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Introduction 
 

Electrospinning and electrospray are techniques used to fabricate respectively fibrous or 

particles-shaped materials. Both processes are based on the electro-fluid-dynamic (EFD) 

fundamentals. Both techniques revolve around the application of a high voltage at the tip of a 

spinneret of a pumped polymeric solution that is able to stretch the droplet that is formed. 

When conditions like voltage and viscosity of the solution are optimized, a jet leaves the drop, 

taking the form of a fiber and the technique is called electrospinning; other parameters result 

in the break of the jet into small droplets, in which case the technique is called electrospray. 

In both the situations, fibers or particles are accumulated on a grounded collector, after 

solvent evaporation.  

Electrospinning is a technique that dates back in the first years of the 1900 and that recently 

has been rediscovered to produce fibrous materials with nanoscale structure. Other techniques 

used to create fibrous materials like wet spinning, melt spinning, dry spinning and gel 

spinning resulted in fibers with macro and microscale. Thanks to their nanosized structure, 
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electrospun materials have very interesting characteristics: large surface area, high porosity, 

wide interconnectivity and small pore size. All these features have been resulted suitable for 

different technological fields, mainly in biomedicine, filtration, clothing and protective 

devices. In particular, electrospun fibrous materials had a great impact in biomedical field, 

because they can mimic the characteristics of the extracellular matrix (ECM), providing 

scientists with a great tool and enabling applications such as scaffold for tissue engineering 

and for tissue regeneration.  Furthermore, the versatility of electrospinning set up can provide 

fibrous materials with specific orientation and disposition. A specific topography can control 

the cell disposition, leading them to arrange and organize themselves in structure that mimic 

the in vivo conditions. Electrospun materials have been also used also as wound dressing, 

because they allow the transpiration of the wound thanks to their porosity; they can protect 

the injured site from bacteria which are blocked by the small pore size; they are able to absorb 

wound exudate, due to the large surface area. Finally, electrospinning can be used to 

encapsulate drugs with high loading and encapsulation efficiency, a very useful ability, 

especially for drugs difficult to be loaded on a pharmaceutical carrier. 

Electrospray process is currently used in mass spectrometry analysis as a method for 

producing ions from macromolecules. Recently, electrospray was adapted as a method for the 

fabrication of polymeric particle-shaped systems. Electrospray can produce, in one step and 

with a high yield, monodisperse and micro or nanometric particles, with a precise 

morphology. Such particle systems are self-dispersing in space, due to their highly unipolar 

charges that induce the repulsion of the particles, preventing their aggregation. Other 

techniques are used to produce polymeric micro and nanoparticles, such as coacervation, 

emulsions technique and spray drying. However, few particulate devices have been translated 

in clinic, due to the shortfalls related to their methods of fabrication. For instance, emulsions 

are characterized by issues concerning the stability of molecules in presence of solvents. 
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Moreover, emulsions-based techniques produce particles with broad size distribution, 

contributing to their lack of reproducibility in molecules release. In fact, obtaining a 

homogenous particulate formulation would allow a better control on the release kinetics of 

drugs. As the electrospinning, the electrospray is characterized by high loading capacity and 

encapsulation efficiency. Therefore, the encapsulation of drugs, independently from their 

nature (hydrophobic or hydrophilic), is granted. 

The advantages of using the electrospinning and the electrospray as methods of fabrication, 

derive also from the possibility to tune the size and/or the morphology of the materials 

obtained. By changing the working parameters during the fabrication, the size and the 

morphology of the systems can be controlled. Then, both the techniques are able to process a 

wide range of polymers, synthetic and natural, such to exploit their properties (mechanical, 

different degradation rate, biological activity) in fibrous or particle shaped materials.  

In this thesis, both the techniques were used to fabricate biomedical devices. Particularly, 

electrospinning was used to (1) produce a scaffolds and coatings with a specific topography, 

able to induce the cells to acquire a precise disposition on the substrate. Furthermore, the 

electrospinning was exploited to (2) encapsulate a complex pool of growth factors, extracted 

from the human platelets, namely human platelets lysate (hPL), with the aim to obtain a 

wound dressing. Finally, the electrospray was applied to (3) fabricate particles systems to 

encapsulate curcumin for its oral delivery, in order to increase its absorption at the intestinal 

tract and increase its bioavailability. 

In Chapter 1, the electrospinning and electrospray techniques are presented and described, as 

well as its basics and all the parameters involved in the fibers and particles fabrication. Then, 

the characteristics and the advantages of the electrospun fibers and electrosprayed particles, 

especially for biomedical application, are discussed. Successively, some of the synthetic and 

natural polymers, which can be used in the fabrication techniques are presented.  
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Chapter 2 shows how the electrospinning technique was exploited to fabricated surfaces with 

oriented topography. Particularly, a variant of the electrospinning set-up includes a rotating 

collector on which the fibers were aligned during the deposition. Herein, the highly aligned 

fibers obtained thanks to this set up, were used to modified surfaces by creating a topography 

with a preferential alignment. This surface property was exploited as a strategy to control cell 

disposition. In fact, by controlling the cell disposition, it was possible to mimic the 

organizations of some tissues and help their growth and in vitro. Skeletal muscle tissue is 

characterized by aligned structures that derive from myoblasts (musculoskeletal cells 

precursors) differentiation. During this process, myoblasts start to get into line and fuse their 

plasmatic membranes, leading to the formation of myotubes. They will form the muscle fibers 

that internally have aligned structures that is functional to the contraction and relaxation of the 

muscle. Therefore, by aligning myoblasts, in vitro functional skeletal muscle tissues can be 

obtained and, successively, implanted in damage site of patients. Ethyl-2-cyanoacrylate 

(ECA) was used to produce aligned fibers by using a rotating collector. The aligned fibers 

were used to modify glass surfaces through a thermal treatment. Upon a melting process, the 

aligned fibers created a coating characterized by aligned topography which derived from the 

electrospun fibers arrangement. Myoblast cells were used to evaluate the effect on the 

viability and morphology of the coatings. Thanks to these experiments, the aligned coatings 

resulted biocompatible and able to induce the alignment of the cells. 

Chapter 3 shows how electrospinning was applied to fabricate fibers by using silk fibroin, in 

order to encapsulate human platelets lysate (hPL). hPL is a pool of cytokines and growth 

factors involved in physiological process of the wound healing. Currently, they are used in 

chronic wounds therapy as a gel. Although the hPL gel is able to release the platelets derived 

proteins, it is characterized by several limits. The preparation, the application and the 

handleability of the gel result difficult and are feasible only by qualified personnel. In 
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addition, since they are sensitive molecules, they can be subjected to degradative processes. 

Therefore, by encapsulating them within electrospun fibers, it should overcome the limits of 

hPL gel. In particular, silk fibroin was used because it is a protein characterized by tunable 

physical and chemical properties and it has the ability to protect the activity of sensitive 

molecules. Such properties were exploited for controlling the release kinetics of the hPL and 

preserve its growth factors activity, improving the shelf life of the fabricated device. The 

characterization of the release of the proteins from the fibrous mats was carried out using 

FITC-albumin, since Albumin is a component of hPL. Then, the activity of the hPL after the 

fabrication and after a thermal stress to simulate ageing was evaluated, such to investigate the 

preserving activity of fibroin toward the hPL growth factors. The investigations have shown 

that the fibrous patch was able to control the release of proteins and to preserve their 

biological activity, even after a thermal stress. 

Chapter 4 describes how the electrospray has been exploited to produce particles able to 

encapsulate curcumin. Curcumin is a nutraceutical molecule with antioxidant, anti-

inflammatory and anticancer activity that has also a very low bioavailability when it is orally 

administrated. This is due its insolubility in water, poor absorption at intestinal tract and rapid 

metabolism of the phase I and II enzymes at intestinal and liver level. To increase curcumin 

bioavailability, two approaches can be adopted: increase its absorption or inhibiting the 

metabolism of the phase I and II enzymes. Herein, a polysaccharide-based formulation has 

been designed in order to increase the absorption of curcumin at the intestinal tract. In 

particular, cornstarch (CS), alginate (Alg) and low methoxy pectin (LMP) were used in order 

to increase the bioaccessible concentration of curcumin at intestinal tract. LMP, which is a 

polysaccharide gastro-resistant, was used as principal polymer for fabricating the system. CS 

and Alg were used for their ability to act as dispersing agents toward the curcumin, as proved 

in this chapter. Thanks to the ability of LMP to be cross-linked with Ca2+, CS/curcumin and 
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Alg/curcumin solutions were encapsulated by electrospraying the polysaccharidic solutions. 

They were collected in a water bath with calcium chloride. The characterization of the release 

kinetics was performed by using two different buffers, one simulating the gastric fluid and the 

other the intestinal fluid. Their usage intended to mimic the passage through the gastro-

intestinal tract. The results showed that, respect to the LMP:CS formulations, LMP:Alg 

allowed a higher encapsulation efficiency of the curcumin, a minimum loss of curcumin in the 

simulated gastric medium, upon a vapors acid treatment, and a better control of the release in 

the simulated intestinal medium, ensuring a sustained delivery of curcumin. 

In chapter 5, final remarks are discussed. They are focused on highlighting the ability of the 

EFD-based techniques (electrospinning and electrospray) to produce biomedical application 

with particular topography, and to encapsulate bioactive molecules (hPL through the 

electrospinning and curcumin through the electrospray). Future investigations are also 

discussed, and they are about the further development and characterization of the biomedical 

device obtained. 
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Chapter 1  

Techniques of fabrication  

1.1 Electrospinning and Electrospray 

Electrospinning and the related process of the electrospray have been widely investigated as 

techniques for fabrication of biomedical devices1. Electrospinning is a process in which 

ultrathin fibers can be obtained, while, through the electrospray particle-shaped systems can 

be obtained. Particularly, electrospun fibrous systems are used as scaffold for regenerating 

tissues or as wound dressing, since their particular features are suitable for such kind of 

biomedical applications2,3. Furthermore, both electrospinning and electrospray can be used as 

methods to encapsulate poorly water-soluble drugs or bioactive molecules difficult to be 

loaded into pharmaceutical carriers, with high efficiency4,5. 

They are processes based on identical electro-fluid-dynamic (EFD) phenomena that can be 

reproduced by using the same equipment1. Their set up consists of a syringe pump, a syringe 

with a needle, which connected to a power supply, and a grounded collector placed at a 
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certain distance. A polymeric solution is allowed to flow out from the needle, forming a drop 

which is stretched by the electrostatic field. In the electrospinning, from the drop, a jet takes 

the shape of a fiber and, during the flight toward the collector, the solvent tends to evaporate. 

At the end, the solid fibers are gathered on the collector plate6. In the case of the electrospray, 

after its formation, the jet can be broken such to create droplets, which can be deposed on the 

collector after the solvent evaporation5,7.  

 

1.1.1 History of EFD-based techniques 

Electrospinning and electrospray are dependent on the same physical mechanism, therefore, 

milestones in their discovery as methods of fabrication are common in some points. The 

intuition of such processes was based by observing the behavior of liquid subjected to 

electrical forces. The EFD phenomena were observed for the first time by Sir William Gilbert 

in the XVI century. He was trying to demonstrate the differences between the electrostatic and 

the magnetic attractions. He observed that a piece of amber, rubbed with a diamond, was able 

to exert an attractive force on a water drop, placed on a dry surface. The drop acquired a cone 

shape and very small droplets were ejected from the tip of this cone. This was the first 

recorded observation of the electrospray8.  

Later, in 1745, the professor George M. Bose created an aerosol spray through the application 

of a high potential to a liquid at the end of a glass capillary tube9. Then, Giovanni B. Beccaria, 

in the 1753, observed that charged liquids evaporate faster than the uncharged ones10. In 

1882, Lord Rayleigh performed some investigations on the stability of electrically charged 

water drops. He was able to calculate the theoretical charge useful to induce the burst of a 

drop into smaller droplets11. Moreover, he observed that a moderate electrical charge is able 

to stabilize an ascending jet of water and if the electrical charge is too high, the stability of the 

jet is lost12.  



9 
 

John F. Cooley was the first that intuited the potentiality of the EFD processes, such to exploit 

them as method of fibrous material fabrication. In fact, in the first of the XX-century, he filed 

two electrospinning patents13,14. He proposed four type of electrospinning set-ups and also a 

method to recover the solvent after the electrospinning15. He had recognized three 

fundamentals of the electrospinning, which later resulted true also for the electrospray: the 

fluid should have a suitable viscosity; the solvent should be volatile enough to evaporate and 

leave the polymer solid; the electric field strength should be in a suitable range to have the 

deposition on the collector of the materials13. In the same period, James W. Morton in 1903 

patented a system able to disperse liquid using high voltage source10,15.  

In 1917 John Zeleny published a work about the behavior of a fluid at the end of a metal 

capillary. He photographed and described the electrospray phenomena, and he was the first to 

attempt to mathematically model the behavior of fluids under electrostatic forces16.  

Anton Formhals from the 1934 to 1944 filed a series of patents. He contributed to the 

developments of the electrospinning technique toward the commercialization of the process to 

fabricate textile yarns6. In 1938, Natalya D. Rozenblum and Igor V. Petryanov-Sokolov 

produced electrospun fibers as smoke filter materials for gas masks, which led to the 

establishment of a factory17.  

The theoretical background of EFD phenomena was finally established by Sir Geoffrey I. 

Taylor between 1964 and 1969. He contributed to mathematically model the shape of the 

cone of a water drop under an electrostatic field. Today, this particular shape is known as 

Taylor cone18,19. In the same period (1968), the electrospray process was introduced by 

Malcolm Dole as a method for generating gas phase ions in order to determine the mass of 

polystyrene macromolecules20. The ability of the electrospray to create ions was exploited by 

Masamichi Yamashita and John B. Fenn to improve the mass spectrometry analysis. In 1984, 

they published a work in which described for the first time an electrospray ionization mass 
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spectrometer (ESI-MS)21. While the electrospray found its application in mass spectrometry, 

in the early 1990s, the electrospinning was re-discovered thanks to the work of Doshi and 

Reneker. They proposed the electrospinning as a potential instrument to produce materials in 

the nanoscale6,19. Numerous works were published in those years, demonstrating that many 

organic polymers could be electrospun into nanofibers. Moreover, other studies were also 

focused on the comprehension and the modeling of electrostatic and fluid-dynamic forces 

involved in the process22–24. Finally, more recently (in 2005), also the electrospray has been 

rediscovered as a method for fabricating particles in micro and nanoscale or thin film as well, 

by electrospraying polymeric solution25–28. 

 

1.2 Basics of EFD-based techniques 

Electrospinning and electrospray processes can be divided in four stages. Taylor cone, the jet, 

whipping jet and the collection for the electrospinning (Figure 1.2a)19; Taylor cone, jet, 

Coulomb fission phase and collection for the electrospray (Figure 1.2b)5,7. 

 

1.2.1 Taylor cone 

This phase is common for electrospinning and electrospray. When a droplet of a charged 

polymer is at a tip of a needle and an electric field is applied, electrostatic charges are 

accumulated on top of the droplet. When the repulsion of the charges becomes stronger, the 

shape of the droplet changes to a cone, called Taylor cone. The cone is the results of the 

equilibrium between the surface tension of the droplet and the repulsion of electrostatic 

forces. When the intensity of the electric field is increased, this equilibrium is going to be 

broken, due to the repulsion of the charges, allowing to a fine and charged jet to leave the tip 

of the cone. 
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1.2.2 Jet 

In both electrospinning and electrospray, the polymer solution is driven by the electrical stress 

toward the grounded collector. In this stage, the repulsion of the electrical charges needs to be 

resisted by the viscosity of the solution in order to have well-formed fibers, otherwise the jet 

can be broken in droplets, as explained below in the coulomb fission phase. The viscosity 

during the path toward the collector changes because of the evaporation of the solvent and the 

change of the temperature. The charges of the jet allow the travel toward the collector in order 

to close the circuit. The speed of the jet increases as it moves away from the needle. It can be 

faster with the increase of the applied voltage. 

Figure 1.2 The stages that characterize the electrospinning (on the left) and electrospray (on 
the right) processes 

 

1.2.3 Whipping jet 

This phase is present only in the electrospinning. In this step, the jet tends to be bended 

because of the Coulomb repulsion forces. Therefore, the jet starts to create an irregular coil 
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but, at the same time, it continues to elongate and to increase its diameter. Due to this 

mechanism, the solvent completely evaporates, leaving the polymer fiber solid. 

 

1.2.4 Coulomb fission phase 

This phase is characteristic of the electrospray process. The jet loses its stability and it is 

broken in droplets, because the surface tension is very high, and the viscosity cannot 

equilibrate such forces. During the droplets formation, the solvent starts to evaporate, 

decreasing the size of the particles that result highly charged. At this step, such particles can 

be subjected to the Coulomb fission, since the charges tend to repulse each other’s, generating 

further smaller droplets.  

 

1.2.5 Collection 

After the solvent evaporation, the fibers or the particles are deposed on a grounded collector, 

such as an aluminum foil. Sometimes, a water bath can be used to collect the electrospun 

fibers or electrosprayed particles.  

 

1.3 Working parameters 

An optimized protocol of electrospinning or electrospray should be characterized by a stable 

Taylor cone and should continuously produce fibers or particles5,6,29. Furthermore, in the case 

of the electrospinning, the fibers should be smooth and beads free, while, for the electrospray, 

the particles should be smooth at the surface and highly monodispersed. Working parameters 

play a crucial role in protocol optimization. They consist of all the physical forces that take 

part of the electrospinning and electrospray processes (surface tension, viscosity, applied 

voltage, humidity etc.). They need to be balanced such to reach an optimal equilibrium that 

induces the correct fibers or particles formation. However, once the process is optimized, 
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working parameters can be manipulated in order to change the morphology and the dimension 

of the fibers or of the particles5,6. Several studies, about the influence of the working 

parameters on both the processes, are reported5,7,35–44,17,45–54,19,55–57,29–34. They were divided 

into three categories6:  

1. solution properties including viscosity, conductivity, solvent, concentration and 

molecular weight of the polymer;  

2. processing parameters including flow rate, electric field strength, needle-to-collector 

distance, collector geometry; 

3. ambient parameters including temperature, humidity and air flow. 

 

1.3.1 Solution or materials parameters. 

The polymer solution is one of the most important variable which affects the electrospinning 

or the electrospray, and it is the first parameters that needs to be optimized.  

a) Concentration  

Four critical concentrations have been reported: at very low concertation, the process is not 

continuous and polymeric particles can be obtained, through the electrospray. This is caused 

by the high surface tension of the solution39. As the concentration is little increased, fibers 

with pearl necklace structures are obtained. This structure consists of fibers and beads 

mixture29–31. At optimal concentration for the electrospinning, fibers with well-defined 

morphology and beads-free are obtained29–31. Finally when the concentration is very high, the 

process is not continuous and the fibers obtained are micro-ribbons32.  

Therefore, to have the production of particles, the concentration should be relatively low. 

Conversely, to electrospin the polymeric solution, the solution should be concentrated enough 

to have fibers formation. Both the electrospinning and the electrospray occur in specific range 

of concentration. If the concentration is changed within such ranges, the dimension of the 
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fibers or of the particles can be controlled. For instance, by increasing the concentration, the 

dimension of the fibers or particles is increased5,52.  

b) Molecular weight 

Molecular weight of the polymer affects the electrospinning and the electrospray processes. In 

the electrospinning, low molecular weight polymers result in fibers with beads. Contrarily, 

high molecular weight polymers can produce fibers with larger diameter33,58. In the 

electrospray, low molecular weight polymers result in not defined particles, while, increasing 

the molecular weight, well-formed particles can be obtained with a round shape and smooth 

surface59.  

The influence of the molecular weight on the processes is due to the increase of the 

entanglement of polymer chains in solutions, namely solution viscosity, that plays a crucial 

role both in electrospinning and electrospray. 

c) Viscosity 

Solution viscosity determines the morphology and the size of the electrospun fibers. At low 

viscosity beaded fibers are obtained, while, at very high viscosity, the electrospinning process 

results in hard ejection of the jet from the solution34–37. For this reason, a suitable viscosity 

needs to be found in order to obtain well-formed fibers.  

For the electrospray, very low viscous solutions are suitable to obtain particles. In fact, at very 

low viscosity the surface tension prevails, inducing the formation of particles. If the viscosity 

becomes too high, the risk is to obtain fibers instead of particles. Therefore, as for the 

electrospinning, for the electrospray a range of viscosity needs to be found such to produce 

round shaped and smooth particles. 

The viscosity can be tuned by changing the concentration or the molecular weight of the 

polymer. 

d) Solvent 
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The solvent used to dissolve the polymer can also affect the electrospinning and the 

electrospray. The solvent characterizes the surface tension of the solution. A previous study 

investigated the influence of the solvent on the fibers morphology. At fixed concentration, by 

changing the solvent in order to induce a decreasing in surface tension, smooth fibers were 

obtained32.  

In the electrospray the solvent should be highly volatile such to have dry particles. However, 

too high volatile solvents can generate undesired particles morphology5. If the evaporation 

occurs rapidly, the polymer chains in the droplets cannot have the time to rearrange, leading 

to the formation of polydisperse particles with porous or hollow morphology5.  

e) Conductivity  

For the electrospinning, the conductivity of the solution can change the dimension of the 

fibers. It can be dependent on polymer, on solvent or on salt. Natural polymers generally 

present charges that help the stabilization of the jet and the fibers formation, unlike the 

synthetic polymers that are poorly charged53. In addition, ionic materials can be added to the 

solution in order to increase its conductivity. By increasing the conductivity of the solution, 

smaller fibers can be obtained, and beads formation can be suppressed38.  

As for the electrospinning, also for the electrospray the conductivity affects the size of the 

particles. In fact, higher conductivity allows the fabrication of smaller particles. However, 

very high conductivity results in unstable electrospray process and elongated particles. On the 

other hand, too low conductivity impedes the solution to be sensible to the electrostatic 

forces5. 
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1.3.2 Processing parameters 

a) Applied voltage 

The applied voltage is indispensable to have the electric field, which generates the EFD 

processes. During the electrospinning, when the applied voltage surpasses a threshold voltage, 

it induces the formation of the Taylor cone and the ejection of the fiber. The influence of the 

applied voltage on the fibers morphology is not univocal, as for the other parameters. 

Previously, different works have shown that increasing the strength of the electric field 

resulted in beads formation39–41, in thinner42 or even thicker43 fibers. Contrarily, other studies 

have showed no influence on the fibers size19. Overall, the influence of the applied voltage 

can depend on the nature of the polymer solution and on the distance between the tip and the 

collector44. 

Also for the electrospray, the electrostatic field is important to induce the formation of the 

Taylor cone and the formation of particles5. By increasing the applied voltage, the particles 

are more elongated54. While, low voltage results in a non-continuous jet which produce large 

and irregular particles. Therefore, a “working” range needs to be individuated such to have a 

stable electrospray process5.  

b) Flow rate 

The flow rate of the polymer solution in the syringe pump is another parameter to be 

considered for the optimization of the electrospinning and electrospray. For the 

electrospinning, the flow rate should be low enough to allow the polymer in the Taylor cone 

to respond to the electric field, such to be electrospun. Upon the increase of the flow rate, the 

fibers can be thicker. However, the system can result unstable, inducing the formation of 

beads17.  
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Similarly, the flow rate during the electrospray should be slow for permitting the evaporation 

of the solvent. By increasing the flow rate, the particles result larger and the size distribution 

become broader55. 

c) Needle-collector distance 

The distance between the tip of the needle and the collector is important to have well-formed 

electrospun fibers36. Too short distances can prevent the complete evaporation of the solvent, 

whereas too long distance can induce the formation of pearl necklace structures. Nevertheless, 

in some previous work, increasing the distance can promote the formation of thinner fibers42. 

Therefore, to obtain dry and well-formed fibers, a suitable distance between the needle and 

the collector needs to be found.  

During the electrospray, shorter distances increase the strength of the electrostatic field, 

obtaining smaller particles. However, it can impede the total evaporation of the solvent. On 

the other hand, increasing the distance, the system has more time to complete the evaporation, 

but the applied voltage needs to be consequentially increased, resulting in larger particles5. 

d) Collectors 

The collector is the target where the fibers or the particles are deposed. It has to be a 

conductive material and, usually, it is an aluminum foil. Since the fibers can adhere on the 

aluminum foil, other kind of collector can be used, such as parallel bars45, wire mesh46, grids47 

and liquid bath48. Furthermore, a rotating collector allows the fibers to be aligned45. The 

alignment of the fibers occurs due to the rotation of the collector, which forces their 

deposition in only one direction. The rotation speed of the collector can affect the alignment 

degree and, generally, higher rotation speed increases the alignment. Then, by increasing the 

velocity, the fibers can result thinner because of the stretching forces of the rotating 

collector49. 
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The electrospray can have an aluminum foil, as for the electrospinning. Very often, a liquid 

bath is used to collect the particles, in which different solvent or aqueous solutions can be 

used56,57. 

 

1.3.3 Ambient parameters 

The temperature and the relative humidity are the ambient parameters. The temperature is 

critical because can change the viscosity of the solution, obtaining smaller fibers and smaller 

particles5,50. In the electrospinning, the relative humidity can intervene in the rate of the 

solvent evaporation. Low relative humidity induces a rapid and total evaporation of the 

solvent; high relative humidity retards the solvent evaporation obtaining thicker fibers and 

changes in the single fiber surface. The latter effect is investigated to increase the already 

large surface area of the electrospun fibers51. 

 

1.4 Versatility of electrospinning and electrospray 

One of the advantage of the EFD-based techniques is their versatility in obtaining fibers or 

particles with particular structures, such as core-shell, bicomponent and hollow systems. This 

kind of materials can be obtained by using specific needle, changing the solvent or the 

ambient conditions60. 

To obtain systems with core-shell structure, a coaxial needle is used. Basically, the process of 

fabrication is the same, but it is modified at the needle which is coaxial. It consists of one 

spinneret inside another one, through which two different polymeric solutions can flow. 

Therefore, two syringe pumps work individually. In this way, it is possible to have fibers or 

particles made up of two different polymers. These structures are mostly used as systems for 

releasing drugs that can be encapsulated in the two phases5,61.  



19 
 

Hollow fibers or particles can be obtained using the same set-up with the coaxial. The core of 

fibers can be selectively dissolved in a solvent, in which the shell polymer component is not 

soluble. Therefore, removing the core part, hollow fibers can be produced. Hollow particles 

can be obtained by using only a solvent in the core phase that evaporates during the spray, 

leaving the internal part empty62. Hollow systems are useful for fluidics, energy conversion or 

drug delivery9,63. 

Electrospinning is used to produce fibers starting from an emulsion, both water-in-oil and oil-

in-water. With the emulsions, the single nozzle spinneret is used. Depending on the property 

of the emulsion, core-shell fibers can be obtained64. However, if the conditions are not 

optimal for producing core-shell structures, the emulsion can be electrospun fabricating fibers 

with dispersed phases61. Emulsions can be electrosprayed as well, by using a single nozzle 

spinneret. Particles can be obtained with dispersed phases65. 

 

1.5 Characteristics of electrospun fibrous materials 

Electrospun fibrous materials are nanometric systems with size ranged from 50 and 500 nm66. 

However, depending on the working parameters and on the polymers used, fibers in 

microscale can be obtained as well. The small diameter of the fibers provide electrospun 

fibers with increased surface to volume ratio of 1000 times respect the microscale systems67. 

They are characterized by a high molecular alignment, which derives from the very large spin 

draw ratio, induced by the stretching of the fibers53. In addition, such materials can be 

chemically functionalized modifying their surface, or by adding, directly to the solution, 

doping agents, before the fibers fabrication67. 

Generally, the traditional fibrous materials (in the microscale), such as carbon, glass and 

Kevlar fibers, are used as reinforcement for composite materials. Electrospun nanofibrous 

materials have shown to ensure for composite materials better mechanical properties (e.g. 
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stiffness and tensile strength) than microfibers. For instance, electrospun Nylon-4,6 nanofiber 

non-woven membrane was used to fabricate nanocomposites with epoxy matrix. The 

nanocomposites resulted in a significant increase of stiffness and strength respect to the epoxy 

matrix without Nylon nanofibers. However, few works are about the use of electrospun 

materials as mechanical reinforcement, since they have non-woven mesh and a limited 

amount of low uniaxial and continuous fibers, which do not grant significant mechanical 

improvement68. In addition, they can fail the integration with the surrounding materials of the 

composite58,67.  

Electrospun fibrous materials have found wide application as filtration means, because they 

showed to increase filtration efficency67,69. In fact, their high interconnectivity, high porosity 

and the small pore size allow high volume permeability, a better withstand fouling and 

filtration of submicron particles58. Another strategy to increase the filtration efficiency is the 

modification of the fibers surface, such to have molecular filters. Therefore, the chemical 

modification of the high surface area of the fibers can be exploited to improve the detection of 

chemical and biological agents70,71. Electrospun fibrous materials are also used in dust filters. 

They can consist of three overlapped layers, in whose mid-layer nonwoven nanofibers are 

used. Polyacrylonitrile membranes have been developed with this aim58. The same three-

overlapped-layers structures have been adopted as protective devices. In fact, their ability in 

filtering nanometer substances was exploited in development of protective clothing72,73. 

Moreover, their low impedance to the moisture provides electrospun materials with 

advantages on the activated carbon, currently used as protective devices, which are poorly 

permeable to the water vapor58.  

Finally, the high surface area of the electrospun fibers can be exploited in conductive devices, 

because the electrochemical reactions occur with a rate that is proportional to the available 

surface of the electrode. Therefore, electrospun materials are used to design high performant 
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batteries74. Conductive (in terms of electrical, ionic and photoelectric) nanofibrous materials 

also have potential for applications including electrostatic dissipation, corrosion protection, 

electromagnetic interference shielding, photovoltaic device, etc75,76. 

 

1.5.1 Characteristics of electrospun fibers applied to the biomedicine 

The success of the electrospun materials in biomedical application is related to their good 

interaction with the cells and the physiological environment. This is because of their 

properties3,77–79. The fibrous structure can mimic the ECM, which consists of fibrillar 

glycoproteins and polysaccharides. In vivo, the cells are attached to the ECM thanks to which 

they can grow, proliferate, differentiate and migrate. Furthermore, the fibrous shape of 

electrospun materials lends a higher surface area to them, allowing more adhesion of the cells 

on the substrate. Their intrinsic porosity allows the nutrients to pass through the materials, 

reaching the cells attached on the substrate. Moreover, the porosity permits the gas exchange 

and transpiration of the site covered by the fibers, which is useful when they are used as 

wound dressing. The surface roughness or the topography of the fibrous materials can be 

exploited, especially when the fibers are aligned. Such oriented surfaces can be used to force 

the cells to acquire a specific orientation. This effect can be useful for mimicking the cells 

disposition of some tissues80,81. In addition aligned fibers have also shown that are more 

tolerated than the random ones, because their topography was able to minimize the response 

against the scaffold in vivo82. 

Electrospun fibers can be loaded with drugs during the electrospinning, obtaining high drug 

loading (up to 60%) and encapsulation efficiency (up to 100%)83. Different drugs have been 

encapsulated in fibrous devices, both hydrophilic and hydrophobic. Particularly, the 

electrospinning is used when the drug is difficult to be embedded in a releasing system. This 

is possible because during the fabrication the drug is forced to remain on the fibers after the 
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evaporation of the solvent. Moreover, by encapsulating two or more drugs, electrospun fibers 

allow their simultaneous release4,61,84.  

Finally, electrospun fibrous materials are characterized by cost-effectiveness and ease 

fabrication. Therefore, their usage as biomedical device, should decrease the cost of the 

therapies. 

 

1.5.2 Polymeric electrospun fibers 

Generally, the materials for the biomedical application, need to be biocompatible and no 

toxic. In addition, they should be biodegradable and the secondary products, derived from 

their degradation, need to be well tolerated and eliminated or resorbed by the organism. In 

some cases, the materials should have specific mechanical properties, which should be as 

similar as the mechanical properties of the injured site85. These guidelines are also valid for 

the fabrication of electrospun materials aimed to biomedical application. Therefore, beside the 

ability to be electrospun, polymers should have these characteristics.  

Synthetic and natural polymers are both used to produce electrospun fibers for wound healing, 

drug delivery and tissue engineering. The choice depends on the final application. 

• Synthetic polymeric fibers 

Synthetic polymers have been the first type of polymers used in the electrospinning because 

they are easier to be electrospun with the solvent and were more available than the natural 

polymers, when the electrospinning was re-discovered6,38. Synthetic polymers became 

attractive for medical application because their mechanical and physical properties can be 

modified, depending on the monomers unit or upon the polymerization of co-polymers86. 

Synthetic polymers can be also chemically modified in order to further change their 

characteristics87. For this reason, they are considered flexible and their characteristics 
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adjustable. Moreover, since the polymerization and functionalization methods are mostly 

established and well-known, their processability and usage result easy87.  

Synthetic polymer, such as poly(lactide-co-glycolide) (PLGA), poly(L-lactide) (PLLA), 

polycaprolactone (PCL) or polyurethanes (PU), can be subjected to degradation through 

hydrolysis88,89. Polymer hydrolysis processes occur through the same mechanisms, 

independently from the patient, in which they are used88,90–92. So, their behavior in vivo can be 

anticipated and studied. For instance, PLLA polymer degrades hydrolytically into lactic acid, 

which is a human metabolite. So, it is broken down into water and carbon dioxide via the 

citric acid cycle93. However, in several cases, as the PLGA, the hydrolytic degradation 

produces acidic secondary products that can alter the pH of the surrounding environment88. 

Other polymers, as poly(trimethylene carbonate) (PTMC), polyphosphoesters and poly(alkyl 

cyanoacrylate) (PACA) can be subjected to both the degradation mechanisms94–96. In any 

case, the immunogenicity of the secondary products should be investigated before to use them 

for the biological application97.  

The degradation rate of the polymers can make them suitable for one application or for 

another. Generally, polymers which have fast degradation (from minutes to few days) are 

used for drug delivery and/or wound healing, whereas polymers with slow degradation (one 

month to at least one year) are applied as scaffold for tissue engineering. For instance, the rate 

of degradation of PCL is rather slow (2–3 years), such to be extensively investigated as 

scaffolds for tissue engineering. On the other hand, PLLA, PLGA or PTMC were widely 

investigated as materials for drug delivery system, since their fast degradation rate in vivo88. 

There are also synthetic polymers that are resistant to the biodegradability but kept their 

biocompatibility. This kind of polymers can be used for application where permanent 

polymeric supports are required, such as dental, corneal or articular cartilage implants98. 
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For some kind of synthetic polymers, the degradation rate can be modified. The ratio between 

the monomers, which constitute the PLGA (lactic and glycolic acid), can affect the 

degradation rate, resulting in different releasing system, by using the same polymer99. 

Decreasing the molecular weight of PTMC, its degradation rate is accelerated96. For PLLA, 

by increasing its crystallinity, slower degradation rate is obtained88.  

Synthetic polymers are characterized by different mechanical properties. Sometimes, there is 

the necessity to use a specific mechanical property, depending on the application. For 

instance, poly-alkyl-cyanoacrylate (PACA) are a group of polymers with important adhesives. 

Among them, poly(ethyl-2-cyanoacrylate) (PECA) is used as a fixative for bone tissue, due to 

its high strength bond, while poly(octyl-2-cyanoacrylate) (POCA) as a tool for wound closure 

because can ensure flexibility to the site100,101.  

Synthetic polymers showed several disadvantages, which can limit their use in biomedicine. 

Part of the synthetic polymers, such as PCL, PLGA, PLA, PACA, are insoluble in water; 

therefore, they need to be process with organic solvents. The possibility to find traces of 

solvents in the electrospun fibers, after the fabrication, can make more difficult their 

application in the biomedicine102. In addition, water-based polymers are better tolerated by the 

organism, and this can improve the cell adhesion  and allow the delivery of drugs in aqueous 

environment103. In addition, hydrophobic synthetic polymers lack domains able to facilitate 

the adhesion of cell or their migration. Plasma treatment or functionalization with poly-lysine 

can be performed to support the cells dissemination104–106. Another strategy for increasing the 

cells adhesion is to fabricate blends of synthetic polymers with proteins or proteins domains. 

Tripeptide arginine-glycine-aspartate (RGD) is the binding domain of the fibronectin 

recognized by the cells in vivo. Addition of RGD tripeptide or protein of the ECM, such as 

collagen or elastin, is a strategy used to support the cells attachment 107–109. However, the 

addition of proteins with the synthetic polymers can alter the protein folding, since the solvent 
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used in the electrospinning process are mostly organic. Therefore, using water-based 

polymers, such as poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) or natural ones, can 

make easier the integration with proteins110–112. 

• Natural polymeric fibers 

Natural polymeric fibers are produced using proteins or polysaccharides present in the human 

or extracted from animal or plants source. Using natural polymer for biomedical application 

allows the possibility to fabricate device which mimic as much as possible the property and 

the composition of the ECM. Generally, these polymers have in nature fibrillar structure. 

Therefore, during the process they easily self-assemble in fibrous structures, such to obtain 

systems with improved ability in ECM mimicking113. Moreover, several natural polymer 

present intrinsic biological properties, such as anti-inflammatory or antibacterial, which can 

be exploited in biomedicine.  

Among these polymers, components of the ECM were used as materials to fabricate 

biomedical devices. Collagen, for instance, is the most abundant protein of the ECM, 

especially in skin and musculoskeletal tissues88. It has structural role and supports the cells in 

adhesion and proliferation processes. Moreover, it has also hemostatic activity, because is one 

of the primary initiators of the coagulation cascade. Therefore, electrospun scaffold or wound 

dressing are collagen-based in order to exploit its biological activity88. Hyaluronic acid (HA) 

is another components of the ECM and it is used as biomaterial88,114. HA is a polysaccharide 

which is prevalently present in the ECM of connective tissues. Besides having a structural 

role, it can be involved in cell migration, proliferation and metabolism, as well as in 

metastasis, wound healing and inflammation115.  

Contrary to the synthetic polymers, the processability of these kind of natural polymers by the 

electrospinning is poor and less versatile9,116. In fact, to improve the electrospinnability of 

collagen, organic solvents such as hexafluoro-2-propanol (HFIP), is preferred, although 
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concerns have been arisen on the safety and possible effects on protein denaturation114,116. In 

fact, HFIP helps the solubility of natural polymer due to strong hydrogen-bonding properties 

and its ability to break hydrophobic interactions17,102. Another possibility is to add to the 

natural polymers solution, synthetic polymers (PEO, PCL, PVA). In this case, the fibers result 

in a blend of synthetic and natural polymers9.  

Polymers of the ECM, when used as biomaterials in biomedical devices, are subjected to 

degradation, mostly via enzymes. Collagen are processed by the collagenase and 

metalloprotease which are present in human tissue. HA are degraded by metalloprotease, but 

also by free radical and nitric oxide117,118. Strategies in getting slower the degradation of HA, 

include its cross-linking – by using diepoxy, carbodiimide-mediated, aldehyde, divinyl 

sulfone, and photo-crosslinking – that induces the formation of hydrogel119. 

Beside their numerous advantages, polymers of the ECM have problem of safety, concerning 

their extraction, which can make difficult their usage. In fact, collagen and HA are obtained 

from animal source (bovine, porcine or rooster) which can create problem of 

immunogenicity88. In the case of collagen, the purification of allogeneic material has high 

cost and can have the risk to transmit infection88. Therefore, new strategies are currently 

under development: use of bacteria to synthetize this kind of polymer is a solution to bypass 

their safety problems88,120.  

Other example of natural polymers, existing in human organism, for fabricating fibers, are 

elastin and fibrinogen. Elastin is a protein of the vascular and lung tissue, which is responsible 

of the impressive elasticity of this tissues88. It is a highly crosslinked insoluble polymer, 

which derives from the assembling of its precursor, the tropoelastin. Allogeneic elastin have 

shown to induce the immune response121. Therefore, elastin resulted poorly available for 

producing fibers. To surpass these limits, elastin obtained by the assembling of recombinant 
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tropoelastin is used121,122. As for the collagen, its electrospinning occurs by using HFIP 

solvent122. 

Fibrinogen is a blood protein, involved in coagulation cascade. Its lysis results in formation of 

the fibrin fibers, which are insoluble, leading to the clotting formation88,114. Fibrinogen 

promotes cells adhesion and migration thanks to the presence of the RGD binding domain for 

cells123. Also for the fibrinogen, HFIP is used to obtain fibers through the electrospinning124. 

However, its high solubility makes the polymer difficult to be used. By crosslinking it, 

through glutaraldehyde or genipin, the stability in aqueous environment can be increased123. 

Natural polymers derived from animal or plant source are also used to fabricate electrospun 

fibers. Chitosan is a polysaccharide obtained from the deacetylation of the chitin extracted 

from the exoskeleton of the arthropod or from the fungi cell wall125. Depending on the 

acetylation degree, the properties of the chitosan can change: high deacetylated chitosan is 

characterized by slow degradation rate in vivo126. Chitosan is soluble at weakly acid pH 

resulting in formation of cationic polymers. The presence of the positive charge provides the 

chitosan with mucoadhesion property and antibacterial activity127,128. Moreover, it has shown 

to stimulate macrophages and to be chemoattractive toward the netutrophils129. Due to its 

solubility at acid pH, the electrospinning of chitosan is performed with acid solutions, such as 

diluted hydrochloric acid, acetic acid, formic acid and trifluoracetic acid (TFA)130,131. TFA is 

prevalently used because it is more volatile125. However, the viscosity and the surface tension 

resulted too high to form fibers, because of the strong repulsive forces among the positively 

charged chains125,132. Therefore, it was electrospun by adding HFIP solvent or other synthetic 

polymers, such as PVA and PEO,125,131.  

Alginic acid is another polysaccharide used to fabricate electrospun devices. It is extracted 

from the brown algae or it can be synthetized by some bacteria133. It is mostly used as sodium 

alginate which is negatively charged and therefore water soluble. However, the aqueous 



28 
 

solution results highly viscous114. As for chitosan, the addition of PEO or PVA can decrease 

the repulsive forces among the polyanionic alginate chains, such to facilitate the 

electrospinning process and obtain continuous fibers114. Due to its high solubility in water, 

alginate cannot be used in biomedical application. Therefore, cross-linking of alginate with 

Ca2+ decreases its solubility in aqueous solutions, resulting more stable114.  

Silk fibroin is a structural protein extracted from the cocoons of silkworms134. Naturally, 

fibroin is not soluble in water due to the presence of hydrophobic amino acids in its sequence, 

which self-assemble in hydrophobic β-sheets secondary structure134. Fibroin is characterized 

by low immunogenicity and good mechanical properties, such as elasticity, strength and 

toughness. Its degradation rate is slow in vivo, but it can be controlled through the 

manipulation of its crystallinity102,135. Protocol to extract fibroin from the cocoons have been 

optimized, providing water soluble fibroin, through the denaturation of the protein chains136. 

PEO is added to the fibroin, in order to reach a suitable viscosity and facilitate the 

electrospinning process137. However, silk fibroin fibers are also obtained by using HFIP or 

TFA35,137–139.  

 

1.6 Characteristics of electrosprayed particles 

Electrosprayed particles are mainly used as system for releasing drugs. Their usage as carriers 

is possible because they can have an elevated encapsulation efficiency (≈100%). When a 

water bath is used as collector, the encapsulation efficiency decreases, but remains high if 

compared to other methods for fabricating particles (coacervation, emulsion)7.  

The kinetic release of pharmaceutical systems depends on the materials used, but also on their 

dimension and morphology7. The particles obtained from an optimized electrospray process 

can result in the microscale or nanoscale5,7. Moreover, they are highly monodispersed and 

round shaped140. The properties of the electrosprayed particles are functional to have a fine 
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control on the drug release, in order to have reproducible release profiles141. This can be 

granted by the monodispersion of particles obtained from the optimized electrospray process. 

Furthermore, decreasing the particles dimensions, the surface to volume ratio increases, 

allowing a higher release of the loaded drug respect to formulation in the macroscale5,7,52. 

Finally, the round morphology allows the possibility to better control the release of drugs7. In 

fact, wrinkled particles can have a considerable burst release, due to their porosity142, while 

round shape particles have a more controlled and sustained release, due to the erosion which 

occur at the particles surface. However, as mentioned above, the kinetic release can be 

affected by the properties of electrosprayed particles, but the it is principally dependent on the 

polymer type used in the fabrication as well as the nature of the drug7. 

 

1.6.1 Polymeric electrosprayed particles 

Polymers used to produce particles for drug release application need to be biocompatible. To 

release drugs, polymers need to be subjected to hydrolytic or enzymatic degradation. In 

addition, for electrosprayed particles, the polymers should be suitable for being 

electrosprayed. As for the electrospinning, the electrospray can be used a wide range of 

polymers. However, since it is more recent than the electrospinning, only few polymers have 

been used to produce particles for drug release.  

• Synthetic polymeric particles 

The most frequently polymer used in electrospray is PLGA7. As explained before, it can be 

subjected to hydrolytic degradation and thanks to the possibility to manipulate its 

composition, the degradation rate can be tuned, such to control the delivery of encapsulated 

drugs143. However, its acidic degradation provokes the acidification of the surrounding 

environment or can lead to the alteration of the bioactivity of the drug144. Nevertheless, the 

PLGA remains the most common polymer to produce electrosprayed particles142,145–149. 
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PLA polymers have been also used to fabricate particles through the electrospray. PLA allows 

a slower degradation, due to its higher crystallinity150. In a previous work, it was used as shell 

for a PLGA core, such to have a more controlled release150,151.  

PCL was also electrosprayed such to obtain particles. PCL can be highly permeable toward 

small drug molecules. Moreover, it is subjected to hydrolytic degradation, but without the 

formation of acid compounds. However, the degradation rate is too slow in vivo89. In addition, 

the hydrophobicity of the PCL precludes the encapsulation to hydrophilic bioactive 

molecules, and makes difficult the loading of hydrophilic ones such as proteins, growth 

factors or enzymes152. To overcome such limitations, co-polymers of PCL with hydrophilic 

blocks (polyamino ethyl ethylene phosphate, PPE-EA), was synthetized, with the aim to 

decrease its hydrophobicity and accelerate its degradation rate153. 

Polyvinylpyrrolidone (PVP) is a water-soluble polymer, which was used to fabricate particles 

in the nanoscale. Through the electrospray of the PVP, several drugs were encapsulated: 

quercetin154 and ketoprofen155. However, their release resulted very fast (less than 1 

minute)7,154,155. To prevent the fast release of the drug, PVP was electrosprayed with 

surfactant, such to avoid the immediate release156,157, or with other polymers, such as PLGA 

or PCL158.  

• Natural polymeric particles 

Protein and polysaccharides polymers were electrosprayed, such to obtain particles systems. 

Elastin-like protein was electrospray in order to control the release of drug. The solubility of 

such protein is dependent on the pH. Therefore, the release of the drug occur in a pH-

dependent manner159.  

Chitosan was also used to produce electrosprayed particles. As mentioned for the 

electrospinning, the degradation rate of chitosan depends on its deacetylation126. Chitosan is 

subjected to enzymatic degradation in vivo, and its resulting metabolites are resorbed by the 



31 
 

organism160. Chitosan was used to encapsulate ampicillin160, doxorubicin54 and insulin161. 

Chitosan particles can be also obtained by using a water bath as collector, containing 

tripolyphosphate (TPP), which is able to cross-link the chitosan54,162. 

Alginate particles are obtained by electrospraying its solution in a water bath with 

CaCl2
163,164. In this way the alginate is cross-linked, forming the particles. Alginate cannot be 

enzymatically degraded in vivo but can response to pH change. In particular, swelling of 

alginate particles occurs at basic pH inducing the release of drugs, while, at acid pH the 

particles can be shrunk preventing the release and protecting the encapsulated drugs. Thanks 

to these properties, electrosprayed alginate particles were used for oral delivery of protein and 

vaccines163,164. Alginate was also used to encapsulate through the electrospray enzymes165, 

adenovirus-based vector for human gene therapy166 and even cells, for cell therapy167. 
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Chapter 2  

Electrospinning of ECA to fabricate 

aligned surfaces to control cells adhesion 
 

 

2.1 Cyanoacrylate adhesives 

Alkyl-2-cyanoacrylates (ACAs) were discovered in the 1949 by Ardis1 and their adhesives 

properties were described in the 1959 by Coover2. They are made up of cyanoacrylic acid and 

a side chain group –R which can be a methyl, ethyl, butyl or octyl (Figure 2.1)3–5. Generally, 

ACAs are in liquid solution and are characterized by low viscosity6. Since ACAs monomers 

are highly reactive, they result poorly handleable, because they can start to polymerize rapidly 

at room temperature in presence of moisture or basic compounds (Figure 2.2)2,6,7. However, 

thanks to their fast polymerization, ACAs have shown to be hemostatic, stopping blood 

leakage. Moreover, they were also able to inhibit the growth of bacteria8–14.  
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Figure 2.1 Structure of the cyanoacrylates adhesives 

 

ACAs polymers showed several properties – mechanical, viscoelastic, thermal, degradation 

and biocompatibility – which change relatively to the ACA monomer and in particular to the 

respective side chains (Table 2.1)15–19. Long side chain polymers present higher flexibility; 

contrarily, short side chain polymers have high strength bond14,16; setting rate is slower for 

long side chain polymers respect to the short side chain ones. Slow polymerization rate 

implicates less heat production during the setting16,20. Finally, ACA polymers with longer side 

chain need more time to be degraded15. 

 

Figure 2.2 Anionic polymerization of the MCA. The mechanism of polymerization is the same 

also for the other cyanoacrylate monomers. 

 

The degradation of ACA polymers in vivo occurs trough two mechanisms: enzymatic 

degradation and hydrolysis degradation (Figure 2.3). Esterases of the serum, lysosomes and 

the pancreatic juice, induce the formation of the alkoxyalcohol and the poly-cyanoacrylic 

acid6,21,22. Both are water soluble, so they are eliminated through kidneys6. 
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Figure 2.3 In vivo degradation of the ACA polymers can occur through enzymatic 

degradation, resulting in poly-cyanoacrylic acid and alkoxyalcohol, and via hydrolytic 

degradation, releasing cyanoacetic ester and formaldehyde. For group R see Figure 1.1. 

 

Another mechanism, which degrades the ACA polymers, is hydrolytic degradation through 

the inverse Knoevenagel reaction, which results in releasing formaldehyde and cyanoacetic 

ester6,15,23. The inverse Knoevenagel reaction rate also depends on the length of the side chain, 

resulting faster for short side chain ACA polymers, while slower for longer side chain ones15. 

This means that the release of formaldehyde, due to the polymer degradation, is related to 

respective side chains6,15. In fact, its release was seen to be higher for MCA and ECA15. 

Therefore, considering that the formaldehyde is toxic for tissue, its release negatively 

characterizes the safety and biocompatibility of the ACAs. Hence, the relation between the 

degradation rate and biocompatibility: ACAs with shorter chain are more tissue toxic respect 

to the ones with longer chain. However, hydrolytic degradation leads to the 5% of degradation 

in 24h in water and at physiological pH, and it is slower than the enzymatic degradation, 

which is predominant in vivo6,23. 
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Table 2.1 Dependence of the ACAs polymers properties on the side chain length.  

 

2.1.1 Usage of the cyanoacrylate as biomedical adhesives 

Since the 1966, ACAs polymers were used in clinical therapies as agents for bone fixation or 

wound closure and as surgery glue6,7,14,24,25. The first to be used was the methyl-2-

cyanoacrylate (MCA) and it was applied on wound or surgery incisions because it was more 

accepted and less painful than suturing25–28. Years later, the other ACAs were used instead of 

the MCA because it is subjected to rapid degradation in vivo, inducing tissue toxicity and 

inflammation. In fact, ACAs with longer side chain have shown less complication upon their 

application26. Octyl-2-cyanoacrylate (OCA) and butyl-2-cyanoacrylate (BCA) are mostly 

used as medical glue for wound care. They can form a water resistant thin coating on wound 

site, thanks to the polymerization induced by water and proteins. The thin film keeps together 

the wound edges, allowing movement thanks to its flexibility. Moreover, they form a barrier 

against bacteria, preventing infections14,29. Ethyl-2-cyanoacrylate (ECA) is less used as 

wound care tool because it results in a brittle film which can present prematurely fractures and 

the risk is to leave exposed the wound14. It has more internal usages: it has been applied in 

bone fixation and nerve repair. In fact, despite its toxicity, ECA is preferred for this usage 

because of its higher strength bond and its faster degradation respect to BCA and OCA, which 
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reduce its permanence in vivo. In bone fixation, ECA has shown to ameliorate the stability of 

a bone autograft compared to screw-using method and to induce less inflammation than OCA 

and BCA24,30,31. This is because their slower degradation rate causes a prolonged permanence 

of the polymers, inducing inflammation. In nerve repair, ECA was put in contact with 

transected nerve, causing no toxicity during nerve regeneration32–34.    

 

2.1.2 Poly-ECA coatings through the electrospinning 

Despite the good ability in fixation and good results, when was used internally to the 

organism, the development of new strategies of application of ECA in biomedical field was 

limited by its poor handleability, due to its high reactivity in presence of weak bases, such as 

water. Such limit was surpassed in a recent work in which ECA was stabilized with DMSO, 

resulting in a gel, which was used to produce fibers through the electrospinning35. Fibers were 

melted such to create coatings on surfaces. The coatings showed to have a particular 

roughness derived from the disposition of the fibers previously electrospun. Such coatings 

had properties exploitable in self-cleaning surfaces and protective covering. In addition, they 

also have been shown good biocompatibility, confirming the in vivo results of ECA polymers. 

 

2.2 Organization of skeletal muscle tissue  

Skeletal muscle tissue is responsible of the voluntary movements in living organism. This 

tissue is constituted by multiple fascicles of muscular fibers, which in turn are formed by the 

myotubes. Such tubular structures are generated from fusions of myoblasts upon their 

differentiation (Figure 2.4). This process, in fact, induces the fusion of plasmatic membrane 

of the myoblasts, such to acquire a long cylindrical and multinucleated structures, inducing 

the formation of myotubes. Myotubes are characterized by the presence of myofibrils in their 

cytoplasm (or sarcoplasm), formed by myosin (thick filaments) and actin (thin filaments). 
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They are arranged in repeated units, called sarcomeres, that are aligned along the axis of the 

myotube (Figure 2.4)36. 

 

Figure 2.4 On the left, the structure of muscle tissue constituted of muscular fascicle, which 

in turn are formed by myotubes. On the right, schematic that shows the sarcomere 

organization37,38. 

 

The sarcomere is delimitated by two Z bands, at which the actin filaments are anchored. 

Myosin instead, is attached at the M line, placed in the middle of the sarcomere. The 

filaments of actin and the myosin are overlapped in the A band of the sarcomere. In this band, 

during the contraction, the myosin pulls toward the M line the actin filaments, decreasing the 

length of the sarcomere, inducing the contraction of the muscle36.  

The contractile mechanism involved other components. The nervous stimuli which allow the 

contraction, is linked to the endoplasmic reticulum (or sarcoplasmic reticulum), in which 

calcium ions are stored. The release of calcium from this cell compartment is required for 

muscle contraction. Nervous stimuli can be propagated across the whole myotubular 

structure, through the T tubules. Finally, when the muscle is in relaxed state. The interaction 

between actin and myosin is prevented by the troponin and tropomyosin proteins. 

 

2.2.1 Strategies for skeletal muscle regeneration 

The clinical approach for the regeneration of the skeletal muscle consists of an ex vivo 

strategy. The cells are harvested from the patients or a donor, in order to be cultivated, such to 
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produce a functional tissue in vitro, which are implanted in the injury site36. More advanced 

approaches have been tried to be developed by using of 3D scaffold with gel of collagen39,40. 

This strategy, however have limited capacity to produce large tissue in vitro40. 

Implementation of such scaffold lead to the fabrication of vascularized muscle tissue by using 

embryonic fibroblasts, myoblasts and endothelial cell41,42. Despite good results, clinal therapy 

requires large constructs with axial vascularization. In addition, the use of embryonic cells 

can be object of ethical issues43. 

Currently, the use of the materials associated to micro and nanofabrication methods has 

opened possibilities to design new strategies for the musculoskeletal tissue regeneration36,44. 

An essential point, in engineering of muscle skeletal tissue, is to induce a pre-alignment of 

myoblasts, such to reproduce the native condition. In this way, the muscle fibers formation 

can be increased45. Alignment of cells in vitro can be achieved by controlling the 

topographical cues. In fact, they can affect the cells shape, disposition, size and cellular 

response. Concerning the skeletal muscle cells, aligned topography affect positively the 

formation of oriented patterns of cells, suitable for the formation of the myotubes. 

Photolithography, soft lithography and electrospinning was used to fabricate controlled 

topography. However, electrospinning is a technique characterized by very simple operability, 

low cost and flexibility, because a wide range of properties can be used to obtain fibers. In 

addition, depending on the collector used, different topography can be obtained. 

 

 

 

2.3 Fabrication of aligned ECA coating for myoblast cells alignment. 

The improvement in ECA handleability leads to the possibility to produce coating, through 

the thermal treatment of the electrospun fibers. Upon their melting, fibers leave their 
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micrometric topography on the surfaces. Herein, this protocol was exploited to produce 

coating with a specific topography. By using a rotating collector, highly aligned poly-ECA 

fibers were obtained. Successively, the thermal treatment was used such to create an oriented 

topography on glass surface. Finally, skeletal myoblast cells were used to demonstrate that the 

oriented topography was able to drive their disposition on the ECA coating. 

 

2.4. Experimental section 

2.4.1 PECA electrospinning 

According to the protocol proposed in Mele et al.35, equal volumes of ECA and DMSO were 

mixed in the same glass vial, forming a gel-like phase, which was dilute in acetone to 

concentration of 4% v/v and stirred overnight. The solutions were electrospun with a syringe 

pump with a flow rate of 4 mL h-1 and a voltage ranged from 8kV to 10kV. Random fibers 

were collected on an aluminum foil placed at 15 cm far from the needle, while aligned fibers 

were collected on a rotating collector placed at the same distance (Figure 2.5). Different 

speeds of the rotating collector (1000, 3000 and 5000rpm) were used in order to have the 

highest alignment degree of the fibers. All the fibers were fabricated at 25°C at constant 

relative humidity. Then, both random and aligned fibers were put on glass cover slip and 

fixed on it thermally with 150°C for 20 seconds, obtaining a transparent hydrophobic coating. 
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Figure 2.5 Schematic of the electrospinning set-up used to fabricate PECA aligned fibers 

 

2.4.2 Fibers characterization 

Random and aligned PECA fibers and PECA-coated glass obtained from the melting of 

random and aligned fibers were sputtered with gold forming a 10-nm thick film on them and 

were observed at SEM, working in high-vacuum with an acceleration voltage of 15kV. The 

size of the fibers was obtained analyzing the SEM images through the Fiji software. The 

alignment degree was calculated through the Fiji software plug-in Directionality, by using 

local gradient orientation analysis.  

 

2.4.3 Cells viability 

In a preliminary study, 3T3 fibroblast cells were used to assess the biocompatibility of the 

fibers before and after the melting process. Each side of non-melted and melted fibers were 

treated with UV light for 20 minutes. Before the seeding, non-melted fibers were fixed at the 

bottom of the wells with a PDMS ring, since they float in aqueous solutions. Fibroblasts were 

seeded with Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS), 

100 IU/mL penicillin, 100 μg/mL streptomycin and 2 mM L-glutamine, incubated at 37°C 

and 5% CO2 saturated humidity atmosphere. The medium was changed every 2 days. They 

were seeded on non-melted and melted fibers with a density of 1500 cells/cm2. Wells without 

fibers were the control. The viability was acquired after 24h of seeding with the MTT (3-(4,5-
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Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. After 24h, the medium was 

replaced with PBS containing 0.2mg/ml of MTT, incubating the cells for 4 hours. 

Successively, the PBS was removed, and isopropanol was added in order to dissolve the 

formazan salts. The absorbance of each well was acquired with a multiwell plate reader at 595 

nm. The viability from each sample was normalized on the control. 

Once understood the bioavailability of the PECA-coated glass, C2C12 mouse myoblasts were 

seeded at a density of 10000 cells/cm2 on them. Bare glass coverslips were considered as 

control substrates. C2C12 were cultured with DMEM, 10% FBS, 100 IU/mL penicillin, 100 

μg/mL streptomycin and 2 mM L-glutamine. Normal culture conditions (37°C and 5% CO2 

saturated humidity atmosphere) were applied, and culture medium was changed every 3 days. 

Biocompatibility of the substrates was evaluated through WST-1 assay (2-(4-iodophenyl)-3-

(4-nitophenyl)-5-(2,4-disulfophenyl)-2 H-tetrazolium monosodium salt). The assay was 

performed at 1, 3 and 5 days from cell seeding by incubating cultures with a 1:11 dilution of 

WST-1 reagent in proliferative medium for 2 h. Absorbance of the supernatants was read at 

450 nm with a multiwell plate reader. The viability from each sample was normalized on the 

control. 

 

2.4.4 Optical and confocal microscope analysis 

C2C12 seeded for 24 hours on glass and PECA-coated glass, random and aligned, were 

stained with Coomassie blue in order to observe them at the optical microscope. Cells were 

washed twice with PBS and fixed with 4% paraformaldehyde (PFA) in PBS per 20 minutes at 

4°C. Successively, cells were washed in PBS two times and then incubated with 0.02% 

Coomassie brilliant blue R-250 in methanol: acetic acid: water, 46.5:7:46.5 (v/v/v) for 3 

minutes46. The cells were rinsed several times in water to remove the excess of Coomassie 

blue. Then the cells were observed with the optical microscope directly in the multiwell plate. 
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Cell interactions with the substrates were investigated on proliferating cultures at 24h from 

seeding by immunocytochemistry staining of vinculin, which is a protein involved in focal 

adhesions. The samples were first fixed in 4% PFA in PBS for 20 minutes, and then incubated 

with 1 mg/mL sodium borohydride in PBS for 10 minutes to reduce unspecific fluorescence 

and auto-fluorescence. Cell membranes were permeabilized with 0.1% Triton X-100 in PBS 

for 15 minutes. Antibody unspecific binding sites were saturated with 10% goat serum in PBS 

for 1 h, and, subsequently, primary antibodies against vinculin (murine IgG anti-vinculin 

antibody, 1:50 diluted in 10% goat serum) was added. After 30 minutes of incubation at 37 

°C, the samples were rinsed with 10% goat serum. Then, secondary green fluorescent 

antibody (anti-mouse diluted 1:50 in 10% goat serum for murine IgG anti-vinculin antibody) 

was added. Secondary antibody was supplied with 100 μM TRITC-phalloidin for F-actin 

staining, and 1 μM DAPI for nucleus counterstaining. After 30 minutes of incubation at 25 

°C, the samples were rinsed with 0.45 M NaCl in PBS for 1 minute to remove weakly bound 

antibodies and observed with a confocal laser scanning microscope. 

 

2.4.5 Statistical methods 

The fibers size analysis was performed on three samples for each fibrous sample, obtained 

with different rotation rate. The average of size measurements (n = 100) was obtained along 

the respective standard errors. Alignment degree was obtained analyzing 10 SEM images 

through the Fiji software Directionality. The biological assays were performed twice. The 

level of significance was p≤0.05. 
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2.5 Results and discussion 

2.5.1 Fibers characterization 

PECA-DMSO solution was electrospun using a static and rotating collector. In Figure 4 are 

showed the fibers obtained by changing the speed rotation of the collecting surface. All the 

fibers present a beads-free morphology, but the surface of the fibers was irregular due to the 

relative humidity, able to affect their surface47. When a static collector was used, the PECA 

fibers were obtained without a set orientation, resulting in an alignment degree of 45%, and 

their average size was 2.1 ± 0.4 µm. With the rotating collector at 1000 rpm, the fibers started 

to have a partial orientation, which had a degree of the 53% and the average size was 1.7 ± 

0.3 µm. Increasing the speed at 3000 rpm, the fibers reached the degree of orientation of 85% 

and the size was measured to be 1.6 ± 0.3 µm.  

 

Figure 2.6 On the top. SEM images of the fibers obtained with a static collector and at 

different collecting speed, 1000, 3000 and 5000 rpm. In the inset, SEM images of the 

respective fibers at higher magnification. In the middle. Size distribution of the fibers 

obtained with static collector and at different collecting speed, 1000, 3000 and 5000 rpm. On 

the bottom. Distribution of the orientation fibers for each fibrous sample. 

 



54 
 

Finally, at a speed rotation of 5000 rpm, the orientation degree was 86% and the size was 

1.2 ± 0.4 µm. The results suggested that increasing the rotation speed of the collector, the 

alignment degree of the fibers increases, while the size decreases, due to the stretching forces 

induced by the rotating collector. The trends are in according to other works in which rotating 

collectors were used48,49.  

For samples fabricated at 3000 and 5000 rpm, the orientation degree was quite similar, 

respectively 85% and 86%. However, the samples obtained at collecting speed of 5000 rpm, 

showed thinner fibers and higher number of fibers aligned, as reported in the relative 

orientation distribution graph in Figure 2.6. Therefore, for the next experiments, the fibers 

electrospun and collected at 5000 rpm were used. 

 

2.5.2 Evaluation of coating biocompatibility and cell morphology 

To obtain the coating with the oriented topography, fibers collected at 5000 rpm were put on a 

glass coverslip and were subjected to the melting process at 150°C for 20 seconds. The 

process induces their partial fusion, as reported in Mele et al.35. Due to this, the fibers left a 

coating on the glass, which kept the topography of the fibers previously electrospun, as it is 

shown in Figure 2.7. 

 

Figure 2.7 Fibers melting process at 150°C for 20 sec. On the right, how the fibers appear 

before the treatment, while on the right how they appear after the melting. 
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Not-melted and melted fibers were used as substrates for seeding 3T3 fibroblast cells, in order 

to investigate their biocompatibility (Figure 2.8). After 24 hours, cells seeded on not-melted 

fibers, both random and aligned, have shown low viability. Contrary, cells seeded on the 

melted fibers, presented higher viability. Those cells, which adhered on the aligned oriented 

PECA coating, showed a viability comparable with the control. While, cells seeded on the 

randomly oriented PECA coating, showed lower viability respect to the aligned fibers and the 

control. The low viability of cells on not-melted fibers could be due to the presence of 

solvent. Therefore, the melting process allowed the evaporation of the residual solvent, 

making more suitable PECA to be used as substrate for cells. In addition, 3T3 cells have 

shown higher viability on melted aligned substrate than the melted random one.  

Figure 2.8 Viability of 3T3 cells seeded on glass (control), melted and not melted fibers, 

oriented both aligned and random, after 24h 

 

This result is in accord with the already existing literature. In fact, as reported in previous 

works, aligned topography has particular cues that trig specific responses in several kinds of 

cells, such as migration, viability and differentiation50–52. The most responsive cells are those 

which belonged to that kind of tissue which have a structural anisotropy which is related to its 

function50. Nervous tissues, cardiac and skeletal muscle tissue, tendons and blood vessels 
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present an oriented ECMs which allow the tissue to have an orientation, which is believed to 

be necessary for cells function in vivo53. Therefore, oriented substrates able to mimic features 

of the native ECMs could facilitate the growth of specialized cells of this kind of tissues54,55.  

Murine myoblasts C2C12 are immortalized and undifferentiated cells. They can be 

differentiated in skeletal muscle cells in presence of the right molecular stimuli35. After the 

differentiation, skeletal muscle cells start to fuse their membrane and creating aligned 

polynucleate cells. Here, C2C12 cells were seeded on PECA-coated glass, both random and 

aligned. After 24h, the cells adhered on the PECA substrates, acquiring an elongated 

morphology and an aligned disposition when are attached on the oriented PECA coating. 

 

Figure 2.9 C2C12 myoblast cells fixed and stained with Coomassie brilliant blue R-250 on 

glass, randomly oriented PECA coating and aligned oriented PECA coating after 24h. 

 

In Figure 2.9, this particular cell disposition can be observed along the presence of the PECA 

coating. Furthermore, C2C12 were also observed by using confocal microscope, in order to 

analyze their morphology and adhesion on the PECA coating. Cell morphology was similar 

when the cells were seeded on glass and random PECA coating. On the other hand, when they 

were seeded on the aligned fibers, cells acquired an elongated morphology, which was 

reflected in the F-actin disposition and consequently in their cytoskeleton.  
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With the aim to evaluate the correct adhesion of C2C12 cells on the PECA coatings and a 

possible rearrangement of the actin filament, confocal microscope images were acquired for 

cells seeded on all the samples (Figure 2.10). Vinculin, a protein present at the focal adhesion 

of the cells, was observed to be at the edges of each cell, following their shape. Therefore, its 

expression suggested a well adhesion of the cells on the substrate. Moreover, for cells plated 

on aligned PECA coating, the vinculin is more expressed such to allow a better adhesion of 

C2C12 on the PECA substrate. Actin the cells seeded on aligned PECA, was rearranged such 

to allow the cell to acquire an elongated morphology, suggesting that the cells was able to 

sense the topography of the coatings. 

Figure 2.10 Confocal microscope images of C2C12 after 24h on glass, random and aligned 

PECA coating. In blue the nuclei stained with the DAPI; in red the F-actin stained with the 

phalloidin-TRITC; in green the vinculin in the focal adhesions. 

 

Finally, C2C12 cells were kept in culture for 5 days, in order to investigate their viability 

when they are attached on the PECA coatings. In Figure 2.11, C2C12 viability on glass, 

random and aligned PECA coating, up to five days is shown. After 1 and 3 days of culture, 

cells seeded on the PECA-coated glass had the same viability, but lower than the viability of 

cells seeded on glass (p<0.05). However, after 5 days, the cells attached on aligned PECA 

coating, showed higher viability respect to the random PECA coating and comparable 

viability respect to the control (p>0.05). These results suggest that the PECA coating is not 
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toxic for the C2C12 myoblasts, and they can grow similarly to the control after five days. 

Nevertheless, aligned PECA fibers, after 5 days was able to induce more viability (p<0.05), 

maybe due to a higher number of cells connected among themselves, disposed in an oriented 

way. In fact, previous works showed that when this kind of cells are cultured in a way which 

mimic the in vivo condition, they seem to increase their viability56,57. 

Figure 2.11 Viability of C2C12 myoblasts on glass, random and aligned PECA coating up to 5 

days. 

 

2.6 Conclusions 

ECA is one of the monomer of the cyanoacrylates adhesives which is generally used as 

fixative agents in medical practice, especially for internal application on bone and nerve 

regeneration24,30–34. Despite the release of formaldehyde is relatively high, ECA degradation 

rate is fast enough to allow its removal in short time, allowing the regeneration of the 

tissue15,24. Although the interesting properties showed by ECA, its development, as material 

for biomedical application, is limited by its high reactivity in presence of weak bases6. 

Recently, a novel protocol was developed in order to stabilize ECA solution such to produce 

fibers through the electrospinning35. Fibers were used to produce coating which kept the 

roughness of the fibers previously electrospun.  
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In this work, PECA fibers were obtained through the electrospinning and the process was 

optimized such to produce aligned fibers with high alignment degree. Aligned electrospinning 

fibers were used to produce a PECA coated surface, though a melting process, which kept the 

topography of the electrospun fibers35. The coating resulted biocompatible and not toxic. 

Moreover, the oriented topography, left by the aligned fibers, was able to induce the aligned 

disposition of myoblasts C2C12 on the PECA substrate. They also showed an elongated 

morphology, a reorganized cytoskeleton structure and more focal adhesions. Altogether, the 

results showed that PECA aligned fibers can be used as a substrate for cell growth, especially 

for cell belonged to tissue with anisotropic structure.  
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Chapter 3  

Electrospun silk fibroin fibers for human 

platelets lysate release 
 

3.1 Silk fibroin  

Silk fibroin is a structural protein that constitutes the cocoons of the Bombyx mori. In the 

yarns of the cocoons, fibroin resulted to be coated by the sericin, which is a gum-like protein 

(Figure 3.1)1. The fibroin is the major component of the cocoons (72-81%), while the 

remaining part is sericin (19-28%)1,2. Fibroin in the cocoons is made up by a heavy chain (H) 

with a molecular weight of 325kDa and a light chain (L) of 25kDa3, which are linked by a 

disulfide bond at the C-terminus of the H-chain, forming the H-L complex4. Thanks to the 

glycoprotein P25 (25kDa), six H-L complexes are assembled non-covalently in the silk 

fibroin polymer4. The amino acids composition of the fibroin protein is mainly characterized 

by glycine (Gly = 43%), alanine (Ala = 30%) and serine (Ser = 12%)5. More precisely, the H 
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chain consists of repeated hexapeptide Gly-Ala-Gly-Ala-Gly-Ser and the dipeptide Gly-

Ala/Ser/Tyr, which self-assemble in hydrophobic antiparallel β-sheets during the silk worms 

spinning4.  

 

Figure 3.1 Images show silkworms’ cocoons on the left, while on the right SEM micrograph of 

a cocoons yarn structure, in which fibroin and sericin are highlighted. 

 

Contrary to the H chain, L chain has not repetition in its primary structure and contains 

principally valine, isoleucine and leucine and acidic amino acids6, which make it more 

hydrophilic4. Due to its composition and structure, fibroin protein results hydrophobic7, and 

characterized by a semi-crystalline structure containing two phases: one highly ordered 

crystalline, formed by the hydrophobic antiparallel β-sheets, which is alternated with a less 

organized phase (Figure 3.2). In particular, the crystalline phase remarkably influences the 

physical and chemical properties of the fibroin, such as its strength, toughness, refractive 

index, water solubility and degradation8,9. The amorphous part contributes to the flexibility 

and elasticity of the fibroin10,11
. 

 

3.2 Silk fibroin as biomaterial  

Silk fibroin was generally used for its high strength, as woven and as a suture material in 

medicine8,12. More recently, silk fibroin has become attractive as a material for biomedical 

application thanks to its proved biocompatibility and low immunogenicity12. The use of 

fibroin as biomaterials was also possible thanks to the development of protocols which permit 
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its extraction from the cocoons of silkworms. The extraction of fibroin from the cocoons is a 

process known as regeneration and it results in an aqueous solution. Regeneration allows to 

have fibroin alone without sericin, which has showed to induce immunological response, both 

in vitro and in vivo3,13. Water soluble regenerated silk fibroin (RSF) has the advantage to be 

more processable, such to be used to fabricate films, hydrogels, sponges, nanoparticles and 

fibers3,8,12,14–17. Moreover, problem related to use of solvent can be avoided12.  

 

Figure 3.2 Schematic that show the secondary structure of the silk fibroin. The hydrophobic 

peptide of the aminoacidic sequence self-assemble, such to form antiparallel β-sheets, which 

are alternated with amorphous domain18. The β-sheets content characterizes physical and 

chemical properties of the fibroin matrix. Figure is from Cheng et al., 201418. 

 

RSF self-assembles from the water solution such to acquire structures which native silk 

fibroin showed as well: an amorphous state (called silk I) presenting α-helices, and a 

crystalline state (called silk II) with high β-sheets content5,8,19,20. In addition, only RSF can 

self-assembles in a third helical structure (silk III), which can be formed at the interface 

air/water21.  

As for native fibroin, the β-sheets structures, characterizing silk II, affect several of its 

physical and chemical properties, such as degradation rate, hydrophobicity and hydrophilicity, 

transparency, mechanical strength, porosity, oxygen permeability, and thermal stability1. 

Particularly interesting is the water stability provided by the β-sheet secondary structure: 
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while silk I is soluble in water; highly crystalline silk II does not dissolve in pure water9. The 

transition of the RSF from silk I to silk II is possible by modulating the hydration state of the 

fibroin9,21–24. In fact, water allows the movement of protein chains with the consequent 

formation of the β-sheets9,25,26. Therefore, the transition can be achieved through aqueous 

based process, but organic solvent can be used as well9,27–30. However, the use of water vapor 

is preferred because is slower, more controlled and it allows to obtain different crystallinity 

degrees by varying the treatment duration. In addition, being a milder process, water vapor 

annealing can be applied even when sensitive molecules or cellular organelles are embedded 

in fibroin matrices9,31–34. 

RSF can be degraded by protease or via hydrolysis catalyzed by enzyme, resulting in amino 

acids which are resorbed by the organism. The enzymatic degradation starts from amorphous 

fibroin and then involves silk I and ultimately silk II structures35. Furthermore, in vitro 

enzymatic degradation assays performed on fibroin fibrous scaffolds, have shown a slower 

degradation rate when the scaffold presented high crystallinity36,37. In vivo studies confirmed 

the longer permanence of highly crystalline silk fibroin implants38. The control on the 

degradation is especially interesting in drug delivery applications, since controlling the rate of 

degradation enables the prolonged and sustained delivery of active factors during the entire 

course of the therapy. In vitro investigations with highly crystalline silk fibroin matrices 

showed a slower release compared to the amorphous silk39–43. The ability of the silk fibroin in 

controlling the release was found also in vivo using chemotherapeutic agents. They were 

released in a sustained way and this kept their concentration under the toxic threshold34,44. So, 

such controlled delivery can keep the overall drug concentration low within the patient’s 

body, reducing the frequency of the treatment administration45.  

Within the context of the biomedicine, the sustained release of growth factors from 

biodegradable polymeric matrices showed accelerated and improved wound healing and great 
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potential for more complete cells differentiation in tissue engineering46–48. Also, for chronic 

wounds, keeping low the concentration of growth factors and for longer time, can help their 

healing49,50.     

 

3.3 Platelet-derived proteins 

Platelets are anucleate circulating cells and are involved in coagulation processes. Platelets are 

generated in the bone marrow by megakaryocytes, which release them, entering in the 

bloodstream51. Their task is to bind rapidly damaged blood vessels, such to aggregate and 

induce clot formation. Platelets are activated by the coagulation cascades which trig them to 

release proteins and factors, which play a crucial role in migration of mesenchymal, epithelial 

and endothelial cells, especially during wound healing process52. Therefore, upon activation, 

platelets can release platelet-derived growth factor (PDGF), vascular endothelial growth 

factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming 

growth factor-β (TGF-β), heparin binding EGF-like growth factor (HB-EGF), matrix 

metalloproteinases (MMP) and interleukin 8 (IL-8)52.  

PDGF is active during the first phase of the wound healing. It can induce proliferation of 

epithelial cells and recruit at the wound site white blood cells, to prevent infection and remove 

dead cells, and fibroblasts, able to depose matrix53. low levels of PDGF have been found in 

chronic wound caused by diabetes52. FGF promote the activation of fibroblast, and endothelial 

cell proliferation, migration and differentiation. In combination with VEGF, FGF can induce 

angiogenesis54. TGF-β is a potent attractant molecule toward white blood cells and 

fibroblast52. EGF and HB-EGF induce the proliferation of the epithelial cells and fibroblasts53. 

Finally, IL-8 is a cytokine involved in formation of new skin tissue and new blood vessels. 

IL-8 rules the inflammation phase during the wound healing. Therefore, it can intervene in 
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unbalanced inflammatory situation restoring the normal course of the healing process and can 

have antibacterial role55. 

To exploit these important activities of the platelet-derived factors, platelets rich plasma 

(PRP) was obtained upon isolation of the platelets from human blood56. Autologous PRP 

demonstrated to be able to help the regeneration and recovery of normal conditions, in case of 

chronic wound as well as several damaged tissues, such as bone57, skin58, peripheral nerve59, 

and cardiac muscle60. Three-dimensional gel was also produced with PRP, upon addition of 

fibrinogen, fibronectin, thrombin, calcium gluconate and clotting agents. PRP gel can be 

applied at the wound site, releasing efficiently the functional platelets-derived factors61. 

Clinical trials have investigated the potential of platelet derived systems (PRP and PRP-gel) 

in tissue regeneration on human. Some trials showed ameliorated conditions and improved 

healing, while others did not show improvements62,63. A limit of using PRP is related to its 

extraction52. PRP is obtained from the blood of single donor. However, platelets concentration 

can change from each individual. Therefore, to reduce interindividual variability, a new 

protocol for isolating the platelets proteins uses different blood samples, which derive from 

more than one donor64,65. The process results in extraction of the platelet-derived proteins, by 

lyophilizing the PRP65. Lyophilization causes the lysis of the platelets, allowing the release of 

the platelet proteins. Allogeneic human-derived platelets lysate (hPL) is obtained as a 

lyophilized powder and it is highly enriched with platelets-derived proteins. In vitro 

experiments showed that hPL supports every stage of the wound healing, favoring cells 

growth and angiogenesis, and stimulating the recruitment of white blood cells, also thanks to 

its sustained release55,66,67, while in vivo hPL was observed to support bone regeneration and 

the recovery of non-healing wounds68,69. Consequently, gels fabricated from allogeneic hPL, 

demonstrated their effectiveness on the wound closure on a mice model52.  
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Despite these promising results, on-the-spot preparation, difficult handling, storage at low 

temperature to preserve the activity of the factors are some of the technical and practical 

limitations that still hinder the hPL usage as therapeutic tool70,71. Therefore, there is a need of 

designing a device that could conjugate the sustained release of the allogenic hPL with an 

easier handling on a wound, while keeping the hPL factors well-preserved. This would allow 

a more effective use of the hPL molecules in the wound care management. 

 

3.4 Fabrication of electrospun silk fibroin fibers encapsulating hPL72 

To overcome the limits in its usage, in this work, hPL was electrospun with silk fibroin in 

order to produce fibers able to encapsulate it. Such system was used to control the hPL 

releasing rate by tuning the degradability of silk fibroin. Moreover, protective effect on 

sensitive molecules typical of the fibroin was also exploited in order to preserve the activity 

of hPL proteins73–76.  

Generally, to electrospin silk fibroin, PEO is added because it adjusts the viscosity of the 

regenerate silk fibroin, as reported in previous works77–80. The use of electrospun fibers grants 

materials with high porosity and high surface area, which are characteristics provided by the 

micro and nanofibers. Therefore, electrospun materials allow efficient gas exchange, to 

absorb wound exudate as well as support cell proliferation and migration. All the above-

mentioned features successfully mimic the natural extracellular matrix, thus improving and 

sustaining the healing process of the wounds81–84.  

Herein, silk fibroin fibers were fabricated along the hPL, resulting in high proteins loading. 

The characterization of the kinetic release showed the effective control on the protein release 

through the manipulation of fibroin crystallinity. The protein release assessment was carried 

out with an in vitro test that was developed to simulate in vivo degradation conditions. 

Therefore, different crystalline mats were subjected to degradation and the release of albumin 
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from them was traced85,86. Once released from silk fibroin fibers, hPL has shown to retain its 

ability to induce and sustain the viability of primary adult human dermal fibroblasts (HDFa) 

in vitro. Finally, the possibility to use silk fibroin for the preservation of hPL biological 

activity was proved even after thermal stress at 60 °C, demonstrating the improvement of the 

shelf-life of hPL, granted by the fibroin matrix. Our construct can be proposed as a valid, 

easy-to-fabricate and durable alternative to the PRP gel in the wound care management. 

 

3.5 Experimental section 

3.5.1 Fibroin regeneration  

Fibroin was extracted from Bombyx mori cocoons according to the protocol previously 

described by Rockwood et al. (Figure 3.3)12. Firstly, the cocoons were cut and boiled for 30 

minutes in a water solution of 0.023M of Na2CO3; subsequently, the fibers were washed with 

MilliQ (Ohms) water and dried. Degummed fibroin was solubilized in an aqueous solution of 

9.3 M of lithium bromide at 60°C for 4 hours and dialyzed in a tube with a MWCO of 3,500 

kDa for 3 days against MilliQ water. Finally, regenerated fibroin was centrifuged twice at 

9000 rpm, for 20 minutes at 4°C. To quantify the fibroin concentration, 1 mL of regenerated 

fibroin solution was left to dry under an aspirating hood. Then, the dried film was weighted, 

obtaining the concentration of silk fibroin in the solution. The concentration was found to be 

in a range between 60 and 80 mg/mL.  

 

3.5.2 Fibers fabrication and water vapor treatment 

To produce the fibers, fibroin 60 mg/mL solution was used. To facilitate the electrospinning 

process and fabricate the fibers, PEO powder 25% w/wsilk was added to a 60 mg/ml aqueous 

solution of fibroin and stirred overnight77.  
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Once a homogeneous solution was obtained, FITC-albumin powder was added such to obtain 

a concentration of 2% w/wsilk. To add hPL, solutions of it 7% and 14% w/wsilk were added to 

not diluted silk fibroin solution. Therefore, hPL solutions need to have an enough volume to 

dilute the silk fibroin solution at 60mg/mL. The final concentration of the hPL in the 

electrospun fibers were 5% and 10% w/w respectively. The fibers were electrospun at 20°C in 

a controlled humidity environment (30% - 40% relative humidity) with a syringe pump (NE-

1000, New Era Pump Systems, Inc.) equipped with a blunt 19G needle, at a flow rate of 1 

mLh-1 (Figure S1A). An aluminum, grounded collector was placed at 20cm from the needle, 

while a voltage of 18 kV was applied (EH40R2.5, Glassman High Voltage, Inc.). In the case 

of the hPL loaded fibers, the following parameters were considered: a flow rate of 1.2 mLh-1, 

a needle - collector distance of 30 cm, and a voltage of 23 kV. These parameters were 

considered in order to have a continuous electrospinning process and to avoid having wet 

fibers on the collector. 

 

Figure 3.3 Regeneration protocol for silk fibroin from cocoons, optimized by Rockwood et 

al.12. The regeneration can permit the extraction of silk fibroin, such to have it in aqueous 

solution. Figure is from article of Rockwood et al., 2011. 
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The crystallinity degree of the silk fibroin fibrous mats was increased via water vapor 

annealing. The treatment was performed in a vacuum oven (VO500EA, MLS, Italy) at 40°C 

and 85-90% of relative humidity. Different treatment times were used for the different 

crystallization reported (Figure S1B), ranging from 10 minutes to 6 hours. 

 

3.5.3 Fibers Characterization  

• Morphology 

Fiber morphology was characterized by scanning electron microscopy (SEM) using a JEOL 

JSM-6490LA microscope, in high vacuum with an acceleration voltage of 15kV. The samples 

were previously coated with a 10-nm-thick gold layer with a Cressington 208HR high 

resolution sputter coater (Cressington scientific instrument Ltd, U.K.). Size analysis was 

performed with ImageJ software. To evaluate the encapsulation of the FITC-albumin 

molecules, confocal imaging was performed with a laser scanning confocal microscope 

(Nikon A1R).  

• Fibroin crystallinity characterization 

Characterization of the fiber crystallinity was performed by Fourier transform infrared 

spectroscopy (FTIR). Samples were measured in Attenuated Total Reflectance (ATR) mode 

using MIRacle ATR accessory (PIKE Technologies) coupled to a Fourier Transform Infrared 

(FTIR) spectrometer (Equinox 70 FT-IR, Bruker). All the spectra were acquired in a spectral 

range from 4000 to 600 cm-1, with a scanning resolution of 4 cm-1, accumulating 64 scans.  

The deconvolution of the fibroin amide I peak was performed as reported previously by 

Guzman-Puyol et al. and Hu et al.87,88. The software was PeakFit 4.1187 and the wavenumber 

positions of the different components were deduced by calculation of the second-order 

derivative 87. The fitting of the different contributions was performed using Gaussian-shaped 
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peaks, using a fixed width for each considered peak. The crystallinity content was obtained 

from the ratio between the areas of the β-sheets peaks and the total area of the amide I peak 

 

3.5.4 Drug release assessment 

• Evaluation of the albumin presence in hPL through SDS-page 

To evaluate the presence of albumin in hPL, SDS-page electrophoresis was performed. SDS–

PAGE, 12% w/v polyacrylamide separating gel and 4% w/v polyacrylamide stacking gel were 

used to resolve proteins at 120V for 90 minutes. A wide-range molecular weight (15–250 

kDa) marker was run along with the proteins. hPL and of bovine serum albumin standard 

(BSA) were reduced with 50mM dithiothreitol (DTT) and heated at 75°C for 10 minutes. 

Different concentrations of hPL proteins were loaded on the gel (15μg, 7.5μg and 3.75μg). 

For BSA, 15μg was loaded. The gel was colored with Coomassie Brilliant Blue 0.1% in a 

mixture of methanol:acetic acid:water 40:10:50 v/v. 

• Characterization of the FITC-albumin release from silk fibroin fibers 

Electrospun silk fibroin unloaded (SF), loaded with FITC-albumin (SF-alb), loaded with hPL 

(SF-hPL), and loaded both with FITC-albumin and hPL (SF-alb-hPL) fibers, were weighted 

and placed in a 24 well-plate with 1 mL of PBS 0.04M at pH 7.4 and with 6.25 mU of 

protease XIV in 0.04M PBS pH 7.4 at 37°C and gently stirred on a tilting plate for 5 months. 

At given time points, the total volume was taken out and substituted with fresh medium. The 

amount of FITC-albumin was determined by correlating the absorbance at 495 nm with a 

calibration curve measured by using the same media, after subtraction of a blank spectra 

obtained by measuring the SF and SF-hPL samples. The measurements were carried out using 

a UV-visible spectrophotometer (Cary 6000i-Varian) from 450 nm to 550 nm.  

To characterize the effect of the enzymatic degradation on the samples, three SF-alb-hPL 

mats having different crystallinity (22%, 35% and 45%) were incubated at 37°C for 1 month, 
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either with PBS or in the presence of PBS containing the enzyme (6.25U/mgfibers). The 

medium was completely replaced every day. Subsequently, the mats were washed with MilliQ 

water for 10 minutes five times, in order to remove traces of salt and enzyme. After the final 

timepoint, the samples were rinsed, dried and imaged by SEM. 

 

3.5.5 Evaluation of the hPL biological activity released from the fibers. 

• Biological activity of the released hPL 

Primary human dermal fibroblasts from an adult donor (HDFa) were seeded in Medium 106, 

containing 2% v/v of fetal bovine serum, 1 μg/mL of hydrocortisone, 10 ng/mL human 

epidermal growth factor, 3 ng/mL of basic fibroblast growth factor, and 10 μg/mL of heparin. 

The cells were split every 7 days and seeded at a density of 4500 cells/cm2. Medium was 

changed every day.  

To assess the retained activity of the released hPL, 20 mg of SF and SF-hPL fibers, at 24% of 

crystallinity, were incubated, after sterilization with UV treatment for 20 minutes for each 

side, in 4 mL of serum-free culture medium for 24h at 37°C. The low crystallinity of the mats 

permits the dissolution of the matrix and the complete release of all the factors in 24h hours. 

The concentration of hPL released in serum-free culture medium, was of 250 μg/mL, which 

was the minimum concentration able to increase the viability of the HDFa, as observed in a 

previous experiment (Figure S8). Twenty-four hours before the treatment, cells were seeded 

with a density of 4500 cells/cm2 in complete culture medium. The day after, some cells were 

used to assess the viability before the treatment with the samples. This reading was labeled 

time point zero. The rest were washed with PBS and incubated according to the following 

conditions: SF extract, SF-hPL extracts, culture media containing the same hPL amount 

released from the SF-hPL, and serum-free culture media and complete culture media as 

controls. Cells viability was evaluated with WST-1 assay, by adding the reagent directly in 
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culture medium with a 1:11 v/v ratio. The assay was performed after 1, 3, and 5 days of 

treatment, acquiring the absorbance at 450 nm, through a multiwell plate reader (instrument) 

and normalizing all the outcome signals with respect to the absorbance value at the zero-time 

point. 

• Improvement of hPL shelf-life  

With the aim of mimicking a degradation process, an oven treatment at 60 °C, such to induce 

a thermal stress, was performed on SF and SF-hPL samples and on aliquots of plain and hPL-

containing serum-free culture medium. The electrospun mats were cut to be 20 mg in mass, 

containing 1 mg of hPL each and were dissolved, after the oven treatment and 20 minutes of 

UV sterilization cycle for each side, in 4 ml of serum free culture media for 24 h at 37 °C, to 

release the encapsulated hPL and prepare the extract for the following cell experiments. All 

the electrospun samples were 24% crystalline, so they fully dissolved during the 24 hours 

incubation. For the control samples, lyophilized hPL was dissolved in the serum-free medium 

in order to have the same concentration of the electrospun samples (250 μg/ml). Three 

treatment time points were investigated: 24 hours, 48 hours and 72 hours. HDFa cells were 

seeded onto 96-well plates at a density of 4500 cells/cm2 and let attached overnight. The next 

morning, cells were treated with the prepared extracts from the thermally treated samples 

above listed. WST-1 viability assay was performed after 5 days, acquiring the absorbance at 

450 nm and normalizing all the outcome signals with respect to the absorbance value of the 

negative control. The residual activity of the hPL was calculated from the ratio of the cell 

viability observed in the case of the thermally treated mats and the cell viability in the case of 

the untreated samples. 

• Cells morphology  

To evaluate the morphology of the cells directly seeded onto the fibrous mats, electrospun silk 

fibroin fibers were collected on 14 mm coverslips and treated with water vapor, as previously 
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explained. After UV sterilization for 20 minutes, HDFa were seeded on SF and SF-hPL 

matrices and observed under the confocal microscope after 1, 3 and 5 days of growth. Cells 

were washed twice with PBS, fixed with PFA 4% for 10 minutes, and treated with Triton X-

100 0.1% in PBS for additional 10 minutes. Afterwards, the samples were incubated with a 

blocking solution of 1% BSA in PBS for 20 minutes and then stained with Alexa Fluor™ 488 

Phalloidin (diluted 1:40 in 1% BSA) for 20 minutes. All the steps were performed at room 

temperature. Finally, the cells were mounted on glass slide with ProLong™ Diamond 

Antifade Mountant containing DAPI for nuclear staining and stored at 4°C. 

 

3.5.6 Statistical methods 

The fibers size analysis was performed on three samples for each fibrous formulation (SF, SF-

alb, SF-hPL and SF-alb-hPL) before and after the water vapor annealing. The average of size 

measurements (n = 400) was obtained along the respective standard errors.  

Three samples of each fibrous sample and each condition (not treated, treated for 10 minutes 

and treated for 6 hours with water vapor) were used for FITR analysis, acquiring 5 spectra 

from each of them, which were averaged to obtain the final spectrum for the deconvolution. 

The same samples (three for each crystallinity degree and three for each fibers type) were 

used to investigate the release. The average of the release from the triplicates was obtained 

with the respective standard errors. For cell viability assays, the statistics were performed 

through the analysis of variance (ANOVA), followed by post-hoc Bonferroni correction. The 

cell viability tests were repeated 3 times for each fibrous sample. The average with the 

standard error was obtained. A value of p≤0.05 was considered statistically significant. 
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3.6. Results and discussions 

3.6.1 Fibers characterization 

Silk fibroin was electrospun from aqueous solution, upon the addition of PEO, as reported in 

previous works77,79,80. Silk fibroin fibers were obtained unloaded (SF), loaded with FITC-

albumin (SF-Alb), hPL (SF-hPL) and with both (SF-Alb-hPL) (Figure 3.4 and 3.5). All the 

fibrous samples showed smooth and beads-free morphology. Their average diameter was 

measured to be 370±3 nm, 330±2 nm, 360±3 nm, and 480±2 nm, respectively. After the water 

vapor treatment was performed, no statistically significant changes in the average diameter 

was observed, with dimensions of 400±4 nm, 370±3 nm, 480±4 nm, and 530±8 nm, 

respectively. 

 

Figure 3.4 SEM images of SF (a and c), SF-hPL (b and d), SF-alb (e and g) and SF-alb-hPL (f and 

h) fibers mats obtained by electrospinning. The fiber morphology is characterized before (up 

images) and after (down images) the water vapor treatment. The insets show the 

corresponding size distributions.  

 

Size and the morphology of fibers did not significantly change upon the addition of the FITC-

albumin or hPL. The amount of hPL loaded in the fiber was 5% (w/w). By increasing the 

concentration of hPL, the electrospinning process was less continuous, and fibers were 

obtained with beads (figure 3.5). After the water vapor treatment, all the fibrous samples 
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showed a flattened morphology, which is proper of the fibroin fibers post-treatment, which 

does not lead to relevant changes at the fibrous surface (Figure 3.4 e-h).  

Since the complexity of the hPL composition, their detection can result difficult to 

investigate. To make easier these procedures, albumin conjugated with FITC was used as a 

protein tracer. Albumin was chosen because it is one of the protein of the hPL, as shown in 

SDS-page in Figure 3.6 and confirmed in literature85,86.  

Figure 3.5 SEM image of SF-hPL mat when 10% (w/w) was used. Fibers resulted with beads 

 

Figure 3.6 SDS-page of a BSA standard and hPL at different concentration. 

 

The evaluation of the FITC-albumin encapsulation was performed by acquiring FITC 

fluorescence from the fibers with a confocal microscope. For samples encapsulating FITC-

albumin (SF-alb and SF-alb-hPL), the fibers resulted fluorescent, suggesting its correct 

encapsulation. Moreover, FITC fluorescence was homogeneously distributed along the fibers. 
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No differences were observed when the hPL was added to the system (Figure 3.7). Contrarily, 

fibers without FITC-albumin (SF and SF-hPL) did not show fluorescence (Figure 3.8).  

These outcomes suggested the efficient encapsulation of the hPL as well as its homogenous 

distribution in electrospun fibers. In addition, the confirmation of the hPL encapsulation was 

obtained from the in vitro test below in the test. 

Figure 3.7 Confocal microscope images of SF-alb (a, b and c), and SF-alb-hPL (d, e and f). 

Figure 3.8 Confocal microscope images of the silk fibroin fibers, SF (a, b, c) and SF-hPL (d, e, 

f). 

 

Since is related to fibroin degradation, the manipulation of the silk fibroin crystallinity can 

result useful in tailoring the release kinetics from the electrospun samples. The control of the 

crystallinity was performed thought treatment at different time with water vapor. The 
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characterization of such modification, induced by water vapor annealing, was carried out on 

all the samples with FT-IR analysis.  

Silk fibroin is characterized by a peak ranged from 1700 to 1600 cm-1, called amide I, which 

corresponds to the sum of the vibrations due to the stretching of carbonyl group in the 

proteins backbone9. Depending on type of hydrogen bond, in which the carbonyl group is 

involved, secondary structure of the proteins (random coils, α-helices, β-sheets, turns) can be 

determined88,89. 

 Figure 3.9 Deconvoluted FT-IR spectra of the amide I of three samples a, b and c respectively 

not treated, treated for 5 minutes and for 6 hours. In this case the crystallinity content for 

these sample are respectively 21%, 34% and 45%. SC = side chains; B = β-sheets; R = random 

coils; A = α-helices; T = turns. 
 

This peak was found in all the fibrous samples. For not treated samples, the peak was at 1651 

cm-1. After the treatment with the water vapor, β-sheets increased and their contributes 

increased as well in the FT-IR spectra showing a change in the peak shape after 5 minutes 

with a shoulder at 1628 cm-1, while a shift after 6 hours at 1624 cm-1 88,89. Since the 

crystallinity of silk fibroin is related to the β-sheets, deconvoluting the amide I peak was 

necessary to calculate the crystallinity degree of the fibroin for each sample treated at 

different time88. Not treated electrospun fibers showed a β-sheets content ranged from 21% 

and 24% (Figure 3.9a). After 5 minutes of treatment, crystallinity reached a degree of 34-

36%, while after 6 hours, 44-46% (Figure 3.9 b and c).  
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3.6.2 Evaluation of FITC-albumin release 

Once optimized the water vapor treatment, such to have the control on the crystallinity 

manipulation, fibrous samples (SF, SF-alb, SF-hPL and SF-alb-hPL) with different 

crystallinity degree, were used to assess the release kinetic. The experiment intended to 

evaluate the release kinetic, mimicking the in vivo degradation conditions of fibroin. It was 

observed that high crystalline fibroin-based implants can remain in the body for 6 to 12 

months38,90. To have similar degradation rate in this experiment, protease XIV was used in a 

such concentration as induce a similar time of degradation.  

Figure 3.10 FITC-albumin released in presence of the protease XIV from electrospun mats 

with FITC-albumin, in a, and with FITC-albumin and hPL, in b. In c and d, FITC-albumin 

released in PBS buffer without the Protease XIV, from electrospun mats loaded respectively 

with FITC-albumin and loaded with both FITC-albumin and hPL. The percentages indicate the 

crystallinity of the electrospun mats used in the experiments. 

 

Kinetic release evaluations were performed for a period of 5 months, through the 

quantification of the FITC-albumin released from the fibers in time. The results of the release 
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from fibrous samples (SF and SF-alb-hPL) with and without the enzymatic activity are 

reported in Figure 3.10. In all the cases, the fibers with the lowest crystallinity were totally 

dissolved within 1 hour and all the FITC-albumin was completely released, both with and 

without enzyme. In the samples with about 30% crystallinity, FITC-albumin showed an initial 

burst release in the first hour, reaching the 33±3%, 38±3%, of the loaded FITC-albumin. A 

net difference was observed for samples with higher crystallinity of about 45%, which only 

released 4±0.5% and 6±1 of the total loaded FITC-albumin. Similar amounts of FITC-

albumin were observed to be released from both the fibrous samples without the enzyme 

(Figure 3.10 c and d; Table 3.1).  

Table 3.1 Summary of the release kinetics of FITC-albumin from SF-alb and SF-alb-hPL 

samples reported in Figure 3.8. 

 

After the initial burst, which took 24h, the release continued with a slower rate for all the 

samples incubated with the enzyme. To give an idea, considering the released amount after 25 

days, the SF-alb samples with 33% crystallinity showed a release of 90±1%, and samples with 

crystallinity of 46% released 38±2% of the total (Figure 3.10a). Similarly (Figure 3.10b), the 

SF-Alb-hPL samples showed a release of 80±3 % for the mats with 35% of crystallinity and 

46±2 for the 44% crystalline mat after 25 days (Table 3.1). Contrarily, this second phase of 

the release was absent, in all the samples without the protease XIV. In fact, the release in 



85 
 

absence of the enzyme was stopped after the burst release. For them, a plateau in the release 

was observed instead of the slower sustained release (Figure 3.10 c and d). 

These results showed how the release of FITC-albumin from the silk fibroin fibers was 

characterized from two different phases: the burst release and the degradation-dependent 

release. The burst release was due to the dissolution of the amorphous part of fibroin; the 

degradation-dependent phase was induced and ruled by the presence of the enzyme. The role 

of the enzymatic degradation is confirmed by the kinetic release obtained in absence of the 

protease XIV and by SEM images. In fact, Figure 3.11 showed the loss of the fibrous 

morphology in presence of the enzyme, confirming its degradation activity toward the fibrous 

mats. Furthermore, the loss of the fibers’ morphology was higher when the crystallinity was 

low. 

Figure 3.11 SEM images of SF-alb-hPL with different crystallinity. Micrographs a, b and c 

depict fiber morphology incubated in PBS for 1 month. Micrographs d, e and f, show the 

resulting morphology after incubation with protease XIV (6.25mU/mgfibers) 

 

The release from silk fibroin matrices is related to its integrity. For this reason, dissolution or 

degradation of fibroin enables the release of molecules embedded in its matrix. As observed 

here, for very low crystallinity the dissolution of the amorphous content is faster and is the 

main pathway for degradation. For high crystallinity, the main pathway is the proteolytic 
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degradation that has shown to be dependent on the crystallinity degree of fibroin. Conversely, 

when the enzymatic degradation is absent, the degradation of fibroin only accounts for 4% of 

the mass15,90. 

Figure 3.12 Proposed mechanism of controlled release from silk fibroin fibrous mats, 

considering the different silk fibroin crystallinity degree and the presence of the enzymatic 

activity. Low crystalline samples completely dissolved during the burst release, while the 

highly crystalline samples featured a reduced release due to the presence of the crystalline 

domains which impaired the diffusion of the FITC-albumin molecules. After the burst release, 

for the highly crystalline mats, when the enzyme degradation is not present, the molecules 

would remain entrapped in the fibroin matrix, whereas, by adding an enzyme, the 

degradation of the crystalline domain induces the release of the FITC-albumin and the other 

molecules embedded in it. Therefore, crystallinity also appeared to affect this second release 

step, since the silk fibroin crystalline domains constitute a physical barrier that limits the 

accessibility of the cleavage sites, leading to a slower degradation rate of the fibers during 

the release process. This leads to a crystallinity-dependent release. 

 

In previous works by Hines and Kaplan39,40, they hypothesized that the release of molecules 

from fibroin matrix can be distinguished in two phases: a first phase characterized by the 

diffusion of molecules throughout fibroin matrix, and a second phase driven by the 

degradation of the fibroin matrix. The model suggested by the authors are supported by the 

outcomes of this work. In particular, the results of this work showed that, beside the burst 
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release, the degradation-dependent release play a crucial role in releasing molecules from 

fibroin matrices. In fact, in absence of the enzymatic activity, the FITC-albumin would 

remain entrapped in the fibroin matrix. Whereas, addition of the enzyme induces the 

degradation of fibroin, enabling the release of FITC-albumin. Finally, both the diffusion and 

degradation dependent phase, have shown to be dependent on the crystallinity of fibroin 

matrix (Figure 3.12). 

Beside the dependence of the releasing mechanism on fibroin matrix integrity and 

crystallinity, release kinetics are also affected by the molecular weight of the molecules 

embedded in the fibroin matrices39,92. For high molecular weight molecules, the release from 

fibroin matrix, results slower. Conversely, for small molecular weight, the release is faster. In 

addition, it is worth to remember that, at physiological pH, fibroin results negatively charged. 

Therefore, release of charged molecules can be affected by the interaction that they can have 

with the fibroin. A previous work showed that negatively charged molecules was 

unexpectedly released slower than positive ones92. This was because the positive molecules 

can interact with the negatively charged fibroin, such to induce the formation of 

polyelectrolyte complexes, which were rapidly released92.  

 

 

Table 3.2 Molecular weight and predict isoelectric point for each principal protein of the hPL 

 

All the mechanisms above described, should undoubtedly affect the release of hPL proteins. 

However, the molecular weight effect as well as the ionic interaction, should be affect the 
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release of hPL proteins only in the burst phase, since the second phase in prevalently driven 

by the enzymatic degradation. In table 2 are reported the molecular weight and the predicted 

isoelectric point of the principal hPL proteins. Albumin results negatively charged at 

physiological pH. Therefore, at equal charge, only the molecular weight should be affect the 

release, Thus, hPL negative proteins with higher molecular weight than albumin should have 

a slower kinetic; vice versa, negative proteins with lower molecular weight of albumin, would 

release faster.  

For positive charged proteins, according to previous work92, the interaction with fibroin can 

result in formation of polyelectrolyte complexes, which result in fast release. Therefore, their 

release should be faster than albumin. 

In any case, further study need to be performed in order to precisely investigate the kinetic 

release of the rest of the hPL proteins such to characterize the system. 

 

3.6.3 Evaluation of the biological activity of the hPL released from the fibers. 

• Cell viability assay and cell morphology analysis 

Before the evaluation of the biological activity of the hPL released from the fibers, a dose-

response experiment was performed, to understand the minimum concentration at which the 

hPL can induce an augmentation in cell viability. From this experiment a hPL concentration 

of 250μg/mL resulted enough to promote cell viability (data not shown). 

To evaluate the activity of the hPL after the release from fibers, low crystalline SF and SF-

hPL samples were incubated in the culture medium serum-free for 24h. The protease XIV was 

not used since the fibers were not crystalized, such to result in total dissolution of the mat. 

Figure 3.11 shows the viability of HDFa cells treated with medium with the fibers extracts. 

As control samples, cells were seeded FBS-free media (labeled as negative control), or in 

FBS-free media in which lyophilized hPL was dissolved with the same concentration (labeled 
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hPL), or in media with FBS (labeled FBS). The amount of hPL in the control was the same as 

the one released from SF-hPL fibers (250 μg/mL). The absorbance values of all the days were 

normalized on the absorbance values relative to the zero-time point. 

Figure 3.11 Viability of HDFa cells treated either with 250 μg/mL of hPL or with the extracts 

of SF and SF-hPL fibers. The values were normalized with respect to the absorbance value of 

the cells before the treatments, which is showed as a dashed line in the graph. 

 

After the first day of treatment, cells cultivated in media with hPL (hPL and SF-hPL) showed 

a significantly similar viability (p>0.05) and almost twice compared to the negative control 

(p<0.0001). This higher viability can be associated to the cell proliferation induced by the 

hPL, as reported before93. These trends were confirmed after three and five days. Silk fibroin 

produce no effects on the cells viability, confirming that the increase of the cell viability is 

due the hPL released from the fibroin fibers. These results proved that the growth factors 

released from the SF-hPL were still active and that they could increase and sustain the cells 

viability of the HDFa cells for up to 5 days. Therefore, hPL activity was preserved during the 

fibers fabrication and treatment thorough the water vapor annealing. 
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To evaluate the role of the hPL in cell adhesion and morphology, HDFa were seeded on the 

SF and SF-hPL mats for 5 days. Intermediate crystalline fibrous mats were used to avoid their 

dissolution and allow the cells to attach. As control, the cells were seeded on coverslips with 

and without hPL. Figure 3.12 and 3.13 showed the cells attached respectively on glass and on 

the electrospun fibers after 1, 3 and 5 days. The cells cultivated with the hPL (hPL and SF-

hPL) showed an elongated morphology, already after one day from the seeding, and was kept 

for all the 5 days. In absence of the hPL, cells acquired a rounded morphology, especially 

when are seeded on the unloaded SF. Therefore, results show that hPL was able to allow the 

cells to acquire elongated morphology. As shown by Barsotti et al.67 and Anitua et al.93, 

platelets-derived proteins induced similar changes on dermal fibroblast. This morphology was 

hypothesized to be associated to cell polarization, a complex process involved in cell 

migration and wound closure55.  

 

Figure 3.12 Confocal images depicting HDFa cells seeded on glass coverslips for (a) 1, (b) 3, 

and (c) 5 days; HDFa cells seeded on glass coverslips and treated with hPL-containing media 

for (d) 1, (e) 3, and (f) 5 days. F-actin is stained with the Alexa-fluor phalloidin (green), while 

nuclei are stained with DAPI (blue). 
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Figure 3.13 Confocal images depicting HDFa cells seeded on silk fibroin mats for (a) 1, (b) 3 

and (c) 5 days; HDFa seeded on SF-hPL mats for (c) 1, (d) 3, (e) 5 days; F-actin is stained with 

the Alexa-fluor phalloidin (green), while nuclei are stained with DAPI (blue). 

 

• Evaluation of the preserving ability of silk fibroin toward the hPL 

To evaluate if the activity of hPL growth factors can be preserved upon the encapsulation in 

fibroin fibers, an accelerated stability test at 60°C was performed on the SF-hPL fibers and on 

the medium containing the hPL. In Figure 3,14, the residual activity of the hPL is shown. The 

activity of the hPL in solution was reduced at 60% after 1 day, while the reduction of the 

activity decreases to 40% after 2 and 3 days. On the other hand, the hPL released from the SF-

hPL mats has shown no statistical difference (p>0.05) with the non-treated sample, 

demonstrating the ability of silk to preserve the activity of growth factors of hPL. 

The fabrication of a device able to encapsulate hPL and even preserve its activity, might be 

crucial for hPL usage. Preserving the activity of such pool of proteins for long time entails the 

fabrication of a device encapsulating hPL beforehand, which can be ready to use. In this way, 

the problems concerning the preparation and the handleability of the hPL gel are eliminated. 

Therefore, the usage of a fibrous patch instead a gel should improve its usage and increase the 

accessibility to also not-qualified personnel. Finally, since the fibroin was shown to be able in 
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preserving the hPL activity, procedures of storage can be simplified, avoiding the storage of 

hPL at very low temperature (-80°C), resulting in cost reduction. 

 

Figure 3.14 hPL activity of un-encapsulated hPL and hPL released from SF-hPL matrices after 

the accelerated stability test 

 

3.7 Conclusions 

In this work, the electrospinning process was optimized such to encapsulate hPL in silk 

fibroin fibers up to a concentration of 5% of the total mass of the fibers. The procedures of the 

crystallinity manipulation were fine controlled by the relative humidity and duration of 

treatment. Thanks to this, the fibers were obtained with different crystallinity degree, which 

resulted in a different release of FITC-albumin. By using a suitable releasing medium, which 

mimicked the degradation conditions of silk fibroin in vivo, the two-steps phases of the 

release from fibroin matrix were well distinguished: the rapid burst release and the slower 

degradation-dependent release. Both the phases were affected by the fibroin crystallinity 

increase, resulting in a slower pace. 

hPL released from the fibers showed to be still active, promoting the cell viability of HDFa 

and inducing the cell to acquire a polarized morphology, which is typical of the migrating 

cells which are involved in wound healing55,67,70. This demonstrated that hPL remained active 
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during the fabrication procedures. hPL kept its activity also after the accelerating test stability 

at 60°C, proving the protective activity of fibroin toward hPL, as already showed for other 

sensitive molecules and even for organelles9,31–33,41. This suggests that hPL encapsulating in 

silk fibroin matrix has an extended shelf life, which could facilitate and improve the usage of 

hPL in clinical application, in which gel systems are currently used. 

The development of such electrospun materials opened the possibility to an improving of the 

hPL application in wound care, which are currently stopped in using gel system. The use in 

medical procedures of an electrospun patch, like gauze materials, with such characteristics – 

possibility to pre-determine the release of the hPL proteins by controlling the fibroin 

crystallinity; possibility to prepare beforehand the patches, store them at room temperature, 

such to have a ready-to-use system – undoubtedly could facilitate the use of hPL. To this 

purpose, however, the system needs to be further characterized, in order to find the kinetic 

release of the other hPL components. But the potentialities of the device were clearly 

demonstrated. 
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Chapter 4 

Polysaccharides-based formulation for 

oral delivery of curcumin  
 

4.1. Curcumin  

Curcumin is a molecule extracted from the dried powder of the rhizomes of the Curcuma 

longa. Generally, curcumin is soluble in organic solvents such as ethanol and vegetable oils. 

This makes difficult the preparation of liquid pharmaceutical formulations in order to use 

curcumin as biological active compounds1–3. Curcumin has low solubility in acid and neutral 

aqueous solution, but it increases in alkaline pH, because of the hydrolysis of hydroxyl 

phenolic group4. In addition, curcumin can be found as isomers due to the keto-enolic 

equilibrium. The ketone form is predominant in acid pH, while the enol form is mainly 

present at neutral and basic pH5.  
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The stability of curcumin is dependent on the pH of the water or water/solvent solutions. In 

particular, it has a reasonably stability at pH 1-6 and it starts to degrade at pH>7. It was 

reported that at physiological pH, curcumin is subjected to almost total degradation (90%) 

after 30 minutes6. Curcumin is also sensitive to oxygen and light4. 

Numerous investigations have been carried out to understand its biological activities and how 

such activities can be exploited in medical practices. In vivo and in vitro experiments have 

shown a role of the curcumin as antioxidant, anticancer, antiviral, antiarthritic, antiamyloid, 

and anti-inflammatory4,7,8. 

This broad range of action of curcumin derives from its ability to interact with factors in the 

human cells, which are involved in such mechanisms8. In particular, curcumin was observed 

to inhibit the activation of a nuclear factor kappa B (NF-κB)9. This factor is involved in 

inflammation processes and, after its activation, it can induce acute and chronic inflammation. 

Furthermore, NF-κB results active in some tumors, such as breast cancer, gastroenteric 

cancer, melanomas8. The activation of NF-κB is dependent on the presence of pro-

inflammatory stimuli. In details, in absence of pro-inflammatory stimuli, NF-κB is bound to 

its inhibitor protein IκB (inhibitor of κB), which retains NF-κB in the cytoplasm. When 

inflammatory stimuli reach the cells, IκB is subjected to the phosphorylation, which induces 

its degradation. Successively, NF-κB is free to enter the nucleus and to activate the 

transcription of proinflammatory and anti-apoptotic genes, such as interleukin 6 (IL-6), 

cyclooxygenase 2 (COX-2), metalloprotease (MMPs) and Bcl-210,11. Curcumin can prevent 

the phosphorylation of IκB, and so to inhibit its degradation, keeping NF-κB sequestered in 

the cytoplasm. In this way, NF-κB is not able to enter the nucleus and to activate genes 

transcription. Furthermore, curcumin has shown to have other molecular targets, such as Src 

family protein tyrosine kinases (SFK) and c-JUN N-terminal kinase, and downregulation of 

nuclear factor-κB (NF-κB) p65, inhibitory subunit of NF-κB (IκBα), activator protein 1 
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(AP1), early growth response protein-1 (EGR1), epidermal growth factor receptor (EGFR), 

human epidermal growth factor receptor type-2 (HER2), insulin-like growth factors (IGF-1R), 

cyclooxygenase-2 (COX2), lipoxygenase (LOX), nitric oxide oxidase (NOS), tumor necrosis 

factor (TNF), matrix metalloproteinase (MMP)-2 and -9, urokinase-activated plasminogen 

activator (uPA), cyclin D and various chemokines12–15. 

Curcumin activity was investigated in clinical trials in order to understand its effects in cancer 

therapy, chronic and acute inflammation and in central nervous system disease. Orally 

administrated curcumin (8g per day) has shown to induce the regression of pancreatic cancer, 

high-grade prostatic intraepithelial neoplasia (phase I) and multiple myeloma4,16–18.  

Curcumin in capsule was also administrated to patients with active rheumatoid arthritis or 

knee osteoarthritis and it showed to have a comparable therapeutic effect with non-steroidal 

antirheumatic drugs (NSAR), such as diclofenac and ibuprofen19,20. Chronic administration of 

NSARs provoked serious side effects on stomach, resulting in gastritis or ulcer. Conversely, 

curcumin did not give any side effects, even after prolonged consuption21.  

Finally, curcumin effects have been investigated in trials that regarded diseases of the central 

nervous system, such as the Alzheimer4.  

Despite these good biological activities, such trials are only a part of the examples that have 

shown beneficial effects of curcumin. The rest of the clinical trials presented controversial 

outcomes, although the preclinical investigations showed results that proved the activity of 

curcumin. This discrepancy can be due to the low bioavailability of curcumin in vivo, derived 

from its low water solubility and high rate of metabolism. Thus, curcumin is subjected to a 

fast elimination from body22. Particularly, pharmacokinetics studies in rodents have shown 

that curcumin are poorly absorbed at the intestinal tract, after oral administration, and it is 

mostly lost with feces23. In humans, the highest concentration of curcumin in plasma was 

0.051μg/mL and it was reached after oral administration of 12 grams24. Curcumin is also 
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(1) 

processed by the enzyme of the phase I and II, which are in the small intestine and in the 

liver. They convert curcumin in more hydrophilic species, curcumin glucuronide and 

curcumin sulphate, inducing its elimination from the organism4. 

 

4.2. Oral delivery systems for curcumin 

Different strategies have been adopted to increase the bioavailability of curcumin: increasing 

the absorption at the intestinal tract or the inhibition of the metabolic clearance23. 

To increase the absorption of a molecule at the intestinal level, it should be considered that 

this process is a passive transport through the epithelium and follows the Fick’s first law (Eq. 

1). 

𝑑𝑄

𝑑𝑡
= 𝑃𝐴(𝐶𝑎 − 𝐶𝑏) 

This equation states that the permeation rate (dQ/dt) of a molecule through a membrane is 

proportional to the exchange surface area of the apical side (A) and to the concentration of the 

molecule at the surface of the epithelium (Ca). The permeation rate also depends on the 

permeability coefficient of the molecule (P). Once the molecule is absorbed, it is introduced 

in the capillaries, which move away curcumin. Here in the basolateral side, the concentration 

of that molecule can be negligible (Cb = 0). In addition, only the soluble molecule can be 

absorbed, while the insoluble part is excreted with the feces.  

Therefore, to increase the absorption of bioactive molecules, a good strategy is to have a high 

concentration of such compounds at intestinal tract. Consequently, an oral delivery system 

should necessarily solubilize and preserve their molecules in order to increase the number 

molecules available to be absorbed. More specifically, a delivery system should increase its 

bioaccessibility. This term refers to the fraction of the total amount of a substance that is 

potentially available for absorption. Bioaccessibility is therefore used to help predict 

bioavailability25,26. In the case of the curcumin, by increasing its bioaccessibility, its 
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absorption increases as well. This was observed to saturate the metabolism of the phase I and 

II enzymes in the intestine and in the liver, leading to a prolonged half-life in the organism4. 

In fact, the inhibition of the metabolism of the enzymes of the phase I and II is another 

strategy that can be used for increasing the bioavailability of bioactive molecules. It can be 

inhibited by adjuvants that can be administrated with curcumin. For example, piperine, which 

is an alkaloid extracted from the black pepper or long pepper and responsible for their 

pungency, is an inhibitor of the hepatic and intestinal glucuronidation. The co-administration 

of piperine with curcumin, increases the absorption of the latter by 154% in rodents, and by 

20-times in human respect to the control groups27.  

Several formulations were developed to increase bioaccessibility of curcumin and, 

consequently, its bioavailability. The use of emulsions, phospholipids complexes, liposomes 

and polymeric micelles have been widely used for encapsulating curcumin28. Currently, since 

curcumin is not considered a real drug, but a nutraceutical molecule, the trend is to 

encapsulate it in an excipient food-based systems28–32.  

 

4.2.1. Functional, medical and excipient food 

The research of the pharmaceutical and food industries has converged in the development of 

formulation able to prevent or treat human ailments. In particular, pharmaceutical industry is 

trying to produce drug formulations for the treatment of chronic and acute inflammations, 

because nonsteroidal anti-inflammatory drugs (NSAIDs) are mostly hydrophobic. On the 

other hand, food industry intends to design food-based approaches in order to ameliorate the 

human health through the diet32. Practically, there is a common interest in developing food-

based formulations capable to increase the bioavailability of drugs and nutraceuticals, 

characterized by low water solubility. Thus, different types of food can be individuated: 

functional food, medical food and excipient food32.  
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Functional food derives from generally recognized as safe (GRAS) food ingredients and it can 

contain one or more food-grade bioactive compounds. For example, milk with vitamin D, 

yogurts with probiotic or cereals with ω-3 fatty acids, vitamins and minerals32. 

Medical food consists of traditional food type (such as beverage, yogurt or confectionary) 

with pharmaceutical-grade bioactive molecules (drugs). Medical food can be also produces as 

nutritional fluid that is used to feed patients through a tube. This kind of food is administrated 

under medical supervision. Different preparations have been designed to manage or treat 

several diseases, such as Alzheimer's, diarrhea, depression, diabetes, and osteoporosis32. 

Excipient food is usually used to increase the bioavailability of bioactive molecules. 

Generally, an excipient has not biological activity. However, it can increase the effects of the 

drug, when it is included in pharmaceutical formulations33–36. Pharmaceutical industry uses 

different excipients, such as lipids, surfactants, surfactants, synthetic polymers, carbohydrates, 

proteins, cosolvents, and salts. Similarly, an excipient food is not bioactive, but it increases 

the effects of nutraceutical or drugs dispersed in it. Excipient food can be very different. For 

instance, an excipient food can be an oil or yogurt that can help the solubilization of bioactive 

compounds in salads, vegetables or fruits. Previous studies have shown that a suitable 

dressing for a salad can increase the absorption of their carotenoids37. In this case the 

excipient food is the oil that solubilizes the carotenoids. 

 

4.2.2. Excipient food-base systems 

As mentioned above, the limit of curcumin is its bioavailability, derived from its low 

solubility and high metabolism rate. This limitation can be overcome by encapsulating 

curcumin within an excipient-based system. This kind of formulation consist of excipient 

food that can help the chemical and biochemical stabilization of curcumin, increasing its 

bioaccessibility28. Lipids, carbohydrates and proteins can be used to design such systems32,38–
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46. Lipids forming micelles are able to solubilize lipophilic drugs or nutraceuticals. In fact, at 

intestinal tract, excipient lipids can form micelles that can solubilize the compounds and, 

depending on their dimensions, they can be absorbed via the portal vein or via the lymphatic 

route38,39. Carbohydrates are abundant in food ingredients. They can be divided in digestible 

and not digestible, depending on their inclination to be degraded enzymatically in the 

gastrointestinal tract32. Starch, cellulose, pectin, alginate, chitosan and carrageenan are used as 

excipient food. Some of them, like pectin and alginate, can control the release of the active 

molecules at intestinal tract, since they are pH responsive40–42. Pectin is also subjected to 

enzymatic degradation thanks to pectinase synthetized by the intestinal flora40,43. Food 

proteins can be also used as excipient food. Proteins administrated with bioactive molecules, 

sensitive to the oxidation, like ω-3 fatty acids or carotenoids, can inhibit the degradation and 

increase absorption of these molecules44. Lactoferrin has negative effects on the absorption of 

β-carotene, or casein and whey protein can alter negatively the permeability of bioactive 

molecules, acting on the tight junction of the intestinal epithelium45,46. Finally, surfactant, 

minerals and chelating agents are also used as excipient food for improving the 

bioaccessibility of the bioactive agents32. 

 

4.3. Polysaccharides-based system for improving curcumin bioaccessibility 

Herein, to increase the bioaccessibility of curcumin water-based formulations were designed. 

To produce a formulation for the oral release, low-methoxy pectin (LMP), cornstarch (CS) 

and alginate (Alg) were used to produce particle formulations, by using the electrospray 

process and a calcium chloride water bath. CS and Alg were used as dispersing agents for 

solubilizing curcumin. In previous work, soluble starch has shown to increase the solubility of 

curcumin in water solutions. Then, curcumin released from this formulation, has shown to 

keep its antioxidant properties47. Alginate solutions were noticed to have a dispersing effect 
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toward curcumin48. LMP was used to encapsulate the CS/curcumin or Alg/curcumin solution. 

In fact, thanks to the presence of carboxylic groups in its structure, which can crosslink with 

Ca2+, the releasing system can be rapidly prepared through an electrospray set-up that collects 

the spayed drops in a water bath with calcium chloride. This procedure allows the 

crosslinking of LMP with the Ca2+ and the entrapment of the solutions polysaccharides 

containing curcumin However, when Alg was included in the formulation, it participates to 

the gelation process along the LMP. As it will discuss below, it can change the release kinetic 

of curcumin. LMP was also used for its capability to be stable at acid pH. At low pH, LMP 

shrinks its structure, because of the protonation of the carboxylic group49. This ability of LMP 

was widely exploited for releasing drugs at intestinal tract. In fact, since its resistance at acid 

pH and the absence of enzyme in the gastric juice able to degrade it, LMP can easily arrive in 

the gut. Here, the carboxylic groups acquire negative charges. This process induces the 

repulsions of the LMP chains and the loss of the particles structure. In addition, at the 

intestinal tract, pectinase, synthetized by the bacterial flora, can degrade LMP. Both 

mechanisms allow the release of drug loaded within LMP-based formulations preferentially in 

the gut50,51.  

Finally, Electrospray fabrication was used to obtain particles with high loading capacity. In 

this way, a very high number of curcumin molecules can reach the gut and be available for the 

absorption.  

 

4.4. Experimental section 

4.4.1. Analysis of the interaction CS/curcumin and Alg/curcumin 

Curcumin was solubilized in ethanol with a concentration of 2mg/mL and then the same 

amount (5μM) was added in water solutions with different concentration of CS, from 0 to 

2.5mg/mL and Alg, from 0 to 2.5mg/mL. Curcumin was added in CS and Alg solutions 



109 
 

previously warmed in the microwave. Warming these solutions, CS and Alg chains were 

opened and hydrated. Then, since the solutions were pre-heated, the ethanol, in which 

curcumin was dissolved, evaporated47. The solutions were used to investigate the fluorescence 

of curcumin in each solution with different concentration of CS and Alg, by using a 

spectrofluorometer exciting at 430 nm and acquiring the emission in a range from 470 to 700 

nm.  

 

4.4.2 Particles preparation 

To prepare the particles, curcumin was dissolved in ethanol 2mg/mL and was added in a CS 

solution 20 mg/mL, such to have a concentration of 200µg/mL. The same amount of 

curcumin was added to the Alg solution 20 mg/mL. Both CS and Alg solutions were 

previously warmed in the microwave, as previously described. The solutions were added to an 

LMP solution 8% (w/v) or 4% (w/v), in order to obtain four different solutions: LMP 4%/CS 

1%, LMP 2%/CS 1%, LMP 4%/Alg 1% and LMP 2%/CS 1% (the percentages are w/v). 

Curcumin loaded in all the solutions was 1% respect to CS or Alg. All the solutions were 

stirred for 15min and then they were electrosprayed through a vertical set-up, with a voltage 

of 30kV. At the collector, an aluminum container with 100mL of a stirred 5% calcium 

chloride solution was placed. The distance from the flat needle (21G) was 15 cm. After the 

electrospray, the particles were centrifuged three times with MilliQ water at 5000rpm for 

10min, in order to remove unbound materials. The washed particles were dried by a freeze-

dryer. The particles were pre-frozen by dipping in liquid nitrogen before placing in the freeze-

dryer in which water was evaporated under 0.03 mbar and −49 °C. The dried particles were 

used for the characterizations. At the end, the following formulations were obtained: (A) 

LMP:CS:curc 80/19.8/0.2, (B) LMP:CS:curc 66/32.7/0.3, (C) LMP:Alg:curc 80/19.8/0.2, (D) 

LMP:Alg:curc 66/32.7/0.3. The respective controls are listed in Table 4.1. 
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Table 4.1 Here the list of the formulations produced and their materials ratio. 

 

Part of the particles from the formulations C, D, E, F and G were treated with acid vapors at 

room temperature for 12h hours52. The acid environment was obtained by filling a chamber 

with a 1M HCl solution and closing it after placing the particles. 

 

4.4.3 Particles characterization 

• Morphology 

Particles morphology was characterized by scanning electron microscopy (SEM) in high 

vacuum with an acceleration voltage of 15kV. The samples were previously coated with a 7-

nm-thick gold layer with a high-resolution sputter coater. Size analysis was performed with 

ImageJ software. Cross sections of the particles were obtained by infiltrating the particles 

with epoxy Spurr (SPI-Chem) resin. Once the resin has hardened for 48h in oven at 65°C, the 

blocks were cut with an ultra-microtome, until the particles were reached, and a cross section 

obtained. The cross sections were coated with a 7-nm-thick gold layer with a high-resolution 

sputter coater and observed with the SEM.  
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• Encapsulation efficiency (EE) and loading capacity 

The loading capacity and EE of the different formulations were evaluated by inducing the 

release of curcumin in a mixture water:ethanol 1:9. The amount of curcumin was determined 

by correlating the absorbance at 430 nm with a calibration curve measured by using the same 

media. The loading capacity and the EE were calculated by equations (2) and (3): 

 

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (%) =
𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 (𝑚𝑔)

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑚𝑔)
𝑥100 

𝐸𝐸 (%) =
𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑 (𝑚𝑔)

𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 (𝑚𝑔)
𝑥100 

 

• FT-IR analysis 

Particles were characterized by Fourier transform infrared spectroscopy (FTIR). Samples 

were measured in Attenuated Total Reflectance (ATR) mode using MIRacle ATR accessory 

coupled to a FTIR spectrometer. All the spectra were acquired in a spectral range from 4000 

to 600 cm-1, with a scanning resolution of 4 cm-1, accumulating 64 scans.  

 

4.4.4. Drug release study 

Particles were weighted (20 mg) and placed in 5 mL of gastric simulated buffer (PBS 0.01 M, 

pH 2, pepsin 40U/mL)53 at 37°C and gently stirred on a tilting plate for 2h. Successively, the 

particles were collected by centrifugation and put in 5 mL of intestinal simulated buffer (PBS 

0.01 M, pH 7, pectinase 19U/mL, α-amylase 30U/mL)43 at 37°C and gently stirred on a tilting 

plate for 8h. At given time points, 0.5 mL was taken out from each sample. The collected 

samples were centrifuged at 5000 rpm for 5 minutes at room temperature. The supernatants 

were measured at the spectrophotometer, while the pellets were put back in the solution with 

experiments, after addition of an equal volume of fresh medium. The amount of curcumin was 

(2) 

(3) 
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determined by correlating the absorbance at 430 nm with a calibration curve measured by 

using the same media. To the pellet, 0.5 mL of fresh medium was added and stirred. After 

stirring, it was put to the vials with the experiments.  

 

4.4.5. Statistical methods 

The size analysis was performed on three different batch for each sample. The average of size 

measurements (n = 200) was obtained along the respective standard deviations.  

Three samples, from different batch, were used for FITR analysis, acquiring 3 spectra from 

each of them, which were averaged to obtain the final spectrum. The same samples were used 

to investigate the release. The average of the release from the triplicates was obtained with the 

respective standard deviations.  

 

4.5. Results and discussion 

4.5.1. Dispersion of curcumin in CS and Alg solutions 

When an equal concentration of curcumin was added to CS or Alg solutions, its fluorescence 

increased, as increasing the concentration of the two polysaccharides. (Figure 5.1 and 5.2). In 

absence of the two polysaccharides, curcumin does not emit, because the fluorescence was 

quenched by the water54. In addition, the emission peak had a blue shift, from 560 nm without 

the polysaccharides to 510nm with the highest CS concentration (Figure 5.1), while to 518 nm 

with the highest Alg concentration (Figure 5.2).  

Generally, when curcumin is in aqueous solutions, its molecules tend to stack, inhibiting the 

fluorescence process. In hydrophobic surrounding, they are dispersed and can acquire the 

fluorescence ability. As previously showed, when curcumin interacts with the hydrophobic 

domains of casein micelles and bovine or human serum albumin, the fluorescence intensity of 

curcumin increases, by increasing the concentration of these dispersing agent55–57. In addition, 
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curcumin fluorescence can be also triggered by increasing the solution viscosity58. Here, a 

similar mechanism can be supposed. CS and Alg solutions have a viscosity that solubilizes 

curcumin molecules. However, further studies need to be performed to understand better the 

interaction mechanism. 

 

Figure 4.1 On the left, the emission spectra of curcumin (5µM) with different concentration of 

CS (a = 0; b = 0.3 mg/mL; c = 0.6 mg/mL; d = 1.3 mg/mL; e = 2.5 mg/mL); on the right, the 

augmentation of the fluorescence intensity at 510 nm in relation to the CS concertation. 

 

Figure 4.2 On the left, the emission spectra of curcumin (5µM) with different concentration of 

Alg (a = 0; b = 0.3 mg/mL; c = 0.6 mg/mL; d = 1.3 mg/mL; e = 2.5 mg/mL); on the right, the 

augmentation of the fluorescence intensity at 510 nm in relation to the Alg concertation. 

 

4.5.2. Particles characterization 

Dried particles from all the samples showed rounded-like shape and wrinkled surface (Figure 

5.3, 5.4, 5.5 and 5.6). Particles sizes are listed in Table 5.2. However, they were not 

statistically different among the formulations. 
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. Table 4.2 Average of the size for each formulation. 

 

Figure 4.3 SEM images of the formulation LMP:CS A, B, A1 and B1 (see Table 5.1). In the 

inset, the size distribution for each sample. 

 

Cross sections of the samples have shown that particles are characterized by internal porosity 

(Figure 5.7). All the samples presented a parallel porous disposition, which derived from the 

electrostatic stretching during the electrospray process. In cross sections of the particles A, B, 

A1 and B1 inclusions of materials were observed. They are relative to the presence of CS, 

which was embedded in the particles through the crosslinking of the LMP with the Ca2+. 
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Contrarily, cross sections of the formulation C, D, C1 and D1 did not present such inclusions, 

because the Alg was crosslinked with the calcium chloride.  

 

Figure 4.4 SEM images of the formulation LMP:Alg C, D, C1 and D1 (see Table 5.1). In the 

inset, the size distribution for each sample. 

 

 

Figure 4.5 SEM images of the formulation encapsulating LMP E, F, E1 and F1 (see Table 5.1). 

In the inset, the size distribution for each sample. 
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Figure 4.6 SEM images of the formulation Alg G and G1 (see Table 5.1). In the inset, the size 

distribution for each sample. 

 

 
Figure 4.7 Cross sections of the dried particles from each sample. 

 

4.5.3. Curcumin encapsulation 

The results relative to the EE and loading capacity are reported in Table 5.3. Preparations A 

and B showed the lowest EE, respectively, 44±1% and 57±1%. The formulations C, D, E and 

F have an EE respectively of 81±2%, 89±1%, 92±4% and 93±3%. Particles of the formulation 

G had an EE of 75±2%. The data suggested that the presence of CS affected negatively the 

EE. In addition, LMP resulted important for increasing the encapsulation efficiency. LMP 

contribute can be observed when the it is absent in the particles, like the G formulation, or 

when the its content is increased in the formulation. In fact, comparing the results of the A 

with B or C with D (in which LMP% in A and C < LMP% in B and D and C, see Table 5.1), 

EE was higher by 13% and 7% respectively. Finally, the loading capacity of curcumin was 

lower than 1% for all the formulations. 
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Table 4.3 EE and loading capacity results obtained for each sample. 

 

4.5.4. Curcumin release characterization 

The aim of the study is to obtain a formulation able to preserve curcumin until the intestinal 

tract, where it will be absorbed. Therefore, it should reduce the release of curcumin in the 

gastric fluid in order to increase the bioaccessibility at intestinal tract.  

To characterize the release of curcumin from each formulation, the experiment was performed 

in two different media, one simulating the gastric environment, the other the intestine 

environment. Then, the test was carried out for 10 hours. The results obtained from 

formulations A, B, C, D, E, F and G are reported in Figure 4.8 and summarized in Table 4.4. 

In gastric simulated medium, the release of curcumin from all the samples resulted slower 

than the release in intestinal simulated medium. This can be explained by the absence of the 

electrostatic repulsions among the LMP polymer chains. Since LMP has a pKa of 3.5, at pH 

below the carboxylic groups are protonated (-COOH)41. Therefore, the absence of coulomb 

repulsion induced the linear pectin molecules to interact to such an extent that they produce 

insoluble complexes limiting the release of curcumin59. When the pH is increased, the 

carboxylic groups of LMP acquired negative charge, inducing the repulsions of the LMP 

chains and the loss of the particles structure, allowing a faster release of curcumin.  

Analyzing the release of curcumin at acid pH, particles B and F were characterized by a 

kinetic slower respect to the other particles release kinetics. In fact, after 2h, B and F released 

respectively 36±2% and 35±1% of the total curcumin, while the other formulations A, C, D, E 

and G respectively 44±4%, 50±2%, 49±4%, 43±4% and 60±5%. This is because B and F 

were prepared by electrospraying a more concentrated LMP solution. Therefore, the structure 
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is more packed, and it impedes the release of curcumin. However, the formulation D, which 

has been also fabricated from higher concentrated LMP solution, showed a release similar to 

A, C and G. This suggested that the inclusion of alginate in the formulation induced a faster 

releasing rate of curcumin. As shown in previous work, LMP has shown to be more stable at 

acid pH when it is not bound to Alg41. In addition, hydrogels of LMP and Alg in a ratio 1:1 

have shown to swell more than hydrogels made of Alg or LMP40,42. Therefore, this could 

result in a faster diffusion of the curcumin, which could allow its release. 

As the pH increases, the particles with CS (particles A, B, E and F,) were completely 

degraded and curcumin totally released after 6h. Contrarily, those with Alg (C, D and G) 

released about 85% of the total curcumin after 6h. The slower release of curcumin from 

LMP:Alg  particles at higher pH is because the particles were not completely degraded. As 

shown in other works, crosslinked Alg and blend of crosslinked LMP:Alg, have shown a 

decrease of the releasing rate of molecules at neutral pH42.   

Figure 4.8 Release of curcumin from the particles formulation A, B (left), C, D, G (middle), E 

and F (right). The first 2h of the experiment were performed at pH = 2, while the next 8h at 

pH = 7. The two media were prepared as described in the experimental section. 

 

Altogether, these data showed that the particles with CS were able to retain more curcumin at 

acid pH, minimizing the release of curcumin in the gastric simulated fluid, thanks to the 

capability of LMP to be stable at low pH. While, particles with Alg allowed a higher release 

of curcumin at acid pH, because the alginate participates to the releasing process, probably 

inducing the swelling of the particles40,41. On the other hand, in the intestinal simulated fluid, 

LMP alone allowed a poor control on the release of curcumin, which was mostly released in 4 
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or 6h. Conversely, the inclusion of Alg has shown to support the sustained release of 

curcumin at neutral pH. Therefore, these outcomes suggested that the use of CS in the 

formulation did not give important advantages. In fact, besides low EE, CS allowed a poor 

control on the curcumin release at neutral pH. This can be a limit because sustaining the 

release of bioactive agents at intestinal level has shown to increase their bioaccessibility and 

bioavailability60,61. Formulations C and D have shown to assure a control on the release of 

curcumin in the intestinal simulated fluid. However, they had an important loss of curcumin 

content in the gastric simulated medium.  

 

Table 4.4 Summary of the release kinetics of curcumin from particle samples reported in 

Figure 4.8. 

 

4.5.5. Acid vapors treatment 

To overcome this limitation, a treatment with acid vapors was performed. The objective is to 

induce the protonation of the carboxylic groups both of LMP and Alg, such to minimize the 

electrostatic repulsion52. In this way the polysaccharides can interact, shrinking the particles 

structure, and reduce the curcumin release in gastric simulated medium. 
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Figure 4.9 FT-IR spectra of the formulation C, D, E and F respectively in a, b, c and d, before 

and after the treatment with acid vapor. 

 

Figure 4.9 shows the FT-IR spectra of the particles C, D, E and F before and after the 

treatment with the acid vapors. All the samples were characterized by the typical absorption 

band at 3250 cm-1, relative to O-H stretching vibration62. The absorption bands between 1800 

and 1500 cm-1 were relative to the vibration of the C=O group. In particular, the peak at 1740 

cm-1 was referred to the stretching vibration of the methylated carboxylic group63. This peak 

resulted low in all the samples because the pectin was low methoxylated, and therefore had a 

low degree of esterification. The peak occurring in the not treated sample in the range from 

1590 to 1597 cm-1 was relative to the asymmetrical stretching of the unprotonated carboxylic 

group (COO-). Furthermore, the shoulder at 1660 cm-1 was the asymmetrical stretching of the 

protonated carboxylic group (COOH)64,65. By treating the particles with the acid vapors, the 
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contribution relative to the protonated carboxylic group increased in all the particle samples. 

This induced a clear shift of the peak to higher wavenumbers, suggesting the effective 

protonation of the carboxylic groups in the particles. Such modification can be also noticed by 

the sharpening and increasing of the O-H group peak, which was subjected to shift to higher 

wavenumbers as well.   

Figure 4.10 FT-IR spectra of the formulation G before and after the treatment with acid 

vapor. The black line is the spectrum measured before the treatment, while the red line after. 

 

Finally, by analyzing the FT-IR spectrum relative to the formulation G, the protonation seems 

to not occur in those particles, in which only Alg is included (Figure 4.10). Therefore, the 

modification seemed to regard only the carboxylic groups of the pectin. The alginate has a 

range of pKa (1.5 to 3.5) lower than LMP. Therefore, if the acid vapors treatment is not 

sufficiently below those values, the alginate could not be modified. 

 

4.5.6. Curcumin release from treated particles 

After the treatment, curcumin release kinetic was characterized for each formulation with the 

same methods previously described. Briefly, particles were firstly immerged in the gastric 

simulated fluid for 2h. Successively, they were moved to the intestinal simulated medium and 

kept for 8h. The results were reported in Figure 4.11. As observed in previous paragraph, the 

releasing rate was slower in the gastric simulated medium, while it is faster in the intestinal 
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simulated medium, leading to a complete release of curcumin. Furthermore, the formulations 

C, D and G allowed a sustained release at neutral pH. In Table 4.5, the release kinetics 

obtained at pH 2 after 2h from pre-treated and post-treated particles were reported. From their 

comparison, it was noticed that curcumin was less released by the formulations that have been 

subjected to the acid vapors treatment. These results confirmed that the treatment can increase 

the retention of curcumin within the particles at low pH. In addition, they showed that the acid 

vapors treatment did not affect the capability of such formulations to sustain the release in the 

intestinal simulated medium. 

Figure 4.11 Release of curcumin from the acid vapors treated particles formulation C, D, G 

(left), E and F (right). The first 2h of the experiment were performed at pH = 2, while the next 

8h at pH = 7. The two media were prepared as described in the experimental section. 

 

 
Table 4.5 Summary of the release kinetics of curcumin from not treated and treated particle 

samples after 2h (at pH = 2). The data are from graphs in Figure 4.8 and 4.11. 

 

4.6 Conclusions  

Curcumin is a nutraceutical molecule with several biological activity, such as antioxidant, 

anticancer, antiviral, antiarthritic, antiamyloid, and anti-inflammatory4,7,8. However, this 
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molecule is characterized by insolubility in aqueous environment that make difficult the 

encapsulation in delivery system and its use as natural bioactive compound. Moreover, 

curcumin in vivo have shown to be poor bioavailable due to its low water solubility and high 

rate of metabolism. This entails that curcumin is subjected to a fast elimination from body22. 

Currently, the use of excipient food is one of the strategies that can help the solubility of 

nutraceutical molecules for increasing their bioaccessibility and, consequently, their 

bioavailability. In this chapter, the encapsulation of curcumin in polysaccharides-based 

particles through the electrospray have been described. The ability of CS and Alg solutions 

have been exploited to disperse curcumin and increase its solubility. Electrospraying LMP 

with different ratio of CS/curcumin and Alg/curcumin, different particles formulations were 

obtained. All the particles produced shown rounded-like shape, wrinkled surface and internal 

porosity. Particles with CS (A and B) were characterized by low EE and poor possibility to 

control the curcumin release at neutral pH. On the other hand, the inclusion of Alg in the 

formulation provided the particles C and D with high EE and granted a sustained release of 

curcumin in the intestinal simulated fluid. In addition, the possibility to treat the formulations 

with Alg, has improved the retention of curcumin at low pH within the particles, reducing the 

loss of curcumin in the gastric simulated medium. Therefore, such formulations have shown 

to be promising as system able to increase the bioaccessibility of curcumin.  
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Chapter 5 

Conclusions 
 

5.1 Final remarks 

Thanks to the versatility of the electrospinning procedures, ECA polymers was electrospun 

such to obtain highly aligned fibrous mats, by using a rotating collector. Electrospun aligned 

fibers were used to modified glass surfaces, through a thermal treatment. The partial melting 

of the ECA aligned fibers, left a coating on the glass surface, which derived from the 

electrospun fibers topography. When myoblast cells were seeded on the coating, the oriented 

topography demonstrated the ability to align the cells, modifying their morphology. Such 

device could be potentially used as substrate for the regeneration of the skeletal muscle tissue 

in vitro, since the myoblasts were able to sense to topographical cues of the coating, thereby 

enabling their oriented disposition. Moreover, the possibility to produce large mats by the 

electrospinning can eliminate the problems related to the size of the tissue to be replaced. 
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Next steps will be aimed at investigating the ability of the aligned substrates to support the 

differentiation of the myoblasts, analyzing the expression of the gene typical of this phase. 

Electrospinning was used to encapsulate hPL in silk fibroin fibers, such to fabricate active 

wound dressing. In such device, the properties of the electrospun fibrous materials were 

combined with those of silk fibroin and hPL. In fact, electrospun fibers can be used as wound 

dressings that allow efficient gas exchange, to absorb wound exudate as well as support cell 

proliferation and migration. All the above-mentioned features successfully mimic the natural 

extracellular matrix, thus improving and sustaining the healing process of the wounds. Silk 

fibroin was able to control the release of proteins, depending on its crystallinity degree, and 

preserve the activity of sensitive molecules, improving their shelf life. More specifically, the 

crystallinity degree of silk fibroin was finely controlled by using water vapor treatment. Silk 

fibroin has also shown to increase the stability of the hPL upon a thermal treatment (60°C), 

confirming its preserving activity toward sensitive molecules. The hPL has important 

potential as therapeutic tool for chronic wound, but currently is used as a gel. Therefore, the 

proposed engineered fibers could facilitate the use of hPL for wound healing and in medical 

procedures. Electrospun patches are readily applicable to the wound site, similarly to a gauze. 

Furthermore, it could have a pre-determined release kinetic and could be prepared and store as 

ready-to-use devices thanks to the preservation of the hPL activity and the prolonged shelf life 

granted by the silk fibroin matrix. Future analysis will investigate the release of the growth 

factors and proteins that form the hPL. In this way, a complete characterization of the kinetic 

release will be obtained, and the release of each protein could be pre-determined, according to 

silk fibroin crystallinity. 

Electrospray was used to fabricate particles able to encapsulate curcumin, by using CS, Alg 

and LMP. Electrospray provided the particle system with high loading of curcumin, rounded-

like shape, wrinkled morphology and internal porosity. Then, the use of CS and Alg have 
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allowed the dispersion of curcumin. Comparing the results of the curcumin release 

assessment, respect to the LMP:CS, the particle system LMP:Alg have shown higher EE, a 

reduced loss of curcumin in gastric simulated fluid, upon acid vapors treatment, and a better 

control of the release in the intestinal simulated medium, allowing the sustained release of 

curcumin. An excipient food-based system with these characteristics would have a good 

impact on the bioaccessibility of the curcumin at intestinal tract. Therefore, the next 

investigations will regard the characterization of the absorption of curcumin in vivo and 

understand the efficiency of the system in increasing the bioavailability of curcumin. 


