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Introduction 
 

The objective of my Ph.D. thesis is the investigation of the role of Single Layer Graphene (SLG) as a 

biointerface for its possible future exploitation in various biomedical applications; in particular for the 

development of biosensors, substrates for regenerative medicine, interfacing platforms for better 

recording of electrophysiological activity of neuronal networks, among others. This Ph.D. project is 

multidisciplinary involving both the material transfer and characterization part from one side and the 

biological part from another side. The material part offers an in-depth explanation of SLG synthesis, 

transfer, characterization and functionalization while the biological section sheds light on the studies 

performed for investigation of the behavior of different types of cell lines on SLG substrates. For better 

understanding of the sequence of the performed work, I have divided this thesis into separate chapters.  

In the beginning and end of every chapter, I added an introduction and conclusions related to it.  

Chapter 1 acts as a general introduction to graphene and graphene-related materials where a detailed 

explanation on the evolution of those materials as a cell interface is provided leading to the introduction 

of SLG in the end of this chapter along with its production process. Chapter 2 is oriented on the surface 

characterization of SLG substrates; in this chapter, I described the SLG transfer method, creation of the 

micrometric ablated geometric patterns on the transferred substrates using excimer laser 

micromachining, a technique developed in our lab, then further functionalization of the substrates and 

finally all the techniques employed for their physicochemical characterization. Chapter 3 is dedicated 

to the biological part of the project; i.e. studying the behavior of different cell lines on the SLG 

substrates. In this chapter, I have described and explained the interest of using the selected cell lines 

and the experiments that were performed on them. Chapter 4 has been devoted to a complete and 

separate project that I performed in collaboration with the Neuroscience and Brain Technologies 
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department. The main focus of the project was the functionalization of the commercial multi-electrode 

arrays (MEAs) with SLG and studying the neuronal network activity on them throughout the complete 

network development.  

Although the main focus of my Ph.D. project was studying SLG biointerface, I have also been involved 

in side projects, among which, studying the neuronal-like response of mouse neuroblastoma (N2a) 

living cells to nanoporous patterns of thin supported anodic alumina which I have described in 

Appendix A, and studying the surface potential of graphene by polyelectrolyte coating which I have 

presented in Appendix B. 

To summarize, this thesis reports an original investigation, since, to the best of our knowledge, there is 

no report yet about the study of the effect of SLG functionalized MEA on the neuronal network activity 

throughout the complete network maturation. Furthermore, proliferation curves of different cell lines 

on SLG versus control substrates have been presented; in addition to physicochemical characterization 

of ablated and functionalized SLG substrates as means of possible explanation of a certain cellular 

behavior on graphene. 
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1.1 Graphene 

  
Variations in covalent bonding between carbon atoms leads to naturally occurring different materials 

called carbon allotropes. Each of them has distinctive physical and chemical properties owing to the 

unique spatial arrangement that carbon atoms adopt. Allotropes of carbon include graphite, diamond 

and carbon nanotubes (CNTs), among others. The atomic structure of graphite is characterized by the 

multiple stacking of one-atom thick sheets formed by carbon atoms arranged in a hexagonal lattice. The 

isolated two-dimensional crystal structures made of single atomic layers of graphite are called 

“graphene” (1). The existence of single graphene sheets had been discussed in theory more than 50 

years ago. Yet, the existence of two-dimensional (2D), atomically thin crystal materials were 

considered physically impossible. In 2004, a single sheet of graphene was isolated and characterized by 

Novoselov and Geim (2). Since then, research on graphene has been increasing almost exponentially, 

attracting the interest of various scientific fields (1). 

Graphene (G) is defined as a single- or few-layered sheet of sp
2
-bonded carbon atoms tightly packed to 

a 2D honeycomb lattice (3). Each carbon atom has three μ-bonds and an out-of-plane π-bond that can 

bind with neighboring atoms, conferring graphene unique chemical and physical properties (3). The 

family members of graphene related materials (GRMs) include: single- and few-layered graphene (1–

10 layers; G), graphene oxide (single layer, 1:1 C/O ratio; GO), reduced graphene oxide (rGO), 

graphite nano- and micro-platelets (more than 10 layers, but < 100 nm thickness and average lateral 

size in the order of the nm and μm, respectively), graphene and graphene oxide quantum dots, and a 

variety of hybridized graphene nanocomposites (4–6). The diversity among the GRMs is mainly 

dependent on the graphene production method; chemical vapor deposition (CVD) (7,8), mechanical 

cleavage (2), and electrochemical exfoliation of graphite (9), can in fact give the material a wide range 
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of specific properties based on the number of layers, lateral dimension, purity and defect density, 

conductivity, surface chemistry and shape (3,5,6,10,11). 

G and GRMs (Fig. 1.1) also possess tunable and extreme mechanical strength, exceptionally high 

electronic and thermal conductivities, flexibility and transparency (2). Therefore, G has all the 

characteristics to play a key role in many applications, opening new advantageous opportunities in 

supercapacitors (12–14), flexible electronics (15,16), printable inks (17), batteries (18,19), optical and 

electrochemical sensors (20,21), and energy storage (22–24). 

 

Figure 1.1 Graphene and graphene-related materials (25) 

 

1.2 Graphene as a Biocompatible Material 

 

In the last few years, biomedical applications of G have attracted an increasing interest, including the 

use of G and GRMs for bioelectrodes, bioimaging, drug/gene/peptide delivery, nanopore-based DNA-

sequencing devices, stem cell differentiation and tissue engineering (26,27). Moreover, GRMs have 

generated great interests for the design of nanocarriers and nanoimaging tools, tissue scaffolds (both 

two- and three-dimensional), anti-bacterial coatings and biosensors (1,28,29). 
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1.2.1 Graphene as cell interface 

 

Interfacing carbon-based materials with cells is considered to be important for regenerative medicine, 

implants, and neural prostheses, among other. Hence, it is important to find biocompatible and 

mechanically stable materials to be used as platforms driving cellular adhesion, proliferation and 

differentiation. Among carbon-based materials that have gained popularity for being used as biological 

interfaces have been CNTs (30). However, recently, among other carbon-based materials, G has 

attracted considerable interest as it possesses some exemplary properties, such as higher electrical 

conductivity and better mechanical and optical properties in comparison to CNTs (31–33). Possessing 

these properties, G has gained an increased popularity in various scientific and technological fields, as 

mentioned earlier. The exploitation of those properties could be useful for biomedical applications. 

Therefore, the use of G as a substrate for cell seeding has been tried. For example, an increase in the 

adhesion of osteoblasts and human mesenchymal stem cells (hMSCs) on G substrates has been 

previously demonstrated (34). Very recently, biomedical applications of G in nervous systems have 

attracted much attention (35,36). Concerning this, Convertino et al (37), demonstrated peripheral neural 

survival and growth on graphene substrates. In another study by Park et al (34), the influence of G on 

neural stem cells (NSCs) showing an enhanced differentiation of these cells into neurons rather than 

glial cells, which is required for neural regeneration and brain repair, has been shown. Last but not 

least, Li et al demonstrated a promoted neurite sprouting and the outgrowth of mouse hippocampal 

cells on graphene substrates (38). Despite the increasing number of studies in this field, the number of 

publications of the topic is still limited, and there is no universal consensus about what happens at 

graphene-cell interface, and, especially the reason that stands behind this is not completely clear.  

Based on the literature review, most of graphene substrates, used for studying the differentiation of 

neuron-like cells and NSCs in addition to studying graphene-neuron interface, were produced by CVD 

(31,39,40). However, the gap in those studies lies in the unspecified number of G layers composing the 
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substrates (29); noting that the exact number of layers is important as it causes a great influence on the 

physico-chemical properties of a graphene-based platform (41,42). In a recent study (43), the effect of 

SLG (Fig. 1.2) and multi-layer graphene (MLG) on neuronal communication has been studied, and it 

has been demonstrated that SLG modifies neuronal excitability and up-regulates K+ currents of 

neurons that switch to functionally tonic phenotypes indicating that SLG enhances the functionality of 

neuronal network. This phenomenon has been observed when neurons were cultured on SLG only and 

not on MLG. Therefore, choosing SLG over other GRMs as a substrate to study SLG/biointerface has 

been a focus of my PhD project in order to study the behavior of cells over time on this substrate and to 

understand its physicochemical properties, with long term goal of employing it in regenerative 

medicine and for development of biosensors. 

 

Figure 1.2 SLG on glass substrates (44) 

 

1.2.2 Single Layer Graphene (SLG) 

 

Among the several methods that have been devised for the production of high quality SLG (Fig. 1.2), 

the CVD method is the most promising, mostly used, and readily accessible approach for the deposition 

of reasonably high quality SLG onto transition-metal substrates such as Nickel (Ni), Palladium (Pd), 
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and Copper (Cu) (45). Also, this method has advantages such as being the most straightforward method 

to transfer graphene to any arbitrary substrates, in addition to being a good control over its number of 

layers. This fact led to shifting the attention towards the production of top quality SLG on crystalline 

Cu films. In this process, SLG is grown on 25μm thick Cu foils in a hot wall furnace (Fig 1.3). Initially, 

Cu foil is first annealed in hydrogen atmosphere at 1000°C, and then a mixture of H2/CH4 is introduced 

into the system to initiate the graphene growth. After a continuous graphene layer is formed on Cu foil, 

the system is cooled down to room temperature (Fig. 1.3) (46). 

 

Figure 1.3 Schematic of a common setup for chemical vapor deposition of graphene (47) 

 

Characterization of formed or fabricated SLG is an important part of research which involves 

measurements based on various microscopic and spectroscopic techniques. The outcome of such 

measurements involves the determination of the number of layers and the purity of samples in terms of 

presence or absence of defects. Optical contrast of graphene layers on different substrates is the most 

simple and effective method for the identification of the number of layers. Contrast in scanning 

electron microscopic (SEM) images is another way to determine the number of layers (48). 

Transmission electron microscopy (TEM) can be directly used to observe the number of layers on 
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viewing the edges of the sample (49). However, Raman spectroscopy has been extensively used as a 

non-destructive tool to probe the structural and electronic characteristics of graphene, being very 

powerful in distinguishing between single, double and multi-layer graphene (50). 

The band structure of SLG is determined to have 2D characteristics and a linear dispersion relation of 

electronic wave functions with perfect electron-hole symmetry, in which the Fermi surface consists of 

two cones touching at one singular, so-called Dirac point, where the density of states is zero (33). 

These extraordinary electrical properties make SLG a good candidate for a wide range of high 

frequency applications, such as chemical sensors and biosensors. Additionally, SLG has inherently low 

electrical noise due to the quality of its crystal lattice and its 2D nature which can screen the charge 

fluctuations (51). The combination of the unique properties and potential characterization of graphene 

makes it as an ideal material for the fabrication of biosensors and for neuroengineering, for example in 

invasive implant technologies for brain biosensors and electrodes. 
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Surface Fabrication and Characterization 
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In my Ph.D. project, I used SLG substrates to perform experiments with living cells and to study their 

behavior over time. Moreover, I have performed the physico-chemical characterization of these 

substrates to gain information about the interplay between the interface and cell behavior.  

It should be noted that in order for the SLG to be useful for biological applications, it has to be 

removed from the catalytic metal substrate and transferred onto an arbitrary substrate with a minimal 

amount of defects introduced into the target surface after the transfer procedure. 

For this purpose, I used SLG transferred on glass (SLG/glass) to perform experiments with living cells 

and for Raman characterization, SLG on Silicon (Si) and Silicon Oxide (SiO2) for Scanning Kelvin 

Probe Microscopy (SKPM) experiments and SLG on Calcium Fluoride (CaF2) for attenuated total 

reflectance – Fourier transform infrared (ATR-FTIR) spectroscopy. 

In this chapter, I described the SLG transfer procedure, patterning and functionalization (Fig. 2.1); in 

addition to the physico-chemical characterization techniques employed to characterize the substrates. 

 

 

Figure 2.1 Schematic representation of SLG transfer, micropatterning, functionalization and 

characterization. 



 

12 

 

2.1 SLG Transfer 
 

It should be clear that a successful and high quality SLG transfer process is the key point to the use of 

this material in many applications, since only clean SLG without wrinkles and ripples can provide high 

quality electronic and mechanical properties. For this purpose, I have optimized the transfer procedure 

to prepare clean and mechanically robust SLG on substrates of interest. In this section, I describe the 

transfer procedures used, sketched in Fig. 2.2. 

SLG on Si and SiO2 was a commercial product purchased from Graphene Supermarket. According to 

the manufacturer, SLG was transferred on the mentioned substrates by wet etching procedure and 

substrates were 285 nm thick.  

As for the rest of the experiments mentioned beforehand, SLG produced by CVD on Cu foil was 

received from NEST group, IIT, Pisa, and the transfer by wet etching technique was performed 

following the procedure described herein.  

A polymethyl metacrylate (PMMA)  solution (MicroChem, 950,000 MW, 9–6 wt% in anisole) was 

spin-coated (Sawatec SM-180-BT spinner) on SLG/Cu foils at 3000 rpm for 45 s, and then the SLG on 

the opposite side of the Cu foil was removed by 100W oxygen plasma (180 s), followed by drying at 

room temperature for 12 h. The Cu was wet-etched using 0.2M Ammonium persulphate solution in a 

Petri dish and the PMMA/SLG stack was floated on the surface of the solution. The stack of 

PMMA/SLG was carefully rinsed in ultrapure water (Millipore, 18 MΩcm) to remove the traces of the 

Cu etchant, and was scooped on the target substrate (glass and CaF2). The transferred SLG substrate 

was annealed in air at 150 °C for 3 h to obtain a firm adhesion to the target substrate and washed with 

acetone to remove any trace of organic contaminants. All the solvents were purchased from Sigma 

Aldrich. The quality of the SLG transfer was monitored by Raman spectroscopy. 
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Figure 2.2 Schematic representation of the transfer of SLG from Cu foil onto glass coverslip. 

 

2.2 Excimer Laser Micromachining of SLG 
 

The beneficial effect of graphene in biomedical applications has been previously studied, such as, 

promoting effects on cellular behaviors, including cell adhesion, proliferation, development, spreading 

and differentiation. The precisely controlled cell migration or orientation plays a crucial role in 

determining cell responses and fates. In tissue engineering, patterning techniques play a vital role to 

understand the material interface of the anchored cells on the surface (52). For the fabrication of 

biosensors, the accurate positioning of biological ligands on substrates of interest is necessary for 

monitoring their behavior (53). Hence, the studies concerning the regulation of cellular behaviors by 

graphene substrates have been recently investigated. 

The graphene patterned arrays have been especially under spotlight as a novel strategy for guiding and 

stimulating cellular behaviors as graphene can provide desirable topographical guidance cues as well as 

biochemical cues. For example, in one of the previous studies by Bajaj et al (54), the myogenic 
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differentiation of C2C12 skeletal muscle myoblasts on rectangular island-shaped graphene patterns on 

SiO2/Si substrates fabricated using photolithography techniques. It has been observed that most 

myotubes were formed on graphene patterns while a few cells were differentiated into myotubes on the 

control substrates (SiO2/Si). 

Photolithography is the most widely used patterning technique for the cells on Si or on glass surface 

(55). Although photolithography is a technique that is highly developed for patterning features smaller 

than ~1 μm resolution, it is unnecessary for many applications of patterning in cell biology. Moreover, 

the high costs associated with equipment and the need for access to clean rooms, make this technique 

inconvenient for biologists.  

Recently, there has been increased attention on pulsed laser ablation for surface micro-patterning and 

structuring of materials. The laser ablation with its single step process has numerous advantages for 

micromachining; high flexibility, direct patterning without the need for a resist process and also 

without the need for an etchant. In order to achieve high-quality ablation, it is necessary for the laser 

beam to be strongly absorbed by the materials (56). 

Patterning SLG with micrometric or sub-micrometric resolution using laser micromachining showed 

immense potential for future development (56). The fact that SLG has an absorption peak in the deep 

UV at 4.6 eV was exploited to perform ablation patterning by a Krypton fluoride (KrF) Excimer laser 

of 248 nm wavelength (57). Recently the direct laser patterning on SLG was further optimized for 

hippocampal neuron patterning (56).  

The SLG sheets transferred onto glass and Si substrates were subjected to micromachining by laser 

ablation (Fig. 2.3), with an aim to create patterns or local surface modification with micrometric or sub-

micrometric resolution. The samples were exposed to laser pulses in ambient air. Patterned regions 

consisted of stripes or squares exposed to a single laser pulse with fluence of 0.5 J.cm
-2

.  
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Figure 2.3 Laser micromachining - Schematic representation of micro-patterning by laser ablation on 

SLG. 

 

2.3 Functionalization of SLG Substrates 
 

Positively charged polyamino acids facilitate the attachment of cells and proteins onto solid surfaces in 

biological applications (58). Polylysine (Fig. 2.4), a homo-poly-amino acid characterized by the peptide 

bond between the carboxyl and ε-amino groups of lysine, shows a wide range of antimicrobial activity 

and is stable at high temperatures under both acidic and alkaline conditions. It represents the synthetic 

molecule mostly used as an unspecific adhesion factor to enhance cell adhesion in different 

applications. 

 

Figure 2.4 Chemical structure of polylysine (59) 
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In cell cultures, normal attachment, growth, and development of many cell types depend on attachment 

factors and extracellular matrix components. While some cells can synthesize these components, others 

require an exogenous source, particularly when grown in serum-free culture. Neurons are, however, 

distinctive cells with highly polarized morphology, much smaller somata, and thus few anchoring 

points for adhesion in comparison to most types of adherent mammalian cells. These features make the 

culturing of neurons a delicate process. To promote cell attachment, spreading, growth, morphology 

and differentiation, polyamino acids have been used as coating molecules (60). Polylysine enhances 

electrostatic interaction between negatively-charged ions of the cell membrane and positively charged 

surface ions of attachment factors on the culture surface (Fig. 2.5). When adsorbed to the culture 

surface, it increases the number of positively charged sites available for cell binding.  

 

 

Figure 2.5 Surface interaction between positively charged polylysine and negatively-charged ions of 

the cell membrane. 

 

In fact, its positively charged side groups (i.e., -NH2 groups) interact electrostatically with the 

negatively charged cellular membrane. Besides increasing neural adhesion, polylysine enhances cell 

and neural, proliferation, and neurite extension (61).  

For coating of SLG substrates used in my experiments, I used poly-D-lysine (PDL) (Sigma-Aldrich, 

MW 30.000–70.000). The substrates were coated with PDL (concentration of 0.1 mg.ml
-1

 in sterile 
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water) for 3h in an incubator (37ºC, humid atmosphere with 5% CO2), and thoroughly rinsed with 

sterile deionized water. 

2.4 Physicochemical Characterization of SLG Substrates 
 

2.4.1 Raman Characterization 

 

To ensure the successful transfer of SLG, the substrates are characterized by Raman spectroscopy. This 

is a non-destructive technique widely used to quantify the defect density and crystallographic quality of 

carbonaceous products.  

Analysis of the observed Raman spectra provides precise information on the electronic states, the 

phonon energy dispersion, and the electron-phonon interaction in sp
2
 carbon systems. For SLG, the sp

2
 

hybridized electrons do not have an energy gap at the Fermi level, and thus one always gets a 

resonance condition for Raman spectra for any laser excitation energy. The Raman spectrum of 

graphene has three major bands: the D-band located around 1350 cm
−1

 that is a defect-induced band; 

the G-band located around 1580 cm
−1

 that is due to in-plane vibrations of the sp
2
 carbon atoms; the 2D-

band around 2700 cm
−1

 results from a two-phonon lattice vibration. Unlike the D-band, the 2D-band is 

not activated by the vicinity to a defect. A sharp and symmetric 2D-band is found in the case of SLG, 

as shown in Fig. 2.6. Therefore, to evaluate the success of the transfer procedure and the quality of the 

obtained SLG, Raman measurements on the samples have been carried out routinely at ambient 

conditions using a LabRAM HR800 spectrometer (Horiba Jobin Yvon, USA) equipped with a 

microscope, namely a μRaman system. A 633 nm wavelength excitation line was used, in 

backscattering geometry through a 50× objective lens. Fig. 2.5 displays a Raman spectrum obtained 

from SLG transferred onto a glass coverslip. The ratio of the intensities of the 2D and G-band, I2D/IG, 

and the sharp symmetric 2D band peak are indications of a good quality SLG, in spite of the presence 

of few defects (D-band). 
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Figure 2.6 Raman analysis of SLG - Raman spectrum indicating the D, G and 2D peaks of SLG 

transferred onto a glass coverslip. 

 

2.4.2 G-band and 2D-band Shift 

 

In order to ensure the presence of the PDL layer on SLG substrates, I performed Raman 

characterization of those substrates after the PDL coating to see whether there were any changes in the 

Raman spectra. A shift in the G and 2D bands of SLG was observed (Fig. 2.7). The G band is shifted to 

the right by about 3 cm
-1

 and the 2D band is shifted to the right too by about 7 cm
-1

. This shift known 

as the blue shift, accompanied by a slightly reduced width of the peak (Table 1), is an indication of the 

stiffening of the graphene vibrations as has been reported (62). 
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Figure 2.7 G-band and 2D-band Raman peak of bare SLG (black, dotted) and of PDL coated SLG (red, 

dotted). A progressive shift towards higher wavenumber is observable. 

 

 

Table 1 Change of SLG Raman G and 2D peaks position and width before and after polymer coating, 

according to the best fitting curves in Fig. 2.7. 

 

2.4.3 Raman Mapping 

 

Raman intensity mapping was performed on SLG/ablated substrates in order to ensure the complete 

removal of SLG from the ablated regions. 

Raman intensity maps averaged over a wide wavenumber region instead of single peak intensity allows 

a mapping that is more sensitive to SLG alteration due to photo exposure. Raman mapping has been 

performed over SLG and ablated regions as shown in Fig. 2.8(A), and the acquired Raman spectra are 

displayed in Fig. 2.8(B). In SLG region, pristine SLG Raman signal has been collected, in the 

SLG/ablated border, the spectra indicates a modification in SLG (i.e. a folded residual) while in the 
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ablated region, there is no significant Raman signal. This map clearly resolves the transition region 

between pristine and irradiated areas. 

 

Figure 2.8 Raman component color map of the SLG, SLG/ablated border and the ablated region 

irradiated at 0.5 J/cm
2
.  

 

2.4.4 Pump-probe Microscopy 

 

Pump-probe microscopy is another technique that I used to discriminate between the SLG and the 

ablated regions of the substrate. 

It is defined as a non-linear optical microscopy technique which relies on absorption-based non-linear 

interactions of two input fields, called pump and probe, with the sample under study. Absorption-based 

measurements are advantageous because they permit to investigate non-emissive and dark states, 

broadening the range of available targets towards weakly or non-fluorescent samples. 

Pump-probe methods were first introduced in time-resolved spectroscopy to resolve and monitor 

chemical and atomic ultrafast processes using two illumination pulses. A first high-intensity pump 

pulse is absorbed, perturbing the system from equilibrium, while a second weak probe pulse is used to 

measure the pump-induced population changes by monitoring its transmission variations. Kinetic 
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measurements can be performed varying the time delay between pump and probe pulses, while spectral 

measurements can be obtained varying the probe wavelength. 

The implementation of these absorption-based methods in a non-linear microscopy platform with a 

proper detection scheme (63–66) permits to reconstruct spatial maps at the microscopic scale of the 

ultrafast phenomena under study, offering label-free non-fluorescence-based contrast capabilities. 

Because of its non-fluorescent-based contrast, its high single-particle sensitivity and its high temporal 

resolution, pump-probe microscopy is extensively used in imaging and characterizing the carrier 

dynamics of metallic and semiconducting nanostructures for studying their optoelectronic properties 

(67–79).  

Among nanomaterials, graphene recently started to be intensively studied for the development of novel 

electronic and optoelectronic devices (80). Due to its particular linear electronic band structure, it 

shows a wavelength-independent, broadband optical absorption (~ 2.3% per layer (81)) in the near 

infrared (NIR) part of the spectrum (82). This makes absorption-based pump-probe microscopy as an 

ideal technique for studying its carrier dynamics and for performing imaging, mainly using NIR 

wavelengths (83–96). What is expected is that the absorption of the pump beam will decrease the 

absorption coefficient of the graphene for a subsequent probe beam, thus the probe beam will be 

transmitted more due to the presence of the pump. This change in transmission is the pump-probe 

signal that will give the desired contrast for pump-probe imaging. 

Measurements have been performed using the custom NIR pump-probe setup present at the Nikon 

Imaging Center of IIT, which is realized by coupling a tunable mode-locked femtosecond pulsed 

Ti:sapphire laser (680-1080 nm, 80 MHz, 140 fs, Chameleon Ultra II, Coherent) with a laser scanning 

Nikon C2 scan head and a Nikon Eclipse FN1 upright microscope body (Nikon Instruments). 

Measurements have been carried out by my colleague, a Ph.D. student of my cycle, Giulia Zanini 

(Details about the setup and measurements are explained in her dissertation).  
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To perform the measurements, the graphene/ablated substrate was placed on a 3-axis piezo-electric 

stage (P-611.3S NanoCube®, Physik Instrumente, travel range 100 µm × 100 µm × 100 µm, resolution 

1 nm) which enables 3D image acquisition. Image analysis was performed with ImageJ/Fiji (NIH) (97). 

For the measurements of my substrates, pump beam was tuned to 800 nm while probe beam was tuned 

to 1030 nm. Both wavelengths fall in the wide absorption band of graphene. Powers of both beams 

were kept below 5 mW at the sample. No sample damages were seen at those powers. 

 

Figure 2.9 Pump-probe microscopy image of SLG/ablated substrate 

 

Fig. 2.9 displays the SLG/ablated substrate where the border between SLG and the ablated stripes can 

be easily observed. 

The advantages of using this technique are the following: 

- It permits to image non-fluorescence graphene with high contrast, single layer sensitivity, and 

in short time 

- It allows to perform the measurements in relative short time, opposite to the Raman mapping 

measurements that last longer 

- It offers large field of view 127x127 um^2 (large area) 

- 256x256 pixel, 20us/px, 1.3 s/frame (short time) 
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- It gives the possibility to measure the dimensions of the ablated stripes, the width of the stripes, 

and compare with the parameters initially set on the ablation laser micromachining device 

- It allows to see the defects on the graphene layer (brightest spots are multilayer regions, while 

dark areas correspond to holes in the graphene) 

 

2.4.5 Scanning Kelvin Probe Microscopy (SKPM) 

 

With the aim of gaining more insight on the physico-chemical properties of the patterned (and PDL 

coated) SLG substrates, I focused my attention on studying the surface potential (SP). For this, I have 

used SKPM to measure the SP of the patterned SLG substrates.  

The measurements were carried out on an atomic force microscope MFP-3D (Asylum Research, CA, 

USA), acquiring images at maximum scan size of 90 μm, with 2562 pixels, at a (single) line scan 

frequency of 0.2 Hz. A MESP probe (Bruker, MA, USA) was used, with nominal properties as follows: 

cantilever resonance frequency of ~75 kHz and Co-Cr coating on the tip of ~30 nm, resulting in a final 

tip diameter of ~70 nm. The tip work function Φtip, after calibration on highly oriented pyrolytic 

graphite (HOPG), assumed to have ΦHOPG=4.65 eV (56), appeared to be ~4.61 eV. The samples were 

back contacted at their bottom on a metal puck support. 

The SKPM technique relies on double-pass method (Fig. 2.10), where each line is scanned first in 

tapping-mode to track the surface topography and then is scanned again at a set elevation height (50 nm 

in my case) to avoid topographical artifacts. During the elevated scan, the cantilever is dithered 

electrically, by applying a tip voltage (with sample substrate set to ground) consisting of a DC and an 

AC component (the latter at the resonance frequency). A feedback circuit cancels out the force on the 

probe by tuning the DC voltage component, which thus equals the local SP value.  
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Figure 2.10 A schematic representation of Kelvin probe force microscopy (98) 

 

As visible in the topographic image of Fig. 2.11, the patterning was carried out successfully with 

micrometric resolution, and the ablated graphene squares showed a clear, flat bottom of non-modified 

substrate, as well as intact surrounding graphene regions. As the only side-effect of ablation, several 

debris particles appear in the image, especially at the square edges. The SP map obtained in the same 

scanned area is displayed in the same figure (Fig. 2.11) A striking contrast in SP is observed. When 

averaging among several different regions, the values of the contrast at the squares and of the graphene 

background (mean ± standard deviation) were 143 ± 22 mV and−440 ± 60 mV, respectively. 

The following step of the experiment was the coating of the surface with the positively charged PDL to 

modify the local SP. The interest in studying this specific coating comes, as mentioned earlier, from the 

use of PDL as cell adhesive layer (60) (for more information on this study and the measurements 

performed with negatively charged polyelectrolyte, poly(sodium-4styrene sulfonate) (PSS), refer to 

Appendix B). After immersing the sample in the PDL solution, I repeated the characterization 

previously performed on the graphene coated Si. In this case, I was certain that PDL was coating both 

the SLG and the ablated region due to the previous study performed in our lab by using fluorescently 

labelled PDL (56); this study allowed the direct visualization of fluorescence in correspondence of the 
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ablated region. On SLG, as expected (99) the fluorescence was quenched, but the presence of PDL was 

confirmed by Raman spectroscopy. 

AFM topography and surface potential maps after PDL coating are reported in the second row of Fig. 

2.11 (D) (namely panels 2D-F). No major differences are detected in the topography after PDL coating 

as compared to the pristine surface. 

Indeed, it is assumed that both regions (ablated squares and surrounding graphene) are equally coated 

with PDL, being both negative, and this conformal coating does not give rise to a different depth of the 

topographic step at the squares. However, the effective PDL coating is observed in the SP image (Fig. 

2.11 (E)), as a shift of the SP towards less negative values (−155 ± 55 mV). Incidentally, the contrast 

between the two regions was not varied. Moreover, preliminary indications exist that by changing the 

substrate (from Si to SiO2), the contrast itself at the ablated regions can be chosen either positive or 

negative. 

 

Figure 2.11 AFM topography of the patterned substrate before (A) and after PDL coating (D). Center: 

SKPM maps of the same region, showing a higher potential in correspondence of the ablated squares 

(B, E). Scan line profiles of topography and surface potential (C, F). 
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In another set of experiments, commercial SLG on SiO2 was used for laser patterning and for the 

subsequent characterization by SKPM. The results (Fig. 2.12) showed a reverse contrast between 

graphene and the ablated squares of SiO2, indicating that the contrast sign of the patterned region can 

be appropriately chosen by changing the substrate for graphene transfer. 

The tuning of this surface property can find useful application, since many interfacial phenomena are 

regulated by electrostatics. 

 

Figure 2.12 SP contrast at the surface of a SLG sample transferred on SiO2: the SP on the ablated 

squares is lower than on SLG background. 

 

2.4.6 Water Contact Angle (WCA) 

 

Water contact angle (WCA) measurements of surfaces have been widely used because they give a rapid 

idea about the presence of hydrophilic/hydrophobic domains on them (Fig 2.13). WCA represents an 

easy, fast and non-destructive technique. It relies on the affinity between a water drop and a surface: 

when the drop is placed onto the surface, if the surface is hydrophilic, the drop ill spread while if the 
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surface is hydrophobic, the drop will bead up. This behavior is determined by a force balance between 

adhesive forces between the liquid and the solid that tend to make the drop spread across the surface, 

and cohesive forces within the liquid that tend to make the drop ball up and avoid contact with the 

surface. In the general case, the angle between the tangent to the drop at its edge contact with the 

surface and the surface plane, the WCA, is measured, and it provides an estimation of the surface 

wettability by water.  

As illustrated in Fig. 2.13, WCA<90° means that wetting of the surface is favorable, and the water will 

spread over a large area (hydrophilic surface), while WCA>90° means that wetting of the surface is 

unfavorable (hydrophobic surface). Superhydrophobic surfaces have WCA>150°, showing very little 

contact area between the drop and the surface. In my study, I measured the WCA to investigate the 

surface properties of the glass coverslip, SLG and ablated regions, with and without the PDL coating. 

The modified substrate was tested after incubation with PDL for 3 h reproducing the PDL coating 

procedure of substrates used in the experiments with living cells.  

 

Figure 2.13 Schematic representation of contact angles formed by sessile liquid drops on a smooth 

homogeneous surface. 
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To study the relationship between the bare and modified substrate, ten different spots at random 

locations on each substrate were analyzed and three substrates for each sample were tested.  

In Fig. 2.14, the values of WCA measured with sessile drop method on the surfaces of interest are 

shown. On the bare substrates without PDL, namely ablated SLG, SLG and glass coverslips, the WCA 

values observed (mean ± standard deviation) were 77°±2°, 79°±1°, and 29°±2.5°, respectively. After 

the surface modification with PDL, the WCAs changed into 76°±1°, 66°±1.4°, and 19°±1.4°, 

respectively. I can infer that after the PDL coating, the glass coverslips and SLG become clearly 

hydrophilic, but the ablated SLG still remains comparatively hydrophobic. In particular, the differences 

are statistically significant for the comparisons of bare glass to PDL glass (p<0.001), bare SLG to PDL 

SLG (p<0.001) and PDL ablated to PDL SLG (p<0.05).  The change in behavior between SLG and 

ablated SLG substrates may be due to the functional groups of the polylysine that are exposed over the 

surface, but this does not seem to alter the wetting of the ablated SLG regions. 

 

Figure 2.14 WCA on different surfaces (mean ± standard deviation). Pairs joined by lines show 

statistically significant difference (**: p<0.01, ***: p<0.001). 
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2.4.7 ATR-FTIR 

Attenuated Total Reflection (ATR) spectroscopy is a technique where a beam of infrared light is passed 

through a crystal which allows total internal reflection. The infrared beam penetrates the surface of a 

liquid or solid sample, and the eventual signal profile received at the detector can be used to 

characterize the sample. The effectiveness of ATR spectroscopy has been further enhanced by use in 

conjunction with Fourier Transform Infrared Spectroscopy (FTIR) (Fig. 2.15), knowing that the 

Infrared spectroscopy is a useful technique for the determination of conformation and orientation of 

membrane-associated proteins and lipids. The technique is especially powerful for detecting 

conformational changes by recording spectral differences before and after perturbations in 

physiological solution (100,101). 

 

Figure 2.15 A schematic representation of the principle of ATR-FTIR (100) 

 

For my experiments, I used CaF2 as a substrate, and I performed ATR-FTIR measurements on PDL 

coated SLG/CaF2 and PDL (10 mg.ml
-1

) coated CaF2 as a control, initially I tried with the 

concentration of 0.1 mg.ml
-1

 that I used for coating of the substrates for the experiments with living 

cells, but since that concentration was not enough for obtaining high intensity of the measurements, I 

increased it until I obtained a signal. The samples were coated with PDL using drop casting method 

following the same method used for functionalization of the substrates for experiments with living cells 
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(section 2.3). Infrared spectra were obtained with a single-reflection ATR accessory (MIRacle ATR, 

PIKE Technologies) equipped with a diamond crystal and coupled to a Fourier Transform Infrared 

(FTIR) spectrometer (Equinox 70 FT-IR, Bruker). All spectra were recorded in the range from 3800 to 

600 cm
-1

 with a resolution of 4 cm
-1

, accumulating 128 scans. 

Hence, PDL and PDL-SLG samples were chemically characterized by ATR-FTIR spectroscopy (Fig. 

2.16). Main spectral differences were observed in the spectral regions between 3600 and 3000 cm
-1

 

associated with the N-H stretching mode in different molecular environments, Fig. 2.16(A), and 

between 1900 and 1400 cm
-1

 ascribed to the C=O stretching mode and to Amide I and II bands as well 

as the bending mode of CH2 groups, Fig. 2.16(B) (101–103). As displayed in Fig. 2.16(A), there was a 

redshift from 3299 to 3282 cm
-1

 (i.e., a decrease of 17 cm
-1

) of the proton mode of NH-CO in β-sheet 

structures when graphene was present. This could be related to changes in this secondary structure. In 

addition, the relative intensity of the N-H stretching mode attributed to random coils was increased for 

PDL-SLG, indicating that those had a higher contribution in PDL structure. Furthermore, a small 

decrease of the N-H stretching mode assigned to –NH3
+
 groups was also observed for PDL-SLG in 

comparison to PDL, most probably because of a lack of interaction between non-polar graphene layers 

and charged ammonia groups. On the other hand, some important changes were detected at lower 

wavenumbers, Fig. 2.16(B). While Amide II and δ(CH2) were practically unaltered, the sample with 

graphene showed a considerable reduction of the relative intensity of the Amide I band and the 

occurrence of a new peak at 1736 cm
-1

. This last vibration has been previously attributed to free –

COOH groups (viz.,disassociated or non-interacting by H-bonds carboxyl groups) of lysine and 

detected in some poly(lysine) (102,104). However, considering also the above mentioned decrease of 

the Amide I, a significant change of the secondary structure of the protein can be not excluded.  
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Figure 2.16 A, B, infrared spectra of PDL and SLG/PDL samples in the 3600-3000 and 1900-1400cm
-1

 

regions, respectively. Arrows in A are used as guides to highlight the observed changes. 

 

2.4.8 AFM-Quantitative imaging  

 

The adhesion of bare SLG, bare ablated, PDL-coated SLG and PDL-coated ablated substrates was 

investigated by using a Nanowizard III AFM system (JPK Instruments) in the quantitative imaging (QI) 

mode. An Axio Observer D1 inverted optical microscope (Carl Zeiss, Germany), coupled with the 

AFM system, and was used to choose the areas for the mechanical analysis. V-shaped DNP silicon 
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nitride cantilevers (Bruker, Billerica, MA, USA), with a nominal spring constant 0.24 N.m−1, the 

resonance frequency in the air in the 40–70 kHz range and tip typical curvature radius of 20–60 nm 

were used. The actual spring constant of each cantilever was determined in situ, using the thermal noise 

method. The acquisition of a large set of force–distance (FD) curves (128 × 128) was performed in 

PBS with maximum force load of 2 nN and curve length of 100 nm. QI images of 100 × 100 μm
2
 were 

collected. The adhesive properties of the sample were extracted from the post-processing analysis of 

the acquired force-distance (FD) curves. Fig. 2.17 shows the typical retraction part of the FD curve. 

The total area delimited by the part of the retracted curve below the FD curve baseline provides the 

evaluation of the detachment work (Wdetach), i.e. the physical quantity that we take into account to 

characterize the adhesion properties on the two parts of the patterned substrate (105). 

 

Figure 2.17 Force-distance curve (106). 

 

Hence, we performed a quantification of adhesion properties of the interface by quantitative imaging. 

For this purpose, the adhesion Force and detachment work of the AFM tip from the surface were 

quantified. We performed experiments with the tip functionalized with PDL and without PDL. We 

performed experiments with bare tip on bare substrates, bare tip on PDL coated substrates, PDL coated 

tip on bare substrates, and PDL coated tip on PDL substrates. The curves were acquired on large 
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regions, containing both SLG and ablated squares. After the global post-processing of all acquired 

curves, histograms of F and W in the region of interest were extracted. The results demonstrated higher 

adhesion in correspondence of the SLG region (Fig. 2.18), especially in the experiments with bare tip 

and PDL coated substrates which interest us the most. In this case, the tip represents living cells and the 

way they react to the PDL coated substrates. The adhesion force (Fadh) was much higher on PDL-SLG 

(around 6 nN) as compared with the PDL-ablated (<2 nN). PDL coated tip on bare substrates represents 

how PDL reacts to this substrates when deposited on them, where again we observed higher Fadh on 

SLG versus ablated. 

Clearly, the PDL polymer arranges differently on SLG with respect to the ablated part (confirmed by 

the ATR-FTIR measurements, section 2.16), possibly exposing a larger number of charged groups on 

its surfaces and providing a larger number of binding sites to the cell membrane.  

 

Figure 2.18 Fadh and Wadh on SLG and ablated substrates, coated with PDL and not. 
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2.5 Conclusions  

In this chapter, I have presented different physico-chemical characterization techniques that I employed 

for characterizing my SLG and ablated/SLG substrates, bare and PDL coated, in order to understand 

how the substrates affect the PDL coating and to interpret their effect on cellular behavior. The 

characterization experiments have been performed in parallel with the experiments with living cells to 

understand how these substrates affect cell behavior since I have observed different cell behavior 

during my experiments (see details in the following chapter, Chapter 3). 

From the results that I have presented in this chapter, I observed that several physico-chemical 

parameters were different on SLG with respect to glass and/or ablated regions; in particular I observed 

differences in WCA and SP. Due to these differences, the adhesion molecule PDL had a different 

structure, as detected by ATR-FTIR, and higher affinity to the substrate, as measured by QI-AFM. All 

these parameters have an influence on cell behavior.  
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CHAPTER 3:  

SLG Bio-interface  
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Interfacing carbon-based materials with cells is considered to be important for regenerative 

medicine, implants, and neural prostheses, among other. It is important to search for biocompatible and 

mechanically stable materials to be used as platforms driving cellular adhesion, proliferation and 

differentiation depending on the application settings. As mentioned earlier, among carbon-based 

materials, graphene has attracted considerable interest as it possesses exemplary properties that led to 

its increased popularity in various scientific and technological fields, such as biophysics and 

biotechnology (40). These include drug delivery, disease diagnosis, ultra-sensitive biosensing and 

tissue engineering. Very recently, biomedical applications of graphene in nervous systems have 

attracted much attention (107). Concerning this, Park et al demonstrated the influence of graphene on 

neural stem cells (NSCs) showing an enhanced differentiation of these cells into neurons rather than 

glial cells which is required for neural regeneration and brain repair (34). Li et al demonstrated a 

promoted neurite sprouting and the outgrowth of mouse hippocampal cells on graphene substrates (38). 

In another study, by Convertino et al, peripheral neural survival and growth has been demonstrated on 

graphene substrates (37).  

Based on my literature review, most of graphene substrates, used for studying the differentiation of 

neuron-like cells and neural stem cells (NSCs) in addition to studying graphene-neuron interface, were 

produced by CVD (31,107). In a recent study (43), the effect of SLG and MLG on neuronal 

communication has been studied, and it has been demonstrated that SLG modifies neuronal excitability 

and up-regulates K+ currents of neurons that switch to functionally tonic phenotypes when cultured on 

SLG while those effects are not mimicked by MLG, thus showing that SLG is a desired substrate for 

the enhancement of neuronal network activity. 

Since the main focus of my PhD project was exploring and studying the effect of SLG substrates on 

different cell lines; including their behavior, migration, proliferation, and differentiation, I decided to 

explore the effect of those substrates on the differentiation of neuroblastoma cell lines. The idea of this 
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project was mainly based on the fact that the ability to differentiate neuron-like cells into neurons, and 

of desired type based on the application, is important for application in tissue engineering and 

regenerative medicine.  

I used Neuro 2A (N2a) cell line, a mouse neuroblastoma cell line, that has been extensively used to 

study neuronal differentiation, axonal growth and signaling pathways. N2a cells possess the property of 

responding quickly to serum deprivation and other stimuli in their environment thus undergoing 

neuronal differentiation and neurite growth (109). Efficient differentiation of N2a cells on 

functionalized single walled carbon nanotubes has been demonstrated (108). Another study (109), 

showed the differentiation of N2a cells into dopamine neurons under specific conditions.  

In this chapter, I have described the study that I performed in order to explore the effect of SLG 

substrates on N2a differentiation with the retinoic acid (RA) treatment and without.  

I have also studied the effect of SLG versus ablated/SLG on the differentiation of this cell line. I have 

used ablated/SLG substrates in order to study whether the behavior of cells on this kind of substrates is 

cell line specific. Previous studies have been conducted on those substrates in our group that 

demonstrated ordered neuronal network growth on patterned SLG substrates (31,56). Hence, I wanted 

to study the behavior of other cell lines to determine how cell-dependent the behavior of cells is on this 

kind of substrates. 

For my experiments, I used SLG on glass coverslips that was transferred, functionalized and 

characterized following the procedures described in Chapter 2. 

3.1 Cell Culture 
 

The N2a, mouse neuroblastoma, cell line (ATCC CCL-131) was maintained as a monolayer in 

Dulbecco's Modified Eagle medium (DMEM) (Gibco, UK), 10% Fetal Bovine Serum Inactivated 

(FBS), and 1% Penicillin Streptomycin (PS) at 37
0
C with 5% CO2 and used in the experiments between 

passages 20-24. The cells were split every 3 - 4 days, at a confluency <80%. The cells were seeded on 
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substrates of interest (255 cells/mm
2
), in triplicates, and left in culture for 48 h when they reached the 

level of confluency allowing performing quantitative analysis for cell viability and neuritogenesis. 

3.2 Assessment of Cell Viability 
 

The calcein AM/ethidium homodimer live/dead assay (Invitrogen Co., Carlsbad, CA, US) was 

employed to quantify the N2a cell viability on SLG substrates, either coated or not with PDL. Calcein 

AM is a cell-permanent dye that is changed to green fluorescent calcein in live cells through the action 

of intracellular esterases. Ethidium homodimer is a DNA-binding dye that enters the damaged 

membrane of dead cells and gives red fluorescence. Cells were treated with live/dead assay after 48 h 

(same incubation time as used for the experiments of differentiation) of culture on substrates of interest, 

in duplicates, at 37
0
C with 5% CO2.  Fluorescence images were captured using a Nikon Inverted 

Microscope TiE equipped with a confocal microscope (Nikon Optical Co., Ltd., Japan) at excitation 

wavelengths λ= 405 nm at a magnification of 10x. Survival of most of the seeded cells was observed 

(Fig. 3.1). 

 

Figure 3.1 Confocal images of N2a cells incubated on bare SLG (A) and PDL/SLG (B) substrates for 

48 h treated with live/dead assay kit. 
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3.3 Proliferation Curves 
 

With the aim to study how SLG influences cell behavior with respect to standard substrates, I 

compared proliferation curves of two different cells lines on different substrates starting from 3 h after 

cell seeding up to seven days in culture; specifically on SLG and glass substrates, either coated or not 

with PDL. I used two cell lines in order to investigate whether the effect of SLG is cell line specific or 

not. I used N2a cells and CHO (Chinese Hamster Ovary) cells, an epithelial cell line. The reason 

behind choosing CHO as a second cell line is that several studies have been conducted on it in my 

group (105). Specifically, we have compared SLG and glass, either coated or not with PDL. Equal 

density of cells (255 cells/mm
2
) was plated on substrates of interest (in triplicates) and cultured at 37

0
C 

with 5% CO2. Cells were fixed, with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) 

for 30 min at room temperature, at the following time points: 6h, day 1 (D1), D2, D3, D4, D5, D6, and 

D7, rinsed three times in PBS, and then mounted on glass slides with ProLong anti fade mounting 

media with with 4′,6-diamidino-2-phenylindole (DAPI) for nuclear staining (Thermo Fisher Scientific, 

Waltham, MA, USA). Fluorescence images were captured using a Nikon Inverted Microscope TiE 

equipped with a confocal microscope (Nikon Optical Co., Ltd., Japan) at excitation wavelengths λ= 

405 nm at a magnification of 10x and 20x. Total number of cells was determined by counting cell 

nuclei following image analysis procedure described in the following section (3.5). 

As expected, PDL always facilitated the adhesion properties of cells, and, more importantly, the 

proliferation rate was higher on PDL coated SLG substrates with respect to glass (Fig. 3.2 & Fig. 3.3). 
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Figure 3.2 Proliferation curves of N2a cells on bare and coated SLG substrates. 

 

 

Figure 3.3 Proliferation curves of CHO cells on bare and coated SLG substrates. 
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3.4 N2a Differentiation 
 

The effect of SLG on N2a differentiation has been studied by monitoring the shape, number and length 

of the processes (neurites) on SLG versus glass substrates, either coated or not with PDL, during 48 h 

incubation with and without 20 µM retinoic acid (RA) treatment. 

Qualitative analysis was performed on the cells cultured in normal media (Fig. 3.4) and quantitative 

analysis on the cells with RA treatment (Fig. 3.5).  

3.5 Immunofluorescence Staining and Image Analysis 
 

Immunofluorescence staining was performed following the previously described procedure (110,111). 

In brief, the cultures on coverslips were fixed with 4% PFA in PBS for 30 min. After permeabilization 

with 0.1% Triton X-100 in PBS for 10 min four times, the cultures were incubated with PBS containing 

5% goat serum and 0.1% Triton X-100 for 1 h. The permeabilized cultures were incubated with 

primary antibodies (1:100 anti-microtubule associated protein 2, MAP2, mouse IgG; 1:100; Sigma-

Aldrich) in PBS containing 5% goat serum overnight at 4°C and were rinsed with PBS for 10 min four 

times. The cultures were then incubated with secondary antibody (1:200 Alexa Fluor 488-labeled anti-

mouse IgG; Molecular Probes) in PBS containing 5% goat serum for 2 h at room temperature and 

rinsed four times. The coverslips were removed from 12-well plate and mounted on glass slides with 

ProLong anti fade mounting media with DAPI for nuclear staining (Thermo Fisher Scientific, 

Waltham, MA, USA). Fluorescence images were captured using a Nikon Inverted Microscope TiE 

equipped with a confocal microscope at excitation wavelengths λ= 405 nm and λ= 488 nm at a 

magnification of 10x and 20x. 

Image analysis was performed using Nikon Imaging Software (NIS-Elements, Nikon Instruments, 

Japan) and ImageJ Software (NIH, Bethesda, Maryland, USA). Images were taken at least at three 

different cell locations, and the experiment was conducted in triplicate. To determine the total cell 
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density, we counted the number of cell nuclei using DAPI stained images which were transformed into 

black and white images and then converted into binary files based on which the total number of nuclei 

was determined. Objects in the binary images that were slightly overlapped were separated by 

Watershed separation using ImageJ software. To quantify the number of differentiated cells, we 

counted the number of somata of MAP2 positive neurons following the method previously described 

(111). Percentage of spreading cells, i.e. neuritogenesis, was defined as (spreading cells/total number of 

adherent) X 100 (Fig. 3.6). 

3.6 Statistical Analysis 
 

Data within the text are expressed as mean +/- standard error of the mean (SE). Statistical analyses 

were performed using OriginPro (OriginLab Corporation, Northampton, MA, USA) software assessing 

the statistical significance using student’s t-test (Tukey test) and One-Way Repeated Measures 

ANOVA. 

3.7. Confocal Imaging and Image Analysis 
 

From sets of confocal images (Fig. 3.4) of immunolabeled N2a cells cultured in normal medium, the 

possible effects of the substrate properties on different cell behavior, for example associated with cell 

shape and neuronal like extensions, may be addressed. It is evident that the number of neuronal like 

extensions is higher on SLG and PDL-SLG as compared with glass. Taking a closer look at the cellular 

behavior on SLG and PDL-SLG and comparing the number of neuronal like extensions and their length 

qualitatively, it can be observed that this number is higher and the extensions are longer on PDL-SLG. 
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Figure 3.4 Two representative sequences of large-scope confocal images of N2a cells after 48 h 

cultured on control bare glass (A), PDL/glass (B), bare SLG (C) and PDL/SLG (D) (scale bar is 50 

μm). 

 

Similar sets of fluorescence images (Fig. 3.5) of N2a cells incubated with 20 μM retinoic acid (RA) 

treatment, allowed to determine the surface efficiency in cell adhesion by cell counting. In addition to 

cell counting, after proper staining, a parameter, called neuritogenesis, has thus been calculated, which 

is the ratio of number of cells with neuronal-like processes (neurites) to the total number of adhering 

cells (detailed explanation of the quantitative analysis is presented in the supporting information 

section at the end of this chapter). This result is presented in Fig. 3.6 (A).  
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Figure 3.5 One representative sequence of large-scope confocal images of N2a cells after 48 h cultured 

on control bare glass (A), PDL/glass (B), bare SLG (C) and PDL/SLG (D) with retinoic acid (scale bar 

is 50 μm). 

 

 
Figure 3.6 Functional parameters of adhering cells: (A) neuritogenesis, (B) mean normalized length of 

the existing neuritic-like processes. Pairs joined by lines show statistically significant difference (**: 

p<0.01; ***: p<0.001). 

 

It appears from Fig. 3.6(A) that the cells seeded SLG substrates, whether bare or PDL coated, present 

the larger number of neurites; the highest neuritogenesis rate is obtained on PDL coated SLG, whereas 

this number is minimum on glass substrates. In particular, the differences are statistically significant for 
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the comparisons of bare glass to bare SLG (p<0.01), bare glass to PDL-SLG (p<0.001), PDL-glass to 

bare SLG (p<0.01), PDL-glass to PDL-SLG (p<0.001) and bare SLG to PDL-SLG (p<0.01).  

In Fig. 3.6(B), the mean length of the identified neurites is plotted instead. In this case as well, a 

maximum appears for PDL-SLG substrates. Similarly, the differences are statistically significant for 

the comparisons of bare glass to bare SLG (p<0.01), bare glass to PDL SLG (p<0.001), PDL glass to 

bare SLG (p<0.01), PDL glass to PDL-SLG (p<0.001) and bare SLG to PDL SLG (p<0.01); thereby 

allowing us to confirm that SLG substrates and particularly the PDL coated ones drive the N2a cells 

towards a neuron-like behavior. 

N2a cells were also cultured on the ablated SLG and SLG substrates in medium with RA treatment for 

48 h. Confocal images of the immunolabeled substrates are displayed below (Fig. 3.7). 

 

Figure 3.7 Confocal images of N2a cells after 48 h of incubation with RA on ablated SLG (A) and 

SLG substrates (B). Scale bar: 50 µm. 
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It appears that the number of N2a cells with neurites is higher on SLG substrates, where the length of 

neurites is longer than on the ablated SLG substrates; thereby confirming that SLG promotes N2a 

differentiation. 

As mentioned in the beginning of this chapter, this experiment has been performed in order to 

determine whether the behavior of cells on ablated/SLG substrates is cell type dependent.  

I have also studied the behavior of CHO on this kind of substrates, and I have observed a different 

behavior where the cells preferred the ablated region (rectangles of Fig. 3.8 represent the ablated 

regions of SLG substrates) instead of SLG region as was the case with neurons (31,112) and N2a cells; 

thus confirming that the behavior of cells on graphene is cell line specific. 

 

Figure 3.8 Optical image of CHO cells cultured on ablated/SLG substrate (48h after cell seeding). 

 

3.8 Visualizing samples using pump-probe microscopy 
 

Once again, I have employed the pump-probe microscopy technique for visualizing my substrates 

seeded with cells this time (Fig. 3.9). Imaging has been done on fixed samples (without 

immunolabeling) and immunolabeled samples. 
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Figure 3.9 Pump-probe microscopy images of the N2a cells cultured on the SLG substrate. 

 

For this kind of substrates, this technique is useful as: 

- It allows to see both graphene and cells at the same time with a multimodal approach and two 

different types of signals: two photon fluorescence from cells collected in epifluorescence, 

pump-probe signal from graphene collected in transmission 

- It is possible to see defects on the graphene layer (brightest spots are multilayer regions, while 

dark areas correspond to holes in the graphene) and see if the cells behave differently due to the 

graphene structure 

- It gives the possibility of imaging cells without immunolabeling because they exhibit strong 

auto-fluorescence when exited in the near infrared. This can accelerate the experiments as it 

eliminates the need for staining. It is also less invasive as there are no external fluorescent dyes 

added. The disadvantage of auto-fluorescence is that it comes from all the cell body (except 

nucleus), so it is not possible to distinguish organelles inside the cytoplasm. If the selectivity 

inside the cell is required, then the staining should be done. 
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3.9 Conclusions  

In this chapter, I have studied the effect of SLG substrates on the differentiation of N2a cells cultured 

in normal medium with RA treatment and without. N2a cells were cultured on bare glass, bare SLG 

and PDL/SLG substrates for 48 h. It has been observed that SLG (bare and PDL coated) induces 

neurite sprouting of N2a cells as compared with glass; this result has been more evident in the presence 

of RA in the medium. Moreover, the length of neurites was longer when the cells were cultured on 

SLG and PDL/SLG substrates in comparison with glass. Hence, in this work, I have demonstrated the 

stimulatory effect of SLG on neuronal differentiation of N2a cells; this result along with further studies 

to identify the type of neurons to which the cells differentiate, could confirm the potential of graphene 

for being used as active substrates for regenerative medicine allowing the enhancement of axon 

regeneration. 

I have also studied the effect of ablated/SLG substrates on N2a and CHO cells, and I observed a 

different behavior where N2a cells preferred SLG region and underwent enhanced differentiation on it 

while CHO cells migrated towards the ablated regions. Thus, the obtained results confirmed that the 

behavior of cells on ablated/SLG substrates is cell type dependent. N2a cells, knowing that they 

differentiate into neurons and are a model for studying neurons, behaved like neurons (31,112) 

preferring SLG for proliferation and differentiation. 
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Supporting information 
 

 

Figure S1 One representative high-resolution image of N2a cells (60X, 20 µm scale bar) used to 

identify and measure the neurites, for quantitative analysis of neuritogenesis and neurite length. Yellow 

arrow is pointing to one of the neurites; white arrow is pointing to soma. 

 

The percentage of differentiated cells (neuritogenesis) was determined counting the number of cells 

with at least one neurite with a length equal to or longer than the cell body diameter. The neurite length 

was measured as illustrated in Fig. S1.  
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CHAPTER 4:   

SLG Functionalized MEAs for Enhanced Detection of Neuronal Network 

Development   
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In this chapter, I have presented a study that I carried out in collaboration with Neuroscience and Brain 

Technologies department. Knowing that the exploitation of graphene for neuro-interfacing applications 

requires a complete, yet missing, understanding of neuron-graphene interaction, we have explored the 

interplay between the carbon based interface and neuronal networks during the complete 

developmental phase at whole network scale. To this purpose, we have, first, successfully transferred 

large grains single layer graphene (LG-SLG) via wet etching onto commercial planar 60 electrode 

devices; then, we have compared to control the neuronal growth on the functionalized devices, 

recording the spontaneous activity up to completion of network maturation, i.e., from 7 to 25 days-in-

vitro. This chapter explains in detail the whole project starting from the introductory part, materials and 

methods employed, the results part and the discussion. 

4.1 Micro-Electrode Arrays (MEAs) 
 

Planar Micro-Electrode Arrays (MEAs) are a valuable tool for the long-term in vitro recording of cells 

or tissues electrical activity without causing any damage to the cells (113); since the first development, 

MEAs have been widely applied to monitor the behavior of electrogenic cells (e.g. cardiomyocytes 

(114) and neurons (115)) or tissues (hippocampal slices (116,117), retina (118,119)). The most 

common MEA application is, however, the recording of the spontaneous activity of primary neuronal 

networks. Neuronal networks are known to be spontaneously active and able to generate a rhythmic 

activity consisting of alternate almost synchronized patterns called ‘bursts’(115). MEAs recordings 

provide the possibility to monitor the electrophysiological activity of neurons from single spikes to 

whole network events, i.e. network bursts. Recordings of the spontaneous activity of the neuronal 

network have been used as an assay for network performance in applied settings (120,121). 

Conventional MEAs consists of a discrete number of metal electrodes integrated on a substrate, usually 

glass or silica. Recently, in order to improve the MEA performances in terms of signal-to-noise ratio 
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(SNR), different strategies have been proposed, including the chemical functionalization of the 

electrodes (122) and their topographical modification increasing roughness or creating 3D features in 

order to improve the cell-to-electrode sealing. Examples of these approaches are the fabrication of 

electrodes with increased roughness (123), of porous electrodes (124), or of electrodes with 3D features 

to name only a few. Alternatively, the employment of new materials, especially carbon-based 

materials, has gained popularity (125,126). 

4.2 SLG and MEAs 
 

As mentioned earlier (chapter 1), graphene is one of the promising materials recognized for its high 

conductance, high mechanical strength and optical transparency as well as biocompatibility (3). Its 

intriguing properties have been exploited for several biomedical applications (14,40,105,127,128); it 

has been also involved in the fabrication of transistors to detect action potentials (14,129) and used as 

an electrode for the same purpose (130,131). Recently, graphene MEAs consisting of graphene 

electrodes have been fabricated and used in the successful recording of the neuronal activity of primary 

rat cortical neurons (20). Moreover, in other studies (37,51), it has been demonstrated that the viability 

of neuronal cells and average neurite length were significantly enhanced on graphene substrate 

compared to the conventional tissue culture substrate indicating that graphene could be a neuron 

favorable material.  

SLG grown by CVD on Cu foil may be considered extremely favorable in the field of biosensor 

development due to its high crystallinity, scalability and convenient transfer onto any substrate, 

including flexible ones (132). 

In a recent investigation by our group (105), we monitored the in vitro development of neuronal 

networks growing onto SLG and we compared the single neuron synaptogenesis on SLG and on 

control glass substrates during the first and second week after cell seeding by means of patch clamp 
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recording. Neurons grown on SLG resulted to be fully functional; the synaptogenesis was following, 

though, a slightly different trend. Intrigued by that result and aiming to explore better neuron-SLG 

interface, I have been involved in the investigation of the electrophysiological development of neuronal 

cultures on SLG at the whole network level, the study described in the current chapter. We have 

functionalized the surface of commercial 60 electrode MEAs by transferring SLG via wet etching, and 

we have recorded the network activity up to completion of network maturation, compared to that on 

standard not functionalized devices. 

We have chosen to employ large grain SLG (LG-SLG) as it possesses a higher electrical conductivity 

(133) and therefore shall yield optimized performance when acting on MEAs. 

4.2.1 LG-SLG  

 

The graphene was synthesized using an Aixtron BM Pro cold-wall reactor on electropolished Cu foil 

(Alfa-Aesar 13182). To increase the average grain size of the continuous films, the nucleation of 

graphene was reduced using argon annealing and a sample enclosure, as it has been described 

previously (134). The growth was performed for 20 minutes at a temperature of 1070 °C and a pressure 

of 25 mbar, flowing methane, hydrogen, and argon at 3 sccm, 20 sccm and 1000 sccm, respectively. 

4.2.2 LG-SLG transferring and characterization 

 

LG-SLG was produced on Cu foils with size 2 cm x 2 cm. The size of the grains was about 200 mm x 

200 mm as estimated from partial growths. This size was chosen in order to be comparable with a 

single electrode area and to maximize the coverage of each electrode with large area grains. Fig. 4.1 

displays the typical morphology of graphene large grains. 
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Figure 4.1 SEM micrograph of a partial growth of graphene on Cu foil. The average diagonal size of 

the single crystals is about 200 µm. 

 

LG-SLG was transferred onto the surface of the 64-electrode MEA following a wet etching transfer 

procedure already used in a previous investigation (31) and reported in Chapter 2, section 2.1. The 

scheme of the wet etching procedure is shown in Fig. 4.2. Of note, the procedure was applied to the 

device already equipped with the external ring for culture medium confinement. For immunolabeling 

experiments, LG-SLG was transferred onto normal glass coverslips, following the same wet-etching 

protocol. All the chemicals were from Sigma Aldrich. To evaluate the quality of the large crystal SLG, 

Raman analysis was routinely carried out on the MEA at ambient conditions using an in ViaRenishaw 

(New Mills, UK) μRaman spectrometer equipped with a microscope. The Raman spectra had two 

prominent features at ∼1582 cm
-1

 (“G” band) due to the sp
2 

vibration and a stronger single Lorentzian 

sharp peak centered around ∼2700 cm
-1

 (“2D” band) of the graphene on the MEA. No disorder-related 

D peak at 1350 cm
−1

 was observed, indicating an extremely low density of lattice defects. 
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Figure 4.2 A schematic of the wet etching transfer of SLG onto a commercial MEAs device B: Optical 

image of the functionalized MEA; the coated electrode source of the spectrum is reported in the 

zoomed image on the left side, where the laser spot for Raman analysis is visible in the middle of the 

electrode. C: Raman characterization of the transferred SLG showing the two characteristic G and 2D 

band. 

 

4.2.3 Primary neuronal cultures  

 

Dissociated neuronal cultures were prepared from hippocampi of 18-day old embryonic rats (pregnant 

Sprague-Dawley female rats were obtained from Charles River Laboratories). Briefly, the hippocampi 

of 4–5 embryos were dissected out from the brain and dissociated first by enzymatic digestion in 



 

56 

 

trypsin solution 0.125% (25–30 min at 37 °C) and subsequently by mechanical dissociation with a fire-

polished pipette. The resulting tissue was resuspended in Neurobasal medium supplemented with 2% 

B27, 1% Glutamax-1, 1% Pen-Strep solution and 10% Fetal Bovine Serum (Invitrogen, Garlsbad, CA), 

at the final concentration of 75,000 cells/μl. We placed a 50-μl drop onto the MEA recording area (i.e., 

25mm
2
 is the area covered by the plated drop) previously coated with PDL and laminin to promote cell 

adhesion (final density around 1900 cells/mm
2
) and maintained with 1 ml of nutrient medium (i.e., 

serum-free Neurobasal medium supplemented with B27 and Glutamax-1). They were then placed in a 

humidified incubator having an atmosphere of 5% CO2, 95% air at 37 °C. Half of the medium was 

changed weekly. Neuron cultures were inspected with an optical microscope before each recording and 

optical micrographs at 20x were taken. 

4.2.4 Immunolabeling, confocal microscopy and image analysis 

 

4.2.4.1 Immunofluorescence staining and image analysis 

 

Immunofluorescence staining was performed as previously described (110,111). Briefly, the cultures 

on coverslips were fixed with 4% PFA in PBS for 30 min. After permeabilization with 0.1% Triton X-

100 in PBS for 10 min four times, the cultures were incubated with PBS containing 5% goat serum and 

0.1% Triton X-100 for 1 h. The permeabilized cultures were incubated with primary antibodies (anti-

microtubule associated protein 2 [MAP2] mouse IgG; 1:100; Sigma-Aldrich) in PBS containing 5% 

goat serum overnight at 4°C and were rinsed with PBS for 10 min four times. The cultures were then 

incubated with secondary antibody (Alexa Fluor 488-labeled anti-mouse IgG; Molecular Probes) in 

PBS containing 5% goat serum for 2 h at room temperature and rinsed four times. The coverslips were 

removed from 12-well plate and mounted on glass slides with ProLong anti fade mounting media with 

DAPI for nuclear staining (Thermo Fisher Scientific, Waltham, MA, USA). Fluorescence images were 
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captured using a Nikon Inverted Microscope TiE equipped with a confocal microscope (Nikon Optical 

Co., Ltd., Japan) at excitation wavelengths λ=405 nm and λ=488 nm at a magnification of 10× and 20×. 

Image analysis was performed using Nikon Imaging Software (NISElements, Nikon Instruments, 

Japan) and ImageJ Software (NIH, Bethesda, Maryland, USA). To determine the total cell density, we 

counted the number of cell nuclei using DAPI stained images which were transformed into black and 

white images and then converted into binary files based on which the total number of nuclei was 

determined. Objects in the binary images that were slightly overlapped were separated by Watershed 

separation using ImageJ software. To quantify the number of neurons, we counted the number of 

somata of MAP2 positive neurons following the method previously described (111). 

4.2.4.2 Confocal microscopy on immunolabeled samples and image analysis 

 

The behavior of hippocampal neurons cultured on the LG-SLG transferred coverslips versus bare 

coverslips was investigated by optical inspection confocal microscopy of immunolabeled samples at 

three different developmental phases: 7 DIV, 13 DIV, and 25 DIV. Fig. 4.3 summarizes the findings. 

Based on our previous knowledge, the presence of the protein adhesion layer was necessary for 

neuronal survival (31,56). The particular suitability of PDL/laminin coating for culturing neurons on 

graphene was recently reported (37). No significant changes in morphology were observed in the 

neuronal networks cultured on LG-SLG coverslips versus control coverslips. Neurons spread 

homogeneously to cover the whole surface of the MEA forming clumps mainly visible on SLG-MEA 

at DIV25 (Fig. 4.4) and coverslips (Fig. 4.3 (A)). In some cases, they form aggregates (clumps), but 

both types of cultures demonstrated morphology of healthy cells. By means of DAPI fluorescence, 

which indicates the presence of cell nuclei, we were able to observe that the total cell density increased 

during the development with no significant difference between both the LG-SLG and control cultures 

(Fig. 4.3 (B)). The density of neuronal cells was computed by the neural-specific marker MAP2. MAP2 
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quantification indicated that also the number of neurons was, in general, the same on LG-SLG with 

respect to control cultures, but a statistically significant difference was found at 13 DIV (Fig. 4.3 (C)). 

 

 

 

Figure 4.3 Morphological changes in hippocampal networks cultured on graphene-transferred substrate 

during development. A. Immunofluorescence micrographs of MAP2 of a representative culture on 

normal coverslips (top) and on LG-SLG coated coverslips (bottom), at three different developmental 

phases: 7 DIV, 13 DIV and 25 DIV, respectively from left to right at 2 different magnification factors 

(i.e. 10× and 20×, scale bars 100 μm and 50 μm, respectively). B. Bar graph of the total cell density on 

the two groups. No significant difference was found. C. Bar graph of the neuronal density at different 

DIVs on LG-SLG MEAs (red) and on control (black). Significant difference was found only at 13 DIV. 
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Figure 4.4 Optical micrograph of neuronal networks grown on a control MEA (top) and on a SLG-

MEA (bottom) at different developmental ages. No morphological differences emerge from the 

comparison. 

 

 

4.2.5 MEA recordings 

 

The experimental set-up, based on the MEA 60 system, is composed of a microelectrode array, a 

mounting support with 60 integrated channels, a pre-and a filter amplifier (gain 1200x), a personal 

computer equipped with a PCI data acquisition board for real time signal monitoring and recording, and 

anti-vibration table and a Faraday cage. Network activity was recorded using commercial software 

(MCRack, Multichannel Systems, MCS, Reutlingen, Germany). To reduce thermal stress of the 

neurons during each experiment, MEAs were kept at 37°C by means of a controlled thermostat (MCS) 

and covered by a PDMS cap to avoid evaporation and to prevent changes in osmolarity (135). 

Additionally, we have settled a custom incubation chamber to maintain a controlled atmosphere (i.e., a 

gas flow of 5% CO2 and 95% O2+N2) during the entire recording time, as reported in previous papers 

(136). The spontaneous activity was monitored and recorded for 90 min, after a period of rest outside 

the incubator into the experimental set-up of 30 min, to let the culture adapt to the new environment 

and reach a stable level of activity (137). 
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4.2.6 Experimental database 

 

The purpose was to monitor and compare the in vitro development of graphene-coated MEAs and 

control MEAs at seven different developmental stages: 7, 10, 13, 16, 19, 22, 25 DIVs. A total of 11 

graphene cultures from 4 different preparations and 21 control cultures from 6 different preparations 

were initially plated. We then discarded the cultures that died along the development (i.e., 6 for the 

graphene and 16 for the control). Overall, we were able to collect data for the entire developmental 

profile from 5 cultures on graphene-coated MEAs and 5 control cultures. Every experimental session 

lasted 2 h, for a total of 14 h of recording for each network and 140 h of recording for the entire 

database. Data analysis and statistics Data analysis was performed off-line by using a custom software 

package developed in MATLAB (The Mathworks, Natick, MA, USA) named SPYCODE (138), which 

collects a series of tools for processing multi-channel neural recordings. The different steps of the 

analysis are briefly reported in the following. 

4.2.7 Spike detection and firing analysis 

 

In order to discriminate spike events, we used a custom spike detection algorithm (139). Briefly, the 

method used three parameters: (1) a differential threshold (DT) set independently for each channel and 

computed as 8-fold the standard deviation (SD) of the noise of the signal; (2) a peak lifetime period 

(PLP) set to 2 ms; (3) a refractory period set to 1 ms. The algorithm scans the raw data to discriminate 

the relative minimum or maximum points. Once a relative minimum point is found, the nearest 

maximum point is searched within the following PLP window (or vice versa). If the difference between 

the two points is larger than DT, a spike is identified and its timestamp saved. Then, to characterize the 

activity level of the analyzed networks, we computed the mean firing rate (MFR), which is defined as 

the mean number of spikes per second, computed over the total recording time (i.e., 90 min). We 

considered active electrodes as those presenting a firing rate higher than 0.01 spikes per second. The 
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low threshold guarantees to exclude only those electrodes that are not covered by cells or with very few 

spikes, keeping all the others. 

4.2.8 Burst detection 

 

Neuronal networks plated on MEA show both random spiking activity and, in large majority, bursting 

behavior (140,141). Bursts consist of packages of spikes distributed over a range of a few milliseconds, 

which generally last from hundreds of milliseconds up to seconds, and are separated by long quiescent 

periods. Spontaneous bursting activity was detected using a custom burst detection method, whose 

input parameters were directly estimated from the inter-spike interval distribution of each channel. The 

method used the logarithmic Inter Spike Interval Histogram (logISI) to extract the parameters needed 

for the analysis of each recording channel (142). In particular, the threshold used for detecting bursts 

was found as the minimum of two principal peaks in the logISI. Details can be found in a paper from 

our group (143). Once spike and burst detection procedures were performed, we extracted several 

parameters describing the electrophysiological patterns, such as mean firing rate (MFR) [spikes/s], 

mean bursting rate (MBR) [bursts/min], burst duration (BD) [ms] and the Inverse Burst Ratio (IBR), 

which represents the percentage of random spikes, i.e., spikes outside the bursts. 

4.2.9 Cross correlation analysis 

 

We computed the cross correlation analysis between each pair of spike trains recorded from active 

channels (i.e. with MFR > 0.01 spike/s). The Cross Correlation function represents the probability of 

observing a spike in one channel i at time (t+τ, τ=3 ms) given that there is a spike in a second channel 

i+1 at time t. In order to quantify the strength of correlation between each couple of electrodes, we 

evaluated the Correlation peak (C peak). We select only the first 100 C peak values to identify only the 

most significant correlations at each developmental time steps: 13, 16, 19, 22, 25 DIV. We decided to 

exclude the early developmental stages 7, 10 DIV given the low level of activity. Finally, we analyzed 
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the latency from the peak (L peak) and we considered the corresponding peak latency values of the pre-

selected 100 strongest C peak values (144). 

4.2.10 Statistics 

 

Data within the text are expressed as mean±standard error of the mean (SE), if not differently specified. 

Statistical tests were employed to assess the significant difference among different experimental 

conditions. We assessed the normal distribution of data using Kolmogorov- Smirnov normality test. 

According to the distribution of data, we performed either parametric (e.g. two-sample t-test) or non-

parametric test (e.g. Mann-Whitney) between the control group (i.e. networks cultured on conventional 

MEAs) and the graphene group (i.e. networks cultured over LG-SLG treated MEAs). Statistical 

analysis was carried out by using OriginPro (OriginLab Corporation, Northampton, MA, USA). 

4.2.11 Analysis of neuronal network activity 

 

The recording of the spontaneous activity of the network was monitored during development (section 

4.2.5). Raster plots of two representative networks are displayed in Fig. 4.5, control MEAs and LG-

SLG MEA side to side at different DIVs. Each 10-s trace contains the spike events recorded by 60 

electrodes at four different developmental phases: 7 DIV, 13 DIV, 19 DIV, 25 DIV, respectively from 

top to bottom. Each black dot represents a detected spike. Panel A shows the activity during 

development of the control network: at 7 DIV only a few random spikes are detected in the whole 

active area; the number increases during the second week, and at 19 DIV trains of spikes organized in 

network bursts are clearly visible. At 25 DIV, almost all the electrodes exhibit a high level of activity, 

which becomes more synchronized with network-wide brief burst (50–100 ms) separated by a period of 

nearly complete quiescence or sparse, asynchronous action potential. The LG-SLG MEA (Fig. 4.5 (B)) 

shows a higher level of activity, involving also more channels, as compared to the control cultures at 

every recording point. Specifically, at 7 DIV, we can observe that the majority of electrodes present a 
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good level of firing, while at 13 DIV network bursts are clearly visible. Network bursts appear more 

packed with spiking activity within the bursts more synchronized from 19 DIV on. This pattern is 

maintained all along the developmental window under investigation.  

We then analyzed typical networks parameters for all monitored time frames (sections 4.2.7 and 4.2.8). 

Fig. 4.6 compares the firing and the bursting parameters of control (n=5 cultures) and LG-SLG MEA 

networks (n=5 cultures) during their development. As shown in Fig. 4.6, the LG-SLG MEA networks 

show higher values of firing/bursting rate at the very beginning of their development. MFR and MBR 

show a similar profile, with diverging values starting from 13 DIV (Fig. 4.6 (A–B)). In particular, for 

the firing rate, we found a significant difference between the control and LG-SLG MEA networks at 13 

and 16 DIV, while for the bursting rate, statistical significance was found at 13, 19 and 22 and 25 DIV. 

Burst Duration did not show any significant difference between the two experimental conditions for 

every time points (Fig. 4.6 (C)). Contrary, the percentage of random spikes was higher (i.e. IBR) in the 

control experiments starting from 17 DIV, indicating a more asynchronous for control experiments 

(Fig. 4.6 (D)). 
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Figure 4.5 Developmental changes of hippocampal network activity of one representative graphene-

transferred MEA and one control MEA. A. 10-s raster plots of spontaneous activity of a representative 

network cultured on conventional MEA, recorded by 60 electrodes at four different developmental 

phases: 7 DIV, 13 DIV, 19 DIV and 25 DIV, respectively from top to bottom. Each black dot 

represents a detected spike. B. 10-s raster plots of spontaneous activity recorded by 60 electrodes 

covered by single-layer graphene at four different developmental phases: 7 DIV, 13 DIV, 19 DIV, 25 

DIV, respectively from top to bottom. 
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Figure 4.6 Developmental profiles of hippocampal network cultured on graphene-transferred MEA 

(red) and conventional MEA (black). A. Mean firing rate (spikes/s) of 5 cultures on graphene-

transferred MEA and 5 cultures on conventional MEA. The parameter was significantly different 

between two groups at 13 and 16 DIVs. B. Mean bursting rate (burst/min): the parameter was 

significantly different between two groups at 13, 19, 22 and 25 DIVs. C. Burst duration (ms): no 

statistical difference was found between the two groups. D. Percentage of spikes outside burst (IBR): 

the parameter was significantly different between two groups from 16 to 25 DIVs. All data are 

presented as mean±SEM. Statistical analysis has been performed by using the two sample t-test (*p < 

0.05). 
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In order to assess changes in the synchronicity between control and LG-SLG cultures, we then 

investigated whether and how the correlation level changes during the development. For this reason, we 

consider Cpeak and Lpeak values computed from the cross-correlograms of each pair of active 

electrodes. In Fig. 4.7 (A), we compare the Cpeak values at five different time points: 13, 16, 19, 22, 25 

DIVs. Control experiments present lower values of Cpeak with respect to the LG-SLG MEA cultures. 

This indicates that the activity of LG-SLG MEA cultures is more correlated, as previously quantified 

by the IBR parameter (Fig. 4.6 (D)). Fig. 4.7 (B)), instead, shows boxplot of the Lpeak values. Longer 

latencies for the control cultures are observed, thus suggesting a higher delay in the activity 

propagation with respect to the LG-SLG MEA cultures. 

 

 

Figure 4.7 Cross Correlation Analysis. A) Box plots of the 100 strongest C peak values at each 

developmental time steps: 13, 16, 19, 22, 25 DIV for the control group (black box) and for the 

graphene (red box). We excluded the early developmental stage 7, 10 DIV since the level of activity 

was low. B) Box plots of the corresponding peak latency values (L peak) of the pre-selected 100 

strongest C peak values. We considered only the peak latency values smaller than 50 ms. For each box 

plot (A–B), the small square indicates the mean, the central line illustrates the median and the box 

limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. 

Statistical Analysis was carried out using Mann-Whitney comparison test, *p < 0.05. 
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4.2.12 Discussion  

 

In this chapter, I have presented the study of the electrophysiological development of neuronal 

networks on MEAs functionalized with large grain single layer graphene (LG-SLG-MEA) recording 

the network activity up to the completion of their maturation. This project covers both the investigation 

of the morphological properties of the neuronal network (on conventional and functionalized MEA) 

and the network development and functionality. This study can then shed light on the role that LG-

SLG-MEA plays in detecting earlier neuronal network activity with respect to the conventional MEA. 

Graphene-based substrates have been recently employed as the interface for electrogenic cell (56,145). 

In particular, graphene electrodes and graphene-based MEAs consisting of graphene electrodes have 

been fabricated and successfully used for the recording of the neural activity of primary cultured rat 

cortical neurons (20,146). However, no study presenting a detailed, long-term neuronal network 

development on MEA functionalized with graphene has been conducted so far. The first part of the 

study started with the SLG transfer on MEA following the wet etching technique previously described 

(31,105). The following step was to ensure the successful defect free transfer of graphene using Raman 

spectroscopy before proceeding further with the experiments. 

Immunolabeling results have demonstrated no significant changes in morphology of the neuronal 

network cultured on LG-SLG coverslips versus control coverslips (glass). Both cultures demonstrated 

morphology of healthy cells indicating that the presence of LG-SLG does not trigger any adverse 

reaction in the neuronal networks. The quantification of the cell density showed that the density 

increased with the increase in the developmental phases with no significant difference between both the 

LG-SLG and control cultures indicating an identical survival rate compared to standard conditions. As 

for the neuronal density determined by the neuronal specific MAP2 immunostaining, it was observed 

that the number of neurons was generally higher on LG-SLG with respect to control cultures (but the 

statistical significance was only found at DIV 13), indicating a higher survival rate or a higher 
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propensity of cells to adhere to graphene, as we already reported (31,105). Considering that the number 

of neurons vs. the number of total cells (Fig. 4.3(B) and (C)) was decreasing, it can be hypothesized 

that other types of cells, most likely glial cells, were increasing. This has a positive impact on neuronal 

cell development since it is well known and reported in the literature (147) that glia is necessary for the 

functional and healthy development of neuronal networks in vitro. 

Concerning the neuronal growth on MEAs, the first positive observation was the higher survival rate of 

the neuronal cultures on SLGMEAs with respect to control. We were able to collect data during the 

entire development in 50% for graphene and 25% for control over the total initially plated cultures. 

This means that neurons on SLG-MEAs have a double chance of long-term survive with respect to the 

control ones. This result is very promising for the future development of graphene-based electronics 

since it is a demonstration of the robustness and biocompatibility of such interfaces. The investigation 

of the electrophysiological development of neuronal networks on SLG between the first and fourth 

week is the most novel part of this investigation. On the functionalized SLG-MEAs a higher number of 

active electrodes could be detected, as qualitatively visible in the raster plots in Fig. 4.5. The already 

mentioned higher number of neurons present onto SLG MEAs correlates well to this finding; 

additionally, a better coupling between neurons and electrode could be a factor influencing the 

enhanced detection from such a high number of electrodes. The electrophysiological activity of the 

control MEA during the development was in line with previous works (148–151). At 7 DIV, only a few 

random spikes and almost no burst were observed in the whole active area. At the early developmental 

stage, neuronal cultures usually showed low density synaptic density and less neuronal connectivity 

with respect to the mature stage (i.e., DIV higher than 14). After a week in vitro, at 13 DIV, networks 

exhibited an increase in the firing rate and in the bursting rate. The parameters computed through the 

Cross Correlation analysis (i.e. Cpeak and Lpeak) indicated a good level of synchronization, although it 

did not involve all the active electrodes. Starting from 19 DIV, the firing rate and the bursting rate 
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increased and showed a further increase until 25 DIV. The activity became more synchronized with 

frequent discharges organized in networks bursts. The percentage of spikes outside the burst (IBR) 

reached a minimum of 40% and it remained stable during later developmental stages (i.e., until 25 

DIV). In a recent study (150), it was found that GABAergic and glutamatergic terminals increased 

gradually and simultaneously with the bursting rate, reaching a steady state between 3–4 weeks in 

vitro. 

As regards LG-SLG-MEA, they showed a developmental profile which is in line with that of neuronal 

networks cultured over conventional MEAs, but, in general, with higher absolute values of the 

computed electrophysiological parameters. Specifically, the graphene treated networks exhibited higher 

values of firing and bursting rate at the very beginning of their development (i.e., 7 DIV). Bursting 

activity was clearly visible starting from 13 DIV, and from 19 DIV the LG-SLG MEA displayed short 

bursts with a very high bursting rate. The IBR reached a minimum of 18% and remained stable all 

along the developmental window under investigation. The analysis of the cross correlation showed 

higher values of Cpeak with respect to the control MEA starting from 13 DIV, indicating a stronger 

correlation of the activity. Longer latencies for the control MEA were observed, thus suggesting a 

higher delay in the activity propagation with respect to the LG-SLG MEA cultures. At the later 

developmental stages (i.e., from 21 DIV), the strength of the activity correlation remained higher for 

the LG-SLGMEA, possibly due to the higher number of bursting events in the graphene MEAs. 

Contrarily, the latency became similar between the control and the LG-SLG MEA cultures, indicating 

that the level of synchronization increased with time also for the control MEA, as confirmed by 

previous results (152). Hence, earlier and stronger synchronized neuronal network development was 

observed on LG-SLG-MEA as compared to the control. The earlier detection of network activity is in 

line with our previous observation of earlier synaptogenesis on SLG with respect to control (31): 

no/low synaptogenesis was detected on the control until 9 DIV, whereas on SLG a slight increase in the 
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post-synaptic current frequencies was observed starting from DIV 7. Moreover, the stronger firing 

levels detected till the latest observed developmental phase are in line with recent findings (43) 

showing that SLG increases neuronal firing by altering membrane-associated functions in cultured 

hippocampal neurons. Specifically, the detected increase in neuronal activity was demonstrated to be 

caused by increased cell excitability due to graphene itself, which induces the tuning of extracellular 

ion distribution. 

In this investigation, we have also demonstrated that the number of neurons was generally higher on 

LG-SLG with respect to control cultures, influencing the cell density and thus the functional properties 

of developing networks (149,153). This, together with the earlier synaptogenesis already demonstrated 

(31) can suggest also a better coupling of the neurons with the LG-SLG substrate, as previously 

reported in the literature (107), with the final effect of accelerating the developmental processes respect 

to the control MEAs. 

4.3 Conclusions  
 

The long-term development of neuronal networks on LG SLG interface from the first week in vitro up 

to complete network maturation has been demonstrated. LG-SLG has proved to be a very favorable 

interface for neuron adhesion and growth. No major morphological differences with respect to control 

have been detected. Remarkably, neuronal network activity was detected earlier on LG-SLG and a 

more synchronous behavior of the network was recorded. The higher survival rate, the higher number 

of adhered cells and of firing activity indicates that the LG-SLG devices not only are compatible with 

the physiological functionality of neuronal network, but they have an improved detection capability, 

possibly due to a better neuron/substrate coupling. 
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4.4 Perspective 

As a perspective, we would like to study the evoked activity of the neuronal network by exciting one of 

the MEA electrodes and studying the propagation of this stimulus in the whole network by recording 

the response of the rest of the electrodes.  

We have performed a preliminary study on this. We have randomly excited one of the electrodes (cross 

mark in Fig. 4.8 (B)) and studied the response of the network to that stimulus on SLG MEA versus 

conventional MEA (control). We recorded the neuronal network activity by the rest of the electrodes 

(Fig. 4.8 (A)). Most of the electrodes of SLG-MEA have been active indicating a good propagation of 

the stimulus, which means that the neuronal network was communicating as compared with the control 

where only a few electrodes have responded (Fig. 4.8). The firing rate (FR) was stronger with longer 

duration on SLG MEA versus control. 

We would like to perform more experiments to reproduce these preliminary results and this way to 

show that SLG functionalized MEA enhances the communication of neuronal networks. 
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Figure 4.8 Evoked activity analysis of SLG-MEA versus conventional MEA (control). Response of the 

neuronal network activity to the stimulus (A). 
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Appendix A 
 

 
In this section, I have presented a side project that I have been also involved in. The focus of the project 

was to study neuronal-like response of N2a living cells to nanoporous patterns of thin supported anodic 

alumina. 

Introduction 

The role of surface morphology of foreign bodies in their integration with living tissues has been 

widely recognized (154). In particular, cell adhesion is critically affected by roughness, which means a 

spatially distributed pattern of surface amplitude features (Gentile et al. 2012, Wennerberg and 

Albrektsson, 2000). Adhesion is of particular importance in living cell experiments because it is 

connected not only to attachment to a seeding substrate after making contact, but also to active 

interaction with it, and is in turn affected by the surrounding medium, including the extracellular 

matrix. Actually, adhesion deals with chemical/physical interaction with the substrate, during which 

possible development of focal adhesion sites occurs (155).  

Among the several possible approaches to cell adhesion engineering of the substrates available by 

current advanced technologies (e.g. based on electron beam lithography or focused ion beam), it is our 

opinion that the use of anodic porous alumina (APA) (156) is particularly promising. This technique 

holds the capability for patterning large areas in inexpensive manner (157), which could be used for 

disposable devices, may they be living-cells-mediated chemical sensors or bio-assays for diagnostics 

(158–161). The ‘natural lithography’ nanopatterning obtained by anodization, though at a cost of some 

morphological inhomogeneity, appears to be not only fast for large-area patterning but also free from 

undesired contamination by polymer resist scum or solvent traces, and open to possible functional 
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developments obtained by either loading the pores with bioactive drugs (162) or chemically modifying 

the pore walls, thus providing a platform for chemical sensors (163).  

N2a cells are cells from a mouse neuroblastoma cell line, which are often used to investigate their 

neuronal-like extensions. N2a can actually differentiate to neurons and their differentiation is usually 

obtained in particular conditions of culturing, such as serum deprivation or addition of retinoic acid to 

the culture medium (109). Their tendency to differentiate to neurons can be assessed not only by the 

overall qualitative cell morphology as shown around the soma but can be quantitatively expressed by 

the number and length of neurite-like extensions (164).  

In this work, we have seeded N2a cells on thin APA fabricated onto glass substrates, and investigated 

their response during culture at different times in culture. The cells have been stained with different 

dyes, allowing the visualization, under confocal microscopy, of both the cell nuclei, for cell counting 

purposes, and the cell extensions. Scanning electron microscopy (SEM) has also been used to provide 

information about the cell shape. The results are presented and discussed, in view of identification of 

the effect of substrate morphology on the behavior of the living cells, with particular attention on their 

possible differentiation to distinct neuronal cell types.  

Experimental 

Thin APA fabrication and characterization 

The substrates have been fabricated according to a protocol already established and presented in 

previous publications (C. Toccafondi, Thorat, et al. 2014; C. Toccafondi et al. 2015; C. Toccafondi et 

al. 2016; C. Toccafondi, Stȩpniowski et al. 2014). Shortly, a 100 nm thick layer of metallic aluminum 

was first deposited on two-inches diameter glass wafers by means of electron-beam evaporation. The 

aluminum-coated side-face was loaded as the bottom of a special Teflon beaker, where the outer 
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annular crown was contacted to the positive electrode of a high-voltage DC power supply (Agilent 

N5751A). The beaker was filled with 50 mL 0.3 M aqueous H3PO4. The cathode was a platinum 

basket, held dipping in the electrolyte from the top, at a distance of 2 cm to the wafer. Mixing was 

provided by a magnetic stirrer, hanging inside the electrolyte, 2 cm above the platinum basket. 

Anodization was carried out at constant voltage of 150 V, with a limiting current of 1 A. The process 

typically lasted 3 min, after which the current dropped to zero after consumption of the metallic 

aluminum and self-opening of the circuit, at which point the power supply was switched off. Post-

fabrication treatment of the APA-coated glass was carried out in situ, by letting the surface exposed to 

the same etching solution for different times, of 0, 10, 20 and 30 min. This treatment resulted into 

increasing pore size, at constant pore spacing of 200 nm as set by the applied voltage. The sequence of 

increasing pore size has been coded for with letters from A to D, for pore diameter from 60 nm to 120 

nm, respectively. 

Cell culture 

The N2a mouse neuroblastoma cell line (ATCC CCL-131) was maintained as a monolayer in 

Dulbecco's Modified Eagle medium (DMEM) (Gibco, UK), 10% Fetal Bovine Serum Inactivated 

(FBS), and 1% Penicillin Streptomycin (PS) at 37°C with 5% CO2 and used in the experiments 

between passages 20-24. The cells were split when reaching a confluency of <80%. Then the cells were 

seeded on APA substrates (in duplicates) at a cell density of 1x10
3
 cells/mm

2
 and left in culture for 2 

days in vitro (DIV) of incubation. After this culturing time, they reached the desired level of 

confluency allowing to perform quantitative analysis for cell counting and differentiation.  

Immunofluorescence staining and image analysis 

Immunofluorescence staining was performed following the previously described procedure (110,169). 

In brief, the cultures on APA were fixed with 4% paraformaldehyde in PBS for 30 min. After 
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permeabilization with 0.1% Triton X-100 in PBS for 10 min four times, the cultures were incubated 

with PBS containing 5% goat serum and 0.1% Triton X-100 for 1 h. The permeabilized cultures were 

incubated overnight at 4°C with primary antibodies (1:100 anti-microtubule associated protein 2, 

MAP2, mouse IgG, Sigma-Aldrich) in PBS containing 5% goat serum and were rinsed with PBS for 10 

min four times. The cultures were then incubated with secondary antibody (1:200 Alexa Fluor 488-

labeled anti-mouse IgG, Molecular Probes) in PBS containing 5% goat serum for 2 h at room 

temperature and rinsed four times. The substrates were then mounted on glass slides/thin coverslips 

with ProLong anti fade mounting media with DAPI for nuclear staining (Thermo Fisher Scientific, 

Waltham, MA, USA). Fluorescence images were captured using a Nikon Inverted Microscope TiE 

equipped with a confocal microscope at excitation wavelengths λ=405 nm and λ=488 nm at 10X, 20X 

and 60X magnification. 

Image analysis was performed using Nikon Imaging Software (NIS-Elements, Nikon Instruments, 

Japan) and ImageJ Software (NIH, Bethesda, Maryland, USA). Images were taken at least at three 

different cell locations for each specimen. To determine the total cell density, the samples were stained 

with DAPI and the respective gray-level images were transformed into black and white images by 

setting proper binarization threshold. Objects in the binary images that were slightly overlapped were 

separated by Watershed separation using ImageJ software, and finally the separated nuclei were 

counted. To quantify the number of differentiated cells, we counted the number of cells with neuronal-

like process extensions (neurites) following the previously described method  (169). Percentage of 

differentiated cells, i.e. neuritogenesis, was defined as (differentiated cells/total number of adhered 

cells) X 100. An example of high-resolution image used for the above quantitative analysis with the 

graphic description of the respective processing is presented in Chapter 3, Supporting Information, Fig. 

S1. 
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Statistical Analysis 

Data within the text are expressed as mean ± standard error of the mean. Analysis of variance was 

carried out by using OriginPro (OriginLab Corporation, Northampton, MA, USA), assessing the 

statistical significance of the difference between all pairs of samples according to Tukey test. 

Scanning electron microscopy 

For SEM imaging, the N2a cells were processed following a protocol reported in detail in previous 

studies (31). Briefly, after fixation, the cells were extensively rinsed and post-fixed for 1 h on ice in a 

solution of 1% osmium tetroxide (Sigma-Aldrich) in 0.1 M cacodylate buffer. After several washes 

with ice-cold ultrapure water, fixed samples were rinsed for 5 min in increasing concentrations of 

filtered ice-cold ethanol (30, 50, 70, 90, and 96%), followed by two 15 min rinses with ice-cold 100% 

ethanol. The dehydration with ethanol was followed by gradual replacement with ice-cold 

hexamethyldisilazane (Sigma-Aldrich) that was allowed to evaporate in a fume hood overnight. The 

cells were finally coated with 10 nm Au layer and observed with a JSM-6490LA variable pressure 

SEM (JEOL, Japan) working in high-vacuum mode at 30 kV.  

Results and Discussion 

In Fig. A1, we report a typical sequence of large-scope confocal images acquired on APA substrates 

with different pore size, as well as on the control of flat smooth native-oxide-coated aluminum. These 

large-scope images are presented to show the typical behavior of cells on the different APA substrates. 

It appears that the number of cells (blue DAPI spots) is higher for A substrate, in which case it is quite 

similar to that obtained on the control.   
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Figure A.1 One representative sequence of large-scope confocal images of N2a cells after 2 DIV 

cultured on control and on APA with different pore size, from 60 nm for A to 120 nm for D (scale bar 

is 50 µm). 

 

From sets of images like that in Fig. A1, the surface efficiency in cell adhesion has been obtained by 

cell counting. The results of this analysis is summarized and presented in Fig. A2. 

 

Figure A.2 Quantitative parameter of adhering cells: number of cells on substrates with different pore 

size, increasing from A (60 nm) to D (120 nm), including the control (no pores). Pairs joined by lines 

show statistically significant difference (: p<0.05, **: p<0.01). 
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In addition to cell counting, the possible effects of the substrate morphology on different cell behavior, 

for example associated with cell shape, may also be addressed from the confocal fluorescence imaging. 

After proper staining, the thin cell processes extending on the substrate surface have also been 

identified. From images with higher resolution than those in Fig. A1 (see Fig.S1), the neuritogenesis 

parameter has been calculated (refer to the Experimental section, Immunofluorescence Staining and 

Image Analysis). This result is presented in Fig. A3(a).  

 

Figure A.3 Functional parameters of adhering cells:  a) neuritogenesis, b) mean normalized length of 

the existing neuritic-like processes. Pairs joined by lines show statistically significant difference 

(*:p<0.05, **: p<0.01). 

 

It appears from Fig. A3(a) that the cells seeded on APA with smallest pore size A present the larger 

number of neuritic extensions, whereas this number is minimum at some intermediate pore size C. In 

particular, the differences are statistically significant for the comparisons of A to C (p<0.01) and B to C 

(p<0.05).  

In Fig. A3(b), the mean length of the identified neuritic extensions is plotted instead. Also for this 

quantity, a maximum appears for the smallest pores samples coded as A. In this case, the difference of 
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A with all the other samples is statistically significant for all pairs at the higher level of p<0.01. Again 

we conclude that the APA substrate with smallest pores A drives the N2a cells towards a neuron-like 

behavior.  

The above hypothesis has also been tested by SEM imaging. In Fig. A4, representative SEM images of 

N2a cells are shown, at different magnifications, for cells adhering on opposite limiting pore size cases 

of A and D APA substrates. These images allow one to better identify the cell edges with respect to the 

substrate as compared with confocal images, and make shape categorization more clear and 

straightforward. Indeed, from the SEM images, it appears that on A substrates the overall cell shape 

evolves to the direction of neurons, with several narrow extensions, whereas for e.g. D substrate, the 

cell cytosol appears more evenly extended all around its edges, with no dominating direction. 

Therefore, the apparent neuritogenesis, driven by the pore size, as suggested by the analysis of Fig. A3, 

is confirmed.  
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Figure A.4.  Representative SEM images of N2a cells adhered on different APA substrates.  Pore size 

seems to affect neurite outgrowth:  a,c) (left column) on A APA, differentiated cells, and b,d) (right 

column) on D APA, undifferentiated cells, respectively.  a,b) (top row) 300X magnification, 20 µm 

scale bar, and c,d) (bottom row) 600X magnification, 10 µm scale bar. 

 

From the cell number plotted in Fig. A.2, it seems that the seeded cells preferentially adhere on A APA 

substrates, with the smallest pore size (60 nm diameter). Additionally, both quantities plotted in Fig. 

A3, which represent the tendency to develop into neuronal cells, showed a maximum for APA 

substrates with the same pore size, namely type A. According to the smallest porosity appearing to be 

the best for cell adherence, this result is in agreement with results of cell adhesion on a different yet 

also nanoporous material, namely porous Si (Gentile et al. 2012). In that case, only two pore sizes were 

investigated, which were both lower than the present values investigated here (namely 5 and 20 nm 

pore diameter). Since we did not investigate pores as small as those ones, it is possible that still smaller 
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pores in APA could give even higher scores of cell adhesion than observed in this work. However, the 

numbers already observed here are encouraging, in that they are at least on the same level of the non-

porous substrate, such that the possible improvement for even smaller pores would represent a further 

increase with respect to this control.  

In fact, the existing literature on the pore size effect of APA substrates on cell adhesion is 

controversial, as there is no general consensus on this topic. This may partly be due to the different cell 

types investigated. For example, both Karlsson et al. (170) and Song et al. (171) found similar results 

as the present ones and those of Gentile et al., in that they also observed enhanced living cell activity, 

in terms of cell number, on APA substrates with smaller pores, namely 20 nm vs 200 nm diameter for 

PMN leukocytes and 20 nm vs 100 and 200 nm diameter for MG63 osteoblast cell line, respectively. 

However, Song et al. observed higher cell elongation and mineralization for cells grown on the APA 

with largest pore size (200 nm). On the same MG63 cell type of Song et al. (171), in a former work by 

Salerno et al. (172), even the number of cells was higher for intermediate pore size and not for the 

smallest available pores, but in that case some interplay due to the independent APA parameter of the 

type of growth (potentiostatic vs galvanostatic) may also have played a role. Still for a different cell 

type, namely NIH-3T3 fibroblasts, we previously observed opposite results in terms of cell number as 

the largest pores performed better (165). Graham et al. investigated the behavior of NG108-15 neurons 

(173), and observed that no cell number was significantly different on various pore size substrates; 

however, by detaching the cells under centrifugation they measured the cell adhesion force, and 

observed that higher speed was required for detachment from larger pore substrates. Finally, Kant et al. 

(161) seeded neuroblastoma cells on APA substrates with 50-110 nm pore diameter grading, obtained 

on the same sample by galvanostatic anodizing aluminum tilted at 45° to the cathode, but observed 

different cell behavior in both number of adherent cells and development of neuronal-like cell shape 
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and connectivity only for partly collapsed pores forming brush-like structures, which occurred for the 

highest current density (150 mA/cm
2
).  Overall, one may conclude that the effect of pore size on the 

adhering cell number is at least cell-type dependent, i.e., different cells may possibly react to the pore 

size with different behavior, specific to their type.  

One limitation of the present work is the restricted range of pore size investigated. Actually, it should 

be noticed that the pore size (d) has an upper limit in the pore spacing (or cell size) (D), since it should 

always be d<D, to avoid collapse of the porous structure. In fact, D can be tuned by changing the 

anodization voltage. However, a change in D also implies a change in pore density, which is 

proportional to D
-2

. Therefore, if the goal is to investigate the separate effect of d only, this should be 

done at constant D.  

Clearly, the types of pores that we consider in this work are not the microscale pores allowing cell 

filaments to enter, cell nutrients to pass through, and eventually whole cells being loaded and 

vascularization to occur. However, those functions are more useful in scaffold materials, disappearing 

progressively in time, where the cell tissue or at least network should finally replace the original 

foreign material and make the 3D bulk. On the contrary, here we address the interaction between 

permanent solid surface-adhering cell, such as in the case of permanent implants as used in orthopedics 

or dentistry, where no massive damage tissue has to be regenerated and adhesion and biocompatibility 

are rather requested for the foreign surface remaining in situ indefinitely over time.  

Actually, as a preliminary test pointing to a new extensive experimental campaign, we have also tried 

to perform one similar run of cell seeding on APA substrates with different pore size for primary 

neurons. A sequence of typical confocal images is shown in Fig.S2, and the overall quantitative results 

of the respective cell counting are presented in Fig.S3, for the single experiment done. It appears that 

also for neurons, same as for the N2a cells, the number of cells is higher on type A substrates. This 



 

85 

 

preliminary result seems to confirm the higher affinity of neuronal-like cells for the APA surface with 

small (60 nm diameter) pores. Obviously, for reasons yet to be understood, the nanoporous structure of 

APA substrates apparently induces an enhanced expression of neuronal cell characters for the case of 

pores in the smaller size as to the range investigated here (60-120 nm). However, a more 

comprehensive set of experiments will be requested to validate this result. These results are promising 

in view of application of APA as a platform for the development of neuronal bioassays based on cell 

interconnectivity, of which in our group we have some former experience that resulted already in a 

related patent (174). 

Summary and Conclusions 

Within the limitations of the experiment presently reported, one can draw the following conclusions:  

1. There seem to be no effect of the pore size on the cell adhesion for the considered cell type (N2a ce ll 

line). 

2. The highest number of cells adhering to the nanoporous substrates of thin APA is at least the same or 

even higher than those adhering on the control substrate; this makes the substrates promising for 

possible future developments of APA-based surfaces for living cells biosensors/bioassays.  

3. Rather than affecting the number of adhering cells, the APA pore size seems to have a possible effect 

on their neuritogenesis; this property may potentially be of use in driving cell extension in a given area, 

for example in tissue engineering applications. It is speculated that the voids of the pore mouths can act 

on the cell seeding surface as a modulator of the mechanical stiffness: the larger the pores, i.e. the 

higher the coverage of pore voids, the lower the effective equivalent stiffness of the surfaces, as 

compared to flat, compact alumina. Therefore, experiments can be conceived where the surface is not 

just void - i.e. filled with ‘zero stiffness’ air - but rather with a more fine ‘stiffness modulator’, e.g. a 
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solution-processable polymer such as polymethyl methacrylate, polystyrene or polyethylene, to be cast 

into the pores and the excess be removed by e.g. high speed spin-coating or wet-chemical removal.   

Supporting Information 

Similar to the case of N2a cells for Fig. 2, in a single experiment we carried out a confocal imaging 

after fluorescence labelling and extracted from the images quantitative information also for cultures of 

primary neurons. In Fig.S2, one set of representative confocal images of primary neurons cultured on 

APA with different pore size and fixed at 5 DIV is shown. The cells were fluorescently labelled with 

DAPI for cell counting and vinculin marker for quantification of cell adhesion. In this case the 

substrates were coated with poly-d-lysine (PDL) prior to seeding with cells. As another difference, in 

addition to the flat alumina as the control, here we also tested glass substrate.  

 

Figure A.S1:  Sequence of confocal microscope images of neurons cultured on PDL-coated APA (A – 

D) and controls (flat alumina and glass) after fluorescence labelling (scale bar is 50 µm). 
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From the confocal images as in Fig. AS1, image analysis was carried out, which resulted in the 

quantitative data as reported in Fig. AS2. 

 

Figure A.S2 Quantitative information extracted from the confocal images: a) number of neurons, b) 

percentage of image area covered by vinculin. Pairs joined by lines show statistically significant 

difference (*: p<0.05, **: p<0.01). 

 

The number of neurons identified on the APA substrates with different pore size (Fig. AS2(a)) allows 

for a crude assessment of cell adhesion, same as for the N2a cells. Again, a maximum number of cells 

is observed for A type substrates (i.e. smaller pore diameter, approx. 60 nm). As for the number of 

focal adhesions in Fig. AS2(b), one can see that the difference between A and all the other substrates 

are even more evident. 

As an additional piece of information, from several SEM images and particularly for the case of APA 

A, it appears that the cell membrane is well spread and adherent to the nanopores, see Fig. AS3 below. 
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Fig. A.S3 Qualitative assessment of neuronal cell adhesion on APA A, (scale bar is 1 µm). 
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Appendix B 
 

This section is dedicated to the whole study performed on studying the surface potential of patterned 

graphene by polyelectrolyte coating. I have attached the article that we published related to this work. 
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A B S T R A C T

The fine control of the interfacial properties of functionalized graphene is a key point for its applications,
especially in biosensing devices. We have here used an in-house developed technique to fabricate microsized
patterned graphene via laser ablation and then we have functionalized the interface with poly-D-lysine, a bio-
compatible polyelectrolyte normally used as a promoter for cell adhesion. Scanning Kelvin probe microscopy
shows that a surface potential contrast appears at the patterned regions, with ablated regions of silicon substrate
exhibiting higher surface potential than the surrounding background, whereas both levels have negative values.
By subsequent coating with the poly-D-lysine it is possible to change stepwise the surface potential levels, while
keeping the contrast at the patterned regions constant, up to neutralizing the initial negative values. With further
dipping in a polyelectrolyte solution of opposite sign, such as polystyrene sulfonate, it is then possible to de-
crease the surface potential shifting it again back to negative values. The starting substrate chosen for graphene
transfer allows deciding the sign of the surface potential contrast between two adjacent regions of the pattern.

1. Introduction

The use of single or few layers graphene for the fabrication of bio-
sensing devices is appealing, given the peculiar properties of this ma-
terial (transparency, conductivity, robustness) [1]. The fabrication of
devices requires the capability of controlled patterning of the surfaces
by selective coating with graphene. Further, functionalization of gra-
phene with organic or biological compounds forming a hybrid material
[2, 3] is another task attracting the interest of the community, since it
opens the way to selectively impart specific properties to the patterned
graphene, allowing for controlled tuning of the surface and its selective
interaction with the environment. It has been shown that organic mo-
lecules grown on graphene may adopt preferred orientation compared
to the case of substrates such as e.g. silicon, also due to residuals of
poly-methylmetacrylate (PMMA) after transfer of graphene to the final
substrate of use [4–6]. In the recent past, we have developed and ap-
plied a reliable method for patterning large area graphene by UV single-
shot laser ablation [7, 8]. By properly tuning the laser fluence, single
layer graphene (SLG) can be selectively removed from micrometric
areas of silicon or glass substrate, giving rise to a patterned surface
alternating graphene regions with ablated (substrate) regions, in a

geometry of choice [7]. This procedure is quick and straightforward
when compared to other lithography-based patterning methods. In our
previous studies, we have used the fabricated patterned interfaces as
substrate for cell seeding. First we investigated adhesion of neurons,
after proper uniform functionalization with a cell-adhesive molecule
[7]; in that case, in spite of the chemical homogeneity of the substrate
after the coating, geometrically ordered functional neural network
could be obtained, where neurons preferentially adhered and/or mi-
grated onto the graphene areas, avoiding the ablated ones. In a sub-
sequent work [8], where Chinese hamster ovary cells were cultured, in
parallel with single cell adhesion experiments, we also measured a very
high adhesion of a silicon nitride probe onto coated graphene as com-
pared to the ablated (i.e. glass substrate) regions.

Intrigued by these observations, and with the aim of gaining more
insight on the physico-chemical properties of the patterned (and
coated) substrates, we focus here our attention onto the surface po-
tential (SP). Actually, many molecular recognition mechanisms of cells
are based on electrostatics [9, 10]. The possibility to tune and to control
the SP of the interface could be very important in view of the devel-
opment of biosensors, since it would provide a method to gain access or
to prevent the binding of selected biomolecules. To this purpose, we
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have used scanning Kelvin probe microscopy (SKPM) to measure the SP
of our patterned graphene. The surfaces have been functionalized by
coating with charged polyelectrolytes, and the layer deposition has
been monitored via both SKPM and Raman spectroscopy. The poly-
electrolytes of choice were the positively charged poly-D-lysine (PDL),
one of the most commonly used cell-adhesion molecules [11] and the
negatively charged poly(sodium-4styrene sulfonate) (PSS), a well
characterized molecules frequently used in layer-by-layer assemblies
[12, 13].

2. Materials and methods

2.1. SLG transfer

SLG grown by chemical vapor deposition on copper (Cu) was pur-
chased from 2D Tech (UK). SLG on SiO2 was a commercial product
purchased from Graphene Supermarket. According to the manu-
facturer, SLG was transferred on SiO2 by wet etching procedure and
SiO2 was 285 nm thick. A PMMA solution (MicroChem, 950,000MW,
9–6wt% in anisole) was spin-coated (Sawatec SM-180-BT spinner) on
SLG/Cu foils at 3000 rpm for 45 s and then the SLG on the opposite side
of the Cu foil was removed by 100W oxygen plasma (180 s), followed
by drying at room temperature for 12 h. The Cu was wet-etched using
0.2 M Ammonium persulphate solution in a Petri dish and the PMMA/
SLG stack was floated on the surface of the solution. The stack of
PMMA/SLG was carefully rinsed in ultrapure water (Millipore, 18
MΩcm) to remove the traces of the Cu etchant, and was scooped on the
target substrate (1 cm×1 cm Si). The transferred SLG substrate was
annealed in air at 180 °C for 3 h to obtain a firm adhesion to the glass
coverslip and washed with acetone to remove any trace of organic
contaminants. All the solvents were purchased from Sigma Aldrich. The
quality of the SLG transfer was monitored by Raman spectroscopy.

2.2. Laser patterning of graphene

Exploiting the absorption peak of SLG in the deep UV at 4.6 eV,
ablation patterning of the transferred SLG was carried out by a KrF
excimer laser with 248 nm wavelength. The Si\SLG surface was pat-
terned in its central area with an array of ablated squares with 40 μm
side and 40 μm gap, each obtained by exposure to a single pulse at a
laser fluence of 0.5 J/cm2.

2.3. Raman characterization

Raman spectra have been collected with Horiba Jobin Yvon
LabRAM HR800 at ambient conditions. A 632.8 nm excitation line in
backscattering geometry through a 50× objective lens was used to
excite the SLG on Si.

2.4. Polyelectrolyte coating

PDL (Sigma-Aldrich, MW 30.000–70.000) was dissolved in ultra-
pure water in a concentration of 0.1 g/L; PSS (Sigma-Aldrich, MW
70.000) was used at a 0.2 g/L concentration in ultrapure water. For
each dipping step, the sample was immersed in the polyelectrolyte so-
lution for 20min and subsequently rinsed for 2min in ultrapure water
for 3 times. After wetting the substrates were dried under gentle
Nitrogen flow.

2.5. SKPM

The measurements were carried out on an atomic force microscope
MFP-3D (Asylum Research, CA, USA), acquiring images at maximum
scan size of 90 μm, with 2562 pixels, at a (single) line scan frequency of
0.2 Hz. A MESP probe (Bruker, MA, USA) was used, with nominal
properties as follows: cantilever resonance frequency of ~75 kHz and

Fig. 1. typical Raman spectrum of SLG transferred onto Si substrate. G-band
located at ~1590 cm−1 is due to the in plane vibration of sp2 carbon atoms, the
2D located at ~2650 cm−1 are visible. The D band at ~1300 cm−1 indicates the
presence of some defects/impurities (a) G-band Raman peak of bare SLG (black,
dotted) and of PDL coated SLG after different dipping cycles (colors, dotted). A
progressive shift towards higher wave number is observable (b). 2D-band
Raman peak of bare SLG (black, dotted) and of PDL coated SLG after different
dipping cycles (colors, dotted). A progressive shift towards higher wave number
is observable (c).
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Co-Cr coating on the tip of ~30 nm, resulting in a final tip diameter of
~70 nm. The tip work function Φtip, after calibration on highly oriented
pyrolytic graphite (HOPG), assumed to have ΦHOPG= 4.65 eV [7], ap-
peared to be ~4.61 eV. The samples were back contacted at their
bottom on a metal puck support.

The SKPM technique relies on double-pass method, where each line
is scanned first in tapping-mode to track the surface topography and
then is scanned again at a set elevation height (50 nm in our case) to
avoid topographical artifacts. During the elevated scan, the cantilever is
dithered electrically, by applying a tip voltage (with sample substrate
set to ground) consisting of a DC and an AC component (the latter at the
resonance frequency). A feedback circuit cancels out the force on the
probe by tuning the DC voltage component, which thus equals the local
SP value.

3. Results and discussion

Raman characterization of SLG onto Si substrate demonstrated a
successful transfer of graphene, with low number of defects. A typical
spectrum is reported in Fig. 1a The G-band at 1584 cm−1 is due to the
in plane vibration of sp2 carbon atoms; the 2D-band at 2700 cm−1 is
due to a two phonon lattice vibration; and the D-band at 1350 cm−1 is
due to broken symmetry after graphene layer edges and inner defects
[14]. The ratio of the intensities of the 2D and G bands, I2D/IG, around a
factor 2, and the sharp symmetric 2D band are indications of a good
quality graphene in spite of the presence of few defects and impurities,
possibly due to the transfer process, showing in the D-band [15].
Fig. 1b–c report in detail the G and 2D bands of the samples, including
bare SLG (black curve), centered at 1588 cm−1 and 2651 cm−1, re-
spectively, along with the best fitting profiles (Table 1), which will be
used for further characterization.

The conditions for laser ablation of SLG on Si were optimized during
previous works [7, 8], and were used here to remove the graphene on
the selected square areas. As visible in the topographic image of Fig.2a,
the patterning was carried out successfully with micrometric resolution,
and the ablated graphene squares showed a clear, flat bottom of non-
modified substrate, as well as intact surrounding graphene regions. As
the only side-effect of ablation, several debris particles appear in the
image, especially at the square edges. The SP map obtained in the same
scanned area is displayed in Fig.2b. A striking contrast in SP is ob-
served. When averaging among several different regions, the values of
the contrast at the squares and of the graphene background (mean ±
standard deviation) were 143 ± 22mV and− 440 ± 60mV, respec-
tively.

In another set of experiments, commercial SLG on Si\SiO2 was used
for laser patterning and for the subsequent characterization by SKPM.
The results (Fig.4) showed a reverse contrast between graphene and the
ablated squares of SiO2, indicating that the contrast sign of the pat-
terned region can be appropriately chosen by changing the substrate for
graphene transfer.

The following step of our experiment was the coating of the surface

with a charged polyelectrolyte to modify the local SP. Given the above
voltage values in Fig.2b, despite the positive contrast against the gra-
phene background the SP stayed negative also on the ablated squares.
Therefore, we selected a positively charged molecule, i.e. PDL. The
interest in studying this specific coating comes, as mentioned in the
Introduction, from the use of PDL as cell adhesive layer [11].

After immersing the sample in the PDL solution, we repeated the
characterization previously performed on the graphene coated Si. As for
the Raman measurements, a shift in the G and 2D bands of graphene
was observed, as already reported in the literature (see supporting in-
formation to [16]). This shift, accompanied by a slightly reduced width
of the peak (Table 1), is an indication of the stiffening of the graphene
vibrations and is independent of the sign of the polyelectrolyte coating.

AFM topography and surface potential maps after one dipping step
in PDL solution are reported in the second row of Fig.2d (namely panels
2d-f). No major differences are detected in the topography after PDL
coating (number of layers n=1) as compared to the pristine surface.
Indeed, it is assumed that both regions (ablated squares and sur-
rounding graphene) are equally coated with PDL, being both negative,
and this conformal coating does not give rise to a different depth of the
topographic step at the squares. However, the effective PDL coating is
observed in the SP image (Fig.2e), as a shift of the SP towards less
negative values (−155 ± 55mV), as expected after a coating step with
a positively charged molecule (see Fig.3, filled circles sequence, data-
point at n=1), in agreement with [16]. Nevertheless, the SP remains
still negative, and in particular is lower than that at the squares. This
result, i.e. a more negative SP on SLG with respect to ablated regions, is
surprising when compared to our results on living cells seeding [7, 8].
In fact, the cell membrane is negatively charged, and higher adhesion
would be expected on areas with positive, or less negative, SP. Actually,
the higher adhesion of cells on PDL coated graphene might be due to a
preferential accumulation on those areas of extra cellular matrix mo-
lecules, highly secreted by the cells, which in turn promote preferential
cell binding. Alternatively, a different molecular arrangement of the
PDL polymer on the two regions carrying a different SP could be en-
visaged, so that PDL on graphene provides more binding sites to the cell
membrane.

Incidentally, the contrast between the two regions was not varied
(see Fig.3, void circles sequence, n=1). Because the SP stayed still
negative on both regions, we decided to repeat the dipping step in PDL
solution and perform the measurement recursively, until a positive
value of the SP was measured. As shown in Fig.3, after the second PDL
dipping step (n= 2) the SP was further shifted towards higher values,
for both SLG and ablated regions, indicating another uniform deposi-
tion of PDL at the surface. Concurrently, consistent Raman results were
observed, as shown in Fig. 1b–c and detailed in Table 1. At that point,
the SP was around zero; indeed, one additional dipping step (n=3) did
not cause any significant shift in SP, as a hint of no more PDL coating; in
fact, in Fig.2j some points of sticky matter, shifted by the scanning tip,
are observed, which could be associated with non-adhered excess PDL
spots. As a matter of fact, Fig.3 shows a plateau in graphene SP for
n=2,3, and no further changes are observed either in the Raman peak
shift.

Interestingly, the SP contrast stayed constant across the whole series
of PDL dipping steps (n= 0,3), as shown by the void circles datapoints
in Fig. 3. The physical origin of this local contrast is unclear at present,
as it could be due to electrical charging or to a change in material work
function occurring after laser irradiation. In fact the SP measured by
SKPM arises from different contributions of intrinsic material properties
(i.e. work function), electrostatic charge, and bias effects. The interplay
of all these factors is also the reason for a rich literature claiming the
tuning of graphene work function on the one hand [17–19] and
pointing to the difficult repeatability and reliability of absolute SP va-
lues on the other hand, mainly due to ambient contamination [20–22].
These issues, together with uncertainty in the actual number of gra-
phene layers [23] and arbitrary assumption on the reference material

Table 1
Change of SLG Raman G-peak position and width before and after polymer
coating, according to the best fitting curves in Fig. 1.

G-peak position
(cm−1)

G-peak width
(cm−1)

2D-peak position
(cm−1)

2D-peak
width (cm−1)

Bare Si \SLG 1583.3 ± 0.-
4

11.2 ± 0.2 2640.8 ± 1.0

34.-
4 ± -
2.3

1 L-PDL 1585.5 ± 0.3 9.1 ± 0.3 2647.1 ± 1.1 33.2 ± 2.1
2 L-PDL 1588.1 ± 0.5 11.1 ± 0.5 2645.8 ± 1.1 35.1 ± 2.2
3 L-PDL 1588.1 ± 0.4 9.8 ± 0.5 2646.3 ± 1.0 34.4 ± 2.3
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work function during tip calibration, makes the absolute SP level un-
certain and the material SP contrast within a given image is thus the
only reliable information [24].

When the neutral SP and eventually the reversal of its initial ne-
gative value was reached (n= 3), the sample was further assessed by a
control modification and test measurement. A dipping in PSS solution
was carried out. As expected, a decrease in SP was detected when the
starting from the n= 3 case (see respective diamond datapoint), in-
dicating PSS adsorption. As a confirmation, the dipping in PSS was also
carried out for another sample at PDL dipping stage n=1, which on the

contrary did not exhibit any significant SP shift towards negative values
(diamond datapoint in Fig.3 for n=1), thus confirming the electro-
static physisorption mechanism of the polyelectrolytes.

4. Conclusions

The presented results show that it is possible to fabricate a patterned
SLG interface with a robust SP contrast in the two regions of the pattern
(ablated SLG i.e. substrate vs SLG), and the background (SLG) SP level.
Additionally, the SP levels can be tuned by physisorption of

Fig. 2. AFM topography of the patterned substrate before (a) and after PDL coating (d, g, j corresponding to 1 L-PDL, 2 L-PDL, 3 L-PDL, respectively). Center: SKPM
maps of the same region, showing a higher potential in correspondence of the ablated squares (b, e, h, k). Right: Scan line profiles of topography and surface
potential.
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appropriately charged polyelectrolytes. Moreover, preliminary indica-
tions exist that by changing the substrate (from Si to SiO2) the contrast
itself at the ablated regions can be chosen either positive or negative.
The tuning of this surface property can find useful application, since
many interfacial phenomena are regulated by electrostatics. More de-
tailed investigations should address the physical origin of the SP con-
trast at the laser ablated regions, which could be ascribed to local
electrical charging after the laser energy delivery during irradiation, or
a change in material work function.
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