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UNIVERSITÀ DEGLI STUDI DI GENOVA

Abstract
A Framework to Support Users’ Privacy Preferences in the Proliferation of IoT

by Odnan Ref SANCHEZ

In the proliferation of personal IoT devices, the need for privacy protection be-

comes an increasing concern. User’s privacy preferences are not being respected in

today’s complex IoT scenario, as data sharing among applications becomes a grow-

ing phenomenon. The increasing number of applications, IoT devices and list of

user’s personal data make the setting of privacy a laborious task for the users. On

the other hand, supposedly trusted third parties that access personal data have been

recently reported to invade user privacy. Thus, this thesis proposes a privacy frame-

work that computes the risk of users’ sharing preferences, manages user privacy

and provides recommendation to ease privacy setting in the advent of IoT. The risk

of inferencing unshared user data is computed from the set of shared user data. The

framework aims to be GDPR-compliant, which makes third parties declare their ac-

cess request in accordance with the European Union’s General Data Protection Reg-

ulation (GDPR). Semantic Web Technologies are used to model both the user and

the third party preferences, which can be represented through the proposed Privacy

Preference for the IoT (PPIoT) Ontology. The framework’s personal data manager

supports the privacy decision of the user through recommendation of privacy pro-

files. Using Machine Learning techniques, the identification and recommendation

of privacy profiles are done through our crowdsourced dataset, which are collected

using current scenarios in the fitness domain. We then examine different personal

tracking data and user traits which can potentially drive the recommendation of pri-

vacy profiles to the users. Interestingly, our results show several semantic relation-

ships among users’ traits, characteristics and attitudes that are useful in providing

privacy recommendations.

HTTPS://UNIGE.IT/
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1

Chapter 1

Introduction

Today, Internet of Things (IoT) has been steadily increasing and has been widely

deployed. These things and sensors, which have the capability to connect to the net-

work, undoubtedly aid people in their everyday activities. IoT is transforming and

helping people’s way of life, improving traditional businesses and facilitating the

progress of smart cities. Though the advantages are clear, one of the main concerns

toward IoT is the users’ privacy. Having an unprecedented ability to sense, control,

collect and process users’ personal data, IoT poses a lot of risks on user privacy.

Preserving the privacy of the users in the context of the IoT is a challenging task.

In particular, this is due to the increasing number of Third Party (TP) applications

and personal IoT devices, and the increase in data sharing among TPs, which make

privacy management more complex in the IoT. These developments not only in-

crease privacy concerns but also make setting one’s privacy preferences an increas-

ingly complex task.

This thesis aims to bridge the gap concerning the current privacy issues in the

IoT paradigm by proposing a framework that manages user privacy in IoT, provid-

ing ease of access and configuration of privacy settings. The framework acts as an

intermediary between the user and the third parties, managing the users’ privacy

preferences. Additionally, the framework also provides information on the poten-

tial inferences of undisclosed data, given the set of personal data that users have

disclosed to third parties.

The framework also takes into account the newly adopted EU General Data Pro-

tection Regulation (GDPR) [61], which represents the most important change in data

privacy laws in the last twenty years. While the GDPR is a significant stride towards
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user empowerment and control over their personal data, it requires users to make

explicit decisions for every individual privacy setting. In the IoT scenario, the effort

required for such explicit control can be exhaustive, especially when considering the

number of devices, applications, and data collection practices that must be given in-

dividual consent by the user. Hence, our approach aims to increase its ease-of-use

by combining the GDPR principles with the concept of privacy recommendation.

In the following sections, the scope and definition of privacy will be demon-

strated. This provides insights on the domain of study and narrows down to the

specific privacy problems that this study aims to focus. Then, the potential privacy

concerns in selected Digital Humanities domains will be introduced, which show the

importance of privacy in different areas due to the IoT proliferation. Then, a brief in-

troduction of the framework will be discussed, which introduces the main research

question of this thesis. Finally, the dissertation organization will be presented.

1.1 Privacy Definition

Privacy has been long studied in literature. A well-known and well-used definition

of privacy can be found from Prof. Westin [193], which states that privacy is the

right of the claim of individuals, groups, or institutions to determine for themselves

when, how, and to what extent information about them is communicated to others.

Therefore, privacy highly depends on the perception of the entity, which decides if

certain data is considered private or not.

FIGURE 1.1: The conceptual intersection between security and privacy.
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IoT is expected to introduce numerous challenges especially privacy and secu-

rity issues [90]. In literature, privacy protection is mostly coupled in the security

domain. However, security methods only protect parts of the whole user privacy

domain as shown in Figure 1.1. To clarify the relation between security and privacy,

a basic overview of the definition is provided in the figure. The overlap of security

and privacy (green) is defined as security-protected privacy, which has the aim of

protecting user’s privacy without taking into account the user’s individual privacy

perception. It provides a priori protection ensuring the general user privacy. It is

usually secured through the authentication and authorization mechanisms that aims

in protecting the general user data, which may be private for a given user. When se-

curity protection fails, user privacy is at risk. But when security is successful, it does

not mean that complete user privacy is not at risk any more. Privacy of users must

still be protected continually given that a number of recent privacy breaches are due

to the allowed and supposedly trusted access of third parties (e.g., [106]). More im-

portantly, individual user’s privacy perception must also be considered (blue part in

Figure 1.1), following Westin’s definition.

Privacy is considered as one of the important security principles, making the

overlap in Figure 1.1 arguably bigger, due to a large number of devices, services,

and people sharing the same communication network in IoT [116]. Privacy concerns

increase in the introduction of IoT, mainly because these devices can collectively

gather massive amounts of personal information, without properly informing users

or even asking for their permission [126, 37, 189, 113]. This security-related privacy

domain has numerous studies in literature.

In conclusion, this thesis will focus on privacy by Westin’s definition and will not

take into account any security-related privacy matter. The goal of the privacy pro-

tection part of the framework is to protect user’s from potential inference of undis-

closed data, which are not permitted by the users and can be derived from the data

shared to the third parties. This issue becomes alarming nowadays since a number

of supposedly trusted third parties have been reported to violate user privacy (e.g.,

[181]). Additionally, a part of the framework provides privacy recommendation to

support the setting of user privacy in the complex IoT scenario.



4 Chapter 1. Introduction

1.2 Privacy in Digital Humanities

The technological shift introduced by the IoT in different realms of discipline, such

as in Digital Humanities, needs further attention to privacy. In this section, selected

domains of Digital Humanities which have potential privacy concerns are presented.

As IoT sensors and applications are mostly used in Digital Humanities, it is therefore

also subject to privacy concerns in the digital age. In this section, we briefly discuss

how the introduction of new sensors will affect Digital Humanities domains.

1.2.1 Digital Tourism

Travelling for leisure or business purposes can be exhaustive. To this point, digital

tourism aims in improving the quality of the traveller experience by providing them

digital support [185]. These solutions and approaches are in form of recommender

systems, tools or apps. Many of the solution use GPS-based systems (e.g., interactive

maps, tourism assistants) and augmented reality (i.e., new method of presenting

historical content for tourist locations) using the position and orientation of sensors

on smartphones [16, 159].

IoT enables smart tourism by sensing geographical things, natural disasters, tourist

behaviors, infrastructure of the scenic spots, etc. [69] This is possible through the

applications of RFID technology, sensor network, mobile systems, supporting tech-

nologies of IoT in socio-economic life, and IoT tracking systems, which could iden-

tify real-time positioning of visitors. Among others, tourist destination selection,

routes planning optimization, hotel and travel bookings, and integration manage-

ment of tourist attractions can be included in the IoT smart tourism [69].

Obviously, concerns about privacy rise from the persistent access of user data.

Concerns multiplied as real-time location-based services collect significant amounts

of real-time information in order to deliver the app functions needed by the users

[103]. As stated in Gretzel et al. [67], data lies at the core of all smart tourism activ-

ities. The need for information is so great in digital tourism that tourists might be

easily persuaded to forfeit privacy. Therefore, information governance and privacy

are major areas of research necessary in the context of digital tourism [67].
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1.2.2 Assisted Living

Ambient assisted living (AAL) is based on ambient intelligence that are sensitive to

human environments [151]. AAL is widely used for monitoring, curing, and im-

proving wellness and health conditions of the elderly. Additionally, AAL provides

safety and security through emergency response systems and fall detections sys-

tems. AAL also provides better connectivity among family and friends of the elderly.

IoT systems enabling AAL mostly composed of body sensors (e.g., heartrate mon-

itors, temperature, blood pressure, sweat senors), home monitoring systems (e.g,

CO2, temperature sensors), light and video surveillance systems, medication control

systems, and mobile systems that are persistently monitoring the elderly.

While the advantages are clear, the intensive monitoring of the elderly also im-

poses risks on privacy. Medical data are already privacy sensitive and the intro-

duction of high precision real-time access to provide the needed services for elderly

makes it even more concerning.

This concern has been studied in Wood et al. [201], providing privacy manage-

ment features for AAL. The ALARM-NET is built for wireless sensors in AAL that

could monitor the environmental and physiological data of the elderly. For the pri-

vacy, it incorporates a Circadian Activity Rhythm (CAR) analysis module that learns

the patterns of daily life of the elderly. This enables to dynamically configure privacy

settings for the elderly, which is triggered when they exhibit a behavior that is criti-

cal to their health and enable the authorized medical personnel to access vital data.

The data can be hidden or available for anonymous statistical purposes as managed

by the privacy manager.

1.2.3 Digital Museum

Museums are also being transformed digitally to accommodate the needs of the in-

tended users [125], collecting digital resources at a rapid pace given the inadequacy

of user data. Understanding the user needs has been one of the goals of the digital

museums to provide satisfactory user experience. Providing a more user-centric on-

line resource has been deemed important among museum professionals which must
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be understood from online visitors and how they are using such resources for their

activities.

An example of a personalized museum is studied in Koshizuka et al. [102]. The

authors state that at least the differences of general adults, experts and school chil-

dren must be taken into account. Additionally, the disabilities such as color blind-

ness, weak eyesight, physical conditions, must also be considered to provide a sat-

isfiable experience to different visitors. Personalized services can be provided using

the visitor’s data, which can be digitally transformed through the RFID technology

[102]. RFID readers are provided in front of the exhibits and visitors can put their

personal RFID card into the system which connects and queries the network to pro-

vide personalized services.

According to Hsi et al. [77], the usage of RFID technologies for smart museums

will likely expand, as it provides enormous promise for improved visitor learning.

Museums, however, must educate their visitors about the RFID and manage the

associated privacy risks, in addition to developing interactive exhibition designs.

Educating users across all fields is needed to help users improve their knowledge on

sharing their private information and the associated risks. Furthermore, there are

also contradictory messages coming from the visitors. Survey shows that museum

visitors say they want more privacy, yet when they are asked to opt-in, they are

willing [82].

In addition to RFID system, Karaman et al. [84] also used camera network and

mobile system to persistently monitor each visitor and provide personalized mul-

timedia content. For each visitor, the system estimates a profile vector describing

the visitor’s appearance for re-identification purposes and estimate his interest pro-

file. Not only does the persistency of data access impose user privacy, but also the

level of detail on the user’s profile. Thus, privacy in digital museums is becoming a

concern in the proliferation of IoT.

On the security-protected privacy point of view, museums also have difficulties

in ensuring the privacy of newly acquired data from external attacks [82]. They em-

phasize their favour on museum programs that accumulate user data, encrypt credit

card number, and unlink them with their user’s profile. However, these assurances
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do not guarantee from cyber attacks. Digital museums are also being targeted nowa-

days such as the recent (2014) case on Ashmolean Museum, a university museum on

the Oxford campus. Protecting personal information is really a challenge as it is the

currency of the knowledge economy and the key focus of today’s several business

models.

1.2.4 Digital Hospitals

Digital hospitals provide a more efficient medication service to patients in hospi-

tals. Closed-loop Electronic Medication Management Systems (EMMS) provides

electronic prescribing, automated dispensing, barcode patient identification and the

use of an electronic medication administration record (eMAR) [9]. It improves ef-

ficiency in medication, which reduces errors in prescription from 3.8% to 2.0% and

medication administration errors from 8.6% to 4.4%. In a critical situation like hos-

pitals, efficiency is obviously necessary.

While having innovations in hospital health systems, strong person-centered ap-

proach are still maintained as it is important to understand individual patient’s need

[26]. Digital records should represent an accurate patient information. In digital

hospital scenario, technology is enabling medical health records to be put in the

electronic format, EPRs, and making them accessible by the users through the net-

work. Additionally, with the help of IoT sensor networks, the idea of remote patient

monitoring is now possible [127]. Examples of persistent monitors that connect to

the network in the domain of Internet of Medical Things (IoMT) [212] include ther-

mister (temperature), lethysmograph (respiratory monitor), scale (weight), motion

sensors (movement), blood sensor, galvanic response (anxiety detector), skin con-

ductance (sweat sensor), muscle contraction, etc. In this scenario, it is clear that

detailed and sensitive personal data types are collected dynamically which make

privacy a growing concern.

Digital medical records are advantageous, as it gives ease in efficiency and ease of

processing. However, the benefits of the technology must also trade-off the privacy

of the patients. Current privacy issues also include access rights to data, how and

when data is stored, security of data transfer, data analysis rights, and the governing
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policies [127]. While medical data are under regulation, it must be re-evaluated pe-

riodically as technology improves rapidly, which changes how health care systems

are being implemented.

1.2.5 Online Learning

Online learning uses the technology to bring together remote learners all around the

world. Distributed learners interact and learn through platforms and mingle with

the help of sensor environments. Today, it becomes popular in handling massive

user data as its advantage becomes evident [208].

Online learning evolved in to mobile learning (m-learning) where learners have

the freedom to move, and recently shifted in to context-aware distant learning in

which the system can detect the student’s learning behaviours through IoT [119].

This enables a more effective and personalized learning by guiding them to the

right target areas, provide materials and evaluate their performance. Students ac-

cess through their computer, mobile devices, personal digital assistants (PDAs), sen-

sor technologies (e.g., RFID readers, tags, GPS). Additionally, brain monitors such

as Electroencephalogram (EEG) can be used to measure the learner’s attention level

[112] in real-time. EEG is known for attention recognition using brain wave patterns.

Furthermore, heart rate monitor, skin conductance monitor, blood volume pressure

monitor, also allow to monitor user’s emotion information which is used for a more

effective learning [164]. A positive mood makes the learner more creative and flexi-

ble in problem solving, and more efficient in decision making.

Online learning has become more efficient due to the proliferation of IoT. How-

ever, it also introduce new personal information that are sensitive. Thus, privacy of

learners are also at risk, with sensor systems and platforms constantly monitoring

them during the learning activity.

1.3 Main Goal and Solution

Given today’s privacy urgency as discussed above, privacy models have also been

widely studied. Privacy can be managed by means of a data manager which allows

the user, or a trusted entity to control the personal data and the policies to make
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them available to third parties, as proposed in previous studies (e.g., [33]). This

requires agreements and standardized procedures since individual providers and

their applications have to interface with a data manager. Several frameworks for

managing user data have been proposed in the last years [33, 218, 187].

However, regulating the access of one’s data cannot deny the possible disclosure

through inference. Management does not assure that privacy will be fully respected

by the third parties. Privacy is not simply about encryption and access authorization

[40], but also about breaking data correlation so that the risk of inference is reduced.

Inference attacks are based on the integration and correlation of known data about

an individual who leads to the discovery of private data by the supposedly trusted

third parties. The inference is done by linking sensitive information to the knowl-

edge that may be available to a third party as a background knowledge, common

sense or domain-specific knowledge [149].

In this thesis, the fundamental research question that is investigated is as follows:

How can the privacy of the users be easily managed in the complex IoT sce-

nario and how can we prevent accessing third parties that are permitted by the

user to prevent further data access?

To answer this question, this thesis focuses on creating a framework that could

manage user privacy settings and recommend privacy profiles that are best-suited to

each user. These settings aims to be GDPR-compliant following the main principles

for personal data handling. Then, the framework will also be able to compute risks

associated to sharing sets of user’s personal data by computing the correlation of

these data to the unshared data.

In this framework, the protection of user privacy has two main functions. The

privacy framework therefore divides the capability in two modules, namely, the Per-

sonal Data Manager (PDM) and the Adaptive Inference Discovery System (AID-S).

The PDM manages user privacy in the complex IoT scenario while the AID-S pro-

vides measures regarding the risks of data inference.

Torre et al. [181] points out the excessive access of personal data in the fitness

IoT. Currently, among the Digital Humanities domains, digital fitness is becoming

popular as millions of users engage in this domain. Also, multiple personal data
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are being accessed persistently on round-the-clock activities by fitness apps. For this

reason, the framework will be applied to the digital fitness domain in this study.

1.4 Dissertation Organization

This dissertation is organized as follows. The next chapter provides related work in

privacy in the IoT scenario that are relevant to this thesis. Chapter 3 gives the full

details of the PerNANDO Framework, which is the proposed privacy framework

for IoT. Chapter 4 discusses the Fitness IoT use case, which is the domain of IoT

chosen for this study. In Chapter 5, the AID-S component of the framework will be

discussed, focusing on the inference risks of sharing personal data. The PDM frame-

work will be discussed in Chapters 6 and 7. In Chapter 6, the PPIoT Ontology is

defined and how it can be used by the PDM to model privacy preferences. Then,

the PDM data modeling, privacy profiling and recommendation strategies are elab-

orated in Chapter 7. Finally, the concluding remarks, limitations, future work, and

open issues are discussed in Chapter 8.
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Chapter 2

Background and Related Work

In this chapter, the discussion is focused on two main parts, namely, inference at-

tacks, and privacy management. The first part briefly discussed the current works

on inference protection, its measures and categories while the succeeding part dis-

cuss the privacy management, privacy preference modeling and recommendation.

2.1 Inference Attacks

Inference attacks are usually described as private information disclosure based on

the integration and correlation of non-private data [5]. They are also described as

a form of intense data mining where confidential information is harvested and dis-

closed by integrating nonsensitive data with metadata.

This issue is not new since it has been studied in OSNs [5, 73, 34, 28, 29] and

in database management [43, 176, 179]. The IoT and the Web 3.0 increase the risks

of inference attacks since there is a massive increase of personal data distributed

on the network. Also, the growth of richer metadata increases the possibility of

data integration and correlation. Users may lose track of sensitive data available on

the network and where it is stored, which may lead to an increase in the precision

and volume of inference attacks [25]. Finally, users may not be aware of the digital

footprints left on different service providers [191]. The risk imposed is through the

combination of user data from different sources and infer new user information.

Ahmadinejad et al. [5] reveal that success rates of inference algorithms in systems

that share user data were high, which make it alarming in the personal IoT context.

It was also shown that inference attacks can be employed as a building block for
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launching further security attacks, including, for example, phishing and bypassing

authentication challenges.

Below, we discuss the main inferences derived from authorized/unuathorized

acquisition of data, the common measures of inferences, and the current methods to

prevent inferences.

2.1.1 Inference attacks from unauthorized acquisition

Many studies on privacy protection are about protecting users from external attack-

ers (i.e., external inference attacks). In mobile systems, external inference attacks

are prevented from the vulnerability of the operating systems. For example, several

studies analyze the weakness of Android operating system which potentially infer

the user’s sensitive information (e.g., [202, 54, 74, 130, 10, 215]) . Android’s openness

makes users susceptible to privacy risks. Given this weakness, this group of studies

aims to defend users mainly from external attacks and malware penetration.

Other than inference on mobile systems, studies about external inference attacks

in the IoT show how the vulnerabilities of wireless networks can be exploited to

discover private data (e.g., [68]). A typical example is acquiring data on electricity

consumption in a building to infer the user habits. For instance, Guo et al. [68] show

the feasibility for an adversary using a laptop outside a house to guess the brows-

ing behavior of people living there. In the described scenario, the home network is

protected by the Wi-Fi encryption mode. The attack is not based on breaking the

encryption algorithm, but on extracting data from the signal which is composed by

the sizes and timings of the packets. Since the elements of an HTML template are

static over time such as CSS and image files in the form of headers or buttons, they

are likely to show a distinctive pattern in the signal.

Some approaches to extract the knowledge of events and their internal links are

described in Sun et al. [173]. Other works describe inference attacks that exploit

background knowledge. For example, Guo et al. [68] present a localization and

tracking algorithm for mobile target in an IoT environment according to information

of neighboring sensor nodes.
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2.1.2 Inference attacks from authorized acquisition

In recent years, new risks have emerged related to threats that come from trusted

service providers/third party apps that are granted by the users’ authorization to

process their personal information [62, 110, 64, 131]. Alarmingly, studies show that

third party apps usually ask for permissions more than they really require to run

their service [35]. It was also stated in Zhou et al. [217] that apps can access the public

resources of android (zero-permission) which could reveal private information. A

detailed survey about privacy risks in mobile computing is provided in Haris et al.

[72] including wearable devices.

We refer these new risks that come from permitted third parties as internal infer-

ence attacks. Ahmadinejad et al. [5] explained internal inference attacks based on

the use of API and permissions-based access. Researchers analyzed the inadequacy

of permission-based system to prevent inference of private data. For example, sup-

pose a user does not want to share her birthday with Facebook application, but she

is willing to grant the application the permission to access her "wall", since such per-

missions are needed by the application to deliver its functionalities. What she may

not be aware is that this app may scan through her wall that looks for a day in a year

in which have several postings of birthday wishes, thereby inferring her birth date

information even though it was not permitted.

In addition, Carmagnola et al. [28] analyzed the possibility of identifying a user

on different social networks and inferring private data by matching public data on

the user profiles. Inferences were based only on data that the users defined as pub-

lic on their privacy settings. The experimental study showed the possibility for an

adversary to aggregate user data discovered on different sources into a more com-

plete single profile and infer other data which are likely set as private by the user. It

was observed that people typically ignore the idea that putting together data gath-

ered from different sources makes it possible to obtain a very precise picture of their

personal information, preferences and tendencies. Some risk factors were identified

including some risky behaviors of users. The risk of information leakage found in

OSNs is directly related with the number of shared personal data and the number

of user profiles owned by the user over time. This risk can also exist on user data
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coming from IoT applications. The higher the number of devices owned by the user

that run in background applications (e.g., smart home gadgets, fitness appliances,

etc.), the more historical data are collected which can lead to higher risks.

Recent practice of "lifelogging" (i.e., users’ detailed documentation of their dig-

ital activities) and, in general, the use of personal IoT devices are increasing the

privacy risks especially related to the possibility of using data mining techniques to

infer personal and sensitive data from the shared data. Several examples are pro-

vided in Haris et al. [72]. Internal inference attacks have already been studied in

database management (e.g., [43]), in online social networks and in approaches that

use permission-based methods to access to user profiles [73, 5, 29]. Inferences can be

derived from streams of raw data sensors and are able to discover mobility patterns

(e.g. [209]), preferences and behaviors such as smoking and eating gestures [142, 46],

health information [89].

Other internal inferences may be based on the identification of relations between

users. Haddadi et al. [70] provided an example which shows the possibility for an

allowed third party to infer whether two users have been spending time together,

thus, being able to infer the location and mobility patterns of linked users who had

not authorized the third party to access their location.

In this thesis, the main focus is on internal inference attacks where users have

shared data to get a service (e.g., data acquired by sensors or inserted by the user

and sent to third parties). These attacks are from authorized third parties that aim to

infer further personal data that are not shared by users.

2.1.3 Measures against the inference attacks

This section cites some of the proposed measures against inference attacks. Tech-

niques that are briefly discussed concern anonymization and transformation. The

former aims to disjoint personal data from identifier data, the latter transforms the

original data through generalization and perturbation to obfuscate the personal data.

K-anonymity [176] is a formal protection model against identity disclosure. The

information released under the k-anonymity property guarantees protection of an

individual’s data. K-anonymity is ensured if personal data in the release are not
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identifiable from at least k-1 individuals that are included in this release. This tech-

nique aims to protect against users’ identity disclosure but does not protect against

user’s attribute disclosure [111, 29]. Moreover, in some cases, the identity of the

subject is required.

Refinements of k-anonymity that address these issues are l-diversity [121] and

t-closeness [111]. They use transformation techniques to reduce the granularity of

data, thus, gaining higher privacy and protecting against the risk of attribute dis-

closure but reducing the utility of secured data. These techniques can be useful to

manage sensitive data where privacy requirement is preferred over utility. How-

ever, they work on multiple dataset of different users and cannot estimate the risk

of a single user data.

The technique described in Ahmadinejad et al. [5] introduces a protection model

that transforms the original data into a form suitable to be shared with the third-

party applications. This surrogate representation of the user profile is called a "view".

The privacy policies stated by the user are used in these transformations. This view-

based protection framework enables inference control by statistical correlation of

data which blocks the attacker for inferring privacy disclosures. The level of trans-

formation is ideal if the correlation between the sensitive and the transformed profile

goes to zero. Each view consists of basic transformations and each transformation

has to balance the goals of increasing privacy and preserving the utility of shared

data. The main disadvantage of this technique is that heavy transformations of data

often lead to loss of sensible information of the original data.

Some transformation techniques use semantic relationships among data. For

example, Elkhodr et al. [48] describe a semantic obfuscation technique, called S-

Obfuscation that secures users’ location. The granularity of users’ location infor-

mation is adjusted according to the needed obfuscation. This technique consists of

several levels of obfuscation and is based on a dynamic context analysis process

which takes into account the user’s privacy settings. Ontological classification of

locations are used in the obfuscation. In the IoT scenario, wherein an information

about a user’s location van be very precise, this technique is highly relevant.
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Finally, privacy inference graphs are also used to analyze privacy risks. For ex-

ample, the algorithm described in Sun et al. [173] computes n-paths which are sup-

posed to deduce privacy disclosures and the optimum strategies to block inference

attacks according to such paths.

Measures against leaks and inference attacks usually consist in blocking or trans-

forming the shared data. Transformations heavily depend on the type of data. They

include generalization and perturbation to obfuscate the personal data being shared.

In this framework, the focus is not about creating a data transformation method

but only providing the information of possible inferences. Therefore, the dependen-

cies and correlation among data will be measured and will provide the risk informa-

tion which will be discussed thoroughly in Chapter 5.

2.1.4 Inference Protection Methods

Inference protection methods consist mostly of static and dynamic analysis. Static

analysis tries to identify privacy threats by automatically checking the code imple-

menting an app, while dynamic and hybrid approaches analyze the behavior of ap-

plications as they are executed [215]. A further approach is by monitoring network

communications and data flow to identify leakage of personal data. For example,

Haystack [154] is an app that monitors the behavior of applications and performs

traffic analysis under regular usage conditions. Traffic monitoring is also adopted in

ReCon [155], a cross-platform application that detects Personally Identifiable Infor-

mation (PII) leaks and allows users to block or modify PII shared over the network.

The ipShield framework [31] combines the approach of monitoring the accessed

resources of the smartphone and recommending some actions by considering pos-

sible inferences of personal information. However, it’s specific focus is on Android

operating system and on the applications that use the phone sensors, while our aim

is to protect against inferences in an IoT scenario where multiple apps interact with

personal devices that are exchanging and sharing the user data, i.e. data from sen-

sors and from the phone resources (accessed on user permission), and data explicitly

provided by the user on request of the app.
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Recent approaches face the issue of balancing privacy and utility of the service

being provided by empowering users with control over the release and the process-

ing of personal data. For example, Ardagna et al. [7] proposed a model to con-

tinuously release user location information with the option of obfuscating some of

them under specific conditions, which is based on the user’s behavior and explicit

preferences.

Differently from the dynamic analysis and traffic monitoring, our approach tries

to identify privacy risks before the application is executed. Moreover, the main dif-

ference with these approaches is that our focus is on inference prevention (apriori)

while most of the works mentioned above aims to detect and reveal PII leaks. The

framework informs users which unshared data can be inferred by an allowed third

party, given the set of their shared personal data. This happens during installation

which means that prior information is already given to the user before the damage.

2.2 Privacy Preference Modeling and Recommendation

In this section, related work regarding the privacy preference modeling and rec-

ommendation are mainly discussed. First, privacy management and frameworks

necessary for IoT are introduced, together with a short discussion on the birth of

privacy preference modeling and recommendation. This is succeeded by a discus-

sion regarding privacy preference modeling using ontologies and machine learning.

Then, a brief overview of user privacy behaviour is discussed briefly. Finally, the

laws and principles regulating users’ privacy are briefly discussed, which are taken

into account in the framework.

2.2.1 Privacy Management

Mobile privacy permission systems have been well-studied in literature. However,

they do not cover the scope of the new IoT devices, such as fitness trackers, that

expand and extend the services and personal data that must be managed. In this

thesis, the capabilities of mobile privacy managers will be extended to cover the

requirements in the Internet of Wearable Things (IoWT) [138] context. Background
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information about privacy permission management in mobile systems will be intro-

duced since they served as groundwork for the IoT context. Then, the related work

regarding privacy management in the IoT will be discussed.

Permission Management in Mobile Systems

Previous studies in mobile privacy (e.g.,[55]) have proven that mobile interfaces lack

the potential to provide the necessary user privacy information and control for both

Android and iOS systems [115]. Several solutions from literature have been pro-

posed from then on to improve mobile privacy protection and offer users more pri-

vacy control (e.g., [17]). These leads into rapid improvement of privacy management

of current mobile systems (i.e., from Android 6.0+ and iOS 5.0+), providing more

control on the user’s privacy settings.

Android permission systems can be mainly categorized as Ask On Install (AOI)

and Ask On First Use (AOFU) privacy models [182, 195]. In AOI1 (Android 5.9 and

below), the permissions are asked in bulk before installing a TP app. The user’s

option is only to allow or deny all, which clearly gives less privacy control. Also,

only few users read and pay attention to the install time permissions, and even fewer

than this understand their meaning [55, 87]. These issues made room for TP apps

that manage app privacy such as Turtleguard [182] and Mockdroid [17].

On the other hand, the AOFU model [182] (Android 6.0 and above) only asks

permissions during the first use of an app and when an app uses a specific feature

that needs the respective permission. In this case, the user grants the permission

during the actual provision of the service and will be able to weigh his willingness

to share against the utility of the app. The user can also revisit and review permis-

sions in their phone privacy settings for each app. This model makes users more

informed and gives them more control as the previous model does not allow users

to be informed effectively [59]. Moreover, it has been proven that interactive noti-

fication is more efficient in informing users request access [59]. It is noteworthy to

discuss these two models as currently, 34% of the Android users are still using the

AOI model2.
1https://support.google.com/googleplay/answer/6014972?co=GENIE.Platform%3DAndroid&

hl=en
2https://developer.android.com/about/dashboards/index.html

https://support.google.com/googleplay/answer/6014972?co=GENIE.Platform%3DAndroid&hl=en
https://support.google.com/googleplay/answer/6014972?co=GENIE.Platform%3DAndroid&hl=en
https://developer.android.com/about/dashboards/index.html
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In terms of privacy management, iOS system has used the AOFU model for lo-

cation permission since iOS version 5.03, with a more comprehensive roll-out in iOS

6.0 and onwards [6]. Although it is not open-source like Android, it does not stop

researchers from finding ways to improve the privacy settings. For example, in [4],

ProtectMyPrivacy is an app specifically designed for jailbroken iOS devices that pre-

serves user privacy by substituting anonymized data for user’s private data. Al-

though jailbreaking is deemed legal, it is not advisable to do so as jailbroken devices

can be used to install pirated apps that can risk user privacy [4]. Privacy managers

for unjailbroken iOS devices also exist, however, it obviously has reduced function-

ality. For example, PiOS [47] is a Privacy Manager which only has the function to

check if the installed iOS apps have committed privacy breaches.

According to Tsai et al. [182], AOFU model can be extended to Ask On Every

Use (AOEU). This ensures that user privacy preference can be accurately enforced

and dynamically set during the actual request of access. However, it is not usable

in practice since applications request access with great frequency, averaging at once

every quarter of a minute. This leads into an impractical solution that would be inef-

fective in practice. This is also confirmed by prior works that have runtime prompts

for every sensitive request [194].

Another privacy related issue in mobile systems is that users are not fully aware

that apps can access sensitive data even when not in use [178]. For this reason, Tsai

et al. [182] developed TurtleGuard, which decides whether to give or deny access of

apps whether they are actively being used or not. This is one of the most important

contextual factors which have been addressed in literature [194].

Frameworks for Privacy Management

Initially, privacy management frameworks started from mobile applications. For in-

stance, the aforementioned ipShield [31] is a context-aware privacy framework for

mobile systems that provides users with great control of their data and inference

risks. Frameworks for general privacy management also exists in literature. For

instance, My Data Store [187] offers a set of tools to manage, control and exploit

3https://developer.apple.com/library/content/releasenotes/General/WhatsNewIniOS/

Articles/iOS6.html#//apple_ref/doc/uid/TP40011812-SW1

https://developer.apple.com/library/content/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html#//apple_ref/doc/uid/TP40011812-SW1
https://developer.apple.com/library/content/releasenotes/General/WhatsNewIniOS/Articles/iOS6.html#//apple_ref/doc/uid/TP40011812-SW1
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personal data by enhancing an individual’s awareness on the value of their data.

Similarly, Databox [33] enables individuals to coordinate the collection of their per-

sonal data, and make those data available for specific purposes. However, these

data managers do not include user privacy profiling and recommendation in the

complex IoT environment. Our proposed framework include the idea of developing

a personal data manager for privacy management in the advent of IoT.

2.2.2 Birth of Privacy Preference Modeling

In 2001, Kobsa et al. [99] suggest that privacy settings should be dynamically tailored

to both legislative rules and the individual user needs since different factors affect

user preferences. Given the diversity of user preferences, context conditions and

regulations, privacy preference modeling becomes a challenging task.

In ubiquitous computing environment, privacy modeling is tackled since early

1990’s [14]. In the early 2000’s, Kay et al. [85, 86, 24] focus their research on sup-

porting user scrutiny and control over the information held by applications. For

instance, Personis [85, 86] is a user modeling framework that ensures the user can

maintain control at different levels (e.g., source identity, source type, the processes

used to gather the user data, the way such information will be used to provide per-

sonalized services). Based on the same principle, Brar et al. [24] introduced Secure

Persona Exchange (SPE), which is a framework for personalized services and an

example of privacy modeling and management in ubiquitous computing. It imple-

ments machine-processable policies based on the P3P4 vocabulary to provide tools

for representing and storing user preferences as subsets of user model(i.e., personas)

each intended for use by particular applications. Though the P3P became obsolete

due to its lack of adoption, most of its main concepts are still used for data protection

regulations.

Context-aware privacy modeling have proven to enhance the accuracy of user’s

privacy preference prediction [195, 108]. Context is defined as the circumstance (e.g.,

what, when, who, where, how, etc.) under which a TP application requests access to

data. The context allows to enhance the prediction, for example, "when" and under

"what" circumstance plays a big role in predicting user preferences [195].

4Platform for Privacy Preferences https://www.w3.org/P3P/

https://www.w3.org/P3P/
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Using interviews and online surveys to model the privacy preferences of poten-

tial IoT users, Lee et al. [108] identified the contextual parameters that have the

strong influence on the user’s privacy preferences. These parameters include the

type of monitoring, the type of information collected, the entity collecting the infor-

mation, the frequency of monitoring, the location, and the reason for the collected

data. The identity of the information requester (who context), which is an impor-

tant determiner of user’s privacy decisions as stated in previous studies, was also

confirmed in this study.

Leveraging the dataset collected by Lee et al. [108], Bahirat et al. [11] created a

privacy-setting interface that allows users to deny/allow IoT devices access to their

personal information. They also modeled users’ decisions as a means to come up

with default privacy profiles.

Preference modeling was also explored for privacy and social recommendation

of social networks. For instance, Facebook users are found to have 6 types of privacy

profiles which range from Privacy Maximizers to Minimalists [95, 197]. In Wu et al.

[203], the inclusion of both the influence of the user’s social surroundings (i.e., social

influence) and the future association and bond with individuals that have similar

preferences (i.e., homophily effect) enhance the modeling of user preferences.

In the health/fitness domain, emerging sensors and mobile applications allow

people to easily capture fine-grained personal data related to long term fitness goals.

Focusing on tracker data (i.e., weight, activity, and sitting), Brar et al. [24] discover

that user’s preferences change for every sensor (i.e., weight being the most impor-

tant [24]). Also, their study concludes that users want to have control and have a

personal copy of their fitness data.

Modeling the privacy preference about location received great attention in the

literature given the sensitivity of this information [8, 188, 204, 6]. For instance, As-

sad et al. [8] study the user preferences about the release of location information

and provide support to differentiate the release. In Vicente et al. [188], not only lo-

cation but also absence and co-location privacy are considered. In Xie et al. [204],

location sharing privacy preferences are studied with respect to different groups and

different contexts, including check-in time, companion and emotion. These studies

confirm that users want to control the privacy of information and this is specifically
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important in ubiquitous environments.

2.2.3 Privacy Preference Recommendation

Enhanced permission settings surely give more control to the user, however, as the

number of applications that the users utilize increases (averaging 35 apps/user [66]),

the number of permissions in a single application increases (averaging 5 permis-

sions per app5), and the number of devices that the users own increases (averaging

4 devices per user6), these permission models will not be enough. The burden of

individually setting each permission will become a tedious task for the users, which

also make them prone to errors [122, 108, 2]. Furthermore, users are increasingly

unable to make decisions about privacy settings due to limits in their available time,

motivation, and their cognitive decision-making abilities [108, 2]. In this section, we

describe some of the approaches that have been proposed to address this problem.

Privacy nudging is an effective method to increase user awareness [6]. Nudging

allows users to be informed and aware on both their privacy settings and how TP ap-

plications access their data [117, 59]. In the study conducted by Liu et al. [117], their

results report that 78.7% of the privacy nudges were adopted by the user. However,

it does not mean that if they adopted the recommendation, they have fully under-

stood or it really has something to do with their privacy perception. Nudges often

inform users of the possible breaches even though it may not concern their privacy

preference. Privacy nudges lack personalization and only provide generalized rec-

ommendation.

Another approach that is more user-centric is the user-tailored privacy [95]. It

models users’ privacy concerns and provides them with adaptive privacy decision

support. This model can be seen as personalized "smart nudges" where the recom-

mendation is aligned with the user’s privacy preference. User-tailored privacy aids

users in making privacy decisions by providing them the right amount of both the

privacy-related information associated to them and the useful privacy control that

do not overwhelm or mislead them. However, in practice it is hard to implement

5Average number of permissions per app:http://www.pewinternet.org/2015/11/10/
apps-permissions-in-the-google-play-store/

6Average number of devices per consumer: https://blog.globalwebindex.com/

chart-of-the-day/digital-consumers-own-3-64-connected-devices/

http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-64-connected-devices/
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-64-connected-devices/
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general privacy model as the idea is too broad and abstract especially in the diver-

sity of privacy perception of users.

To provide recommendation, the approach in Lin et al. [115] and Liu et al. [117]

is to initially create a set of predefined privacy preference settings and select which

can be recommended to the users. This can be attained by using Machine Learning

algorithms to predict the best-suited preference settings for the user. It shows that in

a diverse sea of permission settings, there exists some profiles that could collectively

describe such diversity. These privacy profiles are collections of settings that corre-

spond to privacy preferences of similar-minded users [115, 118, 117, 94, 93, 197, 204].

For instance, Liu et al. [118] identified six privacy profiles based on the analysis of

4.8 million users’ privacy settings. Liu et al. [117] extended their work by adding

new features, such as the purpose of information and app categories, in modeling

user privacy profiles with the inclusion of privacy nudges that makes users aware

of unexpected data practices from third parties. This approach can provide decision

support for privacy recommendation given that a privacy profile that best describes

a user can be found [117]. This recommendation approach is adopted in this thesis

and extended in the IoT context.

2.3 Privacy Preference Modeling using Ontologies

One of the main problems of IoT is its heterogeneity. IoT devices must be inter-

operable for the IoT paradigm to work. Yaqoob et al. [210] state that IoT has three

main interoperability challenges, namely technical, semantic, and pragmatic. Tech-

nical and pragmatic interoperability refer to the device capabilities (i.e., standards

and protocols) and TP intentions, respectively. Semantic interoperability is a require-

ment to the machine computable logic, knowledge discovery, and data federation

between information systems. For our PDM to work in the IoT context, we take into

account semantics in the PDM.

Semantics is one of the standardization opportunities that can be implemented

which makes easier for the service providers and consumers to work with an IoT
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ecosystem [165]. An ongoing standard specification, oneM2M (M2M: machine-to-

machine)7 is developing a semantics enabler to bridge the gap between current IoT

resources [165]. OneM2M states that their platform is enhanced with semantic ca-

pabilities to ensure cross-domain interoperability between IoT devices and applica-

tions at the level of communication and data [139].

In literature, there exist a number of privacy preference modeling frameworks

that use the semantic web approach. PPO [157] has been the pioneer for modeling

user’s privacy preferences, giving users’ fine-grained control of their preference.

P3P (W3C Platform for Privacy Preferences) can be considered a reference model

for automatic processing of privacy preferences. Users can express their preferences,

and their browser warns them if a site does not meet these preferences [13]. Many

proposals about privacy enhancing technologies are based on P3P, which did not

became successful due to some usability issues and the lack of enforcement when

it was defined. Additionally, the advent of social networks and IoT brought new

complex privacy requirements.

In this work, we propose an ontology, which is used by the PDM, specifically for

privacy management in IoT context. Privacy preferences in the IoT (PPIoT) context

critically depend on the reason for data collection, the persistence of access, the lo-

cation, the retention period and the method of usage [108, 78, 141, 21]. These aspects

constitute the requirements for privacy management in the Iot paradigm [120, 184]

and are taken into account in the proposed PPIoT Ontology. They also ascertain that

PPIoT is compliant with the GDPR, which enforce the requesting entity to clearly

specify the reason, usage of data, frequency and method of data collection, and the

retention period of the collected data.

Below, we first describe the base ontologies that are extended by our PPIoT on-

tology and then we report about other related ontologies for privacy modeling. The

full details of the PPIoT ontology will be described in Chapter 6.1.

2.3.1 Base Ontologies

In line with best practices for ontology reuse, our PPIoT ontology integrates the

current Privacy Preference Ontology (PPO) and the W3C Semantic Sensor Network

7http://www.onem2m.org

http://www.onem2m.org
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(SOSA/SSN) Ontology. The PPO was created to aid users in managing their privacy

settings in the realm of linked data [157]. Later, it was extended to facilitate social

network applications. The PPO allows users to have more fine-grained control over

their personal data. One of the main features of this ontology is the possibility to set

multiple privacy preferences each with a different set of conditions for a single user.

The original W3C Semantic Sensor Network (SSN) Ontology was aligned to the

DOLCE-UltraLite3 Ontology and was based on the core concepts of the Stimulus–

Sensor–Observation ontology pattern [39]. Due to the rapid expansion and diversity

of data and its providers, it has been improved and is now based on the Sensor, Ob-

servation, Sample, and Actuator (SOSA) ontology pattern [71] to include broadened

definitions (e.g., social sensing applications). It has low interoperability fall-back

and focuses on enlarging the target audience and its application areas. As of Octo-

ber 2017, it became a W3C Recommendation.

2.3.2 Ontologies for Privacy Modeling

A survey on ontology-based privacy modeling can be found in Perera et al. [146].

Below, we briefly describe the ontologies that are most related to our study.

The ontology described by Zhang et al. [214] shares similarities with PPO and is

focused on defining privacy rules. Each rule must contain a data class and a condi-

tions class. The main features of the conditions class include the duration, purposes,

and recipients of collection, the period on keeping the collected data, the user’s priv-

ileges, and ways of handling disputes. This ontology was intended for applications

of context-aware systems.

PROACT is an ontology that models privacy in relation to tasks and user ac-

tivities [141]. The authors introduce the concept of "activity sphere", which is a

temporary abstract space defined to limit the incoming and outgoing information.

PROACT is used to define privacy policies based on restrictions and rules for ac-

cessing and using each resource within an activity sphere and the information the

resource collects and manages.

The authors of the PPO also created a light-weight ontology, named Privacy Pref-

erence Manager, which is a semantic representation of a tool that allows users to
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deny/allow access to their data based on the Web Access Control (WAC) vocabu-

lary [157].

The privacy preference model proposed Bodorik et al. [21] is characterized by

regulations and conditions that are specified by the user. Conditions can concern

the purpose of the data recipient, usage and retention, disputes, remedy, and access

control. The model also specifies the properties of a steady set of user preferences

and their maintenance operations.

Hu et al. [78] propose an ontology using privacy rules. Their ontology, which

also follows the FIP guidelines, is intended to capture allowed/denied purposes of

data collection, allowed/denied access for individual entities, retention period, obli-

gations, policy, and action. This enables the creation of global rules to define prefer-

ences for higher-level conditions, such as giving a recipient access to data that came

from medical applications, even if some of the needed parameters are not defined.

Setting rule priorities is another feature of privacy preference management. Rei

is a policy language that aids users in expressing their privacy preference conditions

with a priority hierarchy [83]. This level of expressiveness is a step forward in the

enrichment of privacy specifications, as it helps in resolving conflicts. This is espe-

cially relevant in the context of IoT, where several conflicting conditions can occur.

However, Rei lacks the power of negotiation, since it can only set multiple conditions

on the user side (i.e., it does not consider the TP side).

The usefulness of modeling trust is thoroughly described in Iqbal et al. [79]. Fur-

thermore, Martimiano et al. [124] model the trustworthiness of TPs using principles

similar to Friend Of A Friend (FOAF). They extend this principle by defining fixed

sets of classes with predefined assignments on the level of trust (e.g., close family,

friend, work mates, unknown).

The ontologies mentioned in this subsection contain unique features that allow

users to be more expressive regarding their privacy settings. However, these ontolo-

gies are limited in their application domain and focus exclusively on the user side,

not on the TPs. To extend the ontological approach to privacy management to the

field of IoT, it must have room for negotiation between the user and the TPs [146].

Our proposed PDM takes this into account.
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2.4 Privacy Preference Modeling Using Machine Learning

Using Machine Learning (ML) for modeling permissions was deemed a practical

and an effective approach [182, 195, 117, 118, 108]. Thus, prediction of user privacy

preferences is well-studied [42, 158, 53, 18, 20, 216, 19, 107].

By training contextual user data and a subset of users’ prior privacy behavior,

ML approaches in Tsai et al. [182] and Wijesekera et al. [195] achieve significantly

smaller error rates over the current AOFU model and reduce (but do not eliminate)

user involvement. AOFU model is criticized for asking only once during the initial

utilization of the app when the user’s preference is different under which it subse-

quently requests access. Users can still revisit this setting in a user interface and

check the decisions made by ML.

Frank et al. [57] conducted one of the earliest study on mining mobile app per-

missions. The study aims to mine patterns in Android app permission request by

using matrix factorization techniques. They found over 30 patterns of TP app re-

quests. Furthermore, Lin et al. [115] identified patterns in user privacy preferences

for a given set of preferences asked in mobile apps for different purposes of data

access.

Liu et al. [118] showed that a few privacy profiles can be derived from a sea of

diverse settings. A total of 239,000 privacy settings were studied for 12,000 differ-

ent apps. In addition, their system prompts user if it is uncertain (i.e., low level of

confidence) during the prediction of privacy profiles for a given user.

For social networking apps, Sadeh et al. [158] used ML such as Random Forest

to provide automated privacy decision on behalf of users. Also, Fang et al. [53]

provides a system for social networking services that infers access control policies

through supervised learning by iteratively asking users questions about their shar-

ing preferences with their friends. Using 45 Facebook users, the burden of setting

privacy was effectively reduced by the system. It also reached 90% accuracy in pre-

dicting personal privacy policies using only a subset of labeled training data. A pri-

vacy prediction model was introduced by Dong et al. [45] for social networks, which

is established from psychological principles. In addition to predicting user prefer-

ence, the model also provides personalized advice to users regarding their privacy
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decision-making practices.

A privacy-preserving information sharing platform named SPISM [19] was de-

ployed on Android OS. SPISM assists users in making decisions for disclosing per-

sonal data on different levels of granularity. SPISM claims to have 90% accuracy

on predicting users’ privacy decision by using a logistic classifier. Furthermore, a

Personalized Privacy Assistant (PPA) [117] was also used for android applications

to support user decision. Privacy profiles were developed using hierarchical cluster-

ing which are groups of similar privacy user attitudes. They extended in to predic-

tion of user decision during permission request of third party entities by using SVM

classifiers. Furthermore, PPA could also provide nudging to support user decision.

Probing users’ privacy preferences by asking them a small set of general ques-

tions is typical in recommender systems. It helps in recommending the default set-

tings or default profile for a certain user. For instance, a few questions are asked in

the setup phase of the Locaccino system [196] to guide users through the default lo-

cation sharing profiles suitable for them. Similar approach are used in [98, 153, 128]

for setting up users location sharing rules.

Privacy profiles are only estimates of the users preference, given a diverse sea of

permission settings. Further personalization would make it more accurate. The cho-

sen or recommended privacy profiles can be the initial set-up and would be refined

by the user or further machine learning approaches [41, 128, 88].

Our proposed PDM also uses ML techniques to model and recommend the pri-

vacy preferences of the users. This PDM recommendation aims to reduce the need

to manually set the user’s permission settings.

2.5 User Behavior on Privacy Preference

Literature suggests that contextual cues can be used to detect privacy violations [134,

12]. Thus, context-based privacy preference are studied [195, 108]. However, users

usually are unable to provide such privacy decisions given their lack of time, moti-

vation and their cognitive decision-making abilities [2, 169].

Benisch et al. [15] also show that users felt more secure in privacy settings that

are comprised of contextual factors rather than the traditional whitelisting. Some of



2.5. User Behavior on Privacy Preference 29

the contextual factors that are discovered by the authors that have significant impact

on location privacy includes the actual location, time, and the day of the week.

Another issue that needs attention is the user’s certainty on his preference. Users

themselves have been reported that their real preference is inconsistent with their

actual information disclosure behaviors. This phenomenon known as the "privacy

paradox", which is well-established in previous research [135, 44, 186, 170, 207]. In

understanding privacy paradox, Dinev et al. [44] reported that perceived privacy

risk and privacy concerns are two factors related to the willingness to provide per-

sonal information in Internet e-commerce transaction. Therefore, it should not be

assumed that disclosure behaviour reflects a lack of concern with respect to privacy.

In Internet e-commerce, the strong relationship between perceived Internet trust and

willingness to provide personal information suggests that trust is an important con-

dition for completing online transactions. Therefore, trust is a factor for the actual

information disclosure regardless of their real preference. However, the study con-

cludes that more research needs to be done to understand completely the privacy

paradox.

Users also behave differently if they know they are being monitored. In the study

of home IoT in Choe et al. [36], users are less likely to share some activities (e.g.,

intimacy behavior, cooking or eating) at home when various sensors are installed.

Some areas inside the home are considered more private than others, which is an

important factor for the deployment of home IoT devices.

Furthermore, users usually do not pay enough attention to privacy permissions.

Most users do not really read (only 17%) nor understand (only 3%) the permissions

and are very susceptible to install apps with look-alike name to other apps [55].

This highlights the need to make privacy permission clearer and well-modulated

and give users informative tools to control their data and substantial information on

how their data are being processed [30, 40].

Attribution mechanisms have been proven to be a necessity to help users better

understand smartphone application resource access [178]. When a system change

occurs, it may be helpful to place attribution information in places where users can

undo those changes. Thompson et al. [178] have found that this information is ex-

pected by users to be in the device’s Settings app. The study also shows that only



30 Chapter 2. Background and Related Work

very few of the of participants (i.e., 22%) know that apps can still run in the back-

ground and they have the same privilege as if being actively used. For this reason,

user expectation has been studied by Wijesekera et al. [194] through regulating ac-

cess based on being used or not since users perceived this permission request from

background as unexpected or inappropriate.

The idea of supporting users in decision-making on their privacy is becoming a

relevant research field, given the increasing complexity of privacy settings and data

sharing models [3, 192]. This reflects also the principle of empowering users with

more control on their data, which has given rise to several proposals and tools for

managing personal data. Examples include the personal data manager described by

Zyskind et al. [218], My Data Store [187], and Databox [33].

Privacy management is closely related to the studies on privacy perception and

user behaviors. Several researches show that users have different perception of pri-

vacy value and have different behaviors in managing their privacy preferences [197,

72]. The disclosed behaviors have been described as multidimensional by Knijnen-

burg et al. [93] since users seem to differ for the kind and the degree of information

that are being disclosed. This suggested the idea of adopting personalized tech-

niques to tailor the management of privacy settings [198].

An analysis of the factors that influence privacy behaviors specifically with re-

spect to mobile applications is provided in Haris et al. [72]. The authors show that

besides personal differences in perceiving the value of privacy, behaviors are often

influenced by the fact that many users are not aware of their released data. This

may be due to the lack of understanding of requests about mobile permissions (of-

ten vague, confusing, and poorly grouped), lack of knowledge about the number of

sensors that can release personal data, and unawareness of possible integration of

harmless data to infer private data.

Other factors reported that can influence the user’s behavior toward privacy are

the type of information, the retention period, and social aspects such as popularity

and recommendation by friends. Based on these factors, crowdsourcing could be

a useful approach to understand the users’ perception of privacy [114] to simulate

different scenarios that includes these factors.

For this reason, our proposed PDM aims to support the users’ decision and make
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them aware of their released information. Together with AID-S, the decision sup-

port also includes the computation of risks on the probability that a third party can

potentially infer further user information. To further capture users’ diverse percep-

tions, the crowdsourcing approach was utilized as pointed out in Lin et al. [114] in

understanding users.

2.6 Lawful Privacy Protection

User privacy is also protected and regulated by laws and principles toward data

handling. The main privacy principles and laws governing user privacy are briefly

discussed in this study.

2.6.1 Digital Rights Management

Digital Rights Management (DRM) mainly concerns on the publishing and control

of the consumption of commercial and digital media and prevents against illegal re-

distribution. It also fights against re-distribution and illegal acquisition of user data

[104].

Kumar et al. [104] state that privacy policies can be defined for personal data

rights object or license instead of implementing commercial media principles which

are negotiated during data processing. User’s awareness and permission can be

used instead to prevent illegal distribution of their personal data.

2.6.2 Fair Information Practices Principles

Fair Information Practices (FIP) principles are long-standing guidelines regarding

the collection and use of users’ information that aim to protect their privacy [63]. The

FIP principles are transparency, individual participation, purpose specification, data

minimization, use limitation, data quality and integrity, security, and accountability

and auditing. The inclusion of the FIP principles in privacy frameworks is much

needed, especially in the management of IoT user data collection [120, 184, 106] as

recent reports of privacy breaches of supposedly trusted TPs are increasing [106].
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2.6.3 General Data Privacy Protection

As of May 25, 2018, the European Union (EU) enforce the General Data Protection

Regulation (GDPR) [61] that applies to the storage, processing and use of the sub-

ject’s personal data from the accessing third parties which may or may not have been

established in the EU as long as they operate in an EU market or access data of EU

residents. It requires users to provide explicit consent to privacy options expressed

by third parties. This results in a complex task for the users given the number of

devices and applications which have to be read and processed specifically.

After the GDPR implementation, an ontology was proposed in [49] to represent

GDPR rules concerning Cloud data. However, the ontology does not take into ac-

count user privacy preferences and concentrates only on the obligations of both con-

sumer and provider of cloud data.

The principles that relate to personal data protection are explicitly stated in Arti-

cle 5 of the GDPR Regulation: Lawfulness, fairness and transparency; purpose limi-

tation; data minimization; accuracy; storage limitation; integrity and confidentiality.

Broadly speaking, the GDPR requirements concern two main issues:

• the management of personal data from the TP (data processing, sharing and

storage);

• The communication between the TP and the user about the management of

personal data (transparency, controllability, accuracy).

In this thesis, the proposed privacy framework complies with the GDPR through

the PPIoT ontology, which is designed to include classes and properties that address

the GDPR requirements for the management of personal data. It includes the reason,

method, purpose and persistence of data access, and the maximum retention period

of data in the hand of the accessing parties.
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Chapter 3

PerNANDO Framework

3.1 Research Questions and Methodology

Based on the discussions of Chapter 2, managing users’ privacy and protecting them

from inference risks are highly needed in the IoT context, which also need to be

aligned with the mandated GDPR. This thesis aims to provide a framework for pri-

vacy that focuses on these concerns.

To this point, our framework aims to solve the following specific research ques-

tions:

RQ1. How can we protect IoT users from potential inference of their private

data given their disclosed data?

To answer this question, we aim to realize an inference discovery system that can

compute risk of data correlation. We utilize a probabilistic approach of measuring

privacy risks through Bayesian Networks. The risk probabilities are then informed

to the user to support their decision in granting access to the third parties. This will

be answered in Chapter 5.

We created our inference system using the real user data on fitness IoT (i.e., Fitbit

Trackers) from the Open Humans Foundation1 and the crowd-sourced Fitbit dataset

generated from the respondents of a distributed survey via Amazon Mechanical

Turk 2 by Furberg et al. Our quantitative analysis and the evaluation of our risk com-

putation are explained in Chapter 5. Currently, our results are valid only for fitness

IoT and/or domains that use similar/subset of fitness data from fitness trackers.
1https://www.openhumans.org/
2https://zenodo.org/record/53894#.W-76oehKjIU

https://www.openhumans.org/
https://zenodo.org/record/53894#.W-76oehKjIU
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RQ2. How can we model user privacy preferences in the advent of heteroge-

neous personal IoT data?

To answer this question, the proposed framework utilizes the semantic web ap-

proach to solve the problem of heterogeneity. As of the time of writing, semantic

modeling of user privacy preferences in the IoT paradigm is not yet defined. This

work proposes PPIoT Ontology, which is based on PPO and SOSA/SSN Network

that extends semantic modeling of privacy preferences. This will be answered in

Chapter 6.

The proposed PPIoT Ontology is currently limited to the Fitness IoT domain.

The terminologies are based on the main fitness trackers that are used as of the time

of writing. PPIoT Ontology also complies and uses GDPR terminologies. Chapter 6

will explain all the details regarding the proposed Ontology.

RQ3. How can we aid users to set their privacy and provide them with

suitable recommendation?

To answer this question, we created different privacy profiles using ML cluster-

ing. Then, we use supervised ML to find determiners that can tell which privacy pro-

file best fits for a given user. Finally we provide different recommendation strategies

that interact with the user to provide the recommendation. This will be answered in

Chapter 7.

To give more details for RQ3, the overview of the methodology is depicted in Fig-

ure 3.1. User Profiling & Recommendation can be divided into 3 main approaches.

First, modeling privacy settings that can generally represent privacy preferences

among IoT devices has been defined. This allows to answer RQ2, as shortly ex-

plained above.

Then, using Machine Learning (ML) techniques, we select predefined privacy

settings, called privacy profiles, which are able to represent most of the IoT users’

privacy preferences. These profiles range from privacy-aware to unconcerned users

which are developed using ML clustering. Then, we find determiners that can clas-

sify a user to which privacy profile he/she belongs. These determiners include some

questions regarding some privacy items, situational and social questions, which are

developed using ML classification.
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FIGURE 3.1: The workflow for User Profiling & Recommendation.

Finally, we develop recommendation strategies that interact with the user. These

strategies can be mainly divided into interactive and non-interactive User Interfaces

(UIs). Interactive UIs ask users questions that enable the system to classify which

profile a user belongs based from the results of the ML. On the other hand, non-

interactive UIs do not ask any question at all. These strategies answer our RQ3.

For RQ3, the methodology includes creating a mock-app simulator that simu-

lates an environment that set-up the setting of privacy preferences of a fitness app.

We run the simulator on real fitness tracker users (i.e., Fitbit users) from the Amazon

Mechanical Turk, which enables us to collect dataset for real privacy settings. This

also means our result are limited to such domain. The analysis and evaluation of

these methods are fully explained in Chapter 7.

For this study, our framework is applied and tested on the fitness domain, how-

ever, the methodology could be extended to other IoT domains as well. The fitness

domain is chosen in this study since, as of the time of writing, these IoT devices

collect most of the users’ personal data, which is well-documented in Chapter 4.
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FIGURE 3.2: The current personal IoT scenario managed by the PerNANDO framework.

3.2 Framework Definition

In this chapter, the proposed Personal, Non-intrusive, and App-Neutral Data Or-

ganizer (PerNANDO) framework will be defined. This framework aims to be non-

intrusive, as the users’ data are not kept and stored. Only the description or user’s

preference of sharing of such data are needed. It is App-neutral since it aims to

be compatible on both regular and enhanced types of third parties, which will be

discussed in-depth in Chapter 6.

The overview of the framework is shown in Figure 3.2. It depicts a modern per-

son having heterogeneous personal devices and things capable of connecting to the

network (e.g., smart glass, smart watch, fitness tracker, smart fabric, smart shoes

and smart phone). In this scenario, the user’s IoT devices are connected to his PDM

inside the PDM+AID-S function block.

The interaction between the user and the IoT device (handled by its manufactur-

ing third party application) is managed by this function block. The framework acts

as a gateway of the information flow. The request of personal data from the third
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TABLE 3.1: The PerNaNDO Work Package Composition.

Functionalities Tasks Packages

Dialog Management
Interaction
among entities

PDM
Access Control

Policy Statement
evaluation
Authentication &
Authorization

User Profiling
& Recommendation

Privacy preference
modeling
Privacy preference
clustering
Privacy preference
recommendation

Inference Discovery
Inference risk
computation

AID-S
Risk Recommendation

Optimal privacy
setting
Transformation

party, which is in a form of a Policy Statement, is regulated by the user’s PDM be-

fore giving the authorization. It checks if the Policy Statement is coherent with the

user’s privacy settings.

The AID-S, on the other hand, computes the inference risks associated to data

disclosure. This combination enables to ensure full protection of the user concern-

ing privacy risks. The framework also ensures that it respects the GDPR principles

regarding data handling and informed consent of the user. The components of the

framework and the workload distribution are stated in Table 3.1. The table shows

the core functionalities provided by the framework and the related tasks within the

PDM and AID-S packages.

3.2.1 PDM Tasks

This section defines the tasks that are managed by the PDM as displayed in Table

3.1. They are based on current PDMs in the literature (e.g., [33, 218, 187, 177]) and

are extended to work in the IoT context.
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Dialog management

The PDM is the gateway between the user, the third party and AID-S. The dialog

management task is aimed to handle and coordinate the communication among all

these entities.

• PDM2User. The functions of this subtask are to receive the user requests for

new loT device installation, manage the interactions with the modules that are

in charge of profiling the user, and inform the user with risk recommendation

from AID-S.

• PDM2ThirdParty. The functions of this subtask are to receive the third party

application request (consisting of the Policy Statement), and coordinate the

interaction with the Policy Statement evaluation task and the negotiation with

the third party in case the Policy Statement does not satisfy the user privacy

requirements.

• PDM2AID-S. The function of this subtask is to handle the requests from PDM

to AID-S for inference discovery and handle the requests from AID-S to PDM

for privacy preference setting. Moreover, it receives the results from AID-S

which consist of recommendations to be provided to the third party and to the

user in asynchronous phases.

The most crucial communication rises from PDM2ThirdParty. Thus, this work

focuses on the realization of PDM2ThirdParty by using the Semantic Web approach

and how it can perform negotiation through the proposed PPIoT Ontology, which

will be discussed in Chapter 6.

Policy Statement Evaluation

PDM evaluates a request of a third party in a form of a Policy Statement. In cur-

rent PDM models, Statements consist of information that are essential for describing

which data will be collected, stored and processed by the third party, their quantity,

frequency of acquisition, retention period of the accessed data, and purposes. These

principles are from the GDPR handling regulation on personal data. The main goal
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of this task is to evaluate if the third party request respects the privacy setting of the

user which will be shown in Chapter 6.

Authentication and Authorization

A basic function of PDM is to manage access control. This includes both the user and

the third party. Concerning the user, this task is needed when the PDM is deployed

as a service running on a remote server or in hybrid client-server models that request

the user’s consent.

Concerning third parties, Authentication is aimed to manage a list of authenti-

cated third parties and use authentication protocols to secure the transactions with

them. It is also possible to refer to a Certification Authority (CA) regarding the status

of the third party.

Mainly, the framework does not have the capability for authentication as it is a

security-related feature. This work task can be completed using literature solutions,

which heavily focuses on this security-related privacy, and will not be taken account

in this study as discussed in Chapter 1.

On the other hand, Authorization of third parties is granted after being certified

and if their request has been successfully accepted. PDM Authorization can grant

access to TPs if the user’s privacy preference conditions are met. Chapter 6 will show

a use case of how PDM can authorize accessing TPs using the PPIoT Ontology.

User Privacy Profiles and Recommendation

To evaluate third party requests, an important task managed by PDM is creating a

user profile with the user’s preferences about privacy. The user profile is based on

the user’s privacy preferences that are recorded and stored. This enables the PDM

to provide comparison with the TP Policy Statement and check if it can be granted

access.

Privacy preference settings represent the user’s perception about confidentiality

of his own personal data items. For different levels of privacy, i.e., not only allow

or deny a privacy item, an example of user threshold setting can be found in [31] in

which a specific user has an assigned priority vector,
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priority = (pl1 , pl2 , · · · , pln) (3.1)

where priority means confidentiality and each element, pl ∈ {0, · · · , pmax} expresses

the user’s priority level set for each category, l, in numerical value having pmax as

the maximum (i.e., maximum confidentiality).

The PPIoT Ontology have the capability to let users express a more fine-grained

privacy preference, which will be shown in Chapter 6.

For this study, the privacy profiling using ML will be elaborated thoroughly to-

gether with strategies for recommendation which will be discussed in Chapter 7.

Different privacy settings are created to alleviate the burden of manually setting sev-

eral permissions. Then, the profile that best suits a given user will be recommended

by PDM.

3.2.2 AID-S Tasks

AID-S is portrayed as an external function that the PDM can access. Conceptually,

they are separated since PDM work packages focuses on the management of user

preferences.

The main functions of AID-S are to predict an inference risk based on a set of

input data, and to provide solutions to reduce the inference risk. The Inference risk

computation task starts on the PDM’s request regarding possible inference attacks

of a third party in the case its Policy Statement is accepted.

Inference Risk Estimation

The objective of this task is to compute the risks that a third party may infer user’s

private data given the available data released to it. An ideal representation of infer-

ence probabilities based on dependencies among user data, independently of shared

and non-shared data, is the Inference Matrix, I, where:

Ii,j =


P(a1|c1) · · · P(a1|cj)

...
. . .

...

P(ai|c1) · · · P(ai|cj)

 (3.2)
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• Ii,j is the matrix containing all the probabilities of inferring an attribute, ai ,

given the dependencies of a set of other attributes cj;

• ai ∈ D(1 ≤ i ≤ |D|), where D is the user Data Set

• cj ∈ P{D}(1 ≤ j ≤ |P{D}|) where P{D} is the Power Set of D

• P(ai|cj) ∈ [0, 1]

The computed probabilities depend on the probabilistic model or learning algo-

rithm that can be deployed (e.g., RST, KN, Bayes Filter, HMM, etc.). It should be

noted that the method is open to any probabilistic model that can be found in the

literature.

For example, the study in Cai et al. [27] use RST, Naive Bayes and KNN to study

the inference in social networks (e.g., Facebook). In these terms, the matrix can be

ideally used to represent all the possible inferences of personal data based on user

data correlation.

Based on this matrix, the inference risk for a given user can be computed by

considering the user’s specific privacy preferences that are used as thresholds, ti

for ai. The Inference Matrix is an abstract representation but several algorithms are

available to compute inference measures for limited subsets of Ii,j.

A working example is studied in Yan et al. [209], which computes the probability

of inferring the user’s typical paths (e.g., going to coffee shop, grocery, outdoors, etc.)

only by exploiting the steps per minute computed from a fitness IoT pedometer. It

has been reported that as long as the threshold value, ε, (denoting the Euclidean

distance between the steps-tacked sequence and the path query sequence) varies,

the user path could be inferred with at least approximately 50% of accuracy, thus,

P(userbehavior|pedometerdata) ≥ 0.5. Another example can be found in [31] where

inferences from different smartphone sensor data are measured.

A related work on time series from Erdogdu et al. [50] computes the risks asso-

ciated to general time series data using stochastic approaches.
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AID-S Recommendation Strategies

As presented in Table 3.1, another main function of AID-S is its capability to rec-

ommend optimal solutions to ensure the privacy of the user. In this framework we

propose two main strategies, either to recommend optimal privacy setting or trans-

form the data.

• Recommending the optimal privacy setting

An optimal privacy setting is defined with respect to the set of data required

by the third party in the Policy Statement. It is the set of personal data that rep-

resents the optimal balance between minimizing the risk of inferring personal data

and maximizing the number of data to be shared with the third party. Maximizing

the number of shared data is aimed to maximize the utility of the service provided

by the third party.

From the user’s point of view, AID-S can recommend which personal data item

should not to be shared since it heavily increases the inference risk of another or a set

of other personal data. Conversely, it can also recommend which data can be shared

since it is not heavily correlated with any inference risk.

Depending on the specific AID-S implementation, the recommendation could

be provided directly to the user, through the PDM’s dialog manager, or it could

be preceded by an attempt of automatic negotiation with the third party, aimed to

balance the privacy of the user data and the utility of the third party service.

This recommendation strategy is efficient since data processing techniques (e.g.,

aggregation, transformation and obfuscation) will not be used. The whole process

for privacy protection is based on the third party’s Policy Statement and on the

user’s privacy preferences. For example, if the user does not want his location to

be inferred by the third party, the privacy preference for this data item is set to Pmax.

In this work, this AID-S recommendation will be the use case during the realization

of this framework.

Suppose a third party (e.g., fitness tracker) asks for the accelerometer data to

PDM, AID-S is able to check all the correlations among data through Ii,j and con-

cludes that the accelerometer data can be shared since the probability of inferring
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the user location does not reach the privacy threshold for location (equal to Pmax in

the example) for any combination with the accelerometer data.

FIGURE 3.3: The effect of the transforming T(e) which removes the possibility of infer-
ring of x, y, z.

To show the AID-S recommendation, Figure 3.3 shows a hypothetical situation

in the Fitness IoT scenario. After the inference computation, AID-S finds that there

is a high risk of inference for data x, given data (a,b,c,d,e). To reduce this risk, AID-S

recommends to not share data e as it will significantly decrease the inference of x. In

this scenario, this is the optimum recommendation.

• Recommending data transformation

The optimum recommendation might not work all the time, as both users and

third parties might really need this data to be shared. Therefore, a suboptimal so-

lution would be to perturb the data. The example in the figure illustrates the effect

of applying a transformation T on data item e (using transformation techniques dis-

cussed in Chapter 2.1.2). Given that (a, b, c, d, e) are correlated with x and (e, f, g)

are correlated with y, by transforming e, we obtain that two sets of correlations are

broken, preventing the inference of x, y and z.

For AID-S, the transformation has to balance two requirements, which are the

privacy of the user data and the utility of the third party service. This critical trade-

off is the key for both parties to conclude an agreement. In the example above, one

perturbation is able to reduce the risk of inference of three data items.
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This concept is well defined in a study from Cai et al. [27] where they propose a

method (i.e., collective method) to protect the user from possible inferences of third

parties in social networks. The algorithm works as follows:

1. if PDAs ∩ UDAs = 0, then

2. remove PDAs

3. else, remove PDAs - core; and

4. perturbing core

In their model, an attribute (which is equivalent to a user data item, ai, in this

study) can be classified according to two criteria, either privacy or utility depen-

dent. Privacy-Dependent Attribute (PDA) is when a user data is set or estimated as

private, while Utility-Dependent Attribute (UDA) is when a user data is requested

by the third party to provide its service. The first step of the algorithm checks if there

are no user data items that belong to both PDAs and UDAs. If none, then PDAs will

be removed and only UDAs will be released to the third party. If there is, then this

user data (termed as core) must be perturbed before being released to the third party.

To perform perturbation, they use a classical method of substituting the core with

a more abstract or generalized annotation. This perturbation technique has several

levels of hierarchy and is called Generic Attribute Hierarchy (GAH). For example,

instead of releasing the specific user attribute on the category "Favorite music", it

can be perturbed as slow music. Different approaches can be found in the literature

to manage this task (e.g., [5, 27]).

Different data transformation/perturbation methods can be found in literature

as discussed, and will not be the focus of this work. Literature approaches can be

utilized in this recommendation strategy, which is the suboptimal solution if the

recommendation of the optimal settings will not be possible.

AID-S Inference risk discovery and recommendation using optimum privacy set-

tings are elaborated in Chapter 5, which answers RQ1.
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Chapter 4

Fitness IoT Scenario

This chapter discusses the fitness IoT domain, which is the chosen IoT domain to

apply our framework. It includes discussion on today’s scenario regarding the dif-

ferent permissions asked by fitness apps, the complex information-sharing model of

these apps, the modeling of the IoT fitness data and the prototype used for simula-

tion for our data collection.

It should be noted that our approach will be applied, but is not necessary limited

to, the fitness IoT domain. Fitness IoT is a growing area inside the IoT wearable

systems, i.e., IoWT, which currently holds the most number of user personal data as

it monitors user’s round-the-clock user activities (24/7).

4.1 Today’s Scenario

Fitness trackers are becoming popular today and are predicted to continually grow

in the coming years [38]. This also means that a lot of manufacturers and service

providers are in competition with different device types, features, software, systems,

etc. that make users unsure about which product to purchase. Also, besides the

apps provided by the producers of the fitness trackers, there are other third party

apps that are compatible with the trackers. They also provide services by accessing,

if authorized by the user, the sensed data collected by the tracker. In this section, we

briefly analyze a set of fitness devices currently in the market showing how they get

into the user’s daily life.
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TABLE 4.1: Fitness Trackers Comparison

Brand Device Sensors Main processed data
Fitbit1 Surge GPS, 3-axis accelerom-

eters, 3-axis gyroscope,
digital compass, opti-
cal heart rate monitor,
altimeter, ambient light
sensor, vibration motor

activity and exercise,
heart rate, elevation,
steps, distance, floor,
calories, sleep, profile
(e.g., weight, height),
nutrition (e.g., food and
water logs)

Garmin2 Vivosmart HR+ barometric altime-
ter, accelerometer,
heart rate monitor,
GPS-enabled

single, multi-activities,
multi-sport with
heart rate, steps, dis-
tance, calories, flights
of stairs, intensity
minutes, heart rate,
run/walk interval,
virtual pacer (helps to
achieve goals)

Jawbone3 UP4 3-axis accelerometer,
bioimpedance sensor,
accelerometer, motion
sensor

band events, body,
heart, goals, meal,
mood, moves, sleeps,
trends, workouts, user
information, calories

Misfit4 Shine2 3-axis accelerome-
ter, magnetometer,
capacitive touch sensor

steps, distance, calo-
ries, and light and rest-
ful sleep

4.1.1 Fitness trackers

Fitness trackers, as shown in Table 4.1, assist users in keeping fit by tracking their

activities and workouts (e.g., daily steps taken, floors climbed, light/moderate/in-

tense activities, cycling/swimming time, resting time, etc.), computing the related

fitness measures (e.g., calories burned, quality of sleep, cardiovascular workouts,

calories intake, etc.) and suggesting them their suitable personalized programs.

Also, these trackers have features to enable fitness challenges with friends for in-

creasing the user’s motivation.

Table 4.1 shows the comparative features of the most popular fitness trackers

in the market. Their features are described in terms of the data that they collect

and the sensors that they use. Only the trackers with the most features and sen-

sors are shown regardless of their price and application (e.g., specific for swimming,

running, etc.) since this study will focus on the information that the trackers can

produce.
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In summary, fitness devices track the user’s precise movements, location, sleep

dynamics, health information, preferences, etc. As of today, these devices have many

details of personal information and monitor the user 24/7 with persistency of at least

per-minute of accuracy. Allowing and authorizing third party apps to access and

process one’s personal data represents a potential risk for users.

4.1.2 Android permissions

A third party app specifies in its policy statement the list of user information it needs

in order to provide its service. These policy statements in an Android device are in

Android Permissions (precisely in the Android Manifest XML file of the application).

Since Google’s Android is an open source operating system based on the Linux ker-

nel, it inherits from Linux the file permissions mechanism by which files are owned

by specific users with read/write or execute (rwx) permissions. A file has a defined

rwx also for a group IDs.

Furthermore, because of the Android application-permission mechanism, each

application has an application specific user with a unique user ID (UID), which owns

its applications files, while the system files are owned by system or root user. An-

droid automatically grants permission to an app to use some resources needed dur-

ing installation. These permissions are known as the normal permissions and they

are not asked to the user. Any additional permission5 such as accessing fine location

(ACCESS_ FINE_ LOCATION) (e.g., GPS), recording audio (RECORD_ AUDIO) or

sending SMS messages (SEND_ SMS), must be explicitly requested and authorized

by the user installing the application. These permissions are defined as danger-

ous permissions6 by Android since they may contain user information. In Table 4.2

we report the permission groups and their respective dangerous permissions. Our

study concerns these permissions. It must be noticed that for Android 5.1 and lower

versions, when installing an app, the user must grant the whole block of permissions

requested by the app. Differently, for Android 6.0 and higher the permission can be

granted on runtime.

5https://developer.android.com/reference/android/Manifest.permission.html
6https://developer.android.com/guide/topics/manifest/permission-element.html

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/manifest/permission-element.html
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TABLE 4.2: Android permissions groups and the dangerous permissions per group.

Permission Group Dangerous Permissions

Calendar
READ_CALENDAR
WRITE_CALENDAR

Camera CAMERA

Contacts
READ_CONTACTS
WRITE_CONTACTS
GET_ACCOUNTS

Location
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

Microphone RECORD_AUDIO

Phone

READ_PHONE_STATE
CALL_PHONE
READ_CALL_LOG
WRITE_CALL_LOG
ADD_VOICEMAIL
USE_SIP
PROCESS_OUTGOING_CALLS

Sensors BODY_SENSORS

SMS

SEND_SMS
RECEIVE_SMS
READ_SMS
RECEIVE_WAP_PUSH
RECEIVE_MMS

Storage
READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

4.1.3 Case study

In this scenario, we describe how typical users utilize and perceive fitness trackers

and the related applications. We assume a user is equipped with an Android 5.1

(AOI model) smart phone and decides to buy a Fitbit tracker.

Upon buying the device, the user is required to create a Fitbit account on the Fit-

bit website to access the data processed by Fitbit. Moreover, to connect the device

with the smart phone, the user is required to install the Fitbit app. When installing,

the Fitbit app7 asks for the following user permissions to access smartphone re-

sources:

• Identity

• Contacts

• Location
7https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en

https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en
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• SMS

• Photos/Media/Files

• Camera

• Bluetooth connection information

• Device ID and call information

It should be noted that the above permissions do not correspond exactly to the

group names in Table 4.2, which are for development purposes.

Given that the user is equipped with Android AOI model, his option is either

to accept or reject all the permissions asked by the Fitbit app. Users having the

latest versions of Android can select which permission to grant. Additionally, during

the registration, Fitbit app requires the following further personal information as

mandatory.

• Name

• Gender

• Height

• Weight

• Birthday

After the user has registered and installed the Fitbit app, he/she can start exercis-

ing and enjoying the benefits of the Fitbit services. The user’s data can be analyzed

and viewed in the Fitbit dashboard and can also be exported in csv/xls format.

Third party sharing

Aside from the main Fitbit App, there are a lot of third party apps that are compat-

ible with the Fitbit devices and can be authenticated to the Fitbit server. This trend

is becoming popular today among different third parties. These further apps can

improve and provide new features to support the user’s fitness routine/goals. For

a working example, the Lose IT! app8 will be used. It helps users to lose weight by

8https://play.google.com/store/apps/details?id=com.fitnow.loseit&hl=en

https://play.google.com/store/apps/details?id=com.fitnow.loseit&hl=en
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TABLE 4.3: Specific permissions requested by the Fitbit and Lose IT! app to Android OS

Fitbit app Lose IT! app

Main

INTERNET INTERNET
ACCESS NETWORK STATE ACCESS NETWORK STATE
WRITE EXTERNAL STORAGE WRITE EXTERNAL STORAGE
CAMERA CAMERA
WAKE LOCK WAKE LOCK
ACCESS FINE LOCATION ACCESS FINE LOCATION
GET ACCOUNTS GET ACCOUNTS
BLUETOOTH BLUETOOTH
BLUETOOTH ADMIN
READ CONTACTS
NFC
READ EXTERNAL STORAGE
RECEIVE BOOT COMPLETED

Other

com.fitbit.FitbitMobile.permission.
C2D MESSAGE

com.android.vending.BILLING

com.google.android.providers.gsf.
permission.READ GSERVICES

com.fitnow.loseit.permission.
C2D MESSAGE

com.google.android.c2dm.
permission.RECEIVE

com.google.android.c2dm.
permission.RECEIVE
com.microsoft.band.service.access.
BIND BAND SERVICE

estimating the calorie intake of the user by taking a picture of the user’s meal. When

installing the Lose IT! app, it asks for the following permissions on the smartphone

resources as mandatory:

• In-app Purchase

• Identity

• Location

• Photos/Media/Files

• Camera

Table 4.3 summarizes the Android OS permissions requested by the Fitbit app

and the Lose IT! app. After installing the Lose IT! app, the user is further asked for

the following mandatory information, which is similar to the set of in-app permis-

sions asked by Fitbit:

• Birthday
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• Height

• Weight

• Gender

In order to enable Lose IT! to process the data collected by the Fitbit tracker, the

user is redirected to the Fitbit permission page which asks the user for the permis-

sion to allow or deny Lose IT! to the following Fitbit data:

• Sleep

• Food and water logs

• Activity and exercise

• Weight

Given the similar aims of the two apps, some of the data are used by both Fitbit

and Lose IT! such as weight and food logs since both are used for computing the

absorbed calories. In our running example, absorbed calories will be referred to

Lose IT! and the weight will be referred to Fitbit.

When a user accepts to share, for instance activity and exercise, he/she may be

unaware of the effective personal data both sensed and estimated (as shown in Ta-

ble 4.4) that he is disclosing with different intensity of activity (e.g., sedentary, very,

fairly, and lightly active). Thus, due to the lack of adequate explanation and defi-

nition in the permission warnings [55, 114], users may not have understanding of

what sharing implies (in our case activity and exercise), and as a result, they could

take unsafe decisions.

4.1.4 Third party service model

The sharing of user information with third parties is shown in Figure 4.1. We created

a simplified model of the complex scenario of third party service chains.

Third Party (TP) apps, such as Lose IT!, Strava and RunKeeper in the figure,

require an integration with Fitbit to comply with their API Terms of Service and

must be registered at dev.fitbit.com, specifying the set of data they will use in their

service among those exposed by the Fitbit API.



52 Chapter 4. Fitness IoT Scenario

FIGURE 4.1: Architecture combining the service model of today’s fitness trackers with
the PerNANDO framework.

A user who wants to use the feature of integration between the third party app

and Fitbit will be redirected to Fitbit’s authorization page in which, through the

OAuth 2.0 protocol, he/she has to allow/deny access to Fitbit data required by the

third party app. For the case of the Lose IT! app, the data required from Fitbit are

sleep, food and water logs, activity and exercise, and weight. Table 4.4 reports a

subset of data exposed by the Fitbit API. It is worth noting that each category of

data (i.e., Scope in the Table 4.4) can include a subset of personal data.

Moreover, the current fitness sharing model is more complex since the accessing

TP app itself can provide to Fitbit the user data it collects or elaborates (i.e., two-way

access). In other terms, some sets of user data are synchronized to Fitbit given the

user permission. For instance, Lose IT! reads the activity and sleep data from the

Fitbit server, writes the food log on the Fitbit server and reads the calories burned

from the Fitbit server.

Definition 1 (User Data Sets). We define S, A and F ∈ D as the sets of possible user

information asked by an app in the installation process, respectively, as the following:

S: smartphone’s data required by the app through the operating system’s permission mecha-

nism (smartphone permission set),

A: personal data required by the Application (in-application set) for the service it provides,

F: fitness data shared by the original service, Fitbit in our example, (inter-application set),

as subsets of the set of all the possible user information, D.
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TABLE 4.4: Subset of Fitbit data provided by the Fitbit API. Each category (scope) in-
cludes further data items.

Scope Data Subsets (F data sets from Fitbit)

Activity

- activities (calories, distance, duration, steps):
- activity logging - based on the activities in a catalog (running,
bicycling, walking, etc.)
- activities_calories -includes tracked activity + manually
logged activities + BMR
- activities_caloriesBMR - only BMR calories
- activities_activityCalories - the number of calories burned during the
day when the user is active above sedentary level, including BMR
- tracker_activityCalories - similar to aforementioned by its calculated
using only mbox tracker data (i.e., without BMR)
- tracker_calories - calories burned inclusive of BMR according to
movement captured
- goals (caloriesOut, distance, floors, steps)
- summary (activityCalories, caloriesBMR, caloriesOut, distance,
elevation, fairly/lightly/very ActiveMinutes, floors,
sedentaryMinutes, marginalCalories, steps)
- steps, distance, floors, elevation

Heartrate
- restingHeartRate
- heartRateZones max and min
- heartRateZones name (Out of Range; Fat Burn; Peak; Cardio)
- heartRate zones minutes
- heartRateZones caloriesOut

Profile
- weight and height
- encodedId, memberSince, etc.
- averageDailySteps
- strideLengthWalking and strideLengthRunning
- aboutMe, avatar, city, country, dateOfBirth, fullName, gender, etc.

Sleep

- timeInBed
- minutesAsleep and minutesAwake
- awakeCount, awakingDuration
- restlessCount, restlessDuration
- startTime
- minutesToFallAsleep
- efficiency
- minutesAfterWakeup
- goals data
- summary data

Nutrition

- food_logs (foodName, mealTypeId (breakfast,morning snack,
lunch, etc.), amount, date, favorite, brandName, calories)
- water_logs (amount, date and unit)
- food_goal (foodPlan, calories)
- water_goal
- nutritionalValues associated to a specific food divided in Common,
Vitamins and Dietary Minerals (calories, carbs, fat, fiber,
protein, sodium) - food_locales - specifies the country

... ...
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Definition 2 (Third Party Data Sets). A Third Party Fitness App, TPi, requires permis-

sion for user information sets composed of Si ∈ S, Ai ∈ A, Fi ∈ F where, each smartphone

user data sx ∈ Si(1 ≤ x ≤ |Si|), in-application user data ay ∈ Ai(1 ≤ y ≤ |Ai|), and

inter-application user data fz ∈ Fi(1 ≤ z ≤ |Fi|).

Thus, a permitted TP has all these pieces of information, i.e., S, A, F sets, for a

single user as well as of the other users who granted permission to access their data.

For a user, it is hard to maintain track of all his/her shared information especially as

the number of third party apps installed on his/her device tends to increase. More-

over, it is hard to figure out the data that can be inferred not just from his/her own

data, but from the entire TP dataset.

4.2 Fitness IoT Data Model

Previous section provides an overview of the current Fitness IoT scenario. The com-

plexity clearly calls for a privacy manager that can ease the user’s permission setting.

For this to be realized, this section aims to derive the data permission model for the

IoT fitness domain, which is one of the task of PDM, as discussed in Chapter 3. More

importantly, the data permission model is made sure to be GDPR-compliant.

Using the same scenario in the previous section, other major fitness trackers app

that can provide data to other third party fitness apps are also considered for the

data model.

Table 4.5 shows a comparison of the data collection practices of four existing

fitness trackers. We selected these trackers based on their popularity9 and the ma-

turity of their software solutions (i.e., working Web API for integration). Our list is

comprised of Fitbit10, Garmin11, Jawbone12, and Misfit13.

As shown, the requested data can be categorized into three sets. The first set of

requested data involves the smartphone permissions, which are requested during

the installation or the first use of the app. We define this set as the S set. The next set

9https://www.wareable.com/fitness-trackers/the-best-fitness-tracker
10https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile
11https://play.google.com/store/apps/details?id=com.garmin.android.apps.

connectmobile
12https://play.google.com/store/apps/details?id=com.jawbone.up
13https://play.google.com/store/apps/details?id=com.misfitwearables.prometheus

https://www.wareable.com/fitness-trackers/the-best-fitness-tracker
https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.jawbone.up
https://play.google.com/store/apps/details?id=com.misfitwearables.prometheus
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TABLE 4.5: Comparison of permissions asked by Fitness Trackers and the fitness IoT
Data Model used for this study.

Fitbit Garmin Jawbone Misfit Our Data Model

(S Set) • Bluetooth • Bluetooth • Bluetooth • Bluetooth • Bluetooth
Phone • Camera • Calendar • Camera • Camera • Camera

• Contacts • Camera • Contacts • Contacts • Contacts
• Device & Call • Contacts • Device & Call • Device & Call • Identity
• Identity • Device & Call • Identity • Identity • Location
• Location • Identity • Location • Location •Media & Music
• Photos/Media • Location •Microphone • Phone •Mobile Data
• SMS • Phone • Phone • Photos/Media •Motion & Fitness
• Storage • Photos/Media • Photos/Media • SMS • Phone

• SMS • SMS • Storage • Photos
• Storage • Storage • SMS
•Wifi Inf. • Storage

(A set) • Birth date • Birth date • Birth date • Birth date • Birth date
In-app • Gender • Gender • Gender • Gender • Gender
Requests • Height • Height • Height • Height • Height

• Name (First) • Name (Display) • Name (First) • Name (Full) • Name (First)
• Name (Last) • Name (Full) • Name (Last) • Occupation • Name (Last)
•Weight •Weight •Weight (optional) •Weight

•Weight

(F Set) • Activity & Exercise • Full Fitness data • Basic Info • Device Activity & Exercise
Fitness – activity minutes • Location • Extended Info • Goal • activity minutes
Data – calories activity • Sync Device • Heartrate • Profile • calories activity

– distance •Meals • Session • distance
– elevation •Moves • Sleep • elevation
– floors • Sleep • Summary • floors
– steps • Friends list – activity calories • steps
• Devices & Settings – calories • Devices & Settings
• Food & Water Logs – distance • Food & Water Logs
• Friends – steps • Friends
• Heartrate • Heartrate
• Location & GPS • Location & GPS
• Profile • Profile
• Sleep • Sleep
•Weight •Weight

Entity Types
• Fitness/Health
apps

(G Set) • FP (corp.)
GDPR • FP (gov’t.)

• SN (friends)
• SN (public)
• other apps

Purposes
• convenience
• commercial
• health
• safety
• social
• Frequency
• Retention
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of requested data is requested inside the fitness tracker application, usually as the

user signs up for the app’s online services. We define this set as the A set. Finally, the

app collects fitness data during the use of the tracker, which we define as the F set.

More importantly, the data in the F set are by default only available in the tracker’s

own application, but other TPs can ask for permission to gain access to this data.

The final column in Table 4.5 is the most common set of data items collected by

the four trackers, taking into account the different mobile operating systems. More-

over, it includes also the G set which concerns the GDPR requirements that will bee

explained in Section 4.2.4. All the data items in the last column form the Fitness IoT

Data Model for this study.

4.2.1 The S set (smartphone permissions)

The request of smartphone permissions differs not only by fitness tracker but also by

mobile OS. We took into account Android, iOS, and Windows Mobile, acknowledg-

ing that Android permissions changed from AOI in version 5.9 and below to AOFU

in version 6.0 and above. While Table 4.5 considers the Android AOI permissions re-

quested by various fitness apps, Figures 4.2a and 4.2b show the Fitbit’s permissions

for Android AOFU and iOS for comparison.

The final data model for the S set is composed of the mostly commonly used

set of the different mobile OS permissions requested by the fitness apps in Table

4.5. The background App and Notifications iOS phone permissions are not taken into

account since these permissions are not relevant for third-party data access. Other

permissions in Android AOI, which are not general, are also not taken into account.

The permission for Photos/Media/Files in Android AOI was divided into Photos and

Media & Music to take into account the granularity of iOS permissions. We finally

have a total of 12 permissions for the S Set.

4.2.2 The A set (in-app requests)

In addition to the smartphone permissions that fitness tracking apps ask, they also

gather information inside their application, e.g., as part of the sign-up process for

their online services. This data usually includes the user’s First Name and Last Name,



4.2. Fitness IoT Data Model 57

(A) S set (Android 6.0+ Model). (B) S set (iOS Model).

(C) A set. (D) F set.

FIGURE 4.2: Examples of Fitbit permission requests.
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Birth Date, Gender, Height and Weight. Note that these data are mandatory for all

fitness trackers in Table 4.5; the only optional piece of information is Misfit’s request

for the user’s Occupation. Figure 4.2c shows the A set for the Fitbit app (other apps

are similar), as reported in Table 4.5. A total of 6 permissions are considered as part

of the A set.

4.2.3 The F set (fitness data)

The F set contains the data fitness trackers collect while the user is using the device.

Some of this data is automatically collected by the tracker (e.g., steps, distance) and

shared with the device’s own fitness tracking app (e.g. the Fitbit device shares fitness

data with the Fitbit app), while the user has to enter other data manually into the app

(e.g., food and water logs, friend list).

While this data is "shared" with the native fitness tracker TP by default (since this

TP serves as the collecting TP), most trackers have an API that allows users to further

share this data with other TPs in exchange for additional fitness or health services

the user can benefit from. Table 4.5 shows the data that can be shared to other TPs

from the four considered fitness apps. In this comparison, Fitbit gives the users more

granular control over which of the fitness data can be shared with other TPs through

their API, as shown in Figure 4.2d14. Additionally, these settings can be revisited

in their web app15, where users have the option to revoke the granted access. The

other apps in Table 4.5 also give users control, but only give users the option to

allow/deny the other TP access to the entire F set. We follow Fitbit’s permission

model for this set but give users even more fine-grained control over Activity and

Exercise data, breaking these permissions down into steps, distance, elevation, floors,

activity minutes, and calories activity. We implement this additional granularity

because these data involve a particular inference risk, potentially exposing some of

the other data in this set [181]. A total of 14 permissions are included in the F set.

Note that the F set permissions are repeated for each additional TP that requests

access to this data. As such, these permissions are not for the native app of the fit-

ness tracker, but for other TP apps that the user desires to use and allow access to

14https://dev.fitbit.com/build/reference/web-api/oauth2/
15https://community.fitbit.com/t5/Flex-2/How-do-I-revoke-access/td-p/2701359

https://dev.fitbit.com/build/reference/web-api/oauth2/
https://community.fitbit.com/t5/Flex-2/How-do-I-revoke-access/td-p/2701359
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his/her fitness tracking data. In this study, instead of taking into account individual

TPs, we use the PPIoT EntityType, which will be discussed in Chapter 6.1, to investi-

gate which group category of TP apps (namely "who") the user prefers to share with.

This parameter has been shown to be important in determining users’ privacy set-

tings [108]. Since Entity Types are intimately related to GDPR-based requirements,

these permissions are included in the G set.

4.2.4 G Set (GDPR-based permissions)

The G set includes permissions that are based on GDPR requirements. We report the

exact terms used in PPIoT Ontology to unambiguously represent these permissions.

The purpose of data collection, hasReason, includes safety, health, social, commercial

and convenience. The frequency of data access, hasPersistence, includes continuous

access, continuous access but only when using the app, and separate permissions for each

workout. For the retention period of collected data, hasMaxRetentionPeriod, permis-

sions include retain until no longer necessary, retain until the app is uninstalled, and

retain indefinitely.

Given today’s data sharing model, fitness data can be shared to different fourth

party apps, which are mostly composed of fitness/health apps16 or social media

apps17. For this reason app categories are divided into fitness/health apps, social

media apps, and other apps to take into account the minority apps (e.g., game apps

that access fitness data). Additionally, work-related fitness programs are also in-

cluded given the increasing adaption of employers to promote wellness of their em-

ployees [52]. Fitness programs allow to reduce stress in work environments. Mainly,

these entities can be categorized into corporate fitness programs or government fit-

ness programs [22] (e.g., for military).

Thus, the types of TPs (instances of EntityType) that can request access to the

user’s Fitness data include health/fitness apps, Social Network (SN) apps (public or friends

only), other apps on the user’s phone, and corporate and government fitness programs.

16https://www.fitbit.com/partnership
17sharing to social media: https://help.fitbit.com/articles/en_US/Help_article/2106

https://www.fitbit.com/partnership
https://help.fitbit.com/articles/en_US/Help_article/2106
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We did not include the hasMethod property since it involves technical background,

as stated in Section 2.6, which may not be known to the users. For simplicity, we as-

sume that the TPs’ hasMethod data access are encrypted.

4.2.5 A Conundrum of Settings

We note that Fitbit asks for a staggering total of 24 permissions across the S, A, and

F data sets. Our data model, which takes a superset of permissions asked by all

four fitness trackers, more granular Activity and Exercise data, and the additional

G set, includes 45 permissions in total. Moreover, if the user wants to share their

fitness data (F set) with one or more additional health or fitness tracking apps, the

permissions for this must be decided upon for each additional TP individually.

Most current fitness tracker apps do not ask these permissions in a very clear

manner, and the settings are often hard to find in case the user wants to change them.

That said, even with a more usable UI for making these settings the sheer number of

them is arguably a significant burden to the user and cause of possible errors. This

is why we advocate the use of semi-automated interactive privacy recommendations

to partially relieve users’ burden of setting each of these individual permissions and

meanwhile maintain the control on privacy preferences.

4.3 Data Collection

This section provides the details of our data collection. Mainly there are two separate

datasets for the AID-S and PDM. For the AID-S, the data needed are real fitness data

from users. The real content will be studied to see which of data have correlation to

the others. On the other hand, PDM does not require real content of the data but the

user’s perception on sharing such data. Thus, it is more difficult to obtain such data.

4.3.1 AID-S Dataset

For the AID-S inference analysis, we used the public data set of Fitbit users from the

Open Humans Foundation18 and the crowd-sourced Fitbit dataset generated from

18https://www.openhumans.org/

https://www.openhumans.org/
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(A) FitPro App (B) In-app requests (A set)

(C) Phone requests (S set) (D) Fitness data (F set) given to TP
Entity Types (G Set)

FIGURE 4.3: Fitpro (app prototype).
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(E) Purpose of collection (G set) (F) Frequency & retention (G set)

FIGURE 4.3: Fitpro (app prototype) (cont.)

the respondents of a distributed survey via Amazon Mechanical Turk 19 by Furberg

et al. We used a total of 19,817 samples from 49 users. As of the time of writing, the

first and the second dataset store time series data of 14 and 35 Fitbit users respec-

tively.

The datasets consist of time series data regarding the user’s number of steps

taken, distance traveled, minutes of activity, floors taken, elevation, activity calories,

weight, minutes of sleep, and heartrate information. For some users there is no in-

formation about some features, i.e., elevation and floors, which are available only for

trackers with an altimeter, and heart rate information for trackers that do not have

the heart rate monitor. We considered only the daily data series from the tracker

device excluding the manually entered activity values. For example, we considered

the resource path activities/tracker/steps (data acquired exclusively from the de-

vice) and not the path activities/steps (which includes also the manually entered

19https://zenodo.org/record/53894#.W-76oehKjIU

https://zenodo.org/record/53894#.W-76oehKjIU
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values when an activity is logged by specifying distance and time) 20.

The datasets were preprocessed, noise was removed (e.g., empty sets when users

are not using the tracker), and ranges were normalized resulting in a total of 6,229

clean samples. In machine learning approach, required training sample size varies

depending on the problem complexity (e.g, no. of classes and features) and classifier

complexity. Following the rule of thumb that a sample size must have at least 50 for

small sets features (e.g., 5-10 features) [152] (e.g., the same for bayesian approach in

[211]), we conclude that our sample size is enough for this study.

4.3.2 PDM Dataset

The data collection for PDM is more challenging. To collect a sample of fitness IoT

permission settings for the PDM User Profiling and Recommendation, we created

a mock app, which will be discussed further below, that follows the PPIoT-based

and GDPR-compliant privacy model. Then, we recruited 310 participants through

AMT to simulate our mock app. After data preprocessing, we utilized a total of 295

samples.

We asked people to only participate if they were active Fitbit users21, and checked

this requirement by asking participants to enter the initial and last few digits of their

Fitibit serial number. The participants consisted of 34.2% males and 65.8% females,

had mean age of 35, and were generally highly educated (62% had at least a bach-

elor’s degree). We restricted our study to fitness tracker users to detect the real

preferences of target users.

We developed a prototype fitness app named FitPro, which systematically asked

for all of the permissions in the Data Model for Fitness IoT that we defined in Chap-

ter 4.2, as shown in the last column of Table 4.5. Each participant used this proto-

type, followed by a questionnaire.

20https://dev.fitbit.com/docs/activity/#activity-time-series
21We restricted our study to Fitbit users rather than users of any fitness trackers to make sure that

our sample had a more homogeneous existing experience with fitness permission-setting interfaces.

https://dev.fitbit.com/docs/activity/#activity-time-series
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4.3.3 FitPro Prototype Fitness App

The goal of the FitPro prototype fitness app is to collect privacy preferences of the

participants in a semi-realistic environment22. As shown in Figure 4.3, the permis-

sion setting interface of FitPro consists of the following parts:

• Figure 4.3b shows the permissions UI for the A set—the data users are asked to

provide as they first open the app and sign up for the fitness tracker’s services.

In most existing fitness trackers (including the ones discussed in Section 5.1)

these data are mandatory. In our simulation they are optional, allowing us to

measure whether participants would decide to withhold any of these data.

• Figure 4.3c shows the permissions UI for the S set—the permissions the TP

needs to attain from the smartphone. These permissions are usually asked all

at once on installation or one-by-one on first use, but we decided to integrate

them into our permission-setting interaction by requesting them on a separate

screen in our FitPro app.

• Figure 4.3d shows the UI for the permissions to share the collected fitness data

(F set) with other TP Entity Types (G set); as such, this UI combines the request

about "what data" can be accessed by "who". As discussed in Section 4.2.3,

sharing fitness data with other apps is a common phenomenon; 40.33% of the

participants in our study indicated that they had permitted other apps to ac-

cess their fitness data. Rather than setting these permissions on an ad-hoc basis

per requesting app, our prototype allows the user to set these permissions for

the various types of entities.

• Figures 4.3e and 4.3f show the permissions UI screens for the G set which ad-

dress the GDPR requirements —specifically, the allowed purposes for which

data may be accessed, and the frequency and retention period of the accessed

data, respectively.
22The prototype can be used at http://pdm-aids.dibris.unige.it/simulation.php

http://pdm-aids.dibris.unige.it/simulation.php
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4.3.4 Questionnaire

After using the prototype, we asked participants to fill out a questionnaire23. The

goal was to investigate if certain user traits, some of them already studied in the

literature, have relations with the users’ privacy behaviors collected through FitPro.

Specifically we aimed to measure the users’ privacy-related attitudes (trust, privacy

concerns, perceived surveillance and intrusion, and concerns about the secondary

use of personal information), the negotiability of their privacy settings, their social

behavior (social influence and sociability), exercise tendencies (a proxy for their at-

titude and knowledge about fitness tracking), and demographic information. The

questions used in this study are presented in Table A.1 in the Appendix.

Privacy Attitude

Our privacy attitude questions consist of 5 topics that were used to study different

attitudes. Questions on user’s trust in app provider were derived from [96] and

[175]. Questions on general privacy concerns are based on [123] which was orig-

inally based on [168]. User’s perception of surveillance, intrusion, and secondary

use of personal information are from [206]. Perceived intrusion and secondary use

of personal information questions are originally from earlier work by [205] and from

[168], respectively. These user attitudes are used extensively in the privacy literature

and are proven to have significant effects on users’ privacy behaviors.

Negotiability of Privacy Settings

Users’ preferences are rarely static, and users’ "preference dynamics" (i.e., the rate

at which their preferences evolve) tend to differ per person and per domain [150].

Moreover, in the field of privacy users’ decisions tend to depend on the risks and

benefits of disclosure, as we found in previous work [92]. Following this approach,

we take the negotiability of users’ privacy settings into account in this study and

we measure it as event-based change of preference: we ask users’ to re-assess their

disclosure decision for each item in the S, A, and F sets, imagining that the benefits

or risks of disclosure increase or decrease (i.e., four re-assessments for each item).

23http://pdm-aids.dibris.unige.it/questionnaire.php

http://pdm-aids.dibris.unige.it/questionnaire.php
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Social Behavior

Sociability (i.e., the ability to interact) also is a factor to predict links of users [166]

not necessarily with similar preferences. We explored this dynamic as a potential

motivator for sharing one’s exercise activity by creating a questionnaire regarding

social influence and sociability in the fitness domain.

Exercise Tendencies

These questions are grouped in two topics: exercise attitudes and healthy living

expertise. The former are fully self-developed. Our aim is to investigate if users’

exercise attitude (e.g., the intensity of exercise, type of exercise, how healthy users

are, how important exercise is to the users, the reason for exercising) influence their

tendency to allow fitness apps to collect and share their data. The healthy living

expertise questions are taken from [91], and measure how knowledgeable people are

about fitness tracking. Domain experts tend to be less concerned about their privacy

than domain novices, hence we expect an association between these questions and

participants’ privacy settings.

User Demographics

User demographics such as gender, age, location, and education are often used to

improve recommendation accuracy [150]. In our questionnaire, we introduce this

category to investigate if there is an association between users’ privacy settings and

their demographic attributes, as resulted in previous studies (cf. [96]).
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Chapter 5

AID-S Inference Protection

The need for a service that enables the user to take informed decisions is relevant.

This is due to the fact that not only the number of third party applications increases

but also the number of heterogeneous IoT devices. The Adaptive Inference Discov-

ery Service (AID-S) of the PerNANDO Framework, as shown in Figure 4.1, is pro-

posed to address such issue [180]. The core concept of AID-S is to provide a service

that aims to compute the risk of possible inference of private information.

As discussed in Chapter 3.2.2, the Inference matrix, Ij,k(TPi), expresses the possi-

bility for a TP to infer personal data aj which the user denied to share when he/she

installed the app or while using the app. This kind of inference is often called in

the literature as attribute disclosure [173] and means inferring the value of private

data based on the integration and correlation of non-private data [5]. AID-S aims to

estimate this risk matrix for each TPi.

5.1 Inference Graphical Model

We use a graphical model to depict the network of correlations among the user data.

This graph will be used to identify the possible inferences using Bayesian Networks.

5.1.1 Bayesian networks

Bayesian Networks (BNs) are graphical representations of knowledge. They are Di-

rected Acyclic Graphs (DAGs) which are composed of nodes and arcs that repre-

sent the variables and their corresponding probabilistic relations, respectively [144].
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These networks are used in broad range of applications such as from Business In-

telligence (e.g., Online Analytical Processing (OLAP)), medical (e.g., service perfor-

mance analysis [1] and breast cancer prognosis and epidemiology [76]), biological

sciences (e.g., gene expression analysis by [58]) and many more [160]. BNs are ef-

ficient in handling applications filled with deep uncertainties by combining prior

knowledge with observational data in order to infer and model causal relations

[160].

There are two general rules that must be respected in order for a network to be a

BN:

• it should be a DAG, which means that by following the directed arcs, it should

not be possible to return to the parent node [101],

• the Markov condition must be satisfied which states that each variable in the

DAG must be conditionally independent of its non-descendant, given the set

of all its parents [133].

Therefore, for a DAG (G(V, A) where V and A are the set of random variables

and arcs, respectively), the factorization of the joint probability distribution of the

set V, considering the Markov Condition, can be computed as:

P(X1, X2, ..., Xv) =
v

∏
i=1

P(Xi|Pai) (5.1)

where Xi ∈ V = {X1, X2, ..., Xv} is the ith random variable in the Graph G, and Pai is

the parents’ nodes of the ith random variable. Equation 5.1 shows the explicit need

for the conditional probability between itself and its corresponding parent. Then,

the chain rule will be used to compute the joint probability of all nodes.

To create a BN, the structure of the network (the topology given by the DAG)

and the conditional probabilities of the parent/descendant nodes must be taken into

account. Respectively, the topology and the conditional probabilities can be found

through the use of Structural and Parameter Learning algorithms.
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Structural learning

Structural Learning aims at finding the topology of the BN. These algorithms can be

classified into three major groups, namely, constraint-based algorithms, score-based

algorithms, and their combination known as hybrid algorithms.

Constraint-based algorithms are based on conditional independence statements

(i.e., constraints). These algorithms learn the topology of the network through a

conditional independence test (e.g., X2 test) to create the edges among the variables

and add the direction of the edges that satisfy the d-separation criterion [145].

Score-based algorithms assign a score that corresponds to the goodness of a BN

structure with respect to the data set. The score is evaluated for all the possible

candidates of a BN structure which is generally maximized through heuristic search

techniques.

For a large number of variables, constraint-based algorithms are superior over

the greedy search score-based algorithms. However, relying on d-separation state-

ments always results in an incomplete directed network. Also, they are very prone to

failures in the dependence tests [172]. For a smaller data set, score-based algorithms

tends to be more efficient as it can search in the space all the possible structures and

find the optimum. These factors must be taken into account in choosing the learning

algorithms.

It is also possible to combine the two strategies, which are generally called hybrid

algorithms [172]. In this case, the common approach is to create the undirected graph

through the constraint-based algorithms while the directions of the arcs are learned

by the score-based algorithm.

Using the bnlearn1 package for the R2 language enables us to implement: constraint-

based structure learning algorithms (i.e., Grow-Shrink (GS), Incremental Association

Markov Blanket (IAMB), Fast Incremental Association (Fast-IAMB), Interleaved In-

cremental Association (Inter-IAMB), Max-Min Parents and Children (MMPC), Semi-

Interleaved Hiton-PC (SI-HITON-PC), CHOW-LIU, and ARACNE), score-based struc-

ture learning algorithms (i.e., Hill-Climbing (HC), Tabu Search (Tabu)) and hybrid

1http://www.bnlearn.com/
2https://www.r-project.org/

http://www.bnlearn.com/
https://www.r-project.org/
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structure learning algorithms (i.e., Max-Min Hill Climbing (MMHC), General 2-

Phase Restricted Maximization (RSMAX2)).

Parameter learning

The estimation of the prior and conditional probabilities related to the arcs have to

be done after the topology is completed. Parameter learning aims to estimate the

probabilistic relations of the BN structure.

bnlearn also comes with parameter learning that uses Maximum Likelihood pa-

rameter estimation for both discrete and continuous data sets and Bayesian Estima-

tion for the discrete data sets [161].

5.2 Experimental Methodology

5.2.1 Objectives and description

Goals. In this section, we describe our methodology for experimentally applying

the principles of the framework. Specifically, the aim of this section is to present a

practical approach to implement the AID-S inference reasoning task (named Infer-

ence risk computation in Table 3.1) by modeling the dependencies among user data

through a BN.

BN is used since our goal is to create a graphical inference network and extend

the current network of inferences in the literature. Also, BN is a probabilistic ap-

proach used in modeling risks such as in [56], which is suitable for this study.

Steps. As it arises from the framework description, our approach does not perform

any traffic analysis aimed to identify possible inference risks based on the content of

the shared data. Our approach is blind with respect to the user data since we do not

analyze nor store any data. The inference risk prediction is essentially based on the

knowledge stored in the network in terms of dependencies among data.

Our approach is an advantage for the user since, as a third party, the framework

does not need to know the content of the data, only its description. This is a safer

for users compared to other approaches. However, our functionality is limited to

computing inference risk, but that is all the AID-S service needs to achieve.
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The use of BN makes it easier for the process of extending the graph with new

personal data, given the availability of knowledge about their dependencies. Two

approaches to acquire knowledge and extend the inference graph are the following:

• identifying the dependencies using a ground-truth dataset,

• exploiting the studies available in the literature and the correlation indexes

provided in these studies.

We will use both the approaches and will validate them experimentally. The

steps are as follows:

• Step 1: we will use the first approach to identify the dependencies among fit-

ness data using the Fitbit dataset.

• Step 2: we will use the second approach to identify the dependencies among

other personal data taken from the literature.

These two steps allow to build the BN that will be used in the LooseIT! app

example to test the approach on a specific case of inference prediction upon a TP

that requires consent for accessing S, A and F user data, as defined in Definition 1,

Sec. 4.1.4.

5.2.2 The ground truth dataset

We used a total of 19,817 samples from 49 users. We obtained the samples from the

Public data set of Fitbit users from the Open Humans Foundation3 and the crowd-

sourced Fitbit dataset generated from the respondents of a distributed survey via

Amazon Mechanical Turk 4 by Furberg et al. As of the time of writing, the first and

the second dataset store time series data of 14 and 35 Fitbit users respectively.

The datasets consist of time series data regarding the user’s number of steps

taken, distance traveled, minutes of activity, floors taken, elevation, activity calories,

weight, minutes of sleep, and heartrate information. For some users there is no in-

formation about some features, i.e., elevation and floors, which are available only for

trackers with an altimeter, and heart rate information for trackers that do not have
3https://www.openhumans.org/
4https://zenodo.org/record/53894#.W-76oehKjIU

https://www.openhumans.org/
https://zenodo.org/record/53894#.W-76oehKjIU
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the heart rate monitor. The semantics of Fitbit data that has been used is given in

Table 5.1. We considered only the daily data series from the tracker device excluding

the manually entered activity values. For example, we considered the resource path

activities/tracker/steps (data acquired exclusively from the device) and not the path

activities/steps (which includes also the manually entered values when an activity

is logged by specifying distance and time) 5.

The datasets were preprocessed, noise was removed (e.g., empty sets when users

are not using the tracker), and ranges were normalized resulting in a total of 6,229

clean samples. In machine learning approach, required training sample size varies

depending on the problem complexity (e.g, no. of classes and features) and classifier

complexity. Following the rule of thumb that a sample size must have at least 50 for

small sets features (e.g., 5-10 features) [152] (e.g., the same for bayesian approach in

[211]), we conclude that our sample size is enough for this study.

5.2.3 Experimental Analysis and Evaluation

Deriving the structure and the parameters of the BN

Using bnlearn as explained in Section 5.1.1, the structures of the BNs that best de-

scribe the F data set were learned using 8 out of the 12 standard structural algo-

rithms (4 of the algorithms mentioned in the above section can be only used for

discrete data).

For their corresponding parameters, the bnlearn fitting function was used using

the Maximum Likelihood estimation that is based from the dataset (i.e., 49 users) as

explained in Section 5.1.1.

Validation of the BN

After the creation of the BNs, each of them was validated for their effectiveness. It

was performed through the k-fold cross validation with k = 10. The samples are

randomly divided in k subsets and for each round of validation, the remaining sub-

sets will act as the validation set. The chosen loss function will then compute the loss

estimates for each round. We used the bnlearn’s cross validation function and used
5https://dev.fitbit.com/docs/activity/#activity-time-series

https://dev.fitbit.com/docs/activity/#activity-time-series
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TABLE 5.1: Description of the personal data from Fitbit dataset

BN node Fitbit data Semantics

steps activities-tracker-steps

Daily steps counted by
analyzing the 3-axis ac-
celerometer data

distance activities-tracker-distance

Daily distance calculated
as walking/running steps
per walking/running
stride length, where the
stride is calculated by
height, gender and GPS if
available

elevation activities-tracker-elevation

Daily elevation counted
by tracking changes in
barometric pressure and
movement

floors activities-tracker-floors

Daily floors calculated
as 10 foot increments of
elevation

minutesActivity

-activities-tracker-
minutesVeryActive
-activities-tracker-
minutesFairlyActive
-activities-tracker-
minutesLightlyActive

Calculated as the number
of active minutes per day.
Active minutes are the
average minutes of three
levels of activity: very,
fairly and lightly active

activityCalories
activities-tracker-calories

Calories burned per day
when user is active above
sedentary level and ex-
cluding manually logged
activities.

weight body-weight and weight-log

Daily measure of weight
extracted from per day
weightLog and from body
time series

minutesAsleep sleep-minutesAsleep

Minutes in a day in which
the asleep pattern is rec-
ognized

heartrate restingHeartRate

The user’s heart beats
when still. It is estimated
from the heart rate taken
when the user is awake
and asleep.
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FIGURE 5.1: The chosen BN generated from CHOW-LIU algorithm for the F data set.

the Gaussian Log-Likelihood (also known as negative entropy or negentropy) as the

loss function for the validation [161, 199]. Minimizing the negative log-likelihood

is the same as maximizing the likelihood. The negative log-likelihood of the vali-

dation set is estimated from the BN derived from the training set for each round of

validation.

The validation was executed for 100 times to the 8 BNs that were obtained as

described in the previous subsection. The expected loss measures are reported in

Table 5.2 with their corresponding standard deviation, σ.

TABLE 5.2: BN learning algorithms comparison (negative log-likelihood loss and its
corresponding standard deviation, σ, below).

MMPC SI-HC-
PC HC TABU MMHC RSMAX2 CHOW-

LIU ARACNE

-8.183 -8.185 -10.34 -10.34 -10.3 -10.31 -40.35 -41.2
0.009 0.0089 0.011 0.009 0.0082 0.01 0.379 0.287

Table 5.2 shows that the best candidates for our BN (i.e., those with the highest

negative value) are achieved by CHOW-LIU and ARACNE. However, ARACNE

does not have a possible orientation of arcs that is fully directed and acyclic which

does not make it a BN as stated in Section 5.1.1. Thus, we chose the structure of our

BN from CHOW-LIU. The resulting BN is shown in Figure 5.1.
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The chosen BN has been further evaluated by running prediction for each node

and computing its accuracy. This was done using k-folds of the dataset (as explained

above), and was run for 100 times. The Mean Squared Error (MSE) was used to

compute the difference between the observed and predicted values for each node in

the network. The error percentage and their corresponding standard deviation, σ,

has been reported in Table 5.3a. It can be seen that the prediction for the f loors node

is almost perfect as it is computed from elevation by Fitbit. The lowest prediction is

obtained by the minutesASleep.

TABLE 5.3: Prediction accuracy of each node of the BN

(A) Mean Square Error and its standard deviation, σ, (continuous node case)

weight distance mins.
Asleep steps act.

Cal. floors heart
rate

mins.
Act. elevation

0.0192 0.0052 0.0515 0.0117 0.0002 <0.0001 0.021 0.0072 0.002
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

(B) Prediction Accuracy and its standard deviation, σ, (discrete node case)

93.05% 94.16% 61.01% 85.58% 81.89% 99.99% 94.97% 87.22% 99.26%
0.0004 0.0003 0.0006 0.0001 <0.0001 <0.0001 0 0 <0.0001

5.2.4 Discretization of continuous variables

AID-S is a service that computes the risk of inference of data not allowed by user

given all the allowed data. In theory, if a user allows AID-S to have all his/her

information, AID-S can simply run them on our obtained BN model to compute the

risk. However, AID-S is a service that may not be allowed by the user and will not be

given the exact values of information. Therefore, the BN model must be discretized

with two states for every data input, namely, allow and deny.

Now that we have learned our BN model and evaluated its strength, we aim to

extract the maximum probability of inference for each nodes to represent the dis-

cretized values. The goal is to present to the user the maximum inference risk of

data not shared by the user.

The final Inference Risk Network will only have 2 states for each node (i.e., True

= presence of information and False = absence of information) that will represent the

maximum probability of true or false inference. The discretization of nodes is also
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needed to connect with the other inference studies that can be found in the literature

which will be explained in the next subsection.

The discretization of states of the continuous variables was performed to extract

the maximum probability of risk (not necessarily the most accurate) that will repre-

sent the True state. We utilized bnlearn’s discretization function that uses interval,

quantile, or Hartemik’s algorithm6. We found that the best case for our variables is

to be represented by 4 states which is the case where it gives the maximum predic-

tion accuracy of the nodes as shown in Table 5.3b. These results were computed with

10-folds of the dataset and were run for 100 times. Among all the nodes, it shows

that the prediction for the node minutesAleep is the weakest and the strongest is

again for the f loors. The results show that this step is coherent with the case of the

continuous variables.

After the discretization, we now choose which probability distribution best fits

to be the prior distribution for the final Inference Risk Network. We use the theory

of maximum entropy, which states that the probability distribution that gives the

maximum entropy represents best as the prior, given the uncertainty [80, 147]. We

computed the maximum entropy for each probability distribution of nodes, given

the different combination of evidences and selected which best represents the net-

work.

Finally, we extracted the maximum/minimum probabilities of the probability

distribution to represent the maximum risk probabilities respectively for the True

and False states of the nodes of the final Inference Risk Network. For the True, the

reasoning is quite straightforward for using the maximum risk. On the other hand,

the risk of inference for False, given that there is no information, should be less than

or (at the worst case) equal to the minimum risk given that there is information.

Therefore, since the goal is to represent the maximum risks, we use the worst case

for the False, which is the minimum risk value.

5.2.5 The complete Bayesian Network

After achieving a BN for the F dataset and completely evaluating its strength in the

previous subsections, we now connect it with other inference studies found in the

6https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf

https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf
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literature. The General Inference Network includes the state-of-art inference studies

that are related to the personal dataset (S and A), as shown in Figure 5.2.

Upon fusion, it was made sure that the resulting graph was still acyclic (does not

loop back to the starting point) and the Markov condition was still satisfied, as stated

in Section 5.1.1. This General Inference Network is our complete model with nodes

that have True and False states that represents the maximum risks of inference.

5.2.6 Description of each node

The green, orange, and blue nodes in Figure 5.2 represent the user data sets of S,

A and F, respectively, while the black nodes are the inference categories that were

found from the literature [31, 217, 142, 200, 140]. Notice that the correlations for S

and A have been defined from the literature as well, but they are green and orange

colored instead of black since they will be used in the example in the next section.

Nodes with two mixed colors represent user data which can belong to both the data

sets.

The correlations found in [31] report that the combination of Android smart-

phone sensor data can infer the user transportation, on-screen finger taps, and location.

Another set of inferences found in [217] state that mining the Android public re-

sources gives the possibility to infer several personal data including the user’s lo-

cation, identity, disease condition, and various activities done using the smartphone

which includes investment transaction.

Health-related inferences are also alarming in relation to the type of data cap-

tured by the trackers. The user heartrate was shown to have correlation with blood

pressure, a great predictor for hypertension, and a great risk factor for coronary heart

disease (not included in the graph) [140]. Other studies report about the correlation

of strokerisk with blood pressure and other personal data [200]. Smoking gestures

are found to be accurately detected (95% accuracy) with wrist-based health trackers

[142]. Further inferences, e.g., about device placement, stress, conversation, emotion, can

be found from the ipShield Inference Database (DB)7 which were also derived from

literature studies.
7http://nesl.github.io/ipShield/infdb.html

http://nesl.github.io/ipShield/infdb.html
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FIGURE 5.2: The general Inference Graph

5.3 Use Case Scenario

This section evaluates the use case formulated in Section 4.1.3 for the LoseIT! TP.

First, we show the subset of nodes related to LoseIT!. Then, we provide an evalua-

tion on the strength of this BN subset. Finally, we compute the risks related to the

LoseIT! app and the needed recommendation to reduce the related risks.

With respect to the framework, this scenario represents the case where a user

decides to install the LoseIT! app. Thus, the AID-S inference check module checks for

possible inferences, given the set of data that the user has accepted to share with the

LoseIT! app.

5.3.1 Subset nodes of the BN involved in the use case

As described in Section 4.1.3, the dataset for the LoseIT! app, TPi, is composed of

camera ∈ Si, height, age, absorbedCalories, gender ∈ Ai, weight, activityCalories,

f loors, steps, distance, elevation, and minutesActivity ∈ Fi. The possible inferences

that could be identified from the graph are BMR, bloodPressure, strokeRisk, and

smoking. Smoking can be inferred from strokeRisk since the conditional dependency
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given by the Bayes’ theorem can be computed reversely. The topology is shown in

Figure 5.3.

Though minutesAsleep is asked in the Lose IT! app, we consider the case when

the user denies its permission (i.e., unchecking the ’sleep’ box in the permission

page) to access her/his minutesAsleep information. The aim is to show the possibil-

ity for Lose IT! to infer this information given its correlation with the other personal

data that the user has allowed to share.

5.3.2 Validation of the subset nodes

As explained in Section 5.2.5, the inference probabilities concerning A and S nodes

are based on the correlations from the literature. However, to provide a complete

evaluation that includes also these nodes, we used a common method using simu-

lated datasets [60]. To simulate the dataset, we used the correlation metrics for each

pair of nodes from the literature and generated a random dataset with the condition

that it must satisfy the reported correlation. Thus, we could validate the BN on all

the nodes concerning the use case.

The validation is run for 100 times and the result is shown in Table 5.4. The

probabilities related to the F dataset did not have a significant change. For the new

nodes (from A and S dataset), the prediction for strokeRisk and smoking have the

least accuracy but have overall an average prediction of 72%.

TABLE 5.4: The prediction accuracy and its standard deviation, σ, for each node of the
BN subset for the LoseIT! app.

weight distance mins.
Asleep steps act.

Cal. floors heart
rate

mins.
Act. elevation

97.02% 94.16% 61% 85.6% 81.89% 99.99% 94.98% 87.22% 99.26%
0.0002 0.0003 0.001 0.0002 0.00002 0.00004 0 0 <0.0001

camera age BMR stroke
Risk

abs.
Cal.

blood
Press. height gender smoking

77.75% 74.52% 89.39% 50.16% 85.5% 62.11% 74.59% 77.75% 53.92%
0 0 0.001 0.003 0 0 0 0 0
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FIGURE 5.3: Inference risks computed for a use case with Lose IT! app.

5.3.3 Risk computation and recommendation

The final Risk Network for the LoseIT! app is shown in Figure 5.3 using the Netica

software8. The prior and conditional probabilities were estimated from the dataset

and the randomly generated dataset using the Maximum Likelihood Estimation as

explained in Section 5.2.3.

The personal data asked by LoseIT! app that are allowed by the user were set to

evidence True in the corresponding nodes (showed as grey nodes in the figure). This

propagates the probabilities in the BN, computing the Inference Risk for minutesAsleep,

bloodPressure, BMR, strokeRisk, smoking and heartRate.

This becomes a concerning issue since the user does not know that these data

items can be inferred by the TP. More importantly, it is alarming in the case of the

sleeping information since it was set to private by the user (i.e., unchecked in the

permission page). Furthermore, knowing these information may lead to more in-

ference of sensitive information such as the user bed-time activities, health-related

information and so on.

The idea of our framework is that the user must be alerted on the possibility

that a TP can infer personal data especially those set as private prior to the granting

of request and support users in finding suitable alternatives to balance the risk of

privacy and the utility of the service.

8http://www.norsys.com/netica.html

http://www.norsys.com/netica.html
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The implementation of AID-S Inference check module described in this study per-

forms the primary task of inference discovery. The second task is to exploit the BN to

compute a configuration of privacy permissions that will be able to reduce the infer-

ence risk (i.e., minutesAsleep) while also taking into account the number of personal

data that the user must set to private in order to preserve the utility of the service.

FIGURE 5.4: Recommended Setting for Inference Protection

The objective is to find the minimal configuration of data items that will break

the correlation on the private data and, thus, lowers the inference risk.

As shown in Figure 5.4, minutesActivity and heartrate information are responsi-

ble for the possibility to infer minutesAsleep information. Therefore, since heartrate

is not asked by LoseIT!, AID-S can recommend the user to set the minutesActivity

as private (i.e., unchecking it in the permission page) as an option that optimally re-

duces the risk. This enables users to take informed decisions and evaluate properly

the permission policies according to their privacy preferences.

It is worth noting that in this use case, unchecking the minutesActivity is the

only possible action of the user given the options available. However, in other con-

ditions, uncheking heartrate would also reduce drastically the risks of minutesAsleep

bloodPressure, and strokeRisk to 0.10%, 0.44%, 36.1%, respectively.
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TABLE 5.5: User Evaluation on AID-S recommendation using χ2 test.

Fitness Data
(A set)

Users w/
4th party

Users w/out
4th party All Users

Steps ≈0 (p>0.05) 6.81 (p<0.05) 8.87 (p<0.05)
Distance ≈0 (p>0.05) 11.23 (p<0.05) 13.51(p<0.05)
Elevation 4.29 (p<0.05) 16.04 (p<0.05) 27.33 (p<0.05)

Floors 1.70 (p>0.05) 14.02 (p<0.05) 23.33 (p<0.05)
Calories Activity ≈0 (p>0.05) 6.32 (p<0.05) 5.55 (p<0.05)
Activity Minutes 0.31 (p>0.05) 15.35 (p<0.05) 19.55 (p<0.05)

Heart rate 8.73 (p<0.05) 8.41 (p<0.05) 19.04 (p<0.05)
Food & Water

Logs
4.43 (p<0.05) 16.18 (p<0.05) 22.73 (p<0.05)

5.4 User Evaluation on the Recommendation

We also assessed the effectiveness of the AID-S recommendation from the users’

feedback. Using the FitPro simulation, as explained in Chapter 4.3.3, we obtained

the users’ preferences for all permission sets (i.e., S, A, F, G sets). In the subsequent

questionnaire, we asked again the respondents for the F Set, but this time with in-

formation on risks that are derived from the Inference Graph (i.e., Figure 5.2). The

recommendation were simply used as part of the questionnaire and we did not fo-

cus on their presentation. We compared the respondents’ privacy preferences before

(i.e., without the risk information through FitPro) and after (i.e., with the risk infor-

mation through the questionnaire) using χ2 test to measure dependency of prefer-

ence change, where large χ2 values with small p-values (i.e., p-value < 0.05) indicate

dependency on the recommendation. We performed the χ2 test separately for users

who have fourth party/parties accessing their fitness data (e.g., LoseIT! app access-

ing their fitness data) and for those who do not have. We also performed the test for

all the respondents which are shown in Table 5.5.

For the respondents with fourth party/parties accessing their fitness data, re-

sults show that the recommendation were significant for Elevation, Food and Water

Logs, and Heart Rate. There were significantly more approvals (from previously de-

nied permissions) than denials (from previously allowed permissions) for Elevation

and Heart Rate, while there were equal number of changes (i.e., denials to approvals

and vice versa) for Food and Water Logs. Given that this group of respondents has
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fourth parties, most of the permissions were already approved. The recommenda-

tion did not provide statistical significance for the rest of fitness data but it is worth

mentioning that after knowing the risks, there were more respondents that allow

the permissions which are previously denied than respondents who deny the per-

missions which are previously allowed. This could mean that, upon knowing the

risks, users weigh and approve them since they relate to other fitness data which are

needed for the users’ fitness goals or the possible information that they can infer are

not really private for the users. For the minority respondents, denying the permis-

sions which were previously allowed could mean that the possible data that can be

inferred are private for them.

For the respondents without fourth parties, the tests show that they have signifi-

cant results for all, which mean that there is again dependency on the recommenda-

tion. Similarly, there were significantly more approvals than denials after knowing

the risks. Given that these respondents do not have fourth parties, they were less

likely to give permissions than the respondents with fourth parties. Thus, upon re-

ceiving the risk information, more users allow permissions which were previously

denied than the respondents with fourth parties. For all the users combined, the

results were similar to the respondents without fourth parties, were all recommen-

dation were significant. Interestingly, knowing the risks would make users more

likely allow previously denied permissions than deny previously allowed permis-

sions, except for Food and Water Logs on the respondents with fourth parties as

aforementioned.
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Chapter 6

PDM Privacy Preference Model

This chapter discusses the realization of the PDM privacy preference modeling using

the Semantic Web approach, which is designed to be GDPR-compliant. The privacy

preference model that can be used both by the PDM and TPs in representing the user

privacy will be elaborated. The PPIoT Ontology aims to provide general representa-

tion of user privacy preferences, which answers RQ2 defined in Chapter 3.

6.1 Privacy Preference for IoT Ontology

FIGURE 6.1: The proposed Privacy Preference for IoT (PPIoT) Ontology.

The guiding principle for the design of the PPIoT Ontology is that it should be

able to represent the conditions of the user’s privacy preferences regarding certain

personal data (Privacy Preference class) and, on the other hand, the conditions of
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the privacy policy statement of a TP entity (Statement class). Thus, the goal is that

both the user and the TP, through their respective applications, can set conditions

regarding the access to the user’s personal data (Datasets class) that are produced

by the IoT devices.

The PPIoT Ontology is shown in Figure 6.1. It has been designed to extend exist-

ing well-established ontologies with the aim of interoperability. In Figure 6.1, exist-

ing ontologies are represented by the green, orange and blue nodes, while the black

nodes are the extensions that we propose to cater for the privacy management needs

in the context of the IoT.

6.1.1 Main Imported Ontology Classes and Properties

The core ontologies consist of PPO1 and SOSA/SSN2. Only the most relevant classes

and properties that are imported from these ontologies are described in this section.

Other ontologies that are used include FOAF3, ACL4, WO5, VOID6 and XSD7 for

defining data types. To avoid ambiguity, in this section a "statement" means an RDF

statement while "[privacy] [policy] Statement" is the TP Statement that contains all

the details about the data access request. The main imported Classes of the PPIoT

are:

• ppo:PrivacyPreference: composed of RDF statements that hold conditions ac-

cording to the user’s personal preferences;

• ppo:Condition: contains the set of properties that denote restrictions to the

specific dataset;

• ppo:Operator: The parent logical operator class; the subclasses (i.e., ppo:Or,

ppo:And and ppo:Not) allow the creation of more expressive conditions;

1ppo:http://vocab.deri.ie/ppo#
2ssn:https://www.w3.org/ns/ssn/
3foaf:http://xmlns.com/foaf/0.1/
4acl:http://www.w3.org/ns/auth/acl#
5wo:http://smiy.sourceforge.net/wo/spec/weightingontology.html#Weight
6void:http://vocab.deri.ie/void#Dataset
7xsd:http://www.w3.org/2001/XMLSchema#
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• sosa:Platform: any entity that hosts other entities, actuators, sensors, samplers,

and even other platforms. Given the extensiveness of this class, we added a

subclass for IoT devices;

• sosa:Sensor: a device, an agent (including humans), or software (simulation)

involved in or implementing a procedure. Sensors respond to a Stimulus (e.g.,

a change in the environment, or input data from the results of prior observa-

tions) and generate a result;

• wo:Weight: a value that specifies the priority (rank) of a privacy preference;

• acl:Access: any kind of access mechanism to a resource;

• foaf:Agent: an agent (e.g., person, group, software or physical artifact);

• void:Dataset: a set of RDF statements that describes the sets of data that are

collected, generated, maintained, or aggregated by an entity.

The main imported Properties are:

• ppo:hasCondition: the conditions of a privacy preference;

• ppo:hasLogicalOperator: the type of logical operator of the condition/child

condition;

• ppo:hasChildCondition: used to create logical nested conditions in combina-

tion with the logical operators;

• ppo:hasAccess: the access control privilege which is granted by the user, de-

scribed using the WAC vocabulary;

• ppo:appliesToDataset: a privacy preference that applies to a Dataset;

• ppo:hasPriority: a value that signifies the rank of a privacy preference;

• sosa:hosts: the relation between the platform and sensor(s).



88 Chapter 6. PDM Privacy Preference Model

6.1.2 Extended Classes and Properties

Perera et al. [146] argue that the complexity of the IoT paradigm demands that pri-

vacy approaches must offer more than the traditional allow or deny option and

instead have room for negotiation between the user and TPs (Entity in the ontol-

ogy). Furthermore, the extended classes must at least be able to represent the list of

datasets, the access conditions for both the Statement (for a TP) and Privacy Prefer-

ence (for the user), the purpose/reason of collection, the persistence of access, the

location, the retention period, and the usage method [108, 78, 141, 21]. These prin-

ciples are also included in the GDPR and FIP. We also included the common data-

sharing schemes of TPs where they ask for permission to let other TPs access the

user’s data as described in Chapter 5 and group them according to Entity type. Be-

low, the new classes and properties that implement the above-mentioned principles

are briefly described. The PPIoT 8 prefix are omitted as they are the same for all. The

new Classes are:

• User: the owner of the privacy preferences; a subclass of foaf:Agent;

• Entity: any agent that wants to access user information such as a human or a

TP application—also a subclass of foaf:Agent but disjoint from User;

• Device: the specific IoT device of the User; a subclass of sosa:Platform;

• Location: the current location of the Device;

• Reason: the purpose of an Entity for accessing the User’s data (e.g., health,

social, fitness, etc.);

• Persistence: the frequency of data acquisition by the Entity;

• Method: how the data will be processed/utilized;

• SensingLocation: the location of an observation;

• EntityType: the type of Entity (for grouping purposes);

• Statement: the privacy policy Statement declaration of an Entity that consists

of conditions regarding the request to access the user’s dataset.

8ppiot:http://pdm-aids.dibris.unige.it/PPIoT#
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The new Properties are:

• owns: the relation between the User and her/his Device;

• hasPreference: a privacy preference of the User;

• hasLocation: the Location of the Device;

• hasDataset: the Dataset of the Device;

• hasReason: the Reason of the condition;

• hasMethod: the Method of the condition;

• hasPersistence: the Persistence of the condition;

• hasSensingLocation: the SensingLocation of the condition;

• allowsNegotiation: a boolean data type property that specifies whether the

condition (set by the User or Entity) is negotiable;

• hasMaxRetentionPeriod: An integer data type property that specifies the max-

imum retention period in hours of the data accessed by an Entity;

• hasStatement: the privacy Statement declared by an Entity;

• requestAccess: the Dataset(s) that the Entity request in the Statement;

• allowsSharingWith: which type of Entity is allowed to share the accessed dataset;

• isVisible: a boolean data type property that specifies whether the privacy pref-

erence of the User is visible to an Entity.

It is worth noting that both the user and the TP can set which conditions are nego-

tiable for the PDM to optimize the negotiation process and recommendation. This

can be expressed through the allowsNegotiation condition. Otherwise, the setting

would be non-negotiable, as is the case in existing ontologies.

Our PPIoT ontology is designed to include classes and properties that address

the GDPR requirements for the management of personal data (see in particular the

properties hasReason, hasMethod, hasPersistence, hasSensingLocation, allowsNegotiation,
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hasMaxRetentionPeriod, and allowsSharingWith). In addition, our interactive PPIoT-

based Privacy Preference Model (PPM) meets the GDPR requirements for the com-

munication between the TP and the user, addressing transparency, controllability

and accuracy issues.

6.1.3 Ontology Engineering and Validation

PPIoT ontology has been developed following the guidelines and steps stated in

Noy and McGuinness [137]. This section discusses the development and validation

of the proposed PPIoT ontology.

Domain Modeling and Ontology Definition

Following the guidelines in [137], the first step in developing our ontology was the

definition of the domain and scope. While our main goal was clear —i.e., repre-

senting privacy preferences from the perspective of both the user and the IoT TP

and also taking the GDPR requirements into account—, the definition of the domain

model was a non-linear, iterative process. This process started with the collection

of relevant domain knowledge and the identification of use cases and competency

questions, which were eventually used for the evaluation of our ontology.

In the spirit of the Linked Data paradigm, and following the principle of ontol-

ogy reuse [171, 137], we also analyzed ontologies that model concepts and relations

in our domain of interest, i.e., the IoT domain and the privacy domain. For the IoT

domain we consulted the Linked Open Vocabularies for Internet of Things catalog

(LOV4IoT9), which includes 510 ontology-based research projects in different IoT

domains. A recent study [136] showed that, among the IoT ontologies, the W3C Se-

mantic Sensor Network (SSN) ontology is the most commonly re-used ontology in

other ontologies and can be considered as a de-facto IoT standard ontology. The SSN

(that we selected as our IoT base ontology), also provides alignments to a variety of

related ontologies and specifications.

With regard to the privacy domain, we queried the privacy research literature as

well as the Linked Open Vocabularies (LOV10), which includes stable, high-quality

9https://lov4iot.appspot.com/
10https://lov.linkeddata.es/dataset/lov/

https://lov4iot.appspot.com/
https://lov.linkeddata.es/dataset/lov/
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ontologies. In addition, we consulted experts in privacy legislation. It is worth not-

ing that at the time of designing the PPIoT ontology, while we found 8 vocabularies

modeling privacy-related concepts (including the PPO ontology that we selected as

our privacy base ontology), we did not find any GDPR-based vocabularies, since

drafts of these were published after we developed our ontology.

The PPO ontology was selected since it already modeled user privacy preference

for linked data, with a particular focus on social networks. Concepts and relations

modeled therein fitted well within privacy modeling requirements in the IoT do-

main, even though extensions were needed.

The important terms of the domain were then enumerated [137]. Starting from

the terms in the PPO ontology, we identified the missing terms for the IoT domain

with respect to our goal. Our approach was to extend PPO by defining alignments

with other ontologies, and by introducing new terms when none were available from

other ontologies. The principles relating to personal data protection are explicitly

stated in Article 5 of the GDPR Regulation [51]. These principles also guided the

formulation of our competency questions in terms of the capability of the ontology

to represent, and thus identify, the user privacy preference conditions for different

datasets in terms of: lawfulness, fairness and transparency, purpose limitation, data

minimization, accuracy, storage limitation, integrity and confidentiality.

Our PPIoT ontology is designed to include classes and properties that address

the GDPR requirements for the management of personal data (see in particular the

properties hasReason, hasMethod, hasPersistence, hasSensingLocation, allowsNegotiation,

hasMaxRetentionPeriod, and allowsSharingWith).

The open-source ontology editor and framework Protégé11 [129] was used to

build the PPIoT ontology.

Ontology Validation

We evaluated the PPIoT ontology by using three methods [137, 75]: (i) a coherence

and consistency check, (ii) a task-based and application-based evaluation, and fi-

nally (iii) an evaluation using Competency Questions.

11https://protege.stanford.edu/

https://protege.stanford.edu/
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(i) Coherence and consistency check. The studies in [65, 190] state that con-

sistency validation refers to checking whether it is possible to obtain contradictory

conclusions from valid input definitions: an ontology is logically consistent when it

involves no logical contradiction. The PPIoT ontology was evaluated using different

Reasoners in Protege. Reasoners provide consistency checks on the ontology, ver-

ifying that the ontology is logically consistent. In our PPIoT ontology, none of the

(A) The result of ontology evaluation. (B) The inferences tested by the HermiT rea-
soner in Protégé.

FIGURE 6.2: The PPIoT ontology evaluation in Protégé.

classes and axioms had logical contradictions. Figure 6.2a shows that our proposed

ontology is proven to be coherent and consistent using several Protégé reasoners

(i.e., FaCT [183], HermiT [163], and Pellet [167]). A total of 50 axioms that are used

in PPIoT ontology were tested. We evaluated different reasoners since each reasoner

performs differently for each task. In our case, all of them concluded that our on-

tology did not have inaccuracies. Figure 6.2b shows the inferences and results using

the Hermit reasoner, together with its computation time.

(ii) Task-based and application-based validation. According to [75, 23], this

type of validation involves evaluating how effective an ontology is in the context of

a task or an application. In this light, the “application” may be an actual software

program or a use-case scenario [75].

Application-based evaluation has been used, for example, to validate the PPO

Ontology [156]. Sacco and Passant validated the ontology by building a a privacy
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manager that could implement the creation of privacy preferences for RDF data de-

scribed using PPO, and that could filter requested data by applying the preferences.

Porzel et al. [148] also proposed this method and measured the performance by

comparing it to a gold standard.

In our case, we evaluated our ontology by using it in our privacy manager (PDM)

to perform the management of users’ privacy preferences. The PDM prototype can

be found online12. It has been tested and has been found to satisfy the requirements

to model users’ privacy preferences and the TPs’ request statements for user data.

This prototype will be addressed in Section 6.2.3.

In addition, we indirectly evaluated the PPIoT ontology by integrating it into our

mock application. The mock application’s understandability, control, simplicity and

preferability were evaluated by real users on a 7-point Likert scale. The complete

details of this evaluation are explained in Section 6.3.2.

While the aim of task/application-based evaluations is not to assess the general-

izability of the ontology, but the performance of the ontology to support some tasks,

generalizability could be addressed by applying this type of evaluation to more tasks

in different applications.

iii) Evaluation by using Competency Questions. Competency questions can

be used to design and then evaluate an ontology [137]. For example, this evalua-

tion technique was used for the validation of the OSHCO ontology [162]: the au-

thors developed competency questions for different use cases with the guidance of

domain experts and then queried the ontology and checked the correctness of the

retrieved answers. In our case, the identification of use cases and competency ques-

tions guided the design process, and they were used to validate the ontology as well.

Our aim was to design an ontology that is able to answer questions about the man-

agement of user privacy preferences in IoT for different types of personal data and

for different IoT domains. TP preferences for data requests made to users were mod-

eled in the same way as user preferences. Thus, the two main competency questions

that we aim to answer through the PPIoT ontology are the following:

• What are the user’s privacy preference conditions for his/her different per-

sonal data (datasets, according to PPO terminology)?
12https://github.com/OdnanOriginal/PDM

https://github.com/OdnanOriginal/PDM
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• What are the TP privacy conditions required by TP in their requests of personal

data made to users?

More specific questions are aimed at identifying privacy conditions with respect to

GDPR requirements (as explained in Section 6.1.2, from the side of the user and the

TP), and to identify the user privacy preferences that are visible, i.e., can be queried

by TPs. These questions can be answered by using SPARQL queries, as shown in

Section 6.2.3 (Listings 6.3 and 6.4).

Ontology development is necessarily an iterative process and this process of it-

erative design will likely continue through the entire life-cycle of the ontology [137],

in order to capture the domain changes and/or to align the ontology with new or

updated ontologies that are modeled for that domain or sub-domains.

6.1.4 PPIoT Ontology Running Examples

This subsection demonstrates how to use the PPIoT Ontology to set conditions for

both the user privacy preference and the TP statement.

User Privacy Preference

Listing 6.1 is an example of a privacy preference condition, myPref, in Turtle13 nota-

tion. A user may have several conditions for different datasets. In this specific ex-

ample, we show a privacy preference for a user that applies to their activity dataset.

Prefixes in Listing 6.1 are defined in Section 6.1.

The user preference example has conditions which state that the data access can

happen only be once (persistence of access), the maximum retention period of the

data is 24 hours, and the data is required to be encrypted if used for fitness-related

reasons. These conditions are combined by the LogicalOperator ppo:And and can be

negotiated (allowsNegotiation = true) except for the last condition (allowsNegotia-

tion = false). Notice that the last condition was expressed through a child condition

with the LogicalOperator ppo:And (which is used as in [157]). This shows the sig-

nificance of child conditions in letting users be more expressive with their privacy

preferences. Moreover, myPref has "read" and "write" access permission, it has the

13https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/
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maximum priority (value=1) that rules out other privacy preferences, it allows shar-

ing such dataset to social networks (with friends only), and it is visible to "enhanced"

TPs that utilize the PPIoT Ontology so that they can adjust their parameters to con-

form to the user’s conditions (if they are negotiable for this dataset).

@prefix ppiot : < ht tp ://pdm−aids . d i b r i s . unige . i t /PPIoT # >.

@prefix up: < http ://www. userpreferenceExample . com# >.

up : userCond1 a ppo : Condition . up : userChildCond1 a ppo : Condition .

up : myPref a ppo : Pr ivacyPreference ;

ppo : appl iesToDataset ppiot : a c t i v i t y ;

ppo : hasCondition up : userCond1

[ ppo : hasLogicalOperator ppo : And ;

ppiot : h a s P e r s i s t e n c e ppiot : once ;

ppiot : hasMaxRetentionPeriod 2 4 ; #xsd : i n t e g e r

ppiot : a l lowsNegot iat ion true ; #xsd : boolean

ppo : hasChildCondition up : userChildCond1

[ ppiot : hasReason ppiot : f i t n e s s ;

ppiot : hasMethod ppiot : encrypted ;

ppo : hasLogicalOperator ppo : And ;

ppiot : a l lowsNegot iat ion f a l s e ; #xsd : boolean ] ; ] ;

ppo : hasAccess a c l : Read , a c l : Write ;

ppo : h a s P r i o r i t y wo : 1 ;

ppiot : allowsSharingWith ppiot : socialNetworkFriends ;

ppiot : i s V i s i b l e t rue . #xsd : boolean

LISTING 6.1: User preference condition

Third Party Policy Statement

Listing 6.2 shows an example of a statement of an enhanced TP. It shows that the TP

would like to request access to the user’s activity, sleep and heart rate datasets. The

TP requests access to this data for fitness purposes, and promises to store the data

encrypted, for a maximum retention period of 24 hours. These conditions are com-

bined by the LogicalOperator ppo:And and are negotiable. However, the TP requires
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continuous access to this data (persistence), and it does not allow negotiation on this

particular point. Finally, it only requests "read" access to this data.

The automatic negotiation of privacy preferences based on the user’s privacy

preferences (Listing 6.1) and the TP’s policies (Listing 6.2) will be described in Sec-

tion 6.2.3.

@prefix ppiot : < ht tp ://pdm−aids . d i b r i s . unige . i t /PPIoT # >.

@prefix tpb : < http ://www. TPExample . org # >.

tpb : cond1 a ppo : Condition . tpb : childCond1 a ppo : Condition .

tpb : statementB a ppiot : Statement ;

ppiot : RequestAccess ppiot : a c t i v i t y , ppiot : s leep , ppiot : heartRate ;

ppo : hasCondition tpb : cond1

[ ppo : hasLogicalOperator ppo : And ;

ppiot : hasReason ppiot : f i t n e s s ;

ppiot : hasMethod ppiot : encrypted ;

ppiot : hasMaxRetentionPeriod 2 4 ; #xsd : i n t e g e r

ppiot : a l lowsNegot iat ion true ; #xsd : boolean

ppo : hasChildCondition tpb : childCond1

[ ppiot : h a s P e r s i s t e n c e ppiot : continuous ;

ppiot : a l lowsNegot iat ion f a l s e ; #xsd : boolean ] ; ] ;

ppo : hasAccess a c l : Read .

LISTING 6.2: TP statement

6.2 PDM Privacy Preference Model

6.2.1 Privacy Preference Model for Interactive Privacy Setting

Now that we have described the PPIoT ontology, we present our approach to sup-

port the user and the TPs to manage privacy preferences using our PPIoT-based

Privacy Preference Model (PPM), showed in Figure 6.3.

The PPM model is composed of:



6.2. PDM Privacy Preference Model 97

• the PPIoT ontology which formally specifies the privacy conditions that have

to be taken into account when managing and processing personal data. Ba-

sically, it addresses the "data management and processing requirements" de-

scribed in Section 2.5 and reported in Figure 6.3,

• implementation strategies that address the "communication and transparency"

requirements. Basically, they consist in an interactive approach that requests

users explicit consent to each condition specified in the TP statement based on

the PPIoT ontology.

FIGURE 6.3: Adoption of the PPIoT-based PPM in different technological ‘regimes’.

.

Figure 6.3 shows that the model can be applied as an interactive user interface or

as an interactive negotiation and recommendation process managed by a PDM.

The former approach, "PPM-based Interactive UI" in the figure, can be adopted

by TPs for direct interaction with the user. We have developed a mockup of this

approach for a fitness application14. This mockup improves upon traditional policy

14http://pdm-aids.dibris.unige.it/simulation.php

http://pdm-aids.dibris.unige.it/simulation.php
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statements, which are usually presented in complex and lengthy "terms and condi-

tions" that users rarely actually read [174, 51]. The PPM-based Interactive UI is based

on the PPIoT and is aimed to supplement the traditional privacy policy. The inter-

action design and layout of the mock-up follow the GDPR requirements of trans-

parency, simplicity, and explicit consent for each request. The TP can store the user’s

consent data in an RDF store or any other database.

More technologically advanced TPs and user applications can adopt the sec-

ond approach and use the PPM through a Personal Data Manager (PDM) that con-

ducts an interactive negotiation and recommendation of privacy preferences be-

tween users and TPs. The goal, in this case, is to further simplify the management of

privacy preferences, relieving the user from the burden of specifying her/his prefer-

ence conditions for each new device and application, but maintaining the control.

The focus of this thesis is on the interactive settings through the PDM (which

will be described in the next section), but it is worth noting that the interactive user

interface is based on the same PPIoT-based PPM.

6.2.2 PDM Negotiation and Recommendation of Privacy Preferences

FIGURE 6.4: Overview of the framework implementing the Privacy Preference Model.
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We now turn to the use of our PPIoT Ontology in the most technologically ad-

vanced scenario, which is the PPM-based interactive negotiation and recommenda-

tion through a Personal Data Manager (PDM) inside the PerNANDO Framework.

In this section, we aim to present the PDM’s adoption of the SW approach for

the management of the user’s privacy preferences and the interaction between the

user and the TPs. Figure 6.4 shows how the PDM acts as an intermediary between

the user, his/her personal IoT devices, and the TPs. The user’s privacy preferences,

annotated with the concepts of the PPIoT ontology, are stored in an RDF store and

made available to the PDM Query Agent through a SPARQL endpoint.

The PDM can be implemented as a client-server application, as a service in the

cloud, or even as a semantic mobile app with a mobile endpoint (for an example

implementation of this solution see [213]). The current implementation is a client-

server application where the client runs as a mobile app while the RDF store and the

reasoner are on the server.

The TPs shown in Figure 6.4 include a regular TP (A) and an enhanced TP (B) that

has SW capabilities and utilizes the PPIoT Ontology. For TP A, the dialog manager

map its policy statement onto a PPIoT-compliant format. Due to the static nature of

its policy statement, no negotiation is possible for this TP, and the "negotiation" (i.e.,

whether to accept the policy or not) will only be between the user and the PDM. TP

B, on the other hand, will be able to benefit from the negotiation capabilities embed-

ded in the PPIoT Ontology, effectively giving users the option to specify individual

privacy settings rather than wholesale accepting or rejecting the policy.

6.2.3 Privacy Settings Negotiation and Recommendation

In this section, we will show how the PDM uses the PPIoT Ontology and how it

performs the negotiation between the user and the TP. The PDM prototype15 was

developed using the Java programming language, the Jena Semantic Web Frame-

work16 and an Apache Jena Fuseki SPARQL server for RDF storage and querying

the user’s preference data.

15https://github.com/OdnanOriginal/PDM
16https://jena.apache.org/index.html

https://github.com/OdnanOriginal/PDM
https://jena.apache.org/index.html
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FIGURE 6.5: The simplified interaction workflow between the PDM, the TP and the
user.

This use case also provides consistency check on the ontology, verifying that the

ontology is logically consistent through the Jena reasoner. None of the classes and

axioms had logical contradictions. Figure 6.5 shows a simplified version of the PDM

workflow. Its four main steps provide the core phases of negotiation, which will be

elaborated below.

TP Application Data Request

In step 1 of Figure 6.5, a TP Statement will be issued during the installation or update

of an application. In this instance, the PDM acts as a dialog manager and mediates

the interaction between the user and the TP. Our instantiation of the PDM as a mobile

application is designed to have the capability to interrupt the installation and check

the permissions requested by the TP.

PDM Statement Check

Step 2 is the interpretation of the Statement. In this step, decision block A checks

if the requesting TP is a regular TP or an enhanced TP. For a regular TP, the PDM

dialog manager can locate its Privacy Statement, which is usually stated in a file (e.g.,

Androidmanifest.xml17 for Android apps), and map it onto the PPIoT Ontology. An

17https://developer.android.com/guide/topics/manifest/manifest-intro.html

https://developer.android.com/guide/topics/manifest/manifest-intro.html
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enhanced TP utilizes the PPIoT Ontology to present its Statement, so no mapping is

required.

PDM SPARQL Query Agent

Step 3 is the evaluation of the Statement. In this step, the PDM checks if the State-

ment conforms with the user’s privacy preferences. The preferences are queried

through the SPARQL Query Agent component. Listing 6.3 is an example of a query

from the Query Agent to the privacy preference store that retrieves the list of user’s

privacy preferences for each dataset. It refers to the example presented in Section

6.1.4.

SELECT ? pref ? value

WHERE { ? pref <ppo : appliesToDataset > ? value . }

LISTING 6.3: A query of the user’s privacy preferences for each dataset.

SELECT ?cond ? value

WHERE { <: myPref> <ppo : hasCondition > ? tempVariable .

? tempVariable ?cond ? value . }

LISTING 6.4: A query example of conditions associated to a privacy preference.

By specifying a dataset (e.g., activity) for the ?value variable, the Query Agent can

retrieve all user preference conditions associated with this dataset. Subsequently, the

PDM can retrieve all associated conditions and their values using the URI name of

the privacy preference as input (Listing 6.4). Figure 6.6a shows the result of this PDM

query. The query for ppiot:hasAccess, ppo:hasPriority, and ppo:haschildCondition

can be done in a similar manner.

If the TP’s request conforms with the user’s privacy preferences, it will pass the

statement check (decision box B == false) and be granted access. The PDM can now

act as an intermediary for the disclosure of the information that is included on the

conditions of the user (Privacy Preference) and the TP (Policy Statement) specified

in the prior steps.
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(A) The SPARQL query result. (B) The PDM confirmation request and rec-
ommendation.

FIGURE 6.6: The query result of Listing 4 and the PDM recommendation to the user.

Negotiation

If the TP’s request does not conform with the user’s preferences (decision box B ==

false), negotiation is needed. There are two cases for this negotiation. If the TP is

a regular TP (e.g., TP A), there is no opportunity for negotiation on the TP’s side

(decision box C == false), and negotiation will only be possible between the user

and the PDM if the user has indicated his/her preferences as negotiable (decision

box E == true). In this case, the PDM will provide a recommendation to allow the

negotiable preference, which the user can accept or deny (decision box F).

Example. Considering the conditions in the example described in Listings 6.1

and 6.2, the PDM finds that the conditions for the TP request to access the activity

dataset comply with the user privacy preference regarding the reason, method, and

maxRetentionPeriod. However, the persistence condition requested by the TP is "con-

tinuous" while the user preference is set to "once" for the activity dataset. The PDM

finds that the user allows negotiation (decision box E == true), so it recommends

giving TP A "continuous" access to the activity dataset (see Figure 6.6b). If the user

does not allow negotiation (decision box E == false), the TP’s request will be denied.

In the case of an enhanced TP (e.g. TP B), both the user and the TP can set ne-

gotiation values. The PDM will then first check if the TP allows negotiation on this
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aspect (decision box C == true) and if the user’s preference for this aspect is set to

"visible" (decision box D == true). If so, the enhanced TP can query the user pref-

erence using Listings 6.3 and 6.418 and modify its request in order to conform with

the preferences (decision box B == true). If either the TP does not allow negotia-

tion (decision box C == false) or the user’s preference is not set to "visible" (decision

box D == false), then negotiation will continue between the user and the PDM alone

(decision box E) as described above.

Example. Considering the conditions in the example described in Listings 6.1

and 6.2, upon finding the conflict regarding the persistence condition, the PDM will

first check if the TP allows negotiation (decision box C) using the algorithm in Figure

6.5. Checking the TP for negotiation first prioritizes the user’s preference over the TP

request. If the TP allows negotiation (decision box C == true), it will conform to the

user’s preferences, given that these preferences are visible (decision box D == true).

An enhanced TP can query the user preference (Section 6.2.3 shows how to query

the preference store using SPARQL queries) if it is set to visible by the user through

the isVisible property. It can then conform by either removing the request of those

data on its Statement that have conditions that conflict with the user’s preference or

by changing these conditions in accordance to the user’s preference. Unfortunately,

the enhanced TP B in the example (Listing 6.2) does not allow negotiation (decision

box C == false). This could for instance happen if the TP is a fitness tracker, which

needs continuous access to activity data to keep track of the user’s calories burned.

Accordingly, the PDM then checks the user negotiation conditions in Listing 6.1.

The PDM finds that the user allows negotiation (decision box E == true). Therefore,

the PDM proposes to the user to change the condition for persistence to "continuous"

(decision box F). Figure 6.6b shows the confirmation request to the user.

In the complete framework, the PDM also calls AID-S for the recommendation

to detect whether the request generates any inference risk. In Figure 6.6b, AID-S

computation of the inference risk for the datasets asked by the TP is considered to

be low (which is shown in gray). If the user thinks the inference risk is too high or

anyway if she/he does not agree to grant the permission to the TP, the user can deny

18This explains the request arrows from both the PDM and the enhanced TP B to the Privacy Prefer-
ence Store in Figure 6.4.
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the request after all.

6.3 Evaluation

The offline evaluation of the automated negotiation process is done using an ac-

tual running application (cf. Section 6.2.3), where an actual use case was simulated

and explained step by step. Automation is hard to evaluate in a test environment,

though, since it requires simulating all the interaction conditions. Hence, we focus

here on evaluating the fully interactive version of PPM, noting that the underlying

PPIoT ontology is the same. In this section, we describe the results of our online

study with users evaluating the impact of the PPM.

As explained in Section 6.2.1, the goal of the PPM is to provide an interactive

approach that enables TPs to use our PPIoT ontology vocabularies to improve con-

trol and transparency in the presentation of privacy policy statements. Section 6.2.3

demonstrated how the Personal Data Manager can use the PPM for negotiating and

interactively setting the user’s privacy preferences. Also, it shows the value and

effectiveness of using the SWT by describing TP policy statements and users’ pref-

erences with the PPIoT ontology. As Figure 6.3 describes, the alternative means to

use the PPM is through an interactive user interface. In this section, we describe the

results of a preliminary user evaluation of this user interface. Note that the use of

the PPM through the PDM involves an interactive user interface as well, as shown in

the Interaction Model in Figure 6.3 —the main difference is that the PDM automates

some of the interaction between the user and the TPs.

6.3.1 Interactive User Interface for the Privacy Preference Model

For the evaluation of the PPM-based Interactive User Interface (UI), we used the

mockup of a fitness application called “FitPro” which was introduced in Chapter

4.3.3. FitPro presents an interactive PPIoT-based privacy policy to its users.
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FIGURE 6.7: 7-point scale evaluation on the PPIoT-based PPM.

6.3.2 Sample and methodology

For the evaluation, we recruited a total of 310 Fitbit fitness tracker users via the

Amazon Mechanical Turk19 crowd-sourcing platform linked to our test environ-

ment20. We restricted participation to fitness tracker users to be able to compare

the current privacy settings of their existing fitness app against their settings in our

FitPro mockup. Moreover, we restricted participation to Fitbit users to reduce the

app-based variability in privacy settings among our participants (cf. each fitness

tracker requests slightly different permissions and personal information from its

users). Note, though, that our FitPro contains permission requests from a variety

of fitness trackers, and hence our results generalize beyond Fitbit to fitness trackers

in general.

We removed data from 15 participants whose completion times and answers to

the control questions clearly indicated a lack of attention to the study, resulting in a

final dataset of 295 responses. The participants are composed of 34.2% males (101

participants) and 65.8% females (194 participants), had a mean age of 35, and were

generally highly educated (62% had at least a bachelor’s degree).

Participants were asked to use the FitPro user interface as if they were installing

a new application on their device. The participants were subsequently asked to re-

spond to a questionnaire asking for their feedback about this installation experience,

their current Fitbit settings, and their privacy preferences.

19https://www.mturk.com/
20http://pdm-aids.dibris.unige.it/index.php

https://www.mturk.com/
http://pdm-aids.dibris.unige.it/index.php
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6.3.3 Subjective Evaluation

The participants were asked (using 7-point scale items) about the understandability of

the presented privacy policy, the amount of control they thought the interface gave

them, how easy or difficult is was to set their privacy preferences, and whether they

preferred this PPM-based interactive settings interface over the traditional privacy

policy statements they experienced when installing their apps. Participants’ feed-

back is presented in Figure 6.7, and the following are the averages for each item

(lower=better) combined for all respondents:

• Understandability = 2.31 (1=Definitely Understand, 7=Definitely do not un-

derstand)

• Control = 1.62 (1=Definitely gave control, 7=Definitely did not give control)

• Simplicity = 2.04 (1=Very easy, 7=Very difficult to use)

• Preferability = 1.86 (1=Definitely Prefer, 7=Definitely do not prefer over the

traditional privacy preference model)

The results of our evaluation show that the interactive PPM-based interface helps

participants understand the TP’s privacy policy, making clear the options and pre-

senting them as a structured, interactive dialogue. Participants tend to prefer this

PPM-based interactive privacy policy over a traditional privacy statement, which is

unsurprising given that so few users actually read such statements [51, 174]. Ar-

guably, the interactive PPM format is easier for users to engage with, comprehend,

and retain. This is reflected in the fact that 85% of survey respondents said they

understood the privacy policy. This is a high number in light of the fact that many

commercial privacy policies are notoriously hard to understand [81].

Overwhelmingly, the interactive PPM-based interface gives participants more

control than a traditional presentation of TP’s privacy policy and this is a conse-

quence of the GDPR principles and the interactive presentation. Rather than only

being allowed to either accept or reject a policy in its entirety, users can make al-

low/reject decisions regarding specific aspects of the policy and express conditions.

Moreover, despite the complexity that comes with granular control, 90% of the par-

ticipants find the interface easy to use. Admittedly, users would likely consider it a
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burden to make a large number of privacy decisions for a multitude of applications,

and/or to frequently revisit these decisions as their privacy preferences evolve. This

is where PDM can offer relief in the form of privacy recommendations.

Overall, then, about 80% of the participants prefer the PPM-based interface over

traditional privacy policies, with over 50% of participants “definitely” preferring it.

Respondents are quite unanimous in their feedback, as standard deviations for these

items are low (Understandability: 1.17, Simplicity: 1.25, Preferability: 0.8, Control:

1.07). We also find no significant differences in these evaluations (p-values > 0.05)

in terms of gender, age or mobile OS. This shows that GDPR-based PPM does not

only conforms to EU requirements for privacy but also results in a more appreciated

approach to get consent (i.e., permissions on requested data).

6.3.4 The PPM’s Effectiveness on the Elicitation of Privacy Preferences

The above subjective evaluation suggests that our FitPro PPM-based interactive set-

tings are an improvement over the privacy-setting experience of existing fitness

apps. The rates at which various permissions were allowed by users in FitPro are

displayed in Figures 6.8 and 6.9. Permissions are grouped into the four sets re-

quested in the FitPro simulated installation: In-app requests, Smart phone permis-

sions, Fitness data (Figure 6.8) and GDPR permissions (Figure 6.9).

Our goal in this further evaluation is to compare such FitPro PPM-based per-

missions against participants’ current permissions given to their existing fitness apps.

In our users’ case, the existing fitness apps are: (i) participant’s Fitbit app and (ii)

the third-party apps on participants’ device that request permission to access their

Fitness data managed by Fitbit.

It is worth recalling that FitPro simulates the installation of a fitness tracking

app like Fitbit. In such installation it requests permissions on personal data (in-app

requests), permission to access smartphone data (smartphone permissions), permis-

sions to access, process and store such data (GDPR permissions). Moreover, it in-

cludes requests of permissions for sharing FitPro fitness data (Fitness data permis-

sions) with other apps—which simulates third-party apps requesting Fitbit fitness

data.
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Thus, in principle, we can compare the settings that the participants set in the

FitPro PPM-based system against those in their existing fitness apps. However, this

comparison is not always possible or meaningful. It is not possible when the partici-

pants do not have any current settings (i.e., no third-party app accessing their Fitness

app). It is not meaningful when Fitbit settings are mandatory (i.e., mandatory app

request permissions and mandatory allow-all blocks of permissions). In both cases,

instead of using the fitness apps settings, we asked users about their preferences

separately (questionnaire-reported preferences). For each set of permissions, except

for GDPR set (this data was not available on participants’ devices or even in their

experience since it is a novel contribution), we compared the PPM-based settings

with the available settings as follows:

• For the in-app set (A set), we compare participants’ PPM-based settings against

their self-reported21 preferences to adhere to in-app data requests.

• For the smartphone set (S set), we compare participants’ PPM-based settings

against their current settings, i.e., the actual permissions they have given to

their Fitbit app (note that the requests differ slightly between Android and

iOS).

• For the fitness data set (F set), we have two situations: for users who have a

third-party application accessing their current Fitbit data, we compare their

PPM-based settings against the current settings for one of these third-party

applications. For users who do not have any third-party applications, we com-

pare their PPM-based settings against their self-reported preferences.

We used chi-square tests to test the association between the settings mentioned

above. Tables 6.1, 6.2, and 6.3 show the results of the chi-square tests, that will be ex-

plained in the following sections. Large χ2 values with small p-values (i.e., p-value

< 0.05) indicate strong association. Overall, we found that participants’ preferences

expressed through the questionnaire are strongly associated with their PPM-based

settings on FitPro, and the same happens for settings given when the user can freely

21We ask for these preferences in our questionnaire because this information is mandatory in all
fitness apps, hence, participants’ actual disclosure does not necessarily reflect their true preferences.
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TABLE 6.1: Chi-square tests of association between PPM settings and participants’ pref-
erence on in-app data requests.

In-App
Request
(A set)

Preferences vs
PPM settings

First Name 10.6 (p < 0.05)
Last Name 11.0 (p < 0.05)
Birth date 6.7 (p < 0.05)

Gender 1.3 (p > 0.05)
Height 0.2 (p > 0.05)
Weight 1.4 (p > 0.05)

allow or deny each permission, as in Fitbit phone permissions. Conversely, PPM-

based settings are not significantly associated to the current settings of all the other

third-party apps on the user’s device.

The overall results, that will be described later in detail, seem to suggest that

the more transparent and controllable PPM-based interactive setting, besides being

more appreciated by participants, would also have an impact on the effectiveness

in expressing their privacy preferences, even though further investigations are re-

quired to generalize these findings.

Below we discuss the results of these association tests for the sets requested in

the FitPro simulated installation.

In-App Request Permissions

Fitness apps regularly ask users for their personal data such as name, surname, age,

height and weight during sign-up. In most apps, this is compulsory information.

In our study, however, we asked the participants if they would allow or deny such

permissions if they were optional instead of required. From here, we compared par-

ticipants’ preferences with their PPM-based privacy settings. As depicted in Table

6.1, participants’ preferences and PPM settings are strongly associated for first name,

last name and birth date. Interestingly, these are also the most sensitive data in this

group (see Figure 6.8). For the other items, there is no significant association between

participants’ preferences and their FitPro PPM-based settings.
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FIGURE 6.8: FitPro permissions allowed by the participants.

Smartphone Permissions

Participants’ average acceptance rates for smartphone permissions varies widely;

participants were least likely to give FitPro access to their contacts and photos, but

most likely to give the app access to their Bluetooth, location, and motion (see Fig-

ure 6.8). This is not unexpected for a fitness tracker app.

In comparing against participants’ existing settings, we note that Fitbit asks a

different set of phone permissions depending on the user’s mobile Operating Sys-

tem (OS). Among our respondents there are 162 iOS users, 103 Android 6.0+ users,
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TABLE 6.2: Chi-square tests of association between PPM settings and participants’ pref-
erence on smartphone permissions.

Phone Permissions Current settings vs PPM settings
(S set) Android (6+) iOS

Phone 8.2 (p < 0.05) -
Storage 9.0 (p < 0.05) -

SMS 17.9 (p < 0.05) -
Contacts 14.6 (p < 0.05) 43.2 (p < 0.05)
Location 13.5 (p < 0.05) 33.8 (p < 0.05)
Camera 22.7 (p < 0.05) 17.6 (p < 0.05)

Bluetooth - 26.0 (p < 0.05)
Photos - 17.6 (p < 0.05)

Media & Music - 33.6 (p < 0.05)
Motion & Fitness - 10.8 (p < 0.05)

Mobile Data - 37.2 (p < 0.05)

17 Android users with an older OS (which does not allow them to control each per-

mission separately), and 13 Windows users. In our evaluation we only consider the

two larger groups of iOS and Android 6.0+ users.

Unlike the in-app requests, Android 6.0+ and iOS phone permissions are not

mandatory, meaning users can allow or deny each permission separately. We asked

participants to tell us their current permission settings for the Fitbit app. Given that

participants can freely allow or deny each permission, we assume that their settings

are aligned with their preferences. We compare these preferences with the PPM-

based settings and the result shows that they have significant statistical relationship

for all the permissions for both the Android 6.0+ and iOS, as shown in Table 6.2.

Fitness Data

The fitness data produced by the user’s fitness app can be accessed by other TPs to

provide more services and features. There are, in fact, many of these external apps

that use Fitbit’s data. We ask participants to list the current permission settings of the

external app they use most. Only 179 participants reported that they had an external

app that accesses their fitness data, so for those who do not have an external app, we

asked them what their preferences would be for sharing their fitness data with such

an app. We report the results for these two groups of participants separately.
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Note that, in FitPro, exercise data are broken down into smaller granularity (i.e.,

steps, distance, floors, elevation, activity minutes, calories burned), giving users

more options to control their privacy. However, we generalized these items into

a single permission (i.e, Exercise) to be comparable with the settings on the external

app that accesses their Fitbit’s data.

For participants who have external apps, we compared the current settings of

their most used third-party app with the PPM settings as shown in the left column

of Table 6.3. It shows that their current permission settings show no association with

their PPM settings (i.e., no statistical significance, all p > 0.05). It is possible, though,

that their current settings do not reflect their real preferences. Indeed, the mismatch

between users’ privacy preferences and their settings is a phenomenon known as

the “privacy paradox”, which is well-established in previous research [135, 44, 186,

170, 207].

For participants who do not have third parties, we compared their preferences

with their PPM settings, as shown in the right column of Table 6.3. It shows that

their preferences are all significantly associated with their PPM settings. This means

that participants’ preferences on third-party sharing are captured by the PPM for all

fitness data items (p < 0.05).

Another important thing shown in this figure is that the fitness data show very

little variability (see Figure 6.8). This is likely because what fitness data shared is less

important to the user than who the information is shared with (which is part of the

GDPR permissions, as discussed below). This result is in accordance with previous

studies such as in [108].

6.3.5 GDPR permissions

Unlike the permission sets discussed above, GDPR permissions are a novel contri-

bution of our work, and hence we do not have participants’ existing permissions to

compare with. Hence, we simply report the results of the GDPR permission settings

from our study in Figure 6.9.

For the frequency of access, we let participants choose between granting FitPro

continuous access, separate access for each workout (semi-continuous), or only grant

access when using the app. Most participants only want to give access when using
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TABLE 6.3: The table of chi-squared test of association between PPM settings and par-
ticipants’ preferences on user fitness data.

Fitness Data
(F set)

Users w/ TPs:
Current Settings vs

PPM settings

Users w/o TPs:
Preference vs PPM

settings

Exercise 0.1 (p > 0.05) 7.8 (p < 0.05)
Weight 0.2 (p > 0.05) 5.9 (p < 0.05)
Sleep 0.0 (p > 0.05) 6.9 (p < 0.05)

Heartrate 0.3 (p > 0.05) 15.0 (p < 0.05)
Food & Water 0.3 (p > 0.05) 12.5 (p < 0.05)

Location 0.7 (p > 0.05) 11.5 (p < 0.05)
Devices & Settings 0.5 (p > 0.05) 26.7 (p < 0.05)

Friends 0.6 (p > 0.05) 27.4 (p < 0.05)
Profile 1.0 (p > 0.05) 13.3 (p < 0.05)

the app, which is a very useful privacy control since apps usually run on background

even when not being used [194]. Those who chose to give the app continuous access

may want their fitness tracker to count the calories burned and number of steps

taken throughout the day, which is one of the main features of many fitness trackers.

For the retention of data, participants are given the following options: store until

no longer used, store until the app is uninstalled, or store indefinitely (as to recover

during app re-installation). Only 1% of the participants chose the latter. Most of the

participants prefer to retain their data until the app is uninstalled (47%) or would

like to store it until no longer used (42%). This even split shows that participants

have different preferences regarding retention, which means that this permission is

important and must be controllable by the user.

The purposes of data collection are then specified. Among our participants, 85%

allow data collection for health purposes, 84% for safety purposes, 54% for social

purposes, 62% for convenience purposes, and only 17% for commercial purposes.

Having the option to deny data use for commercial purposes could solve many

privacy issues that stem from commercial disclosure without the user’s informed

consent. On the other hand, we acknowledge that this is an integral part of many

companies’ business model.

Finally, GDPR entity types include social media apps, fitness apps, commercial

and government fitness programs, and other apps on the user’s phone. Fitness

tracker users mostly allow sharing to fitness apps and social apps, but the latter
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FIGURE 6.9: GDPR permissions allowed by the users.

only if sharing can be restricted to their friends. In fact, participants are least likely

to share their data on social media publicly.

In general, our study is among the first to measure users’ preferences regarding

GDPR-mandated permissions. Our results show a substantial variability in users’

preferences regarding these permissions, which is a testament to the importance of

these permissions in the fitness domain, and likely beyond as well.
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Chapter 7

PDM Privacy Recommendation

This chapter is devoted on privacy recommendation, which addresses RQ3,i.e., how

can we aid users to set their privacy and provide them with suitable recommenda-

tion?

To answer this question, we created different privacy profiles using ML cluster-

ing. Then, we used supervised ML to find determiners that can identify which pri-

vacy profile best fit for a given user. Finally, we designed different recommendation

strategies that interacts with the user to provide the recommendation.

This lengthy task can be broken down into three main parts, each with the fol-

lowing research question:

RQ3.1 Is it possible to identify well-defined privacy profiles that can repre-

sent the diversity of users’ privacy preferences?

To answer this question, we conducted an unsupervised machine learning anal-

ysis (clustering) to cluster users’ privacy settings into distinct profiles by recruiting

a total of 310 Fitbit users. We collected privacy profile data by developing a fitness

app installation simulator (FitPro) that captures the user privacy preference settings.

Our dataset is collected through the Amazon Mechanical Turk (AMT) platform.

RQ3.2 Are there any privacy profile items or questionnaire items that can

be used as a determiner to predict which privacy profile best describes a user?

To answer this question, we conducted a supervised machine learning analysis

(tree learning) to find privacy profile items and questionnaire items (i.e., privacy

attitude, negotiability, social behavior, exercise tendencies and demographics) that

best predict the user profiles from RQ3.2.
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RQ3.3 How can we effectively exploit the results to provide recommenda-

tion?

To answer this question we developed a series of recommendation strategies and

user interfaces based on the machine learning results. We aim to integrate these

recommendation strategies within our PDM framework and aid users by balancing

privacy recommendation accuracy and privacy-setting simplification.

This chapter provides in-depth discussion on addressing the formulated research

questions above. Chapters 7.1, 7.3, and 7.2.1 discuss the privacy profile clusters, find-

ing predictors to such clusters, and recommendation strategies to address RQ3.1,

RQ3.2 and RQ3.3, respectively.

7.1 User Profiling Models

In this section, we present our data analysis, demonstrate our method of clustering

privacy settings, and generate cluster-based privacy-setting profiles. The analysis in

this section is intended to address RQ3.1. The data collection for this study has been

discussed previously in Chapter 4.3.

7.1.1 Data Analysis

Figure 7.1 shows that there is considerable variability in the average rate at which

each permission is allowed or denied in our study. The permissions requested by

the application (A set), mainly concerning demographics, have a high disclosure

rate, which is in line with the results of other studies (cf. [96]).

For the smartphone permissions (S set), participants are more likely to allow mo-

tion, location, bluetooth, and mobile data. This makes sense, because these are the

minimum permissions needed to run a fitness tracker app. In this set, the permission

to access photos or contacts is granted much less often.

Regarding the purpose, frequency and retention period of data collection (G set),

participants seem most open to data collection for health (the main purpose of a

fitness tracker) and safety (another purpose often indicated by fitness trackers for

continuous location-tracking services). On the other hand, users are less likely to
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agree to data collection with an indefinite retention period, and they prefer not to

share data with government fitness programs or publicly on social media.

FIGURE 7.1: Average values of each privacy permissions (1-allow, 0-deny).

We do not show the fitness data (F set) in Figure 7.1 because the permissions

for these data are requested for multiple entity types of the G set, as discussed in

Section 4.2.3. Hence, we present these data in Figure 7.2 instead, showing each per-

mission for each GDPR EntityType.

Users are more likely to give permission to their friends on social networks and

to other health/fitness apps, and they are less likely to give permission to share their

data with government fitness programs or publicly on social media. As for various

data types, steps are shared most openly, while location, friends, and weight are

shared less openly.

Upon further inspection, we note that participants tend to share either (almost)
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FIGURE 7.2: Fitness data (F set) distribution for each Entity Types (G set).

all or (almost) none of fitness data with an entity. This suggests that Fitness data

permissions are more likely to be influenced by the receiver ("who") rather than the

specific data item ("what").

As discussed in Section 6.1, these "who" parameters are instances of the GDPR

EntityType. Therefore, we expect that clustering F permissions should provide a

unanimous deny/share for all items, while clustering G permissions should pro-

vide more nuanced clusters of different entity types receiving the data specified in

the F set.

7.1.2 Clustering Methods

Our dataset shows considerable variability between participants’ privacy preferences—

a finding that is broadly reflected in the privacy literature (cf. [93]). Using cluster-

ing, one can capture the preferences of various users with a higher level of accuracy.

Hence, the goal of this section is to find a concise set of profiles, clusters, that can

represent the variability of the permission settings among our study participants.

To this end, we cluster participants’ permissions with Weka1 using the K-modes

clustering algorithm [32] with default settings. The K-modes algorithm follows the

1https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/
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(A) S dataset (B) A dataset

(C) F dataset (D) G dataset

FIGURE 7.3: Evaluation of different numbers of clusters for each set.

same principles as the more common K-means algorithm, but it is more suitable for

the nominal variables in our dataset.

In our first clustering attempt we tried to find a set of profiles by clustering the

full dataset, including the A, F, S, and G subsets. A drawback of this method is

that, assume we cluster the users into n clusters, this method will only provide n

possible profiles to be used for recommendations to the users. A further drawback

of clustering the full set of 45 permissions is that it gives large error rates (e.g., the

sum of squared error for the viable 4-cluster solution is 1435), for anything but a very

large number of clusters.

If we instead generate a separate set of n "subprofiles" for each of the four datasets

(A, F, S, and G), n4 different combinations of profiles can be used for recommen-

dation, providing finer-grained privacy-setting controls to the users compared to

clustering the full set. In addition, error rates are lower when clustering each set

separately, as shown in Figure 7.3. For example, with only 2 clusters per set, the sum

of squared error reduces to 1277 (a 24.3% reduction). An additional benefit is that

the profiles for each set can be investigated in more detail.
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In our dataset the fitness data permissions (F set) are specified repeatedly for each

Entity Type (part of the G set). We tried to cluster these combinations, taking into

account all 98 features (i.e., 14 fitness data per 7 entity types). This analysis resulted

in two profiles: one that had "allow all" for health and SN public entities (and "deny

all" for all other entities), and one that had "deny all" for all entities. This means that:

a) very similar results can be obtained by considering the fitness data permissions

separately from the Entity Type, and b) as expected, the "who" parameter (Entity

Type) is more important than the "what" parameter (fitness data permissions).

In the following, we will discuss our method that generates subprofiles for each

of the four datasets.

7.1.3 Clustering Outcomes

We first investigate the optimal number of clusters by running the K-modes algo-

rithm for 1-6 clusters with a 70/30 train/test ratio, using the sum of squared errors

of the test set for evaluation. The results are shown in Figure 7.3. Using the elbow

method [100], we conclude that 2 is the optimal number of clusters for each dataset2.

The final cluster centroids of the 2-cluster solution for each dataset are shown

in Figure 7.4, together with the results of the 1-cluster solution. We describe the

subprofiles of each set in the subsections below.

The S Set

• Minimal (cluster 0): this subprofile allows the minimum permissions needed

to effectively run a fitness app. This includes identity, location, bluetooth, mo-

tion & fitness, and mobile data permissions.

• Unconcerned (cluster 1): this subprofile allows all permissions in this dataset.

The A Set

• Anonymous (cluster 0): this subprofile shares only users’ gender, height and

weight information but not their birth date or first and last name.

• Unconcerned (cluster 1): this subprofile shares all data requested in this dataset.
2We obtain similar results using other clustering algorithms, such as Hierarchical Clustering.
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(A) S set (allow=1, deny=0) (B) A set (allow=1, deny=0)

(C) F set (allow=1, deny=0) (D) G set (allow=1, deny=0, except for fre-
quency & retention)

FIGURE 7.4: Privacy profiles from the two clustering methods: 1-cluster results (full
data) and 2-clusters results (privacy subprofiles) for each dataset

The F Set

• Unconcerned (cluster 0): this subprofile shares all fitness data with TPs.

• Strict (cluster 1): this subprofile does not share any fitness data with TPs.

The G Set

• Socially-active (cluster 0): this subprofile shares data with health/fitness apps

and social network friends, but not with other recipients. Sharing is allowed

for health, safety, and social purposes but not for commercial purposes.

• Health-focused (cluster 1): this subprofile does not allow sharing with any

TPs. Sharing is allowed only for health and safety purposes.
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7.2 User Interface Models

7.2.1 Profile Prediction

Now that we have identified two privacy "subprofiles" per dataset, the next step

is to find predictors for the profiles and predict which subprofiles each participant

belongs to. This section aims to answer the research question: RQ3.2 Are there

any privacy profile items or questionnaire items that can be used as a determiner to

predict which privacy profile best describes a user?

Recommender systems usually ask users to evaluate a few items before giving

recommendations regarding all remaining items. Likewise, in our system, we might

be able to identify certain permission items inside each privacy subprofile that—

when answered by the user—could drive the prediction. Since the items are the

permission preferences included in the subprofiles, collected through our FitPro pro-

totype app, we call this the "direct predicition" approach. Additionally, we also ex-

plored whether the items from our questionnaire (see Section 4.3.4) could drive the

predicition. Since these items are not part of the privacy subprofiles, we call this the

"indirect prediction" approach. For each approach and for each subset of data (S, A,

F, and G sets), we develop decision trees that will enable us to predict which subpro-

file best describes a user. The trees contain the subprofile items (direct prediction) or

questionnaire items (indirect prediction) that can be asked to classify each user into

their correct subprofile.

We developed our decision trees using the J48 tree learning algorithm. J48 is

an efficient and widely used decision tree algorithm that can be used for classifica-

tion [143]. Previous work show the effectiveness of this approach to predict privacy

settings within each cluster [11]; here we take the opposite approach and use it to

predict cluster assignments instead. In our approach, the J48 algorithm extracts the

permission items (for the direct prediction) or questionnaire items (for the indirect

prediction) that classify a new user into the correct subprofile with the highest pos-

sible accuracy. The evaluation of all developed J48 trees was performed using k-fold

cross validation.
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(A) S set (86.42%) (B) A set (95.85%)

(C) F set (97.74%) (D) G set (82.26%)

FIGURE 7.5: The permission drivers for the privacy subprofiles and their respective
prediction accuracies.

Direct Prediction Questions

In our direct prediction approach, the aim is to ask users to answer certain permis-

sion items from each subset as a means to classify them into the correct subprofile

(thereby providing a recommendation for the remaining items in that subset). For

this approach, we thus classify users using the items in the subset as predictors.

Our results for this approach are reported in Figure 7.5. It shows for each subset

the question that best classifies our study participants into the correct subprofile.

When running tree-based algorithms, a trade-off has to be made between the

parsimony and the accuracy of the solution. Parsimony prevents over-fitting and

promotes fairness [11] and can be accomplished by pruning the decision trees. In

our study, while multi-item trees may provide better predictions, the increase in ac-

curacy is not significant compared to the single-item trees presented in Figure 7.5.

These single-item solutions already obtained a high accuracy, and their parsimony

prevents over-fitting and minimizes the number of questions that will need to be

asked to the users in order to provide them accurate recommendations. The result-

ing solution involves a 4-question input sequence—one question for each subset.

For the S set, the Photo permission is the best subprofile predictor. This is one of

the least-shared permissions (see Figure 7.1), and 94% of participants who give this
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permission are correctly classified into the "Unconcerned" subprofile, while 83% of

participants who do not give this permission are correctly classified into the "Mini-

mal" subprofile.

For the A set, First name is the best predictor. Again, 94% of participants who

share their first name are correctly classified into the "Unconcerned" subprofile, while

98% of participants who do not share their first name are correctly classified into the

"Anonymous" subprofile.

For the F set, Activity minutes permission is the best predictor. This is one of

the most-shared permissions. Around 97% of participants who give this permission

are correctly classified into the "Unconcerned" subprofile, while 100% of participants

who do not give this permission are correctly classified into the "Strict" subprofile.

Finally, for the G set, the best predictor is whether the participants allows data

collection for Social purposes. If so, participants are correctly classified into the "So-

cially active" subprofile with 84% accuracy, otherwise they are classified into the

"Health-focused" subprofile with 80% accuracy.

Indirect Prediction Questions

A similar procedure was applied to the questionnaire data concerning the follow-

ing categories of user traits: privacy attitude, social behavior, negotiability, exercise

tendencies and user demographics (cf. Table A.1 in Appendix). As will be shown be-

low, the indirect prediction approach has a lower accuracy than the direct approach

presented in Section 7.2.1. This is expected since the questionnaire items about user

traits have no direct relationship with the permission settings in the privacy profiles.

These results are still interesting, though, since they allow the user to avoid making

any specific privacy settings. Moreover, the resulting predictors show interesting se-

mantic relationships with the datasets they predict. We discuss these results in more

detail below.

Privacy Attitudes

We first attempted to use privacy attitudes as predictors of users’ subprofiles. The

resulting trees for this indirect prediction are shown in Figure 7.6.
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(A) S set (66.04%) (B) A set (65.28%)

(C) F set (69.81%) (D) G set (62.26%)

FIGURE 7.6: The attitude drivers for the privacy subprofiles and their respective predic-
tion accuracies.

Among all the privacy attitude questions, "trust" and "privacy concern" are found

to be predicting factors of user subprofiles. Interestingly, there is a single privacy

concern question ("I believe other people are too concerned with online privacy is-

sues") that predicts the user’s S and F subprofiles. Those who agree that people are

just too concerned about privacy issues belong to "Unconcerned" subprofile, while

those who have higher concerns tend to be in the "Minimal" subprofile. The same

goes for the F set where those who strongly disagree, (1) on a 7pt scale, thinking that

it is a major concern belong to the "Strict" subprofile. Otherwise they are classified

as "Uncocerned".

For the trust question, "I believe the company is honest when it comes to using

the information they provide", it can be used to predict users’ subprofile for the A set.

Participants are assigned to the "Anonymous" subprofile if they answer this question

with "somewhat disagree" (3) or below. Those who indicate higher levels of trust are

assigned to the "unconcerned" subprofile. The A set concerns information provided

directly to the fitness app, so it makes sense that trust is a significant predictor of

users’ willingness to provide such information.

For the G set, those users who agree (6) or extremely agree (7) with the question

"I believe the company providing this fitness tracker is trustworthy in handling my



126 Chapter 7. PDM Privacy Recommendation

information" are classified in the "Socially active" subprofile, while the remaining

users are classified in the "Health-focused" subprofile. The question really fits the

G set since GDPR permissions are mostly about handling the user information by

the TPs. Particularly, it makes sense that users who do not trust the fitness app in

handling their information would be assigned to the "Health-focused" profile, since

this profile prevents the app from sharing their data to any other entity and only

allows data collection for the purpose of health and/or safety.

The result shows that we managed to capture some semantically relevant rela-

tionships between users’ attitudes and their assigned privacy profiles. The S and F

sets share the same predictor question which makes the final solution a 3-question

input sequence that is one less question to the users compared to the direct questions

in Section 7.2.1.

Social Behavior

We also tried to find predictors among the questions about social influence and so-

ciability. The resulting trees for this indirect prediction are shown in Figure 7.7.

(A) S set (65.66%) (B) A set (61.89%)

(C) F set (69.43%) (D) G set (61.89%)

FIGURE 7.7: The social behavior drivers for the privacy subprofiles and their respective
prediction accuracies.

A single sociability question can be used to predict subprofiles for both the S and

A sets. For the S set, users who are completely open (1) to the idea of meeting new
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friends when they exercise are classified in the "Unconcerned" subprofile, otherwise

they are classified in the "Minimal" subprofile.

For the A set, users who are likely not (6) or definitely not (7) open to meeting

new friends are classified in the "Anonymous" subprofile, otherwise they are classi-

fied in the "Unconcerned" subprofile.

For the F set, users who have never (7) met any new friends while exercising

are classified into the "Strict" subprofile, while others are classified into the "Uncon-

cerned" subprofile. This, as well as the findings regarding the S and A sets, seem

to suggest that users’ disclosure of personal information is likely to be related with

their tendency to socialize while using fitness apps.

For the G set, users who are influenced to do exercise if their social media friends

also exercise (i.e., "definitely yes" to "neutral" (1-4)) are classified into the "Socially

active" subprofile, otherwise they are classified into the "Health-focused" subprofile.

Again, we found interesting semantic relationships between social influence and

sociability while exercising and users’ privacy-related behaviors: users who are

more prone to reap social benefits from exercising are more likely to give the app

more widespread permissions. Similar to privacy attitudes, these predictors only

involve a 3-question input sequence.

Negotiability of Privacy Settings

We also attempted to use the negotiability of users’ privacy settings as input for the

subprofile prediction. Figure 7.8 shows the tree-learning solutions for this approach.

For the S set, users who are willing to give the Phone permission (access phone

calls and call settings) if the benefits increase are classified into the "Unconcerned"

subprofile, while users who refuse to share the Phone permission even if the bene-

fits increase are classified into the "Minimal" subprofile. In other words, the privacy

preferences of the latter group are not negotiable; they will still share only the mini-

mum permissions needed to run the tracker, even if the benefits increase.

For the A set, users who are willing to give the Identity permission (account

and/or profile information) if the risks decrease are classified into the "Unconcerned"
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(A) S set (73.21%) (B) A set (62.26%)

(C) F set (72.08%) (D) G set (66.41%)

FIGURE 7.8: The user negotiability drivers for the privacy subprofiles and their respec-
tive prediction accuracies.

subprofile, otherwise they are classified into the "Anonymous" subprofile. Interest-

ingly, the Identity permission is part of the S set rather than the A set, but it se-

mantically coincides with the items in the A set, which include the user’s name and

birth date (i.e., identifying information). As such, it makes sense that users who

are unwilling to share their phone’s identifier even when the risks decrease are also

unwilling to share their personal identity information.

For the F set, users who share their Sleep fitness data with other TPs if the risks

decrease are classified into the "Unconcerned" subprofile, otherwise they are clas-

sified into the "Strict" subprofile. Users in the latter subprofile will not share their

fitness data with any other TPs, even if the risk decreases.

For the G set, users who share their fitness app Profile with other TPs if the

risks decrease are classified into the "Socially active" subprofile, otherwise they are

classified into the "Health-focused" subprofile. Even though Profile is a permission

from the F set, it semantically coincides with the subprofiles of the G set: users in

the "Socially active" subprofile tend to have permissions that allow them to connect

to others while exercising, and sharing one’s fitness app Profile is indeed a potential

way to connect to other users. As such, it makes sense that users in this subprofile

are more willing to share their fitness app Profile if the risks of doing so decrease.

The classification accuracy of the negotiability questions is the highest among all
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"indirect prediction" approaches. The most predictive questions also have under-

standable semantic relationships with the datasets they predict.

Exercise Tendencies and User Demographics

We applied tree learning algorithms to the group of exercise tendency questions

and user demographics as well, but we found no significant predictors among these

questions. While other studies have found user demographics to be significant pre-

dictors of privacy behaviors [96], in this particular study we were not able to find

any significant predictors among the group of user demographics.

Tree Evaluation

Figure 7.9 shows the root mean square error of all the trees produced by the J48

classifier. The evaluation has been executed with k-fold cross validation with k = 10.

FIGURE 7.9: Evaluation of each J48 tree algorithm on each set.

As expected, the "direct prediction" approach results in lower error rates than

the various "indirect prediction" approaches, since in the former approach the items

are a direct part of the privacy settings that constitute the subprofiles. Among the

"indirect prediction" approaches, the negotiability of privacy settings has slightly lower

error rates. This is not surprising, since it is at least partially related to the privacy

settings (yet evaluates whether those settings will change under certain conditions).
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The prediction accuracies of each tree are reported on the branches in their respective

figures (Figure 7.5 to 7.8), and take the form of (# assigned / # incorrect).

7.3 PDM Recommendation Strategies

In this section, we describe different types of guided privacy-setting approaches for

IoWT users that are based on the previous clustering and tree-learning results. When

implemented in the PDM, the guided interface simplifies the privacy-setting expe-

rience by providing privacy recommendations. This answers RQ3.3: How can we

effectively exploit the results to provide recommendation? We also present a valida-

tion of the recommendation results using a hold-out sample of permission settings

from 30 additional users.

Privacy-setting Recommendations

Manual Setting

The baseline privacy settings interface is one where users have to manually set their

settings (see Figure 7.10). If users do this correctly these manual settings should

match their privacy preferences 100%. However, the process of manually setting

one’s privacy settings can be very burdensome for the user; our system has a total

of 45 permissions that are required to be managed. Under such burden, users are

likely going to make mistakes (cf. [122]), so the 100% accuracy may not be achieved

through manual settings.

The next strategies exploit the results of the analysis in the previous section to

provide interactive recommendations that simplify the task of privacy permission set-

ting, with different levels and type of user intervention.

Smart Single Default Setting

One way to reduce the burden of privacy management is with "smart" Single default

setting. Rather than having the user set each permission manually, this solution

already selects a default setting for each permission. Users can then review these

settings and change only the ones that do not match their preferences.
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(A) A set (B) F set

(C) S set (D) G set

FIGURE 7.10: Manual settings
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The optimal "smart" default is a set of settings that is aligned with the preferences

of the majority of users. Hence, we can calculate these setting by using the cluster

centroid of the 1-cluster solution (i.e., the full dataset "single cluster" in Figure 7.4).

Figure 7.11 shows the resulting default values for each dataset. If the user is unhappy

with these settings, he/she can still make specific changes. Otherwise, he/she can

keep them without making any changes.

Pick Subprofiles

The smart single default setting works best when most users have preferences sim-

ilar to the average. However, our dataset shows considerable variability in partici-

pants’ privacy preferences—a finding that is broadly reflected in the privacy litera-

ture (cf. [93]). This bring us to our clustering solutions, which create separate default

settings (in the form of subprofiles) for distinct groups of users.

Our first approach in this regard is to have users manually select which privacy

subprofiles they prefer. Figure 7.12a shows the subprofile selection interface for the

S set. Users can choose either the ‘’‘Minimal" or "Unconcerned" subprofile, which

are shown in Figures 7.12b and 7.12c respectively. Similar interfaces are provided

for the F, A, and G sets (not depicted here).

The subprofiles provided by this approach have a higher overall accuracy than

the "smart" single default described in Section 7.3, meaning that the user will have

to spend less effort changing the settings. However, the user will have to select a

subprofile for each dataset. This highlights the importance of having a small number

of subprofiles and making these subprofiles easy to understand. That said, even

with only two subprofiles per dataset, this can be a challenging task. In the next two

subsections, we address this problem by automatically selecting subprofiles based

on users’ answers to specific subprofile items ("direct prediction") or questionnaire

items ("indirect prediction").

Direct Prediction

For the direct prediction approach, we devise an interactive 4-question input se-

quence as shown in Figure 7.13. Each screen asks the user to answer a specific per-

mission question, which guides the subprofile classification processes as outlined in
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Section 7.2.1. In effect, each question informs the system about the user’s subprofile

of one of the four datasets, which means that users no longer have to manually pick

the correct subprofiles. Specifically, users will be asked if they agree to share their

First name (for the A set recommendation), Activity (for the F set), Photos (for the S

set), and whether they allow their data to be used for Social purposes (for the G set).

This 4-question interaction will aid the users in setting all of the 45 permissions in

the system. Depending on the answer to these questions, the user will subsequently

see the settings screens with the defaults set to the predicted profile. Users can still

change specific settings if their preferences deviate from the selected profile.

Indirect Prediction

For the indirect prediction approach, we take a similar approach, but the interactive

4-question input sequence is based on the analysis of questionnaire items rather than

permission settings.

As shown in Figure 7.14, we selected 4 questions that yield the highest accuracy

for each permission set: a negotiability question for Phone permissions for the S

set, a negotiability question for the permission to share Sleep data for the F set, A

question about sociability for the A set, and a trust question for the G set. Negotia-

bility and attitude have almost the same accuracy for G set, so we chose attitude for

diversity.

The benefit of the indirect prediction approach is that the user does not have

to answer any permission questions, not even the four needed to give a subprofile

recommendation. Instead, the user has to answer four questionnaire items.

Validation

We conducted a validation of these different approaches by running the recommen-

dation strategies on the 30 users in our holdout dataset. The resulting recommended

privacy subprofiles are then compared with their actual privacy preference. Fig-

ure 7.15 shows the average accuracies of each of the presented approaches.
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(A) A set (B) F set

(C) S set (D) G set

FIGURE 7.11: Smart Single settings.
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(A) S set subprofiles (B) The "Minimal" subprofile

(C) The "Unconcerned" subpro-
file

FIGURE 7.12: Interaction for picking a subprofile for the S set.
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(A) A set. (B) F set.

(C) S set. (D) G set.

FIGURE 7.13: Direct Prediction questions.



7.3. PDM Recommendation Strategies 137

(A) A set. (B) F set.

(C) S set. (D) G set.

FIGURE 7.14: Indirect Prediction questions.



138 Chapter 7. PDM Privacy Recommendation

The Pick Profile approach reaches an 84.74% accuracy. This approach has the

highest accuracy, because only the error from the difference between the privacy pro-

file and the users’ settings is counted, omitting the errors introduced by the user clas-

sification. This assumes that users can classify themselves with perfect accuracy—

this is likely an incorrect assumption.

Among recommendation approaches, the direct prediction approach is the most

accurate, averaging 83.41%. It almost yields no additional classification error com-

pared to the Pick subprofile approach. The indirect prediction approach has a signifi-

cantly lower accuracy of 73.9%.

FIGURE 7.15: Average accuracies of the recommender strategies on the 30 users.

Finally, the smart single default approach uses only a single "profile", circumvent-

ing the need for classification. The default profile settings are shown in the ‘full

data’ column of Figure 7.4. The accuracy of this setting is lower than the accuracy

of the subprofile solutions, but it does not lose accuracy on classification. Hence,

its accuracy is a respectable 68.7%, which is not much lower than the indirect predic-

tion approach. The details about accuracies and questionnaires used are provided in

Appendix.
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Chapter 8

Discussion and Conclusion

The PerNANDO framework aims to cover the literature gap on privacy protection

specifically for IoT devices, which is in compliance with the GDPR. The framework

consists of 2 main modules, namely, PDM, which manages and recommends user

privacy settings, and AID-S, which computes risks for inference attacks. The frame-

work uses the proposed PPIoT Ontology to model privacy preferences.

Our specific focus is on fitness wearables, given that this domain currently has

most of the user information. Accordingly, we built a case study including the Fitbit

fitness tracker, its app, and a third party app that can access and process the Fitbit

data (i.e., API) to provide further services.

8.1 Discussion

RQ1 asks about how to protect IoT users from potential inference of their private

data given their disclosed data. This has been addressed by AID-S which presents

an approach to prevent the inference of users’ private information from the available

data released to third party applications.

An extensive analysis of the current information sharing model concerning third

party applications has been investigated. By applying the framework to the case

study, we showed the capability of AID-S to compute the risks of inference and rec-

ommend optimal settings to the users. This approach enables users to have enough

information and be guided upon deciding which information they will share with

the third parties, giving users a more informed consent.
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We used the Bayesian Networks (BN) to discover inference risks and learn its

structure and parameters using the dataset of the 49 users. Furthermore, the network

has been integrated with inference studies from the literature and previous works.

BN is used since our goal is to create a graphical inference network and extend

the current network of inferences in the literature. Also, BN is a probabilistic ap-

proach used in modeling risks (e.g., [56]), which is suitable for this study.

The main contribution of AID-S is to propose an approach to support users in

managing privacy by revealing possible inference risks and also providing config-

uration options to limit such risk. In Android version 6.0 and above, the proposed

approach becomes even more effective since users have the option to check/uncheck

each permission needed by the third parties and AID-S can provide the recommen-

dation of which information should not be released to them.

RQ2 asks about how to model user privacy preferences in the advent of hetero-

geneous personal IoT data. This has been addressed by proposing PPIoT Ontology

that bridges the gap in semantic community on privacy preferences extended to the

IoT context. More importantly, this ontology is compliant with the GDPR.

PPIoT Ontology can handle the complexity of heterogeneous personal IoT de-

vices, and our PDM enables the expressive and fine-grained setting of privacy pref-

erences. Our main contribution to the literature is the combination and extension

of previous approaches for SW-based privacy management to cover the demands of

the IoT domain.PDM also allows for negotiation on both the TP side and the user

side, thereby balancing the privacy and utility of the service. Below, we summarize

some of the improvements we made compared to existing work.

• The PPIoT Ontology improves upon PPO Ontology from [157] by providing a

richer preference model that fits in the IoT paradigm, thereby allowing users

to create fine-grained privacy preferences.

• The ontology proposed by Bodorik et al. [21] allows users to place regulations

and conditions on factors based on the purpose of data recipient, usage and

retention, disputes, remedy, and access control. This was included in the PPIoT

extensions.
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• Likewise, the PROACT Ontology [141] focuses on ubiquitous computing and

includes a larger set of privacy concepts formalized in the notion of an "activity

sphere". However, the abstract nature of this ontology makes it difficult to

capture the complexity of the IoT paradigm. Arguably, our work captures a

similar level of granularity.

• The ontology for privacy rules developed by Zhang et al. [214] addresses the

privacy challenges of context-aware systems by defining a separate "data" class

and a "condition" class. Our work adopts this approach, but also allows for

negotiation of the conditions of each type of data between the user and the TP.

We believe that this negotiation, in the context of an extensible SW Ontology,

is crucial for the feasibility of privacy management in the context of IoT.

Finally, our PPIoT Ontology, as embedded in the interactive Privacy Preference

Model, helps TPs meet the GDPR requirement of providing straightforward policy

statements and requesting explicit consent.

RQ3 asks about how to aid users to set their privacy and provide them with

suitable recommendation. This has been addressed by the PDM through creating

privacy profiles and finding a way to match these profiles that best describes the

user. Then, providing recommendation strategies to interact with the user. Thus,

this research question has been broken into RQ3.1, RQ3.2, and RQ3.3 as discussed

extensively in Chapter 7.

We presented a data-driven approach to develop recommendation strategies for

supporting users to set permissions on their personal data collected and shared by

tracking devices in the fitness domain.

The motivating issue is the complex scenario of data sharing among devices and

Third Party applications in the Internet-of-Wearable-Things (IoWT), which makes

setting one’s privacy preferences an increasingly complex task. The goal is to balance

the users’ control over their data and the simplicity of setting, in the light of the

GDPR requirements.

Despite the vast variation in user privacy preferences, we managed to find a

concise set of relevant privacy profiles that are able to represent these preferences.
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With two subprofiles for four subsets of permissions (sets S, A, F and G), a total of 16

possible privacy profiles can be recommended to the user, which addresses RQ3.1.

Additionally, we managed to determine specific subprofile items ("direct pre-

diction") and questionnaire items ("indirect prediction") that serve as predictors for

these profiles.

Our results also show interesting semantic relationships between predictors and

privacy settings. In particular, users’ tendency to make friends while using the fit-

ness tracker is a significant predictor that they accept smartphone data permission

requests (the S set), answer in-app requests (the A set), and share their fitness track-

ing data (the F set).

This study also found that in sharing fitness tracking data, users care more about

"who" will receive that data rather than "what" data is shared specifically. This con-

firms previous studies [109, 11] showing no significant interaction between these

two parameters. Initial results also show that knowledge about users’ actions when

risks decrease is more useful to give good recommendations than knowledge about

users’ actions when benefits increase. All these predictors aim to address RQ3.2.

Finally, we proposed different recommendation strategies and related user in-

terfaces for supporting users to set their privacy permissions. They include a fully

manual approach, as well as interactive prediction-based recommendations that are

based on our clustering and classification results. Users can interact with the user

interface by answering the "trigger questions" that are selected by our classifiers as

predictors of users’ subprofiles. These recommendation approaches are aligned with

the PPIoT ontology: the data model vocabularies and the recommendation strate-

gies will be used by the PDM to model the user privacy preferences and support

privacy settings. The goal of providing interactive recommendation strategies was

then achieved, which addressed RQ3.3.

Even though several works exist on privacy preference modeling, this paper

makes a contribution in modeling privacy preferences for data sharing and process-

ing of tracked data in the IoT and fitness domain, with specific attention to GDPR

compliance. Moreover, the identification of well-defined clusters of preferences and

predictors of such clusters is a relevant contribution for the design of recommenda-

tion strategies and interactive user interfaces that aim to balance users’ control over
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their privacy permissions and the simplicity of setting these permissions.

In this light, our main contribution is a generic method to develop user profiles

and a series of recommendation strategies for privacy management that can be ap-

plied to any user-tailored privacy decision-support systems that model and manage

the user privacy permissions, like our PDM.

Our main contribution in this light is a process that can be used for the identi-

fication of privacy profiles and predictors of these profiles. Such predictors include

privacy setting preferences (direct prediction) but also, and more interestingly, some

user traits (indirect prediction): users’ privacy attitudes, the negotiability of their

preferences, and social influence.

As argued, though, this approach can also be applied to other IoT scenarios (e.g.

household IoT, public IoT), Digital Humanities domains mentioned in Chapter 1

(e.g., Assisted Living, Digital hospitals, museum, tourism, , online learning, etc.) or

even other complex privacy situations (e.g., social networking, online shopping) as

well. We encourage researchers to adopt and further extend this "User-Tailored Pri-

vacy" approach (cf. [95]) in their own work. Applying to different digital humanities

domain is possible, taking into account the PDM modeling of personal data used in

the specific domain.

8.2 Limitations and Future Work

The thesis work clearly illustrate the contribution on managing the user’s privacy

preference in the proliferation of IoT devices and TP apps while satisfying the re-

quirements of a lightweight and inter-operable approach. We discuss the main limi-

tations of this work as follows.

No Policy Enforcement. An obvious weakness of our approach lies in the lack

of control over the data once it has been disclosed to the TP. Third-party access can

be allowed or restricted via the condition properties, but there are no guarantees

that these properties are respected by the TP. Extensive data sharing among TPs

can also result in additional inference risks. As such, our framework only applies

to situations where TPs can be trusted and/or held accountable for their actions—

but this is also true for traditional TP policy statements. This is why an apriori
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protection for privacy inference is needed, where AID-S stands out. However, AID-S

only protects the undisclosed data, not the data shared by user. The protection from

malicious TPs are not addressed since it is part of the security-protected privacy as

defined in Chapter 1.1.

Limited Negotiation Capability. Our proposal aims to automate the matching

and negotiation between the TP policy statement and the user’s preferences, result-

ing in a more transparent and controllable management of privacy permissions in

the IoT context. This requires TPs to comply with the PPIoT Ontology. Note, though,

that our approach uses "graceful degradation", where traditional privacy policies are

automatically mapped to the PPIoT Ontology. The PDM can still operate in this case;

only negotiation is not possible on the TPs part. Additionally, when the PDM auto-

matic negotiation is not possible, it may result in a final manual decision that may

be difficult for users. Our future work will address how the PDM recommendation

can be phrased in a way that optimizes the user’s confidence (cf. [132]).

Insufficient for Policy Replacement. Our work can help the TPs abide by the

GDPR regulations by making their policies more transparent and controllable, and

by allowing the TP to acquire explicit consent from the user as discussed in Chapter

6.2.1. However, we concur that PPM will not completely replace traditional policy

statements, which are written in a certain way to provide legal protection. That said,

we argue that our interactive privacy negotiation is a big step towards the newly

implemented GDPR requirements.

Static Recommendation Strategy. For the PDM, one limitation is that the rec-

ommendation strategies are static. They do not update automatically based on new

input. On the other hand, a dynamic recommender has some drawbacks. If the rec-

ommender is to update predictions for the current user based on their feedback, it

has only very limited opportunities to do so, since the interaction is only once to set

a user’s privacy, unlike a typical recommender system, where users have continual

interactions with the system. Likewise, if the recommender is to learn from each user

and recalculate the recommendations for subsequent users, it means that the system

needs some sort of centralized learning component where all users’ privacy prefer-

ences are stored. This in itself requires that users agree and give their permissions

for their privacy preferences to be stored and processed.
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As such, this thesis aims at studying which tracking data are viable for determin-

ing the right recommendation in a simplified manner. For future refinements, using

dynamic techniques (e.g., Dynamic Bayesian Filtering, Kalman Filtering, PHD filter-

ing, etc.) are feasible options that provide update steps to extend our static approach.

Moreover, for future refinement, we plan also to combine direct recommendation

and indirect recommendation, which are currently two different strategies that re-

sult from our study.

Generalizability. With regard to the PPIoT ontology, we provide an application-

based evaluation through creating a simulation that is used to manage privacy pref-

erences (offline) and by using it as the basis of the permission model which is eval-

uated by real users (online), as discussed in Chapter 6. Moreover, while its logical

consistency has been evaluated using Jena Semantic Web reasoner, we are currently

working on extending the use case scenarios in order to comprehensively evaluate

its feasibility to model the user and TP privacy preferences in the IoWT.

User Evaluation on Recommendation Strategies. Another limitation of this

thesis is the suitability of the recommendation strategies from the user’s perspec-

tive. Though we have evaluated the system recommendation offline, an online user

study validation must also be instantiated for the part on recommending strategies.

Specifically, we have conjectured that profile-based approaches reduce the hassle of

making privacy settings but that the manual selection of a privacy profile might be

difficult for a user. These conjectures should be evaluated in a user study, which is

another suggestion for future work. The user study should also evaluate the user

control provided by the PDM.

Furthermore, the preliminary user evaluation results on AID-S should be ex-

tended. The interesting results show that there were more approvals after know-

ing the risks involved. These results must be verified and should be extended by

checking if similar respondents (e.g., for the same fitness domain and/or on other

IoT domains) provide similar behaviours.

Crowdsourced Dataset. Finally, we discuss a limitation of our dataset. The per-

mission settings that we collected could be biased by the fact that the subjects knew

it was a simulation of an app privacy setting. In order to reduce this possible effect,

the interaction design and the user interface of the app were made very realistic and
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we asked users to behave like when they usually install an app.

We also discuss the main open issues in this thesis. With regards to inference

risks, one of the main open research issues is the completion of Inference matrix.

iPshield [31] have used this method using mobile phones which we have then ex-

tended to the IoT domain. Given the different granularity and heterogeneity of data,

computing all the possible inference risks would become a tedious and error-prone

task. Finally, it will not be able to generalize into large-scale domains such as IoT.

Another open issue concerning privacy recommendation is the treatment of the

privacy service provider as a third party. Although we are recommending user’s

privacy preferences, our framework should also be treated as a third party, which

needs permission from the user. This research issue is general and also true for any

privacy-preserving service, which is not tackled in this study. Most privacy schemes

do not take this into account and this calls for more attention.

Concerning our PerNANDO framework, some open issues include the appli-

cation of this framework to other IoT domains, which can also be done in our fu-

ture work. Inside our framework, the Access Control work package (i.e., Policy

Statement evaluation, and Authentication and Authorization) was not realized since

these are heavily related to the security aspect. In this work we completely limit to

the privacy point-of-view, as explained in Chapter 1.
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Appendix A

Questionnaires and Accuracy Table

TABLE A.1: Study Questionnaire.

Negotiability of privacy settings (Yes or No)

Would you share the ff. data if the risks significantly increased?
Would you share the ff. data if the benefits significantly decreased?
Would you share the ff. data if the risks significantly decreased?
Would you share the ff. data if the benefits significantly increased?

Social behavior (7pt scale from Definitely Yes to Definitely No)

Social
influence

If your friends exercise, does this influence you to exercise?
If your online friends exercise, does this influence you to exercise?

Sociability
How often do you meet new friends while you exercise?

choices: from very often to never occured
Are you open to the idea of meeting new friends while you exercise?

Exercise tendencies (7pt scale from Definitely Yes to Definitely No)

Exercise
attitude

How physically healthy are you?
choices: from extremely healthy to extremely unhealthy

How important is exercise to you?
choices: from extremely important to completely unimportant

What do you most often do for exercise?
choices: lift weights, walk/jog/run/hike, aerobics, dance, swim,

pilates, other sports
How often do you exercise?

choices: from almost daily to almost never
At what intensity do you work out?

choices: from very light to very heavy
Do you feel you get too much, the right amount, or too little exercise?

choices: from Much more than I want to Much less that i want
What is the main reason you exercise?

choices: lose weight, for fun, get stronger/gain weight, manage
stress, socialize w/ friends, maintain health, explore things

Healthy
living
expertise

I understand the diff. bet. different types of healthy-living measures.
I know healthy-living measures that most others haven’t even heard of.
I know which healthy-living measures are useful to implement.
I am able to choose the right healthy-living measures.
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Privacy-related attitude
(7pt scale from Completely Agree to Completely Disagree)

Trust

I believe the company providing this fitness tracker is trustworthy
in handling my information.
I believe this company tells the truth and fulfills promises related to
the information I provide.
I believe this company is predictable and consistent regarding the
usage of my information.
I believe this company is honest when it comes to using the infor-
mation I provide.

General
privacy
concerns

All things considered, the Internet causes serious privacy problems.
Compared to others, I am more sensitive about the way online com-
panies handle my personal information.
To me, it is the most important thing to keep my privacy intact from
online companies.
I believe other people are too concerned with online privacy issues.
Compared with other subjects on my mind, personal privacy is very
important.
I am concerned about threats to my personal privacy today.

Perceived
surveillance

I believe that the location of my mobile device is monitored at least
part of the time.
I am concerned that mobile apps are collecting too much informa-
tion about me.
I am concerned that mobile apps may monitor my activities on my
mobile device.

Perceived
intrusion

I feel that as a result of my using mobile apps, others know about
me more than I am comfortable with.
I believe that as a result of my using mobile apps, information about
me that I consider private is now more readily available to others
than I would want.
I feel that as a result of my using mobile apps, information about me
is out there that, if used, will invade my privacy.

Perceived
secondary
use of
personal
information

I am concerned that mobile apps may use my personal information
for other purposes without notifying me or getting my authoriza-
tion.
When I give personal information to use mobile apps, I am con-
cerned that apps may use my information for other purposes.
I am concerned that mobile apps may share my personal informa-
tion with other entities without getting my authorization.
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TABLE A.2: Table of Accuracies.

Pick
Profile

Smart
Single

Direct
Pred.

Privacy
Attitude

Soc. Be-
havior

Neg.

S Set
Identity 66.67 % 66.67 % 66.67 % 66.67 % 66.67 % 66.67 %
Contacts 83.33 % 70.00 % 70.00 % 56.67 % 73.33 % 80.00 %
Location 83.33 % 83.33 % 83.33 % 83.33 % 83.33 % 83.33 %
SMS 90.00 % 50.00 % 70.00 % 50.00 % 53.33 % 73.33 %
Storage 83.33 % 56.67 % 70.00 % 43.33 % 46.67 % 60.00 %
Camera 80.00 % 60.00 % 86.67 % 60.00 % 70.00 % 63.33 %
Bluetooth 83.33 % 83.33 % 83.33 % 83.33 % 83.33 % 83.33 %
Photos 80.00 % 66.67 % 100.00 % 60.00 % 76.66 % 70.00 %
Phone 96.67 % 56.67 % 76.67 % 50.00 % 60.00 % 80.00 %
Motion 96.67 % 96.67 % 96.67 % 96.67 % 96.67 % 96.67 %
Media 70.00 % 76.67 % 56.67 % 43.33 % 33.33 % 60.00 %
Mobile 76.67 % 76.67 % 76.67 % 76.67 % 76.67 % 76.67 %

Average 82.50 % 70.28 % 78.06 % 64.17 % 68.33 % 74.44 %

A set
First Name 100.00 % 63.33 % 100.00 % 63.33 % 73.33 % 56.67 %
Last Name 96.67 % 60.00 % 96.67 % 60.00 % 70.00 % 60.00 %
Gender 76.67 % 76.67 % 76.67 % 76.67 % 76.67 % 76.67 %
Birthday 90.00 % 60.00 % 90.00 % 60.00 % 63.33 % 53.33 %
Height 70.00 % 70.00 % 70.00 % 70.00 % 70.00 % 70.00 %
Weight 70.00 % 70.00 % 70.00 % 70.00 % 70.00 % 70.00 %

Average 83.89 % 66.67 % 83.89 % 66.67% 70.55% 64.44 %

F set
Steps 96.67 % 73.33 % 96.67 % 76.67 % 70.00 % 76.67 %
Distance 96.67 % 73.33 % 96.67 % 76.67 % 70.00 % 76.67 %
Elevation 100.00 % 70.00 % 100.00 % 73.33 % 73.33 % 80.00 %
Floors 96.67 % 73.33 % 96.67 % 76.67 % 70.00 % 76.67 %
Act. mins. 100.00 % 70.00 % 100.00 % 73.33 % 73.33 % 80.00 %
Cal. Act. 96.67 % 73.33 % 96.67 % 76.67 % 70.00 % 76.67 %
Weight 90.00 % 60.00 % 90.00 % 63.33 % 70.00 % 76.67 %
Sleep 93.33 % 63.33 % 93.33 % 66.67 % 66.67 % 80.00 %
Heartrate 100.00 % 70.00 % 100.00 % 73.33 % 73.33 % 80.00 %
Food logs 90.00 % 60.00 % 90.00 % 63.33 % 70.00 % 76.67 %
Friends 83.33 % 53.33 % 83.33 % 56.67 % 63.33 % 70.00 %
Profile 96.67 % 66.67 % 96.67 % 70.00 % 76.67 % 76.67 %
Location 86.67 % 56.67 % 86.67 % 60.00 % 66.67 % 66.67 %
settings 93.33 % 63.33 % 93.33 % 66.67 % 73.33 % 73.33 %

Average 94.29 % 66.19 % 94.29 % 69.52 % 70.48 % 76.19 %
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Pick
Profile

Smart
Single

Direct
Pred.

Privacy
Attitude

Soc. Be-
havior

Neg.

G set
SN Public 90.00 % 90.00 % 90.00 % 90.00 % 90.00 % 90.00 %
SN Friends 73.33 % 53.33 % 73.33 % 63.33% 60.00 % 56.67 %
Health 66.67 % 60.00 % 60.00 % 43.33 % 40.00 % 70.00 %
Other Apps 76.67 % 76.67 % 76.67 % 76.67 % 76.67 % 76.67 %
Corporate 80.00 % 80.00 % 80.00 % 80.00 % 80.00 % 80.00 %
Government 86.67 % 86.67 % 86.67 % 86.67 % 86.67 % 86.67 %
Health 86.67 % 86.67 % 86.67 % 86.67 % 86.67 % 86.67 %
Safety 90.00 % 90.00 % 90.00 % 90.00 % 90.00 % 90.00 %
Social 93.33 % 60.00 % 100.00 % 70.00 % 60.00 % 63.33 %
Commercial 73.33 % 73.33 % 73.33 % 73.33 % 73.33 % 73.33 %
Convenience 80.00 % 73.33 % 73.33 % 76.67 % 66.67 % 70.00 %
Frequency 53.33 % 53.33 % 53.33 % 53.00 % 53.33 % 53.33 %
Retention 50.00 % 40.00 % 50.00 % 50.00 % 43.33 % 46.67 %

Average 76.92 % 71.02 % 76.41 % 72.31 % 69.74 % 72.56 %

Overall
Average

84.74 % 68.74 % 83.41 % 68.52 % 69.70 % 73.11 %
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