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Abstract

In this thesis we address the problem of human robot interaction in industrial environments
from collaboration perspective. This thesis, in particular, focuses on introducing novel
frameworks for coordination of heterogeneous teams made of humans and robots that
collaboratively aim to reach to a common goal.
In the last decade, robots has received enormous attentions for being employed in both
industrial environments and workplaces. Thin is mainly because of a number of reasons: (I)
the shift of mass production industries toward autonomous industry units, (II) huge amount of
financial and scientific investments on robotics, and (III) substitution of humans with robots
to accomplish hazardous and stressful tasks. However Due to the limited cognitive knowledge
and reasoning of the robots in accomplishing complex operations, they still are not able to
operate in a fully autonomous fashion and independently from their human counterparts.
Therefore presence of human operators, as a complementary counterparts, in workplaces
becomes fundamental for robots to become utterly safe, reliable and operative. The goal
of this thesis is to design and implement a framework whereby humans and/or robots can
together play a complementary role, while applying their individual skills to accomplish a
task.
Human-robot collaboration (HRC) is defined as the purposeful interaction among humans
and robots in a shared space, and it is aimed at a common goal. The design of such framework
for HRC problems, requires to satisfy many requirements from which flexibility, adaptability

and safety, are the primary characteristics of such framework.
In this thesis we mainly focus on multi-agent robot systems task allocation and planning.
We consider two main aspects in defining our objectives: on one hand we investigate on
HRC, and implement alternative frameworks to model and study collaborations in industrial
scenarios considering various roles of humans in coordination and collaboration with robots.
On the other hand, the presence of humans is neglected and it is assumed that robots are able
to fully precept the environment independently from human cognitive support, as this can be
the case of future where Artificial intelligence might substitute the skills of humans.
To model a HRC scenario, a smart framework is required to start, coordinate and terminate



vi

a collaborative process. This framework, in particular has to be aware of agents and their
types, determine their responsibilities and roles, be aware of their physical structure, define
the logical relationship among the agent and handle the collaboration process fluently.
In this thesis, to address the framework described above, we propose different frameworks
and evaluate their effectiveness in solving HRC problems. To formulate task planning
and allocation problem , we introduce and implement three variants of AND/OR graphs,
namely, c-layer AND/OR graphs, Branched AND/OR graphs, and Iteratively deepened

AND/OR graphs. The first two variants aim at addressing the problem of task allocation

among humans and collaborative robots in object defect inspection (ODI) scenarios in HRC
context. Instead, the third variant targets Task and motion planning (TAMP) problems for
heterogeneous robots. TAMP problems, compared to HRC problem, is not only responsible
for allocating task among agents at higher-level, but also at lower level, it plans motions for
agents and ultimately, interconnects higher levels of task planning to lower levels of motion
planning and control to achieve a complete planning framework. To validate the applicability
and scalability of our proposed frameworks, we design and implement various real-world
and simulation experiments and we also evaluate their effectiveness in terms of achieving
desired objectives, and quantitatively with other available methods in the literature.
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Chapter 1

Introduction

1.1 Multi-agent task planning and allocation

The presence of industrial robots in factories and manufacturing work places exposes high
risk danger to human beings present in the environment. Therefore, these robots are used to
operate in fenced cages or segregated spaces where the presence of humans is not allowed.
To the vast majority of the occasions, industrial robots are produced and programmed to
accomplish some specific, repetitive and limited robotic tasks and their reusability, usually
comes at the cost of producing new robots. Inevitably light-weight collaborative robots
(Cobots), in recent decade, were introduced to ensure both human safety in operation work
places and ensure their reusability.
Despite all advantages that cobots, as complementary counterparts to humans, bring with
themselves, they entail many challenges. One of the main challenges is raised due to the
coexistence of a team of counterparts composed of humans and cobots. This challenge
emerges the demand for a framework that is able to determine roles and rules among all the
participants, or in other words, agents, for entire a collaboration process. In this thesis we
mainly focus on addressing this challenge by introducing and implementing the state of the
art solutions.
Multi-agent systems, share some common features such as, i) incomplete information or
capabilities for solving the problem in each agent, ii) no system global control, iii) decen-
tralized data, and iv) asynchronous computation [89]. However multi-agent robot systems
as a sub-class of multi-agent systems, add their own features. Multi-agent robot systems
are composed of heterogeneous robots and human agents and each agent exposes their own
capabilities and limitations differently against each of other agents.
Therefore, the demand for developing a framework that is able to coordinate and monitor
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agents becomes an essential core for a collaborative multi-agent robot systems. This frame-
work should be able to properly allocate tasks among agents dynamically to grant an efficient
collaboration [40].
In this thesis we focus on multi-agent robot systems task planning and allocation. In particu-
lar we consider Human-robot collaboration (HRC) and Task and motion planning (TAMP)
aspects of multi-agent systems. In HRC, human and robot agents together follow a common
goal under supervision of framework, that dynamically allocates tasks to agents and gives a
sort of freedom and flexibility to human agents at decision making level, whereas in TAMP,
human agents are absent and heterogeneous robots are dynamically allocated for task execu-
tion.
Frameworks used in HRC and TAMP problems follow a similar system architecture. The
system architecture embeds various levels of abstraction to grant a natural and efficient task
allocation and planning. Later in chapters 4, 5 and 7 we will discuss them in detail.

1.2 Motivation

Despite significant results achieved in different research fields of robotics, robots are far
from substituting human workers because of their limited cognitive capabilities, non-reliable
perception systems, and non-adaptive decision-making processes. For these reasons, they
often perform simple specialized tasks, and they have to rely on human help for more complex
ones. The Industry 4.0 paradigm envisions a close relationship between robots and human
operators to overcome these limitations and achieve higher shop-floor flexibility. In this
context, robots should both operate autonomously and collaborate with operators.

The execution of robotic tasks needs a plan detailing all the necessary actions and their
execution order. This plan, in collaborative scenarios, should be shared with an operator and,
to favour an intuitive and flexible human-robot collaboration, the system should adapt it to
the operator’s actions and sudden variations of the task.

In many industries and workshops due to physical and chemical characteristics of prod-
ucts, identifying defects in inspection process jeopardizes the workers’ safety and we argue
that collaboration between an experienced human operator and a robot may lead to higher
rates in defects spotting, overall productivity, and safety [25, 62].

HRC is defined as the purposeful interaction among humans and robots in a shared space,
and it is aimed at a common goal. A natural collaboration requires a robot to perceive and
correctly interpret the actions (as well as the intentions) of other humans or robots [2, 86].
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State of the art robotic solution together with skilled inspectors in a HRC framework
provide fast, accurate, safe and repeatable way of inspection ensuring that final product is free
of defects. Maneuverability, accuracy and strength of Cobots added to the human experience
and skills lead to maximising product quality and minimising final cost.

This reinforces the safety, efficiency, and performance and lowers the psychological
discomfort and stress in the workplace [25, 62].

1.3 Thesis contribution

In this thesis we introduce and implement three variants of AND/OR graphs, namely, c-

layer AND/OR graphs that targets concurrent multi-agent task allocation and planning,
Branched AND/OR graphs, that enables a flexible and adaptable HRC, and Iteratively

deepened AND/OR graphs that tackles the issue of infinite horizon task planning. The
first two are aimed at addressing the problem of task allocation among humans and cobots
in object defect inspection (ODI) scenarios in HRC context. Instead for TAMP problem,
we propose a framework that is not only responsible for allocating task among agents at
higher-level, but also at lower level, it is able to plan motions for agents and ultimately,
relates low and high levels of planning to form a complete TAMP framework. The TAMP
framework adopts the third variant of AND/OR graph.

However, primary contributions of thesis thesis are listed as follows:

C1 Develop and implement c-layer AND/OR graphs to model concurrency problem in
multi-agent task allocation and planning in robotic problems.

C2 Design and implement of CONCHRC system framework to embed c-layer AND/OR
graphs to representation layer and also integrate HRC modules for multi-agent robot
systems task allocation and planning.

C3 Implement an instance of HRC scenario for ODI with four robot agents and one
human agent to validate c-layer AND/OR graphs within CONCHRC framework.

C4 Develop and implement of branched AND/OR graphs to model an adaptable and
flexible HRC process to extend the flexibility of human agent decision making and
plan modification at online phase.

C5 Design and implement a framework to accommodate branched AND/OR graphs as
task representation module in HRC framework.
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C6 Implement an instance of HRC scenario for a ODI scenario with two robot agents
and one human agent to validate applicability and performance of branched AND/OR
graphs.

C7 Develop and implement iteratively deepened AND/OR graphs to model a network
of AND/OR graphs with unknown depth.

C8 Design and implement TMP-IDAN system framework to implement task and
motion planning problems in robotics with unknown horizon.

C9 Implement an instance of TAMP scenario with single robot, for target object
retrieval from a cluttered table top with unknown number of occluding objects, to
validate iteratively deepened AND/OR graphs within TMP-IDAN framework.

C10 Implement an instance of TAMP scenario with multiple robots, for target objects
retrieval from a shared cluttered table top with unknown number of occluding objects,
to validate iteratively deepened AND/OR graphs within TMP-IDAN framework.

C11 Implement TMP-IDAN for five TAMP benchmarks to validate applicability and
scalability of iteratively deepened AND/OR graphs for all task and motion planning
problems in robotics.

As a result of aforementioned contributions, the following scientific papers are published
or are ready to submit in both national and international conferences and journals.

• H. Karami, K. Darvish and F. Mastrogiovanni, "A Task Allocation Approach for
Human-Robot Collaboration in Product Defects Inspection Scenarios," 2020 29th
IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN), 2020, pp. 1127-1134, doi: 10.1109/RO-MAN47096.2020.9223455.

• H. Karami, A. Carfì and F. Mastrogiovanni, "Branched AND/OR Graphs: Toward
Flexible and Adaptable Human-Robot Collaboration," 2021 30th IEEE International
Conference on Robot & Human Interactive Communication (RO-MAN), 2021, pp.
527-533, doi: 10.1109/RO-MAN50785.2021.9515512.

• Thomas, A., Karami, H., & Mastrogiovanni, F. (2020). Iterative AND/OR Graphs for
Task-Motion Planning. In Italian Conference on Robotics and Intelligent Machines
(IRIM).
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• Karami, H., Carfi, A. & Mastrogiovanni, F. (2020). An Integrated Approach to
Represent and AdaptHuman-robot Collaborative Tasks. In Italian Conference on
Robotics and Intelligent Machines (IRIM).

• Karami, H., Thomas, A. and Mastrogiovanni, F., 2021. A Task and Motion Planning
Framework Using Iteratively Deepened AND/OR Graph Networks. arXiv preprint
arXiv:2110.04089. Ready to submit.

• Karami, H., Thomas, A. and Mastrogiovanni, F., 2021. Benchmark Evaluation in Task
and Motion Planning Using Iteratively Deepened AND/OR Graph Networks. Ready
to submit.

1.4 Thesis structure

The remainder of this thesis is organized through 9 chapters as follows:

• Chapter 2 Introduces plain AND/OR graphs as the essential core to task allocation
framework and presents it’s formalization. In this chapter we formalize AND/OR
graphs and explain their underlying structure that form the basis of all the three variants
as major contributions of this thesis.

• Chapter 3 Familiarizes the readers to HRC concepts specifically for ODI scenar-
ios, where a team made of a human, one mobile manipulator and a dual arm robot
manipulator, collaboratively inspecting the quality of products.

• Chapter 4 Presents CONCHRC framework and it’s architecture that we adopted
for ODI process. c-layer AND/OR graphs are presented and implemented to model
concurrency for collaborations among all agents. An instance of ODI scenario is
introduced and implemented and ultimately qualitative and quantitative results are
discussed.

• Chapter 5 Introduces branched AND/OR graphs, and implements a flexible and
adaptable HRC framework that allows the human operators to interactively interrupt
high level of planning and kinesthetically teach low level of motions to cobots.

• Chapter 6 Introduces TAMP problems in robotic problems and positions our method in
the literature to better compare it with existing methods in terms of efficiency,scalability
and performance.
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• Chapter 7 Introduces TMP-IDAN framework used for implementing TAMP problems
with unknown number of objects for rearrangements and presents iteratively deepened
AND/OR graphs as the core of the task representation of the architecture. Finally, two
models of TMP-IDAN, i.e., single and multiple agent are implemented and validated.

• Chapter 8 Implements five TAMP benchmarks, that are defined to assess any TAMP
solution. Iteratively deepened AND/OR graphs are used to address the TAMP bench-
marks, and superiority of our method over other existing methods is discussed.

• Chapter 9 Concludes the whole of this thesis and discusses future work suggestions,
improvements and directions for interested readers.



Chapter 2

AND/OR graphs

2.1 Definition and Formalisation

In this chapter we introduce AND/OR graphs and formalize them for the readers. We mainly
adopt AND/OR graphs in our work to to represent high level of task representation in HRC
and TAMP problems. AND/OR graphs are easy to comprehend and also to implement. This
makes them popular among all task representation methods such as, PDDL-based planners or
Markov Decision Process (MDP) planners. Later in this thesis we introduce and implement
three different variants of AND/OR graphs, namely, Entangled, Branched and Iteratively
deepened AND/OR graphs to address various HRC and TAMP problems.
We will demonstrate how AND/OR graphs are computationally fast and easily comprehensi-
ble even by a novice user. In particular AND/OR graphs are graphical representation of a
whole process, mapped into a tree like graph. Analogously to a process, that is composed of
starting point(s), paths or procedures and objective point, AND/OR graphs exploit the same
structure. An AND/OR graph is a directed and structured graph, composed of nodes, that
represent a state of a process, and hyper-arcs that represent the transition procedure from one
state to another.
In Figure 2.1, a general and simple AND/OR graph is illustrated. This graph has three leaf
nodes filled with blue, namely states A,B and C. The root node, that is a singleton node, filled
with red and three intermediate states, D, E and F, connect leaf nodes to root node through
two alternative paths, namely p1 and p2.

An AND/OR graph allows for representing procedures to follow, which can be decom-
posed in sub problems as parts of the graph, as well as the logic relationships among them,
i.e., the graph inter connectivity. The root node conventionally represents the goal state of
the process being modelled, and achieving the goal means traversing the graph from leaf
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Figure 2.1 A simple AND/OR graph with three leaf nodes, three intermediate nodes and
single root node

nodes to the root node via intermediate nodes and hyper-arcs according to its structure.
Let us call simple AND/OR graphs as 1-layer AND/OR graphs, later in chapter 4, we will
extend 1-layer AND/OR graphs and introduce n-layer and c-layer graphs as well. A 1-layer
AND/OR graph G can be formally defined as a 2-ple ⟨N,H⟩ where N is a set of |N| nodes,
and H is a set of |H| hyper-arcs. An hyper-arc h ∈ H induces the set Nc(h)⊂ N of its child

nodes, and the singleton Np(h)⊂ N made up of a parent node, such that

h : Nc(h)→ Np(h). (2.1)

Furthermore, we define n ∈ N as a leaf node if n is not a parent node for any hyper-arc, i.e.,
if h ∈ H does not exist such that n ∈ Np(h), or as a root node if it is the only node that is not
a child node for any hyper-arc, i.e., if h ∈ H does not exist such that n ∈ Nc(h).

In a HRC or TAMP problem, each node n ∈ N represents a cooperation state, e.g.,
faulty object inside box, whereas each hyper-arc h ∈ H represents a (possibly) many-to-one

transition among states, i.e., activities performed by human operators and/or robots, which
make the cooperation move forward, such as the robot puts the faulty object into the box.
The relation among child nodes in hyper-arcs is the logical and, whereas the relation between
different hyper-arcs inducing on the same parent node is the logical or, i.e., different hyper-
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arcs inducing on the same parent node represent alternative ways for a cooperation process
to move on.
Recalling Fig 2.1, in order to reach to state F, both child nodes of h1, meaning B and C
nodes need to be feasible. This illustrates the AND logic among child nodes. In the same
graph, to reach to root node, one of h2 or h3 need to be met not both of them, this illustrates
the OR logic among hyper-arcs.
Each hyper-arc h∈H implements the transition in (2.1) by checking the requirements defined
by nodes in Nc(h), executing actions associated with h, and generating effects compatible
with the parent node. Each hyper-arc h ∈ H executes an ordered set A(h) of actions, such
that

A(h) = (a1, . . . ,a|A|;⪯), (2.2)

where the precedence operator ⪯ defines the pairwise expected order of action execution.
The sequence can be scripted or planned online [11]. Before an hyper-arc h is executed,
all actions a ∈ A(h) are marked as undone, i.e., done(a)← f alse. When one action a is
executed by any agent, its status changes to done(a)← true. An hyper-arc h ∈ H is marked
as solved, i.e., solved(h)← true iff all actions a ∈ A(h) are done in the expected order. In a
similar way, nodes n ∈ N may be associated with a (possibly ordered) set of processes P(n),
which are typically robot behaviours activated in a cooperation state but not leading to a state
transition.

It is possible to introduce the notion of feasibility. A node n ∈ N is feasible, i.e.,
feasible(n)← true, iff a solved hyper-arc h ∈ H exists, for which n ∈ Np(h), and met(n)←
f alse, i.e.,

∃h ∈ H.(solved(h)∩n ∈ Np(h)∩¬met(n)) . (2.3)

All leaf nodes in an AND/OR graph are usually feasible at the beginning of a cooperation
process, which means that the cooperation can be performed in many ways. This is better
described in Algorithm 1.

An hyper-arc h ∈ H is feasible, i.e., feasible(h)← true, iff for each node n ∈ Nc(h),
met(n)← true and solved(h)← f alse, i.e.,

∀n ∈ Nc(h).(met(n)∩¬solved(h)) . (2.4)

Once an hyper-arc hi ∈ H is solved, all other feasible hyper-arcs h j ∈ H \{hi}, which share
with hi at least one child node, i.e., Nc(hi)∩Nc(h j) ̸= /0, are marked as unfeasible as shown
in Algorithm 2, in order to prevent the cooperation process to consider alternative ways to
cooperation that have become irrelevant.
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Algorithm 1: checkNodeFeasibility
Data: n ∈ G(N,H)
Result: f easible(n)← true or f alse

1 f easible(n)← f alse;
2 if Ch(n) = /0 then
3 f easible(n)← true
4 end
5 for all h ∈ H s.t n ∈ Np(h) do
6 if solved(h) then
7 if met(n)← f alse then
8 f easible(n)← true
9 end

10 end
11 end
12 return f easible(n)

Algorithm 2: checkHyperArcFeasibility
Data: h ∈ G(N,H)
Result: f easible(h)← true or f alse

1 f easible(h)← f alse;
2 for all n ∈ N s.t n ∈ Nc(h) do
3 if solved(h)← f alse then
4 if met(n)← true then
5 f easible(h)← true
6 end
7 end
8 end
9 for all h j ∈ H \{h} do

10 if Nc(h)∩Nc(h j) ̸= /0 then
11 if solved(h j)← true then
12 f easible(h)← f alse
13 end
14 end
15 end
16 return f easible(h)
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Given and AND/OR graph, the multi human-robot cooperation process is modelled as a graph

traversal procedure which, starting from a set of leaf nodes, must reach the root node by
selecting hyper-arcs and reaching states in one of the available cooperation paths, depending
on the feasibility statuses of nodes and hyper-arcs. According to the graph structure, multiple
cooperation paths may exist, meaning that multiple ways to solve the task may be equally
legitimate. Algorithm 3, gives a big picture of how theses paths are generated for a given
AND/OR graph.

Algorithm 3: createPaths
Data: G(N,H)
Result: P: set of all possible cooperation paths

1 P← /0;
2 currentNodeSet← /0;
3 rootNode← root(G);
4 currentNodeSet← currentNodeSet ∪ rootNode;
5 while true do
6 if Ch(currentNodeSet) = /0 then
7 break;
8 else
9 for all node ∈CurrentNodeSet do

10 currentNodeSet← currentNodeSet \node ;
11 for all h ∈Ch(node) do
12 currentNodeSet← currentNodeSet ∪Cn(h);
13 if node ∈ any p ∈ P then
14 p.add(node);
15 p.add(h)
16 else
17 p← newPath;
18 p.add(node);
19 p.add(h);
20 P← P∪ p;
21 end
22 end
23 end
24 end
25 end
26 return P

The traversal procedure dynamically follows the cooperation path that at any time is
characterised by the lowest cost. The entire algorithm has been described in [22, 20]. The
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traversal procedure suggests to human operators agents actions in the hyper-arcs that are part
of the path, and sends to robots the actions they must execute. Human operators can override
the suggestions at any time, executing different actions, which may cause the graph to reach
a state not part of the current path. When this happens, AND/OR graph tries to progress from
that state onwards [20, 21]. This mechanism enables AND/OR graph to pursue an optimal
path leading to the solution, while it allows human operators to choose alternative paths.
As long as the multi human-robot cooperation process unfolds, and the AND/OR graph is
traversed, we refer with N f and H f to the sets of currently feasible nodes and hyper-arcs,
respectively. We say that an AND/OR graph G is solved, i.e., solved(G)← true, iff its root
node r ∈ N is met, i.e., met(r)← true. Otherwise, if the condition N f ∪H f = /0, i.e., there
are no feasible nodes nor hyper-arcs, then the multi human-robot cooperation process fails,
because there is no feasible cooperation path leading to the root node.
Up to now we discussed the structure and implementation of AND/OR graphs at offline
phase. Online phase includes, solving the graph starting from leaf nodes and traversing the
graph toward the root node. The traversal path is assigned at run-time, given the actual status
of states and human inputs. This feature of the AND/OR graphs, makes them flexible for
any cooperation process. Obviously 1-layer AND/OR graphs, suffer from many limitations
such as i) concurrency of multiple agents, ii) adaptability to human decisions at run-time,
and the fact that AND/OR graphs, iii) before any HRC process need to be aware of quantity
and quality of the process.
Therefore, in this dissertation we try to overcome these challenges by extending 1-layer
AND/OR graphs. We propose three variants of AND/OR graphs to address all the three
challenges we previously mentioned. To address the problem of concurrency of agents, we
propose c-layer AND/OR graphs, that allows a team of agents made of humans and/or robots
concurrently follow their own process and where needed to coordinate and schedule their
tasks according to their counterpart agents. In chapter 4, we thoroughly discuss c-layer
graphs and it’s underlying mechanism, and implement it in a system architecture and finally
validate it in a cooperative scenario.
To overcome the problem of adaptability of AND/OR graphs to human decisions at online
phase, we propose branched AND/OR graphs. 1-layer AND/OR graphs, naturally are not
able to deform their structure to human actions/decision. Indeed at implementation phase
of AND/OR graphs, every action of human need to be encapsulated in a specific hyper-arc
transition, and in case, human action intervention occurs in any other transition state, this
causes the failure of the graph and consequently the failure of the overall process. Branched

AND/OR graphs relax this limitation and allow human operators to intervene at any state
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of graph transition and act while keeping the traversal procedure coherent. In chapter 4 we
specifically describe these graphs and validate them in a cooperative scenario.
Eventually, to resolve the problem of the scalability of AND/OR graphs where the depth
of graph should be unknown before it’s implementation, we propose iteratively deepened

AND/OR graphs. Let’s consider a cooperative product defect inspection scenario, where a
1-layer AND/OR graph is able to implement only one product inspection process and for
more products we need to know the number of products before-hand, moreover in this case,
one needs to implement the graph for n known products that leads to a highly complex and
deep graph. iteratively deepened AND/OR graphs, consider this difficulty and cover all
these problems. In chapter 7, we implement this kind of graph, where robot arms need to
pick a target object from a cluttered top-table with unknown number of objects on table and
unknown number of required object rearrangements.



Chapter 3

HRC for object defect inspection

3.1 Introduction

Robots are increasingly adopted in industrial environments to carry out dangerous, repetitive,
or stressful tasks. The introduction of robots in production lines has improved a number
of key performance indicators, and has addressed a market-driven goods growing demand
with quality products [30]. However, due to well-known limitations of robot perceptual,
cognitive, and reasoning capabilities, certain tasks, which are difficult to model or require a
higher-level of awareness because they cannot be easily modelled nor formalised, are still
better handled by human operators. The introduction of collaborative robots (nowadays
referred to as cobots) in recent years has contributed to relax those limitations, and implicitly
promoted human working conditions [57]. Among the tasks typically considered stressful,
quality control and defects inspection play a key role in defining the quality of a finished or
semi-finished product. Currently, trained and expert personnel is tasked with establishing
benchmarks and examining products quality, which require prolonged focus and continuous
attention.
In many industries and workshops due to physical and chemical characteristics of products,
identifying defects in inspection process jeopardizes the workers’ safety. In this chapter, we
argue that the collaboration between an experienced human operator and a robot may lead
to higher rates in defects spotting, overall productivity, and safety [25, 62]. Product quality
control (QC) plays a key role in assertion of final product quality and is usually done by
training personnel, creating benchmarks for product quality and testing products to check
for statistically significant variations. In many industries and workshops product inspection
becomes risky and hard to identify defects due to the physical, chemical characteristics
of products. State of the art robotic solution together with skilled inspectors in a human-
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robot collaboration (HRC) framework provide fast, accurate, safe and repeatable way of
inspection ensuring that final product is free of defects. Maneuverability, accuracy and
strength of Cobots added to the human experience and skills lead to maximising product
quality and minimising final cost. Human-robot collaboration (HRC) is defined as the
purposeful interaction among humans and robots in a shared space, and it is aimed at a
common goal. A natural collaboration requires a robot to perceive and correctly interpret
the actions (as well as the intentions) of other humans or robots [2, 86]. This reinforces the
safety, efficiency, and performance and lowers the psychological discomfort and stress in the
workplace [25, 62]. An example of such natural and fluent collaboration is given by [20]; the
robot reacts to and suggests the human on-the-fly while progressing the assembly scenario.
The main goal of this chapter is to extend the human-robot collaboration model proposed

Figure 3.1 A human operator and and two robots collaborating in a product defect inspection
scenario: the mobile manipulator supplies a human operator and the dual-arm manipulator
with objects to inspect.

in [20], referred to as FLEXHRC, along two directions. On the one hand, to allow for a
collaboration model taking multiple, heterogeneous robots into account, while the original
work in [20] considered models with one human operator and one robot. On the other hand,
introduce a use case whereby a human operator and a robot must collaboratively perform a
defects inspection, whereas the original work focused on assembly tasks.
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The scenario we consider is shown in Figure 5.1. A mobile manipulator (in our case, a
Kuka youBot) picks-up objects to be inspected (wooden pieces) from a warehouse area (a
marked region in the work space), and carries them out to deliver them to human operators
or another robot (in our case, a dual-arm Baxter manipulator) for inspection [55]. When
the object to inspect is delivered to human operators, these undertake the foreman task
[47, 39], and then the object is passed to the manipulator for a further vision-based inspection.
Afterwards, the manipulator sorts the object out as faulty or non faulty in two different boxes.
Scenarios modelling defects inspection impose functional requirements which are partially
in overlap with the ones considered in [20] for the assembly of semi-finished products.

The main functional requirement in quality control is the validation of products quality

with a reliable estimation. In an HRC process, such a requirement can be met by a double-
check carried out by an expert operator in case the defects classification accuracy as provided
by the robot is below a pre-specified threshold. However, differently from the work in
[56, 72, 14], whereby a visual inspection is carried out by a robot, in order to validate the
quality of products an integration of auditory, tactile, and visual perception is likely to be
needed [84, 36]. Such an integration is still an open issue and it is not considered in this
paper.

This chapter introduces and discusses CONCHRC, a framework extending FLEXHRC
that addresses the need for concurrent, multi human-robot collaboration in industrial environ-
ments, and validates the models in an inspection use case. The novelty of the approach is
two-fold: (i) the design and development of an AND/OR graph based multi human-robot
collaboration model that allows for concurrent, modelled, operations in a team made up
of multiple human operators and/or robots; (ii) the description of a particular instance of
such a cooperation model, implemented within an existing human-robot collaboration archi-
tecture, and extending it whereby a human operator, a mobile manipulator, and a dual-arm
manipulator collaborate for a defect inspection purpose. In the paper, the focus is on the
concurrent HRC model for the quality control task, and therefore we decided to simplify the
robot perception system.

3.2 Related work

For a natural human-robot collaboration, different aspects such as safety, robot perception,
task representation, and action execution must be considered when designing a collaborative-
friendly workspace [41, 62]. This paper focuses on task representation when multiple human
operators and/or robots group as a team to reach a common goal, which is a priori known to
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all collaborators, either humans or robots. The uncertainties in perception, task representation
and reasoning that a robot must face increase when collaborating with humans, because a
natural cooperation, i.e., a one in a way similar to human-human teams [68], may require
the robot to make sense of or even anticipate human intentions. The need arises to provide
robots with reasoning capabilities about the state of the human-robot cooperation process,
suitable to be executed online.

Although approaches based on offline planning and task allocation fulfil a requirement
related to the effectiveness of the collaboration [48, 64], they neither ensure such a natural
collaboration nor address its intrinsic uncertainties. Differently, the approaches described in
[43, 65, 22, 20] are aimed at enhancing the naturalness and the flexibility of the collaboration
based on online task allocation and/or contingency plans, such that the robot is able to adapt
to human decisions on the spot and uncertainties. Such flexibility requires a rich perception
for recognising human actions as well as the collaboration state [20].

Some of the methods applied for robot action planning in collaboration scenarios include
Markov Decision Processes [15, 16], Task Networks [65, 64], AND/OR graphs [97, 48, 22],
and STRIPS-based planners [11]. Among these methods, finding the priors and the reward
function for Markov Decision Processes and the exponential growth of the computational load
of STRIPS-based planners make them very difficult to be adopted in practice. Task Networks
and AND/OR graphs ensure that the generated collaboration models are in accordance
with domain expert desiderata, hence guaranteeing shared mental models between human
operators and robots. In order to allocate tasks to human operators or robots, and to meet
such collaboration constraints as limited resources, a common approach in the literature is to
maximise the overall utility value of the collaboration [94] on the basis of multi-objective
optimisation criteria. However, in these examples the number of human operators or robots
is limited.

In order to enhance the efficiency of the collaboration, and to face the inherent limitations
owing to workspace constraints, human skills, and robot capabilities, an approach can be to
raise the number of human operators or heterogeneous robots involved in the collaboration.
To this aim, human operators and robots must schedule their actions according to resources,
timings, and skill constraints. An example can be found in [93] whereby concurrent cooper-
ation models are formalised according to relational activity processes. The authors in that
study model the cooperation and predict future actions using a Monte Carlo method along
with learning by demonstration. A similar approach is adopted in [83], whereby a temporal
graph plan with the consideration of action duration’s has been applied. Another illustration
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of concurrent HRC, with a probabilistic formulation due to uncertainties, is presented in [96],
where a concurrent Markov Decision Process is adopted.

In previous work [22, 20] where we demonstrated a flexible collaboration between human
operators and robots, this paper extends the notion of AND/OR graph to a concurrent model,
and adopts it to model multi human-robot collaboration scenarios.



Chapter 4

Concurrent model for multi-agent
cooperation

4.1 Concurrent AND/OR graphs

In this chapter, we describe an extended version of 1-layer graphs, namely n-layer AND/OR
graph, and finally a concurrent model based on a constrained n-layer configuration, which
we refer to as a c-layer AND/OR graph.

4.1.1 n-layer AND/OR graphs

In previous chapter, we introduced and formalised 1-layer AND/OR graphs and discussed
that these graphs are limited and are not able to model cooperative processes for multiple
agents concurrently. To this end we introduce c-layer graphs to tackle this problem. Before
we present c-layer graphs, we formalise n-layer graphs that are extension of 1-layer graphs.
A n-layer AND/OR graph Gn can be recursively defined as a 2-ple ⟨Γ,Θ⟩ where Γ is an
ordered set of |Γ| up to (n−1)-layer AND/OR graphs, such that:

Γ =
(
G1, . . . ,G|Γ|;⪯

)
, (4.1)

and Θ is a set of |Θ| pairwise transitions between them. In (5.4), the AND/OR graphs
are ordered according to their layer. Lower-layer AND/OR graphs are characterised by a
decreasing level of abstraction, i.e., they are aimed at modelling the HRC process more
accurately. Transitions in Θ define how different AND/OR graphs in Γ are connected, and in
particular model the relationship between graphs belonging to different layers.
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Figure 4.1 A simple n-layer AND/OR graph with two 1-layer graphs and a transition among
them from G1 to G2 through hT

If we recall (2.1) and we contextualise it for an AND/OR graph Gn = ⟨Nn,Hn⟩, we
observe that a given hyper-arc in Hn represents a mapping between the set of its child nodes
and the singleton parent node. We can think of a generalised version of such a mapping to
encompass a whole AND/OR graph Gn−1 = ⟨Nn−1,Hn−1⟩, where the set of child nodes is
constituted by the set Nn−1

L of leaf nodes, and the singleton parent node by the graph’s root
node rn−1 ∈ Nn−1. As a consequence, a transition T ∈Θ can be defined between a hyper-arc
h ∈ Hn and an entire AND/OR graph Gn−1, such that

T : h→ Gn−1, (4.2)

subject to the fact that appropriate mappings can be defined between the set of child nodes of
h and the set of leaf nodes of the deeper graph, i.e.,

M1 : Nc(h)→ NL ∈ Nn−1, (4.3)

and between the singleton set of parent nodes of hn and the root node of the deeper graph,
i.e.,

M2 : Np(h)→ rn−1 ∈ Nn−1. (4.4)

Mappings M1 and M2 must be such that the corresponding information in different layers
should be semantically equivalent, i.e., it should represent the same information with a
different representation granularity. The same applies for Np(h) and the root of Gn−1. Once
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these mappings are defined, it easy to see that Gn has a tree-like structure, where graphs in Γ

are nodes and transitions in Θ are edges.
An AND/OR graph Gn is feasible, i.e., feasible(Gn)← true iff it has at least one feasible

node or hyper-arc. If a transition T ∈Θ exists in the form (4.2), a hyper-arc h∈Hn is feasible
iff the associated AND/OR graph Gn−1, is feasible, i.e.,

∀T.
(
feasible(h)↔ feasible(Gn−1)

)
. (4.5)

As a consequence, when the nodes in Nn−1
L of Gn−1 becomes feasible, the hyper-arc h in Gn

becomes feasible as well. Furthermore, the hyper-arc h is solved iff the associated AND/OR
graph Gn−1 is solved, i.e.,

∀T.
(
solved(h)↔ solved(Gn−1)

)
. (4.6)

Figure 4.1, illustrates a simple n-layer AND/OR graph with 2 graphs, namely G1 and G2.
These two 1-layer AND/OR graphs are connected through hT , as a hyper-arc for transiting
from one graph to another.

4.1.2 c-layer AND/OR graphs

A concurrent AND/OR graph is modelled as a restriction of a n-layer AND/OR graph whereby
the n-th layer is aimed at modelling the termination condition for the whole hierarchy of
(n−1)-layer graphs, and the latter model different, concurrent activities part of the HRC
process.

A c-layer AND/OR graph must also specify if and how nodes belonging to separate
lower-layer graphs are synchronised.

Analogously to an n-layer graph, a c-layer AND/OR graph Gc can be defined as a 2-ple
⟨Γc,Θc⟩ where Γc is an ordered set of |Γc| up to (n−1)-layer AND/OR graphs, such that:

Γ
c =

(
G1, . . . ,G|Γc|;⪯

)
, (4.7)

and Θc is a set of |Θc| pairwise transitions between them.
Whilst the considerations related to n-layer AND/OR graphs apply for c-layer AND/OR

graphs, the composition of the constituting sets of nodes and hyper-arcs may differ. Let
us recall that for a generic AND/OR graph G we refer to N as its set of nodes, and with H

as its set of hyper-arcs, and let us consider two AND/OR graphs Gi and G j ∈ Γc. Let us
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Figure 4.2 a simple c-layer AND/OR graph with two 1-layer AND/OR graphs that depend
on each other through hT , Graph G2 starts when node F of graph G1 is met.

limit ourselves to a weak notion of independence between graphs. We consider Gi and G j

as mutually independent iff there is no node in Gi (respectively, G j) that needs to be met
before another node of G j (respectively, Gi). If this is the case, Gi (respectively, G j) can be
modelled as a generic n-layer AND/OR graphs ⟨Ni,Hi⟩ (respectively, ⟨N j,H j⟩). Otherwise,
if Gi is dependent on G j, i.e., a node n j in G j must be met before another node ni in Gi can
be met, we need to formally model it as an external dependence.

To this aim, and in general terms, we augment the set of nodes Gi with a set of dependence
nodes, whose associated logic predicates met are entangled with the corresponding nodes in
G j, such that their truth values always correspond. A node ne of an AND/OR graph Gi is
said to be entangled with a node n j of an AND/OR graph G j, with i ̸= j, iff for that node

met(ne)↔met(n j) (4.8)

and ne is a leaf node for Gi, i.e., Nc(ne) = /0. Then, a dependent AND/OR graph Gi is defined
as a 2-ple ⟨Nc

i ,H
c
i ⟩, such that Nc

i = Ni∪{ne
1, . . . ,n

e
η}, i.e., the union between the set of nodes

Ni as if the graph were not dependent on any other graph, plus the set of the entangled nodes,
and Hc

i = Hi∪{he
1, . . . ,h

e
λ
}, i.e., the union between the set of hyper-arcs Hi as if the graph

were not dependent on any other graph, plus the set of the hyper-arcs reliant on entangled
nodes.
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Figure 4.1.2 depicts a simple c-layer AND/OR graphs, with two simple 1-layer AND/OR
graphs that depend on each other through hT , meaning that, graph G2, can start it’s procedure
i f f node F of graph G1 is met. Indeed node F in graph G1 and node A in graph G2 are
entangled nodes.

4.2 Systems architecture

Figure 5.3 depicts the overall architecture of the CONCHRC framework. The architecture
is made up of three layers, including a perception layer in green, a representation layer in
blue, and an action layer in red. The perception layer provides information regarding the
activities carried out by human operators, a part’s defect status, and object locations in the
robot workspace. The representation layer forms the concurrency model, stores the necessary
knowledge, and manages task execution to reach the collaboration goal. The action level
simulates and executes robot actions.
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The perception layer encapsulates three modules, which are called Human Activity

Recognition, Product Defect Detection, and Scene Perception. The latter two modules
provide the Knowledge Base module with information about the status of the workspace,
human operators, and robots, whereas the former communicates detected human activities to
the Task Planner. Human Activity Recogntion obtains inertial data originating from wearable
sensors worn by human operators, and run a series of algorithms to detect and classify
performed actions.
Those are modelled using Gaussian Mixture Modelling (GMM) and Regression [7, 22].
In our setup, defects detection is considered as a classification problem. Product Defect

Detection exploits the images coming from a robot-centric camera to detect defects.
The action layer is made up of three modules, namely Robot Execution Manager, Simu-

lator, and Controller. The Robot Execution Manager module receives discrete, symbolic
commands from the Task Planner, maps them to actual values, and drives the behaviour of
the Controller or the Simulator. This module retrieves information about the workspace,
human operators and robots from the Knowledge Base.
The Robot Execution Manager is in charge of sequencing robot behaviours, on the basis of the
plan as provided by the Task Representation module. It also provides an acknowledgement
to the Task Planner upon the execution of a command by the robots.
The Simulator module is aimed at predicting the outcome of robot behaviours before their
actual execution. It simulates a closed-loop model of the robot and the controller, by solving
the ordinary differential equations online. The Controller receives the configuration (in
joint space) or the task space command (in the Cartesian space) from the Robot Execution

Manager. It computes the joints velocity reference values at each control time step to the
robot, while receiving feedback from it [82].

The representation layer embeds Task Representation, Task Planner, and the Knowledge

Base module. In the CONCHRC, an AND/OR graph with several layers represents the
collaborative task [22]. In order to model concurrency in a multi-agent collaboration scenario,
the AND/OR graph based FLEXHRC framework has been extended, as described in the next
Section. Along with the AND/OR graph, the Task Planner module is in charge of decision
making and the adaptation of the ongoing parallel tasks. To do so, the Task Planner provides
a set of achieved cooperation states or transitions between states to the Task Representation

module, and receives the set of allowed cooperation states and transitions with the associated
costs to follow.
Later, it associates each state or state transition with an ordered set of actions, and according
to the workspace’s, human operator’s, and robot’s status, along with online simulation results,



4.2 Systems architecture 26

it assigns actions to the either human operators or robots. Finally, it informs each human
operator or robot involved in the cooperation about the action to follow.
Once an action is carried out, it receives the acknowledgement from the action level and
updates its internal structure. The Knowledge Base stores all relevant information to make
the cooperation progress, as better described in [22].

4.2.1 Task planner

Task planner is the AND/OR graph solver and is in connection with action level, knowledge
base and human activity recognition modules. As we previously mentioned AND/OR graph
embeds nodes as states of cooperation and hyper-arcs as transition rule among the states.
However AND/OR graph is not aware of the transition contents, that are a set of ordered
actions done by robot or human operators. Task planner queries AND/OR graph for next
feasible states and hyper-arcs and manages state transition exploiting it’s internal algorithm.
Once task planner receives set of feasible states and hyper-arcs, it finds optimal state transition
of the received set and decomposes the optimal state transition into a set of action and agent
table. please note that all the information for state transition, i.e., actions, their order and
their corresponding responsible agents are loaded to task planner at it’s offline phase. Once
task planner creates action agent table, it translates these actions from high-level commands,
e.g., approach object-pregrasp Right-Arm to low-level commands of motion. This is mainly
done by sending high level commands to Execution Manger that is responsible mainly for
inter-mediating between high and low levels of abstractions.
Execution manager is aware of the action templates, and easily interprets the messages
calling knowledge base module. It sends a request to knowledge base module asking for
object-pregrasp pose for instance. This pose is then sent back to Execution Manager. A
better description of Task Planner is shown in algorithms 4,5 and 6;

4.2.2 knowledge base

Knowledge base acts as a database in the overall architecture. It is responsible for storing
data coming from perception layer and responding to any request from other modules. In
particular, it is actively updating it’s internal data such as, position of robots and objects in the
scene, status of objects, position and orientation of robot arms to approach and grasp objects.
It’s noteworthy to mention that knowledge base at the beginning, reads a file of primary data
to start with. A short description of knowledge base module is drawn in algorithm 7.
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Algorithm 4: Task Planner
Data: AND/OR graph, G(N, H)
Result: Solved AND/OR graph

1 weights← /0;
2 while true do
3 H f ,N f = RequestFeasibleStates;
4 if H f = /0 then
5 return Failure
6 end
7 for h ∈ H f do
8 ho = f indOptimalState
9 end

10 actions,agents = decompose(h0);
11 for agent ∈ agents do
12 for action ∈ actions do
13 doable,weight = checkI f Doable(action,agent) ; /* Execution

Manager */
14 if doable then
15 weights← weights∪weight;
16 else
17 break;
18 end
19 end
20 end
21 if weight = /0 then
22 H f ← H f \ho;
23 Go to line 4 ;
24 end
25 f easibleAgent,actionsSet = f indMinimumCost(weights);
26 for action ∈ actionsSet do
27 actionDone← executeAcion(action, f easibleAgent) ; /* Execution

Manager */
28 if actionDone = f alse then
29 H f ← H f \ho;
30 Go to line 4 ;
31 end
32 end
33 setSolvedState(h0);
34 end
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Algorithm 5: checkIfDoable [Execution Manager]
Data: agent, action
Result: if assigned agent is able to execute action, if so, calculate action weight

1 actionType,actionParameter← split(action);
2 f uncion← selectActionFunction(actionType);
3 numercalValue← retriveValue(actionParemeter) ; /* Knowledge Base */
4 doable,weights← f unction.simulate(agent,numericalValue) ; /* simulator */
5 return doable,weights

Algorithm 6: executeAction [Execution Manager]
Data: feasibleAgent, action
Result: action done or not

1 actionType,actionParameter← split(action);
2 f uncion← selectActionFunction(actionType);
3 numercalValue← retriveValue(actionParemeter) ; /* Knowledge Base */
4 done← f unction.execute( f easibleAgent,numericalValue) ; /* Controller */
5 return done

Algorithm 7: Knowledge Base
Data: perception layer
Result: updated data

1 dataTable← readDataFile();
2 while true do
3 robotPos← receiveRobotPos();
4 dataTable← updateDataTable(robotPos);
5 ob jectsPos← receiveOb jectsPos();
6 dataTable← updateDataTable(ob jectsPos);
7 if requestU pdateDe f ectStatus then
8 de f ectStatus← requestU pdateDe f ectStatus;
9 dataTable← updateDataTable(de f ectStatus);

10 end
11 if reciveQuery then
12 retriveDataandRespond();
13 end
14 end
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4.3 Experimental Validation

4.3.1 Implementation of the Multi Human-Robot Collaboration Pro-
cess for Defects Inspection

In order to validate the effectiveness of CONCHRC, we implemented an abstract defects
inspection scenario. The scenario has been briefly described in the Introduction, and is
represented in Figure 5.1.
A Kuka youBot omni-directional mobile manipulator is used to pick up objects from a
warehouse area, and brings them close to the defects inspection cell, where a human operator
and a dual-arm Baxter robot are expected to collaborate. The youBot and the objects to be
manipulated are localised in the work space using an external motion capture system based
on passive markers, i.e., a system composed of 8 OptiTrack-Flex 13 motion capture cameras.
Baxter is provided with the standard grippers, and is equipped also with a RGB-D camera
mounted on the robot head and pointing downward, which is used to acquire images for
defects inspection. Since, in our case, the focus is on the multi human-robot collaboration
process, we decided to over-simplify the inspection, which is surrogated using QR tags
corresponding to faulty, non faulty, Na, respectively. Actions carried out by human operators
are perceived via their inertial blueprint via an LG G Watch R (W110) smartwatch, worn
at the right wrist. Data are transmitted through a standard WiFi link to a workstation. The
workstation is equipped with an Intel(R) core i7-8700 @ 3.2 GHz × 12 CPUs and 16 GB of
RAM. The architecture is developed using C++ and Python under ROS Kinetic.
There are upper bounds to the maximum angular velocity of arm joints for both the Baxter
and the youBot, i.e., 0.6 rad/s. Limits on the youBot’s linear and angular velocities are 0.4
m/s and 0.3 rad/s, respectively. These limits are applied to both simulated and real robots.
Action models foreseen for human activity recognition are simply pick up and put down.
Instead, actions used for Baxter arms include approach, grasp, ungrasp, hold on, stop, check

object status, whereas for the youBot arm we considered only approach.
Our scenario includes three physical agents, i.e., a human operator, Baxter and youBot, but

five logical agents, i.e., the operator, the Baxter left arm, the Baxter right arm, the youBot
base, and the youBot arm. However, one planner manages both Baxter arms, and likewise
one planner manages the youBot base and arm, so they are used sequentially. In the scenario,
objects are randomly placed in the warehouse area.
Objects are cylinders labeled with three different QR code types (Figure 4.5).
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Figure 4.4 The collaboration graph for defects inspection.

The youBot must find each object, move towards it, pick it, take it to the area where the
human operator and the Baxter are located, and hand it over the operator. This sequence is
repeated until all objects are delivered.
On the other side of the collaboration scenario, the Baxter starts its operations when the
human operator puts down an object on the table in front of the robot. By default, its right
arm is used to pick the object up, and to check whether it is faulty, non-faulty or the defect
cannot be assessed.
If the object is faulty, it is placed in a faulty box close to the right arm, or in case of a
non-faulty object, the object is handed over to the left arm to be placed in a non-faulty box.
If the object level of defects cannot be assessed, then it is handed back to the human operator
for an ad hoc assessment. This process is repeated for all objects.
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Figure 4.5 Four tagged cylinders used in our scenario.

4.3.2 Description of the Experiment

Figure 4.4 shows a c-layer concurrent AND/OR graph, which is composed of two 1-layer
AND/OR graphs, for the youBot (G1) and the Baxter (G2), respectively. Entangled nodes of
both graphs are depicted in red, which makes graph G2 dependent on graph G1. In order for
the leaf node of G2 (i.e., new object) to be feasible, the root node of G1 (i.e., obj on table)
must be met.

During the HRC process, the human operator is typically close to the Baxter, as shown in
Figure 5.6. When the youBot approaches, the operator executes a discrete gesture moving
an arm upward in order to announce a pick up action. Once the gesture is detected, youBot
releases the object opening the end-effector to hand it over. Afterwards, the operator an-
nounces via a put down gesture the fact that the object to inspect has been located on the
table for the Baxter to start inspection.

Figure 5.6 shows a typical run of the collaboration process. In the initial configuration,
shown in Figure 5.6a, both the human operator and the robots are in stand by mode. The
youBot moves towards the next object to inspect (obj in ws state), according to graph G1.
The object is selected on the basis of the time it takes to perform the whole operation in
simulation. After approaching the object (youbot+obj), the youBot’s arm attempts grasping
(Figure 5.6b), and then picking it up (obj picked). In the meantime, the Baxter is waiting
for human operator actions to start collaboration. The youBot moves towards the human
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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(k) (l)

Figure 4.6 Different stages of the Human-Robot Collaboration in which the operator alters
the execution of the plan online.

operator (Figure 5.6c), and waits for a command to release the object (youbot+obj+human

state). This is done by the operator by moving an arm upward (human ready), which implies
the youBot to open the gripper.
The operator takes the object (human+obj) and puts it down (obj on table) on the table. The
operator, then, can keep moving downward one arm, therefore notifying to the Baxter that an
object is on the table (Figure 5.6d).
An entangled node (new object) becomes feasible after the root node of G1 is met. It is
noteworthy that in some cases the youBot was not able to grasp objects properly, or dropped
it actually before handover could occur. Furthermore, it happened that human actions were
not recognised, which required the operator to repeat them. In these cases it is the operator’s
responsibility to handle the situation by taking appropriate actions in order to make the
collaboration fluent. Upon the notification of the appropriate operator gesture, the Baxter
starts grasping the object (Figure 5.6e) and moves it in order to place it in front of the
head-mounted camera, rotating it (obj checked) for defects inspection (Figure 5.6f).
In Figure 5.6g, it is shown how the object is recognised as faulty, and therefore the right
arm places it in the faulty box (obj at box). While the Baxter is inspecting the object, the
youBot continues to look for other objects (Figure 5.6h). After a while, as shown in Figure
5.6i, one of the objects is classified as non faulty. Since the related box cannot be reached by
the Baxter right arm, an handover in-between the two arms is executed (Figure 5.6j).
In case the assessment cannot be done (this is simulated with a specific QR tag), the graph
reaches a NA state, which implies that the Baxter requires the human operator to inspect the
object directly (Figure 5.6k).
After all objects are inspected (inspected state), the human operator performs a check (Figure
5.6l).
In order to perform a realistic computational assessment of the architecture, the whole sce-
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Table 4.1 Baxter-related activities.

Module Avg. time [s] Avg. time [%] Std. dev. [s]
Task Representation 0.52 0.21 0.01
Task Planner 0.02 0.008 0.003
Simulator 3.69 1.49 0.24
Baxter actions 203.00 82.00 5.00
Human actions 39.00 15.80 6.00
Total 246.75 100.00 11.253

nario has been tested five times. Results can be seen in Tables 4.1 and 4.2, where times are
related to the whole experiments1. Statistics presented in Table 4.1 and Table 4.2 seem to
indicate that the representation and planning modules together require less than 1% of the
overall execution time, whereas the major portion of collaboration time is related to human or
robot actions. The standard deviation related to task planners and the representation modules
for both robots are low enough to be neglected, and imposes no latency in collaboration
proccess.

Table 4.2 youBot-related activities.

Module Avg. time [s] Avg. time [%] Std. dev. [s]
Task Representation 0.43 0.13 0.02
Task Planner 0.02 0.00 0.004
Simulator 2.74 0.79 0.40
youBot actions 268.00 86.00 14.00
Human actions 39.00 12.50 6.00
Total 310.19 100.00 20.424

4.3.3 Discussion

On the basis of the experiments we carried out, it is possible to make two different remarks.
The first is related to the robustness associated with the overall process. In spite of such faults
as unsuccessful robot grasps, or issues related to false positives or negatives when monitoring
the activities carried out by human operators, the inherent flexibility of CONCHRC allows
human operators to intervene and manage these issues. This is even more relevant considering

1A video is available at https://youtu.be/0aOOeqCL2So.
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that our current setup does not focus on such a robustness level.
The second is the insight that using parallel instances of AND/OR graph representation layers
seems to be more efficient with respect to an equivalent, common, single instance model. We
observed that the adoption of CONCHRC reduces the overall idle time considerably.
This is an obvious consequence of the fact that the total time needed for a multi human-robot
collaboration process to conclude is determined by the maximum one associated with the
longest execution branch in the graph. On the contrary, if the HRC process were implemented
as a single, non concurrent, model, then the total time would correspond to the sum of all
times associated with single cooperation paths. As an example, in our scenario CONCHRC
allows for a total collaboration time equal to 310.19 s, whereas an equivalent implementation
using FLEXHRC the total collaboration time can be up to 866.94 s.



Chapter 5

Flexible and adaptable human-robot
collaboration

5.1 Introduction

Despite significant results achieved in different research fields of robotics, robots are far
from substituting human workers because of their limited cognitive capabilities, non-reliable
perception systems, and non-adaptive decision-making processes. For these reasons, they
often perform simple specialized tasks, and they have to rely on human help for more complex
ones. The Industry 4.0 paradigm envisions a close relationship between robots and human
operators to overcome these limitations and achieve higher shop-floor flexibility. In this
context, robots should both operate autonomously and collaborate with operators.

The execution of robotic tasks needs a plan detailing all the necessary actions and their
execution order. This plan, in collaborative scenarios, should be shared with an operator and,
to favour an intuitive and flexible human-robot collaboration, the system should adapt it to
the operator’s actions and sudden variations of the task. We can formalize these ideas in two
requirements:

[R1] The system should not fix a priori the task allocation between human and robot.
The operator should be free to choose its following action, whereas the robot should
accommodate it;

[R2] Since, in a dynamic environment, the target task can have slight alterations.
The collaboration should be robust to variations in the plan or the robot’s workspace.
This flexibility can be achieved either using Artificial Intelligence (AI) techniques or
leveraging the operator capabilities.
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Figure 5.1 A human operator using kinesthetic teaching to update a grasping pose for a robot
manipulator.

Since they fix the plan and allocate the tasks to the human and the robot offline, simple
Human-Robot Collaboration (HRC) frameworks do not satisfy [R1] and [R2]. An example
of this approach is Chaski, a task-level executive that, given a shared plan, enables a robot to
collaboratively execute it with a human [80]. To allocate actions between the human and the
robot, Chen [13] proposed evolutionary algorithms, while other studies used frameworks con-
sidering human ergonomic [94] or geometrical and physical properties of the objects involved
in the task [66]. Finally, AND/OR graphs have been proposed to represent collaborative
plans [48].

More advanced HRC frameworks satisfy [R1], allowing the operator to act freely. Levin
[65] proposed Pike, a method using temporally flexible plans and recognition of human intent
to model and execute a collaborative task in which the robot chooses online the subsequent
action according to what the human is doing. Similarly, FlexHRC+ is a framework integrating
AND/OR graphs in a software architecture that removes any constraint in the operator
workflow [21]. Other approaches used AND/OR graphs with probabilistic graphical models
to predict human actions timing [43], and Markov decision processes have been used to
describe and formalize concurrent cooperation [93]. However, none of these approaches
allows online plan adaptation.

At the same time, researchers explored Learning from Demonstration (LfD) to provide an
easy way to program robots for non-expert users. LfD consists of extracting task information
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or learning the complete plan while observing a human demonstrating it. Human demon-
strations can be provided using different approaches such as teleoperation [1], perception
and observation [78], or kinesthetic teaching [3]. Some studies tried to integrate the learning
aspect with collaborative frameworks. Toussaint [93] demonstrated that their framework,
relying on Markov decision processes, can learn new tasks using both Direct Policy Learning
and Inverse Reinforcement Learning. While in a more recent work, humans can teach new
tasks using vocal instructions [4]. However, in both cases, no online adaptation is possible
since learning should occur before the collaboration begins.

In this chapter, we propose a framework that satisfies both the flexibility [R1] and
adaptability [R2] requirements. We adopted AND/OR graphs because it has been already
proved that they can handle flexible human-robot collaboration [21, 43], and we extended
them creating Branched AND/OR graphs. In this extension, branches to the main graph can
be generated online, allowing operators to adapt the plan execution. As a normal AND/OR
graph, the designer should define the branch structure a priori according to the problem they
solve.
In particular, we implemented two kinds of branches: i) a first branch giving the operator the
possibility to modify the plan variables (e.g., grasping or releasing poses) using kinesthetic
teaching; ii) a second branch allowing the operator to move forward, and backwards, in
the plan execution. We have then deployed and tested Branched AND/OR graphs in an
architecture inspired by FlexHRC [21] for a defect inspection application where the operator
can invoke branches through a gestural interface.
In our testing scenario, a dual-arm robot picks an object from a table, inspects it, and decides
to place it in one of two boxes according to the inspection result.

5.2 Branched AND/OR graphs

In this section, we provide a brief overview of AND/OR Graphs, and we introduce Branched

AND/OR Graphs, an extension allowing online plan modifications. Before that we recap
AND/OR graphs and re-formalise them to adapt better to Branched AND/OR Graphs defini-
tions.

5.2.1 AND/OR graphs

AND/OR graphs (AOG) can represent a plan, divided into its sub tasks with proper logical
relations. They are defined as G = ⟨N,H⟩ where N is the set of nodes in the graph, and H is
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Figure 5.2 A main AND/OR graph (G0), in the centre, and two branches (G1 and G2), on
the left and right side.

the set of hyper-arcs. Each node (n ∈ N) represents a different plan execution state, and each
hyper-arc (h ∈ H) can connect one or more child nodes (n ∈ Nc(h)⊂ N) to their parent node
(n ∈ Np(h)⊂ N). In the AOG formalism, Nc(h) and Np(h) are respectively the set of child
and parent nodes associated to an hyper-arc h. The relation, established by the hyper-arc,
between child nodes and the parent node is formalized as:

h : Nc(h)→ Np(h) (5.1)

and it is equivalent to a logical AND (i.e., all the child nodes should be solved to proceed to
the parent node). Notice that |Nc(h)| ≥ 1 and |Np(h)|= 1. At the same time, a parent node
can be connected to multiple hyper-arcs. All the hyper-arcs inducing on the same parent
node are in logical OR (i.e., only the child nodes from one hyper-arc should be solved to
proceed to the parent node). The graphical representation of a hyper-arc is an arc connecting
all the edges from the child to the parent node (see Figure 5.2). Considering the AOG
conceptualization introduced in [21] each hyper-arc is associated with a set of actions A(h)

that should be executed to reach the parent node. Once all the actions associated to an
hyper-arc are terminated, the hyper-arc is marked as solved (solved(h)← true). Similarly,
each node is associated with a set of processes P(n) whose execution does not impose state
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transitions. When each process associated to a node n is executed, the node is marked as met
(met(n)← true).

In AOGs, the root node defines the goal state and, to reach it, the graph should be
traversed starting from the leaf node1.

5.2.2 Branched AND/OR graphs

Given that G0 = ⟨N0,H0⟩ is the graph representing the plan associated with the main task,
a Branched AOG is a new graph Gi = ⟨Ni,Hi⟩ for which we define a set of transitions
Ti = {bi,mi}. The two transitions in Ti represent the branching bi, that activates Gi, and the
merging mi, restoring the execution of the main graph G0. These two transitions are simply
two new hyper-arcs and we can describe them using Eq. 5.1 as:

bi : Nc(bi)⊂ N0→ Np(bi)⊂ Ni

mi : Nc(mi)⊂ Ni→ Np(mi)⊂ N0
(5.2)

where we define the two sets of child nodes as singleton (|Nc(bi)| = |Nc(mi)| = 1). This
constraint implies that hyper-arcs, connecting the branched graph with the main one, have
only one child node. We refer to the node from which the main graph branches as nbi, and the
node where the branch merges as nmi. Figure 5.2 represents an AOG subject to two branches
G1 and G2.

To preserve a coherent AOG structure, we impose two additional conditions:

A) the node from which the main graph is branched (nbi ∈ Nc(bi)) should be met
(met(nbi)← true) and, all hyper-arcs for which the node nbi ∈ Hc(h) is a child should
not be solved, i.e.,

met(nbi)← true

∀h ∈ H0|nbi ∈ Nc(h),solved(h)← false
(5.3)

B) the node nmi, where the branch is merged, is marked as met (met(nmi)← true).
Furthermore, if nmi was previously marked as met, all the hyper-arcs for which it is a
child are set as unsolved, and all their parents are marked as not met (met(n)← f alse).

The last condition is needed to address cases in which the merging node is a node in the
AOG preceding the branching node. In Figure 5.2, this case is represented by the branch G2

for which the branching node is root and the merging node is State G.
1The reader may refer to [23] for a more in-depth description of AOG.
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As shown in Figure 5.2, the Main AOG can be branched multiple times. However, since
the branching starts always from the main graph, before a new branch can start the previous
one should be merged.

Every time a new branch is performed the AOG is enlarged. This process can be described
introducing the concept of AOG networks (AOGN). An AOGN Γk, where k ∈N is recursively
defined as:

Γk = (Gk,Γk−1)

Γ0 = G0
(5.4)

where G0 is the main graph and Gk is the k− th branched graph. As with normal AOG, the
structure of the main graph and possible branches is designed offline. However, branches are
added online to the main graph granting high flexibility to the collaboration process. The
branching mechanism can be associated with automatic triggers or an external input (e.g.,
a command from the operator). In the following sections, we will explore how to integrate
branched AOG in HRC architectures and how they can be used to alter the original plan
execution.

5.3 Systems architecture

The architecture handling the Human-Robot collaboration process in our scenario is inspired
by [21]. This architecture contains some blocks specialized for the defect inspection use case
but, it can be easily adapted to other scenarios. In our use case, the collaboration involves the
operator and the two arms of a dual-arm manipulator.

Our architecture is organized in three layers: perception (in green in Figure 5.3), represen-

tation (in blue), and action (in red). The perception layer collects and organizes information
from all the sensors about the operator and the robot’s work space, fundamental to make
informed decisions. The representation layer handles the plan structure and decision making
using AOGs and stores all the relevant information for plan execution (e.g., object positions).
Finally, the action layer checks the feasibility of robot motions and executes them.
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Figure 5.3 The system architecture integrating branched AND/OR graphs in a collaborative
scenario.
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5.3.1 Perception

In our application, the perception layer is composed of two modules, namely Human Activity

Recognition (HAR) and Object Defect Detection (ODD). The HAR module collects data
from an RGB-D camera to detect the operator’s skeleton using the open-source software
OpenPose [10]. The operator’s skeleton is then processed to recognize two gestures, i.e.,
raise left arm (Figure 5.6b) and raise right arm (Figure 5.6o). Instead, the ODD module
uses data from an RGB-D camera to classify objects into three classes: faulty, non-faulty and
unknown. Since defect spotting is not the core of our work, this procedure simply uses AR
tags glued on the objects.

5.3.2 Action

This layer comprehends two modules: the Task Motion Planning Interface (TMPI) and
the Motion Planner (MP). The TMPI receives discrete, symbolic commands from the
representation layer (e.g., PICK OBJECT A) and transforms them into grounded commands.
Instead, the MP checks the grounded commands feasibility, sends the low-level commands to
the robot and monitors the command execution acknowledging the TMPI once it is completed.
For more details on how the action layer processes are handled, the reference is [21].

5.3.3 Representation

The Representation layer groups up the Task Planner (TP) and the Knowledge Base (KB)
modules. The last one simply stores all relevant information about the robot’s work space
and the human as described in [54].

Instead, the TP groups up the AOG network (AOGN), storing the plan description; and
the Network Search (NS) module, handling the decision making. The NS module collects the
list of actions associated with each hyper-arc in the AOG and decides which actions should
be executed, and who should perform it (human, left robot arm, right robot arm). The next
action choice is based on the AND/OR graph traversal procedure introduced in [21]. Once
an action is completed, the NS module updates the AOG internal state.
The TP also handles the branching mechanism. In our scenario, we have defined only two
kinds of branched AOG: the Kinesthetic Teaching Graph (KTG) and the Empty Graph (EG,
see Figure 5.4). The human operator can use KTGs to update relevant poses in the task (e.g.,
grasping, release, or inspection poses) while the robot is executing the plan. Instead, EGs
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Algorithm 8: Branched AOGs algorithm
Data: GN ,GKT ,GE ; /* Structure of normal, kinesthetic teaching and

empty graphs */
Result: Solved GN

1 AON← /0; /* Create AND/OR graph network */
2 AON← AON∪GN ; /* AON.firstGraph is the main normal graph */
3 while true do
4 if Human gesture then
5 if !Scheduled then
6 if Right arm then
7 GE = createEmptyGraph();
8 AON← AON∪GE ;
9 else

10 GKT = createKT Graph();
11 AON← AON∪GKT ;
12 end
13 else
14 end
15 sendActionToTreeSearch(gesture)
16 end
17 if !Solved(AON.lastGraph) then
18 Solve(AON.lastGraph); /* call algorithm 4, Task Planner */
19 else
20 if Solved(AON. f irstGraph) then
21 break;
22 else
23 Solve(AON. f irstGraph); /* call algorithm 4, Task Planner

*/
24 end
25 end
26 end
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allows the operator to traverse the graph backwards (e.g., to repeat a faulty action) or forward
(e.g., to skip a non-necessary action).

The algorithm describing the branching mechanism is presented in the flowchart of Figure
5.5. As the process starts, the main graph G0 (see Figure 5.4) is created and added to the
graph network. This graph handles an inspection process in which the robot should: (i) grasp
an object, (ii) classify it as faulty, non-faulty, or unknown, and (iii) release it in the correct
position. Then the NS module, based on the AOGN’s state, lists all the possible next actions
and requests the action layer to check whether the robot can perform them.

If one or more actions from a hyper-arc are not feasible, the entire hyper-arc is disregarded,
and the execution proceeds to the one that follows. When the NS module can not find any
feasible action, a branching is activated, adding to the AOGN an EG Gi,E (see Figure 5.4).
The last node to be met in G0 is set as the branching node nbi and the leaf of Gi,E is set as
the parent of bi. At the same time, the root of Gi,E is set as the child of mi. In this way,
the merging node nbi coincides with the branching node nmi (i.e., branch and merge are
performed on the same node of G0).
This mechanism is necessary to compensate for errors in the action layer check. In fact, on
the same actions, the check result can vary if repeated multiple times (i.e., the robot inverse
kinematic solver uses random seeds). When all the actions associated with a hyper-arc get a
positive check result, the corresponding state transition is selected for actuation. The graph
traversal continues until the root node of G0 is reached. After the root node is reached, when
a new object is introduced in the scene, the system creates a new EG branch having as branch
node the root of G0 and as the merging node the only leaf of G0. This branching resets the
main graph, and since G0 is designed to inspect only one object, it is necessary to process
new objects.
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At the same time, the framework allows the operator to branch G0 with KTGs, to update
plan poses, and with EGs, to repeat the actions associated with the last solved hyper-arc.
As we previously described, the HAR module monitors the human operator’s activities and
recognizes two gestures raise left arm and raise right arm. As it is shown in the flowchart of
Figure 5.5, when the human operator performs these two gestures, a new branch is generated
respectively to a KTG or an EG. An abstract description of branched AOGN’s is described in
algorithm 8.

In our application, when a new KTG (Gi,KT ) is created, the branching node nbi is always
the last node in G0 that has been marked as met and the merging node nmi is its parent in
G0. This operation mode is adopted because the actions defined in G0, necessary for the
transition from nbi to nmi to occur, are performed by the operator using kinesthetic teaching.
The operator can use the KTGs to update relevant poses for the task (e.g., where the object
should be grasped or placed). To guarantee a proper execution each relevant pose is composed
of three sub-poses, namely approach, actuate and depart.
For this reason, our implementation of the KTG (see Figure 5.4) has three Register states,
one for each of the three sub-poses. After the branching, when the operator grasps the robot
wrist (Cuff action in Figure 5.4), the teaching process starts and, when the operator releases
the robot wrist (UnCuff action), the new sub-pose is saved. To navigate the KTG and finish
the teaching, the operator repeats these actions three times (see Figure 5.4).

At the same time, if the robot fails to perform an action, the operator can request its
repetition branching to an EG. The branching associated with the raise right arm gesture
creates an EG branching from the last met node to its child, allowing for repeating the last
executed actions (see G2 in Figure 5.4).

The operator can use the Cuff and UnCuff actions only while traversing the KTG. If one
of these actions is detected in another context, it is considered an anomaly and the algorithm
creates a new EG branch. A branch generated by this mechanism behaves like the one for the
raise right arm gesture and allows the system to restore the plan execution ignoring operator
interference’s.

5.4 System demonstration

We demonstrate the validity of our approach using the dual-arm Baxter robot from Rethink
Robotics, equipped with standard grippers and an RGB-D camera mounted on the robot’s
head. Baxter has a Zero-Gravity mode activated by grasping the arm’s cuff (i.e., Cuff ),
allowing the operator to use kinesthetics to guide Baxter’s arms. Baxter operates on a table
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where objects to inspect are placed, and the human operator works on the opposite side of
the table (see Figure 5.6). The experimental setup comprehends a second RGB-D camera
positioned behind the operator. The robot camera inspects the object while the second one
monitors the operator gestures.

We developed the architecture presented in the previous section using the Robot Operating
System (ROS) framework [75], and the modules are implemented using either Python or
C++. The architecture is distributed between two machines. The HAR module is executed
on a workstation equipped with an Intel(R) Core i7-4790@3.6 GHz CPU, an NVidia GTX
970 GPU and 32 GB of RAM, while all the other modules run on a workstation equipped
with an Intel(R) Core i7-8700@3.2 GHz CPU and 16 GB of RAM.

5.4.1 Setup Description

As anticipated, the considered scenario foresees a human operator and a robot assessing if
an object presents defects. The robot waits in its initial configuration (Figure 5.6a) and the
collaboration, described by G0 (Figure 5.4), starts when the human places the first object on
the table (grasp pose, Figure 5.6j). Then the robot grasps the object with its right arm and
lifts it in front of its camera for inspection (inspection pose).
If the object is recognized as faulty, the robot reaches the box on its right-hand side, and
releases the object (faulty pose, Figure 5.6l). If the object is non-faulty it has to be located on
the box on the robot’s left hand side (non-faulty pose, Figure 5.6n). However, that pose is out
of the work space for the right arm, and the two arms meet in front of the robot (exchange

pose, Figure 5.6m) to exchange the object and complete the task. Finally, if the object is
classified as unknown, the robot should handle the object to the operator (operator pose,
Figure 5.6k) to ask for her/his intervention.

All the poses necessary for the task execution are predefined at the beginning of the
collaboration. However, during the execution, it could be necessary to update them (e.g., the
object initial pose changes, the operator moves, or the boxes are re-allocated). In these cases,
the operator can branch the main graph, performing the left arm gesture, with a KTG.
This mechanism allows the operator to update a specific pose using kinesthetic teaching.
Since, as described previously, each relevant pose is composed of three sub-poses (approach,
actuate and depart), the operator would have to teach all these sup-poses before the execution
of the main graph is restored. The sub-poses taught by the operator are updated on the KB
for later use. Instructions are displayed on the tablet mounted on the robot’s head to guide
the operator in traversing the KTG.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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(k) (l)

(m) (n)

(o) (p)

Figure 5.6 Different stages of the Human-Robot Collaboration in which the operator alters
the execution of the plan online.
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Figure 5.6b shows the operator raising his left arm while the robot is moving to pick the
object. This, activates a branching to update the grasp pose. A branched graph, G1,KT , is
created and the teaching process starts. The operator, by grasping a Baxter’s cuff, moves
forward in G1,KT to start kinesthetic teaching (Figure 5.6c). By releasing the cuff, the position
of the end-effector is registered as approach grasp pose and the state Register-1 in G1,KT

is solved. The graph moves forward for all the following teaching steps (Figures 5.6d and
5.6e). Once the operator successfully solves G1,KT , the Task Planner, moves back to the
main graph G0. Figure 5.6 presents also examples in which the operator teaches faulty pose

(Figure 5.6f), exchange pose (Figure 5.6g), non-faulty pose (Figure 5.6h) and operator pose

(Figure 5.6i).
It may happen that, because of errors in motion planning or motion execution, the robot

fails the execution of one or more actions. In this case, the operator may raise his right arm
(Figure 5.6o), requesting the robot to go back to the previous state to repeat the faulty actions.
As explained in the previous section, this is possible by branching the main graph to an EG.
Figure 5.6p shows one of these cases: the robot fails to release the faulty object in the box,
and the operator requests to repeat the action by raising his right arm.

5.4.2 Results

A single operator repeated the inspection of one object for 10 times 2. On average during
each run the architecture created 6 different branches. Of these branches, an average of 3.1
have been activated by the operator, while the others are automatically generated by the
system.

Table 5.1 Execution time for different modules of our architecture.

Module Avg. time (s) Std. dev (s) Avg. Time (%)
AOG Network 0.02 0.001 0.08
Network Search 0.22 0.01 0.78
Motion Planning 1.62 0.41 5.63
Motion Execution 26.93 7.02 93.5
Total 28.79 7.18 100

The times related to the execution of each component are presented in Table 5.1 and
include, average and standard deviation time over all the 10 runs. The AOGN time includes
the time to create new branches that is negligible respect to normal AOGN operations. As

2www.youtube.com/watch?v=b9n0xZ6z9KE

www.youtube.com/watch?v=b9n0xZ6z9KE
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shown in the Table, the processes associated with the representation layer (AOGN and NS),
takes less than 1% of total average time. Also the standard deviation associated with the
representation layer is negligible, pointing out that our framework is quite stable. The major
portion of processing time is dedicated to motion planning and execution. It is worth noting
that we did not include in the table the time that the operator spent to teach new poses. This
has been done to avoid considering human proficiency with kinesthetic teaching.



Chapter 6

Task and motion planning in robotic
problems

6.1 Introduction

In common situations, humans trivially perform complex manipulation tasks, such as picking
up a tool from a cluttered toolbox, or grabbing a book from a shelf, by re-arranging occluding
objects. For humans, these tasks seem to be routine, and they neither require much conscious

planning nor cognitive focus during action execution. Yet, for robots, this is definitely
not the case. Such complex manipulation tasks as picking from clutter or rearrangements

require advanced forms of reasoning to decide which objects to pick up or re-arrange, and
in which sequence, so as to synthesize motions towards the target objects to account for
the geometry-level feasibility of the task-level actions. This interaction between task-level,
symbolic reasoning and geometry-level, motion planning is the subject of integrated Task

and Motion Planning (TMP) [60].
The de facto standard syntax for specifying task-level actions is the Planning Domain

Definition Language (PDDL) [67], and most approaches resort to it. However, task-level
domains may also be specified using temporal logics [44], or formal languages [17]. Given
the task-level domain, task planning finds a discrete sequence of actions from the current
state to a desired goal state, which is expressed in symbolic form [38]. Likewise, motion
planning approaches find collision-free configurations to reach a desired goal configuration,
represented in geometrical terms [63]. Therefore, TMP approaches aim at establishing an
appropriate mapping between task-level and motion-level domains. Examples of such a
mapping include, given a task-level plan, the corresponding motion-level actions, or given a
task-level state, the corresponding sequence of feasible geometric configurations.
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(a) (b)

Figure 6.1 (a) The gripper needs to pick the purple cube. Only side grapes are allowed and
the gripper is forced to act along a fixed plane to mimic a 2D scenario. (b) Cluttered table-top
with two target objects (in black) and other objects in red. The multi-robot system consists of
two Franka Emika manipulators.

Though many off-the-shelf PDDL-based planners are available, establishing the corre-
spondence between task-level planners and motion planners is not easy a task, and requires
the development of a full-fledged robot planning and control architecture. For the sake of
the argument, let us consider a simple cluttered table-top scenario, as shown in Fig. 6.1a,
where a robot must pick up a purple cube from clutter. As seen in the Figure, the target
object cannot be immediately grasped, and other objects hindering the target grasp need to
be properly re-arranged. Such a scenario may be modeled using two PDDL actions, namely
pick and place. Obviously enough, in a TMP formulation, each task-level, symbolic action
should also realize appropriate motions. Therefore, the typical PDDL domain may contain
the following predicate definitions:

(:predicates (clear ?x) (gripper-empty) (holding ?x)).

The predicates (clear ?x), (gripper-empty), and (holding ?x) check if an object, generically
identified with the variable ?x, is clear, i.e., nothing hinders its grasping, if the gripper does
not hold any object, and which object the gripper is holding, respectively. In order to keep the
scenario simple enough, we deliberately make the assumption that if the target grasp were
hindered, the robot would be able to pick up another object, or otherwise different objects in
sequence, to make the target pick action feasible. We note that PDDL-based planners initiate
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the search through a process called grounding, which is aimed at replacing the variables
in the predicates (for example the variable ?x above) with possible referents to real-world
objects, so as to instantiate predicates and action schemas. If our scenario would comprise 6
possible objects to grasp and/or re-arrange, that would give rise to 13 possible propositions,
i.e., 6 possibilities for each of the predicates (clear ?x) and (holding ?x), as well as one
for (gripper-empty). Therefore, this would yield n = 213 possible states since we consider
Boolean truth values. Finding the shortest path in the search space using a state-transition
graph via a typical pick and place schemes would be characterized by a O(n logn) temporal
complexity [8]. Heuristic search avoids visiting large regions of the transition graph via
informed search to reach the goal state faster. However, it must be noted that effective goal
reaching also depends on the configuration space, and that it should be verified that each
pick and place action should be feasible at the motion level. However, what is even more
relevant for this discussion is that, in a general sense, the number of objects that must be
re-arranged to pick up the target object cannot be known beforehand, which would require
observation-based re-planning within the PDDL framework, and in cascade an additional
mapping between the PDDL-based action space and the robot observation space [6]. While
PDDL planning is EXPSPACE-complete and can be restricted to less compact propositional
encodings to achieve PSPACE-completeness [45], it is noteworthy that the time taken for
each re-planning would further exacerbate the temporal complexity.

Although single-robot TMP has been an area of active research, current approaches do
not naturally account for the benefits afforded by the presence of multiple robots. These
may include the fact that tasks may be decomposed in a variety of ways, task allocation may
involve different robots, or that re-arrangements may benefit from an explicit coordination
among robots. A straightforward extension of single-robot TMP approaches to the multi-
robot case would have to treat the multi-robot system as a collection of (possibly many)
single robots, which would further worsen computational and temporal complexity as the
number of robots would increase.

As a case in point, we consider a use case in which objects in a cluttered table-top setting
must be re-arranged with the aim of reaching a target object, and we specialize the use case
in two scenarios, that is with one robot only and with multiple robots, as in Fig. 6.1a and
Fig. 6.1b, respectively. In the latter case, task allocation among available robots must be
carried out, which is followed by a TMP method to carry out allocated tasks. In particular, in
this paper we present a probabilistically complete approach for TMP in single and multiple
robot scenarios. We tackle the two challenges described above, that is (i) the computational
complexity of typical PDDL-based planners is quadratic, and (ii) the number of objects
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to be re-arranged may not be known in advance, by defining the task-level domain using
an AND/OR graph, and by encoding the task-level abstractions of the TMP problem in
an efficient and compact way within the AND/OR graph. In view of challenge (ii) above,
we introduce a variant of AND/OR graph networks able to iteratively deepen at run-time
till reaching a state whereby the target object is grasped. With respect to challenge (i), in
Section 7.1 we show that with our formalization the complexity of task-level planning is
almost linear with respect to the number of graph iterations, that is, in our scenario, the
number of objects that must be re-arranged. We then extend our TMP approach to leverage
multi-robot capabilities: first, we allocate tasks to the available robots, and then we plan
via AND/OR graphs a sequence of actions for the multiply decomposable tasks, which is
optimal with respect to a multi-robot wide utility function.

6.2 Related works

In the recent past, TMP has received considerable interest among the Robotics research
community [51, 85, 18, 31, 91, 34]. The primary challenge of planning in a hybrid, symbolic-
geometrical space is to obtain an efficient mapping between the discrete task and the con-
tinuous motion levels. A combined search in the logical and geometric spaces using a state
composed of both the symbolic and geometric variables is performed in [9]. A hierarchical
approach for TMP is introduced in [50] wherein, planning is done at different levels of
abstraction, thereby reducing longer plans to a set of feasible, shorter sub-plans. However,
the planner plans backwards from the goal (that is, regression), and assumes that the actions
are reversible while backtracking. A similar approach is also employed in [73, 26] to compute
discrete actions with unbounded continuous variables.

Semantic attachments are used in [28, 27, 18, 91], associating algorithms to functions
and predicate symbols via procedures external to the planning logic. Though semantic at-
tachments allow for mapping between the task and motion spaces, all the relevant knowledge
about the environment is assumed to be known before-hand. Besides, the robot configu-
ration and the grasp poses need to be specified in advance, which renders the continuous
motion space to be finite. The FFRob approach, described in [31], performs task planning
via a search over a finite set of pre-sampled poses, grasps and configurations. This a pri-

ori discretization is relaxed in [49, 85, 92]. For example, the approach in [85] implicitly
incorporates geometric variables while performing symbolic-geometric mapping using a
planner-independent interface layer.
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Most approaches (for example [29, 18]) first compute a task-level plan and refine it until a
feasible motion plan is found or until timeout. To this end, the two approaches in [29, 18]
adopt constraint-based task planning to leverage ongoing advances in solvers for Satisfiability
Modulo Theories (SMT) [24]. The approach in [91], however, checks for the motion feasibly
as each task-level action is expanded by the task planner. But this approach assumes a
pre-discretized motion space and thereby a finite action set. Recent work of Caelan et al. [33]
address this limitation by introducing streams within PDDL, which enable procedures for
sampling values of continuous variables and thereby encoding an infinite set of actions.

However, the above mentioned methods do not consider the implication of having multi-
ple robots in task allocation and collision avoidance, and would have to treat the multi-robot
system as a combined single-robot system, which becomes intractable as the number of
robots increases. Current TMP approaches for multi-arm robot systems focus on coordinated
planning strategies, and consider simple pick-and-place or assembly tasks. As such, these
methods do not scale to complex manipulation tasks [76, 95].
TMP for multi-arm robot systems in the context of welding is considered in [5], whereas [95]
discusses an approach for multi-arm TMP manipulation. However, the considered manipula-
tion task is a simple pick-and-place operation involving bringing an object from an initial
position to a goal position, whereas two tables and a cylindrical object form the obstacles. A
centralized inverse kinematics solver is employed in [69]. Motion planning for a multi-arm
surgical robot is presented in [74], although predefined motion primitives are considered.
Yet, a fine tuning of such primitives towards real experimental platforms remains a challenge.

TMP for multi-robot systems has not been addressed thoroughly, and therefore the
literature is not sufficiently developed. Henkel et al. [46] consider multi-robot transportation
problems using a Task Conflict-Based Search (TCBS) algorithm. Such an approach solves a
combined task allocation and path planning problem, but assigns a single sub-task at a time
and hence may not scale well to an increased number of robots.
Interaction Templates (IT) for robot interactions during transportation tasks are presented
in [70]. The interactions enable handing over payloads from one robot to another, but the
method does not take into account the availability of robots and assumes that there is always
a robot available for such an handover. Thus, while considering many tasks at a time this
framework does not fare well since a robot may not be immediately available for an handover.
A distributed multi-robot TMP method for mobile robot navigation is presented in [90].
However, they define task-level actions for a pair of robots and therefore optimal solutions
are available for an even number of tasks, and only sub-optimal solutions are returned for an
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Considered Task Task Motion Unknown number
method allocation decompostion planning of sub-tasks
TCBS [46] ✓
IT [70] ✓ ✓
[90] ✓ ✓
TMP-CBS [71] ✓ ✓ ✓
Our ✓ ✓ ✓ ✓

Table 6.1 Comparison of different multi-robot TMP methods.

odd number of tasks. Motes et al. [71] present TMP-CBS, a multi-robot TMP approach with
sub-task dependencies. They employ a CBS method [81] in the context of transportation
tasks. Constructing a conflict tree for CBS requires the knowledge of different constraints
which depend on the sub-task conflicts, for example, two robots being present at a given
location at the same time. However, in the table-top scenario considered in this paper, the
number of sub-tasks is not known beforehand. The capabilities of the discussed multi-robot
TMP methods are summarized in Table 6.1.

6.3 Task-motion formalism

Task planning or classical planning is the process of finding a discrete sequence of actions
from the current state to a desired goal state [38].

Definition 1. A task domain Ω can be represented as a state transition system and is a tuple

Ω = ⟨S,A,γ,s0,Sg⟩ where:
• S is a finite set of states;

• A is a finite set of actions;

• γ : S×A→ S such that s′ = γ(s,a);

• s0 ∈ S is the start state;

• Sg ⊆ S is the set of goal states.

Definition 2. The task plan for a task domain Ω is the sequence of actions a0, . . . ,am such

that si+1 = γ(si,ai), for i = 0, . . . ,m and sm+1 satisfies Sg.

Motion planning finds a sequence of collision free configurations from a given start configu-
ration to a desired goal [63].
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Definition 3. A motion planning domain is a tuple M = ⟨C, f ,q0,G⟩ where:

• C is the configuration space;

• f = {0,1}, for collision ( f = 0) else ( f = 1);

• q0 ∈C is the initial configuration;

• G ∈C is the set of goal configurations.

Definition 4. A motion plan for M finds a collision free trajectory in C from q0 to qn ∈ G

such that f = 1 for q0, ...,qn. Alternatively, A motion plan for M is a function of the form

τ : [0,1]→C f ree such that τ(0) = q0 and τ(1) ∈ G, where C f ree ⊂C is the configurations

where the robot does not collide with other objects or itself.

TMP combines discrete task planning and continuous motion planning to facilitate efficient
interaction between the two domains. Below we define the TMP problem formally.

Definition 5. A task-motion planning with task domain Ω and motion planning domain M is

a tuple Ψ = ⟨C,Ω,φ ,ξ ,q0⟩ where:

• φ : S→ 2C, maps states to the configuration space;

• ξ : A→ 2C, maps actions to motion plans.

Definition 6. The TMP problem for the TMP domain Ψ is to find a sequence of discrete

actions a0, ...,an such that si+1 = γ(si,ai), sn+1 ∈ Sg and a corresponding sequence of motion

plans τ0, ...,τn such that for i = 0, ...,n, it holds that (1) τi(0) ∈ φ(si) and τi(1) ∈ φ(si+1),

(2) τi+1(0) = τi(1), and (3) τi ∈ ξ (ai).



Chapter 7

Iteratively deepened AND/OR graph
networks

7.1 AND/OR graphs networks

Here we recap AND/OR graphs and reformulate them, to prepare them forAND/OR graphs
networks definitions.
An AND/OR graph is a graph which represents a problem-solving process [12]. Below we
provide a brief overview of AND/OR graphs; a detailed exposition can be found in [53].

Definition 7. An AND/OR graph G is a directed graph represented by the tuple G = ⟨N,H⟩
where:

• N is a set of nodes;

• H is a set of hyper-arcs.

For a given AND/OR graph G, H = {h1, . . . ,hm}, where hi is a many-to-one mapping
from a set of child nodes to a parent node. Let us revisit the toy example considered in
Section 6.1 (Fig. 6.1). An AND/OR graph for this scenario is visualized as a sub-graph in
Fig. 7.1 consisting of the nodes graspable, gripper-empty, object picked, target placed and
object placed. Note that we currently ignore the current configuration node (green color)
and the graph extending from the object placed node in the figure, details of which will be
described later. Each node ni ∈ N of the graph G represents a high-level state, for example,
object picked. To achieve the state object picked, the gripper must be empty, that is gripper-
empty and the object should graspable. Thus the nodes graspable, gripper-empty and object
picked are akin to the PDDL predicates clear ?x, gripper-empty, and holding ?x, respectively.
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The hyper-arc induces a mapping from the child nodes gripper-empty and graspable to the
parent node object picked. In that sense, a hyper-arc induces a logical AND relationship
between the child nodes/states, that is, all the child states should be satisfied simultaneously
to achieve the parent state. Similarly, a single parent node can be the codomain for different
hyper-arcs hi. These hyper-arcs are in logical OR with the parent node. Nodes without any
successors or children are called the terminal nodes. The terminal nodes are either a success
node, that is, target placed or a failure node, that is, object placed.

Let us again consider the toy example in Fig. 6.1. If the number of objects to be
re-arranged are known, then an AND/OR graph can be constructed using the the above
mentioned states and corresponding transitions. Yet, the number of object re-arrangements is
scenario dependent and not known ahead of time. The AND/OR graph representation thus
seems incompatible. However, we make the following observation— the abstractions defined
for clutter scenario, that is, the states (nodes of G) and actions (hyper-arcs of G) remain the
same irrespective of the number of object re-arrangements. Thus we can envision a graph G

that expands online by repeating itself until the target is retrieved. Nevertheless, each iteration
of G corresponds to a new work-space configuration (object arrangement) and to encode this
aspect we augment G with a virtual node that represents the current work-space configuration.

Definition 8. For an AND/OR graph G = ⟨N,H⟩, an augmented AND/OR graph Ga is a

directed graph represented by the tuple Ga = ⟨Na,Ha⟩ where:

• Na = {N,nv} with nv being the virtual node;

• Ha = {H,Hv} with Hv = {hv
i }1≤i≤|Hv|.

The virtual node nv is called the root node of the augmented graph Ga. Each virtual
hyper-arc hv

i induces a mapping between the virtual node and a node of the graph G. In our
cluttered table-top scenario, the most trivial case corresponds to successfully grasping the
target without any object re-arrangements. However, most often due to clutter, a motion
plan to the target do not exist and objects need to be re-arranged to obtain a feasible plan.
In general, motion planner failure can arise if a path indeed does not exist or because the
planning time allotted was insufficient. In this work, we assume that sufficient time is allotted
to the planner so that a motion planning failure implies objects obstructing the path to the
target.
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Remark 1. If the target grasp is unsuccessful, that is, the motion planner fails, then at least

one object need to be re-arranged to search for a new target-graspable path.

Thus, following the root node, a success node is reached if the target placed task is a
achieved and hence the graph is solved. Else, the graph is terminated at the failure node
(object placed) following the re-arrangement of a single object and the graph is therefore
unsolved. In our approach a single augmented AND/OR graph Ga represents such a problem
solving process. It readily follows from Remark 1 that if the graph Ga is terminated at the
failure node a re-attempt is to be made to achieve a grasp of the target object. Such an attempt
can again lead to a solved or unsolved graph. Therefore to achieve the required objective, it
is necessary to iterate Ga till a success node is reached, that is, Ga is solved. This roll-out of
augmented AND/OR graphs give rise to an AND/OR graph network.

Definition 9. An AND/OR graph network Γ is a directed graph Γ = ⟨G ,T ⟩ where:

• G = {Ga
1, . . . ,G

a
n′} is a set of augmented AND/OR graphs Ga

i ;

• T = {t1, . . . , tn′−1} is a set of transitions such that Ga
i+1 = ti(Ga

i ), 1≤ i≤ n′−1.

where n′ is the total number of graphs in the network. Alternatively, n′ is also the depth of
the network. Note that ti is defined only if Ga

i is unsolved, that is, if the graph terminates
at the failure node. This transitions Gi to a new augmented AND/OR graph Ga

i+1 = ti(Ga
i ),

updating the root node of Ga
i+1 to the changed work-space configuration. Thus for the pick

and place scenario, we obtain an AND/OR graph network as shown in Fig. 7.1.
The root node is the virtual node that represents the current work-space configuration (green
node, that is, current configuration). The object to be picked and placed is decided by a cost
function, for example, the proximity to the gripper and therefore for a single pick operation
we need to traverse only the nodes till object picked. If the target object is being held, it is
then put-down and the graph terminates, else a new object is selected to clear the path to the
target. Once the object is moved, a new graph is grown with the current configuration being
the updated current work-space configuration taking into account the object movement.

Complexity comparison: In Section 6.1 we have discussed the computational complexity for
the toy example in Fig. 6.1 modeled using PDDL. We now analyze the complexity aspects
when the same example is modeled using our AND/OR graph network (see Fig. 7.1). Assum-
ing sufficient time is allotted for the motion planner, in the worst case all the 5 objects need
to be re-arranged leading to 5×5 states1 as opposed to 213 using PDDL (see Section 6.1).

15 nodes for each object as seen in Fig. 7.1 and 5 iterations due to 5 objects.
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Figure 7.1 AND/OR graph network for the pick and place scenario shown in Fig. 6.1.
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However it can happen that the task execution fails, for example due to motion, actuation or
grasping errors. In such a case a new graph Ga

i+1 is grown retaining the same work-space
configuration as Ga

i . Therefore the number of iterations m may be greater than the number of
objects (here m > 5) and hence the time complexity is thus O(5m) ≈ O(m). Note that for
PDDL based planning, shortest path takes O(n logn) time where n = 213 is the number of
states. In general for an AND/OR graph network with each graph consisting of n nodes, the
time complexity is only O(nm). Similarly, for an AND/OR graph with n nodes a storage of
only O(n) nodes is required.

Proposition 1. An AND/OR graph network Γ = (G ,T ) is said to be solved at depth d when

Ga
d is solved.

Following Proposition 1, an AND/OR graph net with underlying augmented AND/OR
graphs Ga

i is expanded till a Ga
i is solved. Note that as discussed in Section 6.1, we are

interested in problems with solutions. For example in a cluttered table-top TMP scenario
where a target object is to be grasped, we assume that a feasible grasp exist. This may result
in a network of infinite depth. However, as a consequence of our assumption, that is, a
solution exist, the network is solved at infinite depth. Moreover, to alleviate the issue of
infinite depth, a predetermined depth limit may be employed. Thus, as the predetermined
limit approaches infinity a solution is found. Practically, solutions with larger depth limits
may be discarded as it may be too time consuming to arrive at. This enables us to define
some sort of probabilistic completeness as will be seen later in Section 7.2.

7.2 TMP-IDAN

We present a novel TMP approach TMP-IDAN (Task-Motion Planning using Iterative Deep-
ened AND/OR Graph Networks) that uses AND/OR graph networks to compactly encode
the task-level abstractions to reduce the overall task planning complexity.
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7.2.1 Single-robot TMP-IDAN

System’s Architecture

An overview of TMP-IDAN is given in Fig. 7.2. In general the approach requires (1)
perception capabilities to comprehend objects in the scene, (2) task planning to select the
abstract actions and finally (3) motion planning for executing the action to manipulate objects,
avoiding potential collisions. The perception capabilities are encapsulated in a single module,
which is called the Scene Perception. This module provides the Knowledge Base module with
the information about the current work-space configuration, that is, the location of objects and
the configuration of robot. The planning layer is made up of two modules, namely the TMP

Interface, and the Motion Planner modules. The TMP Interface module receives discrete or
symbolic commands from the Task Planner and maps them to actual geometric values and
drives the behavior of the Motion Planner. This module retrieves information regarding the
work-space and robot from the Knowledge Base. It also provides an acknowledgment to the
Task Planner upon the execution of a command by the robot. The Motion Planner module
plans the outcome of robot behaviors before their actual execution.

The Task Planner module embeds the augmented AND/OR Graph and the AND/OR
Graph Net Search. Along with the AND/OR graph, the Task Planner module is in charge
of decision making and adaptation of the ongoing parallel (by parallel we mean different
actions feasible from the current state) hyper-arcs. To do so, the Task Planner provides a set
of achieved transitions between the states to the Graph Net Search module and receives the
set of allowed cooperation states and transitions with the associated costs to follow. It then
associates each state or state transition with an ordered set of actions in accordance with the
work-space and robot configuration and finally incorporates the online simulation results to
assign actions to the robot arms. Once an action is carried out, it receives an acknowledgment
from the planning level and updates its internal structure. The Knowledge Base stores all
relevant information to make the cooperation progress.

For motion planning, we use MoveIt [87], which supports RRT [59] from OMPL [88].
The motion planner is first employed to execute the obstacles selection algorithm. Once the
tasks are allocated, the motion planner is called to (i) achieve the re-arrangement of each
sub-task identified by the task planner and (ii) to grasp the target object.



7.2 TMP-IDAN 67

Figure 7.2 System’s architecture of TMP-IDAN framework.
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Task Planning with AND/OR Graph Networks

The AND/OR graph representation provides a framework for the planning and scheduling
of task sequences [79]. The feasibility of the tasks is then checked using a suitable motion
planner [53]. Moreover, an AND/OR graph inherently requires fewer nodes than the corre-
sponding complete state transition graph, reducing the search complexity of the AND/OR
space [79]. Yet, such a representation requires that the number of object re-arrangement
to retrieve a target from clutter is known ahead of time. This representation thus seems
incompatible as we do not know before-hand the number of objects to be re-arranged. To
address this challenge, we introduce AND/OR graph networks as discussed in Section 7.1
wherein an augmented AND/OR graph grows online until the target grasp is achieved. For the
cluttered table-top scenario, the AND/OR graph network with two graphs is seen in Fig. 7.3
(right). Given the initial work-space configuration, a virtual node representing the same
(INIT#0) is added giving the augmented AND/OR graph Ga

0. The graph Ga
0 encodes the

fact that if a feasible grasping trajectory exists then the picked target task is to be performed
and otherwise an object is to be identified to be either removed or pushed. Let us consider
the case that a target grasping trajectory does not exit and that a grasped closest object of
target followed by object placed in storage is achieved which is a failure node and thus
exhausting Ga

0. This leads to a new graph Ga
1, which corresponds to a new augmented graph,

with the same states and actions as Ga
0 but a different work-space configuration encoded via

the virtual node INIT#1. This process iteratively repeats itself until a graph Ga
n′ is solved

which represents an AND/OR graph network Γ of depth n′. The augmented AND/OR graphs
Ga

0, . . . ,G
a
n′ are thus iteratively deepened to obtain an AND/OR graph network whose depth

n′ is task depended and not known before-hand. We note here that in case a task in Ga
i

fails, for example due to motion, actuation or grasping errors, Ga
i+1 (with current work-space

configuration) is grown and in this way our approach is robust to execution failures.

Algorithm 9 describes the overall planning procedure. It proceeds with the an AND/OR
graph augmented with the initial work-space configuration (line 2) which is initiated by the
AND/OR graph module via the call to AddNewGraph. The task planner module then checks
for feasible states (call to NextFeasibleStates) in the augmented graph (line 3). From among
the feasible states the optimal state is selected with the call to NextOptimalState. Our cost
function is a combination of distance of the object to the robot base, distance to the left,
right robot gripper and the size of the object. The tasks and agents (left and right robot arm)
of the feasible state are communicated to the TMP interface with the call to SendToTMPI.
Upon call to RequestKB and RequestSP, the geometric location of the objects, grippers
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are communicated to the TMP interface though the knowledge base and scene perception
modules. A motion plan is sought for by the TMP interface with the RequestMP. If the
motion plan execution fails, for example a grasping failure, then a re-try is attempted (line 26).
If a motion plan is not found then another object is selected for re-arrangement (line 9); see
Remark 1. If motion plan is successful, a new graph is expanded and the process repeats
until the target is retrieved.

Probabilistic Completeness

We now prove the probabilistic completeness of TMP-IDAN.

Lemma 1. For a predetermined depth limit l, TMP-IDAN is probabilistically complete.

Proof. For motion planning, we use RRT motion planner [59] which is probabilistically
complete [52]. Thus, given sufficient time, the probability of finding a plan, if one exists,
approaches one. For the AND/OR graph network Γ = (G ,T ) based task planner, by design
each graph Ga

i terminates either at a success node or a failure node and hence each Ga
i

complete. Using a predetermined depth limit l, Γ is expanded at most till depth l. Thus
if Ga

j , j ≤ l is solved then Γ is solved. Else Γ is terminated at Ga
l and a non-existence of

solution is reported. In reality, a solution does not exist at all or the chosen l is shallow.
However, the first scenario (non-existence of a solution) is quashed since we are interested
in TMP scenarios with solutions (consequence of our assumption). Thus, without any loss
of generality, it can be argued that as l approaches infinity the probability of Γ being solved
asymptotically approaches one.

7.2.2 Multi-robot TMP-IDAN

We leverage the concepts detailed in the previous section and present a framework for multi-
robot TMP. We begin by describing a heuristic approach providing a rough estimate of the
objects to be re-arranged to pick a target object. The approach allows us to define a combined
utility function for the multi-robot system to perform task allocation. Allocated tasks are
then carried out using TMP-IDAN.
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Figure 7.3 (top-left) TMP-IDAN in real world (bottom-left) and in simulation. (right)
AND/OR graph network of depth 2 for the clutter scenario.
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(a) (b)

(c) (d)

Figure 7.4 Illustration of the obstacle selection method: (a) a cluttered table-top scenario
with two robots r1 (right), r2 (left) and the target objects in black; (b) a valid grasping angle
range is computed by discretizing a fixed grasping angle range of −π

2 to π

2 ; the objects that
fall within the grasping angle range of r1 (one target) are shown in blue; (c) blue objects
within the grasping angle range of r1, considering both the targets; (d) Objects within the
grasping range of both r1 (blue) and r2 (green), considering both the targets for each robot.

Obstacles Selection

An overview of the method can be seen in Figure 7.4. First, it finds different feasible plans to
the target, each one corresponding to different grasping angles, by ignoring all the obstacles
in the workspace. This is done by discretising the set of graspable angles, that is

[
−π

2 ,
π

2

]
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(the axis is located at the center of the target).
It is noteworthy that we consider only side grasps to make the scenario more challenging.
Among the available plans, the maximum and minimum grasping angles, namely α and β ,
are then obtained. The method then constructs two lines starting at the center of the target
object and towards the robot with the corresponding angles α and β . The lines are terminated
when there are no more obstacles along their paths. The end-points are then joined to form a
triangle. This triangle is then enlarged on all the three sides by the radius of the bounding
volume sphere of the end-effector. The objects within the constructed triangle are the objects
to be re-arranged to facilitate the target grasp.

We note that what we describe here is an approximate method to identify the objects
to be re-arranged. The actual set of objects depend on other such factors as the degrees of
freedom of the robot, the size of the links and the end-effector, or the degree of clutter. As it
will be discussed later, for all practical purposes we are interested only in an approximate
measure so as to perform multi-robot task allocation.

Task Allocation

Let R be the number of available robots, and T the number of tasks to be allocated, that is,
we have T target objects to be picked, such that T ≥ R. Task allocation is performed offline
and we assume that each task, that is, picking up a target object from clutter, is performed
by a single robot, and that each robot is able to execute only one task at a time. We also
recall here our assumption from the Introduction that the objects to be re-arranged to reach
and pick a target are placed in a safe region. Our task allocation strategy falls under the
Single-Task, Single-Robot, Time-extended Assignment (ST-SR-TA) taxonomy of Gerkey
and Matarić [37], since the multi-robot system contains more tasks than robots. In order to
allocate tasks, we define Urit j as the utility function for a robot ri ∈ R executing a task t j ∈ T .
In this work, utility is inversely proportional to the number of object re-arrangements required
to grasp the target object.
To determine such a measure, we first (randomly) select a target object t1, and then for each
robot ri we run the obstacles selection algorithm described above. For each ri, such a run
returns the set of objects to be re-arranged to reach t1.
Let us denote this set by Orit1 (and by Orit j for the jth task). The robot rk whose set Orkt1 is
of minimum cardinality (i.e., maximum utility) is then allocated task t1. For the next target t2
this step is repeated.
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We note here that Orkt2 is computed offline and returns the number of objects to be re-arranged
by robot rk to execute task t2. However, it may be the case that some objects appear in both
Orkt1 and Orkt2 , that is, Orkt1 ∩Orkt2 ̸= { /0}. Since each robot executes one task at a time, rk

can execute t2 only after having performed t1.
Thus, during the execution phase, rk may have already removed the common objects while
executing t1, and therefore these objects may be ignored to avoid intra-robot double counting
while computing the utility Urkt2 offline.

Once each robot is allocated a task, the set of remaining tasks T ′ is completed only after
the execution of the assigned tasks. For the remaining T ′ tasks, the inter-robot or robot-robot
double counting must be considered.
Reasoning in a similar manner for intra-robot double counting, the set Orit j restricted to
T \T ′ < j ≤ T for the remaining T ′ tasks may have common objects with respect to Orit j

restricted to 1 < j ≤ T ′ of the assigned tasks.
Thus, the total number of objects to be re-arranged for robot ri to execute task t j is

Oc
rit j

= |Orit j |−∑
k
|Orit jtk |−∑

k
∑

l
|Orirkt jtl | (7.1)

where | · | denotes the cardinality of a set,

Orit jtk =

Orit j ∩Oritk if ri allotted tk previously,

0 otherwise.
(7.2)

and

Orirkt jtl =

Orit j ∩Orktl if rk allotted tl previously,

0 otherwise,
(7.3)

with the terms |Orit jtk | and |Orirkt jtl | modeling the intra-robot and inter-robot double counting,
respectively. We therefore have the following utility function

Urit j =
1

1+Oc
rit j

. (7.4)

The maximum utility of Urit j = 1 is therefore achieved when no object re-arrangement is
required to execute task t j, that is, Oc

rit j
= 0. Using the taxonomy in [58], we thus have

In-schedule Dependencies (ID) – the effective utility of an agent for a task depends on what
other tasks that agent is performing as well as Cross-schedule Dependencies (XD) – the
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effective utility of an agent for a task depends not only on its own task but also on the tasks
of other agents.

We now define the combined utility of the multi-robot system, which consists of max-
imising

∑
i∈R

∑
j∈T

Urit jxrit j (7.5)

such that ∑
i∈R

xrit j = 1

wherexrit j ∈ {0,1}.
(7.6)

From (7.4) and (7.5) we see that the robot with the minimum number of object re-arrangements
for a given task is thus assigned the maximum utility. In case of a tie, we select the robot
which has not been allocated any task. If all the robots with the same utility have been
allocated tasks already, or if none has been allotted, then a robot is selected randomly.

Task Decomposition

Each manipulation task is decomposed into a set of sub-tasks which correspond to pick-and-
place tasks, that is, re-arrangement of the objects that hinder the target grasp.
As seen above, the number of sub-tasks for a given task are not known beforehand. Moreover,
multiple decomposability [98] is possible since the clutter can be re-arranged in different
ways.
We seek a decomposition minimizing the number of sub-tasks for the multi-robot system.
This can be achieved during task allocation since utility is computed based on the obstacles
selection method. In this work, we consider complex task decomposition [98] – a multiply
decomposable task for which there exists at least one decomposition that is a set of multi-
robot allocatable sub-tasks. Though in this work we ignore the multi-robot allocatability
property, this can be incorporated trivially.
For example, let us consider the case where two robots have the same utility to perform a
task t j. In this case, the sub-tasks can be equally divided to achieve multi-robot allocatability
or one robot may be selected randomly (or depending on previous allocation) to perform the
entire task.
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The Multi-robot Task-Motion Planning Loop

The overall system’s architecture of our multi-robot TMP-IDAN method is similar to the
single-robot architecture shown in Fig. 7.2 with the only difference being the Network Search

module. Since we consider here two robots and their respective configurations need to be
updated, we have two Network Search modules corresponding to each robot. In general, this
would mean n such modules for an n robot system.
Once the tasks have been allocated, Task Planner selects the abstract actions whose geometric
execution feasibility is checked by Motion Planner. The Task Planner layer consists of
the AND/OR Graphs module – the initial augmented AND/OR graphs for the robots, and
the Network Search module – the search procedure iterating the initial augmented graphs.
As discussed previously, the initial augmented AND/OR graph consists of the task-level
actions for each robot augmented with the current workspace configuration. AND/OR Graphs

provides a set of achievable transitions between the states to Network Search, and receives
the set of allowed states and transitions as the graph is expanded.
Task Planner then associates each state or state transition with an ordered set of actions
in accordance with the workspace and robot configurations. The Knowledge Base module
stores the information regarding the current workspace configuration, that is, the objects and
their locations in the workspace as well as the robot configuration. This module augments
the graphs with the current workspace configuration to facilitate Network Search. TMP

interface acts as a bridge between the task planning and the motion planning layers. It
receives action commands from Task Planner, converts them to their geometric values (for
example, a grasping command requires various geometric values such as the target pose or
the robot base pose), and passes them on to Motion Planner to check motion feasibility. To
this end, the module retrieves information regarding both the workspace and robots from
Knowledge Base.
If an action is found to be feasible, it is then sent for execution. Upon execution, Task Planner

receives an acknowledgment regarding action completion and the Knowledge Base is updated
accordingly.

In this section we validate TMP-IDAN in the context of both single and multiple robots.
All the experiments are conducted on a workstation equipped with an Intel(R) core i7-
8700@3.2 GHz × 12 CPU’s and 16 GB of RAM. The architecture is developed using C++
and Python under ROS Kinetic.
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7.3 Experimental Results

7.3.1 Single-robot TMP-IDAN

The experiments are performed on Rethink Robotics dual-arm Baxter robot which is equipped
with standard grippers and an RGB-D camera mounted on its head and pointing downward
which is used to acquire images for object detection. In order to validate the effectiveness
of TMP-IDAN, we consider a cluttered table-top scenario wherein a target object is to be
retrieved from among clutter (see Fig. 7.3(top-left and bottom-left)).

The experiment scenario includes two physical agents, that is, the right and left arms
of the Baxter and a table-top with cylinders and cuboids. Removed objects are placed in a
storage close to the right arm and in case the object is picked by the left arm, it is handed to
right arm and finally placed in the storage. This sequence goes on until the target grasp is
feasible.

Description of the experiments

To verify the adaptability of TMP-IDAN in real-world scenarios and it’s robustness with
respect to grasping failures, we first employ TMP-IDAN in real world with Baxter robot.
Subsequently we perform twenty four different experiments using the state-of-the-art robotics
simulator CoppeliaSim [77] to corroborate that our approach is highly fast and has a linear
computational time profile with respect to number of expanded graphs. Moreover, simulation
environment enables us to induce scenarios where number of objects is not known in advance
and also vary the target object location randomly. In simulation, we start with four objects in
the scene and increase the complexity by adding up to 64 objects. In all the runs, the position
of target object is chosen randomly. Fig. 7.3 (right) shows the AND/OR graph network
employed. For the initial graph G0 there exists several parallel hyper-arcs of which picking
the target object is given the minimum cost. If the target is not reachable by any of the agents,
then closest object to target is set to be removed and once a feasible hyper-arc is found, then
agents move forward in the graph with the set of assigned actions.

Validation

Table 7.1 shows the average planning and execution time for each module discussed in
Section 7.2. We increase the number of objects on the table and for each object number,
we perform the experiment 3 times by randomly sampling the target location. Table 7.2
reports the average network depth d, average total task planning time, average total motion
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(a)

(b)

(c)

Figure 7.5 Various histograms with increasing network depth.

planning time, average number of motion planning attempts and the average number of
objects to be re-arranged. Task planning times with increasing network depth corroborates
our discussion on time complexity (see Section 7.1) and is almost linear with respect to d.
For motion planning, we use Moveit package [87] as RRT planner within OMPL [88] and
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we place a time bound of one second. However, motion planning failures due to actuation
errors, grasping failures or occlusion lead to re-plan, explaining the large number of motion
planning attempts.
In addition to the computational complexity analysis in Table 7.2, Fig. 7.5 shows different
histogram plots with increasing network depth d. Fig. 7.5(a) shows the total task planning
time with d. As seen above, the planning times are almost linear with increasing d. However,
slight deviations are readily observed. For example, the time for d = 76 is greater than
the time for d = 103. This is due to the fact that in many cases, due to motion planning
failure a new graph is expanded before reaching the terminal node. Thus for d = 76, more
number of nodes are traversed when compared to d = 103 and rightly justifies the histogram.
Fig. 7.5(b) reports the number of motion planning attempts and the total executions with
increasing d. Note that this depends on the degree of clutter and thereby the number of
object re-arrangements required. This is more clearly observed in the last two columns of
Table 7.2 where increase in motion planning attempts can be seen with increased object
re-arrangements. Finally, in Fig. 7.5(c), total execution times with d can be seen.

7.3.2 Multi-robot TMP-IDAN

We validate and demonstrate the performance of multi-robot TMP-IDAN by performing
experiments in the state-of-the-art robotics simulator CoppeliaSim [77], employing two
Franka Emika manipulators. As seen in Fig. 6.1b, we consider a cluttered table-top scenario
where manipulation tasks correspond to picking up different target objects. For each task,
the sub-tasks consist of removing objects hindering each target grasp. In this work, such
objects are picked and placed outside the working area, in a safe space. We begin with
6 objects in the work space with two of them being target objects. To test the scalability
to an increasing number of objects, we perform experiments with up to 64 objects. For a
given number of objects the experiment is conducted 3 times, and in each experiment the
target objects are chosen randomly. Table 7.3 reports the average combined planning and
execution times for robots r1 and r2, focusing on the architecture’s modules. AND/OR graph
and network search times are per number of grown graphs. It must be noted that motion
planning failures due to actuation errors or grasping failures lead to re-plans, and therefore
to a larger number of motion planning attempts. Table 7.4 and Table 7.5 report the average
network depth d, the average total task planning time, the average total motion planning
time, the average number of motion planning attempts, and the average number of objects
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(a)

(b)

(c)

Figure 7.6 Various histograms with and increasing AND/OR graph network depth.
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to be re-arranged for robots r1 and r2, respectively. As the AND/OR graph network depth
d increases, task planning times are almost linear with respect to d. This is so because for
an AND/OR graph network with each graph consisting of n nodes, the time complexity is
only O(nd). In contrast, PDDL-based planners are characterized by a search complexity of
O(n logn), where n≈ 213 for the table-top scenario.

Fig. 7.6 shows different histograms for an increasing network depth d. In particular,
Fig. 7.6(a) shows the total task planning time with d. One can readily observes that the
linearity in planning time is not strictly followed. For example, the time for d = 25 is greater
than the time for d = 41. In many cases, due to motion planning failures a new graph is
expanded before reaching the terminal node, which implies that more nodes are traversed for
d = 25 compared to d = 41, therefore explaining the variations. Fig. 7.6(b) plots the number
of motion planning attempts and the total executions with an increasing d. An increase in d

in most cases correspond to a higher degree of clutter. Therefore, as depth d or the graphs
increase the motion planning attempts increases as well. However, motion planning failures
can also increase the depth d since a new graph need to be expanded. This explains the slight
deviation in the trend. Fig. 7.6(c) reports the total motion planning and execution times with
an increasing d, and the plot readily follows from the discussions above.
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Algorithm 9: TMP-IDAN
require :Augmneted AND/OR Graph (AO), Task Planner (TP), TMP Interface

(TMPI), Motion Planner (MP), Knowledge Base (KB), Scene Perception
(SP)

1 while Target not retrieved do
2 AO:AddNewGraph();
3 TP: Request AO NextFeasibleStates()
4 if Request = empty then
5 Go to Line 2;
6 else
7 continue;
8 end
9 Find NextOptimalState();

10 for tasks, agents in OptimalState do
11 SendToTMPI(tasks,agents);
12 for task in tasks do
13 for agent in agents do
14 TMPI: RequestKB();
15 KB: RequestSP();
16 TMPI: RequestMP();
17 end
18 end
19 end
20 if RequestMP() then
21 TP: FindOptimalMotionPlan()
22 TMPI: T← Optimal Motion Plan;
23 if T executed then
24 Go to Line 3;
25 else
26 Go to Line 2;
27 end
28 else
29 Go to Line 9;
30 end
31 end
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Module Average [s] Std. Dev [s]
AND/OR graph 0.0031 0.0028
Graph network 0.0104 0.0048
Motion planning attempts 9.3980 5.6640
Motion executions 3.3540 1.9320
Motion planning time 0.8010 0.2170
Motion execution time 4.7490 2.0240

Table 7.1 Computation times for different modules of single-robot TMP-IDAN and their
corresponding standard deviations.

Objects d TP [s] MP [s] MP attempts Objects re-arranged
4 1.67 0.018 1.044 15.66 1.33
8 7.33 0.068 4.560 50.66 4
15 14.33 0.170 20.893 177 7.5
20 57 0.422 61.168 400 18
30 19.66 0.188 28.591 159.66 9
42 72 0.462 44.148 384.5 18.5
49 26.5 0.342 24.265 201 10
64 76 0.657 102.575 693 29

Table 7.2 d- average network depth, TP- average total task planning time, MP- average total
motion planning time, average motion planning attempts and the average number of objects
to be re-arranged as the degree of clutter is increased.

Activity Average [s] Std. Dev. [s]
AND/OR Graphs 0.03213 0.02174
Network Search 0.8992 0.1862
Motion planner (attempts) 18.320 6.450
Motion execution (attempts) 6.3126 0.8176
Motion planner (time) 0.8010 0.2170
Motion execution (time) 4.7490 2.0240

Table 7.3 Average computation times for different modules and their corresponding standard
deviations.
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Objects d TP [s] MP [s] MP attempts Objects re-arranged
6 2.33 1.5505 16.339 36.66 1.66
8 2.66 1.422 13.721 32.66 1.66
9 2.33 1.3532 16.909 30.66 1.0
12 4 2.4025 20.3363 42.66 2.66
16 4.66 2.755 20.1718 47.66 3.33
20 3.66 2.125 17.618 42.33 2.66
30 5.75 3.464 25.854 56.75 4.25
49 17 8.642 81.361 147.0 6.33
64 22.6 9.053 132.179 203.0 12.2

Table 7.4 Legenda: d - average AND/OR graph network depth, TP - average total task
planning time, MP - average total motion planning time. The average motion planning
attempts and the average number of objects to be re-arranged as the degree of clutter is
increased for robot r1.

Objects d TP [s] MP [s] MP attempts Objects re-arranged
6 2.33 1.1201 13.207 31.33 1.0
8 2.0 1.1478 18.154 28.66 1.0
9 3.66 2.415 18.520 40.0 2.33
12 3.33 2.0532 17.825 37.66 2.33
16 4.33 2.6326 22.830 45.66 3.33
20 6.33 4.022 25.182 61.33 5.33
30 9.25 4.748 45.226 83.75 5.75
49 12.33 6.886 49.593 106.66 10.66
64 12.6 5.271 66.994 109.875 7.0

Table 7.5 Legenda: d - average AND/OR graph network depth, TP - average total task
planning time, MP - average total motion planning time. The average motion planning
attempts and the average number of objects to be re-arranged as the degree of clutter is
increased for robot r2.



Chapter 8

Solving TAMP benchmarks

In chapter 7, we validated scalability and performance of Iteratively deepened AND/OR
graphs in TMP-IDAN framework and proved the efficiency of this framework in two robotic
TAMP scenarios. However, those scenarios do not represent a complete TAMP problem or
do not address various challenges that may raise in different TAMP scenarios. In this chapter
we describe these challenges and address them, implementing the same TMP-IDAN for all
these challenges.
We selected five well-known TAMP benchmarks in the literature. Each of theses benchmarks
bring a new hurdle within their complex structure. Nevertheless, AND/OR graphs, as proved
throughout this dissertation are flexible enough to map any process into their underlying
structure. In particular, Iteratively deepened AND/OR graphs, can easily model any process
with unknown horizon.
TAMP benchmarks from [61] are given below.

• Tower of Hanoi [9, 42]

• Blocks-World 3D [19]

• Sorting Objects [85, 44, 32, 31, 33]

• Non-Monotonic [32, 31, 33]

• Kitchen [50, 85, 32, 31, 35]

Each of TAMP benchmarks for robotics problems, include one or more features that are
either related to the specifications of motion planning, task planning and/or the interface of
interaction among various levels of planning. In specific following features are included:

• Blocking objects
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• Large task spaces

• Infeasible task operators

• Trade-off motion planning/task planning

• Non-monotonicity

• Non-geometric actions

Table 8.1, demonstrates better the criteria included in each of these benchmarks [61].

Criteria TH BW SO NM KT
Infeasible task actions ✓ ✓ ✓ ✓ ✓
Large task spaces ✓ ✓ ✓
Motion/Task Trade-off ✓
Non-monotonicity ✓ ✓
Non-geometric actions ✓

Table 8.1 Criteria for each TAMP benchmark, TH- Tower of Hanoi, BW- Block-World 3D,
SO- Sorting Objects,NM- Non-Monotonic, KT- Kitchen

Here we shortly explain aforementioned criteria. Infeasible task actions refer to actions
that are not explicitly feasible mainly due to unfeasible motion plans, i.g., obstacles occluding
target objects or position of target object is exceeds the kinematic limits of the robot.
Large task spaces imply that underlying task planners requires a lot of effort for searching
and this is mainly because there are numerous type of objects that extends the horizon of
reasoning.
Motion/Task Trade-off means that less task planning search is due to adaptable motion
planning and more task planning search relaxes constraints on motion planning space, thus
potentially less precise for grasping and object pick/placement.
Non-Monotonicity is dividing a single goal to many sub-goals and repeat sub-goals unless
ultimate goal is reached. For instance to pick a target object from a cluttered table, some
objects need to be arranged several times so that target object is picked.
Eventually, Non-geometric actions are actions that are made of primary actions, such as
cooking, washing and cutting a cabbage.

These benchmarks are independent of type of planners for both task and motion planning
attributes and mainly focuses on computational complexity of the planners and relaxes many
robotic real-life implementation limitations through following assumptions [61].
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1. Geometric: Motion planning over positions only is sufficient. Objects that are grasped
or placed are kinematically coupled with the parent object and do not move or slide
and are static.

2. Fully observable: Initial states are known both geometrically and semantically. This
applies for both robots and objects in the environment. This assumption can be
extended to the perception level, where geometric status of all involved elements are
known during the process.

3. Deterministic: All the robot motions are object pick/place operations follow the
motion planner. Therefore errors entailed due to the stochastic behaviours of motion
planners are neglected and their influence on the overall process are considered.

8.1 Towers of Hanoi

We revisit the classic problem of towers of Hanoi, with three rods that are placed in triangular
formation. This formation creates hindrances for disk pick up and placements as infeasible

task action criteria. Triangular formation of rods entail challenge for large task space criteria
whereby, disks can not directly placed to their destination rod.
The objective of this problem is to move a pile of disks from one peg to a destination
peg using intermediate peg. The optimal solution for n number of disks is 2n− 1 disk
displacements. Disks can be only placed on bigger disks and at each step, only one disk can
be moved. In our experiment we implement different number of disks varying from three to
six disks. Figure A.1, depicts the AND/OR graph structure that we used to implement Hanoi
problem. Off course this is a possible graph to solve this problem, one can propose their
own way of solving this problem through AND/OR graphs. This graph compacts fifty nodes
and fifty-three hyper-arcs. Active agents are right and left arms and their corresponding
grippers while Base is fixed. Figure 8.2, illustrates depth of AND/OR network for various
number of disks in blue bars. whereas red curve is the optimal solution for number of disk
movements, 2n−1. It is noteworthy to mention that each of AND/OR graphs in the network
is implemented to move only one disk from one peg to another in case of success. Hence
as the Figure 8.2 suggests, the average number of AND/OR graphs are almost two times
more than optimal solution. We speculate that this is mainly because of two major reasons:
1) To the vast majority of the disk movement cases, due to obstacles and kinematic range
limit of arms, robot is not able to move a disk from it’s place to the destination and therefore
has to use intermediate peg, which imposes adding an extra AND/OR graph to complete
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(a) (b)

(c) (d)

Figure 8.1 Illustration of towers of Hanoi benchmark in simulation environment: (a) left arm
picking disk from left peg to place it to intermediate peg, (b) left arm is hand-overing the
disk to right arm due to it’s kinematics limits in reaching to left peg (c) right arm is placing
disk to the left peg (d) all five disks are placed to their destination peg successfully

the process. 2) In some cases the motion planner due to it’s stochastic internal algorithm is
not able to find a feasible trajectory, thus it might be another source to add extra AND/OR
graphs.

Tables 8.2 and 8.3 reveal more information of the TAMP modules such as Tree search,
motion planning attempts and times.
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Figure 8.2 Average and standard deviation of number of AND/OR graphs for Hanoi problem
for various number of disks

Objects d TP [s] Right MP [s] Right MP attempts Left MP [s] Left MP attempts
3 16.67 0.78 105.67 76.06 111.37 88.10
4 31 3.27 245.64 200.22 186.65 129.3
5 61 15.2 458.24 442.7 409.75 315.90
6 140 59.73 1017.30 854.15 678.68 475.5

Table 8.2 Legenda: d - average AND/OR graph network depth, TP - average total task
planning time, Right/Left MP - average total motion planning time for arms. Right/Left MP
attempts - The average motion planning attempts for arms r1.

Objects d TP [s] Right MP [s] Right MP attempts Left MP [s] Left MP attempts
3 3.51 0.007 18.1 0.74 12.25 4.43
4 8.18 0.37 47.92 20.09 15.8 0.29
5 0 0.61 1.86 20.31 14.49 16.31

Table 8.3 Legenda: d - standard deviation AND/OR graph network depth, TP - standard
deviation total task planning time, Right/Left MP - standard deviation total motion planning
time for arms. Right/Left MP attempts - The standard deviation motion planning attempts
for arms.

8.2 Blocks-World 3D

The objective of this benchmark is to stack all ten cube blocks in alphabetical order on the
red tray, see figure 8.3. This benchmark exercises task/motion planning trade-off, infeasible
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task actions and large task spaces. As the rules, cube hand-over between robot arms is not
allowed, so one should either place few number of blocks on the table move them to another
tray, or, place more number of blocks on the table and move the most significant cube(s)
to another tray. The area on table for cube placement has to be limited to allow both arms
to reach the cubes easily. Only arms are allowed to move and the base is fixed. On the
top of the table there is shelf obstacle that limits forming pile of stacks on the table with
more than two cubes. Moreover only top grasps are allowed for both cube pick and placement.

In our experiment we preferred to have a dens top-table rather than sparse table. We place
as much as possible number of cubes on the table and move the most significant to other tray.
Figure A.2 shows the structure of AND/OR graph we adopted to implement this benchmark.
This AND/OR graph has 31 nodes and 35 hyper-arcs. Statistics of all modules are listed in
Table 8.4. As table indicates, 74 graphs on average are required to sort 10 cubes on the blue
tray. Consider that each graph grants only one cube displacement, either from tray to table or
vice versa. Another import note that can be driven from the table is that right arm has been
involved almost twice the left arm, and this makes sense, since the destination tray is next to
the right arm. High value for standard deviation in network depth can be related to stochastic
nature of the motion planner.

Table 8.4 Statistics of various modules implemented for Block-World 3D

Module Average Standard deviation
Depth of AND/OR network 74 12.72
AND/OR graph 10.30 [s] 0.44 [s]
Graph search 1.16 [s] 0.004 [s]
Right arm plan 471.3 [s] 0.18 [s]
Left arm plan 257.37 [s] 10.23 [s]
Right arm plan attempt 327.91 [s] 11.23 [s]
Left arm plan attempt 176.26 [s] 8.13 [s]

8.3 Sorting objects

The objective of this problem is to move all N blue blocks to the left table and all N green
blocks to the right table. There are 2N red blocks as obstacles that occlude the table for
reaching to blue and green blocks. This problem involves both the infeasible task actions

and large task space criteria. The presence of red blocks makes task actions infeasible and
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3 Illustration of blocks-world benchmark in simulation environment: (a) and (b)
right arm evacuates all the cubes on the red-tray and places them on table, (c) and (d) while
left arm evacuates blue-tray to reach cube B, right arm places cube on red-tray to create
enough space on table, (e) and (f) left arm picks cubes from blue trays and places them on
the table, while right arm picks the required cube and places it on the red-tray in alphabetic
order.
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thus planner needs to move red blocks out of the way first then pick blue or green blocks.
Red objects need to moved multiple times to grant an obstacle-free block pick up. Moving a
red block from one place to another, may create occlusion for other blocks.
Readers can have look to figure A.3 to catch the idea of how AND/OR graph is implemented
for this problem. The graph has 33 nodes and 45 hyper-arcs . Each graph is for moving a
blue or green object from a table and place them on their corresponding table, or in case blue
or green objects are occluded, red blocks will be moved out of way and blue or green object
is moved to another table.

In this benchmark both right and left arms and also the base are involved.

Table 8.5 Statistics of various modules implemented for sorting benchmark

Module Average Standard deviation
Depth of AND/OR network 44.5 3.53
AND/OR graph 16.46 [s] 2.61 [s]
Graph search 1.15 [s] 0.123 [s]
Right arm plan 275.07 [s] 27.54 [s]
Left arm plan 325.56 [s] 37.83 [s]
Base plan 93.8[s] 4.65 [s]
Right arm plan attempt 205.11 [s] 16.89 [s]
Left arm plan attempt 279.45 [s] 100.37 [s]
Base plan attempt 90.18 [s] 3.07 [s]

As table 8.5 suggests, on average 44.5 graphs are required to move 7 blue and 7 green
objects to their corresponding table, while optimal number of graphs should be 14 according
to the graph we implemented. This huge difference roots in red obstacle cubes, where their
movements from one place on table to another, in many cases, doesn’t make any difference.
Planning time and attempt time for both left and right arm seems to be approximately the
same, implying their equal contribution in sorting tasks. Figure 8.4, summarizes the whole
process steps.

As shown in 8.4a, pr2 robot following it’s AND/OR graph, moves to the table with more
number of blue and green blocks( in case of equal cubes in both tables, first table is selected)
, once on table, closest block to robot is selected to move, in the figure robot picks a green
block and in 8.4b, the block is placed on it’s corresponding table. This procedure goes on and
depicted in figures 8.4c and 8.4d, where 2 blue and 5 green blocks are placed accordingly.
Up to this point, red blocks where not occluding other blocks, however in next step, as in
figures 8.4e, 8.4f and 8.4g, robot moves away 2 red blocks to reach to a green block in 8.4h.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

Figure 8.4 Illustration of sorting object benchmark in simulation environment

The same scenario goes on for blue block on the other table as shown in 8.4i. Eventually as
shown in 8.4j, all blue and green blocks are sorted and placed to their tables.

8.4 Non-Monotonic

This problem targets infeasible task actions and non-monotononicity criteria.

Figure 8.5 PR2 robot in simulation environment solving non-monotonic problem

The objective of this problem is to move all green blocks, as shown in figure 8.5 from
the left table to the right table and placing them in their spotted position. Green blocks at
left table are occluded by red blocks, so robot arms, first need to move them to create an
obstacle-free pick up for green blocks. successively green blocks need to temporarily placed
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Table 8.6 Statistics of various modules implemented for non-monotonic benchmark

Module Average Standard deviation
Depth of AND/OR network 5.5 0.7
AND/OR graph 1.73 [s] 0.07 [s]
Graph search 0.38 [s] 0.18 [s]
Right arm plan 192.36 [s] 17.29[s]
Left arm plan 276.71 [s] 59.38 [s]
Base plan 18.08[s] 3.08 [s]
Right arm plan attempt 131.61 [s] 5.76 [s]
Left arm plan attempt 208.92 [s] 44.74 [s]
Base plan attempt 16.83 [s] 3.57 [s]

on left table, so red blocks can be placed again to their initial positions.

The same applies for blue blocks. They need to me moved to a temporarily place, and
once green blocks are placed on their corresponding spot, blue blocks also have to be placed
to their initial positions. This challenge excites the non-monotonicity criteria in particular.

Totally, there are four green blocks to displace. The AND/OR graph used to implement
this problem is shown in figure A.4. It has 34 nodes and 40 hyper-arcs.

Figure 8.6 depicts the overall process of this problem solution. Once the process starts,
there are four green blocks on the left table that are occluded by four red blocks and on
the right table there are four blue blocks and four highlighted green spots as shown in 8.6a.
Robot approaches to the left table, picks the first red block and places it on the left or right
side of the green block as in 8.6b. The side is chosen at run-time depending on motion
planner results. Once green block is reachable, it is also picked and placed in the opposite
side of the red block, then red block is placed back to it’s initial configuration as shown in
8.6c and 8.6d. Right after, green object is picked and transported to the right table as in
figure 8.6e and placed either on left or right side of the blue block as in 8.6f, again decision
is made at run-time relying on motion planner simulation results. Subsequently blue block
is placed opposite to green block placement side as shown in figures 8.6g and 8.6h. Last
step is to place respectively blue and green blocks onto their designated places 8.6i. This
procedure is kept for other blocks as well. At the end of the scenario all the green blocks
should be placed on green spots on the right table, while all red and blue blocks are at their
initial configurations as shown in 8.6a.
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(e) (f)

(g) (h)



8.5 Kitchen 96

(i) (j)

Figure 8.6 Illustration of various steps of non-monotonic benchmark implementation in
simulation environment

Here, to keep a tidy and ordered table, we, right before moving to another table displace
blocks to their initial configurations, one can follow alternative paths, such that tidiness
principal is met at the end of the scenario, rather than at each inter table movement step.

8.5 Kitchen

Kitchen benchmark excites infeasible task actions, non-monotonicity and also non-geometric

actions. Objective of this problem is to prepare a meal. It is done by cooking two cabbages,
green blocks, washing two glasses, blue blocks and setting the table. There are also four
radishes on the shelf as shown in figure 8.7, occluding and obstructing cabbages that need to
be moved away. However to keep the kitchen clean and in order, radishes have to be placed
to their initial positions.
Note that to wash the blocks, they should be placed on the dishwasher and to cook, they
should be placed on the microwave, and to cook blocks, they should be washed before.

The AND/OR graph implementation for this benchmark is quite straight forward, see
figure A.5 All the steps need to be followed sequentially and there is no complexity for
that. It is made of 48 nodes and 60 hyper-arcs. Statistical data of carious modules for this
benchmark are listed in table 8.7.

We describe the overall procedure of kitchen benchmark following the figure 8.8.
Once the process starts, robot moves to the shelf as in figure 8.8a, and picks the obstructing

radish and places it somewhere on the shelf, see figure 8.8b. Then robot arm, picks the
cabbage and places it in a pre-defined position 8.8c. To keep the shelf tidy, places back the
radish to it’s initial position 8.8d. Before cooking the cabbage, it is placed on the dishwasher
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Figure 8.7 Illustration of kitchen benchmark in simulation environment

Table 8.7 Statistics of various modules implemented for kitchen benchmark

Module Average Standard deviation
Depth of AND/OR network 13.5 4.95
AND/OR graph 7.78 [s] 0.47 [s]
Graph search 0.47 [s] 0.006 [s]
Right arm plan 317.89 [s] 9.52[s]
Left arm plan 121.76 [s] 20.95 [s]
Base plan 56.86[s] 0.017 [s]
Right arm plan attempt 284.06 [s] 29.07 [s]
Left arm plan attempt 84.11 [s] 12.76 [s]
Base plan attempt 57.83 [s] 1.62 [s]

to be cleaned 8.8e, once cabbage is placed on the dishwasher, robot waits for a while (to
animate the wait action, robots moves around comes back 8.8f). Then cabbage is placed
on the microwave for cooking 8.8g, 8.8h. In the meantime, while cabbage is being cooked,
glasses are washed as shown in 8.8i and 8.8j. Now the cabbage is ready!!, it is picked from
microwave in 8.8k and placed on the table in 8.8l. Glass is also washed now and is clean
enough, thus picked and placed beside the meal as shown in 8.8m. This procedure goes on
for all the cabbages and glasses and eventually the table is set for two persons as shown in
figure 8.8n. Buon appetito !!!
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(i) (j)

(k) (l)

(m) (n)

Figure 8.8 Illustration of various steps of kitchen benchmark implementation in simulation
environment
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Whole the cooking process, takes on average iterating 13.5 AND/OR graphs as table 8.7
shows. It seems like, variation from the average is more than of 30% in different tests. We
can speculate that this high variation is coming from failures of motion planning results. As
we mentioned previously motion planner is based on random algorithms and it’s functionality
varies from time to time. Unfortunately this affects our architecture in high order. Moreover
we can deduce this from high values required for motion planning time, specifically for
right arm 317.89 seconds takes only for motion planning, while it’s execution time are only
284.06 seconds. This implies that, the majority of motion planning requests are responded
with failure result.



Chapter 9

Conclusions and Future work
suggestions

9.1 Conclusion

In this thesis, we presented three variants of AND/OR graphs, namely, (1) c-layer AND/OR

graphs, (2) Branched AND/OR graphs, and (3) Iteratively deepened AND/OR graphs. Each
of these AND/OR graph variants are meant to model the task representation layer for
specific problems. In chapter 2, we briefly introduced AND/OR graphs, and discussed their
application procedure and explained how we can adopt them for robotic related problems.
Later in chapters refchap:concurent, 5 and 7 we expanded AND/OR graphs structures and
reformulated them to from all aforementioned three variants AND/OR graphs.

In chapter 3, we introduced the concept of HRC and designed a HRC scenario for object
defect inspection problems. We described an ODI scenario, with one human agent and four
robot agents together collaboratively following a common goal for ODI. In chapter 4 we
presented CONCHRC framework aimed at forming an integrated system architecture with
three main layers as follows: i) representation, ii) perception and iii) action layers. Our major
contribution, i.e., c-layer AND/OR graphs is embedded in representation layer. To evaluate
the overall CONCHRC framework, we implemented and ODI scenario according to what
described in 3. The experiment involved a human agent and four robot agents as mobile base
robot, a manipulator arm mounted on the mobile base, right and left arms of Baxter robot.
On the basis of the experiments we carried out, it is possible to make two different remarks.

The first is related to the robustness associated with the overall process. In spite of
such faults as unsuccessful robot grasps, or issues related to false positives or negatives
when monitoring the activities carried out by human operators, the inherent flexibility of
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CONCHRC allows human operators to intervene and manage these issues. This is even more
relevant considering that our current setup does not focus on such a robustness level.
The second is the insight that using parallel instances of AND/OR graph representation layers
seems to be more efficient with respect to an equivalent, common, single instance model. We
observed that the adoption of CONCHRC reduces the overall idle time considerably.
This is an obvious consequence of the fact that the total time needed for a multi human-robot
collaboration process to conclude is determined by the maximum one associated with the
longest execution branch in the graph. On the contrary, if the HRC process were implemented
as a single, non concurrent, model, then the total time would correspond to the sum of all
times associated with single cooperation paths. As an example, in our scenario CONCHRC
allows for a total collaboration time equal to 310.19 s, whereas an equivalent implementation
using FLEXHRC the total collaboration time can be up to 866.94 s.

In chapter 5, we presented Branched AND/OR graphs, and integrated it to a framework
similar to that of CONCHRC, but this time with only left and right arms of Baxter robot in
presence of a human operator. Branched AND/OR graphs target a flexible and adaptable
HRC process, such that a higher level of autonomy and flexibility is given to human operator
to intervene not only at pre-defined steps of the process, but also whenever desired, at each
step the process to intervene, stop the process and change the planning. We considered
two kind of human intervention, one in the context of kinesthetic teaching and another in
the context of task repetition. The results of the experiments proved the efficiency of our
approach and showed that Branched AND/OR graphs provide more degrees of freedom for
human operators in HRC processes and considerably reduces robot failures and cognitive
stress on human operators.
In chapter 6, we introduced TAMP problems in robotics and formalised Task and motion
relationships. We positioned our approach in the literature and compared it qualitatively with
the existing methods.
In chapter 7, we presented Iteratively deepened AND/OR graphs, and encapsulated it into the
task representation layer of TMP-IDAN framework. We formulated Iteratively deepened

AND/OR graphs and evaluated their computational complexity.
We evaluated TMP-IDAN in two distinct scenarios, first implemented for single robot single
target retrieval from a cluttered top table and second, implemented for multi robot multi target
retrieval from a cluttered top table. The results provided from these experiments approved
scalability and applicability of out approach for both real-world and simulation environment
scenarios effectively. We were satisfied with results of our approach at both qualitative and
quantitative aspects compared to current existing methods in the literature.
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Later in chapter 8 to prove that TMP-IDAN framework can be generalised to all possible
TAMP problem rather than cluttered table problem, we implement this framework for five
TAMP benchmarks. These benchmarks include one or more tough criteria for planners as
evaluation point. The criteria are as follows: (i) Infeasible task actions, (ii) Large task spaces,
(iii) Motion/Task Trade-off, (iv) Non-monotonicity, (v) Non-geometric actions.
We successfully validated our approach by implementing all of these benchmarks and meet-
ing all the mentioned criteria. We showed that AND/OR graphs, in particular Iteratively

deepened AND/OR graphs are able to model any TAMP problem.

9.2 Future work suggestions

Our suggestions encompasses both HRC and TAMP problems. For HRC, we implemented
a single scenario for ODI where products were already manufactured. It might be a good
practice to introduce and implement other HRC scenarios such as including manufacturing

process, where humans and robots collaboratively assist in manufacturing process of a prod-
uct from it’s very initial steps. This is mainly doable only in presence of cobots that the
safety of human operators is not endangered. Implementing of various scenarios also can
give us a better evaluation of our approaches.
Moreover, we focused on human robot interaction problem only from collaboration point of
view. Many other aspects of interaction may be added such as physical human robot interac-
tion, where the physical interaction force among robots, human agents and the environment
are needed to be considered, since they affect considerably state of collaboration and they
may lead also to safety related issues. Thus, one may extent task planning problem to to
task-force planning problem as a suggestion.
In our frameworks, the presence of human agents was modelled into AND/OR graphs and
the collaboration was done through communication means using pre-defined human gesture
actions. Robots at real-time were not aware of human agents position in the environment.
This can put in danger the safety of human operators. Therefore, we suggest, in perception
layer of the framework, to add another module to monitor and track human agents constantly
and to recognize a series of human activities and geometric positions, in order to adapt the
planner to the situation and act accordingly. Additionally, we adopted only vision and inertial
sensory data as means of communication between human and robots. In many occasions
outputs of human activity recognition were not functioning as expected. An ideal communi-
cation mean, on one hand, should recognise properly human intentions and transmit it with
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minimum latency. On the other hand, it should bias human unwanted intentions. To tackle
this issue, we suggest to adopt multi sensory human activity recognition algorithms to have
better communication model.
Regarding TAMP benchmark problems, our validation is done only in simulation environ-
ments. Implementing the benchmarks in real-world scenarios would give a more realistic
and credible impression to out approach. Note that, simulated environment helped us to
relax many real-world limitations and constraints issues. We assumed to a perfect perception
system and ideal hardware and control related problems that in real-world scenarios become
a crucial hindrance for implementations.
Since TAMP benchmarks are new to the literature, we only could compare our approach
qualitatively with existing methods, in the future, the possibility for quantitative comparison
might be doable.

Eventually, we argue that it is possible to have a unique and generic purpose framework
to include all variants of AND/OR graphs we presented in this thesis to model a standard
and acceptable multi-agent collaboration in a manufacturing work space. Off course this
modification is done alongside with other layers such as action and perception to grant a safe
and efficient framework.
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Appendix A

AND/OR graphs used for TAMP
benchmarks

In this appendix, you can find all the AND/OR graphs we adopted to model TAMP bench-
marks.
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NES : Not enough space

CNPLR : Can not be placed on red tray

place : {C: center, R: red tray, B: blue tray} 

P_place : Pick cube from place

PL_place : Place cube to place

Figure A.2 AND/OR graph of Cube-World 3D
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place_S : place object
somewhere on the same
table

Figure A.3 AND/OR graph used to model Sorting objects benchmark
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color : {R: Red, B: Blue, G: Green} 

PL_color_place : Place  color object to place 

: action done by left arm

: action done by base

Figure A.4 AND/OR graph used to model Non-monotonic benchmark
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object : {R: Radish, C: Cabbage, G: Glass} 

PL_object_place : Place object to place 

: actions done by left arm: actions done by base

Figure A.5 AND/OR graph used to model Kitchen benchmark
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