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Summary

This thesis deals with the study of Offset-Free Model Predictive Control (OF-MPC)
for Active Magnetic Bearing (AMB) systems. OF-MPC is a systematic approach to op-
timally handle the trade-off between control effort and controlled outputs taking into
account plant dynamics and constraints. The term “Offset-Free” stands for the pos-
sibility to compensate the plant-model mismatch and guarantee zero-offset at steady
state based on the external disturbance estimate. A procedure for the overall design is
presented and supported by numerical simulations and experimental works conducted
in two test rigs: a single-degree-of-freedom AMB system and a more complex cone-
shaped AMB system. The results demonstrate that with OF-MPC the coil current lim-
itations are optimally handled and the plant-model mismatch is quantified real-time
in terms of disturbance forces. The approach is also effective in guaranteeing stability
and rejecting external disturbance forces. The application of OF-MPC is a novel and
promising constrained optimal control technique for cone-shaped AMB systems since
the main control difficulties: (i) coupling of radial and axial control actions, and (ii)
the low force generation capability in axial direction, can be addressed in a clear and
systematic way. The results also demonstrate that OF-MPC outperforms Proportional-
Integral-Derivative controllers in the compensation of axial external forces. The main
contribution of this thesis is the numerical and experimental demonstration of the po-
tentiality of OF-MPC for AMB systems, together with a methodology for its implemen-
tation. Furthermore, the control algorithm is described in detail showing how to: re-
duce the computational burden of the control problem, generate OF-MPC solvers from
C code generation tools and design properly the plant state estimator.
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Chapter 1

Introduction

The purpose of this chapter is to introduce the active magnetic bearings technology
and a variant of Model Predictive Control (MPC) called Offset-Free MPC (OF-MPC) as
a candidate for controlling AMB systems. The main motivations, the goal of the study
and the thesis structure are detailed here.

1.1 Active Magnetic Bearings
An Active Magnetic Bearing (AMB) is a mechatronic system that supports a rotating

shaft using magnetic levitation. There is no contact between bearing and rotor, and this
permits high-speed operation with no lubrication and no mechanical wear. A special
advantage of these unique bearings is that the rotordynamics can be controlled actively
through the bearings [1]. Some application examples are: turbomolecular pumps, fly-
wheel energy storage systems, turbo blowers, heart pumps and turbo compressors. The
number of industrial AMB applications is growing steadily. Figure 1.1 shows a turbo-
compressor on AMBs.

1.2 Principles of Magnetic Bearing Function
Generating contact free magnetic field forces by actively controlling the dynam-

ics of an electromagnet is the principle which is actually used most often among the
magnetic suspensions. Figure 1.2 shows a general schematics of the parts involved in an
AMB application. On each controlled degree of motion, a sensor measures the displace-
ment of the rotor from its reference position, a microprocessor as a controller derives a
control signal from the measurement, a power amplifier transforms this control signal
into a control current, and the control current generates a magnetic field in the actu-
ating magnets, resulting in magnetic forces in such a way that the rotor remains in its
hovering position [1].

1



Introduction

Figure 1.1: Turbo-compressor on AMBs. 1) Displacement sensors. 2) Radial magnetic
bearings. 3) Electric motor. 4) Rotor. 5) Strip connector for the AMBs. 6) Thrust mag-
netic bearings 7) Motor strip connector. 8) Impeller.

An increasingly important part in AMB systems is software. The inherent ability for
sensing, information processing and actuation give the magnetic bearing the potential
to become a key element in smart and intelligent machines [1] in resonance with the
actual needs of digital transformation by integrating automation, software, and cutting-
edge technologies. An AMB can be seen today as an intelligent mechatronics system.
The reader is invited to visit SIMOTICS (Siemens), MECOS, CALNETIX, SKF, etc. as
examples of relevant manufacturers of AMB systems.

1.3 Thesis motivation

1.3.1 Control techniques for active magnetic bearings
AMB systems are strongly nonlinear and unstable in open-loop. There exists a vast

literature about linear and nonlinear control solutions that are commonly exploited on
these systems. In essence, the goal is to stabilize the rotor position (controlled out-
puts) at a nominal air gap by manipulating the electromagnetic forces produced by the
bearings.

Most applications of AMB systems for rotating machinery are primarily concerned
with steady behavior: analysis focuses on response to steady sinusoial loads such as
mass unbalance, shaft bow, aerodynamic loads, and sensor noise. Such an approach is
even commonly adopted when considering transient phenomena such as compressor
surge. Notable exceptions to this include mobile applications (trains, aircraft, vessels)

2



1.3 – Thesis motivation

Figure 1.2: Function principle of an active electromagnetic bearing, suspension of a
rotor in vertical direction. Image source: reference [1].

i.e., systems subject to extreme impact loading such as underwater naval vessels [2].
The literature contains many detailed application examples where the performance

objectives in AMB controller synthesis are elucidated [3, 4, 5, 6],[1, § 12.4]. Generally,
the obvious objectives include an adequate stability margin and adequate management
of external loads. Given the underlying nonlinear character of AMB systems, a com-
mon secondary objective is to maintain operation in an essentially linear regime, avoid-
ing numerous sources of nonlinearity including actuator magnetic saturation, amplifier
voltage saturation, and actuator nonlinearity due to large journal displacements [2].

The approach of setting up a decentralized or local feedback control scheme for a
rigid body AMB system, is physically well justifiable and features, as one of its most
important advantages, control parameters that can be designed solely based on physical
considerations by selecting appropriate stiffness and damping values. Despite the fact
that this approach utilizes the magnetic bearings in the same way as mechanical springs
and dampers without taking further advantage of their numerous capabilities, it has
been shown that decentralized control is very applicable to a large number of AMB
systems without major deficiencies [1, 7].

The most straightforward and intuitive approach for designing a control law for
the rigid rotor in AMBs is by implementing a PID control scheme (locally for each
bearing unit and separately for each bearing). However, local PD or PID control can
also lead to substantial problems when the AMB rotor system exhibits specific (and
common) properties such as sensor non-collocation issues or plant dynamics with large
difference between the open-loop eigenvalues. A solution to this deficiency is proposed
in references [1, § 8.2.3] and [8] with a decoupled control of parallel and conical modes.

When using decentralized control, the multi-variable nature of the system is not

3



Introduction

exploited properly. That is why other feedback control techniques such as Linear-
Quadratic-Gaussian (i.e., the combination of a Linear Quadratic Regulator (LQR) and
a Kalman filter) and pole-placement controllers have been studied in the AMB litera-
ture [9, 10, 11]. However, multi-variable state-feedback controllers are almost always
avoided because of (i) potential robustness problems due to uncertainties in the dy-
namics of the state estimator and (ii) “poor” robustness properties associated to the
combination of an estimator with the state feedback controller. The fact is that the
stability margins obtained from the LQR formulation are no longer guaranteed when
it is combined with a state estimator [12]. Nevertheless, LQR is often used to design
decentralized PD/PID controllers from the optimal feedback gain it generates from the
trade-off between control efforts and the deviation of the controlled variables. Usually
PD/PID generated from LQR gains can guarantee good stability properties [11]. Even
when robust control techniques such as µ-Synthesis or H∞ are preferred [2], an initial
stage based on LQR is suggested to establish the loop shape [12]. This is because AMB
systems are unstable plants with multiple gain crossover frequencies and these control
techniques rely on “confined” model uncertainties which are sometimes difficult to ob-
tain [2]. For a detailed review of control solutions for AMB system the reader is directed
to references [13, 14], [1, § 8].

Model predictive control and active magnetic levitation

MPC is a control method that computes the control input of a system by solving
an Optimal Control Problem (OCP) in real time. The aim of the OCP is to optimize
the trajectory of the system with respect to a cost function that is defined based on
economic or performance measures. A MPC controller uses a model of the system to
predict its behavior within a finite horizon. When using MPC, the following procedure
is executed at each time step:

1. Measure/estimate the current state.

2. Solve the OCP to compute a sequence of control inputs.

3. Apply the first step in the control input sequence to the system.

Model predictive control has had an exceptional history with early intimations in the
academic literature coupled with an explosive growth due to its independent adoption
by the process industries where it proved to be highly successful in comparison with
alternative methods of multivariable control [15]. Its phenomenal success in the process
industries was mainly due to its conceptual simplicity and its ability to handle easily and
effectively complex systems with hard control constraints and many inputs and outputs
[16]. With the advancements of MPC algorithms and controllers’ computational power,
MPC is increasingly being adopted in other industries such as robotics, automotive and
aerospace.
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The study of MPC for active magnetic levitation is not new. The benefits of ap-
plying linear and nonlinear MPC for active magnetic levitation were demonstrated by
many numerical and experimental results in [17, 18, 19, 20, 21, 22] for systems with a
single degree of freedom. When using MPC the air gap deviations can be directly writ-
ten as state constraints together with the limitation of the coil currents and actuator
bandwidth (input constraints). Numerical comparisons of MPC with conventional PID
controllers are presented by the authors in [23, 24] for flywheel energy storage systems
with radial AMBs. Zhao et al. presented a MPC for a flexible rotor on AMBs which
effectively stabilizes the rotor-AMB system with remarkably mitigated rotor vibrations
in [25]. However, the results are limited to numerical simulations and assuming full
state knowledge.

Some of the benefits of applying MPC on AMBs can be summarized as follows:

• MPC is a multivariable control technique. Only one MPC controller design is
needed.

• AMB limitations on coil current, actuator bandwidth and air gap deviation can be
included from the beginning in the controller design and hence optimally handled
every time step.

• Trade-off between actuation effort and rotor displacement can be directly tuned.
By selecting a proper objective function, the control performance can be tuned
through states and inputs weights of the OCP similarly to the mixed optimiza-
tion approach (i.e., trade-off between rotor response and use of control effort) in
unbalance control [1, § 12.4].

• MPC helps save time during the controller design phase: by enforcing constraints
by design, rather than by time-consuming tuning of gains and cumbersome pro-
tection logics, MPC can reduce the development and calibration time by a signif-
icant amount.

However, in the context of MPC and AMBs, much recent research has focused on pre-
liminary numerical studies and little attention has been paid to the validation through
experimental results. The fact is that some difficulties have been encountered when
applying MPC on AMBs:

• MPC is computationally expensive even with explicit MPC (the optimal input
is obtained from look-up tables generated off-line). Position control in AMBs
usually requires a sampling time around 2−5 kHz depending on the application.
Solving the OCP in a deterministic time is not trivial. A fast MPC solver is needed
or at least a MPC formulation that leads to faster solutions (i.e., reducing control
horizon, removing constraints, etc.).

• Full plant state knowledge. When the states are estimated (MPC + state estimator)
the stability margins are not guaranteed. The fact is that a MPC can be properly
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designed to guarantee nominal closed-loop stability but when it is combined with
a state estimator, special attention must be paid to the closed-loop performance
and the quality of the estimate.

• Sensitive to plant-model mismatch. MPC is a model-based control solution and
hence the larger the plant-model mismatch, the more deteriorated is the control
performance. Integral action must be added to eliminate the steady-state error
due to model uncertainties.

Embedding MPC into a target hardware platform. At this point, MPC con-
trollers might be considered computationally expensive control policies compared to
other conventional analytical control policies like the linear control policy prescribed
by LQR. However, this is not the case in practice, thanks to fast embedded solvers [26,
27, 28] and code generation tools that emit solvers specialized to parametric problems
[29, 30, 31]. Nowadays, the feasibility of embedding MPC into a microcontroller is dif-
ficult to establish but the truth is that the technological scenario is changing fast. In the
context of “fast” MPC and Active Magnetic Levitation, a research gap is identified: Few
experimental results about MPC applications on Active Magnetic Bearings are
presented in the literature. The discussion about the feasibility of embedding a MPC
into a hardware platform for AMB systems is still open.

Control design for cone-shaped AMB systems. Typically, an active magnetic
suspension exploits three actuation stages, two for the radial and one for the axial con-
trol. This standard layout needs a dedicated thrust bearing, which create problems due
to the bearing size and weight, and limitations to the maximum rotational speed. The
latter is related to magnetic losses and to the possible high values of peripheral veloc-
ities of the discs of the thrust bearing. Additionally, the presence of the thrust bearing
is the cause of longer shafts with negative consequences for the rotordynamic behavior
of the systems. The realization of a more compact and integrated solution can therefore
pass through the elimination of the thrust bearing, resorting to only to planes of actu-
ation for the generation of both radial and axial levitation force. This solution can be
implemented by using a conical geometry for the pole pieces of the stator and the iron
parts of the rotor as shown in Figure 1.3. This configuration can be used in applications
where size reduction is an important requirement [32, 33, 34, 35, 14], and is equiva-
lent to common rolling element bearings using conical contact surfaces with combined
radial and axial load capability. Although promising, the spread of this solution in in-
dustrial applications has been strongly limited by a series of drawbacks, such as the low
axial force generation capability and the complex design of the control strategy due to
the coupling of the axial and radial control actions [36]. Few works reported in the
literature are conducted until the experimental validation of the control strategy. As a
matter of fact, in the authors’ knowledge, only a few works present a complete anal-
ysis with experimental results [37, 38]. A decoupled Proportional-Integral-Derivative
PID controllers obtained from a Linear Quadratic Regulator with integral action for
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Figure 1.3: Structure of a 5-dof rotor system supported by conical magnetic bearings.

a voltage-controlled cone-shaped AMB system is proposed in [37]. A decentralized
solution also based on PID controllers is studied in [38] for a turbo-molecular pump.
Numerical analysis for centralized fuzzy controller are presented in [39, 40].

In cone-shaped AMBs, the inherent coupling between the radial and axial control
actions, together with the low axial force generation in axial direction and coil cur-
rents limitation is difficult to manage when using decentralized control strategies. The
current on each electromagnet is the sum of axial and radial control contributions to
generate axial and radial restoring forces. Each decentralized controller knows only
about the control contribution it produces but nothing about the real amount of cur-
rent flowing into the coils due to the presence, at the same time, of the axial control
contribution. Commonly, the coil current limitations are treated as external satura-
tion blocks and hence not optimally handled. These deficiencies could be overcome by
applying centralized constrained optimal control techniques such as Model Predictive
Control (MPC). In this context, a research gap is identified: There is no literature
reporting MPC on cone-shaped AMB systems.

Dealing with model uncertainty. Any engineering model of a physical system
has uncertainty. That is, even with the most careful analysis and model calibration
process, the physical response of the actual system is expected to deviate from that pre-
dicted by the model. The source of this deviation may be traced back to errors in the
model, but since the actual errors are a priori unknown, they are described as uncer-
tainties [2].

In an AMB system, an obvious source of uncertainty is the linearized properties of
the AMB actuator. It is most common to represent the linearized actuator as [1]

f ≈ −ksx+ kiic (1.1)

in which x is displacement of the journal from some nominal operating point, ic is the
control current: the extent to which opposing coil currents differ, and ks and ki are lin-
earized actuator properties. These properties are sensitive to the radial air gap length in
the AMB which is sensitive to operating temperature and to manufacturing tolerance: it
is common for this air gap to have an uncertainty as high as ten percent, leading to 30%
uncertainty in ks and 20% uncertainty in ki. Static load carried by the AMB also alters
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ks and is commonly substantially uncertain. In flexible rotor systems, modal damping
and frequency of flexible modes may be sensitive to assembly (shrink fits) and operating
temperature, leading to significant uncertainty in the rotor model. Additionally, gyro-
scopic coupling will modify rotor flexible modes, making them dependent on rotor spin
rate. If this rate is not known precisely (or not incorporated explicitly into controller
design) then it may represent a substantial model uncertainty [2].

In general, the “perfect” match between plant and model is rather difficult to obtain
due to the nonlinear nature of the magnetic actuators, the uncertainties in the model
parameters and external disturbances. In the context of MPC, there is a variant that
handles the plant-model mismatch in a systematic way. It is known as Offset-Free Model
Predictive Control (OF-MPC) [41, 42, 43, 44, 45]. With OF-MPC the plant model is
augmented with a disturbance model to capture the plant-model mismatch. State and
input targets are obtained from the estimated disturbance. The states and control inputs
are steered to the target equilibrium point to guarantee zero-offset tracking.

Figure 4.4 shows the OF-MPC control scheme. The observer estimates both state
and disturbances which are used by the target calculator together with the position
reference to obtain the input and state targets. Both target vectors together with the
state and disturbance estimates are used to initialize the OF-MPC control problem.

Figure 1.4: OF-MPC control scheme consisting of: controller (OF-MPC problem formu-
lation), Observer (estimates both: original and augmented states), and target selector
(produces input and state targets to compensate the plant-model mismatch).

Research motivation in a few words: OF-MPC seems promising for active mag-
netic bearing systems. As discussed above, an AMB model may deviate from the real
plant due to unmodeled dynamics, unknown disturbances, uncertain system parame-
ters or modeling errors. The possibility to optimally handle the inputs and state con-
straints, together with the plant-model mismatch, is offered by the OF-MPC technique.
It guarantees zero-offset tracking adding integral action from the knowledge of the
plant-model mismatch, while the controller design is an automated design procedure
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based on the trade-off between the control effort and the error in the controlled vari-
ables. However, a methodology for the application of offset-free model predic-
tive control on active magnetic bearings is not addressed in the literature yet.
The fact is that there are infinite choices to formulate an OF-MPC for a magnetic bearing
system but a proper implementation might result difficult because OF-MPC (i) requires
the selection of an augmented disturbance model to guarantee zero-offset control; (ii) A
state estimator must be designed from that augmented model; (iii) An optimal control
problem shall be formulated and (iv) an algorithm able to solve the control problem in
a deterministic time is required. Figure 1.5 introduces some of the expected stages to
be faced in this work.

Plant 
modeling

Disturbance 
modeling

Design of 
augmented estimator

OF-MPC 
formulation

Closed-loop 
simulations

C Code generation
& deployment

Experimental 
validation

Figure 1.5: Foreseen stages of the methodology. They evolved during the thesis work.

1.4 Objectives and Scope
The primary objective of the work presented in this thesis is the study of offset-

free model predictive control for active magnetic bearing systems. It is subdi-
vided into more specific objectives as follows:

• Study the general formulation of the OF-MPC control strategy

• Identify an OF-MPC formulation suitable for AMB applications

• Design an augmented model that accounts for the external disturbance and plant-
model mismatch

• Design a robust state estimator from the augmented model

• Formulate a custom OF-MPC controller with reduced computational burden to
guarantee a deterministic execution time

• Embed the control strategy (OF-MPC + Observer) into a hardware platform

• Validate the performance of the controller in real AMB systems

Scope: The thesis is limited to the linear formulation of OF-MPC. Nonlinear vari-
ants [46] are left for future works. The present work is also motivated by the following
consideration: OF-MPC is able to handle “persistent” uncertainties whether in the form
of additive disturbances, state estimation error or model error. “Fast” varying uncer-
tainties are out of the scope of this work.
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1.5 Thesis contribution
• The major contribution of this work is the demonstration of the potentialities of

linear OF-MPC on active magnetic bearing systems. A methodology for the over-
all control design is validated numerically and experimentally. The effectiveness
of the control strategy is first evaluated in a single-axis AMB system and later in
a more complex cone-shaped AMB system.

• The OF-MPC study presented here, might serve as “application notes” for the real
implementation of OF-MPC in cone-shaped AMB systems. In the author’s knowl-
edge, there is no literature reporting constrained optimal control solutions for
cone-shaped AMB systems. The control algorithm is described in detail showing
how to: reduce the computational burden of the control problem, generate OF-
MPC solvers from C code generation tools and design properly the plant state
estimator.

• OF-MPC resulted in a suitable control solution for AMB plants subject to variable
external disturbance forces and for any other system in which the plant input
saturation/limitation requires more attention during operation. Note that any
other linear control solution such as PD/PIDs, µ-Synthesis can guarantee good
stability properties but nothing can be said when the system saturates. However,
OF-MPC offers a systematic approach to optimally handle the trade-off between
control effort and controlled outputs taking into account both plant dynamics and
physical constraints.

• OF-MPC intrinsically offers some insight about the plant operation. This is be-
cause it can be formulated to lump the plant-model mismatch together with low-
frequency disturbances and load variations into the estimate. That estimate could
be interpreted as an engineering quantity for the real-time evaluation of both the
plant operation and the quality of the internal model of the controller.

1.6 Dissertation Outline
The work is subdivided into five Chapters. They are independent each other but

reading them in appearance order is recommended. They are outlined as follows:

Chapter 2: Linear Offset-Free Model Predictive Control Revisited

This chapter presents the first ingredients of a linear OF-MPC formulation: a plant
model, a disturbance model, a state estimator, the target calculation and finally summa-
rizes the OF-MPC design methodology. A resulting quadratic problem for a particular
disturbance model is also developed.
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Chapter 3: OF-MPC on a Single-Degree-of-Freedom AMB System

This chapter makes reference to the publication [47]. It presents the study of linear
Offset-Free Model Predictive Control (OF-MPC) for an Active Magnetic Bearing (AMB)
application. It describes the modeling and design of the OF-MPC architecture and its
experimental validation for a one degree of freedom AMB system. The effectiveness of
the method is demonstrated in terms of the reference tracking performance, cancella-
tion of plant-model mismatch effects, and low-frequency disturbance estimation.

Chapter 4: OF-MPC on a Cone-shaped Active Magnetic Bearing System

With cone-shaped AMBs, the rotor motion is controlled simultaneously in the ax-
ial and radial directions by two radial bearings with cone-shaped magnetic core. This
configuration eliminates the requirement of a dedicated axial actuator but makes the
control more complex than conventional cylindrical AMB solutions due to the cou-
pling of the axial and radial control actions. This chapter presents the benefits of ap-
plying Offset-Free Model Predictive Control (OF-MPC) for a cone-shaped AMB sys-
tem. A procedure for the overall design is presented and supported by the experimen-
tal work conducted in a scaled machine that reproduces a turbo-compressor unit in a
high-performance aircraft.

Chapter 5: Thesis conclusions and future work

This chapter concludes the thesis work and presents an evolved methodology for
the application of OF-MPC in AMB systems. The limitation of this work and future
research directions are also outlined.
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Chapter 2

Linear Offset-Free Model Predictive
Control Revisited

This chapter introduces the linear OF-MPC control solution together with its main
ingredients: a linear plant model, a generalized augmented disturbance model, an aug-
mented state estimator, the state and input targets selector, and the OF-MPC problem
formulation. A Quadratic Programming (QP) problem that results from a custom OF-
MPC formulation is also discussed.

2.1 Introduction
The main concept of Model Predictive Control (MPC) is to use a model of the plant

to predict the future evolution of the system. At each time step t a certain performance
index is optimized over a sequence of future input moves subject to operating con-
straints. The first of such optimal moves is the control action applied to the plant at
time t. At time t + 1, a new optimization is solved over a shifted prediction horizon
[41].

Model predictive control ensures stability and allows tracking any reachable target
without offset if the system evolves in a deterministic fashion and that the full state
(including disturbances) is measured [48]. Nevertheless, the perfect match between
plant and model is rather difficult to obtain and the full measurement of state and dis-
turbances is almost impossible. Integral action is used in linear control to ensure that
the true system output reaches its desired steady state value, or set point, despite the
presence of unaccounted constant disturbances and modeling errors. In the context
of MPC, there are several alternative ways in which integral action can be included
into a control algorithm. For example, using certainty equivalence (CE) principle [48,
§ 5.5], which consists of designing the control law assuming knowledge of the states
and disturbances, and then using their estimates as if they were the true ones when
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implementing the controller. The key idea is to include a model for constant distur-
bances at the input or output of the system and design an observer for the composite
model including system and disturbance models. Then the control is designed to reject
the disturbance, assuming knowledge of states and disturbance. Finally, the control is
implemented using CE. The resulting observer-based closed-loop system has intrinsi-
cally the integral action [48]. This control approach is well-known as Offset-Free Model
Predictive Control (OF-MPC).

This chapter presents the first ingredients of a linear OF-MPC formulation: a plant
model in Section 2.2, and the disturbance model and state estimator in Section 2.3. Sec-
tion 2.4 presents the target calculation and the OF-MPC problem formulation. The
prediction model and the resulting quadratic programming problem for a particular
disturbance model is also developed in Section 2.5.

2.2 Plant model
The OF-MPC follows the standard MPC design flow: the model choice, the observer

design and the controller design. Consider the discrete-time time-invariant system

xm(t+ 1) = f(xm(t), u(t))

ym(t) = g(xm(t)) (2.1)
z(t) = Hym(t)

where xm(t) ∈ Rnx , u(t) ∈ Rnu and ym(t) ∈ Rnp are the state, input, measured
output vector, respectively. The controlled variables z(t) ∈ Rnr are a linear combina-
tion of the measured variables. Without any loss of generality H is assumed to have
full row rank.

The objective is to design an MPC based on a linear system model of (2.1) in order
to have z(t) track r(t) with zero steady-state tracking error. r(t) ∈ Rnp is the reference
signal, which we assume to converge to a constant i.e., r(t) → r∞ as t → ∞.

The MPC scheme will make use of the following linear time-invariant system model
of (2.1):

x(t+ 1) = Ax(t) +Bu(t), (2.2)
y(t) = Cx(t).

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rnp are the state, input, output vector,
respectively. It is assumed that the pair (A, B) is controllable, and the pair (C, A) is
observable. Furthermore, C is assumed to have full row rank [41].
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2.3 Disturbance model and observer design
To account for plant-model mismatch and disturbances entering the plant, system

(2.2) is augmented with a disturbance model. Several disturbance models have been
presented in the literature [49, 43, 50, 51, 52]. The generalized augmented disturbance
model of [43, 52] is presented here as

[︃
x(t+ 1)
d(t+ 1)

]︃
=

[︃
A Bd

0nd×nx Ind×nd

]︃ [︃
x(t)
d(t)

]︃
+

[︃
B

0nd×nu

]︃
u(t) + w(t), (2.3)

y(t) =
[︁
C Cd

]︁ [︃ x(t)
d(t)

]︃
+ v(t)

where d(t) ∈ Rnd , Bd ∈ Rnx×nd and Cd ∈ Rny×nd . The vectors w(t) ∈ Rnx+nd and
v(t) ∈ Rnp are zero-mean white-noise disturbances for the augmented state equation
and for the output equation, respectively. An observer is designed from (2.3) to esti-
mate both states and disturbances. The observability of the augmented model (2.3) is
guaranteed if and only if pair (C, A) is observable and[︃

A− Inx×nx Bd

C Cd

]︃
(2.4)

has full column rank [52]. These observability requirements can restrict the choice of
the disturbance model (see [52] for details).

The state and disturbance estimator is designed based on the augmented model as
follows:[︃

x̂(t+ 1)

d̂(t+ 1)

]︃
=

[︃
A Bd

0nd×nx Ind×nd

]︃ [︃
x̂(t)

d̂(t)

]︃
+

[︃
B

0nd×nu

]︃
u(t) (2.5)

+

[︃
Lx

Ld

]︃
(ym(t)− Cx̂(t)− Cdd̂(t))

where Lx and Ld are chosen so that the estimator is stable.

2.4 The OF-MPC design
In the standard MPC problem formulation, the states and control inputs are usually

steered to the equilibrium point. When using the OF-MPC variant, that equilibrium
point is replaced by “targets” obtained from a steady-state condition that accounts for
the plant-model mismatch. From the observer (2.5) at steady state we have[︃

A− I B
C 0nd×nu

]︃ [︃
x̂∞
u∞

]︃
=

[︃
−Bdd̂∞

ym,∞ − Cdd̂∞

]︃
, (2.6)
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where ym,∞ and u∞ are the steady state measured output and input of the system (2.1),
x∞ and d̂∞ are state and disturbance estimates from the observer (2.5) at steady state,
respectively. Denote by z∞ = Hym,∞ and r∞ the tracked measured outputs and their
references at steady state, respectively. For offset-free tracking, z∞ must equal r∞ and
then working on (2.6) we have[︃

A− I B
HC 0nd×nu

]︃
⏞ ⏟⏟ ⏞

At

[︃
x∞
u∞

]︃
=

[︃
−Bdd̂∞

r∞ −HCdd̂∞

]︃
. (2.7)

As can be appreciated from (2.7), the state and input at steady state depend on d̂∞.
Note that the estimator (2.5) provides d̂(t) at each time step t. Since d̂(t) is known and
d̂(t+1) = d̂(t) from (2.3), the best forecast of the steady-state disturbance d̂∞ is simply
considering the estimate persistent i.e., d̂∞ = d̂(t). Then x∞ and u∞ can be obtained
from (2.7). Note that x∞ and u∞ exist for any d̂∞ and r∞ if the matrix At has full rank.

The OF-MPC problem formulation is designed as follows

minu
1

2
(xN − xt)

′ P (xN − xt) +
1

2

N−1∑︂
k=0

(xk − xt)
′ Q (xk − xt)

+
1

2

M−1∑︂
k=0

(uk − ut)
′ R (uk − ut) (2.8)

subj. to
xk+1 = Axk +Buk +Bddk, k = 0, . . . , N − 1,

dk+1 = dk, k = 0, . . . , N − 1,

uk = ut, k = M, . . . , N − 1, (2.9)
xk ∈ X , k = 1, . . . , N − 1,

xN ∈ Xf ,

uk ∈ U , k = 0, . . . ,M − 1,

x0 = x̂(t),

d0 = d̂(t), (2.10)

with the targets ut, xt given by[︃
A− I B
HC 0nd×nu

]︃ [︃
xt

ut

]︃
=

[︃
−Bdd̂(t)

r(t)−HCdd̂(t)

]︃
. (2.11)

Matrix Q is positive semi-definite, and matrices P and R are positive definite. At
each sampling instant t, the above constrained optimal control problem is solved over
a finite time prediction horizon N , using the current observed state of the plant x̂(t).
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The optimization yields an optimal control sequence u(t) =
{︁
u∗
0, . . . , u

∗
N−1

}︁
and the

first control in this sequence, u(t) = u∗
0, is applied to the plant.

From the OF-MPC problem formulation (2.8)-(2.11) we can appreciate that the sys-
tem steady state relation in (2.11) accounts for the effect of the disturbance on the state
evolution (0 → Bdd̂(t)). Then the states of the original system are moved onto the
manifold that cancels the effect of the disturbance in the controlled variables. In some
references, the targets are not obtained from (2.11) and a quadratic program that in-
volves the input constraints is used instead [53]. In this way, the input target ut never
violates the inputs constraints of the OF-MPC problem formulation (see, for instance,
reference [53]).

2.4.1 Method summary
Figure 2.1 shows the OF-MPC control scheme. The observer estimates both state and

disturbances which are used by the target calculator together with the reference vector
r to obtain the input and state targets. Both target vectors together with the state and
disturbance estimates are used to initialize the OF-MPC control problem (2.8)-(2.10).

plant

observer

target

selector

controller
u

x̂

d̂

y

r

tx

tu

Figure 2.1: OF-MPC control scheme consisting of: controller (2.8)-(2.10), state estimator
(2.5), and target selector (2.11).

2.5 OF-MPC as a quadratic programming problem
Since the finite horizon control problem (2.8)-(2.10) contains a quadratic cost func-

tion and only linear constraints on the input and output, it can be transformed into a
standard quadratic programming (QP) problem. Here the batch approach [52] is used to
rewrite (2.8)-(2.10) into a QP problem.
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2.5.1 Objective function handling without inequality
constraints

This Section shows how (2.8) can be combined with the equality constraints in (2.10)
and then transformed into a standard QP objective function by using the batch ap-
proach. The optimal control problem can be solved analytically if the inequality con-
straints are not considered (i.e., removing the upper and lower limits of inputs and states
from the problem formulation). Without loss of generality, it helps one understand the
main ingredients of the optimal control input that serves to guarantee offset-free refer-
ence tracking.

First the equality constraints are rewritten explicitly to express all future states
x1, ..., xN as a function of the future inputs u0, ..., uM−1 and disturbances d0, ..., dN
(if they are known or predicted a priori), and using the constraint that uk = ut for all
k ≥ M . Then all intermediate states are eliminated by successive substitution to obtain

⎡⎢⎢⎢⎣
x0
...
...

xN

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

x

=

⎡⎢⎢⎢⎢⎢⎣
I
A
...
...

AN

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Sx

x(0) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
B 0 . . . 0 0

AB B
. . . ...

...
...

... . . . ...
...

AM−1B AM−2B . . . AB B
AMB AM−1B . . . A2B AB

...
... . . . ...

...
AN−1B AN−2B . . . . . . AN−MB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Su

⎡⎢⎢⎢⎣
u0
...
...

uM−1

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
B

AB +B
...

N−M−1∑︁
i=0

AiBut

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Sut

ut +

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
Bd 0 . . . 0

ABd
. . . . . . ...

... . . . . . . ...
AN−1Bd . . . . . . Bd

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Sd

⎡⎢⎢⎢⎣
d0
...
...

dN−1

⎤⎥⎥⎥⎦ (2.12)

Then, all future states are explicit functions of the present state x(0), the future distur-
bances d = [d0, ..., dN−1]

T , the future inputs u = [u0, ..., uM−1]
T and input target ut. It

is compactly rewritten as

x = Sxx(0) + Suu+ Sutut + Sdd. (2.13)
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By doing the same but at steady state (i.e., when the steady state target xt and input
target ut are reached) we get

xt = Sxxt + Suut + Sutut + Sddt (2.14)

where vector dt = [dt; ...; dt] of length Nnd and ut = [ut; ...;ut] of length Nnu stand
for the disturbance estimates and inputs at steady state during the prediction horizon.
Subtracting (2.13) and (2.14) we get the deviation equation

x− xt⏞ ⏟⏟ ⏞
x̄

= Sx (x(0)− xt)⏞ ⏟⏟ ⏞
x̄

+Su (u− ut)⏞ ⏟⏟ ⏞
ū

+Sd (d− dt)⏞ ⏟⏟ ⏞
d̄

(2.15)

which becomes

x̄ = Sxx̄+ Suū+ Sdd̄ (2.16)

Similarly, the objective function (2.8) can be rewritten in vectorial form and with
deviation variables as

J(x̄, ū) =
1

2
x̄′Q̄x̄+

1

2
ū′R̄ū (2.17)

where Q̄ = blockdiag{Q, · · · ,Q,P}, Q̄ ≽ 0, and R̄ = blockdiag{R, · · · ,R}, R̄ ≻ 0.
Equation (2.16) is substituted into (2.17) to yield

J(x̄, d̄, ū) =
1

2
ū′ (Su′Q̄Su + R̄)⏞ ⏟⏟ ⏞

H

ū+ x̄′ (Sx′Q̄Su)⏞ ⏟⏟ ⏞
F

ū+ d̄
′
Sd′Q̄Su⏞ ⏟⏟ ⏞

Y

ū

+
1

2
x̄′(Sx′Q̄Sx)x̄+

1

2
d̄
′
Sd′Q̄Sdd̄+ x̄′(Sx′Q̄Sd)d̄ (2.18)

in which the last three terms are independent of the decision variable ū. Then

J(x̄, d̄, ū)
∆
=

1

2
ū′Hū+ (x̄′F + d̄

′
Y )ū+ J0 (2.19)

where J0 lumps the independent terms. As can be appreciated, the last calculation
is equivalent to the elimination of the equality constraints given by the state equations
in (2.10) by substitution into the objective function (2.8). The arguments (x̄, d̄) are
known parameters (see the problem formulation (2.8)-(2.11)). Note that d̄ becomes zero
when the disturbance estimate is assumed constant and persistent during the prediction
horizon i.e., dk+1 = dk, k = 0, ..., N − 1, and d0 = d̂(t).

Because R̄ ≻ 0, also H ≻ 0. Thus J(x̄, d̄, ū) is a positive definite quadratic function
of ū. Therefore, its minimum can be found by computing its gradient and setting it to
zero. This yields the optimal vector of future inputs

19



Linear Offset-Free Model Predictive Control Revisited

ū = −H−1F ′x̄−H−1Y ′d̄. (2.20)

When substituting the deviation variables we have

u− ut = −H−1F ′(x(0)− xt)−H−1Y ′(d− dt) (2.21)

where u(t) =
{︁
u∗
0, . . . , u

∗
N−1

}︁
. Since only the first control in this sequence, u(t) =

u∗
0, is applied to the plant (due to the receding horizon principle of MPC), then

u∗
0,uc = −K(x(0)− xt) +Kd(d− dt) + ut, (2.22)

where Knu×nx and Knu×Nnd
d are defined as the first nu rows of the matrices H−1F ′ and

−H−1Y ′, respectively.
As can be appreciated from (2.22), the input u∗

0,uc is obtained every time step based
on the knowledge of the actual state x(0) (measured or estimated), the inputs and states
targets as well as the disturbances evolution. Since the inequality constraints were not
considered, the optimal feedback gains are calculated once and offline. This computa-
tionally “cheap” solution may result enough when a cautious controller design approach
is desired.

By appropriate selection of the weightings in the objective function (2.8), the re-
sulting K is such that the matrix (A−BK) is Hurwitz, that is, all its eigenvalues have
moduli smaller than one [48]. Note that similar to standard linear quadratic regulators,
the aggressiveness of the controller depends on the weights selection.

The control input (2.22) includes the future disturbances into the formulation and
thus it adds naturally a feedforward compensation to diminish their undesired effects
on the controller performance. This is possible because during the formulation of the
QP problem, the disturbances d0, d1, ... were treated under the assumption that their
time evolution is known or predicted a priori. But it is important to remark that this
information is not needed to guarantee zero-offset tracking at steady state. In fact, the
disturbance is considered persistent (dk+1 = d̂0, k = 1, ..., N − 1) in (2.8)-(2.10) and
hence d̄ = (d− dt) = 0.

While the steady state targets guarantees the zero-offset tracking in the controlled
variables, there are some restrictions to take into account: (i) The offset-free tracking
is guaranteed for a maximum of np controlled variables where np is the number of
measurements and (ii) the offset-free tracking is guaranteed only at steady state.

2.5.2 Adding the inequality constraints to the QP problem
Magnitude and rate constraints such as

umin ≤ uk ≤ umax, k = 0, ...,M − 1,

xmin ≤ xk ≤ xmax, k = 1, ..., N − 1, (2.23)
δumin ≤ uk − uk−1 ≤ δumax, k = 0, ...,M − 1,
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are compactly represented by the constraints sets X and U in the OF-MPC problem
formulation. There exists also a terminal set Xf in (2.10) that satisfies certain properties
and is useful to establish closed-loop stability. The reader is directed to the reference
[48, § 5.3.2] to check how all these constraints can be written in the QP problem as
linear constraints on u of the form

Ku ≤ M(x̄, d̄,ut). (2.24)

Matrices K, M are obtained in a similar manner as described above for the objective
function handling i.e., eliminating intermediate states by successive substitution.

Going back to the QP objective function (2.19) and substituting the deviation vari-
ables ū = u − ut into it, and then eliminating the terms which are independent of u
we get

J̃(x̄, d̄,u,ut) =
1

2
u′Hu+ [x̄′F + d̄

′
Y − u′

tH]u (2.25)

At this point, the OF-MPC problem of minimizing (2.8) subject to the constraints (2.10)
can be expressed as the QP problem of finding u by minimizing (2.25) subject to (2.24),
that is,

min
u

1

2
u′Hu+ g(x̄, d̄,ut)u

subj. to
Ku ≤ M(x̄, d̄,ut) (2.26)

Standard numerical procedures (QP algorithms) are available to solve the above op-
timization problem. Note that the linear term g(x̄, d̄,ut) as well as M(x̄, d̄,ut) are
updated every time step before the QP problem (2.26) is solved. When the OF-MPC
formulation contains only input constraints (as usual in real applications), M is fixed
and hence its update is not necessary.

2.6 Delta input (δu) MPC formulation
Zero-offset tracking can be also guaranteed when using the δu formulation, also

known as incremental formulation [54] or MPC tracking problem [52, § 13.6]. It repre-
sents the situation when the system outputs should typically follow the given reference
trajectory and the control movement δu is penalized rather than control effort u.

In the δu formulation, the MPC scheme uses the following linear time-invariant
system model of the plant

x(t+ 1) = Ax(t) +Bu(t)

u(t) = u(t− 1) + δu(t) (2.27)
y(t) = Cx(t)
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The absolute control value is estimated by the observer, which is expressed as fol-
lows [︃

x̂(t+ 1)
û(t+ 1)

]︃
=

[︃
A B
0 I

]︃ [︃
x̂(t)
û(t)

]︃
+

[︃
B
I

]︃
δu(t)

+

[︃
Lx

Lu

]︃
(ym(t)− Cx̂(t)) (2.28)

and the MPC problem is modified to

min
δu0,...,δuN−1

1

2

N−1∑︂
k=0

(yk − rk)
′Qy(yk − rk) + δu′

kRδuk (2.29)

subj. to
xk+1 = Axk +Buk, k = 0, . . . , N − 1,

uk = uk−1 + δuk, k ≥ 0, (2.30)
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1,

u−1 = û(t),

x0 = x̂(t).

The control input applied to the system is

u(t) = δu∗
0 + u(t− 1). (2.31)

The input estimate û(t) is not necessarily equal to the actual input u(t). This scheme
inherently achieves offset-free control, there is no need to add a disturbance model.
This is due to the fact that any plant-model mismatch is lumped into û(t). Indeed this
approach is equivalent to an input disturbance model (Bd = B,Cd = 0). If in (2.30) the
measured u(t) were substituted for its estimate, i.e. u−1 = u(t− 1), then the algorithm
would show offset.

In this formulation the computation of a target input ut and state xt is not required.
A disadvantage of the formulation is that it is not applicable when there is an excess
of manipulated variables u compared to measured variables y, since detectability of the
augmented system is then lost [52].

2.7 Conclusions
The model predictive control strategy can be cast into OF-MPC to ensure that the

true system output reaches its desired steady state value, or set point, despite the pres-
ence of unaccounted constant disturbances and modeling errors. To do so, the system
model is augmented with a disturbance model that serves to obtain combined state and
disturbance estimates via an observer. Those estimates can then be used in the control
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algorithm by means of the certainty equivalence principle. The resulting observer-
based closed-loop system has integral action.

Two MPC variants that guarantee zero-offset tracking were presented here: The
general OF-MPC and delta input (δu) formulations. The (δu) formulation can be seen
as a particular case in which the plant-model mismatch is lumped into the control vari-
able while the general OF-MPC formulation (Section 2.4) allows one to “locate” the
disturbances by using a more general augmented disturbance model [43]. An informal
discussion of the stability properties of the OF-MPC is presented in [55, § 5.3.3].

The OF-MPC controller described in this Chapter is motivated by the following con-
sideration: OF-MPC is able to handle “persistent” uncertainties whether in the form of
additive disturbances, state estimation error or model error. “Fast” varying uncertain-
ties, however, are better handled by tube-based MPC [55] and other robust MPC variants
not mentioned here. The design of robust MPC to deal with “fast” varying uncertainties
are out of the scope of this work.
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Chapter 3

OF-MPC on a
Single-Degree-of-Freedom AMB
System

This chapter makes reference to the publication [47]. It presents the study of linear
OF-MPC for a single-degree-of-freedom AMB System. The modelling of the system is
described together with the design of the OF-MPC in all its parts: general control archi-
tecture, disturbance model and observer design, target calculation, and MPC problem
formulation. The effectiveness of the control technique is demonstrated in terms of
the reference tracking performance, cancellation of plant-model mismatch effects, and
low-frequency disturbance estimation.

3.1 Introduction
The adoption of Active Magnetic Bearings (AMBs) in industrial applications has ex-

hibited a steady growth in the last decades because of their remarkable advantages over
traditional oil-lubricated bearings due to their contactless nature. This allows tribol-
ogy and fatigue issues to be avoided, reducing power losses and eliminating oil supply
units. Furthermore, AMB systems are characterized by monitoring and diagnostic ca-
pabilities, while the high tunability of the control action permits on-line adjustments
of the bearing system according to the operating conditions. These and other benefits
have favoured the adoption of AMBs in a variety of applications such as kinetic en-
ergy storage systems, the oil & gas and vacuum industry, heart pumps, refrigeration
compressors and milling spindles [1, 56, 57]. Nowadays, the research effort to refine
this technology is focused on several aspects, such as actuator configuration [58, 11,
59], sensing technology [60, 61, 62], the interaction with rotordynamic aspects [63, 64],
and the integration of an electric motor with magnetic bearings [65, 66]. The control
strategy is typically based on linear or nonlinear control architectures such as PID, H∞,
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µ-synthesis, sliding mode control, LQ, and learning control [67, 68, 69, 70, 71]. Each of
these strategies has the main goal of compensating for the inherent unstable behavior
of the system and satisfying the demands of performance, robustness, and accuracy. In
this scenario, Model Predictive Control (MPC) has gained increasing attention in the
last few years and has been implemented in a variety of applications and in different
forms to tackle issues of nonlinearities and variability of the operating conditions. A
rich literature describes the potentialities of this approach in magnetic levitation [20, 17,
18, 19, 21, 22]. In particular, MPC has shown an improved performance in compensat-
ing for gyroscopic effects [72] and revealed properties of good stability and robustness
when compared with standard control architectures for the levitation of flywheels [72].
When using MPC for AMBs, the electromagnets’ current reference is obtained by solv-
ing a finite horizon open-loop optimal control problem either in real-time or offline. The
current state of the plant is considered as the initial state at every step of computation. If
the actual process and the nominal model match perfectly, this control scheme ensures
the stability and allows the tracking of any reachable target without offset. Neverthe-
less, in AMB systems, the perfect match between plant and model is rather difficult to
obtain, mainly because of nonlinear effects that are present in the magnetic actuators
[73] and uncertainty in the model parameters [74]. Increasing the model complexity
may not be enough to overcome this issue due to the intrinsic difficulty in evaluat-
ing or identifying all unknown model parameters. This leads to an almost unavoidable
steady-state offset of the closed-loop system. The inclusion of some form of integrative
action in the MPC scheme is therefore required to yield Offset-Free Model Predictive
Control (OF-MPC). Different approaches have been proposed in the literature to obtain
OF-MPC: (a) adding an external integrative action to the tracking error [21]; (b) com-
pleting the cost function of the MPC scheme with a term related to the tracking error
[18]; (c) adopting the so-called “velocity form linear model” considering the variations
between two time-steps of the input and, if needed, of the state [43]; and (d) exploiting
a disturbance observer based on an augmented plant model. The last case can be per-
formed with either an “output disturbance model” [75] or an “input disturbance model”
[76, 41]. In the last years, these techniques have been intensively studied in terms of
their linear and nonlinear formulations [76, 41, 42, 45, 49, 46], as well as in terms of
their applications in a variety of real cases. They have shown advantageous properties
of stability and robustness [77, 78].

To the author’s knowledge, linear OF-MPC based on an “input disturbance model”
has not been attempted yet in AMB systems, despite its inherent capability to han-
dle the steady-state offset generated by the plant-model mismatch and by unmeasured
nonzero-mean disturbances. Hence, this is the objective of the present study. An ad-
ditional advantage of the proposed method is to allow a real-time estimation of the
low-frequency external disturbances and load variations acting on the AMB system to
be obtained. This property is of great importance in applications such as compressors,
pumps, and blowers, where the axial load applied to the machine can change signifi-
cantly according to the operating conditions.
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3.2 – Single-degree-of-freedom AMB system

3.2 Single-degree-of-freedom AMB system
The test rig adopted for the experimental validation is a single-degree-of-freedom

AMB system presented in Figure 3.1. It consists of a horizontal arm hinged at one
extremity with a pivot and controlled at the other extremity by means of a single-axis
magnetic bearing with two opposite electromagnets.

(a)

(b)

Figure 3.1: Single-degree-of-freedom AMB system. (a) Picture of the test rig.(b) System
layout: (1) Pivot; (2) Displacement sensor; (3) Moving mass; (4) Electromagnet.

The length of the arm (320 mm) and the small air gap (0.6 mm) ensure that the
circular motion of the mass can be approximated with a pure linear displacement (q).
The base plate, connecting the arm and electromagnets’ housing, is made from alu-
minium, and the shaft is steel, while silicon iron laminations are used for the stator
and moving part of the magnetic circuit. The displacement of the mass is detected by
means of a Bently Nevada Proximitor 3300XL (Minden, NV, USA) eddy current sensor.
The currents in the electromagnets are measured by two AMP25 Hall sensors, one per
electromagnet. The main electro-mechanical parameters of the plant are listed in Table
3.1.
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Table 3.1: Plant parameters

Symbol Name Value Unit
m Mass 3.41 kg
S Cross-section area at the air gap 420 mm2

q0 Nominal air gap 0.6 mm
n Number of turns 142 -
R Coil resistance 0.35 Ω
L0 Coil nominal inductance 5.8 mH
ki Current-force factor 13.65 N/A
kq Electromagnet negative stiffness 11.4 N/mm
km Back-electromotive-force factor 13.65 Vm/s

A dSPACE MicroLabBox unit is used to close the feedback loop and for data acqui-
sition. It includes a Freescale QorlQ P5020 real-time processor and a FPGA-PC-dSPACE
prototyping platform for rapid control software development. The power stage consists
of an H-bridge for each electromagnet with a 20 kHz fixed PWM frequency and a 24 V
DC bus voltage.

3.3 Modeling
As is usual in AMB systems, the two electromagnets are operated in differential

driving modes, i.e., one electromagnet is driven with the sum of bias and control current
(i0 + ic), while the other one with their difference (i0 − ic). In the closed loop, ic is set
by the position controller, while i0 is fixed. The system dynamic equilibrium equation
is

mv̇ = fm(ic, q) + fd (3.1)

wherem is the equivalent mass of the moving parts (including the arm and the mov-
ing part of the magnetic circuit), v is its velocity, fm represents the magnetic actuators’
force, and fd represents an external disturbance force.

Assuming that: the two electromagnets are identical and magnetically uncoupled
with each other, no saturation occurs in the magnetic material, the stray flux and eddy
current effect are negligible, and the reluctance in the ferromagnetic part is negligible
compared to that of the (small) air gap, the nonlinear magnetic force can be expressed
as [1]:

fm = Γ

(︃
(i0 + ic)

2

(q0 − q)2
− (i0 − ic)

2

(q0 + q)2

)︃
cosα (3.2)

where coefficient Γ = µ0n
2S and µ0 = 4π×10−7 H/m is the magnetic permeability

of the vacuum; α = π/8 is the angle of each pole relative to the centerline between the
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poles. The error of the predicted force with this modeling approach is within a range
of 5%–10% ([1, § 3.1.5]).

In linear AMB, the nonlinear function (3.2) is linearized at the operating point with
nominal airgap q0, as

fm(ic, q) = kiic + kqq (3.3)

where ki and kq are the force-current and force-displacement (or negative stiffness)
factors, respectively. The linearization of (3.3) makes the control design easier as it
can exploit all tools of linear control theory. Nevertheless, it becomes the first cause
of plant-model mismatch, as well as the aforementioned assumptions at the base of the
force Equation (3.2). These effects lead to a mismatch of the actual ki and kq coefficients
relative to their nominal value and the force in Equation (3.3) can be rewritten as

fm,real(ic, q) = (ki + ϵi)ic + (kq + ϵq)q (3.4)

where ϵi, ϵq are the uncertainty on force-current and force-displacement factors,
respectively. If this uncertainty is constant as time tends to infinity, (3.4) becomes

f ∗
m(ic, q)∞ = kiic,∞ + kqq∞ + ϵ (3.5)

in which ϵ lumps both force-factors uncertainties. This mismatch can be combined
with low-frequency external disturbance effects into the disturbance term

d(t) = ϵ+ fd(t) (3.6)

3.4 OF-MPC design
The augmented model at the base of the OF-MPC controller is given by (3.1), (3.3),

and (3.6), and can be expressed with the linear continuous-time state space representa-
tion

ẋ(t) =

[︃
0 1
kq
m

0

]︃
x(t) +

[︃
0
ki
m

]︃
u(t) +

[︃
0
1
m

]︃
d(t) (3.7)

y(t) = [1 0]x(t)

where u stands hereinafter for the control current ic , and the state vector x(t) =
[q(t)v(t)]T includes the displacement q(t) and the velocity v(t) of the moving mass.
The linear discrete-time representation

x(k + 1) = Ax(k) +Bu(k) +Bdd(k) (3.8)
y(k) = Cx(k)
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derived from (3.7) is required to apply OF-MPC. Aiming to obtain an offset-free control
in the controlled variable y, a disturbance model is required to account for unmeasured
low-frequency disturbances caused by plant-model mismatch or from external loads. To
this end, the disturbance d is considered a new state to be estimated. The augmented
model results in[︃

x(k + 1)
d(k + 1)

]︃
=

[︃
A Bd

01×2 1

]︃ [︃
x(k)
d(k)

]︃
+

[︃
B
0

]︃
u(k) +

[︃
wx(k)
wd(k)

]︃
(3.9)

y(k) = [C Cd]x(k)

where wx ∈ R2 and wd ∈ R represent the state noise, and wx ∈ R2 is the output
noise. Matrices Bd and Cd represent the effect of the disturbance d on the state and
output equations, respectively. If only the disturbance on the output is considered,
then Bd is a zero matrix and Cd is nonzero, the integrating disturbance d is only added
to the output y, and the resulting formulation is therefore called the output disturbance
model. However, considering the interest in turning d into a representation of plant-
model mismatch and external disturbance force, the disturbance will not have a direct
influence on the output equation (i.e., Cd = 0 ) and the resulting augmented model is
called the input disturbance model with Bd /= 0. In this last case, the output equation
in (3.9) is not affected by the disturbance d, and hence

y(k) = Cx(k) + wn(k) (3.10)

Provided that the system (3.9) is observable since pair (C,A) has full rank, and also
guaranteeing that the matrix [︃

A− Inx×nx Bd

C Cd

]︃
(3.11)

has full column rank [52], the state and the disturbance are estimated by the Kalman
filter[︃

x̂(k + 1)

d̂(k + 1)

]︃
=

[︃
A Bd

01×2 1

]︃ [︃
x̂(k)

d̂(k)

]︃
+

[︃
B
0

]︃
u(k)+

[︃
Lx

Ld

]︃
(y(k)−Cx̂(k)) (3.12)

where Lx ∈ R2 and Ld ∈ R are the predictor gain matrices for the state and the distur-
bance, respectively. They are calculated off-line, solving the Algebraic Riccati Equation
as explained in detail in [53, 12]. The variance of the stochastic disturbance sequences
wx (states), wd (disturbance), and wn (output) is treated as adjustable parameters of the
filter. An increase in the ratio between wx and wd makes the filter slower in estimating
the disturbance, while an increase in the ratio between wn and wd makes the estimator
less sensitive to the output noise [53]. The design parameters of the filter are reported
in Table 3.2.
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Table 3.2: Kalman filter design parameters

Parameter Value

Variance of {wx}
[︃
4 0
0 4

]︃
× 10−10

Variance of {wd} 1
Variance of {wn} 4× 10−10

Lx

[︃
1
119

]︃
Ld 28325

3.4.1 Control system architecture
The objective of the proposed technique is to control the displacement of the moving

mass to perform (a) reference tracking with the cancellation of plant-model mismatch
effects; and (b) real-time estimation of low-frequency external disturbance, including
load variations. The control architecture which is presented in Figure 3.2 is composed of
an MPC block running at 5 kHz and generating the current reference u for the actuators.
As is usual in standard AMB systems, the current is controlled by two internal PI control
loops, one per electromagnet. These inner loops run at 20 kHz. The PI integral time is
selected to be equal to the time constant of the RL circuit (i.e., τi = τRL = L0/R), and
the proportional parameter Kp is set equal to 55 V/A.

Figure 3.2: Control system architecture.

Taking the MPC current command and the displacement measured by the eddy cur-
rent sensor as inputs, the Kalman filter (3.12) estimates the displacement (q̂), velocity
(v̂), and disturbance (d̂). The latter is provided to the target calculation block together
with the position reference (r), in this case equal to 0, to obtain the state and input tar-
gets (q̄T , v̄T , ūT ). These and the total set of Kalman filter estimate (q̂, v̂, d̂) are provided
to the MPC to determine the current command (u). The control sequence repeated at
each sampling time is the following: (a) the state x̂ and the disturbance d̂ are estimated
by the Kalman filter; (b) the target calculation block exploits the reference r and the
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estimated disturbance d̂ to generate the state and control targets sent to the MPC at the
current sampling instant; and (c) the MPC solves a constrained optimization problem,
based on the targets and estimations, to get a new optimal control current u∗

0, which is
applied to the system during the next sampling period.

3.4.2 Target calculation and MPC problem formulation
For offset-free tracking, at a steady state, the tracked measured output y∞ must

reach its reference r∞ (y∞ = r∞). When substituting the estimated disturbance in
(3.9), the augmented model at a steady state is expressed by[︃

A− I B
C Cd

]︃ [︃
x∞
u∞

]︃
=

[︃
−Bdd̂∞

r∞ − Cdd̂∞

]︃
(3.13)

This model is included in the MPC problem formulation to obtain the state and input
targets. The OF-MPC problem is formulated as

min
u

(xN − x̄T )
′ P (xN − x̄T ) +

N−1∑︂
j=0

[(xj − x̄T )
′Q (xj − x̄T )

+ (uj − ūT )
′R(uj − ūT )] (3.14)

subj. to
xj+1 = Axj +Buj +Bddj, j = 0, . . . , N

xj ∈ X , uj ∈ U , j = 0, . . . , N − 1

xN ∈ Xf

dj+1 = d(j) (3.15)
x0 = x̂(0)

d0 = d̂(0),

X = {xj ∈ R2 : j = 0, ..., N − 1}
U = {u ∈ R : −i0 ≤ uj ≤ imax}, j = 0, ..., N − 1

Xf = {xN ∈ R2}
(3.16)

where N is the prediction and control horizon, and the targets x̄T and ūT are given by[︃
A− I B
C Cd

]︃ [︃
x̄T

ūT

]︃
=

[︃
−Bdd0

r(t)− Cdd0

]︃
(3.17)

In (3.14), Q is a positive semi-definite matrix, and matrices P and R are positive definite
and P satisfies the Algebraic Riccati Equation
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P = ATPA− (ATPB)(BTPB +R)−1(BTPA) +Q. (3.18)

A tailored solver was used for the online execution of the OF-MPC controller. It was
obtained by means of the µAO − MPC code generation tool [79], which provides C
code libraries for the efficient online implementation of MPC problems. The solver is
based on an augmented Lagrangian method together with Nesterov’s gradient method
and guarantees a deterministic execution time [79], since the maximum computation
time required by the MPC in the dSpace hardware is about 25 µs. At each sampling
instant k, the constrained optimal control problem (3.14)-(3.17) is solved over a finite
time prediction horizon N , using the current observed state of the plant x̂(k). The
method yields an optimal control sequence U0(k) = {u∗

0, ...u
∗
N−1}, from which the first

command u(k) = u∗
0 is applied to the plant.

The MPC design parameters adopted in the present case are listed in Table 3.3. The
prediction horizon N is selected as the smallest value to obtain a fast-enough response,
but guaranteeing the feasibility of the constrained optimal control problem formulation.
As is common practice, the value of R is fixed to 1, while Q, i.e., the weight matrix
for the state q(t) and v(t), is designed to obtain a reasonable compromise between a
sufficiently fast response and low noise amplification. The matrix P is obtained from
(3.18).

Table 3.3: OF-MPC design parameters

Parameter value
N 12

Q
[︃
5× 106 0

0 0.1

]︃
R 1

P
[︃
98255756 804198
804198 10020

]︃
A nonlinear version of the proposed method could be investigated to take into ac-

count the plant nonlinearity effects [46]. In this case, the design should be conducted
considering Equation (3.2) instead of Equation (3.3). The technique would be based on
a different solver and on the replacement of the Kalman filter with a nonlinear observer
method. The designer should take care of possible issues related to the convergence of
the solution and guarantee a deterministic execution time [46].

3.5 Experimental results and discussion
The experimental tests are conducted to validate the system performance in terms

of: correctness of the Kalman filter estimation, offset-tracking with the cancellation of

33



OF-MPC on a Single-Degree-of-Freedom AMB System

plant-model mismatch, and low-frequency disturbance estimation. The tests are per-
formed with the arm of the AMB system in a vertical direction to avoid the load due to
its weight and with a bias current of 0.5 A.

The first test consists of providing a step excitation through the actuators with a
disturbance current (id in Figure 3.2) of 0.2 A, corresponding to a force of about 3.5 N
at a nominal air gap. The obtained results are reported in Figure 3.3. In particular,
Figure 3.3a illustrates the nominal force provided to the system (dotted line), the force
obtained from (3.2) (dashed line), and its estimate from the Kalman filter (solid line).
It can be pointed out that, even with no current disturbance (t < 0.1 s), the control
output and disturbance estimation values are nonzero, which is caused by the plant-
model mismatch. As expected from (3.6), both effects of plant-model mismatch and
external disturbances are lumped into a force estimate to move the controller targets
and guarantee offset-free tracking. Figure 3.3b illustrates the simulated (dashed line)
and experimental (solid line) MPC command: providing the disturbance current id , the
Kalman filter estimates change, and the controller target is modified to achieve zero
offset on the output. Finally, Figure 3.3c reports the comparison between the measured
position (solid line) and that estimated from the Kalman filter (dashed line) (the simu-
lation results are not reported in this plot for clarity’s sake). The proposed controller is
able to recover the effect of the disturbance and reach a null offset in about 0.06 s. The
same figure evidences that since the position estimation has low noise (RMS value dur-
ing 1 s = 0.79 µm) with respect to the measurement (RMS value during 1 s = 1.12 µm),
the signals in the control loop are inherently filtered and clean. The good match be-
tween the simulation and experimental results demonstrates the effectiveness of the
modeling approach.

The same test is conducted with different amplitudes of excitation to obtain a more
exhaustive validation in different operating conditions. Figure 3.4a shows the compari-
son between the nominal and the estimated disturbance force, and Figure 3.4b displays
the corresponding displacement. In this case, the offset due to the plant-model mis-
match is removed in post-processing to highlight the correctness of the external distur-
bance force estimation.

It can be noted that, while the transient response changes considerably because of
the nonlinear nature of the plant, at a steady state, the force estimate is still consistent
with the current disturbance. This is due to the well-known physical linearization of
AMB actuators’ characteristics (3.2) taking place when the moving mass is in a centered
position (q = 0), and both electromagnets are active, (ic < i0). In these conditions, the
current-force characteristic is substantially linear and coefficient ki does not depend on
the new control current value, provided that the moving mass reaches the offset free
displacement at the center of the gap.

The next set of tests is performed to evaluate the capability of the proposed method
to cancel the plant-model mismatch. As mentioned above, the linear model has been
obtained considering a bias current of 0.5 A. If a different value of bias current is set
in the experimental tests, the model is not representative of the plant anymore. This
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Figure 3.3: Step excitation through the actuators with a current id = 0.25A. (a) Nominal
force applied to the system (dotted line); force from model simulation (dashed line);
force estimated experimentally by the Kalman filter (solid line). (b) MPC command
(dashed line: simulation result; solid line: experimental result). (c) Displacement of the
mass (solid line: eddy current sensor direct measurement; dashed line: Kalman filter
estimation).

plant-model mismatch clearly affects the behavior of simple MPC architectures when
no integral action exists, while the proposed OF-MPC method allows this issue to be
overcome and, at the same time, the amount of disturbance to be evaluated.

Figure 3.5 illustrates the results of the tests performed by imposing consecutive
changes of the bias current from 0.3 A to 0.7 A (d) and comparing the behavior of the
displacement of the proposed OF-MPC (a) and of a simple MPC (b) which is based on the
same formulation but with targets to the origin (i.e., x̄T = 0, ūT = 0, which means no
knowledge about plant-model mismatch and disturbance forces). As stated before, both
controllers have been designed on the base of a plant model that considers a bias current
of 0.5 A. The displacement plot of Figure 3.5a shows that the OF-MPC compensates for
the plant-model mismatch effectively, providing, at the same time, an estimation of the
disturbance force (c). However, from Figure 3.5b, an offset in the displacement is always
present with the MPC controller, even when bias current is the designed one.

The aim of the last set of tests is to evaluate the correctness of the load variation
estimation. The tests are performed as illustrated in Figure 3.6 by applying known
values of force to the system by means of direct weights (L) acting on the arm by means
of a pulley and a piece of string.

Figure 3.7 shows the estimation performance comparing the estimated force (solid
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Figure 3.4: Step excitation at different force amplitudes (id [A] = 0.3, 0.35, 0.4, 0.7).
(a) Nominal vs. estimated applied force. (b) Displacement of the mass.
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Figure 3.5: Effects of the plant-model mismatch on OF-MPC (a) and MPC (b) architec-
tures. (c) is the estimation of the force equivalent to the plant-model mismatch (obtained
only with OF-MPC architecture) and (d) is the variation of bias current provided to the
plant.
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3.6 – Conclusions

Figure 3.6: Experimental setup for the load variation estimation test. Picture (a) and
layout (b) of the setup. L: variable load.

line) with the applied force (dashed line). The precision of the estimation is around
97 % until the control current is lower than the bias current (0.5 A) and decreases
down to 90 % when one electromagnet is switched off. It is worth noticing that if
the disturbance requires switching off one electromagnet (the control current is higher
than the bias current), the system is not working in linear differential mode anymore
and the electromagnets work in a nonlinear range, even in the nominal position. The
force estimation is still acceptable even under these conditions, and this shows the good
performance of the proposed strategy, even in a nonlinear operating range.

3.6 Conclusions
In this Chapter, the application of linear Offset-Free Model Predictive Control (OF-

MPC) to a single-axis active magnetic bearing system has been presented. The proposed
method is based on a disturbance observer with an augmented plant model including an
input disturbance estimation. The proposed technique allows the well-known advan-
tages of MPC to be exploited and, at the same time, the effect of plant-model mismatch
in the reference tracking to be overcome. This architecture allows the real-time esti-
mation of the low-frequency disturbance applied to the system. This last property is of
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Figure 3.7: Load variation estimation test. Dashed line: real applied force. Solid line:
estimated force. The values of the force estimate are referred to the vertical axis.

great interest in industrial applications like compressors and blowers, where keeping
the reference position is critical to insuring the system functionality, even when the
axial load changes according to the operating conditions. The modeling and control
design have been described and validated experimentally for a single-axis AMB system
with a set of tests that demonstrate the effectiveness of the approach in terms of refer-
ence tracking with the cancellation of plant-model mismatch effects and estimation of
low-frequency disturbances and load variations.
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Chapter 4

OF-MPC on a Cone-shaped Active
Magnetic Bearing System

This chapter presents the study of linear OF-MPC for a cone-shaped AMB System.
The modeling of the system is described together with the design of the OF-MPC in all
its parts: general control architecture, disturbance model and observer design, target
calculation, and the control problem formulation. An OF-MPC variant with reduced
control horizon is proposed and implemented in real time. The OF-MPC resulted a
promising constrained optimal control technique for cone-shaped AMB since the cou-
pling of axial and radial control actions, together with the coil current limitations can
be optimally handled by the controller. The experimental results demonstrate that OF-
MPC overcomes decentralized PID controllers in terms of axial disturbance rejection.

4.1 Introduction
With cone-shaped AMBs, the rotor motion is controlled simultaneously in the ax-

ial and radial directions by two radial bearings with cone-shaped magnetic core. This
configuration eliminates the requirement of a dedicated axial actuator but (i) makes the
control more complex than conventional cylindrical AMB solutions due to the coupling
of the axial and radial control actions, and (ii) the systems becomes less actuated in axial
direction (i.e., low axial force generation capability).

In cone-shaped AMBs, the inherent coupling between the radial and axial control
actions, together with the low axial force generation capability and coil current limita-
tions result difficult to manage when using decentralized control strategies. The current
on each electromagnet is the sum of axial and radial control contributions to generate
axial and radial restoring forces. When using decentralized control, for example, one
Proportional-Integral-Derivative (PID) controller for each degree of freedom [38, 37],
each controller knows only about the control contribution it produces but nothing about
the real current flowing into the coils. It is due to the simultaneous presence of axial
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and radial control current contributions in the same coil. Commonly, the coil current
limitations are treated as external saturation blocks and hence not optimally handled.
No previous study has investigated the low axial force generation capability of these
kind of systems in terms of control design.

This Chapter presents the benefits of applying OF-MPC for a cone-shaped AMB
system. A procedure for the overall design is presented and supported by the experi-
mental work conducted in a scaled machine that reproduces a turbo-compressor unit
in a high-performance aircraft. Firstly, the computational burden associated with the
online execution of the OF-MPC is addressed by reducing the control horizon in the
problem formulation. The resulting Quadratic Programming (QP) problem is trans-
lated to C code using CVXGEN, a C code generator for embedded convex optimization.
The OF-MPC is compared with conventional PIDs. The experimental results demon-
strate that the OF-MPC outperforms the PID controller when the system is perturbed in
axial direction. With OF-MPC, the coil current limitations are optimally handled, and
zero-offset tracking at steady state is guaranteed based on the disturbances estimate.
The approach is also effective in guaranteeing the stability and robustness according
to standards for AMB systems. The plant-model mismatch estimate can be interpreted
as an engineering quantity for the real-time evaluation of both the plant operation and
the quality of the internal model of the controller.

The work is organized as follows. The plant under study is described in Section 4.2.
The nonlinear plant modeling is presented in Section 4.3 and the actuator configuration
in Section 4.4. The control strategy is detailed in Section 4.5 together with its main in-
gredients: a linear plant model, the augmented estimator, the target selector and ends
with the analysis of the execution time obtained for different hardware. Some prelimi-
nary simulations are used to validate numerically the control strategy and introduce the
two main parameters involved in the tuning process of the controller and the estimator.
The experimental results are presented in Section 4.7 to demonstrate the effectiveness
of the controller and Section 4.8 concludes the work.

4.2 Plant description
The plant under study is a scaled reproduction of a turbo-compressor group of a

conditioning unit used in high performance jet aircraft. The conical geometry of mag-
netic bearings allows to perform a compact design of actuation stage whose composed
of only four pairs of electromagnets instead of five of conventional cylindrical solution,
resulting of great interest for the application in small machines. Turbine and compres-
sor impellers are simulated by two discs of steel. According to the FEM model of the
rotor (not presented here), the first two flexible rotor modes are around 10831 rad/s and
31331 rad/s, respectively. The corresponding critical speeds are beyond the maximum
reachable spin speed, that is equal to 20000 rpm.
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4.3 – Nonlinear plant modeling

Figure 4.1: Section view of the machine. 1) Centering tip. 2) Spin speed sensor. 3)
Landing bearings. 4) Magnetic actuators. 5) Inductive displacement sensors. 6) Rotor.
7) Electric motor. The dimensions are in mm.

4.3 Nonlinear plant modeling
Figure 4.2 shows the electromagnetic forces (F1, ..., F8) produced by the eight elec-

tromagnets placed on the stator. These forces are generated by varying the coil currents
to control the shaft position. Table 4.1 presents the main parameters of the system that
are involved in the modeling equations.

AMB 1 AMB 2

z
y

1F

2F

3F

4F

electromagnets

β

1b 2b

coil

mR

rotor

1g3g

4g 2g

a) AMB 1 AMB 2

x
z

5F

6F

7F

8F

5g7g

8g 6g

b)

y x

z

mg

xθyθ

Ω

1F

2F

3F

4F

5F

6F8F

7F
c) d)

xθ

sensors
AMB 1 AMB 2

z
x

1c 2c
yθ1y

1x

2y
2x

yθ

Figure 4.2: Forces on a) Y-Z and b) X-Z planes. c) 3D projection of the motor shaft
with the two discs that simulate the turbine and compressor impellers. d) Displacement
sensors on x1,2 and z directions. Two other sensors are installed in y1,2 directions but
omitted in the scheme.

Assuming that the rotor is rigid, and considering the gyroscopic effects [80], the
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Table 4.1: Plant parameters

Subsystem Symbol Name Value Unit
Rotor g0 Nominal air gap 0.45× 10−3 m

m Rotor mass 0.755 kg
Jp Polar moment of inertia 1.54× 10−4 kgm2

Jd Diametrical moment of inertia 31.68× 10−4 kgm2

β Inclined angle of the magnetic core 0.98 rad
b1 Distance between the radial magnetic 55× 10−3 m

bearing (1) and the center of gravity
b2 Distance between the radial magnetic 55× 10−3 m

bearing (2) and the center of gravity
c1 Distance between the sensor coordinates 29× 10−3 m

in bearing (1) and the center of gravity
c2 Distance between the sensor coordinates 29× 10−3 m

in bearing (2) and the center of gravity
Rm Effective radius 12.4× 10−3 m

Actuators Nt Coil turns 82 −
Rcoil Coil resistance 0.5 Ω
L0 Nominal Inductance 1.2× 10−3 H
S Cross-sectional pole face area 118× 10−6 m2

equations of motion can be written as

mz̈ =(F1 + F2 + F5 + F6) sin β − (F3 + F4 + F7 + F8) sin β + Fz (4.1a)
mẍ =(F5 − F6 + F7 − F8) cos β + Fx (4.1b)
mÿ =(F1 − F2 + F3 − F4) cos β + Fy (4.1c)

Jdθ̈x = [(F1 − F2) b2 + (F4 − F3) b1] cos β + (F2 − F1 + F3 − F4)Rm sin β

−JpΩθ̇y +Mx (4.1d)

Jdθ̈y = [(F6 − F5) b2 + (F7 − F8) b1] cos β + (F5 − F6 + F8 − F7)Rm sin β

+JpΩθ̇x +My (4.1e)

where Fz, Fx, Fy are generalized disturbance forces acting on (x, y, z) directions,
respectively, and Mx, My are moments around x-axis and y-axis, respectively; Ω stands
for the spin speed; and the electromagnetic forces are given by

Fj = K
i2j
g2j

; j = 1, ...,8, (4.2)

with the force coefficient K = µ0SN2 cosσ
4

in which σ = π/8 is the angle of each pole
relative to the centerline between the poles. The bearing air gaps gj presented in (4.2)
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can be referred to the center of gravity (COG) coordinates involving the geometrical
quantities introduced in Figure 4.2 as

g1,2 = g0 − z sin β ∓ cos β(y + b2θx) (4.3a)
g3,4 = g0 + z sin β ∓ cos β(y − b1θx) (4.3b)
g5,6 = g0 − z sin β ∓ cos β(x− b2θy) (4.3c)
g7,8 = g0 + z sin β ∓ cos β(x+ b1θy). (4.3d)

Let ζ denote the state vector [z, x, y, θx, θy, ż, ẋ, ẏ, θ̇x, θ̇y]⊺, i the vector of coils currents
[i1, ..., i8]

⊺ and d the vector of disturbances [Fz, Fx, Fy, Mx, My]
⊺. When substituting

(4.3) into (4.2) and then into (4.1a), the state equations can be compactly written as

ζ̇ = h(ζ, i,d,Ω), (4.4)

which is a condensed nonlinear time-domain representation of the system. All the in-
volved parameters are known and presented in Table 4.1, hence equation (4.4) can be
used for numerical simulations of the full plant and for performance evaluation of the
controller during the design phase.

4.4 Magnetic bearings actuation
In common AMB systems, the actuation along one axis of control is obtained as the

sum of the contributions of two opposite electromagnets. They are typically operated
in differential driving mode i.e., one electromagnet is driven with the sum of bias and
a control current (i0 + icj), while the opposite one with their difference (i0 − icj) [1].
The same principle is applied also for conical AMB in the axial direction. By simple
inspection in Figure 4.2, one can see that any positive deviation on z direction from
the equilibrium point, might be compensated by increasing forces F3,4,7,8 (AMB 1) and
decreasing F1,2,5,6 (AMB 2). The opposite condition is obtained in the case of negative
deviations. Figure 4.3 is the schematic illustration of the control strategy together with
the differential driving mode configuration.

Then five control currents u = [uz, ux1 , uy1 , ux2 , uy2 ]
⊺ are used to control the five

dofs of the plant. The coil currents can be expressed in terms of control actions along
the motion directions as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1
i2
i3
i4
i5
i6
i7
i8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= i0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1
1 0 0 0 −1
−1 0 1 0 0
−1 0 −1 0 0
1 0 0 1 0
1 0 0 −1 0
−1 1 0 0 0
−1 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ku

⎡⎢⎢⎢⎢⎣
uz

ux1

uy1

ux2

uy2

⎤⎥⎥⎥⎥⎦ , (4.5)
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Figure 4.3: Control diagram with the transformation from control to coil currents. The
subscript ref stands for references and meas for measurements.

in which Ku is the transformation matrix between control actions and coil current de-
viations.

Actuator dynamics

Proportional-Integral (PI) current controllers are designed to speed up the actuators
response. All the electromagnets are considered identical and the selected PI integral
time τi cancels the open-loop time constant of the coils (i.e. τi = L0/Rcoil. The resulting
coil current dynamics can be modeled by the differential equations

i̇j = −ωclij + ωclij,ref , j = 1, ...,8, (4.6)

where ij,ref is current reference for coil j and ωcl is the bandwidth of the current loop.
The latter can be theoretically defined as ωcl = Kp/L0 where Kp = 40 V/A is the
proportional gain. However, from experimental test, the bandwidth resulted around 1
kHz due to voltage saturation. Nevertheless, this dynamics is considered much faster
than the mechanical one and then neglected throughout the modeling of the mechanical
plant. Therefore, during the modeling phase of the mechanical dynamics it is assumed
that the coil current references obtained from (4.5) are the currents flowing into the
coils.

4.5 Linear OF-MPC Formulation
Model (4.4) may deviate from the real plant due to unmodeled dynamics, unknown

disturbances, uncertain system parameters or modeling errors. Furthermore, the plant
under study belongs to an aircraft, with disturbance forces that can change over time
due to the aircraft maneuvering. The possibility to optimally handle the plant-model
mismatch is offered by the offset-free model predictive control (OF-MPC) whose archi-
tecture is represented in Figure 4.4. It guarantees zero offset tracking adding integral
action from the knowledge of the plant-model mismatch, while the controller design is
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an automated design procedure based on the trade-off between the control effort and
the error in the controlled variables. The observer estimates both state and disturbances
which are used by the target calculator together with the reference vector r to obtain
the input and state targets. Both target vectors together with the state and disturbance
estimates are used to initialize the OF-MPC control problem. This Section presents the

Figure 4.4: OF-MPC control scheme consisting of: controller, state estimator, and target
selector.

main ingredients of the OF-MPC strategy: linear plant model, disturbance model, esti-
mator of the augmented model and problem formulation.

4.5.1 Linear model
The nonlinear plant model (4.4) is linearized at nominal air gap g0 with all the coil

currents equal to the bias current i0 = 1.5 A and at standstill operation (ω = 0 rad/s).
This linear model will be later adopted in the linear OF-MPC formulation. The lin-
earization is done using Taylor series expansion

ζ̇
.
=

∂h

∂ζ

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

Ā

(ζ − ζ0) +
∂h

∂i

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

B̄i

(i− i0) +
∂h

∂d

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

B̄d

(d− d0). (4.7)

Denoting the coil current ij = icj + i0, j = 1, ...,8 and knowing that ζ = ζ − ζ0 since
ζ0 = 0, equation (4.7) results in

ζ̇ = Āζ + B̄iic + B̄dd, (4.8)

where ic is the vector of the coils current deviations. Expressing the coil current devi-
ations ic in terms of the control current vector u

ic = Kuu, (4.9)
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equation (4.8) becomes
ζ̇ = Āζ + B̄iKu⏞ ⏟⏟ ⏞

B̄

u+ B̄dd, (4.10)

with

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

3634 0 0 0 0 0 0 0 0 0
0 58434 0 0 0 0 0 0 0 0
0 0 58434 0 0 0 0 0 0 0
0 0 0 39838 0 0 0 0 0 0
0 0 0 0 39838 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

6.28 0 0 0 0
0 8.90 0 8.90 0
0 0 8.90 0 8.90
0 0 −111.15 0 111.15
0 111.15 0 −111.15 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̄d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1.32 0 0 0 0
0 1.32 0 0 0
0 0 1.32 0 0
0 0 0 315.66 0
0 0 0 0 315.66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Due to the mathematical complexity of the nonlinear model, the Jacobian matrices
Ā, B̄i and B̄d are obtained using Matlab symbolic tools (see Matlab code in Appendix
A.3).
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Sensor coordinates

Equation (4.10) is the plant model referred to the COG coordinates (z, x, y, θx, θy).
However, in this work, a transformation to the sensor coordinates (z, x1, y1, x2, y2) is
preferred. By inspecting Figure 4.2 d), the displacement sensors installed on the plant
fix the sensor coordinates comprised in the equation⎡⎢⎢⎢⎢⎣

z
x1

y1
x2

y2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 c1
0 0 1 −c1 0
0 1 0 0 −c2
0 0 1 c2 0

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

T

⎡⎢⎢⎢⎢⎣
z
x
y
θx
θy

⎤⎥⎥⎥⎥⎦ . (4.11)

Let q = [z, x1, y1, x2, y2, ż, ẋ1, ẏ1, ẋ2, ẏ2, ż]
⊺ denote the plant state referenced to

the sensor coordinates, then
q = T ζ, (4.12)

in which T = blockdiag(T, T ) is the state transformation matrix from the COG coor-
dinates. When substituting ζ from (4.12) into (4.10)

q̇ = T ĀT −1⏞ ⏟⏟ ⏞
Ã

q + T B̄⏞⏟⏟⏞
B̃

u+ T B̄dT
−1⏞ ⏟⏟ ⏞

B̃d

d. (4.13)

Applying exact discretization to (4.13) with sampling time Ts = 0.25× 10−3 s we have

q(k + 1) = Aq(k) +Bu(k) +Bdd(k) (4.14a)
y = Cq(k). (4.14b)

The output equation (4.14b) with C = [I5×5 05×5] has been added to turn (4.14) into a
discrete-time linear state space representation of the plant under study. It will be used
as the internal model of the OF-MPC controller.

4.5.2 Linear augmented model
To guarantee offset-free control of the output y in the presence of plant/model mis-

match and/or unmeasured disturbances, the plant model (4.14) is augmented with an
integrating disturbance according to the general methodology proposed by Pannoc-
chia and Rawlings [43]. This methodology requires one to add a number of integrating
disturbances equal to the number of measured variables in a way that the resulting aug-
mented system is detectable. To this aim infinitely many choices are available. In this
work, the so called input disturbance model is used. It consists of adding an integrating
state d that enters the system at the same place as the inputs u. According to [53],
several studies have pointed out that such a disturbance model is an appropriate choice
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for efficiently rejecting unmeasured disturbances (see [81, 44]). By inspecting equation
(4.14), external disturbances are already modeled as unmeasured external forces d. The
resulting augmented system is presented in discrete-time domain as follows[︃

q(k + 1)
d(k + 1)

]︃
=

[︃
A Bd

0nd×nq Ind×nd

]︃
⏞ ⏟⏟ ⏞

Aaug

[︃
q(k)
d(k)

]︃
+

[︃
B

0nd×nu

]︃
⏞ ⏟⏟ ⏞

Baug

u+

[︃
wq(k)
wd(k)

]︃
(4.15a)

ym(k) = [C 0ny×nd]

[︃
q(k)
d(k)

]︃
+wn(k). (4.15b)

where wq ∈ Rnq and wd ∈ Rnd represent the state and disturbance noise, respectively;
ym stands for the measurements, i.e., the model output y corrupted by the measurement
noise wn ∈ Rny . With some abuse of notation, the added disturbances are named d(k).
It means that hereinafter, the estimates d̂ will lump not only the real external forces but
also the plant-model mismatch. nq = 10, nd = 5, and ny = 5 are the number of states,
disturbances and measurements, respectively.

4.5.3 Disturbance estimator and target calculation
If the augmented plant model is detectable, an estimator can be implemented to get

the state q̂(k) and the disturbance d̂(k) estimates based on the measurements ym and
inputs u. Thus, the current filtered state and disturbance, respectively, are[︃

q̂(k + 1)

d̂(k + 1)

]︃
=

[︃
A Bd

0nd×nq Ind×nd

]︃ [︃
q̂(k)

d̂(k)

]︃
+

[︃
B

0nd×nu

]︃
u(k)

+

[︃
Lq

Ld

]︃
(ym(k)− Cq̂(k)) (4.16)

where Lq ∈ Rnq and Ld ∈ Rnd are the predictor gain matrices for the state and
the disturbance, respectively. They are obtained using the Kalman filter design ap-
proach, based on the information of the noise intensities. The disturbance (process
noise) [wq wd], and measurement noise inputs wn are assumed to be uncorrelated
zero-mean Gaussian stochastic processes with covariance matrices W0 and V0 given
by

W0 = blockdiag(var{wq}, var{wd}), (4.17a)
V0 = var{wn}. (4.17b)

The variances var{·} of wq , wd and wn are treated as adjustable parameters. An in-
crease in the ratio between wq and wd makes the filter slower in estimating the dis-
turbance, while an increase in the ratio between wn and wd makes the estimator less
sensitive to the output noise [53]. Even with this general insight of how to tune the vari-
ances, the proper selection of them is not trivial and some rules of thumbs are proposed
below.
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Robustifying the estimator

It is a well known fact that finite time optimal controllers does not necessarily result
in closed-loop stable systems. Within the MPC community it is common practice to add
a final state constraint and/or a final state penalty in order to obtain guaranteed stability
[82, 83]. However, a final question raised by the use of observers combined with MPC
is whether or not closed-loop stability is retained when the true states are replaced by
state estimates in the control law [48, § 5.7]. In this work, two approaches are suggested
to improve the robustness of the system controlled with an OF-MPC + Estimator. The
first one, presented by Doyle in [84], is an adjustment procedure for observer-based
linear control systems which asymptotically achieves the same loop transfer functions
(and hence the same relative stability, robustness, and disturbance rejection properties)
as full-state feedback control implementations. The idea is to design the Kalman filter
but tuning the process covariance matrix to handle effectively the trade-off between
noise rejection and margin recovery in the following form:

W (ρ) = W0 + ρ2BaugB
⊺
aug; 0 ≤ ρ ≤ ∞, (4.18a)

V = V0. (4.18b)

The scalar parameter ρ serves to tune that trade-off. When ρ = 0, the filter will be
optimal with respect to the “true” (as modeled) system noise. As ρ increases the filter
will do a poorer job of noise rejection but the closed-loop stability margins will improve.
The “0” subscripts stands for the noise intensities that are appropriate for the nominal
plant.

The second proposed approach to robustify the system performance is using a re-
duced observer. According to [85, § 8.3], poor passband robustness due to poor state
estimation in a full-order state estimator can be to some extent ameliorated by using a
reduced-order observer with direct feedthrough of plant outputs [85]. This reduced ob-
server is done by feeding the OF-MPC directly with the measurements [z, x1, y1, x2, y2],
together with their rate of variation [ż, ẋ1, ẏ1, ẋ2, ẏ2] obtained by discrete differenti-
ation of the measurements. Note that this derivation procedure requires a cut-off filter
to avoid noise amplification. In this way, only the disturbance estimate d̂ is obtained
from (4.16).

Target selector

The augmented model lumps the plant-model mismatch into the external force
estimates. If this mismatch persists over time and the desired reference is achieved
(ym∞ = r∞) at steady state, then from the estimator we get the steady state relation[︃

A− I B
C 0nd×nu

]︃
⏞ ⏟⏟ ⏞

At

[︃
q∞
u∞

]︃
=

[︃
−Bdd̂∞

r∞

]︃
. (4.19)

49



OF-MPC on a Cone-shaped Active Magnetic Bearing System

It means that the state and inputs shall converge to q∞ and u∞ at steady state to
compensate the plant model mismatch. That is why q∞ and u∞ become state and
input “target” in the OF-MPC formulation as seen later. Note that (q∞,u∞) can be
obtained from the knowledge of d̂∞ and r∞. However, the estimator (4.16) provides
d̂(t) at each time step t but d̂∞ is needed to get the targets. Assuming that the controller
action is applied at time t, an anticipative action (preview) on the measured disturbance
d(t), d(t+1), d(t+N+1) can be imposed by setting d(t+k) = d̂(t), ∀ k = 0; ...;N−1
and hence d̂∞ ≡ d̂(t) (causal action, no preview). Then q∞ and u∞ can be obtained
from (4.19). Note that q∞ and u∞ exist for any d̂∞ and r∞ if the matrix At has full
rank.

4.5.4 OF-MPC formulation
A procedure to set the control requirements in frequency domain is proposed in

[1, § 12.4] based on a balance between the rotor response and the control effort. The
reader can easily understand through examples, how important the mixed optimization
(i.e., trade-off between rotor response and use of control effort) is for the unbalance
control when H2,∞ or µ-synthesis control formulations are used. With OF-MPC, the
control requirements can be treated in a similar fashion but in time-domain and using
quadratic norms. OF-MPC offers a systematic way to optimally handle this trade-off
between control effort and controlled outputs taking into account plant dynamics and
constraints. The OF-MPC problem is formulated as

min
u

1

2
(qN − qt)

⊺ P (qN − qt) +
1

2

N−1∑︂
k=0

(qk − qt)
⊺Q (qk − qt)

+
1

2

M−1∑︂
k=0

(uk − ut)
⊺R (uk − ut) (4.20a)

subj. to
qk+1 = Aqk +Buk +Bddk, k = 0, . . . , N − 1, (4.20b)
dk+1 = dk, k = 0, . . . , N − 1, (4.20c)
uk = ut, k = M, . . . , N − 1, (4.20d)
Kuuk ≤ imax, k = 0, . . . ,M − 1, (4.20e)
q0 = q̂(t), (4.20f)

d0 = d̂(t), (4.20g)

with the targets ut, qt given by[︃
A− I B
C 0nd×nu

]︃ [︃
qt

ut

]︃
=

[︃
−Bdd̂(t)
r(t)

]︃
. (4.21)
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Matrices Q ≽ 0 and R ≻ 0 are used to properly weight the trade-off between the
rotor clearance and available bearing capacity. They are selected in such a way that the
rotor response consumes 25 % of the available clearance g0 and, at the same time, for
the control effort to be 20 % of the available bearing capacity (in terms of coil current).
They are written as

Q = C ′QyC; Qy = diag([αz αx1 αy1 αx2 αy2 ])
1

(0.25g0)
2 Iny×ny (4.22a)

R = (Inu×nu − diag([αz αx1 αy1 αx2 αy2 ]))
1

(0.20u2
max)

2 Inu×nu , (4.22b)

in which nu and ny are the number of inputs and measurements, respectively. The
parameters

0 ≤ αj ≤ 1; j = z, x1, y1, x2, y2

are proposed here to tune the aggressiveness of the controller around the nominal con-
trol requirement. Note that when αj = 0.5, the trade-off is that one expected from the
“nominal” weights. For αj ≥ 0.5, the controller becomes more aggressive in “j” direc-
tion. The control input weight R involves the maximum control current uj,max which
is set to 3.5 A to be consequent with the coil current limitation i.e., umax + i0 = imax

in which i0 = 1.5 A and imax = 5 A. Hereinafter, Q0 and R0 denote the “nominal”
weights on the states and inputs, respectively (i.e., when αj = 0.5).

The inclusion of the terminal penalty with the matrix P selected as the solution of
the Discrete Algebraic Riccati Equation (DARE)

P = A⊺PA− (A⊺PB)(B⊺PB +R)−1(B⊺PA) +Q, (4.23)

and together with a terminal constraint (not included here), ensure nominal closed-
loop stability [55]. However, these terminal cost and constraints can deteriorate the
optimality of the problem and sometimes are avoided in real applications. A terminal
constraint is not implemented here to reduce the amount of inequality constraints (as
usually done in practical applications of fast MPC). The effects of P on the optimality
of the OF-MPC problem will be later analyzed through some preliminary nonlinear
simulations.

A prediction horizon of N = 30 is selected to cover most of the transient time of
the closed-loop response. Note from (4.20a) that a reduction of the control moves (i.e.,
control horizon M ≤ N ) is applied to limit the computation burden of the optimization
problem, as suggested for embedded fast MPC applications. The input signal u is frozen
and held constant after prediction time (M−1). The analysis of the controller execution
time in a real microprocessor is done later to select the control moves.

Interestingly, note that the relation between control currents and coil currents are
intrinsically considered in the problem formulation through the transformation matrix
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Ku ∈ Rncoils,nu with ncoils = 8. In conical-shaped AMB systems, the current passing
through each coil is a combination of “control efforts” in axial and radial directions.
Therefore, each decentralized controller can only limit the control effort it requests but
the coil current limitations are implemented separately. When using OF-MPC, the coils
current limitations are known by the controller and hence optimally handled.

4.5.5 The OF-MPC controller as a QP problem
By eliminating the state sequence from problem (4.20) using (4.20b)-(4.20d), the op-

timal control problem (4.20) can be expressed as the convex quadratic programming
(QP) problem

min
u

1

2
u⊺Hu+ [F⊺(q − qt)−H⊺ut]

⊺u (4.24a)

subj. to
Ku ≤ I, (4.24b)

in which u = [u∗
0; ...; u

∗
M−1] is the optimization variable, ut = [ut; ...;ut] stands for

the input targets during the control horizon, H ∈ RMnu×Mnu is the Hessian matrix and
F ∈ Rnq ,Mnu . The reader is directed to Section 2.5 for a detailed explanation of how it
is done (see also Appendix A.4 for the custom Matlab functions involved in obtaining
H and F ). The constraints (4.24b) are obtained writing down (4.20e) for each time step
from k = 0 to k = M − 1 as⎡⎢⎣ Ku 0 0

0
. . . 0

0 0 Ku

⎤⎥⎦
⏞ ⏟⏟ ⏞

K

u =

⎡⎢⎣ imax
...

imax

⎤⎥⎦
⏞ ⏟⏟ ⏞

I

, (4.25)

with K ∈ RMncoils×Mnu and I ∈ RMncoils×1. Since the matrices defining the dynamics,
costs, and constraints in (4.20) do not vary during the execution of the OF-MPC con-
troller (linear time-invariant (LTI) prediction model), the QP matrices in (4.24a)-(4.24b)
can be precomputed off-line. Every time step, problem (4.24) is updated with (q, qt, ut)
and then solved to getu but only the inputu∗

0 is applied to the plant (due to the receding
horizon principle of MPC).

As can be seen, applying OF-MPC requires solving the optimization problem (4.24)
every time step based on the information of the estimated state and disturbances, and
the state and input targets. A well-known technique for implementing fast MPC is to
compute the entire control law offline, in which case the online controller can be im-
plemented as a lookup table [86]. This method is named explicit MPC and works well
for systems with small state and input dimensions (no more than five), few constraints,
and short time horizons [87]. Fortunately, for larger systems, a variety of efficient algo-
rithms already exist to solve a QP problem on-line. However, to the best of the author’s
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knowledge, the most convenient approach (i.e., explicit or online MPC) to embed the
OF-MPC controller for a conical-shaped AMB system is not well defined yet. In this
work, an online OF-MPC implementation is proposed using CVXGEN [88, 29] which
is a C code Generator for embedded convex optimization. In CVXGEN, the algorithm
that solves the QP problem is based on a standard primal-dual interior point method [29,
§ 5.2]. The CVXGEN code needed to formulate (4.24) is quite simple and freely available
for academia [29]. The reader is directed to Appendix A.5 to check the CVXGEN code
that corresponds to (4.24) when M = 2.

Selecting the control horizon

To limit the computational burden in MPC, it is often useful to limit the control
horizon by “blocking” control moves after a certain input horizon M , 1 ≤ M < N
[54].

The larger the control moves M , the longer the computation time needed to solve
the embedded QP problem. In fact, Eqs. 4.24a and 4.24b demonstrate how the QP prob-
lem dimension is strictly related to M . In this work, a preliminary study was carried out
to select the control moves. Benchmarks for three different processors were performed
to verify the control implementation feasibility. Table 4.2 presents the execution time
needed to solve the OF-MPC for M = 2, ...,5.

Table 4.2: Execution time of the OF-MPC

NXP (Freescale), Infineon TC1793, TMS320F28379D,
QorlQ P5020, 2 GHz 260 MHz 200 MHz

Prediction horizon (M ) Time (ms) Time (ms) Time (ms)
2 0.095 0.62 1.83
3 0.213 1.56 -
4 0.392 2.78 -
5 0.645 - -

Results in Tab. 4.2 indicate that the execution time is a quadratic function of the
control moves. The plant under study is linearized with a sampling time Ts = 0.25 ms.
Hence, the NXP QorlQ P5020 processor could be used for the OF-MPC with control
moves up to M = 3 without the risk of overruns. However, due to the low-bandwidth
mechanical dynamics of the system, larger time steps up to Ts = 0.8 ms are sufficient
to control the plant. As such, off-the-shelf industrial processors such as the Infineon
TC1793 become a feasible solution to implement OF-MPC. In contrast, the computa-
tional power of the TI TMS320F28379D processor is outperformed by the complexity
of the control task, even with M = 2. In the following, we focus on the numerical
and experimental validation of the OF-MPC strategy with M = 2, since it represents a
worst-case scenario for the OF-MPC implementation.
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4.6 Preliminary simulations
The OF-MPC performance as well as the the effectiveness of the estimator is studied

with some preliminary nonlinear simulations of the plant. The control moves of the OF-
MPC is set to M = 2 according to the QP execution time obtained in Section 4.5.5.

4.6.1 OF-MPC with full plant state knowledge
The evaluation of the controller is firstly done considering full state knowledge.

The controller performance is tuned with the parameter α (see (4.22a)) to “move” the
weights around the nominal ones (i.e., Q0, R0) and with terminal weight P = Q. The
linearized plant model (4.14) is used as the internal model of the controller and the
plant is simulated with the nonlinear model (4.4). Since the external disturbance are
not estimated, the state and inputs targets are set to zero.

Figure 4.5 a) shows x1 when α varies from 0.1 to 0.5 and with the initial plant state
q(0) = [0, −0.2 × 10−3, 0, 0, 0, 0, 0, 0, 0, 0]⊺ (situation similar to a lift-up of the
shaft in x1 direction). It is evident how the aggressiveness of the controller changes
with α. However, note that the coil current is limited to (imax = 5 A). That is why
the control performance does not change to much for 0.4 ≤ αj ≤ 0.5. Because of
the symmetry of the system, similar results (omitted here) are obtained when the same
initial air gap deviation is applied on y1, x2 or y2. Figure 4.5 b) shows the dynamics on
the axial direction (z) for different values of α. Note that the coil currents also saturate
when the shaft is steered to the nominal air gap in axial direction.

When repeating the same simulation, but with P as the solution of the DARE (4.23)
the optimality of the problem is heavily deteriorated as shown in Figure 4.5 c) and d).
Even if the time domain response appeared to be unaffected, the possibility to tune the
control performance varying α is no longer possible. This result suggests not to use P
as the DARE solution and set P = Q instead. The closed-loop stability will be analyzed
through the experimental results.

It can be seen that for position deviations around or larger than 0.2 mm (about
50 % of the clearance g0) the coil currents saturate. This makes more interesting the
application of any constrained optimal control such as the proposed OF-MPC approach,
since these actuator limitations can be easily incorporated into the control problem
formulation as inequality constraints.

4.6.2 Full simulation. OF-MPC + Estimator + target selector
As already seen in Figures 4.5 a) and c), there exists an offset on x1 at steady state

as well as a steady state control action ux1,∞ that differs from zero. This is because the
controller is compensating the rotor weight. An integral action is required to compen-
sate this and any other external force affecting the plant in a proper manner. This is
precisely what OF-MPC does in a systematic way. An augmented estimator is needed
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Figure 4.5: Lift-up simulation with the OF-MPC controller and assuming full state
knowledge. a) Transient response of x1 with P = Q b) Transient response of z di-
rection with P = Q, c) Transient response of x1 with P = DARE and d) Transient
response of z with P = DARE. (αj ≡ αz,x1,y1,x2,y2).

to get not only the plant states but also the external disturbances. These estimates are
passed to the target calculation to get the state and inputs targets needed to reach zero
offset tracking.

Regarding the estimator design: the noise in the displacement measurements wn is
set to 5×10−6 m and the process noisewq is assumed to be zero (i.e., perfect plant model
only perturbed by d) and hence the process noise together with the plant-model mis-
match will be lumped into the external force estimates d̂. It is similar to think about d
as a colored noise [89, § 7.2] added to the plant model. Since var{wq} is fixed, var{wd}
is used to tune how fast the disturbance d̂ is estimated and the parameter ρ is used for
the trade-off between noise rejection and margin recovery (see Section 4.5.3). Table
4.3 shows the assumed nominal noise intensities, and also the resulting predictor gains
when ρ = 1.

Lifting up phase

Figure 4.6 shows a lift-up simulation of the plant but this time with full state es-
timation. Note that also the external forces and moments are estimated and put into
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Table 4.3: Kalman filter design parameters

Parameter Value
ρ 1
var{wq} 0nq×nq

var{wd} 0.012Ind×nd

var{wn} (5× 10−6)
2
Iny×ny

Lq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.39 0 0 0 0
0 0.54 0 0.12 0
0 0 0.54 0 0.12
0 0.12 0 0.54 0
0 0 0.12 0 0.54

262.0 0 0 0 0
0 479.22 0 179.24 0
0 0 479.22 0 179.24
0 179.24 0 479.22 0
0 0 179.24 0 479.22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ld

⎡⎢⎢⎢⎢⎣
1639.0 0 0 0 0

0 1011.30 0 1011.30 0
0 0 1011.30 0 1011.30
0 0 −1144.5 0 1144.5
0 1144.5 0 −1144.5 0

⎤⎥⎥⎥⎥⎦
the disturbance d. As expected, the main disturbance is precisely the rotor weight
which is distributed in x and y axes due to the 45◦ inclination of the bearings (see that
F̂ x∞ ≈ F̂ y∞ =

√
2
2
mg) while no external disturbances are present on (z, θx, θy) direc-

tions. The inputs and state targets are then calculated and passed to the controller to
guarantee an offset-free reference tracking at steady state. One of the main advantages
of OF-MPC for magnetic bearings applications is the way in which the plant-model
mismatch in handled. The linear plant model does not know about the existence of the
weight force or any other disturbance but it is however quantified into d and hence
compensated. Any force acting on each dof is lumped into the estimates. The integral
action that OF-MPC produces is based on these estimates which in some extent, repre-
sent how far the linear internal model of the OF-MPC is from the actual operation of
the plant. However, it is important to remark that the estimates d̂ are not an accurate
representation of external forces because d lumps both model uncertainties and real
external forces.

Impact test

The plant state as well as the control inputs obtained from a simulation of impact
forces applied on z, x and y are presented in Figure 4.7. The test has been conducted
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Figure 4.6: Lift-UP response with arbitrary initial sates and assuming a noise measure-
ment about 5×10−6 m. The disturbance d̂ /= 0 because the rotor weight compensation.

imposing a random noise |wn| ≤ 5×10−6 m on each measurement channel. An impact
test is applied on z direction at time (t = 0.025 s), on x direction at time (t = 0.1 s)
and on y at time (t = 0.15 s). The OF-MPC has been set with αz,x1,y1,x2,y2 = 0.2.
The comparison of q with its estimates q̂ demonstrates that: the observer has been
properly designed, good enough damping characteristic of the closed-loop response
is appreciated, and the control inputs (which are translated to coil current references)
resulted not to much affected by the measurement noise.

The same impacts are applied again in Figure 4.8 but this time without robusti-
fying the observer i.e., observer designed with ρ = 0. It shows how the quality of
the estimates deteriorates and hence, an undesired closed-loop control performance is
obtained. The poor estimation of the states could be ameliorated by assuming some
process noise wq /= 0 and then use the ratio between wq and wd for tuning. However,
achieving good stability properties with this approach may become more difficult than
just using ρ as explained in Section 4.5.3.

As already stated, the trade-off between noise rejection and margin recovery is di-
rectly handled by varying ρ. The concern now is that if ρ is increased. In fact, the
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estimator will do a poorer job of noise rejection as appreciated in Fig 4.9 when ρ2 = 10.
Note how the control input u is much more influenced by the measurement noise than
the previous simulations in Figs. 4.7 and 4.8.

By inspecting Figs. 4.8, 4.7, 4.9, is it evident the effectiveness of ρ as a design pa-
rameter. The apparent practical value of this procedure is that it gives a simple way of
trading off between noise rejection and margin recovery [84].

The simulations presented α (for the OF-MPC) and ρ (for the estimator) as the main
parameters involved in tuning the closed-loop performance. Due to the separation prin-
ciple, both the OF-MPC controller and the estimator can be designed separately. Sur-
prisingly, when the terminal weight P equals the DARE solution the optimality of the
problem deteriorated considerably. That is why hereinafter, the terminal weight will
equal the state weight Q. Since the OF-MPC formulation does not have the ingredients
to guarantee nominal closed-loop stability, the resulting control performance will be
analyzed more in depth later on throughout the real experiments.
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Figure 4.7: Impact test simulation with the estimator obtained for ρ = 1. An impact
test on z direction at time (t = 0.025 s), on x at time (t = 0.1 s) and on y direction
at time (t = 0.15 s). A random noise |wn| ≤ 5 × 10−6 m has been imposed on each
measurement channel.
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Figure 4.8: Impact test simulation. OF-MPC set with αj = 0.2 and observer designed
from the knowledge of nominal noise intensities (i.e., ρ = 0).
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Figure 4.9: Impact test simulation but this time with a poor noise rejection. Observer
designed with ρ2 = 10.
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4.6.3 Comparison of OF-MPC with decentralized PID controllers
One of the main drawbacks of conical-shape AMB is the low axial force generation

capability. The compensation of disturbance forces in axial direction can result difficult
to attain when decentralized controllers are used. However, when using OF-MPC the
maximum coil current saturation are known and optimally handled by the controller.
A comparison of OF-MPC with decentralized PID controllers is presented here.

A control action given by a constant state feedback gain can be obtained by eliminat-
ing the inequality constraints from the QP formulation (4.20), and solving the optimal
problem just once and off-line. It is done here to show also that the OF-MPC approach
serves as a reference to design decentralized controllers for conical-shaped active mag-
netic bearings. This controller can be seen as a computationally cheap variant useful
when the OF-MPC optimal control problem can not be solved in a deterministic time.
Because R ≻ 0, also H ≻ 0 thus (4.24a) is a positive definite quadratic function of u.
Therefore, its minimum can be found by computing its gradient and setting it to zero

u = −H−1F⊺(q(0)− qt) + ut (4.26)

where u(t) =
{︁
u∗

0, . . . ,u
∗
M−1

}︁
. Since only the first control in this sequence, u(t) = u∗

0,
is applied to the plant, then

u∗
0,uc = −K(q(0)− qt) + ut, (4.27)

where Knu×nq is defined as the first nu rows of the matrices H−1F ′. The control action
(4.27) can be interpreted as an unconstrained discrete-time optimal controller obtained
over a finite horizon. If the resultingK is such that the matrix (A−BK) is Hurwitz, that
is, all its eigenvalues have moduli smaller than one [48], hence the plant is closed-loop
stable. The terms ut is nothing but a small integral action added from the knowledge
of the plant-model mismatch.

For example, with αz,x1,y1,x2,y2 = 0.2, the corresponding matrices H, F of the QP
problem are calculated once and then the state feedback gain results

K =

⎡⎢⎢⎢⎢⎣
9911 0 0 0 0 49 0 0 0 0
0 21390 0 3575 0 0 79 0 9 0
0 0 21390 0 3575 0 0 79 0 9
0 3575 0 21390 0 0 9 0 79 0
0 0 3575 0 21390 0 0 9 0 79

⎤⎥⎥⎥⎥⎦ .

Note that the state vector q is composed by the five controlled displacements and
their derivatives: q = [z, x1, y1, x2, y2 ż, ẋ1, ẏ1, ẋ2, ẏ2]

⊺ and note that the term
(q(0) − qt) represents the displacement errors and the error derivatives (because by
definition, qt stands for the steady state references), therefore decentralized PD con-
troller gains (Kp: proportional gain; Kd: derivative gain) can be extracted from K as
presented in Table 4.4. A cut-off derivative filter, with a time constant τf about ten times
lower than the derivative time was added to each PD controller.
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Table 4.4: Decentralized PD controllers (αz,x1,y1,x2,y2 = 0.2)

Controller Kp (A/m) Kd (A/m/s2) 1/τf (s
−1)

PDz 9911 49 2000
PDz,x1,y1,x2,y2 21390 79 2500

Figure 4.10 shows the control layout of both decentralized and OF-MPC controllers.
This time, the plant state needed by the OF-MPC is directly obtained from the mea-
surements. This makes fair the comparison because the Kalman filter dynamics will
not affect the control loop shape. The plant state is composed by the measurements
[z, x1, y1, x2, y2], together with their rate of variation [ż, ẋ1, ẏ1, ẋ2, ẏ2]. The latter
are filtered with the same cut-off derivative filter presented in Table 4.4 for the decen-
tralized controllers.

As seen in Figure 4.10 b), a small integral action ut is added to the PD actions to
guarantee zero-offset tracking from the knowledge of the plant-model mismatch. The
decentralized control results in PID controllers, one for each degree of freedom of the
plant.

Figure 4.10: a) OF-MPC with a reduced observer i.e., only the disturbance estimates d̂
are obtained from the observer, q̂ is obtained directly from the measurements. Layout
b): Control scheme with PID controllers. The integral action is identical in both OF-
MPC and decentralized controllers.

Figure 4.11 shows the results from impact tests in axial direction. The plant has
been simulated by the nonlinear system of equations (4.4). A saturation stage limits
the coil currents when PIDs controllers are used (i.e., 0 ≤ icoils ≤ 5 A). The upper
saturation is not necessary in the OF-MPC case because the upper limit values of coil
currents are already known by the controller (see problem formulation: Eq. (4.20e)). As
can be appreciated, the system responds quite similar when low impacts are applied:
a) OF-MPC and b) PIDs. But note in c) and d) that the coil currents saturate when a
higher impact is applied and therefore, larger air gap deviations are obtained. With the
PIDs the air gap deviation are considerably higher that ones from the OF-MPC. The
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fact is that OF-MPC handles much better the coil current saturation together with the
trade-off between control effort and air gap deviations. This interesting benefits from
applying OF-MPC is later confirmed by the experimental results.
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Figure 4.11: Simulation of an impact in axial direction. A low impact is applied in
a) with an OF-MPC controller and b) with PIDs. The responses to larger impacts are
presented in c) for OF-MPC and in d) for PIDs. Both the controllers are designed with
αx1,y1,x2,y2 = 0.2 and αz = 0.4. The rotor deviates much more when PIDs are used and
the upper coil current limitations are reached.
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4.7 Experimental results and discussion
Some experimental tests are conducted to validate the OF-MPC strategy in the test

rig. Firstly, the lifting-up phase is presented to assess the controller in one of the most
critical transient behavior of the system. Secondly, output sensitivity tests are con-
ducted to evaluate the control performance for different configurations of αj (OF-MPC
tuning parameter) and ρ (Observer tuning parameter). Finally, the disturbance rejection
properties of OF-MPC is compared with PIDs in axial direction i.e., the axis with lowest
force generation capability of the plant.

4.7.1 Test rig description
Figure 4.12 shows the plant under study together with other components needed

for the experimental test. A connection layout of the main components in the test
bench is depicted in the diagram 4.13. Inside the control unit, a centralized position
controller that runs at 4 kHz receives the air gap information from the displacement
sensors and set the corresponding current reference for each electromagnet. Inner PI
current controllers set the coils voltages by varying the PWM duty cycle on each power
amplifier. The sampling frequency of the ADC module is triggered by the PWM carrier
at 20 kHz. The power amplifier is composed by eight of-the-shelf H-bridges in locked-
antiphase operation i.e., (0 ↔ 100)% of duty cycle corresponds to (−30 ↔ 30) V in the
AMB coils. A two-pole induction motor is controlled with a variable-frequency driver
to spin the compressor up to the maximum reachable spin speed Ω = 20000 rpm.

Figure 4.12: Test bench. (1) Motor driver, (2) Turbo-compressor on conical AMBs, (3)
Power amplifier and sensor conditioning, (4) Control Unit: dSPACE MicroLabBox, (5)
PC, (6) Power supply.

4.7.2 Lifting-up
Let remark that the plant under study belongs to an aircraft which means that the

rotor will lift up many times from any initial condition (in contact with the back-up ball
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Figure 4.13: Overall layout of the test bench.

bearings) to the nominal air gaps g0 (q = 0). Before the shaft lifts up, the coils current
controllers are switched on and a bias current i0 = 1.5 A is imposed on each coil. Then
the position controller (OF-MPC + estimator + target selector) is activated to steer the
shaft to the nominal air gap as presented in Figure 4.14. By inspecting 4.14, one can
say that the transient response resulted well damped and the coil current saturation
is optimally handled by the controller. The plant behavior during this phase is highly
nonlinear but a linear OF-MPC formulation resulted enough to steer the shaft properly.
The target selector produces inputs targets based on the estimates to compensate the
plant-model mismatch. In essence, this compensation produces an integral action and
hence zero-offset tracking is reached at steady state. The steady state disturbances are
not an accurate representation of the weight forces because there exist some part of the
estimates that represent the plant-model mismatch. Note that the disturbance estimate
d̂ lumps the weight force as expected from previous simulations (see Figure 4.6) but
now the steady state estimate resulted slightly higher. This is because there are some
uncertainties associated to the linear model parameters (force coefficients), actual air
gaps on the plant, system geometry, etc. that result in plant-model mismatch and then
lumped into d as external forces. To some extent, the disturbance estimate gives one
some insight about the plant operation and the internal model of the controller.
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Figure 4.14: Transient response when the plant lifts-up. Control aggressiveness is set
to αj = 0.2 and state estimator is set with ρ2 = 1.

4.7.3 Evaluation of the closed-loop performance
Output sensitivities are obtained experimentally by implementing a dual channel

Fast Fourier Transforms (FFT) analysis as suggested in the ISO 14839-3:2006 [90]. A
sweep noise is injected on each measurement channel (one by one) and then both the
injected noise and the corrupted output measurement are recorded. Repeating this pro-
cess for each channel (z, x1, y1, x2, y2) and denotingwn = [wnz , wnx1

, wny1
, wnx2

, wny2
]⊺,

the output sensitivity functions can be expressed as

Sz(f) =
z(f)

wnz(f)
,

Sx1(f) =
x1(f)

wnx1
(f)

, Sy1(f) =
y1(f)

wny1
(f)

,

Sx2(f) =
x2(f)

wnx2
(f)

, Sy2(f) =
y2(f)

wny2
(f)

. (4.28)
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The output sensitivity functions S = {Sz, Sx1 , Sy1 , Sx2 , Sy2} are used as the indicator
of closed-loop performance. The main advantage of considering S is that since one
ideally wants S small, it is sufficient to consider just the magnitude |S|; that is, there is
no need to worry about the phase [12] to asses the control performance.

The output sensitivity functions are then obtained for different control requirements
and estimator configurations (i.e., varying αj and ρ). Figure 4.15 shows how the ag-
gressiveness of the controller changes for αj = {0.2, 0.5, 0.8} and ρ = 1. The low-
frequency disturbance rejection deteriorates considerably when αj = 0.2. It improves
with αj = 0.5 and αj = 0.8 but better noise attenuation is achieved with αj = 0.5. It
can be said in general that the best trade-off between disturbance rejection and noise
attenuation is obtained with αj = 0.5. Nevertheless, all pick values of the sensitivity
functions are within zone A [90] (i.e., |S|max < 9.5 dB) and then considered acceptable
for unrestricted long-term operation.

Figure 4.15: Output sensitivities on z, x1, y1, x2 and y2 with ρ = 1 but varying the con-
troller aggressiveness through αz,x1,y1,x2,y2 ≡ α. Each test is performed independently
on each measurement channel by injecting a sweep noise with a frequency that varies
from 0.1 Hz to 1 kHz and amplitude 10× 10−6 m.

The quality of the estimator is checked by varying ρ in Figure 4.16 and fixing the
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controller aggressiveness with αj = 0.2. Considering that all the experimental data
have been post-processed with the same smoothness, it is evident that the estimator
does a poorer job of noise rejection when ρ increases but the closed-loop stability mar-
gins improve (lower pick values of |S|). In some extent, by increasing ρ, the estimates
becomes less dependent on the controller outputs u and more on the measurements.
This approach makes the loop shape less affected by the estimator. However, note
that increasing ρ can deteriorate the noise rejection. The closed-loop performance is

Figure 4.16: Output sensitivities on z, x1, y1, x2 and y2 with αj = 0.2 but changing the
estimator with ρ. Each test is performed independently by injecting a sweep noise that
varies from 0.1 Hz to 1 kHz with amplitude 10×10−6 m on each measurement channel.

checked again but with a more aggressive controller (αj = 0.5) and varying ρ in Figure
4.17. The control performance improves increasing ρ but at some point it deteriorates
because of low noise rejection (when ρ2 = 10). From the experimental results, the best
trade-off between disturbance rejection and noise attenuation is achieved with the pair
(αj = 0.5, ρ2 = 1). In general, from the experimental results one can say that the
aggressiveness of the controller is tuned around the nominal control requirements by
changing αj ; and ρ serves for trading-off the noise rejection and margin recovery. It is
important to remark that similar to Linear Quadratic Gaussian (LQG) control design,
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Figure 4.17: Output sensitivities on z, x1, y1, x2 and y2 with αj = 0.5 but changing the
estimator with ρ. Each test is performed independently by injecting a sweep noise that
varies from 0.1 Hz to 1 kHz with amplitude 10×10−6 m on each measurement channel.

the Separation Theorem or Certainty Equivalence Principle applies here. It consist of
first determining the optimal control law i.e., the OF-MPC design. Then the estima-
tor design is done as a next step but without any dependence on the controller design.
However, when putting the OF-MPC and the observer together, there are no guaran-
teed stability margins. Some tips to tune the OF-MPC + estimator can be resumed as
follows:

• Initiate the nominal controller (αj = 0.5) and check its feasibility throughout pre-
liminary simulations assuming full state knowledge and no measurement noise.

• Design the augmented estimator as a Kalman filter by setting var{wn} from the
sensor noise information, var{wq} = 0 (“perfect” model) and ρ = 0 (nominal
noise information). The variance of the augmented state var{d} is used to reg-
ulate how fast the external disturbances are estimated. Faster the convergence
of these estimates (with high values of var{wd}), larger the controller integral
action. This is because the OF-MPC targets are calculated from the disturbance
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estimate.

• Robustify the closed-loop response by increasing ρ (0 ≤ ρ ≤ ∞) till a desired
performance is achieved.

• It is a model-based control design approach. Therefore, if a desired closed-loop
behavior is not achieved following the above steps, the quality of the linear plant
model should be revised.

4.7.4 Comparison of OF-MPC with PIDs
PID are generated from the OF-MPC formulation as explained in Section 4.6.3 (see

also both OF-MPC and PID control schemes in 4.10). The reduced observer is that
presented in Table 4.3. A comparison of the output sensitivities when using PID and
OF-MPC controllers is presented in Figure 4.18 for (αz,x1,y1,x2,y2 = 0.2). The test is
performed is such a way that the rotor moves in the vicinity of the nominal air gap
and with no saturation in the control actions. Both controllers perform quite similar
and hence one can say that computationally cheap decentralized controllers can be de-
signed from the OF-MPC formulation if needed. However, notable differences between
OF-MPC and decentralized PIDs are described below in presence of axial disturbances.

Impact test in axial direction

One of the main drawbacks of conical-shape AMB systems is the low axial force
generation capability. Notable differences in the transient response are obtained when
using PIDs or OF-MPC controllers and the coil current limits are reached. To compare
the OF-MPC and the PIDs when the system reacts to an axial disturbance force, the
axial control action is modified to

uz,disturbed = uz + ud,z,

where ud,z is a disturbance current used to perturb the plant in axial direction. Figures
4.19, 4.20 and 4.21 show transient responses for two levels of axial disturbance forces
and different aggressiveness of the controllers. They are discussed below.

With αz,x1,y1,x2,y2 = 0.2, the controllers are not so aggressive and similar transient
behavior is obtained when ud,z,max = 4 A; see Figures 4.19, a) and b). However, with a
larger axial disturbance ud,z,max = 5 A in Figures 4.19: c) and d), the OF-MPC system
produces a more contained overshoot (about 56 %) when compared to the PID variant.

As expected, with a more aggressive control action in the axial direction (i.e., αz =
0.4), the axial deviations in Figures 4.20 a) and b) halved those in the previous test 4.19 a)
and b). However, the radial deviations were severely affected, with the PID variant being
noticeably worse than OF-MPC. A comparison between Figures 4.20 a) and b) shows
that the maximum deviations when using PIDs resulted 50 % and 20 % larger than OF-
MPC ones in (x1, y1) and (x2, y2), respectively. Also, the upper coil current saturation
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lasts for a longer time interval when using PIDs. Thus, OF-MPC offers a more favorable
saturation handling by intrinsically taking it into account and considering the trade-
off between control efforts and air gap deviation. When a large-amplitude disturbance
signal is applied, the PID-controlled plant response presented in Figure 4.20 d) reached a
critical condition because the shaft almost reached a mechanical impact condition with
the back-up ball bearings (radial deflection of 0.22mm). A more favorable behavior was
obtained with the OF-MPC, where the overall displacement of the rotor did not exceed
0.15 mm.

Figure 4.21 shows that OF-MPC outperforms PIDs also when the radial aggressive-
ness is increased to αx1,y1,x2,y2 = 0.3. With OF-MPC, in Figure 4.21 a), the maximum
radial deviations were attenuated to 70 % of those with PIDs in Figure 4.21 b). For
a larger disturbance, the radial air gap deviations with PIDs in Figure 4.21 d) almost
doubled those with OF-MPC in Figure 4.21 c).

It is more evident how OF-MPC outperforms PIDs when the control aggressiveness
is increased as seen in Figures 4.21 c) and d). When using PIDs, the radial air gap
deviations almost doubled those ones obtained with the OF-MPC.

For both OF-MPC and PID control techniques, the implementation of more aggres-
sive control actions was not experimentally feasible because the measurement noise is
fed back into the control loop by the compensators. This effect is evident when inspect-
ing the coil current reference waveforms, as the noise tends to be directly proportional
to the control aggressiveness αj . In the particular case of the OF-MPC, this issue can be
addressed with a full-state estimation, as presented in Secs. 4.7.2 and 4.7.3. In such case,
the trade-off between noise rejection and margin recovery can be handled effectively
by tuning through repeated experiments the parameter ρ from Eq. (4.18a).
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Figure 4.18: Output sensitivities on z, x1, y1, x2 and y2 from a comparison of the OF-
MPC + reduced observer (RO) with decentralized PID controllers. Each test is per-
formed independently on each measurement channel by injecting a swept sine noise
with a frequency that varies from 0.1 Hz to 1 kHz with amplitude 10× 10−6 m on each
measurement channel.
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Figure 4.19: OF-MPC and PID comparison when an short-time impact force is applied in
axial direction when using a) OF-MPC and b) PIDs. A response to a higher disturbance
is present in c) for an OF-MPC and in d) for PIDs. Both OF-MPC and PIDs controllers
are tuned with αz,x1,y1,x2,y2 = 0.2.
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Figure 4.20: OF-MPC and PID comparison when an short-time impact force is applied in
axial direction when using a) OF-MPC and b) PIDs. A response to a higher disturbance
is present in c) for an OF-MPC and in d) for PIDs. Both OF-MPC and PIDs controllers
are tuned with αz = 0.4, αx1,y1,x2,y2 = 0.2.
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Figure 4.21: OF-MPC and PID comparison when an short-time impact force is applied in
axial direction when using a) OF-MPC and b) PIDs. A response to a higher disturbance
is present in c) for an OF-MPC and in d) for PIDs. Both OF-MPC and PIDs controllers
are tuned with αz = 0.4, αx1,y1,x2,y2 = 0.3.
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4.7.5 Rotordynamics analysis
The effectiveness of the controller during rotation was validated by running the

plant up to maximum spin speed Ω = 20000 rpm. Note that the OF-MPC is based on a
linearized plant model obtained at standstill operation (i.e., Ω = 0 rad/s) as detailed in
Section (4.5.1). This means that the variation of the plant due to the gyroscopic effects is
not known by the controller. Nevertheless, the OF-MPC performed properly within the
speed range of interest. Waterfall plots in run-down mode together with the unbalance
responses and tachometer profile are reported in Appendix A.6. The unbalance forces
resulted very small due to proper machining quality and balancing of the rotor, and
hence no additional control action was advised during operation at different speeds.

Something important to remark is that the augmented state estimator used by the
OF-MPC is not dedicated to estimate the unbalance forces. The rotor unbalance causes
force disturbances that vary harmonically with the rotational speed of the machine
while OF-MPC estimates low-frequency load variations, “persistent” additive distur-
bances lumping all into plant-model mismatch estimate. The determination of rotor
balancing grade (see: ISO 1940, [91, Table 28.1]) is not the scope of this work. During
the control design phase proposed in this thesis, it is assumed that the rotor balancing
grade has a proper quality grade as suggested by the ISO standard 1940.

4.8 Conclusions
The possibility to optimally handle the plant-model mismatch together with the

coil current limitation in cone-shaped AMB systems is offered by the offset-free model
predictive control (OF-MPC). It guarantees zero-offset tracking adding integral action
from the knowledge of the plant-model mismatch, while the controller design is an
automated design procedure based on the trade-off between the control effort and the
error in the controlled variables. The results demonstrate the potential of OF-MPC for
cone-shaped AMB systems since the coupling of radial and axial control actions, and
the low force generation capability in axial direction, can be addressed in a clear and
systematic way. OF-MPC resulted a promising constrained optimal control technique
that overcomes decentralized PID controllers in terms of axial disturbance rejection. It
is an important contribution considering the low force generation capability of conical
bearings.

In this chapter, the control algorithm was described in detail showing how to: re-
duce the computational burden of the control problem, generate an OF-MPC solver
from a C code generation tool (CVXGEN) and design properly the plant state estimator.
The performance of the control strategy was successfully validated with experimental
results, and the tuning procedure is based only on the parameters (αj , ρ) therefore, this
work could serve as an easy-to-follow methodology for the implementation of model
predictive control on magnetic bearing systems.
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Chapter 5

Thesis conclusions and future work

5.1 Design Flow of OF-MPC for AMB systems
Chart 5.1 presents a work flow proposed in this thesis to design the OF-MPC for

AMB systems, specially for conical-shaped AMB systems. The main points in the design
flow are covered below.

5.1.1 Nonlinear plant modeling
A nonlinear plant model is required not only to obtain a linearized internal model

of the OF-MPC but also to perform preliminary nonlinear simulations and hence for
testing the OF-MPC in a more realistic scenario. The internal model of the controller is
obtained by linearizing the plant model at a nominal bias current on each coil. The coil
currents are assumed to be controlled by inner current loops with closed-loop dynamics
much faster than the mechanical ones (hence current dynamics are neglected in the
plant modeling phase).

5.1.2 Model augmentation and target selector
The linear model of the plant is augmented with a disturbance model to capture the

plant-model mismatch. To this aim infinitely many choices are available. In this work,
the so called input disturbance model is proposed. It consists of adding an integrating
state that enters the system at the same place as the inputs. According to reference
[53], several studies have pointed out that such a disturbance model is an appropriate
choice for efficiently rejecting unmeasured disturbances (see [81, 44]). Some limitations
in the location of the external disturbance in the model must be considered: (i) the
number of external disturbances that can be added can not be higher than the number
of measurements of the system and (ii) the augmented state matrix must have full row
rank. The latter will guarantee a unique solution of the state and input targets.
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Model the nonlinear plant

Observable?

Linearize & discretize the plant model

Build augmented model

No

Design the observer

Yes

Formulate the OF-MPC

- 𝑄, 𝑅, 𝑃, 𝛼, 𝑁,𝑀
- Input constraints

Generate the QP problem in standard form

C Code generation and Deployment

• Build QP solver from a C code generation tool

• Deploy solver into HW platform

Create the target selector

(𝑊0, 𝑉0, 𝜌)

Deterministic execution 

time? 

No

Closed-loop simulations

• OF-MPC + Nonlinear plant model + full state knowledge

• OF-MPC + Observer + Target Selector + Nonlinear plant model

Control requirements 

fulfilled? 

Yes

NoNo

Experimental Validation

• Plant-model mismatch compensation

• ISO 14839-3: 2006 (stability margins)

Control requirements 

fulfilled? 

Yes

Control commissioning finished!

No

Some tips:

• Revise the plant model

• Check  control requirements 𝑄,𝑅, 𝑃, 𝛼,𝑁,𝑀
• Update the observer from real sensor  noise 

information (𝑊0, 𝑉0, 𝜌) Yes

Deploy Controller into HW platform

Figure 5.1: Proposed OF-MPC design flow for AMB systems.

An interesting feature of the OF-MPC for AMBs is obtained when the external dis-
turbances added to the model are selected to be the disturbance forces. The point is
that, at steady state, the disturbance estimate becomes a representation of the wight
force compensated by the controller. This feature is important since the engineer can
get more insight into the real plant operation based on an information which is in-
trinsically offered by the controller. Note that the disturbance estimate lumps also the
plant-model mismatch and any other persistent external disturbance of the process.
Any change in the plant operation will be reflected in the disturbance estimate in terms
of external forces along the rotor motion directions.
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5.1.3 Design of the augmented estimator
There is much already said when the linear plant model is only affected by white

noise. Kalman filter approach is the more suitable solution in these cases. However,
the difficulty arises when the plant model mismatch is not only due to white noise and
hence the model drifts from the plant at steady-state.

State feedback control techniques are usually avoided because of the deterioration
of the state estimate in presence of plant-model mismatch. That mismatch is expected
from the OF-MPC controller but what about the state estimator? By augmenting the
plant model, the plant model mismatch can be lumped into the new disturbance states.
However, tuning the estimator from the augmented model is not trivial. A simple tun-
ing rule proposed in [53] in applied here for the single-degree-of-freedom system (see
Section 3.4). A more robust approach proposed by Doyle in [84] was preferred for the
conical-shaped bearing example (see Section 4.5.3) in which a single parameter (ρ) is
enough to handle effectively the trade-off between noise rejection and margin recovery.

5.1.4 Of-MPC formulation
The plant-model mismatch is compensated in a systematic and elegant way when

using an OF-MPC control technique. Furthermore, the limitation in control inputs and
system states are optimally handled. The latter is a remarkable feature of the OF-MPC
for example in conical bearings (usually underactuated in term of actuation forces)
and/or when the physical limitation of the AMB plant deserve more attention (frequent
lifts up, mobile applications, etc.).

The OF-MPC formulation presented in this work, have been limited to input con-
straints and nothing was said about the inclusion of state constraints. The point is that
more constraints are added to the problem, harder is to solve it in a deterministic time.
One way to solve faster the OF-MPC problem is to remove unnecessary or “less impor-
tant” constraints. That is why state constraints are usually avoided. The fact is that,
since the objective function of the OF-MPC formulation produce a trade-off between
inputs effort and state deviations, there might be no need of inequality constraints on
the states to guarantee good control performance. Furthermore, adding inequality con-
straints in the states means to waste time in the update of the inequality matrices of
the QP problem every time step. I personally consider that the online update of the
QP matrices should be avoided for code robustness and well justified if done. The real-
time update of the QP matrices could be required, for instance, in cases in which the
gyroscopic effect can not be neglected.

Mixed optimization proved sufficient to guarantee good stability properties (see
conical bearings application in Chapter 4). Matrices Q and R are used to properly
weight the trade-off between the rotor clearance and available bearing capacity. They
are selected in such a way that the rotor response consumes 25 % of the available clear-
ance and, at the same time, for the control effort to be 20 % of the available bearing
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capacity (in terms of coil current). A variation of the controller aggressiveness around
this nominal requirement is proposed with the tuning parameter α.

Blocking moves

In MPC practice, to limit the computation burden it is often useful to limit the num-
ber of degrees of freedom by “blocking” control moves after a certain input horizon M ,
1 ≤ M < N . It resulted strictly necessary to applying OF-MPC for the conical-shaped
bearing. The control signal is frozen and held constant and equals to the input target ut

after prediction time M − 1. It was done following the approach presented in [48, § 5].
However, there are other ways to freeze the control action (see Appendix A.6 in refer-
ence [54]). The analysis of AMB control performance and QP Hessian matrix properties
when applying a different freezing rule is left for future works.

5.1.5 C code generation tools
For small systems (few states and inputs), the explicit MPC variant can result the

best candidate. There exist some tools for MPC design, evaluation and deployment such
as Hybrid Toolbox [92], Multiparametric Toolbox [93] and MPC Toolbox 5.0 (available
from R2014b). During the progress of this work, some attempts to use those tools for
finding an explicit variant of the OF-MPC for the conical bearing system where done.
Unfortunately, it resulted in very long memory size requirements. The fact is that, to
the best of the author knowledge, the most convenient approach (i.e., explicit or on-
line MPC) to embed the OF-MPC controller for AMB systems is not well defined and a
comparison of online/explicit MPC variant is not the scope of this research. Neverthe-
less, the online OF-MPC methodology presented in this work, proved to be a significant
contribution in the filed of constrained optimal control for active magnetic bearings.

Matlab has many parser solvers that can facilitate the simulation of the controller
in PC environment but these solvers are not suitable for deployment into a microcon-
troller. Matlab offers today some tools to generate C code from Simulink (Simulink
Coder) or scripts (Matlab coder) environments but there is no possibility today to cre-
ate custom online MPC solvers that can be embedded into a hardware platform. Only
explicit MPC solvers (as explained above). In this work, two matlab independent ap-
proaches to generate a custom MPC solver were used: µAO-MPC [79] and CVXGEN
[29].

µAO-MPC is a python module in which the the user writes the MPC problem and
then a fast QP solver written in C is generated. However, when using µAO-MPC the
user is forced to fix the control moves to the prediction horizon (M = N ) i.e., there
is no possibility to reduce the control moves and make the solver even much faster.
Furthermore, the speed of converge of the solver is strictly related with the condition
number of the Hessian matrix in the QP problem it generates. In this work, it proved
to be sufficient for the single-axis AMB system of Chapter 3 but not suitable for the
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OF-MPC formulation proposed in the cone-shaped AMB system.
A more generic C code generation tool is CVXGEN. The user can formulate not only

standard MPC controllers but any convex QP problem. CVXGEN was used in Chapter 4
for the OF-MPC implementation on the Conical-shaped AMB system. Figure 5.2 shows
a work flow followed to create a custom OF-MPC solver. CVXGEN is a well known
tool in the research and industry. For example, the aerospace transportation company
SpaceX uses the QP code generation tool CVXGEN [29] to land its rockets [94].

CVXGEN: A Code Generator for 
Embedded Convex Optimization

Solver C files
QP Translation to 
CVXGEN language

Quadratic Programming (QP) Problem OF-MPC Formulation

solver.c
solver.h
utils.c
utils.h

⋮
qpdata.c
qpdata.h

Batch approach
Once and off-line

Figure 5.2: Implementation steps from: OF-MPC formulation to C code generation. This
figure makes reference to the OF-MPC implemented on the cone-shaped AMB system.

Matlab integrated with external C code generators

Matlab is one of the most famous engineering tool for modeling and simulation
of dynamics systems. Something interesting is the possibility it offers to run C code.
CVXGEN creates also a Matlab MEX interface for use with each custom solver, mak-
ing it easy to test and use high-speed solvers in simulations and data analysis. The
C code generated in CVXGEN can be also implemented in Simulink environment as
an S-Function as depicted in Figure 5.3. When using CVXGEN integrated with Matlab,
the same C code of the solver that will be deployed into the microcontroller is used
for the simulations. This integration offers a preliminary evaluation of both the closed-
loop control performance and the C code generated by CVXGEN. This integration saves
time, and becomes much more interesting and advantageous when the microcontroller
can be deployed directly from Matlab environment.

5.2 Future work
• Explicit versus online OF-MPC: A discussion is still open about the comparison

of explicit (i.e., look-up tables with optimal inputs as a function of plant state) and
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Figure 5.3: OF-MPC controller generated by CVXGEN and implemented in Mat-
lab/Simulink environment. Matlab simulations can be performed using the same solver
that will be deployed into the real hardware.

online OF-MPC variants for AMB systems.

• Nonlinear OF-MPC: AMB systems are strongly nonlinear systems. Even if the
linear OF-MPC formulation proved sufficient to guarantee a proper close-loop
behavior, future work can be conducted to validate nonlinear OF-MPC variants
[46].

• Gyroscopic effects and OF-MPC design: There are some AMB applications
in which the gyroscopic effect can not be neglected during the control design
phase. Hence, in case of using OF-MPC, an online reformulation of the QP prob-
lem as a function of the spin speed is required. The spin speed can be quantified
in small steps or operating zones and then a straightforward algorithm can be
implemented to update the internal model of the OF-MPC controller every time
step the spin speed changes the zone. Future work will be done in this direction.
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Appendix A. Cone-shaped AMB

A.1 Plant data
The rotor quotes are presented in Fig. A.1
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Figure A.1: Conical-shaped AMB Test tig. Rotor dimensions.
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A.2 Nonlinear plant model in Matlab

1 function q = ConeShapedStateFcn(amb,q,u,d,Ts)
2 % ConeShapedStateFcn Discrete-time approximation to the cone ...

shaped system.
3 % ζ̇ = h(ζ, i,d,Ω)
4 % Example state transition function for discrete-time nonlinear ...

state
5 % estimators.
6 %
7 % Xk1 = ConeShapedStateFcn(X,U,Ts)
8 %
9 % Inputs:

10 % q - States at time step k X(k) = [z x y Theta_x Theta_y ...
z_dot x y_dot Theta_x_dot Theta_y_dot]'

11 % u - input currents at time step u(k) = [i1 i2 i3 i4 ...
i5 i6 i7 i8]'

12 % d - Disturbances [Fz,Fx,Fy,M_x, M_y] on ...
[z,x,y,Theta_x,Theta_y]

13 % Ts - Sampling time
14 %
15 % Outputs:
16 % Xk1 - Propagated states X[k+1]
17 %
18

19 % Euler integration of continuous-time dynamics x'=f(x,u,d) ...
with sample time dt

20 dt = Ts; % [s] Sample time
21 q = q + ConeShapedStateFcnContinuous(amb,q,u,d)*dt;
22 end
23

24 function dqdt = ConeShapedStateFcnContinuous(amb,q,u,d)
25 %ConeShapedFcnContinuous
26 % X = [z x y Theta_x Theta_y z_dot x y_dot Theta_x_dot ...

Theta_y_dot]'
27 % U = [ix1p ix1m iy1p iy1m ix2p ix2m iy2p iy2m]'
28 g = 9.82; % [m/s2]
29 g0 = amb.g0; % [m] Radial air gap
30 Beta = amb.Beta; % [rad] Inclined angle of the magnetic core
31 % bt = amb.bt; % [m] distance between the two radial ...

magnetic bearings
32 b1 = amb.b1; % [m] distance between the radial magnetic ...

bearing (1) and the center of gravity point of the rotor
33 b2 = amb.b2; % [m] distance between the radial magnetic ...

bearing (2) and the center of gravity point of the rotor
34 Rm = amb.Rm; % [m] Effective radius
35 m = amb.m; % [kg] rotor mass
36 Jp = amb.Jp; % [kgm2] polar moment of inertia
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37 Jd = amb.Jd; % [kgm2] Diametrical moment of inertia
38 Omega = amb.Omega;% [rad/sec] spin speed
39

40 %% Force factors:
41 % |F| = mu0*S*N^2*i^2/(4*g^2)*cos(pi/8)
42 % |F| = K*i^2/g^2; K = mu0*S*N^2/4**cos(pi/8);
43 % F1(y2+,iy2+)
44 % F2(y2-,iy2-)
45 % F3(y1+,iy1+)
46 % F4(y1-,iy1-)
47 % F5(x2+,ix2+)
48 % F6(x2-,ix2-)
49 % F7(x1+,ix1+)
50 % F8(x1-,ix1-)
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 % U = [ix1- ix1+ iy1- iy1+ ix2- ix2+ iy2- iy2+]' %%%
53 % U = [i8 i7 i4 i3 i6 i5 i2 i1]' %%%
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 % Force constant:
56 K = amb.K; %
57 %%%%%%%%%%%%
58

59 % q = [z x y Theta_x Theta_y z_dot x y_dot Theta_x_dot ...
Theta_y_dot]'

60

61 z = q(1);
62 x = q(2);
63 y = q(3);
64 theta_x = q(4);
65 theta_y = q(5);
66

67 i1 = u(1);
68 i2 = u(2);
69 i3 = u(3);
70 i4 = u(4);
71 i5 = u(5);
72 i6 = u(6);
73 i7 = u(7);
74 i8 = u(8);
75

76 % forces on Y2 pole face area:
77 F1 = K*i1^2/(g0-z*sin(Beta)-cos(Beta)*(y + b2*theta_x))^2;
78 F2 = K*i2^2/(g0-z*sin(Beta)+cos(Beta)*(y + b2*theta_x))^2;
79 % forces on Y1 pole face area:
80 F3 = K*i3^2/(g0+z*sin(Beta)-cos(Beta)*(y - b1*theta_x))^2;
81 F4 = K*i4^2/(g0+z*sin(Beta)+cos(Beta)*(y - b1*theta_x))^2;
82 % forces on X2 pole face area:
83 F5 = K*i5^2/(g0-z*sin(Beta)-cos(Beta)*(x - b2*theta_y))^2;
84 F6 = K*i6^2/(g0-z*sin(Beta)+cos(Beta)*(x - b2*theta_y))^2;
85 % forces on X1 pole face area:
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86 F7 = K*i7^2/(g0+z*sin(Beta)-cos(Beta)*(x + b1*theta_y))^2;
87 F8 = K*i8^2/(g0+z*sin(Beta)+cos(Beta)*(x + b1*theta_y))^2;
88

89 % disturbance forces:
90 Fz = d(1);
91 Fx = d(2)-m*g*cos(pi/4);
92 Fy = d(3)-m*g*cos(pi/4);
93 M_x = d(4);
94 M_y = d(5);
95

96 % AMB Model with nonlinear dynamics:
97 dqdt = [q(6);... z
98 q(7);... x
99 q(8);... y

100 q(9);... Theta_x
101 q(10);... Theta_y
102 ((F1+F2+F5+F6)*sin(Beta)-(F3+F4+F7+F8)*sin(Beta)+ Fz)/m;... z_dot
103 ((F5-F6+F7-F8)*cos(Beta) + Fx)/m;... x_dot
104 ((F1-F2+F3-F4)*cos(Beta) + Fy)/m;... y_dot
105 (((F1-F2)*b2+(F4-F3)*b1)*cos(Beta)+(F2-F1+F3-F4)*Rm*sin(Beta)+M_x)/Jd ...

-Jp*Omega*theta_y_dot/Jd;... theta_x_dot
106 (((F6-F5)*b2+(F7-F8)*b1)*cos(Beta)+(F5-F6+F8-F7)*Rm*sin(Beta) + ...

M_y)/Jd + Jp*Omega*theta_x_dot/Jd]; % Theta_y_dot
107 end

A.3 Jacobians and linear modeling

1 % ζ̇
.
=

∂h

∂ζ

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

Ā

(ζ − ζ0) +
∂h

∂i

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

B̄i

(i− i0) +
∂h

∂d

⃓⃓⃓⃓
0⏞ ⏟⏟ ⏞

B̄d

(d− d0)

2

3 clear all
4 close all
5 clc
6 load('amb.mat')
7

8 %%%%%%%%%%%%%%%%%%%%%%%
9 % Electromagnetic Forces

10 % |F| = K*i^2/g^2;
11 % F1(y2+,iy2+), force on AMB2, y+ diretion
12 % F2(y2-,iy2-), force on AMB2, y- diretion
13 % F3(y1+,iy1+), force on AMB1, y+ diretion
14 % F4(y1-,iy1-), force on AMB1, y- diretion
15 % F5(x2+,ix2+), force on AMB2, x+ diretion
16 % F6(x2-,ix2-), force on AMB2, x- diretion
17 % F7(x1+,ix1+), force on AMB7, x+ diretion
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18 % F8(x1-,ix1-), force on AMB8, x- diretion
19 %%%%%%%%%%%%%%%%%%%%%%
20

21 % states and control inputs:
22 % X = [z x y theta_x theta_y z_dot x y_dot theta_x_dot ...

theta_y_dot]'
23 % U = [i1 ... i8]'
24

25 %% symbolic variables decalaration:
26

27 % sym states:
28 syms z x y theta_x theta_y z_dot x_dot y_dot theta_x_dot ...

theta_y_dot
29

30 % sym input currents:
31 syms i1 i2 i3 i4 i5 i6 i7 i8
32

33 % sym disturbance forces:
34 syms Fz Fx Fy Ftheta_x Ftheta_y
35

36 % intermediate equations
37 % forces on Y2 pole face area:
38 F1 = K*i1^2/(g0-z*sin(Beta)-cos(Beta)*(y + b2*theta_x))^2;
39 F2 = K*i2^2/(g0-z*sin(Beta)+cos(Beta)*(y + b2*theta_x))^2;
40 % forces on Y1 pole face area:
41 F3 = K*i3^2/(g0+z*sin(Beta)-cos(Beta)*(y - b1*theta_x))^2;
42 F4 = K*i4^2/(g0+z*sin(Beta)+cos(Beta)*(y - b1*theta_x))^2;
43 % forces on X2 pole face area:
44 F5 = K*i5^2/(g0-z*sin(Beta)-cos(Beta)*(x - b2*theta_y))^2;
45 F6 = K*i6^2/(g0-z*sin(Beta)+cos(Beta)*(x - b2*theta_y))^2;
46 % forces on X1 pole face area:
47 F7 = K*i7^2/(g0+z*sin(Beta)-cos(Beta)*(x + b1*theta_y))^2;
48 F8 = K*i8^2/(g0+z*sin(Beta)+cos(Beta)*(x + b1*theta_y))^2;
49

50 % AMB Model with nonlinear dynamics:
51 g = [z_dot;... z
52 x_dot;... x
53 y_dot;... y
54 theta_x_dot;... theta_x
55 theta_y_dot;... theta_y
56 ((F1+F2+F5+F6)*sin(Beta)-(F3+F4+F7+F8)*sin(Beta))/m+Fz/m;... z_dot
57 (F5-F6+F7-F8)*cos(Beta)/m+Fx/m;... dx
58 (F1-F2+F3-F4)*cos(Beta)/m+Fy/m;... dy
59 (((F1-F2)*b2+(F4-F3)*b1)*cos(Beta)+(F2-F1+F3-F4)*Rm*sin(Beta)+M_x)/Jd ...

-Jp*Omega*theta_y_dot/Jd;... theta_x_dot
60 (((F6-F5)*b2+(F7-F8)*b1)*cos(Beta)+(F5-F6+F8-F7)*Rm*sin(Beta) + ...

M_y)/Jd + Jp*Omega*theta_x_dot/Jd]; % Theta_y_dot
61

62 %% Symbolic coninuous Jacobians:
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63 J_A = jacobian(g,[z; x; y; theta_x; theta_y; z_dot; x_dot; ...
y_dot; theta_x_dot; theta_y_dot]);

64 J_B = jacobian(g,[i1; i2; i3; i4; i5; i6; i7; i8]);
65 J_Bd = jacobian(g,[Fz; Fx; Fy; Ftheta_x; Ftheta_y]);
66

67 %% states at steady state: (when zero air gap deviation)
68 z=0; x=0; y=0; theta_x=0; theta_y=0; z_dot=0; x_dot=0; ...

y_dot=0; theta_x_dot=0; theta_y_dot=0;
69

70 %% currents at steady state:
71 i1=amb.i0(1); i2=amb.i0(2); i3=amb.i0(3); i4=amb.i0(4); ...

i5=amb.i0(5); i6=amb.i0(6); i7=amb.i0(7); i8=amb.i0(8);
72

73 %% disturbance forces at steady state:
74 % Fz=0; Fx=amb.m*g*cos(pi/4); Fy=amb.m*g*cos(pi/4); Ftheta_x=0; ...

Ftheta_y=0;
75 Fz=0; Fx=0; Fy=0; Ftheta_x=0; Ftheta_y=0; % Assuming zero ...

external forces at steady state.
76 %% Linearizing the plant at the opertating point:
77 A = double(subs(J_A))
78 B = double(subs(J_B))
79 Bd = double(subs(J_Bd))

A.4 QP matrices from the OF-MPC formulation

1 function [ H, F ] = getHF( A,B,Q,R,P,N,M)
2 % get H anf F matrices for the QP problem that corresponds to ...

OF-MPC problem
3 % min

u

1
2u

′Hu′ + [F ′(q − qt)−H′ut]
′u

4 %
5 % Inputs:
6 % A: state matrix
7 % B: Input matrix
8 % Q: Weight on the state
9 % P: terminal weight

10 % R: Weight on ths inputs
11 % N: Prediction horizon
12 % M: Control horizon
13

14 [n,m] = size(B); % n: number of states
15 % m: number of inputs
16

17 Su = zeros(n*N,m*M); % see Su in Chapter 2.
18

19 for j=1:1:M
20 Su_col = [];
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21 for i=0:1:N-j
22 Su_col = [Su_col ;A^i*B];
23 end
24 Su(1+(j-1)*n:end,1+(j-1)*m:j*m) = Su_col;
25 end
26

27 Sx = [];
28 for i = 1:N
29 Sx = [Sx; A^i];
30 end
31

32 % weights matrices:
33 QQ = [];
34 for i=1:N-1
35 QQ = blkdiag(QQ,Q);
36 end
37

38 QQ = blkdiag(QQ,P);
39

40 RR = [];
41 for i=1:M
42 RR = blkdiag(RR,R);
43 end
44

45

46 H = Su'*QQ*Su + RR;
47 F = Sx'*QQ*Su;
48 end

A.5 OF-MPC as a QP problem written in CVXGEN code

1 %# QP problem written in CVXGEN for
2 %# the Conical-shaped AMB system with
3 %# Control horizon M = 2.
4 %
5 % min

u

1
2u

′Hu′ + [F ′(q − qt)−H′ut]
′u

6 %
7 %% Code starts here:
8 parameters
9 H (10,10) psd # Hessian.

10 F(10,10)
11 q (10,1)
12 qt(10,1)
13 Ut(10,1)
14 K(16,10)
15 I(16,1)
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A.6 – Waterfall plots on the cone-shaped AMB system with OF-MPC control

16 end
17

18 variables
19 u (10) # u = [u0; u1]
20 end
21

22 minimize
23 1/2*quad(u, H) + ((q-qt)'*F-Ut'*H)*u
24 subject to
25 K*u ≤ I # polyhedral set on u.
26 end
27 %# That's it! :)

A.6 Waterfall plots on the cone-shaped AMB system
with OF-MPC control

Figure A.2: Waterfall plot: x1. OF-MPC agresiveness: αz,x1,y1,x2,y2 = 0.5, state estimator
with ρ = 1.
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Appendix A. Cone-shaped AMB

Figure A.3: Waterfall plot: y1. OF-MPC agresiveness: αz,x1,y1,x2,y2 = 0.5, state estimator
with ρ = 1.

Figure A.4: Waterfall plot: x2. OF-MPC agresiveness: αz,x1,y1,x2,y2 = 0.5, state estimator
with ρ = 1.
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A.6 – Waterfall plots on the cone-shaped AMB system with OF-MPC control

Figure A.5: Waterfall plot: y2. OF-MPC agresiveness: αz,x1,y1,x2,y2 = 0.5, state estimator
with ρ = 1.

Figure A.6: Tachometer profile during a free run-down test.
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Appendix A. Cone-shaped AMB
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Figure A.7: Unbalance response in (x1, y1, x2, y2). OF-MPC set with αz,x1,y1,x2,y2 = 0.5
and state estimator with ρ = 1. The dB values refer to the rotor vibration measured in
mm.
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