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Abstract

In the highly interconnected world of today, new technologies that allow for the

digitalization of the physical world are brought to the forefront of discussion. The

Internet of Things (IoT) and mature Information and Communication Technologies

(ICT) have driven various digital and industrial transformation processes (Industry

4.0). Meanwhile, humanity faces emerging challenges that threaten its well-being

and the environment, with recent issues like pandemics and climate emergencies

capturing the attention of governments and scientific communities.

In this context, IoT and ICT gain significance as an emerging solution for

diagnosing and making decisions regarding problems that threaten city sustainability.

The implementation of these technologies as robust infrastructure has given rise to

the concept of smart cities or intelligent societies. However, the real value does not

lie in the technologies themselves, but in the data they generate. Deploying IoT

solutions is not trivial, as designing both an IoT device and a system that collects

valuable information involves careful consideration from multiple perspectives.

In IoT, the tasks of device deployment and data acquisition, storage, and analysis

each present their own challenges. The state-of-the-art is rich in solutions seeking

to contribute to each of these issues. This thesis report aims to undertake a compre-

hensive analysis covering the main problems that a solution could encounter. From

studying the scenario and technical feasibility of the task at hand; designing a flexible

device that allows adaptability to various types of measurements; determining the

correct frequency of data sampling and efficient use of device resources; the type of

communication and network deployment needed to define the solution’s coverage;

and ensuring the quality, credibility, and coherence of data generated by devices, as

well as protecting it from potential alterations.

The analysis conducted in this thesis has also opened up new questions about

tangential scenarios related to certain dynamics, such as the use of architectures that
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merge IoT with emerging technologies like blockchain. This is relevant not only

to the subject of interest but also as an alternative for issues like identity theft and

citizen impersonation. Moreover, considering the constraints and challenges faced

during the pandemic in education, an exploratory scenario is proposed where IoT

could serve as a supportive tool for teaching. This would facilitate the quantification

of parameters such as student attention.

Summarizing, the main contributions of this thesis are the following:

• IoT system for the quantification of human well-being parameters in indoor

and outdoor environments of a building.

The subject matter of this research focuses on outdoor air quality measurement,

indoor building comfort, and attention levels. Different IoT solutions are

proposed for each application and evaluated as proofs of concept for the initial

quantification of these phenomena.

• Optimal sampling in terms of energy and data quantity for particulate matter

pollution variables in low-cost sensors.

This work examines the frequency dynamics of particulate matter pollution in

urban environments, defining optimal sampling frequencies and studying the

effects of applying duty-cycling techniques to reduce sensor power consump-

tion. The impact of these techniques on sensor precision is also assessed.

• An architecture for hybrid deployments using various wireless technologies.

Various deployment topologies and different wireless transmission technolo-

gies for transmitting particulate matter pollution data are explored. Each

technology’s unique constraints are considered with the aim of enhancing

spatio-temporal resolution of measurements within a city.

• A process for generating scientifically valid data for low-cost sensors.

This topic investigates numerous algorithms encapsulated within a framework

designed to achieve precise measurements, comparable with reference mea-

surement equipment, using low-cost sensors known for their noisy behavior

and high failure rates.
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• Integration of IoT and blockchain for data integrity protection.

The study further analyzes two use cases of Distributed Ledger Technology

(DLT) as a solution for the protection of both personal and public data, as well

as city measurement data. Hybrid models are utilized to minimize resources.
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Chapter 1

Introduction

The way we interact with technology and the world around us has been revolutionized

by the Internet of Things (IoT) and Information and Communication Technology

(ICT). A new era of connectivity, intelligence, and efficiency has been brought

about by the convergence of these two fields. Valuable information is generated by

these devices, which play a significant role in our daily lives and can be utilized for

decision-making and lifestyle adaptation. The IoT is considered a crucial enabler

of the so-called Digital Transformation or Industry 4.0, which encompasses the

transformation of industries across various sectors, including public administrations

and their entities [1].

To gain an understanding of the value that the IoT will contribute in this digital

transformation context, studies such as [2] estimated that by 2025, the global impact

value of the Internet of Things will range between 3.9 trillion and 11.1 trillion

dollars across nine sectors, including transportation (land and maritime), healthcare,

commerce, manufacturing, and cities.

The Internet of Things refers to a vast network of interconnected devices, objects,

and systems that have the ability to collect, exchange, and analyze data. These

devices, often embedded with sensors and actuators, can communicate with each

other and with humans through the internet. This interconnectedness allows for

seamless integration of the physical and digital worlds[3]. On the other hand,

Information and Communication Technology encompasses the technologies and tools

used to manage and communicate information. It encompasses a broad spectrum
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of technologies, including computers, networks, software, and telecommunications,

that enable the collection, storage, processing, and transmission of data.

Through the power of connectivity, IoT devices can gather real-time data, monitor

and control physical systems, optimize processes, and enhance decision-making.

Meanwhile, ICT plays a crucial role in providing enabling technologies that support

the infrastructure, communication protocols, and data management systems necessary

for the functioning of IoT. ICT provides the backbone for data transmission, storage,

and analysis, enabling the seamless flow of information between devices and users.

The increasing adoption and proliferation of IoT platforms can be attributed to

three distinct factors:

• Internet Accesss: The proliferation of heterogeneous communication networks,

along with their affordability in terms of costs and coverage, is particularly

notable in urban sectors. This phenomenon has contributed to the widespread

adoption and deployment of IoT technologies in urban environments.

In recent years, advancements in communication technologies have led to

the availability of diverse network options, such as cellular networks, and

LPWAN (Low-Power Wide Area Networks), Wireless and Wire Area Network,

and Wireless Personal Networks. These networks offer varying levels of

data transmission speeds, coverage range, and power consumption, catering

to different IoT application requirements. Furthermore, the reduced costs

associated with deploying communication infrastructure have made it more

accessible for businesses, organizations, and even individuals to implement

IoT solutions [4]. This has spurred the growth of IoT deployments, especially

in urban areas, where the infrastructure is already well-established.

The combination of affordable and diverse communication networks, coupled

with the high population density and demand for innovative services in urban

sectors, has created a fertile ground for the expansion of IoT applications.

• Technological maturity and affordability: Advancements in technology have

led to significant reductions in costs, size, and energy consumption of IoT

components[5]. These developments have played a crucial role in driving

the widespread adoption of IoT solutions. Reduced costs have made it eco-

nomically feasible to integrate IoT capabilities into various devices, while

miniaturization has enabled IoT integration into smaller devices. Improved
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energy efficiency has extended battery life and expanded deployment possibili-

ties.

• Advancements in data storage and processing technologies: They have also

played a pivotal role in enabling the widespread utilization of IoT-generated

data. The increased capabilities and reduced costs of storage solutions, coupled

with powerful processors and advanced algorithms, have facilitated the efficient

handling and analysis of massive datasets. These developments have not only

empowered industries to leverage IoT-generated data for valuable insights but

have also made these technologies more accessible and scalable across various

domains.

1.1 The IoT Architecture

In [6], an IoT architecture divided into four subsystems is presented, which are

defined as layers and showed in Figure1.1.

Fig. 1.1 IoT general architecture [6]

The first layer is the sensor layer, responsible for gathering information from the

environment through hardware devices such as sensor nodes. This layer enables the

IoT system to sense and collect data from various sources.

The second layer is the network layer, which establishes the connectivity and

communication among the IoT devices. It facilitates the seamless exchange of data

and enables the things in the network to be aware of their surroundings. The network

layer plays a crucial role in enabling intelligent event management and processing

within the IoT system.
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The third layer is the service layer, which relies on middleware technology

to provide services and applications in the IoT environment. This layer involves

activities related to service specifications, discovery, composition, and management.

It acts as a platform for executing IoT services and ensures the interoperability and

reusability of hardware and software components.

The fourth layer is the interface layer, which addresses the compatibility and

interaction issues among heterogeneous IoT devices. It provides an effective mech-

anism for simplifying the management and interconnection of things. Interface

profiles are used to describe the specifications between applications and services,

enabling seamless interactions among different devices.

By dividing the IoT architecture into these four layers, the proposed framework in

[6] aims to ensure the interconnection, extensibility, scalability, and interoperability

of IoT devices and services. It provides a comprehensive structure that bridges

the gap between the physical and virtual worlds, enabling efficient and dynamic

interactions among IoT components.

1.2 IoT and Urban Environments

The integration of IoT technologies in urban environments is generating significant

interest among researchers and practitioners. This development is expected to have

a profound impact on urban sustainability, as it holds the potential to enhance

efficiency, promote sustainability, and improve the overall quality of life in cities.

In the pursuit of Smart Cities, where ICT solutions are utilized for effective

public management, the implementation of IoT in urban contexts becomes partic-

ularly relevant[7]. The overarching objective remains the optimization of public

resources, the provision of high-quality services to citizens, and the reduction of

operational costs for public administrations. Achieving these goals can be facilitated

through the establishment of urban IoT infrastructures that offer unified, accessible,

and cost-effective access to a wide range of public services. Such an approach

fosters collaboration, synergies, and transparency, benefiting citizens and the urban

environment.

The deployment of an urban IoT has the potential to revolutionize the manage-

ment and optimization of traditional public services in cities, including transportation
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and parking management, efficient lighting systems, public area surveillance and

maintenance, cultural heritage preservation, waste management, hospital sanitation,

and school facilities[8]. Moreover, the wealth of diverse data collected through

an extensive urban IoT network can be leveraged to increase transparency, engage

citizens, raise awareness about the city’s condition, encourage citizen participation

in public administration, and stimulate the development of innovative services built

upon the IoT infrastructure[9].

Several studies have been conducted under the concept of smart cities using IoT,

and some of these projects, serving as case studies, are summarized in [8]. Here,

there is presented a list of relevant case studies:

• Waste management: Waste management poses significant challenges in

modern cities, including high costs and the issue of landfill storage. An

example of this is the implementation of intelligent waste containers that

can detect their fill levels, enabling the optimization of collection routes. By

leveraging IoT technology, these containers are connected to a central control

center where data is processed by optimization software to determine the most

efficient management of the waste collection fleet[10].

• Noise pollution: It is a significant issue in urban environments, comparable

to the impact of carbon oxide (CO) on air quality. To address this concern,

city authorities have implemented specific regulations to reduce noise levels

during certain hours in city centers. The integration of urban IoT technology

can provide a noise monitoring service, measuring and tracking noise levels at

different locations and times [11]. This service not only enables the creation of

a space-time map of noise pollution but also supports public security efforts by

employing sound detection algorithms capable of identifying specific sounds

like glass breaking or altercations.

• Traffic congestion: Another valuable service enabled by urban IoT in a Smart

City context is the monitoring of traffic congestion. While camera-based

traffic monitoring systems are already in use in many cities, the widespread

deployment of low-power communication networks can offer a more extensive

and detailed source of information. Traffic monitoring can leverage the sensing

capabilities and GPS technology present in modern vehicles [15], along with a

combination of air quality and acoustic sensors installed along specific roads.
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Authorities can utilize it to manage traffic flow effectively, deploying personnel

where needed, while citizens can plan their routes in advance for commuting

or shopping in the city center.

• Comfort and well-being in indoor environments: The monitoring of en-

ergy consumption and environmental conditions in public buildings, such

as schools, administration offices, and museums, using IoT technologies, is

another significant application. This involves the use of various sensors and

actuators to regulate lighting, temperature, and humidity levels. By manag-

ing these factors, it becomes feasible to improve the comfort of occupants,

potentially boosting productivity and reducing heating/cooling expenses [12].

This application showcases how IoT can contribute to optimizing building

operations and enhancing the well-being of individuals in public spaces.

• Air quality: The European Union has officially adopted different directives,

which set ambitious goals for reducing climate change impact. These targets

include a reduction in greenhouse gas emissions, a decrease in energy con-

sumption through improved efficiency, and a increase in the use of renewable

energy sources. In line with these objectives, the implementation of an urban

IoT infrastructure can play a crucial role in monitoring air quality in densely

populated areas, parks, and fitness trails [13]. This technology can also facil-

itate communication between health applications and the IoT infrastructure,

enabling individuals to choose the healthiest routes for outdoor activities.

Achieving this service requires the deployment of air quality and pollution

sensors throughout the city, with the collected data being made accessible to

the public.

1.3 Open Challenges

The Internet of Things (IoT) is still an emerging paradigm, and it faces several

technological challenges that need to be addressed through research. Various studies

have classified these challenges from the perspective of the paradigm itself [6, 3],

architectural considerations [14], or application domains such as smart cities [15].

Some prominent challenges include:

• Interoperability and standardization
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• Scalability

• Flexibility

• Energy efficiency

• Mobility management

• Security

• Privacy protection

• Information reliability

• Low-cost deployment (Devices and communications)

• Intelligent and relevant analytics

The aforementioned challenges outlined are, in broad terms, some of the chal-

lenges that generate interest in future research directions. In each of these points,

there is great potential as the application of IoT in different contexts demands diverse

needs that still require methodological and technological attention in research.

These challenges represent opportunities for further investigation and develop-

ment in the field of IoT. The diverse nature of IoT applications necessitates a deep

understanding of specific contexts and the development of tailored methodologies

and technologies. By addressing these challenges, researchers can contribute to the

advancement of IoT and pave the way for its successful implementation in various

domains

1.4 Research Questions

The present thesis addresses some of these aspects that are often seen in a general

manner when proposing a solution or deployment of IoT in urban contexts. In

particular, these aspects can be prioritized according to the architecture outlined in

Section 1.1 When analyzing the flow of information, it is identified that one of the

critical points in data acquisition is the sensing layer.

In this part, various sensors are involved, which are responsible for digitizing

different physical variables. However, the ability to deploy at a large scale at a low
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cost while maintaining the required spatiotemporal resolution always involves a

trade-off among factors such as precision, reliability, energy consumption, resolution,

and cost. Finding an optimal point for each factor constitutes a significant challenge

in itself, which is highly dependent on the application.

Poor optimization in this layer can hinder the optimal functioning of the rest

of the architecture, as it can create pressure on resource demand in the subsequent

layers. For example, massive transmission of data that lacks meaningful information

(as described by Shannon’s information theory) and unnecessary or unproductive

processing in the service layer. As a result, the data delivered at the interface layer

may fail to generate value.

Efficient optimization of the sensing layer is crucial to ensure the overall effec-

tiveness and efficiency of the IoT architecture. By carefully selecting appropriate

sensors, designing efficient data acquisition strategies, and considering the specific

requirements of the application. This, in turn, will enable the delivery of valuable

and meaningful data at the interface layer, leading to enhanced decision-making

processes and improved performance of IoT systems in urban contexts.

Similarly, in the network and service layers, the lack of optimization can affect

the delivery of information or fail to properly detect patterns that generate a detailed

understanding of what is happening in the physical world.

In the network layer, the efficient transmission and routing of data play a critical

role in ensuring timely and reliable communication between IoT devices and the

backend infrastructure. Inadequate network optimization can result in delays, packet

losses, or bottlenecks that hinder the seamless flow of information. This can lead to

incomplete or inaccurate data being received.

In the service layer, optimization is essential for processing and analyzing the

collected data effectively. This involves leveraging appropriate algorithms, machine

learning techniques, and computational resources to extract valuable insights and

identify meaningful patterns from the data. Insufficient optimization in this layer

can result in inaccurate analysis, missed opportunities for real-time decision-making,

and a lack of detailed understanding of the physical world.

To address these challenges the present thesis want to answer the following

questions to enhance the overall performance of IoT systems:
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• Could a set of low-cost sensors provide information that can determine human

comfort levels or understand specific factors in the complexity of an urban

environment?

• Do the sensors sample at the correct frequency to optimally digitize the PM

behavior??

• Is it possible to reduce sensor power consumption without degrading accu-

racy?Is it possible to reduce the power consumption of the sensors? What are

the implications for their precision?

• What communication protocol is most suitable for transmitting data in urban

environments?

• Are the data generated by the sensors reliable and scientifically valuable?

• Can citizens trust in the integrity and authenticity of the data?

• Can IoT be utilized to explore other aspects of human well-being, specifically

those related to mental focus?

These questions are addressed throughout this document within the context of

some of the challenges presented in section 1.3, where urban sustainability serves

as a general case study. In the following subsections, an overview of all chapters

included in this thesis will be provided.

1.4.1 IoT Environments’ Domain

This chapter explores the integration of IoT technologies in addressing environmental

issues and promoting well-being in urban environments. Additionally, this chapter

takes a first approximation to examine the potential of low-cost sensors in providing

valuable information and insights through two case studies. The research presented

in this chapter contributes to two key areas: comfort and well-being in indoor

environments, and air quality in outdoor environments.

Considering the significance emphasized by the United Nations’ Sustainable

Development Goals (SDGs), particularly Goal 11 aimed at achieving inclusive,

safe, resilient, and sustainable cities and human settlements, this study explores the



10 Introduction

question of whether a set of low-cost sensors can provide the necessary information

to determine levels of human comfort or explain healthy environments in urban

contexts. Then, case studies are presented in the chapter to highlight the importance

of comfort and well-being in indoor environments, as well as outdoor air quality,

specifically in the monitoring of ultra-fine particles. These case studies investigate

the potential of low-cost sensors in providing insights and understanding the complex

factors at play. The effectiveness of low-cost sensors in enhancing the well-being

and quality of life for city dwellers is assessed by examining human comfort levels

and specific aspects of urban environments.

In the context of comfort and well-being in indoor environments, the research

conducted in this field is being introduced, specifically on the development and char-

acterization of a low-cost multi-sensor device called PROMET&O. The development

and characterization of PROMET&O, designed to monitor Indoor Environmental

Quality (IEQ) parameters and provide valuable insights into human comfort levels,

are emphasized. The aim of this research is to assess whether a better understand-

ing of the complexities within urban environments and an improvement in indoor

comfort conditions can be effectively contributed by low-cost sensors.

Moving on to air quality, the implementation of an urban IoT monitoring cam-

paign for monitoring ultra-fine particles in a densely populated residential area is

being explored. By deploying low-cost sensors throughout the city, data and insights

into particulate levels and their interaction with the urban fabric. The capabilities

and limitations of low-cost sensors in providing valuable information for creating

healthier and more sustainable cities are investigated through the research

By addressing the question of whether a set of low-cost sensors can provide

information to determine human comfort levels and understand specific factors in the

complexity of urban environments, this chapter aims to shed light on the potential of

IoT applications. The integration of IoT technologies, guided by the SDGs, offers

promising opportunities to leverage low-cost sensors in addressing environmental

challenges and enhancing the well-being of urban populations. Through the exami-

nation of case studies and research contributions, we strive to assess the effectiveness

and applicability of low-cost sensors in promoting sustainable and healthy smart

cities.
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1.4.2 Data Collection

Now, with a better understanding of the application environment, the monitoring of

air quality is taken as the main case study, focusing specifically on the particulate

matter pollutant. This pollutant is generated through the combustion of fossil fuels,

industrial production, and various combustion processes. These ultrafine particles

are classified based on their diameter.

• PM10 refers to particles with a diameter smaller than 10µm and larger than

2.5µm.

• PM2.5 represents particles with a diameter smaller than 2.5µm and larger than

1.0µm.

• PM1.0 denotes particles with a diameter smaller than 1.0µm.

These micro-particles have a significant impact on the human respiratory system,

causing various respiratory diseases and increasing the risk of lung cancer. Urban

environments are major sources of particulate matter due to the concentration of con-

struction activities, combustion-based transportation, and industries. Consequently,

their influence on human well-being has gained significant attention in recent years,

leading to an increased interest in their monitoring [16]. However, monitoring partic-

ulate matter is not a trivial task, as determining its concentration in the air requires

complex processes [13]. Under European directives (2008/50/EC), two techniques

are approved for the official measurement of these parameters: β -attenuation mon-

itoring and gravimetric detection. Both techniques employ filters to trap particles,

and the concentration of the pollutant is determined based on the attenuation of β

radiation or weight changes (gravimetric).

Both techniques are costly, affecting spatial resolution, and provide measure-

ments with low temporal resolution. As an alternative, low-cost sensors based on

light scattering have emerged as more affordable options, although their accuracy is

still limited. However, they can contribute to improving spatial and temporal resolu-

tions. These sensors can generate data at speeds of one measurement per second, but

they present challenges in the context of IoT. Their measurements require a constant

airflow, which is achieved through the use of a fan or a resistor to manipulate the

air temperature. This makes them energy-intensive. Moreover, it is unclear whether

such a high sampling rate truly provides useful information.
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Given the aforementioned challenges, this chapter aims to explore the efficient

utilization of these types of sensors by addressing two key questions: First, whether

the sensors operate at the correct frequency by analyzing the behavior of the physical

variable and its frequency components. And second, whether it is possible to reduce

energy consumption by applying techniques such as duty cycling to achieve reduced

sensor power consumption, while also analyzing the implications for measurement

accuracy.

Overall, this chapter contributes to the advancement of IoT-based air monitoring

systems by addressing the challenges associated with low-cost sensor acquisition.

The insights and findings provide valuable guidance for optimizing the performance,

energy efficiency, and data quality of these systems, enabling more effective air

pollution monitoring and mitigation strategies in smart city environments.

1.4.3 Networks and Data Transmission

The emergence of IoT has led to a significant change in the way devices exchange

information. Wireless connectivity plays a vital role in the success of IoT, facilitating

smooth communication between a wide range of devices, sensors, and systems. It

is essential to comprehend the importance of wireless connectivity in IoT to fully

exploit the transformative capabilities of this technology.

However, there are currently several technologies that provide wireless com-

munication, each with its own strengths and weaknesses. In the field of IoT, there

are various options where the type of scenario in which they are deployed takes

precedence, as each IoT deployment entails different parameters to consider, defin-

ing requirements that must be met by the technology or protocol that optimizes

communication [17, 18]..

In general, the key requirements for wireless communication in an IoT de-

ployment can be summarized as follows: coverage, scalability, reliability, power

consumption, data throughput, interoperability, and security.

Scalability, as the number of connected devices is projected to reach billions

in the near future, it is imperative that the wireless infrastructure is capable of

accommodating the exponential growth of these endpoints. Whether it involves a

smart home, industrial facility, or smart city, the wireless network must be engineered
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to effectively manage the substantial quantity of devices and their data transmission

demands, all while maintaining optimal performance levels.

Coverage pertains to the extent of wireless connectivity within a geographical

region. In the context of IoT, applications can encompass expansive territories,

ranging from urban settings to rural or isolated areas. Wireless technologies utilized

in IoT must offer broad coverage to ensure connectivity is accessible across these

diverse locations.

Power consumption is a crucial factor to consider in wireless connectivity for

IoT. Numerous IoT devices operate on battery power and are often deployed in

remote or hard-to-reach locations. In order to maximize the operational lifespan of

these devices and minimize maintenance efforts, wireless technologies must prioritize

power optimization. Employing efficient power management techniques and utilizing

low-power communication protocols are imperative for enabling long-lasting and

energy-efficient IoT deployments.

The reliability of wireless networks is paramount in IoT applications that encom-

pass mission-critical functions such as healthcare monitoring, industrial automation,

or transportation systems. To enable uninterrupted data transfer and real-time re-

sponse, wireless networks must provide consistent and dependable connectivity.

This requires the implementation of robust wireless protocols and reliable network

architectures, which are crucial in facilitating seamless and reliable communica-

tion among devices, even in challenging environments or areas with significant

interference.

Data throughput is an essential factor to consider in wireless communications

for IoT. While IoT devices commonly transmit small data payloads, specific applica-

tions require higher data rates or deal with substantial data volumes. It is imperative

for IoT deployments to carefully select wireless technologies capable of efficiently

handling low-rate, intermittent data transmission or high-rate continuous data flow.

This selection process ensures that the chosen wireless technology can accommo-

date the diverse range of IoT applications and effectively address their unique data

requirements.

Interoperability is another critical requirement for wireless connectivity in

the context of IoT. The vast ecosystem of IoT devices and platforms demands

wireless technologies that can seamlessly integrate and interoperate across diverse

devices, protocols, and networks. Standardized wireless protocols and interoperable
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frameworks play a pivotal role in enabling communication and collaboration among

devices from various manufacturers, fostering an open and flexible IoT ecosystem.

Security cannot be overstated in IoT, given the potential sensitivity of the trans-

mitted data. IoT systems could handle vast quantities of personal, industrial, and

critical infrastructure data, making them vulnerable to malicious attacks. To protect

IoT communications from unauthorized access, robust encryption, authentication,

and data integrity mechanisms are crucial. These security measures ensure the pri-

vacy and integrity of data transmitted over wireless networks, safeguarding against

potential breaches and unauthorized manipulation.

By addressing the previous requirements, wireless technologies can provide com-

prehensive connectivity solutions for IoT deployments, ensuring seamless operation

and real-time decision-making capabilities.

These requirements serve as the basis for constructing resilient and effective

wireless networks capable of supporting the varied and continuously expanding IoT

environment. By comprehending and addressing these requirements, businesses,

industries, and individuals can unleash the complete potential of IoT, guaranteeing

smooth operations and enabling real-time decision-making capabilities.

In this chapter, a case study focused on urban particulate matter monitoring is

presented to address two key questions: which communication protocol is most

suitable for transmitting data in urban environments, and is it possible to optimize

data transmission? The chapter emphasizes the challenges associated with data

transmission and explores a variety of data transmission schemes facilitated by

diverse wireless transmission technologies.

These schemes utilize the monitoring station discussed in section 3.2. The design

for the monitoring station, presented in this chapter, is characterized by its connectiv-

ity flexibility, capable of functioning under three distinct network topologies: Fixed

Sensor Networks, Participatory Sensor Networks, and Mobile Sensor Networks.

Furthermore, strategies for optimizing data transmission in low throughput sce-

narios, especially those involving BLE and LoRa technologies, are introduced in this

chapter.
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1.4.4 Data Quality

Low-cost sensors still present numerous challenges in terms of precision, coher-

ence, and resilience. The operating principles of certain sensors make them more

susceptible to aging or environmental factors that degrade their performance.

Specifically, the particulate matter sensors primarily used in the research pre-

sented in this document operate based on the light scattering principle (LSP) caused

by ultrafine particles crossing a light beam. However, the model used for calculat-

ing particulate concentration is often based on specific types of particles, such as

cigarette smoke. This calibration may not accurately measure other types of particles,

so using these sensors outdoors requires recalibration [19].

Furthermore, these light-scattering-based sensors require a constant airflow,

leading many to incorporate resistors to generate air convection or employ a small

fan. Both methods require significant energy, and in the case of the fan, introduce

another potential point of failure. Despite this, sensors with fans tend to perform

better as they ensure more stable airflow and a more rapid response time.

Another performance-affecting factor is humidity, which can alter particle density

or cause internal condensation that disrupts the light scattering sensor reading [13].

The sensor’s deployment time is also a consideration, as outdoor exposure to dust

can reduce its lifespan and allow particles like insects, seeds, or dust to clog the

sensor.

These issues represent significant challenges in deploying IoT solutions based on

these types of sensors, given their high failure probability and potential inconsistency

between sensors. Therefore, this chapter explores how to ensure the data collected

by these sensors is both reliable and scientifically valid.

We adopt the concept of redundant sensors within a single IoT device, which

is calibrated against a professional monitoring station. Following this calibration,

several calibrated devices are deployed for a year to assess the quality of their

data compared to the reference station. To discard anomalous values and failures

presented by some sensors, we propose a framework that filters out failed sensors

and eliminates anomalous data with the aim of reducing error and enhancing the

coherence of the sensor data.
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1.4.5 Data Integrity

Once the data has been processed in such a way that the air monitoring stations pro-

vide values close to the reference values, the issue of maintaining data immutability

arises and how to make them openly available to citizens and interested third parties.

As the data is publicly available and reflects some of the processes taking place in a

city that contribute to the welfare of the inhabitants, ensuring its integrity becomes

crucial.

Citizen surveillance is embedded in various governance systems where citizens

have access to information considered of interest and public domain. For this, the

citizen or party interested in auditing or studying a particular issue seeks to ensure

the data’s authenticity and that it has not been deliberately altered in the process.

Various technological solutions have been developed to verify data integrity, with

entities like NIST having generated several current standards used within the Internet.

These algorithms are widely used in secure transactions within digital systems, and

require best practices and technological management policies to mitigate risks

As a result, security processes are gaining importance in a world where virtuality,

remote operations, and data verification are becoming increasingly significant. Sev-

eral centralized solutions have taken control of secure processes, where centralized

systems are most commonly used in processes that guarantee privacy, authenticity,

confidentiality, and integrity. However, most security failures are due to the fact that

these centralized systems present single points of failure where critical operations

can be compromised due to a security failure.[20]

Alternatives like blockchain, which decentralize some processes, have gained

importance in recent years, mainly driven by concepts like digital asset ownership

(NFTs) and cryptocurrencies. However, it is a specific case of DLT technologies,

where information is open and nodes determine the validity of the added information

through consensus algorithms. These decentralized mechanisms help to address

some of the deficiencies of centralized systems and various implementations have

been developed aimed at business process automation and certification [21]. Nev-

ertheless, they also stand out for their high degree of energy inefficiency in most

implementations, generating a significant cost to environmental sustainability given

the energy resources required for validation and data addition within the network of

nodes that make up the DLT [22].
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Under these preliminaries, the question arises of how and whether citizens can

trust in the integrity and authenticity of the data. This chapter presents various

applications within the scope of a smart city, presenting an evaluation of the various

algorithms used in DLTs, and a proposal for a secure electronic public document

supported by biometrics, which allows for the authentication and integrity of public

citizen transactions, reducing the risks of impersonation. This study also presents

the proposal of a verification algorithm that allows for efficient implementation in

computational and energy resources for a DLT system.

The second proposal, based on the results presented in the first proposal, revisits

the analysis of the case study presented in this thesis, concerning how to efficiently

integrate DLT technologies in the context of IoT, to ensure that measured data

remains immutable and accessible to the citizen. This is achieved through a hybrid

storage approach that leverages the benefits of both centralized and distributed

systems. This allows the party interested in verifying the information to maintain

control over data immutability by using interlaced hashes for data checking.

1.4.6 Other IoT Applications

Finally, through this thesis, the aforementioned chapters have addressed various

scenarios focusing on well-being and air quality. Additionally, IoT can also be

applied in various areas of human development. Once again, referring to the United

Nations SDGs, Goal 4 aims to ensure inclusive and equitable quality education. In

this goal, and in relation to the question of whether IoT can be employed to explore

other aspects of human well-being, specifically regarding mental or productive focus,

this chapter proposes an approach where IoT and non-invasive data collection can

contribute in this aspect.

Particularly, the level of student attention is taken as a factor to analyze. This

factor is gaining increasing attention due to the prevalence of distractions, such as

electronic devices like mobile phones and computers being used for unrelated tasks

during class, or simply emotional states. Coupled with the difficulty teachers face in

analyzing feedback when dealing with large groups of students or when teaching

remotely through learning platforms.

In this chapter, a system is presented that utilizes facial recognition and non-

invasive physiological measurements to determine the level of student attention in
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both remote and in-person classes. The results highlight the potential of combining

these two approaches to enhance the effectiveness of teaching.

1.5 Thesis Contributions

Summarizing, this thesis presents the following contributions:

• An IoT system for the quantification of human well-being parameters in indoor

and outdoor environments of a building

• An appropriate sampling rate that balances data accuracy and energy efficiency

duty-cycle has been proposed, without sacrificing the quality of particulate

matter concentration acquired by low-cost sensors.

• A novel hybrid model that integrates diverse deployment scenarios using a

unified architectural framework and a standardized particulate matter monitor-

ing station. This model harnesses a range of low-cost wireless technologies,

thereby achieving high spatio-temporal resolutions.

• A framework to improve data quality, thereby increasing the coherence and

reliability of IoT platforms that use low-cost light scattering sensors for air

pollution monitoring

• A Blockchain network architecture proposal for a national e-ID system with

iris and fingerprint recognition features. The design, implementation, and

validation of a Blockchain network for the proposed e-ID system through a

new consensus method called tournament consensus algorithm (TCA).

• A hybrid architecture for data storage that utilizes both centralized and decen-

tralized storage resources, with data integrity safeguarded through the use of

interlaced hashes.

• A novel IoT system is proposed, which utilizes facial expression recognition

and physiological data analysis to assist teachers in evaluating teaching effec-

tiveness by determining students’ level of attention during both in-person and

remote lectures.



Chapter 2

IoT Environments’ Domain

In line with the Sustainable Development Goals (SDGs) set by the United Nations

on September 2015 [23], the concept of smart cities has emerged as a strategic

approach to foster sustainable urban development while addressing pressing societal

challenges. The integration of Internet of Things (IoT) technologies, information and

communication technologies (ICT), and data processing presents new opportunities

to comprehensively monitor and manage urban environments.

This chapter explores the application of IoT technologies in two case monitoring

studios: indoor monitoring in offices and outdoor monitoring air quality in the

context of designing Healthy Cities. By leveraging IoT solutions, these applications

contribute to the achievement of the SDGs by promoting sustainable and inclusive

urban environments that prioritize the well-being and productivity of residents while

addressing environmental concerns.

Indoor Environmental Quality Monitoring

The assessment of Indoor Environmental Quality (IEQ) in office spaces is crucial

for creating healthier, more comfortable, and productive work environments. This

section focuses on the development and characterization of a low-cost multi-sensor

device known as PROMET&O (PROactive Monitoring for indoor EnvironmenTal

quality & cOmfort). PROMET&O integrates a range of low-cost sensors to measure

parameters such as air temperature, relative humidity, illuminance, sound pressure

level, carbon monoxide, carbon dioxide, particulate matter, formaldehyde, and
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nitrogen dioxide. This section delves into the calibration procedures employed

to ensure reliable measurements, the integration of sensors within the device, and

the usability of the collected data for different user groups, including building

infrastructure managers and occupants.

Outdoor Environmental Quality Monitoring

The COVID-19 pandemic has brought to the forefront the importance of healthier

urban environments and the need to monitor and manage environmental factors

that impact public health. This section explores the role of IoT technologies in

monitoring air quality on a large scale to support the development of Healthy Cities.

The chapter presents a real-world case study where IoT-based Particulate Matter

(PM) sensors, specifically targeting PM2.5 and PM10 particles, were deployed

and compared to data from the official meteorological municipal station. The

results highlight the benefits and challenges of implementing a comprehensive urban

monitoring infrastructure, shedding light on the potential of IoT technologies for

creating healthier and more sustainable urban environments.

By examining the application of IoT technologies in IEQ assessment and air

quality monitoring, this chapter sets the stage for understanding the potential of

IoT-based solutions in the context of smart cities. The insights gained from these

applications offer valuable lessons and considerations for designing and implement-

ing IoT-driven initiatives to create healthier, more sustainable, and livable urban

environments.

Some of the work described in this chapter has been previously published in

[24],[25] and some are currently being reviewed at an international conference on

the topic.

2.1 Indoor Environmental Quality Monitoring

In recent times, there has been a surge of interest in the field of Indoor Environmental

Quality (IEQ) due to the recognition that individuals spend a significant portion of

their time indoors, particularly in office environments. The assessment of IEQ in

offices is crucial as it encompasses several key factors such as thermal conditions,
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lighting, acoustics, and indoor air quality (IAQ), all of which have a substantial

impact on the comfort, well-being, health, and productivity of occupants [26, 27].

Consequently, there is a growing demand for methodological approaches that can

comprehensively evaluate IEQ conditions by considering these domains in a holistic

manner rather than treating them as isolated elements. The assessment of IEQ

involves on-site monitoring of parameters and indexes related to these domains, and

recent advancements have facilitated intensive and long-term monitoring campaigns

through the use of cost-effective sensors, wireless sensor networks, and cloud-based

software platforms [28, 29].

As example Tiele et al.[28] developed a monitoring device for assessing IEQ

in indoor working environments. The device is capable of monitoring various

parameters including temperature, humidity, illuminance, sound levels, particulate

matter, total volatile organic compounds, carbon dioxide, and carbon monoxide. The

sampling period for data collection is set at 10 minutes. This device is designed to

be low-cost and operates on battery power, with an estimated battery life of 68 hours.

Its enclosure dimensions measure 165mm× 105mm× 55mm. To ensure accurate

measurements, the temperature, humidity, and carbon dioxide sensors of the device

were calibrated using the CO210 Extech commercial system. It was observed that

the temperature and carbon dioxide readings deviated from the uncertainty values

provided by the manufacturers. As a result, adjustments were made to the temperature

reading by 1.9 °C and to the carbon dioxide reading by 70 ppm. Furthermore, to

establish the baseline characteristics of the IEQ device, it was placed inside a sealed

plastic enclosure along with the CO210 Extech and exposed to zero air. This step

aimed to gain insights into the device’s performance under controlled conditions.

Additionally, the researchers devised a rating system for the collected measurements,

categorizing each parameter as good, average, poor, or bad based on the extent

to which they surpass predefined thresholds. Moreover, they calculated an IEQ

index by taking a weighted average of the individual parameters, and the resulting

percentage value is displayed on a low-power OLED screen incorporated into the

device’s casing.

Parkinson et al.[29] also developed a monitoring device for assessing IEQ specifi-

cally designed to be placed on office desks. Known as SAMBA, this low-cost device

is equipped to measure various parameters including air temperature, relative humid-

ity, globe temperature, air velocity, sound pressure level, illuminance, total volatile
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organic compounds, formaldehyde, carbon monoxide, and carbon dioxide. SAMBA

consists of two separate units connected by an ethernet cable. To ensure accurate

temperature measurements, the temperature-sensitive transducers are housed in the

satellite unit, isolated from heat-emitting components. The thermal sensors undergo

calibration in a small-scale wind tunnel. For the calibration of indoor air quality

sensors, a sealed chamber is utilized, where reference gases are introduced through

an intake port, and the sensors and reference devices monitor the concentration.

The calibration process for illuminance sensors involves placing a dome on top of

SAMBA and using an RGB LED module (WS2812, Worldsemi) as a point-source

controlled via PWM. In order to calibrate the microphone, it is positioned near a

monitor generating a noise signal within the frequency range of 100 Hz to 16000

kHz, alongside a reference sound pressure level (SPL) meter (Type 1; NL-52, Rion).

They also created a user-friendly software platform for reporting the monitored data.

The reported IEQ score is calculated based on hourly averages of the measured

parameters and their compliance with international standards.

To date, the monitoring of IEQ has primarily focused on specific research ques-

tions such as its correlation with energy consumption or occupants’ comfort and

behavior. However, there is a need for a comprehensive strategy that encompasses all

these aspects. This is because IEQ has a significant impact on Indoor Environmental

Comfort (IEC), which relates to the overall sense of well-being and satisfaction

experienced by individuals. The advancement of information and communication

technology enables the continuous collection of occupants’ subjective feedback

through portable computers or smartphones. Nevertheless, there is no universally

recognized standardized solution regarding the number, type, and frequency of ques-

tions required for this purpose [30]. Additionally, various contextual, personal, and

behavioral variables influence occupants’ perception of their environment, introduc-

ing potential biases in their responses [31]. These variables may include factors such

as building orientation, workstation location, age, country of birth, and educational

qualifications. It is worth noting that occupants’ dissatisfaction with the environment

can persist even when the physical conditions meet standard requirements. This

dissatisfaction can subsequently affect their behavior and lead to consequences on

building energy consumption [32].

The PROMET&O device (PROactive Monitoring for indoor EnvironmenTal

quality & cOmfort) is designed as a comprehensive system for continuous in-field

monitoring of IEQ parameters using multiple sensors. Its intended application
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includes integration with Building Automation and Control Systems (BACS). Ad-

ditionally, the device incorporates a tailored questionnaire to capture occupants’

subjective feedback regarding their comfort perception. This feature enables the

correlation of objective and subjective data. Ensuring the reliability of the monitored

data is crucial, which involves verifying the uncertainty specifications provided by

manufacturers and conducting calibration procedures as necessary.

2.1.1 Indoor Environmental Monitoring Quality Requirements

One aspect of this research is the design and metrological characterization of the

PROMET&O multi-sensor device. Currently, there is no universally recognized set

of parameters and indexes for assessing Indoor Environmental Quality (IEQ) [33],

so the standards for individual domains serve as the primary reference. Table 2.1

provides an overview of the parameters incorporated in the multi-sensor device and

their respective thresholds for office environments.

2.1.2 PROMET&O System

The primary objective of the PROMET&O system is to promote a proactive approach

among building occupants while simultaneously monitoring the IEQ conditions and

IEC. The system consists of several key components, as illustrated in Figure 2.1.

Each multi-sensor device is responsible for measuring various parameters related to

thermal, lighting, acoustic, and air quality conditions, and transmits pre-processed

data to a cloud-based platform. All objective data are securely stored in the cloud

and can be accessed by users through an intuitive dashboard. Occupants also have

the opportunity to provide subjective feedback on their perceived IEQ through a

questionnaire. By integrating objective IEQ data with subjective IEC data, collected

from user feedback, the system aims to foster a proactive behavior among occupants.

A comprehensive description of each component is presented in the subsequent

subsections.

Multi-sensor Device

The design of the PROMET&O multi-sensor has been guided by the measurement

requirements outlined in the subsection 2.1.1 and Table 2.1. This low-cost device
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Table 2.1 Parameters under monitoring and threshold values according to international

standards and the WELL Building Standard

Parameter Threshold for Offices Reference

Air temperature

(T)

Winter: (20-24) °C
ISO 7730:2005

Summer: (23-26) °C

Relative Humidity

(RH)
(25-60) % EN 16798-1:2019

Vertical Illuminance

(Ev)
Writing, typing, reading ≥ 500lx EN 12464-1:2021

Sound Pressure Level

(SPL)
≥ 45dB(A) NF S 31-080

Carbon monoxide

CO

15 min. mean ≥ 100mg/m3

EN 16798-1:2019
1 h mean ≥ 35mg/m3

8h mean ≥ 10mg/m3

24 h mean ≥ 7mg/m3

Carbon dioxide

(δCO2)
≥ 800ppm EN 16798-1:2019

Nitrogen dioxide

(NO2)

1 h mean ≥ 200µg/m3

EN 16798-1:2019
Annual mean ≥ 20µg/m3

Particulate matter

(PM2.5)

24 h mean ≥ 25µg/m3

EN 16798-1:2019
Annual mean ≥ 10µg/m3

Particulate matter

(PM10)

24 h mean ≥ 50µg/m3

EN 16798-1:2019
Annual mean ≥ 20µg/m3

Formaldehyde (CH2O) 30 min. mean ≥ 100µg/m3 EN 16798-1:2019

Total volatile

organic compounds
≥ 500µg/m3 WELL

Table 2.2 Sensors References

Parameter Part Number Manufacturer Interface

T and RH SHT41 Sensirion I2C

Ev VEML7700 Vishay I2C

CO 3SP_CO_1000 Spec sensors Analog

CO2 SCD30 Sensirion I2C

NO2 3SP_NO2_5FP Spec sensors Analog

PM2.5 and PM10 SEN54 Sensirion I2C

CH2O SFA30 Sensirion UART

SPL IMP34DT05 ST I2S
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Fig. 2.1 PROMET&O System Architecture

utilizes off-the-shelf sensors and is structured around three main components (see

Figure 2.2): the sensor array, the peripheral interface and power circuitry, and a micro-

controller responsible for acquiring sensor outputs and implementing calibration

functions for each measuring chain. Additionally, a WiFi module is incorporated

to facilitate the transmission of acquired data to a cloud platform for visualization,

post-processing, and storage. The communication between the microcontroller,

the different sensors, and the WiFi communication module is established through

the PCB, as represented by the peripheral interface circuitry block. Additionally,

the device’s various sub-blocks are powered by low voltage DC-DC converters

connected to an external power adapter to minimize self-heating concerns. All

these components are housed within a single-case device, with embedded sensors

enabling the measurement of the quantities specified in Table 2.1. To mitigate the

impact of self-heating from the micro-controller and WiFi module (with a power

dissipation of approximately 300 mW), the sensor array is thermally isolated from

the rest of the system. The internal volume of the device is divided by a panel,

providing mechanical support and separation between the sensor compartment and

the controller. Furthermore, the multi-sensor features a PLA case that encompasses

all the electronics.
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Fig. 2.2 Block scheme of the multi-sensor device

Figure 2.3 reports a photograph of the multi-device prototype looking at the

sensors compartment and the micro-controller position. The position of each sensor

inside the case has been carefully chosen to avoid cross-interference. The air-quality

sensors are placed on an ad-hoc vertical mount to get the sensitive elements as close

as possible to the case drilling. In such a way, their measurements are expected

to be representative of the indoor environment to be monitored. On the contrary,

the illuminance sensor and the microphone are placed on the top of the device to

negligibly affect their spatial responses.

The external enclosure of the multi-sensor device is made of PA12 material and

has a cylindrical shape, measuring 18 cm in height and 12 cm in diameter. Figure

2.4 shows a photograph of the case. The top cover of the case has a slightly smaller

perimeter, creating a gap in the ring to facilitate heat dissipation from the operating

sensors. The illuminance sensor and the MEMS microphone are positioned on the

top cover as well. To ensure proper ventilation and prevent component overheating,

the case has a series of holes on both the front and back sides along the perimeter.

Additionally, there are ten openings on each side above the holes, housing ten

LEDs that indicate the calculated percentage of IEQ based on specific algorithms

considering the monitored parameters. At the base of the case, there are two larger

openings allowing the PM2.5 and PM10 sensors to draw in and expel air using a

built-in fan. For power supply connections, two jacks are providedÐone on the side



2.1 Indoor Environmental Quality Monitoring 27

Fig. 2.3 Placement of the PROMET&O sub-blocks

for desk installation and another at the bottom for pole-mounted or wall-mounted

installation.

The microcontroller is required to support two I2C interfaces (one for sensors

and one for the WiFi module), two UART interfaces (one for the formaldehyde

sensor and one for debugging), two ADCs for analog sensors, SDRAM memory, and

several available pins for LED connections.

The inclusion of memory depends on the quantity of measurements taken by the

sensors that the system needs to retain for internal processing before transmitting

results to the server. The measurement that has the greatest impact on memory usage

is audio, with a sampling rate of 22 kHz (22,000 samples per second) at 16 bits,

considering a 5-second acquisition time, for example. This calculation results in

214 kB of occupied memory. These requirements have led to the selection of STMi-

croelectronics’ F7 and H7 families, both with a minimum of 176 pins. The chosen

controller board is the NUCLEO-H7A3ZI-Q, which includes a microcontroller from

H7 family.

The selection of sensors was based on the referenced documents in Table 2.1

and 2.2. The selection criteria took into account factors such as range, measure-

ment uncertainty, cost, power consumption, physical dimensions, and response time.

Temperature and relative humidity measurements are provided by a digital ultra-low

power sensor. The illuminance sensor used is a photodiode with a spectral response

that closely matches the sensitivity of the human eye in daylight conditions. The
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Fig. 2.4 Photograph of the external case

microphone employed is an omni-directional MEMS microphone that utilizes a

capacitive sensing element. Nitrogen dioxide and formaldehyde sensors rely on elec-

trochemical cells for detection. The carbon dioxide sensor utilizes Non-Dispersive

InfraRed (NDIR) technology for measurement, and the particulate matter sensor

employs an optical particle counter (OPC) based in light-scattering for detection.

The assurance of measurement traceability for the designed multi-sensor device

necessitates defining appropriate calibration procedures for each quantity of interest

within the measurement chain. The metrological characteristics of the selected sen-

sors determine two distinct conditions for each quantity. If the sensor manufacturer’s

stated uncertainty meets the requirements, a verification procedure is conducted for

the entire measurement chain, comparing it against a reference standard to assess

the overall error. On the other hand, if the sensor specifications do not meet the

uncertainty requirements, a metrological characterization is necessary to modify the

calibration function of the measurement chain using a reference standard. These two

conditions are visually represented in Table 2.3, with different background colors

in the Uncertainty column: white indicating sensors capable of meeting uncertainty

requirements (first condition), and gray indicating sensors requiring appropriate char-

acterization (second condition). The required uncertainty values are sourced from
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Table 2.3 Main characteristics of the selected commercial sensors

Parameter

Sensor

Measurement

Range

Uncertainty Range
Required

Uncertainty

T (-40 – 125)°C ± 0.2 °C (0 – 60)°C

±0.5°C

(BS EN

ISO 7726:2001)

RH (0 – 100)%) ± 1.8%) (30 – 70)%)

±5%

(ANSI/ASHRA

E 55:2017)

Ev
(0 – 120)

(klx)
15%

(mv²)
- ±5% (WELL)

CO
(0 – 1000)

ppm

± 2.75 nA/ppm

(sensitivity)
-

1 ppm at values

∼ (0 – 10) ppm

(WELL)

CO2
(0 – 40000)

ppm
± (30+3% mv²)

(400 –10000)

ppm

10% at 750

(WELL)

NO2 (0 – 5) ppm ±30 % mv² (0 – 5) ppm 20% (WELL)

PM2.5
(0 – 1000)

µg/m3

± (5 µg/m3

+ 5% mv²)
(0-100) µg/m3 ≥15%

(WELL)

PM10
(0 – 1000)

µg/m3 ±25 µg/m3 (0 – 100) µg/m3 -

CH2O (0 – 1) ppm ±20 % mv² (0-200) ppb

20 ppb

(0-100 ppb)

(WELL)

SPL
122.5 dB

(SPL) AOP
Not declared -

±0.5 dB (1 kHz)

(WELL)

² mv: measured value.
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International Standards or building certification schemes, and the specific procedures

for different quantities are described in subsection 2.1.3.

Ad-hoc cloud platform

The multi-sensor devices send the IEQ data at intervals as short as 1 second, necessi-

tating the adoption of a lightweight communication protocol. To ensure the reliable

and efficient transmission of the measured data on Indoor Environmental Quality

(IEQ), the PROMET&O system utilizes the Message Queue Telemetry Transport

(MQTT) protocol. This protocol follows a publish-subscribe paradigm and offers

payload optimization capabilities. Within the system’s back end, a broker and a

client are employed to collect data from the multi-sensor devices and store it in a

database similar to MySQL. Subsequently, the system’s front end retrieves the data

from the database and presents it to users through a user-friendly dashboard.

User Interface

The primary objective of the developed dashboard (see Figure 2.5) is to provide

end-users with real-time and historical information about the physical conditions of

their environment. It aims to enhance users’ knowledge of IEQ through the HINTS

and MORE sections, thereby increasing their awareness and understanding of their

role in improving their IEC. Additionally, the implemented questionnaire allows

users to express their perception of IEC for each specific domain. The questionnaire

also collects personal and behavioral variables to enable the analysis and comparison

of IEC with IEQ.

To validate the effectiveness of the dashboard and questionnaire, two campaigns

were conducted. A panel of subjects was presented with closed questions using

Microsoft Form and interviews to evaluate the ease of navigation, comprehension of

content, and quality of the graphical layout. This assessment aimed to enhance user

engagement and ensure the overall quality of the dashboard and questionnaire.
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Fig. 2.5 Dashboard screenshot. It provides a quick overview of the current IEQ for the user.

2.1.3 Calibration Procedures

Air Temperature and Relative Humidity

The validation procedure for the temperature and humidity sensor(Sensirion SHT41)

involves placing the device inside a climatic chamber and comparing its readings

to those of a reference thermo-hygrometer. The reference instrument ensures an

uncertainty of 0.1 °C for temperature and 1.5% for relative humidity within the

desired ranges. Additionally, a Pt100 is used as an additional reference, following

the recommendations of E220-19 [34].

For temperature verification, tests are conducted at three different set points (10

°C, 20 °C, and 30 °C) with a sampling interval of 60 seconds. Data collection begins

when the climatic chamber reaches the set temperature of 10 °C. The conditions are

then manually adjusted to the next set-point without stopping the recording, allowing

for measurements in both steady-state and transient conditions.

Regarding the verification of relative humidity measurements, the temperature is

set at 23 °C, and four different relative humidity values (22%, 39%, 75%, and 94%)

are tested. The same 60-second sampling interval is used for data collection from

both the sensor under verification and the reference device. Data acquisition starts
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once the required thermo-hygrometric conditions are reached and continues for a

time interval longer than 1 hour for each test point.

Sound Pressure Level

The verification of the MEMS microphone is conducted both as an individual sensor

and as an integrated component within the multi-sensor case to consider the impact

of acoustic diffraction effects caused by the mounting configuration. A secondary

free-field calibration is performed using the comparison method. The free-field

calibration based on the comparison method follows the guidelines of the IEC 61094-

8 Standard and is carried out in either an anechoic or hemi-anechoic chamber (refer

to Figure 2.6). In this method, the free-field sensitivity of the microphone under

test is determined by comparing it to a reference microphone with known free-field

sensitivity. (The reference microphone’s sensitivity is obtained through primary free-

field reciprocity calibration or derived from primary pressure reciprocity calibration

with appropriate free-field corrections). Both microphones are exposed to essentially

the same free-field sound pressure in a sequential manner during the calibration

process.

The monitoring of the sound source’s stability and potential variations in the

acoustic field during measurements is ensured by a fixed-position monitor micro-

phone placed inside the chamber. Additionally, the acoustic pressure is measured

in a specific region of the test environment where sound generated by the loud-

speaker propagates in a nearly planar progressive wave manner. Both the separate

and case-integrated MEMS microphones are positioned at the same measurement

point, following the specified angle of incidence, to establish their reference points

or acoustic centers. The free-field sensitivities of both microphones are determined

through comparison or substitution calibration within the frequency range of 500

Hz to 12.5 kHz. This evaluation is conducted in a small anechoic chamber with a

volume of approximately 3.5m3.

Illuminance

The calibration process for the illuminance measurement chain involves comparing it

to a reference standard, specifically the PRC Radiolux 111 luxmeter, which features

a photometric head certified as class B according to DIN 5032-7. The calibration
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Fig. 2.6 The anechoic chamber used for the MEMS microphone calibration

method consists of measuring the illuminance within a test box using a stable light

source that can be dimmed to various light output levels, as shown in Figure 2.7. In

the first step, the reference standard measures the illuminance as a baseline, and in

the second step, it is replaced with the sensor being calibrated to obtain its readings

under each test condition. The calibration method encompasses the following test

conditions:

• Three LEDs with different spectra and Correlated Color Temperatures of 2700

K, 4000 K, and 5700 K (representing warm white, neutral white, and cool

white, respectively) are utilized as light sources in the test box to evaluate the

spectral response of the sensor being calibrated.

• Each LED is dimmed to achieve illuminance values ranging from 2.5 lx to

approximately 3500 lx on the measuring plane inside the test box.

• The sensor under calibration is positioned horizontally and tilted at different

angles (30° and 60°) to assess its cosine response to varying angles of light

incidence.
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• The sensor under calibration is tested both with and without the PROMET&O

device case, considering different window openings and cover thicknesses

applied to the case.

Fig. 2.7 Data acquisition phase of the naked sensor with LED 2700 K without optical filter

Throughout all the tests, the distance between the light source and the sensitive

area remains constant to ensure a consistent and uniform distribution of light on the

measuring plane. The accurate positioning of the sensitive area beneath the light

source is verified using a laser beam pointer. The test box houses the LED source,

and the measuring plane is located in a completely darkened room with stable thermal

conditions. The tests are conducted in a random manner, and the reproducibility of

the results is assessed to evaluate the consistency of the measurements.

Particulate Matter

Low-cost light-scattering PM sensors are compact versions of traditional optical

particle counters, designed for integration into IoT solutions [35, 36]. Although

calibration and verification methods for light-scattering airborne particle counters
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(LSAPC) are defined in ISO 21501-4:2018 [37], many low-cost sensors do not

adhere to this standard. These sensors operate by illuminating an air sample with

a laser beam and measuring the intensity of scattered light using a photodiode po-

sitioned at a specific angle relative to the laser source. Utilizing Mie theory, the

particle diameters can be determined, and the number of particles within various

size intervals can be counted. The particle volume is then calculated by assuming an

ideal spherical shape [38]. From the total volume, the total mass of particulate matter

(PM) is estimated, considering a density coefficient that may vary across different

size intervals. The PM concentration can be obtained by dividing the total mass by

the volume of the analyzed air sample. It should be noted that this measurement

procedure assumes spherical particles, which is not representative of environmental

pollution. Additionally, the density coefficient used in factory calibration may not

accurately reflect the real working environment. Therefore, it is beneficial to recali-

brate the sensor using PM particles similar to those encountered in the deployment

scenario. The literature presents various models for calibration [16, 39, 13], with

this work utilizing a simple linear regression model to correct for significant errors

resulting from factory calibration. Since sensor calibration is strongly influenced

by the composition of particulate matter, two types of particulates are considered:

cigarette smoke and outdoor pollution in the installation area. The calibration for

cigarette smoke is conducted in a sealed climatic chamber against a high-precision

reference sensor, while for outdoor monitoring, the sensors are positioned near of-

ficial monitoring stations. Additional adjustments can be introduced to the model

by incorporating temperature and humidity measurements. Initially the sensors are

calibrated by the manufacturer under the technique described above, so in the indoor

case this process is not performed for this monitoring station.

2.1.4 Experimental Results

Initial instances of experimental outcomes are presented for two of the measure-

ment systems under investigation, specifically targeting the measurement of CO2

concentration and illuminance (Ev). In accordance with the classification outlined

in subsection 2.1.2, a validation procedure is conducted for the CO2 concentration

measurement, whereas a comprehensive characterization of the Ev measurement

system is warranted.
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The findings pertaining to the validation of the CO2 concentration measurement

system are summarized in Figure 2.8 for the reference set-point (approximately

500 ppm). The upper chart displays the reference concentration as provided by

the Photoacoustic Gas Monitor (PGM, depicted by the green line), alongside the

concentration measured by the Sensirion SCD30 device (indicated by the red line)

over a duration of approximately 70 minutes. The lower chart presents the mea-

surement error (blue line), representing the disparity between the readings of the

sensor under verification and the PGM. Additionally, the chart includes the upper

limit (UL SCD30) and lower limit (LL SCD30) of the acceptable error range for

the SCD30 sensor (depicted by the red lines), as well as the confidence interval of

the measurement error (represented by the green lines) at a 95% confidence level.

The expanded uncertainty U(Error) has been calculated, taking into account the

contributions stemming from the PGM uncertainty and the resolution of the sensor

under verification. It is worth noting that the measurement error falls within the

specified tolerance range, indicating conformity of the CO2 measurement system

under verification to its nominal specifications. A comprehensive statement of con-

formity will be provided upon completion of the verification procedure across the

entire range of interest.

Fig. 2.8 Verification results obtained for the CO2 concentration measurement chain in the

baseline set-point.
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Regarding the illuminance measurement system (Ev), an initial characterization

is necessary due to the manufacturer’s specified maximum permissible error (± 15%

of the measured value). Consequently, the calibration function of the illuminance

measurement chain was assessed using the results obtained from the LED with a

correlated color temperature of 2700 K (warm white). This LED possesses a spectral

response that closely aligns with the peak sensitivity of the human eye in photopic

conditions (V (λ )). The findings are summarized in Figure 2.9, where the red circles

in the upper chart represent the experimental values (reference vs. measured), and

the blue line represents the linear calibration function derived by minimizing the root

square sum of the differences between the function and the experimental values. The

linear calibration function is defined by an intercept of -35 lx and a slope of 1.22

lx/lx.

Fig. 2.9 Characterization results for the illuminance measurement chain obtained using the

LED with the correlated color temperature of 2700 K

The residual fitting errors (shown in Figure 2.9 bottom chart) exhibit a minimal

average value, and the root mean square error measures approximately 50 lx. This

contribution to the uncertainty has been combined with the uncertainty stemming

from the reference luxmeter, resulting in the anticipated uncertainty of the character-

ized illuminance measurement chain. The uncertainty value, expressed with a 95%

confidence level, can be described as follows:
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Uad j(Ev) = (60+4%measured valure)lx (2.1)

Subsequently, the illuminance measurement chain underwent verification by

comparing it to the same reference device using the remaining two LEDs with corre-

lated color temperatures of 4000 K and 5700 K (which have maximum sensitivity in

the violet region of visible light), as well as the 2700 K LED after a month from the

initial characterization. The results obtained from these comparisons are presented

in Figure 2.10, where the red symbols represent the errors obtained using the unad-

justed indications of the illuminance measurement chain, while the blue symbols

represent the errors resulting from implementing the identified calibration function.

Additionally, the continuous red lines in the figure represent the expanded measure-

ment uncertainty of the characterized chain. The key finding of this analysis is the

efficacy of the proposed characterization procedure, which enables the measurement

of illuminance (Ev) with an acceptable level of uncertainty, meeting the requirement

outlined in Table 2.3. Conversely, when the illuminance sensor is not adjusted, the

measurement error exceeds the specified uncertainty (±15% of the measured value),

as evident from the unadjusted errors observed at illuminance values exceeding 3500

lx.

2.2 Outdoor Environmental Quality Monitoring

2.2.1 Introduction and Background

The urban environment significantly impacts human health, with Atmospheric Par-

ticulate Matter (PM), nitrogen dioxide, and tropospheric ozone being recognized as

risk factors for cardiovascular, respiratory, and carcinogenic diseases [40]. Alarming

data from the scientific community reveals that approximately 4.2 million premature

deaths occur worldwide each year due to stroke, heart disease, lung cancer, and

chronic respiratory illnesses resulting from excessive exposure to PM [40]. In Eu-

rope, where 15% of premature deaths can be attributed to environmental factors, life

expectancy has been reduced by about 8 months due to the same causes [41].

Against this backdrop, the COVID-19 pandemic has further emphasized the

crucial link between environmental factors (such as virus spread and exacerbation
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Fig. 2.10 Results of the illuminance measurement chain verification. The indications without

any correction (unadjusted, represented by red symbols) and the indications after applying

the identified calibration function (adjusted, represented by blue symbols).

of symptoms) and human health, underscoring the need to promote healthier urban

environments [42]. The complexity of the factors affecting air quality, which operate

at local, continental, and hemispheric scales, is influenced by human activities (e.g.,

heating, transportation, industries) and micro-climatic conditions that transform

primary emissions into secondary pollutants, facilitating their dispersion [43].

In this situation, affordable ICT in conjunction with IoT solutions enable the

creation of a digitally connected urban environment. On the one hand, these tech-

nologies can serve as essential tools for extensive monitoring, while on the other

hand, they can effectively engage people by increasing awareness of health issues

and promoting the transition to an ecological lifestyle [13, 44].

Numerous ongoing studies are exploring the use of a widespread network of air

quality sensors integrated into various elements such as lampposts, vehicles, bicycles,

building components, flowerpots, or wearable devices [45–48]. Specifically, the

development and application of IoT technologies in cities allow for monitoring

multiple variables that can impact air quality and human health. Additionally,

adopting integrated technologies supports the growth of open urban platforms [49],
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which monitor the inflow and outflow of energy and matter in real-time urban

metabolism models [50].

Based on these foundations, this study presents initial findings from an air quality

monitoring campaign conducted at the neighborhood level in Turin, located in

northern Italy, which is considered one of the most critical regions in Europe due

to its orography and population density. The study aims to achieve two primary

objectives: firstly, to demonstrate the effectiveness of low-cost IoT technologies in

monitoring air quality on a large scale, and secondly, to investigate the impact of the

urban environment on pollutant distribution. The following subsections provide a

description of the methodological approach employed and highlight the key results

obtained through a test conducted as part of an ongoing national research project.

2.2.2 Methodology

This subsection outlines the experience of a comprehensive monitoring campaign

focused on air quality (PM2.5 and PM10) and environmental parameters (such as air

temperature, humidity, and pressure) conducted at a neighborhood level with a high

level of temporal resolution. This micro-urban scale campaign aimed to explore the

potential direct relationship between various built environment characteristics (e.g.,

morphology, presence of green spaces, street exposure, building height, orientation,

etc.) and the distribution of pollutants. The findings have the potential to inform

climate change planning policies and designs [51].

Prior to the monitoring campaign, the area was simulated using ENVI-met™, a

Computational Fluid Dynamics software (CFD), to better understand the dispersion

of pollutants in the micro-climate. Over the course of one year (from March 2021 to

February 2022), three monitoring campaigns were conducted, each lasting approx-

imately two weeks. Four monitoring stations were strategically placed in the area

for data collection. The data collected from the low-cost sensor stations developed

by Giusto et al. [13] were contrasted with data from the official urban measurement

network operated by ARPA (Regional Environmental Protection Agency), the mu-

nicipal authority responsible for urban air quality control. For comparison, data from

the nearest official station, Torino Grassi – Reiss Romoli, located approximately

4 km away from the analyzed area, was utilized. Furthermore, the data analysis
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considered different seasons and exposures to primary emission sources to examine

the impact of seasonal anthropogenic phenomena.

2.2.3 Case Study

The Neighbourhood

The case study takes place in the northeastern suburbs of Turin, Italy, a city character-

ized by Cfa climate conditions according to the Köppen-Geiger classification. This

climate type signifies a humid subtropical climate with the coldest month averaging

above 0 °C, at least one month with an average temperature above 22 °C, and at least

four months with an average temperature above 10 °C. The specific neighborhood

under investigation is Milan Barrier (45° 05’N 7°42’E), situated near the Po River

and several major green infrastructures.

The plot covers an area of approximately 22,000 m2 and is predominantly occu-

pied by public housing facilities (refer to Figure 2.11). To be more specific, the area

comprises two building block courtyards, each consisting of three to four storeys in

height. Those were constructed in the 1920s and 1940s and have undergone techno-

logical and functional renovations in 2012, including facade upgrades, installation of

external lifts and new balconies, and the renewal of water systems. The residential

complex is owned by ATC (Housing Territorial Agency in Piedmont Region), and it

is currently home to around 200 people, with approximately 30% of the population

aged 60 or above.

The selection of this particular plot was motivated by the diverse presence

of natural and artificial elements, allowing for an assessment of how pollutants

propagate within the urban fabric. Specifically, the choice of the closed-courtyard

morphological type, commonly found in Turin’s historical fabric, was made to

examine potential variations in pollutant distribution between the facades facing the

street (thus more exposed to vehicle emissions) and those facing the internal green

area. The entire area is adjacent to an old railway path in the north, which is set to

become part of a new metro line infrastructure, offering significant environmental

potential. All the monitoring stations were installed on balconies at a similar height

above the ground (approximately 6 meters) to ensure consistent pollution patterns

and minimize any potential variations due to height differences.
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Fig. 2.11 Aerial view of the case study neighborhood

CFD Simulation

Before installing the sensors, an outdoor Computational Fluid Dynamics (CFD)

analysis was conducted on the area (see Figure 2.12). This analysis aimed to

understand how ventilation, a critical factor in pollutant propagation, could influence

the results. ENVI-met, a widely used CFD model in academic and professional fields,

was employed to simulate the complex interactions between the built and natural

environment by a prognostic non-hydrostatic model [52]. The modeling process

involved defining various features of the built environment, such as aterial albedo,

type of greenery, and soil moisture.

Additionally, meteorological boundary conditions, including temperature, hu-

midity, wind, and solar radiation, were set to accurately represent the weather. The

simulation provided insights into various outdoor parameters (e.g., Potential Air

Temperature (PAT), Surface Temperature (SF), Wind Speed (WS), etc.) and thermo-

hygrometric comfort indices (e.g., Physiological Equivalent Temperature (PET)).

The analysis of the case study area revealed that the linear region to the northeast

of the plot, previously a railway yard, significantly enhanced ventilation. For the

simulation, the initial wind speed and direction from ARPA for the hottest summer

day in 2020 were used (1.70 km/h, NW ). Although simulation results represent

specific microclimatic conditions, the wind and their direction are typical for Turin.
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Fig. 2.12 ENVI-met’s CFD analysis of the plot revealed the wind speed and direction at 2:00

PM on the hottest summer day

To examine the impact of wind on PM propagation, two sensors were positioned

to face the street, with one sensor facing a more open road (via Ghedini) and the

other facing a relatively closed road (via Gallina). The remaining two sensors were

placed facing the courtyard, where lower wind speeds were anticipated based on the

simulation outputs.

Monitoring Board Station

The monitoring results specifically include data collected from PM10 and PM2.5

sensors, as well as temperature, humidity, and pressure measurements. The hardware

components used for the monitoring board (Figure 2.13) are as follows:

Monitoring board: The Raspberry Pi Zero Wireless was selected as the single-

board computer for the system. To optimize resources and minimize their wastage,

the project employed the Arch Linux operating system for ARM, which focuses on

running only essential OS components. Python scripts were utilized as System Units

to query all the sensors.

PM sensor: The Honeywell HPMA115S0-XXX sensor was employed for detect-

ing particle concentrations of PM2.5 and PM10 in the air. This sensor has an output

range of 0 to 1000µg/m3 and provides accuracy up to 15%, with a corresponding
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Fig. 2.13 Monitoring Board

price range of approximately $25 to $30 USD. The sensor utilizes the Light Scat-

tering technique, wherein a rotating fan draws air into a chamber, which is then

exposed to a laser beam. A proprietary algorithm inside the device estimates particle

concentration by analyzing the photodiode response. The sensor communicates with

the monitoring board through UART (Universal Asynchronous Receiver Transmitter)

communication, writing a new data point every second.

Temperature and humidity: Those measurements are obtained using the

DHT22 sensor, which is a low-cost digital sensor known for its affordability and

accuracy. It provides humidity readings ranging from 0% to 100% with an accuracy

of 2 to 5 percent. Temperature readings range from -40 to 80 with a precision of 0.5

°C, and the sampling rate is approximately 0.5 Hz. Dedicated APIs are utilized to

interact with the sensor via One-Wire communication protocol.

Atmospheric pressure: To get these measurements, the BME280 sensor from

Bosch is employed. This sensor is known for its precision in measuring barometric

pressure and temperature. It has a barometric pressure sensing range of 300−

1100 hPa, with a resolution of 0.03 hPa/0.25 m. The operational temperature range

is 40-85 °C with a temperature precision of 2 degrees Celsius. The sensor data is

retrieved through the I2C interface, using specific APIs.

To synchronize the temporal data, a clock for Unix time is utilized. This ensures

consistent time references across the measurements. It is important to note that the
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experimental data collected by the board stations do not have official calibration and,

therefore, do not possess normative value. However, they provide qualitative insights

into the system’s potential and allow for considerations to be made based on the data

obtained.

2.2.4 Results Discussion

The results obtained from the experimentation serve two main purposes. Firstly,

they aim to assess the advantages of widespread low-cost monitoring compared

to the current official monitoring system provided by ARPA. Secondly, they aim

to investigate the impact of the urban environment and traffic on the propagation

of pollutants. The frequency of monitoring enabled the collection of a substantial

dataset for analysis. Throughout the three monitoring campaigns, approximately

30,000 data points were collected for PM levels and approximately 14,000 for

temperature and humidity. The collected data were processed again, removing

outliers, and grouped into different time frames.

One noteworthy insight is derived from the level of detail in the data. While ARPA

only provides a daily average, the low-cost stations can capture hourly and daily

trends, thereby revealing any critical periods. The graphs in Figure 2.14 illustrate the

PM2.5 values from the same sensor during the three monitoring campaigns, compared

to the official data from ARPA. Although the trends and daily average values from

the low-cost stations align with the official data, it is evident that the daily PM trend

can exhibit significant differences. Particularly during the winter period, when PM

levels are higher, deviations of up to 25−30µg/m3 can occur on the same day.

In the first two campaigns conducted during the spring and summer seasons,

there is a more pronounced disparity between the monitored data and the official

data. This observation is consistent with the non-linearity of the sensors and their

lack of accuracy at low concentrations[39]. In other words, the higher the PM value,

the greater the margin of accuracy in the collected data.

To address the second research question, two primary analyses were conducted.

The first analysis compares the data from the four monitoring points during the same

period. The second analysis compares a sensor positioned towards the road with

another sensor facing the street, which is more exposed to traffic and wind.
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(a) PM2.5 values in April 2020

(b) PM2.5 values in July 2020

(c) PM2.5 values in February 2021

Fig. 2.14 PM2.5 trends in the three monitoring campaigns (a. April; b. July; c. February). In

red, the official data provided by ARPA
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Figure 2.15 illustrates the PM2.5 trend during the initial monitoring campaign.

On average, there is a variation of approximately 6µg/m3 between the different

points, which is relatively small compared to the overall range of values. Throughout

all three monitoring campaigns, no significant differences were observed among the

sensors at the four monitoring stations.

A more in-depth analysis on the differences between the sensors placed in the

inner courtyard (namely ªcorteº in the figures) and on the balcony facing the road

were presented in figure 2.16. By analysing a shorter period, it is possible to highlight

the daily trend of PM2.5 values without any significant variation. The action of

wind and the presence of cars for the specific context considered cannot be assessed.

Nevertheless, the simulated wind speed (Figure 2.12) showed homogeneous values

in the streets as well in the courtyards of the experimental field, thus confirming

possible similar PM values.

Fig. 2.15 PM2.5 values in the same campaign monitoring by different stations.

The findings reveal a concerning air quality situation in Turin. The average

values obtained from the monitoring campaigns align with official data, indicating

pollutant levels that exceed European limits. Although the proposed technologies

and results are still in the experimental stage, they offer potential for monitoring

environmental factors that impact neighborhood health. The collected data confirm

that the winter season experiences higher pollutant concentrations in the analyzed

context.
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It should be noted that the qualitative nature of the obtained values stems from

the use of sensors that lack official calibration. However, the data calibration pro-

vides increased reliability, particularly during the winter period when PM levels

are elevated. One limitation of the study is that the analyzed case study did not

offer substantial evidence to validate the correlation between the urban fabric and

proximity to streets. The limited traffic volume in the area restricts the possibility

of conducting more in-depth analysis. Applying the same approach in denser and

busier urban areas could yield contrasting outcomes. Additionally, the scale at which

air quality is examined is a significant consideration. While air quality is influenced

by global and regional factors, local monitoring plays a vital role in comprehending

the anthropogenic action and influencing citizen behavior.

Fig. 2.16 PM2.5 values comparison between courtyard (blue) and street (red)

2.3 Conclusions

2.3.1 Indoor Environmental Quality Monitoring

This study emphasizes the significance of Indoor Environmental Quality (IEQ), en-

compassing thermal, visual, acoustic, and air quality factors, in influencing people’s

health, comfort, well-being, and productivity. The development of the PROMET&O

system is presented, comprising a low-cost and accurate multi-sensor device for ac-
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quiring IEQ parameters and a tablet for collecting subjective feedback and providing

data visualization to end-users.

The research focuses on the design, development, and metrological characteriza-

tion of the low-cost multi-sensor device, which incorporates sensors for measuring air

temperature, relative humidity, illuminance, sound pressure level, carbon monoxide,

carbon dioxide, particulate matter, formaldehyde, and nitrogen dioxide. Calibration

procedures based on reference standards ensure the traceability and accuracy of the

measurements obtained through PROMET&O.

The verification procedure is conducted to assess the overall measurement chain

and confirm whether the measurement errors align with the uncertainty specified by

the sensor manufacturer. In cases where the sensor does not meet the uncertainty

requirements, a metrological characterization is performed using a reference standard

to modify the calibration function of the measurement chain accordingly.

Preliminary experimental results are presented for two specific procedures: the

verification of carbon dioxide concentration and the characterization of the illumi-

nance measurement chain, where the uncertainty requirements are not met. The forth-

coming measurements with PROMET&O will encompass all monitored parameters

to determine whether a verification is sufficient or if a metrological characterization

is necessary to ensure measurement traceability for all quantities involved.

The validation of the PROMET&O system will be carried out in a real-world

setting, specifically in a company’s open-plan office. This validation process will

contribute to the advancement of the field by incorporating real-time correlation

of objective and subjective data, engaging users through the dashboard and LED

visualization of IEQ levels, and promoting energy conservation while enhancing IEQ

and IEC.

2.3.2 Outdoor Environmental Quality Monitoring

The last pandemic and the climate emergency showed the need for a significant

transformation of urban environments, with a focus on promoting Healthy Cities

and aligning with the Sustainable Development Goals [53]. The pandemic has had

some positive impacts, such as reduced car traffic leading to improved air quality

and perceived road safety, ultimately enhancing the overall quality of life[54].
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Moreover, the improvement in air quality and the promotion of pro-environmental

citizen behaviors can potentially generate positive externalities, although assessing

them can be challenging (e.g., economic benefits from reduced healthcare costs) [54].

Rapid advancements in technology have facilitated a greater understanding of the

interconnections between various phenomena in cities [55]. In this regard, ICT and

IoT play crucial roles in enabling the ecological transition. Data-driven approaches

are increasingly being employed in the management and planning of urban areas,

providing a deeper understanding of the factors influencing health and supporting

evidence-based decision-making.

Urban planners should rethink and reimagine the urban environment, considering

the lessons from history that indicate its evolution after each pandemic. In the context

of creating Healthy Cities, the widespread adoption of IoT network for real-time

measurements, along with advanced environmental simulations, becomes essential

for promoting data-driven design. At the urban neighborhood scale, interventions

can have a significant impact, as land-use patterns, building types, technologies,

and behaviors that influence environmental quality can vary greatly across the city.

Therefore, implementing an auxiliary monitoring network alongside the official one

can provide greater awareness of site-specific issues that are closely related to public

health.

In today’s context, the technological advancements in low-cost sensor systems

have reached a level where widespread application in urban settings is feasible.

This opens up new possibilities for monitoring and understanding environmental

conditions in real-time.

As urban planners, there is a growing responsibility to reimagine urban environ-

ments in light of these challenges, as history has shown that cities evolve after each

pandemic. In the context of creating Healthy Cities, implementing a widespread

IoT network for real-time measurements, coupled with advanced environmental

simulations, becomes crucial for promoting data-driven design and decision-making.

The urban neighborhood scale is particularly relevant for intervention, as land-use

patterns, building types, technologies, and behaviors can significantly impact environ-

mental quality, varying throughout the city. Supplementing the official monitoring

network with an auxiliary monitoring system offers greater awareness of site-specific

issues directly related to health.
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Progress in low-cost sensor technologies, ICT, and data processing algorithms

has created highly promising opportunities. However, certain challenges remain: On

the one hand, the excessive generation of data can pose difficulties in managing the

flow of information and may have environmental implications. On the other hand,

issues related to data ownership and privacy still require proper regulation.

Considering the crucial role of data, future research should prioritize the estab-

lishment of new public-private partnerships that regulate the production of data in a

manner that is both controlled and valuable. This will ensure responsible data man-

agement and enable the realization of the full potential offered by these technological

advancements.



Chapter 3

Data Collection

Air pollution has emerged as a pressing concern in urban environments, demanding

comprehensive strategies for effective monitoring and mitigation. With the rise of

smart cities and the Internet of Things (IoT), innovative approaches leveraging low-

cost sensor acquisition have gained significant attention. This chapter explores the

integration of IoT technologies in air monitoring systems, specifically focusing on the

utilization of affordable sensors to measure particulate matter (PM) concentrations.

The first chapter’s section delves into the importance of accurately measuring

ultra-fine particulate matter (PM) and the development of affordable sensors and

wireless sensor networks has facilitated data collection and analysis. However,

monitoring ultra-fine particles presents unique challenges, particularly in determining

the optimal sampling rate. This chapter presents a comprehensive analysis of the

frequency behavior of PM signals using an open-source dataset. The objective is

to determine the maximum frequency required for digitizing air pollution signals,

enabling the establishment of a sampling rate that ensures accurate estimation of

particulate matter concentration while minimizing data and energy consumption.

Moving on the second chapter’s section, the focus shifts towards overcoming

engineering challenges associated with resource optimization in low-cost light-

scattering sensors. While these devices provide valuable data, issues such as energy

consumption, data transmission, and sensor aging need to be addressed. This study

investigates the possibility of reducing the duty-cycle of an air pollution monitoring

sensor while still obtaining meaningful data on its general behavior. By reducing

redundant information logging, the strain on the sensor is alleviated, leading to
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extended lifespan and reduced operational costs. Additionally, energy consumption

is minimized, making it particularly advantageous for battery-powered devices.

The study aims to optimize the duty-cycle, ultimately enhancing the efficiency and

effectiveness of air pollution monitoring.

By examining the frequency behavior of PM signals and optimizing the duty-

cycle of air pollution sensors, this chapter contributes to the advancement of air

monitoring in IoT application environments for smart cities. The findings and

insights derived from these topics will shed light on the challenges, opportunities,

and potential solutions in the quest for cleaner and healthier urban environments.

Some of the work described in this chapter has been previously published in [56],

[36].

3.1 Frequency Analysis

As urban areas continue to expand and their populations grow [57], the emission of

pollutants has become a significant concern for public health. According to the World

Health Organization [58], exposure to air pollutants such as particulate matter (PM10

and PM2.5) was linked to approximately 4.2 million deaths in 2016. To assess air

quality in metropolitan regions and determine contaminant levels, professional and

highly accurate monitoring stations are employed (refer to Figure 3.1). However, the

cost of each station can reach hundreds of thousands of dollars [59], resulting in most

cities having only a limited number of high-precision stations. As a consequence,

the spatio-temporal resolution provided by these stations is low since pollutant

concentrations can vary even within a small distance, such as tens of meters near an

urban intersection [60].
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Fig. 3.1 High-precision monitoring station - Rubino station in Turin- Italy

The light-scattering particle (LSP) technique has gained significance in recent

years as an affordable method for estimating PM concentration [61]. LSP sensors

consist of a light source positioned at a forward angle along with a light sensor. Air

is passed through an inlet in front of the light sensor, and when particles scatter the

light, the photosensor generates an estimation of the particulate concentration. This

technique allows for the development of low-power, compact, and cost-effective

sensors (less than US$100), making them ideal for IoT applications. Recent evalua-

tions and comparisons of LSP-based PM sensors have highlighted that the sensors’

performance primarily relies on calibration [62]. Environmental factors such as hu-

midity, temperature [63, 64], particle type, and deployment type (mobile, wearable,

or fixed) can affect their precision [19]. Therefore, on-site continuous calibration is

necessary to maintain accuracy over time. State-of-the-art calibration and network

re-calibration models have been examined in studies like [65] and [16]. However,

these studies also emphasize that improving accuracy is still an ongoing research

area. But LSP sensors, as discussed in section 2.2, demonstrate significant potential

for large-scale deployments and urban monitoring.

Numerous projects and prototypes have been developed to enhance the spatio-

temporal resolution of PM sensors incorporated in low-cost monitors. European

guidelines [66] have started incorporating these sensors to measure air quality, and
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test networks for these technologies have received financial support [67]. A com-

prehensive overview of funded projects can be found in [19]. However, there is

currently no established strategy for consolidating the collected data. Crowdsensing

and WSN systems have been at the forefront of these efforts [68, 69], but both

approaches encounter challenges regarding data acquisition rate and energy con-

sumption. The accuracy of air quality estimation at a specific location depends on

factors such as the timing of PM measurements, proximity of monitoring devices,

and the communication architecture employed.

Despite the progress made in previous research, it is widely acknowledged

that energy optimization remains a crucial area of investigation and improvement

in the development of prototypes, particularly for low-cost PM sensors. Energy

optimization in air quality monitoring devices can be addressed at three levels:

the sensor level, the node level, and the network level [70]. However, the most

challenging aspect of optimization lies in comprehending the behavior of pollutant

concentrations that need to be sensed. This necessitates signal processing analysis to

understand the frequency characteristics of such signals. Future advancements and

optimizations at the node and network levels will heavily rely on this understanding

of signal behavior in the frequency domain.

Based on the aforementioned considerations, this study conducts a frequency

analysis to determine the appropriate width of PM concentration (PM10 and PM2.5 in

µg/m3) based on the estimation frequency. The analysis utilizes case studies and a

dataset described in [13] to examine and validate various scenarios of PM acquisition

and sharp events that indicate rapid changes in PM concentration. Two criteria are

employed and compared to ascertain the signal bandwidth and to establish an optimal

estimation period through statistical analysis. This approach aims to reduce the data

size generated by the PM monitor and optimize resource management. The dataset

consists of measurements taken over a five-month period during the autumn-winter

season of 2018/2019 in the metropolitan area of Turin, Italy. The dataset is openly

accessible and available in the source cited as [71].

3.1.1 Background and Related Work

In response to increasing scientific interest, there has been a surge in the development

of air quality monitors in recent years. A significant number of these monitors
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incorporate low-cost PM meters. However, there has been limited research conducted

to assess the effectiveness of these sensors in capturing abrupt changes in PM

concentration, particularly in complex urban environments [60]. The following is a

concise overview of the acquisition rates utilized in different studies.

According to the classification proposed by [69], low-cost PM monitor deploy-

ments can be categorized into three groups. The first group is the Static Sensor

Network (SSN), which involves placing PM monitors at fixed locations of interest,

such as intersections or other stationary points. The second group is the Community

Sensor Network (CSN), where devices are carried by volunteers who are interested

in monitoring air quality. These devices can be attached to personal modes of trans-

portation such as bicycles or electric scooters. The third group is the Vehicle Sensor

Network (VSN), which involves deploying devices on specialized vehicles or public

transportation. Table 3.1 provides a summary of the most significant projects and

their outcomes for each type of low-cost PM monitor deployment in the field.

The current literature trend focuses on prototypes designed for SSN deployments,

which require a higher number of sensors to adequately cover a metropolitan area.

These implementations have shown the best accuracy results for PM sensors based on

LSP technology. On the other hand, CSN deployments offer the advantage of placing

sensors in close proximity to users, enabling higher spatio-temporal resolution from

the user’s perspective. However, the precision of these sensors can be affected by

user manipulation errors or rapid movements, such as when the sensor is mounted

on a bicycle. In such cases, LSP-based sensors exhibit significant variability in PM

estimation, and in a mobile scenario, the airflow inside the sensor becomes random

and uncontrolled. Conversely, VSN deployments encounter challenges due to airflow

difficulties within low-cost PM sensors [97]. As a result, VSN deployments typically

exhibit lower estimation precision [98]. To improve accuracy and mitigate the effects

of airflow, some VSN deployments have incorporated machine learning techniques

and anemometers.

Regarding the estimation period, the literature analysis provided in Table 3.1

highlights the absence of a defined standard period. Typically, the selection of the

estimation period is influenced by factors such as sensor speed (typically around

1 second), resource consumption reduction (usually greater than 1 minute), or the

need to reduce sensor noise through time averages. However, the period selection

is not directly linked to the frequency behavior of the PM variable. As a result, the
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Table 3.1 Summary information of literature more relevant low-cost PM monitors in literature.

Network type Sensor Estimation period Reference

SSN

Shinyei PPD42NS

1 h (avg.) [72]

5 min (avg.) [73]

30 s [74]

10 min [75]

Shinyei PPD20V 15 min [63]

Shinyei PPD60NS 1 min [76]

Sharp GP2Y1010
10 ms - 1 s (avg) [61], [77]

10 s [78]

Syhitech DSM501A 1 min (avg) [79]

Plantower PMS 1003/3003 10 s [80]

OPC-N2 5 min (avg) [81]

Honeywell HPMA115S0 1 s [82],[13]

not defined 1s [83]

CSN

Sharp GP2Y1010

3 s [84]

<1 s [85],[86]

1 s (avg) [87]

1 min [59]

Shinyei PPD42NS
<1 s [88]

30 s [89]

Shinjei PPD42NJ 5 min [90]

Sharp GP2YI051 1 min [91]

Sharp DN7C3CA006 1 min (avg) [92]

Samyoung DSM501A <1 s [86]

Dylos DC1700 1 min [93]

VSN

unknown Sharp model 5 s [94]

Shinyei PPD42NS 1 s [95]

MiniDiSC 5 s (avg) [96]
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estimation process may involve capturing redundant and inefficient measurements.

This approach can potentially overlook specific events, such as rapid changes in PM

concentration during peak hours near a vehicular crossing.

In [99], an analysis is conducted to reduce the duty cycle of PM sensors and,

consequently, lower energy consumption. However, this analysis is solely based on

data distribution and does not incorporate frequency analysis. On the other hand,

[100] provides a comprehensive examination of the frequency behavior of various

pollutants, including PM10. The study utilizes measurements from professional

stations, which have a maximum estimation rate of one hour. Unfortunately, this rate

is insufficient for analyzing short-duration events with variable concentrations that

can occur in urban environments, thereby limiting the spatio-temporal resolution.

The estimation period for low-cost sensors, including popular models like the

Sharp GP2Y1010 and Shinyei PPD42NS, varies significantly across different studies,

with no consistent pattern observed. In certain cases such as [85, 88], and [86], the

maximum sampling speed specified by the sensor manufacturer or to the detection

of sudden atmospheric phenomena, as described in [13], are used as reference points

for setting the estimation period. On the other hand, some studies adjust the period

based on measurements from reference equipment, as demonstrated in [61] and [95].

3.1.2 Data and Methodology

Data set description

The dataset consists of measurements from multiple monitors, each equipped with

six sensors: four Honeywell HPMA115S0-XXX sensors for estimating PM10 and

PM2.5 levels, a DHT22 sensor for temperature and relative humidity measurements,

and a Bosch BME280 sensor for atmospheric pressure. The monitoring system

is controlled by a Raspberry Pi Zero Wireless, which features a 1 GHz ARM

11 microprocessor and provides 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth 4.1

connectivity. A block diagram of the pollution monitor is depicted in Figure 3.2.

The dataset comprises data from various experiments involving stationary mea-

surements conducted by twelve monitors located near the reference air quality

measurement station in Rubino, located in the city of Turin, Italy (refer to Figure 3.3).

The data was collected from October 2018 to January 2019, covering the autumn and
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 PM Monitor Hardware Setup

Storage &
Communication

Control BoardSensors

Raspberry Pi Zero  W
ARM 11
1 GHz

Micro SD

Wi-Fi
(802.11 b/g/n)

PM10 & PM2.5
Sensor

Temperature  &
Humidity Sensor

RTC

4

Atmospheric
Pressure Sensor I2C

UART
GPIO

Fig. 3.2 The monitor device’s hardware block diagram, it includes six sensors, a micro SD

card, and a Wi-Fi connection for data upload to an external server.

winter seasons known for higher pollution levels, as reported in [101]. Additionally,

the dataset includes mobile measurements captured during dynamic applications

to investigate specific instances of atmospheric phenomena. It is important to note

that the data collected from PM sensors was acquired at the maximum sampling

rate specified by the manufacturer [102] to capture higher-frequency concentration

variations. Temperature, humidity, and pressure measurements were not included in

the Fourier analysis.

(a). (b).

Fig. 3.3 Sensor Deployment on Rubino Station (a) Low-cost monitor arrangement for data

collection. (b) Deployment of monitors on the Rubino station roof
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Post-processing tasks

In the post-processing stage, Figure 3.4 provides an overview of the data processing

workflow. Initially, the RAW data is retrieved from the MySQL database and com-

piled into a RAW .csv file. Since the hardware platform relies on an operating system

(OS), a pre-analysis sub-process is conducted to detect errors caused by hardware

malfunctions, measurement process crashes, or temporal inconsistencies. The latter

issue arises from the system’s reliance on a microprocessor and a non-real-time OS,

which can result in irregular acquisition times and periods of missing data. The

data then undergo a Data Correction sub-process, where values lacking coherence or

exhibiting inconsistencies are removed. In cases where data gaps of 10 seconds or

less are identified, a linear interpolation is applied to fill in the missing values. This

interpolation introduces minimal low-frequency noise that has a minimal impact on

the frequency analysis results in subsequent steps.

Pre-analysis

Data Correction

Mean Extraction

Power Spectral
Density Analysis

Fast Fourier
Transform

Frequency
Distribution

Fig. 3.4 Post-Processing Overview

The subsequent stages of the process follow the methodology outlined in [103].

In these steps, the mean value is extracted (Mean Extraction sub-process) to remove

the DC component from the signal. Afterward, the Fast Fourier Transform (FFT)

is applied to the data series within a daily window containing more than 21,600

samples. This window is selected to ensure that the data does not have prolonged

periods of missing values or falls within a maintenance window, as these events can

introduce windowing noise.
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Finally, the Power Spectral Density Analysis is obtained to determine the band-

width of the signal, which represents the maximum frequency range containing

the data series. Estimating the bandwidth of an unknown signal is a complex task

and often relies on empirical methods. Different definitions, such as the one in

[104], define the bandwidth as the spectrum portion that accumulates 95% of the

energy. Other approaches involve statistical definitions, such as the empirical rule

or confidence intervals. In order to comprehensively analyze the frequency trade-

off, both percentage criteria (95-99%) are evaluated based on the Power Spectral

Density (PSD) of the data. This analysis yields the Frequency Distribution for each

particulate material sensor, obtained from the entire duration of the experiments.

Experiment analysis

In this last subsection, we examine sharp pollution events that were measured in [13].

These events encompass pollution measurements near a traffic light, a wind event,

and New Year’s Eve fireworks. However, the citizens’ mobility study presented in

[13] could introduce uncertainties in airflow and result in imprecise measurements

as was discussed in 3.1.1. Therefore, these experiments are not considered in the

analysis presented in this research.

3.1.3 Results and Discussion

Bandwidth criteria

Prior to the analysis of the data set, an initial iteration was conducted to gain insights

into the behavior of the PM sensors. A short data set with minimal PM variability

was utilized to assess the sensor’s internal noise. The power spectral density (PSD)

was computed and visualized as a histogram (refer to Figure 3.5). The histogram

exhibited two distinct Gaussian distributions: one near −100dB and another peak

close to −60dB. The latter peak corresponded to the signal-to-noise ratio (SNR) of a

10-bit analog-to-digital converter (ADC), aligning with the sensing range of the PM

sensor, which is defined in 10 bits. The −100dB peak represented the floor noise,

indicating that utilizing 99% of the PSD to determine the bandwidth would not yield

any substantial gain as most of the bandwidth would consist of noise attempting to

reach the energy criteria. Conversely, the empirical law defines a confidence interval
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of µ +2σ , representing approximately 95% confidence, with an expected frequency

event of 1 in 22 events falling outside of the confidence interval. Thus, choosing

the 95% criteria strikes a suitable balance between estimation error and accurately

representing the frequency of PM pollution events.

Fig. 3.5 Sensor internal noise PSD histogram

3.1.4 Stationary frequency analysis

The analysis was conducted for each individual monitor, and the distributions of

bandwidth for PM10 and PM2.5 were derived from the acquired data. However, three

monitors (with board IDs 4, 7, and 9) exhibited inconsistent values in their data

sets, rendering their results unsuitable for the study and thus excluded. Additionally,

sensor 2 of monitor ID 2 experienced a failure, producing measurements with

concentrations of 0 or 1 for both PM10 and PM2.5. Consequently, only the data

obtained before the failure occurred was considered for the analysis. For the resulting

data, the bandwidth was calculated in daily windows to indicate the maximum

variability of concentration observed by a sensor throughout the day. Figure 3.6

illustrates the bandwidth distribution results for monitors with ID 5 and 8, which had

the highest number of data points collected during the experiment.

From Figure 3.6, it can be observed that the discrete distribution indicates that

approximately ∼ 70% of the time, the PM bandwidth is below 0.01Hz. These
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Fig. 3.6 PM10 and PM2.5 discrete probability distribution of PM bandwidth for monitor ID 5

(top), 8 (bottom) for 95% of the PSD.
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Table 3.2 General bandwidth statistics for each monitor in Hz.

Monitor

ID

Mean

PM2.5

Mean

PM10

σ

PM2.5

σ

PM10

Maximum

PM2.5

Maximum

PM10

0 0.01007 0.01065 0.01309 0.01337 0.04296 0.04171

1 0.00880 0.00923 0.01172 0.01198 0.04263 0.04155

2 0.00418 0.00436 0.00805 0.00825 0.04193 0.04169

3 0.00557 0.00573 0.00870 0.00891 0.04166 0.04089

5 0.00496 0.00514 0.00941 0.00955 0.06347 0.06143

6 0.00495 0.00516 0.00849 0.00870 0.03941 0.03884

8 0.00408 0.00424 0.00747 0.00766 0.03853 0.03715

10 0.00519 0.00536 0.00865 0.00888 0.04011 0.04070

11 0.00501 0.00523 0.00889 0.00916 0.04234 0.04303

findings align with the results reported in [100] for PM10 pollutants. Consequently,

fast estimation periods have minimal impact on capturing PM values. The mean

value of the data exhibits a bandwidth of approximately 0.006 Hz throughout the

entire duration of the experiment. Therefore, a reduced PM estimation period can be

determined based on the bandwidth requirements. However, selecting an appropriate

estimation or sampling period is not a straightforward task as it should accommodate

all atmospheric phenomena present in an urban environment. Table 3.2 summarizes

the mean and variation of the PM signal bandwidth obtained for each monitor from

the stationary dataset measurements.

The information presented in Table 3.2 reveals that the mean bandwidth value

is approximately 0.006 Hz, with an average standard deviation of around 0.009 Hz.

This suggests that a significant portion of the particulate material signal’s behavior

occurs at frequencies below 0.015 Hz. According to the Nyquist-Shannon sampling

theorem, an estimation period of around 30 seconds would be sufficient for the PM

sensor to capture most common pollution events in an urban environment. However,

it’s important to note that less frequent sharp PM events may go undetected at

this estimation period. Therefore, considering the maximum frequency values, an

alternative estimation period of approximately 10 seconds per measurement could be

considered. Nevertheless, it’s worth mentioning that this would require significant

computational resources and could pose challenges for large-scale deployments.
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Experiments’ bandwidth analysis

To gain insights into sharp events, a similar frequency analysis was conducted using

data from the study by [13]. On October 28th, a föhn wind event occurred in Turin,

resulting in a decrease in PM concentration levels. In Figure 3.7, the PSD plot is

presented, and the red line represents the bandwidth limit on that particular date. It is

worth noting that this event is challenging to detect in the frequency domain due to its

slower frequency components compared to the faster estimation rate. In contrast, the

fireworks event shown in Figure 3.8 and the traffic light measurements in Figure 3.9

exhibit frequency components that surpass the internal sensor noise level. This

indicates that if the estimation period is set too close to twice the bandwidth, some

information may be missed. However, it should be observed that shorter estimation

periods yield negligible contributions since their occurrence probability is minimal,

as demonstrated in Figure 3.6. Selecting an optimal estimation period reduces the

amount of data to be transmitted, enables the use of narrowband communication

technologies, and facilitates the application of duty cycles to the sensor for energy

consumption reduction.
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Fig. 3.7 Power spectral density during the föhn wind event for PM2.5sensor
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Energy Consumption

Considering the lower estimation frequency obtained from the previous results, it

becomes feasible to define a duty cycle that reduces energy consumption. The

sensors utilized in this study have an approximate current consumption of 80mA

during active periods and 20mA in standby mode (at 5V ). Based on the results, an

estimation frequency of approximately 30s is sufficient. Therefore, a duty cycle of

20% (6 seconds) within a cycle period of 30s could be effective. In this scenario, the

energy consumption for this sensor would be only 4.8Joules. Comparing this value

to the consumption of the current prototype, which employs a one-second estimation

period (24 Joules of energy consumption per minute), the energy reduction would be

approximately 60% (refer to Figure 3.10, left) within the same period.
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Fig. 3.10 Power consumption comparison for a Honeywell HPMA115S0-XXX sensor for 1

minute with different duty cycles. (a)Shows the power consumption at 20% of duty cycle,

equivalent to 0.16 Watts (b)Shows the power consumption at 40% of duty cycle, equivalent

to 0.22 Watts

However, due to the operating environment and limitations of the sensors under

LSP technology, a short duty cycle may not guarantee the response times specified by

the manufacturer. Moreover, it can lead to the accumulation of particulate material

inside the sensor, resulting in erroneous measurements upon activation. To mitigate

this issue, a longer duty cycle would allow the airflow to reestablish inside the sensor,

thereby avoiding PM concentration estimation errors. In this case, considering a

cycle period of 30s and a duty cycle of 40% (12 seconds), the energy consumption
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would be only 6.6Joules. A 40% duty cycle is selected since on average PM sensors

under LSP have response times of about 10 seconds. This gives a tolerance value

that allows stabilization of the air flow in the sensor. This represents a reduction of

45% in energy consumption per duty cycle of operation (refer to Figure 3.10, right).

The low-cost PM sensors based on LSP technology have demonstrated their utility

by detecting variations that professional sensors may not be able to capture. However,

it is important to acknowledge that these sensors perform best in stable conditions

[39]. In rapidly changing environments or situations where there are variations in the

sensor’s air intake, the concentration estimates may be inaccurate. Such cases are

more common in mobile environments. Nevertheless, the low variability observed

among the different sensors and monitors provides a reasonable level of confidence

in the reliability of the obtained data.

3.2 Data Gathering optimization

As it was presented in section 3.1, there has been a growing focus within the scientific

community on the health impacts associated with air pollution, with various factors

contributing to this issue such as the burning of fossil fuels, industrial activities,

and wildfires[105]. Among the most detrimental pollutants are Ultrafine Particles,

commonly referred to as PM10 and PM2.5, with diameters smaller than 10µm and

2.5µm respectively. Currently, European municipalities typically rely on a limited

number of highly accurate sensors as part of their regulatory efforts governed by

regulations 50/2008/CE and 107/2004/CE [106].

Regrettably, the use of such precise sensors for creating detailed air pollution

maps is hindered by their high cost, large size, and specific operational requirements.

These reference-grade sensors can amount to approximately 50,000−100,000 USD

in terms of cost[107], weigh around 20 kg, and necessitate high-voltage power

supplies. This limitation is evident in the case of Turin, Italy, where ARPA operates

20 monitoring stations to cover an area of approximately 7000 km2[108] as shown

in Figure. 3.11.

Conversely, there is a growing trend of low-cost portable PM monitoring devices

that utilize LSP technology. These sensors operate by drawing air into a detection

chamber using a fan or a heater resistor. Within the chamber, a low-power light
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Fig. 3.11 Map of ARPA monitoring stations in the Metropolitan Area of Turin, Italy.
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source, typically a laser, illuminates the airflow. The particles present in the air

cause the light to scatter, which is then detected by a photo-diode. These sensors are

available at a wide range of prices, typically ranging from 30 to 2,000 USD, and

their accuracy may vary[62].

The concentration of air pollution exhibits significant spatial variability, influ-

enced by various factors such as the presence of pollution sources and the configura-

tion of buildings in a specific area[60]. This variation highlights the need for more

detailed air pollution monitoring initiatives. To achieve this, the use of affordable

and portable devices that maintain reliability can help reduce installation costs while

expanding the reach and extent of the monitoring network.

In the context of air pollution monitoring, the utilization of IoT offers an alterna-

tive solution to sense and provide accurate PM concentration maps. However, the

design of IoT hardware devices must address several important constraints. These

constraints include considerations related to network availability, power limitations,

and data reliability.

LSP sensors, commonly used in IoT devices, are capable of providing PM

concentration values at intervals of approximately 1 second. However, continuous

measurements at such short intervals can significantly increase the volume of data

that needs to be processed and transmitted. Additionally, the power consumption of

these sensors is mainly attributed to the fan or heater resistor incorporated within

the device. In the case of sensors used for measuring PM10 and PM2.5, their current

consumption typically ranges around 90 mA [109]. This consumption level must

be taken into account, especially in deployments with limited network throughput

or restricted power budgets for data transmission. Balancing the need for frequent

measurements with the available network and power resources becomes crucial in

order to ensure optimal battery autonomy.

Various energy management schemes and techniques have been explored in

the literature to extend the battery autonomy of sensors. In the case of power-

hungry sensors like LSP sensors, several methods have been proposed, including

data reduction, data prediction, and sleep/wake-up (duty cycle) techniques. These

methods aim to optimize energy usage and prolong battery life. Among these

techniques, the duty cycle method has been found to be particularly effective in

saving energy for LSP sensors. By implementing a duty cycle, the sensor can reduce

its power consumption to as low as 20mA by shutting off the fan or the heater during
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the sleep period. This feature is especially desirable for mobile or battery-dependent

devices where energy efficiency is crucial. Studies such as Ejaz et al. [110] and

Engmann et al. [111] have explored and discussed the benefits of these energy-saving

techniques for LSP sensors.

However, LSP sensors encounter challenges in achieving accurate data readings

[19]. One of the main challenges arises from the phenomenon of light scattering,

which is influenced by various factors such as the composition and shape of the

particles, as well as environmental conditions including temperature and relative

humidity. To address this challenge, some experiments have demonstrated improved

precision performance through in-situ calibration methods [62].

Another source of error in LSP sensors is the aging and drift caused by the

accumulation of dust particles inside the air chamber. This buildup can hinder the

intensity of light reaching the photo-diode or decrease the overall light power [112].

Therefore, when the fan is shut off as part of the energy-saving measures, it can

lead to reduced airflow inside the detection chamber, potentially exacerbating the

accumulation of particulate matter. This, in turn, can have a negative impact on the

accuracy of the measurements.

The study presented in this subsection investigates the impact of accuracy drift

and error in LSP sensors under different duty cycles in a real-world scenario for PM

measurements. The goal is to assess the repeatability of measurements and determine

the extent of measurement degradation when compared to an always-on LSP sensor.

3.2.1 Background

The literature on low-cost air pollution monitoring is extensive [13, 113–115, 97,

95, 116, 99, 117], with various studies exploring the measurement of air pollution

in indoor and outdoor environments. Several papers examine the performance of

different sampling frequencies and their relationship to energy consumption. Some

of these studies aim to optimize energy usage by reducing power consumption while

considering its impact on sensor accuracy. Certain articles discuss different sampling

periods or the implementation of duty cycles to extend battery life. However, to

the best of our knowledge, no paper comprehensively investigates the effect of long

intervals between subsequent samples on measurement accuracy. While some papers
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mention this as a potential area for future research, it remains relatively unexplored

in the existing literature.

In the paper by Jelicic et al. [115], the authors propose a power management tech-

nique to schedule the operation of energy-intensive sensors and wireless transceivers.

Their approach aims to reduce energy consumption through three main contributions.

Firstly, at the sensor level, they employ a pulse-like mode for the gas sensor and

implement early detection of safe concentration conditions. Secondly, at the node

level, they manage deep sleep and duty-cycled activity based on the presence of

people in the area. Lastly, at the network level, they focus on enhancing the lifetime

of each node and leveraging information from neighboring nodes. However, it is

worth noting that this paper does not include any analysis of the sampling rate

used for sensor operation or the energy efficiency achieved through their proposed

techniques.

The authors of [97] present a straightforward air quality monitoring system based

on a wireless sensor network (WSN) designed for industrial and urban areas. They

propose an energy-efficient routing protocol called CPAS (Clustering Protocol of Air

Sensor network) where multiple base stations periodically exchange data. However,

the paper does not offer any specific rationale for the chosen sampling rate and selects

a sensing period ranging from 200 to 300 seconds without providing justification for

this interval.

The paper [95] introduces Mosaic, a mobile sensing system designed for low-

cost urban air quality monitoring. The system incorporates a PM2.5 sensor and an

anemometer to consider air flow velocity when deployed on public transportation

vehicles. The authors provide details about the design, implementation, and evalu-

ation of the system, highlighting a novel algorithm for selecting buses to achieve

extensive coverage with minimal computational requirements. However, the paper

lacks a clear description of the system’s energy autonomy and the precision of the

model used.

The authors of [116] conducted research on the utilization of wireless sensor

networks (WSN) for air pollution monitoring projects in Mauritius. They developed

an algorithm aimed at aggregating and merging data, employing filtering and summa-

rization techniques to reduce transmission costs. However, it is important to consider

that in a crowd sensing application, the availability of data relies on the data gathering

rate. Consequently, a real-time pollution map may not be able to display the current
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pollution estimation, particularly when utilizing mobile nodes over multi-hop WSNs,

as data will only be accessible when a sensing device enters the range of a collector

node. Furthermore, this paper does not include any measurements or evaluations to

assess the energy efficiency it aims to achieve.

In [117], the authors introduce a data reduction technique that involves dynamic

subsampling of the measured variable, data fusion from multiple sensors for the

same variable, and data scaling based on variable ranges. These enhancements

aim to decrease the power consumption of the device during both data sensing and

transmission. According to their claims, they are able to reduce data collection to

only 4% of the raw data without significantly affecting the temporal variability of

the pollution concentration. However, the description of their noise model is not

clear. Furthermore, they solely utilize raw data from a single LSP sensor without

comparing those measurements to other instances of the same sensor.

In [99], the authors put forth a duty-cycling approach for an air pollution monitor-

ing system. This approach focuses on minimizing energy consumption by utilizing

a machine learning algorithm that predicts values during sensor inactivity periods.

The authors present promising outcomes regarding energy reduction. However, they

do not provide details regarding the concentration variations in the test scenarios and

emphasize that this model necessitates continuous training. Consequently, it remains

unclear whether this process requires keeping the sensors active or if the system is

resilient to interruptions.

The objective of this study is to analyze the influence of a duty-cycling approach

in urban settings, considering various estimation periods for particulate matter

measurements within a resilient scheme. This scheme ensures accurate readings

even in cases of temporary sensor failure, such as material obstruction within the

sensing chamber. Additionally, in the previous section 3.1(published in [56]), a

frequency analysis is conducted to examine the frequency characteristics of ultra-fine

particles and suggest different sampling periods for PM measurements in diverse

urban scenarios.

3.2.2 Experimental Setup

The purpose of this experiment was to assess the impact of implementing a duty-cycle

on sensor accuracy by measuring PM10 and PM2.5 values in an urban environment.
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This section provides details on the selection of PM sensors, the setup of hardware

and software components, and the execution of the data acquisition campaign.

Sensor Selection

There are various low-cost LSP sensor models available, and some of them feature

a heater resistor that requires a specific orientation, typically in a vertical position,

to ensure proper airflow. This orientation constraint adds complexity to the design

of an enclosure, especially when integrating such a sensor into a mobile device.

Another limitation of sensors with heater resistors is the stabilization time, which

refers to the time required to heat up the resistor, establish the airflow, and provide

accurate measurements. This stabilization time typically ranges from one to two

minutes. As a result, applying a duty cycle to these sensors would be feasible only

for measurement periods longer than two minutes.

In contrast, fan-based LSP sensors offer faster stabilization times, typically

around 10 seconds, and are more tolerant of changes in orientation. These sensors

also provide digital outputs, which simplify the integration process by reducing the

need for additional electronics to adapt the signal for different processing units.

Considering the factors discussed, the HPMA115S0-XXX sensor [102] was se-

lected for the experiment. This sensor is a fan-based LSP sensor that offers even

lower stabilization times (less than 6 seconds) and communicates through a UART

interface, allowing for the retrieval of measurement information and control of the

fan state. The chosen sensor has been demonstrated to exhibit high consistency and

coherence in previous studies [82], making it suitable for use as a power benchmark

in conjunction with the prototype described in [13]. It has a concentration sensing

range of 0 µg/m3 to 1,000 µg/m3 for both PM10 and PM2.5 values. The sensor

offers two measurement modes:

• Auto-send mode (default): where PM measurements are automatically deliv-

ered every second

• Query mode: where PM measurements can be requested through a query

message.
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Hardware architecture

The hardware setup described in this section represents an enhanced version of the

prototype introduced in [13] and analized in the previous section 3.1. The initial

prototype utilized a Raspberry Pi Zero W, featuring a microprocessor capable of

operating at 1 GHz and running a Linux operating system to handle measurement

and synchronization tasks. However, this microprocessor lacked energy management

options to optimize power consumption, even under low computational loads.

To address those limitations, a new monitoring station was designed. The main

board was replaced with a Pycom FiPy board [118], which integrates an Expressif

ESP32 [119] microcontroller unit (MCU) as the central processing unit. The ESP32

MCU offers various energy-saving modes to reduce power consumption, including

an ultra-low-power mode that can achieve consumption as low as 25µA. In terms of

communication capabilities, the ESP32 MCU includes built-in WiFi (802.11 b/g/n at

2.4 GHz) and Bluetooth (v4.2 and BLE) connectivity.

Additionally, the FiPy board incorporates Sigfox/LoRA and LTE-M (CAT-M1

and NB-IoT) radio modules, expanding the device’s communication options. With

these five communication technologies, the device becomes versatile and well-suited

for various applications in the context of IoT.

RTC

PM monitor hardware setup

Control Board Storage  and
Communication

T + RH Sensor

4PM10 + PM2.5  
Sensor Micro SD

WiFi 
(802.11 b/g/n) 

 
PyCom

FiPy 
ESP32 

160MHz 

UART 
GPIO

Sensors

I2C

Fig. 3.12 Hardware architecture.
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The hardware architecture is illustrated in Figure 3.12, and it includes several

peripherals for sensing and recording relevant data related to particulate matter.

These peripherals are as follows:

• Four HPMA115S0-XXX PM sensors connected to the UART interface of the

Fipy board. The FiPy board has two UART ports that can be assigned to any

available GPIO pins. One of the ports is used for programming purposes,

while the second port is utilized for bidirectional communication with the PM

sensors. The software controls the UART assignment to manage and measure

each Honeywell PM device (refer to Fig. 3.13).

• One DTH22 sensor connected via a one-wire protocol to measure temperature

and relative humidity.

• One BMP280 sensor connected through I2C protocol to obtain the atmospheric

pressure. But, this sensor is not employed during this chapter.

• One P1010D GPS connected through I2C protocol to determine the monitor’s

geo-referenced position. As the BMP280 this sensor is not used or analyzed in

this chapter.

• An external DS3231 RTC (Real-Time Clock) module connected through the

I2C protocol to obtain the current time. The RTC’s date and time are updated

using the NTP protocol during booting if a known WiFi connection is available.

Controller

UART

HPMA115S0-XXX HPMA115S0-XXX HPMA115S0-XXX HPMA115S0-XXX

Reference Sensor 
(measuring every

second)

Duty Cycle #1 Duty Cycle #2 Duty Cycle #3

Fig. 3.13 Experiment setup.
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In terms of energy consumption, the Fipy board has a current consumption of less

than 1 mA, which is relatively low compared to the CPU and PM sensor consumption.

However, it may still be considered negligible in the overall energy usage of the

system. To address the data storage requirements, the Fipy board is equipped with 8

MB of flash storage, which is insufficient to store PM values for long measurement

periods. To overcome this limitation, a micro-SD module was added through a

Pycom expansion board, and it is accessed using the SPI protocol. All the data

collected during the experiment was stored in the micro-SD card in CSV format,

while the internal memory of the Fipy board was solely used to store the device

firmware.

Software Architecture

The Fipy development board incorporates a MicroPython [120] port, an open-source

implementation of Python 3.4, which allows direct control over the microcontroller

unit (MCU) and its peripherals using Python 3.x syntax. This MicroPython port

includes hardware libraries specifically designed to handle the various hardware

modules integrated into the development board. Additionally, it provides a commu-

nication API that facilitates IoT functionalities such as network control and remote

management.

The software implementation flow is illustrated in Figure 3.14a. Initially, the

board_initialization() process is executed, which activates the necessary WiFi

and RTC peripherals for data logging. In the subsequent time_sync() sub-process,

if the WiFi connection is established, the internal ESP32 RTC time is synchronized

through the NTP protocol and then updated in the external RTC. However, if the

connection or synchronization fails, the time value stored in the external RTC is

utilized instead.

The last step is the Measurement_scheduling process, which checks if the

micro SD storage is available and mounts it. Then, it sets up all sensors to their

initial state, with PM sensors configured in a low-power state (fan off), and schedules

measurement interruptions. It’s worth mentioning that the Pycom implementation

of MicroPython queues interrupts based on the order they arrive, so the interrupt

routines need to be brief to ensure that the sensing periods are met.
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Buffer

Save on  
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Yes

No

(b)

Fig. 3.14 Interrupt creation (a) and interrupt handling (b).

To handle different measurement periods for each sensor, each sensor has its

own interrupt routine, as illustrated in Figure 3.14b. Due to the ESP32 having only

one available UART interface, it is assigned to the specified sensor through the

GPIO_setup process based on the sensor_id parameter. However, the DTH22

sensor uses a different communication interface and thus does not require this sub-

process. Following this, the measurement process takes place and is stored in a

memory buffer to reduce the frequency of write cycles to the micro SD card and

prolong its lifespan. If the buffer reaches its maximum capacity, the measurements

are then stored on the micro SD.

Methodology

The experiment comprises two phases. The first phase involves determining the

coherence among the sensors and establishing a set point for assessing the impact of

duty-cycle operation on the sensors’ accuracy. During this phase, each sensor oper-

ates by taking measurements every second with the fan always on, and their values

are compared to determine the difference and coherence between measurements. In

the second phase, all four sensors are deployed in the same environment, with one
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sensor designated as the reference, continuously taking measurements at a rate of one

per second. The other three sensors are deployed with different measurement periods,

sampling every 10, 30, and 60 seconds, based on the most significant estimation

periods reported in the section 3.1. Both phases involve measuring PM10 and PM2.5

values with all the sensors.

Sensor Phase 1 Phase 2

Experiment 1 Experiment 2 Experiment 3

tst tm to f f T tst tm to f f T tst tm to f f T

#1

(ID: 33, 34)
- 1 0 1 - 1 0 1 - 1 0 1

# 2

(ID: 35, 36)
- 1 0 1 6 3 1 10 - 3 0 10

# 3

(ID: 37,38)
- 1 0 1 6 3 21 30 10 3 27 30

#4

(ID: 39, 40)
- 1 0 1 6 3 51 60 10 3 47 60

Table 3.3 Duty-Cycle times adopted.

To ensure accurate measurements during the duty cycle, the sensor undergoes

different stages over an estimation period (T ). First, the sensor enters an active mode

where the fan is turned on, but no measurements are taken until the stabilization

time (tst) is reached. Once the stabilization time is reached, the sensor performs

measurements during the measurement period (tm) and provides an average of

these measurements. After that, the sensor enters an inactive state (to f f ) where

no measurements are taken, and the fan is turned off. The power consumption is

lowest during the inactive state when the fan is off. The different phases of the PM

measurement are illustrated in Fig. 3.15. Although the PM sensor manufacturer

specified a stabilization time of 6 seconds, initial tests revealed some erroneous

measurements. To avoid stabilization transients, a longer settling time of 10 seconds

was used.

Measurement Location

The measurement campaign took place in Turin, Italy, in the winter of 2021. The

objective of the experiment was to expose the measurement device to the common

pollutants present in an urban environment. To achieve this, the device was positioned
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Sensor Fan ON

Sensor Fan OFF

Estimation Period (T)

ttst toff tsttm

Fig. 3.15 Signal period estimation example.

at an intersection with heavy traffic flow, where various types of vehicles, including

small cars, public transport, and cargo vehicles, were present (see Figure. 3.16. Due

to the ongoing restrictions related to the SARS-CoV-2 pandemic, a location near

a large food market was selected as it was less likely to be affected by mobility

limitations imposed by local authorities.

3.2.3 Experimental Results

In this section, the data gathered in three experiments over two phases will be

analyzed. The primary objective of the first phase is to establish a baseline for

comparison in the subsequent phase of the experiments.

Phase 1, Experiment 1

In this phase, it was ensured that the sensors exhibited similar behavior among each

other. The data obtained from the four PM2.5(a) and PM10(b) sensors are presented

in Figure 3.17 after applying a filter to eliminate Gaussian noise and smoothen the

signal. During the initial part of the experiment, all four sensors operated at the

maximum sampling frequency of 1 sample per second to assess their mutual behavior

and correlation.
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Fig. 3.16 Experiment location in Turin, Italy.
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Fig. 3.17 Experiment 1: PM2.5 (a) and PM10 (b) Values at one sample per second and fan

always-on.
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Figure 3.18 displays the correlations (including the average) between the refer-

ence sensor and the others. The average correlation factor remained consistently

above 96%, indicating a high level of interdependency and reliability among these

sensors.
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Fig. 3.18 Correlation between sensor for PM2.5(a) and PM10(b) measurement at one sample

per second and fan always-on

During the corresponding time interval, Fig. 3.19 illustrates the Mean Absolute

Error (MAE) of the sensors in relation to the reference sensor (including the average

value). The average error does not exceed 10µg/m3, which aligns with the values
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specified by the manufacturer in the datasheet and is also reasonable considering the

affordable nature of these devices.
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Fig. 3.19 Absolute error between sensors for PM2.5(a) and PM10(b) measurement with one

sample per second and fan always-on

The provided graphs demonstrate a strong correlation among the sensors, indi-

cating that they consistently track the PM pattern throughout the entire experiment.

As the behavior remains consistent for both pollutants, we have chosen to present

only the plots for PM2.5 in the subsequent analysis.
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Phase 2, Experiment 2

During this phase, the duty cycle of the sensors was modified based on the various

configurations presented in Table 3.3.

In the second experiment, the sensors were configured to operate with different

duty cycles. Upon powering on the sensors, a stabilization time of tst = 6s was

allowed to pass between turning on the fan and starting the measurements. Three

consecutive measurements were then collected from the sensors and averaged. The

choice of a 6-second stabilization time was based on the specification provided in the

sensor’s data sheet, which indicated that the output becomes stable after this duration.

The correlations and MAE for this experiment are presented in the correlation plot

(Fig. 3.20) and the MAE plot (Fig. 3.21), respectively. The graphs indicate that the

correlations and MAE values are significantly worse compared to those observed in

Experiment 1. This suggests that a settling time of 6 seconds may not be sufficient

to obtain reliable output from these sensors.
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Fig. 3.20 Correlation between sensors for PM2.5 measurement (tst = 6s)

Phase 2, Experiment 3

In the third experiment, the duty cycle of the sensors was once again modified

according to the configurations presented in Table 3.3. For this experiment, the

startup time of the sensors was increased to tst = 10s, which is 4 seconds longer than

the time specified in the data sheet. The correlation plot (Figure 3.22) and the MAE

plot (Figure 3.23), including daily MAE values and the average, illustrate the results
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Fig. 3.21 Absolute error between sensor for PM2.5 measurement (tst = 6s)

obtained. The utilization of this duty cycle brings immediate improvement. The

correlations between the sensors return to high percentages, and the MAE, although

not optimal, is reasonable considering the reduced number of samples collected. It

is worth noting that in this final experiment, the average minimum MAE is around

10µg/m3, while in the previous experiment, it was approximately 27µg/m3.
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Fig. 3.22 Correlation between sensor for PM2.5 measurement (tst = 10s)

Energy Consumption

In order to assess the energy reduction achieved by the device introduced in this

study compared to the device presented in [13], power consumption measurements
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Fig. 3.23 Absolute error between sensor for PM2.5 measurement (tst = 10s)

were conducted using various duty cycles as outlined in Table 3.3. All sensors were

configured with identical estimation parameters to facilitate a direct comparison.

The findings are summarized in Table 3.4.

Watt-Hour milliAmpere-hour (mAh)

Reference Device [13]

1 sample every second
≈ 2,2Wh ≈ 460mAh

Without Duty-Cycle

1 sample every second
≈ 1,8Wh ≈ 380mAh

Without Duty-Cycle

1 sample every 10 seconds
≈ 1,8Wh ≈ 380mAh

With Duty-Cycle

T = 30s

tst = 10s

tm = 3s

≈ 1,26Wh ≈ 256mAh

With Duty-Cycle

T = 60s

tst = 10s

tm = 3s

≈ 1,06Wh ≈ 214mAh

Table 3.4 Energy consumption benchmark (Hour average)
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3.2.4 Discussion

Based on the aforementioned results, a notable observation is that employing a

microcontroller significantly reduces the energy consumption by approximately

18% for performing the same tasks. Additionally, it is evident that reducing the

measurement frequency to one sample every 10 seconds, while not resulting in energy

savings, does yield a low MAE that falls within the manufacturer’s specified tolerance

range. This reduction in the estimation rate not only decreases the data volume

generated but also reduces the energy consumption required for data transmission.

When the duty cycle is set to one sample every 30 seconds, it is observed that

there are specific periods where the MAE and correlation between sensors are low.

This behavior is evident in figures 3.24 and 3.25, which display the hourly distribution

of PM concentrations during a day with a high correlation between sensors. During

these specific periods, the variability between measurements decreases as the duty

cycle is adjusted. Conversely, in hours with high variability, the error between

measurements significantly increases across different duty cycles. Therefore, the

selection of appropriate duty cycles should be based on the level of dispersion

observed. Upon reviewing the data, it is found that stable concentration values are

present during these periods. Consequently, depending on the dynamics of the site, it

may be possible to further reduce energy consumption. Lastly, when the duty cycle

is extended to T=60s, the accuracy of the measurements is also influenced by the

variability of pollution concentration. On days with stable PM concentration, such as

weekends with lower human activity, the correlation between sensors remains high.

This mode could be employed as a low-power option in environments or during

hours with minimal human traffic.

3.3 Conclusions

3.3.1 Frequency Analysis

The approach used to determine an optimal PM estimation period has revealed

several key findings about the behavior of PM concentration. Firstly, it was observed

that PM concentrations in urban areas exhibit varying dynamics throughout the

measurement period. The analysis of stationary data indicated that PM concentration
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Fig. 3.24 Data distribution per hour (one day example) PM2.5 measurement (tst = 1s)

signals primarily consist of lower frequency components. Therefore, longer PM

estimation periods are preferred to minimize the amount of data transmitted and

ingested on the server-side. Additionally, it was observed that PM concentrations

show reduced variability during the late hours of the night and early morning. As a

result, shorter estimation periods can be employed during these periods to optimize

data acquisition.

Furthermore, the steady-state nature of PM concentrations allowed for the identi-

fication of the resolution of the LSP sensors’ converters. This finding emphasizes

the importance of selecting conservative bandwidth criteria, particularly when the

signal contains very low-frequency components, to avoid potential issues related to

signal energy estimation at the 99% level.

Secondly, opting for longer PM estimation periods also enables the adjustment of

the sensor’s duty cycle, resulting in energy conservation, which is particularly advan-

tageous for battery-powered IoT deployments. However, it is crucial to thoroughly

examine the modification of the duty cycle to assess potential impacts on precision,

such as the accumulation of dust inside the sensor and the sensor’s response times.
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Fig. 3.25 Data distribution per hour (one day example) PM2.5 measurement (tst = 10s)

Thirdly, the analysis of dynamic experiments revealed an important trade-off

between bandwidth precision and data reduction. The study conducted in [13] high-

lighted that opting for shorter estimation periods to minimize data distortion comes

at the expense of scalability limitations and increased computational requirements

for processing the datasets. This trade-off implies that shorter estimation times con-

tribute minimally to PM analysis in urban environments, even when considering the

response time specified by the sensor manufacturer, which is less than 6 seconds for

this sensor type. Consequently, for a general estimation, periods around 30 seconds

prove sufficient to capture events that lead to changes in PM levels, such as New

Year’s fireworks and weather phenomena. On the other hand, when analyzing PM

levels in close proximity to pollution sources, a period of approximately 10 seconds

provides ample information for assessing air quality levels.

In conclusion, determining a fixed estimation period for PM analysis is a chal-

lenging task given the complexity of the PM signal. The results presented in this

study provide a baseline for selecting an estimation period, but they also highlight

the need for further research to identify dynamic estimation rates that align with the
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varying PM variability observed in urban environments. This opens up an interesting

avenue for future investigations aimed at refining the estimation process based on

the specific PM events of interest.

3.3.2 Data Gathering optimization

In recent years, there has been a growing interest in air pollution and its related topics,

driven by increased awareness and the influence of public figures. This has led to a

rise in air pollution monitoring in academia, facilitated by the reduced cost of portable

Particulate Matter sensors. However, there are several engineering challenges that

need to be addressed in this field, including power consumption reduction, efficient

data gathering and transmission, and the aging of low-cost devices. In this section,

these issues are addressed by analyzing the impact of changing the duty cycle for

Light-Scattering-Particle devices. The measurements conducted in this study support

the claim that the duty cycle of Particulate Matter sensors can be altered in such a way

that significantly reduces the number of required samples, without compromising the

amount of information obtained compared to sensors that sample continuously. This

reduction in sampling frequency naturally leads to a decrease in power consumption

by the sensors. Furthermore, as the sensors are not in constant operation, the moving

parts inside them tend to age at a slower rate, resulting in an extended lifetime and

reduced maintenance requirements.



Chapter 4

Data Transmission

In the vast landscape of the Internet of Things (IoT), numerous deployment options

are available, with the specifics of the scenario dictating the best selection. Each

IoT deployment embodies unique variables that necessitate careful consideration,

thereby influencing the requirements that the selected technology or protocol must

satisfy to maximize communication effectiveness [17, 18].

This chapter further delves into the case study of particulate matter monitoring

within urban environments. The focus of the study is on addressing the challenge of

data transmission by evaluating diverse data transmission schemes based on varying

wireless transmission technologies, subject to the scenario. To facilitate this, we

utilize the monitoring station delineated in section 3.2, which enables transmission

via WiFi, Bluetooth Low Energy (BLE), LoRa, Sigfox, and LTE cellular networks.

The monitoring station design showcased in this chapter exhibits adaptability to

three distinct network topologies, thus providing flexibility in connectivity. These

topologies encompass Fixed Sensor Networks, wherein the stations remain stationary

at a specific point; Participatory Sensor Networks, where users play an active role in

data transmission while also obtaining beneficial information; and Mobile Sensor

Networks, where the stations traverse multiple routes within a given area.

Further, this chapter unfolds proposals for optimizing data transmission in sce-

narios featuring low throughput technologies like BLE and LoRa. It also sheds

light on various architectures deployed for the collection and storage of monitored

values supplied by the system. These considerations highlight the complex interplay

between system design, deployment scenario, and data management strategies.
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4.1 Background

The scientific literature offers a wealth of information on the implementation of

IoT solutions in urban settings. In particular, the measurement of air quality has

attracted significant attention, leading to the development of various fixed, mobile,

and personal solutions. These solutions leverage a range of wireless technologies to

enable effective data collection and analysis.

4.1.1 Wireless Wide Area Networks for IoT

Cellular Networks and NB-IoT

Referring to wide-area networks (WANs), several technologies are available, with

the most well-known being cellular networks defined by the 3GPP, which have been

the subject of numerous previous studies. According to the investigation undertaken

by [121], the researchers introduce a platform designed for measuring multiple

pollutants, including PM, CO, and ozone. The platform utilizes a combination of

WiFi and GPRS/UMTS (2nd and 3rd generation cellular networks) for efficient data

transmission. By installing the platform on tram roofs and strategically locating it

at fixed points of interest, the researchers aim to achieve extensive coverage across

the city. The study focuses on addressing the spatiotemporal limitations of sensor

networks by leveraging the existing infrastructure of public transportation. However,

the paper lacks specific information regarding the data types, quantities, and the

system’s performance in transferring such data.

Similarly, other monitoring platforms rely on cellular networks, whether they

are commercial networks like the one evaluated in [64], or designs that leverage

the flexibility of these networks to create highly portable devices [122], enhancing

spatial resolutions and controlling position through GPS systems [123, 124]. Some

of these studies propose measurements in fixed locations[72, 125, 126], such as

installations on vehicles traversing the city [127–129], or through devices carried by

users [130].

While cellular networks, in their various generations, have improved their per-

formance [131], they are not always the most efficient option for IoT systems.

Particularly concerning aspects of power consumption, latency, and quality of ser-



94 Data Transmission

vice. The latest generations (LTE and later) offer IoT support within their architecture

(NB-IoT). These networks address the weaknesses of previous generations, as their

usage in IoT is subject to third-party infrastructure, which improves coverage options

in various cities based on service provider availability. This technology even demon-

strates superior performance for mobile devices compared to other technologies,

making it ideal for urban environments when seeking mobile deployments with

extensive coverage, high-volume data transmission requirements, low latency, and

quality of service (QoS) policies [131, 132]. In contrast, the operational costs associ-

ated with NB-IoT are higher, as they require increasing operational expenses with

the number of devices and transmitters, resulting in lower cost-efficiency relative

to other wireless wide-area alternatives [133]. Additionally, NB-IoT still consumes

more power than other wide-area wireless alternatives.

Low-power wide-area networks (LPWANs) offer an alternative to cellular net-

works and have emerged as a prominent solution for long-range communications

in modern IoT systems. LPWANs exhibit remarkable capabilities in facilitating

communication between sensors that are geographically dispersed, even over exten-

sive distances of up to hundreds of kilometers. This is achieved while operating on

energy-efficient battery technologies, which enables the deployment of IoT applica-

tions and services previously unfeasible. The advent of LPWANs has paved the way

for a wide range of innovative applications and services in the IoT landscape.

The LPWAN technologies possesses distinctive attributes that distinguish it from

other wireless technologies as was presented in [132, 131]. Firstly, LPWAN offers

an impressive operating range, spanning from a few kilometers in urban areas to

over 30 km in rural environments. This enables efficient data communication in

challenging locations, including indoor and underground settings. Secondly, LPWAN

is designed with low power consumption in mind, allowing transceivers to operate

on small, cost-effective batteries for extended periods, often up to 10 years. Thirdly,

LPWAN solutions are characterized by their affordability. The implementation of

simplified, lightweight protocols reduces complexity in hardware design, resulting

in lower device costs. Moreover, the long-range capabilities of LPWAN, combined

with a star topology, minimize the need for costly infrastructure. Additionally,

the use of license-free or licensed frequency bands contributes to reduced network

expenses. Lastly, LPWAN is optimized for low data rates, enabling cost-effective

communication for small amounts of data, often costing only a few Euro cents per
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month. LoRa/LoRaWAN and Sigfox are the most commonly used technologies in

the IoT environment, a brief comparison of their specifications is showed in table 4.1

NB-IoT Sigfox LoRaWAN

Range(Km)

1 (urban)

to

10 (rural)

10 (urban)

to

40 (rural)

5 (urban)

to

20 (rural)

Channel BW(Hz) 200k 100 250k and 125k

Max. Data-Rate(bps) 200K 100 50K

Frequency(MHz) LTE-Bands
433, 868,

915

433, 868,

915

Bidirectional
Yes

Half-duplex

Limited

Half-duplex

Yes

Half-duplex

Max.payload(bytes) 1600
12 (Upload)

8 (Download)
243

Maximum msg/day Unlimited
140 (Upload)

4 (Download)

Depends on server

and data rate

Table 4.1 LPWAN Comparison

Sigfox

Sigfox is an LPWAN network operator that provides a comprehensive IoT connec-

tivity solution based on its proprietary technologies [134]. The cognitive radio base

stations deployed by Sigfox establish a connection with the backend servers through

an IP-based network. Devices connected to these base stations utilize Binary Phase

Shift Keying (BPSK) modulation on a sub-GHz ISM band carrier with an extremely

narrow bandwidth (see table 4.1). This technology optimizes frequency spectrum

utilization by employing an ultra-narrow band, resulting in minimal noise levels,

reduced power consumption, high receiver sensitivity, and cost-effective antenna

design. However, it achieves a maximum throughput of only 100 bits per second

(bps), and as a proprietary technology, Sigfox requires the payment of fees for

communication services[135].

Although Sigfox is highly energy-efficient, its use in air quality monitoring is

limited due to its low transmission rates. Sigfox is more suitable for sending averaged

values over time or variables that exhibit slow changes. In the literature, we observe a

few implementations primarily focused on monitoring variables such as temperature,

humidity [136], and, in some cases, atmospheric pressure [137].
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Initially supporting only uplink communications, Sigfox has evolved into a

bidirectional technology with significant link asymmetry. Downlink communication,

allowing data transfer from base stations to terminals, is constrained to occur after

uplink communication and is limited to a maximum of four instances per day. This

limitation restricts the base station’s ability to acknowledge every uplink message

[138].

LoRA/LoRaWAN

LoRa and LoRaWAN are wireless communication technologies that have been

developed specifically for IoT applications, providing long-range and low-power

connectivity for IoT devices. LoRa, developed by Semtech Corporation [139], is a

physical layer modulation technique that utilizes chirp spread spectrum modulation.

This modulation allows for long-range communication by taking advantage of low

data rates, high receiver sensitivity, and resistance to interference. LoRa operates in

the unlicensed radio spectrum (see Table 4.1) and can achieve a link budget of 157

dB.

LoRaWAN, on the other hand, is a protocol built on top of LoRa technology,

providing the network layer for communication between LoRa devices and network

servers [139]. It facilitates secure and bidirectional communication, allowing IoT

devices to transmit data to a centralized network server and receive commands or

acknowledgments in response. LoRaWAN also incorporates features like adaptive

data rate [140], enabling devices to dynamically adjust their transmission rates based

on the quality of the radio link. This helps optimize communication efficiency while

ensuring reliable connectivity for IoT devices.

LoRa and LoRaWAN provide a significant advantage in the field of IoT due

to their long-range connectivity capabilities and low power consumption. With

LoRaWAN, large areas can be covered efficiently through the use of a single gateway,

enabling cost-effective and scalable deployments. In a typical LoRaWAN network, a

star-of-stars topology is employed, where multiple end-devices establish communi-

cation with gateways. The gateways then transmit the collected data to a centralized

network server. Subsequently, the network server processes the data and forwards it

to the application server or cloud for further analysis and action.
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The potential of LoRa/LoRaWAN for air pollution monitoring has been exten-

sively explored in the literature. A summary of some proposals can be found in [141].

In this work, various approaches are presented, such as the one introduced in [142],

which utilizes high-resolution and expensive sensors. These precise sensors generate

data at low rates, making them suitable for transmissions under this technology.

However, due to the cost of the sensors, this proposal is hardly scalable in an urban

environment.

Other researchers have developed prototypes using low-cost sensors. These

prototypes evaluate different types of air quality sensors and conduct proof-of-

concept tests on transmission using various MCUs [143–145], while assessing

both power consumption and latency. However, these prototypes do not specify

transmission rates, payload size, message rates, and network performance. Some

prototypes are evaluated in fixed positions for monitoring a particular geographic

sector [146]. Additionally, others focus on analyzing the obtained data without an

in-depth analysis of LoRa’s performance [147–149].

Furthermore, other studies have deployed multiple sensors to create a distributed

system using fixed stations [150], as well as mobile solutions. Among the mobile

solutions, there are limitations on mobility traceability, restricted to low speeds and

slow trajectories due to the low message rate provided by LoRa [151]. Deployments

for vehicles have also been explored, enabling mobile monitoring systems using

automobiles [152], or autonomous unmanned aerial vehicles (UAV), where the

concept of mobile transmission in these vehicles is analyzed [153, 154]. However,

only [152] presents an analysis of LoRa’s performance by examining the packet

delivery ratio (PDR).

Finally, in [155], a feasibility analysis is presented for air quality monitoring,

considering transmission performance based on distance, PDR, and signal strength

within an urban environment. Additionally, the potentiality is analyzed according to

the amount of data to be used, although not in depth.
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4.1.2 Local Area Networks for IoT

Wireless Fidelity (WiFi)

WiFi technology encompasses the various IEEE 802.11 standards [156], which

define the different generations and specifications of this wireless technology [157].

It has become an integral part of individuals’ lives, being incorporated into personal,

household, and even enterprise wireless devices. Within the IoT context, WiFi

assumes a crucial role in enabling communication among interconnected devices.

Reliable and secure wireless connectivity is essential for IoT devices to exchange

data, transmit commands, and collaborate within a network. WiFi infrastructure

serves as a necessary foundation for supporting IoT deployments, allowing devices

to establish communication with one another and connect to the internet.

The widespread adoption of WiFi has enabled various IoT solutions to be sup-

ported by it. It is common for embedded development platforms to include WiFi

connectivity [158]. WiFi’s potential for IoT is extensive. It facilitates the inte-

gration of diverse devices into IoT networks, encompassing smart home devices,

wearables, industrial sensors, healthcare devices, and more. The ubiquity of WiFi net-

works simplifies the adoption and integration of IoT devices, fostering an ecosystem

where devices can communicate, share data, and collectively contribute to intelligent

decision-making [159].

Furthermore, the strength and high data transfer speeds of WiFi make it well-

suited for IoT applications that involve substantial amounts of data. IoT devices

often generate a large volume of data that requires real-time processing, analysis, and

action. WiFi’s ability to handle extensive data streams facilitates timely data trans-

mission, supporting applications such as real-time monitoring, video surveillance,

and predictive maintenance in industrial environments [160].

As WiFi technology continues to evolve, with the emergence of standards like

WiFi 6 (802.11ax) and WiFi 6E, the capabilities of WiFi for IoT are further expanded.

These standards offer increased capacity, faster data transfer rates, reduced latency,

and improved efficiency, enhancing the overall performance of WiFi networks and

enabling smoother integration of IoT devices. [161]

Although WiFi is not among the lowest power-consuming technologies, several

studies demonstrate its favorable results compared to other low-power technolo-
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gies, as shown in [162, 163]. Additionally, other research showcases how energy

consumption can be optimized in IoT devices [164].

Several surveys in the literature on IoT, specifically in the context of air quality

monitoring [69, 141], present various solutions that incorporate WiFi for communi-

cations, either as the primary transmission mechanism [13, 91] or as an alternative

transmission method [87, 165, 128].

As another alternative, options for low-power (802.11ah [166]), wide-coverage

WiFi standards (such as WiMax [167]) have also been explored, although they have

not been widely adopted. Therefore, in environments where access to a WiFi network

that meets the solution’s requirements and provides internet connectivity is available,

WiFi proves to be an economical and practical alternative for IoT deployments. In

the case of air quality monitoring, systems like the ones presented in Chapters 2 and

3 offer an efficient solution for transmitting the measurements.

In summary, WiFi emerges as a valuable solution for addressing connectivity

challenges in air quality monitoring IoT solutions. Its wide adoption, mobility

features, high-speed data transfer capabilities, and robust security protocols make

it an ideal choice for connecting air quality sensors and facilitating real-time data

exchange when a WiFi coverage is available.

4.1.3 Personal Area Network

802.15.4

WSNs based in the standard IEEE 802.15.4 [168] is another wireless technology

that have attracted considerable interest in both research and industry due to their

wide range of potential applications. These networks utilize small, self-contained

devices known as wireless sensors to collect data from the environment and transmit

it wirelessly to a central location for further analysis. The versatility of 802.15.4

enables their deployment in diverse areas, including environmental monitoring,

healthcare, and smart cities.

The IEEE 802.15.4 is a MAC standard extensively utilized, with popular im-

plementations like ZigBee [169] and 6LoWPAN[170]. Among these, 802.15.5 is

specifically designed to cater to the demands of low-power and low-data-rate wireless

communication in WSN. This standard offers a flexible and reliable communication
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protocol that optimizes resource utilization and minimizes power consumption. It op-

erates in unlicensed frequency bands, including 2.4 GHz and 868/915 MHz, making

it well-suited for various applications and deployment scenarios [171].

WSN nodes are commonly powered by batteries and often require extended

periods of operation without the need for battery replacement or recharging. To

address this challenge, the standard incorporates power management mechanisms,

such as duty cycling and sleep modes. These mechanisms enable nodes to conserve

energy by periodically entering low-power states when they are not actively involved

in transmitting or receiving data. By utilizing low transmission power and operating

at low data rates, the system achieves a range of a few meters (up to 100 meters),

which is more efficient compared to technologies like WiFi.[135] By adopting this

energy-conscious approach, the network can prolong its overall lifetime and support

long-term operation in environments with limited resources [110].

IEEE 802.15.4 is also characterized by its capability to support ad-hoc network-

ing, which is highly advantageous in wireless sensor network (WSN) deployments.

These networks are often deployed in dynamic and distributed environments where

the network topology can change frequently. The ability of IEEE 802.15.4 to self-

organize and support a multi-hop network structure allows sensors to communicate

with each other in a mesh-like manner. This enables WSNs to cover large areas with-

out the need for extensive network infrastructure. Furthermore, this self-organizing

capability provides a self-healing mechanism that ensures network connectivity even

in the face of node failures or environmental obstacles [171]. This enhances the

overall reliability and resilience of the WSN, making it well-suited for diverse and

challenging deployment scenarios.

When it comes to security, the various implementations of the IEEE 802.15.4

standard offer mechanisms that effectively address the need for data integrity and

security [172]. These mechanisms encompass features such as encryption, authenti-

cation, and access control. By incorporating these security measures, the standard

addresses the challenges associated with transmitting sensitive data in environments

that may be hostile or untrusted. This ensures that the data remains protected and

secure throughout its transmission within the network.

The literature surrounding communication systems based on IEEE 802.15.4

is extensive and encompasses a wide range of applications [173, 174], as well

as exploring the capabilities of this standard in terms of energy efficiency [110],
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routing protocols [175], localization algorithms, quality of service, among others.

Researchers have also investigated the performance evaluation and optimization

of WSN deployments, considering factors such as network scalability, reliability,

latency, and throughput [176].

This technology has also attracted the attention of researchers in the field of air

quality monitoring. Several studies have utilized this technology for transmitting

pollutant measurements. In [69], a review of various network deployment types is

presented, categorizing them as static sensor networks, participatory sensor networks

[177], and vehicular sensor networks. From [69] and other literature reviews, it is

evident that the majority of deployments using this technology are observed in static

sensor networks due to the complexity associated with ensuring packet delivery and

preventing routing loops in a mobile system.

Examples of static monitoring can be seen in the work presented by the authors

in [178], where they propose an indoor air quality monitoring system using Zig-

Bee. Other solutions, such as the one presented in [179], propose a star topology

network for gas monitoring. Another alternative is presented in [116], where the

authors propose a multi-hop distributed network system for pollution measurement,

incorporating a data aggregation algorithm to optimize transmission.

Other systems more oriented towards urban environments are presented in [180],

where various sensors are deployed around a street and roundabout for pollutant

measurement and spatial distribution analysis. This deployment takes advantage of

the routing capabilities of the devices to achieve wide coverage without requiring the

deployment of infrastructure. To overcome limitations in this aspect, IEEE 802.11ah

is profiled as an option to achieve greater coverage [181].

In the mobile environment, several studies have been conducted using public or

private vehicles [182–184]. In other investigations, the use of UAVs for air quality

monitoring has been explored [86]. In these latter schemes, since 802.15.4 has a

limited range, the implementation of other communication systems to ensure data

transmission or the determination of synchronization points has been necessary,

affecting temporal resolution.
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Bluetooth

Bluetooth and Bluetooth Low Energy (BLE) [185] are wireless communication

technologies that have gained significant attention in various domains. They are

widely used in consumer electronics such as smartphones, computers, wearables,

automobiles, industrial devices, among others. This widespread adoption enables a

high potential for interoperability between computing systems and IoT devices.

Bluetooth is a cost-effective wireless communication standard designed for short-

range data transmission between devices. It operates in the unlicensed 2.4 GHz

frequency band, ensuring reliable and secure connectivity. With its simplicity and

convenience, Bluetooth provides an efficient solution for device connection and data

exchange, making it well-suited for a wide range of applications, including wireless

sensor networks and IoT deployments [17].

Bluetooth Low Energy (BLE), also known as Bluetooth Smart is added in the

Bluetooth 4.0 definition. It is a power-efficient variant of the Bluetooth standard.

BLE is specifically designed for applications requiring low power consumption,

making it ideal for battery-powered devices and IoT applications. It provides a

balance between data transfer rate, range, and energy efficiency, enabling long-

lasting operation in resource-constrained environments[186].

The performance characteristics of Bluetooth and BLE are influenced by various

factors such as data transfer rate, range, power consumption, and connection stability.

Bluetooth generally provides higher data transfer rates, whereas BLE prioritizes

energy efficiency and operates at lower data rates. Both technologies encounter

challenges associated with interference from other devices operating in the congested

2.4 GHz frequency band. Nevertheless, advanced frequency hopping techniques are

employed to address interference issues and improve overall reliability.

Both technologies have an average range of a few meters, approximately 20

meters, without experiencing significant degradation in communication. However,

the actual range can vary depending on factors such as antenna gains, receiver

sensitivity, physical layer (version of the standard), interference, path losses, and

transmission power [187].

For smart cities, the utilization of crowd sensing and participatory sensing tech-

nologies presents immense potential for the implementation of air quality monitoring

systems [68]. By employing portable solutions carried by individuals or deployed
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within communities, the spatial resolution of air quality measurements can be signifi-

cantly improved[69].

These solutions often utilize mobile applications that enable user engagement

with the monitoring system. The application collects, adjusts, and transmits data

to an online data collection point, where it undergoes processing and visualization

for user accessibility and reference. Research studies, such as those presented in

[87, 188, 165], have explored various approaches for air quality monitoring. In some

of these studies, the transmission is facilitated through a mobile device equipped

with a customized application designed specifically for this purpose. Additionally,

other systems utilize smartphones and Bluetooth connectivity as a secondary commu-

nication method, either as an alternative means of data transmission or for reviewing

the collected measurements [94].

Another approach involves the implementation of participatory sensing models,

where strategically placed sensors are interacted with by users through their smart-

phones to query, collect, and transmit information [177, 189]. The implementation

of crowd sensing and participatory sensing technologies in air pollution monitoring

systems shows great potential in the context of smart cities. These approaches, which

involve portable devices and active user participation, offer advantages in terms of

expanding spatial coverage, improving data accuracy, and ensuring timely measure-

ments of air quality. The integration of mobile applications and user interactions

not only enhances the effectiveness of environmental monitoring but also promotes

citizen engagement, fostering inclusivity and empowerment.

4.2 System Architecture

To support the diverse deployments, this research proposes a common architecture

for the evaluated scenarios. As depicted in Figure 4.1, the main component of this

architecture is the air quality monitoring stations, which offer connectivity flexibility,

allowing the same design to be applied in multiple scenarios. Data transmission

is primarily established using the Message Queuing Telemetry Transport (MQTT)

v3.1.1 protocol.

MQTT is an efficient messaging protocol specifically designed for IoT applica-

tions. It employs a publisher-subscriber model, enabling devices to exchange data
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Fig. 4.1 System architecture

via a central broker. Due to its minimal data overhead and compatibility with diverse

network connectivity options, MQTT is an ideal choice for resource-constrained

devices and networks commonly found in IoT environments[190].

In the case of LoRaWAN network support, MQTT enables the system to utilize

gateways that act as bridges between the device and an IP-based network. These

gateways are controlled by a LoRaWAN server, which manages the entire network,

including data encryption, protection, and handling of duplicate packets received

by the gateways. When utilizing IP-based transmission such as Wi-Fi or NB-IoT,

MQTT transmission occurs directly over a TCP socket.

An MQTT client that subscribes to designated MQTT topics for each sensor per

monitoring stations obtains the data. It decodes binary-format data, if present, and

then stores all received information in the central database.

For monitoring stations that utilize Bluetooth/BLE connection, data transmission

occurs through a web application, which redirects the data to a REST server (via

Flask Web API) for storage in the database (see Figure 4.2. The application not only

allows data uploading but also facilitates data querying and visualization through
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REST queries to the server. The server retrieves the stored data, applies calibration

and filtering, and presents it in a visual format.

Fig. 4.2 Database relational schema

Furthermore, the architecture includes calibration tasks (WS_ANALYSIS) that

apply sensor calibration to enable the visualization of post-processed data. It also

allows data calls to the database for further data analysis in associated research (refer

to Chapter5).

4.3 Air Monitoring Stations Overview

4.3.1 Hardware Overview

The air monitoring station used in this chapter is the same described briefly in the

section 3.2.2. Internally, the air monitoring station consists of four HPMA115S0-XXX

sensors for measuring concentrations of particulate matter (PM10 and PM2.5). A

BMP280 atmospheric pressure sensor, a real-time clock for synchronizing measure-

ments with the GMT time, a DTH22 relative humidity and temperature sensor , and
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a P1010D GPS unit for determining the station’s geolocation (see Figure 4.3). The

DTH22 sensor and the GPS unit are installed outside the sensor enclosure to avoid

interference during sensor stacking (during calibration scenarios) in the case of GPS

and to prevent measurement errors caused by heat generated by other sensors and

the processing unit inside the case. The Pycom implementation of MicroPython

utilizes interrupt queuing based on arrival order. Therefore, it is important to keep

the interrupt routines concise to ensure that the sensing periods are adhered to. Con-

sequently, each sensor is configured with its specific sampling frequency, and when a

timer reaches its expiration, a routine is triggered to retrieve the measurement value

generated by the sensor.(see Figure 4.4

Fig. 4.3 Board design, sensors, and final measuring station

As computing units, two models of development boards based on the ESP32

microcontroller are used. The ESP32 [119] is a low-cost, low-power processor

that features dual cores and an ultra-low-power co-processor. Its main feature is

the integration of Wi-Fi (802.11 b/g/n at 2.4 GHz) and Bluetooth (v4.2, BLE).

Along with this processor, other communication modules are embedded based on

the development board version:

• Pycom LoPy4: This development board includes a module for SigFox and

LoRa communication [191].
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Fig. 4.4 Sensor Measurement Scheduling. When a timer expires, a routine retrieves the

measurement value produced by the sensor.

• Pycom FiPy: This development board includes a module for SigFox and LoRa

communication, an additional module for mobile connectivity through LTE

CAT M1/NB-IoT networks, and supports a nano SIM [118].

Both boards are supported on an expansion board (PCB) that includes GPIO

ports, programmable led and push buttons, USB port for serial communication or for

module programming, and a slot for Micro-SD card to save all the measurements.

For the installation of the sensors and compatibility with both development board

models, a PCB and a corresponding enclosure are designed to protect the monitoring

station for outdoor operation. The placement of the PM sensors, along with the PCB

and enclosure design, follows the guidelines described by [192] to prevent airflow

feedback that may affect precision. (see Figure 4.5

4.3.2 Software Overview

The FiPy/Lopy4 development boards works under a custom implementation of

Micropython [120]made by Pycom. MicroPython is based in the Python 3.x syntax,

and includes a small subset of the Python standard library. This implementation
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Fig. 4.5 The stackable modular 3D printed case

comes with all the necessary libraries to handle the different networks embedded on

the boards.

The Pycom implementation provides an interactive command prompt (REPL) for

executing commands and running scripts stored in the system memory. This REPL

can be accessed via USB connection or remotely via WiFi using the Telnet protocol.

The MicroPython scripts that define the firmware behavior are stored in memory

and can be created, modified, or deleted using the manufacturer-supplied plugin or

passive FTP.

The software behavior follows the description in chapter 3.2.2. However, to

simplify device configuration, two JSON files are used to contain the device settings

for specific deployments:

• CONFIGSENSORS.JSON: Contains information about the board type (LoPy

or Fipy), state configuration (On/Off), sampling period, and ID for each

sensor. Additionally, it defines the buffer size for data transmission/storage,

transmission type, and data storage/transmission format (binary/text).

• NETCONFIG.JSON: Defines the ID of the monitoring station, security creden-

tials for FTP/Telnet access, and transmission parameters based on the chosen

technology:

– WiFi:

* WiFi mode (Access Point or Client)
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* Known networks (SSID and password)

* MQTT credentials for connecting to the MQTT broker

– LoRA:

* LoRaWAN authentication credentials

* ADR usage (On/Off)

* Data rate

* Sleep time

– BLE:

* Device name

* Service UUID (unique numeric ID) for advertising the service

* GATT (General Atribute Transfer Protocol) parameters

4.4 Deployment Area

The case study presented in this research is conducted in the metropolitan area of

Turin, located in northern Italy. The air quality monitoring is carried out by ARPA

using a network of fixed stations. The location of each station depends on the level of

urbanization (urban, suburban, and rural) as well as proximity to potential sources of

pollution (see Figure 3.11). However, these stations do not provide sufficient spatial

and temporal resolution in several areas of the city. This study examines various

deployments to enhance the resolution.

4.5 Deployment Scenarios

The complexity of urban environments requires different types of deployments based

on the specific objectives of observation and analysis. Similar to the classification

presented by [69], the following network taxonomy is proposed:

• Fixed Sensor Networks

• Participatory Sensor Networks

• Mobile Sensor Networks



110 Data Transmission

4.5.1 Fixed Sensor Networks

In this case, sensors are placed at specific points where there is a particular interest

in monitoring a specific environment or the behavior of particulate matter. Examples

of this type of deployment are presented in Chapter 2, showcasing both indoor and

outdoor environments.

In fixed sensor deployments, energy constraints are typically low, as there is

usually a nearby power source or energy harvesting methods (such as solar panels)

can be employed. The stationary nature of these sensors also reduces weight and

size constraints, allowing for a greater number of sensors to be deployed. In terms

of networking, considering a fixed position allows for the selection of a specific

communication technology since the conditions remain stable, ensuring a reliable

connection.

However, this deployment model also presents challenges. Determining the

points of interest in a city requires careful attention to achieve effective observability

of pollutants. Additionally, the spatial-temporal resolution is limited, and addressing

this issue would require deploying a larger number of monitoring stations. In terms

of data, if the conditions remain stable, there is a lower amount of relevant informa-

tion to transmit. From Communication standpoint, these systems typically rely on

mobile technologies, which increase costs as the number of monitors grows. Using

alternative technologies would necessitate customizing and deploying additional

networks. Finally, maintenance would require mobile personnel to carry out these

tasks.

Two deployment scenarios are proposed in this case: Calibration, and urban

monitoring using LoRa.

Calibration Scenario

This essential stage, prior to conducting measurements in the city, is crucial for

the utilization of low-cost sensors. In this scenario, the sensors are colocated with

a professional monitoring station operated by ARPA in Rubino. The sensors are

deployed for various periods to create the calibration model using the methodology

proposed in [13].
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In this strategy, particulate matter is measured every second, which necessitates

high throughput communication. Networks such as LoRaWAN or Sigfox are dis-

carded due to their limited throughput. Therefore, the alternative for this scenario is

cellular network connectivity.

While each board could transmit using this technology, deployment costs increase.

Hence, for this scenario, a Wi-Fi access point is utilized to consolidate the monitoring

stations into a single Wi-Fi network. It redirects MQTT messages to the architecture

proposed in Section 4.2. The utilization of a gateway reduces deployment costs as a

single connection per reference station enables communication with all the low-cost

stations. Additionally, a Raspberry Pi is installed as a proxy, serving as an access

point for each station. This setup allows FTP and REPL access via Telnet to the

boards, facilitating remote management. While the Telnet and FTP protocols, though

insecure, are integrated into the MicroPython manufacturer’s firmware and utilized

for remote management, their application in this research primarily stems from

convenience and is not recommended for deployment. Currently, access through

these protocols is exclusively confined to the encrypted Wi-Fi network (WPA2)

established between the Proxy Server (Raspberry Pi) and the monitoring stations. A

summarized architecture for this scenario is presented in Figure 4.6.

Fig. 4.6 Calibration Deployment
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Urban Monitoring Using LoRaWAN

In this scenario, the performance of the LoRaWAN network in the metropolitan

area of Turin and the use of an open network (The Things Network - TTN [193])

are evaluated. TTN provides LoRaWAN service through an open infrastructure and

its subsequent cloud management. The evaluation considers parameters such as

range and transmission optimization to obtain measurements at the highest possible

resolution. Latency tests and more detailed examinations are presented in [194].

The metropolitan area of Turin has five gateways, as shown in Figure 4.7a.

Although it covers a significant part of the urban area, this is an approximation. To

determine the performance, transmission tests are conducted from four different

geographical points and evaluated using a reference gateway (Polito). the points were

selected to showcase different transmission environments, with the aim of emulating

Line of Sight (LOS), Non-Line of Sight (NLOS), relatively short distances, and long

distances (see Figure 4.7b. Point 1 was chosen to represent a far LOS scenario from

the "Polito" gateway, featuring a few buildings of height less than 100 meters that

did not obstruct the line of sight. Point 2 exemplified a short-range LOS scenario

with a limited number of nearby buildings. Point 3 exhibited an environment with

numerous obstructing buildings, impeding the view of the gateway. Lastly, Point 4

represented a distant location facing a water surface (river), where moving boats and

various obstacles were present. The selected test points are enumerated in Table 4.2

Point
Distance from Reference

Gateway (km)

Latitude

(degrees)

Longitude

(degrees)

Gateway 0 45.064167 7.6597

1 2.88 LOS 45.039404 7.645806

2 0.6 LOS 45.057617 7.659197

3 1.11 NLOS 45.061521 7.648052

4 2.59 NLOS 45.060447 7.694892

Table 4.2 LoRAWAN Testpoints

4.5.2 Participatory Sensor Networks

Participatory networks offer significant benefits for air quality monitoring systems.

By leveraging strategically placed sensor stations and user smartphones, this ap-

proach allows for the collection and transmission of data. Mobile applications serve
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(a)

(b)

Fig. 4.7 TTN LoRaWAN gateways: Ideal range coverage (a) and test points location from

the reference gateway (b).
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as a means of facilitating user interaction with the monitoring stations, enabling

the gathering, adjustment, and transmission of data to an online collection point for

processing and user access.

The integration of participatory sensing techniques in air pollution monitoring

brings about numerous advantages. Firstly, it proves to be cost-effective as partici-

pants share their network data plans for transmitting the measurements. Secondly, the

close proximity of the sensors to the environments where citizens reside enhances the

value of the collected data. Moreover, involving users in the sensing process fosters

citizen engagement and empowers individuals to actively contribute to environmen-

tal monitoring efforts. This active participation by users transforms the monitoring

process into a more inclusive and participatory endeavor. Additionally, the incorpora-

tion of mobile applications within participatory sensing systems facilitates real-time

data transmission and visualization. Users can access up-to-date information on air

quality, enabling them to make informed decisions and take necessary precautions

during periods of high pollution levels.

Nevertheless, this approach also presents challenges. Since data transmission

from the microcontroller to the remote server relies on users, there is no guarantee

of continuous data transmission. Privacy concerns may also arise as users may be

hesitant to make their location information publicly available. Furthermore, the

effectiveness of data transmission is contingent upon user interest, meaning that if

few users participate, the measurements may not be frequently updated, resulting in

reduced resolution.

In this scenario, the deployment of devices at fixed points of high attendance is

proposed to increase the potential user base for this tool. In the deployment evaluated

in this study, the architecture described in section 4.2 is used, adapting the mobile

application proposed by [195] and modifying it for compatibility with the monitoring

station presented in section 4.3.

The mobile application was developed using the Flutter framework, which en-

ables the creation of a single codebase that can be deployed on various platforms

such as Android and iOS. The application’s core functionalities are integrated into

different user interfaces within the app (see Figure 4.8. The authentication interface

provides multiple login options, including traditional email and password login, as

well as login through Facebook and Google accounts. This ensures a user-friendly

and accessible login experience for participants. The home interface serves as the
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main dashboard for data visualization. It utilizes visual components such as charts,

graphs, and maps to present information based on the user’s location. The concentra-

tion levels of PM10 and PM2.5 are used to calculate the air quality index (AQI) using

the NowCast algorithm [196], providing users with a clear perception of the current

air quality. The map interface displays the user’s current location and the locations

of monitoring devices positioned throughout the city.

Another major challenge posed by participatory systems is data integrity. Users

could manipulate and upload information to the system, generating readings that do

not reflect the actual conditions. This deployment proposal to prevent such issues, the

transmitted data is digitally signed by the monitoring station. The information is then

validated by both the application and the server, which verifies the measurements

before entering them into the database.

Fig. 4.8 Application screenshots

The evaluation of this architecture is conducted in a controlled environment,

analyzing the transmission throughput as well as the sensor’s performance in data

transmission and integrity. A more detailed assessment of the entire system is

presented in [197].
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4.5.3 Mobile Sensor Networks

Mobile networks in smart cities typically rely on either mobile-based systems or

systems that utilize crowd sensing. Systems utilizing vehicles often utilize the

available public transportation in the city, such as buses, trams, and taxis.

In these mobile sensor networks, the main objective is to address the issue of

coverage. A single sensor in such networks can monitor a larger geographical

area, which is its main advantage. Depending on the speed at which the device is

transported, large areas can be covered in a short amount of time. However, while

the spatial resolution increases, the temporal resolution decreases as it depends on

the frequency at which the sensor returns to the same area. Another advantage is

maintenance, as sensors can be carried by users or transported to a maintenance

point, reducing costs and facilitating tasks such as calibration.

On the other hand, these networks also present challenges, such as the absolute

dependence on GPS. GPS serves as the foundation of the system, but it demands more

power and requires time to obtain a valid positioning value during startup. Highly

urban areas or locations with signal obstacles can pose problems for monitoring

stations. Furthermore, mobility is semi-controlled or uncontrolled, as it depends on

public transportation routes or users, which can affect the resolution in less crowded

areas or areas that are never visited. Conversely, it can also generate redundant data

that does not provide additional information.

Regarding communications, using vehicles would require a constantly available

communication system for each sensor, which increases costs. If a crowd sensing

system is chosen, users share their data plans for transmission, eliminating costs but

making the deployment dependent on the level of user involvement.

In this type of mobile network, this research proposes a deployment using a

system based on public transportation and a crowd sensing system.

Urban Monitoring Using Electric Scooters and LoRa

In this scenario, the use of electric scooters as vehicles for attaching the monitoring

station is proposed (see Figure 4.9a. Unlike public transportation, these vehicles can

reach more distant locations beyond predefined routes, enabling greater coverage.

Additionally, electric scooters are not affected by traffic congestion and their speed
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(a) (b)

Fig. 4.9 Urban Monitoring Using Electric Scooter: Monitoring Station Placement on Scooter

(a), and test points location from the reference gateway (b).

is limited to 20 km/h in Italy and 6 km/h in pedestrian areas [198]. However,

they require WAN networks for data transmission, and the use of mobile networks

incurs additional costs. Therefore, LoRaWAN is being evaluated as an alternative

technology.

Another limitation in the measurement process is the lack of reliability of PM

sensors in the presence of wind changes. Researchers such as [98] have found that

the precision of PM measurements is affected by these fluctuations. As a result, PM

measurements are only considered valid when the scooter is stationary.

Due to the variable coverage, the Adaptative Data Rate (ADR) algorithm is used

in this deployment to optimize the radio link and improve the PDR of LoRaWAN.

This mechanism automatically adjusts data transfer parameters and power based

on the distance to the gateway, enhancing the performance of the system. For the

evaluation, diverse locations within the city are selected using the same criteria as

described in Section 4.5.1 to simulate different scenarios. Six locations were selected

to represent LOS and NLOS conditions at varying distances (see Figure 4.9b). These
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points and their distances are presented in Table 4.3. More detailed LoRaWAN ADR

transmission experiments are presented in [199]

Location Location Type Distance (m)

Loc1 LOS 900

Loc2 LOS 1300

Loc3 LOS 2210

Loc4 NLOS 646

Loc5 NLOS 1300

Loc6 NLOS 2600

Table 4.3 LoRaWAN Test Points.

Crowd Sensing Deployment

The last scenario presents a crowd sensing scenario where the user acts as a volunteer

in transporting the monitoring station. The user uses its mobile devices as a hotspot

to facilitate the transmission of data generated by the monitoring station, without the

need for mobile applications, thus protecting user privacy.

One of the challenges of this type of deployment is the resilience of the data, as it

may be collected from within vehicles, which may not reflect the true level of PM in

the area. Additionally, multiple users may be present at the same location, generating

redundant data. To address these issues, it is suggested to use this approach for

specific studies that require detailed analysis of a specific area.

In this research, monitoring is proposed at specific points through coordinated

users. An experiment is conducted to monitor and locate areas with more pollution

levels in a neighborhood, following predetermined monitoring routes within a specific

time range. This study is conducted in the Milan Barrier neighborhood (45° 05’N

7°42’E) in the city of Turin, as a continuation of the case presented in Chapter 2.2.

4.6 Results and Discussion

Calibration Scenario

In this scenario, ten monitoring stations were deployed on the roof of the Rubino

ARPA station, as shown in Figure 4.10.
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Fig. 4.10 Air Monitoring Station Deployment on Calibration Stage

Each stored measurement, there are three primary components of information:

the timestamp when the measurement was taken, the identifier of the sensor that

collected the data, and the actual value of the measurement. The encoding of each

measurement is performed in text format, and each MQTT message is transmitted

every minute, following a structure similar to the example provided below:

1 ...

2 2022 -09 -19 12:30:05 ,49 ,12

3 2022 -09 -19 12:30:06 ,129 ,35.6

4 2022 -09 -19 12:30:07 ,15 ,25.8564

5 2022 -09 -19 12:30:08 ,46 ,9956.45

6 2022 -05 -24 09:03:29 ,60 ,45.06411

7 2022 -05 -24 09:03:29 ,60 ,7.659407

8 ...

In this experiment, the sampling intervals were configured as follows: 1 second

for PM sensing, 2 seconds for temperature and humidity, 5 seconds for atmospheric

pressure, and location updates were obtained every minute. Each MQTT message

had an average payload size of 13 KB, resulting in an average daily transmission of

18.7 MB per device. Consequently, the total monthly transmission across all stations

amounted to 5.7 GB.

While this level of traffic generation is generally sufficient for an average data

plan of 5 GB per month, it posed challenges for the microcontroller’s operations.
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Both the I/O operations and wireless network transmission were incompatible with

the larger file size. The transmission and I/O process required more than 1 second of

computations in some cases, leading to potential data loss from the sensors during

this time due to the Micropython’s interruption handle. Consequently, the combined

impact of I/O operations and message size could compromise the integrity of data

transmission.

To enhance the transmission, the data was converted into binary code using a big-

endian representation. Each piece of information, including the timestamp, sensor

identifier, and measurement values, was converted into bytes. The timestamp was

first converted from the ISO 8601 format to the UNIX format and then represented

as a 4-byte signed integer. The sensor identifier was converted into a 2-byte short

integer, one-byte to indicate the type of sensor, while the measurement values were

treated as 4-byte floats for atmospheric pressure and GPS, meanwhile for temperature,

humidity and PM a 2-byte short integer is used. The resulting binary representation

of the data, with bytes displayed in hexadecimal format, is shown in Figure 4.11.

Fig. 4.11 Example of the binary format

Under this data encoding, the size of the MQTT message payload is reduced to

5KB, consequently diminishing the amount of daily data generated to merely 7.2MB.

This results in a significant reduction of 61.5%, thereby limiting measurement

losses in other processes to a negligible 0.22% of daily measurements. Regarding

transmission efficiency, the PDR remained unchanged due to the stability of the

connection throughout the evaluated period, with the only losses occurring during

maintenance windows.

In this deployment scenario, the performance of five monitoring stations in

measuring particulates was examined over the period from October 2022 to April

2023. The reference for this evaluation was based on the readings obtained from the

ARPA station. The average Root Mean Square Error (RMSE) for each station, along

with their respective Pearson’s correlation coefficients, are summarized in Table 4.4

In this analytical evaluation, the station’s performance demonstrated a strong

correlation when compared to benchmark values sourced from existing literature.
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Board ID RMSE r2

Board 20 7,1075 0,87325

Board 21 7,9335 0,87175

Board 25 6,578 0,9255

Board 29 7,27375 0,90225

Board 31 6,38375 0,924

Table 4.4 Evaluation of the designed monitor station’s data alignment with ARPA’s reference

equipment using Pearson’s Coefficient (r2) and RMSE
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(a) Sensor #269 - Board 21.
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(b) Sensor #393 - Board 31.

Fig. 4.12 Scatter Plots for Air Monitor Sensors. Board 21 (a), Board 31 (b).

Notably, upon manual inspection a sensor deployed on Board 21 was identified to

have underperformed due to a malfunction. Despite this anomaly, the Particulate

Matter (PM) sensors deployed across the board showed a consistent pattern of strong

correlation and alignment with the measurements taken by the benchmark station.

This consistency was further illustrated in Figure 4.12, which visually represents

the dispersion results of the PM sensors. These graphs effectively underscore the

significant correlation that exists between the ARPA data and the data captured by a

PM sensor housed within our custom-designed monitoring stations.

In an effort to further examine the operational sensors an in-depth analysis

is executed, which revealed compelling results. The data exhibited an average

correlation coefficient that was approximately 0.9. Additionally, the RMSE showed a

mean value of 6.72. Intriguingly, these figures surpass the calibrated values presented

in studies like [13].

This analysis is pivotal as it not only affirms the robustness and reliability of

the monitoring stations in the proposed deployments, but it also emphasizes their
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potential to generate accurate, reliable data. This inherent capacity for precision,

as demonstrated by the higher than expected values, assures a high level of fidelity

in the data collected, thereby enhancing the overall quality and effectiveness of the

research.

Urban Monitoring Using LoRaWAN

In this deployment, the encoding of the message differs from the previous scenario

due to the limited throughput, necessitating a single message to transmit the data

from all sensors. For this purpose, a unique message is proposed, encompassing

the PM2.5 and PM10 values. Each sensor requires 10 bits, which translates into a

need for 5 bytes per particle size for the four sensors. A byte is used for temperature

and one byte for the humidity, 4 bytes for GPS data, and another 4 bytes for the

timestamp of the message transmission. This message is shown in Figure 4.13.

Fig. 4.13 Message packet format for the LoRa transmission

The sampling periods were set for this scenario as follows: 1 second for PM

sensing, 2 seconds for temperature and humidity, location updates were obtained

every minute and the atmospheric pressure was disabled.

Each message transmits the average measurements taken between each message,

adhering to the transmission duty cycle defined for LoRa, which is dependent on the

utilized Data Rate (DR) in LoRa. To evaluate the range, a fixed payload data of 33

bytes (comprising 20 bytes of payload and 13 bytes from headers) will be transmitted

with varying DR. These DRs are determined by the Spreading Factor (SF) and the

Bandwidth. For The Things Network (TTN), the recommended bandwidth is 125

kHz, with SF values ranging from 7 to 12 (equivalent to DR5 to DR0; refer to Table

4.5). A total of 100 (unconfirmed) packets will be transmitted from the sensor node

to the Gateway.

Figure 4.14 illustrates the results of the PDR for each test point, with the spread-

ing factor varied for the proposed payload. An almost 100% success rate is achieved
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Data Rate SF BW (KHz) CR Bit Rate(bps)

DR5 7 125 4/5 5468

DR4 8 125 4/5 3125

DR3 9 125 4/5 1775

DR2 10 125 4/5 976

DR1 11 125 4/5 537

DR0 12 125 4/5 292

Table 4.5 LoRa Data Rates (DR) parameters for the EU868 region

at all distances with SF12, whereas SF7 and SF9 exhibited unstable behaviors con-

trary to expectations. Improved performance for the same Spreading Factors (7 and

9) was observed. Additionally, as the distance increases (as in Test Points TP3, TP4),

a clear decline in the PDR for this payload can be identified, which aligns with the

physical description of the SF.

Fig. 4.14 PDR for the proposed payload

It’s important to note that these PDR measurements were taken solely with

respect to the "Polito" Gateway. Nevertheless, the TTN web server indicated a

much higher PDR for packet reception through other Gateway. However, that was

disregarded due to their erroneous positioning (more than 20 km), rendering it

unreliable. Furthermore, an elevation in the code rate can lead to improvements

in the range performance. The minimum Code Rate (CR) of 4/5 was used in our
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work, but employing a CR of 4/8 could result in a broader range (better reception for

the same Node). However, this advantage is offset by a corresponding reduction in

bit-rate.

Continuing from the previous discussion, the ensuing paragraphs delves into an

analysis of the applicability of data rates that LoRaWAN supports for the system in

question. This evaluation incorporates the limitations of the duty cycle and TTN fair

access policy, assessing whether the technology can deliver packets at a rate deemed

reasonable. The analysis is initiated with a straightforward examination of the time

required to transmit a 20-byte payload packet, adhering to all imposed restrictions.

Utilizing the airtime calculator [200], a satisfactory approximation of the on-air

Time-On-Air (TOA) of the packet can be ascertained, along with the subsequent

duty cycle, device sleep duration, and the number of packets (messages) that can be

dispatched within an hour. Thus, the total packet size amounts to 33 bytes (20 + 13).

Table 4.6 outlines the timing analysis for each Data Rate (DR).

DR TOA(ms) DC 1%(sec) Sleep Time(min.) Max. MSG/Day

DR5 71.9 7.2 3.5 417

DR4 133.6 13.4 6.4 224

DR3 246.8 24.7 11.8 121

DR2 452.6 45.3 21.7 66

DR1 987.1 98.7 47.4 30

DR0 1810.4 181 86.9 16

Table 4.6 TTN Timing Analysis for 20 bytes payload

With the bit rate information amalgamated with LoRaWAN transmission restric-

tions and the maximum packet rate of the weather station not exceeding 5 minutes,

it becomes evident that the most suitable mode for transmission for this system

is SF7. It is important to note that the TTN Fair Access Policy is not applicable

to private web servers. However, if the deployment utilizes the open network, the

system operates under the constraints imposed by the TTN server, translating to a bit

rate of 5.5 Kbps and a To f f of 3 minutes. It is noteworthy that the To f f fluctuates in

accordance with the size of the packet.

These findings suggest that each message transmits the average measurements

taken every 3.5 minutes (approximately 207 seconds). This applies under ideal

distance conditions. For more remote points, where the PDR is insufficient for a

high DR, the messages will convey larger averages, approaching a minimum of 16
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messages per day in the worst-case scenario (DR0). To alleviate these constraints, a

modification of the message encoding is proposed.

The format for this is presented in Figure 4.15. As the stations are stationary, the

transmission of GPS data is unnecessary, thus freeing up this space. Furthermore,

owing to the redundancy of sensors, which can exhibit failures and noise, only the

transmission of one particulate value is necessary. Therefore, only the median of the

averages of each sensor between messages is transmitted, requiring just 10 bits per

type of particulate. With regard to time, a timestamp is employed to determine the

measurement time, indicating the number of seconds in the current day. This method

necessitates only 9 bits for transmission.

Fig. 4.15 Reduced Message format with sensor states flags SSF

As weather data does not fluctuate rapidly (on a per-second basis) and values

may remain consistent for certain periods of the day, it is not necessary to transmit

data at the same frequency at which it is produced by the sensors. Instead, a simpler

approach, such as the introduction of Sensor States Flags (SSF), can be utilized. The

SSF serves as a bit set that indicates any changes in the sensor readings and can

be used to identify the measurements included in the message. This results in the

message now having a variable length, ranging from 6 to 3 bytes. The coding for

these flags is presented in Table 4.7.

PM bit

bit 2

T bit

bit 1

H bit

bit 0
Packet Measures Packet Size

0 0 0 Not Valid -

0 0 1 H 3

0 1 0 T 3

0 1 1 T + H 4

1 0 0 PM 4

1 0 1 PM + H 5

1 1 0 PM + T 5

1 1 1 All Measurements 6

Table 4.7 Encoding of the SSF



126 Data Transmission

The same test was repeated using this condensed format, with the results dis-

played in Figure 4.16. Once again, SF12 achieved nearly 100% success across all

distances for shorter payloads, yet exhibited improved PDR compared to the longer

message. Unexpectedly, SF7 and SF9 displayed instability, despite predictions to the

contrary. It was anticipated that Test Point 2 (TP2), being closest to our Gateway,

would present the highest PDR for shorter payloads. However, the results revealed

superior performance at Test Point 3 (TP3) for these DRs. This anomaly may be

attributed to various forms of interference that affected the LoRa device during the

experiment. The presence of vehicles, bus movements, and potentially other radio

signals at TP2, which is a bus station, could have contributed to this behavior.

Fig. 4.16 PDR for the shorter payload

As the message is variable, the number of messages changes depending on the

minimum (3 bytes) and maximum (6 bytes) message sizes. Using the airtime cal-

culator again, the minimum time is reduced to 148 seconds (2.5 minutes) between

messages, which is a one-minute decrease from the previous version (see Table 4.8.

These values are dramatically affected by the TTN Fair Access Policy, whereas under

a private network, the values would be closer to a 5-second interval between mes-

sages, complying with the sampling frequencies presented in Chapter 3. Therefore,

under an open LoRaWAN network, substantial limitations are generated, making this
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Minimum Message

3 Bytes (16 with header)

Maximum Message

6 Bytes (19 with header)

DR Sleep Time (min) Max Msg/Day Sleep Time (min) Max Msg/Day

DR5 2.5 583 2.5 583

DR4 4.4 323 4.9 291

DR3 7.9 181 8.9 161

DR2 15.8 90 15.8 90

DR1 31.7 45 35.6 40

DR0 63.3 22 63.3 22

Table 4.8 TTN Timing Analysis for 3 and 6 bytes payload

deployment suitable mainly for monitoring areas with slow changes in particulate

concentration, such as parks or areas with distant pollution sources.

Participatory Sensor Network Deployment

In this scenario, where BLE is employed, the transfer rates are constrained, thus

requiring optimization of the transmission process. The format described in Figure

4.11 is employed again for this purpose, facilitating the generation of files containing

the measurements. For this implementation, the measuring file stored in the SD

changes from one-day measurements file, to a one-minute measurements file. To

ensure data integrity, a digital signature is incorporated into the measurement files.

Utilizing asymmetric cryptography, this digital signature verifies the sender’s identity

and confirms the message content’s inviolability during transmission. The process

involves hashing the message with an SHA256 algorithm, then encrypting it using

the sender’s private RSA key. The recipient validates the signature by hashing the

message, decrypting the signature using the sender’s public key, and comparing the

two hashes. The byte array containing the measurements is converted into a string

via Base64 encoding to facilitate this.

Despite its efficacy, digital signature creation is computationally expensive and

could lead to data loss during the two seconds required for its formation. Moreover,

the high computational cost along with I/O operations could affect data transmission,

particularly because transmission primarily occurs when a smartphone is nearby,

requiring prioritization of this operation. To mitigate this, a dedicated module is

introduced between the business logic and the file system. This module manages

a buffer queue system prioritizing different operations, enhancing synchronization
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and performance, and reducing frequent SD memory access (see Figure 4.17). This

system stores copies of some measurements and signature files from the file system

in RAM buffers. The module comprises:

• A queue of the most recent files, both measurements and signatures, which are

readily available for transmission when a smartphone connects to the device.

• A queue of the latest measurement files ready to be signed. This computation-

ally expensive process is managed via a priority queue that is processed in

one-minute intervals, provided the device is not involved in transmission.

• A queue of files already transmitted via BLE, waiting for receipt confirmation.

• A buffer containing data for the current minute’s temporal window. Upon

changing the minute, this data is saved in a file system and moved to the top

of the signing queue. This buffer decouples the sensing module’s logic from

the file system management.

Fig. 4.17 Buffer queue system

The application on the smartphone, serving as the GATT Server, receives data

from the monitoring device, acting as a GATT Client, using Bluetooth Low Energy
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(BLE) technology and the ATT protocol. This connection is established on a one-on-

one basis.

Transmission of the files considers the limitations set by the MTU, which caps

the channel size to 185 bytes due to mobile operating system constraints. This

necessitates the partitioning of files into 182-byte chunks to account for the 1-byte

ATT header and 2-byte ATT handle that occupy 3 bytes of each ATT packet. This

method enables the transmission of a file representing one minute of measurements

in less than 500 ms, significantly faster than the 4-5 seconds required to transmit

equivalent CSV data.

Reducing file size enhances transmission reliability by lowering the risk of

transmission errors due to smaller byte quantity. Additionally, the decision to limit

the temporal window of files to one-minute file was influenced by multiple factors:

reducing potential data loss from transmission errors, ensuring data relevance for

corrective action due to the variability of particulate matter concentration, and

accommodating the limited proximity of users to the station, as BLE operates

effectively only within a 10-meter range.

Challenges arose during the buffer queue system development when the file

system was initially configured to house all measurement files in a single folder. This

led to I/O operation times soaring from milliseconds to seconds after a few days of

data collection as the number of files reached into the thousands. To mitigate this, the

file system was restructured into a tree-like format. In this new structure, root folders,

named by the date of measurements, contained up to 24 subfolders representing each

hour of the day. Each of these hourly subfolders could hold a maximum of 60 files,

each representing a minute within that hour. This solution, while adding complexity

to the logic and file system, curtailed the read/write operation time to less than 150

ms per file.

Table 4.9 presents a selection of the results gathered. The evaluations were

performed using both textual (first column) and binary (second column) measurement

files, each encapsulating data over a one-minute temporal window and containing

an equivalent number of measurements. The figures in the table represent the mean

values for an individual file, calculated as the average of all test outcomes.

Given that the signature generation process necessitates a 2-second computation

period during which the device is unable to manage interrupts from the sensor timers,

this leads to data loss each minute as the interrupts can only be processed when the
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Text files Binary Files Improvement(%)

File size ~14.5KB ~5 KB ~65.76 %

I/O operations time ≥ 500 ms ~150 ms ≥ 70 %

Data transmission time ~4500 ms ~500 ms 88 %

Table 4.9 Data storage and I/O operations statistics

thread is available. Moreover, as each sensor follows a unique data sampling regimen,

the degree of data loss fluctuates, yielding a range from minimum to maximum data

loss percentages. The table 4.10 delineates the sampling period for each sensor and

the number of measurements included in each sample, allowing for computation of

these data loss values:

Sensor type Sampling time N° of easurements per sample

PM10 and PM2.5 1 s 2∗4 = 8

GPS (latitude, longitude) 60 s 2

DHT (T, RH) 2 s 2

BPM (Atm Pressure) 5 s 1

Table 4.10 Sensors’ data sampling periods and number of measurements

Given the variables of measurements within a sample (ms), sampling time (ts),

and the count of each sensor type affixed to the board (ns), A theoretical maximum

quantity of measurements (M) accommodated in a singular file having a temporal

window of one minute can be calculated by:

M = ∑
s

ms
60

ts
ns

= 2
60

1
4+2

60

60
1+2

60

2
1+1

60

5
1

= 480+2+60+12 = 554

(4.1)

Considering that the signature process suspends the capture of new measurements

for about 2 seconds, PM sensors are the most impacted due to their sampling

frequency, leading to a minimum loss of 8 measurements per minute. This value

can increase to 21 measurements if all the timers coincide. Ultimately, the data loss

percentage for each sensor can be determined under both optimal and least favorable

conditions, revealing a data loss rate between 1.4% and 3.8% every minute.
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Finally, several communication strategies were explored to facilitate the rapid

transmission of data through BLE from the monitoring device to the mobile applica-

tion. The optimal approach was empirically chosen based on performance metrics.

Initially, multiple files were corrupted during the BLE transmission, making them

unreadable by the client. Consequently, a signature process was implemented to

enable verification of file integrity on the client’s side. Despite the inevitable perfor-

mance degradation, the server needed to ascertain the success of each transmission

to facilitate the retransmission or deletion of specific files.

Performance was influenced by several variables. One was the mix of commands

offered by Bluetooth Low Energy technology, such as write, read, and notify/indicate.

Another crucial factor was the buffer queue system that aided the data exchange

protocol by storing files in RAM, thereby minimizing I/O operations with the SD

card during transmission.

Table 4.11 presents the results in terms of data transmission time for each mea-

surement file and its corresponding signature, considering the various solution

combinations. Depending on the chosen solution, data sending can require either

read or notify operations. Two of these solutions pair these with a write operation,

confirming file receipt, while others do not await receipt acknowledgment.

BLE commands Without buffer queue system With buffer queue system

Read and Write ~4900 ms ~4700 ms

Read ~1100 ms ~950 ms

Notify and Write ~650 ms ~500 ms

Notify ~450 ms ~300 ms

Table 4.11 Data transmission time statistics

The findings indicate that read operations are generally slower than notify ones

and that acknowledging each chunk of the file is costly from a performance perspec-

tive. The optimal solution employs the notify approach paired with write operations

for improved reliability, despite an approximate 200 ms increase in transmission

time. Moreover, utilizing the buffer queue system as a memory access point for file

caching in RAM reduces overall transmission time by around 150 ms, equivalent to

the I/O time.

The results featured in the table were derived from experiments primarily con-

ducted with devices placed within two meters of each other. Additional experiments

to assess the influence of Bluetooth signal attenuation on transmission time did
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not reveal significant variations. Specifically, the signal power is undetectable at a

distance of roughly 10 meters, resulting in a disrupted connection.

The aforementioned results do not account for the time needed to establish a

BLE connection between the devices. This time, independent of the communication

command used and required only once at the onset, averaged around 2 seconds. This

was measured in the app, starting from the board’s discovery through Bluetooth scan

until the receipt of the first chunk of a file. Adding this time to the time required to

transmit all chunks of a file using notify and write commands indicates the minimum

time a user should be in proximity to the board to enable a full transmission.

Given the times obtained in this deployment scenario, locations where users tend

to stay for approximately a minute are necessary to ensure that the connection and

transmission processes occur successfully. Constant user activity is also needed for

frequent transmission of the measurement files. Public service stations serve as ideal

environments for this type of deployment.

Urban Monitoring Using Electric Scooters and LoRa

This deployment displays characteristics similar to those described in the previous

LoRa scenario, with the sensors operating at the same sampling periods. The main

difference is the use of a private LoRaWAN network, which removes constraints

from usage policies, enabling a higher number of message transmissions in each

DR. This in turn allows for the transmission of higher-resolution information per

message. The transmission format proposed in Figure 4.18, which consists of a

33-byte payload, is used for this purpose without losing granularity for each PM

sensor and precision for GPS location and temperature.

Fig. 4.18 Message packet format for the LoRa transmission

Sixty data packets were dispatched, with a 30-second interval between each

message in each point. The status and performance of the gateway can be assessed

via the analysis of the Received Signal Strength Indicator (RSSI) and Signal-to-Noise

Ratio (SNR) values.
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As the two key components in determining the quality of the received radio

signal, RSSI and SNR are measured by the LoRa Gateway upon receipt of each

communication. RSSI, the power of the received signal in milliwatts, is gauged in

decibels (dBm). Its values span between -30 dBm and -120 dBm, with -30 dBm

indicating a very strong signal and -120 dBm pointing to a very weak one. SNR,

the ratio between the received signal power and the power level of the noise floor,

ranges between -20 and +10 dB. A figure near +10 dB signifies that the received

signal is less corrupted. It is notable that LoRa can demodulate signals from -7.5 dB

to -20 dB below the noise floor.

TTN uses the 20 most recent uplinks from the moment that the Adaptive Data

Rate (ADR) bit is set. These measurements, comprising the frame counter, SNR,

and the count of gateways that received each uplink, are used to calculate the margin,

the difference between the measured SNR and the required SNR to demodulate a

message given the Data Rate (DR):

Margin = SNR−SNRdemodultaion (4.2)

This margin indicates the potential for DR to be increased or the transmission

power to be reduced, thereby optimizing the Time-on-Air (TOA).

In the assessment of this scenario, average RSSI, average SNR, and PDR were

measured for each location as described in Table 4.3. Initially considering the LOS

locations, all points recorded a positive SNR, enabling a high PDR. For locations 2

(1300m) and 3 (2210m), the SNR remains high (positive); however, the PDR begins

to decrease, which triggers the activation of the ADR algorithm, reducing the DRD

from DR5 to DR4 in both points.

In the case of the NLOS locations, similar results are obtained. The RSSI

decreases due to the interference caused by obstacles. For instance, location 4

(646m) experiences interference due to tall buildings between the device and the

gateway. However, the DR retains its highest value. For the last locations, 4 and 5,

located 1300m and 2600m away respectively, the RSSI is affected by more obstacles,

impacting both the SNR and the PDR. The ADR is adjusted for both locations 5 and

6 to DR4 and DR3, respectively. These results are summarized in Table 4.12.

Based on the transmission results obtained, it’s possible to maintain the message

frequency for the given message size, thanks to the ADR. However, the Packet
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Location Location Time/Distance DR RSSI (dbm) SNR (dB) PDR(%)

Loc1 LOS/430m DR5 -109 7.8 100%

Loc2 LOS/876m DR4 -109 6 90%

Loc3 LOS/2210m DR4 -110 3.8 80%

Loc4 NLOS/646m DR5 -101 4.8 95%

Loc5 NLOS/1700m DR4 -109 5.8 76%

Loc6 NLOS/3000m DR3 -114 0.5 73%

Table 4.12 Mobile LoRaWAN Performance

Delivery Ratio (PDR) tends to deteriorate, potentially causing losses in the resolution

of the measurements. Smaller message formats allow for an increase in message

frequency, which mitigates resolution loss. For instance, a format like the one

presented in Figure 4.15 enables minimum message periods between 5.1 seconds and

18.5 seconds for the same range of DR. While this would provide higher resolution,

it implies greater power consumption by the monitoring station, thereby limiting

autonomy.

While the mobile scenario is not a target from the deployment standpoint, since

the ADR is not optimized for mobile transmitters [201], it still provides valuable

data. During the tests between points, data is recorded to determine if, given the

speed limit of the electric scooter, it is possible to determine the path and pollution

values generated, considering an ideal PDR and altering the GPS sampling period

to 3 seconds. Figure 4.19a presents the trajectory recorded within the device at

maximum frequency, contrasted with the values transmitted every 30 seconds (Fig.

4.19b).

From these trials, it becomes evident that the low speed of electric scooters

combined with the transmission frequency is sufficient for the detection of specific

points with higher pollution levels, as well as for determining the trajectory across

the city.

Crowd Sensing Deployment

Lastly, this scenario is based on WiFi transmission between the monitoring station

and a mobile device acting as a WiFi hotspot. Under this modality, the transmission

of measurements will depend on the cellular coverage in the area of interest, as WiFi
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(a)

(b)

Fig. 4.19 Urban Rides Using Electric Scooter: Complete measured data at the monitoring

station (a) and data transmitted every 30 seconds (b).

communication under normal conditions is considered reliable due to the proximity

between the mobile device and the monitoring station.

This deployment was also evaluated within various routes in the Milan Barrier

neighborhood. Here, several volunteers performed a route gathering pollution data

to detect areas of higher exposure. Some routes are illustrated in Figure 4.20.

The execution of these routes with this deployment offers the capacity to produce

intricately detailed maps focused on distinct areas. Specifically in this case, the

approach allows for the intensive monitoring of a particular neighborhood, char-

acterized by its high spatio-temporal resolution. This level of detail does not only

illustrate a more precise pollution landscape but also fosters a more comprehensive

understanding of the environmental dynamics within the area.

The generated information proves itself to be considerably valuable, especially

when conducting specialized architectural analyses. These analyses can particularly

revolve around topics related to sustainability, providing insights on how to design

or modify structures and systems to enhance their environmental compatibility.

An in-depth exploration of this utility has been discussed previously in Chapter
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(a) (b)

(c)

Fig. 4.20 Crowd Sensing routes in the Milano Barrier neighborhood within a two-hour

window. North (a), West (b), South and East (c).
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2.2. By leveraging this approach, researchers and urban planners can identify

pollution hotspots and patterns within a neighborhood over time. In turn, this can

guide sustainable urban planning and policy-making, helping to create healthier and

more sustainable living environments. The fusion of detailed monitoring data and

sustainability-oriented architectural analysis thus offers promising possibilities for

both environmental research and urban development.

4.7 Conclusions

The potential transformative role of the Internet of Things (IoT) in creating smart

cities is a widely recognized fact. However, the success of such an application, or

the insightful analysis of the targeted phenomena, hinges critically on the strategic

deployment model employed. Achieving robust spatiotemporal resolution of certain

variables necessitates a delicate balance between operationally viable solutions and

the provision of valuable, actionable information.

Various deployment methodologies and network topologies have been the focus

of extensive research. This research has been instrumental in defining a complex in-

terplay between three pivotal objectives: cost-effectiveness, temporal resolution, and

spatial resolution. Each facet of this triadic framework is targeted for maximization,

but due to inherent limitations of each data transmission technology and the specifics

of the deployment scenario, simultaneous maximization of these objectives remains

elusive.

This study conducted an in-depth analysis of the three main deployment scenarios

commonly utilized in the context of smart cities, namely fixed sensor networks,

participatory sensor networks, and mobile sensor networks. While each of these

deployment scenarios offers unique advantages, none presents a comprehensive

solution when employed in isolation. Hence, this study introduces a novel hybrid

model that integrates these three distinct scenarios, employing a single architecture

and a standardized particulate matter monitoring station.

The system architecture proposed here is noteworthy for the use of wireless tech-

nologies working on unlicensed frequency bands, such as LoRa, WiFi, and Bluetooth.

These technologies’ penetration into the consumer market ensures the possibility of

broad participation in data collection, thus contributing to the dual objectives of cost-
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effectiveness and high spatiotemporal resolutions. The architecture’s simplicity also

ensures ease of data centralization and management. The reliance on straightforward,

scalable data exchange protocols like MQTT and REST facilitates ease of integration

and scalability. Furthermore, this model’s inherent flexibility, which allows a single

station to interface with a range of communication technologies prevalent in large

urban areas, presents a significant advantage for future IoT deployments.

The findings of this study carry far-reaching implications, suggesting new path-

ways for harnessing the potential of IoT in urban environments, shaping smart cities,

and deepening our understanding of complex urban phenomena through sophisti-

cated data collection and analysis strategies. This real-time data availability also

benefits urban planners, policymakers, and researchers who can utilize the collected

data for urban planning, policy formulation, and scientific analysis. In turn, this can

help in creating healthier and more sustainable living environments. The fusion of

detailed monitoring data and sustainability-oriented architectural analysis thus offers

promising possibilities for both environmental research and urban development.



Chapter 5

Data Accuracy

Air quality tracking and PM particle monitoring traditionally rely on sparse net-

works of stationary, reference-grade detectors, as dictated by European regulations

50/2008/CE and 107/2004/CE. The spatial coverage of these networks is constrained

due to the high cost of instrumentation, with micro-balance PM monitoring stations

costing up to 100K dollars [202]. Furthermore, these sparse networks might not

adequately capture the substantial spatial variability often exhibited by air pollutant

concentrations.

In response to these challenges, the development and application of afford-

able, portable, light-scattering-based PM detectors, costing merely a few hundred

dollars [202], has surged recently. These cost-effective sensing nodes find wide

applications [203–213], ranging from city-wide deployments, bike sharing fleets,

location-aware places, and moving vehicles, to the monitoring of historic building

conservation states and forest fire detection. They even enable participatory sensing

through mobile monitoring.

However, these mobile sensing devices come with their share of challenges,

including the limited processing capabilities, and concerns over precision and high

variance. These drawbacks necessitate an adequate engineering approach to be

overcome effectively.

The identification of anomalies forms a critical facet in the realm of sensor

networks. This involves detecting unexpected sensor behaviors that lead to erroneous

readings, either in single measures or data sequences. As sensor malfunctions and

failures can significantly impact the calibration process, which relies on precise
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and consistent measurements for generating an accurate fitting model, this aspect

requires serious consideration.

Therefore, calibration plays a pivotal role in determining the final accuracy and

reliability of a sensor network. To mitigate the impact of the most common sensor

anomalies, the first step proposed is to incorporate redundancy into the utilized

monitoring boards.

Furthermore, a pipeline framework leveraging several algorithms is proposed to

tackle these challenges. This framework detects common failures and misbehaviors,

removes outliers, and defines a calibration model.

The ultimate objective of this approach is to ensure accurate and reliable moni-

toring in IoT networks, even when low-cost sensors are prone to single or multiple

issues. This proposed pipeline provides a structured methodology to detect and

rectify anomalies, thereby ensuring data integrity and reliable sensor performance.

This strategy is key to maintaining and enhancing the robustness of wireless sensor

networks, especially when operating low-cost sensors that might be more susceptible

to malfunctions or failures. By proactively addressing potential sensor anomalies and

incorporating regular calibration, the overall system performance can be optimized.

5.1 Background

The contemporary landscape of anomaly detection, as required in sensor networks,

is mainly predicated on expert knowledge. A comprehensive review of anomaly

detection techniques applied to IoT data is provided by Cook et al.[214], encompass-

ing a broad spectrum of strategies while also summarizing the prevailing challenges

in the domain. In a similar vein, Chen et al.[215] introduce an anomaly detection

framework engineered for large, real-world sensor networks. By initially identifying

spatio-temporal anomalies and regional emission sources, proceeding to rank sensing

devices, and subsequently discerning malfunctioning devices, the authors affirm their

framework’s capability to detect outliers and infer anomalous events.

In the context of sensor calibration, various studies have contributed towards

advancing our understanding and methodologies. Brattich et al.[216] characterize

the performances and reproducibility of different types of low sensors in comparison

to reference instruments. Moreover, the authors assess the variability of the different



5.1 Background 141

sensors and perform a comparative analysis of the various optical particle counter

under other meteorological conditions. Hasenfratz et al.[96, 217] undertake a unique

approach by leveraging mobile sensor platforms on public transportation in Zurich,

Switzerland, collecting ultrafine particle measurements over two years. This endeavor

leads to the creation of pollution maps and a reduction in spatial errors. Liu et

al.[39] conduct calibration on several low-cost portable sensors, demonstrating the

importance of a steady particle mass concentration during the calibration process.

Further, Maag et al.[65] provide a comprehensive review of state-of-the-art low-

cost air pollution sensors, identifying major error sources and exploring suitable

calibration models and network recalibration strategies. On a related note, Rumburg

et al. [218] delve into regulatory statistics to determine the error magnitude when

daily sampling is not carried out.

The aforementioned calibration processes are particularly relevant when sensor

technologies that employ light-scattering techniques are considered for air quality

monitoring. Budde et al.[61] juxtapose the performance of a high-accuracy mea-

surement device with a cheap off-the-shelf sensor combined with a mobile phone,

showcasing the potential of inexpensive devices through calibration and processing

procedures utilizing multi-sensor data fusion. Similarly, Concas et al.[16] outline

the rapidly expanding field of low-cost sensor technologies, emphasizing the role of

machine learning techniques in sensor calibration. Their work also sheds light on

open research challenges and future directions. In a focused case study, Crilley et

al.[219] appraise the Alphasense OPC-N2, a low-cost optical particle counter, for

monitoring ambient airborne particles in typical urban background sites in the UK.

Their study investigates inter-unit precision, variation in measured particle mass con-

centration, and comparison with standard commercial optical particle counters, thus

offering valuable insights into the performance and reliability of low-cost sensors.

Combining these facetsÐnamely anomaly detection, calibration, and light-

scattering techniquesÐit becomes evident that the future of air quality monitoring

and sensor networks hinges on the integration and refinement of these elements. The

enhancement of precision, reliability, and cost-effectiveness in sensor networks is

achieved through the advancement of anomaly detection strategies, the improvement

of calibration methodologies, and the optimization of light-scattering techniques.

This lays the groundwork for a more comprehensive and accessible approach to air

quality monitoring.
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5.1.1 Particulate Matter Monitoring

Official Monitoring

In Italy, air pollution is regulated by the legislative decree number 155/2010, which

is an actuation of the European Directive 2008/50/EC. The decree defines the mini-

mum size and structure of the Italian territory’s monitoring network, indicating the

placement of stations. In addition, it specifies reference methods for measurement,

analysis, and modeling of air pollutants.

Official measurement techniques for PM are based on gravimetry and β -attenuation.

Gravimetric instruments use a filter to capture PM dispersed in the air sample, which

is obtained via a vacuum pump. The filter is periodically replaced and weighted

to determine PM mass concentrations. Size selection is performed by the air inlet,

inertial impactors and the filter itself. β -attenuation devices, instead, determine the

mass of PM deposit by measuring the attenuation of the radiation of a small radioac-

tive source, when shined on the filter. Other high-precision monitoring instruments

have been developed, such as TEOM and high-precision light-scattering devices. An

overview PM monitoring technologies can be found in [220].

Low-cost Light-Scattering Sensors

Low-cost light-scattering PM sensors have been introduced in the market in the past

a few years. They are cheaper, lighter and more compact than high-precision devices,

making them suitable for IoT application. They can be sold as standalone sensors,

integrated into handheld devices, or used as part of a complete IoT solution.

Low-cost light-scattering sensors work by drawing air inside the device via a

small fan. A laser beam is shined on the air sample and a detector, positioned at a

specific angle on the opposite side, measures the intensity of the scattered light. A

deep study about this kind of sensors is presentesd in [221]. The authors classify

the sensors in two different sensor technologies: nephelometers and optical particle

counters. Manufactures often do not disclose which is the technology adopted by the

sensors.

Nepelometers correlate the intensity of the scattered light of the whole air sample

to the PM mass concentration, according to a predefined calibration curve. Optial par-

ticle counters, instead, are able to detect single particles and measure their diameter.
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Particles are then classified according to their diameter in different size bins, whose

number and size intervals depends on the specific implementation. By assuming

spherical particles, particle density and size distribution inside each interval, the

total PM mass can be computed. To obtain the PM mass concentration, this value is

divided by the volume of the analyzed air sample.

Multiple assumptions and approximations are introduced by these measurement

procedures. Optical properties of particles are strictly related to their Refractive

Index (RI), which is not known a priori and depends on the aerosol under analysis.

OPCs use Mie Theory, that models light scattered by a perfect sphere, in order to

measure particle diameters. However, the theory assumes spherical particles, which

is not true for real-world PM, and a known RI. In addition, the conversion from PM

volume to mass also requires the knowledge of PM density.

Therefore, calibration curves of both nephelometers and OPCs strictly depend

on the particulate type that is used during the calibration procedure. Artificial PM

composed of Polystyrene Spherical Latex Particles (PSLs) of a known diameter and

RI using are often used. Alternatively, more realistic but less comprehensive PM

compositions, such as cigarette smoke, can be utilized.

Low-cost devices may not detect the full number of particles in the sampling vol-

ume relying on statistics and extrapolation to compute their actual number. Accuracy

becomes worse for increased particle sizes since their number decreases dramatically.

For this reason, bigger particle concentrations, such as PM10 and PM4, are often

estimated from PM1 and PM2.5. Particle detection is also limited by a mininum size

threshold.

High levels of relative humidity greatly affect low-cost particulate matter sensors.

Hygroscopic growth both increases the size of the particles, leading to an overestima-

tion of PM mass, and influences their optical properties. Full-size particle counters

solve this problem by heating the air before performing the measurement.

5.1.2 Experiment Deployment Area

Turin is situated in the North-West of Italy and is the capital city of the Piedmont

Region. This area is surrounded by the Alps on the West and North side and by a big

hill on the East side (Figure 5.1). Each location of the ARPA air quality monitoring

stations are classified according to the level of urbanization, the level of urbanization
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include urban, suburban, and rural areas [108]. The local environmental protection

agency provides annual reports on the air quality in the city.

Fig. 5.1 Metropolitan area of Turin.

The official measurements of PM2.5 at the Torino-Rubino station at the time of

the experimental campaign are shown in Figure 5.2. The trend shows an increase

in background PM concentrations in winter, starting mid-October. From late win-

ter/early spring, PM levels decrease until they reach a minimum during the summer

period. The trend similarly repeats itself every year.

The increase in PM2.5 in the winter period, with respect to the rest of the year,

can be attributed to heating systems. This situation is worsened by thermal inversion,

a phenomenon mainly present in winter, that causes air stagnation. Thermal inversion

happens when there is a temperature stratification of the air above the city, where

temperature increases with altitude. This phenomenon prevents air circulation and

dispersion of pollutants [222].
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Fig. 5.2 Official data of the yearly trend of PM2.5 density at Torino-Rubino. In red is labeled

the start and end period of the experiment period presented in this chapter.

5.1.3 Experimental Campaign

The study presented in this chapter uses the air monitoring stations presented in

Chapter 2.2.3, these stations employ a Raspberry Pi Zero Wireless as the single-

board computer running essential components of Arch Linux operating system for

ARM. The system collects data from various sensors, including the Honeywell

HPMA115S0-XXX sensor for PM2.5 and PM10 particles, utilizing the Light Scat-

tering technique for particle concentration estimation. The DHT22 sensor provides

temperature and humidity readings, and the BME280 sensor from Bosch captures

atmospheric pressure measurements. Python scripts query the sensors, and specific

APIs enable sensor-board communication through various protocols.

In this context, fourteen monitoring stations were situated on the rooftop of the

Rubino ARPA station, as illustrated in Figure 5.3. These stationary sensors were

maintained at the ARPA reference station location for a period of one year. The

sensors were positioned 1.5 2m away from the air inlet of the reference grade device

on the premises. The monitoring station was strategically placed in a public park,

partially distanced from vehicular traffic.
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Fig. 5.3 Setup of Air Monitoring Stations on the Rooftop of the Rubino Station
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5.2 Data Improvement Framework

Fault detection and sensor calibration are critical tasks that can affect the reliability

and performance of PM measurement [80]. As described in the previous section,

sensors are based on several working principle that can generate measure outliers, due

to environmental conditions or manufacturing variations. During our measurement

campaign, we observed that some sensors exhibited persistent outliers, suggesting

a potential failure in the sensor. These failures significantly affect the calibration

process, which relies on accurate and consistent measurements to generate a precise

fitting model. When the sensors are not calibrated correctly, the measurements

they generate can be erroneous, leading to data noise or inaccurate readings that

can impact the overall performance and reliability of the system. To mitigate these

issues, we propose a novel framework that leverages algorithms to detect the most

common failure in the sensors, removing outliers and calibrating them automatically,

providing more accurate measurements even in the presence of outliers or failures.

Fig. 5.4 Framework Overview: Data improvement data flow

The air pollution monitoring stations, throughout the course of the measurement

campaign, deposit raw PM and humidity values from various sensors. The method

outlined in this paper commences with the retrieval of raw PM and humidity mea-

surements that have been collected by these air pollution monitoring stations. The

raw data of PM is processed using a fault detection algorithm, followed by applying

a filtering technique for the removal of data outliers. With these preprocessed data,

ground truth data and the humidity measures are taken for the PM sensors calibration.

Upon finalization of the process, the calibrated model is applied taking into

account the associated humidity values. The median PM value is subsequently

computed from the sensors within each air pollution monitoring station, aiming
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to establish the particular PM measurement for each station. To present a more

comprehensive exposition of our methodology, the ensuing sections delineate each

algorithm engaged in the calibration and deployment processes, highlighting their

contribution to the assurance of precise and reliable PM measurements.

5.2.1 Failure Detection

During this step, the raw readings obtained from the sensors are analyzed to identify

any sensor failure. A failure can occur for various reasons, such as a malfunctioning

sensor or a faulty connection. Faults in the embedded photosensor are the primary

cause of malfunctioning in these sensors, a fact that remains obscure due to the

sensor’s uninterrupted data production, absent of any warning signals. This lack

of obvious failure signs makes detecting the fault a challenging task. Hence, it

necessitates a thorough inspection of the generated measurements to ensure effective

fault detection.
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Fig. 5.5 Fault detection process. Particulate matter density(µg/m3 vs Time (hours) plot.

The algorithm utilizes a sliding window approach through the data to identify periods with

anomalous values, subsequently marking the failure point.

The algorithm implements a rolling window technique, as depicted in Figure 5.5,

to identify when the values remained at their lowest values (0 or 1 µg/m3). If

the sensor’s data remained at these values for the entire length of the window, the
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sensor was flagged as damaged. Any data obtained after the flag was disregarded for

subsequent steps.

To optimize this process, multiple time windows were tested, ranging from 1 to

12 to hours. The aim was to determine the ideal window that would offer the highest

accuracy in detecting actual events while minimizing false positives. This step was

crucial in ensuring the reliability and accuracy of the subsequent analyses.

5.2.2 Outlier Detection

Once the data has been analyzed for failures, the next step in our pipeline requires

filtering out the outliers. In this phase, the goal is to remove all readings that are

affected by noise or external factors. Please note that outliers can significantly skew

the data and lead to inaccurate measurements and it is essential to remove them

before calibration.

Those events produce high-frequency changes, often impulsive, which tend to

increase the errors and lead to data outliers. They can also lead to rapid and sustained

changes in PM values for several minutes. As a consequence, our filter must be

designed to effectively reduce the number of outliers and minimize errors with

respect to the ground truth values. We perform several tests to identify the optimal

filter removing the noise and maintaining the accuracy. During these tests, we take

into consideration several factors. First, some errors may have a random nature,

resulting in high-frequency noise, whereas others may be impulse noise. Thus, a

low-pass filter was deemed appropriate to eliminate this kind of errors. In contrast,

we select a non-linear filter (a median filter) to analyze the effect of a particle stuck

inside the sensor. To ensure that the signal remained unchanged in the band-pass

and to avoid a stringent cutoff band that would alter the signal shape, we select an

eighth-order Butterworth IIR filter and we also implemented as a low-pass filter. This

filter was chosen to achieve a slower roll-off, which helps to preserve the signal’s

shape. The filter was implemented using the Python scypi signal processing library,

which provided the necessary functionality. Similarly, for the median filter, we use

the scypi library for its ability to implement the filter easily and accurately. The

cut-off frequencies and kernel sizes for both filters were selected according to the

values described by Espinosa et al. [56].
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Based on an initial manual examination, it has been observed that certain erro-

neous measurements occur within time intervals of a few minutes. Consequently,

these measurements cannot be removed by the filters using the predefined setting

values established previously.

Despite the effectiveness of these filters, it was acknowledged that their determi-

nation of an outlier was not entirely effective. To address this limitation, we employ

the Z-score filter to remove signal outliers.

The Z-score filter is a statistical filter used to remove outliers in a data set based

on the standard deviation and mean of the set. To preserve the overall shape and

structure of the signal, we flag data points outside a certain range of the standard

deviation. The Z-score is calculated using the formula:

z = x−µ
σ

where µ represents the mean value and σ the standard deviation of the data set. The

resulting Z-score z represents a scalar number of how many standard deviations a

data point is away from the mean. Positive values indicate points above and negative

values points below the mean.

Based on a threshold value, every point with an absolute value of the Z-score

above the threshold is considered an outlier and is either removed or replaced.

However, for PM data, which may exhibit significant variations over time, defining

static mean and standard deviation values is not appropriate. Therefore, we propose

a time-dependent windowing of the database to avoid false positives in the Z-score

filter. Specifically, z is computed based on the time period around the data point

being evaluated. This approach can accurately remove outliers and preserving data

integrity. To sum up, during the filtering phase it was critical to ensure that the sensor

readings were reliable and reflected pollution conditions. Thus, to select and apply

the most appropriate filter we consider the unique characteristics of the noise and the

outlier patterns.

5.2.3 Calibration Model

The final step in the deployment process is sensor calibration. During this stage,

the readings coming from the previous steps are used to calibrate the sensors, using
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the model obtained during the calibration phase. The calibration algorithm uses the

raw data coming from the sensors, i.e., PM and humidity data. Once the calibration

model is applied, the median of the calibration outputs of all sensors is taken as the

valid PM value, and the performance of the complete framework is evaluated.

The calibration model presented in [13] is used as a reference, in which it is shown

that for this type of sensor and platform, calibration through multivariable linear

regression displayed the best performance. In addition to this model, data calibration

is performed using both filtered and unfiltered data as discussed in section 5.2.2.

Moreover, a new scheme is introduced, in which other anomalous values detected by

a modified Gaussian mixture algorithm are omitted to reduce their influence during

the calibration period. This model is added to the reference calibration using both

filtered and unfiltered data and the process of outlier detection. These four models

are then analyzed to determine the best performing model.

The final step in the deployment process is sensor calibration. This work tries

develop a calibration process that doesn’t require human intervention. This is due

to the fact that in large scale deployment scenario the amount of data produced by

the sensors would be too high to be manually analyzed. As shown in [13] for this

type of sensor and platform, multivariate linear regression, using PM2.5 and relative

humidity as independent variables, provides good performance.

The calibration process is logically divided in two time phases. In the first phase,

sensors are positioned at a reference stations and data coming from both the sensors

and the reference station is collected. The data acquired during this phase is used to

train the calibration model. In the second phase, the calibrated model can be used to

correct the sensors in real time.

The measurements collected during the first three weeks of the experiment, from

October 10 to October 31, 2020, were used for training the model. Then, the trained

model was used to calibrate sensor data acquired during the remaining part of the

experiment campaign, to simulate a real deployment scenario. The performance of

the calibrated sensors is evaluated with respect to the reference instrument. Since the

finest data granularity available from the reference station are hour measurements,

the calibration process is performed on hour aggregations of the sensors’ readings.

In order to enable automatic calibration of the sensors, it is essential that the

model is correctly trained. It was observed that the model over-compensated the

correction, by selecting excessively small PM2.5 coefficients. Liner regression
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models are known to be heavily influenced by outliers, so this behavior could be

partially attributed to the presence of sporadic measurements that are much higher

that the reference. In addition, the removal of outliers can provide a calibration model

that more general, without being influenced by occasional sensor faults occurring

during the calibration period.

For this reasons, an automatic outlier-detection method, based on multivariate

gaussian model (GM), is introduced. The objective is to select the data point to

remove from the dataset used to train the calibration model. The proposed method

consists in fitting a multivariate gaussian distribution to the 2-dimensional data points

composed of the PM2.5 measurement of the sensor and the corresponding value

from the reference station, the latter being available when training the model.

The next step is to set a threshold probability. A cumulative probability func-

tion for the 2-dimensional gaussian distribution can be defined in function of the

Mahalanobis distance from the sample mean:

dist(xi) =
q

(xi − xmean)V−1(xi − xman)T

Intuitively, the farther the point are from the sample mean, the lower is the

probability of being measured. Given a data point, if the probability of measuring

values at a distance greater or equal of the one of data point is lower than the

threshold, the data point should be removed. This probability can be computed as

follows [223]:

p(x|dist(x)≥ dist(xi)) = e−(dist(xi)
2)/2

Using a probability threshold instead of removing a fixed percentage of the less

probable data, allows the models to better adapt to changes in behavior between the

sensors.

However, according to the literature [218, 217] and to what was observed for

the collected data, measurements coming from both the sensors and the reference

station are better represented by a lognormal distribution, rather than a gaussian. For

this reason, before applying the outlier detection model, the hour measurements of

the reference station and each single sensors are fitted with a lognormal distribution

using the scypi software package (scipy.stats.lognorm.fit).
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The fitting allows us to estimate the shift parameter of the lognormal distribution,

and to apply a transformation to the data so that it follows a normal distribution:

normal = ln(lognormal − shi f t)

Once the data is transformed, the multivariate gaussian model is applied as

previously described to remove outliers. Finally, the remaining data is transformed

back and used to train the calibration model.

For the analysis presented in this work, the threshold probability was set to 5%.

In addition, sensors showing a correlation with the reference lower than 0.65 were

also removed. The reason is that if the sensor is not functioning properly during the

calibration period, it should be identified and discarded.

5.2.4 Experiment Methodology

To evaluate the performance of our pipeline framework, all sensors data were man-

ually inspected to determine sensor functionality after conducting the experiment

described in Section 5.1.3. Sensors were classified into i) those that functioned

properly, ii) those that failed from the beginning, and iii) those that failed during

the measurement period. This classification was then used to evaluate the failure

detection performance of the framework for both processes.

Once we classified the sensors, we compare the readings of each board with the

ground truth reference coming from ARPA. However, ARPA provides new measures

every hour, whereas the our sensor network provides new measures every second. To

obtain comparable measures, we aggregate per-second data into the equivalent hourly

average. The resulting values were then compared with ARPA reference values to

analyze the precision of our system. The comparison was performed for both the

raw input data and the framework output data to evaluate the level of precision

enhancement provided by the proposed framework.

To assess the contribution of each process within the framework, each step is

evaluated under different parameters with the goal of identifying the optimal set.

Subsequently, a collective evaluation is conducted to determine the level of data

accuracy improvement in comparison to reference values.



154 Data Accuracy

Table 5.1 Summary of framework’s performance

Metric Framework Step

Failure

Detection

Outlier

Detection

Calibration

Model

Global

Performance

RMSE ✓ ✓ ✓

MAE ✓ ✓ ✓

r2
✓ ✓ ✓

R2
✓ ✓ ✓

Confusion

Matrix

✓

For the fault detection process, a confusion matrix is analyzed to identify the

window type that offers the highest precision in detecting sensor faults. In the

anomaly detection and calibration processes, performance is assessed through the

analysis of error metrics (RMSE, MAE) and correlation in relation to the reference

values (r2 and R2). Table 5.1 provides a summary of the performance metrics that

the framework evaluates.

5.3 Framework Performance

After the measurement campaign, the 56 low-cost PM sensors employed in the 14

air monitoring boards were manually inspected to determine their functionality. We

identified the sensors that worked properly (without significant issues of long-term

erroneous data, highly noisy measures, or values fixed in the lower range of the

sensor scale) and the ones that stopped working due to random and uncorrelated

measures.

The inspection showed that 13 PM sensors (23.21%) functioned properly through-

out the experiment’s duration, whereas 10 sensors (17.86%) failed at the beginning of

the experiment, and 33 sensors (58.93%) started to fail during the experiment. As we

did not notice any electronic issues during data logging or transmission to the main

processor, malfunctions were typically due to errors in the optical part of the sensor.

This statistic confirms the lack of reliability of low-cost PM sensors when exposed

to long periods of outdoor operation. It also shows the importance of identifying

spurious PM values and highlights the necessity to adopt a framework capable of



5.3 Framework Performance 155

automatically detecting and removing problematic sensors and their readings, such

as the one proposed in this study.

In the evaluation process, it was determined through manual comparison that the

reference instrument employed by ARPA does not register values below 4 µg/m3.

Therefore, when evaluating the framework’s performance, the inclusion of values

equal or below leads to an increase in error and negatively affects performance

measures. Given the minimal magnitude of these measurements, values equal or less

than 4 µg/m3 are excluded from the evaluations.

In this section, we follow the description flow used in Section 5.2, i.e., each

stage of our pipeline framework is evaluated to determine its contribution to the final

performance.

5.3.1 Failure Detection

The random and noisy behavior exhibited by the PM sensors poses a challenge when

defining a time window that accurately detects sensor failures. A window with an

overly short period might generate a high number of false detections, especially

during the summer season when PM levels are typically lower. On the other hand,

very long windows can omit erroneous behavior of the sensors, as explained in

Section 5.1.1, leading to a loss of sensitivity and generating false negatives. We

experimented with six different time windows, including 1, 2, 4, 8, and 12 hours,

based on empirical observations. In order to ascertain false positives and false

negatives in the detection process, we define an erroneous detection as the one in

which the algorithm identifies a failure after two-weeks with respect to the manual

inspection.

The fault detection results for each time window of the 56 sensors are presented in

Table 5.2. Table 5.3 shows the metrics used to evaluate the algorithm’s performance.

These results emphasize the inherent trade-off between accuracy and sensitivity.

Indeed, shorter windows may be prone to false positives when the particulate matter

level is low, whereas longer time windows reduces the probability of detection.

Notably, the windows lasting 8 and 12 hours demonstrate superior performance in

the fault detection task. Moreover, adopting time window longer than 12 hours leads

to an increase in false negative detections. Table 5.3 also shows that the 12-hour

window, albeit less sensitive, yields fewer errors in fault detection, as indicated by the
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Table 5.2 Summary of Confusion Matrices

True

Positives

False

Positive

False

Negatives

True

Negatives

W
in

d
o
w

S
iz

e
(h

o
u
rs

) 1 21 23 7 5

2 28 13 7 8

3 31 7 9 9

4 32 5 9 10

8 32 3 10 11

12 32 0 11 13

Table 5.3 Confusion Matrices Metrics Comparison

Accuracy Precision Recall F1-Score

W
in

d
o
w

S
iz

e
(h

o
u
rs

) 1 0,464 0,477 0,750 0,583

2 0,643 0,683 0,800 0,737

3 0,714 0,816 0,438 0,570

4 0,750 0,865 0,780 0,821

8 0,768 0,914 0,762 0,831

12 0,804 1,000 0,744 0,853

higher F1-Score value. The faults that were not detected within this window pertain

to sensors that exhibited highly noisy data before stabilizing at their lowest values or

sensors that consistently measured noisy values throughout the entire measurement

period. Detecting such faults is challenging and necessitates additional analysis to

accurately determine the underlying cause.

Figure 5.6 deepens our analysis by plotting the percentage of invalid readings

with respect to the total number of values. Positive values on the y-axis denote the

percentage of valid information that is removed due to false positives, leading to

the exclusion of genuine PM data. On the contrary, false negatives result in the

incorporation of erroneous information into the framework, thereby influencing its

performance. An optimal detection scenario is indicated by a value equal to zero.

To assess the relative effectiveness of the different time windows, we also compute

the root mean square error of all values. Notably, the 12-hour window once again

demonstrates the closest approximation to the ideal scenario.
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Fig. 5.6 Valid data loss for each sensor ID in different time windows. Negative values

indicate erroneous data that was not removed after a failure. A root mean square (RMS)

value close to zero represents the ideal scenario.

5.3.2 Outlier Detection

Following the window detection phase, various filters are assessed for the detection

and elimination of anomalous values that impair the measurement. At this stage, the

reduction in error and its impact on the correlation index compared to reference values

are analyzed after the application of the proposed three filters. Additionally, during

the data aggregation process, a comparison is made of the percentage of summarized

hourly data points that show a significant change in value, either decreasing error

(% Points Corrected) or increasing it (% Points Deprecated). Table 5.4 summarizes

the evaluation of these parameters for each of the filters, each value representing the

global mean value of measurements for each sensor over the experimental period.

Based on these values, the Z-score filter demonstrates better performance in

terms of error reduction and an improvement in the Pearson’s coefficient (r2) value,

as well as a greater impact on the percentage of summarized data points that are
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corrected. On the other hand, the median filter shows the second-best performance,

prompting an evaluation of the combination of these two filters (Median + Z-Score)

applied in a cascade manner. However, these processes exhibit worse performance

than each of the other filters when applied individually. Given these findings, the

Z-score filter is selected for inclusion in the framework pipeline to detect and remove

anomalous values prior to the application of the calibration process.

Table 5.4 Outlier Detection: Filters performance comparison

RMSE

µg/m3

MAE

µg/m3 r2 % Points

Corrected

% Points

Deprecated

Raw

Data
19,081 13,723 0,792 - -

Low Pass

Filter
19,122 13,734 0,790 0,992 0,531

Median

Filter
18,975 13,636 0,793 0,441 0,160

Z-Score 18,843 13,607 0,805 2,511 1,831

Median +

Z-Score
18,439 14,711 0,781 1,815 2,040

5.3.3 Calibration Model

In order to conduct an in-depth evaluation of each calibration model, the sensors that

exhibited failures but were not identified by the algorithm were intentionally excluded

from the calibration performance analysis. This decision was made to streamline the

metrics and provide a more accurate depiction of the overall performance, eliminating

the interference that these failed sensors might have introduced.

Figures 5.7 and 5.8 display the respective distribution of error metrics (RMSE),

and the correlation coefficient (R2). Upon the detailed examination of the results, it

was observed that the calibration models incorporating a filtering process for outlier

detection, exhibited superior performance metrics as compared to the base reference

model (PM + Hum) presented in [13]. This suggests the efficacy of outlier detection

in enhancing model calibration.

Additionally, the use of the calibration model with the outlier-detection based on

multivariate Gaussian model minimizes the impact of anomalous or highly variable

values (see PM + Hum + GM, Filtered PM + Hum + GM). The implementation of
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Fig. 5.7 RMSE Error distribution for each calibration model, the points represents the

average error of each sensor.

this algorithm, in tandem with the other methods, led to a calibration model that

proved to be more robust and resilient to errors.

Table 5.5 encapsulates the performance metrics for each calibration model,

providing a global view of their performance. This table showcases the median

values registered by the sensors throughout the experimental period. A significant

observation was that the implemented filtering process had a substantial role in

improving the correlation between variables, while the GM algorithm was successful

in decreasing the error value.

Ultimately, the filtered PM + Hum + GM model demonstrated the highest efficacy

in calibration, with notable improvements in both error reduction (RMSE and MAE

by 6.6%) and an increase in the correlation index (R2) by 4.5%. The amalgamation
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Fig. 5.8 Pearson’s correlation index (r2) distribution for each calibration model, the points

represents the average r2 of each sensor.

of these improvements underscores the value of the combined use of outliers filter

and GM algorithm in optimizing calibration methods.

5.4 Global Performance

In our comprehensive evaluation of the proposed measurement framework, we’ve

considered each component of the process chain in unison, encompassing the sensors

integrated within each of the 14 distinct monitoring stations. For each of these

stations, the determination of the hourly median provides an aggregate measure of

performance across all operational sensors within the given period. This approach

allows us to capture the most reliable and representative data from an ensemble of

PM sensors, thus boosting the robustness of our analysis. These resulting measures
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Table 5.5 Calibration model performance comparison metrics

RMSE

µg/m3

MAE

µg/m3 r2 R2

PM + Hum 9,608 7,149 0,857 0,670

PM + Hum + GM 9,125 6,744 0,857 0,692

Filtered

PM + Hum
9,185 6,960 0,865 0,677

Filtered

PM + Hum + GM
8,976 6,681 0,866 0,700

then serve as the foundation upon which performance metrics are calculated and

compared against the reference calibration model. We’ve summarized these all-

encompassing metrics in Table 5.6, providing a holistic overview of our system’s

performance.

Our findings clearly illuminate the efficacy of our system in controlling the

impact of false negatives. Thanks to the inbuilt redundancy of sensors within each

monitoring station, the majority of cases saw the system demonstrate either equiva-

lent or superior performance when compared with the values presented in Table 5.5.

This observation is a clear indicator of the robustness of our framework, showcasing

its ability to enhance the precision of measurements despite the challenges posed

by the high failure rate of these sensors observed over the course of the year-long

deployment period.

Table 5.6 Global framework performance metrics vs reference model

RMSE

µg/m3

MAE

µg/m3 r2 R2

Reference Calibration Model

PM + Hum [13]
9,006 6,757 0,858 0,654

Filtered

PM + Hum + GM
8,462 6,241 0,868 0,725

Analyzing the distributions portrayed by the box plots in Figures 5.9 and 5.10,

we observe that the dispersion in the measurements remains remarkably stable. This

observation provides evidence of high coherence and consistency in the measurement

process, further bolstering the reliability of our framework. Also the median is under

the error values provided by the sensor’s data-sheet (RMSE aprox of 18.4) [102].
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Fig. 5.9 Comparison of RMSE distribution for all monitoring stations between the proposed

framework and the reference calibration model.

However, the framework is not without its limitations. Notably, the presence

of more than two faulty sensors within a single station can pose challenges to the

system’s reliability. This occurrence, while relatively rare, can result in outlier

points in terms of erro and the correlation coefficient (R2) as demonstrated in Fig

5.10). These anomalous points, although infrequent, underscore the importance of

sensor redundancy and robust error handling mechanisms in ensuring the overall

performance and reliability of the system.

5.5 Conclusions

Anomaly detection involves the identification of malfunctioning and failures which

significantly affect the overall performance and reliability of a sensor network. In
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Fig. 5.10 Comparison of the coefficient of determination (R2) distribution for all monitoring

stations between the proposed framework and the reference calibration model.

this work, we propose a pipeline in which each stage is dedicated to detect some

type of anomaly. The overall framework leverages several algorithms to detect the

most common failure in the sensors, remove outliers, and calibrate the sensors.

The system delivers more precise measurements, even in the face of anomalies

caused by partial or total sensor failure. Furthermore, it reduces dispersion in the

measurements, thereby increasing coherence in these types of sensors compared to

other reference calibration systems. It also enables the measurement median to fall

below the error levels specified by the manufacturer.

On a broader scale, the obtained results present a promising outlook for these

types of sensors in the field of particulate matter measurement within a smart city

environment. Fault detection also paves the way for maintenance or replacements that

ensure the sensor’s longevity for extended measurement periods. In environments
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like cities where climatic conditions are more stable (near the Earth’s equator), this

feature opens up the potential for continuous monitoring. This contrasts with cities

like those discussed in this thesis, which experience critical conditions at specific

times of the year.



Chapter 6

Data Integrity

The recent ascendancy of blockchain and other Distributed Ledger Technologies

(DLTs) has permeated not only the realm of cryptocurrencies but also myriad applica-

tion areas that demand utmost data integrity and authenticity. The evolving landscape

of smart cities embodies these necessities, given that transparency in service delivery

to citizens increasingly holds the key to fostering public trust.

The present chapter commences with the introduction of a proposed architecture

for a biometric electronic identification document (e-ID) system, underpinned by

Blockchain, for citizen identity verification during transactions related to notary

services, registration, tax declarations and payments, primary health services, and

economic activity registrations, among others. A biometric e-ID system is leveraged

to confirm user authentication, thereby mitigating the risks of spoofing and associated

attacks. Moreover, to validate the document, a digital certificate, supplemented with

corresponding public and private keys for each citizen, is employed, accessible via a

user’s PIN.

This proposed transaction validation process was actualized on a Blockchain

system to record and verify transactions executed by all citizens registered in the

electoral census, thereby ensuring security, integrity, scalability, traceability, and

non-ambiguity. Furthermore, a Blockchain network architecture is exhibited in a

distributed and decentralized fashion, encompassing all network nodes, databases,

and governmental entities such as national registers and notary offices. The outcomes

of applying a novel consensus algorithm to our Blockchain network are also disclosed,
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highlighting the mining time, memory, and CPU usage as the transaction volume

escalates.

Following this, the chapter pivots to the presentation of a proof of concept,

accompanying a case study on particulate matter pollution measurement, based

on the benefits and results proffered by blockchain. This segment discloses an

architecture that facilitates the integration of an Ethereum-based blockchain with the

architecture delineated in Chapter 4. The proposed solution adeptly fuses blockchain

storage through a marriage of centralized storage in a database and distributed

storage via blockchain. A noteworthy feature introduced is the intertwining of hash

codes, enhancing data immutability and security, and enabling users to conduct

verifications, thereby reinforcing their confidence in the open data made available by

the architecture in terms of particulate matter density.

Some of the work described in this chapter has been previously published in

[224]

6.1 Blockchain and Smartcities

The increasing integration of ICT into our everyday lives has brought about a new

paradigm for modern societies. This technological advancement has also sparked

a heightened interest in the application of technology in governmental processes,

leading governments to prioritize the implementation of a novel concept known as

electronic Government (e-Government). Various studies have defined e-Government

as a strategic approach that utilizes ICT applications to enhance public services and

facilitate greater interaction between the government and its citizens, employees, or

internal entities. The overarching goal of e-Government is to improve efficiency and

effectiveness within the government itself, as well as in its interactions with other

governmental entities [225].

The definition of e-Government encompasses four primary dimensions: i) Gov-

ernment to Citizen (G2C), ii) Government to Company (G2B), iii) Government

to Employee (G2E), and iv) Government to Government (G2G) interactions [225].

One notable aspect of e-Government is its utilization of ICT for citizen registration

and identification purposes. It is important to clarify that in this study, the concept

of identification refers to the verification of an individual or entity’s identity. In
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Latin American countries, for instance, a registration process is required, which

simultaneously represents the constitutional right of citizens to be uniquely identified

by the state from birth [226]. The official registration process culminates with the

issuance of an Identity Document (ID), which serves as a distinct identifier in the

government registry database [227]. Typically, the ID contains personal information

such as the bearer’s photograph, name, date of birth, and other relevant details. This

identification process acts as a means to verify a person’s identity. However, with the

advancements in technology, a novel concept of Electronic Identity Document (e-ID)

has emerged. The e-ID involves generating the same ID in a smart card format,

where the carrier’s data can be digitally stored, including additional features such

as facial and fingerprint information for recognition. Furthermore, it incorporates

enhanced security measures through the encryption of personal information, granting

citizens access to online services [228].

Furthermore, the utilization of blockchain technology (BCT) presents a signifi-

cant opportunity to address various public challenges, particularly those associated

with corruption. Implementing BCT in the government sector can have a profound

impact, especially in scenarios where citizen demand transparency from their govern-

ment, such as in public data management, electronic voting, and taxation processes.

Currently, the national identification (ID) systems used in many countries face se-

curity issues, with authorities reporting thousands of lost documents, which can

potentially lead to identity theft. There have also been instances where criminals

have cloned individuals’ documents to evade authorities and engage in fraudulent

activities. Additionally, cases of lost or stolen identification have been exploited

by criminals to falsify people’s identities, enabling them to obtain bank loans or

fraudulently sell properties [229].

Given the existing vulnerabilities and security risks associated with national ID

systems, particularly in transactional contexts, there is a clear oportunity for the

implementation of ICT technologies to monitor and authenticate these transactions.

The utilization of blockchain networks, in conjunction with robust authentication and

user identification processes, offers a potential solution to address the aforementioned

issues. In the context of ID systems, user authentication refers to the process of

verifying and validating the connection between an ID document and its rightful

owner. This process is based on the concept of strong authentication, as proposed

in [230], which encompasses three factors: possession of something (e.g., a card),

knowledge of something (e.g., a PIN), and being or doing something (e.g., fingerprint
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or signature). The combination of these factors results in a more secure and robust

authentication method for verifying an individual’s identity.

The objective of this research is to put forward an architectural framework for

transaction management that incorporates biometric authentication and a national

electronic Identity Document (e-ID) system. The proposed architecture leverages

Blockchain technology for transaction validation, utilizes smart cards, and integrates

biometric user authentication. It is hypothesized that the functionalities of BCT

can be validated in common government transactions, and security measures for

user authentication can be improved by including fingerprint and iris recognition

information into a smart card.

6.1.1 Related Work

BCT is grounded on the concept of a decentralized ledger that cannot be modified

or tampered with, requiring consensus from all network members and recording all

validated transactions. This technology offers decentralization, integrity, reliability,

information traceability, and non-repudiation by users. These functions bring various

benefits, including transaction veracity [231]. In a Blockchain, all participating

nodes have access to the registered information at any given time. Therefore, if a

node is under attack, other network members can identify it and reject the counterfeit

block, thereby preventing fraudulent transactions [232, 233].

Despite being hailed as a promising technology for secure transactions, BCT

has undergone scrutiny, revealing several security issues that have been thoroughly

examined [234, 235].

• Balance Attack: Specifically targeting BCT systems that use the proof of work

(PoW) consensus algorithm, this attack enables double-spending [236].

• Selfish Mining Attack: This attack aims to gain undeserved rewards or waste

the resources of honest miners [237, 238].

• Eclipse Attack: This attack involves gaining control over all the connections

of a victim, isolating them from other peers and serving as a foundation for

further attacks [239, 240].
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• Decentralized Autonomous Organization (DAO) Attack: Malicious smart con-

tracts are deployed on a smart contract platform, exploiting its functionality

for malicious purposes [241].

• Liveness Attack: This attack delays the confirmation time of a specific trans-

action, allowing the attacker to continue building a private blockchain and

incorporating blocks into the public blockchain [242].

• Border Gateway Protocol (BGP) Hijacking Attack: The attacker reroutes

traffic to a mining pool they control, enabling them to steal cryptocurrencies

[243].

In [244], further security concerns related to the Internet of Entities (IoE) are

explored, specifically in the integration of mobile networks and the IoT to deliver

services. The authors propose a Blockchain-based paradigm to enhance security

within this environment. Similarly, Huang et al. huang2017decentralized present

a decentralized solution utilizing blockchain for secure data exchange in the IoT

domain. Similarly, Huang et al. [245] present a decentralized solution utilizing

blockchain for secure data exchange in the IoT domain. Their proposed architecture

leverages Ethereum and smart contracts to establish trust in the data sharing process.

Despite the proliferation of Blockchain-based applications in various domains

such as finance, reputation systems, and the Internet of Things (IoT), there is cur-

rently limited research on Blockchain architectures specifically tailored for gov-

ernment applications. To the best of the authors’ knowledge, there have been no

proposed architectures that address citizen authentication through the combined

use of smart cards and biometric technology. Notably, Estonia has emerged as a

leader in Blockchain adoption within the government sector. Since 2012, Estonia has

successfully implemented Blockchain systems in healthcare, judiciary, legislation,

security, and commercial code systems. Furthermore, plans are underway to expand

its usage to other areas, including medicine, cybersecurity, and embassy data. In ad-

dition, Estonia introduced the e-residency program in 2014, allowing non-Estonians

to access various services provided by the government, as mentioned earlier [246].

In [247], the utilization of biometry is suggested for enhancing the security of

digital identity models and its application in smart devices. These devices require a

reliable means of uniquely identifying users to provide personalized services, and

biometry offers a suitable technology for this purpose. By combining biometry with



170 Data Integrity

Blockchain technology (BCT), the proposed approach aims to ensure the integrity of

biometric features by storing them securely in the blockchain, thereby mitigating

risks such as spoofing or related attacks. Furthermore, [248] highlights the numerous

advantages that BCT can bring to both users and developers of biometric systems,

including improved security, scalability, and privacy. Consequently, the integration

of these two technologies complements each other in terms of enhancing overall

security measures.

6.1.2 Authentication Methods

Document Authentication

The authenticity of documents is verified and validated using various methods. This

subsection provides a brief review of the five most commonly employed document

authentication techniques: changeable laser image, holograms, watermarking, one-

way functions, and protocols.

Changeable Laser Image (CLI): CLI is a technique that involves using a laser

to create a pattern on a document. This pattern is designed to change its appearance

when viewed from different angles. The process of CLI includes laser drilling from

various angles to achieve the desired image effect. Laser marking offers notable

advantages such as durability and resistance to tampering. A notable example of

CLI application can be found in the national identity document of Spain, where CLI

is employed to authenticate the document by incorporating a changing image of the

individual’s photo and the date of issuance [249].

Watermarking methods: Techniques that involve concealing information within

watermarks, entail the insertion of a message, whether hidden or visible, within a

digital object (such as images, audio, video, text, or software) to authenticate the

document’s legitimacy. These watermarks can be categorized as follows: i) visual,

which are hidden marks only detectable by the human eye through light reflection;

ii) static software watermarking, encompassing data and code; and iii) dynamic

software watermarking, encompassing data structures and the sequence of operations

performed [250].

Holograms: Another approach to document authentication involves the use of

holography, which encompasses various mechanical and visual methods. These
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methods employ elements such as optical variable ink (OVI), orlas, guilloch 3D,

microtext, kinegram, reliefs, tactile letters, ultraviolet and infrared inks, and OCR-B

characters. In [251], holograms are described as three-dimensional images created

by reproducing an interference pattern recorded with coherent light beams. These

holographic images exhibit different figures through the manipulation of light, either

through movement or reflection. In a recent study [252], the concept of holograms

has been further advanced with the introduction of a digital holography (DH) system

for authentication purposes. This system utilizes a charged-coupled device (CCD)

camera and numerical 3D image reconstruction techniques to generate holographic

representations.representations.

One-way functions These functions, associated with software methods, are a

type of functions that are relatively easy to compute but exceedingly difficult to

reverse. They take input data (or files) of varying lengths and generate a fixed-length

string. Even a minor alteration, such as modifying a single character, bit, or file

property, can result in a substantial change in the resulting string. This property

enables the assurance of information integrity. Examples of these methods include

hash algorithms (such as SHA-1, SHA-2, and SHA-3) and cryptographic hash

functions (like MAC) [253].

Document authentication protocols: These protocols are employed to tackle

security concerns in open networks, aiming to verify the legitimacy of the connecting

nodes. They serve as the initial and crucial defense mechanism within a system of

trusted and open networks [254]. The commonly utilized protocols include Secure

Sockets Layer (TLS/SSL), the IP Authentication header (IPSEC), Secure Shell

(SSH), and Kerberos.

In summary, when it comes to national identification document systems, the

predominant approach for document authentication involves the utilization of me-

chanical and visual methods. Specifically, the combination of Changeable Laser

Image (CLI) and various holographic techniques is commonly employed. However,

as highlighted in [255], these methods are static and predetermined, rendering them

susceptible to potential risks such as duplication or counterfeiting. Therefore, there

are still security challenges to address in national identification document systems,

particularly when integrating different authentication methods for documents, users,

and transactions, which necessitates further consideration from an implementation

standpoint.
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User Authentication

These methods involve the verification and validation of the relationship between the

document and its owner. In this section, the definition provided in [230] is adopted,

and three common factors used for authentication are considered: i) something that

is or done by the user, such as biometric and behavioral characteristics, ii) something

that is known by the user, such as PINs, passwords, and one-time passwords (OTPs),

and iii) something that is possessed by the user, such as Public Key Cryptography

(PKC) technologies.

The factor of authentication based on "something that is or done by the user"

primarily encompasses various biometric technologies. These technologies involve

sensors and techniques that enable the capture of distinct biometric characteristics

of individuals. In [256], the authors elaborate on the utilization of biometric tech-

nologies for automated personal recognition, which relies on two types of biometric

characteristics. The first category pertains to biological traits such as fingerprint, face

recognition, palm print, hand geometry, and iris recognition. The second category

encompasses behavioral characteristics such as gait, signature, voice, and typing

pattern.

The operational principles of a biometric system are demonstrated in [257].

While numerous biometric technologies exist today, not all of them have reached

full maturity. Therefore, [258] focuses on describing the most commonly utilized

biometric technologies.

Fingerprint recognition system: It is one of the most established and exten-

sively developed methods. It is considered the oldest biometric technology. In

[259], various types of fingerprint readers are described, including optical, capacitive,

ultrasonic, and thermal readers, which are used to capture the fingerprint character-

istics. The reader scans and identifies the fingerprint pattern, known as minutiae,

along with additional features like body temperature. According to [257], minutiae

encompass information about bifurcations, ridge endings, dots, core points, and delta

points within the fingerprint. The fingerprint reader captures a significant number

of minutiae, which are then compared with stored minutiae, producing a numerical

result indicating the likelihood of a match between the captured and stored finger-

prints. The system’s reliability increases with a higher number of acquired minutiae.

Fingerprint systems offer several advantages, including distinctiveness or uniqueness,
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permanence, and performance in terms of accuracy, speed, and robustness [260].

However, they also have certain limitations, such as lack of universality when indi-

viduals do not possess fingerprints due to accidents, ageing, issues of acceptability,

and vulnerability to circumvention through imitation using artifacts or substitutes.

Face recognition system: It is a biometric technology that focuses on identifying

facial features and utilizes a digital camera to convert the user’s facial image into

digital data for authentication purposes [257]. Unlike other biometric methods, face

recognition is typically a passive system as it does not require individuals to actively

interact with a scanner. This system is capable of capturing face images from a

distance using a video camera, and through the utilization of a face recognition

algorithm, it processes the acquired data to detect, track, and ultimately recognize

individuals. Face recognition involves the computerized recognition of personal

identity based on geometric or statistical features extracted from facial images [261].

Iris recognition system: It is a type of biometric technology that focuses on

analyzing the unique features present in the colored tissue ring of the iris [257].

Compared to other eye biometric technologies, iris scanning is considered to be

less invasive as it utilizes a conventional camera element and does not require close

contact between the user and the scanner. Furthermore, iris recognition has the

potential for achieving higher matching performance than average. As a result, iris

biometrics are particularly effective in identification mode [261].

Authentication based on the factor of "something that is known by the user"

primarily revolves around the use of passwords or PINs that individuals are familiar

with

A Personal Identification Number (PIN): A PIN is a numerical password

utilized for user authentication in a system. Unlike being printed or embedded on

the card, the PIN is manually entered by the user [262].

The password: A password is a word or combination of characters utilized by

a user to verify their identity and must be kept confidential. Various techniques

employed by attackers to acquire passwords include guessing, dictionary attacks,

brute force, and rainbow tables [263].

One-time Password (OTP): OTP is an advancement in password authentication

that reduces the risk of replay and brute force attacks. It offers a unique and valid

password for each authentication session, requiring the generation of a new OTP for
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subsequent access. This approach significantly limits the success rate of a Man In

the Middle (MitM) attack.

Zero-Knowledge Proofs (ZKP): Another user authentication solution is Zero-

Knowledge Proofs (ZKP). ZKP enables a user to prove the truth of a statement

to a verifier without disclosing any sensitive information or procedures. Financial

institutions often employ this method by randomly asking customers personalized

questions that were previously established by the customers themselves [264].

The final authentication methods rely on the "something that is possessed by

the user" factor, it is primarily associated with Public Key Infrastructure (PKI). PKI

involves three entities: a client, a server, and a certification authority. The certification

authority acts as a trusted entity that verifies the identities of the communicating

parties and manages the validity of the certificates. Public Key Cryptography (PKC)

plays a key role in this context and generates two keys [265]. One key, known

as the private key, is securely stored, while the other key, known as the public

key, is made publicly available. The private key is used for encryption, and the

corresponding public key is used for decryption, ensuring non-repudiation [266].

PKC finds extensive application in broadcast authentication [267], where various

technologies are employed for writing or reading information. These technologies

are described below:

Barcode: Barcodes offer quick data capture, immediate integration of decoded

data into systems, and cost-effective printing. There are two main types of barcodes:

one-dimensional (Figure 6.1a) and two-dimensional (Figure 6.1b and 6.1c). One-

dimensional barcodes consist of a series of bars and spaces designed to be scanned

and read by a computer, but they have limited storage capacity, typically ranging

from 20 to 30 digits. Examples of one-dimensional barcodes include EAN 13, EAN

8, CODE 128, DUN 14, and UPC 39. To ensure data integrity, barcode labels often

include a control digit that prevents data loss during scanning, and any data failing

the set point digit test is not entered into the system [268]. Two-dimensional barcodes

can store more information compared to one-dimensional barcodes. For instance,

PDF-417 can hold a maximum of 1,800 alphanumeric characters (ASCII) or 1,100

binary codes per symbol (each rectangle forming a "point cloud"). Another example

is the QR Code (Quick Response Code), which is an ISO international standard

(ISO/IEC18004). It utilizes four standardized encoding modes: numeric (7,089

characters), alphanumeric (4,296 characters), byte/binary (2,953 bytes), and kanji
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(1,817 characters) for Japanese writing [269]. However, QR Codes can pose security

risks as they can be manipulated to change encoded information, potentially enabling

SQL injection, command injection, phishing and pharming attacks. Additionally,

reader software vulnerabilities and social engineering attacks are also possible [270].

(a) (b) (c)

Fig. 6.1 Barcode technology evolution: a) Code 128. b) Code PDF417 and c) QR Code.

Smart card: A smart card consists of an embedded microprocessor and a

memory, serving various purposes such as identification, data access, authentication,

security key storage, and financial transactions [271]. When a smart card is inserted

into a Card Acceptance Device (CAD), the metallic pads on the card make contact

with the corresponding metallic pins on the CAD, enabling communication between

the two. Upon insertion, smart cards are always reset, triggering the transmission of

an "Answer-to-Reset" (ATR) message by the card. This message informs the CAD

about the communication protocols and transaction processing rules associated with

the card.

Radio Frequency Identification (RFID): RFID is a technology that enables

proximity identification and data transactions using electromagnetic signals. Its

effective range varies from 10 cm to several meters, depending on the type of RFID

tag being used. This technology is widely employed for automated identification

of objects and individuals, and it has greatly contributed to the advancement of

ubiquitous or pervasive computing [272]. An RFID system consists of three primary

components: a tag or transponder, which is typically affixed to the object or person

being identified and serves as the RFID device; a tag reader or transceiver equipped

with an antenna, which facilitates reading and writing of data on the RFID tags; and a

data processing subsystem that utilizes the information obtained from the tag reader.

The data processing subsystem is usually connected to a host system or an enterprise

system [273]. The storage capacity of RFID tags is typically limited, ranging from 1

kilobyte (Mifare card) to up to 8 kilobytes [274].

Near Field Communication (NFC): NFC is a specific application of RFID tech-

nology that enables wireless communication and data exchange between devices in

close proximity, typically within a distance of up to 10 cm. One of its key advantages
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is its simplicity, as a transaction can be initiated simply by bringing an NFC-enabled

device close to a reader, another NFC device, or an NFC-compliant transponder.

NFC devices operate in three different modes: peer-to-peer mode, reader/writer

mode, and card emulation mode. In peer-to-peer mode, two NFC devices establish

communication and exchange data. A device operating in reader/writer mode can

read or write various types of information, such as URLs, SMS messages, and phone

numbers, and it can store data capacities of up to 32 KB (Type 4) [275]. Lastly,

the card emulation mode allows an NFC device to emulate a contactless smartcard

[272].

Utilizing the aforementioned technologies, it becomes feasible to authenticate

individuals or documents. Although governments employ multiple methods to

identify citizens and mitigate identity theft, the authentication of transactions still

faces significant challenges.

6.1.3 Proposed Architecture for Biometric E-ID System with

Blockchain

The proposed system offers enhanced security measures for both verifying and au-

thenticating the document holder and the document itself. Furthermore, to reinforce

the validation process of the document and the conducted transactions, blockchain

technology is utilized. This integration incorporates existing security measures such

as holograms, barcodes, and 3D images found in conventional identification docu-

ments. The Smart Card technology, equipped with a cryptographic chip, is employed

to store all relevant bearer information. By implementing blockchain technology, the

system ensures the recording and verification of transactions carried out by registered

citizens in the electoral census. For further information on the transaction and block

details of blockchain systems, refer to [276].

Blockchain Architecture

Figure 6.2 depicts the distributed and decentralized network architecture, encompass-

ing all network nodes, the blockchain-based database, and government entities. The

network functions as a private cloud, exclusively allowing participation from nodes

situated in notarial and registry entities. Three types of nodes are present within the
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network. Firstly, nodes located in register offices are responsible for issuing new or

duplicate identity documents upon a citizen’s personal request. These entities are

exclusively authorized to generate digital certificates, comprising public and private

keys, for each citizen using their unique PIN. Through this digital certificate, citizens

gain the ability to sign digital documents, create accounts, conduct transactions, and

authenticate themselves with relevant authorities. Secondly, nodes located in notary

offices maintain records of individuals’ civil status. Their role involves verifying

the alignment between people’s identities and their corresponding documents by

providing testimonial evidence of authenticity.

Fig. 6.2 Proposed Blockchain architecture for the e-ID System [276]

Blockchain Node Architecture

The block diagram presented in Figure 6.3 illustrates a node within the proposed

network architecture. A citizen who possesses their own electronic DNI (Digital

National Identity) utilizes a Match on Card (MoC) system to generate a security

certificate. This MoC system enables local verification of the templates stored on

the card, which include fingerprint and iris templates. The templates are read by

a standard 32K NFC storage chip, adhering to the common criteria EAL 5, and

allowing user authentication with the national government using generic software.

Throughout the transaction, both the media on the card and the encryption provided

by the Blockchain ensure the protection of data. All nodes within the network are

aware of the transaction’s existence, but only the receiver possesses knowledge of its

content.
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Fig. 6.3 Block diagram of a node in the proposed network architecture

Typically, the software employed for user identity validation exhibits security

vulnerabilities, including potential NFC failures that may lead to identity phishing

and the acceptance of mismatched fingerprints. To address the threat of user imper-

sonation, our proposal incorporates a dual biometric user validation, alongside the

encryption of public and private keys within the security certificate via NFC. More-

over, an extra layer of security is ensured by storing transactions using Blockchain

technology in a distributed system, which guarantees traceability, security, and

scalability.

The solution put forth adopts a private model wherein all nodes are owned

by a single organization, namely the national government. This approach ensures

that the system operates within strict boundaries, delivering high efficiency and

enabling centralized information management. By integrating this system with the

document, the likelihood of information compromise or impersonation is significantly

minimized.

Deployment Model

To illustrate the physical relationships between hardware and software components,

the software deployment diagram is presented in Figure 6.3. The transaction process

carried out by a citizen is described as follows:

1. The citizen visits a government office, such as the National Register office,

local register office, or notary’s office. They access an authorized computer

called Webserver identification, which is equipped with a card reader and a

biometric reader.
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2. The citizen utilizes their card and biometric feature (iris) to authenticate

themselves.

3. Upon successful identification, the citizen’s information is automatically dis-

played on a form. Subsequently, the citizen can proceed with a transaction by

selecting an option from a drop-down list.

4. The Identification webserver is connected to a database that stores citizen data,

including digital signatures, fingerprint templates, and iris information. This

enables the verification of the citizen’s authenticity.

5. Finally, the Identification webserver will present a message on the screen

confirming the successful validation of the user.

Fig. 6.4 Deployment model

Transactions

Once the system has successfully validated and authenticated a citizen, they can

proceed to perform a transaction by selecting one of the predefined options from
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a drop-down list. The available transactions may include actions related to the

citizen’s personal information, such as updating their civil status, registering a child,

requesting a duplicate document, and other relevant operations, as depicted in Figure

6.5.

Fig. 6.5 Use case diagram

System Implementation

Each time a user initiates a transaction, it undergoes a validation process to ensure

its correctness and adherence to the required format. Once verified, the transaction is

signed using the user’s digital certificate. Subsequently, the transaction, along with

its relevant information such as the Transaction ID and Issuer, is recorded and stored.

These transactions remain in a pending state until a specified number, such as one

thousand (1000), are accumulated, at which point a new block is created.

The exact number of transactions per block can be configured based on perfor-

mance considerations. Upon the creation of a new block, the process of determining
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which node will be responsible for mining it begins, following the consensus algo-

rithm proposed in the following subsection. Finally, once a new block is successfully

mined, it is incorporated into the Blockchain, ensuring the secure and immutable

storage of the recorded transactions.

6.1.4 Consensus Algorithms

These algorithms play a crucial role in the functioning of the system as they are

responsible for adding new blocks to the Blockchain and maintaining control over it.

The nodes within the Blockchain network are tasked with meeting certain require-

ments imposed by the system, typically involving the generation of a hash function

output with a specified number of leading zeros. The choice of consensus algorithm

is important as it can significantly impact power consumption. For instance, the

proof of work algorithm can be energy-intensive, making it less suitable for private

Blockchains. Alternatively, the proof of stake algorithm offers an alternative ap-

proach, or it is also possible to design a custom algorithm tailored to the specific

needs and environment of the Blockchain system.

Proof of Work (PoW) Algorithm

The proof of work algorithm, which was initially introduced with the creation of

Bitcoin in 2009, is widely recognized and known. It involves the process of finding

a "magical number" called a nonce, which grants the right to add a new block to the

Blockchain and receive a reward. The nonce value is incremented from zero until a

number is found that produces a hash function output with the required number of

leading zeros, as specified by the system. This process is repeated multiple times by

calculating the SHA256 hash function and checking if the condition is satisfied. In

essence, mining refers to the repetitive hashing of the block header, adjusting one

parameter at a time, until the resulting hash meets a predetermined target. The only

way to find a specific solution to the problem is through trial and error, similar to a

brute force attack.

Each node in the network competes to find a solution, and when a node success-

fully finds a solution, it is rewarded. This process involves every node attempting

to solve a mathematical operation, and once a solution is found, other nodes stop

their search and verify the proposed solution. The solution is considered valid if at
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least 51% or more of the nodes approve it. This process is known as mining, and the

individuals or nodes involved in solving the mathematical operation are referred to

as miners.

Mining plays a crucial role in securing the Blockchain system without relying on

a central authority. It prevents anyone from creating a block at will, and it also serves

to generate new cryptocurrency within the system through the rewards received

by miners. The creation of cryptocurrency acts as an incentive system that helps

maintain the security of the decentralized ledger

The difficulty target in the Bitcoin Blockchain is adjusted approximately every

2016 blocks in order to maintain an average block time of 10 minutes. This adjust-

ment is based on the collective computing power of all the participating nodes in the

network. However, this mechanism poses significant environmental concerns. Due

to the high value of bitcoins and the potential for substantial rewards, a large number

of individuals are motivated to engage in mining activities. As a result, the difficulty

target is set at a high level, requiring a significant amount of computational power

to solve. This high level of difficulty translates into a considerable consumption of

electricity and energy resources, contributing to environmental challenges associated

with Bitcoin mining.

Once a solution is found, it is broadcasted to all nodes in the blockchain network

to add the block to the public ledger. However, due to the decentralized nature of the

network, it is possible that not all nodes receive the validated block at the same time.

In some cases, another node may find a solution and start broadcasting it before

everyone receives the initially validated block. This situation leads to what is known

as the forking problem, where different versions of the ledger exist with different

chains of blocks.

To address this problem, each node continues with the block it received first.

Over time, one chain will become longer than the others due to factors such as more

nodes mining on that chain. In such cases, the rule is simple: the longest chain is

considered the valid one. Consequently, when a forking problem occurs, the process

continues, and eventually, the longest chain is accepted by all nodes. While the

youngest block in a chain can be subject to variation during this process, the difficulty

of adding a new block ensures the overall stabilization of the blockchain.
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Security Problems in PoW

Blockchain technology is widely regarded as highly secure due to the inherent

difficulty of falsifying a block or altering the ledger. Nonetheless, certain secu-

rity concerns have emerged, prompting the development of various proof-based

algorithms aimed at addressing these issues.

For instance, consider the scenario where the contents of an older block are

modified. In such a case, the validity of the block’s hash is compromised, as the

previously found Nonce value was suitable for the original transactions. As observed,

even a slight alteration in the input of a hash function yields significant changes in the

output. Consequently, all subsequent blocks linked to the invalidated block through

the previous hash block field in the header also become invalid. The input for the hash

function is derived from the header, rendering the previously determined Nonce value

ineffective for all subsequent blocks. This means that modifying a portion of the

Blockchain using the hash function renders all subsequent blocks false, necessitating

the rediscovery of Nonce values for the affected blocks. Due to the demanding

nature of the puzzle and the rule that the longest chain is considered valid, tampering

with the Blockchain may seem impossible. However, if an individual possesses an

extensive array of modern hardware resources that surpasses the combined computing

power of all network nodes, they could potentially falsify the entire Blockchain.

This attack, known as the Double spending attack or the 51% attack, references the

minimum computing power required to carry out such an exploit [234].

Currently, the likelihood of a single node executing such an attack is extremely

low. However, the emergence of mining pools introduces the possibility of carrying

out such attacks. To address this concern, extensive research has been conducted

[277]. In a mining pool, the rewards are distributed evenly among all participants.

In order to disrupt pool mining, Miller et al. [278] proposed an enhanced version

of the Proof of Work (PoW) algorithm known as non-outsourceable puzzles. This

consensus algorithm aims to discourage mining pools by introducing a mechanism

that allows a miner within the pool to claim all the rewards without exerting any

individual effort.

In the Ethereum cryptocurrency, an alternative technique known as GHOST

(Greedy Heaviest Observed SubTree) is employed. This consensus algorithm man-

dates that mining nodes include the headers of recently orphaned blocks, referred to

as uncles, in the block header they intend to validate. Orphaned blocks are blocks
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that have been added to parallel branches of the primary Blockchain. In the context

of Bitcoin, an uncle is considered an orphaned block because it does not reside on

the longest chain. Unlike the traditional approach of selecting the longest chain, the

GHOST strategy selects the chain with the highest number of PoW contributions

as the valid chain. Ethereum incentivizes miners to include a list of uncles when

validating a new block. This technique has two primary effects:

• It reduces the incentive for centralization by providing minimal rewards to

miners who produce obsolete or orphaned blocks. Since these miners are not

part of a large group and receive notifications about other blocks later due to

network propagation delays, their rewards are diminished.

• It enhances the security of the chain by augmenting the cumulative work on

the main chain. As a result, less work is wasted on alternative branches in

favor of the main branch, leading to a more secure Blockchain.

Proof of Stake (PoS) Algorithm

In this system, every node in the network must demonstrate its ownership of a

specific portion of the circulating tokens in order to participate in the block validation

process. The consensus algorithm then selects one of the nodes with the largest stake

to validate a new block. In a PoS context, the probability of a node being chosen

to validate a new block is proportional to its stake or percentage of the circulating

tokens (currency or shares) it possesses. If a node owns x quantity out of a total of y

coins, its chance of appending the next block is x/y. This selection process is carried

out in a pseudorandom manner to prevent a node from predicting when it will be

chosen to validate the next block. However, certain additional parameters, such as

the duration of token ownership, may be considered, allowing the "wealthiest" nodes

to be selected more frequently. It is important to note that the validation of a block

does not directly result in monetary compensation; instead, holding a certain amount

of cryptocurrency generates a reward similar to earning interest.

PoS offers two notable advantages over PoW. Firstly, it is a more energy-efficient

mechanism as it requires significantly less energy consumption compared to PoW,

which relies on extensive cryptographic calculations for block validation. In contrast,

PoS operates based on the ownership of a certain percentage of circulating tokens,

eliminating the need for intensive computational power. Secondly, PoS makes the
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51% attack more challenging. In a PoS system, executing a 51% attack requires

controlling more than half of the circulating tokens, which is typically a more

expensive and difficult task compared to controlling 51% of the computing power in

a PoW system. As a result, PoS provides increased resistance against such attacks.

Security Problem in PoS

PoS algorithms also come with certain drawbacks and security concerns. One

prominent issue is known as tNothing-at-Stake. In pure PoS algorithms, nodes

lack the incentive to vote for the most likely legitimate chain, such as the longest

chain in the case of Bitcoin. When multiple potential chains exist, nodes aim to

maximize their chances of receiving rewards by evenly allocating their stake and

simultaneously voting for the latest blocks in the potential chains. Unlike PoW,

where mining on multiple chains requires energy expenditure and monetary costs for

miners, PoS allows mining on multiple chains at no cost. This situation creates an

opportunity for miners to prioritize their personal interests, potentially facilitating

double-spending attacks. An attacker could initiate a fork from a block preceding a

transaction and redirect the funds to themselves, even with just a 1% stake, as their

fork would prevail due to other miners mining on both chains simultaneously.

In a pure PoS system, the selection of the block appender is based solely on the

stake owned by the miner. This means that miners with a larger stake have a higher

probability of being chosen. However, this approach could result in undesirable

centralization, as the richest member would always have the advantage. To address

this issue, alternative methods have been suggested in the literature [279, 280] to

mitigate the concentration of power and promote a more decentralized system.

Satoshi Consensus Algorithm

The Satoshi consensus algorithm, as described in Bentov et al.[281], utilizes the state

of the block to determine the miner responsible for appending the next block. A

Satoshi, the smallest unit of currency in bitcoin, serves as the basis for this selection

process. To determine the block appender, a random index number is generated

within the range of 0 to the total number of satoshis. Subsequently, the transactions

associated with this specific satoshi are identified, and the current owner of that

satoshi is designated as the miner responsible for appending the next block.
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Proof of Luck (PoL) Algorithm

The proof of luck algorithm operates by distributing transactions to participating

nodes, who then construct a new block by committing these transactions. This

algorithm incorporates Trusted Execution Environments (TEE), which are secure

hardware environments like Intel SGX-enabled CPUs. Within a TEE, a proof of

luck is generated, and the participant node uses this proof to extend its chain and

subsequently broadcast it. The new block includes the hash of the previous block, the

data comprising new transactions, and the proof of luck. This proof of luck involves

computing a numeric score, known as luck, for a given blockchain. The luck score

is obtained by summing a predetermined set of values from each block. The chain

with the highest luck score is selected as the preferred chain for further validation

and continuation [282].

Consensus Algorithm for Private Blockchain

The Proof of Luck (PoL) algorithm incorporates Trusted Execution Environments

(TEE) to ensure the proper execution of desired code and prevent potential attacks

on the Blockchain. However, considering that the proposed private Blockchain in

this section operates within a trusted environment where nodes are inherently trusted,

the use of TEE becomes unnecessary, eliminating the need for additional hardware

requirements. As a result, in the following subsection a novel consensus algorithm

called the Tournament Consensus Algorithm is proposed.

Tournament Consensus Algorithm (TCA)

When a node seeks to join the blockchain, a request is sent to all nodes to obtain

authorization. Upon confirmation as an authorized node, it will be granted access to

the blockchain, the ability to create transactions, and the opportunity to attempt to

append the next blocks. At random intervals, each connected node is prompted to

select a number between 0 and 1, typically within a defined time frame (e.g., 15 sec-

onds as suggested by the authors of the PoL algorithm, in comparison to Ethereum).

Subsequently, every node broadcasts their chosen number and awaits receipt of

the random numbers from other nodes. Upon receiving all the random numbers, a

node selects the highest value and sends a "winner vote" to the corresponding node.

Once a node receives "winner votes" equal to the number of connected nodes, it is

designated as the winner and gains the privilege to add the next block. The winning
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node then mines the block using a challenge that is considerably easier compared to

the proof of work consensus algorithm, thereby enabling any standard computer to

quickly find the solution. This approach effectively avoids time wastage and energy

consumption.

TCA presents a straightforward mechanism for determining the mining node. By

leveraging the favorable attributes of the PoL algorithm, it is achieved a improved

response time, as illustrated in Figure 6.6, while effectively mitigating high-cost

attacks on individual Trusted Execution Environments (TEE). Furthermore, the

process of sending random numbers and executing the consensus algorithm can be

initiated with configurable values.

6.1.5 System Performance Results

Several tests were conducted on the network to assess the effectiveness of the

proposed consensus algorithm, the Tournament Consensus Algorithm. These tests

involved measuring the mining and broadcasting time, cache memory usage, and

CPU percentage. A specific transaction, as outlined in Table 6.1, was used as part of

these tests.

ID Number 101

Serial number 1

Class Notary

Type Civil status

Information Married

Table 6.1 Transaction example

The lab computers utilized for conducting various tests shared the following

common specifications:

• Processor: Intel Core i5 750 with a clock speed of 2.66 GHz and 4 cores.

• RAM Memory: 4 GB.

• HDD: 512 GB.

• Network Card: Intel 82574L Gigabit Ethernet NIC.

• Operating System: Linux Ubuntu 18.04.
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The mining process time for a single block and the subsequent broadcasting

process of that block to all nodes in the Blockchain system is illustrated in Figure

6.6. The test was conducted using a lab computer, with the number of transactions

being varied to obtain an estimated time. As indicated in the figure, mining a block

containing one thousand (1000) transactions took approximately five hundred and

thirty (530) milliseconds.

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

350

400

450

500

550

Fig. 6.6 Time for mining and broadcasting one block versus the number of transactions.

To determine the required cache memory for storing multiple transactions until

the corresponding block is finalized, a test was conducted. The results indicate that

with one thousand (1000) transactions, the approximate RAM usage is six hundred

(600) Megabytes, as shown in Figure 6.7.
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Fig. 6.7 Used memory for broadcasting a number of transactions

The CPU usage of a miner computer during the broadcasting process is illus-

trated in Figure 6.8. Initially, as the number of transactions increases from one

hundred to two hundred (100-200), the memory consumption rises rapidly. However,

after reaching two hundred ten transactions, the memory consumption continues to

increase, but at a slower rate. Consequently, when broadcasting one thousand (1000)

transactions, the CPU usage reaches approximately 43%.
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Fig. 6.8 CPU usage for creating and broadcasting a number of transactions.

Different strategies can be applied to address the considerable CPU usage per-

centage. For instance, if the number of users is not excessively high, one approach
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is to adjust the number of transactions by setting a limit on the CPU usage. For

instance, based on Figure 6.8, it can be observed that with a CPU usage limit of 30%,

approximately four hundred fifty (450) transactions could be managed effectively.

In cases of special events or occasions when a significantly larger number of

transactions are expected, such as during popular elections, it might be necessary to

maintain the number of transactions at a higher level, such as one thousand (1000).

However, in such situations, dedicated machines with better hardware specifications

can be employed specifically for the purpose of creating and broadcasting transac-

tions when a block is mined. This ensures that the increased transaction volume can

be handled efficiently and effectively without overburdening the overall system

6.2 Air Pollution Monitoring over Blockchain Tech-

nologies

The previous section describes an approach towards private blockchain technolo-

gies, where the computation process is controlled by governmental entities. This

blockchain model, while energy-efficient, relies on the network of authorized nodes

being adequately protected to maintain data integrity. It would be significant to

accumulate air pollution data, relayed in real-time via sensors, and subsequently

store them in a blockchain, also known as Distributed Ledger Technology (DLT), to

ensure their immutability.

This chapter features the design and development of a software framework

enabling the integration of an Ethereum-based blockchain with the IoT framework

presented previously in Chapter 4. The recommended solution is presented as an

alternative method for incorporating a broad range of IoT devices, circumventing the

reliance on centralized intermediaries and third-party services, thereby addressing

the weaknesses of a private blockchain.

6.2.1 Introduction

Over the past decade, the emergence of novel technologies has paved the way for a

dynamic interconnection between the digital and physical realms, giving rise to what

is now known as the Internet of Things (IoT) ecosystems. These systems, defined



6.2 Air Pollution Monitoring over Blockchain Technologies 191

by their ability to link a myriad of devices into a cohesive, communicative network,

have been integral in the evolution of our technological landscape.

In parallel, blockchain technology has experienced an equally, if not more, rapid

evolution. This has been spurred on by its diversified use-cases, ranging from

its foundational role in cryptocurrencies [231] to its significance in non-fungible

tokens (NFTs) - a cornerstone for digital collectibles and markets [283]. Another

pivotal application of blockchain lies in the realm of smart contracts. These are

predefined, algorithmic processes that can be decentralized and securely inscribed

on the blockchain. The procedures prescribe specific responses to new information

inputs, such as incoming transactions [284].

Interestingly, the convergence of IoT and blockchain technologies can be lever-

aged to harness the benefits of both spheres. With this fusion, IoT devices gain

the capability to independently authenticate transactions and record them on the

blockchain. This process eliminates the necessity for third-party intermediation.

Global perceptions of monitoring systems and their produced data vary, with a seg-

ment of the population questioning their reliability and credibility. The use of this

type of technoligies could enhance the user confidence in environmental monitoring.

The implementation of a blockchain serves this purpose, offering a robust method to

validate and preserve the authenticity of the data. The synergistic combination of

IoT and blockchain provides a formidable solution that significantly benefits areas

such as environmental monitoring and citizen satisfaction.

6.2.2 Background

Several approaches to integrate IoT with blockchain have been investigated. In [285],

the primary challenges associated with the the merging of these two technologies,

such as storage issues, are explored. The resource constraints and system heterogene-

ity may prove inadequate for the management of a secure blockchain. Concerning

throughput, the diversity in communication (see Chapter 4) makes achieving consen-

sus costly. Thus, the use of intermediaries is often proposed to facilitate interaction

with the blockchain, relieving devices from consensus mechanisms and storage

responsibilities. This model is also proposed in [286], which outlines a decentral-

ized architecture requiring delegation to intermediary nodes for interaction with the
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blockchain. In [142], the focus is directly on air pollution data, using LoRa and a

relay device for blockchain interaction.

Another alternative involves the use of blockchain schemes that do not employ

mining but depend on a Hash Directed Acyclic Graph (DAG), more commonly

known as Tangle, to record transactions. This mechanism forms the basis of IOTA,

an open-source cryptocurrency developed for IoT with the aim of eliminating in-

termediaries, with a detailed explanation provided in [287]. However, this system

places a burden on IoT devices in the calculation of PoW, resulting in energy costs

and fees to secure the network.

Drawing from the literature, the most common solution can be summarized as

shown in Figure 6.9. In this architecture, the data flow generated by sensors is

funneled through an IoT Hub, which manages data aggregation, device administra-

tion, and in some cases, data transcoding (LoRaWAN), and centralized storage. An

IoT-Blockchain intermediary is introduced, fully functional within the blockchain

(i.e., a node within the peer-to-peer network with the capability to store, verify, and

update data).

Fig. 6.9 Common architecture to merge IoT Solutions with Blockchain.

Numerous such models have been applied to air pollution monitoring in the

literature. In [288], an IoT prototype is introduced to determine the air quality

index through neural networks and proposes an architecture for data storage in

blockchain. However, the details regarding the usage and application of blockchain

are not presented. The authors of [289] propose a prototype architecture similar

to the one described in Figure 6.9 but emphasize transaction and storage costs
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on a public blockchain like Ethereum. They suggest a cost reduction by storing

data on a distributed file system. This system, upon storing data, returns a hash,

which due to its smaller size, is stored in the public blockchain. Although this

architecture innovatively decentralizes storage, such solutions still present challenges

in reliability.

Other authors in [290]propose a prototype with an intermediary-based architec-

ture. However, they do not clearly define the type of blockchain used and the amount

of data the transactions correspond to. Another alternative is presented in [291]

where the architecture employs 5G transmissions for the interaction between the

intermediary and the blockchain, but the overall architecture remains consistent with

the previous models.

Lastly, in [292], a deployed implementation is presented using a station that

generates measurements every 3 5 minutes. In this study, a distributed file system

is employed once again for storage, combined with a centralized database, and

Ethereum as the public blockchain. Under these conditions, they propose data

storage optimization to reduce the transaction fees required to process transactions

on Ethereum.

6.2.3 Proposed Architecture

Referring to the deployment architecture detailed in Chapter 4 (Figure 4.2), this

architecture includes distinct elements specially designed for interaction with the

Internet of Things (IoT) devices. These elements involve nodes for both storage and

the retrieval of a centralized database, along with other nodes for comprehensive

data analysis and processing.

This architecture, when juxtaposed with the more generic architecture meant for

IoT and blockchain integration showcased in Figure 6.9, introduces these components

under the umbrella term IoT Hub. The amalgamation of these elements results in a

holistic system that facilitates data aggregation, effective device management, data

transcoding (primarily via the LoRa Gateway), and safe data storage.

This proposal seeks to address specific vulnerabilities of the existing architectural

framework, especially those associated with data integrity and potential manipulation.

To mitigate these risks, the innovative solution incorporates blockchain technology

that endows the system with the ability to verify the immutability of data from
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a user’s perspective. The comprehensive design of this proposed architecture is

depicted in Figure 6.10 and consists of five layers.

Fig. 6.10 Complete proposed architecture, IoT air monitoring with Blockchain.

Device Layer

At this stage, digitization of environmental variables, namely, temperature, humidity,

and atmospheric pressure, is performed. Additionally, readings related to pollution

due to particulate matter (specifically PM10 and PM2.5) as well as GPS positioning

are also digitized. The whole process of measurement acquisition and digitization
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is controlled by the IoT device presented in Chapter 4. This device is responsible

for data collection, formatting in accordance with the employed data transmission

technology, and ultimately, transmitting the information to the subsequent layers in

the architecture.

Transmission Layer

This layer consolidates various wireless transmission technologies, categorized

according to the deployment type (refer to Chapter 4 for further details). The

architecture embodies the requisite nodes for transmission through participatory

sensing, facilitated by a Mobile app. This application acts as a bridge between the

sensor, communicating via Bluetooth, and the succeeding layer that uses a mobile

cellular network.

In the context of Low Power Wide Area Network (LPWAN) technologies, the

model employs LoRa Gateways, capable of converting LoRa frames into MQTT

messages over TCP/IP packets . Finally, in the Wireless Network category, all the

wireless technologies compatible with TCP/IP protocols, such as WiFi, LTE, and

others, are depicted. All transmitted data, barring the cases when participatory

sensing is implemented, are encapsulated as MQTT messages. Communication with

the IoT interface layer is enabled through the use of an MQTT broker.

IoT Interfacing Layer

This level embodies various nodes that gather and interpret data originating from IoT

devices. Depending on the employed format, the decoded data is subsequently stored

in the data preservation layer. The proposed architecture integrates three distinct

nodes: a Flask server that fetches data from a mobile application via a RESTful API,

and an MQTT client that subscribes to diverse MQTT topics generated by the IoT

devices. Following the decoding of data, which is transmitted in binary format, these

nodes proceed to deposit the data into a database.

Additionally, a blockchain intermediary node performs transactions that ensure

data integrity within the database. It achieves this by generating a hash of the

data received hourly from each device, which is then stored in the blockchain.

Concurrently, it transmits via MQTT the metadata utilized in the hash generation for
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its preservation in the database. A more detailed description of the hash generation

process is presented later in the next subsection.

Data Preservation Layer

The present layer consolidates various databases deployed within the architecture,

storing data derived from the measurements alongside the corresponding meta-

information. This meta-information plays a crucial role in the creation of a unique

hash that finds its place in a public blockchain.

The architecture introduces a parallel database. This database, designed with

an identical structure to the primary one, functions as a sandbox for data analysis

and experimentation. The utility of this parallel system is the ability to maintain

the integrity of the original data during experimental trials, effectively providing a

fail-safe mechanism for the proposed architecture.

At the same juncture, the public blockchain forms an integral part of this layer.

The function of the blockchain extends beyond merely storing the hash of the raw

data that it receives via MQTT in a specific time window. It preserves the hash

of both the raw data and the associated meta-information, establishing a powerful,

tamper-proof record.

Data Processing Layer

In this layer, the processing and analysis of the collected data, such as calibration

and data visualization, are performed, facilitating the understanding of a pollutant’s

behavior in a smart city context. Each node within this layer interacts with the main

database to retrieve data, ensuring no alteration in the data values during this process.

Should any of these processes necessitate modifications, these changes are relegated

to the parallel database, maintaining the integrity of the original data.

For the visualization component, the architecture employs Grafana Dashboard,

an interactive visualization platform. This tool generates various graphical represen-

tations that can subsequently be incorporated into a user interface, thereby enhancing

user interaction and understanding of the data trends.

Key to the verification of data immutability within this architecture are two central

nodes: the Database API and the Blockchain API. The Database API allows for data
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access and retrieval of essential values necessary for data set verification. Through

a database query, this node facilitates the retrieval of the data and its sequence for

calculating the hash that is stored within the blockchain. Upon the recalculation of

the hash, the Blockchain API node is then utilized to verify whether the recalculated

hash corresponds to the hash stored within the blockchain. This meticulous process

ensures the rigorous verification of data immutability, significantly enhancing the

reliability of the system.

User Layer

This final layer encapsulates the diverse interaction modalities with the architecture,

catering to two distinct types of users: advanced and regular users. Advanced

users (Data Analysis are granted access to both the parallel database and the data

processing and calibration node, facilitating more in-depth data examination and

manipulation.

On the other hand, regular users interact with the architecture primarily for data

visualization purposes. They can access the data through a Mobile App interface or

via a web interface (user Interface, both of which are designed to be intuitive and

user-friendly. Moreover, the last one interface has access to various APIs, enabling

regular users to verify the integrity of the data independently. This multi-tier user

access system ensures that the architecture is adaptable to a wide range of user

competencies, thus increasing its usability and effectiveness.

6.2.4 Blockchain Verification

The process of validating data through a public blockchain introduces certain limi-

tations related to the volume of data stored within the blockchain. As highlighted

in [292], an increase in stored data corresponds to a surge in transaction costs.

Consequently, a more efficient approach involves storing a hash in the blockchain

that symbolically represents the stored data. However, this approach stipulates the

ability to reconstruct the stored hash during verificationÐa non-trivial process, as

any alterations in the data sequence result in a differing hash from that recorded in

the blockchain.
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Fig. 6.11 Simplified blockchain architecture process.

Under this constraint, a specific schema for hash generation is devised (refer to

Figure 6.11). In the initial phase, each IoT device generates data in binary format to

optimize device resources. Accordingly, all measurements are encoded into binary

and transmitted as positive integers, following the format detailed in Figure 4.11. The

determination of this encoding is based on the resolutions and range of measurements

of each sensor, as is shown in Table 6.2

Sensor

Type

Byte

Length
Conversion formula Range Resolution Units

‘T’ 2 (measure + 40)*100 -40 to 80 0.01 °C

‘H’ 2 measure * 100 0 to 100 0.01 %RH

‘P’ 2 measure 0 to 10000 1 µg/m3

‘A’ 4 measure * 10000 300 to 1100 0.001 hPa

‘G’ 4 (measure + 180) * 1000000 -180 to 180 0.000001 Degrees

Table 6.2 Binary coding of the measurements made by the IoT monitoring station

Prior to transmission, each measurement is stored in a buffer to minimize the

amount of data used for header transmission. As such, each generated MQTT

message comprises multiple measurements, determined by a predefined period that

sets the transmission buffer’s length, and the date is transmitted when the buffer is

full. The use of a buffer presents an additional benefit, it reduces the number of write

operations on each device’s backup SD, thereby prolonging its lifespan.



6.2 Air Pollution Monitoring over Blockchain Technologies 199

Despite optimizing transmission, this format doesn’t inherently facilitate the easy

identification of each transmitted MQTT message and its arrival sequence at the

hash generator node. It necessitates identifying when each packet is transmitted and

which device is responsible for the measurement. Therefore, a proposal is made to

send the data in JSON format, incorporating the following attributes:

{

" b l o c k _ t s " : i n t e g e r ,

" b o a r d _ i d " : i n t e g e r ,

" d a t a " : s t r i n g

}

• block_ts: Signifies the transmission time of the MQTT message by the IoT

device, represented using Unix timestamp encoding.

• board_id: Acts as the identifier for the IoT device, represented as a positive

integer.

• data: Carries the binary data of the measurements, encoded as ASCII charac-

ters in base64 format.

The intermediary blockchain node receives each MQTT data packet and organizes

these messages into one-hour blocks. Within each one-hour segment, a hash of

the received data (Hash1) is computed. Subsequently, a new JSON message is

formulated using this information, containing the following attributes:

{

" b o a r d _ i d " : i n t e g e r ,

" c r e a t e d " : s t r i n g < s t r i n g t imes t amp >

" hash " : s t r i n g <hash_1 sha256 >

" i p " : s t r i n g < board IP a d d r e s s >

" t i m e s t a m p s " : [ < a r r a y o f b l o c k _ t s > ]

}

• board_id: The identification number associated with the device responsible

for generating the measurements.
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• created: The date corresponding to the timestamp of the initial packet within

the grouping.

• hash: The computed hash of the packet group received during the one-hour

interval.

• ip: The IP address of the IoT device transmitting the measurements.

• timestamp: Arrays presenting the sequence of timestamp labels of the messages

in the group.

Upon this JSON file, an additional hash (Hash2) is generated, which is then stored

in the blockchain via the intermediary node. The storage implementation is executed

on the Ethereum network, which operates on a Proof of Stake (PoS) protocol, thereby

reducing its energy consumption compared to other public blockchains that rely

on Proof of Work (PoW) which is more demanding and energy-inefficient [22].

Additionally, Ethereum is one of the highest market capitalization blockchains,

which indicates a high degree of interest and facilitates mitigating centralization

issues (see 6.1.4.

Users who wish to validate the integrity of data can initiate this process via the

database API. This request is carried out by specifying the time period of interest.

In response to the user’s request, the database API delivers the data pertinent to the

specified period. Leveraging the previously described attributes, users can reassemble

the sequence of measurements under investigation and cross-check these data against

the Hash1 values. If the Hash1 values demonstrate consistency, users can proceed

to extract the Hash2 construction attributes. Upon reassembly of Hash2, users can

consult the blockchain API to verify whether these Hash2 values are indeed located

within the blockchain. For each Hash2, the API returns a boolean response indicating

its presence or absence within the blockchain, thus completing the data immutability

verification process.

The strategy of utilizing two distinct hashes fortifies the immutability of the

data. Specifically, Hash1 uniquely corresponds to the serialization of data within the

one-hour window, while Hash2 incorporates Hash1 as part of its input parameters.

This two-tiered hash system effectively enhances the robustness of data integrity

verification.
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6.2.5 Deployment and Results

The functional evaluation of the proposed architectural framework was carried

out in the SSN scenario (refer to 4.5.1). In order to transmit additional data effi-

cientlyÐdata that may be of interest to various stakeholders in a smart city sce-

narioÐcommunication was established through shared access to a 5G network (refer

to Fig 6.12).

(a) (b)

Fig. 6.12 Sensor Deployment Test. Air Monitoring Station and third party sensors (a), Final

assembly (b).

To generate hashes (Hash1 and Hash2), the SHA256 algorithm [293] was uti-

lized. The hashing process was executed on the intermediary blockchain node.

Additionally, a starts system was incorporated to assess the connectivity status and

the summarization of MQTT messages containing measurements (refer to Fig 6.13).

From this stats HTML window, various parameters can be observed: the existing

summarization period (which is 3600 seconds), the total count of MQTT messages

received from each sensor, and the number of Hash2 instances that have been entered

into the blockchain.

To verify transactions on the blockchain, a blockchain record explorer was used,

facilitated by operational dashboards and transaction visualization tools. Utilizing
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Fig. 6.13 Blockchain Intermediary stats view.

these tools, the hash storage configuration was executed under the scheme of smart

contracts (refer to Fig 6.14a). This platform provides the capability to monitor each

transaction executed when storing every Hash2 value produced by the blockchain in-

termediary. Additionally, it facilitates the visualization of the stored Hash2 instances

(Fig 6.14b).

Lastly, the querying of the database was accomplished using RESTful requests.

These requests were primarily focused on two main resource accessed by the API:

packets and packet_summary. The packet_summary resource corresponds to the

aggregated packets that the intermediary node generates, while the packets resource

provides access to the packets transmitted by the IoT devices.

The methods implemented for client access through the database API are detailed

subsequently:

GET /packet_summaries/{start}/{end}

Returns the summarized packets generated within the time interval [start, end]. Start

and end are Unix timestamps.

GET /packet_summaries/{boardId}/{start}/{end}

Returns the summarized packets generated within the time interval [start, end] from

the board identified by boardId.

Same format as method GET /packet_summaries/{start}/{end}.
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(a)

(b)

Fig. 6.14 Blockchain Dashboard. Contract Events Log (a), Contract Transactions Details (b).
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GET /packet_summaries/{packetId}

Returns the summarized packet identified by packetId.

GET /packet_summaries/{packetId}/data

Returns the UNENCODED data of the summarized packet packetId as an ordered

concatenation of the referenced packet data.

GET /packet_summaries/{packetId}/packets

Returns the packets referenced by the summarized packet in the order defined by the

summarized packet.

GET /api/packets/{packetId}

Returns the packet with the specified packetId.

GET /api/packets/{packetId}/data

Returns the data of the packet packetId in the original order in which the packet was

created.

During the validation phase, measurements were successfully taken, and the

immutability of the data stored on the Ethereum blockchain was confirmed. This pro-

cedure enables a user to reconstruct and verify data of interest against the published

measurements. As a result, data can be made publicly available, ensuring that it has

not been manipulated. This empowers citizens with a reliable source of information

on particulate matter density, capitalizing on the benefits of decentralized storage.

Furthermore, the utilization of dual hashing enhances the reliability level by ensuring

high interdependence between the database and blockchain values, as one relies on

the other.

6.3 Conclusions

6.3.1 Blockchain and Smartcities

An analysis of the private BCT architecture was presented in order to achieve power

and transaction efficiency in most general government services, where compromising

security is not an option. Consequently, the previous requirements were fulfilled

by the Tournament Consensus Algorithm (TCA) in a private Blockchain deploy-

ment. Subsequently, the TCA was evaluated under a controlled scenario, where its

performance for different volumes of transactions was demonstrated. The results
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indicate that an adequate amount of computing resources is required by TCA without

compromising the security risk associated with the integrity of the chain, in contrast

to the analysis conducted on PoW and PoS algorithms, which reveal higher power

consumption and security issues in private blockchains.

In accordance with the proposed architecture, the key to initiating a blockchain

transaction is held by the smartcards. A robust authentication mechanism was

proposed, which combines the three user authentication factors based on the MoC

mechanism found in current smartcards and biometric systems. As a result, identity

theft for document owners is prevented, and control is maintained to ensure that only

the owner can access e-government services.

6.3.2 Air Pollution Monitoring over Blockchain Technologies

The amalgamation of technological trends, such as blockchain and IoT, yields numer-

ous benefits concerning data integrity protection. The proposed architecture provides

a proof of concept illustrating the symbiosis between these two technologies. By

offering an enhanced level of trust and transparency, this newly proposed architecture

adds a robust layer of security, ensuring that the data stored on the system is both

reliable and tamper-resistant. This incorporation of blockchain technology acts as

a fundamental game-changer, offering a high degree of assurance to all the system

users about the authenticity of the data they interact with.

The incorporation of blockchain technology is observed to fundamentally revolu-

tionize the system, providing users with high confidence in the authenticity of the

data with which they interact. The presence of metadata within the blockchain allows

for the subsequent confirmation of data immutability, which further strengthens

the architecture’s robustness and reliability. An additional layer of data security is

implemented through the dual-storage mechanism deployed in the public blockchain,

enhancing the system’s resilience to potential attempts of data manipulation by em-

ploying the linkage of two distinct hashes, which further complicates data tampering.

Moreover, users are provided with the data enabling them to execute their own

implementations for calculating each of the different hashes.

While Ethereum’s PoS algorithm is more energy-efficient in terms of data in-

tegrity, it is imperative to continue evaluating alternatives that could further improve

this efficiency. This is crucial to ensure that the drive for data integrity does not
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compromise sustainability and efficiency indices. Thus, it is suggested that the

architecture presented here may pave the way for future secure, resilient, and reliable

IoT systems, setting new standards for data integrity.



Chapter 7

Other IoT Applications

IoT solutions also hold great potential for other dimensions of human development.

Referring back to the United Nations Sustainable Development Goals, education is

Goal 4, which aims to ensure quality education that is equitable and inclusive. ICT

has already made contributions to distance education. However, tasks such as student

engagement and obtaining feedback from students are demanding for teachers.

Understanding students’ reactions in the classroom is crucial for evaluating the

effectiveness of teaching methods. While this task is feasible in smaller class sizes,

it becomes increasingly complex when dealing with larger classes, particularly those

comprising 50 or more students. To tackle this challenge, this chapter introduces a

study that presents a novel IoT system that employs non-invasive techniques, such as

facial expression recognition and physiological data analysis, to assist teachers.

The system utilizes a Convolutional Neural Network (CNN) for facial expression

recognition and incorporates Photoplethysmography (PPG) to capture physiological

data. By leveraging Russell’s model, the CNN identifies significant facial expres-

sions, classifying them into active and passive categories. To facilitate comparison

and analysis of results from both data sources, operations like thresholding and

windowing are applied. When employing a window size of 100 samples, both facial

expressions and physiological data indicate an attention level of approximately 55.5%

during in-person lecture tests.

By comparing the outcomes of in-person lectures with pre-recorded remote lec-

tures, it becomes apparent that facial expressions, when validated with physiological

data, offer valuable insights into students’ attention levels within the classroom set-
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ting. This research emphasizes the potential of utilizing these combined approaches

to enhance teaching effectiveness and gain a deeper understanding of student engage-

ment in educational environments.

7.1 Educational Scenario - IoT System for Affective

Learning

Teaching necessitates constant self-evaluation and the ability to independently deter-

mine the effectiveness of one’s lessons. With experience, educators develop the skills

to observe classroom responses to varying teaching methods and course material.

While this is relatively straightforward in smaller classes, larger groups of 50 or more

students pose challenges to this process, as well as to the teacher-student interaction

and the clarity of the lesson’s media content.

The scope of this chapter section is to analyse and present an IoT case of use

based on the applicability of non-invasive techniques designed to assist teachers in

obtaining information about the degree of attention exhibited by their students. Facial

expression recognition is tested as primary source, while physiological data analysis

is used as validation tool which necessitates the use of a smartwatch, is utilized as a

secondary method of validation when it is feasible. To assess the effectiveness of the

proposed method, 13 students were involved in two distinct measurement campaigns,

which were conducted in different settings: one in-person and the other remote.

Although the methods for conducting facial expression recognition and physio-

logical data analysis have been extensively detailed in existing literature, there are

limited proposals regarding the integration of data from both sources to establish a

redundant system. We assert that by combining data from these two sources, it is

feasible to obtain a complete overview of the degree of attentiveness displayed by

students in a classroom.

In relation to facial expression recognition, a Convolutional Neural Network

(CNN) was employed to identify eight emotions that are acknowledged across all

cultures, such as happiness, sadness, disgust, anger, contempt, fear, sadness, surprise,

and neutrality. On the other hand, PhotoPlethysmoGraphy (PPG) was utilized to

measure physiological responses. Subsequently, both methods were processed to
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derive a percentage of the level of attention displayed by students during a particular

time frame.

7.1.1 Background

The cognitive abilities of humans have been extensively examined from both neu-

rophysiological and psychological perspectives. Various theories and pedagogical

methodologies have been developed to enhance the cognitive processes of the hu-

man mind [294]. With the increased usage of computers and electronic devices in

both in-person and remote teaching settings, there is a concern that these devices

may cause distractions that could negatively impact students’ level of attention, as

evidenced by studies conducted in [295, 296]. Research evidences also suggests that

different cognitive processes are strongly associated with physiological responses,

including heart rate and eye blinking, among others. By observing these phenomena,

it is possible to determine a person’s cognitive state, as noted in [297].

The collection and analysis of these factors have been utilized to determine

the emotional and attentional aspects that can impact the learning process. In

[298], previous learning hypotheses that suggesting a student’s attention decreases

over time have been refuted through physiological measurements, providing a less

subjective means of determining engagement. In a recent review, [299] discusses the

various neurophysiological variables used to assess attention levels, which can be

categorized into two groups: the central nervous system (CNS) and the autonomic

nervous system (ANS). The CNS group is linked directly to the central nervous

system and requires invasive techniques for measurement, limiting the comfort of

the target student and the scalability of the systems. Examples demonstrating the

use of electroencephalography (EEG) to assess attention and learning levels can

be found in [300, 301]. In contrast, the autonomic nervous system (ANS) signals,

which include facial expressions, eye-based measurements, heart rate (HR), blood

volume pressure (BVP), and skin conductance (SC), are less invasive and commonly

used to represent and model ANS signals. These variables are useful in detecting

attention and emotional factors and can be divided into two main approaches: facial

expression detection and multi-neurophysiological signal detection.



210 Other IoT Applications

Facial Expression Recognition

For many years, techniques for recognizing emotions from facial expressions have

been studied. In 1971, Paul Ekman and William Friesen published a list of the six

basic emotions that are common to all human groups regardless of their culture:

happiness, anger, fear, disgust, sadness, and surprise [302]. These emotions were

later expanded by Ekman himself, Daniel Cordaro, and other researchers [303] [304].

Ekman also introduced the Facial Action Coding System (FACS) in 1978, which can

be used to categorize the muscular movements of the human face [305]. The FACS

system identifies 46 Action Units (AUs) that are responsible for facial movements,

and the combination of multiple actions and their respective intensities can generate

a vast range of possible facial expressions. However, only experienced annotators

can classify facial expressions accurately using FACS.

The authors of [306] outlined the primary channels of emotional communication,

identifying facial expressions and vocal tone as the main ones. They also segmented

the procedure for recognizing emotions from facial expressions into three steps:

detecting the face, extracting facial features, and ultimately describing the emotional

state. They stated that the step of describing the affective state from facial expressions

is more complex due to its subjective nature. They emphasized that the description of

the emotional state should be similar to how a human would describe it. Nonetheless,

they pointed out that individual interpretations of emotional expressions can differ

depending on factors such as culture and personal experiences. Therefore, they

recommended that affect recognition programs should be specifically customized to

the context in which they are applied.

Extracting facial features is usually done by identifying AUs from FACS instead

of typical expressions of basic emotions like happiness or anger. This is because

basic emotions occur rarely, whereas emotions are usually conveyed by variations

in specific facial features [307]. Moreover, psychologists study AUs to recognize

complicated emotional states [308].

In the paper [309], an attempt was made to address some of the limitations of

FACS, such as the absence of detailed spatial and temporal information, by introduc-

ing a new representation known as FACS+. Similarly, optical flow-based techniques

were employed in [310] to create a time-sensitive approach for recognizing facial

expressions.
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In a survey conducted by Sariyanidi et al. [308], the authors examine various

methods for automatic affect recognition by breaking down their process into four

essential components: face registration, representation, dimensionality reduction,

and recognition.

In the face registration stage, the face can be registered as a whole or through

the combination of different parts or the localization of fiducial points. The next

step is to encode the face into a spatial or spatio-temporal representation. Spatial

representation encodes image sequences frame by frame and can be performed at

various levels of abstraction. Techniques like Local Binary Pattern(LBP), Local

Phase Quantization (LPQ), and Gabor Filters are utilized to obtain representations

with low abstraction levels. In [311], a combination of Gabor Filters and LBPs is

employed for this purpose. Conversely, high-level representation aims to extract

semantically interpretable features. Regarding dimensionality reduction, it can be

achieved through either pooling, feature selection, or feature reduction. Finally,

in the recognition phase, the result is produced as labels indicating emotions or

facial actions, including AUs. Techniques such as Hidden Markov Model (HMM),

Dynamic Bayesian Network (DBN), Support Vector Machine (SVM), Relevance

Vector Machine (RVM), and Conditional Random Field (CRF) are commonly utilized

for this purpose.

Another aspect worth noting is the range of datasets employed for training and

validating affect recognition methods. One key differentiation lies in the labeling

of the dataset, with some utilizing FACS [312], whereas others report prototypical

expressions [313, 314]. Certain datasets comprise of posed expressions [312, 313],

occasionally enacted by actors [314], while others are created via labeling natural

images. Additionally, these datasets may comprise of subtle expressions [314]

or exaggerated expressions [315, 316]. Images can be specifically generated for

emotion recognition purposes or collected from the internet and movies [317].

The use of neural networks has become more prevalent in recent years, and

many researchers have explored their potential in enhancing affect recognition tasks.

One such study, conducted by Liu et al. [311], combined traditional techniques

such as Gabor Filters and LBPs with Extreme Learning Machines (ELM) to create

a more standard pipeline that is suitable for real-time applications. The usage of

Deep Learning models for affect recognition is limited by the scarcity of available

images, as stated in [318]. To address this issue, a Shallow CNN is employed in
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[319] to recognize micro-expressions with a limited number of training samples. In

contrast, [318] tackles this problem by utilizing domain knowledge to strongly guide

the model towards the relevant facial areas. A study by Liu et al.[320] proposed a

Deep Belief Network (DBN) that unified the three main stages of affect recognition,

namely feature learning, feature selection, and classifier construction. On the other

hand, Meng et al. [321] introduced an identity-aware CNN to address variations

caused by personal attributes and achieved better performance in facial expression

recognition. In another work by Sini et al. [322], an Artificial Neural Network

(ANN) was trained using an ensemble of databases to reduce the model’s sensitivity

to image variability and increase the number of available samples. Rifai et al. [323]

used a Contractive Convolutional Network (CCNET) to obtain translation invariance

of the facial features in the image.

Multi-Neurophysiological Signal Recognition

Another method of researching affect recognition involves measuring various ANS

neurophysiological signals, which provide a reliable measure of emotion and atten-

tion.

In the paper [324], the authors proposed a cyber-physical social system that

utilizes multiple sensors and cameras along with a quiz creator to monitor the

learning progress of students. They employed reinforcement learning techniques on

the data, which enables the teacher to increase student engagement. This algorithm

utilizes the students’ heartbeats, eye blinks, and facial expressions to suggest the next

learning activity depending on their current learning state. In the study presented

in [325], the authors proposed an automated system to classify student engagement

while they performed a writing task. To achieve this, computer vision techniques

were employed to extract three different sets of features from video recordings: heart

rate (HR), facial features, and Local Binary Patterns in Three Orthogonal Planes

(LBP-TOP). Engagement-detection models were created for each of these features,

as well as two fusion models that used all the features or only a subset of them.

However, the method faced limitations in accurately extracting facial features and

estimating heart rate from video recordings. The authors of [326] presented a model

for e-learning that takes into account the mental and emotional state of the learner and

provides learning activities accordingly. This model utilizes biophysical variables,
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such as HR, SC, and BVP, to automatically select lessons based on the learner’s

affective state.

A rising methodology is the use PPG technology. It is an electro-optical technique

that is non-invasive and can measure changes in blood volume in the microvascular

tissue beneath the skin. This method uses light to detect the pulsatile nature of the cir-

culatory system and measure the beats associated with changes in the bloodstream’s

bulk. It is considered a low-cost and simple technique [327].

The PPG waveform’s pulsatile component is the Alternating Current (AC), and its

fundamental frequency typically relies on the heartbeat frequency, which is generally

around 1 Hz. After proper electronic filtering and amplification, both AC and Direct

Current (DC) components can be extracted for further analysis of the pulse wave.

PPG technology requires minimal optoelectronic components, namely a light source

to illuminate the tissue, such as tissue or skin, and a photodetector to measure the

small changes in light intensity caused by the blood volume changes in the tissue.

Several factors can influence the reproducibility of PPG measurements, such as the

method used to attach the probe to the tissue, the pressure applied at the probe-tissue

interface, the pulse amplifier and bandwidth, the reduction of movement artifacts,

the subject’s posture and relaxation, breathing, wakefulness, room temperature, and

acclimatization. The use of LED, photodiodes, and phototransistors in semiconductor

technology has improved the design of PPG probes, resulting in smaller, more

sensitive, portable, reliable, and reproducible devices. PPG technology is extensively

employed in clinical settings for monitoring essential physiological parameters such

as blood oxygen saturation, blood pressure, heart rate, and heart rate variability [328].

One of the primary advantages of PPG technology is that it enables the measurement

of these parameters without requiring electrodes or complex movable equipment,

making it suitable for use in primary care and community-based clinical settings.

Additionally, PPG technology uses simple, low-cost, and compact semiconductor

devices, which make it a cost-effective option. Finally, PPG technology is an

advanced computer-based pulse wave analysis technique that can provide accurate

measurements of physiological parameters.

In clinical settings, Heart Rate (HR) is an essential physiological parameter

that can be measured by analyzing the AC component of the PPG pulse, which

is synchronized with the heartbeat. To improve the accuracy of HR detection,

digital filtering and zero-crossing techniques can be applied to separate the HR and
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respiratory components from the PPG signal. Additionally, Blood Pressure (BP) has

been extensively studied in vascular disease research. An algorithm based on pulse

arrival time can be used to calculate BP and compared with traditional methods.

The regulation of heart rate (HR) and blood pressure (BP) is crucial for main-

taining BP homeostasis, and BaroReflex Sensitivity (BRS) is often used to charac-

terize this regulation in milliseconds per millimeter of mercury (ms/mmHg). Its

non-invasive assessment is possible using finger-pressure cuff/PPG technology to

measure beat-to-beat peripheral arterial BP waveforms [328]. In a study by Drinnan

et al. [329], it was demonstrated that paced breathing at a rate of 0.1 Hz distinctly

modulated the Pulse Transit Time (PTT) at the finger and ECG RR interval. Using an

overlapping waveform morphology technique, the incremental PTT and beat-to-beat

interval (RR) values of ECG on a beat-to-beat basis, and their variability were sum-

marised using simple statistics. The cardiovascular system’s non-stationary balance

fluctuates between consecutive heartbeats and HRV intervals.

The HRV is a collection of measures utilized to estimate the activity of the ANS.

It can be represented as features of the PPG power spectrum, such as low frequency

(LF) and high frequency (HF), or as properties of the Beat-to-Beat (BB) interval.

The BB features are commonly used in the field of emotion research, and some of

them are defined as follows [330]:

• SDNN - Standard Deviation of BB intervals.

• SDSD - Standard Deviation of Successive BB interval Differences.

• RMSSD - Root Mean Square of Successive BB interval Differences.

• pNN50 - Percentage of adjacent BB intervals that differ from each other by

more than 50 ms.

Currently, there is a growing interest in academia and the market regarding the

design and development of wearable biosensors, owing to their potential use in human

health monitoring and personalized medicine. Generally, Wearable BioSensors

(WBSs) are portable electronic devices that integrate sensors into or with the human

body in various forms and shapes such as watches, gloves, clothing, and implants

[331]. These smart portable devices analyze and record live sensing data of human

biological parameters, such as blood pressure, heart rate, and temperature, which
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are of significant value in healthcare applications [332]. Furthermore, to obtain a

reliable and high-quality signal, traditional PPG sensors require a firm attachment

to the skin; wearable sensors with measuring functions have helped to solve and

identify various significant problems in the healthcare, medical, and sports fields.

In the study presented in this study, smartwatches, commonly known as wrist-worn

wearable devices, were utilized to record heart rate signals.

Internet of Things for Affective Learning

In the current age of the Internet of Things [333], also known as the Internet of

Everything, countless devices are linked to the internet and performing specific func-

tions. These devices are utilized for personal use or for the purposes of companies or

communities, such as monitoring fitness or the environment. The data generated by

these devices can be utilized for making decisions or adjustments to one’s lifestyle.

However, the extensive range of sensing and actuating devices available face scal-

ability and system integration challenges. Therefore, concepts such as the Social

Internet of Things and corresponding regulations have been introduced to address

these limitations. [334–337]

The integration of IoT technologies in the field of education is becoming increas-

ingly popular as a means to enhance traditional classroom settings. This technology

enables the collection and analysis of data from educational contexts, ultimately

aiding in the facilitation and customization of learning processes [338]. The ob-

jective of this study is to harness the potential of IoT to optimize the collection of

feedback information for teachers seeking to maximize student engagement. Other

researchers have already explored the merging of IoT and education domains. For

example, in a study conducted by Tan et al. [339], they employed a WiFi-enabled

Radio Frequency Identification (RFID) reader to assist teachers in automatically

recording attendance to lessons and monitoring students’ behavior. In addition, they

integrated Quick Response (QR) codes to enable students to quickly access course

materials and provide real-time interactive responses to stimulate participation. The

implementation of this system reportedly resulted in an attendance rate increase

from 85% to 98%. The authors of a different article [340] created a Google Home

voice assistant application that can communicate with teachers and students based

on the context of the textbook. The model utilizes Machine Learning techniques to
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recognize user sentences and incorporate new ones. The study consisted of two case

studies conducted in Bangladesh, and the outcomes were presented.

Specifically, to improve affective learning, Yadav et al. [341] proposed an IoT-

based framework that utilizes wearable devices to detect human emotions, including

heart rate, movement, and environmental data such as temperature and humidity.

The data gathered is then used to monitor students with attention deficit hyperactivity

disorder and provide feedback to educators. Awais et al. [342] proposed an alter-

native IoT framework that uses datasets from diverse ANS and CNS physiological

signals to develop an emotion recognition system. The system analyzes the data and

transmits it to an IoT hub for real-time communication to identify emotions. The

authors aim to provide a solution for remote learning and healthcare support during

the COVID-19 pandemic.

7.1.2 Methodology

The methodology suggested follows a redundant system approach, utilizing two

sources of data. In order to enhance the comprehensibility of the study, this subsec-

tion has been subdivided into three principal components:

1. Recognition of facial expressions using neural networks.

2. Physiological data analysis.

3. Merging of the information.

Recognition of Facial Expressions Using Neural Networks.

As discussed in subsection 7.1.1, recognizing facial expressions can be achieved

using artificial intelligence (AI) systems. With a well-designed training phase, these

systems can learn to identify people’s facial expressions in images or videos. Neural

networks, which offer high precision, are one of the techniques commonly used in

AI. The method proposed in this study is based on the neural network developed and

trained in [322]. Interested readers can refer to this paper for additional details.

To train a machine learning system to differentiate between a limited number

of classes, labeled examples are necessary. For instance, a dining chair, rocking
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chair, and office chair are all chairs despite variations in their size, shape, and color.

Similarly, a dining table, living room table, and office table can also be categorized

as tables. It is crucial to use categorization supergroups and visually represent the

various characteristics an object may possess to aid the machine learning system.

Consequently, the labeling process must be meticulous to minimize errors to the

extent possible by humans [343].

Training a Neural Network Through Quality Image Database Over the years,

numerous databases containing high-quality facial expressions have been made

available. In the study by Sini et al.[322], various neural networks based on the CNN

model proposed by Ferreira et al. [318] were trained using the Keras library [344].

The authors used a combination of different facial expression databases, which they

referred to as Databases Ensembles (DEs), in the training process. Using multiple

databases can enhance the performance of the trained system by:

• have a different photographic quality;

• have different backgrounds;

• portray multiple human traits;

• increase the size of the train, validation, and test dataset.

This enables the development of AI systems that can generalize better and

maintain reliability even in situations that differ greatly from the training conditions.

As described in the subsection 7.1.1, facial expressions can be either spontaneous or

posed. Therefore, two distinct DEs were generated:

• Ensemble 1, composed solely of image databases that feature individuals

displaying both posed and spontaneous facial expressions.:

– Extended Cohn-Kanade Database (CK+) [312] [345];

– FACES Database [346];

– Facial Expression Recognition 2013 Database (FER2013) [315] plus

FER+ annotations [316];

– Japanese Female Facial Expression (JAFFE) [313];
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– Multimedia Understanding Group Database (MUG) [347];

– Radboud Faces Database (RaFD) [348].

– Static Facial Expressions in the Wild (SFEW 2.0) [317].

• Ensemble 2, composed of image databases that solely depict people with posed

facial expressions:

– CK+;

– FACES Database;

– JAFFE;

– MUG;

– RaFD.

The Ensemble 1 DE is made up of 7 distinct databases, totaling 43993 images,

with 8 different facial expressions representing emotions: happiness, sadness, disgust,

anger, contempt, fear, sadness, surprise, and neutrality. The creation of the Ensemble

1 was facilitated by the use of the Facial Expression Database Classifier (FEDC)

[349], a software that aids in the creation of DEs. The images in the DE were

preprocessed by following the steps listed below:

• Grayscale conversion;

• Resize to 48x48 pixels;

• Face cropping;

• Z-score normalization;

• 90%-10% random split for train and test datasets.

To enhance the precision of the system and acquire the validation dataset, a 9-fold

cross-validation technique was applied to the initial subset, which resulted in a final

division of 80%-10%-10%. The following data augmentation techniques were used

during each training epoch:

• Random horizontal flip;

• Brightness range among 50% and 100%;
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• Shear range among ±2.5%;

• Random rotation among ±2.5 degrees;

• Zoom transformation interval among ±2.5%;

• Width and height shift range among 2.5%.

The CNN described in [318] achieved a test accuracy of 80.38% with the best

fold combination, using Ensemble 1 as the train, validation, and test dataset along

with the settings mentioned earlier. The confusion matrix for this result is shown in

Figure 7.1.

Fig. 7.1 Normalized confusion matrix of the neural network described in [318], trained by

using the Ensemble 1 dataset [322].

The achieved accuracy is relatively low when compared to the accuracy obtained

from using only CK+ dataset, which was 92.5%, and Ensemble 2 dataset, which was

96.78%. However, the authors have identified some issues with these datasets: The

first issue is that they have a limited number of images, which reduces the neural

network’s ability to generalize and perform well in real-world scenarios. The second

issue is that they were captured in a studio setting, which results in less variation

than in real-world scenarios. Finally, only posed facial expressions are included in



220 Other IoT Applications

these datasets, creating a bias towards spontaneous expressions that are more natural

but have less inter-class variability. [322].

Despite having lower quantitative metrics compared to the other datasets, the

neural network trained using Ensemble 1 as the train, validation, and test dataset was

deemed reliable for the facial expression recognition problem at hand. Hence, the

neural network trained on Ensemble 1 was selected for use in the proposed approach.

Facial Expressions Prediction and Post-processing The process of predicting

facial expressions was carried out using Emotion Detector (ED) software [350]

[351], which was created using: Java, Apache Maven, OpenCV and DeepLearning4J

(dl4j) [352]. It is capable of detecting facial expressions of an individual through

input from a camera, video, or image. When a video is given as input, a sampling

rate must be chosen since the neural network was trained to analyze single frames.

However, regardless of the input type, the software is able to:

1. Displays the current image or frame;

2. Performs face detection using Haar Cascades [353];

3. Updates the interface by drawing the detected face in an ad hoc box. Otherwise,

Face not found warning is shown;

4. Performs facial expression recognition using the neural network discussed in

subsection 7.1.1;

5. Updates the graph by showing the newly obtained result;

6. Optionally, it saves the result as a screenshot or in a Comma-Separated Values

(CSV) format file.

To enhance ED for this project, it was decided to incorporate the option to choose

between using Haar Cascade Classifiers or a pre-trained Deep Neural Network

(DNN) for face detection, with the latter offering greater precision. The DNN was

an Single Shot multibox Detector (SSD)[354] based on ResNet-10 architecture

[355], trained with the Caffe framework [356] to detect faces on 300×300 images.

Facial expression analysis utilized the DNN setting and analyzed videos from both
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in-person and remote lessons by capturing two samples per second. The resulting

data was exported to CSV format for further analysis.

To align the predictions of facial expressions obtained through the CNN with

physiological data, they were categorized into two moods, which followed a classifi-

cation similar to Russell’s [357]:

• Active:

– Anger;

– Fear;

– Happiness;

– Surprise;

• Passive:

– Contempt;

– Disgust;

– Sadness.

The first group is associated with high arousal moods, referred to as active, while

the second group is associated with low arousal moods, referred to as passive. The

study did not take into account the pleasure-displeasure characteristics.

Facial expressions that show neutrality have been left out of this categorization

since they cannot be classified as either active or passive. Next, the level of activation

was calculated by tallying the number of active mood readings in a given time period

(in this case, 100 seconds) and scaling it to WsNN = 300 (meaning that 300 indicates

an interval with only active moods, while 0 indicates an interval with only passive

moods).

A binary classification was applied to the activation level obtained from facial

expressions. This was done by comparing the activation level with a threshold value

(Tf e), which was set at WsNN/3. The resulting binary array, called the Attention

Array from facial expressions (AA f e), contained a value for each time interval indi-

cating the number of active moods in the last 100 samples. If the grade of attention

was higher than the threshold, the window was labeled as Attention, otherwise it was

labeled as Distraction.
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Physiological Data Analysis

The Attention Detection algorithm that relies on physiological reaction data is

explained in this segment. The data were gathered using a group of consumer grade

smartwatches (Garmin Venu Sq) that transmit data through BLE (Bluetooth Low

Energy) to a group of smartphones, with a sampling frequency of 1 Hz. The recorded

data is saved in a text file. The datasets that were collected consist of both heart

rate (HR) and heart rate variability (HRV). MATLAB was used to develop the data

collection algorithm. Prior to executing the algorithm, a two-level calibration phase

is performed on each patient to estimate the thresholds for emotional stage detection:

1. Based on their information, which are age, gender, weight, and height;

2. From their initial condition estimation.

The algorithm is capable of performing real-time behavioral analysis during

lectures by monitoring the HR and HRV for a specified number of samples (N),

referred to as the Window Size (WS). From this observation window, only specific

emotional stages, namely SDNN, RMSS, and SDSD, are used. These stages were

described in 7.1.1. By sliding the window with a particular initial delay, an output

can be generated every second.

The Grade of Attention (GA) can be increased by comparing the instantaneous

value of the three parameters with the values obtained during the calibration phase.

To compare the GA values, a threshold (Tp) is calculated, which is determined as

follows:

Tp =
3

2
·WS

where 3 refers to the number of the calculated emotional stages. Thus, the algorithm

generate two levels of attention stored in an Attention Array based on physiological

reactions (AAp). If the grade of attention is higher than Tp, the window is labeled

as Attention, otherwise as Distraction, similar to the activation levels obtained from

neural network classification.

Merging Physiological and Facial Expressions Data

The process of obtaining AA f e and AAp is necessary to enable the comparison of data

from disparate sources and to apply the windowing algorithm. The study’s objective
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is not to examine the attention of individual students but to gather aggregated

outcomes. There are several reasons for not examining a single student, which are as

follows:

• The system outcomes are not influenced by the engagement level of an indi-

vidual student towards the lecture topic.

• A student’s interest in the lecture may vary on different days due to personal

factors such as drowsiness and mood.

• Somatic features that vary significantly from the training data can impact the

performance of the CNN used for facial expression recognition.

An essential factor to determine is the window size (WS). The windowing

algorithm produces an output indicating the number of Attention labels within the

sliding window. This window extends to the current time and begins WS samples

earlier. Since people’s facial expressions change rapidly, the neural network output

may exhibit rapid fluctuations. To smooth out the results, a 5-minute attention

counter filter is applied to obtain the averaged activity level, known as Attention

Behavior (AB). Consequently, the algorithm will begin functioning effectively after

5 minutes. To maintain consistency, the same filtering operation is also applied to

the physiological data. Figure 7.2 provides a sequential overview of the proposed

approach.

Fig. 7.2 The workflow of the proposed analysis approach. The dashed arrows represent the

WS calibration feedback.

Comparison of Methodology with Other Solutions

The objective of this project is to utilize physiological data to validate facial ex-

pressions, with the ultimate goal of developing a system that relies solely on facial
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expressions. The advantages of implementing such a system are: Firstly, it offers

a less invasive approach compared to other methods, ensuring user comfort and

minimizing any potential discomfort. Additionally, this system can be applied in

various scenarios, whether it be in-person lectures or remote learning environments,

providing versatility and adaptability. Furthermore, its cost-effectiveness is worth

noting, as it primarily relies on readily available hardware such as webcams or

similar devices, reducing the need for expensive equipment or infrastructure.

These factors are noteworthy as the aforementioned systems relied on a complex

multimodal acquisition methodology that is not readily feasible for everyday use. In

contrast, this project utilized consumer-grade devices, making it more cost-effective.

Furthermore, advancements in technology enabled comparable results to be achieved

with fewer parameters. Specifically, while previous work such as [326] utilized

measures such as BVP, SC, and HR, this project focused solely on HRV and HR for

its analysis.

An additional distinction is the ability of the facial expression recognition system

to effectively handle multiple individuals. This is achieved through the utilization of

two separate CNNs: one dedicated to extracting facial features and the other focused

on recognizing facial expressions. As a result, this system can be utilized without

any difficulties during both in-person lectures and remote sessions, where multiple

individuals are present and engaged in the learning experience.

Another instance can be observed in the study conducted by Monkaresi et

al. [325], where tests were carried out with a comparable number of students but in a

distinct context involving a writing activity. In this particular study, facial tracking

was accomplished using a Kinect device, while HRV and HR data were obtained

through the use of ECG. However, the challenge with these technologies lies in their

limited applicability within a realistic environment. Additionally, engagement levels

were estimated using LPB-TOP and a machine learning tool employing customized

classifiers.

7.1.3 Experimental Results

According to the background subsection, previous studies [295, 296] have indi-

cated that the level of attention in online classrooms is typically lower compared

to in-person classes. This is attributed to distractions caused by electronic devices,
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including the devices used to participate in the lecture. Conversely, when students

and professors are physically present in the same room, there is generally a higher

level of interaction [358].

Considering these factors, the decision was made to assess the level of attention

in both lecture modes. A group of 13 participants, consisting of 4 females and 9

males aged between 21 and 35, was enrolled for the study. The first phase of the

study involved in-person lectures, during which the following data were collected:

• Physiological data, using commercial smartwatches;

• Facial expressions, using visible-wavelength cameras.

The second campaign involved remote lectures, and the following data were

collected:

• Physiological data, using commercial smartwatches;

• Facial expressions, using visible-wavelength cameras.

• Reaction times, using a dedicated application for this specific task.

In-Person Lectures

Two 1-hour in-person lectures were conducted, with each lecture having 4 partic-

ipants, resulting in a total of 8 volunteers. The lectures were facilitated by two

experimenters, where the first experimenter acted as the teacher, and the second

experimenter programmed the teacher’s wristwatch to provide discreet vibrations at

specific times that were unknown to the teacher.

When the alarm went off, the teacher instructed the volunteers to perform a

simple action, such as touching their shoulder, nose, or head, and asked if they were

paying attention to the explanation. The reaction times were recorded by analyzing

the video footage of the lecture, starting from the moment the teacher made the

request until the volunteers completed the actions. To ensure a fair comparison, only

the participants in the first experiment’s group were informed about the request.
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Remote Lectures

Remote lectures, which gained popularity following the outbreak of the SARS-CoV-

2 pandemic in 2020. To experiment in this scenario, 6 volunteers participated in a

pre-recorded lecture lasting approximately 50 minutes. They used their personal

devices to record their facial expressions and were equipped with smartwatches to

monitor their physiological reactions. To compensate for the absence of a lecturer,

an application was employed to randomly inquire whether the students were actively

engaged in the lecture or not.

Application to Measure the Response Times

The Reaction Time Tool, an application utilized in the study, was created using

the Microsoft.NET 6 framework and implemented using the C# programming lan-

guage. The application’s Human-Machine Interface (HMI) was designed within the

Windows Presentation Foundation (WPF) environment.

The HMI consists of two primary windows. The first window appears upon

launching the program and prompts the volunteers to specify the location for saving

the log file. It also features a blinking hourglass, serving as a visual indication that

the application is functioning properly.

At predetermined but undisclosed intervals, a message window appears to the

volunteers, inquiring about their level of attentiveness during the lecture. The user

has the option to respond with either "Yes" or "No" based on their attention level.

The window cannot be closed without providing a response. To capture the user’s

attention when the message window appears, the application emits a distinct sound.

This sound has been deliberately chosen to be distinguishable from the typical sounds

produced by standard operating system message windows.

Each time the window is displayed, the application records a timestamp of the

event in the log file. Another event is recorded when the window is closed, along

with the corresponding response from the volunteers. Additionally, for ease of data

analysis, the application calculates the time difference (∆ time) between the display

of the window and the user’s response.
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Moreover, in this experiment, one group consisting of 4 individuals is informed

in advance about the presence of these message windows, whereas the other group

of 2 participants is not aware of them.

It is anticipated that, starting from the second occurrence, the users will recognize

these windows more quickly compared to their initial encounter.

To summarize, the application serves two primary objectives:

1. It prompts the students to indicate their level of attentiveness during the lecture.

2. It logs and measures the reaction time of the students.

The source code for this application can be accessed by interested readers on

GitHub under the MIT license [359].

Self-Assessment Results

To compare the attention levels derived from both physiological data and facial

expressions in both the in-person and remote lectures with the self-assessment

provided by the volunteers, the following results were obtained.

In the case of the in-person lecture, when the students were asked if they were

paying attention, it was observed that 5 of them consistently answered yes, while 3

always responded with no. These affirmative answers accounted for approximately

40% of the total responses.

During the remote lectures, each volunteer was asked the same question 5 times

using the Reaction Time Tool. The results showed that there were 20 affirmative

answers and 5 negative answers. However, it was noticed that 2 out of the 20

affirmative answers had unusually long reaction times, indicating a lack of attention.

Therefore, these two answers were considered false. Taking this into account, there

were 18 affirmative answers and 7 negative answers, resulting in an attention level of

72% when using a window size of 10 minutes.

This finding deviates somewhat from the measurements obtained with the pro-

posed approach, which indicated an attention level of approximately 52%. However,

it is important to note that the small number of volunteers limits the statistical

significance of this comparison.
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Window Size Determination

The initial challenge involved determining the appropriate window size (WS) for the

windowing algorithm. Since there is limited information in the literature regarding

behavioral analysis of emotional stage parameters, the WS was determined empir-

ically. The value was chosen based on minimizing the variations observed when

applying the windowing algorithm to AA f e and AAp readings.

Figure 7.3 illustrates the correlation between the two systems. The Attention Gain

(AG) represents the percentage of Attention states detected from the raw Attention

Behaviors (ABs), without applying the 5-minute attention counter. The graphs

demonstrate that the optimal results for in-person lectures were achieved with a WS

of 100 samples. Therefore, the AGs from the in-person lectures were selected as

they yielded better performance with the Neural Network. In remote lectures, there

is a notable prevalence of Neutrality outcomes, indicating that the results from this

source are less predictive compared to the results from Physiological Data.

By considering 100 samples from both sources, the Root Mean Square Error

(RMSE) can be computed using the following formula:

RMSE =

s

(ÂG−AGp)2 +(ÂG−AG f e)2

2

With AGp representing the Attention Gain from physiological data, AG f e repre-

senting the Attention Gain from facial expressions, and ÂG denoting the average of

AGp and AG f e, the Root Mean Square Error (RMSE) values were calculated. The

RMSE for in-person lectures was found to be 0.02, while the RMSE for remote

lectures was determined to be 4.76.
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Fig. 7.3 Comparison of the AGs obtained from the AAp and AA f e during the in-presence and

remote lectures with different windows sizes.

Attention Behavior Analysis

After determining the WS, the AB can be computed. T To analyze the collective AB

of the students, the results of the windowing algorithm need to be filtered. The results

presented in Figure 7.4 were obtained by counting the occurrences of Attention states

detected in the preceding 5 minutes of AAi.

Although reaction times were collected, they were not utilized in this study as

there is no existing literature establishing a correlation between attention level and

reaction times. However, the data collection of reaction times is included in this

paper to describe the perturbation caused by attention checks on student attention
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levels, which may be significant for replicating these experiments. As mentioned

earlier, the data became available only after 5 minutes from the beginning of the

lecture. However, this delay does not impact the analysis of AB, and considering

that lectures typically extend beyond 1 hour, it is deemed acceptable for practical

implementation in real-world scenarios.

Fig. 7.4 ABs of the in-presence and remote lectures obtained from AAp and AA f e with a WS

of 100 samples and applying the 5 min attention counters every second.
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Results Discussion

The findings of this study offer valuable insights into the attention behaviors of

students in both in-person and remote lectures. As discussed in the subsection 7.1.3,

it is evident that there are distinct differences in the levels of attention observed

between the two types of lectures. Furthermore, the calculated ABs from both data

sources align with each other, providing further support for the consistency of the

results.

Figure 7.4 illustrates the average attention levels of the in-person and remote

groups. From the graph, it is evident that there exists an attention disparity between

the two groups. The average values suggest that the second group exhibited a higher

level of attention compared to the first group. This observation can be attributed

to several factors. Firstly, the first group was aware that actions may be requested

during the lecture, which could have conditioned their state of attention. Secondly,

it is possible that the second group had a greater interest or engagement with the

lecture topic compared to the first group.

In remote lectures, the prevalence of neutral facial expressions can be attributed

to the passive nature of the lessons. As a result, the use of Physiological Data

becomes particularly valuable in assessing the attention levels. Regarding the in-

person lectures, there is an interesting pattern observed in the peak of attention. The

second group reaches its peak after approximately 20 minutes, while the first group

reaches it after around 30 minutes. This difference in timing suggests that the second

group found the lecture topic more captivating or engaging compared to the overall

average.

Additionally, during one of the in-person lectures, there was a high level of

interaction between a student and the teacher. In the other lecture, after 25 minutes,

there was a request for the students to touch their heads, which may have caused a

momentary shift in attention.

The consistent results observed in the remote lectures can be explained by the

technical nature of the topic (i.e., designing an IT component), which typically

results in less variation in engagement levels compared to the in-person lecture,

which focused on informative content (i.e., how airplanes can fly).

Lastly, it is noteworthy that the results obtained in this study align with those

reported in the two works discussed in the last part of subsection 7.1.2.
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7.1.4 Conclusions

The research presented in this chapter specifically addresses the redundancy of

two distinct systems that can be utilized when ground truth is unavailable. The

primary objective is to measure the level of attention among students in two different

scenarios: in-person lectures and remote lectures.

The study introduces two key technical contributions. The first contribution in-

volves the utilization of a Convolutional Neural Network (CNN) for facial expression

recognition, while the second contribution entails the development of a deterministic

algorithm designed to analyze physiological reactions.

These two methodologies, which are widely recognized and accepted, have been

integrated in a novel and redundant approach to merge data from facial expression

recognition and physiological analysis. The CNN is responsible for classifying

emotions, while the physiological algorithm determines whether the individual is in

a state of Attention or Distraction. Significant efforts were dedicated to generating

data in the form of attention arrays, which facilitate the comparison and analysis of

the combined data from both sources.

The proposed IoT system has the potential to assist teachers in assessing the level

of attention in their classrooms. By providing attention feedback, it can identify

moments during lessons that require attention and help teachers improve the quality

of their teaching or enhance student engagement.

It is essential to note that the system does not generate data specific to individual

students’ attention levels. Therefore, it is crucial to avoid sharing data obtained

prior to the merging process. This data aggregation approach also addresses privacy

concerns, ensuring the confidentiality of individual student information.

As described in the previous subsection, the experimental campaign revealed a

significant occurrence of Neutrality outcomes. This circumstance diminishes the

reliability of the results obtained through the Neural Network when compared to the

analysis of Physiological Data. Enhancing the performance of the Neural Network

could address this concern and improve its accuracy. In the pursuit of redundancy,

additional data sources can be incorporated. For instance, the inclusion of a blink

counter and an eye gaze direction controller could be explored as potential extensions

to the system. These additions would provide further insights into students’ attention

levels and enhance the overall analysis.
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Conclusions and Outlook

The recent pandemic and the ongoing climate emergency have demonstrated the

urgent need for a significant transformation of urban environments. The goal is to

promote Healthy Cities aligned with the Sustainable Development Goals. Interest-

ingly, the pandemic has had certain positive impacts, such as reduced car traffic

leading to improved air quality and perceived road safety, thus enhancing the overall

quality of life. Moreover, the resulting improvements in air quality and the promotion

of pro-environmental citizen behaviors may generate positive externalities, including

potential economic benefits from reduced healthcare costs.

Rapid advancements in technology have facilitated a better understanding of the

interconnected phenomena within cities. Here, ICT and IoT play crucial roles in en-

abling the ecological transition. Data-driven approaches are increasingly employed in

the management and planning of urban areas, contributing to a deeper understanding

of health-related factors and supporting evidence-based decision-making.

Solutions based on these technologies are widely recognized, disseminated, and

anticipated. However, their definition, deployment, and operation are not always

executed optimally as each solution presents its unique challenges. This thesis

addresses a specific issue that, under scientific rigor, has been analyzed to develop a

feasible solution for the Smart Cities of today and the future.

The contributions detailed throughout the paper can be summarized as follows:
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• The IoT’s role in measuring and correlating quantitative measurements

and qualitative factors for architectural decision-making that affects hu-

man well-being in and around buildings (Chapter 2)

The essential role in measuring and monitoring environmental variables that

influence human well-being is played by the IoT. However, it is recognized that

environmental measurement is not a straightforward task, as a specific state of

well-being is determined by various variables that are highly correlated.

This chapter introduces environments of two types where the digitization of

several variables is facilitated by IoT, permitting the analysis of these complex

surroundings. An indoor monitoring system, PROMET&O, is presented, along

with an outdoor monitoring system, in which the monitoring and validation

of pollutant behaviors, such as particulate matter, and its interaction with

architectural environments are facilitated by an IoT framework.

It is revealed by this study that high spatiotemporal resolutions for continuous

monitoring are required for concepts like well-being, in order to digitalize

and quantify the health level of a given environment. This emphasizes the

critical role played by IoT networks and advanced environmental simulations

in promoting data-driven design, engaging users through data visualization,

and ultimately enhancing the indoor and outdoor environmental quality.

• An appropriate sampling rate that balances data accuracy and energy

efficiency duty-cycle without sacrificing the quality of particulate matter

concentration acquired by low-cost sensors. (Chapter 3)

Implementing an IoT solution is not a simple task, as each phenomenon

presents its unique challenges, from the characteristics of the variables to be

analyzed to the constraints inherent in IoT devices. In terms of data acquisition,

this chapter introduces outdoor particulate matter monitoring as a case study.

Given the architectural complexity of cities, there exist variations in pollution

levels and various pollution sources, impacting the dynamics of particulate

matter concentration.

On the other hand, the sensors are energy-demanding, which complicates

battery-powered deployment.

This chapter presents a frequency analysis that determines the bandwidth under

normal conditions to comply with the Nyquist-Shannon sampling theorem,
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reducing redundant measurements that consume resources. From this study, a

set of sampling frequencies is presented that can be applied depending on the

type of dynamics one wishes to measure.

Under the obtained frequencies, the use of duty cycle to reduce sensor energy

consumption and its effect on measurement precision is explored. It identifies

points where pollution dynamics are lower, and the use of the duty cycle affects

measurement precision to a lesser degree.

• A novel hybrid model that integrates diverse deployment scenarios using

a unified architectural framework and a standardized particulate matter

monitoring station. This model harnesses a range of low-cost wireless tech-

nologies, thereby achieving high spatio-temporal resolutions. (Chapter

5)

The transformative potential of the IoT in establishing smart cities depends

largely on the strategic deployment model used to balance operationally viable

solutions with valuable, actionable data.

Extensive research has evaluated different deployment methodologies, focus-

ing on cost-effectiveness, and spatio-temporal resolutions. Yet, a comprehen-

sive solution that maximizes these objectives simultaneously has not been

found due to technological and scenario-specific limitations.

This study analyzes three main deployment scenarios: fixed, participatory, and

mobile sensor networks. Each offers unique advantages but none provide a

complete solution independently. Consequently, a novel hybrid model that

combines these three scenarios using a standard particulate matter monitoring

station is proposed.

The system architecture uses wireless technologies on unlicensed frequency

bands, ensuring broad participation in data collection. This, along with easy

data centralization and management, contributes to cost-effectiveness and high

resolutions. Its scalability and flexibility, using data exchange protocols like

MQTT and REST, make it a significant advantage for future IoT deployments.

This study’s findings suggest new ways to leverage IoT’s potential in ur-

ban settings. The real-time data could aid urban planners, policymakers,

and researchers in creating healthier, sustainable environments, thus offering

promising opportunities for environmental research and urban development.
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• A framework to improve data quality, thereby increasing the coherence

and reliability of IoT platforms that use low-cost light scattering sensors

for air pollution monitoring (Chapter 5)

The value of an IoT solution is predominantly based on the quality of its data.

Thus, the data received primarily from low-cost sensors must be processed and

analyzed. These sensors often provide noisy, uncalibrated measurements, and

in some instances, exhibit high failure rates.

Anomaly detection, the identification of sensor malfunctions and failures that

significantly impact the performance and reliability of a sensor network, is the

focus of this chapter.

A methodological pipeline is proposed, with each stage specifically designed

to detect distinct types of anomalies. This comprehensive framework is char-

acterized by the utilization of a combination of algorithms to detect prevalent

sensor failures, exclude outliers, and calibrate sensors.

More accurate measurements are yielded by the system, demonstrating re-

silience to anomalies resulting from partial or complete sensor failure. Addi-

tionally, a decrease in measurement dispersion is achieved, thereby enhancing

the consistency in these sensor types compared to other reference calibration

systems. The system also allows for the median of the measurements to remain

within the manufacturer-specified error levels.

In a broader context, the promising results obtained point towards a positive

future for such sensors in measuring particulate matter within a smart city

environment. The process of fault detection leads to proactive maintenance

or replacement strategies, thereby ensuring prolonged sensor longevity. In

stable climatic conditions, such as those near the Earth’s equator, continuous

monitoring is made possible by this approach. This feature differentiates it

from cities encountering critical conditions at specific times of the year, as has

been discussed in this research.

• A Blockchain network architecture proposal for a national e-ID system

with iris and fingerprint recognition features. The design, implementation,

and validation of a Blockchain network for the proposed e-ID system

through a new consensus method called tournament consensus algorithm

(TCA). (Chapter 6)
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This chapter start with an examination of a private Blockchain Technology

architecture, aimed at optimizing power usage and transactional efficiency in

the context of general government services where security cannot be compro-

mised. As such, the Tournament Consensus Algorithm (TCA) is employed in

a private Blockchain deployment, satisfying the aforementioned requirements.

Further, the performance of the TCA is evaluated in a controlled setting,

demonstrating its effectiveness across different transaction volumes. The re-

sults suggest that TCA requires an appropriate level of computing resources,

yet it doesn’t compromise the security integral to the chain’s integrity. This

stands in contrast to evaluations of Proof of Work and Proof of Stake algo-

rithms, which exhibit greater power consumption and security concerns in

private blockchains.

The proposed architecture suggests that the initiation of a blockchain transac-

tion is primarily facilitated by smartcards. A robust authentication mechanism

is proposed, integrating the three user authentication factors founded on the

MoC mechanism prevalent in current smartcards and biometric systems. This

approach effectively deters identity theft of document owners, while ensur-

ing control and access to e-government services is maintained solely by the

legitimate owner.

• A hybrid architecture for data storage utilizes both centralized and decen-

tralized storage resources, with data integrity safeguarded through the

use of interlaced hashes. (Chapter 6)

The fusion of technologies like blockchain and IoT presents multiple advan-

tages, particularly in protecting data integrity. This chapters ends outlining an

architecture that exemplifies the synergistic potential of these technologies,

introducing an enhanced layer of trust, transparency, and robust security to

ensure data reliability and resistance to manipulation.

Blockchain’s integration is a pivotal advancement, bolstering user confidence

in data authenticity. The architecture’s resilience and reliability are further

fortified by the immutable metadata stored in the blockchain and an added

layer of data security provided by a dual-storage mechanism in the public

blockchain. This mechanism deters data manipulation by linking two unique

hashes, giving users the necessary data for calculating each hash.
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Although Ethereum’s Proof of Stake algorithm offers energy-efficient data

integrity, continual exploration of alternatives to improve this efficiency is

essential. Such progression must balance data integrity with sustainability and

efficiency considerations. Therefore, this architecture could potentially inform

the development of future secure, resilient, and reliable IoT systems, setting

new benchmarks for data integrity.

• A novel IoT system is proposed, which utilizes facial expression recog-

nition and physiological data analysis to assist teachers in evaluating

teaching effectiveness by determining students’ level of attention during

both in-person and remote lectures.(Chapter 7)

Building upon the heuristic designed in the prior case study, another complex

issue is encountered, where the variable is not straightforwardly ascertainable.

Therefore, an extrapolation grounded in the earlier analyses is undertaken.

This chapter focuses on the use of dual, redundant systems for assessing stu-

dent attention levels during in-person and remote lectures, particularly when

no ground truth is available. Two central technical contributions are presented:

the use of a Convolutional Neural Network (CNN) for facial expression recog-

nition and a deterministic algorithm to examine physiological responses.

These methodologies, both widely acknowledged, are combined in a unique,

redundant manner to integrate data from facial recognition and physiological

analyses. The CNN classifies emotions, while the physiological algorithm

distinguishes between attention and distraction states. Extensive efforts were

made to produce ’attention arrays’ to facilitate the combined data’s analysis

and comparison.

The proposed IoT system could aid teachers in gauging classroom attention

levels and improving teaching quality by pinpointing key attention-required

moments. Importantly, the system does not produce individual-specific atten-

tion data, and pre-merge data should not be shared to ensure student privacy.

The study found a significant presence of ’Neutrality’ outcomes, reducing the

reliability of Neural Network results compared to Physiological Data analysis.

Improved Neural Network performance and the addition of other data sources

like blink counters and eye gaze direction controllers could enhance accuracy,

provide additional insight into attention levels, and reinforce the system’s

redundancy.
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[251] Mindaugas Andrulevičius. Methods and applications of optical holography.
Material Science, 17(4):371–377, 2011.



262 References

[252] Hao Tang Chan, Wen Jyi Hwang, and Chau Jern Cheng. Digital hologram
authentication using a hadamard-based reversible fragile watermarking algo-
rithm. IEEE/OSA Journal of Display Technology, 11(2):193–203, 2015.

[253] Bruce Schneier. One-way hash functions. In Applied Cryptography, Second
Edition, pages 429–459. John Wiley & Sons, Inc., October 2015.

[254] Richard Duncan. An Overview of Different Authentication Methods Author
Retains Full Rights tu , A ho ll r igh. White Paper: SANS Institute, 2001.

[255] R H Nagel. System and method for production and authentication of original
documents. https://www.google.com/patents/US7080041, 2006.

[256] Bichlien Hoang and Ashley Caudill. Biometrics. Technical report, IEEE,
2012.

[257] Simon Liu and Mark Silverman. Practical guide to biometric security technol-
ogy. IT Professional, 3(1):27–32, 2001.

[258] U.S National Science and Technology Council. Biometrics in Goverment
POST-9/11. Technical report, U.S National Science and Technology Council,
2008.

[259] A.K. Jain, Jianjiang Feng, and Karthik Nandakumar. Fingerprint matching.
Computer, 43(2):36–44, 2010.

[260] Sim Hiew Moi, Nazeema Binti Abdul Rahim, Puteh Saad, Pang Li Sim,
Zalmiyah Zakaria, and Subariah Ibrahim. Iris biometric cryptography for
identity document. In SoCPaR 2009 - Soft Computing and Pattern Recognition,
pages 736–741, 2009.

[261] James Wayman, Anil Jain, Davide Maltoni, and Dario Maio. Biometric
Systems. Springer Science & Business Media, 2005.

[262] Siddhesh Ashok Vaidya and Varsha Bhosale. Invisible touch screen based PIN
authentication to prevent shoulder surfing. In 2016 International Conference
on Inventive Computation Technologies (ICICT), pages 1–4, 2016.

[263] Vrizlynn L L Thing and Hwei-ming Ying. Rainbow Table Optimization
for Password Recovery. International Journal on Advances in Software,
4(3):479–488, 2011.

[264] Francisco Martín-Fernández, Pino Caballero-Gil, and Cándido Caballero-Gil.
Authentication Based on Non-Interactive Zero-Knowledge Proofs for the
Internet of Things. Sensors, 16(1), 2016.

[265] Roy Fisher, Mengxuan Lyu, Bo Cheng, and Gerhard Hancke. Public key
cryptography: Feasible for security in modern personal area sensor networks?
Proceedings of the IEEE International Conference on Industrial Technology,
2016-May:2020–2025, 2016.



References 263

[266] Stephen Murrell and Norman G. Einspruch. Electronic identification, personal
privacy and security in the services sector. 5th International Conference
Service Systems and Service Management - Exploring Service Dynamics with
Science and Innovative Technology, ICSSSM’08, 2008.

[267] Yongsheng Liu, Jie Li, and Mohsen Guizani. PKC based broadcast authentica-
tion using signature amortization for WSNs. IEEE Transactions on Wireless
Communications, 11(6):2106–2115, 2012.

[268] Kenneth Otula Sigar and Omari Kebiro Jared. A critical look of ussd technol-
ogy adoption and benefits. International Journal of Advanced Research in
Computer Science, 5(1):27–29, 2014.

[269] Zhu Siyang. Deformed Two-Dimension Code Quick Recognition Algorithm
Design and Implementation in Uncertain Environment. Proceedings - 2015
7th International Conference on Measuring Technology and Mechatronics
Automation, ICMTMA 2015, pages 322–325, 2015.

[270] Manuel Leithner, Peter Kieseberg, Sebastian Schrittwieser, Lindsay Munroe,
Martin Mulazzani, Mayank Sinha, and Edgar Weippl. QR code security.
MoMM’2010 - The Eighth International Conference on Advances in Mobile
Computing and Multimedia, page 430, 2010.

[271] Wira Firdaus Hj Yaakob, Hafizul Hasni Manab, and Siti Noorashikin Md
Adzmi. Smart card chip design implementation on ARM processor-based
FPGA. 2014 IEEE 3rd Global Conference on Consumer Electronics, GCCE,
pages 294–297, 2014.

[272] C. M. Roberts. Radio frequency identification (RFID). Computers and
Security, 25(1):18–26, 2006.

[273] Sanjay E Sarma, Stephen A Weis, and Daniel W Engels. RFID Systems and
Security and Privacy Implications. Cryptographic Hardware and Embedded
Systems, pages 454–469, 2003.

[274] M.A. Zamora A.J. Jara, A.F. Alcolea and A.F.G. Skarmeta. Analysis of
different techniques to define metadata structure in NFC/RFID cards to reduce
access latency, optimize capacity, and guarantee integrity. IFAC Proceedings
Volumes (IFAC-PapersOnline), 10(Part 1):192–197, 2010.

[275] Nahar Sunny Suresh Shobha, Kajarekar Sunit Pravin Aruna, Manjrekar De-
vesh Parag Bhagyashree, and Kotian Siddhanth Jagdish Sarita. NFC and NFC
payments: A review. Proceedings of 2016 International Conference on ICT
in Business, Industry, and Government, ICTBIG 2016, pages 1–7, 2016.

[276] Montes D. Juan, Rincón P. Andrés, Páez M. Rafael, Ramírez E. Gustavo, and
Pérez C. Manuel. A Model for National Electronic Identity Document and
Authentication Mechanism Based on Blockchain. International Journal of
Modeling and Optimization, 8(3):160–165, 2018.



264 References

[277] Emin Gün Sirer Ittay Eyal. How to disincentivize large bit-
coin mining pools. http://hackingdistributed.com/2014/06/18/
how-to-disincentivize-large-bitcoin-mining-pools/. Accessed: 2019-
09-18.

[278] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonoutsource-
able scratch-off puzzles to discourage bitcoin mining coalitions. Proceed-
ings of the ACM Conference on Computer and Communications Security,
October:680–691, 2015.

[279] Scott Nadal Sunny King. PPCoin: Peer-to-Peer Crypto-Currency with Proof-
of-Stake. Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security - CCS’16, 1919(January):1–27, 2017.

[280] Pavel Vasin. BlackCoin’s Proof-of-Stake Protocol v2 Pavel. White paper,
page 2, 2014.

[281] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
proof of work. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9604 LNCS(240258):142–157, 2016.

[282] Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. Proof
of Luck: An efficient blockchain consensus protocol. SysTEX 2016 - 1st
Workshop on System Software for Trusted Execution, colocated with ACM/I-
FIP/USENIX Middleware 2016, pages 2–7, 2016.

[283] Hong Bao and David Roubaud. Non-fungible token: A systematic review and
research agenda. Journal of Risk and Financial Management, 15(5), 2022.

[284] Lennart Ante. Smart contracts on the blockchain–a bibliometric analysis and
review. Telematics and Informatics, 57:101519, 2021.

[285] Mingli Wu, Kun Wang, Xiaoqin Cai, Song Guo, Minyi Guo, and Chunming
Rong. A comprehensive survey of blockchain: From theory to iot applications
and beyond. IEEE Internet of Things Journal, 6(5):8114–8154, 2019.

[286] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.
Towards blockchain-based auditable storage and sharing of iot data. In Pro-
ceedings of the 2017 on cloud computing security workshop, pages 45–50,
2017.

[287] Mays Alshaikhli, Tarek Elfouly, Omar Elharrouss, Amr Mohamed, and Na-
jmath Ottakath. Evolution of internet of things from blockchain to iota: A
survey. IEEE Access, 10:844–866, 2021.

[288] Abu Buker Siddique, Rafaqat Kazmi, Habib Ullah Khan, Sikandar Ali, Ali
Samad, and Gulraiz Javaid. An intelligent and secure air quality monitoring
system using neural network algorithm and blockchain. IETE Journal of
Research, pages 1–14, 2022.



References 265

[289] Cameron Thouati de Tazoult, Raja Chiky, and Valentin Foltescu. A distributed
pollution monitoring system: The application of blockchain to air quality
monitoring. In Computational Collective Intelligence: 11th International
Conference, ICCCI 2019, Hendaye, France, September 4–6, 2019, Proceed-
ings, Part II 11, pages 688–697. Springer, 2019.

[290] Shajulin Benedict, P Rumaise, and Jaspreet Kaur. Iot blockchain solution for
air quality monitoring in smartcities. In 2019 IEEE International Conference
on Advanced Networks and Telecommunications Systems (ANTS), pages 1–6.
IEEE, 2019.

[291] Yohan Han, Byungjun Park, and Jongpil Jeong. A novel architecture of air
pollution measurement platform using 5g and blockchain for industrial iot
applications. Procedia Computer Science, 155:728–733, 2019.

[292] Daniele Sofia, Nicoletta Lotrecchiano, Paolo Trucillo, Aristide Giuliano, and
Luigi Terrone. Novel air pollution measurement system based on ethereum
blockchain. Journal of Sensor and Actuator Networks, 9(4):49, 2020.

[293] Quynh H. Dang. Secure hash standard. Technical report, National Institute of
Standards and Technology, July 2015.

[294] Renate Nummela Caine and Geoffrey Caine. Making Connections: Teaching
and the Human Brain. Association for Supervision and Curriculum Develop-
ment, 11141 Georgia Avenue, Suite 200, Wheaton, MD 20902 (ASCD Stock
No, 1991.

[295] Evan F. Risko, Nicola Anderson, Amara Sarwal, Megan Engelhardt, and Alan
Kingstone. Everyday Attention: Variation in Mind Wandering and Memory
in a Lecture. Applied Cognitive Psychology, 26(2):234–242, 2012. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/acp.1814.

[296] Evan F. Risko, Dawn Buchanan, Srdan Medimorec, and Alan Kingstone.
Everyday attention: Mind wandering and computer use during lectures. Com-
puters & Education, 68:275–283, 2013.

[297] B. A. Campbell, H. Hayne, R. Richardson, and Byron A. Campbell. Atten-
tion and information Processing in infants and Adults: Perspectives From
Human and Animal Research. Psychology Press, 2014. Google-Books-ID:
oJF7AgAAQBAJ.

[298] K. Wilson and J.H. Korn. Attention during Lectures: Beyond Ten Minutes.
Teaching of Psychology, 34(2):85–89, 2007.

[299] Ali Darvishi, Hassan Khosravi, Shazia Sadiq, and Barbara Weber. Neuro-
physiological Measurements in Higher Education: A Systematic Literature
Review. International Journal of Artificial Intelligence in Education, 2021.

[300] Jiahui Xu and Baichang Zhong. Review on portable EEG technology in
educational research. Computers in Human Behavior, 81:340–349, 2018.



266 References

[301] Genaro Rebolledo-Mendez, Ian Dunwell, Erika A. Martínez-Mirón, María Do-
lores Vargas-Cerdán, Sara de Freitas, Fotis Liarokapis, and Alma R. García-
Gaona. Assessing NeuroSky’s Usability to Detect Attention Levels in an
Assessment Exercise. In Julie A. Jacko, editor, Human-Computer Interaction.
New Trends, Lecture Notes in Computer Science, pages 149–158, Berlin,
Heidelberg, 2009. Springer.

[302] Paul Ekman and W. V. Friesen. Constants across cultures in the face and
emotion. Journal of personality and social psychology, 17 2:124–9, 1971.

[303] Paul Ekman. Basic Emotions, chapter 3, pages 45–60. John Wiley & Sons,
Ltd, 1999.

[304] Daniel T. Cordaro, Rui Sun, Dacher Keltner, Shanmukh Vasant Kamble,
Niranjan Huddar, and Galen D McNeil. Universals and cultural variations in
22 emotional expressions across five cultures. Emotion, 18:75–93, 2018.

[305] Paul Ekman and Wallace V. Friesen. Facial action coding system: A technique
for the measurement of facial movement. Consulting Psychologists Press,
Palo Alto, CA, 1978.

[306] Maja Pantic and Léon Rothkrantz. Toward an affect-sensitive multimodal
human-computer interaction. Proceedings of the IEEE, 91:1370–1390, 2003.

[307] Y.-I. Tian, T. Kanade, and J.F. Cohn. Recognizing action units for facial
expression analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(2):97–115, 2001. Conference Name: IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[308] Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro. Automatic Anal-
ysis of Facial Affect: A Survey of Registration, Representation, and Recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(6):1113–1133, June 2015. Conference Name: IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[309] I.A. Essa and A.P. Pentland. Coding, analysis, interpretation, and recognition
of facial expressions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):757–763, 1997. Conference Name: IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[310] Kenji Mase. Recognition of Facial Expression from Optical Flow. IEICE
TRANSACTIONS on Information and Systems, E74-D(10):3474–3483, 1991.
Publisher: The Institute of Electronics, Information and Communication
Engineers.

[311] Zhentao Liu, Min Wu, Weihua Cao, Luefeng Chen, Jianping Xu, Ri Zhang,
Mengtian Zhou, and Junwei Mao. A facial expression emotion recognition
based human-robot interaction system. IEEE/CAA Journal of Automatica
Sinica, 4(4):668–676, 2017. Conference Name: IEEE/CAA Journal of Auto-
matica Sinica.



References 267

[312] T. Kanade, J.F. Cohn, and Yingli Tian. Comprehensive database for facial
expression analysis. In Proceedings Fourth IEEE International Conference on
Automatic Face and Gesture Recognition (Cat. No. PR00580), pages 46–53,
2000.

[313] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions
with gabor wavelets. In Proceedings Third IEEE International Conference on
Automatic Face and Gesture Recognition, pages 200–205, 1998.

[314] Carlos Busso, Zhigang Deng, Serdar Yildirim, Murtaza Bulut, Chul Min Lee,
Abe Kazemzadeh, Sungbok Lee, Ulrich Neumann, and Shrikanth Narayanan.
Analysis of emotion recognition using facial expressions, speech and multi-
modal information. In Proceedings of the 6th international conference on
Multimodal interfaces, ICMI ’04, pages 205–211, New York, NY, USA, 2004.
Association for Computing Machinery.

[315] Ian Goodfellow, Dumitru Erhan, Pierre Carrier, Aaron Courville, Mehdi Mirza,
Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee,
Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang,
Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park, and
Y. Bengio. Challenges in representation learning: A report on three machine
learning contests. Neural Networks, 64, 07 2013.

[316] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and Zhengyou Zhang.
Training deep networks for facial expression recognition with crowd-sourced
label distribution. In Proceedings of the 18th ACM International Conference
on Multimodal Interaction, ICMI ’16, page 279–283, New York, NY, USA,
2016. Association for Computing Machinery.

[317] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom Gedeon. Static
facial expression analysis in tough conditions: Data, evaluation protocol and
benchmark. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 2106–2112, 2011.

[318] Pedro M. Ferreira, Filipe Marques, Jaime S. Cardoso, and Ana Rebelo. Phys-
iological Inspired Deep Neural Networks for Emotion Recognition. IEEE
Access, 6:53930–53943, 2018. Conference Name: IEEE Access.

[319] Si Miao, Haoyu Xu, Zhenqi Han, and Yongxin Zhu. Recognizing Facial
Expressions Using a Shallow Convolutional Neural Network. IEEE Access,
7:78000–78011, 2019. Conference Name: IEEE Access.

[320] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial Expression
Recognition via a Boosted Deep Belief Network. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1805–1812, 2014. ISSN:
1063-6919.

[321] Zibo Meng, Ping Liu, Jie Cai, Shizhong Han, and Yan Tong. Identity-Aware
Convolutional Neural Network for Facial Expression Recognition. In 2017



268 References

12th IEEE International Conference on Automatic Face Gesture Recognition
(FG 2017), pages 558–565, 2017.

[322] Jacopo Sini, Antonio Costantino Marceddu, and Massimo Violante. Automatic
Emotion Recognition for the Calibration of Autonomous Driving Functions.
518, 9(3), 2020.

[323] Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi
Mirza. Disentangling Factors of Variation for Facial Expression Recognition.
In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and
Cordelia Schmid, editors, Computer Vision – ECCV 2012, Lecture Notes in
Computer Science, pages 808–822, Berlin, Heidelberg, 2012. Springer.

[324] Su Liu, Ye Chen, Hui Huang, Liang Xiao, and Xiaojun Hei. Towards Smart
Educational Recommendations with Reinforcement Learning in Classroom. In
2018 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE), pages 1079–1084, 2018. ISSN: 2470-6698.

[325] Hamed Monkaresi, Nigel Bosch, Rafael A. Calvo, and Sidney K. D’Mello.
Automated Detection of Engagement Using Video-Based Estimation of Facial
Expressions and Heart Rate. IEEE Transactions on Affective Computing,
8(1):15–28, 2017. Conference Name: IEEE Transactions on Affective Com-
puting.

[326] Arindam Ray and Amlan Chakrabarti. Design and Implementation of Tech-
nology Enabled Affective Learning Using Fusion of Bio-physical and Facial
Expression. Journal of Educational Technology & Society, 19(4):112–125,
2016. Publisher: International Forum of Educational Technology & Society.

[327] J. Allen and A. Murray. Effects of filtering on multisite photoplethysmography
pulse waveform characteristics. In Computers in Cardiology, 2004, pages
485–488, 2004.

[328] John Allen. Photoplethysmography and its application in clinical physiologi-
cal measurement. physiological measurement. Physiological Measurement,
28(3):R1–R39, Feb 2007.

[329] M. J. Drinnan, J. Allen, and A. Murray. Relation between heart rate and pulse
transit time during paced respiration physiol. Physiological measurement,
22,3(1):425–32, aug 2001.

[330] Joanne Wai Yee Chung, Henry Chi Fuk So, Marcy Ming Tak Choi, Vincent
Chun Man Yan, and Thomas Kwok Shing Wong. Artificial intelligence in
education: Using heart rate variability (hrv) as a biomarker to assess emotions
objectively. Computers and Education: Artificial Intelligence, 2:100011,
2021.

[331] Atul Sharma, Mihaela Badea, Swapnil Tiwari, and Jean Louis Marty. Wearable
biosensors: An alternative and practical approach in healthcare and disease
monitoring. Molecules, 26(3), Feb 2021.



References 269

[332] Shan Xia, Shixin Song, Fei Jia, and Guanghui Gao. A flexible, adhesive
and self-healable hydrogel-based wearable strain sensor for human motion
and physiological signal monitoring. Journal of Materials Chemistry B,
7(1):4638–4648, Jun 2019.

[333] K. Ashton. That Internet of Things Thing. RFID Journal, 2009.

[334] Luigi Atzori, Roberto Girau, Salvatore Martis, Virginia Pilloni, and Marco
Uras. A SIoT-aware approach to the resource management issue in mobile
crowdsensing. In 2017 20th Conference on Innovations in Clouds, Internet
and Networks (ICIN), pages 232–237, 2017. ISSN: 2472-8144.

[335] Luigi Atzori, Roberto Girau, Virginia Pilloni, and Marco Uras. Assignment
of Sensing Tasks to IoT Devices: Exploitation of a Social Network of Objects.
IEEE Internet of Things Journal, 6(2):2679–2692, 2019. Conference Name:
IEEE Internet of Things Journal.

[336] Luigi Atzori, Claudia Campolo, Bin Da, Roberto Girau, Antonio Iera, Gi-
acomo Morabito, and Salvatore Quattropani. Enhancing Identifier/Locator
Splitting Through Social Internet of Things. IEEE Internet of Things Journal,
6(2):2974–2985, 2019. Conference Name: IEEE Internet of Things Journal.

[337] Luigi Atzori, Claudia Campolo, Bin Da, Roberto Girau, Antonio Iera, Gia-
como Morabito, and Salvatore Quattropani. Smart devices in the social loops:
Criteria and algorithms for the creation of the social links. Future Generation
Computer Systems, 97:327–339, 2019.

[338] Xieling Chen, Di Zou, Haoran Xie, and Fu Lee Wang. Past, present, and
future of smart learning: a topic-based bibliometric analysis. International
Journal of Educational Technology in Higher Education, 18(1):2, 2021.

[339] Ping Tan, Han Wu, Peng Li, and He Xu. Teaching management system with
applications of rfid and iot technology. Education Sciences, 8(1), 2018.

[340] Mohammad Ali and Al Maruf Hassan. Developing applications for voice
enabled iot devices to improve classroom activities. In 2018 21st International
Conference of Computer and Information Technology (ICCIT), pages 1–4,
2018.

[341] Ghazal Yadav, Prabha Sundaravadivel, and Lokeshwar Kesavan. Affect-learn:
An iot-based affective learning framework for special education. In 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1–5, 2020.

[342] Muhammad Awais, Mohsin Raza, Nishant Singh, Kiran Bashir, Umar Man-
zoor, Saif Ul Islam, and Joel J. P. C. Rodrigues. Lstm-based emotion detection
using physiological signals: Iot framework for healthcare and distance learn-
ing in covid-19. IEEE Internet of Things Journal, 8(23):16863–16871, 2021.



270 References

[343] Antonio Costantino Marceddu, Jacopo Sini, Massimo Violante, and Bar-
tolomeo Montrucchio. A novel approach to improve the social acceptance of
autonomous driving vehicles by recognizing the emotions of passengers. In
Wolfgang Osten, Dmitry P. Nikolaev, and Jianhong Zhou, editors, Thirteenth
International Conference on Machine Vision, volume 11605, pages 503 – 510.
International Society for Optics and Photonics, SPIE, 2021.

[344] François Chollet et al. Keras. https://keras.io, 2015.

[345] Patrick Lucey, Jeffrey F. Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar,
and Iain Matthews. The extended cohn-kanade dataset (ck+): A complete
dataset for action unit and emotion-specified expression. In 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition -
Workshops, pages 94–101, 2010.

[346] Natalie Ebner, Michaela Riediger, and Ulman Lindenberger. FacesÐa
database of facial expressions in young, middle-aged, and older women and
men: Development and validation. Behavior research methods, 42:351–62,
02 2010.

[347] Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. The mug
facial expression database. In 11th International Workshop on Image Analysis
for Multimedia Interactive Services WIAMIS 10, pages 1–4, 2010.

[348] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel H. J. Wigboldus,
Skyler T. Hawk, and Ad van Knippenberg. Presentation and validation of the
radboud faces database. Cognition and Emotion, 24(8):1377–1388, 2010.

[349] Jacopo Sini, Antonio Costantino Marceddu, Massimo Violante, and Riccardo
Dessì. Passengers’ emotions recognition to improve social acceptance of
autonomous driving vehicles. In Anna Esposito, Marcos Faundez-Zanuy,
Francesco Carlo Morabito, and Eros Pasero, editors, Progresses in Artificial
Intelligence and Neural Systems, pages 25–32, Singapore, 2021. Springer
Singapore.

[350] Antonio Costantino Marceddu, Jacopo Sini, Massimo Violante, and Bar-
tolomeo+ Montrucchio. A novel approach to improve the social acceptance
of autonomous driving vehicles by recognizing the emotions of passengers.
In Proceedings of SPIE, Rome, 2021. SPIE.

[351] Antonio Costantino Marceddu. Emotion detector (ed). https://github.com/
AntonioMarceddu/Emotion_Detector, 2020.

[352] Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-source
distributed deep learning for the jvm, apache software foundation license 2.0.
https://deeplearning4j.konduit.ai/.

[353] P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-
ple features. In Proceedings of the 2001 IEEE Computer Society Conference



References 271

on Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages
I–I, 2001.

[354] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Com-
puter Vision – ECCV 2016, pages 21–37, Cham, 2016. Springer International
Publishing.

[355] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[356] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093,
2014.

[357] James Russell. A circumplex model of affect. Journal of Personality and
Social Psychology, 39:1161–1178, 12 1980.

[358] Steve Walsh. Exploring classroom discourse: Language in action. Routledge,
2011.

[359] Jacopo Sini. Reaction time tool. https://github.com/JacopoSini/
MDPI-Sensors---IOT-Education-ReactionTimeTool, 2021.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The IoT Architecture
	1.2 IoT and Urban Environments
	1.3 Open Challenges
	1.4 Research Questions
	1.4.1 IoT Environments' Domain
	1.4.2 Data Collection
	1.4.3 Networks and Data Transmission
	1.4.4 Data Quality
	1.4.5 Data Integrity
	1.4.6 Other IoT Applications

	1.5 Thesis Contributions

	2 IoT Environments' Domain
	2.1 Indoor Environmental Quality Monitoring
	2.1.1 Indoor Environmental Monitoring Quality Requirements
	2.1.2 PROMET&O System
	2.1.3 Calibration Procedures
	2.1.4 Experimental Results

	2.2 Outdoor Environmental Quality Monitoring
	2.2.1 Introduction and Background
	2.2.2 Methodology
	2.2.3 Case Study
	2.2.4 Results Discussion

	2.3 Conclusions
	2.3.1 Indoor Environmental Quality Monitoring
	2.3.2 Outdoor Environmental Quality Monitoring


	3 Data Collection
	3.1 Frequency Analysis
	3.1.1 Background and Related Work
	3.1.2 Data and Methodology
	3.1.3 Results and Discussion
	3.1.4 Stationary frequency analysis

	3.2 Data Gathering optimization
	3.2.1 Background
	3.2.2 Experimental Setup
	3.2.3 Experimental Results
	3.2.4 Discussion

	3.3 Conclusions
	3.3.1 Frequency Analysis
	3.3.2 Data Gathering optimization


	4 Data Transmission
	4.1 Background
	4.1.1 Wireless Wide Area Networks for IoT
	4.1.2 Local Area Networks for IoT
	4.1.3 Personal Area Network

	4.2 System Architecture
	4.3 Air Monitoring Stations Overview
	4.3.1 Hardware Overview
	4.3.2 Software Overview

	4.4 Deployment Area
	4.5 Deployment Scenarios
	4.5.1 Fixed Sensor Networks
	4.5.2 Participatory Sensor Networks
	4.5.3 Mobile Sensor Networks

	4.6 Results and Discussion
	4.7 Conclusions

	5 Data Accuracy
	5.1 Background
	5.1.1 Particulate Matter Monitoring
	5.1.2 Experiment Deployment Area
	5.1.3 Experimental Campaign

	5.2 Data Improvement Framework
	5.2.1 Failure Detection
	5.2.2 Outlier Detection
	5.2.3 Calibration Model
	5.2.4 Experiment Methodology

	5.3 Framework Performance
	5.3.1 Failure Detection
	5.3.2 Outlier Detection
	5.3.3 Calibration Model

	5.4 Global Performance
	5.5 Conclusions

	6 Data Integrity
	6.1 Blockchain and Smartcities
	6.1.1 Related Work
	6.1.2 Authentication Methods
	6.1.3 Proposed Architecture for Biometric E-ID System with Blockchain
	6.1.4 Consensus Algorithms
	6.1.5 System Performance Results

	6.2 Air Pollution Monitoring over Blockchain Technologies
	6.2.1 Introduction
	6.2.2 Background
	6.2.3 Proposed Architecture
	6.2.4 Blockchain Verification
	6.2.5 Deployment and Results

	6.3 Conclusions
	6.3.1 Blockchain and Smartcities
	6.3.2 Air Pollution Monitoring over Blockchain Technologies


	7 Other IoT Applications
	7.1 Educational Scenario - IoT System for Affective Learning
	7.1.1 Background
	7.1.2 Methodology
	7.1.3 Experimental Results
	7.1.4 Conclusions


	8 Conclusions and Outlook
	References

