrium (DUE). Similarly, Ran, Boyce, and LeBlanc
(1993) proposed an optimal control strategy for DUE computation mak-
ing use of link inflows and outflows as control variables. Alternatively,
some formulations with variational inequalities have been proposed for
the DUE computation. Friesz et al. (1993) proposed a variational inequali-
ties formulation where both departure time and route choice are taken into
account alongside with penalty function related to early or late arrivals.
In order to estimate traffic related quantities static performance function
are used. To improve the representation of traffic phenomena, Ran and
Boyce (1996) proposed a variational inequality-based model that accounts
for queue formation. However, the representation of queue dynamics re-
quires adding link’s capacity constraints which as a result impact nega-
tively on the computation feasibility. Ziliaskopoulos and Wardell (2000)
proposed a linear model for the SO case coupled with a Cell Transmission
Model (CTM) (Daganzo, 1994) as a dynamic traffic model for representing
flow propagation, overcoming the limits of static performance functions.
More recently, Friesz et al. (2011) proposed variational inequalities-based
model that exploits a system of ordinary differential equations to represent
flow propagation.

Simulative approaches forgo the definition of model mathematical prop-
erties in favor of an easier implementation of flow propagation models.
Model constraints such as flow conservation and link-path incidence are
obtained implicitly at each iteration of the simulation. An early example
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of this type of approach is represented by SATURN (Simulation and As-
signment in Urban Road Networks) which makes use of a series of all-or-
nothing assignments within an iterative procedure (Van Vliet, 1982). CON-
TRAM (CONtinuous TRaffic Assignment Model) (Leonard, Gower, and
Taylor, 1989), similarly to SATURN, is made of two components, namely a
traffic dynamic model and a traffic assighnment model. CONTRAM groups
vehicles into "packets" and the routing logic is defined at the packet level
and thus affects all vehicles in the packet. Therefore, all vehicles within
the same packet are routed along the same minimum cost route, computed
from a weighted average of past path costs. An evolution of CONTRAM
is represented by DYNASMART (Abdelfatah and Mahmassani, 2001) and
INTEGRATION (Van Aerde et al., 2002). Within the same packet, each
vehicle is represented microscopically by integrating different microscopic
traffic models (car following and lane changing) while there are a variety of
assignment models available including Time-dependent Frank-Wolfe Al-
gorithm for UE computation or Time-dependet MSA for SUE computation
as well as a more rudimentary distance-based routing. Ben-Akiva et al.
(1998) propose DynaMIT as a dynamic traffic assignment scheme designed
to estimate current and future traffic conditions in real time. It consists of a
demand estimation module and a supply estimation module that interact
to generate route directions to induce a UE on the network within a rolling
horizon framework. Simulation models presented so far are are considered
as mesoscopic since traffic flow representation is handled in an aggregate
way at a high level, while the behavioral rules are modeled at a finer scale.
Finally, more recent microscopic simulation models are for example AIM-
SUN (Casas et al., 2010) or VISSIM (Fellendorf and Vortisch, 2010).
Network loading models represent how traffic flows propagate through
the network and thus impact the evolution of all traffic-related quanti-
ties. Moreover, for all analytical DUE models, network loading models are
exploited to compute the path delay operator (Friesz et al., 1993) whose
function is to bind to each departure time a vector of travel times, one for
each path. Depending on the level of detail of the flow representation, net-
work loading models are typically divided into macroscopic, mesoscopic
and miscroscopic models (Hoogendoorn and Bovy, 2001; Rakha, Tawfik,
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and Meyers, 2009; Ferrara, Sacone, and Siri, 2018). The former represent
traffic dynamics in an aggregate way where vehicular flow is represented
as a stream, in analogy to a liquid or gas flow, and where equally aggre-
gate quantities such as density, average velocity and hourly flow are de-
fined. The latter, on the other hand, represent traffic at individual vehi-
cle level and explicitly model the interaction among them. macroscopic
traffic phenomena are not directly represented but emerge spontaneously
from the interaction among a large number of vehicles on the network.
Mesoscopic models lie in between and represent some aspects in detail
(such as user behavior) and others in an aggregate way (such as vehicu-
lar dynamics). Regarding macroscopic models, early attempts were de-
vised to represent vehicular dynamics on a single link through the defini-
tion of an exit-function-based model (Merchant and Nemhauser, 1978) and
performance-function based models (Janson, 1991). However, these mod-
els were unable to represent some traffic phenomena such as queue spill-
back. The first example of a DTA model incorporating a first-order model
based on kinematic-wave (Lighthill and Whitham, 1955) (LWR) was first
proposed by Kuwahara and Akamatsu (2001) which was followed by nu-
merous other works (Lo and Szeto, 2002; Friesz et al., 2013; Long et al.,
2013). LWR has been resolved in the solution scheme by Daganzo (1994)
(Cell Transmission Model (CTM)), by Newell (1993) (Link Transmission
Model (LTM)) and more recently within the solution procedure proposed
by Gentile et al. (2010) (General Link Transmission Model (GLTM)). First-
order models, although extensively used within DTAs due to their simpler
mathematical formulation, are unable to represent more complex traffic
phenomena such as start-stop waves, capacity drops and internal traffic
flow oscillations. In order to overcome these limitations, second-order
macroscopic models have been formulated such as the Payne-Withman
model (PW) (Whitham, 1974; Payne, 1979) and its evolutions (Aw and
Rascle, 2000; Zhang, 2002). First-order models associate one flow value
for a given particular density condition on a link one and only one flow
and therefore one constant average velocity over the entire link. Second-
order models also take into account acceleration phenomena and conse-

quently allow the representation of more complex traffic waves. The first



78 Chapter 3. Dynamic Traffic Assignment Models

discrete version of the PW was proposed in the late ‘80s (Papageorgiou,
Blosseville, and Hadj-Salem, 1990) and applied to Boulevard Périphérique
in Paris. The PW model is discretized in both space and time and modified
in order to take into account the effect that inflow and outflow ramps may
have on the mainstream. The model was then extended for the highway
context and named METANET (Kotsialos et al., 2002). Alongside the link-
based models mentioned above, where dynamics are expressed through
quantities related to network links, several macroscopic node-based mod-
els have also been proposed where flow dynamics are handled at intersec-
tions (Tampere et al., 2011; Gibb, 2011; Corthout et al., 2012).

Compared to Macroscopic models, an opposite approach is followed
by microscopic models where instead vehicles are represented individu-
ally, often with individual features, and where time is represented at a
finer scale and they generally incorporate models to represent users re-
action to localized near conditions. Such behaviors are taken into account
in microscopic models such as car-following models (Reuschel, 1950) like the
safety-distance models (Gipps, 1981), the psycho physical models (Evans
and Rothery, 1973) and driving errors models (Hamdar and Mahmassani,
2008). Parallel to these, another main class of microscopic models is repre-
sented by the lane changing models which deal instead with the lateral move-
ments of vehicles between lanes. Lane change dynamics is driven by three
main factors: underline motivation, desired lane selection and gap accep-
tance decision. Gipps (1986) proposes a model in which users” actions are
governed by two drives: the desire to maintain a certain speed as long as
possible and the need to be in the appropriate lane before making a turn. A
similar approach is proposed for highway context by Yang and Koutsopou-
los (1996) where the reasons behind lane changes are separated into exter-
nal conditions (e.g. a narrowing) or internal conditions (e.g the user’s own
desires). Finally, Ahmed (1999) propose a gap acceptance model where the
action of changing lanes is a function of the space between two subsequent
vehicles occupying the targeted lane at a given time. Another category of
microscopic models is that of cellular automata models (Nagel, 1998) where
the network is represented through a grid of cells within discrete-time dy-
namics. Generally, a cell can accommodate a vehicle and the dynamics of
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a road section is characterized by a sequence of states in which each ele-
ment of the cell grid describing the road topology can be occupied or free.
Fundamental traffic quantities such as speed and density are expressed as
a function of the cells (Nagel and Schreckenberg, 1992). Microscopic mod-
els are often provided as components within traffic simulation software
such as AIMSUN (Casas et al., 2010), SUMO (Rakha, Tawfik, and Meyers,
2009) or VISSIM (Fellendorf and Vortisch, 2010). Finally, mesoscopic traf-
fic models fall somewhere in between the above two categories by making
use of detailed behavioral patterns but at the same time representing traf-
fic in an aggregate manner. Time headway models (Branston, 1976), cluster
models (Mahnke, KaupuZzs, and Lubashevsky, 2005) and kinetic gas mod-
els (Paveri-Fontana, 1975) belong to this category.

3.2 DTD Models

Day-to-day assignment models are intended to represent the aggregate
equilibration dynamics of traffic flows that occur on a network when the
system happens to be in a state of disequilibrium at a certain moment in
time, i.e., when the pattern of flows is not consistent with the pattern of
costs given a user behavioral model. The focus, compared to DTA models,
is not on vehicle dynamics but rather on the evolution from one period to
the next of users’ choices in response to a changing environment that influ-
ences them and it is influenced by them in a circular process that gradually
evolves from a situation of disequilibrium to one of equilibrium. It is as-
sumed that at the beginning of each period the users have the possibility
to acquire awareness about the characteristics of the network up to that
moment and can therefore act accordingly.

As pointed out by Cantarella and Watling (2016), since his seminal
work Wardrop (1952) justifies the proposed concept of equilibrium by al-
luding to the role that a dynamic equilibration process would play in such
circumstances by stating that:

"It may be assumed that traffic will tend to settle down into an equi-
librium situation.”
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The same assumption underlies the following work by Beckmann, McGuire,

and Winsten (1956) while it is only much later that Smith (1979) delineates
the characteristics of virtually all subsequent DTD models:

"Consider a single driver who has travelled at least once today. He
may use the same routes tomorrow. However, if he does change a
route then he must change to a route which today was cheaper than
the one he actually used today.”

The nature of the time variable assumes significantly different conno-
tations with respect of its counterpart in DTA models. In fact, taking dis-
crete models as an example, regardless of the discretization interval in DTA
models two successive instants of time are also contiguous. In other words,
defined T as the discretization interval and k as the index of the time vari-
able t, then t; = kT holds and consequently t; — t;,_; = T. In DTAs context,
stating that two instants of time are consecutive implies that they are also
"close" from a temporal perspective. By contrast, in DTD domain this rela-
tionship is not necessarily valid. As stated by Cascetta (1989), referring to
a period as an "epoch":

”

epochs can have either a "chronological’ interpretation as suc-
cessive reference periods of similar characteristics (e.g. the a.m. peak
period of successive working days) or they can be defined as fictitious’
moment in which users acquire awareness of path attributes and make
their decision.”

Therefore, two consecutive periods do not necessarily represent contigu-
ous moments and a significant amount of time may elapse between them.
Given these premises, it is common to consider time in a discrete way.
However, there is no shortage of “exceptions” within this line of research.

The early seminal works in DTD by Horowitz (1984) and Smith (1984)
aim to study the stability of equilibrium states as defined by static assign-
ment models. More specifically, Horowitz (1984) analyzed the stability of
the SUE on a network of two links by defining a day-to-day dynamics
based on the theory of nonlinear discrete-time dynamical systems. Smith,
1984 proposed a model whereby users "shift" from a path to cheaper paths
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that are available to the same origin-destination pair. The rate of this shift
is proportional to the cost difference between the paths at a particular time.
This flow swapping process is known in the literature as a proportial-switch
adjustment process and its major strength lies in the fact that it allows an
endless number of different user shift behaviors to be implemented with
relative ease. Starting with these early works, research in DTD has devel-
oped considerably in the following years into a solid body of literature.

Different classifications of DTDs can be made. First of all, DTDs can be
divided into continuous-time models and discrete-time models. Continuous-
time models (Smith, 1984; Friesz et al., 1994; Smith and Wisten, 1995; Zhang
and Nagurney, 1996; Bar-Gera, 2005; He, Guo, and Liu, 2010; Guo and Liu,
2011b; He and Peeta, 2016) are defined by differential equations and they
are usually justified because of their convenience in obtaining analytical
or theoretical results. Continuous dynamics can be considered as an ap-
proximation of the corresponding discrete models, and the accuracy of this
approximation increases if the considered periods are shorter compared to
the overall scale of the model. Nevertheless the peculiarities of continu-
ous and discreet models should not be underestimated being that what is
valid for the former might not be for the latter (e.g. convergence). Discrete
time models (Horowitz, 1984; Cantarella and Cascetta, 1995; Watling, 1999;
Zhang, Nagurney, and Wu, 2001; Bar-Gera, 2005; He and Liu, 2012) on the
contrary generate a sequence of snapshots of the network, one for each
period, in order to capture its evolution. Depending on the implemented
route choice behavior model, at the beginning of every period each user
makes use of the available information and formulates a decision. The re-
sult of the combined choices of all users characterizes the flow pattern of a
specific period.

It is possible to make a distinction between deterministic or stochastic
DTD models, depending on whether the day-to-day process establishes a
one-to-one or one-to-many relationship between the (link/path) flow vec-
tors of two consecutive periods. Stochastic models (Cascetta, 1989; Davis
and Nihan, 1993; Cantarella and Cascetta, 1995; Watling and Hazelton,
2003; Hazelton and Watling, 2004; Watling and Cantarella, 2015; Watling
and Hazelton, 2018; Hazelton, 2022) aim to intercept the uncertainty and
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the variability that characterizes real traffic phenomenon by usually rep-
resents the evolution of the fundamental system variables via Markovian
processes. By contrast, deterministic models assign a unique (link/path)
flow pattern to each period. Another important distinction needs to be
made regarding deterministic models: DTD models encapsulating deter-
ministic path choice models (Smith, 1984; He, Guo, and Liu, 2010; Smith
and Mounce, 2011; Guo and Liu, 2011b; Kumar and Peeta, 2015a; Zhou et
al., 2017) and DTD models based on stochastic path choice models (Horowitz,
1984; Cascetta et al., 1996, Watling, 1999; Cantarella and Watling, 2016;
Smith and Watling, 2016; Ye, 2022). The former models assume that users
have perfect information at their disposal, i.e. at any given time, they know
all the relevant network details (usually travel times) needed to formulate
their mobility decisions. If the hypotheses about the users’ behavior pre-
figure a rational path choice process as defined by Yang and Zhang (2009),
then the stationary state of the system corresponds to a Wardrop’s equilib-
rium. The latter, on the contrary, assume that users lack perfect informa-
tion and, therefore, their assessments of the network state are affected by
an estimation error. As a result, perceived travel times, which vary across
individuals, differ from actual travel times. The residuals are modeled by
means of random variables given a certain distribution. Different assump-
tions about residuals distribution lead to different models, among which
the most famous one is certainly the Multinomial-Logit model (Watling,
1999; Guo, Yang, and Huang, 2013; Smith and Watling, 2016) allowing to
find the path choice probability solution in closed form. Other notable vari-
ants have been proposed, such as the C-Logit model (Cascetta et al., 1996),
the path-size Logit model and the nested Logit model (Ben-Akiva and Bier-
laire, 2003; Yu, Han, and Ochieng, 2020), to alleviate some of the weak-
nesses of Logit-base models, as well as more recent day-to-day weibit-
based models (Castillo et al., 2008; Kitthamkesorn and Chen, 2013; Xu et
al., 2021). The stationary state of these models leads to a SUE. Note that,
despite incorporating a stochastic route choice behavior, these models are
fully deterministic, i.e any given pattern of costs is associated with one
and only one vector of path choice probabilities. The total flows at the next
period are then distributed proportionally to the computed probabilities.
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Given the initial conditions, the trajectory of the system is unique.
Moreover, as argued by Tan, Yang, and Guo (2015), day-to-day user
path choice behavior has been declined into five major categories of dy-
namic processes: simplex gravity flow dynamics (Smith, 1983), network
tatonnement process (Friesz et al., 1994; Jin, 2007; Guo and Huang, 2009),
projected dynamical system (Zhang and Nagurney, 1996, Nagurney and
Zhang, 1997), evolutionary traffic dynamics (Sandholm, 2001; Yang, 2005)
and the aforementioned proportional-switch adjustment process (Smith,
1984; Smith and Wisten, 1995; Huang and Lam, 2002; Peeta and Yang, 2003;
Mounce, 2006; Mounce and Carey, 2011). In particular, the proportional-
switch adjustment process has been quite popular due to its simple for-
mulation and intuitive behavioral interpretation. For instance, Cho and
Hwang (2005) define a variation of the original Smiths model based on a
stimulus-reaction dynamic whereby the diverting flow is proportional not
only to travel times differences but also to users’ sensitivity to them. Smith
and Mounce (2011) formulated an adjustment process based on split rates
at nodes in order to mitigate some of the problems associated with deter-
ministic path-based models as noted by He, Guo, and Liu (2010). Li, Tan,
and Chen (2012) designed an excess cost dynamic where path choice be-
havior depends on the difference between the costs experienced by users
and a certain reference value. A non-linear pairwise proportional-switch-
based model is defined in Zhang et al., 2015a. Finally, the proportional-
switch mechanism has been incorporated into a mixed equilibrium model
(Zhou et al., 2017; Wang, Peeta, and He, 2019) for assessing the effects that
ATIS-induced behavior and autonomous vehicle penetration have on the
network respectively as well as part of a dynamic assignment model which
takes into account the presence of electric vehicles (Agrawal et al., 2016).
It is worth noting that the progressive adjustment mechanism of vehic-
ular flows in response to demand-side or supply-side fluctuations is well
suited to being represented by a path-flow dynamics in which the state space
is expressed by means of path flows. Nevertheless, starting from the work
by He, Guo, and Liu (2010), a second stream of DTD models has been de-
veloped where the dynamics are described by means of link flow. This
category of models is referred to as link-based DTD models (Guo and Liu,
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2011b; Han and Du, 2012; He and Liu, 2012; Guo, Yang, and Huang, 2013;
Guo et al., 2015; He and Peeta, 2016; Siri, Siri, and Sacone, 2020b). The evo-
lution of the network is usually handled by a series of periodically com-
puted traffic assignments under changing conditions. As pointed out by
He, Guo, and Liu, 2010, not having to rely on path flows avoids a sub-
stantial problem that afflicts path-based models (indeed only determinis-
tic ones): the need to estimate an initial path flow pattern that, given the
corresponding link flow pattern, is generally not unique and therefore not
uniquely identifiable. The initial state of the system in fact is reasonably es-
timated using classical static assignments which, in the deterministic case,
are known to generate unique solutions in the domain of link flows but
not in the domain of path flows. For the related mathematical discussion,
the reader is referred to section 2.5. The essential problem is that for path-
based dynamics, different initial path-flow patterns result in significantly
different path-flow trajectories. Aside from that, link-based DTD models
also have their shortcomings. They do not allow to estimate "how far" from
a congested (or disturbed) area flows start shifting in order to avoid that
area. This aspect limits the range of control strategies that can be used
coupled with link-based DTD models. But more importantly, link-based
DTD models do not allow the adoption of path choice models which have
straightforward behavioral interpretation (Kumar and Peeta, 2015a). For
these reasons, several techniques have been developed to estimate, out of
a link flow pattern, the most reasonable corresponding path flow pattern
and thus making the use of a path-based model plausible in these cases as
well (Rossi, McNeil, and Hendrickson, 1989; Larsson et al., 2001; Bar-Gera,
2005).

3.3 General Frameworks for DTD Assignment Mod-
els
In this section, two general formulations for link-based and path-based

DTD assignment models proposed by Guo, Yang, and Huang (2013) and
Guo and Huang (2016) respectively are presented.
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Link-based formulation

Since the work by He, Guo, and Liu (2010), there has been a growing in-
terest in defining DTD models having a dynamics defined on the link flow
patterns instead of the more used path flow patterns. This approach was
justified from some observations made by the authors regarding two defi-
ciencies inherent in DTD path-based models. The first one is that a DTD
path-based model’s trajectory changes significantly by starting from dif-
ferent initial flow patterns. This is a significant problem because differ-
ent path flow patterns imply different corresponding link flow patterns on
which network performance metrics are generally defined. The second is-
sue is that DTD path-based models typically neglect the interdependence
between paths.

Following the work by He, Guo, and Liu (2010), in which a continuous
time link-based DTD model is proposed, Guo, Yang, and Huang (2013)
suggested a general framework for discrete time link-based DTD models.
This section is devoted to briefly introducing this model, adopting when-
ever possible the notation presented in section 2.5.

Consider a traffic network represented by an oriented graph G(N, A)
where N is the set of nodes and A is the set of links. The sets origin nodes
and destination nodes are defined as R C N and S C N respectively.
Then let H = R x S be the set od OD pairs and q = {gq;, : h € H} the vec-
tor of the associated mobility demands. Once again, the demand is consid-
ered fix. The set of all path connecting each origine with each destination is
represented by K. Regarding network flows, let us define f = {f : k € K}
as the path flow vector and x = {x, : a € A} as the link flow vector.
Then based on the network topology, we can establish the link-path in-
cidence matrix A = {6, : 6, = 1iflink a belongs to path k and 6, =
0 otherwise}. Finally, the OD-path incidence matrix is denoted as & =
{Cnx : if k is a path connecting OD pair h}.

The feasible link-path set is then defined as:

O ={(xf):x=Af,q=Eff>0} (3.1)
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based on which the set of feasible link flows can be derived as @ 4 = {x :
(x,f) € ©}.

Let us associate to the link flow vector a corresponding link travel cost
vector ¢(x) = {cs(x;) : a € A}. Travel costs c,(x,) are considered non
negative, continuously differentiable, strictly increasing and fully separa-
ble travel cost functions, as formalized in (3.2)-(3.4).

ca(xz) >0 Yae A (3.2)
dcc”zix“) >0 Vae A (33)
dea(xqa)

o, =0 a#b (3.4)

Let C(f) = {Ck(f) : k € K} be the path travel cost vector. Then it holds
that C = Alc.
The discrete adjustment process based on link flows is expressed as:

x(n+1) = (1—-A(n))x(n) +A(n)y(n) n=12,... (3.5)

where adjustment ratio A(n) € (0,1] and y(n) = {y.(n) : a € A} is usually
referred to as target link flow pattern.

Let us define the set of feasible link flows that decrease the total travel
cost with respect to the link costs on day n.

[(n) = {y 1y € Oy,y'c(x(n)) < x’c(x(n))} (3.6)

Then if the vector y satisfies the following condition:

(n) = el(n) ifT(n)
YW 2 xm) i)

RIS

%)
(3.7)
%)

The adjustment process described by (3.5) is referred to as a discrete rational
adjustment process (DRAP). The DRAP prefigures an adjustment process in
which each day a A(n) percentage of users reconsider their travel choices
while a 1 — A(n) percentage do not reconsider them and adopt the same
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choices as the day before. This tendency is represented by the target as-
signment y(n) that must satisfy condition (3.7). This implies that if there
are still available solutions able to decrease the total travel cost, i.e. if I'(n)
is a nonempty set, then these will be the solutions adopted. Otherwise,
users will reproduce the same choices as the previous day. It should be
noted that according to the definition of I'(1) in (3.6), a flow pattern y is
selected if it decreases the network’s total travel cost and not necessarily
the individual cost. Thus, the process described in (3.5) implies that there
may be a portion of users who experience higher travel costs on a given
day compared to the previous day. However, the process is described as
rational if globally as a result of an adjustment the total travel cost has not

increased following an adjustment.

Path-based formulation

Path-based models represent the most widely adopted class of DTD as-
signments for two main reasons: (1) they allow a more flexible definition
of flow adjustment processes that occur on a day-to-day basis; and (2) user
choice behavior models are more easily represented when the set of choices
is defined on paths rather than links. This is because usually an individual
evaluates a link not singularly but in relation to the path of which it is a
portion.

Regarding DTD path-based models, the work by Smith (1984) is of sub-
stantial relevance. The author proposed a proportional switch adjustment pro-
cess that take place whenever the system is at a point of disequilibrium and
due to which it tends to return to an equilibrium state. The process is called
proportional switch because each day the flows switch from one path to an-
other proportionally to the travel cost difference between them. The flow
previously on the expensive path is redistributed proportionally favoring
those paths that provide greater travel cost savings. The original model
has been adopted in traffic assignment problems (Huang and Lam, 2002;
Mounce and Carey, 2011), in the definition of traffic control policies (Guo,
2013; Liu and Smith, 2015) and has also been modified to accommodate
various user choice behavior rules (Guo, 2013; Smith and Watling, 2016).
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In this section, the general framework for path-based DTD assignment
models proposed by Guo and Huang (2016) is presented. The notation is
the same as that used in the previous section but with the addition of two
additional decision-making travel cost vectors associated to links and paths.
Similarly to the approach followed in section section 2.5, let us define f' =
fr: Cne = 1and C]’(’ = Ck : Cpr = 1 where ¢j is an element of the OD-path
incidence matrix.

Let ¢(x) = {¢(x) : a € A} be the decision-making link travel cost
vector and C(f) = {C}(f) : k € K,h € H} as the decision-making path
cost vector. Then, C(f) = A’g(x) holds. Decision making travel costs are
the costs according to which users make their decisions and while they
are still flow-dependent they may be different from the actual travel costs.
Furthermore, the following conditions hold: c,(x) > 0, CI(f) > 0, ¢,(x) >
0 and C}'(f) > 0. Non-separable link cost functions are considered, i.e. the
travel cost associated with a link may also depend on the flows on other
links.

Using the above notation, the general path-based dynamical system is
defined as:

f(n+1) =£(n) + t(n)A(f(n)) n=12,... (3.8)

where n refers to the n-th day, the adjustment parameter 7(n) > 0 and
A(f) = {Aw(f(n)) : k € K,h € H}. All the elements of A(f(n)) are
governed by:

A(£(n)) = Y [agn(n)v% (£(n)) — aun(n)7is (f(n))] ke K, h e H (3.9)

sey

where K, C K is the set of path connecting OD pair h. Function 7} (f) is
defined as:

¥ (£f) = max{C} (f) — CI(f),0} keK,seK,heK (3.10)

while a(n) = {ay,(n) : k € IC,h € H} is the vector of flow transfer param-
eters. Each element ayy,(n) scales the flows that on day n + 1 switch from
path k to other paths of the same OD pair / and they satisfy the following
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conditions.

zxkh(n) >0 ke K,heH (3.11)

t(mag(n) Y, 1 (£(n) < £ (n) ke K,heH (312)
seky

an(n) =0 fi(n) =0 keK,heH (313)

For each day n, condition (3.11) is a non-negativity constraint. Condition
(3.12) implies that the total amount of flow leaving path k is not larger
than the flow actually on the path thus ensuring that path flows cannot be
negative after an adjustment. Finally, condition (3.13) implies that the flow
transfer parameter associated with path k of the OD #h is positive if and
only if the corresponding path flow f!(n) is positive.

Guo and Huang (2016) demonstrate that the process described in (3.8)
satisfies flow conservation and that, depending on the form assumed by
the decision-making cost functions C(f), it converges to a set of equilib-
rium such as the Wardrop UE (Wardrop, 1952), the Logit-based SUE (Da-
ganzo and Sheffi, 1977) or the Bounded Rationality User Equilibrium (BRUE).
The concept of BRUE is detailed in section 4.1.
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The perfect rationality of the decision maker is a widely leveraged as-
sumption in decision-making models and the transportation domain is no
exception. Typically, individuals are represented as utility maximizers (or
disutility minimizers). In contrast to this view, an alternative has been
proposed by Simon (1957) suggesting that the individual is generally ra-
tionally bounded while making decisions and, rather than aiming at the
optimal solution, he/she most often seeks to avoid the worst.

The reasons behind this are multiple and range from the inability to get
access to all the information needed to formulate a decision to the fact that
it is difficult for the individual, even with all the necessary information, to
actually choose the best solution because of the complexity of the circum-
stances in which he or she has to make the choice. Furthermore, the search
for a solution is a dynamic process. The alternatives are discarded until a
satisfactory one is found, but in many cases the individual may not know
whether a better one may still exist. Finally, as shown by Simon (1957),
the longer the search process lasts, the more the individual’s aspirational
level regarding the outcome of his or her decision tends to adjust so that
an acceptable solution can be found.

In the transportation field, the concept of bounded rationality (BR) was
introduced in an attempt to explain several user travel choice behaviors ob-
served by experimental analyses that were in contrast to the more classical
perfect rationality (PR) models. For the first time in the transportation sci-
ence, Mahmassani and Chang (1987) adopted the concept of BR to model
users pre-trip departure time choice behavior in a network with a single
bottleneck. Since this early work, a growing body of literature has been
developed where the BR concept is incorporated into traffic assignment
models (Fonzone and Bell, 2010), DTA models (Szeto and Lo, 2006), traf-
fic policy making (Marsden et al., 2012), transportation planning (Gifford
and Checherita, 2007; Khisty and Arslan, 2005) and transport safety (Sivak,
2002).

The reasons behind why users do not always choose the shortest or
least expensive route can be attributed to multiple factors. Some of these
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relate to road characteristics such as distance, number of intersections, com-
plexity or aesthetics of the route, as well as the presence or absence of free-
ways. These are all factors that might motivate a traveler to choose one
alternative over another (Ramming, 2001; Bekhor, Ben-Akiva, and Ram-
ming, 2006; Papinski, Scott, and Doherty, 2009; Bovy and Stern, 2012; Prato,
Bekhor, and Pronello, 2012). Other similarly important factors may be the
completeness and reliability of the information available to users (Ben-Elia
and Shiftan, 2010; Bifulco, Di Pace, and Viti, 2014; Ma, Wu, and Wang,
2014; Zhang et al., 2015b; Chunyan et al., 2016), socio-economic attributes
(Tawfik and Rakha, 2013) and road safety (Kusakabe, Sharyo, and Asakura,
2012). On the other hand, suboptimal alternative choice selection can also
be explained on the basis of perceptive limitations and cognitive biases
intrinsic within the individual’s choice process. In their comprehensive
review, Di and Liu (2016) collected and discussed several major empiri-
cal evidence in literature showing how the assumption of perfect rational-
ity may result in an idealized representation of a traffic system. They are
briefly summarized here.

Heuristic, bias and cognitive limit: Being in the same situation, the indi-
vidual may react differently depending on how the problem is "framed"
(Tversky and Kahneman, 1985). Biases related to the choice process
generally do not vanish even after a learning period and even if in-
centive or punishment mechanisms are provided demonstrating how
the biases are "substantial" and recur with regularity (Conlisk, 1996).
In addition, individuals adopt heuristic choice processes because the
tradeoff between the goodness of a solution and the efficiency of the
decision process are both evaluated. An optimal choice making pro-
cess may require a lot of time and effort in both information retrieval
and choice selection. Hiraoka et al. (2002) showed that drivers prefer
those routes that provide less travel time, require less cognitive effort
and provide lower stress levels. However, among this three factors
the amount of cognitive effort required for route planning is the one
that most influences the decision.

Nonexistence of perfect rationality via learning process: Itis well known
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within the economic literature that a learning process can improve
the individuals” rationality. However, Conlisk (1996) showed that
learning can not only improve individual’s decision-making process
but can also induce habit phenomena when past winning choices are
more likely to be replicated in the present. Within route choice mod-
els, Lotan (1997) pointed out how drivers who are familiar with the
network tend to select the same roads even when they are no longer
the shortest ones. In contrast, unfamiliar drivers tend to choose roads
more dynamically and rely more on real-time traffic information (Hi-
raoka et al., 2002).

Habit and inertia: Relying on past experiences is a common practice ex-
ploited by people within choice-making mechanisms because it is a
strategy that has the potential to save a significant amount of cogni-
tive energy (Samuelson and Zeckhauser, 1988). However, when cir-
cumstances are not sufficiently stable, this strategy degenerates into
an irrational reliance on habit that prevents the search for new solu-
tions. Cantillo, Ortuzar, and Williams (2007) showed how not con-
sidering the influence of inertia in a modal choice model can result in
overestimating the benefits associated with an infrastructure invest-
ment. Also, Carrion and Levinson (2012) research on commuters’
habits leads to this conclusion. The authors showed that commuters
tend to change their habitual route exclusively when travel cost ex-
ceeds a certain threshold. Such evidence has been formalized in the
concept of indifference band in a series of fundamental works by Mah-
massani and his colleagues (Mahmassani and Liu, 1999; Srinivasan
and Mahmassani, 1999).

Myopia: Individuals tend not to consider the long-term consequences aris-
ing from choices they are making in the present. Analogously re-
garding travel choices, users tend to switch towards routes based on
a promising immediate time savings which may result in an overall
more expensive trip. Bogers, Viti, and Hoogendoorn (2005) showed

that closest past experiences are most likely to influence present choices.
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This is due to individuals” limited memory capacities, which in part

involve users’ myopia.

More recently, several empirical studies have confirmed how travelers
sometimes do not choose the shortest route in order to reach their destina-
tion. Zhu and Levinson (2015) collected GPS data from 143 residents over
a 13-week period. The results show that only 40% of the trips take place
on minimum time routes while 90% of the times the selected routes are
no more than 5 minutes longer than che shortest one. Similarly, exploit-
ing the GPS trajectories of 20000 taxis in Shenzhen (China), Yildirimoglu
and Kahraman (2018) evaluate the divergence between objective measures
and classical equilibrium assumptions finding that most of the trips (62%)
are not at minimum travel time. Similar results have been observed in the
studies by Vreeswijk et al. (2013) and Hadjidimitriou et al. (2015). In the
first study, 20 participants’ travel habits were collected over a period of 20
days from an experiment in Virginia (United States). The authors found
that on average only in 74% of the cases the shortest route was selected, al-
though the data varies considerably among OD pairs. In the second study,
exploiting the GPS data from more than 14000 recurring trips in the Ital-
ian province of Reggio Emilia (Italy), the results show that around 25% of
users choose the shortest path and as a consequence travelers spent 30%
more time than necessary on the network. In addition, it is shown that
users are willing to accept even significant increases in travel time as long
as the route is reliable (small travel time fluctuations). Finally, Gonzdlez
Ramirez (2020) conducted a simulation game experiment where 496 par-
ticipants were asked to select routes connecting 41 OD pairs presented on
a road map of the city of Lyon (France). In 71% of the cases, users were
provided with an estimation of travel times in an attempt to avoid travel
time perception bias. The collected dataset included 5535 route choices. It
was found that despite information provision only 60.5% of travel choices
resulted in the selection of a shortest route, suggesting how in a real-world
setting, where information may not be complete, this percentage may rise
further. Even more interestingly, the authors find that users evaluate dif-
ferences in travel time relatively rather than in absolute terms. In other
words, what matters is the increase in travel time compared to an average
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level. The longer the routes, the more tolerant users are to even signifi-
cant travel time variations as they affect the overall trip travel time by a
relatively small percentage. Furthermore, the results show that user indif-
ference appears to be heterogeneous with an average indifference band of
about 31% of the travel time of the shortest route. In order to estimate in-
difference bands, the author proposes a bounded rational choice set gener-
ation mixed logit model (BCRS) characterized by a two-step process which
tirstly allows the preselection of the set of attractive paths having travel
times within a certain indifference band, extracted by a Weibull distribu-
tion. Among these, the chosen route is then selected employing a rational
route choice process.

4.1 Bounded Rationality DTD models

The phenomenon of bounded rationality has been repeatedly detected in
the field of transportation where it manifests in the form of a shortest path
violation. In several studies it is estimated that only between 60% to 90%
of drivers actually choose the shortest path (Bekhor, Ben-Akiva, and Ram-
ming, 2006; Prato and Bekhor, 2006; Zhu, 2010). The analysis of the resid-
ual gap in flow patterns between the pre-collapse situation of the I-35W
Mississippi River bridge and the post-reconstruction scenario has been a
fundamental case study in this line of research (Zhu, 2010), showing that
significant infrastructure changes can lead to permanent flow shifts. Fur-
thermore, the series of studies conducted by Srinivasan and Mahmassani
(1999) showed how the shortest route choice violation persists even in case
drivers are provided with all the information they need to formulate the
decision.

The definition of Bounded Rationality User Equilibrium (BRUE) (Mah-
massani and Chang, 1987), the state at which each user cannot significantly
decrease (i.e. beyond a certain threshold) his travel cost by unilaterally
deviating, has been extensively addressed within the framework of static
traffic assignments (Lou, Yin, and Lawphongpanich, 2010; Di et al., 2014).
In recent years, the concept of bounded rationality has also spread to the
research field of DTD models. Following the study on the shift in traffic
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patterns due to the collapse of the I-35W Mississippi River bridge, some
research works have pointed out that these phenomena are poorly rep-
resented by traditional day-to-day models (He and Liu, 2012; Guo and
Liu, 2011a; Di et al., 2015). More specifically, Guo and Liu (2011a), mu-
tating the idea behind the work of He, Guo, and Liu (2010), a day-to-
day link-based assignment model is proposed which embeds the features
of bounded rationality and it is shown that, although the dynamics con-
verges to a set of BRUESs, the system does not necessarily tend to the orig-
inal one after a perturbation. In other words, due to bounded rational-
ity, the equilibrium state of the network can change irreversibly follow-
ing a disturbance. The same phenomenon is observed by Di et al. (2015),
where stability properties for bounded rationality dynamics are provided.
Wu et al. (2013) incorporated the features of bounded rationality into a
cost updating mechanism originally proposed by Cantarella and Cascetta
(1995) and the dynamics are applied to the railway context. Ye and Yang
(2017) adopted the bounded rationality concepts expressed through indif-
ference band representation within day-to-day proportional-switch adjust-
ment and tatonnement dynamics. Shang et al. (2017) investigate the impact
of information sharing among travelers through the use of an agent-based
day-to-day assignment model. The user’s adjustment process is therefore
influenced also by the experience gathered by other users within the same
"information-cluster”, whose generation is obtained by employing percola-
tion theory. The process convergence to a steady state is then investigated
under both scenarios with or without user bounded rationality. General-
izing the original concept of proportional switch process by Smith (1984),
Guo and Huang (2016) formulated a general framework for day-to-day
path-based processes which can accomodate a variety of route choice be-
haviors. Depending on certain preconditions, the model evolves towards
the classical UE and SUE or towards a BRUE. Furthermore, Zhang et al.
(2018) suggested a non-linear pairwise adjustment process in both abso-
lute and relative bounded rationality implementations. In the first case,
the indifference band is constant and unique for each OD pair, while in
the second case it scales with the actual travel costs and thus indirectly
with the level of congestion and size of the network. Finally, Zhang et al.
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(2019) extended the model by incorporating net marginal cost gain in the
route choice process. This means that users, when considering a switch,
not only take into account the current absolute cost differences between
the route they are on and the one they will potentially switch to, but they
also rely on the cost increase resulting from their choice influenced by path
marginal costs. In other words, both the cost difference between the paths
moderated by a variable indifference band, which scales with respect to the
costs, and the net marginal cost, intended as the marginal cost difference
between the paths, are taken into account in the user decision process. Ac-
cording to Zhang et al. (2019), the users prefer, given the same amount of
actual travel cost savings, the routes that will result in a lower cost increase
once the switch takes place. As a result, given the same travel cost savings,
users tend to prefer those routes that overlap with the one currently used,
since the overlapped portion does not contribute to the net marginal cost

increase.

4.2 Boundedly Rational User Equilibrium

The concept of Boundedly Rational User Equilibrium (BRUE) was first pro-
posed by Mahmassani and Chang (1987) through the concept of indiffer-
ence band applied to the departure-time choice. The underlying assump-
tion is that users are not sensitive to minute changes in travel costs. For
this reason, the solutions adopted are not necessarily those with the lowest
possible cost but may likewise have a cost that diverges from the minimum
by no more than a certain value. The user then changes choice exclusively
when the stimulus intensity exceeds a certain threshold represented by an
indifference band. A rigorous mathematical formulation of the BRUE for
route choice behavior was proposed by Lou, Yin, and Lawphongpanich
(2010).

Alternatively to this definition, Zhang and Yang (2015) proposed the
concept of Inertial User Equilibrium (IUE). The concept of bounded rational-
ity in this case is represented by a set of prevailing paths, i.e. the inertial
user equilibrium. More specifically, different groups of users can only use
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a subset of all available paths for their OD pair which is defined as the in-
ertial set. Therefore, a flow is a IUE if within each inertial set Wardrop’s
first principle is satisfied.

Boundedly Rational User Equilibrium

Let represent a traffic network by means of an oriented graph G(N, A),
where NV is the set on nodes and A is the set of paths. Two subset of nodes
are defined as origin nodes R C N and destination nodes S C N. Let
H = R x S be the set of OD pairs associated with the mobility demand
vector q = {q; : h € H}. The set of all loop-free path connecting an
origin node with a destination node is denoted by K. It is then possible
to establish a relation beetween path and links by means of the link-path
incidence matrix A = {0y : a € A, k € K} where ¢, = 1 if link a belongs
to path k. In order to associate paths with their respective OD pairs, let us
define the OD-path incidence matrix & = {&jx : h € H,k € K} where each
element ¢ = 1if path k connect the origin node to the destination node of
the OD pair h. Regarding traffic flows, let x = {x, : 2 € A} and f = {f; :
k € K} be the link flow vector and the path flow vector respectively. The
corresponding travel cost vectors are denoted by ¢ = {¢, : a € A} for the
links and C = {Cy : k € K} for the paths.

Similarly to what done in section 2.5, let us state that a pattern of flows
(x, ) is feasible if it falls within the set ©® as defined in (2.11).

Finally, let us defined two vectors associated with the OD pairs. Let
7t = {my, : h € H} be the minimum cost vector where each element 77, is
the absolute minimum path cost for OD pair h and € = {¢;, : h € H} be
the threshold vector where each element €), represent the threshold value
for all users of OD pair h.

It is therefore possible to provide the following two definitions.

Definition 3. A path is “acceptable” if the difference between its travel time or
cost and that of the shortest or least-cost path is no larger than a pre-specified
threshold value.
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Definition 4. A path flow distribution is a BRUE if it is feasible and compatible
with the travel demands (i.e. falls within ©) and every user uses an acceptable

path.

The mathematical formulation of a BRUE flow pattern is defined as
follows.
Cr > Byt Vk € K (4.1)
fi>0 = G <E (m+e) Vk e K (4.2)

where Z| is the k-th row of the transposed OD-path incidence matrix, there-
fore B, r = 7y, and Eje = €, hold if k is a path connecting OD pair h. Let
us define f,ﬁ’ = fr : ¢ = 1 and C,]z = Ct : Cnx = 1, then (4.1)-(4.2) can be
reformulated as follows:

cl > m, VkeK,heH (43)
>0 = Cl<m+e Vk € K,h e H (4.4)

where (4.3) implies that all path cost for an OD pair & must be greater than
the minimum one 71, while (4.4) establish that each used path must have a
travel cost that is larger than the minimum by no more than €.

By introducing a vector of slack variables & = {&; : h € H}, it is possi-
ble to summarize the above conditions similarly to (2.17)-(2.19) and (2.20)-
(2.22).

) =0 (4.5)
fod(e—&)>0 (4.6)
>0 (4.7)
(x,f) €O (4.8)
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where operator o is an Hadamard (element-wise) product. The same con-
ditions can be expressed alternatevely using the notation in (4.3)-(4.4).

Cp — 7ty — & =0 ke, heH (49)
fi(en—&) >0 ke, heH (4.10)
€ =0 heH (4.11)
(xf) €© (4.12)

Note that if the vector of thresholds is equal to zero, i.e. when 71, = 0
for each OD pair, conditions (4.9)-(4.12) reduce to the (2.20)-(2.22) and the
BRUE collapses into a classical UE. Assuming 71, = 0 Vi € H condition
(4.10) reduces to:

fle, >0 kelC,hetH (413)

and once noted from the (4.9) that &, = Cli‘ — 713, conditions (4.10) and
(4.11) reduce to

fA(CE— 1) >0 keK,heH (414)
Cl— 7, >0 keK,heH (4.15)

which are the UE conditions. A BRUE is not necessarily unique, and for
this reason we refer to a BRUE set of flow patterns that satisfy conditions
(4.9)-(4.12). It should also be noted that a UE flow pattern falls necessarily
within a BRUE set. In fact, if a flow pattern satisfies conditions (4.14)-(4.14)
then it necessarily also satisfies (4.9)-(4.11).

Inertial User Equilibrium

The concept behind the Inertial User Equilibrium (IUE) proposed by Zhang
and Yang (2015) is that users use only a subset of all available paths for their
pair. Such a set of paths is called an inertial set. Within each OD pair, there
can be different groups of users each using their own inertial set of paths
among those potentially available. Let us apply the same notation as in
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the previous section with the following additions necessary to describe the
inertial sets.

Let K, C K be the set of all available paths for OD pair h € H. Let
W), = {W C K}, : h € H} be the set of all inertial patterns for OD pair h.
Each element within W, is a particular sub-set of all available paths for the
OD pair h. A probability vector is then defined for each OD pair denoted
by p» = {p]’ : h € H,W € W,,} where an element p]’ represents the
probability that a traveler of OD pair h will use a path within the inertial
set W € Wj,. The following conditions must be satisfy.

pr >0 W €Wy, heH (4.16)
Y =1 heH (4.17)
WeWw,,

The following two definitions are provided.

Definition 5. A traveler with demand between OD pair h € ‘H has inertia pat-
tern W when W is a subset of KCj,, i.e. W C Ky, , and the traveler only has his or
her route choices within the choice set W.

Definition 6. Consider a traveler with demand between OD pair h € H and
inertia pattern W. The traveler is fully inertial if |W| = 1; the traveler is non-
inertial or fully non-inertial if W = ICy,; the traveler is partially inertial otherwise.
A traveler is inertial if he or she is fully inertial or partially inertial.

Definition 5 formalizes the concept of inertial pattern while definition
6 differentiates among different groups of users. When |W| = 1, a traveller
will chose the same path independently from the congestion level. At the
opposite, W = K, indentify a group of users who will eventually exploit
all the available path for OD pair £ if required.
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Regarding path flows, let f/"V be the portion of flow on path k € K,
generated by inertia pattern W € Wj,. Then we have

fi=Y W ke KpheH (4.18)
Wew,,

) = anpiy W e W, heH (419

a = Y 1Y W e W, heH (420)
ke,

where (4.18) establish that the flow associated to a path k of an OD pair h
is determined by the contribution of the flows generated by each inertial
pattern W € W), while (4.19) identifies the mobility demand associated
with each inertial pattern and (4.20) is a flow conservation equation.

It is then possible to provide a formal definition of inertial user equilib-

rium.

Definition 7. The traffic flow is at inertial user equilibrium when it follows
Wardrop’s first principle in every inertia pattern W € Wy, for every OD pair
heH.

Let 7 = {m]’ : W € W), h € H} be a vector of minimum costs where
each element 71}" is the minimum cost associated to the inertia patter W €
W),. The mathematical formulation of a IUE flow pattern is defined as

follows.

W —mY) >0 keK,heH 421)
C—m >0 ke K,heH (422)
(x,f) €© (4.23)

Conditions (4.21)-(4.23) are equivalent to those for the UE but detailed for
each inertial pattern. Note that, when referring to path costs C/, there is no
superscript W because, regardless of the inertial pattern, the cost on a path

k is fixed given a particular configuration of flows on the network.
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In this chapter, a day-to-day link-based traffic assignment model de-
sign in order to represent the evolution of a traffic network when subject to
a disruption is presented. The kind of disruption considered here is a sud-
den and significant alteration of the network infrastructure topology. The
model then estimates the progressive readjustment of traffic flows onto the
network until a new equilibrium is reached.

The assignment procedure is characterized by a series of progressive
UE traffic assignments performed under variable conditions taking into ac-
count the habits of users and the inertia of the system as a whole. The main
ideas behind the model are two: the former concerns the specific behavior
of users, the latter regards the dynamics of the system as a whole. Regard-
ing the behavior of users, the model accounts for the fact that they consider
roads that are alternative to those already in use only when the travel costs
they experience have increased significantly. By “significantly” we mean
more than a certain percentage value expressed in the model by the user tol-
erance index (), which will be defined rigorously in the following. For each
iteration, the proposed algorithm, comparing for each origin-destination
pair the increase in travel cost that the users experience with the maximum
threshold they tolerate, verifies whether they are satisfied or not with the
current situation. If they are not, in the next iteration they will be assigned
considering a slightly larger set of paths. The assignment that is obtained
from this process is defined as target assignment and represents at each it-
eration the direction towards which the system tends to move. Therefore,
considering the dynamics of the system as a whole, it is not expected to
jump instantly from one new solution to another, but because of its intrin-
sic inertia, represented by the inertia coefficient , the system should evolve
through a series of states that are somewhere in between the best possible
assignment given the current circumstances and the previous one.

The model proposed in this chapter can be considered a dynamic vari-
ant of the static IUE assignment model proposed by Zhang and Yang (2015)
(discussed in section 4.2). However, in this case each OD pair is associated
with only one inertial set, i.e. all users of the same OD pair can use only
one specific set of paths that does not necessarily include all those available
to the pair. Moreover, such path sets are not fixed but they may vary over
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time, meaning new paths are considered and added to the sets if users are
not satisfied with current travel costs.

This chapter is organized as follows. In section section 5.1 the notation
is presented. In section section 5.2 the model is described in details. Further
in section section 5.3 some performance indices are defined while in section
section 5.4 a viable implementation of the model is proposed. Finally in
section section 5.5 some conclusions are drawn.

5.1 Notation

The notation used in the model is as follows. First of all, the topological
quantities and sets are defined:

e G(N, A): graph denoting the transportation network consisting of a
set of nodes NV and directed arcs A, where |A| = A

e R C Nand S C N: set of origin and destination nodes respectively
e H={h:he R xS}: setof all origin-destination pairs
» Kj=set of all available paths for OD pair & € H on day n

o L}*: set of paths, obtained through the UE traffic assignment, that
are actually used by each origin-destination pair # € H at the equi-
librium before the occurrence of the disruption

o L;*: set of path actually used by users of OD pair i € H just after the
disruption

* Lj: set of path for OD pair i € H used for the assignment on each
day n

Traffic flows and traffic assignment variables are defined as follows:

e q = {qn : h € H}: traffic demand vector, where g, is the traffic
demand associated with OD pair h

e x(n) = {x,(n) : a € A}: link-flow vector on day n, where x,(n) is
the flow on link a on day n
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o xUE = {xUF:a € A}: link-flow vector at the equilibrium before the
disruption

o x** = {x5* : a € A}: Shock Assignment link-flow vector immedi-

ately after the disruption
e z(n) = {z,(n) : a € A}: target link-flow vector computed for day n

e x¥ = {xIF : 4 € A}: Final link-flow vector representing the new
equilibrium reached by the system after the disruption

o f(n) = {ff(n) : k € LI,h € H}: path-flow vector on day 1, where
fl(n) is the traffic flow on path k € L} of OD pair & € H on day n

The travel costs on links and paths are defined as follows:

e c(x(n)) = {ca(xq(n)) : a € A} Link travel cost vector on day #,
where ¢,(x,(n)) is a non negative, monotonically increasing, fully

separable travel cost function of link 2 € A on day n

o C(f(n)) = {Clf(n)) : k € L},h € H}: path travel cost vector on day
n, where CJ! (f(n)) is the travel cost on path k € £ of OD pair h € H

on day n
e TTC(n): network total travel cost on day n
Finally, the coefficients of the model are:
e () € [0, +00): user tolerance index

e B € [0,1]: inertia coefficient

The notation introduced in this section is summarized in Table 5.1.

5.2 The Progressive Traffic Assignment Model

In the following, the main elements of the assignment model are illus-
trated, according to the flow chart of fig. 5.1.
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Sets

N Set of nodes

A Set of links

R Set of origin nodes

S Set of destination nodes

H Set of origin-destination (OD) pairs

h OD couple h € H

Ky Set of all loop-free paths for OD pair h € ‘H
on day n

L Set of paths actually used by each origin-destination pair
h € H at the equilibrium before the disruption

LA Set of path actually used by users of OD pair h € ‘H
just after the disruption

Ly Set of path for OD pair i € H used for the assignment on
each day n

Flow Vectors

q Travel demand vector

qn Travel demand of OD pairh € H

x(n) Link-flow vector on day n

Xa(t) Flow on link @ € A on day n

xVE Link-flow vector at the equilibrium before the disruption
x5A Link-flow vector immediately after the disruption
z(n) Link-flow target assignment for day n

zq(n) Target flow on link a € A on day n

xFE Final link-flow vector at the new equilibrium

f(n) Path-flow vector on day n

fI(t) Flow on pathk € £}},h € H onday n

Travel Costs

c(x(n)) Link travel cost vector on day n
a(xa(n))  Travel cost on patha € A on day n

C(f(n))  Path travel cost vector on day n
Cl(f(n)) Travel costonpathk € L},h € H
TTC(n) Newtork total travel cost on day n
Parameters

Q User tolerance index

B Inertia coefficient

TABLE 5.1: Main notation
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1) User-Equilibrium Assignment. First of all, given a the mobility demand q
which is fixed and link cost functions ¢, (x, ), which are nonnegative, mono-
tonically increasing, and fully separable, an UE assignment is performed
as described in Problem 1. This allows to obtain the pattern of traffic flows
xYF at the equilibrium and the associated link travel costs vector ¢(x"F).
Then let the set of paths potentially used by users of each OD pair at the
equilibrium before the disruption be defined as follows

LU= {keKy:Cl=n"} (5.1)

where 7t is the minimum travel cost for OD pair 1 € H. Equation (5.1)
establish that a path in order to be used by users needs to have minimum
travel cost. Finally, be C(f'F) the associated path travel cost vector where
fUF is a path flow vector consistent with the link flow vector x"* computed
by the UE traffic assignment. For the two vectors to be consistent, the fol-

lowing relationship must hold
xUF = AfYF 5.2)

where A is the link-path incidence matrix.

2) Shock-Assignment. Once the disruption has occurred, a so-called Shock-
Assignment is performed. Only the flows on the routes directly involved
are reassigned by means of all-or-nothing assignment. At this moment
only those users whose path has been directly affected by the disruption
reorganize themselves, having no alternatives. All the others suffer pas-
sively from the increase in travel times. This leads to a pattern of flows
x%*, representing the state of the system immediately after the disruption.

3) Progressive Assignment. This section of the model, shown in the Pro-
gressive Assignment algorithm box reported below, is essentially respon-
sible for the evolution of the system and consists of three components. (1)
The Target Assignment is responsible for allocating, at each iteration, the
flows of each origin-destination pair through an N-path restricted User-
Equilibrium traffic assignment model (Lin and Leong, 2014). The demand
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FIGURE 5.1: The assignment model.
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flow of each pair is assigned considering only a sub set of all available
paths L£}. The evolution of this set for each OD pair depends on some Trig-
ger Conditions. This leads to an “ideal" link flow pattern z(n) , given the
current conditions, called target, representing the state towards which the
system tends to move. (2) Applying the inertia coefficient B, the actual pattern
of flows is obtained through the following dynamic equation:

x(n) = px(n —1) + (1 - B)z(n) (5.3)

where B € [0,1]. (3) Finally, The Trigger Conditions are the most impor-
tant element since they are responsible for managing the sets of paths from
which each target assignments is derived, influencing the direction the sys-
tem is evolving forward.

On each day, two conditions are evaluated: condition 1 verifies if some-

one on the network is experiencing higher travel times than acceptable. i.e.

Chf _Ch £UE
Japathk e L} : 4 (n)h) UEk( )
Gy (£7F)

>0 (5.4)

condition 2 verfies if any origin-destination pair still has an unused path
available, i.e.

[Knl > | L (5.5)

where (5.5) simply states that condition 2 is met when the cardinality of
the set of all available paths for OD F is greater than the cardinality of the
set of paths used for assignments up to day n.

Only for those origin-destination pairs for which conditions 1 and 2
are true at the same time an unused path from set K, is added to the set of
currently available paths.

This leads to the set of paths £}, that can be used in the next target
assignment. Only if condition 1 and 2 are true at the same time for at least
one OD pair it is useful to trigger the Target Assignment. If it is not the
case in order to avoid a waste of computational resources the new target

assignment can be set as equal to the previous one z(n) = z(n — 1).
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Progressive Assignment Algorithm

Input: x°*, ¢(x**), C(fF), L3*
Output: x'F

1 Initialization
x(0) = x4, ¢(x(0)) = e(x%*), L) = L5
Checking Trigger Conditions for the first time

Cl(£(0)) — Cl(£UE
ifﬂapathkeﬁgz k(()h) UEk( )
Cy (£7F)

>0

proceed to the next step and set counter n = 1

2 Target UE assignment

Given for each pair / the actual sets of paths L}, perform a User Equilibrium traffic
assignment by applying the Frank-Wolfe algorithm. This yields the target set of flows:

z(n) = [z1(n),22(n), ..., za(n)]

3 Applying the inertia coefficient §:
The flows on links are computed as:

x(n) = px(n —1) + (1 - B)z(n)

4 Updating of travel costs
update link travel costs: ¢(x(n))
update path travel costs: C(x(n)) = A'c(x(n))

5 Check Trigger Conditions

Conditions 1 and 2 are checked. For only those OD pairs where both conditions are
verified at the same time, add a path from K, to the set of available paths at the next
iterations. This yields a set of paths L}!. If conditions 1 and 2 are true at the same time
for at least one OD pair after step (6) restart from step (2), otherwise after step (6) restart
from (3) and the new target assignment will remain the one previously calculated:

2(n+1) = z(n)

6 Convergence Test
if a convergence test criterion is met, stop. The current solution is the new equilibrium:

otherwise set n = n + 1 and go to step (2) or (3) depending on the outcome of step (5).
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5.3 Performance metrics

Similar to what discussed by Omer et al. (2012), Faturechi and Miller-
Hooks (2014) and Bhavathrathan and Patil (2015), to assess the level of
system operativity, the following performance measures based on users’
travel cost are proposed.

The global system performance is defined as follows:

p" =¢"/r%" (5.6)

where, 1" and rYF are the inverse of the total travel cost on day n (TTC")
and total travel cost in pre-disruption scenario (TTC"F) respectively. As
a consequence, the performance during the evolution of the system is ex-
pressed as a percentage of the pre-disruption performance, that is, when
the system was operating under normal conditions.

Similarly, it is possible to define the quality of the network as perceived
by the users of each OD pair as follows:

Py =rp/r" (5.7)

where similarly with what has been defined for the overall system, r; and
r/F are the inverse of the average travel cost C]! experienced by users of
OD pair h on day n and average travel cost in a pre-disruption scenario

C/F experienced by the same users respectively.

5.4 Implementation and Results

The progressive assignment model is evaluated on the Nguyen-Dupuis test
network (Nguyen and Dupuis, 1984). This network is represented by an
oriented graph consisting of 13 nodes and 19 links. The transport demand

vector is as follows:
® Ju2 = 50
L4 C]13 =10

L qao = 40
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® qu3 = 20.

The performance functions specific to each link a € A are assumed
linear t,(x;) = wyx, + 0,, where wj, is the marginal travel cost while 6, is
the free flow travel cost. They are both strictly greater than zero in order to
satisfy the condition given travel cost function.

Both the system’s User-Equilibrium before the disruption and the Tar-
get Assignments performed on each day are solved using the convex com-
bination algorithm originally suggested by Frank and Wolfe (1956). Figure
5.2 and table 5.2 show the paths used by each OD pair at the equilibrium
and the network with the traffic flows assigned to each link before the oc-
currence of the disruption respectively.

FIGURE 5.2: Nguyen-Dupuis network and pre-disruption
assignment.

TABLE 5.2: Paths used at the equilibrium.

O-D pair paths

1-2 [1,12,8,2],[1,12,6,7, 11, 2]
1-3 [1,5,6,10,11, 3]

4-2 [4,9,10,11,2],[4,5,6,7, 11, 2]
43 [4,9,13,3],[4,9, 10, 11, 3]

Once the system state is determined under normal conditions, the dis-
ruption is obtained by removing the link between nodes 12 and 8. The
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link has been chosen as peripheral as possible, in order to emphasize any
propagation phenomenon in the performance deterioration and to avoid
a dynamics excessively fast to be appreciated. Table 5.3 shows the evolu-
tion of the system, from the initial condition (marked as EU), through the
shock caused by the link cancellation (marked as SA) to the reaching of the
new equilibrium by applying the Progressive Assignment procedure for
n=1,...,17.

TABLE 5.3: System evolution for () = 0.2, § = 0.6.

Iteration TTC" cl, Ciy Ch, Cl,
UE 19963.47 196.04 13149 186.41 127.95

SA 41750.75 525.08 326.59 397.03 150.71
1 4237613 532.86 33297 390.48 154.55
2 40310.74 476.68 302.78 39494 159.48
3 31959.53 36299 252.76 286.53 152.19
4 28833.24 338.20 238.85 26792 147.81
5 27331.00 314.51 216.32 254.67 145.78
6 26434.39 289.85 195.71 244.79 144.72
7 26096.41 281.68 192.15 238.87 144.07
8 25966.69 278.48 188.43 23532 143.69
9 25915.17 276.55 187.79 233.19 143.46
10 25893.68 27540 187.41 231.64 143.32
11 25884.21 27471 187.18 230.99 143.24
12 25879.76 27429 187.04 230.61 143.19
13 25877.53 274.04 186.96 230.37 143.16
14 25876.35 273.89 18691 230.23 143.14
15 25875.69 273.81 186.88 230.15 143.13
16 25875.11 273.75 186.86 230.10 143.12
17 25875.02 273.71 186.83 230.08 143.08

The user tolerance index (2 has been set to 0.2 and the inertia coefficient p to
0.6. This means that users are insensitive to increases in travel times of less
than 20% while at each iteration 60% of the flows of the current assignment
are affected by the previous one. In the first column of table 5.3 the Total
Travel Cost TTC" for the whole system is shown and it is computed as
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follows.

TTC" = %xu(n) - Ca(xq(n)) (5.8)

In the other columns the average OD travel cost is reported.

09t .

08 |

T o [ O O O R - R B R = e B 1|

0.7 g b

Performance

06 i :

05F & ] 8

A S S S S S SO SO N S N
UESA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Iterations

FIGURE 5.3: Global system performance (? = 0.2, § =
0.6).

Fig. 5.3 shows the evolution of system performance as defined in (5.6)
and corresponding to TTC" values given in table 5.3. As it can be seen, im-
mediately after the disruption, the performance of the system deteriorates
dramatically. Total Travel Cost goes from a value of about 19963 to a value
of 41750, approximately 47% of the initial performance, thus recording a
deterioration in overall performance of more than 50%. After this spike,
as the flows of each OD pair are progressively reassigned over a larger set
of paths, the performance of the system gradually improves. At approx-
imately the 8th iteration, the new equilibrium is reached settling around
77% of the initial performance, resulting in a definitive performance loss of
about 23%. This means that, if we consider the fact that () has been set to
0.2, definitely some users remain unsatisfied even at the new equilibrium,
yet they are not able to do any better because of the new network topology.
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FIGURE 5.4: Performance on paths (2 = 0.2, § = 0.6).

Considering instead the metrics defined in (5.7), fig. 5.4 shows the evo-
lution of the performances as they are experienced by the users of each OD
pair traveling on their respective paths. In this case a cascading effect in
the deterioration of the performance can be noticed which, starting from
the area directly involved in the cancellation of the link, expands with less
magnitude as it involves the remaining parts of the network. Specifically,
the more the paths of a particular OD pair are influenced by the link omis-
sion, the more they are affected by the disturbance. Looking at table 5.2, it
can be noticed that 1 — 2 is the only one of the origin-destination pairs to
be directly involved in the disruption and for this reason it is the one that
suffers the most. Path [1, 12, 8, 2] used by the users of the 1 — 2 pair at equi-
librium is no longer available and as a consequence this transport demand
spreads, during the period following the disruption, on other portion of
the network influencing other users. Among all, the 4 — 3 pair is the least
affected by the disturbance, showing a maximum deterioration in perfor-
mance on its paths of about 20%. This is consistent with the fact that the
users of this pair use paths that are not closely connected with those used
by the users of the other pairs, especially those of the 1 — 2 pair.
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In the following, fig. 5.5 and fig. 5.6 show how the evolution of the sys-
tem is influenced respectively by the inertia coefficient f and user tolerance
index ).

Consistently with expectations, as shown in fig. 5.5 the inertia coeffi-
cient B influences the speed at which the system converges to the new equi-
librium. The higher the number of users willing to use alternative paths,
the faster the system evolves towards a new stable state. By contrast, the
variation of 8 has no influence on determining what the value of this new
equilibrium will be, except in the extreme case of f = 1. In this case, the
state of the system of the n + 1-iteration does not actually evolve further,
once the disruption has occurred.
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FIGURE 5.5: Impact of 5 on system performance evolution
(Q2=0.2).

Fig. 5.6 shows how the global system performance is influenced by the
user tolerance index (). The response of the system is evaluated for val-
ues of () ranging from 0 to 2. More specifically, starting from a scenario
in which users do not tolerate any increase, however small, in travel costs
(2 = 0) to one in which they are insensitive to increases in travel costs
lower than 200% of pre-disruption values (() = 2), we evaluated the re-
sponse of the system by applying values of the coefficient (2 obtained by
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discretizing the interval each 0.2 units. As expected, the values on which

performance stabilizes, once the new equilibrium is reached, are partly in-
fluenced by user preferences.
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FIGURE 5.6: Impact of () on system performance evolution

(B = 0.6).

In detail, the more we increase the tolerance of users to increases in
travel times the higher the new equilibrium will be. In other words, highly
tolerant users have less incentive to use new paths to improve their travel
times.

It is worth noting that, the nature of the relationship between the level
that the new equilibrium will reach and the values of () is strongly discon-
tinuous. Even with major increases in the coefficient, the final equilibrium
achieved by the system may not change. On the contrary, sometimes it can
happen that for small variations of () the new equilibrium changes consid-
erably. This is a consequence of how the model is designed. The user toler-
ance coefficient affects the set of paths on which the flows of users can be
loaded at each next iteration. As long as the travel costs experienced by the
users do not imply a percentage increase of more than (), the set of paths
on which the assignment will be performed will not change regardless of

() and as a consequence, not even the dynamics of the system. However,
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when () has varied enough to match this critical value for at least the users
of one OD pair, the set of paths of the same ones changes. As a result, these
traffic flow will spread over a larger portion of the network, changing the
travel costs of other users, eventually causing a cascading phenomenon
that results in a large traffic flow re-assignment. This is clearly visible in
fig. 5.6 if we look at the performance trends for ) = 1.4 and () = 1.2.
Finally, it is interesting to note that even if we set () = 0, there is still
a considerable gap between the original performance of the system and
that given by the new equilibrium. This is due to the fact that, as much as
users strive, the new network topology does not allow them to get better
conditions than the original ones. For this reason, we can conclude that
according to the model part of the performance differences between the
two equilibriums, the one before and the one reached after the disruption,
can be influenced by the users and their preferences while the remaining
part is determined exclusively by the network and by the location where

the disruption takes place.

5.5 Conclusions

In this chapter an assignment model capable of representing the evolution
of a traffic network in the short term after the occurrence of a critical event
has been presented. The Progressive Assignment, taking into account the
users tolerance to increases in travel costs and the intrinsic inertia of the
system, controls the sets of paths on which the flow will be assigned on
each day. From the results presented, the model appears to be able to rep-
resent some aspects of the evolution of the system in a reasonable way.
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A particularly significant perturbation affecting one transportation sub-
system, such as the road or rail network, can cause cascading phenom-
ena affecting other transportation modes as well. In this regard, a multi-
modal scenario analysis able to represent flow shifts across different trans-
port modes is introduced in this chapter. The need to move passengers
and freight is becoming increasingly pervasive in conducting daily human
activities and more generally in the social and economic advancement of
countries. As a result, the availability and accessibility of transport infras-
tructures and mobility services allow this need to be met and, at the same
time, increase the attractiveness of an area. In this regard, it important to
quantify the capacity to satisfy the transport demand of a geographical area
and to try to predict how the transport systems included in it will react to
unforeseen events. These latter may appear in different forms as changes
in demand, e.g. the transfer of passengers from public to private transport
that have occurred due to the ongoing pandemic, or modification of the
infrastructure network layout due to the verification of disruptive events.

Model-based approaches are the foremost methodologies for evaluat-
ing the performance of transportation networks because they allow:

* to quantify the efficiency of transport networks subject to different
scenarios through the calculation of performance indexes (e.g., aver-

age travel times, fuel consumption, pollutant emissions, etc.);

* to evaluate the effects produced by the occurrence of critical events
(e.g., infrastructure collapse, natural disasters limiting the function-

ality of transport systems, terrorist attacks, etc.);

* to evaluate the effects produced by the introduction of new systems

(e.g., new infrastructure, modification of existing layout, etc.);
* to develop or test regulation policies.

In the transport network application field, models can be generally dis-
tinguished into assignment models and simulative models. Assignment
models are adopted to represent the route choices of users and to evaluate
the distribution of flows on a network. Simulative models are used to rep-
resent the impact of route choices on transport networks by describing the
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flow evolution over time. By analyzing the literature on these topics, it is
possible to observe that most of the researches’ efforts have been focused
so far on the definition of assignment and simulative models on mono-
modal transport networks, i.e. road networks or railway networks only
(Cascetta, 2009; Hoogendoorn and Bovy, 2001; Gille, Klemenz, and Siefer,
2008). However, if the goal is to analyze the accessibility of an area in its
wholeness or to give better information to users, it is necessary to adopt
more extensive models, i.e. multi-modal models, that simultaneously con-
sider different modes of transports and the possibility of transfer among
them.

Another aspect that cannot be overlooked in the analysis of transport
networks concerns the interdependence between different transport modal-
ities. Interdependence among transportation modes can be expressed in
several ways. It can be related to the pursuit of the transport activity it-
self, in this case several transport services operate synergistically to allow
the satisfaction of the mobility demand of users and the efficient distri-
bution of goods and services. Interdependence can be related to physical
reasons such as the overlap of different routes, even belonging to differ-
ent transport modes, through bridges or tunnels, or there can be hidden
relationships, such as those analyzed by Chen et al. (2009). Regardless of
how these interdependencies occur, they imply an increased vulnerabil-
ity of the transport network as a whole. In fact, it is possible that critical
events affecting even one mode of transport could cause a ripple effect
involving other transport modalities or, in the worst case, the entire trans-
port network. For these reasons, the development of multi-modal models
represents an important step in the analysis of complex and highly inter-
dependent systems such as transport networks.

This work falls in this field of research by proposing a two-stage model
in which multi-modal assignment and multi-modal simulation are com-
bined. More in detail, the proposed modeling scheme, based on prelimi-
nary works (Pasquale et al., 2021a; Pasquale et al., 2021b), is suitable to rep-
resent large-scale transportation networks in which the considered trans-
port modes are road and rail connected to each other through appropriate
intermodal connections. Another peculiarity of this modeling framework
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FIGURE 6.1: Sketch of the two-stage modeling framework.

is that the user demand is multi-class, hence it is distinguished into pas-
sengers and cargo units (e.g., containers). This distinction is of particular
importance because passenger and freight flows may be characterized by
different behaviors and may be subject to different restrictions, such as on
route choices. For these reasons, both the assignment and the dynamic
model are multi-class. Note that, compared with Pasquale et al. (2021a)
and Pasquale et al. (2021b), in the present work the assignment model is
multi-class (while in the previous versions there was no distinction of user
classes) and the dynamic model is improved.

To summarize, as sketched in Fig. 6.1, the modeling framework pro-
posed in this work is composed of two stages:

* a multi-class multi-modal assignment model;
* a multi-class multi-modal discrete-time dynamic model.

This chapter concludes with the application of the proposed modeling
framework on a benchmark network. The focus of this application is to
show a possible use of the proposed framework by simulating the loss of
operability of one connection of the multi-modal network and analyzing
the ripple effect on the rest of the network. Other possible applications of
the proposed methodology are discussed at the end.

The present chapter is organized as follows. A state of the art in multi-
modal transport network models is presented in section 6.1. In section 6.2
the general features of the proposed modeling framework and the basic
notation are introduced. In section 6.3 the proposed assignment model is
outlined, while the macroscopic discrete-time dynamic model is described
in section 6.4. The application of the proposed methodology to a test net-
work is shown in section 6.5, while section 6.6 discusses possible uses of
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the proposed approach. Finally some conclusive remarks are gathered in

section 6.7.

6.1 State of the art on multi-modal transport networks

models

The literature on multi-modal network models is much less established
than the one considering single modes of transport. The majority of the
works addressing multi-modal transport networks concerns the definition
of multi-modal assignment models mostly referring to urban areas. In-
deed, multi-modal traffic assignment has been studied for some decades
(Dafermos, 1976; Florian, 1977; Florian and Nguyen, 1978; Sheffi and Da-
ganzo, 1978), by considering the so-called hyper-networks, which allow to
include in the network both links representing a portion of the real multi-
modal transport network (road, rail, private or public transport) and links
associated with users’” decisions.

Multi-modal traffic assignment approaches have also been studied more
recently, e.g. Lo, Yip, and Wan (2003) represented the multi-modal trans-
port network of an urban area as a graph composed of a number of sub-
networks, each of which is associated with a transportation mode. Then
the multi-modal network is translated into an augmented-state multi-modal
network in which transfer rules and transfer probabilities between the dif-
ferent transport modes are defined. In that network, multi-modal routes
are determined with standard assignment models. Fu, Lam, and Chen
(2014) proposed a stochastic model in order to account for the reliability
of the chosen transport modes and paths, while Pi, Ma, and Qian (2019)
considered different modes, only-driving, carpooling, ride-hailing, public
transit and park-and-ride, for a urban transportation system including pri-
vate cars, freight trucks, buses, and so on.

Other works involve the definition of dynamic programming problems
aimed at identifying multi-modal routes or at regulating the transition be-
tween different types of transport. In the work by Zhang et al. (2011), the
transportation modes are distinguished into private and public modes of
transports and connected with some abstract links that allow the transfer



130 Chapter 6. Two-Stage Multi-Class Modeling Approach for Multi-Modal Transport
Networks

between the considered modes. The only attributes associated with the el-
ements of the network are the travel times that are estimated considering
the length and speed of a link and possible waiting times. Then, a rule-
based algorithm is proposed to suggest travel information. An application
based on learning techniques is instead presented by Liu et al. (2020). In
this work, data from a large-scale multi-modal network are analyzed and
both spatio-temporal and semantic coherence relationships are identified
as the basis for route choice. Based on these findings, a hierarchical mul-
titask learning module is developed to represent different transportation
modes and to guide route choice.

Several simulative-based approaches have been presented (Loder et al.,
2017; Liu and Geroliminis, 2017; Elbery et al., 2018; Bucchiarone, De Sanc-
tis, and Bencomo, 2020). Both approaches presented by Loder et al. (2017)
and Liu and Geroliminis (2017) involve the use of the macroscopic fun-
damental diagram (MFD). Specifically, Loder et al. (2017) consider three
transport modalities, i.e. private vehicle transport, public vehicle trans-
port and pedestrian transport. The three transport modes are represented
through a three-dimensional MFD that allows to evaluate the accumula-
tion of private and public vehicles according to different traffic scenar-
ios. In the work by Liu and Geroliminis (2017), the considered transport
modes are private vehicle transport and public road transport. Private
transportation is represented through the MFD, while constant transfer
speeds are considered for public transportation. The derived multi-modal
model is used for the definition of adaptive pricing policies. Finally, El-
bery et al. (2018) and Bucchiarone, De Sanctis, and Bencomo (2020) pro-
pose agent-based approaches. Specifically, the model presented by Elbery
et al. (2018) introduces an agent-based framework to combine different
transportation systems, namely vehicular, bicycle, pedestrian and railway,
which in turn are represented with different simulators (INTEGRATION
which is a meso-scopic simulator based on the car-following model, BP-
Sim that is a bike and pedestrian commercial simulator and RailSim which
is a commercial railway simulator). Bucchiarone, De Sanctis, and Ben-

como (2020) propose an agent-based simulation to test innovative planning
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methods involving pedestrians and autonomous shuttles in large urban ar-
eas.

Note that in none of these approaches the assignment models are com-
bined with simulative models. Furthermore, in most of these works the dy-
namics of the multi-modal system is not explicitly represented, and there-
fore travel times on multi-modal transport networks are either fixed a pri-
ori or provided by other simulation models. Another innovative aspect of
the work here proposed, which was not found in the literature analysis, is
the explicit representation of multiple classes of users. Thus, to the best
of our knowledge, this is the first work in which multi-class multi-modal
assignment and simulation models are combined.

6.2 General features and basic notation

This section provides the main features and the principal notation used
in the proposed modeling framework. As shown in Fig. 6.1, this scheme
consists of two stages: an assignment model defined to allocate the de-
mand of passengers and freight on a multi-modal transport network, and
a discrete-time dynamic model that allows to replicate the evolution of
the system over time. It is worth noting that the discrete-time dynamic
model receives as input the mobility demand and the path choices (route
and modal choices) defined through the multi-modal assignment model.

Both the assignment model and the dynamic model are based on a re-
gional multi-modal transport network in which the considered transport
modes are road transport, represented by a highway network, and rail
transport. The two modes of transport are connected with some inter-
modal arcs distinguished depending on the flow class, i.e. passengers or
cargo units, which they can receive. The multi-modal transport network
is represented by means of an oriented graph, as depicted in Fig. 6.2, de-
noted with G = (N, A), in which A indicates the set of nodes, whereas
A = AH U AR U AP U AT represents the set of arcs. Each subset of arcs is
defined as follows:

o AMis the set of highway connections;
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e AR is the set of railway connections;
» AP is the set of intermodal arcs for passengers;

o A!f is the set of intermodal arcs for freight.

Note that intermodal arcs are distinguished for passengers and for freight
because modal shifts for passengers and freight typically occur at different

locations and in different ways.

Origin node Destination node

o) o) 0——0
S

7
Origin node ///

o

Railway arc

—-——- Highway arc

Intermodal arc for passengers
Intermodal arc for freight

FIGURE 6.2: Sketch of the multi-modal transport network.

Moreover, let P(i) indicate the set of nodes preceding node i and S(i)
the set of nodes succeeding node 7, i € . Let A;; [km] denote the length
of each arc (i,j) € AU AR

The network is defined in an origin-destination-oriented mode in which
JO C N represents the set of all possible origin nodes, J° C A represents
the set of all possible destination nodes. The nodes which are not origins
nor destinations simply allow the transit between successive arcs. The in-
termodal arcs, for both flow classes, are considered as fictitious arcs that
allow modal transfers between road transport and rail transport and vice
versa. For this reason, an origin node o € JO cannot be followed only
by one or more intermodal arcs, and similarly, a destination node d € | D
cannot be preceded only by one or more intermodal arcs.

In the proposed approach the flows of users are distinguished in pas-
sengers and freight, with superscript c denoting the class of users. In par-
ticular we define with ¢ the class of users. In particular we define with
¢ = 1 the passenger flow and with ¢ = 2 the freight flow. Then, D% indi-
cates the demand of class c that originates at node o € J© and has destina-
tion at node d € JP: this is the total demand associated with the od pair for
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the whole simulation horizon. This demand defined for all od pairs repre-
sents the so-called “origin-destination matrix”. Let us also specify that the
passenger demand, i.e. the demand for class ¢ = 1, is expressed in num-
ber of passengers, while the demand of freight, corresponding to c = 2, is
expressed in number of cargo units.

The main parameters and variables of the proposed approach are sum-
marized in Tables 6.1-6.4. Specifically, Table 6.1 collects all the parameters
that are used in both the assignment model and the dynamic simulation
model. Table 6.2 and Table 6.3 collect the parameters and variables used in
the assignment model only respectively, while Table 6.4 reports parameters
and variables used in the dynamic simulation model only.

TABLE 6.1: Parameters common to the two models in the
two-stage modeling framework

Parameter Description

Ajj Arc length [km] for all (i,j) € AHU AR
vl}g/ Maximum freeway speed in [km/h] for all (i,j) € AH
wj, Congestion wave speed in freeway in [km/h] for all (i, j) € AH
ninax Maximum number of vehicles for all (i, j) € AH
vlf{] Maximum railway speed in [km/h] for all (i, j) € AR
hij Average time headway in [h] for all (i, /) € AR
sii Minimum average space headway in [km] for all (i, j) € AR
CP Capacity of a passenger train in number of passengers for all (i,j) € AR
ct Capacity of a freight train in rail wagons for all (i, j) € AR
L Length of a train in [km] for all (i,j) € AR
;i j Number of time steps required to cross an intermodal passenger
arc (i,j) € AP
Vi, Number of time steps required to cross an intermodal freight
arc (i,j) € A
n Average number of passengers per vehicle
G Conversion factor used to convert trucks into passenger car equivalent

As it will be described in section 6.4, the dynamic behavior of the whole
network is represented with a discrete-time model in which the time hori-
zon is divided in K time steps, where k = 1, ..., K indicates the temporal
stage, and T [h] represents the sample time interval. In order to ensure a
correct time discretization, the length of the time interval T must allow a
proper dynamic evolution of the system, therefore the length of the time
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step is chosen in order to verify, for any arc (i,j) € A" U AR, the following

condition:
A A
Tgmin{ 2, fj} (6.1)
Lo
1] 1,]

TABLE 6.2: Parameters present only in the assignment
model described in section 6.3

Parameter Description

od,1 Binary parameter that defines the belonging of an arc (i, j) € A
ijl to a passenger path associated to the od pair

0d,2 Binary parameter that defines the belonging of an arc (7,j) € A
ifl to a freight path associated to the od pair

Cost per time unit used to estimate arc-traveling costs for freight flows

Ctime o
ij forallarc (i,j) € A
space Cost per space unit used to estimate arc-traveling costs for freight flows
ij forallarc (i,j) € A
Cix Fixed cost used to estimate arc-traveling costs for freight flows
ij forall arc (i,j) € A
f}, j Average travel time over arc (i, j) € A for passengers
¢ Parameter used to define a performance function for passengers
M Large coefficient chosen arbitrarily

TABLE 6.3: Variables present only in the assignment model
described in section 6.3

Variable Description

od,1 Decision variable related to passenger flow associated with the od pair
5 using a specific path !

0d,2 Decision variable related to freight flow associated with the od pair

! using a specific path !

xil,]- Decision variable related to the total passenger flow on arc (i,j) € A
LLUE Decision variable related to the total passenger flow on arc (i, ) € A

Lj satisfying User-Equilibrium conditions

xl2 j Decision variable related to the total freight flow on arc (i, j) € A
ng(-) Performance functions for passengers of arc (i,j) € A
2 (+) Performance functions for freight of arc (i,j) € A

cij(*) Total travel costs for freight on the arc (i,j) € A
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TABLE 6.4: Parameters present only in the dynamic model
described in section 6.4

Parameter Description

N{f}ax Maximum number of trains for all (i,j) € AR
Conversion factor defined for each class ¢ and for each arc (i,j) € A
ij to model the transition from a railway arc to a road arc and vice versa
c Conversion factor defined for each class c and for each arc (i,j) € A
gi,j to correctly computing the flow entering from an origin node

TABLE 6.5: Variables present only in the dynamic model
described in section 6.4

Variable Description

290 () Number of units of class ¢ in arc (i, j) € A, associated with the od pair
ij at time step k
t"t(k) Total number of vehicles on arc (i, j) € AH
Ntot ( k)
Igd (k) Number of units of class ¢ entering arc (i, j) € A, associated with the od
pair at time step k
oo (k) Number of units of class ¢ exiting arc (i, j) € A associated with the od
pair at time step k
e k) Number of units of class ¢ that would like to enter arc (7, j) € A associated
with the od pair at time step k

Total number of trains in arc (i,j) € AR

L]

Wff]?t(k) Total number of units that would like to to enter arc (i, j) € A at time step k

m;j(k)  Surplus rate of units that cannot enter at time step k in the arc (i, /) € A

gode ) Number of units of class ¢ that would like to exit arc (i, j) € A, associated
with the od pair at time step k

ﬁOd'C (k) Splitting rates of class ¢ in arc (i, j) € A, associated with the od pair at time

ij step k

ode (k) Number of units of class c associated with the od pair, that can actually enter
1 the network from node o € JCat time step k
Jodc (k) Queue length of class c, associated with the od pair, which waits at the origin

( node o € J© at time step k

qlr’is(k) Residual capacity of arc (i,j) € A at time step k

) Transfer time required to cover an arc (7,j) € A at time step k
Steady-state speed relationships defined for railway and roadway arcs

) y P P y y
(i,j) € A" U AR for each time step k

6.3 The multi-modal assignment approach for passen-
ger and freight flows

The purpose of the intermodal assignment model is to represent the spon-
taneous decisions of users about their routes. Before providing the details
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of the proposed approach, it is important to emphasize that the assignment
model is a static approach in which all the mobility demand, estimated for
a specific time window, is assumed to use the transport network simulta-
neously. As shown in Fig. 6.1, the result of this model is the redistribution
of flows on the paths, i.e., ffd’l for passengers and lel’2 for freight, which
are obtained by the solution of some optimization problems.

The flows thus obtained will be suitably transformed into splitting rates,
see section 6.4, and used as input data for the dynamic model. The passen-
ger and freight assignment models are treated separately, firstly introduc-
ing the multi-modal assignment model for passengers and, then, applying
the multi-modal assignment model for freight, since the latter uses the re-
sults of the passenger assignment to define the freight route choices. In
particular, for the passenger assignment procedure we assume that the
marginal impact on the network due to the presence of freight is suffi-
ciently small so that it does not decisively influence the behavior of pas-
sengers. This assumption is quite reasonable since, referring to the overall
flows on a transport network, the freight component typically constitutes
a rather low percentage compared with the flow of passengers.

To summarize, the assignment procedure presented below is conducted
in an iterative manner in which at the first step the multi-modal assignment
model for passenger flows described in section 6.3.1 is run. Then the results
of this assignment are used to estimate the average passenger travel times
on the network using the dynamic model described in section 6.4. Finally,
the multi-modal freight assignment model, presented in section 6.3.2, is

run using the average travel times defined in the previous step.

6.3.1 The multi-modal assignment model for passenger flows

Modeling the behavior and therefore the mobility choices of users is a chal-
lenging problem for which several approaches have been developed by re-
searchers. One of the most accepted, and widely adopted, methodologies
concerns the use of traffic assignment models. Given an origin-destination
matrix, representing the users” demand, and knowing the functional char-
acteristics of the network infrastructure, a traffic assignment model allows
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to estimate how users will be dispersed in the network, taking into account
the relation between the infrastructure supply and the interaction of users
mutual choices. The criteria underlying the mathematical representation
of such behaviors have been covered in section 2.5.

In the present work, the N-Path Restricted User-Equilibrium traffic as-
signment model has been applied. Generally speaking, the User Equi-
librium traffic assignment model aims to estimate the network equilib-
rium state such that no user has unilaterally any interest in choosing an
alternative path, since no other path would guarantee lower travel times.
Such equilibrium is achieved if Wardrop’s first principle (Wardrop, 1952)
is met, whereby “users choose the path that at a given time minimizes
their own travel time”. A way to compute the arc flows corresponding
to such equilibrium involves finding the optimum solution of the Beck-
mann’s Transformation (Beckmann, McGuire, and Winsten, 1956). The N-
Path Restricted variant of the aforementioned model (Lin and Leong, 2014)
is obtained by constraining the assignment to a priori defined sets of ad-
missible paths, which do not necessarily include all the possible ones for
each origin-destination pair. This allows to avoid all the paths that are the-
oretically possible but quite implausible in practice. In this work, all the
paths involving more than one modal shift have been excluded. Then, de-
noted with [,/ = 1,..., L, a generic path existing in the network and with
L4 the set of all possible paths connecting the od pair, let P*? C £°? be the
set of admissible paths from origin node o to destination node d.

The resulting optimization problem for the traffic assignment of pas-
sengers demand in the multi-modal transport network is the following.

Problem 5.

min z(x) = Z Tillj(w)dw (6.2)
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subject to
2 flod,l — Dod,l = ]o, dc ]D (6.3)

lepod
£ >0 0cJ° de P, 1ep™ (6.4)
d1 | sod1 .
xil,j =y X XA -0 (i,j)e A (6.5)
0€]O deJD [epod

where ffd’l and x},j are, respectively, the flow of class 1 of od pair us-

ing path I and the total flow of class 1 on arc (i,j). Constraints (6.3) im-
ply passengers” demand satisfaction for each od pair, while (6.4) are non-
negativity constraints regarding traffic flows. Moreover, constraints (6.5)
define the relation among fl"d’1 and x}/ ; by means of the path-arc incidence

matrix whose elements are defined as follows:

557}1 _ 1 if (i,]) belongs to path I from o to d 6.6)
v 0 otherwise

Note that (6.3)-(6.5) are equivalent to (2.9)-(2.11) but expressed with respect
to the nodes instead of with respect to the links.

In (6.2), the terms 711]() are the performance functions of arcs related
to class ¢ = 1, i.e. passengers. These functions, representative of the func-
tional characteristics of the network arcs, express the relation between the
travel time spent by passengers traveling through an arc and the amount of
congestion on the same arc, which is expected to perform worse (and thus
resulting in increased travel times) if the number of users traveling on it
increases. The performance functions adopted for this model are derived
from (6.36), with ¢ = 1, introduced in section 6.4, considering the defi-
nitions provided in (6.37) and (6.40). For highway and railway arcs, this
equation computes the transit time as a function of the estimated speed.
The average speed on these arcs, in turn, depends on the number of users
who are using those arcs. Regarding intermodal passenger arcs, on the
other hand, the transfer time is considered constant and independent of the
number of users present on it. For further information the reader is referred
to the description of equations (6.36), (6.37) and (6.40) in section 6.4. It is
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worth noting that, with the exception of the intermodal case, the link per-
formance functions are strictly increasing hyperbolic functions and there-
fore diverging in proximity to the arc theoretical maximum capacity.

In order to reduce the computational effort, appropriate linear versions
of the same functions have been used within the assignment process. In
the case of highway arcs, the resulting linear functions are obtained by
interpolating two points: the first is obtained using the free-flow travel
time corresponding to an arc completely empty, while the other uses the
value assumed by the hyperbolic function when the number of users is
equal to ¢ - n5, where ¢ € [0,1). The linear performance functions in the
highway case are therefore defined as follows

T(xl) = — mA(fl ) -x},]; + iH]] (6.7)

for (i,j) € AH.
Similarly, for the railway case, the second interpolating point is associ-
ated with the value assumed by the hyperbolic function when the number

of users reaches the technical limit CS;AH"’ (see (6.40)). The following linear

performance function for the railway case is therefore obtained:

hjsmin ol AL
1.1y A7 Y 2
G = Gy o T ©8)
ij ij

for (i,j) € AR

Finally, as mentioned above, the performance functions of intermodal
arcs are constant functions, but it has been necessary to make them strictly
increasing by introducing a (although very small) relation of direct pro-
portionality between travel time and number of users on the arc in order
to guarantee the uniqueness of the solution of the optimization problem,
as detailed further on.

The performance functions for intermodal arcs are then defined as fol-
lows

1
Tz‘%j(x},j) =T+ (6.9)

1
M
for (i,j) € AP, where a;; > 1 and M is a positive coefficient sufficiently
big such that the impact of the number of users on the performance of an

intermodal arc is negligible compared to the other types of arcs.
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By defining the performance functions of the arcs as above, it can be
proven that Problem 1 is strictly convex on a convex domain and there-
fore admits a unique optimal solution with respect to variables x}, ; but not
for variables flo‘i’l. Since fl"d’l, properly converted into splitting rates, rep-
resent the input of the dynamic model, their uniqueness is an essential
requirement in this work. Several methodologies have been developed to
overcome this issue associated with the User-Equilibrium model (Borchers
etal., 2015). A possible solution is looking for a pattern of flows £, coherent
with the distribution of users at the equilibrium, maximizing an entropy
function and for this reason more likely to occur (Rossi, McNeil, and Hen-
drickson, 1989).

The resulting optimization problem is as follows.

Problem 6.

min h(f) =Y Y. Y f In(f0) (6.10)

0€JO deJD [epod

subject to

Y fét = pedd 0c]0 de P 6.11)
lepod
=3 Y M (i,j) € A (6.12)

0€]O deJD [epod

Equations (6.11) — (6.12) convey the same constraints of Problem 1 with

the only but fundamental difference that the flows on the arcs are now
}}UE, obtained as solution of Problem 1. Also, the non-

negativity constraint (6.4) is now implicit in the fact that f} 41 appear in

fixed and equal to x
(7.39) as the argument of a logarithm.

6.3.2 The multi-modal assignment model for freight flows

In this section, the multi-modal assignment model for freight flows is pre-
sented. The purpose of this assignment model is to replicate the average
freight route choices by considering as objective the minimization of the
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total travel costs needed to satisfy a given demand. Given these premises,
the multi-modal assignment model for freight is given as follows

Problem 7.
min y(x) = Y xi;-cij(xd)) (6.13)
(ij)eA
subject to
Y. £ = Do 0cJ® deJP (6.14)

lepod

£ >0 o€, dejP 1ep™ (6.15)

TED VD MDY (i,j) € A (6.16)
OE]O dE]D lepod2

od,2

where f,* and xlz/ j are, respectively, the flow of class ¢ = 2 of od pair us-
ing path I and the total flow of freight on arc (i, j). Constraints (6.14)-(6.16)
are analogous to constraints (6.3)-(6.5) included in Problem 1. As done
for the passenger assignment, the performance functions that estimate the
level of congestion and the travel time on arcs are defined by linearizing
(6.36), with (6.37) and (6.40), where c = 2. Therefore, for highway arcs, the
performance function for freight is defined as follows

Bij xS (6.17)
wini(1—¢) 7

Tz%j(xlz,j) =

where ¢ is the conversion factor adopted to express the number of trucks

xiz’ ; in the arcs (i,j) € AH in terms of passenger car equivalents. Equation

(6.17) estimates the marginal contribution on travel times due to the pres-
1

i,jr
time over arc (7, j) due exclusively to the presence of passengers, as calcu-

ence of freight vehicles, which is summed to ¢; ;, that is the average travel

lated by the dynamic model. The term % does not appear explicitly, since

ij
the free-flow travel time is contained in f},]». In fact, it is assumed that the

maximum speed vg is the same for both freight and passenger vehicles.
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In the case of railway arcs, a similar approach is adopted and the rela-

tive performance function is defined as described below
. .omin

22y =

ij\rij) = i f

JAH] (sg}m —-L) C

2
ij |l
I

(6.18)

which estimates the marginal contribution to the travel time of the arc due
to the presence of freight, summed to the travel time due exclusively to the

presence of passengers fz-l, j- The variable x2 ; expresses the amount of cargo
2.
units present on the arc. Therefore, it follows that % represents the equiv-

. . . Ajjo. . ..
alent number of freight trains. The free-flow travel time _¢ is implicitly

ij
contained in f}, -

The performance functions for freight intermodal arcs (7,j) € Alf are
defined as follows:
1
M
where 7;; > 1 and M is a positive coefficient large enough so that the

T(xt) =i T+

2

Xij (6.19)
impact due to the presence of cargo units on the arc is insignificant. Given
the performance functions for the freight transport of each arc, the cost

function in (6.13) associated with each arc of the network is defined as
Ci,j(xzz,j) = Tfj(xiz,j)cf,ifne + Ai,jczl;ace + Clﬁ]x (6.20)
where C}i]me, Cl.s?ace and Cfi]?‘ are the cost per time unit, cost per space
unit, and the fixed cost of arc (i, ), respectively. Depending on the type
of arc, the contribution made by each of the three parameters can change

significantly. For example, in the case of an intermodal freight arc, it is
f;)ace — 0
Being the performance functions (6.17)-(6.19) monotonically increasing

reasonable to assume C

with respect to the freight flows and being the cost function (6.20) linear
with respect to the travel times, it follows that also the cost function of
the arcs is monotonically increasing with respect to the freight flows. This

makes the function y/(-) strictly convex and defined on a convex set (6.14)-
2

ij°
However, also for the route choices for freight flows, the uniqueness of the

solution is not guaranteed with respect to the flows on paths fl"d'z.

(6.16) admitting a single optimal solution with respect to the variables x
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To overcome this issue, a problem analogous to Problem 2 can be for-
mulated to obtain the pattern of freight flows on the routes most consistent
with the routing problem described in Problem 3.

6.4 The macroscopic multi-modal transport network

model for freight and passenger flows

The dynamic model adopted in this work is used to capture static and dy-
namic features of the overall system through a set of discrete-time equa-
tions. Aggregate discrete-time models have already been used for perfor-
mance evaluation and optimization of specific multi-modal transportation
processes. In Caballini et al. (2013) and Caballini et al. (2016), for instance,
discrete-time models for freight movements by rail in maritime terminals
are described. The model presented in this section is much more exten-
sive considering the movement not only of freight but also of passengers
and considering a more general applicative context. that is a multi-modal
multi-class transport network.

The system dynamic evolution is described by means of aggregate vari-
ables defined for each class ¢ = 1, 2, for each arc (i, j) € ‘A, for each od pair,
with o € JO, d € JP, and for each time step k, k = 0,...,K. The main
aggregate variables adopted in the model are listed below:

. nf?’c(k) is the number of units of class c in arc (i, j) associated with

the od pair at time step k;

. Ilf’}i'c(k) is the number of units of class ¢ entering arc (i, j) associated
with the od pair at time step k;

. O??’C(k) is the number of units of class ¢ exiting arc (i, j) associated
with the od pair at time step k;

. le‘jC(k) are the splitting rates of class ¢ in arc (i, j) associated with the
od pair at time step k; note that the condition } ;g ;) ﬁOd'C (k) = 1 must

ij
be verified Vi, Vo, Vd, V¢, Vk.

It is worth clarifying that different units are adopted in the model, de-
pending on the arc type and the flow class. Specifically:
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e for class c = 1, i.e. passengers, the unit considered in railway arcs
is the number of passengers, while in highway arcs is the number
of vehicles; in intermodal arcs the units can be either passengers or
vehicles depending on the type of arc preceding the intermodal one;

 for class ¢ = 2, i.e. freight, the unit considered in railway arcs is
the number of railway wagons, while in highway arcs is the number
of trucks; in intermodal arcs, again, the units depend on the type of
preceding arc. In this work a single cargo unit corresponds to one
rail wagon and to one truck. Extending this model for considering
different load capacities in road and rail modes is straightforward

and omitted here only for the sake of simplicity.

As mentioned in Section 6.2, the dynamic model receives as inputs the

route choices of passengers and freight, i.e. the splitting rates ﬁlo;ic(k)

04 (k), for each user class ¢, are obtained from the

i,j
flows f} d.c resulting from the application of the multi-modal and multi-

These splitting rates

class assignment procedure i.e.

d,c od,c
Yiepoie 1 673
. (6.21)

'B(l?,{]i',c(k) = Z od,c  cod,c
pep(i) Liepois fT - 5p,i,l
forall k, with k = 0...,K. Note that ﬁf‘;c (k) are constant along the simula-
tion horizon since, in this work, D¢ is the total demand of the whole hori-
zon. In case the simulation horizon is divided in different time intervals,
each one characterized by a different demand, the multi-modal assignment
model described in Section 6.3 is applied for each time interval, resulting
in different splitting rates ﬁ‘fj’c(k).
Virtual queues at the origin nodes are considered in order to model the
presence of flows that have to wait before entering the network. At this
purpose, for each time step k, k = 0,...,K, the following variables are

introduced:

e 7°%¢(k) is the number of units of class ¢ associated with the od pair,

that can actually enter the network from node o € J°;
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o 1°9¢(k) is the queue length of class ¢, associated with the od pair,
which waits at the origin node o € J©.

The dynamic evolution of the system is described, for each class c and
for each k, with k =0, ..., K, by the following dynamic equation

(k4 1) = nf (k) + 124 (k) — Of< (k) (6.22)

for all (i,j) € A, 0 € J° d € JP. Let us now describe separately the
entering flows Iz;i’c(k) and the exiting flows OOd “(k).

Entering flows

The entering flows I;i?’c used in (6.22) are given by

1< (k) = By EZP; X e - 0N (k) + &5 - g (k) (6.23)
meaning that the flows of each user class ¢ that enter a generic arc (i, j) of
the network are the flows that actually succeed in exiting from the previ-
ous arcs plus the flows that actually manage to enter from node i if this is
also an origin node 0. These flows are then multiplied for ,Bad “(k), which
indicates the portion that decides to use arc (i, j) to reach destmat10n d.
Since we are describing the behavior of two class of users in a multi-
modal transport network, some parameters necessary to quantify the ef-
fective traffic load in the network have to be introduced, i.e. the two con-
version factors €;, ; and ¢ ; used in (6.23). Starting by class ¢ = 1, i.e. pas-
sengers, and considering that the transition between two different modes
of transport can only occur in an intermodal arc, the conversion factor 631,1‘

is given by
1 if (n,i) e AHUAR
e, =1 n if (ni) € APand (i,j) € AR (6.24)
;i (n,i) € AP and (i, ) € A"

where 7 is the average number of passengers per car, used to translate the
number of vehicles in passengers and viceversa.
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The conversion factor C is instead defined considering that the passen-
ger demand is given in terms of number of passengers and that an origin

node cannot be followed by an intermodal arc, therefore

L1 if()) e AR
Gij = { L f (i) € AM (6:25)

As for class ¢ = 2, i.e. the class referring to freight, both conversion
factors e ; and @‘ are set equal to 1 because, as mentioned above, a cargo
unit is assumed to correspond to one truck and to one rail wagon.

Note that the flows that actually enter an arc (i, j) depend on the capa-
bility of the arc to receive flows, i.e., the residual capacity 4;7* (k), calculated
based on the total number of units in the arc (i, j) at the time step k. To this
end let us define with nt"t(k) the total number of vehicles (expressed in
terms of passenger car equ1va1ents) present in arc (i,j) € AH at time step k
and with N;%(k) the total number of trains in arc (i, j) € AR at time step &,
which are computed as follows

nSk) =Y Y it + Y Y onfiA (k) (6.26)
0€JO dejb 0€JO dejb
for all (i,]) € AH, where ¢ is a coefficient introduced in order to translate

the trucks in an equivalent number of cars, and

IPNGUCI MWL

0€JO dejb n 0€JO dejb

Cp Cf

Nit/;)t (k) _ (6.27)

for all (i,j) € AR. The total number of vehicles and the total number of
trains present in each arc at each time step must ensure the following con-
ditions: 0 < n% (k) < ni*and 0 < N;$(k) < N3,

The re51dual capacity of highway and rallway arcs qres(k) is given by

max __ ’gqtk if ',' H
s 1) = {n,] niSt(k) if (i) € A 629

k
ql,] Nmax _ Nlt,(])t(k> if (l,]) c AR

As for the intermodal arcs (i,j) € AP U A", being fictitious arcs, we
chose to not impose bounds on the capacity.
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Now let us analyze the receptive capacity of an arc according to the

load conditions it is experiencing in a given time step. Then, let us define
od,c
i,j

to enter arc (i, ) in time step k

with w!% (k) the amount of users of class ¢ related to the od pair who want

od.c od.c c od.c : Dod,c odc
wii (k) = B (k)| ) enit St (k)+‘:i,j'< — 1 (k))} (6.29)

neP(i)

In (6.29), w?j’c(k) includes the potential outflow from the previous arcs
Sflfli’c (k), better detailed in Section 6.4, and the demand associated with the
pair od and the eventual queue length at the node i if it coincides with the
origin o.

Therefore, the total amount of units that potentially enter arc (i,]) at
time step k is given by:

LT i) +cuii?(k) if (i f) € A%

o) D
Wzt/?t (k) = veSrael w1 (k w2 (k (630)
) at(r) .
e S
IS €

Hence, thanks to the residual capacity defined in (6.28) we can deter-
mine the percentage of excess units 77; ;(k) that cannot enter at a given time
step k in the arc (i, j)

max{0,W;? (k) —q"* (k) }
tot
7i,i(k) = Wi
0 otherwise

if Wot(k) > 0
i ) (6.31)

where 71;(k) € [0,1]. Specifically, 7r; ;(k) is equal to 0 when W;$* < g"(k),
i.e. when the residual capacity is sufficient to host all units that want to
enter arc (7,j), while 7; (k) is equal to 1 when ¢g"°(k) = 0, i.e. when the
residual capacity is zero and all units that want to enter arc (i, j) cannot do
SO.
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Having said that, the units that can effectively enter from an origin
node is computed as follow

od,c
qod,C(k) |:DK + lodc :| Z ﬁOdc 1 _ ﬂon(k)) (632)
neS(o)

whereas the relative queue of units at the origin node o is given by

od,c

ZOd’C(k—I— 1) — lOd,C(k) + .

od,c
1K) (6.33)

Exiting flows

Even with respect to outflows from an arc, these are calculated based on
the residual capacity of the arcs they wish to enter. For this reason, we
distinguish ij’c(k), i.e. the units actually exiting arc (7,), from Sfj’c(k),
i.e. the units that would like to exit arc (i, j) at time step k.

Let us start by describing the relation that defines the potential outflow
from an intermodal freight arc (i,j) € AY preceded by a highway arc. We
assume that cargo units can only enter the rail network if they are enough
to fully load at least a freight train with capacity Cf. Since the transfer of
cargo units from road to rail is realized through a freight intermodal arc, we
consider that this arc behaves as a buffer where cargo units wait until their
number is sufficient to fill at least one train and then leave the intermodal
arc. The number of cargo units possibly leaving a road-to-rail intermodal
arc (i,j) € A is then given by

94’2(k)J cf

n
sit2() = |

= (6.34)

Now let us discuss the potential outflow for all classes ¢ for the arcs
(i,j) € AHU AR, for passengers in arcs (i,j) € AP and for freight in
rail-to-road intermodal arcs (i,j) € A". The potential outflow Sfj’c(k) is

computed as

Sy (k) = n{%< (k) (6.35)
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where t; ;(k) is the transfer time required to cover arc (i, ) defined accord-
ing to the following relation

A . ..
vy f () € AT
A’i,' ep /e R
k) = vy 07 €A (6.36)
Kij - T if (1,]) c AlP

Yij- T if (i) € A

For intermodal connections allowing the modal change from rail to
road, the transfer time t;;(k) is considered constant and equal to a;; - T,
with a;; > 1 for each (i, j) € AP and equal to +y;; - T, with ;; > 1 for each
arc (i) € Al Instead, in intermodal connections allowing the road-to-rail
modal change, the transfer time is not fixed and depends on the possibility
to fill trains, i.e. on (6.34).

With regard to highway and railway arcs, it should be noted that, for
both types of arc, the transfer time is estimated as a function of the total
number of vehicles or trains present in the connection. More in details,
for each highway arc (i,j) € A", the transfer time t; ;(k) is computed ac-
cording to the current traffic conditions through the steady-state relation

between speed and number of vehicles given by

. wi, i g (k)
V;,j(ni%(k)) = min {vg, nfgt(]k) Ai,]-[ A]z',j — ii,]’ } } (6.37)

Relation (6.37) has been derived from a triangular fundamental dia-
gram, as the one proposed by Daganzo (1994), and expressed in terms of
number of vehicles.

Starting from a graphical train timetable, a function expressing the steady-
state speed with respect to the number of trains has been defined. Before
introducing the relation Vi,]-(Nit,‘]?t(k)) adopted in (6.36), let us briefly sketch
the main steps that have led to the definition of this relation. Let us con-
sider a generic graphical train timetable and let us define with AX the spa-
tial interval, AT the time interval and with N the number of trains present
in that frame, hence the average space headway § can be defined as 5 = 5*
while the average time headway  is given by I = 4L. Let us also de-
fine the relation between the average space headway and the average time
headway that is givenby § =h-v + L,
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where v is the train speed and L is the average length of trains.

Inspired by the traffic fundamental diagram, we can assume that, for a
given average time headway, the maximum flow of trains in an arc corre-
sponds to an average space headway equal to § = /i - v™ + [, where v™
is the maximum speed allowed. At the same time, it has to be remembered
that trains have to maintain a minimum distance s™" that allows them to
stop safely; consequently, as the number of trains on an arc increases, they
have to reduce their speed in order to guarantee this safety distance. Then,
a triangular traffic fundamental diagram in the railway context can be de-
fined as follows

(6.38)

O
N
0| =
N———
I
Il ST
—~
—_
|
Pl
~—

where Q(2) is the “flow of trains” in function of the average space head-

way. The corresponding steady-state speed-headway relation V(1) is given

1 Fromax 1L
v(5)- e (639)
if fomerr <5 S
Q(%)4
vma’;‘ (1-%
: 1
1 1 Ts
0 ]jl,vmax_;'_L gmin

FIGURE 6.3: Triangular fundamental diagram for railway
traffic
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FIGURE 6.4: Steady-state speed-headway functions for
railway traffic

By considering that the inverse of the average space headway has an

tot

equivalent meaning of “density of trains” in an arc, i.e. —§—, the steady-
state speed relation V; ;(N;$'(k)) for all (i, ) € AR may be formulated as

Nt (k)
R i 1
vi/j if Aij = h,,v +L
-~ (njtot _ 1 Ajj
Vz,]<Nz’,j (k)) = hij <N}‘]’t(k) - L) (6.40)
N (k)
: 1 ij 1
if hzjv +L < A = s}f}i“

It is worth noting that, for each highway or railway arc, condition (6.1)
with (6.37) and (6.40) implies that the transfer time t;;(k) is never lower
than T, ensuring the validity of the conservation equations.

Finally, given Sfj’c(k) and 7;j(k), we can compute the outflow ij’c(k)
which represent the units of class c referred to the pair od that actually exit
the arc (7, ) as

O?jc( _ Sodc Z ﬁodc ( ﬂj,n(k)) (6.41)

nes(j

6.5 Simulation results

The focus of this section is to show the potential benefits that can be ob-
tained by adopting the proposed multi-class multi-modal modeling scheme,
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simulating a perturbation on the network and then analyzing how this
event can affect the rest of the network. Specifically, the considered per-
turbation is the failure of a connection in the multi-modal network. The
experimental tests have been performed in two distinct scenarios:

* Scenario without disruption: network at the equilibrium before the ad-
vent of the disruption;

e Scenario with disruption: network once a new equilibrium is reached

some time after the initial perturbation.

To evaluate the performance of the multi-modal transport network be-
fore and after the disruption, the Total Travel Time referred to each arc is
calculated as follows:

TTT,; =T Z Z Yo Y ne(k (6.42)

=1c=10€JO dejP

The total travel time is an indicator that computes the total time spent
by each unit in a connection, considering that an arc can belong to multiple
paths at the same time.

The results have been obtained by adopting a test network derived
from the well-known Nguyen-Dupuis network properly modified to con-
sider the multi-modal case (for further information see Nguyen and Dupuis
(1984)). This network is composed of 14 nodes and 21 arcs, as depicted in
Fig. 6.5. The critical event is simulated considering the total loss of func-
tionality of the railway arc 12-8.

The main parameters of the highway and railway arcs are reported in
Table 6.6 and Table 6.7, respectively. The other parameters have been set
as follows: the conversion factor 7, representing the average number of
passengers per car, is equal to 1.45, the congestion wave speed w; ; is equal
to 30 [km/h], V(i,j) € AY, the average time headway hj,is 15 minutes and
the minimum average space headway smm is equal to 2 [km], V(i,j) € AR,
while the constant parameter «;; has been set equal to 15, V(i,j) € AP and
vi,j equal to 30, V(i,j) € AM. The capacity of a freight train Cf is 25 rail
wagons, while the capacity of a passenger train CP is chosen equal to 700
passengers.
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Freight flows @ e
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FIGURE 6.5: Sketch of the test multi-modal transport net-
work.

As for the macroscopic multi-modal transport network model, a sam-
ple time T equal to one minute has been adopted, while the time hori-
zon of the simulation has been set equal to one hour, that corresponds
to K = 60 time steps. The transportation demand is expressed with two
origin-destination matrices, one referring to passengers, as shown in Ta-
ble 6.8, and one referring to freight, as indicated in Table 6.9. The mobility
demand of both passengers and freight is assumed to be perfectly inelastic
and therefore it is the same in the two tested scenarios.

Note finally that, in both scenarios described below, the splitting rates
ﬁ?j’c (k) computed by the multi-modal traffic assignment are constant through-
out the simulation period, and, then, k is omitted for the sake of simplicity,
L. BI4(K) = B

6.5.1 Scenario without disruption

The methodology presented in section 6.3 has been used to allocate the pas-
sengers demand on possible routes and the resulting assignment is shown
in Fig. 6.6. It is worth reminding that the feasible paths are those that have
at most one modal shift. The paths used at the equilibrium, before the dis-
ruption, are reported in Table 6.10: one path adopts only the rail mode,
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TABLE 6.6: Main parameters referred to highway arcs.

| Apjlkm] | of} [km/h]

arc 1-5 6
arc 4-5 5
arc 4-9 12
arc 5-6 40
arc 5-9 6
arc 6-7 40
arc 6-10 8
arc 7-11 7
arc 9-10 40
arc 10-11 40
arc 11-2 6
arc 11-3 4

70
70
70
120
70
120
70
70
120
120
70
70

TABLE 6.7: Main parameters referred to railway arcs.

| Aijlkm] | R [km/h]

arc 1-12 40
arc 8-2 6
arc 12-8 50
arc 13-3 40
arc 14-13 45

100
70
100
70
70

TABLE 6.8: Passengers origin-destination matrix.

pod.l Destination node 2 | Destination node 4
Origin node 1 1800 1500
Origin node 4 2500 2000

TABLE 6.9: Freight origin-destination matrix.

pod.2 Destination node 2 | Destination node 4
Origin node 1 150 80
Origin node 4 40 25

five are highway routes, while the remaining eight require the use of both

modes of transport.



6.5. Simulation results 155

TABLE 6.10: Paths used by passengers in the pre-
disruption scenario

od pair ‘ paths

1-2 | [11282]

1-3 | [15910113],[1567113],[11267113],
[15914133]

42 | [4910112],[45910112],[45610112],
[4567112],

43 |[4910113],[4567113],[4914133]

TABLE 6.11: Paths used by freight in the pre-disruption
scenario

od pair ‘ paths

12 | [11282]

1-3 | [15914133]

42 | [4567112],[45910112],[4910112]
4-3 |[4914133],[45914133]

The non-zero splitting rates are in this case:

. 12,1 12,1 12,1 12,1 12,1 12,1
'OdPalrl'Z:ﬁllz_lﬁM— Bz _1/,37,11_1[3 _1/5112—1
12,1 .
128 = L

* od pair 1-3: ﬁBl = 0.92, /3%315 0.92, l3131 0.36, ‘Béggl 064,

131 _ 131 13,1 13,1 13,1 131 _
=1 18711 - 910 - 012’:89,14 =1 10,11 — 11,3 — L,

131 131 131

12,6 — 133 143 —

e od pair 4-2: ﬁ421 = 0.62, /3421 = 038, B! = 0.75, Pag' = 025,

421 421 a1 42,1 42,1 421
= 0.67, .3610 0.33, 5711 :1/.5910 =1, 51011 =1, 5112

e od pair 4-3: 13! = 0.18, X! = 0.82, /3431 /3431 =1, /3‘%31% =1,

43,1 431 431 43,1 __ 43,1 _ 43,1 __
9,10 — =0.28, ﬁ914 0.72, 131011_ 7 11,3 T 13,3 — 14,13 —

The freight flows are fixed and their distribution is shown again in
Fig. 6.6, while the paths are reported in Table 6.11. The corresponding non-
zero splitting rates, again considered constant throughout the simulation,
are the following;:
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. 122 122 _ 122
* od pair 1-2: B> =1 Bgs 128 —
. 13,2 13,2 13,2 13,2 13,2
* od pair 1-3: :515 =1, 655 =1, 59,14 =1, .313,3 =1, 514 13 =
. od pa1r4 -2: By = 0.75, [5422 —=0.24 ;3422 =017, Bsy’ = 0.82 ;3@27'2 =
02 02 w0y 0y ’
711 =L P12 =1 Boip = 1011 —
* od pair 4-3: B35 = 021, /3432_078 /3432_1, Bon=1pP35=1
432 _ 4 ’
1413 —

It should be noted that among these routes, only one is of intermodal
type, with a change from road to rail, one route is entirely by railway, while
the remaining ones involve only the use of highway arcs.
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FIGURE 6.6: Pre-disruption equilibrium

6.5.2 Scenario with disruption

As mentioned earlier, the disruption is represented in this example by re-
moving the railway arc 12-8. Regarding passengers, the new path config-
uration for each origin-destination pair is shown in Table 6.12. As can be
seen, the railway path [1-12-8-2] no longer appears since it includes the
damaged arc. As shown in Fig. 6.7, there is a shift of od pair 1-2 flows
and, as a consequence, a greater load on the central arcs of the network,
in particular on path [1-12-6-7-8-2]. On the other hand, not surprisingly,
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the southern paths in the network for pair 4-3 are the least perturbed as
testified by the fact that the flows do not undergo excessive redistribution,
meaning that for those users the most attractive routes have remained the
same. The splitting rates for passenger flows are the following;:

o od pair 1-2: B3 = 041, %, = 059, B5z = 0.85, 5121 = 0.15,
12,1 121 12,1 12,1 12,1 121 _
166 712: 0'69’ 18?21(1) = 0. 31121[1%78 - 0'27' ‘57 11 — 0‘73’ 1582 - ’ 9,10 —
LEgn =LA =1B0s=1;
" od pairml;& %351 y 12.?2/ 5131;13_1 048 '8%11 — oL ﬁl%l — 913ﬁ1131 N
0.65, Bgip = 035, B711 =1, Boiy = L Bignn = L Bz = L Pioe = 1,
131 _ 1 131 _ 1
13,3 ’ ﬁ143
o od pair 4-2: B! = 057, B =043, B2 = 0.8, Bey' = 02, By =
0.78, Bero = 022, By = 0.54, B = 046, B3’ = 1, By = 1,
42,1 _ 1 ‘8421 — 1
10,11 11,2

o od pair 4-3: B3 = 0.19, B! = 0.81, Bey' = ‘;31}) =1, oo = 0.22,
43,1 431 431 431 431
914—078 51011— 11,3_1 5133— 1413:

TABLE 6.12: Paths used by passengers after the disruption

od pair ‘ paths

12 | [15910112],[156782],[112610112],
[11267112],[15610112],[15610112]
1-3 | [112610113],[11267113],[159 1413 3]
[1567113]

42 | [4910112],[45610112],[456782]
[45910112],[4567112]

43 | [4910113],[4914133],[459 14 13 3]

As far as freight flows are concerned, similar considerations can be
made, since the railway path can no longer be used and the freight flow
of od pair 1-2 is reassigned to the remaining path, as reported in Table 6.13
with the resulting assignment shown in Fig. 6.7. The corresponding non-

zero splitting rates are as follows:
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TABLE 6.13: Paths used by freight after the disruption
od pair | paths
1-2 [112610112],[11267112]
1-3 [1591413 3]
4-2 [4910112],[45910112]
4-3 [4914133],[45914 13 3]
Origin
Origin g E §
Q»:\i\ ”IE NIS RIES =
\ l Destination
Passenger flows
Freight flows
Destination
FIGURE 6.7: Post-disruption equilibrium
. 122 12,2 12,2 12,2 12,2
* od pair 1-2: 51 12 = 4 .367 = 0.83, 5610 = 0.16, 1567 =1 1011 — L,
12,2 -1 ﬁ122 — 1
11,2 7 712,6
: . pl32 132 13,2 13,2 13,2
* odpa1r1—3.[315 =1, B5¢ =1, 914 — L, 133— 1413—
e od pair 4-2: /3422 = 0.65, /5422 035, Bey” = 1, /34“ =1 /3‘% =1
42,2 1 ﬁ42 2 4272
910 — 10, 1 = 11,2 =
* od pair 4-3: B = 0.89, ﬁ432 =011, B2y’ =1, Boxz = L P13 =
43,2 -1
14,13 —

Table 6.14 shows, for each arc, TTTE i.e. the total travel time com-
puted in the pre-disruption scenario, TTTE , i.e. the total travel time in the
post-disruption scenario, and ATTT;, i.e. the absolute deviations of the
same metric. Analogously, Fig. 6.8 shows, for each arc, the total travel time

percent variation by exhibiting the effects of disruption more clearly.
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FIGURE 6.8: Total Travel Time absolute variations.

TABLE 6.14: Total travel time for each arc

| TTTf | TTT)) | ATTT;
arc 1-5 101.33 | 110.80 | +9.47
arc 1-12 629.54 | 581.38 | -48.16
arc 4-5 129.16 | 122.68 | -6.48
arc 4-9 219.33 | 22751 | +8.18
arc 5-6 392.94 | 360.76 | -32.18
arc 5-9 88.99 | 101.99 | +13.00
arc 6-7 227.88 | 26840 | +40.52
arc 6-10 2057 | 4097 | +20.40
arc 7-8 0.00 | 34.09 | +34.09
arc 7-11 4092 | 3117 | -9.76
arc 8-2 3846 | 913 | -29.33
arc 9-10 360.60 | 359.39 | -1.21
arc10-11 | 251.67 | 28598 | +34.31
arc 11-2 5257 | 63.23 | +10.66
arc 11-3 2241 | 1378 | -8.63
arc 12-8 184.64 - -
arc 13-3 107.92 | 12449 | +16.56
arc14-13 | 23044 | 26581 | +35.37
arc9-141f | 3796 | 37.84 | -0.12
arc9-141Ip | 186.27 | 214.86 | +28.59
arc12-6If | 0.00 | +11.65 | +11.65
arc12-6Ip | 541 | 8152 | +76.11

As can be seen, the disruption of the 12-8 arc implies that freight and
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passenger flows, which previously used the more peripheral rail route, are
re-assigned in more internal routes, particularly multi-modal routes. Con-
sistent with an overall load increase on the central arcs of the network, it is
possible to observe a shift, though small, of flows of the 4-3 pair in favor of
the outermost multi-modal route [4-9-14-13-3]. Not surprisingly, the arcs
relatively most affected by the perturbation are those in proximity to the
disrupted arc, such as arcs 12-6, 6-7 and 7-8. However, it can be seen that
even the central arc 6-10 experiences a 30% increase in total travel time.
The computation of a metric such as the total travel time, by means of the
multi-modal transport model presented in this chapter, allows therefore to
identify the elements of the network that will be more stressed after the

perturbation.

6.6 Possible applications of the proposed approach

This section discusses possible applications of the proposed approach. Specif-
ically, the possible uses can be distinguished into scenario evaluation and
development and testing of regulatory policies and control actions. These two

application areas are briefly discussed below.

Scenario evaluation

The proposed model can be adopted to evaluate the effects of the decisions
of the users on a transport network. These effects can be quantified through
the adoption of specific performance indexes such as the TTT introduced
earlier or through the development of other indicators. For instance, this
model can also be used to assess the sustainability of user choices by in-
tegrating this modeling scheme with models that estimate emissions or
energy consumptions.

Scenarios of particular relevance are those concerning the occurrence of
critical events. Indeed, large transport networks are anyway susceptible to
critical events that may have severe implications on the whole activity sys-
tem of a territory. These disruptive events may be caused by natural phe-
nomena (such as floods, earthquakes, pandemics, etc.) or anthropogenic
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causes (such as terrorist attacks, infrastructure failures, but also planned
maintenance works): whatever the cause, they may affect the transport
network as a variation of mobility demand or as events that partially or
totally deteriorate the capacity of a transport network. In this regard, a
topic that is attracting particular attention in scientific research is the eval-
uation of the resilience of a transport network, i.e. its ability to resist,
adapt or change in order to maintain acceptable performance in case of
critical events. Although the concept of resilience has been initially intro-
duced to describe a property of natural systems (Holling, 1973), recently
it has been applied to transport networks and in particular to road net-
works (Gauthier, Furno, and El Faouzi, 2018; Siri, Siri, and Sacone, 2020a;
Siri, Siri, and Sacone, 2020b) and railway networks (Adjetey-Bahun et al.,
2016; Dorbritz, 2011; Besinovié¢, 2020). However, transport networks are
complex and highly interdependent systems and a critical event affecting
one mode of transport can have an impact on other modes giving rise to a
chain effect. What is lacking in the literature, and what this work intends
to address, is the possibility of using a tool that allows to quantify the ef-
fects of these interdependencies and to evaluate the ability of a transport
network to maintain acceptable performance even when it is affected by
disruptions.

Development and testing of regulatory policies and control actions

The modeling framework proposed in this chapter may constitute the ba-
sis for regulation and control approaches finalized at defining routing and
modal indications to be provided to the users. First of all, this model can
be used to provide more detailed information to users about travel times
or route choices for improving sustainability. Moreover, specific routing
instructions can be defined for the users and, since the modeling scheme
is multi-class, such instructions can be suitably defined for each class of
users.

Finally, the proposed two-stage modeling framework may be adopted
to test control policies that aim at fully exploiting the mobility capacity of a

large-scale multi-modal transport network by suggesting routes that may
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include one or more transport modes.This can be done both in nominal
conditions of the network or when the transport system is affected by an
event which changes its structure or the mobility demand.

6.7 Conclusions

A two-stage modeling approach is presented to represent passenger and
freight flows on a multi-modal transportation network, i.e. a network
in which there are roadways, railways, and connections that allow the
modal shifts. The modeling scheme consists of an assignment model and a
discrete-time macroscopic dynamic model. The assignment model allows
to represent the choices of the users, both passengers and freight, in terms
of routes and transport modes. These route choices provide the input to the
dynamic model that allows to represent the evolution in time and space
of user flows, allowing to evaluate some dynamic characteristics such as
speed and travel time on the network arcs.

The methodology presented has been tested on a case study in which
one of the possible applications of this modeling scheme has been shown.
The objective of this analysis has been to evaluate the behavior of a net-
work subject to a disruptive event, specifically the loss of functionality of a
railway arc. This application revealed the ability of the multi-modal model
to capture the ripple effects of such events that cannot be gained if ana-
lyzed with models representing a single transportation mode only.
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Based on Siri, Siri, and Sacone (2022a)
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In this chapter, the insights concerning the inertia associated with users’
decision making process as introduced in chapter 5 are extended and fur-
ther explored in a path-based day-to-day traffic assignment model that
takes into account users bounded rationality. More specifically, the as-
signment model belongs to the class of proportional-switch adjustment
processes. It is inspired by the discrete implementation of Smith’s model
(Smith, 1984) formulated by Guo and Huang (2016) and it is specifically
designed to represent the evolution of a network under substantial alter-
ations. For any given day, the amount of net flow that shifts from one
path to another in response to changing network conditions is computed.
As discussed in section 4.1, a common way to interpret the concept of
bounded rationality in the context of traffic assignments is by defining an
indifference band. A driver is therefore stimulated to change route only
when the travel time exceeds a certain threshold. In addition, Lotan (1997)
shows that the drivers familiar with the network are less likely to aban-
don roads they already use. One interpretation of this phenomenon may
be found in the empirical study conducted by Hiraoka et al. (2002), where
it is shown that drivers tend to prefer routes that are cognitively easier
to determine. Choosing to adopt solutions that have already been pre-
viously drafted is likely to be cognitively cheaper compared to develop-
ing new ones. The empirical study by Vreeswijk et al. (2013) investigates
users’ route choice behaviour and in particular the underlying reasons for
their systematic travel time miscalculation. It is shown that only 41% of
respondents choose the actual shortest route. The results of the interviews
support the hypothesis according to which users are affected by "choice
supportive bias" (Mather, Shafir, and Johnson, 2003), i.e. users are inclined
to associate positive attributes to the choices they have made while, con-
versely, they are more likely to associate negative attributes to the alterna-
tives they have not chosen. Regarding route choice, a clear correlation is
shown between travel time overestimation and whether a route was cho-
sen or not. Travel time overestimation tends to be on average significantly
higher for non-chosen routes. Meanwhile, it is well recognized in the liter-
ature that the extent of overlap between paths can affect their probability
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of being chosen. For instance, one of the greatest flaws attributed to logit-
based stochastic models is that they present two paths as totally distinct
alternatives even when they almost completely overlap (independence of
irrelevant alternatives). Therefore it is reasonable to assume that the more
two paths overlap, the more indifferent a traveller is in using one rather
than the other. The model proposed in this chapter, which represents an
extension of Siri, Siri, and Sacone (2022b), attempts to encapsulate this be-
havior with a dynamics in which the users reconsider their travel choices
not only based on the congestion level on the routes they are experiencing
but also on the degree of topological similarity between the roads poten-
tially improving their condition and the one currently used. When pushed
by new network conditions to change routes, users will favor those that
more strongly overlap with the one they currently use. In other words,
users on different routes perceive the cost of the same route differently.
We call this phenomenon as “spatial inertia”. This tendency is formally
expressed by an over-cost that users assign to the paths they are not us-
ing. This approach is similar to the one applied by Cantarella and Cascetta
(1995) where, within a conditional path choice model, an extra utility is at-
tributed to the path chosen on the previous day, representing a transition
cost. In the present work, however, an extra disutility (extra travel cost) is
attributed to the non-chosen routes which is not considered fixed but in-
stead inversely proportional to the topological similarity between a route
and the one chosen on the previous day. Additionally, a “temporal inertia”
is also introduced to capture the myopia phenomenon identified by Con-
lisk (1996). The users with a travel cost substantially decreased as a result
of a switch will be less inclined to eventually leave it in the future since
they are confident of the improvements already achieved. We will show
how these attitudes correspond to a bounded rationality behavior and we
will prove that the stationary point reached by the dynamic process corre-
sponds to a BRUE.

Recently, Zhang et al. (2019) proposed a continuous-time DTD which
takes into account the path overlap within the switch process. More in
detail, both the cost difference between the paths moderated by a vari-
able indifference band, which scales with respect to the costs, and the net
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marginal cost, intended as the marginal cost difference between the paths,
are taken into account in the user decision process. According to Zhang
et al. (2019), the users prefer, given the same amount of actual travel cost
savings, the routes that will result in a lower cost increase once the switch
takes place. As a result, given the same travel cost savings, users tend to
prefer those routes that overlap with the one currently used, since the over-
lapped portion does not contribute to the net marginal cost increase. In the
present work, conversely, such a behavior is obtained from the topologi-
cal characteristics of the network exclusively and not from the functional
features of the arcs. The flow switch process is not directly influenced by
marginal costs, although it is indirectly influenced once the costs are up-
dated (this is a common feature of DTD models), but it is instead clearly
influenced by the overlapping percentage of the paths, evaluated taking
into account the specific link lengths since links of different lengths have a
different impact.
The main features of the proposed proportional-switch day-to-day discrete-

time adjustment model can be summarized as follows:

* spatial inertia, i.e. topological proximity dependent costs are intro-
duced to represent that users have a high inertia to change route if
the new route has little overlap with the one currently used;

¢ temporal inertia, i.e. users who have just achieved a good improve-
ment with a switch present a high inertia to change route again;

* the model is based on the interpretation of users’ choices and then it
is proven that this behavior corresponds to a bounded rational atti-
tude, i.e the stationary point reached by the system is a BRUE.

From a theoretical point of view, the present model proposes a differ-
ent approach for representing users” bounded rationality. Relying on a
unique indifference band, fixed or relative, enables to represent the iner-
tia involved in abandoning an option but it does not provide any insight
about the option adopted instead. Answering this question generally re-
sults in picking the route that provides the user with the largest travel
time/cost savings. This approach implicitly assumes that the user con-
siders each alternative distinct and independent. But the works by Lotan
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(1997) and Vreeswijk et al. (2013) suggest how this may not be true. It
is therefore reasonable to assume that the inertia involved in abandoning
one solution in favor of another should be influenced by the perceived sim-
ilarity between the alternatives. In other words, small cost/time variations
may trigger modest flow adjustments, i.e. between similar paths, while
larger cost/time fluctuations may cause larger flow adjustments, leading
to a switch even towards paths quite different from those previously used.
By adopting this approach, it is possible to represent multiple indifference
thresholds, whose size varies according to the extent of correlations be-
tween the alternatives (overlapping).

From an applicative point of view, the proposed model can be utilized
for the representation of the dynamics emerging out of the interaction be-
tween users and the transport infrastructure, especially when the network
undergoes significant planned or unintentional alterations. Therefore, by
defining appropriate performance metrics, it is possible to assess, for exam-
ple, the degree of resilience or vulnerability of a network relying not only
on topological analysis, but also properly taking into account the impact of

user reaction over time.

7.1 The Proposed Model

The transport network is represented by an oriented fully-connected graph
G(N, A) with a finite set N of nodes and a finite set A of links. Let R C N/
and S C N be the subset of origin nodes and the subset of destination
nodes, respectively. Time is discretized and represented by the variable
t = to, t1,..., indicating a generic day. Note that disruptions cannot occur
at o but only on subsequent days. This allows to define a reference of the
system fundamental quantities in a pre-disruption scenario, required in the
definition of appropriate performance metrics, as will be illustrated later.
The main notation of the proposed model is reported in Table 7.1.

Let # = {h: h € R x S} be the set of all origin-destination node pairs
while q = {g; : h € H} is the associated travel demand vector, where
an element g, represent the demand for OD pair h. Let K' denotes the
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Sets
N Set of nodes
A Set of links
to, t1, --- Days
H Set of origin-destination (OD) pairs
K} Set of all loop-free paths of OD pair h
on day t
A Link-path incidence matrix
(5Zk Equal to 1 if link a belongs to path k
of OD pair h
Q] Link-path feasible set
Cht Average actual travel cost of OD pair I on day ¢
E"(t) Historic average travel cost of OD pair /& on day ¢

Flow Vectors

q Travel demand vector

qn Travel demand of OD pair h € ‘H

x(f) Link-flow vector on day ¢

Xa(t) Flow on link @ € A on day ¢

£(t) Path-flow vector on day ¢

]f(t) Flow on path k € K} on day t

Costs

c(x(t)) Link cost vector on day ¢

ca(xa(t)) Travel cost on patha € A onday ¢

ch(t) Relative path cost matrix for OD pair h on day ¢

CZS (t) Relative cost of path s compared with path k
of OD pair h on day ¢

Sh(t) Cost of switching from path k to path s
of OD pair h on day ¢

Al(t) Actual travel cost on path s of OD pair & on day ¢

Dl (t) Cost-based swap-rate between path k and
path s of OD pair & at day ¢

L(t) Myopia-based swap rate of OD pair h on day ¢

Parameters

b4 Switch coefficient

¢ Myopia coefficient

P Path usage threshold

M Reluctance coefficient

TABLE 7.1: Main notation
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set of all available path connecting each origin with the associated desti-
nation on day t. Regarding the flows traveling on the network, the vec-
tor x(t) = {x,(t),a € A} represents the link flows, where x,(t) is the
amount of traffic on link 2 € A on day f. On the other hand, the vector
of path flows is denoted as f(t) = {fx(t),h € H,k € K'}, where fi(t)
identifies the traffic flow on path k € K' at day t. In order for the flows
to be consistent with each other, the following matrices are defined. Let
A = {04 :a € Ak € K'} be the link-path incidence matrix where each ele-
ment §,; = 1if link a is part of path k. Finally, let 2 = {&x : h € K',h € H}
be the OD-path incidence matrix, where &y, = 1, if path k connects OD pair
h. Consequently, for each day, the following relationships must be satisfied

x(t) = A(t) (7.1)
q = E£(t) (7.2)
£(t) > 0 (7.3)

where (7.1) requires link-flow and path-flow vectors to be consistent, (7.2)
requires demand-flows and path-flows to be consistent while (7.3) implies
flows non negativity on each day. Thus the set © of feasible link and path

flows can be defined as:
O = {(x,f): (7.6) — (7.8) hold} (7.4)

In order to make some of the formulations that will be presented in
the following clearer and easier to read, let us to introduce this additional
notation. Let K} C K' be the set of path connecting OD pair /1 € H. Con-
sequently, we say that a path belongs to the OD pair £, if the following
hold.

f) = filt) : G =1 heMkeK, (7.5

therefore it applies that f}'(t) € K!. Therefore, the relations in (7.1)-(7.3)

can be reformulated as follows.



Chapter 7. Bounded rationality-based day-to-day traffic assignment model with

170 topological proximity dependent costs
W)=Y Y fne, a€ A (7.6)
het keK},
m= ) fi(H heH (7.7)
kekt
) >0 heH,kekh (7.8)

where a link-path incidence matrix element 6" = 1 if link a is part of path
k € Kj,.

Let then consider the case of separable, differentiable, monotonically
increasing link cost functions ¢(x(t)) = {ca(xq(t)),a € A}, where ¢, (x,(t))
is the travel cost that users experience at day ¢ by travelling through link
a. Regarding instead the paths, we introduce for each OD pair a matrix of
relative-costs C"(t) = {C}.(t),h € H,k,s € K.}, where each element C}. (t)
represents how users travelling on path k € K] perceive the costs of path
s € K! at day step t. The relative-cost C. () is defined by the sum of two
cost components:

Cr(t) = Al(t) + S.(1) heMkekl,sekl (79

where

Al(t) =Y ca(xa(t))d0 heH,ac AsecK (7.10)
acA

SZ (t) _ Y ZuGA 521((1 _525)111
’ Tsh(t) ZaeA(‘sgkla)

heH,ae AseK, ke (7.11)

Equation (7.10) allows to compute the actual travel cost of route s as
the sum of the actual travel costs of each link within it. On the other
hand, (7.11) is an additional cost component representing users’ reluctance
to change habits. SZS( t) denotes the switching cost of users currently on
path k willing to change their choice in favor of path s, where I, repre-
sents a length measure of link 4, while ¥ > 0 determines the weight of this
cost component compared with A’ (t). As can be seen in (7.11), such cost

depends on the overlapping percentage between the two paths, i.e. how
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much they share some portions of the network. The more the two paths
overlap, the lower the switching cost becomes, reaching zero if k = s, i.e.:

THE)  Yaea(dhla)

heMt,kek] (7.12)

since 8", is binary, implying that ¢ (1 — 6" ) = 0.
This leads to the following relation:

AR(t) = Ci(h) heM ke KL (7.13)

It is worth noting that if [, = [,Va € A, the switching cost depends
purely on the number of shared links between the two paths regardless of
their length.

Referring again to (7.11), T!(t) is responsible for the evolution of the
switching cost over time. The main idea is that, when a route is signifi-
cantly used by users of an OD pair, such a route becomes "familiar". Once
a route is familiar to users, the perceived costs of switching to it decreases
over time until they vanish. On the contrary, a route not significantly used
by users is defined as "unfamiliar". In this case the cost of switching from
other routes to it does not decrease over time. One way to represent this
process is as follows:

F—th if > th
T (t) = : | (7.14)
1 otherwise

where t! is the day after which the route can be considered familiar. Tt
must hold that f(t") > yg, A fH(t) < gy, Vt < !, with ¢ € [0,1]. In
other words, T!(t) begins to increase when path s starts to be used by a
consistent percentage of users, represented by parameter ¢. This implies
that, for all familiar paths, the switching cost fades to zero over time result-
ingin C' (t) — Al(t). Thatis, users consider only actual path costs in their
assessments. It is worth noting, however, that t? does not necessarily exist
for each path of pair h. In that case, s is still considered unfamiliar and as a

consequence T (t) = 1 indefinitely.
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Equations (7.9)-(7.13) imply that the relative path cost matrices are square
matrices, having the actual costs on the diagonal as follows:

A ... ()
c'y=| : . (7.15)
Ch(t) ... Ap(t)

where p is the cardinality of set K} .

7.1.1 System dynamics

Making use of the notation and definitions exposed so far, the path flow

dynamics can be expressed as:

fie+1) = fi + L) Y [AODLE - fDLB]  heHkek;,

SEK:;I
(7.16)
where:
D} (t) = [Ak(1) — G (1))« keKl,sekl (717)
ks Y X [Al) - Ch(D)] +M m m
ZEICII]EICh
Li(t) = e?IC"(O-E"(=1)) heH (7.18)

with projection operators |-+ and [-]- defined as [x]; = max{x,0} and
[x]- = min{x,0}.

Referring to (7.17), DJ'. (t) denotes a cost-based swap-rate between path
k and path s of OD pair & at day ¢. It represents the percentage of flow f/'(t)
which will swap towards s on the next day. According to the definition of
projection operators, the equation implies that, if the travel cost of route
k is higher than the one of route s, then a fraction D} (t) of the users will
transfer to route s. The swapping percentage is equal to the cost difference
between k and s, normalized over the the total travel cost variation for OD
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pair i plus M, a reluctance coefficient, which represents the insensitivity of
users to travel cost differences.

Referring to (7.18), L"(t) further scales the flows of the pair & that will
actually make the shift. This rate encapsulates users” myopia and subse-
quent optimism when they are facing an improving situation. On a day
t, the more the average travel cost C"(t) experienced by the users has de-
creased compared to the historic average travel cost E(t — 1) experienced
up to the previous day, the lower the percentage of those who will decide to
change route again on day t 4 1. The ¢ coefficient alters the intensity of this
behavior. As defined in (7.19), the average cost for pair & is obtained by av-
eraging the actual path costs over the relative flows. As time passes, these
costs are embedded within the exponential smoothing defined is (7.20),
representing users’ past experiences, with ¢ € (0,1].

ity = LY ey Al heH (7.19)
q"(t) ke
~h : _
EM(t) = C_<t°) fE=to heH (7.20)
ECM(t) + (1 — &)EM"(t —1) otherwise

Figure 7.1 helps to better understand how users’ myopic behavior is
implemented and the impact of ¢ on it. On the x-axis we find the value,
at day ¢, of the average cost C"'(t), while on the y-axis the corresponding
value of L"(t) is reported. By fixing ¢, if C"(t) > E"(t — 1), i.e. if the
costs experienced by the users of pair & on day t are on average higher
than those experienced in the past, then the percentage of users shifting is
the highest and then L"(t) = 1. On the contrary, if C"(t) < E'(t —1) it
results that L"(t) < 1. This implies that if users, given their current choice
configuration, have experienced a significant drop in travel costs, they are
more likely to replicate the same choices on the following day. In other
words, a higher proportion of them will decide not to switch routes even if
there are better opportunities. The greater the coefficient ¢, the less users,
given the same value of C"(t) — E"(t — 1), will choose to switch to other
paths.
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L)%

¢ increasing

0 Eh(tl— 1) C’h(t)

FIGURE 7.1: The influence of ¢ over L' (t)

According again to Fig. 7.1, it can be observed that, when ¢ — oo, the
function L"(t) tends to a step form in the proximity of E"(t — 1). Users are
extremely myopic and, as soon as they experience a drop in travel time,
they replicate the same choice the next day until circumstances change. On
the contrary, ¢ = 0 represents users who are in no way affected by this
behavior. It can be noticed that, if travel costs no longer exhibit significant
variations as time passes, it holds that |E"(t — 1) — C"(t)| — 0 by the def-
inition of exponential smoothing. Therefore, L"(t) — 1 allowing flows to
better arrange on the network. Finally, it is worth noting that, by applying
(7.18), L"(t) > 0 always holds.

Going back to the dynamics in (7.16) and considering two paths k and
s, every day the percentage of flow f}'(t) shifting from path k towards s or
on the contrary the percentage of flow f(t) shifting from s to k depend on
the products L"(t) D! (t) and L" (t) D", (t) respectively. However, it is worth
noting that if Di‘s(t) >0 — Di‘k(t) =0,Vs, k € Kt, and vice versa. Then,
keeping in mind (7.13), it is possible to state the following proposition.

Proposition 1. The exchange of flows between two paths of the same OD pair
h € H is at most unidirectional.



7.1. The Proposed Model 175

Proof. Let us consider the case in which it is convenient for users on path k
to switch to path s, with k, s € H, which is equivalent to D! (t) > 0. By con-
sidering (7.17) and by applying (7.9)-(7.13) and the definition of projection
operators [-], it follows that:

0 < (1) — Cii(t) = Cge(t) — AL(t) = Sk (1)

h h _~h
< Ckk(t) + Ssk<t) Css(t) (7.21)
= AL(E) + SIy(5) — CL(n)
= élk(t) - Cgs(t)
leading to
[Ci(t) = Ch(B)]+ =0 = Dly(t) =0 (7.22)
L]

This result has an important implication, namely the elements D}’ (t)
do not only represent the swap rate but also the direction of the trajectory
at day t of the dynamical system defined in (7.16).

It is also important that the swapping process respects flow conserva-
tion. It is therefore possible to state the following proposition.

Proposition 2. The dynamic model in (7.16) ensures the flow conservation.

Proof. Considering each OD pair h € H, it follows from (7.16) that:

Y A+ =Y fi() =

kekt kel
h h
=L | L Y AODLB - 3 L KODLB| = (73
_kelC}? sek} kel sek}

=L | X L AODLH) — Y Y f(HDy(t)]| =0

keK} sek}, kekC sek},

and this proves the flow conservation. O
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7.1.2 Results on the stationary point

In this section we show that the attitudes described in Section 7.1.1 imply
a Bounded Rationality route choice behavior, i.e. the stationary state corre-
sponds to a BRUE. The definition of BRUE via indifference band has been
covered in detail in section 4.2 and it is reported briefly here making use of

the notation introduced in this chapter.

Definition 8. A path flow f(t) € © is a BRUE flow pattern if the following
holds:

i) >0 = Al <" +¢€ ke Kl,heH (7.24)

where All(t) is the actual travel cost on path k € Kl and i is the minimum
travel path cost between OD pair h € H given the flow pattern £\*), while €" > 0
is the bounded rationality threshold of users of OD pair h € H.

The definition of BRUE implies that, at the equilibrium, the travel cost
of all routes used by the users of an OD pair is not larger than the abso-
lute minimum plus some margin. The reason for this is that the users are
assumed to be indifferent to subtle variations in travel times. Definition 8
has an important implication, namely a BRUE equilibrium is usually not
unique. In fact, there may be different patterns of flows that satisfy the
condition.

On the contrary, when the threshold falls to zero, the definition reverts

to the classical UE, i.e.:
i) >0 = Al@t) < o keKi,heMt (7.25)

which implies that, for all actually used paths, the travel costs must be
equal to the minimum one. It is then worth noting that the UE actually
falls within the BRUE set of multiple equilibria.

The following theorem can now be formulated.

Theorem 1. If £(t) is a stationary point, then £(t) is a BRUE.
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Proof. Let f' be a stationary point for the system. Then, by definition, the
following equality must hold:

0=Y Y Chlflt+1)— ()]

heH keK},
= ¥ ¥ ChOL(®) L | (ODL(+) — f (DL ()|
heM ke, selC{,

=) L X GOL' (O (D)

heM kel sekC),

o Z Z Z Ckk ( )Dks( ) (7.26)

heH kel sek)

=3 L L GO f(HD(®)

heH keK| seK},

-y Y Y ck fE(H)D(t)

heH keK} seK},

=- Y ¥ LM Dks<>(c£k<t>—c25<t>)

het keK} seK}

It can be noticed that each element of the sum is non-negative. In fact
by considering (7.8) and (7.18), we can see that L"(t) > 0 and f/'(t) > 0
respectively. Therefore once considered (7.17), D}.(t) > 0 holds by the
definitions of projector operator. The only term apparently able to change
in sign is C}' (t) — CL(t). Considering (7.9)-(7.11) and the associated result
in (7.13), it can be observed that, whenever this happens, the projection

operator term is equal to zero, as shown below:
0> CZkU) - C?s(t) > Cl}clk(t) - C?s(t) - SZS (t)
= Cllzk(t) - Cl}cls(t) = [Cl}clk(t) - Cl;czs(t)]+ -
which implies that D} (t) = 0. Thus each element must be individually

(7.27)

equal to zero. This is true exclusively when f/'(#) = 0 or when D}’ (t) = 0.
In fact, under similar considerations as in (7.27), if the projection operator
is strictly greater than zero, then Cl!, (t) — C/(t) > 0 necessarily.

It is therefore possible to state the following:

fi(t) >0 = Dj(t) =0 ks € KL (7.29)
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implying that [Cl, (t) — C}.(t)]+ = 0. By applying once again the definition
of the projection operator, DI (t) = 0 only when CJ\, (f) < CL(t) + S} (t),

ie.
AL(t) < Al(t) + S (1) ks € Kt (7.29)

Equation (7.29) must hold for every used path k with respect to any
other path s, whether used or not. Chosen g such that AZ (t) = mir}{Aé’ (1)}
sek’),

and p such that S’;q(t) = ma>t<{S,i’q(t) }, then the following holds.
keK!

AL () < AJ(1) + Spy (1) P4,k € K (7.30)

Given that the system is stationary at day f and qu(t) is certainly not in-
creasing over time by the definition in (7.11), let us fix 7" = A4(t) and
eh(t) = qu (t). It should be noted that, since all the switching costs are not
increasing functions over time, the relation would remain valid from ¢ on.
It is then sufficient to pick any threshold such that € > €’ (t). Thus, f*) is
a BRUE. O

In the following, the type of equilibrium that the system actually reaches
and how to estimate €’ in a reasonable way are further analyzed by means
of two remarks. In the former, we consider the case in which Tsh (t) =1,Vt,
i.e. when the switching cost between two paths depends only on the over-
lapping percentage and does not change over time. In the latter case, in-
stead, we consider the general case with no assumptions on T/ (t).

i i . h _ @ lacd 5?]((1_5{}115)111
Remark 1. If the switching costs are fixed (S, = ¥ SGAN , then the
ac A\Yqita

stationary point is a BRUE, where " = n}(ax{SZS}.
S

Proof. The result of Theorem 1 holds even if the switching costs are con-
stant. It is sufficient to require that T!(t) = 1 indefinitely for every path s
of every OD pair h. Having indicated with g the path with the minimum
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objective cost for the pair & and given S’;q = ml?x{S,’zq}, the following in-
equality holds:

qu < n}(?x{s,i’s} (7.31)

where the term on the right is the maximum switching cost among all paths
of pair h. Rather intuitively, the largest switching cost with respect to the
cheapest path cannot be greater than the largest switching cost regardless
of the path for which it is calculated. This allows us to define the threshold

as follows.
e = n}<ax{5,’§5} (7.32)
S

The switching costs can be rewritten by extracting the overlapping percent-
age as:

h sh
WM) (7.33)

sh —wy(1-—
ks ( ZaGA(éaklﬂ)

For the sake of readability let us define the overlapping percentage as

Oh _ ZneA(‘SZk(sgsla)
ks —

Y (ol then we can conclude that (7.32) is equivalent to:

=% (1- nllcin{O,lfs}) (7.34)

The result in (7.34) states that we can estimate in advance a maximum
threshold for pair & taking into account the swap coefficient ¥ and the two
least overlapping paths for pair h. O

; ' _ h Y Yae 53 (1_‘525)111
Remark 2. If the switch costs are time-dependent <Sk5(t) = 70 m >,

then the result of Remark 1 represents an upper bound for thresholds €"(t).

Proof. The SZS(t) are non-increasing functions, moreover, it can be noted
that S (t)) = S}, where S (t;) is the switching cost for swapping from k
to s at tp and S}, is a time-independent switching cost as defined in Remark
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1. Then the following applies:
S (t) < Sh Vt > to, s € Kl k € K, (7.35)
Consequently the following also holds:

max Si(t) < max Sk Vt > tg, s € Kj, k € K}, (7.36)
S S

Finally, by fixing €"(t) = max Si(t) and " = max Sh_, it follows that:
S S ’

eh(t) <€ (7.37)

O

Remark 2 states that, since the switching costs cannot increase over
time, the threshold €’ (t) will still be no larger than the one defined in (7.32)-
(7.34).

To summarize, as previously defined in (7.14), at a given day ¢ the paths
can potentially be divided into two sets: paths labeled as familiar and paths
labeled as unfamiliar. For the former, the switching costs decrease over
time, while for the latter they remain constant. Given f(t) as a stationary
point of the system, there are two possible scenarios:

1. if the shortest path for pair  ends up being a familiar one, then
€"(t) — 0. If this happens for every pair, then the system converges
to an UE;

2. if, on the contrary, the shortest path is not sufficiently used and there-
fore unfamiliar, then €' (t) does not fade to zero. If this is the case for
at least one pair, then the system does not converge to an UE. In fact,
said g the shortest path for pair £, (7.30) must hold. In this case, how-
ever, qu (t) does not fade to zero over time and so f(¢) remains a
proper BRUE.

In conclusion, the system, once stationary, is in a BRUE with an upper
bounded threshold as demonstrated in Remark 2. If the shortest paths are
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also familiar for all OD pairs, then all thresholds fade to zero and £(t) is an
UE.

7.2 Model Implementation

In this section a viable implementation of the proportional adjustment pro-
cess described in this chapter is discussed with a particular attention on
the initialization phase. Since the work by He, Guo, and Liu (2010), the ini-
tialization phase is known to be critical for deterministic path-based DTD
models.

In order to determine the initial state of the network, and assuming
that the boundary conditions have remained unaltered for a sufficiently
long time to allow the dynamics of the system to stabilize, it is convenient
to make use of traditional static assignment models. It is well known that
the solution of deterministic models, under mild conditions, is unique with
respect to link flows but not with respect to path flows. In other words, the
pattern of link flows corresponding to the computed equilibrium is unique
but at the same time it can be associated with multiple path flow patterns.
The choice of the initial path flow pattern is therefore discretional. This
would not be a problem if different initial states implied identical dynam-
ics, but this is not necessarily true. We can therefore employ a path flow
estimation technique of the kind described by Larsson et al. (2001). In par-
ticular, in this work, we make use of the entropy maximization approach
proposed by Rossi, McNeil, and Hendrickson (1989), which we briefly out-
line here.

Let us consider every single trip as a non-fungible entity, i.e. with its
own identity and therefore uniquely identifiable. Given a path flow pattern
f, we define as "state" a specific allocation of each trip consistent with f.
Assuming that each state is equally like, then the most likely flow pattern f
will be the one that allows the highest number of admissible states, i.e. the
one corresponding to the highest level of disorder. The resulting entropy
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function to be maximized as follows:

max g(f) = 1;[ Hq;l(;'?' (7.38)
k

After applying few algebraic manipulations and the Stirling’s formula
(see Rossi, McNeil, and Hendrickson (1989) for details), max g(-) is approx-

imated by min /(-) and the resulting optimization problem becomes:

Problem 8.

min h(f) = Y Y. fi-In(f}) (7.39)

heH kE’CZO
subject to
Y. A= het (7.40)
ke,
WE=Y N feot aeA (7.41)
heH ke,c]io

where ICZO is the path set for OD pair i when t = ty, i.e. at the equilib-
rium before the occurrence of the disruption.

Note that function h(f) is strictly convex. Moreover, let fUE be an op-
timal flow pattern for the optimization problem. Constraints (7.40)-(7.41)
imply that fUE belongs to © given xVE, the link flow pattern at the equi-
librium. The link-path feasible set ® is convex, therefore fUE is unique.
Finally, to initialize the DTD dynamics, it is sufficient to set:

f(tg) = fUE (7.42)

Once the initial flow pattern is computed, the network is perturbed. In
the numerical examples discussed in Section 7.3, the perturbation is repre-
sented by a network disruption resulting in users being prevented from us-
ing one or more links. Following the removal of a link, all directly impacted
flows are reassigned on the cheapest routes according to (7.9)-(7.11). Thus,
f(t1) is obtained. At this point the dynamics can take place. At each iter-
ation, the following quantities are updated: path costs matrices C"(t) are
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computed according to (7.9)-(7.11); cost-based swap rates are the updated
by (7.17); average pair travel costs C"(t) and the exponential smoothing
E"(t) are estimated by applying (7.19)-(7.20); finally myopia-based swap
rates are computed based on (7.18). It is now possible to update the sys-
tem’s dynamics in (7.16) thus obtaining f(f + 1). Then, if a certain conver-
gence criteria is met, the algorithm stops, otherwise the time variable t is
updated and the process continues.
A viable implementation of the algorithm is summarized as follows:

Input: Network, Demand, Disrupted links
E + UE traffic assignment;
f(tp) — Entropy Maximization by (7.39)-(7.41);
f(t1) <— Disruption;
repeat
C*(t) +— relative path cost matrices update by (7.9)-(7.11);
D" (t) <— swap-rates update by (7.17);
C(t), E"(t) +— average costs and exponential smoothing
update by (7.19)-(7.20);
L"(t) +— dynamics rate update by (7.18);
f(t 4+ 1) < next path flow vector estimation by (7.16)

until convergenze is met;

From a computational point of view, updating the dynamic process
described by (7.16) requires the execution, at each iteration, of simple al-
gebraic computations and for this reason, in line with most DTD models
in the literature, the performance scales well even on large networks. It
should also be noted that the main goal of this type of models is to mimic
the behavior of an associated real network and, for this reason, the speed of
convergence, i.e. number of iterations, should be evaluated only with re-
spect to the accuracy of the representation. On the other hand, the initial-
ization phase can be computationally demanding because two optimiza-
tion problems need to be solved. By solving the well-known Beckmann’s
Problem (Beckmann, McGuire, and Winsten, 1956), the deterministic User-
Equilibrium link flow pattern can be estimated, while solving the Entropy
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Maximization problem in (7.39)-(7.41) allows the most likely associated
path flow pattern to be univocally determined.

The Frank-Wolfe algorithm (Frank and Wolfe, 1956) has been one of
the most widely adopted approaches to solve the deterministic traffic as-
signment problem. Its strengths are that it requires low memory, no path
enumeration is needed, and the implementation procedure is straithfor-
ward, characterized by a sequence of all-or-nothing assignments. At the
same time, it has a significant drawback. Once in the proximity of the
optimum, the algorithm asymptotically converges sub-linearly, since the
descent directions tend to become normal to the gradient resulting in a
zig-zagging behavior. To overcome these limitations, several link-based al-
gorithms have been proposed to enhance local convergence (Fukushima,
1984; Hearn, Lawphongpanich, and Ventura, 1985; Florian, Guélat, and
Spiess, 1987), as well as more recent path-based algorithms (Bar-Gera, 2002;
Dial, 2006; Florian, Constantin, and Florian, 2009; Kumar and Peeta, 2010)
which have become a suitable alternative given the memory capabilities of
modern computers. In particular, bush-based algorithms (Bar-Gera, 2002;
Dial, 2006) sequentially decomposing flows by origins exploit the conse-
quence that flows by origins constitute acyclic sub-networks. Flows are
transferred from the longest path onto the shortest path, and without cy-
cles the related computations become highly efficient, enabling their use
on large-scale networks.

At the same time, the entropy maximization problem described in (7.39)-
(7.41), making use of the Stearling’s approximation, enables its use on net-
works of conspicuous size. However, the method is not insensitive to the
scale of the problem. Alternatively, Bar-Gera (2006) proposed a primal
method that exploits the proportionality condition (Bar-Gera and Boyce,
1999) associated with an entropy maximization problem. Such condition
states that, when facing two alternative sections, travelers will distribute
equally regardless of their origin and destination. Bar-Gera’s algorithm
shows good performance even on large-scale networks particularly when
link flow are computed by a bush-based algorithm. More recently Kumar
and Peeta (2015b), extending the concept of proportionality, compute the
single path flow pattern out of the entropy weighted average of all possible
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path flow patterns. The algorithm is easy to implement and requires little
computational effort to generate the solution which makes it an excellent
alternative for large-scale networks.

The above mentioned methods, providing the same initial solution,
can be employed indifferently within the initialization phase required by
the proposed model depending solely on the requirements dictated by the
scale of the specific case study.

7.3 Numerical Examples

In this section, the proposed model is applied to two example networks.
The former (Network 1) is a simple network and the main goal of the tests
is to illustrate the different results with different values of the switching
cost coefficient ¥. The latter (Network 2) is a larger network and the tests
are aimed to show the system behavior in a more complex scenario.

Some metrics are introduced, referred to a generic day ¢, to better de-
scribe the performance of the system state:

Pu(t) = CC” ((tf)) ae A (743)
Al (ko)

Pi(t) = AkZ (t‘)) heHkek, (7.44)
nep _ C'(to)

P =& 0 heH (745)

P(t) = %((tt“)) (7.46)

Equations (7.43)-(7.46) define the link performance, the path perfor-
mance, the average performance for an OD pair, and finally the overall
average performance of the system at any given day ¢, respectively. In
(7.45), the average costs C"(t) are those defined in (7.19), while the global
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average costs C(t) are, quite similarly, defined as:

r Cht)-q"
C(t) = hEHZ—qh heH (7.47)
heH

Remembering that t) represents the pre-disruption setting, it is worth
noting that each defined metric identifies the current performance of each
component of the system by comparing the current travel costs with those
computed in tg. In other words, on a given day ¢, the performance degrades
proportionally to travel cost increase at day ¢ (whether computed for a link,
a path, an OD pair, or for an entire network) compared with the same cost
at day to. This is a rather standard way of defining the performance of
a transportation network. In Zhou, Wang, and Yang (2019) an extensive
literature on the topic can be found, with a focus on the metrics that are

most used in network resilience evaluations.

7.3.1 Network 1

The considered network is shown in Fig. 7.2, it is composed of 7 nodes
and 8 links. Each link is characterized by the same performance function,
relating the travel cost to the amount of congestion, which is shown below:

ca(x) =103 %, +1071 a€ A (7.48)

This network presents only one origin-destination pair 1-2. According
to the network topology, 3 possible paths join origin node 1 with destina-
tion node 2. Table 7.2 shows the incidence relationships between routes
and network arcs. The transportation demand associated with the OD pair
1-2 is 200.

OD pair Path Nodes sequence
(1,2) 1 [1,3,4,2]

2 [1,5,6,2]

3 [1,5,6,7,2]

TABLE 7.2: Incidence relations in Network 1
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Referring to this network, two different disruptions are tested:
e removal of link 6-2;

¢ removal of link 1-3.
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FIGURE 7.2: Network flows in Network 1 with removal of
link 6-2

The tests on Network 1 aim to show the evolution of the system after a
disruption, depending on the switch coefficient ¥, corresponding to the re-
luctance of users to use paths topologically dissimilar from those currently
used. All the other parameters are kept constant and assume the following

values: ¢ = 0.01, ¢ = 50,¢ = 0.6 and M = 3.
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FIGURE 7.3: Path actual cost, flow, performance evolution
in Network 1 with removal of link 6-2
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FIGURE 7.4: Network flows in Network 1 with removal of
link 1-3

Figure 7.2 shows 4 snapshots of the network state taken in 3 different
moments of the system evolution after the removal of link 6-2 (the num-
ber reported close to each link represents the the flow). In particular, in
Fig.7.2(a) the pre-disruption equilibrium is shown, which does not depend
on Y. Reminding that all the arcs are qualitatively identical, the demand
is divided between paths 1 and 2, consisting of 3 links, while path 3, com-
posed of 4 links, is not used at all. After the removal of link 6-2, we see a
forced reassignment of flows previously present on path 2: in Fig. 7.2(b),
the result of such assignment is shown in case the switch coefficient is set
to ¥ = 0.1, while Fig. 7.2(c) reports the assignment results with ¥ = 0,
i.e. when the flows of the users are rearranged on the network based ex-
clusively on actual path costs. As it can be noticed, when ¥ = 0.1 all
the flow is assigned to path 3, the one sharing a relatively wide portion
of network with path 2, now unusable. By adopting this solution, the as-
signment immediately after the disruption consists of an overall moderate
redistribution of flows, reflecting a more conservative user behavior. When
Y = 0, instead, the disruption is followed by a substantial redistribution
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of flows, now all loaded on path 1. In this case, the users evaluate only the
actual path costs, regardless of the degree of similarity between the new
chosen path and the abandoned one. Both in case ¥ = 0.1 and ¥ = 0, the
new equilibrium reached by the system is the same, as shown in Fig. 7.2(d).
Whether path 3 or path 1 is preferred at first, the system evolves toward the
same equilibrium, which is in this specific case a UE. This happens because
in both cases the two paths end up being used significantly by users (i.e.
they are considered familiar paths) and as described in (7.14) their switch
costs S3,(t) and Si,(t) fade to 0 over time.

Figure 7.3 shows the dynamics of the system in terms of actual path
cost, flows and overall average system performance. In particular, Figs.
7.3(a), 7.3(c) and 7.3(e) show these trends in case ¥ = 0.1, while Figs. 7.3(b),
7.3(d) and 7.3(f) report the same variables when ¥ = 0. Confirming that
the stationary state reached by the system is in fact a UE, in Fig. 7.3(a) and
in 7.3(b) it is possible to observe that the actual path costs converge to the
same value of about 0.68. However, the way in which the system con-
verges is significantly different in the two cases, with the former showing
considerably smaller cost fluctuations.

Again in Fig. 7.3, it is possible to see a similar trend characterizing the
path flow evolution. In case ¥ = 0.1, from a situation in which the trans-
portation demand is equally distributed on the two remaining paths, path
3 begins to lose flow in favor of path 1 until the equilibrium is reached (see
Fig. 7.3(c)). When ¥ = 0, instead, path 1 is the one that initially carries all
the demand before it redistributes (see Fig. 7.3(d)). These two different dy-
namics have quite different impacts on the average system performance, as
shown in Fig. 7.3(e) and 7.3(f). Even if in both cases the performance level
settles around 87% of its original level, the values reached in the worst
moment after the disruption differ considerably. In the former case, the
system performance does not fall below 85% while in the second case the
network performance collapses to about 66% of the original value at the
most critical instant. The reason for this is that modeling users who prefers
swapping between topologically similar paths results in a much smoother
flow redistribution. This, especially right after the disruption, implies less

performance loss.
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The results obtained considering link 1-3 removal on the same network
are shown in Fig. 7.4, reporting again 4 snapshots of the network. Specifi-
cally, the traffic pattern after the disruption is depicted in Fig. 7.4(b), while
Figs. 7.4(c) and 7.4(d) show the new equilibrium reached by the system in
case the switch coefficient is set to 0.1 and 2.7 respectively. As can be seen,
they differ significantly. In particular, in the latter case, the system does not
evolve anymore after the disruption and the only path to be used is the sec-
ond one. This happens because the switching cost S1,(t) is relatively high
compared to the actual path cost A}(#) and this means that, even if the cost
on path 2 is far from being small, the users are reluctant to use other so-
lutions. More specifically, as long as Al(t) < S1;(t), cost-based swap rate
DL, (t) = 0 by the definition in (7.17).

7.3.2 Network 2

Network 2 is shown in Fig. 7.5, composed of 19 links, qualitatively identical
and with the same performance function reported in (7.48), and 13 nodes.
In this network, the origin nodes are 1 and 4 while the destination nodes
are 2 and 3. The mobility demand is the same for each of the four OD
pairs [1-2, 1-3, 4-2, 4-3] and is equal to 200 units. In this network only one
disruption is tested: removal of link 1-12.

The incidence relationships between paths and links are shown in Table
7.3, where the underlined paths are those unavailable after the disruption.
Moreover, the flows in the pre-disruption scenarios are reported.

In Fig. 7.5, the evolution of the network in the initial fifteen days after
the disruption is shown. This is the time interval during which the most in-
tense flow rearrangements take place. The performance values, as defined
in (7.43), are reported and depicted close to each link.

As can be seen in Fig. 7.5(a), once the disruption has taken place, the
most stressed links are those in its proximity. As the days go by, as shown
in Fig. 7.5(b)-7.5(d), we can see a generalized performance degradation that
spreads like a wave throughout the network, while the previously over-
loaded links recover part of their lost efficiency. As we move away from

the disruption site, the magnitude of the disruption decreases.



192 Chapter 7. Bounded rationality-based day-to-day traffic assignment model with
topological proximity dependent costs

(d) Link Performance day 15

FIGURE 7.5: Link performance in Network 2
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OD pair Path Nodessequence f(f;) ODpair Path Nodessequence f(tg)

1-2) 1 [1,1282] 200 (42 1 [4,9,10,11,2] 104
2 [1,5,6,7,8,2] 0 2 [4,5,6,7,8,2] 36
3 [1,12,6,7,11,2] 0 3 [4,59,10,11,2] 0
4 [1,59,10,11,2] 0 4 [4,5,6,10,11,2] 23
5 [1,5,6,10,11,2] 0 5 [4,5,6,7,11,2] 37
6 [1,56,7,11,2] 0
7 [1126,10,112] 0
8 [1,12,6,7,8,2] 0

(1-3) 1 [1,5,9,13,3] 9  (43) 1 [4,9,13,3] 173
2 [1,12,6,10,11,3] 18 2 [4,5,9,13,3] 7
3 [1,5,6,7,11,3] 37 3 [4,9,10,11,3] 20
4 [1,59,10,11,3] 0 4 [4,5,6,7,11,3] 0
5 [1,12,6,7,11,3] 33 5 [4,5,9,10,11,3] 0
6 [1,5,6,10,11,3] 2 6 [4,5,6,10,11,3] 0

TABLE 7.3: Link-path incidence relationship and pre-
disruption assignment in Network 2

It is interesting to note that some links perform better in comparison to
the pre-disruption scenario. This is the case of links 8-2, 7-11 and 11-3. Not
surprisingly, all those links belong to paths that are no longer available and
at the same time the new flow pattern makes less use of them, resulting in
a reduction in the level of congestion on these links and, consequently, an
increase in performance.

The same network evolution is reflected by looking at the path flow,
actual cost and performance trajectories presented, respectively, in Fig. 7.6,
7.7, 7.8. As it is shown in Fig. 7.6(a), path 2 is heavily loaded just after
the occurrence of the disruption. Over the following days part of these
flows shift to the remaining available paths, as mentioned above, affecting
the flow patterns in the remaining links of the network. The OD pair 4-3
shows the smallest flow adjustment before reaching a new stationary state
which is consistent with the fact that it is the pair furthest from disruption
and whose paths are least affected by flow rearrangement. The new equi-
librium, as illustrated in Fig. 7.7, is a proper UE for every OD pair h but
with significant differences. For the 1-3 pair, the distribution of demand
among the routes is more homogeneous than for the other OD pairs where
instead one route in particular is significantly preferred over the others.
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(a) OD 1-2 (b) OD 1-3

(c) OD 4-2 (d) OD 4-3

FIGURE 7.6: Path flow evolution in Network 2
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FIGURE 7.7: Path actual cost evolution in Network 2
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FIGURE 7.8: Path performance evolution in Network 2

The trend of path performance illustrated in Fig. 7.8 further confirms
that the closer a path is to the disruption epicenter, the more it is affected
by it. At the critical moment, the performance degradation is in fact max-
imum for the paths of the OD pair 1-2 (Fig. 7.8(a)), where path 2 is the
one suffering most from the new network configuration, with performance
reaching 57% of the original value. Regarding OD pairs 1-3 and 4-2 (re-
spectively shown in Fig. 7.8(b) and 7.8(c)), paths 2 and 3 suffer the greatest
degradation in performance with 63% and 65% of pre-disruption values
respectively. Lastly, the paths of OD pair 4-3 do not experience any sig-
nificant performance loss (Fig. 7.8(d)). Path 4, the only one showing sig-
nificant performance degradation, is in fact basically unused, as shown in
Fig. 7.6(d).

Finally, the average performance of each OD pair as defined in (7.45)
are reported in Fig. 7.9 which once again confirms the tendency whereby
the OD pairs close to the site of the disruption are the most affected by it.In
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particular, the OD pairs 1-2, 1-3 and 4-2 all exhibit, although to different
magnitudes, a drastic drop in performance immediately after the disrup-
tion, before gradually recovering. The OD 1-2 pair is the one that suffers
the most severe performance drop of roughly over 50%. In contrast, the
OD 4-3 pair is not only the least affected by the disruption but is also the
only one that does not suffer an immediate performance loss. Instead, its
performance degrades as the performance of the others improves due to a

better redistribution of flows.
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FIGURE 7.9: O-D performance evolution in Network 2

7.4 Conclusions

In this chapter a day-to-day discrete-time assignment model based on a
proportional switch adjustment process is proposed. The model defines
the amount of users who, unsatisfied with their current status, decide for
the next day to satisfy their mobility needs by switching paths. The users’
route choice behavior makes the routes that have the potential to reduce
travel costs preferable. The greater the decrease in costs, the higher the
percentage of users who switch. The model incorporates some cognitive
biases within the users’ route choice process. The first concerns a spatial
inertia, whereby users overestimate the cost of potential paths in relation
to the level of topological similarity they present with respect to the path
they are currently using. The more the path they are currently on differs
topologically from a potential candidate, the higher the perceived cost of
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abandoning the former in favor of the latter. This behavior is incorporated
into the cost structure of the paths themselves. In addition to the addi-
tive component, related to the actual state of congestion on the network
links, there is a second component defined as a switching cost, which are
higher if two paths overlap for small portions. The cost of a route is there-
fore not unique but depends on where the users currently evaluating it are
located. The adjustment process describes users who prefer switching be-
tween topologically similar paths. In parallel, users also exhibit a myopic
behavior. After a switch, if the travel cost experienced is significantly lower
than the one they are used to, they will tend to stick with it for the follow-
ing days even though the conditions may have changed in the meantime.
Finally, it is assumed that these biases may fade over time with respect to
those routes that the users are more familiar with.

We have shown that the new equilibrium state must necessarily fall into
a BRUE, a set of states that, while not necessarily an UE, do not diverge
from it more than a certain value which increases when the relative impor-
tance given to the topological similarity within the choice process grows.
The examples reported show how, depending on the circumstances, the
switching cost can significantly affect both the trajectory of the system and
the equilibrium it reaches. Moreover, the example applied on the larger
network shows how the model can to represent the cascading effects in
performance degradation that would be expected in the presence of a dis-
ruption. The paths to be more influenced by the disruption tend to be those
nearer to it, while those farther away are significantly less affected by the
perturbations that involve the network. This model allows, as in this case,
to consider the tendency of users to prefer the routes they use most against
other solutions potentially superior but somewhat unusual. That said, the
proposed model can be also used to represent, appropriately redefining the
switching cost component, a variety of other scenarios where it may be nec-
essary to characterize the mobility choice consequences based on different

group of users.
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Chapter 8

Conclusions

The primary objective of the present thesis has been the development of
methodologies suitable for representing the macroscopic dynamics that
arise when a transportation network is subjected to a disruptive event.
Transportation networks are inherently complex systems where techno-
social elements interoperate resulting in complex processes. For this rea-
son, assessing the level of vulnerability or resilience of a transportation
network based solely on its topology is a partial assessment. Therefore, ap-
propriate models able to dynamically account for the interaction between
transportation supply and demand have been developed with particular
attention to the assumptions underlying travelers” behavior and the inter-
action between multiple transportation modalities. To this end, several
traffic assignment models have been developed within this thesis.

First, a review of the literature on disruption analysis of transport net-
works was carried out, and it emerged that assignment models could be a
valuable tool allowing a sufficiently accurate representation of the equili-
bration processes that occur on a network when affected by a disruption
without, however, the computational burden resulting from excessively
fine modeling of the network. A careful review of traffic assignment mod-
els was then conducted, paying particular attention to the various classi-
fications into static, fully dynamic and semi-dynamic models. Based on
the review process, it was possible to deduce that semi-dynamic (inter-
periodic or day-to-day) traffic assignment models are best suited to rep-
resent the equilibration processes that occur when the status quo of the
transportation system is altered. For each period, they allow to estimate
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the percentage of users who given the new network conditions will decide
to modify their travel choices. The resulting flow adjustments in turn alter
the congestion and travel cost patterns on the links therefore further alter-
ing the network conditions under which travelers will once again have to
make their choices. This circular feedback process, in the absence of further
shocks, tends to stabilize. Different assumptions about users’ choice behav-
ior result in system trajectories and equilibria exhibiting different charac-
teristics.

In this regard, an analysis of the literature on bounded rationality has
been carried out. This conceptual framework, widely used in economic
disciplines, proposes the idea that people may not exhibit perfect rational-
ity within their decision process and that therefore their judgment may be
affected by systematic bias due to habit or the cognitive burden involved
in the decision process, to name a few.

In light of these considerations, a day-to-day link-based traffic assign-
ment model has initially been proposed which accounts for user habits
within the evolution process of a transportation system. The model is char-
acterized by a series of static traffic assignments computed out of a set of
varying conditions. The ideas behind the model are twofold. The first is
that it is assumed that users are insensitive to excessively minute varia-
tions in travel costs. This is represented by an index of users’ tolerance
towards increasing travel costs. The second idea is that users tend to stick
to the same routes they have used in the past. According to the model,
they decide to use new solutions only when the increase in travel costs can
no longer be tolerated, i.e. when the increase exceeds a certain threshold.
When this occurs a path is added to the set of available paths, on which
assignments are computed. Simultaneously, it is unreasonable to assume
that all flows will instantly dispose optimally on the new set of paths. In
other words, despite the increase in travel costs it is assumed that not all
users may decide to change routes. As a result, an inertia coefficient is
considered to prevent the system from jumping from one configuration to
another too rapidly.

When a transportation system experiences a particularly significant dis-

ruptive event, the demand response may affect multiple transportation
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modes. In a complex network, the interdependence between different trans-
port modes can be relevant and critical events occurring on one mode can
lead to ripple effects involving other transport modes as well, therefore
the estimation of the vulnerability of a transport system as a whole can-
not avoid considering this possibility. In light of these considerations, a
scenario-based analysis was then proposed where multiple transportation
modes are integrated. The transportation system is represented by means
of a hyper network, where some elements mirror the actual infrastructure
while others are associated with user choices. In the proposed model, these
choices concern modal shift. The peculiarity of this approach is that it al-
lows users to plan their trip by possibly recurring to multi-modality in the
ways they consider most beneficial. In other words, modal choice is not
constrained to a pre-trip phase, but instead the traveler can choose a so-
lution that integrates several modes within the same trip. However, such
freedom has been limited within reasonable modal change sequences to
avoid modeling solutions may feasible in theory but unlikely in reality.
Another peculiarity of the model is to consider a multi-class traffic flow. In
particular, passenger flows and freight flows are considered are associated
with distinct choice behaviors. The scenario-based analysis therefore con-
sists of two steps. In the first step, two distinct assignment models estimate
travel choices for passenger flows and freight flows where the former tend
to act selfishly by minimizing their own individual travel costs while the
latter instead aspire to minimize a generalized fleet cost. Traveler choices
are then consistently routed over the network by means of a discrete-time
dynamic flow model that allows for more realistic estimates related to flow
propagation and opens up the possibility of defining performance indices
that take into account more detailed information such as average speeds or
pollutant emissions. The model is then tested under two scenarios, before
and after the occurrence of a disruption, and changes in the state of the
multi-modal network are analyzed.

The insight related to topological inertia associated with user choice be-
havior introduced in the first work is extended and further explored in a
day-by-day path-based traffic assignment model characterized by a pro-
portional switch adjustment process. Defining a day-to-day dynamics on
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path flows instead of link flows makes it easier to introduce a wide variety
of behavior patterns because users’ route choice process can be explicitly
represented. A second advantage, is that with the exception of the pre-
disruption equilibrium state estimation, the dynamics of the system does
not require iterated optimization problem solving. In this work, an idea
is advanced that users in their choice process are influenced not only by
the current state of the network but also by their mobility habits. Where
driven by new conditions, users favor routes that are less expensive but
also similar to the one they decided to abandon. Two routes are more sim-
ilar the more they overlap. This type of approach implies that each path
is associated with a cost vector, whose individual elements represent the
cost as it is perceived by users currently on a specific other path. Thus, it is
shown that this assumption implies representing users who are rationally
bounded in their decision-making process. An approach for estimating the
associated indifference band is then suggested. The model is then tested
on a network affected by a disruption and the effects that users’ behavioral
assumptions may have on the new equilibrium state are discussed.

The research presented in this manuscript can be developed in three di-
rections. First, the demand elasticity can be considered within the analysis.
It is reasonable to assume that following major disruptions, transporta-
tion demand may drop. A viable approach, similarly to the one followed
in chapter 6, would be to extend the actual network to an hyper-network
that would take into account any unfulfilled demand. The extension of
the presented day-to-day assignment models on an hyper-network is strait
forward.

A second direction might be the integration of the model presented in
chapter 7 within the assignment process of the multi-modal framework
discussed in chapter 6. Once the assignment model is adapted to consider
shorter periods within a single day, it could also be used for more detailed
estimation of the immediate effects on traffic flows following a disruption.

Finally, the analysis approach presented can be employed in a case
study for estimating the vulnerability of a real transportation network. It
would be possible to significantly reduce the computational effort of the
analysis by pre-selecting via topological metrics a subgroup of network
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components considered most critical. Then on these elements a stress test
can be performed using the approaches presented in this paper in order to

model the reaction of the system.
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