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Abstract

Mathematical models of real systems allow to simulate their behavior in conditions that

are not easily or affordably reproducible in real life. Defining accurate models, however, is

far from trivial and there is no one-size-fits-all solution. This thesis focuses on parameter

identification in models of networks of dynamical systems, considering three case studies

that fall under this umbrella: two of them are related to neural networks and one to power

grids. The first case study is concerned with central pattern generators, i.e. small neural

networks involved in animal locomotion. In this case, a design strategy for optimal tuning

of biologically-plausible model parameters is developed, resulting in network models able

to reproduce key characteristics of animal locomotion. The second case study is in the

context of brain networks. In this case, a method to derive the weights of the connections

between brain areas is proposed, utilizing both imaging data and nonlinear dynamics

principles. The third and last case study deals with a method for the estimation of the

inertia constant, a key parameter in determining the frequency stability in power grids. In

this case, the method is customized to different challenging scenarios involving renewable

energy sources, resulting in accurate estimations of this parameter.
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Introduction

Describing physical entities through mathematical models has always been a fundamental

goal of numerous areas of scientific research. With the exponential increase of available

computational power, having access to accurate mathematical models of physical systems

allows to simulate their behavior in conditions that are not easily or affordably repro-

ducible in real life. However, defining mathematical models that are complex enough to

reliably approximate the physical systems’ behavior, but also simple enough to have a

clear physical interpretation and a feasible computational implementation is far from triv-

ial. There is no one size fits all solution, and each case study needs a tailored approach.

Numerous case-specific guidelines for system modeling have been provided throughout the

scientific literature. For example, in a 1980 study by Chua [1], two general approaches

to electrical device modeling are presented: the physical approach and the black-box

approach. The physical approach is applicable when the device physics and operating

mechanisms are well-understood and consists of four basic steps. In step 1, the important

physical variables, phenomena, and operating mechanisms should be identified through a

careful analysis of the device physics; the internal structure of the device should then be

partitioned into as many distinct units as possible, such that each one can be modeled

separately. In step 2, the relevant physical equations which relate the internal physical

variables of each unit to their inputs and outputs are formulated. In step 3 the formu-

lated equations should be solved by making the necessary simplifying assumptions and

lumping together the separate units when possible. Step 4 consists of synthesizing the

nonlinear network, by defining the links between the final identified units. The black-box
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approach should instead be used when the device is so complex that a physical approach

is not feasible or would be impractical. For example, biological circuit models (such as the

well-known Hodgkin-Huxley neuron model) where physical mechanisms at the molecular

level were poorly understood, or VLSI (very large scale integration) circuits which contain

thousands of components. The black-box approach is also divided into four main steps:

experimental observations, mathematical modeling, model validation, and nonlinear net-

work synthesis. Step one consists of probing the device with different testing signals to

extract as many general qualitative properties as possible (for example a hysteresis loop

or subharmonic response under certain conditions). In step 2 a mathematical model ca-

pable of simulating most of the observed properties should be synthesized; since there is

no systematic method to accomplish this task, the design of an appropriate mathematical

structure is described as an “art”, that can count on some guidelines and clues about

prescribed properties of certain known nonlinear systems. Step 3 consists of analyzing the

derived mathematical model to determine whether it is indeed capable of approximately

reproducing the measured data and observed properties; both a quantitative validation

(comparing the simulated response to the measured response) and a qualitative validation

(a mathematical proof that the model does exhibit all the qualitative properties observed

experimentally) should be carried out. Step 4 is equivalent to the last step of the physical

approach, and consists of synthesizing the nonlinear network.

System modeling techniques have evolved throughout the decades, both in terms of

white-box approaches (based on knowledge about the physics of the system), black-box

approaches (based on statistical information from the data), and grey-box approaches

(a combination of both). Black-box techniques have particularly benefited from ma-

chine learning advances, using powerful tools such as neural networks and Gaussian pro-

cesses, leading to countless real-life applications [2]. In 2014 Grieves introduced the

concept of digital twin [3] as a virtual representation of a complex physical asset in

the digital space for the purpose of closely characterizing the operations of the origi-

nal physical process or system. Now, the digital twin concept has been widely adopted
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at the industrial scale, becoming one of the enabling technologies of Industry 4.0 [4,

5].

In recent years, the study of networks of dynamical systems in particular has gar-

nered growing interest due to their widespread presence and importance in various fields,

including physics, biology, engineering, and the social sciences. Network science was de-

fined as a new field of basic research during the 2005 U.S. National Research Council

[6], after the attention towards complex networks generated in the scientific community

thanks also to pioneering studies by Watts & Strogatz [7], Barabasi & Albert [8], and

Girvan & Newman [9]. Networks of dynamical systems consist of interconnected units,

each governed by its own set of rules or dynamics. At first, the efforts of the scientific

community were focused on understanding network topology and its structural proper-

ties; concepts like smallworldness, scale-free property, modularity and fractality arose one

after the other, and various network models were proposed to mathematically describe

the architecture and evolution of real-world networks [10]. One of the key features of

networks of dynamical systems is their ability to exhibit complex emergent behaviors,

which are often difficult to predict or control, arising from the interactions between their

constituent units [11]. A fundamental goal of this field of research is thus understanding

how the interplay between the structure of the network and the dynamics of the units

determines the collective behavior of the network system [12]. In recent years, a shift from

the structural analysis of networks to the simulation of their collective dynamics has been

possible thanks to unprecedented computing power, big data sets and new computational

modeling techniques; this has provided a bridge between the dynamics of individual nodes

and the emergent properties of macroscopic networks [10].

Many real-world processes take place in network structures: the movement of money

through an economy, the circulation of electricity through a power grid, the evolution of

populations in an ecosystem, the flow of electric signals through a network of neurons.

Examples of such networks are displayed in Fig. 1. These and many other phenomena of

8



scientific interest are best approximated by models of dynamical systems interconnected

by an appropriate set of links, forming a network [12]. Dealing with fields as disparate

as the social sciences, physics, biology, computer science and applied mathematics, made

it difficult for the scientific community to find common ground, agree on definitions

and reconcile and appreciate the different approaches that each field had adopted to

study networks. Integrating knowledge and methodologies from graph theory, statistical

physics, computer science, and sociology is still a work in progress, presenting all the

difficulties and traps inherent in interdisciplinary work [10].
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Figure 1 (previous page): (a) Network graph of the flow of money in Mahalevona vil-

lage (Madagascar) representing two domains: economic (clove and vanilla), and environmen-

tal (biodiversity conservation and silkworm trade) [13]. (b) Representation of the physical

network of transmission lines for the power grid of Northern Italy. The color scale of the

lines indicates the link weights, ranging from yellow to red to black, defined as the abso-

lute value of the corresponding admittance. Adapted from [14]. (c) A simplified represen-

tation of biotic interactions in a stream food web. Black arrows represent trophic interac-

tions with top-down effects on resources. The blue arrow represents a trophic interaction

with bottom-up effects on the consumer. The orange arrow represents an indirect conse-

quence of trophic interactions, whereas the green arrow represents non-trophic interactions.

The inset shows the complete network of species at the site of which the large scheme is an

extract or simplification as shown by the dotted box. Blue nodes (trophic level 1) represent

basal resources, green nodes (trophic level 2) represent invertebrates, and orange (trophic level

3), and red nodes (trophic level 4) represent fish. Trophic interactions in the network are

exemplified by continuous lines and non-trophic interactions by the dashed lines. Adapted

from [15]. (d) The largest synaptic-level connectome ever reconstructed of a portion of the

central brain (referred to as the hemibrain) of the fruit fly, Drosophila melanogaster [16,

17].

Depending on the network that is being modeled, individual units can exhibit linear

or nonlinear dynamics. Nonlinear dynamics are prevalent in real-world scenarios and

can exhibit a wide range of behaviors, including stable states, periodic oscillations, and

chaotic dynamics. While each nonlinear model has its own unique features and challenges,

they can all be studied under the theory of nonlinear dynamical systems, a well-developed

branch of mathematics and physics [18].

One of the key challenges when modeling networks of dynamical systems is to ac-

curately determine both the values of the parameters that govern the behavior of the

individual units and the topology and strength of the connections between units. These
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aspects have a fundamental impact on the collective behavior of the system and are often

difficult to measure directly or to estimate with standard optimization techniques. For ex-

ample, inferring causal relations between network nodes (i.e., inferring the directed graph

topology) from time series measurements is an ill-posed mathematical problem, where

typically an infinite number of potential solutions can reproduce the given data. Decades

of research effort have produced a large and diverse set of mathematical methods, from

the Nobel prize winning work of Granger [19, 20], that introduced the concept of Granger

causality, to convergent cross mapping [21] (a statistical test for a cause-and-effect rela-

tionship based on the theory of dynamical systems and suitable for cases where causal

variables have synergistic effects), to recent techniques involving the use of recurrent neu-

ral networks [22]. However, all these methods have limitations in accurately reproducing

causal network structures, especially for networks of nonlinear dynamical systems [21, 23,

24, 25, 26, 27], and whether it is possible to formulate a consistent and unifying theory of

causality for time-dependent systems remains an open question [28]. Inferring causal re-

lations from time series measurements is not the only approach that has been proposed to

recover network topology. Other examples include synchronization-based techniques [29,

30, 31], methods based on perturbations [32] and driving the system to a fixed point [33].

Each approach, however, has its own drawbacks [34, 35]; generally, systems exhibiting

complex dynamics, such as asynchronous chaotic activity, bifurcations, multistability or

other prevalent features of high-dimensional, nonlinear systems, prevent network recon-

struction by the aforementioned methods.

Therefore, when designing or dealing with networks of nonlinear dynamical systems, it

is important to carefully consider the problem of parameters and topology identification

and, when necessary, develop tailored methods for accurately identifying the parameters’

values.

This thesis focuses on parameter identification in networks of dynamical systems con-

sidering three case studies, two of which concern neural networks and one concerning
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power grids. These seemingly unrelated types of dynamical networks have proven to

exhibit apparent qualitative similarities [36].

The first case study is concerned with central pattern generators (CPGs): they are

neural networks that autonomously produce rhythmic patterns of activity, such as those

seen in walking, breathing, and other types of movement. These patterns are generated

by the interaction of neurons within the CPG and do not require external input [37]. The

study of CPGs is important for several reasons: understanding the neural basis of these

behaviors can provide insight into the underlying mechanisms of motor control and may

have applications in fields such as robotics and rehabilitation; CPGs are also an interesting

model system for studying how the nervous system can generate complex patterns of

activity without relying on input from the senses or higher brain centers. Moreover,

CPGs are present in many different types of animals, from invertebrates to humans,

which means that studying them can provide insight into the evolutionary history of

rhythmic behaviors and the neural mechanisms that underlie them. The first chapter of

this thesis deals with the design of a biologically plausible CPG model for quadruped

locomotion, an example of a biological network where each node is represented by a

realistic neuron model. It also illustrates custom parameter identification strategies that

have been developed to tune the numerous parameters of this model, to ensure its correct

behavior. The results presented in this chapter have been published in [38] and [39].

The second case study is in the context of brain networks: deriving reliable models

that can reproduce certain human brain functions under specific conditions is the subject

of broad interest from the scientific community [40, 41, 42]. One of the pillars of the

research in this field is the growing availability of neuroimaging techniques, which allow,

on the one hand, the estimation of anatomical connectomes and, on the other hand,

the detection of patterns of activity across brain areas, often referred to as functional

connectivity. The second chapter of this thesis tries to bridge functional and anatomical

neural connectivity through nonlinear dynamics and network theory, aiming to build

brain models based on the imaging data of individual subjects. In particular, it details
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a method to derive the weights of the connections between brain areas utilizing both

data-driven and model-based approaches. In this case, each network node is represented

by a neural mass model [43], a mathematical model that represents a group of neurons as

a single entity, or “neural mass”. These models are used to study the collective behavior

of large populations of neurons and to understand how they contribute to brain function.

Neural mass models can be used to simulate a wide range of brain phenomena, including

the generation of brain waves, the spread of neural activity through the brain, and the

interactions between different brain areas. The results presented in this chapter are

illustrated in [44].

The third and last case study focuses on power grids, and in particular on the role of

the inertia constant: conventionally, the inertia constant is a measure of the rotational

inertia of the synchronous generators connected to the grid and is used to describe the

ability of the generators to maintain their speed of rotation under changing load condi-

tions. The inertia constant is important in determining the stability of the power grid: a

high inertia constant helps to prevent frequency oscillations and other types of instability

in the power grid [45]. To ensure that the power grid remains stable as the percentage

of renewable energy sources increases, it is necessary to implement control systems that

provide synthetic inertia, to maintain a sufficiently high inertia constant. In this sce-

nario, the inertia constant is time-varying, and it becomes important to track its value

in real-time during normal operating conditions to ensure the smooth operation of the

power grid. The third chapter of this thesis presents a method for the online estimation

of the inertia constant in power grids. It discusses the general algorithm framework and

how it can be adapted to be effective in different scenarios. The results presented in this

chapter have been published in [46], [47] and [48].
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Chapter 1

Central Pattern Generators

Personal contribution — Sections 1.1 and 1.2 present known material

and concepts that serve to frame the original contributions detailed in the

rest of the chapter. The generalized half-center oscillator (section 1.3)

and the quadruped central pattern generator (section 1.4) models, along

with the related parameter identification strategies and results, are original

material. In Section 1.5, well-known global optimization algorithms are

applied to the novel central pattern generator model.

1.1 What are central pattern generators?

Central pattern generators (CPGs) are small neural circuits that can autonomously pro-

duce various rhythmic patterns of neural activity, also in the absence of sensory feedback

or inputs from higher areas [37]. CPGs underlie many behavioral rhythmic activities and

they bear a fundamental function in both invertebrate and vertebrate animals as they

determine multi-phase locomotion: the innate motor behavior that requires sequential

activation of body muscles in a coordinated way. Although CPGs can produce rhythms

without sensory inputs, sensory feedback is important to adapt and fine-tune the activ-

ity of the CPG to the environment [49]. Moreover, their activity is modulated through
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the influence of hierarchically higher areas, which can, for example, prompt transitions

between gaits [50, 51, 52].

The concept of the CPG itself was first described in invertebrates [53, 54] and, shortly

after, its theorized existence in the spinal cord of vertebrate animals [55] was confirmed

by intracellular recordings [56, 57].

During the last few decades, a variety of molecular, genetic, pharmacological, and

imaging studies have been conducted to understand the structure and function of the

locomotor CPG [58, 59, 60]. The lamprey in particular has been extensively used to

model and study locomotion [61, 62, 63], since its nervous system has a simple structure

with very few neurons and its excised spinal cord can survive for days, but an array of

different species (sea slug, leech, cockroach, stick insect, crustaceans, rat and mouse) has

been investigated [64, 65, 66, 67].

Because the invasive methods used in reduced animal preparations are not viable

to study humans, there is only indirect evidence of a human locomotor CPG; however,

this evidence suggests that the general operational principles for the control of rhythmic

movement found in other animals extend as well to humans. Ongoing understanding of

locomotor CPGs in humans is important to design effective gait rehabilitation strategies

in those with neurological injuries [68].

The study of CPGs is also relevant in developing bio-inspired engineering solutions:

there are several interesting properties of CPGs that have been proven to be useful for

the control of locomotion in robots. CPG-inspired controllers have been tested and used

extensively for robot locomotion in the past two decades, with examples in various fields:

insect-inspired hexapod and octopod robots [69], swimming robots [70], terrestrial snake

robots [71], quadruped [72] and biped walking robots [73]. Since CPG models can produce

stable rhythmic patterns by exhibiting limit cycle behavior, the modeled system is robust

against transient perturbations, as the state variables rapidly return to the limit cycle

provided that they are not pushed outside the basin of attraction and that the Floquet

multiplicators lie significantly far from the unit circle. Well-implemented CPG models
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usually have few driving signals, therefore reducing the dimensionality of the control

problem, and they typically produce smooth modulation of the trajectories even when

the control parameters are abruptly changed, thus avoiding possible damage to the robot.

CPGs are well suited for distributed organization, allowing delays reduction in the control

loop. They also give the opportunity to easily integrate sensory feedback signals in the

control mechanism [74] [75].

1.2 Modeling of CPGs

CPG models can be designed at different levels of abstraction, depending on the phenom-

ena under investigation [74]. To study rhytmogenesis in small neural circuits or in single

pacemaker neurons [76], detailed biophysical models are needed (such as Hodgkin-Huxley

type models) to compute how ion pumps and ion channels influence membrane potentials

[77].

Connectionist models that use simplified neuron models (such as LIF neurons) are use-

ful to investigate how network properties influence rhythm generation and how different

circuits synchronize via interneuron connections [78, 79, 80].

Something that is well established in dynamical systems theory is that the dynamics

of populations of oscillatory centres depend mainly on the type and topology of couplings

rather than on the local mechanisms of rhythm generation [81, 82]; for this reason, math-

ematical models of coupled nonlinear oscillators (representing the activity of a complete

oscillatory centre) are ideal to study population dynamics and how inter-oscillator cou-

plings and differences of intrinsic frequencies affect the synchronization and the phase lags

within a population of oscillatory centres [83, 84, 85, 86, 87, 88]. Some extensively used

oscillators are van der Pol, Stein and FitzHugh–Nagumo [87], Matsuoka oscillators [89,

90, 91] and phase oscillators [83, 85, 86, 92].

The process of designing a CPG model begins with the definition of the general ar-

chitecture, including the number and the type of neurons or oscillators. The type and
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topology of couplings will then determine the conditions for synchronization between the

oscillators and the resulting gaits. In the context of robot controllers, the waveform will

determine the trajectories that will actually be performed by the joint angles during a

cycle. Lastly, one has to define how important quantities (frequency, amplitude, phase

lags for gait transition) depend on control parameters and how the feedback signal will

affect the activity of the CPG. The process is not straightforward because the different

aspects of CPG design are strongly interconnected and cannot be considered separately

[74]. For this reason, there is no sound methodology to obtain a full understanding of

how control parameters can tune quantities such as frequency, amplitude, phase lags or

waveforms [75], and developing methods for parameter identification and tuning of CPG

models is a relevant objective. Dynamical systems theory can offer useful principles to

design CPGs and understand their functioning: in fact, the dependence of gait transition

from high-level control parameters can be explored by performing bifurcation analysis.

However, biologically-inspired models that are developed on the basis of physiological

evidence are often too complex and contain too many neurons to be suitable for anal-

ysis based on tools within the framework of dynamical systems theory. It is also true

that neurons in CPGs are often grouped in subsets that behave in synchrony and can be

modeled by single neurons, allowing the reduction of large networks to their simplified

cores. It is important to find a compromise between biological plausibility, allowing to

reproduce gaits qualitatively and quantitatively, and simplicity of the system, allowing

its analysis [93]. Once a simple enough structure for the network is obtained, a bifur-

cation parameter accounting for the descending pathways has to be included in neuron

and synapse models. Brute force simulations can then be carried out to determine the

nonlinear dependence of the network components on the bifurcation parameter.

1.2.1 Biological plausibility

As discussed, various approaches to the modeling of CPGs and CPG-inspired control

systems have been explored in the last decades [75, 94]. Recently, new methods have
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been proposed to reduce large models of detailed neural networks to smaller CPG circuits,

trading off biological plausibility and complexity of the model [95, 96, 97, 98, 99].

Although CPGs can function autonomously, one of the functions of inputs from hier-

archically higher areas is to prompt transitions between gaits [50, 51, 52]. A single gait

in a typical CPG model is obtained by fixing the connectivity. By contrast, to generate

multiple gaits the CPG connections between constituent neurons are typically changed

by acting on the synaptic weights to model the control action of the brainstem [94, 97,

98, 100]. The modulation from higher areas that controls the synchronization between

the CPG neurons, and thus triggers gait switches, is conveniently integrated into CPG

models by directly affecting the synaptic conductance strengths. However, in real CPGs

changes in conductance values are the result of long-term synaptic plasticity, and there-

fore they are hardly a cause for quick gait switches, which can instead be accounted for

more realistically by short-term neuromodulation. Indeed, most natural CPGs exhibit

patterns of functional connectivity between neurons or synchronized clusters of neurons

that can undergo spontaneous fluctuations and be highly responsive to perturbations,

e.g., induced by sensory input or cognitive tasks, on a timescale of milliseconds or hun-

dreds of milliseconds, respectively, thus ensuring robustness and stability. This short-term

neuromodulation lacks in most CPG models.

1.3 The generalized half-center oscillator

One of the pivotal building blocks of many CPGs is the half-center oscillator (HCO).

The HCO concept is widely used to model two synchronous pools of neurons reciprocally

inhibiting each other to produce stable rhythmic alternation in animal locomotion [55,

101]. Before tackling complete locomotion CPG networks, this section focuses on HCOs

to introduce novel biologically plausible modeling solutions.

This basic structure has been largely studied from both biological and nonlinear dy-

namics standpoints. Many previous works on the phasic/antiphasic synchronization of
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neurons or groups of neurons analyzed the influence of synaptic changes on circuit dy-

namics. For example, refs. [102, 103, 104, 105] consider HCO models where transitions

between stable synchronous states occur through direct manipulations of the synaptic

weights; in [106] a large database of HCO models is swept using a brute-force approach,

without a focus on gait transitions. While the importance of an interplay between in-

hibitory and excitatory coupling has already been outlined [105], the thorough under-

standing of its functional role for determining multiple states or patterns in such neural

networks and how transitions between them may stably occur remains yet insufficient.

Moreover, there is growing evidence that (i) post-synaptic potential (PSP) summation

increasing with the spike frequency in the pre-synaptic cell is a crucial factor for the stable

functioning of some CPGs [107, 108, 109, 110], while other experiments indicate that (ii)

the activity of some synapses is barely affected by the spike frequency [94].

Based on this evidence, this section proposes a novel generalized half-center oscillator

(gHCO) composed of two neurons or of two neural pools that are coupled reciprocally by

excitatory synapses, in addition to the standard HCO’s reciprocally inhibitory synapses.

This original model warrants a more biologically plausible mechanism of short-term plas-

ticity to implicitly control the phase lag between the gHCO cells by varying their spike

frequency through sensory drive or external currents, rather than directly manipulating

the synaptic conductance strengths. The proposed generalized half-center oscillator is

shown in Fig. 1.1. It is made of two neurons or two neural pools, coupled by both exci-

tatory (marked by a black circle) and inhibitory (marked by a black triangle) synapses.

cell
1

cell
2

Figure 1.1: gHCO neural circuit with inhibitory (denoted with • ) and excitatory (▶ ◀)

synapses reciprocally coupling two oscillatory cells.
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1.3.1 Design constraints

There are a few simple constraints that neurons and synapses must meet for the circuit

to generate stably the desired rhythmic outcomes:

(a) both neurons are endogenous bursters;

(b) their spiking voltage range is above the hyperpolarized voltage within each burst

(i.e., they do not undershoot [111]);

(c) their mean spike frequency can be controlled;

the gHCO bursters are coupled by both:

(d) slow synapses with PSP summation whose strength increases with the growing spike

frequency in presynaptic cells;

(e) fast synapses without PSP summation.

In what follows, both gHCO cells are represented by the Hodgkin-Huxley (HH) type model

of the thalamic reticular neuron [112, 113], defined by the following state equations:

dV

dt
=

−IT − IL − INa − IK − Ic + Isyn

C

dCa

dt
= − kIT

2Fd
− KTCa

Ca+Kd

dy

dt
=
y∞ − y

τy
, y = {h,m, n,mT , hT}

(1.1)

where V is the membrane potential of the neuron, Ca is the intracellular calcium con-

centration and y is a generic gating variable; the equations describing the evolution of

the ion currents IT (calcium), INa (sodium), IK (potassium), and IL (leakage) and all the

details on the model parameter values and meaning can be found in Appendix A.

This slow-fast model with seven state variables can exhibit endogenous bursting activ-

ity of alternating trains of fast action potentials with long quiescent intervals, as depicted
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in Fig. 1.2. The dynamics of the i-th neuron can be summarized as

d

dt

Vi
yi

 =

−∑k Ik + Isyni

f(Vi,yi)

 , where i = 1, 2. (1.2)

where f(Vi,yi) is a vector function describing yi-dynamics. The term
∑

k Ik includes

intracellular currents and the control current Ic, which acts essentially on the spike

frequency within bursts. For the given model, bursting activity occurs when Ic ∈

[−0.43, 0.13] µA
cm2 , with the mean intraburst interval decreasing from 15.36 ms to 4.13 ms.

The term Isyni is the incoming mixed, excitatory/inhibitory synaptic current originating

from the jth cell onto the ith, post-synaptic cell:

Isyni = gex(Eex − Vi)s
ex
j + gin(Ein − Vi)s

in
j , (1.3)

where Eex/in are the reversal potentials for excitatory/inhibitory synapses and 0 ≤

s
ex/in
j ≤ 1 is the activation or neurotransmitter release rate of the synapse, excitatory

(Vi < Eex) or inhibitory (Vi > Ein). For the slow synapses with PSP summation a

first-order dynamic synapse [114, 115, 116] is employed. The dynamic evolution of its

activation rate is governed by the following equation

dsj
dt

= α (1− sj)f∞(Vj)− βsj, f∞(Vj) =
1

1 + e−ν(Vj−θ)
, (1.4)

where θ is the synaptic threshold, whereas α and β are coefficients weighting the raise

and decay terms, respectively. To model the static synapses without PSP summation

the fast threshold modulation paradigm [117] is employed, using the sigmoidal function:

0 ≤ sj = f∞(Vj) ≤ 1, with θ being below the spike-level.

Fig. 1.2 illustrates the contrasting properties of these synapse models, showing the

bursting voltage traces V1 (red) and V2 (blue) and the synaptic activation dynamics, fast

sin2 (t) (gray) and slow sex2 (t) (black) at the edge of the Ic bursting interval. Observe

that the neurotransmitter release rate sin2 (t) of the fast FTM synapse (i) is maximized

as soon as the voltage V2(t) in the pre-synaptic cell overcomes the synaptic threshold

θin (indicated by the grey lines in panels a,b), (ii) remains constant regardless of the
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spike frequency, and (iii) vanishes with the burst termination. In contrast, the low spike

frequency (panels a,c) barely activates the slow synapse (see sex2 (t)) that at high spike

frequency (panels b,d) exhibits the profound PSP build up; the ascending rate is ruled

by α, and the exponential decay due to β starts after the voltage lowers below θ.

0  

0.5

1  

-60

-30

0  

30 

60 

Figure 1.2: Asymptotic anti-phase (a) and synchronous (b) bursting voltage traces V1 (red)

and V2 (blue) at Ic = −0.43 µA
cm2 and 0.13 µA

cm2 , resp., in gHCO (Eqs. (1.2), (1.3), (1.4)),

superimposed with excitatory/inhibitory thresholds θ (horizontal lines) at 10 mV and -30 mV.

(c, d) Synapse dynamics: fast modulatory sin2 (t) (gray) vs. slowly summating/decaying sex2 (t)

(black).

1.3.2 Identification of the gHCO parameters

The neuron and synapse models described by Eqs. (1.2), (1.3) and (1.4) are calibrated

to physiologically plausible values to meet the above requirements (a)-(e) and to ensure

a smooth and reversible transition from anti-phase to in-phase bursting occurring in the

gHCO as the spike frequency changes due to Ic-variations.

To clarify things, the dynamics of the gHCO with fast FTM inhibitory and slow

excitatory synapses are considered first; the corresponding synaptic thresholds are set at

θin = −30 mV and θex = 25 mV, respectively. As such, the inhibitory synapses without
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PSP summation (de)-activate quickly and their strength remains constant during each

burst regardless of the spike frequency. In contrast, the slow excitatory synapses exhibit

PSP summation that becomes stronger with an increase in the spike frequency.

Fig. 1.2 shows that at the low end of the bursting region (Ic = −0.43 µA
cm2 ), near

the transition to the hyperpolarized quiescence, the gHCO neurons oscillate in anti-phase

with the smallest number of spikes per burst and lowest spike frequency (panels (a,

c)), whereas on the opposite side (Ic = 0.13 µA
cm2 ) the neurons burst in phase with a

larger number of spikes per burst and with much higher spike frequency (panels (b, d)).

Changing the value of Ic changes the strength of the excitatory synapses, and hence the

proportion between inhibition and excitation. The phase lag ∆ between burst initiations

in the neurons [118, 119, 120] allows to quantify the phase-locked states produced by the

gHCO. The definition of ∆ assumes that isolated or coupled neurons maintain relatively

close temporal characteristics and each one evolves on a structurally stable periodic orbit

in the state space of the corresponding model. The phase variable Φi(t), defined modulo

1, indicates the position on the periodic orbit of the ith neuron. Consequently, the phase

lags between burst initiations in a network of two neurons can be described by the state

variable ∆ = Φ2 − Φ1. The time evolution of this state variable, being quite complex

due to nonlinear interactions, can be determined through numerical simulations, in which

Φi(t) is reset to 0 when the voltage Vi increases above some synaptic threshold Vth at

times t
(q)
i . The synaptic threshold is set at Vth = −30 mV and the phase lags between

coupled cells are computed in a discrete set of time instants as

∆(q) =
t
(q)
2 − t

(q)
1

t
(q)
1 − t

(q−1)
1

, mod 1 (1.5)

In the case of synchronous or in-phase bursters, ∆ = 0 (or, equivalently, ∆ = 1); when

they burst in alternation, with ∆ = 0.5, they are in anti-phase. The intermediate values

of ∆ correspond to all the other possible delays between the gHCO cells.

The bifurcation analysis of the system described by Eqs. (1.2), (1.3) and (1.4) was

carried out using the computational toolbox CEPAGE [121].
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Since the gHCO should transition from anti-phase regime to in-phase regime varying

Ic, the proportion between inhibition and excitation should be significantly different for

the two values of Ic at the edges of its range. To this end, the goal is to have maximum

difference in the mean values of sexi (over one period) at the two extreme values of Ic, i.e.,

-0.43 µA
cm2 (anti-phase pattern) and 0.13 µA

cm2 (in-phase bursting).

The numerical values of θex, α and β are identified according to this principle, running

a set of simulations over a grid of parameter values: θex = {10, 25} mV, 10 evenly spaced

values of α ∈ [0.05, 1] kHz and 10 evenly spaced values of β ∈ [0.005, 0.1] kHz. The

considered values of θex indicate voltage levels representative of two different conditions:

at θex = 10 mV each spike appears broader, i.e. Vj stays above θex for a longer time

window; at θex = 25 mV each spike appears narrower, i.e. Vj stays above θ
ex for a shorter

time period. The parameter setting that provides the maximum difference in the mean

values of sexi for the two extreme values of Ic is chosen (see Appendix A for numerical

values). The synaptic conductances gin/ex are set to obtain anti-phase synchronization

for low spike frequency, a condition in which the mean value of sexi is minimum, and

in-phase synchronization for high spike frequency, a condition in which the mean value

of sexi is maximum.

The results are summarized in Fig. 1.3, and reveal the dependence of the phase

lag ∆ on the Ic-current, and hence explicitly on the spike frequency within bursts. As

expected, at low Ic-values between −0.43 µA
cm2 and −0.40 µA

cm2 , the fast reciprocal inhibition

within the gHCO dominates and makes its neurons burst in alternation with ∆ = 0.5.

As the Ic-current is increased, the spike frequency raises, which in turn makes the slow

excitatory synapses sum up faster and stronger on average. With larger Ic values, the

reciprocal excitation gradually prevails over the reciprocal inhibition, which gives rise to

the smooth onset of the stable in-phase bursting in the gHCO. This is revealed in the

bifurcation diagram with a characteristic pitchfork shape of the dependence of the phase

lag ∆ on the Ic-current.

It has to be noted that this diagram has been obtained by making a multi-shooting for
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each parameter value. This is a direct indication that there is no hysteresis and therefore

the absence of multi-stability or the coexistence of anti- and in-phase bursting for the

same parameter values, and that the transition between activity rhythms is continuous

and reversible.

Observe that the maximal synaptic conductances gin/ex in Eq. (1.3) once set are not

changed, and the transition is solely determined by the gradual increase/decrease of the

mean sexi -value caused by the spike frequency variations in the gHCO neurons.

-0.4 -0.3 -0.2 -0.1 0   0.1 
0  

0.5

1  

Figure 1.3: Bifurcation diagram showing how the phase lag ∆ between the gHCO neurons is

affected by the current Ic; here, 30 initial ∆-values were sampled evenly between 0.05 and 0.95

for each of the 50 Ic-values.

1.3.3 Constraints on neuron and synapse models are essential

This section aims to illustrate, also through counterexamples, that the defined require-

ments (a)-(e) on the neuron and synapse models are essential for the successful design of

the proposed gHCO concept.

If the bursting condition (a) is broken, the approach is no longer applicable. Two

neurons, spiking in isolation, can burst in alternation due to reciprocal inhibition, but

not through reciprocal excitation, which makes both even more synchronously depolarized

with a higher frequency.

If the neurons undershoot (condition (b)), which is typical for elliptical bursters [122]

(see Fig. 1.4(a)), it is not feasible to set θin as previously explained to warrant evenly
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constant activation sini for the duration of the burst. Indeed, this choice can result in less

robust dynamics of the gHCO, due to inhibition-excitation competition (see Fig. 1.4(b)).

Condition (c), outlining the importance of being able to control spike frequency and

not only burst duration of the pre-synaptic cell, is quite crucial for stable gHCO functions.

To point out its significance, the exponential integrate-and-fire (eIF) neuron model [124] is

employed; an external current Iext primarily controls the burst duration with insignificant

spike-frequency variations, as shown in Fig. 1.5(a). In this scenario, the activation of

both inhibitory and excitatory synapses is mainly determined by the burst duration in the

eIF-neurons, and thus Iext-variations can only cause proportional changes in the average

excitatory sexi - and inhibitory sini -values. As a result, neither inhibition nor excitation

can solely dominate and produce the expected solo stable anti-phase or in-phase bursting

patterns within the given Iext-range, as shown in Fig. 1.5(b). Conversely, changing the

parameter ge of the eIF neuron model significantly modifies the spike frequency, and the
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Figure 1.4: (a) Asymptotic bursting voltage trace with undershoot produced by the Plant

neuron model [123, 122]. (b) Voltage traces produced by the gHCO with two coupled Plant

neurons. Model equations and parameters are provided in Appendix A.
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corresponding bifurcation diagram has the characteristic pitchfork shape shown in Fig.

1.6, as expected. However, the parameter ge is a conductance, and thus is not a realistic

control parameter, according to the previously discussed guidelines.

Condition (d) follows (c), as the synaptic threshold θ for the slow synapses has to be

within the spike voltage range of the pre-synaptic neuron, and the dynamics is to be slow

enough to allow si(t) to grow and the synapse to exhibit PSP summation.

Condition (e) guarantees that the activation of the fast synapse does not exhibit

PSP summation and hence does not change due to spike frequency variations in the

pre-synaptic neuron.
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Figure 1.5: (a) Mean values (over 5 s) of the IBI (green line) and the burst duration (black

line) plotted against Iext for the exponential IF model [124]. (b) Corresponding bifurcation

diagram for the phase lag ∆ between the cells in the gHCO, in which each cell is an exponential

IF-model. Model equations and parameters are provided in Appendix A.
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Figure 1.6: (a) Mean values (over 5 s) of the IBI plotted against ge for the exponential

IF-model [124]. (b) Corresponding bifurcation diagram for the phase lag ∆ between the cells

in the gHCO, in which each cell is an exponential IF model. Model equations and parameters

are provided in Appendix A.

1.3.4 The gHCO as a building block for locomotion CPGs

As the objective of designing the gHCO is to use it as a building block for a quadruped

CPG, both the phase lags and the burst frequency should be consistent with target

quadruped gaits. For instance, in left-right alternation of the mouse locomotion, a phase

lag ∆ = 0.5 occurs at low burst frequencies (walk and trot gaits), whereas a phase lag ∆

close to 0 (or to 1, equivalently) occurs at high burst frequencies (gallop and bound gaits)

[125, 126, 100]. Recall that the thalamic reticular neuron model in isolation exhibits high-

frequency bursting at small Ic-values and slow bursting at greater Ic-values. Therefore,

for the gHCO built with such models to produce in-phase/anti-phase synchronization

at high/low burst frequencies for the desired gaits, the time scale of the synapses in its

circuitry should be swapped: slow inhibitory synapses with PSP summation and FTM-

fast excitatory ones without PSP summation.
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1.4 A minimalistic biologically plausible CPG model

This section focuses on quadruped locomotion and explores the possibility of using the

gHCO in the design of a minimalist CPG circuit that can stably produce gaits observed

in four-limb animals.

The forms of locomotion that can be observed in animals vary in many ways in terms

of exhibited gaits and posture, owing to the interplay of mechanical sensors/actuators

(musculoskeletal system) and control (neural system). Mice, for example, can walk, trot,

gallop or bound [125, 126]. This means that there must be mechanisms to change the

synchronization patterns between the limbs and the limb segments during locomotion.

So, it is reasonable to assume that rather than having multiple dedicated CPGs for such

functions, there is a single multi-functional or multi-modular CPG circuit that is versatile

to coordinate all desired motor patterns [127].

The schematic diagram in Fig. 1.7 is meant to illustrate two alternative strategies
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Figure 1.7: Comparison diagram of two alternatives to model a biological CPG: (left) detailed

network architecture with simple functional units [128]); (right) simplest design with biologically

plausible neural and synaptic models.
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based on the interplay between network complexity and nonlinear dynamics of individual

cells and synaptic properties. The aim is to design a CPG with the simplest network

architecture (i.e., minimalist functional topology), containing only two gHCOs properly

connected, by finding the parameters of cells and synapses through an optimization al-

gorithm that accounts for physiological parameter ranges.

The design method for the novel proposed model is based on three simple cornerstones:

(i) short timescale gait transitions are triggered by short-term plasticity mechanisms; (ii)

the CPG model is able to reproduce basic quadruped gaits with characteristic qualities;

(iii) key model parameters can be calibrated through bifurcation analysis to meet specific

gait features, following the guidelines already explored in [100].

According to these premises, the proposed four-cell CPG model, where each neural

unit controls the flexor regulating the swing phase of the corresponding limb, has a pair of

fore neurons and a pair of hind neurons that represent essentially two gHCOs, whose cells

are coupled by mixed synapses with different time scales. Firstly, table 1.1 introduces the

abbreviations for the various types of synapses employed in the 4-cell CPG model. The

four-cell CPG model is shown in Fig. 1.8: as in previous sections, each cell is modeled by

the thalamic reticular burster. The dynamics of the membrane potential Vi and of the

voltage-dependent state variables yi are described in Eq. (1.2) (see Appendix A for a list

of all fixed parameters and a description of their biological relevance).

The term Isyni groups together the incoming synaptic currents, and in this case is

Table 1.1: Synapse types

synapse type abbreviation symbol

fast excitatory E ▶

slow inhibitory S •

delayed fast inhibitory D •

fast inhibitory F •
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defined as

Isyni =
4∑

j=1

[gEij(E
E − Vi(t))s

E
j + gSij(E

S − Vi(t))s
S
j +

+ gDij (E
S − Vi(t− δ))sDj + gFij(E

S − Vi(t))s
F
j ],

(1.6)

where EE/S represents the reversal potentials for excitatory/inhibitory synapses, 0 ≤

skj (Vi, t) ≤ 1 (k = E, S,D, F ) describes the neurotransmitter release rate of the synapse,

gkij (k = E, S,D, F ) is the maximal synaptic conductance or weight, while δ is the time

delay imposed for D-type synapses. The S-synapses are described by the first-order

kinetic model in Eq. (1.4). The fast E, D and F -type synapses are modeled using the

fast threshold modulation (FTM) approach [129, 117], skj = fk
∞(Vj) (k = E,D, F ).

What is the rationale behind choosing these synapses? Some of them result from

the functional reduction of the detailed, 40-cell mouse locomotion CPG proposed in

S-synapses

D-synapses

E-synapses

F-synapses

3
HR

4
HL

1
FL

2
FR

Figure 1.8: CPG circuit of four coupled cells labeled as follows: FL/FR – fore-left/right,

HL/HR – hind-left/right. The dashed box includes the gHCO that governs the forelimbs. The

following symbols ▶, •, • and • denote, resp., the excitatory E-, and inhibitory S-, F - and

D-synapses (see the table above). Each CPG cell controls flexor muscles regulating the swing

phase of a limb, while D-synapses simulate the actions of the neural populations (not explicitly

represented in the given model) controlling the extensor muscles. The fore and hind gHCOs are

coupled through ipsilateral F -synapses.
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[128] down to the 4-cell circuit initially introduced in [98]. In particular, the F-synapses

were introduced to replace inhibitory interneuron populations that do not introduce a

significant delay, and the D-synapses simulate the delayed action of the neuron groups

controlling the extensor muscles. Moreover, the nonlinear interplay of both fast-excitatory

and slow-inhibitory synapses is pivotal to devising this (simple yet functional and flexible)

CPG network: S- and E-synapses are crucial to model the effect of short-term synaptic

plasticity, as explained in the previous sections detailing the gHCO mechanism.

1.4.1 Quadruped gaits

The goal is to fit the key parameters of the proposed minimalistic 4-cell CPG so that it

can generate all four mouse gaits: walk (W), trot (T), gallop (G), and bound (B). Each

gait has specific quantitative features [125, 126] such as the frequency (f) and duty cycle

(d) of each rhythmic pattern driving a limb and the phase lags ∆12, ∆13, ∆14 between

the driving signal generated by the reference cell 1 and the ones produced by the other

three cells. These features are summarized in table 1.2.

Table 1.2: Quadruped gaits features [125,

126]

gait f [Hz] d ∆12 ∆13 ∆14

walk (W) [2 4] <0.4 0.5 0.75 0.25

trot (T) [4 9] [0.4 0.51] 0.5 0 0.5

gallop (G) [9 10] >0.51 0.1 0.5 0.6

bound (B) [10 12] >0.51 0 0.5 0.5

The spatiotemporal patterns of each mouse gait are depicted in Fig. 1.9. Note again

that walk and trot require the fore (and hind) cells to burst in anti-phase at low burst

frequencies, whereas during bound they should become synchronized with higher burst

frequencies. The duty cycle d is calculated according to a threshold Vt (grey horizontal
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line in Fig. 1.10) as the ratio between the time interval in which Vi(t) > Vt within a

period (red interval) and the period (red plus blue intervals).
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Figure 1.9: Spatio-temporal patterns of the four mouse gaits (with the colors matching the

cells in Fig. 1.8): bound, gallop, trot and walk with the characteristic phase lags (as listed in

table 1.2) between the reference cell 1 and the other three cells of the CPG.

33



-80

60 

Figure 1.10: Voltage traces of the isolated burster at three different Ic-values: -0.43
µA
cm2 (left

panel), -0.15 µA
cm2 (center), 0.13 µA

cm2 (right). The threshold Vt (grey horizontal line) is used to

calculate the duty cycle d as the ratio between the red interval and the period (red plus blue

intervals).

1.4.2 Parameter identification strategy

The objective is to devise a CPG model that can exhibit intrinsic short-term synaptic

plasticity in the form of facilitation (without any changes in synaptic weights) and is able

to generate quadruped gaits and smooth gait transitions when triggered by the external

drive Ic. To achieve this goal, several cellular and synaptic parameters that stably yield

the four quadruped gaits with the realistic features listed in table 1.2 need to be identified.

This task is challenging, mainly due to the high number of parameters and their interplay

and to the constraints imposed on the overall model performance.

This section defines the strategy (summarized in Fig. 1.11) that further exploits the

design methods proposed in [100] to systematically calibrate both neuronal and synaptic

parameters. This strategy includes several steps discussed in detail below. In brief, the

initial steps from 0 through 5 in Fig. 1.11 deal with the steady-state behaviors of the

network, while possible transitions (transient dynamics) are examined in the final step

6. It should be quite clear from the beginning that, due to its high dimensionality, the

complex problem of parameter setting cannot be addressed by a monolithic brute-force

approach based on performing exhaustive search.

Therefore, the original problem should be hierarchically subdivided into consecutive

simpler steps. However, the dynamics of the complete CPG network results from the
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Step 0:
some synapse parameters set euristically

Step 1:
neuron parameters set to obtain the desired

𝑓 and 𝑑

Step 2:
S synapse parameters set through grid search to 
ensure the most favorable conditions to obtain 

a ∆12 transition

Step 6: 
verify gait transitions

Step 3: 
F synapse parameters set to 

obtain the desired ∆14

Step 4:

𝑔𝑖𝑗
𝑆 and 𝑔𝑖𝑗

𝐸 set through grid 

search to obtain the 
desired ∆12

Step 5:
verify that each gait is 
modelled correctly at 

steady state simulating the 
entire CPG

Figure 1.11: Flowchart summarising the design strategy proposed: steps 0 through 5 focus

on the steady-state dynamics of the network, while step 6 verifies the transitions between gaits.
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interplay of the dynamics of the four individual cells coupled by mixed synapses with

different time scales. Therefore, given that the correct behavior of the complete CPG

is not guaranteed a priori, the previously found results should not be tabulated, but

revisited and verified a posteriori.

Step 0 – fixing the key synaptic parameters: this reduces the dimension of the

set of parameters to be optimized, based on preliminary considerations (see Appendix

A for the set values). This includes the time delay δ of the D-synapses, which is set to

be half of the bursting period of the presynaptic neuron since it is assumed that flexor

and extensor cells are activated in anti-phase. The synaptic thresholds θE, θD, θF of

all fast synapses are set the same so that their strength does not change with spike

frequency variations. The parameter ν is set the same for all synapse types. Also the

weights gDij of the delayed D-synapses, which are an order of magnitude weaker than gSij

of the S-synapses according to [100], are set all equal. In addition, following [100], the

ratios gF41/g
F
14 and gF32/g

F
23 (i.e., the ratios of the weights of fore-to-hind and hind-to-fore

coupling) are set the same.

Step 1 – single cell: its temporal scaling is performed through the parameter ξ so

that the values of the burst frequency f , obtained by varying Ic in the burst region, span

the range required to model all gaits as listed in table 1.2. The reference voltage Vt, used

to calculate the duty cycle d, is consequently adjusted to obtain the desired values of d.

The result of this step is a pair of diagrams (see Fig. 1.12) showing how f (bottom panel)

and d (top panel) are controlled by the drive Ic across all four gaits, labeled as B[ound],

G[allop], T[rot] and W[alk] in the color-coded intervals.

Step 2 – S-type synapses: their key parameters, exponential factors α, β and

synaptic threshold θS, are identified through grid search to achieve maximum difference

in mean synaptic activation s̄Sj (evaluated over the burst period) at the endpoints of the

Ic range ([−0.43, 0.13] µA
cm2 ). This simple constraint ensures the most favorable conditions

to obtain the transition of the phase lag ∆12 from in-phase to anti-phase as Ic is varied,

provided that the weights gSij and g
E
ij (set in step 4) are properly balanced. The result is
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illustrated in Fig. 1.13.

Step 3 – combined fore and hind gHCOs: they are coupled pair-wise through

cells 1 and 4, and cells 2 and 3 by the inhibitory F-synapses. Consider ∆Ic as the difference

between the Ic values driving the fore and hind cells: Ic1/2 + ∆Ic = Ic4/3, respectively.

The bursting dynamics of the sub-network (cells 1 and 4 or, equivalently cells 2 and 3)

are simulated over a dense grid of Ic and ∆Ic values (within the ranges determined in

step 1), matching the weights gFij (whose ratio is fixed in step 0) to identify the correct

fore/hind phase lags (∆14 and ∆23) of the targeted gaits. The outcome of this simulation

step is a set of (Ic, ∆Ic) pairs that yield the desired ∆14-values for each gait within the

proper Ic intervals, as shown by the color map in Fig. 1.14. With this map, a function
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Figure 1.12: Duty-cycle d and bursting frequency f (Hz) of the neuron model (to be compared

to d and f in table 1.2) against Ic (µA/cm2). In both panels, the horizontal dashed grey lines

mark the d or f ranges corresponding to each gait (see table 1.2); the dotted rectangles mark

the corresponding Ic intervals for d and f . Observe that there is no threshold separating B and

G duty-cycle intervals as their ranges overlap. Colored areas highlight the Ic intervals suitable

(in terms of frequency and duty cycle) for each gait, as obtained from the intersection of the

conditions for both features: B (blue), G (red), T (yellow), and W (green).
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Figure 1.13: Bottom: the ratio ψ between mean inhibition/excitation influx through the S-

and E-synapses, plotted against the external drive Ic (µA/cm2). Top insets showing steady-

state time plots of sSj (t) at Ic=-0.43 Ic (µA/cm
2 (left panel), -0.15 (center) and 0.13 Ic (µA/cm

2

(right).

∆Ic(Ic) can be defined through a piecewise-linear interpolation of the identified (Ic, ∆Ic)

pairs. Such a function is used to properly drive the control action through Ic for all the

CPG cells and obtain the desired ∆14.

Step 4 – intra-gHCO synapses: their balanced weights gSij and gEij are identified

through a dense grid search so that they guarantee the desired steady-state ∆12 phase

lag for each gait within the Ic intervals (determined in step 1).

Step 5 – full CPG model: it is simulated with the parameter values determined in

the previous steps to verify that, as a whole, it produces all established gaits regardless

of the initial conditions of the four cells.

Step 6 – gait transitions: they are verified while Ic is varied.

1.4.3 Results of parameter identification and modeled gaits

The bifurcation analysis of the CPG model was performed using the toolbox CEPAGE

[121], with the parameter values summarized in Appendix A.

Step 3 allows to identify the synaptic parameters to stably maintain the desired phase
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lag ∆14 near the target values in the bound, trot, and walk regions. It has to be noted,

however, that the value of ∆14 for the gallop gait, which should be near 0.6, was not as

accurately reproduced as the targeted phase lags for the other gaits. This is evident in

Fig. 1.14, showing the piecewise-linear function ∆Ic(Ic) (in red) that yields the correct

∆14-values for bound, trot, and walk. An extended ∆Ic range was also examined, finding

that higher differences in the Ic values for fore and hind cells would cause self-sustained

and irregular oscillations of ∆14 instead.

According to step 4, a grid search over gSij and g
E
ij values was performed to determine

which weight combinations give the desired ∆12 for each gait. Because modeling the gallop

gait is precluded by the result of step 3, the focus is on modeling the three remaining

gaits: bound, trot and walk. For each of the corresponding Ic intervals identified in

step 1, a fixed Ic-value representative of the gait is examined, by prioritizing structural

stability of the rhythm generation, i.e., by choosing Ic sufficiently far from adjacent

intervals or from transition values. For each weight pair and identified Ic-value, the

gHCOs were simulated with initial conditions close to 0 and 0.5 (resp., in-phase and anti-
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Figure 1.14: Color map of the phase lag ∆14 over a grid of Ic (µA/cm
2) and ∆Ic (µA/cm

2)

values, for fixed gFij (see Appendix A for numeric values). Red dots mark (Ic, ∆Ic) pairs that

yield ∆14 values closest to the desired ones for bound, trot and walk in the proper Ic intervals.

Appropriate values of ∆14 to model gallop are not achieved in the corresponding Ic interval.

Red solid lines denote the piecewise-linear function ∆Ic(Ic) that interpolates the found (Ic, ∆Ic)

pairs for bound, trot and walk.
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phase states) using the following validation criteria: a gSij-g
E
ij pair is considered valid if it

warrants a ∆12 phase lag close enough to the tabulated values (see table 1.2) regardless

of initial conditions. Among all such combinations, the (gSij,g
E
ij) pair that corresponds

to the best bifurcation diagram was selected, guaranteeing the target ∆12 values for

the gaits, and no multistability for the broadest stretch in the Ic-intervals determined

in step 1. This bifurcation diagram is shown in Fig. 1.15. It evidences that the Ic

range corresponding to the bistable CPG lies almost completely outside of the parameter

intervals determined in step 1, thus barely interfering with the network functionality in the

trot region. On the other hand, the presence of multistability is indicative of the hysteresis

associated with gait transitions, which is a well-known phenomenon in animal locomotion

reported in numerous experimental studies [130, 131]. As an additional consideration,

note that no weight combinations yielded the desired ∆12-value for gallop, unlike other

gaits, confirming the difficulty in modeling this gait.

The complete CPG was simulated next to test its rhythm generation, according to

step 5. One can observe from Figs. 1.16-1.18 that the proposed CPG-circuit produces,

respectively, bound, trot and walk correctly with the desired ∆12, ∆13 and ∆14 phase lags.

The phase lags between all cells for all gaits are in agreement with the results obtained
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0  

0.5

1  

Figure 1.15: Bifurcation diagram that shows the phase lag ∆12 at steady-state of the cells in

the gHCO against Ic (µA/cm2). Colored rectangles highlight the Ic intervals suitable for each

gait determined in step 1: B (blue), G (red), T (yellow), and W (green). The vertical dashed

lines indicate the parameter range where the CPG circuit becomes bi-stable.
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Figure 1.16: Steady-state bound. Membrane voltage Vi (mV ) of each of the four neurons

(colors as in Fig. 1.8) and synaptic activation sSi of the efferent S-synapse (black lines).
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Figure 1.17: Steady-state trot. Membrane voltage Vi (mV ) of each of the four neurons (colors

as in Fig. 1.8) and synaptic activation sSi of the efferent S-synapse (black lines).
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Figure 1.18: Steady-state walk. Membrane voltage Vi (mV ) of each of the four neurons

(colors as in Fig. 1.8) and synaptic activation sSi of the efferent S synapse (black lines).

in steps 3 and 4, confirming the reliability of the proposed design method. Note that, due

to reciprocal interactions, the corresponding frequency f and duty cycle d of the network

cells differ from those recorded in the isolated ones for the same Ic values. Needless to

say, stronger synaptic coupling results in greater f and d deviations from the values in

isolation. Note, however, that lower synaptic weights would not satisfy the requirements

imposed in steps 3 and 4. The shift from the expected value of d can be at least partially

corrected a posteriori by acting on the reference voltage Vt used to calculate d, which

does not influence any other aspect in the CPG dynamics.

Lastly, according to step 6, the transient behavior of the CPG was verified by varying

Ic and ∆Ic following the piece-wise linear function (shown in red) in Fig. 1.14 and

observing the transitions between gaits. As can be seen in Fig. 1.19, all transitions

happen promptly (in less than 2s) and smoothly. However, when transitioning from

trot to walk, observe that, during a time transient in the order of tens of seconds after

the transition, neurons 1 and 2 occasionally skip a burst, momentarily disrupting the
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Figure 1.19: Membrane voltage Vi (i=1,2,3,4) of the four neurons (colors as in Fig. 1.8) and

phase lags ∆1j (j=2 solid line, j=3 dashed line, j=4 dotted line) during the transitions between

bound and trot (a), trot and walk (b), walk and trot (c), trot and bound (d). The transitions

are obtained by varying the values of Ic and ∆Ic following the red piecewise-linear function

shown in Fig. 1.14.

alternation sequence, as shown in Fig. 1.20. To identify the cause of this behavior, the

influence of inhibitory and excitatory synapses was examined separately. It was found
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that the same phenomenon still occurs with the E-type synapses silenced, for weights of

the S-type synapses gSij in the order of magnitude determined in step 4. Such behavior

was not observed for values of gSij decreased by more than two orders of magnitude. This

again suggests that lower synaptic weights would be less problematic in terms of any

unwanted behavior caused by the interplay of the different dynamics within the network.
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Figure 1.20: Fragment of the time interval where neurons 1 and 2 skip a burst after the

transition from trot to walk. Membrane voltage Vi (mV ) of each of the four neurons (colors as

in Fig. 1.8) and synaptic activation sSi of the efferent S synapse (black lines).
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1.4.4 Alternative synapse model

A modified version of the first-order synapse [132] was also tested to model slow inhibitory

synapses. The dynamics of its activation is governed by the following equation

dsj
dt

= α sj (1− sj)f∞(Vj)− βsj (1.7)

compared to Eq. 1.4, there is an additional multiplicative sj term that warrants a greater

contrast in the mean si-values corresponding to the low and high ends of the bursting

Ic-range for the given neuron model, a favorable property in the gHCO mechanism. The

ratio ψ between mean inhibition and excitation varying Ic (obtained from step 2 of the

parameter identification strategy) using this modified synapse is shown in Fig. 1.21. Note

the difference with respect to Fig. 1.13: in this case, the inhibitory synapse is essentially

silent for low values of Ic.
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Figure 1.21: The ratio ψ between mean inhibition/excitation influx through the S- and

E-synapses, plotted against the external drive Ic (µA/cm
2).

The bifurcation diagram resulting from step 4 of the parameter identification strategy

(Sec. 1.4.2) is shown in Fig. 1.22. Note that, compared to the bifurcation diagram in

Fig. 1.15, the CPG does not become bi-stable for any value of Ic.

The resulting gaits are summarized in Figs. 1.23, 1.24, and 1.25. Notice that, in

this case, longer time intervals (1 second) are shown, to better showcase the activation

sequence for the walking gait. The modified version of the first-order synapse allows

obtaining a walking gait that better conforms with its characteristic frequency and duty

cycle.
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Figure 1.22: Bifurcation diagram that shows the phase lag ∆12 at steady-state of the cells in

the gHCO against Ic (µA/cm2). Colored rectangles highlight the Ic intervals suitable for each

gait determined in step 1: B (blue), G (red), T (yellow), and W (green).
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Figure 1.23: Steady-state bound. Membrane voltage Vi (mV ) of each of the four neurons

(colors as in Fig. 1.8) and synaptic activation sSi of the efferent S synapse (black lines).
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Figure 1.24: Steady-state trot. Membrane voltage Vi (mV ) of each of the four neurons (colors

as in Fig. 1.8) and synaptic activation sSi of the efferent S synapse (black lines).

-80

60 

0

1
-80

60 

0

1
-80

60 

0

1
-80

60 

0

1

Figure 1.25: Steady-state walk. Membrane voltage Vi (mV ) of each of the four neurons

(colors as in Fig. 1.8) and synaptic activation sSi of the efferent S synapse (black lines).
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1.4.5 Alternative parameter identification strategy

The strategy described in Sec. 1.4.2 is not recursive in nature. Recursion can be nonethe-

less integrated into this learning strategy by replacing steps 4 and 5 with steps 4B and

5B as in Fig. 1.26. Starting from null gHCO synaptic weights (gSij=g
E
ij=0), in step 4B

the weights gSij (identical, to maintain the gHCO symmetry) are increased until the CPG

is able to produce the desired gaits with ∆12 close to 0.5 (trot and walk, in the consid-

ered case) for sample values of Ic and ∆Ic representative of the gaits, regardless of initial

conditions.

If the obtained CPG is not able to model the desired gaits with ∆12 close to 0 (bound,

in this case), step 5B is performed. In step 5B the weights gEij (identical) are increased

until the CPG is able to produce the desired gaits with ∆12 close to 0 for sample values

of Ic and ∆Ic representative of the gaits, regardless of initial conditions. If the new

CPG is not able to model the desired gaits with ∆12 close to 0.5, step 4B is repeated.

The steps are re-iterated until all gaits are modeled correctly. Since the success of the

strategy is not guaranteed a priori, the iterations should be stopped when the weights

reach unrealistically high values.

Generally, the outcomes of both the original and the alternative strategy are equiva-

lent, since both strategies will yield a gHCO weight pair gSij, g
E
ij that leads to excitation

prevailing at low spike frequency (causing the neurons of the gHCO to synchronize) and

inhibition prevailing at high spike frequency (causing the neurons to alternate). Steps

4B and 5B are less computationally demanding than the grid search in step 4 of the

original strategy but do not span the complete parameters domain, possibly leading to

a local minimum. Moreover, the grid search in step 4 can produce more than one valid

weight pair, giving the possibility of selecting the most favorable pair based on additional

considerations on the bifurcation diagram. For example, one could select the bifurca-

tion diagram where no multi-stability is present for the longest stretch in the Ic intervals

determined in step 1.
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Step 4B:

increase 𝑔𝑖𝑗
𝑆 until

gaits with ∆12 close
to 0.5 are obtained

Step 5B:

increase 𝑔𝑖𝑗
𝐸 until

gaits with ∆12 close
to 0 are obtained

gaits with ∆12 close to 0.5 
are modelled correctly

NO

YES gaits with ∆12 close to 0 
are modelled correctly

YES

NO

initialize

𝑔𝑖𝑗
𝑆 =0 𝑔𝑖𝑗

𝐸=0

Step 3

Step 6

Figure 1.26: Recursive flowchart that summarizes the alternative steps 4B and 5B.
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1.5 Parameter identification through global

optimization

The custom optimization strategy proposed section 1.4.2 hierarchically subdivides the

high-dimensional problem of parameter setting into consecutive simpler steps, each one

giving as output the optimal subset of parameter values to be used as a footprint for the

following step. However, since the dynamics of the final CPG network depends on the

interplay of all model elements, a global optimization algorithm could reach parameter

combinations not explored by the previously proposed strategy. The first step is to define

a cost function to be minimized.

1.5.1 Cost function

It is evident that the problem of tuning the parameters of the CPG model so that it

can successfully reproduce quadruped gaits cannot be codified in an analytic form. Since

the goal is to obtain quadruped gaits with certain characteristics in terms of phase lags,

frequency and duty cycle (see table 1.2), the cost function can be defined by comparing

the target values of these characteristics with the values obtained by simulating the CPG

with a certain parameter set. In particular, the cost function is defined as follows: for a

candidate solution x (set of parameters), the CPG is simulated for values of the control

current Ic compatible with the desired gaits, until it reaches steady-state. To ensure that

transitions between gaits would be successful as well, each gait is simulated for initial

conditions close to adjacent gaits. From each simulation, the membrane potentials of

the four neurons V1, V2, V3, V4 are considered; if any of the membrane potentials exhibit

abnormalities (i.e. anything different from regular bursting) the cost function is assigned

an arbitrarily large value and subsequent simulations with the current parameter set x

are not performed. Otherwise, the phase lags ∆12, ∆13, ∆14, the frequency f and the

duty cycle d are extracted.
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The cost function ϵ(x) is then calculated as:

ϵ(x) =
∑
G

wGϵG(x) (1.8)

with wG weighting factor and superscript G = {B,G, T,W} indicating the gait (bound,

gallop, trot, and walk, respectively). Each of the terms ϵG is obtained as the sum of 3

components:

ϵG(x) = w∆ϵ
G
∆(x) + wfϵ

G
f (x) + wdϵ

G
d (x) (1.9)

where

• ϵG∆(x) is the mean squared difference between the values of ∆12, ∆13 and ∆14 ex-

tracted from each simulation and their target values; this term is weighted by a

factor w∆.

• ϵGf (x) is (i) zero if f falls within its target ranges for all simulations or (ii) the

absolute value of the normalized mean difference between f and the nearest end of

its target range; this term is weighted by a factor wf .

• ϵGd (x) is (i) zero if d falls within its target ranges for all simulations or (ii) the

absolute value of the normalized mean difference between d and the nearest end of

its target range; this term is weighted by a factor wd.

Defining the cost function as explained above allows weighing appropriately the different

contributors: for instance, w∆ should be much greater than wf and wd, since each gait is

primarily defined by its phase lags ∆12, ∆13 and ∆14, which determine the limb movement

pattern. Moreover, the a priori knowledge about the difficulty in reproducing the gallop

gait can be taken into account by choosing wG smaller in comparison with wB, wT and

wW .

The obtained cost function is thus discontinuous, non-differentiable, and highly non-

linear. Global optimization strategies suitable to solve this problem are based on particle
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swarm and genetic algorithms. Particle swarm optimization (PSO) [133] is a computa-

tional method that finds the global minimum of a cost function by considering a popu-

lation of candidate solutions, i.e., particles; the particles move around the search space

according to simple rules that regulate the particle’s position and velocity, inspired by

bird flocking, fish schooling, and swarming theory in particular. Each particle’s movement

is influenced by both its local best-known position and the global best-known positions in

the search space, which are updated as the search progresses, moving the swarm toward

the best solutions. PSO makes no assumptions about the problem being optimized and

can search very large spaces of candidate solutions. It also does not calculate the gradient

of the problem being optimized. The peculiarity and strength of PSO lie in the delicate

balance between conservative testing of known regions versus risky exploration of the

unknown.

Genetic algorithms (GA) [134] are an optimization method based on natural selec-

tion, the process that drives biological evolution. They involve a population of potential

solutions that undergoes a series of genetic operations, such as crossover and mutation, to

generate new solutions. The fitness of each solution is evaluated, and the fittest solutions

are selected for “reproduction”. Over successive generations, the population “evolves”

toward an optimal solution.

Another aspect to take into account is that the cost function is expensive to evaluate

since it requires multiple simulations of the CPG model; for this reason, surrogate opti-

mization (SO) [135] is another candidate optimization technique, since it allows carrying

out the optimization process using a small number of function evaluations. SO works

by iteratively fitting a surrogate model to the cost function using data from function

evaluations and then using the surrogate model to guide the optimization process.

1.5.2 Optimization results

The search for the minimum of the cost function is performed using the following Matlab

functions, that implement, respectively, PSO, GA and SO algorithms:
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• particleswarm: it implements the algorithm described in [133, 136, 137]. The al-

gorithm initializes the positions (each corresponding to a candidate parameter set

x) and velocities of the swarm’s particles and repeats the following steps at each

iteration: (i) it evaluates the cost function at each particle position and determines

the best location, (ii) it chooses new velocities based on the current velocity, the

particles’ individual best locations, and the best locations of their neighbors, and

(iii) it updates the particle locations.

• ga: it implements the algorithm described in [138]. The algorithm creates an initial

population (with each individual corresponding to a candidate parameter set x)

and, at each iteration, (i) it evaluates the fitness value of each individual of the

current population and it creates the next generation by (ii) performing either single

individual mutation or individuals—crossover on individuals with high fitness values

and by (iii) sampling a small group of individuals from those with low fitness values

(the so-called elite individuals).

• surrogateopt : it implements the algorithm described in [135]. The algorithm at-

tempts to find the global minimum of a cost function using a small number of func-

tion evaluations. At each iteration, the algorithm alternates between two phases:

(i) evaluation of the cost function at random points (with coordinates corresponding

to a candidate parameter set x) and construction of the surrogate by interpolating

a radial basis function through said points; (ii) search for the minimum by sampling

the surrogate at random points and rating them based on their value and their dis-

tances from points where the objective function has been evaluated; the objective

function is evaluated at the best candidate point and the surrogate is updated.

All synaptic weights were included in the set of parameters to be optimized, since they

are fundamental in determining the CPG behavior, along with the values of ∆Ic for each

gait. Therefore, x = {gS12, gE12, gF41, gF14, gD12, ∆IBOUND
c , ∆IGALLOP

c , ∆ITROT
c , ∆IWALK

c },

with nx = 9 elements. All other parameters were set as follows, taking into account the
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symmetry of the CPG model:

• gS21, g
S
34 and gS43 equal to gS12;

• gE21, g
E
34 and gE43 equal to gE12 ;

• gF32 equal to gF41;

• gF23 equal to gF14;

• other parameters as in table A.2 of Appendix A.

The optimization algorithms were initialized with the default options suggested for

nx = 9: a swarm of 90 particles for particleswarm, a population of 200 individuals for

ga, and a set of 20 sample points to create the surrogate function for surrogateopt. The

explorable parameter space was constrained by imposing lower and upper bounds for each

parameter in x, allowing value ranges that produce a biologically plausible behavior of

the CPG model. The result of the custom optimization strategy proposed in section 1.4.2

was taken into account by setting one instance x∗0 of the initial candidate parameter set

to the obtained parameter values (listed in table A.2 of Appendix A). The remaining in-

stances of the initial candidate parameter set, i.e. 89 particle positions for particleswarm,

199 individuals for ga, and 19 sample points’ coordinates for surrogateopt, were set ran-

domly within the bounds. Cost function weights wG and w∆ were set to 0.01 and 200,

respectively, while all other cost function weights were set to 1.

All algorithms were able to find parameter sets x which yielded values of the cost

function ϵ(x) lower than ϵ(x∗0), with GA reaching the lowest value, as summarized in

table 1.3.

Table 1.3: Values of the cost function ϵ(x) as resulting from each optimization strategy

custom optimization strategy PS GA SO

ϵ(x) 4.0932 3.4907 1.8053 2.9670
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At the same time, none of the parameter sets x found by the global optimization

algorithms drifted significantly from ϵ(x∗0), as illustrated in Fig. 1.27. This suggests that

there are no regions of the parameter space distinct from the one identified by the custom

optimization strategy where the gaits are correctly reproduced. The global optimization

algorithms, however, can further refine the parameter set x, reaching lower values of ϵ(x).

CS
PS
GA
SO

Figure 1.27: Parameter sets x found by the custom optimization strategy (CS, black stars),

the PS optimization (green circles), the GA optimization (blue circles), and the SO algorithm

(orange circles). The black lines indicate the range between the lower and the upper bounds

constraining the explorable parameter space.

Fig. 1.28 shows the impact of this refinement on the obtained gaits. None of the

parameter sets found by the algorithms produced an acceptable gallop gait, which is

thus not shown. The lower values of ϵ(x) reached by the global optimization algorithms,

however, come at the cost of a significantly higher computational load. Considering

the running time for the custom optimization strategy TCS
1, the running time for the

global optimization algorithms is, in increasing order: 3.53 ·TCS for the PS optimization,

7.61·TCS for the SO algorithm and 24.50·TCS for the GA optimization. It has to be noted

that these values are only indicative of the computational cost of the specific runs, and

19 hours and 38 minutes on Intel®Xenon(R) CPU E5-1620 v2 @ 3.70Ghz x 8
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give a general idea of the different orders of magnitude. Even when maintaining all other

conditions unaltered, both the run time and the performance of the global optimization

algorithms can be impacted by the initialization of the particles’ positions, population

individuals, or points’ coordinates, and likely worsened if the instance x∗0 of the initial

candidate parameter set is not known a priori. The high computational cost, however,

precludes a systematic analysis over multiple runs.

Figure 1.28: Gaits obtained by simulating the CPG with the parameter sets x found by

the custom optimization strategy (CS), the PS optimization, the GA optimization, and the SO

algorithm.
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1.6 Concluding remarks

The developed gHCO model with a short-term plasticity mechanism is able to account for

short-timescale gait transitions induced by sensory input or cognitive tasks. In this model,

spike-frequency dependent synapses can themselves dynamically control the rhythmic

outcomes of the gHCO from in-phase bursting to anti-phase bursting and vice versa,

without changing time constants and conductances.

The gHCO concept led to the formulation of a design strategy to devise CPG models

according to a minimalist-functional-topology approach (see Fig. 1.7), using a simple

network structure while focusing on realistic modeling of nonlinear cellular and synaptic

dynamics to account for short-term synaptic plasticity. The resulting CPG model can

reproduce the sought locomotion patterns of the mouse rather well and could have poten-

tial in robotics applications. Indeed, engineering modern mobile robots requires knowl-

edge of a section of the theoretical biology that is related to the dynamics of CPGs [74,

75]. Generally speaking, the choice between a bio-inspired-topology and a minimalist-

functional-topology approach (or an intermediate recipe with a different mix of levels of

abstraction for network structure and elements) is driven by the specific application or

designer interest.

The proposed design strategy relies on tuning the parameters of a model with fixed

topology through extensive simulations and optimizations. The proposed custom strategy

hierarchically subdivides the high-dimensional problem of parameter setting into consec-

utive simpler steps, each one giving as output the optimal subset of parameter values to

be used as a footprint for the following step. Dividing the problem into steps, not only

makes it approachable in terms of dimensionality reduction, but also gives insight into

the role of each sub-system and its interplay with other model elements. The success

of each step depends of course on the neuron and synapse models’ adequacy in fulfilling

the requirements for the target gaits. Notice that, however, the dynamics of the final

CPG network depends on the interplay of all model elements. For this reason, different

global optimization methods have also been tested for tuning the model parameters; the
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results suggest that the custom optimization strategy is efficient in finding the region of

the parameter space where the gaits are correctly reproduced and that the strategy does

not overlook other suitable parameter space regions. The global optimization algorithms

were able to refine the set of parameters, given a priori knowledge about the result of

the custom optimization strategy, at the cost of a much higher running time.

When the parameters are properly tuned, the proposed bio-inspired 4-cell CPG is

indeed able to model gait transitions in a biologically plausible way, through varying

external currents only, while synaptic conductances and time constants remain fixed.

Following the proposed design strategy, three desired gaits (bound, trot, and walk) out of

the four standard mouse gaits were reproduced correctly, as well as smooth and prompt

transitions between them. To remedy the inability of modeling gallop, which confirms the

difficulty in obtaining the corresponding phase lag ∆12 using fast excitatory synapses and

slow inhibitory synapses in the given CPG, one option would be to consider a network

configuration where each cell is composed of a spiking and a bursting neuron to factually

decouple the intra-burst spike frequency and the burst frequency of the cell. Then, fast

inhibitory synapses and slow excitatory synapses in such a CPG could provide the desired

phase lag ∆12 more affordably, as suggested by the results discussed in section 1.3 (see,

in particular, Fig. 1.3).
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Chapter 2

Brain Networks

Personal contribution — The entire chapter can be considered as orig-

inal. Nonetheless, known findings, models and algorithms are utilized

throughout all sections to frame and build the proposed method, which

aims to derive connection weights between brain areas that are compatible

with both the structural and the functional connectivity observed experi-

mentally.

2.1 Bridging functional and anatomical neural

connectivity through nonlinear dynamics

The Holy Grail of computational neuroscience is to derive reliable models that, under

specific conditions, can reproduce experimentally observed human brain functions, as

witnessed by many current joint international efforts in this direction [40, 41, 42]. One

of the pillars of the research in this field is the growing availability of neuroimaging tech-

niques, which allow the detection of patterns of activity across neural units that encode

objects, concepts, or states of information [139]. Various techniques based on imag-

ing data have been developed to extract functional and structural connectivity matrices

of the human/animal cortex, but the way brain function is shaped by the underlying
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anatomical substrate is far from understood [140]. Moreover, anatomical connectomes

estimated from experimental data – e.g., from diffusion magnetic resonance imaging,

dMRI – are always subject to a degree of uncertainty. A second research path that is

attracting a growing interest is how to employ network theory and nonlinear dynam-

ics to build brain models based on imaging data [141, 142, 143, 144, 145, 146, 147,

148].

The orchestrated activity of neural populations has been postulated to be one of

the key mechanisms underlying brain functions [149]. When synchronization is observed

between brain areas, it is approximate, due to the heterogeneity of physical parameters

and to the unavoidable presence of noise. At a macroscopic level, we see the emergence

of regular oscillations of the local field potential (LFP) in specific brain areas, including

one or more populations, such as in the case of the cortical rhythms in the cerebral cortex

[150]. One of the most common ways to non-invasively detect the presence of coherence

among brain areas is to analyze the correlation between the blood oxygen level-dependent

(BOLD) signals measured in these areas through functional magnetic resonance imaging

(fMRI).

This chapter proposes a method to reconcile structural connectivity matrix data,

derived from dMRI, and synchronous clusters data, that arise from fMRI.

2.1.1 Summary of the proposed method

The approach is to model the topology and the dynamics from which the resting activity

patterns of the cortical network emerge. In particular, with regards to the topology, the

level of uncertainty on the anatomical connectome (dMRI data) of a cortical network is

reduced by leveraging both fMRI data and tools borrowed from the theories of nonlinear

dynamics and complex networks; the original network topology is modified to make it

compatible with the existence of the synchronous clusters observed experimentally. With

regards to the dynamics, each area is modeled as a Wilson-Cowan oscillator [151], which

has been shown to be reasonably realistic to simulate cortical dynamics [152]; the node
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dynamics are analyzed to ensure the stability of the synchronous clusters. Moreover,

the corresponding BOLD signal is modeled through a nonlinear dynamical system [153,

141], in order to get macroscopic data that can be directly compared with the fMRI

measurements in terms of cluster composition. The main novelty element is the con-

nection established between anatomical and functional data, based on the study of

cluster synchronization through the Master Stability Function (MSF) approach [154,

155]. Nonlinear dynamics provides tools for studying exact cluster synchronization; when

applying these tools to experimental data, for which synchronization is only approximate,

it is necessary to introduce the simplifying assumption of homogeneous nodes to derive

meaningful results. The heterogeneity will be reintroduced in the final (optimized) model

in the form of noise and mismatched node parameters, to both increase its degree of ac-

curacy and verify the robustness of the obtained results. Hence, data-driven (the original

connectivity matrices derived from MRI data) and model-based (the dynamical network

model) approaches are used complementary.

Figure 2.1 illustrates the main elements of the proposed method, which starts from

functional and structural connectomes derived from fMRI and dMRI scans, respectively.

The functional data evidences the presence of approximate synchronization (namely, high

correlation) between the neural activity of specific brain areas. The areas with high

correlation are assumed to be part of the same synchronous cluster. The objective is to

obtain network models with different granularity in terms of clusters, that are compatible

with the clusters evidenced by the functional connectivity analysis, in order to reduce the

high uncertainty on the weights of the structural connectome. For each resolution level,

this is done as follows:

• node dynamics is added to the topology defined by the structural connectome

through a neural mass model [43]. The method proposed remains valid independent

of the particular choice of the neural mass model and of its parameters.

• The network is chosen to be homogeneous in the nodes to focus the analysis on

exact cluster synchronization.
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• The concept of equitable clusters [156, 157] and the MSF approach [154] are used

to optimize the weights of the structural connectome with the aim of making the

network converge to the clusters of highly functionally-correlated areas; this is done

by changing the weights as little as possible from their experimentally measured

values, also taking into account their uncertainty.

At this point, one can choose the model with the most suitable resolution level, according

to the specific objective, and establish approximate synchronization by reintroducing

optimization + 

model-based

analysis (stability of 

sync clusters) of 

homogeneous

networkT

multi-

resolution 

models

NMM

data-driven connectome



structural

connectivity

(dMRI)

functional

connectivity

(fMRI)

exact

synchronization

final

model

approximate

synchronization

choice of 

resolution level

+

heterogeneity

Figure 2.1: Summary of the proposed method. It starts (top-left ovals) from data-driven

structural and functional connectomes, derived from dMRI and fMRI scans. It uses a model-

based method (top-right ovals) to bridge functional and structural connectivity. The reference

(homogeneous) network model has an initial topology defined by the structural connectome

and node dynamics imposed by a neural mass model (NMM). It employs a multi-resolution

approach, by analyzing cluster partitions at different granularities (bottom-right oval). For each

resolution level, the uncertainty on the connection weights is reduced by optimizing them to

enforce the existence of the corresponding cluster synchronous solution. One resolution level is

chosen, and the corresponding model is made heterogeneous, thus obtaining again approximate

synchronization (bottom-left oval).
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heterogeneity either on the connection weights or in the nodes. This leads to the final

network model, in which both functional and anatomical connectivity are incorporated.

The model should be able to reproduce the correlation in the BOLD signals observed

experimentally in fMRI data (i.e., the approximate synchronization between brain areas)

with connection weights that differ from the dMRI connectivity matrix by an extent

comparable with the uncertainty introduced by the measuring process.

In the following sections, the method steps are detailed through a case study.

2.1.2 Topology and dynamics

The method is applied to functional and structural connectomes obtained from 10 fMRI

and 10 dMRI scans, executed across a month, of one healthy adult at resting state, taken

from the Neurodata MRI Cloud database [158]. A weighted and undirected network

graph with N = 48 nodes is considered (see Fig. 2.2), each representing a cortical

area according to the Harvard-Oxford Cortical Structural Atlas (RRID:SCR 001476) (see

Appendix B for the complete list of node names and numbering). Edges represent long-

range connections between the cortical areas. This graph can be described by a symmetric

structural connectivity matrix A0, whose entries a0ij are the connection weights. A0

is built by normalizing and averaging the 10 structural connectomes, since anatomical

connectivity at this scale does not vary significantly in a subject in short time periods [159,

160]. Information on the uncertainty of each weight is stored in a matrix ΣA0 , where each

entry is the variance of the weight among the 10 normalized connectomes.

By assigning dynamics to each node, the network of N coupled neural oscillators is

described by the following general set of equations (i, j = 1, . . . , N):

ẋxxi(t) = FFF (xxxi(t)) + ΓΓΓ

(
xxxi, σ

∑
j

aijGGG(xxxj(t))

)
(2.1)

where xxxi ∈ Rm are the state variables of node i = 1, . . . , N , FFF : Rm → Rm describes the

dynamics of an isolated node and ΓΓΓ : Rm × Rm → Rm describes the coupling between
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Figure 2.2: Scheme of the network graph described by the structural connectivity matrix A0;

for clarity, only the edges corresponding to the highest weights (first quartile) are displayed;

nodes are named according to the Harvard-Oxford Cortical Structural Atlas (see Appendix B

for node numbering).
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nodes, where aij is the strength of the coupling from node j to node i. The parameter σ

controls the overall strength of the connections.

The functional connectomes refer to the same 48 brain areas and are given in the form

of correlation matrices, whose entries describe the pair-wise temporal correlation between

the activity of two brain areas.

2.2 Hierarchical clustering

From each of the 10 functional connectomes, given in the form of correlation matrices, it is

possible to identify the clusters of nodes that exhibit coherent activity with a hierarchical

clustering approach, as commonly done in the literature [161, 162, 163, 164]. Given

a correlation matrix X, the corresponding dissimilarity matrix can be defined as D =

1N − X (where 1N is an N × N matrix with all entries equal to 1). D is converted to

vector form with Matlab’s squareform function and fed to Matlab’s linkage function with

the ‘complete’ option (which implements the farthest neighbor method) to perform the

hierarchical clustering.

The result can be visualized as a dendrogram, an example of which is shown in Fig. 2.3.

Depending on the level ℓ at which the dendrogram is cut horizontally, the corresponding

clustering is described by the sub-trees originating from each branch cut by the horizontal

line: for example, in panel b the red line cuts the dendrogram at the level corresponding

to 13 clusters. A certain variability across the dendrograms obtained from different

fMRI sessions is expected. A set of clustering configurations, describing the functional

connectivity of the subject at different granularities, is identified by selecting a set of

levels L∗ = {ℓ∗k} of the dendrogram derived from a chosen correlation matrix X∗, each

corresponding to k clusters.
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hierarchical clustering algorithm

correlation matrix

permutated correlation matrix

dendrogram

Figure 2.3: Given a correlation matrix, it is possible to identify the clusters of nodes that

exhibit coherent activity with a hierarchical clustering approach. The obtained hierarchical

clustering can be visualized in the form of a dendrogram, where nodes appear on the horizontal

axis according to a permutation that places nodes belonging to the same cluster adjacent to one

another. Depending on the level ℓ at which the dendrogram is cut horizontally, the corresponding

clustering is described by the sub-trees originating from each branch cut by the line: for example,

the red line cuts the dendrogram at the level corresponding to 13 clusters. The correlation matrix

can be re-arranged based on the obtained permutation so that the clusters can be evidenced

along the diagonal. This figure shows the dendrogram associated with X∗. The levels ℓ∗k are

marked by colored horizontal lines. Grey areas correspond to trivial partitions with too few or

too many clusters (see also panel a of Fig. 2.4); the sets of clusters corresponding to levels ℓ∗13

(red), ℓ∗18 (orange), and ℓ∗31 (teal) are highlighted on the permutated correlation matrix.
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2.2.1 Identification of the target partition

For each level ℓ of the dendrograms obtained from the hierarchical clustering of the

correlation matrices, a cumulative (across sessions) similarity index Ψ1 is calculated based

on the Fowlkes and Mallows comparison measure B [165], thus obtaining the curve Ψ1(ℓ)

shown in panel a of Fig. 2.4. Specific levels ℓ∗k (corresponding to k clusters) are selected

as local maxima of this curve (colored dots), discarding local maxima that are not in

ascending order and trivial partitions with too few or too many clusters (grey areas).

The aim of this selection is to describe with the best accuracy, but at different scales,

the functional connectivity of the subject, based on the consistency of the corresponding

clustering across the 10 fMRI sessions.

The clusters corresponding to each level ℓ∗k are established by computing a second

cumulative (across the selected levels) similarity index Ψ2, shown in panel b of Fig. 2.4.

Ψ2 gives an indication of how much the clustering obtained from a session is similar to

the clusterings from all other sessions. Therefore, the fMRI session corresponding to

the maximum value of Ψ2 is chosen as the most representative of the subject. In the

illustrating example, session 10 has the highest Ψ2 (red dot). The selected correlation

matrix is referred to as X∗.

The Fowlkes and Mallows method [165] allows to compare two hierarchical partitions

by calculating the comparison measure B, which ranges from 0 (no matching between

the two partitions) to 1 (perfect matching between the two partitions). This comparison

measure is the key element to compute the two similarity indices, Ψ1 and Ψ2. Ψ1 is

calculated for each level ℓ as

Ψ1 =
1

Ns

Ns∑
i=1

Bi (2.2)

where Bi is the comparison measure between a single pair of functional connectivity ma-

trices (corresponding to different fMRI sessions on the same subject) and Ns =
∑ns−1

k=1 k is

the total number of possible pairwise comparisons between the sessions. In the illustrating

example, there are ns = 10 sessions, so Ns = 45.
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The similarity index Ψ2 is calculated for each session s as

Ψ2 =
1

nℓ

∑
ℓ∈L∗

1

ns

ns∑
k=1
k ̸=s

Bk (2.3)

with Bk comparison measure between session s and session k and nℓ number of elements in

L∗. For the illustrating example, L∗ = {ℓ∗13, ℓ∗18, ℓ∗21, ℓ∗31, ℓ∗39}, i.e. k ∈ {13, 18, 21, 31, 39}.

The level ℓ∗13 (ℓ∗39) corresponds to the coarsest (finest) scale of description of the brain

areas’ correlations.

1 2 3 4 5 6 7 8 9 10
0.4

0.6

13 18 21 31 39
0.4

0.6

0.8

Figure 2.4: (a) Cumulative (across the 10 fMRI sessions) similarity index Ψ1, based on the

Fowlkes and Mallows comparison measure, for each dendrogram level ℓ. Ψ1 measures the consis-

tency of the corresponding clustering across the fMRI sessions. Specific levels ℓ∗k (corresponding

to k clusters) are selected as local maxima of this curve (colored dots, same color code as Fig.

2.3), discarding local maxima that are not in ascending order and trivial partitions with too few

or too many clusters (grey areas, corresponding to those of Fig. 2.3). (b) Cumulative (across

levels ℓ∗k) similarity index Ψ2 for each of the 10 sessions. Ψ2 indicates of how much the clustering

obtained from a session is similar to the clusterings from all other sessions. The fMRI session

corresponding to the maximum value of Ψ2 (red dot, corresponding to the correlation matrix

X∗ shown above) is chosen as the most representative of the subject.
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2.3 Compatibility of the structural and functional

connectivity matrices

The main modeling assumption is that a network with homogeneous nodes, for which

exact synchronization within each cluster is obtained, can be used as a reference. On the

one hand, this could seem unrealistic, because in a real neuronal network each area is

expected to be unique, i.e., from a modeling standpoint, to have its own parameter values,

as the corresponding neuronal populations are heterogeneous with respect to multiple

physical properties. On the other hand, the identification of these heterogeneities (and

corresponding model parameters) from measured data is highly nontrivial and depends

on the quality and quantity of data, the noise inherent to measurements of biological

systems, and the complexity of the chosen model. For these reasons, heterogeneity is

initially removed from the network – thus dealing with exact cluster synchronization and

focusing on the basic phenomenon stripped out of any other effect – to re-introduce it

later, in the form of noise and heterogeneous node parameters.

Given these premises, is the structural connectivity matrix A0 compatible with the

clustering observed in the functional connectivity matrix X∗? To verify this, the network

nodes are modeled as Wilson-Cowan neural masses [151] and the BOLD signal associated

with each node is obtained by using the Balloon–Windkessel hemodynamic model of

Friston and Harrison [153].

2.3.1 The Wilson-Cowan neural mass model

The dynamics of the i-th node are described by the equations:
τEĖi = −Ei +

1

1+e−c(wEEEi−wIEIi+P+ηi(t)+E
syn
i

−θ)
,

τI İi = −Ii + 1
1+e−c(wEIEi−θ) ,

(2.4)

with

Esyn
i = σ

∑
j

aijEj, (2.5)
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where the state variables Ei(t) and Ii(t) are the fraction of excitatory and inhibitory

neurons firing per unit time at instant t, respectively; couplings are modeled as in [141,

166], without considering delays for ease of presentation. However, the approach can

be successfully adapted to account for connection delays, as will be detailed in section

2.6. The weights wuv, with u, v = {E, I}, describe the intra-population strength of

connection from neuron type u to v; c and θ are, respectively, the gain and the threshold

of the sigmoid; P is a spontaneous excitatory background input; ηi(t) is a white gaussian

noise signal, kept null unless otherwise stated; τE, τI control the timescales of the first-

order kinetics; Esyn
i is the synaptic input to node i, which is determined by the structural

connectivity matrix entries aij and the fraction of active excitatory cells in each j-th pre-

synaptic population. Eq. (2.5) follows from the fact that long-range connections between

cortical areas are only excitatory [167].

The parameters are set as in [166]: wEE = 3.5, wIE = 2.5, wEI = 3.75, c = 4,

θ = 1, P = 0.34. P is chosen so that the isolated node converges to an equilibrium point

corresponding to a low activity state, but coupled nodes converge to limit cycles even for

small coupling weights. Time constants are set to τE =0.002 s and τI =0.004 s, so that

their ratio is as in [166], but the nodes exhibit oscillations around 40 Hz as in [141]. For

a fixed value of P , the convergence of the steady-state trajectory to a limit cycle or to

an equilibrium point depends on the value of the synaptic input Esyn
i , which in turn is

influenced by the overall strength of the connections σ in Eq. (2.5). The range of σ is

chosen so that the nodes exhibit oscillatory behavior, in accordance with the local field

potential oscillations observed in cortical activity. In the illustrating example, the nodes

exhibit oscillatory behavior for σ ∈ [0.0001, 0.2]. For σ > 0.2 a growing portion of nodes

‘saturates’, converging to an equilibrium point corresponding to a high activity state.
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2.3.2 The Balloon-Windkessel hemodynamic model

The Balloon–Windkessel hemodynamic model of Friston and Harrison relates neural ac-

tivity to perfusion changes. The model is described by the equations:

ṡi = zi − κsi − γ(fi − 1),

ḟi = si,

τ ν̇i = fi − ν
1
α
i ,

τ q̇i = fi
1−(1−ρ)

1
fi

ρ
− ν

1
α
i

qi
νi
,

(2.6)

where si is the vasodilatory signal, which increases according to the neuronal activity zi of

the i-th region (in our case zi(t) = Ei(t)+Ii(t)), and is subject to autoregulatory feedback;

fi is the inflow, νi is the blood volume and qi is the deoxyhemoglobin content. Parameter

α = 0.32 is the Grubb’s exponent [168], ρ = 0.34 is the resting oxygen extraction fraction

and the other biophysical parameters are set to κ = 0.65 per s, γ = 0.41 per s and

τ = 0.98 s, as per the mean values reported in [153]. The BOLD signal is taken to be a

static nonlinear function of νi and qi:

yi = V0(7ρ(1− qi) + 2(1− qi
νi
) + (2ρi − 0.2)(1− νi)) (2.7)

where V0 = 0.02 is the resting blood volume fraction [153].

2.3.3 Simulation procedure

For each level ℓ∗k the following procedure is carried out:

1. The network dynamics and the corresponding BOLD signals are simulated for an

array of values of σ (see Eq. (2.12)), repeating the procedure 30 times to account

for the effects of different initial conditions.

2. For each simulation, the correlation matrix of the BOLD signals is calculated, dis-

carding transient data. The resulting correlation matrix can be compared with the

functional connectivity matrix X∗.
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3. The same hierarchical clustering that was applied on X∗ is applied on each of the

correlation matrices, obtaining a clustering with k clusters (corresponding to level

ℓ∗k). Each obtained partition is compared with the target partition associated with

X∗, and the Fowlkes and Mallows matching index B between the two partitions is

computed [165].

The initial conditions for all network simulations are set according to the following

criteria: (i) give the same initial conditions to the nodes belonging to the same target

cluster, to encourage the eventual emergence of said cluster (ii) perturb slightly these

initial conditions to ensure that the state variables do not get stuck on an unstable

orbit. For this reason, the initial conditions for the state variables Ei and Ii of the nodes

belonging to the same target cluster are defined as a common mean value, set randomly at

each trial, plus Gaussian noise with a small standard deviation of 10−5. Initial conditions

for the state variables of the BOLD model are simply set randomly at each trial, regardless

of the target cluster configuration. Network simulations are performed with the ode45

Matlab ODE solver. The correlation matrices are calculated using Matlab’s corrcoef

function, which returns an N-by-N matrix with correlation coefficients of variable pairs

as off-diagonal entries.

In the illustrative example, the comparison measure B is averaged over the 30 random

trials (and thus denoted as B̄) and is found to be low (always below 0.3) for all levels ℓ∗k

and for all values of σ, as shown in Fig. 2.5. This highlights that using the information

contained in the structural connectivity matrix A0 ‘as is’ to model synaptic weights

generates results that are incompatible with the observed functional connectivity. This

finding is in agreement with other studies that have questioned the reliability of using

connectivity matrices describing fiber density as a quantitative indication of synaptic

weights [169].

The following section shows how it is possible to intervene on the structural connec-

tivity matrix A0 to make it compatible with the observed functional connectivity.
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Figure 2.5: Comparison measure B̄ between the cluster partition obtained from network

simulations with synaptic weights a0ij (entries of A0) and the target cluster partition associated

with X∗, averaged over 30 random trials for different values of σ. Different colors refer to

different levels ℓ∗k (same color code as in Fig. 2.3 and 2.4).

2.4 Optimization of the structural

connectivity matrix

As a first approximation, the identified clusters of nodes with coherent activity can be

viewed as synchronized clusters. There are two separate questions addressed in the fol-

lowing sections, one is the existence of a cluster-synchronous solution and the other one

is its stability. The existence of a cluster-synchronous solution requires that, for proper

initial conditions, groups of nodes synchronize. This solution is also stable if, under small

perturbations, the system state goes back to the same synchronous clusters.

Given a graph with N nodes, a partition P = {C1, C2, ..., Ck} of the graph is defined

as a subdivision of its node set into k clusters, each composed of np nodes, such that (i)

there are no empty clusters, (ii) the clusters comprise all nodes and (iii) the clusters are

pairwise disjoint, i.e.
∑k

p=1 np = N . Each cluster can be identified through the labels

of its constituting nodes and a given color. A network graph can admit many different

colorings, each one describing a different partition. The existence of a particular set

of self-sustained synchronized clusters in a network graph with homogeneous nodes can

be ruled out or not based on the network topology, independently from the dynamical
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model of the nodes; in particular, the existence of an equitable partition for a given

network is a necessary condition for the existence of a cluster synchronous solution [170,

171]. At this point, only the existence of a cluster synchronous solution is considered,

not its stability; the possibility to converge to such a solution depends also on the node

dynamics, i.e. the functions FFF and ΓΓΓ [155].

A partition (and the corresponding coloring) is equitable if all nodes with color p

receive the same overall input from the nodes of color q, for p, q = 1, ..., k. For each level

ℓ∗k, given the set of target clusters, the goal is to obtain a structural connectivity matrix

Ak for which they constitute an equitable partition. Ak is calculated starting from A0

and solving a quadratic optimization problem. The cost function takes into consideration

the element-wise quadratic difference between A0 and Ak and also the level of uncertainty

associated with each entry of the A0 matrix, stored in the matrix ΣA0 , so that weights

that are more reliable are less likely to be changed significantly.

Matrix Ξk is defined as the element-wise square difference between Ak and A0, i.e.,

Ξkij = (akij − a0ij)
2. Fig. 2.6 (top panels) shows that the entries of the matrix Ξk are

comparable with the entries of the matrix ΣA0 . Moreover, the entries of the matrix Ξk are

smaller as the number of clusters increases because the optimization process changes less

the original matrix A0. This result means that the optimized matrices Ak are still strongly

based on dMRI experimental data and do not differ from the original connectomes more

than what can be justified by the uncertainty introduced by the measurement process.

Bottom panels show that the square difference between the entries of the matrices A0 and

Ak distributes similarly to the entries of the matrix ΣA0 , i.e., the higher the uncertainty

of a specific weight, the larger the change introduced by the optimization algorithm.
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Figure 2.6: Entries of the matrices ΣA0 (red dots) and Ξk (black dots), for all levels ℓ∗k. Top

panels: entries of both ΣA0 and Ξk are ordered from the smallest to the largest and are graphed

on a semi-logarithmic scale. Bottom panels: entries of ΣA0 are ordered from the smallest to the

largest and entries of Ξk are displayed following the same permutation of the indices, graphed

on a linear scale.

2.4.1 Optimization algorithm

The structural connectivity matrix A0 is derived from diffusion MRI data, and, as such,

it has positive entries, is symmetrical, and has null diagonal entries. The optimized

matrix Ak is also constrained to (i) have positive entries, (ii) be symmetric, and (iii)

have null diagonal entries, to maintain the original features of the structural connectivity

matrix. From the variance matrix ΣA0 , a ‘reliability’ matrix Σ̂A0 is defined as Σ̂A0 =

100 · (max(ΣA0)−ΣA0 + ϵ), so that the entries with low variance have high reliability and

vice versa; ϵ is an arbitrarily small quantity that has the only function of avoiding zero

entries. Σ̂A0 is included in the cost function so that the more reliable an entry is, the less

likely it is to be changed significantly in the optimization process to find Ak.

The optimization process is described in the following: the columns of Ak are stacked

in a vector x; the columns of the matrix obtained multiplying entry by entry A0 by Σ̂A0

are stacked in a vector α; a matrix H is defined as the N2-size diagonal matrix with Σ̂A0
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entries on its diagonal; a matrix M1x = 0 codifies the equitable partition conditions and

a matrixM2x = 0 codifies constraints (ii) and (iii). The optimal vector x (i.e., the matrix

Ak) is found by solving the following optimization problem, with a quadratic objective

function and linear constraints of equality and inequality:

min
x

1

2
xTHx− αTx (2.8)

s.t.

x > 0

M1x = 0

M2x = 0.

(2.9)

This quadratic programming problem is numerically solved with the Matlab function

quadprog.
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2.5 The optimized model

The stability of the exact cluster synchronous solution can be studied by using the Master

Stability Function (MSF) approach [154] to determine the intervals of σ values for which

the synchronous clusters for each level ℓ∗k are stable.

2.5.1 Stability analysis

A network of N coupled Wilson-Cowan neural oscillators can be described by the general

set of equations (2.12) with m = 2 state variables:

xxxi =

Ei

Ii

 ,
FFF (xxxi) =

 1
τE
(−Ei)

1
τI
(−Ii + 1

1+e−c(wEIEi−θ) )

 ,
ΓΓΓ(xxxi, σ

∑
j

a0ijG(xj)) =

 1
τE

1

1+e−c(wEEEi−wIEIi+P+E
syn
i

−θ)

0

 ,
GGG(xxxj) =

Ej

0

 .
The cluster synchronization state can be denoted as xxxi(t) = sssp(t), where node i belongs

to cluster Cp. Small variations wwwi(t) = xxxi(t) − sssp(t), stacked in the state perturbation

vectorWWW (t), are introduced to investigate the stability of the synchronous state and their

linearized variational equations are derived (see section B.2 in Appendix B for details).

It is desirable to find a coordinate transformation that separates as much as possible

the perturbation modes in the stability analysis, thus allowing a reduction of the stability

problem in lower-dimensional sub-problems. To this end, the coordinate transformation

introduced in [172, 173, 174], based on simultaneous block diagonalization (SBD), is

performed through the canonical transformation matrix T =

 T∥

T⊥

 [175].
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The k × N submatrix T∥ is associated with the directions along the synchronization

manifold and the corresponding perturbations do not influence the stability of the syn-

chronized clusters. The (N − k) × N submatrix T⊥ is associated with the directions

transverse to the synchronization manifold and the evolution of the variational equation

along these directions determines the stability of the synchronized clusters.

Transverse perturbations are denoted as ηηη⊥(t) = (T⊥ ⊗ Im)WWW (t) (where ⊗ is the

Kronecker product and Im is a m×m identity matrix) and their variational equation is:

η̇ηη⊥(t) = ρ1({sssp(t)})ηηη⊥(t) + ρ2({sssp(t)})ηηη⊥(t) (2.10)

where the set {sssp(·)} collects all the synchronous solutions corresponding to the k clusters

and ρ1 and ρ2 are time-varying matrices defined in section B.2 of Appendix B. The

Lyapunov exponents for each ηηη⊥ component are calculated and the σ intervals where the

cluster synchronous solution is stable are determined as those where the MSF (i.e., the

maximum Lyapunov exponent) is negative.

2.5.2 Robustness to noise and parameter mismatches

The assumption of exact cluster synchronization is necessary to derive meaningful results,

but is restrictive and unrealistic when referring to experimental data from the activity of

brain areas. For this reason, it should be verified that the obtained stability intervals of σ

values hold also for perturbed versions of Ak that produce approximate synchronization

(for small perturbation of the matrix Ak, this was studied in [171]).

The compatibility check, as described in steps 1-3 of section 2.3.3, is repeated on

the optimized structural connectivity matrices Ak perturbed by additive Gaussian white

noise with mean 0 and standard deviation σA. This analysis tests for up to which level

of noise on the connection weights the optimized structural connectivity matrix remains

compatible with the target clusters, derived from the functional connectivity matrix, in

the considered σ intervals. The results for all levels ℓ∗k are shown in Fig. 2.7, along

with the intervals of σ values for which the synchronous clusters for each level are stable
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according to the MSF approach (red lines). As expected, the average comparison mea-

sure B̄ between the target partition (derived from experimental data) and the partition

obtained by simulating the network with the optimized and perturbed structural con-

nectivity matrices Ak becomes lower as σA grows. It can be observed that B̄ is above

the maximum value obtained by simulating the network with the original structural con-
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Figure 2.7: Comparison (through the average comparison measure B̄) between the target

cluster partition (derived from experimental data) and the partition obtained from network

simulations with optimized matrices Ak perturbed by Gaussian noise, for each level ℓ∗k; σA

on the abscissa denotes the noise standard deviation. Red bars on the vertical axis highlight

the σ (synaptic strength) for which the synchronous clusters are stable according to the MSF

approach. Dashed yellow lines are the level curves delimiting the regions where B̄ is higher than

the maximum value obtained by simulating the network with the original structural connectivity

matrix A0 for the same level. Yellow dots mark the values of σ and σA used in Fig. 2.8.
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nectivity matrix A0 in the large region enclosed within the yellow dashed curve. In this

region, the optimized network (with connectivity matrix Ak) behaves in better accordance

with the observed functional connectivity than the original network (with connectivity

matrix A0). Dark regions that fall outside the curve for low values of σA are always

beyond the stability interval identified through the MSF approach. This indicates that

the results are robust to noise on the connection weights, also comparing the numerical

values of σA with the fact that the entries of Ak have a mean of 0.029 and a standard

deviation of 0.065, with minimum 0 and maximum 0.952. The raster plots and BOLD

signals corresponding to specific values of σA and B̄ (yellow dots in Fig. 2.7) are shown

in Fig. 2.8: the progressive desynchronization of clusters is apparent in both the raster

plots and the BOLD signals as σA increases and B̄ decreases.

A similar analysis was carried out by adding a white Gaussian noise term ηi(t) with

standard deviation ση to every node’s excitatory subpopulation input (see Eq. (2.4)).

Panel a of Fig. 2.9 illustrates the results obtained for ℓ∗21 and σ = 10−3: similarly, B̄

holds values close to 1 until ση remains under a certain threshold. Note that B̄ is higher

than the value obtained by simulating the network with A0 for the same level and the

same σ value, for standard deviation ση up to about 10−2, which approaches the amplitude

of the node input without noise; this means that the optimized structural connectivity

matrix Ak appears to be in better accordance with the observed functional connectivity

than A0, even for a relatively high noise level. This provides evidence of the robustness

of the obtained results.

The robustness of the model was also tested by introducing heterogeneous node pa-

rameters. In particular, the model parameters that represent connection weights between

inhibitory and excitatory subpopulations within each node (see Eq. (2.4)) were sampled

from Gaussian distributions with standard deviation σw. Results are shown in panel b

of Fig. 2.9: also in this scenario, the optimized structural connectivity matrix Ak is in

better accordance with the observed functional connectivity than A0, up to a relatively

high value of σw.
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Figure 2.8: Raster plots (left) and normalized BOLD signals (right) for level ℓ∗13, for different

values of noise standard deviation σA and for fixed σ = 10−3 (see yellow dots in Fig. 2.7). Points

in the raster plots denote the peaks of excitatory subpopulation activity of each node, with nodes

belonging to the same cluster represented as adjacent to each other. The normalized BOLD

signals correspond to nodes in three sample clusters, chosen to showcase clusters of different

sizes (pink: 8 nodes, teal: 5 nodes, orange: 2 nodes). Values of σA increase from top to bottom

and correspond to decreasing values of B̄.
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Figure 2.9: (a) Comparison (through the average comparison measure B̄) between the target

cluster partition and the partition obtained from network simulations with connectivity matrix

A21 and a white Gaussian noise term ηi(t) added to every node’s excitatory subpopulation

input; the result is obtained for σ = 10−3. ση is the noise signal standard deviation (see Eq.

(2.4)). The gray dashed line marks the value of B̄ obtained by simulating the network with

the original structural connectivity matrix A0 and without noise for the same level and same

σ value (Fig. 2.5). (b) Comparison (through the average comparison measure B̄) between the

target cluster partition and the partition obtained from network simulations with connectivity

matrix A21 and heterogeneous nodes. Heterogeneity is introduced by sampling the parameters

wEE , wIE , wEI (see Eq. (2.4)) from Gaussian distributions with means µwEE = 3.5, µwIE = 2.5

and µwEI = 3.75 and standard deviation σw. The result is obtained for σ = 10−3. The gray

dashed line marks the value of B̄ obtained by simulating the network with the original structural

connectivity matrix A0 and homogeneous nodes for the same level and same σ value.
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2.6 Introducing delayed synaptic connections

The proposed method can be generalized to account for delays in the synaptic connections

between brain areas. To demonstrate how, a delay τij was assigned to each connection

between nodes i and j, i.e., to each entry of the structural connectivity matrix A0. The

delay matrix was calculated by multiplying an N ×N distance matrix by a propagation

velocity of 1.5 m/s [176]; the distance matrix collects the pair-wise 3D euclidean distances

between nodes, specifically between the centers of brain areas according to the Harvard-

Oxford Cortical Structural Atlas. When delays are introduced, the synaptic current in

the Wilson-Cowan neural mass model is re-defined as

Esyn
i (t) = σ

∑
j

aijEj(t− τij), (2.11)

To optimize the structural connectivity matrix and carry out the stability analysis with

the MSF approach, the delays τij are quantized over L values τ l. This choice is motivated

by two main reasons: (i) the computational cost of the MSF approach increases linearly

with increasing L, (ii) the degrees of freedom available to the optimization algorithm

decrease as L increases, as detailed in the following. The network of N neural oscillators,

coupled through L kinds of links (each one characterized by a delay τ l), can then be

described by the following general set of equations (i, j = 1, . . . , N, l = 1, . . . , L):

ẋxxi(t) = FFF (xxxi(t)) + ΓΓΓ

(
xxxi(t), σ

∑
l

∑
j

alijGGG(xxxj(t− τ l))

)
(2.12)

In this case, L = 3 kinds of connections are considered, and delays τij are quantized over

3 values. To carry out the optimization, the structural connectivity matrix A0 is split

into L matrices Al
0, each corresponding to a link with delay τ l. In particular, entries

of Al
0 corresponding to different delays are set to zero and

∑
lA

l
0 = A0. Each matrix

Al
0 is optimized individually, thus obtaining matrices Al

k, according to the definition of

equitable partitions for graphs with L different kinds of links [177]. The final optimized

structural connectivity matrix for level k is obtained as
∑

lA
l
k = Ak. This process is
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summarized in Fig. 2.10. For high values of L, extremely sparse matrices Al
0 would be

obtained, thus reducing the degrees of freedom for the optimization algorithm. This is

due to the fact that zero entries are constrained at zero by the optimization algorithm.

Recall that matrix Ξk is defined as the element-wise square difference between Ak and

A0, i.e., Ξkij = (akij − a0ij)
2. Panel a of Fig. 2.11 shows that the entries of the matrix Ξk

(exemplified for ℓ∗21) are still comparable with the entries of the matrix ΣA0 , also when

Ak is obtained as explained above. Moreover, panel b shows that the square difference

between the entries of the matrices A0 and Ak (exemplified for ℓ∗21) distribute similarly

to the entries of the matrix ΣA0 .

The stability analysis is carried out by generalizing the MSF formalism to account

for links with L different delays τ l (see section B.3 in Appendix B for details). The

cluster synchronous solution for level ℓ∗21 is stable for σ ∈ [10−4, 0.1341]. The raster plot
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Figure 2.10: The structural connectivity matrix A0 is split into 3 matrices A1
0, A

2
0 and A3

0,

corresponding to link kinds with delay τ1 = 0.0204 s, τ2 = 0.0518 s and τ3 = 0.0832 s,

respectively. Each matrix Al
0 is optimized individually, obtaining matrices A1

k, A
2
k and A3

k (in

this example, k=21). The final optimized structural connectivity matrix for level k is obtained

as
∑

lA
l
k = Ak.
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for σ = 10−3 and L = 3, with delays quantized as in panel a of Fig. 2.12, is shown

in panel c of the same figure, evidencing the synchronization between the nodes in each

cluster. Heterogeneity in delay values was reintroduced a posteriori to test the robustness

of the result obtained for L = 3. In particular, the delays were quantized over 50 values

(panel b), which overlap almost perfectly with the original values of τij. τij values were

not used as is because of the excessive computational burden. The corresponding raster

plot is shown in panel d: as can be observed, heterogeneity in the delay values does

not compromise the synchronization of the nodes within each cluster but influences the

phase difference between clusters [178]. This analysis evidences that, from a theoretical

standpoint, the proposed method can be generalized to account for heterogeneous delays

in the network; however, the computational cost of simulating the network dynamics for

fully heterogeneous delays becomes prohibitive.
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Figure 2.11: (a) Entries of the matrices ΣA0 (red dots) and Ξk (black dots), for level ℓ∗21.

Entries of both ΣA0 and Ξk are ordered from the smallest to the largest and are graphed on a

semi-logarithmic scale. (b) Entries of the matrices ΣA0 (red dots) and Ξk (black dots), for level

ℓ∗21. Entries of ΣA0 are ordered from the smallest to the largest and entries of Ξk are displayed

following the same permutation of the indices, graphed on a linear scale.
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Figure 2.12: (a) Delays τij sorted in ascending order (gray dots) and delays τ l quantized

over 3 values (green lines). (b) Delays τij sorted in ascending order (gray dots) and delays τ l

quantized over 50 values (green lines). (c) Raster plot for level ℓ∗21, for fixed σ = 10−3 and

delays quantized over 3 values. Points in the raster plots denote the peaks of the excitatory

subpopulation activity of each node, with nodes belonging to the same cluster represented as

adjacent to each other; clusters are represented by alternating black and gray colors to facilitate

visualization. (d) Raster plot for level ℓ∗21, for fixed σ = 10−3 and delays quantized over 50

values.
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2.7 Concluding remarks

The proposed method, based on nonlinear dynamics, aims to get information about the

structural connectivity of a subject based on both dMRI and fMRI data. Some key points

and assumptions are discussed in deeper detail in the following to evidence the flexibility

of the proposed approach.

Types of data – fMRI data were used to derive the functional connectivity matrices

and the associated clustering. As an alternative, also other kinds of data providing similar

information (e.g. EEG, MEG) could be used [179].

Hierarchical approach and clustering – Hierarchical clustering is an established method

to identify clusters of nodes in brain networks [143, 161, 162, 163, 164], due to the hierar-

chical modularity exhibited by the human brain [180]. Identifying the most appropriate

number of clusters from a dendrogram, however, is not straightforward. A multi-level ap-

proach was carried out in the proposed example and the levels of interest ℓ∗k were selected

based on considerations derived by the experimental data. In the absence of multiple

scans for each subject or a priori knowledge, it is also possible to use other metrics to

determine the optimal number of clusters, such as the silhouette score [181] or the gap

statistic [182]. In principle, one could also consider all levels, but this would greatly

increase the computational cost of the method.

Directed vs undirected graphs – The proposed approach could be easily generalized to

directed connections [177]. In this case, however, the maximum size of the network to be

numerically studied would be lower, due to the higher computational complexity of the

MSF approach in the non-symmetric case, as detailed in [177].

Dynamics of the nodes – In the proposed example, nodes described by the Wilson-

Cowan neural mass model [151] were used, with couplings as in [141, 166] and parameters

as in [166]. As an alternative, one could employ next-generation neural mass models able

to exactly reproduce the macroscopic dynamics of heterogeneous spiking neural networks

[183, 184, 185, 186, 187]. This would allow using heterogeneous parameters that are

identified with high precision. The MSF step can be taken provided that the considered
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neural mass model falls under the proposed formalism, or the formalism is appropriately

generalized. The node homogeneity hypothesis needed to carry out the optimization

of the structural connectivity matrix and the stability analysis would require the use

of average parameters, under the assumption that parameters that characterize distinct

brain areas are not too different [188].

Cost function of the optimization process – The cost function can be customized, e.g.,

to impose that some elements of the connection matrix are not changed or to weigh

differently the uncertainty about the entries of A0.

Subjects – The proposed results have been obtained with data measured on healthy

subjects in resting state. For non-healthy subjects, specific neural mass models should be

used (e.g., the epileptor [189] for epilepsy, or the model proposed in [190] for Parkinson’s

disease), but the proposed approach remains valid, mutatis mutandis. For healthy sub-

jects exposed to a specific stimulus, an external input representing said stimulus should

be added to the model. This could allow distinguishing between stimulus responses and

ongoing activity [191].

Proposed example vs. global picture – Neuroscientists monitor brain activity in many

ways, using a variety of recording techniques in subjects under a plethora of health,

neurophysiological and mental conditions. This complex and variegate scenario requires

the integration of insights across diverse datasets to understand brain functions [192].

This chapter proposed a method to integrate the information provided by dMRI and

fMRI, with the aim of reducing the uncertainty about the anatomical neural connectivity

of a specific subject at resting state. The analysis carried out has been restricted to a

limited set of clusterings: an extensive analysis for all levels ℓ∗k would have been prohibitive

in terms of computational cost. While this is just a first step, the proposed method can

pave the way towards a better interplay of nonlinear dynamics, complex networks, and

neurophysiological data. In turn, this can lead to better brain models and a deeper

understanding of brain functions. Indeed, the study of dynamic functional connectivity

reveals that brain activity switches between a set of states, where a finite number of
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clustering are identifiable [193, 160]. The proposed method could be generalized by

modifying the structural connectivity optimization process so that the optimized matrix

admits all observed clusterings. The stability analysis could then be carried out for each

synchronous cluster solution, and simulations with different initial conditions could give

information on the basin of attraction of each one, thus providing a model able to fully

reproduce the observed dynamic functional connectivity.
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Chapter 3

Power Grids

Personal contribution — Section 3.1 presents known material and con-

cepts that serve to substantiate the need for inertia estimation algorithms

in power grids. The analysis and the results detailed in the rest of the

chapter are original material, although an initial version of the inertia es-

timation algorithm was taken from the literature.

3.1 The role of inertia in power grids

In recent years the presence of renewable energy sources (RES), like photovoltaic and

wind power plants, has significantly increased in power grids [194]. This is also due to

environmental policies, the fact that fossil fuel reserves are limited and that alternative

solutions are necessary. Including renewable energy sources in power systems, however,

poses challenges in terms of system stability. When the grid is at steady state, the

electrical frequency is maintained at its reference value (for example 50 Hz). However,

if a power imbalance occurs, the synchronous generators change their rotational speed

causing a deviation of electrical frequency from its nominal value. Large deviations may

cause instability in the grid and lead to faults. Each synchronous generator, and also the

power grid as a whole, is characterized by the inertia constant, which is a measure of the
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system’s ability to counteract the frequency changes triggered by external disturbances,

as exemplified in Fig. 3.1. The inertia constant is thus a key factor in determining system

stability [45].

By definition, the mechanical rotational speed of synchronous generators is directly

coupled with the electrical frequency. So, in a power system composed only of synchronous

generators, the source of inertia is the kinetic energy of the rotating masses. In this

condition, the inertia constant of the power grid remains steady over the long term and

thus it is a reliable reference for frequency stability control [195].

On the other hand, renewable energy sources are interfaced with the grid through

power converters, which have no intrinsic inertia. Photovoltaic plants have no rotating

masses and in wind generators the rotational speed of the turbine is not coupled with

the electrical frequency. This reduces the global inertia of the system, thus compromising

stability and reliability [196, 197]. To combat the decrease in system inertia and effectively

integrate RES into power grids, various control strategies able to provide synthetic inertia

have been developed [198, 199]. Even so, the power that can be provided by renewable

sources is intermittent by nature, as is clear when talking about photovoltaic plants and

wind turbines. This means that the controllers cannot always provide constant synthetic

inertia, making the global system inertia time-varying. Consequently, the need arises for

methods able to continuously estimate the inertia constant of the system during normal

operating conditions [200]. Numerous strategies have been proposed, but many rely on

Figure 3.1: A larger value of inertia constant causes smaller frequency deviations in response

to disturbances.
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post-fault data [201, 202, 203, 204, 205] or injection of probing signals [206], making

them not suitable for continuous inertia estimation. Some methods to estimate inertia

under normal operating conditions use statistical models trained on historical data [207,

208], which are often not easily accessible.

The focus should thus be directed towards algorithms able to estimate the inertia

constant in a continuous fashion, under normal operating conditions, relying on ambient

measurements that can be collected through commonly used phasor measurement units

(PMUs) [209]. The method proposed in [210] fits this category: it exploits the colored

noise on bus voltages, line currents, and power flows, caused by the random fluctuations

of the power consumption of the loads, and utilizes their covariance matrix to solve an

optimization problem that fits such measurements to the synchronous machine classi-

cal model. This technique allows estimating both the inertia provided by synchronous

machines (along with their equivalent damping) and the synthetic inertia provided by

controllers of converter-interfaced generators that emulate the behavior of synchronous

machines (along with their droop). This method relies on measurements in time peri-

ods of at least 15 minutes, a time scale that is compatible with short-term dispatch and

adjustments markets.

The method considered in the following sections also relies on ambient measurements

and it is based on the estimation of a linear model, relating the active power fluctuations

to the frequency fluctuations on a bus, and the subsequent inertia constant extraction as a

parameter of the identified model. The idea for this approach was first proposed in [211].

Compared to [210], this method considers shorter time scales (tens of seconds) that are

compatible with weather changes that could influence the synthetic inertia contribution

of RES controllers.
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3.2 General pipeline of the inertia constant

estimation method

Under normal operating conditions, the frequencies and powers in a power grid vary

slightly around their steady-state values (denoting the operating point of the grid), mainly

due to random fluctuations in the loads. The dynamics of a synchronous generator can

be described by the well-known swing equation [45, 212]:

2Hω̇ = Pm − Pe −D (ω − ω0) (3.1)

which relates the normalized mechanical power Pm and electrical power Pe – expressed

in per units (p.u.) – to the normalized rotor angular speed ω (p.u.), through the iner-

tia constant H [s], the damping coefficient D (dimensionless) and the normalized rated

synchronous speed ω0 (p.u.). Eq. (3.1) can be rewritten in terms of the variations ∆ω,

∆Pm and ∆Pe of frequency and powers with respect to their steady-state values. If small

stochastic load variations are considered, it can be assumed that Pm never changes (i.e.

its variation is 0), whereas ∆ω can be approximated by the variation of the electrical

frequency ∆f measured through PMUs at the generator bus. Therefore, ∆f (output)

and ∆Pe (input) behave according to the following equation:

2H∆̇f = −∆Pe +D∆f (3.2)

By applying a unit-step ∆Pe in t = 0, the time evolution of ∆f for t > 0 with initial

condition ∆f(0) = 0 is ∆f(t) = 1
D

(
e−

D
2H

t − 1
)
, then the generator inertia constant can

be expressed as

H = −1/(2σ0), (3.3)

where σ0 ≜ ∆̇f
∣∣∣
t=0

is the slope of ∆f(t) in t = 0.

With this approach, it is possible to estimate the inertia constant at each time step

τ (update time), based on the measurements of ∆f and ∆Pe collected within a moving

time window of length W , as depicted in Fig. 3.2. The general estimation pipeline can

be summarized as follows:
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1. take measurements of ∆f(tj) and ∆Pe(tj) at times tj, within the time window, with

sampling time ∆t;

2. preprocess data to facilitate the system identification;

3. apply a system identification algorithm to identify the linear system that given

∆Pe(tj) in input returns ∆f(tj) as output;

4. compute a metric that measures the estimation accuracy to accept or discard the

estimated system;

5. compute the inertia constant from the estimated linear system;

6. slide the time window of a time step τ and repeat steps 1-6.

The same pipeline can be exploited to compute the equivalent inertia constant of the

whole grid: for a system with N generators, each with inertia Hi and rated power P0,i

(i = 1, . . . , N), the equivalent inertia constant is defined as

HT =

∑N
i=1HiPi∑N
i=1 P0,i

(3.4)

Figure 3.2: The inertia constant is estimated at each update time τ , based on the measure-

ments of ∆f and ∆Pe collected within a moving time window of length W .
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It can be estimated by considering the frequency of the center of inertia

fCOI =

∑N
i=1Hifi∑N
i=1Hi

, (3.5)

and the total power

PT =

∑N
i=1 Pi∑N
i=1 P0,i

(3.6)

where fi and Pi are the electrical frequency and active power measured through the PMUs

at the bus connected to the i-th generator. During normal operation of the grid, both

fCOI and PT oscillate around their steady-state values, therefore the algorithm described

above can be directly applied by considering ∆f and ∆Pe as the difference between fCOI

and its steady-state value, and PT and its steady-state value, respectively.

3.3 Application 1: grid with photovoltaic power plant

3.3.1 Simulation framework

A slightly modified version of the well-known IEEE-14-bus power system, shown in Fig.

3.3, is used as a case study. All the generators are equipped with automatic voltage

regulators. Eleven stochastic loads [213] were added on buses 2-6, 9-14, which absorb

only active power pL(t) = n(t)PL,0, with nominal value PL,0 = 0.1MW where n(t) is an

Ornstein-Uhlenbeck’s process such that ṅ = α(n̄ − n(t)) + bζ(t), where ζ(t) is Gaussian

white noise with zero mean and variance equal to 1. The parameters are set to PL,0 = 0.1

MW, n(0) = 0, α = 0.5, b = 1 and n̄ = 0. The purpose of this setup is to emulate realistic

power fluctuations occurring in the power system.

A 2 MW PV power plant is connected to bus 11 (see Fig. 3.3). Behavioral models

and controllers of DC/DC and DC/AC converters are used, as in [196]. In particular,

the DC/AC converter controller provides synthetic inertia [198] by regulating its output

power, in order to counteract frequency deviations, as synchronous generators do, and

saturation blocks keep the capacitor voltage and current within security limits. Buses 1,
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Figure 3.3: Scheme of the IEEE-14 network with a PV plant interfaced with the grid by means

of a DC/DC and DC/AC converter.

2, 3, 6, 8, and 11 (connected to generators) are equipped with PMUs used to sample ∆f

and ∆Pe. Simulations of the considered power network are performed through the circuit

simulator PAN [214, 215].

The real (estimated) inertia constant of the i-th generator (i = 1, 2, 3, 6, 8, 11) is

denoted as H∗
i (Hi), whereas H∗

0 (H0) is the real (estimated) inertia constant of the

whole grid. The inertia constants and rated powers of the generators in the IEEE 14

grid are listed in Tab. 3.1. The parameters of the PV controller have been set such

Table 3.1: Inertia and rated power of all generators in the IEEE14 grid.

G1 G2 G3 G6 G8 G11

H∗
i [s] 5.148 6.540 6.540 5.060 5.060 1833

P0,i [MW] 615 60 60 25 25 2
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that H∗
11 = 1833s, resulting in a grid inertia constant H∗

0 = 10s. The value of provided

synthetic inertia depends on different factors and, in principle, any value of inertia can be

synthesized, provided that some energy is always available. This justifies the high value

of H∗
11. In the absence of the contribution of synthetic inertia given by the PV controller,

the grid inertia constant is H∗
0 = 5.36s.

3.3.2 Detailed pipeline and parameter tuning

Firstly, the standard IEEE-14 bus power system is simulated without the added complex-

ity of the PV power plant, with the objective of tuning the pipeline steps to get the best

inertia estimation performance on known H∗
i values. The grid is simulated for 1000 s with

sampling time ∆t = 50 ms. The inertia estimation is performed on nW = ⌊1000−W+1
τ

⌋

time-windows, with an update time τ = 1 s. The signals ∆f and ∆Pe are filtered with

a 6-th order Butterworth low-pass filter with cut-off frequency 0.5 Hz, to preserve only

frequency components that are significant in estimating the inertia constant [211]. The

time window of length W is divided in two parts: the data in the first part of the time

window (of length 3
4
W ) is used to identify, through the n4sid algorithm [216], a linear

system of order n with input ∆Pe(tj) and output ∆f(tj). The data in the rest of the

window (of length 1
4
W ) is used to validate the identified system, by computing the fitting

ratio

ν =
∑
j

[
∆̂f(tj)−∆f(tj)

]2/∑
j

[∆f(tj)]
2 (3.7)

being ∆̂f(tj) the output of the identified system. A value close to 0 indicates that the

estimation is good. If ν is larger than a given threshold ν̃ (fixed at ν̃ = 5 · 10−3), the

estimation is considered not satisfactory, and a new value of inertia constant H
(k)
i is

not computed at the current time step k; the previously computed value is maintained

instead: H
(k)
i = H

(k−1)
i .

Keeping in mind that index i = 0 corresponds to the whole grid, the following error
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measures are defined to quantify the inertia estimation performance:

ν̄i =

∑nW

k=1 ν
(k)
i

nW

, (3.8)

ϵi =
100

H∗
i

(
H̄i −H∗

i

)
, (3.9)

RMSEi =

√√√√∑nW

k=1

(
H

(k)
i −H∗

i

)2
nW

, (3.10)

where H̄i =
∑nW

k=1H
(k)
i /nW .

Role of system order

In [211] a system of order between 1 and 10 is identified through the n4sid algorithm,

which automatically determines the order that yields the lower estimation error (ν clos-

est to 0). Actually, a better system identification does not necessarily imply a better

estimation of the inertia. In order to show this, inertia estimations with W = 10 were

performed by varying n from 1 to 8. Fig. 3.4 shows ν̄0 (top panel) and ϵ0 (bottom panel)

as a function of n. It appears that n = 4 actually yields the best system identification

(ν̄0 = 9.3 · 10−6), but the lowest error in the inertia estimation is obtained with a first-

order system (n = 1), with ν̄0 = 9.9 · 10−4, which is also quite low. Tab. 3.2 lists the

1 2 3 4 5 6 7 8
-40

-20

0  
0   

0.15

0.3 

1 2 3 4
0

0.5

1
10-3

Figure 3.4: Error measures ν̄0 (top panel) and ϵ0 (bottom panel) as a function of n. The

optimal values are marked in red.
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results of this analysis for every generator and for the whole system, which evidences that

the use of higher-order systems (as done in [211]) leads to a systematic underestimation

of Hi since the initial slope of the step response is consistently steeper than that of the

first-order system. Fig. 3.5 exemplifies the results of this analysis for the system as a

whole and for generator G3, considering the first and fourth order systems: the initial

slope (solid pink line) of the first order system step response (solid red line) is consistent

with the expected slope (dashed black line), while the initial slope (light blue solid line)

of the fourth order system step response (solid blue line) is clearly steeper.

If only a first-order system ∆f(tj+1) = a∆f(tj) + b∆Pe(tj) is considered, then the

initial slope of the step response (assuming ∆f(tj) = 0 and ∆Pe(tj) = 1) can be directly

computed as b/∆t, where b is provided by the n4sid algorithm, without requiring to

simulate the system response to a unit step and identifying the slope. The inertia can be

therefore computed directly as

Hi = −∆t

2b
, (3.11)

which requires less computation time than the original approach [211].

Table 3.2: ν̄i and ϵi on generators and whole grid, for n = 1 and n = 4.

ν̄i ϵi

n = 1 n = 4 n = 1 n = 4

i = 0 (whole grid) 9.9 · 10−4 9.3 · 10−6 -0.195 -9.792

i = 1 5.4 · 10−4 1.4 · 10−6 -0.327 -10.554

i = 2 4.1 · 10−3 8.8 · 10−6 0.185 -19.055

i = 3 4.9 · 10−3 1.9 · 10−5 0.563 -18.707

i = 6 2.5 · 10−2 3.1 · 10−4 4.774 -38.545

i = 8 1.0 · 10−2 7.2 · 10−5 -2.207 -29.889
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Figure 3.5: Step response of the fitted first order system (red) and fitted fourth order system

(blue) and their respective initial slopes (pink and light blue) for the whole network (left panels)

and generator 3 (right panels). Dashed black lines indicate the reference slopes. The first

instants of the step responses are highlighted in the bottom panels.

Window length

To properly track the inertia constant in real-time, it is desirable to have the shortest

delay possible in identifying significant changes. The length W of the time window, fixed

at 200 s in [211], strongly influences this delay. Moreover, the longer W the higher the

time necessary for identifying and validating the system. A shorter window, however,

means fewer data available to identify the system, and thus a poorer accuracy of the

inertia estimation. A systematic analysis of the effect of W on the quality of data fitting

and subsequent inertia constant estimation, in terms of ν̄0 and RMSE0, was carried out

to investigate the effect of varying W . The results with n = 1 and W ∈ [5, 100] s are

shown in Fig. 3.6. Fig. 3.7 shows the effect of W on the delay in detecting a change of

inertia and on the accuracy of inertia constant estimation when H∗
1 is artificially halved

at t = 250 s. Notice that for W = 5 s the change of inertia is detected with a minimal

delay (about 5 s), but large oscillations are visible in the estimated inertia, implying a
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higher value of RMSE1. The opposite is true for W = 50 s, whereas W = 10 s represents

a reasonable trade-off between delay and RMSE.
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Figure 3.6: Error measures ν0 and RMSE0 versus window length W .
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Figure 3.7: Tracked inertia constant for the whole system for different values of W . Red

dashed lines mark the real values of H0.

Computational efficiency

Assuming that the system inertia in normal conditions has small variations, it appears

unnecessary to estimate a new system to fit the data for every considered time window.

It is more efficient to make a new system estimation only when the previously estimated

system does not fit the data of the current window, thus allowing a flexible refresh rate. A

refresh condition can be defined based on the fitting ratio at iteration k: if ν(k) > ν(k−1)+ρ
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a new estimation is carried out. The metric r = 100 ne

nW
is introduced as the percentage

ratio between the number of estimations ne and the number of time windows. The

impact of varying ρ on the quality of inertia constant estimation and on the number of

new system estimations was investigated, using fixedW = 10 s and n = 1. The results are

summarized in Fig. 3.8. As expected, the higher ρ the lower the number of new system

estimations but also the higher the percent error on the mean value of the estimated

inertia constant. Notice that r is always lower than 100%, because it may happen that

ν
(k)
i < ν

(k−1)
i and therefore the estimation is skipped also if ρ = 0. A value of ρ = 10−5

was chosen as a good trade-off.
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Figure 3.8: Percentage r of new system fittings and error measure ϵ0 versus ρ, for the whole

grid.

3.3.3 Results of inertia tracking

The results presented in this section are obtained by setting n = 1, W = 10 s, T = 3
4
W ,

τ = 1 s, ν̂ = 5 · 10−3 and ρ = 10−5, according to the previous analysis. The IEEE-14 grid

is simulated in three different scenarios.

Scenario 1

The grid is simulated under normal operating conditions for 1000 s, where all inertia

values (including synthetic inertia) are kept constant. The estimated values of inertia,

for all synchronous generators and for the whole grid (with the PV array), are listed in

Tab. 3.3, together with ϵi, ν̄i and r. The percent estimation error ϵi is below 2% for the

whole grid and generators 1-3. Higher values of ϵi and ν̄i are obtained for generators 6 and
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8, which have a smaller rated power with respect to the others. The maximum (over all

time-windows) computation time for system identification and inertia estimation is 0.15s

(executed in Matlab on a laptop with an Intel core i7 2.6GHz processor) which would

allow for a smaller update time τ and is about one half of the execution time (0.32 s) of

the original algorithm proposed in [211]. These values do not take into consideration the

acquisition of new data at each τ and the signal pre-processing.

Table 3.3: Performance of the inertia estimation in scenario 1.

H∗
i [s] H i [s] ϵi ν̄i r

i = 0 10 9.9528 -0.4724 3.3e-4 35%

i = 1 5,148 5.1480 0.0010 2.6e-4 31%

i = 2 6,54 6.5982 0.8894 1.7e-3 43%

i = 3 6,54 6.6526 1.72254 2.8e-3 50%

i = 6 5,06 5.5569 9.8201 2.7e-2 62%

i = 8 5,06 5.3266 5.2688 1.7e-2 55%

Scenario 2

At time t = 250 s an extreme change is applied on the load connected to bus 11, causing

the immediate saturation of the PV capacitor, leading to a sudden inactivity of the

PV controller and to the consequent interruption of the synthetic inertia contribution,

because the available energy is depleted. The load is restored at time t = 375 s. Fig. 3.9

shows that the algorithm correctly tracks the drop of H∗
0 , from 10 s to the value only due

to the synchronous machines (5.36 s).
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Figure 3.9: Estimated inertia constant of the whole grid H0 (black line) in response to an

extreme change load change. The real inertia constant H∗
0 is shown in red. Dashed grey lines

mark the time instants when the load is changed and then restored.

Scenario 3

A less extreme load change, for t ∈ [250, 375] s, pushes the PV capacitor near the satu-

ration point, leading to a less efficient controller response, which in turn causes a slight

lowering of the synthetic inertia contribution. Fig. 3.10 shows that also the slight drop

of inertia constant is detected by the algorithm. In this case, the result is only qualita-

tive, since the real value of inertia constant during the load change is unknown, but it

can reasonably be expected to be lower. A similar effect could result from a change in

the solar irradiance, rather than in the load, which can also push the voltage of the PV

capacitor close to the saturation point.
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Figure 3.10: Estimated inertia constant of the whole grid H0 (black line) in response to a less

extreme change in a load. The red line marks the real inertia constant H∗
0 when the controller

operates in ideal conditions. Dashed grey lines mark the time instants when the load is changed

and then restored.

104



3.4 Application 2: grid with turbine governors

Previously proposed algorithms [211, 217] that allow tracking the inertia constant in

real-time under normal operating conditions do not take into consideration the action of

turbine governors, which generally regulate synchronous generators and are also present

in many RES control systems. These algorithms assume that, when the network is under

normal operating conditions and power fluctuations are small, the mechanical power Pm

never changes (i.e., its variation is 0). This is not true when a turbine governor is included

in the control scheme.

This section describes an algorithm able to estimate the generator inertia also when the

turbine governor is active, considering the most general scenario in which all parameters

of the control scheme are assumed to be unknown.

The simulation framework is as described in section 3.3.1, with the only difference

that the PV power plant is not present and generators at bus 1 and 2 are regulated by

turbine governors [218, 219].

3.4.1 Detailed pipeline

Generally, the action of turbine governors can be modeled through a transfer function

T (s) between the input ω0−ω
R

+ Pm0 and the output Pm, where ω and Pm are the rotor

speed and mechanical power, respectively, whereas ω0 and Pm0 are their reference values,

all measured in per units (p.u.). R is the droop coefficient (dimensionless) [45]. In this

context, the governor is represented by a second-order transfer function, as a compromise

between the simplicity of the model and approximation accuracy, taking into account the

action of the two dominant poles:

T (s) =
αs+ 1

(σs+ 1)(γs+ 1)
(3.12)

The complete system, including the dynamics of the turbine governor and of the swing

equation, can be described by the block-chain diagram shown in Fig. 3.11. When the

power grid works under normal operating conditions, the signals ω, Pe, and Pm are not
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perfectly constant, since they exhibit small oscillations around their nominal values due

to fluctuations in the power absorbed by the loads. Under these conditions, considering

the variations (∆ω, ∆Pe, ∆Pm) around their steady-state values and knowing that ∆ω

can be approximated by the electrical frequency ∆f (in p.u.) measured at the generator

bus [211], the system shown in Fig. 3.11 can be written as a state-space model:
∆̇f

˙∆Pm

˙∆P ′
m

 =


− D

2H
1
2H

0

0 0 1

αD−2H
2HRσγ

−α+2HR
2HRσγ

−γ+σ
σγ




∆f

∆Pm

∆P ′
m

+


− 1

2H

0

α
2HRσγ

∆Pe (3.13)

being ˙∆Pm = ∆P ′
m the time derivative of the mechanical power variation. The electrical

frequency ∆f (state variable) and the electrical active power ∆Pe (considered as an input)

can be measured at the generator bus through PMUs.

Since the model structure is known, the parameter vector referred to the i-th generator

ξi = [Hi, Di, Ri, αi, γi, σi] that best fits the time evolution of the state variable ∆f , given

the input profile ∆Pe, can be determined through optimization. As in the previous case,

the optimization process is carried out considering the signals ∆f and ∆Pe within a

moving time window of length W [s], with an update time τ [s], so that the inertia

constant Hi is estimated at each update time; the total number of time windows is nw.

𝜔0 +
-

 ൗ1 𝑅
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Figure 3.11: Block-chain diagram of the system, modeling the governor action (blue dashed

box) and the swing equation(orange dashed box).
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In this framework, the Hi value estimated at a certain instant refers to the measures

acquired in the previous time window.

The optimization problem is formulated as

min
ξi

Ψ(ξi; {∆Pej}, {∆fj}) (3.14)

where {∆Pej} and {∆fj} are arrays whose elements ∆Pej and ∆fj represent measure-

ments of the electrical power and frequency variations, respectively, at evenly spaced

times tj (j = 1, . . . , n) within a time window. All model parameters (vector ξi) are in-

cluded in the optimization process since they cannot be assumed to be known a priori in

realistic scenarios. The cost function Ψi is defined as

Ψi = gp

∑n
j=1(∆̃Pmj − ∆̂Pmj)

2

n
+ gf

∑n
j=1(∆fj − ∆̂fj)

2

n
(3.15)

where ∆̂Pmj and ∆̂fj are the mechanical power and frequency variations at time tj,

respectively, estimated by numerically integrating system (3.13). It is apparent from

Eq. (3.13) that ∆̂Pmj and ∆̂fj referred to the i-th generator depend on the parameter

vector ξi. Since measurements of the mechanical power are not available through PMUs,

approximated values ∆̃Pmj obtained through the swing equation are used to calculate

the cost function:

∆̃Pmj = D∆fj + 2Hi
˙∆fj +∆Pej (3.16)

Here, ˙∆fj denotes the time derivative of the frequency evaluated at time tj. The compu-

tation of the cost function is summarized in Fig. 3.12.

The above nonlinear optimization problem is solved through the Matlab function

fmincon, which exploits an Interior-Point Algorithm [220], constraining all parameters to

be positive. To improve the chances of reaching a global minimum, in each time window

the optimization is carried out for 10 different initial conditions, 9 of which are chosen

randomly, and one corresponds to the optimization result in the previous time window.

The parameter vector ξi leading to the minimum cost Ψ∗
i is selected. If Ψ∗

i in a certain

time window is above a fixed threshold ΨT , the optimization in that window is deemed

unsuccessful and the corresponding Hi is discarded.
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Figure 3.12: Block diagram that summarizes the cost function calculation at a generic step

of the optimization process.

3.4.2 Results of inertia tracking

The algorithm was tested on a 1000 s simulation of the IEEE 14-bus during normal

operating conditions for different window lengths to assess the effect of W on the inertia

constant tracking. The update time τ is set to 1 s in all cases and coincides with the

sampling period of the signals. The cost function threshold is set heuristically as ΨT =

1.5 · 10−7 and the weights are set as pm=1 and pf=1000; pf is chosen greater than

pm because the term based on actual measurements is considered more reliable and is

associated with a much smaller error. Note that it is important to set pm ̸=0, otherwise,

the optimization process fails. The results are summarized in Fig. 3.13: the top panel

shows the relative percent error ϵi (see Eq. (3.9)) versus the window length W for

generators 1 (black line) and 2 (blue line). The bottom panel shows how the root mean

square error RMSEi (see Eq. (3.10)) decreases as the window length increases. The

two metrics ϵi and RMSEi give information about how well estimates H̄i approximate

H∗
i and how much the estimated values fluctuate from window to window, respectively.

The best results are obtained for longer windows, which, however, cause higher delays

in the inertia constant estimation. A window length of W = 30s is chosen as the best

compromise between delay in detecting inertia constant changes and accuracy of the

inertia constant estimation. Figures 3.14 and 3.15 show the inertia estimation results for
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Figure 3.13: Top panel: relative percent error ϵi vs the window length W for generators 1

(black) and 2 (blue). Bottom panel: RMSEi vs W for generators 1 (black) and 2 (blue).

generators 1 and 2 for a window of 5 s (top panel, short delay but high RMSEi), 30 s

(mid panel, deemed as the best compromise) and 100 s (bottom panel, low RMSEi but

long delay). Fig. 3.16 shows the comparison between the samples {∆fj} as measured by

PMUs (red) and the estimated {∆̂fj} (black) in the first window of 100s. The accuracy

is very high, which demonstrates that the optimization is successful in the identification

of the system parameters.
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Figure 3.14: Generator 1 inertia estimation for W = 5 s (top panel), 30 s (mid panel) and

100 s (bottom panel). The red dashed line indicates the real value of the inertia constant and

the green vertical line marks the start time of the inertia tracking (coinciding with W ).
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Figure 3.15: Generator 2 inertia estimation for W =5 s (top panel), 30 s (mid panel) and 100

s (bottom panel). The red dashed line indicates the real value of the inertia constant and the

green vertical line evidences the start time of the inertia tracking (coinciding with W ).
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Figure 3.16: Samples {∆fj} as measured by PMUs (red) compared with the estimated {∆̂fj}

(black) in the first window of 30 s for generator 1.
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Table 3.4 lists the actual inertia H∗
i of all generators, the average estimated inertia

H̄i, ϵi, RMSEi and ϵfi , calculated as

ϵfi =
1

nw

nw∑
i=1

(
100

∆fmax

n∑
j=1

(∆fj − ∆̂fj)
2

n

)
(3.17)

where ∆fmax is the interval between the minimum and maximum values of ∆f .

Table 3.4: Performance of the inertia estimation

H̄i [s] H∗
i [s] ϵi RMSEi [s] ϵfi [p.u.]

i=1 4.731 5.148 3.541 1.113 3.159 · 10−5

i=2 5.9110 6.540 6.159 1.202 3.965 · 10−5

i=3 6.614 6.540 1.952 0.629 2.546 · 10−5

i=6 5.169 5.060 2.330 0.397 4.583 · 10−5

i=8 5.141 5.060 -2.162 0.832 2.901 · 10−5

Data indicates that the inertia is well estimated, with a low percent error, for all

generators, both equipped and not equipped with turbine governors, accounting for the

versatility of the algorithm. The values of RMSEi are slightly higher for generators

with turbine governors, suggesting that the estimation may exhibit higher oscillations

among the time windows. ϵfi values are very low for all generators, confirming that the

optimization is overall successful in the identification of the system parameters.

The selected window ofW = 30 s is also used to track the inertia constant of generator

1 in a case where the generator inertia constant H∗
1 changes from 5.148 s to 10 s at time

instant t = 500 s. The result of the simulation is shown in Fig. 3.17. The band in gray

highlights the time window of 30 s corresponding to the delay in detecting the inertia

constant change. The percent error in the time stretch where H∗
1 = 10 s is ϵ1 = −7.715.

The window length of 30 s is considerably shorter than the one used in [211], while

the percent error on the estimated inertia constant is comparable with similar approaches

[211, 217].
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Figure 3.17: Generator 1 inertia constant tracking for W = 30 s in a scenario where the

inertia constant is varied from 5.148 s to 10 s at t = 500 s. The red dashed line indicates the

real value of the inertia constant.
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3.5 Application 3: synthetic inertia control system

Most control systems produce synthetic inertia by imitating, ideally, the action of syn-

chronous generators, on the basis of the swing equation. In practice, an additional power

contribution, proportional to the rate of change of frequency (RoCoF), is provided by the

RES inverter, to alleviate the frequency drop due to a fault or a load/production change.

These controllers need to measure the electrical frequency online and estimate its time

derivative. Typical devices used to measure the frequency are phased locked loops (PLLs)

or transducers performing digital period measurements. Both have a dynamic response

and introduce delays and noise, which prevents the evaluation of the RoCoF as a simple

incremental ratio. Therefore, filtering is necessary, which raises further delay and distor-

tions. Moreover, in real-world applications, the effects of analog filtering and quantization

due to fixed-point data representation and analog-to-digital/digital-to-analog conversion

are present. All delays, distortions, and noise have an impact on the inertial response of

the inverter [221], making the produced synthetic inertia swerve from its desired nominal

value.

Some studies have analyzed the frequency behavior under the effect of delays and/or

noise, by resorting to simulations: in [222, 223, 224] the frequency stability of a low-

inertia microgrid was investigated by considering communication delays, which decrease

the ability to properly control the frequency. In [225, 226] the effects on synthetic inertia

of frequency measurement delay and PLL dynamics are considered, by showing that the

PLL dynamics could cause stability issues. The algorithm for online inertia estimation

can be used as a tool to provide a quantitative evaluation of the synthetic inertia, in the

presence of delays due to measurements and filtering.

This section details how the algorithm can be adapted to measure the synthetic inertia

contribution provided by a controller for wind turbine generators (WTGs); both software

simulations and experimental hardware-in-the-loop tests with a hardware prototype of the

synthetic inertia controller [227] are exploited to consider the impact of analog filtering,

data quantization, and measurement noise. In particular, the considered control system
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is the virtual hidden inertia emulator (VHIE) for WTGs proposed in [228]. During the

frequency support modality, that will be hereafter considered, the additional output power

of the controller is calculated as

PV HIE = 2H(ω)f
df

dt
(3.18)

The synthetic inertia constant H depends on the WTG rotor speed ω because the fre-

quency support action needs to be more effective during the first part of the transient,

when the RoCoF is more severe, and should reduce its contribution when the rotor speed

decreases, in order to avoid the stall of the wind turbine. For this reason, H is changed

during the frequency support so that its maximum value is provided at the start and

becomes zero for a limit value of the WTG rotor speed ωmin:

H(ω) = H0
ω − ωmin

ω0 − ωmin

(3.19)

where ω0 is the rotor speed at the beginning of the frequency support phase.

The hardware prototype of the VHIE and the corresponding Simscape model have

been developed in the context of the research project SMART WIND [229] and are

described accurately in [227]. The VHIE is embedded in a Digilent Nexys Video Artix-

7 FPGA board and the frequency signal is measured with a SINEAX F534 frequency

transducer. The whole circuit’s maximum latency is 1.12 µs

3.5.1 Synthetic inertia contribution in a network

A simple power grid is considered, including a 40 MVA wind farm, composed of 20

WTGs with a rated power of 2 MVA and initial inertia H0 = 17.5 s, and two synchronous

generators, G2 with a rated power of 200 MVA and an inertia constant H2 = 3.7 s, G3

with a rated power of 100 MVA and an inertia constant H3 = 3.7 s (see Fig. 3.18).

Both the wind farm and the network are implemented and simulated in Simscape. At

t = 20 s the load highlighted by the green circle in Fig. 3.18 (with active power 30

MW and inductive-reactive power 5 MVAr) is connected to the grid, generating a power
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G2

G3

Figure 3.18: Scheme of the simple power grid including the WTG equipped with the VHIE

(rated power of 40 MVA, H0 of 17.5 s) and two synchronous generators (rated power of 200

MVA and H of 3.7 s for G2, rated power of 100 MVA and H of 3.7 s for G3).

imbalance that causes a frequency drop. During the frequency support, the active power

Pe and the frequency f at the WTG bus are measured with sampling time ∆t = 10 ms

and the deviations ∆f and ∆Pe from their nominal values are calculated. The synthetic

inertia contribution to the network can be estimated assuming that ∆f and ∆P behave

according to the linear system 2H∆̇f = −∆Pe +D∆f and minimizing the mean square

error:

ϵ =

∑n
j=1(∆fj − ∆̂fj)

2

n
(3.20)

where ∆fj are the measurements of the frequency variation at evenly spaced times tj

(j = 1, . . . , n) within a moving time window of W = 0.2 s and ∆̂fi is the frequency

variation obtained as the output of the linear system. In this case, the moving window

can be significantly smaller than in applications 1 and 2 because the deviations ∆f and

∆Pe obtained in response to the power imbalance are much steeper (they change more in

the same time window) than the deviations caused by power fluctuations at steady state.

The update time τ is set as short as possible, equal to the sampling time of 10 ms. The

optimization is carried out with the Matlab function fmincon, repeating the process for 10

random initial conditions, to avoid local minima, and selecting the result of the iteration

that reached the lowest value of ϵ. The result is shown in Fig. 3.19. Due to internal
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delays, the synthetic inertia production starts about 70 ms after the power imbalance (see

the inset). For the following 0.2 seconds (the length of window W ), corresponding to the

gray area in the figure, the inertial contribution is present but the estimation algorithm

does not provide any valid value. Notice that, besides the delay, the synthetic inertia

provided by the wind farm exhibits significant oscillations. Such oscillations are due to

the controller’s internal delays, which cause a misalignment between the frequency and

power signals. This phenomenon is better analyzed and quantified in the next section.
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Figure 3.19: Results of the estimation of the synthetic inertia provided by the wind power

plant. The horizontal dashed line marks the nominal H0 value and the vertical dashed line

marks the power imbalance onset. The gray area corresponds to the window W = 0.2 s needed

by the algorithm to output the first estimation result.

3.5.2 Effect of delays in synthetic inertia production

To study the effect of the controller’s internal delays on the synthetic inertia contribution,

the WTG equipped with the VHIE is studied individually. In particular, a single WTG

with a nominal power of 2 MVA is considered, connected to a 0.8 MVA grid modeled as a

frequency-dependent voltage source, with an imposed frequency profile f(t), shown in the

top panel of Fig. 3.20. This profile has been obtained by simulating a realistic test power

grid with low inertia through DIgSILENT PowerFactory®. Notice the presence of oscilla-

tions in the frequency profile, which are more evident in the RoCoF (bottom panel of Fig.

116



0 10 20 30 40
48.5

49

49.5

50

29 30 31 32 33

49

49.5

50

28 30 32 34 36 38 40

-1.5

-1

-0.5

0

Figure 3.20: Imposed frequency profile (top panel) and corresponding RoCoF (bottom panel).

The dashed vertical line marks the frequency drop at t = 29 s. The inset evidences the oscilla-

tions in the frequency profile, that become evident in the RoCoF.

3.20). The two primary sources of internal delays in the controller are the differentiator

used to calculate the derivative df/dt and the transducer used to measure the frequency

signal. The transducer needs at least two cycles to give an accurate measurement of the

frequency signal, so it introduces a minimum delay of 40 ms in the case of 50 Hz systems.

The circuit latency is 4 orders of magnitudes smaller than these delays, and its effect is

thus negligible. The differentiator is used to effectively calculate the derivative of the

noisy frequency signal; it approximates the derivative through a finite-impulse-response

(FIR) filter of order N:

df

dt

∣∣∣∣
t=tj

≈
N−1∑
n=0

anf(tj−N+1+n) (3.21)

The higher the filter order, the smoother the signal df/dt, but also the longer the delay

introduced by the operation and the stronger the signal distortion. On the contrary, low

filter orders introduce little delay and signal distortion but produce a noisier df/dt signal.
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The filter order should be high enough to guarantee a smooth signal df/dt, since ample

oscillations in df/dt due to noise can cause improper behavior of the VHIE.

The Simscape model of the VHIE is used to simulate the controller behavior for

different filter orders and different transducer delays. When considering only the VHIE,

the active power deviation signal of interest is the output power reference of the controller

PV HIE: it represents the deviation from the power provided by the WTG without the

controller. The simulated signals do not suffer from noise, so it is possible to calculate

the synthetic inertia contribution algebraically as:

H =
PV HIE

df/dt
(3.22)

The result is shown in Fig. 3.21: the top panel refers to the synthetic inertia contribution

provided when the transducer delay is null (to isolate only the differentiator effect) and

the filter order is varied from 3 to 27. Note that using filter orders as low as 3 is only

possible in a simulation scenario, where the frequency signal is not affected by noise. The

lowest filter order introduces minimal signal distortion and delay, and thus the provided

synthetic inertia (blue line) coincides almost perfectly with the target inertia imposed by

the controller (black line). As the filter order increases, the oscillations amplify accord-

ingly. The bottom panel refers to the synthetic inertia contribution provided when the

filter order is fixed at 21 (standard value used in the VHIE prototype) and the transducer

delay varies from 0 ms (ideal, but unattainable condition) to 160 ms. As expected, the

oscillations get more pronounced as the delay increases; they are present even for null

transducer delay since the delay introduced by the differentiator is still present. It can

also be observed that both the filter order and the transducer delay influence the delay

in deploying synthetic inertia after the frequency drop at t = 29 s, as evidenced in the

insets. The delays go from 0 ms (N = 3 and transducer delay of 0 ms) to 240 ms (N = 21

and transducer delay of 160 ms).

Hardware-in-the-loop simulations are also carried out, where the VHIE prototype

is connected (through analog interfaces) to SpeedGoat, a high-performance real-time

simulator. In this case, the frequency measuring delay is fixed at 40 ms by the actual
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Figure 3.21: Result of estimation of the synthetic inertia provided by the controller without

transducer delay and varying filter order (top panel) and with filter order fixed at 21 and

varying transducer delay (bottom panel). The black line marks the target H value imposed by

the controller, colored lines are the estimated inertia.

physical transducer, while the differentiator order can be changed by reprogramming

the FPGA. Due to signal noise, the lowest filter order that barely allows the correct

operation of the VHIE is 5. Moreover, the synthetic inertia contribution cannot be

calculated algebraically and needs to be estimated as explained in section 3.5.1, with ∆Pe

being PV HIE. The results are shown in the bottom panel of Fig. 3.22. For comparison

purposes, the top panel shows the same results obtained with the Simscape model, not

affected by measurement noise. As can be seen, noise is prevalent in H traces obtained
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with low filter order, so much so that the advantage given by smaller oscillations in H

values corresponding to smaller delays is canceled by the oscillation caused by noise.

This analysis highlights that real-world effects, including measurement noise, delays, and

filtering distortion, can significantly alter its synthetic inertia production in comparison

with the targetH value imposed by the controller. Although the delays cannot be avoided,

being mindful of their effect and quantifying their impact during the controller’s designing

phase can improve the controller functionality and help redirect choices in terms of the

controller parameters.
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Figure 3.22: Synthetic inertia provided by the VHIE Simscape model (top panel) and the

hardware VHIE prototype (bottom panel) with fixed transducer delay (40 ms) and varying

filter order. The black line marks the nominal H value, colored lines are the estimated inertia.

The data in the top panel (obtained algebraically) is shifted forward of W = 0.2 s so that it

aligns with the data in the bottom panel (obtained with the inertia estimation algorithm). For

N = 5 (blue line) the VHIE exits the frequency support regime for a short period; the resulting

outlier data has been identified with Matlab’s function rmoutliers and removed from the plot

(from 32.39 s to 32.68 s).
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3.6 Concluding remarks

This chapter discussed the implementation of an algorithm for the online estimation of

inertia constant in power grids and how it can be adapted to be successfully applied in

different scenarios. The proposed algorithm as utilized in the first two applications is

not intended as a fault detection tool, nor to estimate the inertia constant in short time

windows on post-fault data. Its purpose is online monitoring of the inertia of power grids

when it becomes a time-varying quantity due to the presence of renewable energy sources,

over a timescale compatible with weather changes.

Inertia estimation during normal operating conditions of the network has become a

pivotal problem in ensuring stable energy distribution since the increasing presence of

renewable energy sources in power grids. Online inertia monitoring can indeed play an

important role in applying proper control methods to alleviate stability issues.

The proposed improved estimation algorithm was tested on the IEEE-14-bus power

system with the addition of a PV power plant equipped with a controller for synthetic

inertia generation. By exploiting the data measured online through phasor measurement

units, the algorithm was able to successfully estimate the inertia constant value of each

generator and of the whole network and to track its changes in different operating con-

ditions. The window length needed to obtain a percent error on the estimated inertia

constant comparable to similar approaches [211, 217], was considerably shorter than the

one used in the original version of the algorithm [211]. The execution time was also

halved in comparison with the original algorithm [211].

The algorithm was also extended to account for the presence of turbine governors in

the power grid and was again tested on the IEEE 14-bus power system, this time with

active turbine governors, obtaining equally good results: the window length is consider-

ably shorter than the one used in [211], while the percent error on the estimated inertia

constant is comparable with similar approaches [211, 217].

In the third application, the algorithm was adapted to estimate the inertia constant

in a much smaller time window on transient data after a power imbalance. This case
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study shows how inertia estimation can be used as a tool in RES controllers design, since

it allows to analyze how the synthetic inertia contribution is altered by the controller’s

internal delays. Although the analysis was specifically carried out for the VHIE controller,

the same approach could be applied to different control strategies, since the problem of

internal delays is not limited to this specific case.
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Conclusions

This final section discusses how the three considered case studies align

with the overarching framework of parameter identification in networks of

dynamical systems. More specific considerations on the obtained results

for each of the three case studies, how they are positioned within the

current state of the art, and their potential applications are discussed in

more detail in the concluding remarks sections at the end of each chapter

(sections 1.6, 2.7 and 3.6).

This thesis has explored the problem of parameter identification in networks of dynam-

ical systems, by analyzing three seemingly unrelated case studies that, fundamentally,

share the same challenges: understanding how node parameters, connection features and

network topology influence the emergent dynamics of the network, and tuning them ac-

cordingly. However, the individual problems posed by each scenario need to be dealt with

using tailored approaches.

The CPG network represents a case with a very simple topology but complex nonlinear

node dynamics, where each node is represented by an accurate burster neuron model.

Moreover, the links are synaptic connections of different types, some characterized by their

own dynamics. The collective behavior of the network should exhibit different features, in

the terms of frequency, duty cycle and phase lags of each node, depending on the value of

the control signal and according to quadruped gaits features. This complex scenario has
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been handled by developing a custom parameter identification strategy that takes into

account the biological plausibility of the parameter values and the physical principles

governing the gait transitions, using bifurcation analysis as a tool. When compared

with state-of-the-art global optimization algorithms, the proposed custom strategy shows

better efficiency in obtaining the desired emergent network behavior and helps to shed

light on the role and effect of each network parameter.

Brain networks are characterized by a high number of nodes and a very complex

topology, with thousand of weighted links; the nodes are represented by oscillators that

accurately reproduce the nonlinear dynamics of the average neural activity of brain ar-

eas. In this case, the emergent behavior of the network model must fit the experimentally

measured functional imaging data. To achieve this goal, the proposed parameter iden-

tification method focuses on the optimization of connection weights, mixing data-driven

and model-based approaches. It is informed by both functional and structural imaging

data and by network theory and nonlinear dynamics concepts, such as balanced coloring

and cluster synchronization.

The considered power grids are networks of medium to small size where nodes are rep-

resented by synchronous generators, loads and renewable energy sources. The collective

behavior of the network needs to allow safe operating conditions of the power system,

ensuring its robustness to perturbations. In this case, the topology of the networks

and the node dynamics are given, and a parameter important to the network stability,

i.e., the inertia constant, needs to be inferred from measured signals. The parameter

identification strategy is based on fitting the node model in its simpler form, the swing

equation, to properly pre-processes power and frequency signals measured at significant

network locations. The method is flexible enough to be adapted to different scenarios

and applications.
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Appendix A

A.1 Thalamic Reticular Neuron Model

The thalamic reticular neuron model [112, 113] is defined by the following state equations:

ξ
dV

dt
=

−IT − IL − INa − IK − Ic + Isyn

C

ξ
dCa

dt
= − kIT

2Fd
− KTCa

Ca+Kd

ξ
dy

dt
=
y∞ − y

τy
, y = {h,m, n,mT , hT}

(A.1)

where V is the membrane potential of the neuron; the only difference with respect to the

original model is the presence of the dimensionless coefficient ξ, which scales the time

variable t and thus determines the burst frequency f (obtained in step 1 of section 1.4.2

by varying Ic in the burst region) so that it spans the range required to model the desired

gaits. The ion currents IT (calcium), INa (sodium), IK (potassium), and IL (leakage)

evolve according to the following equations

IT = gCam
2
ThT (V − ECa), IL = gL(V − EL),

INa = gNam
3h(V − ENa), IK = gkn

4(V − Ek),

which depend on V , on the intracellular calcium concentration Ca and on a set of further

state variables (called gating variables) h, m, n, mT , hT . The differential equations

governing these gating variables have the common structure written above (for the generic
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gating variable y), where:

y∞ = ay/(ay + by), τy = 1/(ay + by) (y = {h,m, n})

ah = 0.128e
17−V
18 , bh =

4

e−0.2(V−40) + 1
,

am =
0.32(13− V )

e0.25(13−V ) − 1
, bm =

0.28(V − 40)

e0.2(V−40) − 1

an =
0.032(15− V )

e0.2(15−V ) − 1
, bn = 0.5e

10−V
40

m∞
T =

1

1 + e−
V +52
7.4

, τmT = 0.44 +
0.15

e
V +27
10 + e−

V +102
15

,

h∞T =
1

1 + e
V +80

5

, τhT = 62.7 +
0.27

e
V +48

4 + e−
V +407

50

.

In the above equations, h and m are the inactivation and activation variables of the

Na+ current; n is the activation variable of the K+ current; mT and hT are the activa-

tion and inactivation variables of the low-threshold Ca2+ current; the leakage current IL

has conductance gL = 0.05 mS
cm2 and reversal potential EL = −78 mV; INa and IK are

the fast Na+ and K+ currents responsible for the generation of action potentials, with

conductances gNa = 100 mS
cm2 and gk = 10 mS

cm2 and reversal potentials ENa = 50 mV and

Ek = −95 mV; IT is the low-threshold Ca2+ current that mediates the rebound burst

response, with conductance gCa = 1.75 mS
cm2 and reversal potential ECa = k0

RT
2F

log(Ca0
Ca

);

Isyn is the synaptic current (see Eq. (1.3) and Eq. (1.6)).

When the control current Ic is in the range [−0.43, 0.13] µA
cm2 the neuron exhibits burst-

ing behavior. The other parameters are set as follows: C = 1 µF
cm2 , Ca0 = 2mM, d =

1µm, KT = 0.0001mM ·ms, Kd = 0.0001mM . F = 96.489 C
mol

is the Faraday con-

stant, R = 8.31441 J
mol·K is the universal gas constant and the temperature T is set at

309.15 K.
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A.2 Exponential Integrate and Fire Neuron Model

The exponential integrate and fire (eIF) neuron model [124] is defined by the following

state equations: 

dV

dt
=

−gL(V − EL) + gee
V −VT
∆T − u+ Iext + Isyn

C

du

dt
=
a(V − EL)− u

τw

(A.2)

where V is the membrane potential of the neuron; u is the adaptation variable; gL =

30 [nS] is the leakage conductance and EL = −70.6 [mV ] is the leakage reversal potential;

Isyn is the synaptic current (see Eq. (1.3)).

When the conductance ge is set at 110 nS, the external current Iext is varied in the

range [690, 1110] pA (Fig. 1.5). When the external current Iext is set at 800 pA, the

conductance ge is varied in the range [20, 160] nS (Fig. 1.6). For this range of parameter

values, the neuron exhibits bursting behavior. The other parameters are set as follows:

C = 2007.4 pF, VT = −50.4mV, ∆T = 2mV, τw = 285.7ms, a = 4nS.

A.3 Plant Neuron Model

The Plant neuron model [123, 122] is defined by the following state equations:

dV

dt
=

−IT − IL − INa − IK − IKCa + Iext + Isyn

C

dCa

dt
= ρ(Kcx(VCa − V )− Ca)

dy

dt
=
y∞ − y

τy
y = {h, n, x}

(A.3)
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where

IT = gTx(V − EI), IL = gL(V − EL),

INa = gIm
3
∞h(V − EI), IK = gKn

4(V − EK),

IKCa = gKCa
Ca

Ca+ 0.5
(V − EK),

m∞ =

0.1(50−Vs)

e
50−Vs

10

0.1(50−Vs)

e
50−Vs

10

+ 4e
25−Vs

18

,

h∞ =
0.07e

25−Vs
20

0.07e
25−Vs

20 + 1

1+e
55−Vs

10

,

τh =
12.5

0.07e
25−Vs

20 + 1

1+e
55−Vs

10

,

n∞ =

0.01(55−Vs)

e
55−Vs

10

− 1

0.01(55−Vs)

e
55−Vs

10

− 1 + 0.125e
45−Vs

80

,

τn =
12.5

0.01(55−Vs)

e
55−Vs

10

− 1 + 0.125e
45−Vs

80

,

x∞ =
1

e0.15(−V−50) + 1
,

Vs =
127V

105
+

8265

105

V is the membrane potential of the neuron; Ca is the intracellular calcium concentration;

x is the activation variable of the slow inward Ca2+ current; h is the inactivation variable

of the Na+ current; n is the activation variable of the K+ current; IL is the leakage

current, with conductance gL = 0.003 nS and reversal potential EL = −40 mV; INa and

IK are the fast inward Na+ and outward K+ currents, respectively, with conductances

gI = 8 nS and gK = 1.3 nS (these values ensure undershoot, see paper) and reversal

potentials EI = 30 mV and EK = −75 mV; IT is the slow inward tetrodotoxin-resistant

Ca2+ current, with conductance gT = 0.01 nS and reversal potential ET = 30 mV; IKCa

is the outward Ca2+ sensitive K+ current, with conductance gKCa = 0.03 nS and reversal

potential EK ; I
syn is the synaptic current (see Eq. (1.3)).
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The external current Iext is set to 0.028 µA. The other parameters are set as follows:

C = 1 µF
cm2 , ρ = 0.00015mV −1, Kc = 0.0085mV −1, VCa = 140mV, τx = 235ms.

A.4 Parameter Values

In table A.1, column A lists the parameter values used for the gHCO with the thala-

mic reticular neuron model, first-order dynamic excitatory synapses and static inhibitory

synapses (Figs. 1.2 and 1.3). Column B lists the parameter values used for the gHCO

with the eIF neuron model when varying Iext, first-order dynamic excitatory synapses

and static inhibitory synapses (Fig. 1.5). Column C lists the parameter values used for

the gHCO with the eIF neuron model when varying ge, first-order dynamic excitatory

synapses and static inhibitory synapses (Fig. 1.6). Column D lists the parameter values

used for the gHCO with the Plant neuron model, first-order dynamic excitatory synapses

and static inhibitory synapses (Fig. 1.4).

Table A.2 lists all parameter values determined in each step of section 1.4.2 referring

to the results presented in section 1.4.3 and obtained with the first-order dynamic synapse.

Table A.3 lists all parameter values determined in each step of section 1.4.2 referring

to the results presented in section 1.4.4 and obtained with the alternative synapse model.
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Table A.1: Parameter values for the gHCO. Notice that for columns B and C the synaptic

conductances are expressed in nS instead of nS/cm2

A B C D

αex [kHz] 0.1556 10 10 0.5

βex [kHz] 0.005 0.26 26 0.0005

θex [mV] 25 -40 -40 -42

gex [nS/cm2] 0.0005 1 0.4 0.0001

Eex [mV] 60 20 20 50

θin [mV] -30 -48.5 -48.5 -53

gin [nS/cm2] 0.0005 0.6 0.1 0.0001

Ein [mV] -80 -110 -110 -80

ν [mV−1] 10 10 10 10
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Table A.2: Parameter values set in each step of section 1.4.2 to obtain the results presented

in section 1.4.3.

Parameter Value Parameter Value

Step 0

θE -50 mV gDij 0.0119gSij

θD -50 mV gF41/g
F
14 2.3327

θF -50 mV gF32/g
F
23 2.3327

ν 10 mV−1 δ half of burst period

Step 1

ξ 3.0303 Vt -50 mV

Step 2

α 0.7543 kHz θS 17.5 mV

β 0.0391 kHz

Step 3

gF41 0.0048 nS/cm2 gF32 0.0048 nS/cm2

gF14 0.0111 nS/cm2 gF23 0.0111 nS/cm2

Step 4

gS12 0.1207 nS/cm2 gE12 0.0052 nS/cm2

gS21 0.1207 nS/cm2 gE21 0.0052 nS/cm2

gS34 0.1207 nS/cm2 gE34 0.0052 nS/cm2

gS43 0.1207 nS/cm2 gE43 0.0052 nS/cm2
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Table A.3: Parameter values set in each step of section 1.4.2 to obtain the results presented

in section 1.4.4.

Parameter Value Parameter Value

Step 0

θE -50 mV gDij 0.0119gSij

θD -50 mV gF41/g
F
14 2.3327

θF -50 mV gF32/g
F
23 2.3327

ν 10 mV−1 δ half of burst period

Step 1

ξ 3.0303 Vt -50 mV

Step 2

α 0.5000 kHz θS 5 mV

β 0.0250 kHz

Step 3

gF41 0.0106 nS/cm2 gF32 0.0106 nS/cm2

gF14 0.0248 nS/cm2 gF23 0.0248 nS/cm2

Step 4

gS12 0.0200 nS/cm2 gE12 0.0001 nS/cm2

gS21 0.0200 nS/cm2 gE21 0.0001 nS/cm2

gS34 0.0200 nS/cm2 gE34 0.0001 nS/cm2

gS43 0.0200 nS/cm2 gE43 0.0001 nS/cm2
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Appendix B

B.1 Harvard-Oxford Cortical Structural Atlas

1 Frontal Pole 25 Frontal Medial Cortex
2 Insular Cortex 26 Justapositional Lobule Cortex (formerly Supplementary Motor Cortex)
3 Superior Frontal Gyrus 27 Subcallosal Cortex
4 Middle Frontal Gyrus 28 Paracingulate Gyrus
5 Inferior Frontal Gyrus pars triangularis 29 Cingulate Gyrus anterior division
6 Inferior Frontal Gyrus pars opercularis 30 Cingulate Gyrus posterior division
7 Subcallosal Cortex 31 Precuneous Cortex
8 Temporal Pole 32 Cuneal Cortex
9 Superior Temporal Gyrus anterior division 33 Frontal Orbital Cortex

10 Superior Temporal Gyrus posterior division 34 Parahippocampal Gyrus anterior division
11 Middle Temporal Gyrus anterior division 35 Parahippocampal Gyrus posterior division
12 Middle Temporal Gyrus posterior division 36 Lingual Gyrus
13 Middle Temporal Gyrus temporoocipital part 37 Temporal Fusiform Cortex anterior division
14 Inferior Temporal Gyrus anterior division 38 Temporal Fusiform Cortex posterior division
15 Inferior Temporal Gyrus posterior division 39 Temporal Occipital Fusiform Cortex
16 Inferior Temporal Gyrus temporoocipital part 40 Occipital Fusiform Gyrus
17 Postcentral Gyrus 41 Frontal Operculum Cortex
18 Superior Parietal Lobule 42 Central Opercular Cortex
19 Supramarginal Gyrus anterior division 43 Parietal Operculum Cortex
20 Supramarginal Gyrus posterior division 44 Planum Polare
21 Angular Gyrus 45 Heschl's Gyrus (includes H1 and H2)
22 Lateral Occipital Cortex superior division 46 Planum Temporale
23 Lateral Occipital Cortex inferior division 47 Supracalcarine Cortex
24 Intracalcaring Cortex 48 Occipital Pole

Figure B.1: Numbering of cortical areas according to the Harvard-Oxford Cortical Structural

Atlas (RRID:SCR 001476), as they appear in NeuroData’s MRI Graphs pipeline [230].
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B.2 Master stability function

The cluster synchronization state is defined as:

ṡssp(t) = FFF (sssp(t)) + ΓΓΓ

(
sssp(t), σ

∑
q

rpqGGG(sssq(t))

)
, (B.1)

where the k−dimensional matrix R = {rpq} is the quotient matrix, such that rpq =∑
j∈Cq aij (i ∈ Cp, p, q = 1, 2, . . . , k).

The following definitions are preliminarily given

DF̃FF (sssp(t)) = DFFF (sssp(t)) +DΓΓΓ1

(
sssp(t), σ

∑
q

rpqGGG(sssq(t))

)
(B.2)

and

DΓ̃ΓΓp = DΓΓΓ2

(
sssp(t), σ

k∑
q=1

rpqGGG(sssq(t))

)
, (B.3)

where DFFF is the m×m Jacobian of the nodes’ vector field and the m-dimensional matrix

DΓΓΓ1 (DΓΓΓ2) is the derivative of ΓΓΓ with respect to its first (second) argument. The linearized

equations governing the dynamics of the perturbations about the synchronous solution

sssp(t) can be written as:

ẇwwi(t) = DF̃FF (sssp(t))wwwi +DΓ̃ΓΓpσ

 k∑
q=1

DGGG(sssq(t))
∑
j∈Cq

aijwwwj(t)

 (B.4)

Eq. (B.4) can be rewritten in vector form by stacking all the state perturbation vectors

together in one vector WWW (t). Moreover, the N × N diagonal matrix Ep is introduced,

which is the cluster indicator matrix: Ep has entries Ep,ii = 1, if node i ∈ Cp, 0 otherwise,

i.e., this matrix identifies all the nodes i’s that belong to cluster Cp. Therefore:

ẆWW (t) =

[
k∑

p=1

Ep ⊗DF̃FF (sssp(t))

]
WWW (t)

+

(
k∑

p=1

Ep ⊗DΓ̃ΓΓp

)
σ
[
A⊗ In

∑k
q=1Eq ⊗GGG(sssq(t))

]
WWW (t)

(B.5)
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The canonical transformation matrix T [175] is computed as the orthogonal matrix that

simultaneously block-diagonalizes the matrices A, E1, E2,..., EC into D diagonal blocks,

T =

 T∥

T⊥

 = SBD(A,E1, E2, . . . , EC). The process to construct the canonical trans-

formation matrix T is described in [175]. Application of the matrix T yields TAT−1 = Â,

where Â = Â∥⊕ Â⊥ = ⊕D
j=1Âj. The symbol ⊕ denotes the direct sum of matrices and the

blocks Âj j = 1, 2, . . . , D have the same dimension. Note that Â∥ = Â1 and Â⊥ = ⊕D
j=2Âj.

Moreover, we have that TEpT
−1 = Ep.

By using matrix T , the variational equation for the transverse perturbations becomes

η̇ηη⊥(t) =

[
k∑

p=1

Ep⊥ ⊗DF̃FF (sssp(t))

]
︸ ︷︷ ︸

ρ1({sssp(t)})

ηηη⊥(t)+

(
k∑

p=1

Ep⊥ ⊗DΓ̃ΓΓp

)[
σ

(
Â⊥ ⊗ In

k∑
q=1

Eq⊥ ⊗DGGG(sssq(t))

)]
︸ ︷︷ ︸

ρ2({sssp(t)})

ηηη⊥(t)

(B.6)

where the block-diagonal matrix marked with ⊥ is a minor of the complete matrix Â =

TAT−1, containing only the blocks related to the transverse perturbations.
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B.3 Master stability function for a network with

heterogeneous delays

The cluster synchronization state is defined as:

ṡssp(t) = FFF (sssp(t)) + ΓΓΓ

(
sssp(t), σ

∑
l

∑
q

rlpqGGG(sssq(t− τ l))

)
, (B.7)

where the k−dimensional matrix Rl = {rlpq} is the quotient matrix, such that rlpq =∑
j∈Cq a

l
ij (i ∈ Cp, p, q = 1, 2, . . . , k).

Eqs. (B.2) and (B.3) become

DF̃FF (sssp(t)) = DFFF (sssp(t)) +DΓΓΓ1

(
sssp(t), σ

∑
l

∑
q

rlpqGGG(sssq(t− τ l))

)
(B.8)

and

DΓ̃ΓΓp = DΓΓΓ2

(
sssp(t), σ

∑
l

∑
q

rlpqGGG(sssq(t− τ l))

)
, (B.9)

The linearized equations governing the dynamics of the perturbations about the syn-

chronous solution sssp(t) can be written as:

ẇwwi(t) = DF̃FF (sssp(t))wwwi(t) +DΓ̃ΓΓpσ
∑
l

 k∑
q=1

DGGG(sssq(t− τ l))
∑
j∈Cq

alijwwwj(t− τ l)

 (B.10)

and Eq. (B.10) can then be rewritten in vector form by stacking all the state perturbation

vectors together in one vector WWW (t):

ẆWW (t) =

[
k∑

p=1

Ep ⊗DF̃FF (sssp(t))

]
WWW (t)

+

(
k∑

p=1

Ep ⊗DΓ̃ΓΓp

)
σ
∑
l

[(
Al ⊗ In

k∑
q=1

Eq ⊗GGG(sssq(t− τ l))

)
WWW (t− τ l)

] (B.11)

The canonical transformation matrix T is computed as the orthogonal matrix that simul-

taneously block-diagonalizes the matrices A1, A2,. . ., AL, E1, E2,. . ., EC into D diagonal
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blocks, T =

 T∥

T⊥

 = SBD(A1, A2, . . . , AL, E1, E2, . . . , EC). Application of the matrix

T yields TAlT−1 = Âl, where Âl = Âl
∥⊕Âl

⊥ = ⊕D
j=1Â

l
j. By using matrix T , the variational

equation for the transverse perturbations becomes

η̇ηη⊥(t) =

[
k∑

p=1

Ep⊥ ⊗DF̃FF (sssp(t))

]
︸ ︷︷ ︸

ρ1({sssp(t)})

ηηη⊥(t)+

∑
l

[( k∑
p=1

Ep⊥ ⊗DΓ̃ΓΓp

)
σ

(
Âl

⊥ ⊗ In

k∑
q=1

Eq⊥ ⊗DGGG(sssq(t− τ l))

)
︸ ︷︷ ︸

ρl2({sssp(t)})

ηηη⊥(t− τ l)

] (B.12)

where the block-diagonal matrix marked with ⊥ is a minor of the complete matrix Âl =

TAlT−1, containing only the blocks related to the transverse perturbations.
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