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There will always be rocks in the road

ahead of us. They will be stumbling

blocks or stepping stones; it all depends

on how you use them.
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Abstract

Since the ’50, potential fields data modeling has played an important role in analyzing the

density and magnetization distribution in Earth’s subsurface for a wide variety of applications.

Examples are the characterization of ore deposits and the assessment of geothermal and

petroleum potential, which turned out to be key contributors for the economic and industrial

development after World War II.

Current modeling methods mainly rely on two popular parameterization approaches, ei-

ther involving a discretization of target geological bodies by means of 2D to 2.75D horizontal

prisms with polygonal vertical cross-section (polygon-based approach) or prismatic cells

(prism-based approach). Despite the great endeavour made by scientists in recent decades,

inversion methods based on these parameterization approaches still suffers from a limited

ability to (i) realistically characterize the variability of density and magnetization expected in

a study area and (ii) take into account the strong non-uniqueness affecting potential fields

theory. The prism-based approach is used in linear deterministic inverse methods, which

provide just one single solution, preventing uncertainty estimation and statistical analysis

on the parameters we would like to characterize (i.e, density or magnetization). On the

contrary, the polygon-based approach is almost exclusively exploited in a trial-and-error

modeling strategy, leaving the potential to develop innovative inverse methods untapped. The

reason is two-fold, namely (i) its strongly non-linear forward problem requires an efficient

probabilistic inverse modeling methodology to solve the related inverse problem, and (ii)
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unpredictable cross-intersections between polygonal bodies during inversion represent a

challenging task to be tackled in order to achieve geologically plausible model solutions.

The goal of this thesis is then to contribute to solving the critical issues outlined above,

developing probabilistic inversion methodologies based on the polygon- and prism-based

parameterization approaches aiming to help improving our capability to unravel the structure

of the subsurface.

Regarding the polygon-based parameterization strategy, at first a deep review of its

mathematical framework has been performed, allowing us (i) to restore the validity of a

recently criticized mathematical formulation for the 2D magnetic case, and (ii) to find an error

sign in the derivation for the 2.75D magnetic case causing potentially wrong numerical results.

Such preliminary phase allowed us to develop a methodology to independently or jointly

invert gravity and magnetic data exploiting the Hamilton Monte Carlo approach, thanks to

which collection of models allow researchers to appraise different geological scenarios and

fully characterize uncertainties on the model parameters. Geological plausibility of results is

ensured by automatic checks on the geometries of modelled bodies, which avoid unrealistic

cross-intersections among them.

Regarding the prism-based parameterization approach, the linear inversion method based

on the probabilistic approach considers a discretization of target geological scenarios by

prismatic bodies, arranged horizontally to cover it and finitely extended in the vertical

direction, particularly suitable to model density and magnetization variability inside strata. Its

strengths have been proven, for the magnetic case, in the characterization of the magnetization

variability expected for the shallower volcanic unit of the Mt. Melbourne Volcanic Field

(Northern Victoria Land, Antarctica), helping significantly us to unravel its poorly known

inner geophysical architecture.
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Introduction

Since time immemorial, gravity and magnetic fields have always fascinated both scientists

and common people because of their mysterious nature. In fact, people could not explain

why objects were falling downward, or why some materials tended to attract or repel each

other. In the latter centuries, great efforts have been made to better comprehend these fields

from the mathematical and physical points of view. For the gravity field, two milestone

theories were derived less than 300 years apart, i.e., Newton’s law of universal gravitation

and Einstein’s general relativity theory (Einstein, 1916; Newton, 1687). Einstein’s theory

has literally shaken the foundations of classical physics, opening the way to first theorize

and then verify the existence of complex phenomena in the universe related to gravity, such

as black holes, gravitational lensing and gravitational waves, the latter representing a main

target in theoretical physics so far. In the magnetic case, Maxwell’s equations have been

capable to consider the magnetic and electrical fields as two physical effects of a unique

entity, i.e., the electromagnetic field, allowing for a technological progress unknown in the

past of humanity (Maxwell, 1873a,b).

Despite, at a first glance, gravity and magnetic fields could appear to be very different in

their physical nature, they actually are very closely related. In fact, they can be mathematically

derivable from each other using Poisson’s relation (Blakely, 1996, see section 3.2.3 for a

better explanation), thanks to which the magnetic response of a uniformly magnetized bodies

can be transformed in the so-called pseudo-gravity, i.e., the gravity field generated by the

same bodies with the magnetization replaced by an identical uniform density distribution.
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Moreover, the gravity and magnetic fields show some other interesting properties thanks to

which they are commonly called potential fields. Indeed, since they are conservative and

solenoid fields far enough from sources generating them (i.e., ∇×F = 0 and ∇ ·F = 0, where

F indicates either the gravity or magnetic field), they admit both scalar and vector potentials.

As an example, the scalar potential is required in exploration geophysics to derive the gravity

and magnetic fields at any heights starting from the same dataset collected during the survey.

Particularly useful in exploration geophysics are potential fields data in the form of gravity

and magnetic anomalies. They arise since the Earth is not homogeneous, that is, its physical

properties, density and magnetization in our case, may vary often in a complex way (Martín-

Atienza and García-Abdeslem, 1999). In order to investigate such anomalies, huge data

compilations have been acquired over decades across the world in different manners, such

as through ground-based and airborne surveys and, lastly, satellite investigations, proving a

powerful means to help in characterizing the structure of the subsurface both at local (e.g.,

Hinze et al., 2013; Li and Oldenburg, 1998, 2000; Nabighian et al., 2005; Zunino et al.,

2009) and continental scales, in the latter case particularly to estimate heat flux or to infer

crustal thickness (e.g., Baranov et al., 2018; Li et al., 2017; Llubes et al., 2018; Martos

et al., 2017; Maule et al., 2005; Milano et al., 2020; Pappa et al., 2019; Scarponi et al., 2021;

van der Meijde et al., 2013). A crucial example is related to Antarctica, where gravity and

magnetic anomalies data have provided scientists with a unique way to image its geological

framework, owing to the thick ice sheet covering almost the entire continent and preventing

direct geological observations.

However, the most informative way to extract from gravity and magnetic data useful

information to characterize the density and magnetization distribution in the subsurface

relies on the use of modeling methodologies. In this context, the advent of information

technology in the ’50 allowed scientists to develop a plethora of methods, exploiting different

ways to parameterize geological bodies of interest in the subsurface. In fact, they may
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be parameterized in a more or less complex fashion both in 2D and 3D, involving, for

instance, polygons, prismatic cells, spheres and so on (Hinze et al., 2013). Unfortunately, two

significant issues affect potential fields modeling, that are (i) non-uniqueness of the solution

and, often, (ii) strong non-linearity of the forward problem, requiring probabilistic inversion

methodologies. These weaknesses are suffered in particular by the common polygon-based

parameterization approach (Rasmussen and Pedersen, 1979; Talwani and Heirtzler, 1962,

1964; Talwani et al., 1959), whose usage has remained confined to a user-subjective trial-

and-error strategy, i.e., manually adjusting modeling results until the fit with observed data

is good. Conversely, the equally popular prism-based parameterization approach (Banerjee

and Das Gupta, 1977; Bhattacharyya, 1964; Nagy, 1966) is characterized by linear forward

problem, but the non-uniqueness issue remains not addressed owing to its usage in linear

deterministic inversion methods; in fact, they provide as solution just an optimal model,

preventing a more informative uncertainty estimation on the model parameters typical of

probabilistic approaches.

This thesis aspires to rediscover the polygon- and prism-based parameterization strategies

in potential fields inverse modeling, providing at first some theoretical findings, then propos-

ing advanced inverse methodologies aiming to help improving our capability to unravel the

structure of the subsurface. The discussion, subdivided in four main parts and six chapters, is

structured as follows:

• Part I, provides the ingredients required for the understanding of results presented in

this thesis. It groups the first two chapters, that are:

Chapter 1, showing an overview on density and magnetization properties of

rocks;

Chapter 2, defining the key concepts of model parameterization and forward and

inverse problems.
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• Part II, presents some noteworthy theoretical results related to 2D/2.75D polygonal

parameterization approaches. It is composed by two chapters, namely:

Chapter 3, discussing about theoretical and numerical results achieved from

the analysis of existing formulations used to compute the magnetic field of

2D uniformly magnetized polygonal bodies. Thanks to this analysis, a new

formulation recently proposed as a correction to another popular one has been

demonstrated to be just its algebraic variant, saving then almost sixty years

of magnetic anomaly calculations. This chapter is based on paper 1 listed at

page viii;

Chapter 4, dealing with a novel non-linear inversion method of gravity and

magnetic data in case of 2D to 2.75D polygonal bodies with uniform density and

magnetization, exploiting the innovative Hamiltonian Monte Carlo approach. The

use of such inversion method has highlighted the still enormous potential on the

polygonal parameterization in characterizing real geological bodies, beyond to

enabling statistical analysis and uncertainty estimation on the model parameters.

This chapter derives from paper 2 listed at page viii.

• Part III, shifts the focus to 3D modeling approaches. It comprises one chapter, in

detail:

Chapter 5, showing the application of a linear inversion method based on an ad

hoc unedited version of the prism-based approach, developed for magnetic data

but theoretically suitable also for gravity ones. It is turned out to be crucial to

reconstruct the geophysical architecture of the Mt. Melbourne Volcanic Field,

located in Northern Victoria Land (Antarctica). All results discussed in this

chapter are based on paper 3 listed at page viii;

• Part IV, introduces the closing chapter of this thesis, namely:
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Conclusions, retracing the main scientific contributions of this thesis in the field

of potential fields modelling, with a focus on future developments possibly arising

from this work.

All results discussed in this thesis has been achieved thanks to many open source code

packages written both in the Julia (Bezanson et al., 2017) and Python languages (Van Rossum

and De Boer, 1991), listed at page ix.





Part I

Basic concepts



Chapter 1

Physical properties of rocks

1.1 Introduction

Physical properties of rocks are known to strongly control the geophysical signature of a

study area. Hence, their knowledge is fundamental during reduction, analysis and modeling

of geophysical data to reconstruct the geological framework inferred in the subsurface. This

task is often a challenge for geophysicists, since direct measures of physical properties

on rock samples are usually missing as well as the knowledge of their variability in the

subsurface.

In potential fields geophysics, the physical properties investigated are density and magne-

tization for the gravity the magnetic case, respectively. In the next sections, a presentation of

their characteristics and variability on Earth materials is made to better clarify to the readers

their importance in exploration geophysics.
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1.2 Density

Density is the fundamental parameter controlling gravity, as it can be observed looking at

classical equation for the vertical gravitational attraction gz (e.g., Blakely, 1996; Hinze et al.,

2013)

gz = G
m∆z
r3 = Gρ∆z , (1.1)

where G ≈ 6.67 ·10−11 Nm2/kg2 is the universal gravitational constant, m is the mass of a

body, ρ its density and r and ∆z are the euclidean and vertical distances between the body and

the point at which gravity is observed, respectively. The density ρ is commonly measured

in geophysics in g/cm3 in CGS units (CGSu) and kg/m3 in SI units (SIu), whereas gz is

instead measured in mGal in CGSu, corresponding to 10−2 m/s2 in SIu.

The great advantage of considering density instead of mass and volume of a body in

equation (1.1) is that the first is an intensive physical properties, i.e., it does not depend on

the amount of matter or the size of the body, making gravity calculation easier in practice.

To be more precise, it is not properly the density of a body but its density contrast with the

surrounding environment to control gravity anomaly at a certain location; in exploration

geophysics, such body is called anomalous and its surroundings country rocks. From this

density contrast, a gravity anomaly originates, that could be positive in the case the anomalous

body is denser that the country rocks and negative vice versa.

Gravity anomalies exist on Earth because the planet is not homogeneous in the distribution

of density. Such an evidence is easy to be deduced comparing common density values of

crustal rocks, that ranges from 2500 to 3000 kg/m3, with the mean value of the Earth planet

of 5520 kg/m3 (Hinze et al., 2013). This big difference is due, to a first approximation, to

a quite sharp change in composition moving from the surface to the nucleus, separating

the interior of the planet by layers (e.g., Dziewonski and Anderson, 1981). Such layering
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originated in particular during the Earth formation, when heavy elements like iron precipitated

in the nucleus.

However, the target of gravity exploration is to analyze and model gravity anomaly data in

order to investigate the density variability expected in the crust and lithosphere, that represent

the shallower parts of Earth. Here, subsequent endo- and exo-genous geological processes

occurred in million of years have produced a huge amount of lithologies whose densities,

according to Schön (1996) and Hinze et al. (2013), are mainly influenced by:

• mineral composition;

• porosity;

• lithostatic pressure;

• temperature.

Mineral composition is quite stable in sedimentary rocks, since mineral components are rather

limited (e.g., quartz, clay, calcite) and their densities similar. Instead, mineral constituents of

crystalline lithologies, i.e., plutonic, volcanic and metamorphic rocks, are extremely variable.

Plutonic and volcanic rocks show higher densities both with increasing content of heavy

elements, like calcium, magnesium and iron, and with decreasing content of H2O and SiO2.

Metamorphic rocks tend to have higher densities since they form generally at high-pressure

conditions, though their mineral composition depends on the original rock types from which

they derive. Looking at a crustal scale, the continental crust shows, as a first approximation,

an increase of density moving toward the interface with the mantle, reflecting a change in

composition of rocks from felsic to mafic, whereas oceanic crust is quite homogeneous and

changes in density are mostly related to sedimentary cover thickness and crustal age.

Porosity is related to the amount of void space in a rock mass and can be distinguished in

primary and secondary; the first derives from the mechanisms originating the rock, whereas
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the second is triggered by physical and chemical effects affecting the rock after its formation.

For what concerns the relationship between porosity and density, basically the higher the

porosity the lower the density. Porosity in sedimentary rocks depends on their grain size,

shape and sorting, reaching very low values in lithotypes formed by chemical precipitation

like limestones. In volcanic and plutonic rocks, porosity is generally less than 1%, reaching

values greater that 3% rarely. A decrease in density is observed in particular when secondary

porosity takes over owing to fracturing along fault zones or similar contexts (e.g., joints,

cooling cracks, etc), though the amount of density decrease depends on the void space

filling, i.e., air, water, hydrocarbons. For this reason, gravity surveys are usually performed

coupled with other geophysical methods (e.g., seismic investigations, magnetotelluric, etc) to

characterize potential hydrocarbon and geothermal reservoirs (Hinze et al., 2013; Huenges

and Ledru, 2011).

Lithostatic pressure tends to reduce porosity and thus increases density of rocks, in

particular in sedimentary rocks and sediments. Nevertheless, this effect decreases with depth

since compaction and lithification intervene. Moreover, pressure plays an important role in

the stability fields of mineral species contained in rocks; for instance, the high pressure typical

of the crustal base and of the mantle leads to the transformation of plagioclase and magmatic

pyroxene in garnet and omphacite (i.e., metamorphic pyroxene), that are the main constituent

minerals of eclogites, metamorphic rocks characterized by high density (≈ 3300kg/m3, e.g.,

Raimbourg et al., 2007).

Temperature has a minor role in controlling the density of rocks, since their volume

thermal coefficient of expansion is generally low. As an example, considering values of

volume thermal coefficient of expansion ranging among 20 and 40×10−6 ◦C−1, a temperature

differential of 100◦C determines a density decrease of 100kg/m3 solely. Nevertheless, some

analytical formulations consider the temperature effect together with the lithostatic pressure

to make density estimates more accurate (e.g., Ravat et al., 1999).
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However, it is important to notice that a general association between lithologies and

density range values is a challenging task to do in practice, since mineral composition and

porosity are extremely variable parameters on rocks. As an example, Figure 1.1 provides an

overview of the density range values for common lithologies based on rock several density

tabulations in literature (e.g., Daly et al., 1966; Eaton and Watkins, 1967; Johnson and

Olhoeft, 1984; Parasnis, 1971).

Figure 1.1 - Density ranges for common igneous (bordered grey bars), metamorphic (solid
black bars) and sedimentary rock types (bordered white bars). Based on rock density
tabulations from several authors (see main text). After Hinze et al. (2013).
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1.3 Magnetization

1.3.1 Magnetization forms

Magnetization or polarization, commonly indicated as M or J, is an intrinsic property

characteristic of materials, like density. Differently from the latter, it presents a vector nature

resulting from the net magnetic effect of all the magnetic domains contained in a volume

of material. Each magnetic domain is, in fact, a source of uniform magnetization, since it

contains dipole magnetic moments that are all aligned in the same direction (Blakely, 1996;

Hinze et al., 2013; Tarling and Hrouda, 1993).

Figure 1.2 - Sketch of the magnetization forms observable on materials. After Tarling and
Hrouda (1993).

According to Tarling and Hrouda (1993), Blakely (1996), Schön (1996) and Hinze et al.

(2013), magnetization in substances shows different forms as a function of their composition,

which are:

• diamagnetism;
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• paramagnetism;

• ferromagnetism;

• ferrimagnetism.

Diamagnetism and paramagnetism occur when a material acquires a temporary polarization,

called induced magnetization, upon the application of an external magnetic field, called

inducing field. Such a polarization derives from an alignment of all the dipole magnetic

moments to the direction of the magnetic field applied (Figure 1.2). The difference among

diamagnetism and paramagnetism relies on the atomic electron shells of materials, that are

complete in the first and incomplete in the second. As a result, the acquired polarization

points in the opposite direction of the inducing magnetic field in the first case and in the same

direction for the second one.

Ferromagnetism is shown by few materials constituted by elements belonging to the

first transition series of the periodic table (e.g., iron), that are characterized by a strong

magnetization called remanent. It is maintained permanently even after the removal of

an external magnetic field, since all dipole magnetic moments in the magnetic domains

remain aligned into its direction (Figure 1.2). Ferromagnetism disappears when a magnetized

material is heated above a mineral/element-specific temperature called Curie temperature.

Similar to ferromagnetism is ferrimagnetism, the most common magnetic phenomenon

shown by Earth materials. Such materials are of interest in magnetic surveys since they are

remanent magnetization carriers and then source of magnetic anomalies. A substance behaves

as ferrimagnetic whether adjacent magnetic domains show opposite magnetization directions,

creating two oppositely magnetized lattices with different intensities (Figure 1.2). As a results,

a net permanent magnetization aligned to the inducing magnetic field is retained, which

disappears only in the case the material is heated above its characteristic Curie temperature

as for ferromagnetic materials.
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1.3.2 Induced vs remanent magnetization

Induced magnetization Mi is the most common source of magnetization from rocks and its

strength is related to the Earth’s magnetic field intensity H by means of a dimensionless

proportionality constant called magnetic susceptibility k, as follows (e.g, Blakely, 1996)

Mi = k H = k
B
µ0

, (1.2)

where B is the magnetic induction, µ0 the magnetic permeability of free space and k the

magnetic susceptibility, a scalar and dimensionless parameter. In SIu, Mi is measured in

A/m, B is expressed in Tesla (T) or more commonly in geophysics with its sub-multiple

nanoTesla (nT), µ0 has a value of 4π ×10−7 henry/m. The magnetic susceptibility k differs

of a factor 4π between the CGS and SI systems (i.e., SIu = 4π CGSu).

As clearly shown by equation (1.2), the magnetic susceptibility represents a measure

of how easily a material becomes magnetized by an external magnetic field. Hence, the

greater the susceptibility the higher the magnetization generated (Grant, 1985a). This

parameter is commonly listed for a plenty of minerals and rock types in several geophysical

compilations (e.g., Carmichael, 1982; Clark, 1983; Clark and Emerson, 1991; Dortman,

1976; Grauch and Hudson, 2011; Henkel, 1976; Hunt et al., 1995; Lindsley et al., 1966;

Schön, 1996), making it easier for geophysicists to assess anomaly sources measured during a

survey, for instance through magnetic modeling. Nevertheless, the interpretation of magnetic

anomalies during a survey can be an hard task if other geological/geophysical information is

not available, since magnetic susceptibility as density is not a rock-specific parameter (e.g.,

Clark and Emerson, 1991, see Figure 1.3).

Albeit susceptibility represents the principal magnetic property of diamagnetic and

paramagnetic materials, it is also critical for ferrimagnetic ones. The latter, beyond to

show generally higher susceptibilities values, are characterized by a remanent magnetization

component Mr, leading to a resultant magnetization that is the vector sum of both induced and
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Figure 1.3 - Magnetic susceptibility ranges for common rock types. After Clark and Emerson
(1991).

remanent magnetizations (Blakely, 1996). Mathematically speaking, using equation (1.2),

then (in SIu)

M = Mi +Mr = k
B
µ0

+Mr . (1.3)
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Both induced and remanent magnetizations concur to the magnetic field induction B as

follows (in SIu)

B = µ0

(
1+ k

)
H+Mr . (1.4)

The relative importance of induced and remanent magnetization in the overall magnetization

of a material is quantified by the Koenigsberger ratio Q (Blakely, 1996)

Q =
|Mr|
|Mi|

, (1.5)

where Q > 1 indicates dominance of remanent magnetization on induced one and instead

Q < 1 vice versa. Such a parameter is quite important in modeling of magnetic anomaly

data, since it allows in several geological contexts to limit the magnetization components

of rocks to just one, usually induced magnetization, simplifying magnetic calculations and

interpretation of results. Some considerations about the relationship between Koenigberger

ratio Q and rock types are given in Figure 1.4.

At this point of the discussion, it should be noticed that the term “remanent magnetization”

is quite generic and needs some clarifications. Commonly, remanent magnetization is

indicated as natural remanent magnetization (NRM) and it represents the sum of both

primary and secondary magnetization components (Hinze et al., 2013; Schön, 1996).

Primary magnetization is acquired by rocks and sediments during their formation and

deposition, respectively. The most intense type is the thermo-remanent magnetization (TRM),

gained by igneous rocks after cooling below Curie temperatures, that vary as a function

of their ferrimagnetic mineral content and grain size (Hinze et al., 2013; Schön, 1996). A

less intense primary magnetization occurring in sedimentary rocks and sediments is the

detrital remanent magnetization (DRM), that is related to the preferential orientation of

ferrimagnetic grains according to the Earth’s magnetic field (Hinze et al., 2013; Schön,

1996; Tarling and Hrouda, 1993). Another minor primary magnetization is the chemical
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remanent magnetization (CRM), that is similar to TRM but occurs in ferrimagnetic grains

while growing without changes in temperature (Hinze et al., 2013; Schön, 1996; Tarling

and Hrouda, 1993). An example is the CRM derived from the grow of magnetite grains in

peridotites during serpentinization (e.g., Saad, 1969a,b).

Secondary magnetization originates after rocks formation and sediments deposition. The

main type is the viscous remanent magnetization (VRM), caused by the low and progressive

rotation of magnetic domains contained in rocks into the ambient field, cancelling out

previous remanent magnetization components (Hinze et al., 2013; Tarling and Hrouda, 1993).

Since the time required to acquire a consistent VRM is remarkably long, in particular in

fine-grained rocks, its effect can be considered often negligible also for rocks millions of

years old (Hinze et al., 2013).

Figure 1.4 - Ranges of the Koenigsberger ratio Q for various rock types. Diagonally ruled
segments indicate ranges typically observed in nature. After Clark and Emerson (1991).
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1.3.3 Magnetization of rocks

The primary rock-forming minerals contained in Earth rocks are mainly diamagnetic and

paramagnetic (Schön, 1996), hence rock magnetization is strongly controlled by the content

of ferrimagnetic minerals. Typical ferrimagnetic minerals contained in rocks belong to the

ternary system FeO-Fe2O3-TiO2 and can be subdivided in the (i) titanomagnetite and (ii)

titanohematite mineral series (see Figure 1.5; Hinze et al., 2013).

The first series concerns the solid solution between the mineral species ulvöspinel

(Fe2TiO4) and magnetite (FeO-Fe2O3), that are the most magnetically significant miner-

als (Blakely, 1996). The solid solution tends to exsolve after cooling of magmatic fuses under

normal geological condition in magnetite and both ilmenite (FeTiO3), that is paramagnetic,

and ulvöspinel, at ambient conditions. An interesting properties of this series is related to its

Curie temperature, showing a decrease with increasing content of titanium. As an example,

the titanium content in magnetite is capable to widen its Curie temperature in a range between

500 and 560◦C (Hinze et al., 2013).

The second series refers to the solid solution between the two end-members ilmenite

and hematite (Fe2O3), which are not ferrimagnetic. In fact, generally the solid solution has

ferrimagnetic properties whether the titanium content ranges between 45 and 90%, occurring

in the case of rapid cooling of rocks. An interesting ferrimagnetic mineral of this series is

maghemite (γ Fe2O3), that forms under low temperature oxidation (< 200◦C), whose solid

solutions with magnetite show magnetic properties similar to it (Hinze et al., 2013).

Other important ferrimagnetic minerals are some species of iron sulfides, in particular

pyrrhotite (Fe7S8) and greigite (Fe3S4). Pyrrhotite has a Curie temperature of 320◦C and can

be found in basic volcanic rocks (Whitney and Stormer, 1983) and in low-grade metamorphic

zones (Rochette, 1987), whereas Greigite Curie temperature is 350◦C and it typically occurs

in organic-bearing lakes and, also, marine sediments at depth greater than a few meters (Tar-
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Figure 1.5 - Overview of magnetic properties and compositions of minerals belonging
to the FeO-TiO2-Fe2O3 ternary system. Ferrimagnetic series are shown as bars, whose
solid parts indicate complete solubility of end-members at room temperature. The white
parts of bars represent known solubility gaps at indicated temperatures. The magnetic
susceptibility increase toward the base of the ternary system, as shown by contour lines.
Mineral composition of igneous, metamorphic and sedimentary rocks tend to cluster in some
specific regions of the ternary system, albeit they often overlap. After Grant (1985a).

ling and Hrouda, 1993). Both the mineral species can also be produced by sulfate-reducing

bacteria (Hinze et al., 2013).

Since all the basic concepts related to magnetism have just been clarified, now it is

the time to take a closer look at the actual magnetization of the sedimentary, igneous, and

metamorphic rocks, keeping in mind that, as already explained, an exhaustive association

between magnetization and rock types is hard to be found.

The magnetization of igneous rocks depends on their composition, oxidation state,

hydrothermal alteration and metamorphism (Hinze et al., 2013), and the complex relation

among these factors makes further difficult to define a general correlation between rocks

types and magnetic properties. From a compositional point of view, these rocks can be
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primarily distinguished in (i) felsic, (ii) mafic and (iii) ultramafic. Felsic rocks are the main

constituent of upper crust, mafic rocks of both lower continental and oceanic crusts and

ultramafic rocks dominate in the upper mantle. Hence, a large part of the lithosphere, namely

the shallower portion cooler that the Curie temperatures characteristic of its ferrimagnetic

minerals, is magnetized. At a first approximation, felsic rocks are generally characterized

by lower contents of ferrimagnetic minerals as iron and titanium oxides with respect to

mafic ones. Nevertheless, titanomagnetite tends to be richer in titanium in the latter rocks,

resulting in weaker magnetizations and Curie temperatures (Hinze et al., 2013). The rate

of cooling also controls, as already explained, the stability fields of ferrimagnetic solid

solutions. Fast cooling leads to avoid exsolution of solid solutions resulting in lower magnetic

susceptibilities of minerals and Curie temperatures, albeit the fine-grained crystallization of

minerals tends to increase the Koenigsberger ratio Q. Alteration by oxidation is recognized

to break down magnetization of rocks thanks to the transformation of original igneous

ferromagnetic minerals to diamagnetic and paramagnetic species. This phenomenon affects

mafic volcanic rocks in particular at subaerial conditions. Hydrothermal alteration commonly

affects igneous rocks in volcanic environment, attenuating their strong magnetization owing

to the substitution of original magmatic-source ferrimagnetic minerals with non-ferrimagnetic

species (e.g., Bouligand et al., 2014; Finn et al., 2022, 2007; Finn and Morgan, 2002).

For what concern metamorphism, it may significantly increase magnetization of rocks.

Examples are the contact metamorphism caused by high-temperature fluids from a plutonic

intrusion and the serpentinization of ultramafic rocks, the latter inducing the formation of

magnetite with a stable CRM as above mentioned (Saad, 1969a,b). However, the literature

shows opposite results about the change in magnetic properties with increasing metamor-

phism grade, making it difficult to derive exhaustive considerations (e.g., Grant, 1985a,b;

Haggerty, 1979).
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As regards sedimentary rocks, they are significantly less magnetic that igneous rocks and

the most abundant magnetic carrier is magnetite, although titanohematite may be dominant

in some lithologies (e.g., Reynolds, 1977). However, their magnetic properties depend on the

provenance of the sediments; for example, sediments derived from erosion of igneous rocks

will lead to more magnetic sedimentary rocks with respect to sediments from detriment of

other sedimentary rocks. In addition, weathering of ferrimagnetic minerals during and after

erosion of rock sources further decreases the magnetization of forming sedimentary rocks. In

contrast to common sedimentary rocks, Archean and Early Proterozoic iron formations, also

called banded iron formations (BIF), are constituted by significant quantities of magnetite (>

10 % by weight) making them among the most magnetic rocks (Bath, 1962; Jahren, 1963).





Chapter 2

Potential fields modeling theory

2.1 Introduction

Modeling of gravity and magnetic data plays a fundamental role to appraise the density

and magnetization variability expected in the subsurface, and then to unravel its geological

architecture. At this point, the first question that comes to mind is: “what does modeling

in geophysics actually mean?”. Basically, modeling represents a procedure to estimate

physical parameters of interest starting from measured geophysical data and independent

geological and geophysical information (Blakely, 1996). In jargon, the physical parameters

of interest are called model parameters and in gravity and magnetic modeling are generally

the density and the susceptibility/magnetization, respectively, of buried geological bodies

and/or their geometries. The geophysical data are observable parameters measured at certain

locations in space, in our case the gravity and magnetic anomalies observed during a survey.

The geological and geophysical information obtained independently from our survey is

so-called a priori (or prior) information and contributes to a better estimation of the model

parameters. An example of prior information is the direct measurement of density and

magnetic susceptibility from rock samples, or their inference from field surface geological

information, and so on.
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Now, it becomes clear that in order to estimate the model parameters from the observable

data, a relationship between them should exists. This relationship is a mathematical formalism

based on the theory describing the geophysical problem we are facing, that generally is well

known. In our case, these theories allows us to calculate the gravity and magnetic responses

at given locations of a certain density and magnetization distribution in the subsurface.

Nevertheless, they are not unique but depend on the way the subsurface is parameterized,

that is on the particular choice of model parameters we are interested in. This phase, called

model parameterization, is crucial as it conditions the subsequent modeling stage.

After this brief premise, in the following sections we provide a clear explanation about

what modeling means in geophysics, introducing the key definitions of model parameteriza-

tion, forward problem and inverse problem.

2.2 Model parameterization

With the term model parameterization, we mean the starting phase in geophysical modeling

required to define the minimal set of model parameters whose values completely characterize

the geophysical problem under study (Tarantola, 2005). The geophysical problem depends

on the target of our study, ranging from local scale studies, like the characterization of an ore

deposit or a geothermal system, to regional scale investigations addressing the crustal and

lithospheric structure of a continent.

Such parameterization can be either continuous or discrete, depending on the way we

would like to consider our geophysical problem. We are interested to the second one, since our

purpose is to discretize the continuous reality surrounding us so that any kind of calculation

can be managed by a computer. The way we perform this discretization depends on the

geological “object” we would like to model and the related model parameters we are interest

to estimate. For example, an horizontal dike could be parameterized though a prismatic body

with vertical polygonal cross-section, but model parameters would be either its physical
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properties (i.e., density and/or magnetization) or the shape of its polygonal cross-section (its

vertices to be precise), depending on what we already know about our geophysical problem

and what instead we do not know and then we would like to estimate.

Using the above mentioned polygon-based model parameterization, which has become

very popular in potential fields geophysics since the late ’50 (e.g., Talwani et al. (1959)

and Talwani and Heirtzler (1962) for the gravity and magnetic case respectively), the gravity

and magnetic responses of a 3D geological object can be calculated through its polygonal

section, taken along a 2D profile perpendicular to its elongation, that can be both finite

and infinite. Among its merits, this approach allows us to (i) parameterize a wide range

of geological scenarios, (ii) manage modeled bodies in a simple way compared to other

parameterization types, (iii) decrease the amount of model parameters and (iv) achieve

model in which density and/or magnetization contrasts are better geometrically defined.

Nevertheless, such approach is not appropriate to be used were physical properties of the

modelled objects are inferred to vary in a complex 3D way or when their shape do not have a

quite regular polygonal section. In addition, the mathematical formulae relating measured

data and model parameters show a strong non-linearity both for the gravity and the magnetic

case, discouraging an exploitation for inverse methods despite its considerable strengths. As

mentioned in the introduction of this thesis, such limitation has been overcome developing an

innovative inversion method involving this type of model parameterization, that is presented

in chapter 4 we present .

Another widespread parameterization approach proposed by Bhattacharyya (1964) and Nagy

(1966) for the magnetic and gravity case, respectively, involves a discretization of the target

geological object by prismatic cells characterized by homogeneous physical properties, the

latter representing the model parameters. The geological object can be discretized both in

2D and 3D; in the 2D case, the parameterization is performed along a profile representing a

cross-section of the geological object, and each prismatic cell is infinitely extended in the
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direction perpendicular to the profile direction; in the 3D case, the parameterization is figured

out by finitely extended prismatic cells arranged in all directions, making the approach more

suitable in case of complex 3D density / magnetization distributions. The great advantage of

the cell-based approach is that the relation between data and model parameters is linear both

for the gravity and the magnetic case, whereas the disadvantage is to have a greater number

of model parameters to estimate, particularly for high-resolution discretization involving

smaller prismatic cells. This aspect becomes more clear looking at Figure 2.1, showing a

section of a geological scenario involving a cubical density anomaly buried in the subsurface,

parameterized through the above discussed 2D polygon- and cell-based approaches.

Figure 2.1 - (a) Polygon-based parameterization approach. (b) Prism-based parameterization
approach.

Since the densities of the anomalous body and of the surroundings are ρ2 and ρ1, respectively,

then the density contrast due to the anomalous body is ρanom = ρ2−ρ1, with the surroundings

sets to 0 (i.e., ρsurr = ρ1 −ρ1 = 0 g/cm3). Then, we have a total amount of 23x10 = 230

model parameters (i.e., 230 density contrasts) for the 2D cell-based approach, whereas either

1 or 4 for the polygon-based one, depending on the model parameters chosen (i.e., density
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or vertices of the polygon). Considering a 3D cell-based approach, the number of model

parameters should be even greater (i.e., 23x10xn, where n is related to the third dimension).

Nevertheless, the considerable strengths above explained of this parameterization type have

been exploited in sub-section 5.4.2 to develop an ad hoc inversion method, whose results

allowed us to reconstruct the internal framework on the Mount Melbourne Volcanic Field,

located in Antarctica (see chapter 5).

In the latter decades, several other parameterization approaches have been developed in

order to allow researchers to model the majority of geological scenarios. In fact, beyond to

the simpler cell- and prism-based parameterization approaches, the rapid gain in available

computing resources allowed scientists to develop ever more accurate parameterization

strategies. An example is the polyhedron-based one, that represents the current frontier

to develop innovative inversion methods able to characterize those geological scenarios in

which the physical properties are expected to vary in a complex 3D way (e.g., Ren et al.,

2020, 2022, and references therein).

As a final remark, it is crucial to notice that the choice of the proper model param-

eterization closely depends on the geophysical problem we would like to tackle, on the

accuracy desired and the computational resources available, making the parameterization

phase probably the most tricky in geophysical modeling.

2.3 Forward problem

From a mathematical viewpoint, to solve a forward problem means to predict the data

parameters d that would correspond to a given model m (Menke, 2018; Tarantola, 2005), as

described by the following relation (2.1)

d = g(m) , (2.1)



2.3 Forward problem 29

that is a short notation for a set of equation di = gi (m1,m2, . . .)(i = 1,2, . . .), where g(·) is

called forward operator and (m1,m2, . . .) is a particular set of model parameters, depending on

the type of model parameterization performed. The operator g(·) represents the mathematical

theory linking our model to its calculated response. In case the relationship between data and

model parameters is linear, then equation (2.1) reduces to

d = Gm , (2.2)

where d and m are vectors and G the forward matrix.

From a theoretical viewpoint, d and m represent points in two separate abstract spaces,

called data space and model space, and their components (d1,d2,d3, . . .) and (m1,m2, . . .)

the coordinates of these points in their respective spaces (Tarantola, 2005). These concepts

will come in handy to better understand some results presented throughout this thesis.

At this point, some clarifications need to be made about the meaning of forward problem.

In fact, beyond to the definition provided above from Tarantola (2005) (that will be followed

hereinafter), there is another common meaning well exemplified by Blakely (1996). For

this purpose, let us imagine to perform a gravity and magnetic survey to characterize the

unknown density and magnetization distribution in the subsurface of a study area, that has

been properly parameterized. Since the target is to estimate these distributions, we can start

to propose an initial model for them and calculate the related gravity and magnetic effects.

Obviously, this initial model will be less or more accurate as a function of the a priori

knowledge available on the subsurface geological framework. Then, the next steps are to

tentatively adjust this model in order to improve the fit between observed and calculated data.

We refer to such a procedure as forward modeling. The typical workflow characterizing it is

depicted by the diagram of Figure 2.2.

In this regard, it is important to notice that models achieved through this procedure

are not unique. It means that, particularly in more complex geological scenarios, several
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Figure 2.2 - Sketch showing the procedure phases performed in a forward modeling approach.
Modified from Blakely (1996).

different models are equally capable of explaining the measured data. Such a phenomenon

can be a great limitation particularly when a little prior information are available to constrain

modeling results. For this reason, the inverse problem comes into play to tackle geophysical

modeling from another perspective, as explained in the following section 2.4.

2.4 Inverse problem

Let us imagine we are in the same situation described in the previous section, in which we

have collected a gravity and magnetic dataset in a survey area with the aim of characterizing

the unknown density and magnetization distribution expected in the subsurface.

Then, instead of proposing a starting initial model and progressively modify it through a

trial-and-error approach, our problem might be to calculate directly the model parameters

of interest from the observable parameters, i.e., the gravity and magnetic data collected,
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exploiting the forward problem just defined. According to the nomenclature proposed

by Tarantola (2005), such a problem is called inverse problem and the related procedure

inverse modeling.

2.4.1 Why is the inverse problem so hard to solve?

Put this way, the problem seems simple to deal with. In fact, one could imagine to solve the

inverse problem simply inverting equation (2.1), that is finding the inverse of the forward

operator g−1, as follows

m = g−1(d) , (2.3)

or in the linear case

m = G−1 d . (2.4)

Unfortunately, the forward operator may not be invertible, and then equations (2.3)-(2.4)

would not exist.

Looking at the linear case in equation (2.4) for simplicity, the matrix G−1 exists if and

only if (i) det(G) ̸= 0 and (ii) G is square. In this situation, the matrix G shows only a

trivial null space, that is Gm0 = 0 if and only if m0 = 0; as a result, the solution m would

be unique. It should be noticed that G is usually non square, since the number of data and

model parameters might not match (G is a matrix m×n, where m and n are the lengths of

the vectors d and m, respectively). Moreover, det(G) = 0 implies that rank(G) ̸= n, thus

theoretically infinite vectors m0 would lie in the null space of G such that Gm0 = 0. This

means that any linear combinations of m0 can be added to a certain model m that satisfies

equation (2.2) without changing the values of d, resulting in infinite possible solution models
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m. As we have already mentioned, potential fields modeling methods can severely suffer

from this issue.

In addition, the inverse problem is unstable, since a small change in measurements d can

lead to a tremendous change in the estimated model m (Aster et al., 2005). In this purpose,

the noise ε plays an important role because it makes small and uncontrollable changes to

the data. Basically, noise is caused by imprecise instrument readings or numerical round-off,

so it is a random phenomenon which cannot be exactly modeled. Hence, measured data d

should be separated in hypothetical perfect data dtrue plus the noise effect ε , i.e.,

d = dtrue + ε =

= g(mtrue)+ ε , (2.5)

where dtrue should be reproduced through the forward operator g(·) from actual model

parameters mtrue. Another source of error relies on an approximate mathematical theory

of the problem, that is described by g(·). Owing to noise in the data and approximate

mathematical theory, m could either not exist or be completely no-sense (Aster et al., 2005).

However, the inversion process can be “stabilized” by means of regularization, for instance

by adding prior information to constrain the estimation of model parameters. This procedure

can be done with different approaches, as explained in section 2.4.2.

To summarize, the solution m of an inverse problem could not exist, or could not be

unique in the case it exists, and it is usually unstable. Such characteristics make the inverse

problem ill-conditioned following the definition coined by Hadamard (1902).
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2.4.2 How to tackle an inverse problem

After the general overview provided above, aiming to make the readers clear how difficult

may be to tackle an inverse problem, the question that spontaneously arises is: “how can an

inverse problem be solved?”. To this end, let us introduce a quantity called data residuals,

defined as (e.g., Aster et al., 2005)

r = d−Gm = d−dpre , (2.6)

providing a measure of the misfit between observed data and data predicted (i.e., calculated)

for a certain model m. For this purpose, let us define the concept of norm. The norm ∥r∥ for

some powers of n, indicated with the symbol Ln, is defined as (e.g., Menke, 2018)

L1 norm = ∥r∥1 =
[
∑

i
|ri|1

]
,

L2 norm = ∥r∥2 =
[
∑

i
|ri|2

]1/2
, (2.7)

...

Ln norm = ∥r∥n =
[
∑

i
|ri|n

]1/n
.

The aim of the inverse problem is to minimize the residual (or misfit) function ∥r∥n, since

it represents an objective function capable of providing a measure of the distance between

observed and calculated data (Aster et al., 2005; Menke, 2018; Tarantola, 2005). Among all,

the L2 norm is of special interest for its geometrical and statistical meanings (Menke, 2018;

Tarantola, 2005). From a geometrical viewpoint, it represents the euclidean distance between

observed and calculated data, whereas from a statistical viewpoint reflects the normal (i.e.,

Gaussian) distribution characterizing the residuals. Such viewpoints define two “school of

thought” and related approaches to tackle an inverse problem, that are the deterministic and
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probabilistic one, respectively. The aim of the deterministic approach is to provide a single

“optimal solution” to the inverse problem (e.g., Aster et al., 2005; Menke, 2018), whereas the

probabilistic one to retrieve/characterize the a posteriori (or posterior) probability density

function (PDF) of the model parameters, upon which uncertainty estimations and statistical

analyses on the model parameters can be performed (e.g., Tarantola, 2005). In is interesting

to notice that, as shown in the next sub-section 2.4.2.1, the deterministic and probabilistic

approaches match in case the forward problem is linear and the residuals Gaussian. The two

approaches are described in details below, considering the case the forward problem is either

linear or non-linear.

2.4.2.1 Linear case

Starting from the definition of the data residuals in equation (2.6), now our purpose is to find

the solution m minimizing its L2 norm. In the case of a linear inverse problem and Gaussian

residuals (Figure 2.3), ∥r∥2 is defined as follows

∥r∥2 =
[
(d−Gm)T C−1

D (d−Gm)
]1/2

, (2.8)

where the letter T stands for transpose and CD represents the matrix covariance of the

observed data, indicating their degree of correlation. By definition, this matrix must be

symmetric and positive semi-definite.

With these concepts in mind, in the next paragraphs we show how to solve the linear

inverse problem both from a deterministic and a probabilistic viewpoint.

Deterministic approach Following our aim to minimize the misfit function ∥r∥2, we can

start squaring it to simplify the calculations, obtaining

∥r∥2
2 = (d−Gm)T C−1

D (d−Gm) . (2.9)
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Figure 2.3 - Sketch representing an inverse problem characterized by forward problem
d = Gm linear and posterior PDF of the model parameters σ(m) Gaussian. The mean
model from the probabilistic viewpoint is nothing more that the optimal model from the
deterministic one. Modified from Tarantola (2005).

Renaming ∥r∥2
2 as R(m), in order to highlight the dependency of the misfit function from the

model parameters, and doing some calculations, equation (2.9) becomes

R(m) = mT GT C−1
D Gm+dT C−1

D d−dT C−1
D Gm−GT mT C−1

D d . (2.10)

Now, the right way to proceed is to set the derivative of the misfit function R(m) with respect

to mT (for convenience) to zero (e.g., Menke, 2018), as

∂R
∂mT = 0 ⇐⇒ GT C−1

D Gm−GT C−1
D d = 0 , (2.11)

and by manipulating equation (2.11), we can finally derive the analytical expression for m

m =
(
GT C−1

D G
)−1 (GT C−1

D d
)

. (2.12)

Now, it should be noticed that the above solution can be extremely biased with respect to

mtrue (Aster et al., 2005) due to the non-uniqueness and instability issues arising in particular

in potential fields inverse problems. Hence, regularization can help to constrain the inversion
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process toward a solution closer to the expected mtrue. Different approaches exist, but the

common modus operandi is to find the solution m minimising not only the misfit function

R(m), but

argmin R(m)+α ∥T (m)∥2
2 , (2.13)

where T (m) is the regularization term and α a constant that sizes its “weight”. For instance,

in the common Tikhonov regularization T (m) is represented by the model parameters m

themselves (e.g., Aster et al., 2005). Another interesting approach is to consider as regulariza-

tion term the vector (m−mprior), where mprior reflects our a priori knowledge on the model

parameters (Tarantola, 2005). Such approach is particularly common in the probabilistic

approach to inverse problems, as we discuss in the next paragraph.

Probabilistic approach From a probabilistic viewpoint, an inverse problem can be written

in terms of PDFs, able to deal with measurement uncertainties and modelization imperfections

and, in general, to describe a “state of information”. According to this approach and assuming

Gaussian PDFs, the inverse problem can be set up as follows

σ(m) = k L(m)ρ(m) =

= k exp(−R(m))ρ(m) =

= k exp(−S(m)) , (2.14)

where σ(m) is the posterior PDF of the model parameters we want to characterize, k is a

constant, exp(−R(m)) is the Likelihood term, i.e., the PDF related to the L2 norm of the

residuals, and ρ(m) the PDF describing our a priori knowledge on the model parameters

(Figure 2.3). Hence, σ(m) can be interpreted as a product between the states of information
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related to the theory behind our problem and the model parameters, following the theoretical

framework derived by Mosegaard and Tarantola (2002) starting from the probability theory

developed by Bayes (1763).

Since in a product between exponentials with the same base the exponents add up, we

can group together the Likelihood and the prior PDFs in the new term exp(−S(m)), with

S(m) defined in matrix form as (Tarantola, 2005)

S(m) =
1
2
(d−Gm)T C−1

D (d−Gm)+
(
m−mprior

)T C−1
M
(
m−mprior

)
⇐⇒

2S(m) = mT GT C−1
D Gm+dT C−1

D d−dT C−1
D Gm−GT mT C−1

D d+

+ mT C−1
M m−mT C−1

M mprior , (2.15)

where CM represents the matrix covariance of the a priori model parameters, indicating

their degree of correlation. By definition, as CD this matrix must be symmetric and positive

semi-definite. For the sake of clarity, we consider twice the term S(m), as this manipulation

is analogous to the square elevation of ∥r∥2 leading to the misfit function R(m) shown in

paragraph 2.4.2.1.

Now, what we would like to do is to find the m that maximize σ(m), namely the model

m with the highest probability density (given d observations). To maximize σ(m), it should

be minimized S(m), analogously to the previous paragraph “Linear case - Deterministic

approach”,

∂S
∂mT = 0 ⇐⇒ GT C−1

D Gm−GT C−1
D d+C−1

M m−C−1
M mprior = 0 , (2.16)

and finally, the expression for m is
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m =
(
GT C−1

D G+C−1
M
)−1 (GT C−1

D d+C−1
M mprior

)
. (2.17)

As shown in Figure 2.3, the above found m model can be interpreted as the mean of

the posterior PDF of the model parameters σ(m), whose posterior covariance C̃M can be

demonstrated to be (see Tarantola, 2005)

C̃M =
(
GT C−1

D G+C−1
M
)−1

. (2.18)

Comparing equation (2.17) with equation (2.12), it becomes clear that the mean model from

the probabilistic approach and the optimal model from the deterministic one match perfectly

(barring the covariance matrix CM, that is related to the injection of prior information).

Since a Gaussian PDF is completely characterized by mean and covariance, then σ(m) is

fully characterized by m and C̃M (Tarantola, 2005). This statement makes now clear as, from

a probabilistic viewpoint, the solution to the inverse problem is not just the mean/optimal

model, but the posterior PDF of the model parameters σ(m).

To conclude, the linear probabilistic inverse problem just presented has been exploited to

develop the inversion method presented in section 5.4.2.

2.4.2.2 Non-linear case

When the mathematical theory linking data to model parameters is non-linear, the Gaussian

misfit function R(m) assumes the following form

R(m) =
[
(d−g(m))T C−1

D (d−g(m))
]

, (2.19)

thus, at a first glance, linear algebra cannot come to help us to finding the solution to the

inverse problem. In addition, the function R(m) might show more local minima, owing to

the non-linearity of g(m).
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In the next paragraphs, we show how these complications can be overcome following

again a deterministic and probabilistic pathway.

Figure 2.4 - Sketch representing an inverse problem characterized by forward problem
d = g(m) non-linear and posterior PDF of the model parameters σ(m) approximately
Gaussian. After Tarantola (2005).

Deterministic approach As shown in Figure 2.4, when the misfit function R(m) is not far

from being Gaussian, the way to take again advantage of linear algebra is to linearize the

function g(m) around some model mn through its Taylor series (truncated at the second-order

term), i.e.,

g(m)≃ g(mn)+ Ġ(m−mn)+
1
2
(m−mn)

T G̈(m−mn) , (2.20)

where

Ġn
i
α =

(
∂g i

∂mα

)
mn

, (2.21)

G̈n
i
αβ =

(
∂ Ġ i

∂mβ

)
mn

=

(
∂ 2g i

∂mα∂mβ

)
mn

, (2.22)

are the first and second derivatives of the function g(m) with respect to the model parameters

on the point mn, respectively (see Tarantola, 2005). Nevertheless, such a linearization
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requires that the function g(m) is at least C2 class, and the derivatives can be computed either

analytically or numerically (e.g., by finite-difference approximation). As far as (2.22), its

calculation can be difficult to obtain, thus as we see below it is commonly approximate. If

the above conditions are satisfied, then also the derivatives of the function R(m) or S(m)

presented in sub-section 2.4.2.1 can be readily obtained. Here we continue the derivation

considering S(m), since injecting some prior information can help to find the global minimum

in non-linear problem, known to show more that one local minima (Menke, 2018). Then, as

shown by Tarantola (2005), the function S(m) reduces to

2S(m) = (g(m)−d)T C−1
D (g(m)−d)+

+(m−mprior)
T C−1

M (m−mprior) , (2.23)

whereas its first derivative

(
∂S
∂m

)
n
= ĠT

n C−1
D (g(mn)−d)+C−1

M (mn −mprior) , (2.24)

and its second derivative

(
∂ 2S
∂m2

)
n
= ĠT

n C−1
D Ġn +C−1

M + G̈T
n C−1

D (g(mn)−d) . (2.25)

As already mentioned, the term G̈n in expression (2.25) can be difficult to calculate, thus it is

commonly neglected obtaining a simplified (and approximate) expression for (2.25)

(
∂ 2S
∂m2

)
n
≃
(

∂ 2S
∂m2

)approx

n
= ĠT

n C−1
D Ġn +C−1

M . (2.26)
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Equations (2.24) - (2.25) represent the gradient and Hessian of the function S(m), respec-

tively; from a mathematical viewpoint, the gradient of a function at a certain point mn

indicates the direction of its maximum slope at that point, whereas the Hessian gives the same

information but about the gradient. Hence, they can be employed to construct algorithms

capable of finding the minimum of the function S(m), progressively approaching it through

a series of iterations. The model mn achieved at iteration n will serve then for the n+ 1

iteration, and so on until the minimum is reached. The most common algorithms exploiting

this philosophy are the following (Tarantola, 2005):

• Steepest descent algorithm:

mn+1 = mn −µn CM

(
∂S
∂m

)
n
=

= mn −µn
(
CM ĠT

n C−1
D (dn −dobs)+(mn −mprior)

)
; (2.27)

• Newton algorithm:

mn+1 = mn −µn

(
∂ 2S
∂m2

)
n

(
∂S
∂m

)
n
=

= mn −µn
(
ĠT

n C−1
D Ġn +C−1

M + G̈T
n C−1

D (dn −dobs)
)−1 ·

·
(
ĠT

n C−1
D (dn −dobs)+C−1

M (mn −mprior)
)

; (2.28)

• Quasi-Newton algorithm:
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mn+1 = mn −µn

(
∂ 2S
∂m2

)
n

(
∂S
∂m

)approx

n
=

= mn −µn
(
ĠT

n C−1
D Ġn +C−1

M
)−1 ·

·
(
ĠT

n C−1
D (dn −dobs)+C−1

M (mn −mprior)
)

, (2.29)

where dn = g(mn) represents the calculated data at each iteration. The coefficient µn is an ad

hoc parameter that allows to size the “jump” performed at each iteration; its value should be

chosen as a compromise between keeping small the number of iterations and approaching

gradually the minimum of the function S(m) to avoid divergence. Values are generally below

1 for the steepest descent algorithm and close to 1 for the Newton and Quasi-Newton ones. It

is interesting to notice that the Hessian or its approximation in the Newton and Quasi-Newton

algorithms act as the inverse of the covariance matrix CM in the steepest descent algorithm,

but differently from this one reflects the local metric of the misfit function S(m).

To the category of the Quasi-Newton algorithms belongs the so-called Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Fletcher, 1987) and its variants, such as the Limited-

memory BFGS (L-BFGS; Nocedal and Wright, 2006), used in chapter 4 to highlight the

strengths of the HMC inversion method presented in the same chapter.

Probabilistic approach We have seen in paragraph “Linear case - Probabilistic approach”

that a linear inverse problem can be treated in terms of PDFs and, in case they are Gaussian,

the solution σ(m) is a posterior PDF fully characterized by a mean model m, representing

the optimal model obtained using the deterministic approach, and a posterior covariance

matrix CM, providing a measure of its uncertainty. In these conditions, the deterministic and

probabilistic viewpoints of the inverse problems substantially coincide.

However, as already explained, the non-linearity of the forward problem g(m) may lead

to the misfit function R(m) no longer being Gaussian, that is showing several local minima
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and then multi-modal PDF. As a result, even the posterior σ(m) is no longer Gaussian,

making the concept of “mean solution” to the inverse problem critical (Figure 2.5).

Figure 2.5 - Sketch representing an inverse problem characterized by forward problem d =
g(m) non-linear and posterior PDF of the model parameters σ(m) non-Gaussian, requiring a
Markov Chain Monte Carlo algorithm to be characterized. After Tarantola (2005).

In addition, when the amount of model parameters is large (i.e., multi-dimensional model

space, that is the case of the majority of inverse problems), the posterior σ(m) of the model

parameters is impossible to be graphically represented. High-dimensional model spaces are

also affected by a significant emptiness (Tarantola, 2005), that is the peaks of σ(m) may be

far from each others.

Then, a different strategy is necessary to explore and characterize σ(m) compared to what

we have seen so far. This strategy is referred to as sampling and is performed by methods

called Markov Chain Monte Carlo (MCMC, Tarantola, 2005). As depicted in Figure 2.6,

these methodologies sample the posterior PDF of the model parameters σ(m) generating

independent points (or samples) of it, each of them representing a different model solution

m. Then, the final result will be a “collection of models” {mn |n ∈ N} representative of the

posterior σ(m). Basically, what performs the sampling is the so-called sampler, an algorithm

that obeys certain probabilistic rules. Many flavours of samplers exist, each of them defining

a different MCMC method designed to be more suitable for the inverse problem we are

interested to solve. Examples of samplers are the Gibb’s, rejection, sequential realization,
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Metropolis and Metropolis-Hastings algorithms (see Tarantola, 2005, for a general overview

on this argument).

Figure 2.6 - (a) Two-dimensional PDF. (b) Characterization of a two-dimensional PDF by
its sampling. Modified from Tarantola (2005).

The Metropolis algorithm (Metropolis et al., 1953) is used by the Hamiltonian Monte

Carlo strategy (HMC), a particularly efficient MCMC approach which integrates, during

the sampling, the information derived from the calculation of the gradient of the posterior

σ(m), capable of steering the inversion process toward high-probability area in the model

space (Duane et al., 1987; Fichtner et al., 2019; Neal, 2012). In HMC, the Metropolis sampler

is used to accept or reject a “jump” in the model space from a point mn to the new point

mn+1, according to the value assumed by the likelihood function L(m), as follows

• if L(mn+1)≥ L(mn) =⇒ the proposed move is accepted;

• if L(mn+1)< L(mn) =⇒ the proposed move is randomly either rejected or accepted,

in the latter case with a probability calculated as Pn→n+1 =
L(mn+1)

L(mn)
.

The HMC strategy just presented has been exploited to develop the methodology to invert

gravity and magnetic data in case of 2D/2.75D polygonal bodies discussed in chapter 4, which

has proven to be an excellent tool to manage both the non-linearity and the non-uniqueness
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issues affecting this inverse problem. Moreover, more details about the theoretical framework

of HMC are provided in section 4.3.1.





Part II

2D to 2.75D polygon-based

parameterization approaches



Chapter 3

Magnetic Anomalies Caused by 2D

Polygonal Structures With Uniform

Arbitrary Polarization

Abstract
Since the ’60s of the last century, the calculation of the magnetic anomalies caused by
2D uniformly polarized bodies with polygonal cross-section has been mainly performed
using the popular algorithm of Talwani and Heirtzler (1962, 1964). Recently, Kravchin-
sky et al. (2019) claimed errors in the above algorithm formulation, proposing new
corrective formulas and questioning the effectiveness of almost 60 years of magnetic
calculations. Here we show that the two approaches are equivalent and Kravchinsky
et al.’s formulas simply represent an algebraic variant of those of Talwani and Heirt-
zler. Moreover, we analyze a large amount of random magnetic scenarios, involving
both changing-shape polygons and a realistic geological model, showing a complete
agreement among the magnetic responses of the two discussed algorithms and the one
proposed by Won and Bevis (1987).
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3.1 Introduction

Modeling of magnetic anomalies is a fundamental tool in exploration geophysics. Since the

appearance of early electronic computers, calculation of the magnetic field from models of

the subsurface and the related inverse problem have played a major role in the geological

interpretation of magnetic anomalies.

An early mathematical formulation for anomalies due to 2D polygonal structures of

uniform polarization is found in Talwani and Heirtzler (1962, 1964). Their algorithm remains

the most used and cited to date. Thanks to its wide applicability, Talwani and Heirtzler’s

approach has become popular, both for expeditious interpretation of magnetic data and as a

forward engine for inverse methods. Moreover, the aforementioned 2D formulation can be

extended to 3D bodies (Plouff, 1975, 1976; Talwani, 1965). More recently, Won and Bevis

(1987) proposed an evolution of the original formulation by Talwani and Heirtzler which

avoids the use of trigonometric functions, achieving a speed up of the calculation of magnetic

anomaly.

Another popular approach, which considers 2D or 3D prism-shaped bodies instead of

polygonal-shaped ones, is that proposed in Bhattacharyya (1964). Such approach leads to

a formulation where the subsurface is modeled as a set of prismatic bodies, often a set of

rectangular cells, characterized by constant magnetic properties.

Despite the fact that in recent years forward calculations have moved toward the com-

putation of magnetic anomalies caused by 3D bodies, hand in hand with the rapid increase

in CPU speed, 2D modeling still represents a widely utilized tool to quickly and intuitively

gain a better understanding of the subsurface and is particularly effective for bodies striking

perpendicularly to the profile. Moreover, the much lower computational requirements for 2D

calculations make them viable for simple interpretations of the magnetic signatures (e.g., in a

trial and error approach) and to performing analysis directly on the field (e.g., on a laptop).
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Since the introduction of the abovementioned algorithms, the 2D approach has evolved

to overcome the simplistic assumption of a uniform polarization in magnetized bodies, trying

to consider both demagnetization effects and non-uniform magnetization (Bhattacharyya

and Chan, 1977; Bhattacharyya and Navolio, 1975, 1976; Blokh, 1980; Kostrov, 2007; Ku,

1977; Mariano and Hinze, 1993). Unfortunately, the mathematical models considered often

represent a simplified approximation of the complexities of experimentally observed spatial

variation of rock magnetization. For a more detailed presentation of the main developments in

forward magnetic calculation methods, readers are referred to Kostrov (2007) and Nabighian

et al. (2005).

Very recently, Kravchinsky et al. (2019) suggested the evidence of omissions and errors

in the formulation of Talwani and Heirtzler (1962, 1964) that would lead to mistakes in the

calculation of magnetic anomalies, proposing a modified algorithm to avoid that.

In this chapter, we compare the original formulations of Talwani and Heirtzler (1962,

1964), Won and Bevis (1987), and the newer Kravchinsky et al. (2019) both from analytical

and numerical points of view. For the former, the algorithms have been analyzed in order

to highlight algebraic differences and similarities, while for the latter they have been tested

and compared by using a variety of randomly generated scenarios involving both induced

and remanent magnetization on shape-changing polygons, to detect possible numerical

differences or failing scenarios. In detail, we start by illustrating the three formulations of

the algorithms in section 3.2 and then we discuss in deep the similarities and differences

in section 3.3. We finally show that, after fixing some issues in Kravchinsky et al. (2019),

their formulation and that of Talwani and Heirtzler (1962, 1964) are essentially the same

algorithm, and that all three algorithms, that is, including Won and Bevis (1987), produce the

same results.
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In addition, the rectified Kravchinsky et al.’s algorithm together with the other ones

discussed in this work are released in a set a set of open-source packages written in Python

and Julia languages (see Appendix 3.D for more details).

3.2 Algorithm Formulations

Let us consider a three-dimensional non-magnetic space in which a body infinitely extends

in y direction. The common aim of all formulations is the calculation of the magnetic field of

this body at observation points located along a profile aligned to the x direction at a certain

height (the positive z axis is assumed pointing downward). The starting assumption is that

our body can be considered as discretized by an infinite number of uniformly magnetized

elementary volumes with infinitesimal dimensions dx, dy, and dz. Within this assumption,

the magnetic field generated by the body can be mathematically expressed in terms of a line

integral around its periphery, represented in two dimensions as its polygonal cross-section

(Figure 3.1a). The specific procedures for each formulation are summarized in the sub-

sections below. For the respective detailed derivations, the reader is referred to Kravchinsky

et al. (2019), Talwani and Heirtzler (1962, 1964), and Won and Bevis (1987).

3.2.1 Talwani and Heirtzler

The formulation of Talwani and Heirtzler (1962, 1964) starts from the definition of the

magnetic potential Ω

dΩ =
M ·R

R3 dxdydz , (3.1)

relative to an elementary volume with uniform magnetization M and distance R from the

observation point with coordinates (x0,z0). By integrating expression (3.1) from negative
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Figure 3.1 - (a) Elementary volume with uniform magnetization immersed in a non-magnetic
space. This volume can be extended in the space to define an infinitely elongated body in the
y direction. The polygon in red represents the cross-section of this body, that we consider
for computing the magnetic field relative to the entire body. Modified from Kravchinsky
et al. (2019). (b) Sketch of all the parameters involved in the calculation of the vertical Bz
and horizontal Bx magnetic strength in Talwani and Heirtzler’s algorithm. The semi-infinite
lamina of thickness dz expands to form a semi-infinite prism with section ABJK built on
the side AB of the body. Modified from Kravchinsky et al. (2019). (c) Representation of
the laminas with thickness dz built along the polygon sides AB and GH drawn in Figure (a).
Moving in a counterclockwise order (black arrows), the lamina along the side AB, defining a
semi-infinite infinitesimal prism elongated in the positive x direction (red), provides a positive
field, whereas the lamina on the side CD provides a negative field, smaller in absolute value
owing to the less extended semi-infinite infinitesimal prism defined along this side (blue).
The resulting magnetic anomaly, obtained as scalar sum between the total fields caused by
the two laminas, is relative to the area in yellow inside the polygon.
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to positive infinity in the y direction, we achieve the magnetic potential due to an infinitely

elongated prism (Figure 3.1a). The vertical Bz and horizontal Bx components of the magnetic

strength of this prism can be obtained differentiating its magnetic potential with respect to x

and z directions (the derivative of the magnetic potential along y is null not appearing this

variable in the expression of the potential (see Talwani and Heirtzler, 1962). Now, integrating

Bz and Bx from x to positive infinity, we obtain new expressions for Bz and Bx

Bz = 2
Mxz−Mzx
(x2 + z2)

dz , (3.2)

Bx = 2
Mxx−Mzz
(x2 + z2)

dz , (3.3)

that are relative to a semi-infinite lamina with thickness dz (Figure 3.1b). Mx and Mz represent

the components of the magnetization vector M along the x and z axes. Whether M is

characterized by induced magnetization only, its own inclination and declination correspond

to those of the Earth magnetic field, while in the case of coexistence of induced and remanent

magnetization the resultant M is the vectorial sum of both contributions (Figures 3.2a and

3.2b).

Now, let us imagine for instance to extend this lamina along the polygon side AB shown

in Figure 3.1b: integrating (3.2–3.3) from z1 to z2, representing the z coordinates of the side

vertices taken in a counterclockwise order, we obtain a revised expression for Bz and Bx
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Figure 3.2 - (a) Total Earth magnetic field H, characterized by changing inclination I and
declination D as a function of profile location upon Earth surface. I is defined as the angle
made by H with the horizontal plane and D as the angle between the Magnetic and the
Geographic Norths. In detail, I may vary from ±90◦ (respectively at North and South Poles)
to 0◦ (at the equator) and D from 180◦ to −180◦. The angle P define the orientation of the
profile direction (x axis) along with the computation of the magnetic field is performed. β

is the angle between the magnetic north and the negative direction of the body elongation
(−y). I, D, and P are taken clockwise, whereas β counterclockwise. (b) Total magnetization
vector M, defined as the vectorial sum of induced Mi and remanent Mr magnetization. It is
characterized by own inclination Im and declination Dm. In the case of induced magnetization
solely, then Im = I and Dm = D.
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Bz = 2 sin(φ)
{

Mx

[
(θ2 −θ1)cos(φ)+ sin(φ) ln

(
r2

r1

)]
+

−Mz

[
(θ2 −θ1)sin(φ)− cos(φ) ln

(
r2

r1

)]}
, (3.4)

Bx = 2 sin(φ)
{

Mx

[
(θ2 −θ1)sin(φ)− cos(φ) ln

(
r2

r1

)]
+

+Mz

[
(θ2 −θ1)cos(φ)+ sin(φ) ln

(
r2

r1

)]}
, (3.5)

where

r1 =
√

x2
1 + z2

1 ; r2 =
√

x2
2 + z2

2 , (3.6)

and the following angles

θ1 = arctan
(

z1

x1

)
; θ2 = arctan

(
z2

x2

)
, (3.7)

φ = arctan
(

z2 − z1

x1 − x2

)
. (3.8)

Notice that x1, x2, z1, and z2 are respectively the x and z coordinates of the side vertices with

respect to an observation point (x0,z0) where the magnetic anomaly is calculated (Figure 3.1b).

Besides, the side vertices are taken in a counterclockwise order.

Equations (3.4) and (3.5) represent the vertical and horizontal components of the magnetic

strength due to a semi-infinite prism with section ABKJ (K and J located at infinity) built on

the side AB (Figure 3.1b). These equations can be rewritten in a simplified fashion as
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Bz = 2
(

MxQ−MzP
)

, (3.9)

Bx = 2
(

MxP+MzQ
)

, (3.10)

in which the terms P and Q are

P =
z21x21

z2
21 + x2

21
ln

r2

r1
+

z2
21

z2
21 + x2

21

(
θ2 −θ1

)
, (3.11)

Q =
z2

21
z2

21 + x2
21

ln
r2

r1
− z21x21

z2
21 + x2

21

(
θ2 −θ1

)
, (3.12)

where

x21 = x2 − x1 ; z21 = z2 − z1 . (3.13)

In the case z21 = 0, both P and Q become zero and therefore the side provides no magnetic

contribution.

Now, the total field scalar anomaly is obtained as vectorial projection of Bz and Bx along

the direction of the Earth magnetic field as follows

T = Bz sin(I)+Bx cos(I)sin(P−D) , (3.14)

where I and D are respectively the inclination and declination of the Earth magnetic field,

whereas P is the angle between the Geographic North and the profile direction along with the

magnetic field of the body is computed (Figure 3.2a).
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Finally, since the polygon consists of n sides, the overall total field scalar anomaly is

computed by summing over the contributions T relative to each side in a counterclockwise

order. A simplified representation of the physical meaning of the latter operation is illustrated

in Figure 3.1c.

3.2.2 Kravchinsky et al.

Kravchinsky et al. (2019) suggested the existence of some mathematical omissions and

errors in the original formulation of Talwani and Heirtzler (1962, 1964), with consequently

possible failure of magnetic anomaly calculations. Nevertheless, this new formulation derives

closely from that of Talwani and Heirtzler (1962, 1964), starting from the definition of the

magnetic potential in the case of SI units (modified by a factor
1
4

π with respect to 3.1). The

mathematical derivation partially differs during the integration from z1 to z2 leading to the

Talwani and Heirtzler’s corresponding (3.2) and (3.3), owing to a different definition of x,

leading to the following new modified terms P and Q (Kravchinsky et al., 2019)

P =
z21x21

z2
21 + x2

21
ln

r2

r1
+δ

z2
21

z2
21 + x2

21

(
α2 −α1

)
, (3.15)

Q =
z2

21
z2

21 + x2
21

ln
r2

r1
−δ

z21x21

z2
21 + x2

21

(
α2 −α1

)
, (3.16)

where the meanings of r1, r2, x21, and z21 are defined in (3.6–3.13).

Now recalling (3.13), then

g =
x21

z21
, (3.17)

and
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 −1 if x1 < gz1

1 if x1 > gz1 ,
(3.18)

α1 = arctan
(

δ (z1 +gx1)

x1 −gz1

)
, (3.19)

α2 = arctan
(

δ (z2 +gx2)

x2 −gz2

)
. (3.20)

The new relations (3.15-3.16) appear very similar to the previous equations (3.11) and (3.12)

and the major difference seems to be related to the different expression of the angles α1 and

α2 in place of Talwani’s θ1 and θ2 (cfr. equations 3.7-3.19-3.20). In addition, the formulas of

the angles α1 and α2 present also a δ term in order to remove the absolute value at x1 −gz1

and x2 −gz2, respectively (cfr. Kravchinsky et al., 2019, supporting information).

Now, the computation of the vertical and horizontal components of the magnetic strength

Bz and Bx is achieved by means of the following equations

Bz =
1

2π
(MxQ−MzP) , (3.21)

Bx =
1

2π
(MxP+MzQ) , (3.22)

which differs from Talwani and Heirtzler’s ones only of a factor
1
4

π owing to the utilization

of SI instead of emu units.

At this point, the computation of the scalar total field magnetic anomaly of the entire

body should be carried out using equation (3.14) for each polygon side in a counterclockwise

order as for Talwani and Heirtzler’s algorithm. On the contrary, the authors (Kravchinsky

et al., 2019) specify a clockwise order that, from a physical point of view, corresponds to

having a semi-infinite polygon in the opposite x direction built for each side, resulting in a
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negative scalar total field (−T ) contribution. In Appendix 3.A.1 we explain how such issue

has been corrected.

3.2.3 Won and Bevis

Won and Bevis (1987) proposed a faster approach to compute the magnetic anomaly thanks

to the substitution of trigonometric functions with simpler relations referred to the vertex

coordinates of the polygon (e.g., Grant and West, 1965). Moreover, this formulation allows

to perform magnetic calculation even in the case of side vertices crossing the x axis.

However, the theory behind this algorithm differs from that previously examined, being

the formulation derived by means of the Poisson relation (Won and Bevis, 1987). This

relation links the gravitational attraction to the scalar magnetic potential of a body, taking

advantage from the similarities between them. For instance, both have magnitude that is

inversely proportional to the square of the distance to the relative sources (Blakely, 1996).

The Poisson relation can be differentiated to obtain the magnetic strength vector B as follows

B =
|M|
Gρ

∂

∂α

(
g
′
)

, (3.23)

where |M| is the magnetization module, G the gravitational constant, ρ the body density, and

g′
the gravitational attraction related to the body. The term ∂

∂α
is defined as follows

∂

∂α
≡ sin(Im)

∂

∂ z
+ sin(β )cos(Im)

∂

∂x
, (3.24)

where Im represents the inclination of the magnetization vector and β the strike of the body

measured counterclockwise from magnetic north to the negative y axis (Figure 3.2a). This

relation is used to achieve the magnetic strength components of a polygon side along z and x,

that are
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Bz =
|M|
Gρ

(
sin(Im)

∂g
′
z

∂ z
+ cos(Im)sin(β )

∂g
′
z

∂x

)
, (3.25)

Bx =
|M|
Gρ

(
sin(Im)

∂g
′
x

∂ z
+ cos(Im)sin(β )

∂g
′
x

∂x

)
, (3.26)

where g
′
x and g

′
z are the x and z components of the gravitational attraction of the body, defined

as

g
′
x = 2GρX ; g

′
z = 2GρZ , (3.27)

with X and Z representing line integrals along the polygon side (refer to Won and Bevis 1987

for details).

Recalling (3.6-3.7-3.13-3.17), the partial derivatives of X and Z with respect to x and z

are respectively

∂X
∂x

=
x21z21

x2
21 + z2

21

[
1
g

(
θ1 −θ2

)
− ln

r2

r1

]
+P , (3.28)

∂X
∂ z

= −
x2

21
x2

21 + z2
21

[
1
g

(
θ1 −θ2

)
− ln

r2

r1

]
+Q , (3.29)

∂Z
∂x

= − x21z21

x2
21 + z2

21

[(
θ1 −θ2

)
+

1
g

ln
r2

r1

]
+Q , (3.30)

∂Z
∂ z

= −
x2

21
x2

21 + z2
21

[(
θ1 −θ2

)
+

1
g

ln
r2

r1

]
−P , (3.31)

where now
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P =
x1z2 − x2z1

x2
21 + z2

21

[
x1x21 − z1z21

r2
1

− x2x21 − z2z21

r2
2

]
, (3.32)

Q =
x1z2 − x2z1

x2
21 + z2

21

[
x1z21 − z1x21

r2
1

− x2z21 − z2x21

r2
2

]
. (3.33)

As in the previous derivations, the total field scalar anomaly of the side is obtained as a

projection of Bz and Bx onto the Earth magnetic field

T = Bz sin(I)+Bx cos(I)sin(β ) . (3.34)

Contrary to the two preceding algorithms, now the computation of the total field scalar

magnetic anomaly of the body using (3.34) should be carried out in clockwise order.

3.3 Discussion

3.3.1 Analytical Results

The three formulations discussed in this study aim to the same objective of calculating

the magnetic anomaly due to a body with uniform magnetization and polygonal section.

Among these, those of Kravchinsky et al. (2019) and Talwani and Heirtzler (1962, 1964)

present similar derivations, with some differences. In principle, Kravchinsky et al. (2019)

addressed some mathematical errors and omissions in the original derivation of Talwani

and Heirtzler, revealing some inconsistencies in magnetic anomaly calculation. However,

after analyzing the two formulations, some inaccuracies in Kravchinsky et al. (2019) have

been found. These issues are related to (a) the order of calculation around the polygon

sides (clockwise/counterclockwise), (b) the use of the cosine theorem formula, and (c) the
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projection of Bz and Bx along the Earth magnetic field vector. A detailed discussion of these

findings is provided in Appendix 3.A.

Regarding to the corrections brought to Talwani and Heirtzler (1962, 1964) by Kravchin-

sky et al. (2019), they mainly concern: (a) a modification of the definitions of the angles

θ1 and θ2 and (b) an addition of a δ term in order to account for an absolute value which

appears in their derivation.

In the following, we illustrate how the two algorithms, after removing the inaccuracies in

Kravchinsky et al. (2019), can be reconciled to a single approach, showing their equivalence

from an analytic point of view. For this purpose, let us rewrite expressions (3.19-3.20)

substituting the term δ with an absolute value at both the denominators in the argument of

the arctangents, since x1−gz1 = x2−gz2 (refer to the supporting information of Kravchinsky

et al. (2019) for an explanation)

α1 = arctan
(

z1 +gx1

|x1 −gz1|

)
, (3.35)

α2 = arctan
(

z2 +gx2

|x2 −gz2|

)
, (3.36)

where the term g is the same than the one presented in equation (3.17). Then, by canceling

out x1 and x2 both in the numerator and denominator of the argument of the respectively

arctangents α1 and α2, we can distinguish two cases:

1. If x1 −gz1 = x2 −gz2 > 0 (that is δ = 1 in 3.19-3.20)
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α1 = arctan
(

z1 +gx1

x1 −gz1

)
= arctan


z1

x1
+g

1− z1

x1
g

 , (3.37)

α2 = arctan
(

z2 +gx2

x2 −gz2

)
= arctan


z2

x2
+g

1− z2

x2
g

 . (3.38)

2. If x1 −gz1 = x2 −gz2 < 0 (that is δ =−1 in 3.19-3.20)

α1 = arctan
(
−z1 +gx1

x1 −gz1

)
= arctan

−

z1

x1
+g

1− z1

x1
g

 , (3.39)

α2 = arctan
(
−z2 +gx2

x2 −gz2

)
= arctan

−

z2

x2
+g

1− z2

x2
g

 . (3.40)

Now, using the mathematical relation combining sums of arctangents in a unique arctangent

expression

arctan(A)+ arctan(B) =


arctan

(
A+B

1−AB

)
if AB < 1

arctan
(

A+B
1−AB

)
+ (sign of A)π if AB > 1 ,

(3.41)

then we can rewrite (3.37 → 3.40) as
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α1 = arctan

 g+
z1

x1

1−g
z1

x1

= arctan(g)+ arctan
(

z1

x1

)
, (3.42)

α2 = arctan

 g+
z2

x2

1−g
z2

x2

= arctan(g)+ arctan
(

z2

x2

)
, (3.43)

when the product
z1

x1
g =

z2

x2
g < 1, and

α1 = arctan

−
g+

z1

x1

1−g
z1

x1

=−arctan

 g+
z1

x1

1−g
z1

x1


= −arctan(g)− arctan

(
z1

x1

)
+ (sign of g)π , (3.44)

α2 = arctan

−
g+

z2

x2

1−g
z2

x2

=−arctan

 g+
z2

x2

1−g
z2

x2


= −arctan(g)− arctan

(
z2

x2

)
+ (sign of g)π , (3.45)

when
z1

x1
g =

z2

x2
g > 1.

As it is apparent, the terms arctan
(

z1

x1

)
and arctan

(
z2

x2

)
are exactly equivalent to

the expressions of θ1 and θ2 in Talwani and Heirtzler (1962, 1964) (see Figure 3.B.1 in

Appendix 3.B for details concerning the angles involved in Kravchinsky et al. (2019)

formulation). Hence, canceling out each term arctan(g), in the case (1) the difference

α2 −α1 will always be algebraically the difference θ2 −θ1, whereas in (2) α2 −α1 will be

equal to −(θ2 −θ1). Recalling now the expressions (3.11–3.12) for P and Q in Talwani and

Heirtzler (1962, 1964),
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P =
z21x21

z2
21 + x2

21
ln

r2

r1
+

z2
21

z2
21 + x2

21

(
θ2 −θ1

)
, (3.46)

Q =
z2

21
z2

21 + x2
21

ln
r2

r1
− z21x21

z2
21 + x2

21

(
θ2 −θ1

)
, (3.47)

and the homologous (3.15-3.16) in Kravchinsky et al. (2019),

P =
z21x21

z2
21 + x2

21
ln

r2

r1
+δ

z2
21

z2
21 + x2

21

(
α2 −α1

)
(3.48)

Q =
z2

21
z2

21 + x2
21

ln
r2

r1
−δ

z21x21

z2
21 + x2

21

(
α2 −α1

)
, (3.49)

we can observe that the formulations differ for another term δ multiplying the difference

α2 −α1. If we are in the case (2), equations (3.44) and (3.45), we have δ = −1, then the

difference α2 −α1 again leads back to θ2 −θ1.

Hence, contrary to what pointed out by the authors, we have demonstrated that the

formulation of Kravchinsky et al. (2019) does not differ from that of Talwani and Heirtzler

(1962, 1964), rather it simply represents an algebraic variant, leading to identical results

in terms of computed magnetic anomalies. For this reason, either formulations can be

considered as a single approach and used without any distinctions. As a final consequence,

the presumed analytical errors in the Talwani and Heirtzler’s formulas has been disproved.

Regarding the Won and Bevis’ formulation, it is not easily comparable in details to the

other two from an analytical point of view, being derived from different assumptions and

theoretical approach. However, in the following sub-section we compare it from a numerical

point of view in order to understand whether its calculated magnetic response is always in

agreement with that of the other algorithms.
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3.3.2 Numerical Results

Two different numerical tests have been implemented using the above algorithm formulations

(i.e., considering our rectified version for that of Kravchinsky et al. 2019) in order to achieve

two different purposes, namely (a) to detect possible issues and irregularities in magnetic

anomaly computation in a wide variety of random magnetic scenarios, and (b) to assess the

results in a more realistic geological context upon sane magnetic scenarios, more helpful for

geophysical applications.

The former purpose has been accomplished by means of a random changing-shape

generation of up to five polygons repeated for 1000000 iterations (i.e., magnetic scenarios).

In detail, both induced Mi and Mr remanent magnetization modules changing have been

limited in a range between 0 and 50 A/m, their inclination and declination respectively

between -90◦ and 90◦ and between -180◦ and 180◦. One hundred observation points have

been located evenly spaced at a constant clearance of 10 m (toward up) along a profile 100 m

long. Figure 3.3a shows one of these iterations (for the relative frequency of the magnetic

properties tested see Figure 3.C.1).

During the test, a huge amount of combinations between the above magnetic properties

have been sampled, showing in all cases full agreement between the three algorithms.

Moreover, none anomalous or failing magnetic computations have been detected.

For what concern the second purpose, it has been carried out for the same number of

iterations in a more realistic geological context like that modeled in Armadillo et al. (2020).

The bodies modeled are three polygons with fixed geometries, representing a horst tectonic

structure (Figure 3.3b). In this test, the random variation of both induced and remanent

magnetization module has been restricted up to 5 A/m, representing a realistic value for

geophysical studies. The range of variation for the others magnetic properties is the same of

the former test. The external bodies extend respectively up to -100000 and 100000 m in x

direction to avoid “border effects”. Being these bodies represented by the same lithotype, we
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Figure 3.3 - (a) Magnetic responses (green curves), expressed in nT, due to four randomly
generated polygons upon a magnetic scenario using the three algorithms of Kravchinsky
et al. (2019), Talwani and Heirtzler (1962, 1964), and Won and Bevis (1987). In this forward
model, representing an iteration of the former numerical test described in the main text, |Mi|
and |Mr| represent the induced and remanent magnetization vector modules, whereas the
abbreviation Inc. and Decl. their inclinations and declinations, respectively. The numbers
around each polygon described the order and verse of calculation performed on its segments.
The inverted triangles depict the observation points where the magnetic anomaly is calculated.
(b) Forward magnetic model representing an iteration of the second numerical test in the case
of a geological horst structure upon a random magnetic scenario. The body in orange (body
2) represents the horst body, surrounded by two other identical bodies (bodies 1 and 3 from
left to right, in brown) for geological consistency. For the meaning of the abbreviations refer
to the caption of the above Figure (a).
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have assigned to them the same induced Mi and remanent Mr magnetization modules and

the respective inclinations and declinations. For geological consistency, the central body is

characterized by induced magnetization with same inclination and declination of that of the

lateral bodies, but different module |Mi|. In addition, it is characterized by different remanent

magnetization module, inclination and declination. During each iteration, the magnetic

properties randomly are changed following the rules described. One thousand observation

points have been located evenly spaced at a constant clearance of 100 m (toward up) along a

profile 15000 m long. Figure 3.3b presents one iteration relative to this analysis.

Even in this test, in all sampled cases there has been full agreement between the results

of all the algorithms, with differences in magnetic anomalies in each observation point next

to the machine precision of the computer utilized for these tests.

As result of both our numerical and analytical tests, we might confirm that the three

formulations lead to the same results and no algorithm is advantageous over the other two,

showing always to operate correctly and without abnormal behaviors. Moreover, the speed

up in magnetic calculation originally obtained by Won and Bevis (1987) no longer has any

advantage considering the much higher computing power of modern computers.

3.4 Conclusions

In this chapter, we have reviewed and compared the available formulations used to compute

the magnetic anomaly caused by a 2D uniformly polarized body with polygonal section,

both from an analytical and a numerical point of view. During the analytical analysis we

have demonstrated that the formulation of Kravchinsky et al. (2019) does not differ from

that of Talwani and Heirtzler (1962, 1964), being simply an algebraic variant. Indeed, the

angle differences α2 −α1 in Kravchinsky et al. (2019) reduces in all cases to the difference

θ2 −θ1 in Talwani and Heirtzler (1962, 1964). In addition, we have revealed and fixed some

inaccuracies in Kravchinsky et al. (2019), that are: (a) the order of calculation around the
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polygon sides, (b) the use of the cosine theorem formula, and (c) the projection of Bz and Bx

along the Earth magnetic field vector, leading in case (b) often immediate termination of the

algorithm during the numerical tests. During these tests, we have generated a huge number

of magnetic scenarios in two different ways and purposes, namely (a) to investigate possible

irregularities in magnetic anomaly computation for random-changing polygon numbers and

geometries, and (b) to evaluate the utilization of the algorithms in realistic geological/tectonic

contexts like that presented in Armadillo et al. (2020). In all cases, the three algorithms

have behaved in the same manner without criticality, computing in all the sampled scenarios

the same magnetic anomaly response. For this reason, the reader is free to follow the three

approaches described without any preference.
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Introduction

Some physical inaccuracies have been found in the formulation of Kravchinsky et al. (2019)

leading to failing magnetic anomaly calculation, that are in Appendix 3.A.1 the order of

calculation around the polygon sides, in 3.A.2 the use of the cosine theorem formula and

in 3.A.3 the projection of the vertical Bz and horizontal Bx magnetic strengths along the Earth

magnetic field vector. In addition, Appendix 3.B illustrates the actual geometrical meaning

of the angles involved in Kravchinsky et al. (2019) formulation and in 3.C the frequency of

the magnetic properties sampled in the first numerical test described in the sub-Section 3.3.2

of the main text. Finally, Appendix 3.D provides more information about the code packages

developed in the context of this work.

Appendix 3.A Inaccuracies found in Kravchinsky et al.’s

derivation

3.A.1 Sense of calculation around polygons

The authors claimed that the calculation of the magnetic anomaly of a polygon should be

performed considering its sides and vertices in a clockwise order. Following this approach,

the resultant total magnetic anomaly T calculated for a polygon side will have a wrong

opposite sign. In fact, from a physical point of view, it should correspond to having a

semi-infinite lamina upon the polygon side in the opposite x direction, resulting in a negative

scalar total field (−T ) contribution. Hence, the application of a minus sign to the formulas of

Bz and Bx is required to rectify the results. On the contrary, considering the polygon sides

and vertices in a counterclockwise order should avoid correcting the formulation. In fact,

even Talwani and Heirtzler (1962, 1964) pointed out that considering the sides and vertices
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clockwise their formulas for Bz and Bx should be changed adding a minus sign to obtain

correct results.

3.A.2 Cosine theorem formula

The authors used the cosine theorem formula to calculate the module of the total magnetiza-

tion vector M, called J by them, in the case of both induced and remanent magnetization as

follow (p. 7349 in Kravchinsky et al. 2019)

J = J2
i + J2

r −2JiJr cos(∆) , (3.50)

where ∆ should represent the angle between Ji and Jr (Figure 3.A.1). However, using the

formula (3.50), the result will be wrong. For this reason, the angle between Jr and Ji should

be substituted by its conjugate 180◦−∆ (Figure 3.A.1), leading to the correct formula

J = J2
i + J2

r −2JiJr cos(180◦−∆) , (3.51)

or alternatively,

J = J2
i + J2

r +2JiJr cos(∆) . (3.52)

Moreover, in some cases, this error may affect the calculation of the inclination A and

declination B of J, defined as

A = arcsin
(

Ji sin(I)+ Jr sin(Ir)

J

)
, (3.53)

B = arccos
(

Ji cos(I)cos(D)+ Jr cos(Ir)cos(Dr)

J cos(A)

)
, (3.54)
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where I and D are the inclination and the declination of the Earth magnetic field (and also

of the induced magnetization vector), whereas Ir and Dr the inclination and declination of

the remanent magnetization vector respectively. In fact, when J becomes very small the

argument of the trigonometric functions (3.53-3.54) may go out of domain [−1,1], making it

impossible the successful execution of the algorithm.

Figure 3.A.1 - Geometrical meaning of the Cosine theorem formula.

3.A.3 Projection onto the Earth’s magnetic field

Kravchinsky et al. (2019) calculate the scalar total magnetic anomaly T of a polygon

characterized both by induced and remanent magnetization as a projection of the vertical Bz

and horizontal Bx magnetic strengths along the Earth magnetic field as follow

T = Bz sin(A)+Bx cos(A)cos(C−B) , (3.55)

where A and B are the inclination and declination of the magnetization vector J (eq. 3.53-

3.54) and C is the angle between the Geographic North and the direction of the profile along

with the magnetic calculation is done. The above formula is correct only in case of induced

magnetization alone, since in that case the angles A and B are equal to the inclination I and



3.B Geometrical meaning of angles involved in Kravchinsky et al.’s formulae 74

declination D of the Earth magnetic field. Hence, the general formula to calculate T must

perform the projection of Bz and Bx along the Earth magnetic field vector

T = Bz sin(I)+Bx cos(I)cos(C−D) . (3.56)

Appendix 3.B Geometrical meaning of angles involved in

Kravchinsky et al.’s formulae

The illustration 3.B.1 shows the graphical representation of the actual geometrical meaning

of the angles involved in Kravchinsky et al. (2019) and Talwani and Heirtzler (1962, 1964)

formulations. Let us remember the meaning of the following quantities,

θ1 = arctan
(

z1

x1

)
; θ2 = arctan

(
z2

x2

)
; g =

x21

z21
. (3.57)

As discussed in the main text, the angle difference α2 −α1 in Kravchinsky et al. (2019)

always algebraically reduces to the difference θ2 −θ1 in Talwani and Heirtzler (1962, 1964).

Figure 3.B.1 - Meaning of the angle g involved in the Kravchinsky et al.’s derivation.
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Appendix 3.C Statistics about numerical tests discussed in

the main text

In Figure 3.C.1 we show the statistics relative to the former numerical tests described

in section 3.3.2. In detail, in the rose diagrams we illustrate the amount of inclination

and declination values of the induced and remanent magnetization vectors sampled during

1000000 iterations, whereas in the histograms the quantity of the induced and remanent

magnetization vectors modules. As you can see, virtually every possible magnetic scenario

was generated during the test.

Figure 3.C.1 - Statistics on the 2D numerical test of Figure 3.3 in the main text.
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Appendix 3.D Description of the software

The algorithms discussed in the main text have been implemented both in the Python and

Julia languages in the open-source code packages pyMag2Dpoly and Mag2Dpoly. In the

same code packages, all the inaccuracies found on the algorithm of Kravchinsky et al. (2019)

about the sense of calculation around polygons, the use of the cosine theorem formula and

the projection of polygons magnetic contributions onto the Earth’s magnetic field have been

fully fixed.

https://github.com/inverseproblem/pyMag2DPoly
https://github.com/inverseproblem/Mag2Dpoly.jl




Chapter 4

Hamiltonian Monte Carlo Probabilistic

Joint Inversion of 2D (2.75D) Gravity and

Magnetic Data

Abstract
Two-dimensional modeling of gravity and magnetic anomalies in terms of polygonal
bodies is a popular approach to infer possible configurations of geological structures in
the subsurface. Alternatively to the traditional trial-and-error manual fit of measured
data, here we illustrate a probabilistic strategy to solve the inverse problem. First we
derive a set of formulae for solving a 2.75-dimensional forward model, where the
polygonal bodies have a given finite lateral extent, and then we devise a Hamiltonian
Monte Carlo algorithm to jointly invert gravity and magnetic data for the geometry
and properties of the polygonal bodies. This probabilistic approach fully addresses the
nonlinearity of the forward model and provides uncertainty estimation. The result of the
inversion is a collection of models which represent the posterior distribution, analysis of
which provides estimates of sought properties and may reveal different scenarios.
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4.1 Introduction

Potential field data in the form of gravity and magnetic anomalies have been used for long to

characterize the structure of the subsurface, ranging from applications to the small scale as

in the context of exploration geophysics (e.g., Hinze et al., 2013; Li and Oldenburg, 1998,

2000; Nabighian et al., 2005; Zunino et al., 2009) to the continental scale, particularly to

estimate heat flux or to infer crustal thickness (e.g., Baranov et al., 2018; Li et al., 2017;

Llubes et al., 2018; Martos et al., 2017; Maule et al., 2005; Milano et al., 2020; Pappa et al.,

2019; Scarponi et al., 2021; van der Meijde et al., 2013). Particularly popular for the easiness

of use and interpretation are two-dimensional (2D) models, which allow the study of vertical

cross-sections through the Earth. This approach has limitations with respect to fully 3D

models (e.g., Blakely, 1996), nonetheless, it is capable of producing results which are easy to

handle, compare with other geological information, and efficient from a computational point

of view. Alternative approaches include trans-dimensional partitioning of the space in 3D

(Ghalenoei et al., 2022), where spatial resolution is adapted locally.

For 2D models, there are essentially two main ways to parameterize the subsurface

Blakely (1996): a cell-based approach, where the subsurface is subdivided into a finite number

of homogeneous cells (e.g., Banerjee and Das Gupta, 1977; Bhattacharyya, 1964; Li and

Oldenburg, 1998, 2000; Li et al., 2010; Nagy, 1966) and a polygon-based parameterization

where contrasts in density or magnetization are represented by polygons (geological bodies)

inside which density and magnetization are constant (e.g., Talwani and Heirtzler, 1964;

Talwani et al., 1959). If the structures present in the subsurface can be approximated by

such polygonal bodies, then this approach becomes advantageous with respect to cell-based

parameterizations in that the number of model parameters is strongly reduced and the body

is treated as a single entity. The cell-based approach, in contrast, requires a large number

of cells to well represent a single homogeneous geological body and therefore in terms of

numerical implementation it has large memory imprint and requires large matrix-vector
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products. Other adaptive approaches in the context of trans-dimensional inversion are also

possible (Hawkins and Sambridge, 2015; Luo, 2010; Ray, 2021), which aim at discovering

parsimonious parameterizations.

In case of a polygonal parameterization of the subsurface, the typical workflow consists

of manually adjusting the shapes of the polygons until a good fit with the observed data

is obtained (e.g., de Moura et al., 2019; Kuang et al., 2022; Scheiber-Enslin et al., 2014;

Tominaga et al., 2016). This procedure is performed by visualising on the screen a plot of

the observed and calculated data together with a plot of the polygons whose vertices/edges

are then displaced until a geologically plausible model that matches the observed data is

found. Sometimes a mixed approach is applied (e.g., Witter et al., 2018), where inversion

is iteratively applied to manually adjusted forward models constrained by surface geology

and rock property data. The issue with such approaches is two-fold: (1) the results are

strongly subjective, in that different users will produce different results lacking any metric for

comparison and (2) the non-uniqueness and uncertainty of the inverse problem are not taken

into account, giving the impression that one single solution is enough. Moreover, purely

deterministic approaches are likely to fail to converge to a meaningful solution because of

the nonlinearity of the forward model, as for the example we show in this work. Potential

field data inversion, in fact, suffers from a strong non-uniqueness (e.g., Blakely, 1996),

therefore constraints either on material properties or geometrical structure are required to

obtain plausible solutions. Moreover, because of that, uncertainty quantification becomes

necessary for appraisal of the solution.

To overcome the above mentioned issues, we present here a probabilistic strategy

(Mosegaard and Tarantola, 2002; Tarantola, 2005) to perform a joint gravity and mag-

netic inversion capable of addressing the nonlinearity of the forward model and providing

uncertainty quantification. To solve such inverse problem we thus resort to sampling the

posterior distribution using the Hamiltonian Monte Carlo method (HMC) (Duane et al., 1987;
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Fichtner et al., 2019; Neal, 2012). The algorithm strives to explore the model space according

to the posterior distribution, producing a collection of posterior models. Such collection can

then be analysed to answer a variety of questions, such as, for instance, the probability of a

certain geological body to have a certain thickness or the probability of a certain parts of a

polygon to be in a certain region. The main strength of HMC lies in the ability to exploit

information about the shape of the posterior in order to steer the sampling trajectory towards

high probability regions.

In the following we first describe how to perform forward calculations for both gravity

and magnetic cases and then we illustrate our sampling strategy based on the HMC algorithm

to solve the joint inversion problem. To validate our methodology we first perform a set of

synthetic tests and then we show an application to a real data set.

4.2 The 2D to 2.75D gravity and magnetic anomaly problem

Algorithms to compute gravity and magnetic anomalies for 2D polygonal bodies based on

line integrals (Hubbert, 1948) date back to Talwani et al. (1959) and Talwani and Heirtzler

(1964). Since then, such formulations have been the basis for the majority of the computer

programs performing such calculations (a review can be found in chapter 3).

In this work, we focus on an extension of purely 2D polygonal forward problems to 2.5D

and 2.75D. In the 2D case, the polygonal bodies are assumed to extend to infinity in both

directions normal to the plane where the polygon lies. Such setup may be difficult to apply in

a realistic framework, where geological bodies have a finite extent which strongly influences

the measured signal. For this reason, a 2.5D modelling strategy has been developed, which

takes into account a finite lateral extension (extrusion) of the polygonal bodies. The label

2.5D refers to the situation in which such lateral extension is the same on both sides with

respect to the polygons, while 2.75D refers to models where the lateral extension normal to

the plane of the polygon is different for the two sides. Formulae for 2.5D and 2.75D have
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Figure 4.1 - Geometrical setup for 2.75D anomaly calculations. See main text for details.

been presented across the 70s to the 80s (see, e.g., Cady, 1980; Rasmussen and Pedersen,

1979; Shuey and Pasquale, 1973).

The geometrical setup for the 2.75D problem is illustrated in Figure 4.1a, where the

polygon(s) lies in the x,z plane, while y denotes the axis along which the body extends

for a finite length. Formulae for the 2.75D gravity and magnetic anomalies in the original

formulation case Campbell (1983); Rasmussen and Pedersen (1979) are cumbersome so, for

convenience, we provide here a slightly modified version which appears simpler to read and

implement. A detailed derivation can be found in the Appendix 4.A. The formulae that we

are presenting below are used to compute the gravity and magnetic response for a polygonal

body which extends along the y axis from the position y1 to y2. The following formulae,

modified from Rasmussen and Pedersen (1979), are for a single polygonal body. In case

of presence of multiple polygons, the contributions are added up. The two points (xi,zi)

and (xi+1,zi+1) represent the endpoints of an edge of the polygon. The order in which the

vertices are taken is very important. In our case, with reference to Figure 4.1, the first point

(x1,z1) must refer to the beginning of the segment in the anti-clockwise direction and the

other point (x2,z2) to the end of the segment, again considering the anti-clockwise direction.
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In the following we assume that the polygon has N vertices and that for the case i = N we

have xN+1 = x1 and zN+1 = z1.

The formula for the vertical gravitational attraction of a polygon as the result of a

summation over all the edges is given by

gz =−ρ G
N

∑
i=1

{
cos(φ)(y2 s2 − y1 s1)+

xi zi+1 − zi xi+1√
x2

21 + z2
21


×
[

cos(φ)(a2 −a1)− sin(φ)(l1 + l2)
]}

, (4.1)

where G ≈ 6.67 ·10−11 Nm2/kg2 is the gravitational constant and ρ is the density (contrast)

of the polygonal body (in kg/m3). For the magnetic case, instead, there are three components

which need to be calculated to get the final total field anomaly (modulus), which are given by

Bx =
N

∑
i=1

{
− sin(φ)

[
(l1 + l2)(cos(φ)Jx + sin(φ)Jz)

−(a2 −a1)(cos(φ)Jz − sin(φ)Jx)− Jy (q1 −q2)
]}

, (4.2)

By =
N

∑
i=1

{
Jy (a2 −a1)− (q1 −q2)(cos(φ)Jz − sin(φ)Jx)

}
, (4.3)

Bz =
N

∑
i=1

{
cos(φ)

[
(l1 + l2)(cos(φ)Jx + sin(φ)Jz)

−(a2 −a1)(cos(φ)Jz − sin(φ)Jx)− Jy (q1 −q2)
]}

. (4.4)

The final formula for the total field anomaly is then

∆T =
1

4π

[
Bx cos(Iind)cos(C−Dind)

+By cos(Iind)sin(Iind)+Bz sin(Iind)
]

, (4.5)

where Jx, Jy and Jz, are the components of the magnetization (A/m) of the polygonal body,

Iind and Dind the inclination and inclination of the inducing regional field (F), respectively, and,
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finally, C the angle with respect to the direction of the geographical North (see Figure 4.1b).

J is computed as the vector sum of induced and remnant magnetization.

The quantities appearing above in the gravity and magnetic case are given by the following

definitions,

l1 = ln

r1 (
√

r2
2 + y2

1 − y1)

r2 (
√

r2
1 + y2

1 − y1)

 , l2 = ln

r1 (
√

r2
2 + y2

2 + y2)

r2 (
√

r2
1 + y2

2 + y2)

 , (4.6)

s1 = ln

u2 +
√

r2
2 + y2

1

u1 +
√

r2
1 + y2

1

 , s2 = ln

u2 +
√

r2
2 + y2

2

u1 +
√

r2
1 + y2

2

 , (4.7)

q1 =
1
2

ln

(
√

r2
2 + y2

1 −u2)(
√

r2
1 + y2

1 +u1)

(
√

r2
2 + y2

1 +u2)(
√

r2
1 + y2

1 −u1)

 , (4.8)

q2 =
1
2

ln

(
√

r2
2 + y2

2 −u2)(
√

r2
1 + y2

2 +u1)

(
√

r2
2 + y2

2 +u2)(
√

r2
1 + y2

2 −u1)

 , (4.9)

a1 = arctan

 u2 y1

w
√

r2
2 + y2

1

− arctan

 u1 y1

w
√

r2
1 + y2

1

 , (4.10)

a2 = arctan

 u2 y2

w
√

r2
2 + y2

2

− arctan

 u1 y2

w
√

r2
1 + y2

2

 , (4.11)

where

x21 = xi+1 − xi, z21 = zi+1 − zi, (4.12)

u1 = cos(φ)xi + sin(φ)zi, (4.13)

u2 = cos(φ)xi+1 + sin(φ)zi+1, (4.14)

w =−sin(φ)xi + cos(φ)zi, (4.15)

φ = arctan
(

z21

x21

)
, r1 =

√
u2

1 +w2, r2 =
√

u2
2 +w2 . (4.16)
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The formulae above allow us to solve the forward problem, i.e., to compute the gravity

and magnetic anomalies given the position of the vertices of the polygons and their density

and magnetization and are those implemented in our software.

4.3 Probabilistic joint inversion using the Hamiltonian Monte

Carlo method

4.3.1 Hamiltonian Monte Carlo scheme

Under fairly general assumptions and within the framework of the probabilistic approach

(Mosegaard and Tarantola, 2002), where information is treated in terms of probability density

functions (PDF), the solution to an inverse problem can be written as

σ(m) = k L(m)ρ(m) , (4.17)

where m represents the model parameters, k a normalization constant, σ(m) is the posterior

PDF, L(m) the likelihood function representing the degree of fit between observed and calcu-

lated data and ρ(m) the prior information on model parameters (see, e.g., Tarantola, 2005).

Characterizing the posterior PDF is the target of the inversion process. Moreover, within

this approach, it is possible to easily integrate different kinds of geophysical information

(Hansen et al., 2016), hence performing a joint inversion of gravity and magnetic anomalies

is a natural choice. In this work the likelihood function, including gravity and magnetic data,

is defined as

L(m) = kgrav exp
(
−1

2
(ggrav(m)−dgrav)T (Cgrav

D
)−1

(ggrav(m)−dgrav)

)
×kmag exp

(
−1

2
(gmag(m)−dmag)T (Cmag

D
)−1

(gmag(m)−dmag)

)
, (4.18)
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where g(m) is the forward model for gravity (·grav) and magnetic (·mag) anomalies, d the

observed (measured) data, CD a covariance matrix representing the uncertainty on the

measured data.

The model parameters m= {mvert,mgrav,mmag} are defined as being either the position of the

vertices of the polygonal bodies (see previous section) or the values of induced and remanent

magnetization, density or all of them. In case the vertices are considered unknown model

parameters, the relationship between mvert and the computed data {gmag(m),ggrav(m)} is

strongly nonlinear, hence sampling methods are required to characterize the posterior PDF.

Such nonlinearity, in fact, may produce a multi-modal posterior PDF with different local

maxima, which might not be easily dealt with using conventional optimization methods. An

example of this is discussed in section 4.4.1. Moreover, potential field inverse problems

suffer from a strong intrinsic non-uniqueness that allows different models to produce the

exact same observable data (e.g., Blakely, 1996; Hinze et al., 2013). Because of this, the idea

is to explore as much as possible the model space for plausible solutions, given the constraint

of a finite number of iterations. Prior information derived from geological knowledge of the

area under study and laboratory measurements on rock samples thus play a fundamental role

to reduce the ambiguity for potential field data.

In light of the above, in order to characterize σ(m), we sample it using a Monte Carlo

algorithm which produces a large collection of models. Sampling in this case means pro-

ducing a collection of models whose “density” in the model space is proportional to the

actual value of the posterior PDF (Tarantola, 2005). Statistical analysis is then performed on

such collection to extract information about features of interest, for example by computing

expectations. To maximize efficiency, we sample the posterior using with the HMC method

(Duane et al., 1987; Fichtner et al., 2019; Neal, 2012), which combines the sampling strategy

with information derived from the gradient of the misfit function (the negative logarithm

of the posterior distribution) with respect to the model parameters. The use of information
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derived from the gradient may substantially increase the efficiency of the algorithm com-

pared to other traditional techniques such as the random walk Metropolis algorithm (RWM)

(Metropolis et al., 1953; Mosegaard and Tarantola, 1995; Robert, 2015). The gradient, in

fact, helps steering the exploration of the posterior PDF towards areas of high probability

and allows for longer moves compared to RWM, at the expense of being able to compute

such gradient efficiently (Fichtner et al., 2019).

The HMC strategy is based on an analogy with a physical system described in terms

of potential and kinetic energy, where a multi-dimensional particle moves frictionless on

a landscape defined by the potential energy U(m), where m represents the position and p

the momentum of the particle, related to the kinetic energy K(p). The coordinates of the

particle (position) are the model parameters, while the potential energy equals the misfit of

the posterior PDF, U(m) = − log(σ(m)). The kinetic energy is usually defined as being

the negative logarithm of a Gaussian PDF, i.e., K(p) = − log(N (m,M)) = 1
2pTM−1p,

where M is the mass matrix, a covariance matrix representing the scaling and correlations

of the momentum variables. The system preserves the value of the Hamiltonian H(m,p) =

U(m)+K(p) and evolves according to the Hamiltonian dynamics, given by the following

equations:
∂m
∂ t

=
∂H
∂p

,
∂p
∂ t

=−∂H
∂m

, (4.19)

where t represents a fictitious time. Equations (4.19) need to be integrated in time to calculate

the motion of the particle and hence to update position and momentum in time. The evolution

of the position in time represents the trajectory in the model space of the visited models. The

HMC algorithm proceeds at each iteration by sampling a value for the momentum from its

distribution and then updating position and momentum using the Hamiltonian dynamics for

a certain amount of time. Position and momentum at the end of the trajectory are then used

as candidate values for the new state of the Markov chain. Theoretically the Hamiltonian is

conserved in such system, however, in practice, numerical integration using the leap-frog or
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any other practical scheme (Neal, 2012) introduces some errors which require the use of a

Metropolis step (Metropolis et al., 1953) where a probabilistic rule decides whether to accept

the new candidate state or fall back to the previous one. The properties of the Hamiltonian

dynamics and the leap-frog integration scheme guarantee that the detailed balance property

is satisfied and hence the algorithm is a proper sampler (Neal, 2012).

Summarizing, at each iteration the algorithm performs a certain number of steps in time

solving the Hamiltonian dynamics numerically and then uses position (model parameters)

and momentum at the end of the trajectory as candidate values for the next state of the chain.

Details on how the algorithm works can be found in Betancourt 2017, Fichtner et al. 2019,

and Neal 2012.

The mass matrix M is a very important tuning parameter for HMC (see, e.g., Fichtner

et al., 2021), since it provides an estimate of the perturbations to be applied to the momentum

and hence the position (see equation 4.19) and enables the user to control the smoothness

of the proposed updates, as we will see in section 4.4.1. In addition, two other parameters

control the numerical integration of the Hamiltonian dynamics: the step length ε and the

number of leap-frog iterations L.

4.3.2 Software implementation and computation of the gradient with

automatic differentiation

The inverse approach described in this chapter has been implemented in a set of open source

software packages written in the Julia language (Bezanson et al., 2017) (details are provided

in Appendix 4.C). These packages are part of a larger project dubbed “HMCLab” aiming

at providing a set of geophysical forward problems which can be used to set up HMC

inversions, which is the subject of a paper in preparation (Zunino A., Gebraad L., Ghirotto A.

and Fichtner A., pers. comm.). For the inversions shown in this work we use a particular

flavor of HMC, namely the NUTS algorithm (also part of HMCLab) (Hoffman and Gelman,
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2014), which aims at self-tuning the step length and number of iterations of the leap-frog

scheme.

The critical step for a successful HMC algorithm is the capability of computing the gradi-

ent of the potential energy efficiently enough such that the algorithm can perform the desired

number of iterations in a reasonable amount of time. In our case, computing derivatives of

the forward models with respect to vertices position by hand is rather cumbersome, so, for

convenience, we resort to the technique of automatic differentiation (AD) (Gebremedhin and

Walther, 2020; Griewank and Walther, 2008; Sambridge et al., 2007). AD is a computational

technique which allows us to automatically generate the derivative of a user-provided func-

tion, commonly happening on-the-fly, for almost any code in a given language where this

tool is available. Such procedure is also useful in case there are any changes in the functions

solving the forward problem in that the derivatives would be readily available. There are two

flavors of AD: forward and reverse mode, which differ in the way they traverse the chain

rule used to decompose the derivative of the function of interest. Our code can use either of

them, however, in our examples, we found the forward mode to be more stable and efficient.

Trial runs should be conducted by the user for any particular problem to determine the best

strategy.

One important issue that may arise when updating the shape of the polygons using the

gradient is that of physically impossible geometries (self-intersecting polygons, etc.). We

provide information on how we deal with that in Appendix 4.B.

4.4 Results

In this section we describe two synthetic and one real data examples of joint inversion

with HMC. Additionally, we show an attempt to solve the first synthetic example with a

deterministic method. In the following, for simplicity, the prior ρ(m) is assumed to be an
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unbounded, uniform PDF, however, any other form of prior information could be used within

this algorithm.

4.4.1 Numerical experiments

The first numerical experiment we present is a 2.75D joint inversion of a gravity and magnetic

anomaly profile consisting of 100 observation points at an altitude of 100 meters for a total

of 100 measurements of the total magnetic field and 100 measurements of the vertical

gravitational attraction. The “observed” data in this synthetic test were calculated from a

hexagonal- and a tilted rectangle-shaped polygonal bodies (Figure 4.2a in black), mimicking a

blob anomaly and a dike intrusion, with the addition of Gaussian correlated noise to simulate

the error on realistic measurements (see Figure 4.2a for the geometry of the problem). The

lateral extent of the model is estimated to be 5 km in the positive y direction and 1 km in the

negative direction. In this example we assume to know the values of induced magnetization

(|J|ind = 2A/m, Iind = 45◦, Dind = 0◦), remanent magnetization (|J|rem = 0) and density

contrast (1000 kg/m3) of the polygonal bodies and therefore we invert only for the position

of the vertices. Inverting for all possible parameters with little constraints is difficult because

of the strong trade-off among them, which will likely generate such a wide spectrum of

models to become difficult to interpret.

We first attempt to perform an inversion using a completely deterministic, gradient-based

method, specifically a L-BFGS method (Nocedal and Wright, 2006). The parameters used

and the starting model are the same than those used for the HMC examples. Figure 4.2

shows the found “optimal” model after 372 iterations in orange. The shape of this solution is

far from the reference model and geologically implausible, although the fit to the observed

data is good. This shows how difficult it is to obtain a reliable solution with a deterministic

method and, comparing with the following results, how much information may be missed

with a single “best” solution for this kind of problems.
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Figure 4.2 - Selected models and data at given iterations from the joint inversion synthetic
tests. The labels “ref”, “start”, “cur” and “deter” refer to the reference, starting model,
current model and the deterministic solution, respectively, and their gravity and magnetic
responses. Panel (a) depicts the first synthetic test involving two polygonal bodies. The
observed magnetic and gravity data are shown in the first and second plot from the top, while
the polygonal bodies in the third. The fourth plot from the top shows the position of the
vertices across the iterations during and after the burn-in phase, where darker red means a
better fit to the observed data (higher posterior PDF). Panel (b) depicts the second synthetic
test mimicking a fault region. The structure of the plots is the same than for panel (a).
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We now discuss the inversion using HMC, specifically using the NUTS algorithm (see

above). The starting model (Figure 4.2a in light blue) consists of and exagonal polygon

located deeper and to the left of the reference model (Figure 4.2a in black) and a dike-like

polygon tilted in the opposite direction than the reference model. Notice that the reference

model is parameterized with 6+4 (exagon plus rectangle, respectively) parameters, while

the actual inverse problem is overparameterized with 12+8 parameters to simulate a more

realistic setup where the number of edges is unknown. Starting from the initial model, we ran

10000 iterations. The diagonal of the mass matrix M (see above) was set to a range of values

corresponding to a correlation length of the model parameters of roughly 300 m, which is the

variation we expect to see in the solutions. Moreover, in this example, we assume that we

have a rough idea of the shapes of the anomalous bodies we expect to be in the subsurface. To

inject such kind of information into the inverse algorithm, we introduce some correlation in

the mass matrix M, i.e., we have non-zero off-diagonal terms. The result is that the update to

a vertex position influences also the position of the other vertices by an amount proportional

to the off-diagonal values of the mass matrix. An approximately similar kind of information

could also be injected into the algorithm by employing a Gaussian prior PDF by specifying

an appropriate covariance matrix.

The results show that the algorithm, despite starting rather far from the reference model,

converges to a good solution after about only 200 iterations, with a very large decrease of

the misfit. We show in Figure 4.2a) bottom plot all the positions of the vertices during the

iterations. The ones belonging to the burn-in phase of the algorithm are marked in light blue,

while the following values (samples) in red. As expected in potential field problems, the top

part of the polygons is better constrained than the bottom (Figure 4.2a) because of a higher

sensitivity at shallower depths.

For the second synthetic example (see Figure 4.2b) we invert a combination of gravity

(100 observations) and magnetic data (100 observations) for the position of the vertices
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assuming again known induced magnetization (|J|ind = 1A/m, Iind = 45◦, Dind = 0◦ for

the first body and |J|ind = 2A/m, Iind = 45◦, Dind = 0◦ for the second body), remanent

magnetization (|J|ind = 0) and density contrast (−150kg/m3 for the first body and 250kg/m3

for the second body). The observation points are at an altitude of 250 m and the model

extends from the surface to about 1500 m of depth. Again, correlated Gaussian noise has been

added to the “observations”. From the geometrical point of view, instead, the problem is quite

different. In this case the geological setup we are mimicking is that of a fault between two

layers of different properties (see Figure 4.2b). The fault model extends along x much more

than the span of observation points in order to avoid strong edge effects on the calculated

signal. In this case the y direction extends to infinity and hence we use a 2D approach. The

starting model features a fault which is longer and tilted the opposite way with respect to the

reference model (Figure 4.2b).

Starting from the initial model, we ran 10000 iterations using the NUTS algorithm. The

algorithm takes about 300 iterations to flip the angle of the fault to the reference one and

then starts to produce models that are close to the reference model. This example shows how

the algorithm is capable of finding good models even if the starting model is far away from

the reference one. Figure 4.2b bottom plot shows the position of the vertices throughout the

iterations, showing only relatively small variations, indicating that for this data set, assuming

approximately known material properties, there is a limited range of variations which fit the

observed data to a good degree.

4.4.2 Real data example

Finally, we present a 2.75D inversion of a gravity and magnetic anomaly relative to an inferred

cooled magmatic pluton located in the Rufiji Through, a E-W trending graben structure

cutting the Tanzanian southeastern coastal sedimentary basin (Armadillo et al., 2020). In

such a context, the use of a more realistic 2.75D formulation to compute the forward gravity
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Figure 4.3 - Real data set inversion illustration. The plots relative to panel a) are analogous
to those for figure 4.2a). Panel b) shows a histogram of the volume of the polygonal body
calculated from the collection of the posterior models.
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and magnetic response is crucial, as the target body is of finite lateral extension and therefore

the pure 2D hypothesis would no longer hold true. The data sets used are the World Gravity

Map (WGM) compilation (Bonvalot et al., 2012) and the total field magnetic anomaly data

EMAG2 (Meyer and Saltus, 2016). The gravity data has been upward continued at 4 km

to match the height of the magnetic data set and obtain similar sensitivity. This processing

has been performed in order to reduce the high-frequency content of the signal and reach a

balance with the magnetic data in terms of information content. The 2D gravity anomaly map

(see Figure 3 in Armadillo et al. (2020)), shows an almost perfect circular shape, whereas the

magnetic one presents a dipolar pattern with axis aligned approximately to the current Earth’s

Magnetic Field direction. This evidence suggests the pluton presents dominant induced

magnetization or even remnant magnetization aligned to the current Earth’s Magnetic Field.

The data sets have been sampled at 100 points evenly spaced along a profile ∼60 km long

crossing the anomaly with an angle of 0 degrees with respect to the Geographic North, in

close accordance with the declination of the present day Earth’s Magnetic Field in that place

(i.e., -2.38 degrees). This orientation of the profile has been chosen in order to better sample

the dipolar pattern in the magnetic data. We ran 10000 iterations of the NUTS algorithm,

starting from a plausible polygonal body given the available geophysical information for the

area (see Figure 4.3a). The lateral extent (along y) of the model is estimated to be 25 km in

both directions (equivalent to a 2.5D approach). In this case we invert for both the position

of the vertices and the magnetic and gravity properties (starting with |J|ind = 1.235A/m,

Iind =−37.45◦, Dind =−2.39◦; |J|rem = 0A/m, ρ = 250 kg
m3 ). However, as explained above,

the strong trade-off among these parameters allows only for an inversion with a limited range

of variability of such rock properties. The results of the inversion show a range of possible

locations of the polygonal body, either deeper than the starting model (in the first phase of

sampling) or shallower but with a pronounced curved shape for the rest of the iterations. In

panel b) of Figure 4.3 we show a histogram of the probability of the volume of the polygonal
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body to be in a certain range, which has been calculated analysing the collection of posterior

models (samples). The plausibility of such result is obviously dependent on how realistic are

the initial assumptions (e.g., knowledge of rock properties). This is an example of the kind

of information that can be provided by the probabilistic method also thanks to the 2.75D

formulation of the forward model, which allows for a finite lateral extent of the prismatic

bodies under study. This property, useful in different contexts such as sedimentary basins,

could not be calculated using the purely 2D formulation.

4.5 Conclusion

In this chapter we addressed the problem of inverting jointly gravity and magnetic anomaly

data with a 2.75D (including 2D and 2.5D) parameterization in terms of polygonal bodies.

The position of the vertices of the polygons is nonlinearly related to the gravity and magnetic

response measurable on or above the Earth’s surface. Because of this, the inverse problem

results nonlinear even for a classic Gaussian misfit function. Our inversion method therefore

relies on a sampling strategy that aims at characterizing the posterior distribution rather than

searching for single optimal model. In light of the above we have shown how to set up a joint

gravity and magnetic inversion using the Hamiltonian Monte Carlo method, which provides

as a final solution a collection of sample models amenable to statistical analysis. Both the

controlled synthetic tests and the application to real data presented in this chapter show that a

probabilistic inversion is feasible and can provide useful quantitative information about the

subsurface. We have implemented the methodology described in this chapter in a set of open

source software packages which are publicly available.
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Introduction

The Appendices below contain a detailed mathematical description and derivation of the

formulae used in the related main text, an illustration of potential geometrical issues for

polygons and a description of the software.

Appendix 4.A 2.75D gravity and magnetic anomalies for-

mulae derivation

The first popular formalism to compute the vertical gravitational attraction and the total

scalar magnetic anomaly of a 2D polygonal structure were proposed by Talwani et al. (1959)

and Talwani and Heirtzler (1964), respectively. These works rely on the theory of the

line integral of Hubbert (1948), thanks to which the gravity and magnetic response of a

laterally infinitely elongated prismatic body of uniform physical properties (i.e., density

and magnetization) can be calculated at requested observation points along a profile. The

2D polygonal assumption, very common in potential field modelling, allows to 1) decrease

dramatically the model complexity and 2) better define the spatial geometry of the causative

body. Following the above mentioned early 2D formalisms, Shuey and Pasquale (1973),

Rasmussen and Pedersen (1979) and Cady (1980) proposed new formulations for the so-

called End Corrections to allow geophysicists to model prismatic bodies with finite lateral

extent (normal to the polygonal bodies), but still represented by polygonal sections as used

for the 2D case. Later on, Campbell (1983) found a sign error in the formulation for the

magnetic case of Rasmussen and Pedersen (1979), coding a rectified version of the algorithm

in the computer program NEWMAG.

In the most general case, the basic assumption for End Corrections is to divide a prismatic

body in two prismatic semi-bodies elongated perpendicularly to the profile direction from

y = y1 < 0 to y = 0 and from y = 0 to y = y2 > 0 respectively (Figure 4.A.1). Hence, we can
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Figure 4.A.1 - Geometrical setup for 2.75D anomaly calculations.

distinguish two cases as a function of the elongation of the two semi-prisms with respect to

the position of the profile (i.e., y = 0), namely i) symmetric bodies (2.5D), when −y1 = y2,

and asymmetric bodies (2.75D), if −y1 ̸= y2. Obviously, for y1 →−∞ and y2 → +∞ the

numerical results of the 2.5D approach converge to those from the purely 2D case.

We present here a simplified version of the original formulations of Rasmussen and

Pedersen (1979) for the 2.5/2.75D gravity case and that from Campbell (1983) for the

corresponding magnetic case. To obtain the correct numerical solution, these formulae must

be used in the case of counter-clockwise circuiting around the polygonal section, with respect

to the positive-downward z direction. While testing our numerical implementation following

the NEWMAG algorithm against the prismatic approach from Bhattacharyya (1964), we

have found a sign error in Campbell (1983) which affects the magnetic calculations. The

rearranged formulae and details about their derivations are discussed in the following.
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4.A.1 Mathematical background

In this section we present the mathematical background and the common terms used for the

gravity and magnetic derivations. Let us start with the definition of the coordinate system

(u,y,w), rotated by a φi angle with respect to the Cartesian system (x,y,z), expressed in

meters. This rotation is performed according to the orientation of the vector n⃗ representing

the normal to the i-th polygonal face defining the 2.5/2.75D prism (Figure 4.A.1). By

construction, the vector n⃗ always lies on the x− z plane and is aligned to the w⃗ direction. For

a polygon side represented by the coordinate pairs (x1,y1) and (x2,y2), taken in a counter-

clockwise order with respect to a downward positive z axis, we can now define the new

coordinates for the vertices as follow

u1 = cos(φ)x1 + sin(φ)z1 , (4.20)

u2 = cos(φ)x2 + sin(φ)z2 , (4.21)

w1,2 = w =−sin(φ)x1 + cos(φ)z1 , (4.22)

where the coordinates system rotation angle (φ ) relative to that side is

φ = arctan
(

z21

x21

)
, (4.23)

and

x21 = x2 − x1, z21 = z2 − z1. (4.24)

In agreement with the original formulation, we define also two additional quantities

r1 =
√

u2
1 +w2 and r2 =

√
u2

2 +w2. (4.25)
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At this point, we can show the common mathematical expressions for gravity and the

magnetic cases,

l1 = ln

r1 (
√

r2
2 + y2

1 − y1)

r2 (
√

r2
1 + y2

1 − y1)

 , l2 = ln

r1 (
√

r2
2 + y2

2 + y2)

r2 (
√

r2
1 + y2

2 + y2)

 , (4.26)

a1 = arctan

 u2 y1

w
√

r2
2 + y2

1

 − arctan

 u1 y1

w
√

r2
1 + y2

1

 , (4.27)

a2 = arctan

 u2 y2

w
√

r2
2 + y2

2

 − arctan

 u1 y2

w
√

r2
1 + y2

2

 . (4.28)

In order to perform right magnetic and gravity calculations, we need to add a check for the

two terms a1 and a2 as follow

 a1 = a1 −2π if a1 > π

a1 = a1 +2π if a1 <−π

, (4.29)

 a2 = a2 −2π if a2 > π

a2 = a2 +2π if a2 <−π

. (4.30)
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Other specific terms are related to the gravity and magnetic case respectively,

s1 = ln

u2 +
√

r2
2 + y2

1

u1 +
√

r2
1 + y2

1

 , (4.31)

s2 = ln

u2 +
√

r2
2 + y2

2

u1 +
√

r2
1 + y2

2

 , (4.32)

q1 =
1
2

ln

(
√

r2
2 + y2

1 −u2)(
√

r2
1 + y2

1 +u1)

(
√

r2
2 + y2

1 +u2)(
√

r2
1 + y2

1 −u1)

 , (4.33)

q2 =
1
2

ln

(
√

r2
2 + y2

2 −u2)(
√

r2
1 + y2

2 +u1)

(
√

r2
2 + y2

2 +u2)(
√

r2
1 + y2

2 −u1)

 . (4.34)

4.A.2 Gravity case

Rasmussen and Pedersen (1979) showed explicitly how to calculated the vertical attraction

in the 2.5D case. However, as pointed out by the same authors, this formula results from

the sum of the integral expression called I1 (see Rasmussen and Pedersen, 1979) calculated

twice using the value y1,2 for the symmetrical body elongation choosen. Hence, the gravity

calculation in the 2.75D case can be simply obtained by summing the contribution of the

expression I1 calculated for the y1 and y2 terms respectively. Then, this formulae can be now

written as the fully explicit expression below, where we show the gravitational attraction

resulting from a single edge of a polygon

gz =−ρ G
[

cosφ (y2 s2 − y1 s1)+

x1 z2 − z1 x2√
x2

21 + z2
21

(cosφ (a2 −a1)− sinφ (l1 + l2))
]
,

(4.35)

where ρ is the uniform density (contrast) of the prism (expressed in Kg
m3 ) and G ≈ 6.67 ·

10−11 Nm2

Kg2 is the gravitational constant. Using directly eq. 4.35, the value of gz is expressed

in m
s2 , so to obtain the response in mGal it needs to be multiplied by a 105 factor. Finally,
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the gravity response at each observation point for the entire prismatic body is achieved

summing the contribution, calculated using the formula 4.35 above, relative to each side of

the polygonal section taken in a counter-clockwise order. In case of more prisms, the overall

gravity response is performed simply summing all the contributions related to each prism.

4.A.3 Magnetic case

In analogy with the gravity case, Rasmussen and Pedersen (1979) presented the analytic

expressions required for the total field magnetic anomaly calculation only for the symmetric

case. Unfortunately, for the 2.75D case, the equations for the three components of the mag-

netic field produced by the body (Bx,By,Bz) cannot be derived directly from the symmetric

case as discussed for the gravity one. In fact, the term (q2−q1) indicated in Campbell (1983)

as ∆I4 differs from zero in the asymmetric case, complicating the analytical expressions for

Bx,By and Bz. For this reason, the formulae need to be derived summing certain integral

expressions described in Rasmussen and Pedersen (1979) for both the two semi-prisms,

merging the individual results to achieve the magnetic response due to the entire 2.75D body.

In addition, the same term (q2 − q1) shows an error sign affecting the magnetic anomaly

calculation, and need to be substituted by its opposite (q1 −q2). Below we show the rectified

explicit analytic formulae for Bx,By and Bz, again, for a single edge of a polygonal body,

Bx = −sinφ

[
(l1 + l2)(cosφJx + sinφJz)

− (a2 −a1)(cosφJz − sinφJx)− Jy (q1 −q2)
]

, (4.36)

By = Jy (a2 −a1)− (q1 −q2)(cosφJz − sinφJx) , (4.37)

Bz = cosφ

[
(l1 + l2)(cosφJx + sinφJz)

− (a2 −a1)(cosφJz − sinφJx)− Jy (q1 −q2)
]

, (4.38)
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where Jx , Jy and Jz represent the three components of the magnetization vector J obtained

as vector sum of induced and remnant contributions (unit in A/m). The three components

of the magnetic field produced by the body need to be projected onto the Earth’s magnetic

field vector, characterized by inclination Iind and declination Dind, to achieve the total field

magnetic anomaly (expressed in nT) as follow

∆T =
1

4π

[
Bx cos(Iind)cos(C−Dind)+By cos(Iind)sin(Iind)+Bz sin(Iind)

]
, (4.39)

where C represents the angle measured from the geographic North to the profile direction,

taken clockwise. As for the gravity case, the contribution from each side of the polygon

must be added up to compute the response at the observation point and, in case of multiple

polygons, their contribution must also be added up.

Appendix 4.B Geometrical issues: when updates using the

gradient produce physically impossible mod-

els

The update of the position of the vertices of the polygonal bodies is performed during

the leap-frog iterations and depend on the gradient of potential and kinetic energy. Such

updates may produce geometrical configurations which are physically impossible, either

because polygons self-intersect or because polygons intersect each other, which cannot

happen from a geological point of view. The crude algorithm is unaware of these physical

constraints, therefore, from time to time, during the HMC iterations such situations may arise.

Unfortunately, it is not possible to find a simple closed-form mathematical solution to this

problem, so we resort to perform a set of checks after each update of the model parameters
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(position) and, in case the geometry results invalid, we stop the trajectory within NUTS and

avoid using the last model as a candidate for an update.

Appendix 4.C Description of the software

There are a total of three packages providing the framework to perform HMC joint inversion

of magnetic and gravity data for 2D polygonal bodies: (1) GeoPolygons, which handles the

polygons in terms of vertices and bodies and provides a set of functions to control the mean-

ingfulness of the geometrical structure, (2) MagGrav2Dpoly, which provides the routines for

the forward and gradient magnetic and gravity calculations, and (3) HMCsampler.jl, which

contains the functions to perform the actual HMC sampling for arbitrary problems. The Julia

code for these packages can be found at https://gitlab.com/JuliaGeoph.

https://gitlab.com/JuliaGeoph/GeoPolygons.jl/
https://gitlab.com/JuliaGeoph/MagGrav2Dpoly.jl/
https://gitlab.com/JuliaGeoph
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Chapter 5

The sub-ice structure of Mt. Melbourne

Volcanic Field (Antarctica) uncovered by

High-Resolution Aeromagnetic data

Abstract
The Mt. Melbourne Volcanic Field (MVF) is a quiescent volcanic complex located
in Northern Victoria Land, Antarctica, mostly covered by ice. Its inner structure and
evolution are still debated, due to the paucity of outcrops and the lack of detailed
multi-disciplinary investigations. Here we present a novel high-resolution aeromagnetic
dataset, revealing strong long-wavelength negative anomalies superimposed by short-
wavelength positive ones forming characteristic radial patterns. Automatic lineament
detection, through the Hough transform technique applied to the tilt derivative of our
magnetic dataset, shows prevailing N-S-, NW-SE- and NNE-SSW-trending structural
features, which combined with the few structural field observations contribute to define
the deformation pattern. Pre-existing and novel magnetic property measurements, cou-
pled with available geochronological data, are used to constrain a two-step 3D magnetic
inversion. A layer-structured Parker-Oldenburg’s inversion was utilized to model the
deep and long-wavelength component of the magnetic field, whereas a linear inversion
based on a set of shallower prisms was used to model the short-wavelength components.
The final 3D model shows widespread reversely-polarized volcanics, which are locally
intruded and superimposed by swarms of normally-polarized dikes and lava flows. These
results backdate the onset of spread volcanic activity at the Matuyama magnetic epoch,
i.e., between 2.58 and 0.78 Ma.
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5.1 Introduction

Antarctica represents the last frontier in Earth geological exploration, where the thick ice

sheet mostly prevents direct observation of the subglacial geology and tectonics affecting

the continent. In this context, half a century of aero-magnetic investigations has offered

a unique way to image structures, lithologies and volcanic features buried beneath the ice

sheet, helping scientists to study the geological framework of the entire continent (e.g.,

Ebbing et al., 2021; Ferraccioli et al., 2009a,b, 2005; Golynsky et al., 2018; Goodge and

Finn, 2010; Jordan et al., 2022; Kim et al., 2022). Only few High-Resolution Aero-Magnetic

datasets (HRAM) are available in Antarctica (e.g., Armadillo et al., 2012; Damaske et al.,

2014; Ferraccioli et al., 2005; Ghidella et al., 2013; Jordan et al., 2014; Mieth et al., 2014;

Ruppel et al., 2017; Wilson et al., 2007), which allowed the investigation of specific areas

of geological interest to be carried out in greater detail. A HRAM survey in a volcanic

environment, for example, is fundamental not only to reveal the volcanic edifice but also

to map the magmatic setting, including alteration related to hydrothermal activity and the

pattern of volcano-tectonic deformations, with important implications for contributing to the

reconstruction of the volcanic history (e.g., Bouligand et al., 2014; Finn et al., 2022, 2007;

Finn and Morgan, 2002).

A site of particular interest where a novel HRAM is available is the sub-ice Mt. Melbourne

Volcanic Field (MVF), a quiescent volcanic complex located in Northern Victoria Land whose

most recent volcanic activity is estimated between 1862 and 1922 (Lyon, 1986). This field,

placed along the Transantarctic Mountains rift shoulder at the boundary with the western side

of the West Antarctic Rift System (WARS) (Figure 5.1a), is considered having the potential

for future large-scale explosive eruptions (Giordano et al., 2012). Its off-rift position, common

to many other rift-related volcanic contexts around the world (e.g., Hamlyn et al., 2014;

Sigmundsson et al., 2010; Yang et al., 2018), is a matter of scientific debate. The mechanisms

triggering off-rift volcanism have recently been clarified by Maccaferri et al. (2014), who
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suggest the location of volcanism in rift complex is determined by a competition between

gravitational unloading and tectonic stretching. Hence, the study of the MVF as well as

other off-rift active volcanoes located along the same rift shoulder like Mt. Erebus and Mt.

Rittmann could be of significant scientific interest to better comprehend the complex stress

field generated by the extension of the WARS and the flexural uplift of the TAM (Brenn et al.,

2017; Huerta and Harry, 2007; Paxman et al., 2019; Stern and ten Brink, 1989; ten Brink et al.,

1997). However, despite a variety of geological, geochemical and geophysical investigations

performed to improve the knowledge of the MVF and assess its hazard (Adamson and

Cavaney, 1967; Armienti et al., 1991, 1988; Armstrong, 1978; Beccaluva et al., 1991a,b;

Bonaccorso et al., 1995, 1996; Cremisini et al., 1991; Del Carlo et al., 2022; Ferraccioli et al.,

2000; Gambino et al., 2016, 2021; GANOVEX Team, 1987; Giordano et al., 2012; Gubellini

and Postpischl, 1991; Hornig et al., 1991; Keys et al., 1983; Lanza et al., 1991; Lanzafame

and Villari, 1991; Lee et al., 2015; Lyon, 1986; Lyon and Giggenbach, 1974; Manzoni and

Miletto, 1988; Müller et al., 1991; Nathan and Schulte, 1967, 1968; Pasquale et al., 2009;

Vignaroli et al., 2015; Wörner and Viereck, 1987, 1989; Wörner et al., 1989), there is no clear

consensus on its geological structure and temporal evolution. The main reason lies on the

ice that almost completely cover the volcano, limiting the data collection to small, scattered

areas of geological outcrops which prevent a detailed characterization of the volcanic area.

The aim of this chapter is the geophysical characterization of the MVF. In section 5.2 we

give an overview of the geological and structural setting of the volcanic complex, whereas

in section 5.3 we present the analysis and enhancement of the novel HRAM dataset, inter-

preted along with geochronological and both inedited and available magnetic susceptibility

and remanence data collected by authors over the MVF during different Italian Antarctic

expeditions of the PNRA (Italian National Antarctic Research Program). In section 5.4,

magnetic patterns of subglacial volcanic deposits are imaged with unprecedented detail by

means of two complementary inversion methods, thanks to which in section 5.5 we improve



5.2 Geological framework 111

noteworthy the general knowledge of the volcanic history of the MVF, proposing a new

temporal evolution for it differing from all those presented so far.

5.2 Geological framework

The MVF is part of the Mt. Melbourne Volcanic Province (Kyle, 1990; Kyle and Cole, 1974),

that extends northward to include the older volcanic centers of Mt. Overlord, Mt. Rittmann,

the Pleiades and Malta Plateau (Armadillo et al., 2007; Kyle, 1990; Kyle and Cole, 1974;

Smellie and Rocchi, 2021, see Figure 5.1a). This province belongs to the McMurdo Volcanic

Group (Harrington, 1958; Kyle, 1990; Kyle and Cole, 1974), one of the most extensive

alkali volcanic provinces in the world, also including the Hallett and the Erebus Volcanic

Provinces respectively northward and southward. The oldest volcanic activity associated with

the McMurdo Volcanic Group has been identified in the Meander Intrusives, a 48–18 Ma old

set of limited and scattered intrusions exposed on the steep side of the TAM overlooking the

Ross Sea and cropping out in the northernmost sector of the MVF (Armienti et al., 1988;

GANOVEX Team, 1987; Müller et al., 1991; Pertusati et al., 2012; Tonarini et al., 1997, see

Figure 5.1b).

At a regional scale, the widespread alkaline magmatism comprising the McMurdo Vol-

canic Group, resting on the crystalline basement of the Ross Orogen Wilson Terrane (Carmignani

et al., 1988), is inferred to be related to the opening of the WARS in the Eocene time and its

subsequent extension which is still in progress (Lanzafame and Villari, 1991; Rocchi et al.,

2002; Roland and Tessensohn, 1987; Salvini et al., 1997). Several authors suggested the

regional rifting of the Ross Sea and the uplift of the TAM have affected, at a local scale, the

tectonic processes and magmatism of the MVF. Lanzafame and Villari (1991) proposed the

localization of the volcanic activity forming MVF could be related to two main intersecting

sets of extensional faults striking NW-SE and NNE-SSW, whereas Vignaroli et al. (2015)

indicated tree main sets of high-angle fault systems trending NW-SW, NE-SW and N-S
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(Figure 5.1b). This tectonic setting is inferred the consequence of a deformation regime

transition (in space and time) from pure transcurrent to extensional in an overall context of

oblique rifting scenario affecting the entire Northern Victoria Land (Vignaroli et al., 2015).

Figure 5.1 - (a) Regional map of the geology and tectonics of Northern Victoria Land (after
GANOVEX Team, 1987; Salvini et al., 1997; Storti et al., 2008). (b) Landsat image of the
MVF, the study area, with superimposed the recognized geological outcrops and tectonic
features affecting the volcanic complex. Contour line intervals every 100 meters. Geological
and structural data are digitized from Pertusati et al. (2012) and Giordano et al. (2012), Vig-
naroli et al. (2015) respectively, whereas Landsat image is from Bindschadler et al. (2008).
Sub-suites are defined according to Wörner and Viereck (1989) and Pasquale et al. (2009):
Washington Ridge (WR), Oscar Ridge (OR), Shield Nunatak (SN) at south, Edmonson Point
(EP) at East, Baker Rocks (BR), Random Hills (RH) at north and the Mt. Melbourne volcano
(MM).
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The MVF is composed of up to 60 scattered subglacial and subaerial volcanic centers

surrounding the 2700m-high Mt. Melbourne stratovolcano, subdivided in seven main volcanic

sub-suites on the base of their morphology, eruptive styles and petrography (Wörner and

Viereck, 1989, Figure 5.1b). Wörner and Viereck (1989) proposed the first phase of volcanic

activity started about 2.7 Ma at WR and then focused on the MM during the late Pleistocene-

Holocene (geochronological data from Armstrong (1978) and Kreuzer (1988)-unpubl. report

quoted in Wörner and Viereck (1989)). On the other hand, Giordano et al. (2012) proposed

new ages for the MVF, postponing the initial development of the MM and its closest peripheral

centers to after 450 ka, in apparent disagreement with both some geochronological data from

Lee et al. (2015) and from previous studies (e.g., Armienti and Baroni, 1999; Armienti et al.,

1991; Armstrong, 1978; Müller et al., 1991). A comprehensive review of all age estimates

published in literature is given by Smellie and Rocchi (2021).

However, it is important to outline that most of the existent geochronological data are

not always supported by precise sampling localities or sample descriptions. In addition, age

estimates refer to scattered sites of subaerial recent lavas, so they do not reflect the likely

older completely hidden inner part of the MVF. Therefore, part of the story and architecture

of the Mt. Melbourne could be still partially unknown and hidden under the ice.

5.3 Geophysical data

In the first part of this section, we present the technical information about the acquisition and

processing of the HRAM data. An innovative technique for automatic magnetic lineament

detection gave detailed information about the structural features affecting the MVF. In the

second part we present new magnetic susceptibility measurements (listed in Appendix 5.A,

Table 5.A.1), integrated with pre-existing magnetic properties data. At the end, we combine

all available information, developing a hypothesis about the internal structure of the volcanic

complex to be tested through magnetic inversion presented in section 5.4.
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5.3.1 HRAM Survey

5.3.1.1 Data Acquisition & Processing

The HRAM dataset was acquired over a survey area of 2640km2 along 128 lines flown using

a Squirrel-B2 helicopter. Line spacing was 500m and tie intervals 2500m for a total of

6490km lines length (Figure 5.2a). The survey was flown in a draped mode with nominal

constant clearance of 450m from the topographic surface monitored using at the same

time a radar, a laser (ADM Geophysical Altimeter OPTEC) and a barometric (Rosemount)

altimeter. Magnetic data were collected at sampling frequency of 10Hz using an optically

pumped Scintrex MAC III Cesium magnetometer with a resolution of 0.01nT, installed

in a bird configuration. Three geomagnetic base stations, acquiring data at a 30 second

sampling rate, were set up at Baker Rocks (BR), Cape Washington and Pinkard Table in order

to monitor the Geomagnetic activity prior and during the survey (Figure 5.2a). A GNSS

differential navigation system (Magnavox 4200 + GPS Trimble ProXRS) was used to allow

for differential corrections to be applied to the positioning data.

The processing of raw magnetic data has been carried out according to classical aero-

geophysical procedures (e.g., Luyendyk, 1997). In detail, initial raw data check was per-

formed in the field and any plausible artifact or spike was removed. Lag correction was

applied to correct for the relative positioning between the helicopter and the magnetic sensor

(about 15 m) during flights and diurnal variations of the Geomagnetic field were subtracted

using base stations magnetic data recordings. The positional data were recovered using

carrier-phase, continuous, kinematic GPS processing techniques (Mader, 1992). The geo-

magnetic reference field for all the data points of the survey, calculated using the proper

DGRF coefficients, was then subtracted to obtain Total-field Magnetic intensity Anomaly

(TMA) data. Residual diurnal magnetic variations errors in the data were removed using

leveling procedures, whereas residual flight line-related corrugation noise was minimized

by means of micro-levelling techniques (Ferraccioli et al., 1998). TMA data have not been
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Figure 5.2 - (a) Landsat image with superimposed new High-resolution Total-field Magnetic
intensity Anomaly (TMA) data covering the entire MVF. The three inverted white triangles
represent the locations of the geomagnetic stations installed during the aeromagnetic survey
to monitor the geomagnetic activity. (b) TMA data upward-continued at 8 km height. This
low-pass filtered data shows clearly along the entire MVF a pronounced negative anomaly.
For abbreviations see caption of Figure 5.1.

reduced to pole, since this mathematical operation assumes both no draped data and induced

magnetization as the only source causing the TMA, untrue in volcanic contexts. However,

being the MVF near to the South Pole, magnetic anomalies in our TMA dataset can be

considered, in a sensible approximation, as reduced to the pole (i.e., should not present

dipolar shapes). TMA gridded data are shown in Figure 5.2a.
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5.3.1.2 Digital Enhancement & Automatic Lineament Detection

Digital Enhancement techniques are usually employed in potential field geophysics to

recognize geological and structural features such as faults, lithological contacts and other

structures causing a sharp variation of a physical property (in our case magnetization). Hence,

in a continent like Antarctica where rock outcrops and main tectonic structures are almost

completely covered by the ice sheet, digital enhancement techniques play a crucial role in

the reconstruction of the expected geological and structural framework of complex areas

like the MVF. For this reason, we have (i) upward-continued our TMA data to understand

the nature of the sources of the magnetic anomalies in the dataset and (ii) implemented an

image analysis algorithm based on the Hough transform (Duda and Hart, 1972; Hart, 2009;

O’Gorman and Clowes, 1976) to be applied to the tilt derivative (TDR, Fairhead, 2016; Miller

and Singh, 1994; Verduzco et al., 2004) of our TMA data, to unveil with unprecedented detail

the main structural features affecting the subglacial MVF.

Regarding the first target, the TMA dataset was upward-continued to 8 km height in

order to better isolate and describe the long wavelength magnetic signatures in the data,

reflecting the main structures expected in the deeper part of the volcanic complex. The

upward-continued data gridded are shown in Figure 5.2b. At a first glance, the original TMA

grid reveals two similar magnetic signatures beneath MM and WR, characterized by wide

NW-SE to N-S trending long wavelength pervasive negative anomalies superimposed by

apparent short-wavelength positive ones forming radial patterns. Looking at the upward-

continued data, the radial pattern completely disappears together with all positive anomalies,

suggesting the negative signatures dominate on the TMA dataset.

For the second purpose, we calculated the TDR of our gridded TMA, being this type

of data enhancement especially suitable to detect local maxima of TMA due to geological

sources, such as fault-related dikes, cones alignments, lava flows, etc. Differently from

other digital enhancement techniques, the TDR is independent from the magnetization
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Figure 5.3 - (a) Lineaments detected by the proposed algorithm for automatic lineament
detection through the Hough Transform (total amount of lineaments: 917), superimposed on
the TDR of our TMA dataset. For abbreviations see caption of Figure 5.1. (b) Rose diagram
of the percentual frequencies of the detected magnetic lineaments trends. In the background,
trends resulting from field surveys of Lanzafame and Villari (1991) and Vignaroli et al.
(2015). The N-S trend is the most frequent in the entire MVF.

direction (Fairhead, 2016), making it particularly useful in volcanic contexts where usually

the remanent magnetization dominates upon the induced one. The TDR map is shown in

Figure 5.3a. In order to detect the magnetic lineaments, we have first applied the phase

congruency operator (Kovesi, 1999, 2003) to the TDR, tracing the local positive picks.

Then, we have transformed the phase into a black and white image and applied a skeleton

algorithm (Lee et al., 1994) to reduce the binary image to 1-pixel wide curved lines without

changing the essential structure. At the end, we have applied the Hough Transform to

automatically detect and statistically analyze the lineaments in the image. The minimum

length detection threshold was placed equal to the magnetic data spacing (500m). All the

structures detected are shown in Figure 5.3a. To better visualize the structural information
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achieved, a rose diagram representing the frequency of all the inferred features with respect

to their angular orientation is shown in Figure 5.3b and compared with the trends resulting

from Lanzafame and Villari (1991) and Vignaroli et al. (2015) (Figure 5.1b).

Our results, discussed more in detail in the next sub-section 5.3.3, reveal three main

sets of structural features trending N-S, NW-SE and NNE-SSW; the E-W trending set is

likely devoid of geological significance, being mainly the result of residual leveling errors

not removed during the TMA data processing. These results are in good agreement with

published data of tectonic structures measured directly in the field. Such measurements were

obtained from data collected from a few scattered outcrops, while our results have a broader

coverage being derived from the HRAM data. Moreover, the method proposed in this study

can also detect minor trends (see the rose diagram in Figure 5.3b) and so it proves to be an

excellent support for structural studies in remote areas.

5.3.2 Rock magnetism

Magnetic properties on rock samples represent fundamental constraints to magnetic inverse

modeling, particularly in volcanic environments. The only susceptibility and remanent

magnetization measurements on rock samples collected in the MVF were carried out during

the 1985/86 and 2002/2003 Italian Antarctic expeditions to Victoria Land (Bozzo et al., 1987;

Lanza et al., 1991; Manzoni and Miletto, 1988; Pasquale et al., 2009). In addition, other

unpublished magnetic susceptibility data collected in the field during the 2002/2003 Italian

Antarctic expedition are presented in this work. These data have been measured by means of

a portable kappa-meter Geofyzika KT5 with a resolution of 10−5 SI units, collecting for each

site up to 12 measurements to be able to make a statistical evaluation of the quality of the

data. Locations and magnetic susceptibility data from the new samples analyzed are shown

in Figure 5.4a and listed in Table 5.A.1 in Appendix 5.A. In the same table, are listed also all

previous magnetic property data available for the MVF.
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The large variability in magnetic susceptibility shown by rock samples, even belonging to

the same outcrops (Table 5.A.1), reflects the petrographic and textural heterogeneity of rocks

observed in this volcanic area (Wörner et al., 1989) and, consequently, the variable content

and type of ferromagnetic minerals in magmatic products (Clark, 1997; Hinze et al., 2013).

A similar argument applies to the magnetic remanence, reaching in some places very high

values (> 20A/m, see Table 5.A.1). Furthermore, the widespread prevalence of very high

Koenigsberger ratios (i.e., the ratio of Remanent magnetization and Induced magnetization

modules, see section 1.3.2) suggests the magnetic susceptibility of rocks could be neglected

during modeling of TMA data (Manzoni and Miletto, 1988).

For what concerns the inclination of magnetic remanence, assuming no continental-scale

tectonic displacement/rotation occurred in this part of Antarctica during the Quaternary

period, it is representative of the polarity of the Earth magnetic field recorded by rocks after

their cooling. In detail, samples with both normal (i.e., negative remanence inclination) and

reverse (i.e., positive remanence inclination) polarization were found in MVF, the reverse

ones located on OR area (also southward to Markham Island), north of WR and on the

south-eastern slope of the MM (Figure 5.4b). Since the times of the magnetic polarity

reversal are well known, these remanence data are fundamental to (i) document certainly that

volcanic activity started before the current Brunhes magnetic epoch (> 0.78 Ma, chron C1n

following the notation proposed by Cande and Kent (1992, 1995)) and (ii) correctly assess

the anomaly sources in our HRAM dataset. Hence, coupling available geochronological data

from rock samples collected around the field we can finally have a look at the inner buried

MVF and obtain important hints to reconstructing the timing of the volcanic activity, as we

discuss afterwards.
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Figure 5.4 - (a) Location and values of the new magnetic susceptibility measures (red num-
bers and inverted triangles) collected around the MVF (listed in Table 5.A.1, Appendix 5.A)
and geology of the study area on Landsat image. Notice the very low value in magnetic
susceptibility shown by the only sample collected on the Granite Harbour Igneous Complex
compared to all the other ones. In addition, the caldera area affected by hydrothermal activity
and the trace of an altered cliff discussed in Giordano et al. (2012) are shown in orange.
See caption of Figure 5.1 for abbreviations. (b) Locations and values of the most recent
age estimates together with magnetic remanence polarity data from literature (base map is
Landsat image of the MVF with superimposed the TMA grid). Inverted white triangles and
white numbers are the age estimates from Giordano et al. (2012), light grey triangles and
numbers in italics are ages from Lee et al. (2015). Other available ages (discussed throughout
this manuscript) are not shown due to either missing or imprecise location of the samples
(all ages are listed in Table 5.B.1). Magnetic remanence sample data are from Manzoni and
Miletto (1988) and Lanza et al. (1991). Moreover, in dashed white is shown the E-W profile
along which has been achieved the 2D forward magnetic model illustrated in Figure 5.D.1.
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5.3.3 HRAM and rock magnetism interpretation combined with avail-

able geochronological data

Our analysis and enhancement of TMA data supplied new detailed information about (i) the

sub-ice structural lineaments and (ii) the buried volcanic framework characterizing the MVF.

Regarding point (i), three main subglacial sets of features trending N-S, NW-SE and

NNE-SSW have been detected through automatic lineament detection, the first one more

pervasively distributed and matching the topographic orientation of both the WR and the MM

(Figure 5.3). Our observations can be compared with structural data available in literature

and derived from either direct field investigations or aerial image analysis (e.g., Giordano

et al., 2012; Lanzafame and Villari, 1991; Vignaroli et al., 2015, Figures 5.1b-5.3). Our

lineaments fit the orientation of the main tectonic structures and fault-related dikes, subaerial

alignments of volcanic scoria cones and lava flows described for the MVF area, striking

approximately N-S at OR and WR and NE-SW at EP (Wörner and Viereck, 1989). The

N-S and NW-SE trending lineaments likely can be associated with a strike-slip deformation

pattern (e.g., Läufer et al., 2011; Salvini et al., 1997; Storti et al., 2008) and seem to link the

MM area to RH northward and OR southward, suggesting a common structural control on the

volcanic activity generating these sub-suites. The NNE-SSW trend appears to connect MM

to the EP sub-suites, inferred the result of a Quaternary change in the deformation regime that

involved the activation of major extensional fault zones along the modern coastline (Vignaroli

et al., 2015). Moreover, both MM and WR lineaments follow the already described radial

pattern in the TMA grid. Such a pattern could be associated with both (i) radial lava flow

events steered by the topographic gradient and (ii) swarms of radial dikes of volcano-tectonic

origin. Evidence of radial lava flows is suggested by field observations on the crater area

of MM (Wörner and Viereck, 1989), whereas radial swarms of dikes could be emplaced in

the fissures of the volcanic edifices generated by a local stress field change related to the

propagation of magma inside the volcano (e.g., Geshi, 2008, and references therein).
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As regards the buried volcanic framework characterizing the MVF (point ii), two similar

magnetic signatures beneath MM and WR have been recognized, characterized by strong

and distinct positive and negative anomalies.

The positive anomalies, commonly showing a radial pattern on MM and WR as just

indicated by results from automatic lineament detection (Figures 5.2a-5.3a), are related to

short-wavelength signal components due to shallower sources characterized by different

magnetic properties with respect to surrounding volcanics, as suggested by upward-continued

TMA data (Figure 5.2b). These magnetic sources may be associated with volcanic activity,

in the form of swarms of feeder dikes and related lava flows, occurred during periods of

magnetic normal polarity. These could be either the current Brunhes epoch (C1n < 0.78

Ma) or the Jaramillo (C1r.1n) and Olduvai (C2n) chrons (1.07 – 0.99 Ma and 1.95 – 1.77

Ma respectively), short intervals in the reverse magnetic polarity Matuyama epoch (2.58 –

0.78 Ma). The Brunhes hypothesis is in better agreement with the consistent observation

of geochronological data younger than 0.50 Ma and normal polarity from most of the

rocks of the MM slopes and the peripheral southwestern SN and eastern EP centers, the last

considered one of the youngest volcanic sub-suites of the MVF (see Figure 5.4b, Armienti

et al., 1991; Armstrong, 1978; Giordano et al., 2012; Kreuzer, 1988; Lee et al., 2015; Müller

et al., 1991). In the summit of MM, positive magnetic anomalies, field evidence and historical

observations on ice thickness indicate volcanic activity occurred until recent times (Adamson

and Cavaney, 1967; Del Carlo et al., 2022; Keys et al., 1983; Lee et al., 2019; Lyon, 1986;

Nathan and Schulte, 1968); the latter eruptions deposited tephra layers thick about 5 m in

the eastern crater rim (Wörner and Viereck, 1989). For a comprehensive overview of all

age estimates and magnetic remanence inclination data available for each volcanic sub-suite,

refer to Table 5.B.1.

As far as the other peripheral centers to the north, at BR (Figure 5.4a) ages are available

for both the coastal and inland sectors, showing a younging of rocks moving inland. Ages
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from the inland area are 0.72±0.10 and 0.19 to 0.33 Ma (Armstrong, 1978; Lee et al., 2015),

whereas those in the coast to the north are 2.59±0.11 and 2.96±0.20 Ma (Armienti et al.,

1991). All these age estimates are placed in periods of normal polarity, the oldest in the

Gauss epoch and the youngest in the current Brunhes, in agreement with remanence negative

inclinations from rocks samples collected in this area.

For the northernmost RH (Figure 5.4a), Armienti et al. (1991) reported age estimates of

about 12.50 Ma, much older than all the others available for the MVF, whereas Giordano

et al. (2012) indicated younger ages of 0.745±0.066 and 1.368±0.090 Ma (Figure 5.4b). If

we take into account only the more recent ages proposed by Giordano et al. (2012), owing to

the limitations of the K-Ar method used by Armienti et al. (1991) for dating, the formation

of the RH volcanic centers likely started in the Matuyama epoch and continued in the current

Brunhes epoch, as suggested even by normally-polarized remanence samples from that area.

Regarding the southeastern WR area (Figure 5.4a), age ranging from 2.70 to 1.67

Ma (Kreuzer, 1988) coupled with normally-polarized remanence samples (see Figure 5.4b)

suggest the positive radial pattern in this area could be the response of lava flows deposited

either during the Olduvai chron or, as pointed out by Lanza et al. (1991), at the end of the

Gauss epoch, being the oldest age estimates placed before the Gauss – Matuyama polarity

reversal (2.58 Ma). As a support for both the hypotheses, the remanence samples, located

where positive magnetic anomalies occur, are surrounded by negative ones, most likely

related to magmatic activity occurred in the Matuyama epoch; in fact, the preceding reverse

polarity Gilbert epoch would be too older (5.89 – 3.58 Ma) with respect to the ages available

on WR (Armstrong, 1978; Kreuzer, 1988).

The negative magnetic signatures over both the MM and WR, dominating the enhanced

TMA data (Figure 5.2b), could be related to a combination of different phenomena, that are

a) strong demagnetization owing to intensive hydrothermal alteration, b) topographic effects,
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c) lava flows with highly variable content in magnetic minerals (i.e., strong contrasts in

magnetic susceptibility/remanence) and d) thick volcanic strata with reverse magnetization.

Regarding the demagnetization hypothesis (point a), various authors described the pres-

ence of weak and scarce geothermal surface manifestations around MM such as fumarolic

activity, steaming grounds and ice hummocks focused on the north rim and slope of two

craters in the southern side of the caldera (Cremisini et al., 1991; Gambino et al., 2021; Lyon

and Giggenbach, 1974; Nathan and Schulte, 1967, Figure 5.4a). In addition, hydrothermal

alteration is pointed out by Giordano et al. (2012) along a sub-vertical cliff about 50−100m

high running N-S along the entire eastern flank of MM (Figure 5.4a). The effect of a hy-

drothermal circulation in a volcanic environment is the loss of magnetization from magnetic

minerals contained abundantly on rocks, resulting in a smooth attenuation of magnetic anoma-

lies following the location of geothermal surface manifestations (e.g., Bouligand et al., 2014;

Finn et al., 2022, 2007; Finn and Morgan, 2002). This phenomenon has not been observed in

the MVF, suggesting the absence of a spread and consistent deep hydrothermal circulation

(Figure 5.4b). As a validation of this evidence, Lyon and Giggenbach (1974), Cremisini

et al. (1991) and Gambino et al. (2021) suggested that the hydrothermal manifestations of

the MVF, showing very low pressure and intermittent activity in some locations, could derive

from melted buried ice. Hence, hydrothermal manifestations and alterations would be the

result of localized and superficial hydrothermal activity not affecting in depth the magnetic

properties of rocks in the MM. In light of these considerations, the first hypothesis seems

less probable.

As far as hypotheses b), 3D forward modeling has been performed to test the topographic

effects by means of the Parker’s algorithm (Parker, 1973), as implemented in the software

package GMSYS-3D (Geosoft 8.5 Standard Edition, https://www.seequent.com/products-

solutions/geosoft-oasis-montaj/). The model geometry is 36.5 x 53.1 km wide in the East

and North direction respectively, designed to include the main volcanic sub-suites only. The

https://www.seequent.com/products-solutions/geosoft-oasis-montaj/
https://www.seequent.com/products-solutions/geosoft-oasis-montaj/
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approach chosen requires a model geometry defined by surfaces, infinitely elongated outside

the model, which separate layers with fixed magnetic properties. Since our aim is to calculate

the magnetic response of the topography, surfaces defined are the top and the bottom of the

model. The top is represented by the subglacial topographic surface defined by BedMachine

v.2 data with a resolution of 500m (Morlighem et al., 2020, Figure 5.5a), re-gridded at

100m in accordance with our model resolution. The bottom surface is placed at the constant

elevation of −2500m; a different elevation would not have affected the results since the

magnetic response of an infinitely elongated flat magnetized layer is zero (Blakely, 1996).

The magnetized layer enclosed among the top and the bottom surfaces is characterized by

induced magnetization only, with module, inclination and declination of 5A/m, −83.1◦ and

133.2◦ respectively. Such a magnetization module value has been chosen so that computed

positive magnetic anomalies match as much as possible with those in our TMA dataset,

whereas the inclination and declination agree with those of the Earth’s magnetic field in the

study area when the survey was flown. The resulting magnetic contribution of the topography

is shown in Figure 5.5b. As it can be seen, negative anomalies in our TMA dataset are too

intense to be explained by terrain effects due, for example, to subglacial valleys. The only

exception relates to the negative anomaly around the western flank of the MM caused by

the southern part of the Campbell Glacier valley (Figure 5.5), whose bed has recently been

better characterized through a helicopter-borne ice penetrating radar survey (Lee et al., 2021).

Elsewhere, we cannot exclude that the deposition of lava flows could have been influenced by

valleys excavated by erosion along radial-shaped volcano-tectonic fractures during periods

of volcanic quiescence, generating low-amplitude anomalies elongated along the valleys

themselves.

Regarding point c), a strong contrast in magnetic mineral content among lava flows and

surrounding volcanics is not enough to explain the alternation of strong negative and positive

anomalies in our TMA dataset. The proof come from the summit area of MM, characterized



5.3 Geophysical data 126

by strong positive magnetic anomalies despite available samples show low values in magnetic

remanence module. This suggests local less magnetized volcanics and lava flows do not

significantly affect the TMA signal, since it is dominated by surrounding more magnetized

rocks.

Figure 5.5 - (a) Subglacial topography from BedMachine v.2 data (Morlighem et al., 2020).
(b) TMA response of the topography from the 3D Parker’s forward model described in
sub-section 5.3.3. For abbreviations see caption of Figure 5.1.

In light of above, the best explanation that fits for such strong negative anomalies in our

TMA dataset is the occurrence of reversely-polarized rocks, as commonly found in volcanic

environments (e.g., Blanco-Montenegro et al., 2018; Dumont et al., 2021). An example

come from the Piton des Neiges volcano (Réunion Island), where paleo-valleys excavated in

reversely-polarized volcanics and filled by normally-polarized lava flows have been clearly

recognized by performing a HRAM survey (Dumont et al., 2021; Martelet et al., 2014). In



5.3 Geophysical data 127

this volcano, the magnetic signature of the filled paleo-valleys forms a positive radial pattern

surrounded by strong negative anomalies, similarly to that recognized in our TMA dataset.

Moreover, in the MVF reversely-polarized remanence has been found in samples from

some outcrops in northern WR, Willows Nunatak (at the south-eastern slope of MM) and

in OR area (including Markham Island), indicating volcanic activity during the Matuyama

epoch (Figure 5.4b). This evidence is supported by geochronological data older than the last

magnetic polarity reversal (i.e., 0.78 Ma) for WR, Willows Nunatak and SN (Figure 5.4b;

Table 5.B.1).

Regarding Willows Nunatak / north of WR, close to the reversely-polarized remanence

samples, five ages of 2.40±0.10, 1.25±0.09, 1.34±0.07, 1.31±0.09 and 1.32±0.07 Ma were

estimated (Armstrong, 1978; Lee et al., 2015). Being Willows Nunatak located at the basal

slope of MM, the just described age estimates are a strong clue pointing to a beginning for

the magmatic activity that built-up the MM edifice at least during the Matuyama epoch,

namely much earlier than ever thought. This hypothesis is strengthened by trachytic xenoliths

found in the Mt. Melbourne pyroclastics, interpreted possibly as old as 2.5 Ma (Wörner and

Viereck, 1989), placed in time at the beginning of the reverse polarity Matuyama epoch.

For what concern the OR area, the geochronological data available indicates discordant

ages of 0.71±0.18 Ma and 0.415±0.024 Ma (Armienti et al., 1991; Giordano et al., 2012).

The first age straddles the transition of the Matuyama and Brunhes epochs, while the second

is placed in the current Brunhes epoch and appears in disagreement with reversely-polarized

remanence data. However, the magnetic signal upon Markham Island shows a local moderate

increase in TMA with respect to surrounding strong negative values, suggesting a possible

intrusion of a small younger normally-polarized volcanic body. Hence, all evidence suggests

this peripheral volcanic center could have formed just before the last magnetic polarity

reversal, continuing to develop until more recent ages.
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Regarding SN, ages of 1.56 to 1.77 Ma are available for a basal mugearitic lava flow (Kreuzer,

1988; Müller et al., 1991). These ages refer to samples collected above an erosional uncon-

formity separating the basal mugearitic lava flows from overlying younger alkali-basalts

interbedded with subaerial tephra (Wörner and Viereck, 1987, 1989), for which two age

estimates of 0.48±0.24 and 0.43±0.08 Ma are available (Armienti et al., 1991; Giordano

et al., 2012). For the sake of completeness, another age of 0.07±0.05 Ma was documented

for an upper alkali basalt flow (Kreuzer, 1988) but would be unlikely and possibly affected

by some analytical error (Giordano et al., 2012). An interesting information comes from

a normally-polarized remanence sample collected in the basal SN, whose inclination is

lower (in absolute value) compared with another near normally-polarized sample, relative

to the upper alkali-basalts (Figure 5.4b, see Tables 5.A.1-5.B.1). As a possible explanation

for the sample showing lower remanence inclination, Lanza et al. (1991) suggested either

(i) outcrop displacement or (ii) lava flow emplaced during a magnetic polarity transition.

Following the last hypothesis, the younger portion of the basal mugearitic lava flows could be

deposited at the transition among the Matuyama epoch and either the Jaramillo chron or the

Brunhes epoch, being the overlying alkali-basalts spread out certainly in the Brunhes epoch

as suggested by geochronological data. Moreover, these remanence samples are located at

the boundary between a strong positive and negative magnetic anomaly, documenting likely

a contact between normal and reverse polarity volcanic products. Therefore, also in this area

there is strong evidence of a magmatic activity started prior to the last magnetic polarity

reversal.

All the evidence described above are quite strong, being all the normal remanence

samples always located upon or near areas of magnetic positive anomaly and vice versa all

the reverse remanence samples always placed upon or near magnetic negative anomalies (see

Figure 5.4b).
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In addition, reversely-polarized remanence samples give us other important structural

information that would have conditioned first lava depositions. In fact, all these samples show

ENE-WSW oriented magnetic lineations (Lanza et al., 1991), suggesting first lava flows

driven by NW-SE to N-S fissures on the crystalline basement of the Ross Orogen Wilson

Terrane, in the assumption of a low topographic gradient. Magnetic lineations, defined by the

directions of maximum susceptibility, are indeed known to commonly reflect the direction of

the lava flows (Hrouda, 1982; Tarling and Hrouda, 1993).

In summary, our findings suggest the inner structure of the MVF could be approximated

by a NW-SE to N-S elongated thick reversely-polarized volcanic unit built-up during the

Matuyama epoch, overlying the Ross Orogen Wilson Terrane, intruded and surmounted by

swarms of fault-related dikes and lava flows deposited during normal polarity chrons forming

the present-day main volcanic centers.

5.4 Inverse Modeling

All the geophysical evidence discussed above points for the MVF to a general magnetic

structure characterized by a basal reversely-polarized volcanic unit, covered locally by an

upper normally-polarized one on the main volcanic centers. The magnetic responses of these

two units are quite well distinct in the TMA signal, being the long-wavelength components

related to the basal reversely-polarized volcanics and the short-wavelength ones to swarms

of normally-polarized dikes and related lava flows. Hence, we have applied a two-step

procedure to image properly the inner framework of the MVF:

i modeling of long-wavelength components using the 3D Parker-Oldenburg’s method;

ii modeling of short-wavelength components by an ad hoc developed approach.

Parker-Oldenburg’s method (Oldenburg, 1974; Parker, 1973) is an inverse approach based on

the Parker’s forward algorithm, considering a set of layers with the top and bottom boundaries
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defined by arbitrary surfaces, hence it is particularly suitable to define the geometry of the

basal reversely-polarized volcanic unit. The upper unit, between the subglacial topography

and the top of the basal reversely-polarized unit, is instead modeled using vertical 3D prisms

with variable intensity of magnetization (Bhattacharyya, 1964), suitable to image the dike

and lava flow distribution that affects in particular MM and WR areas. For this second

step, the dataset to invert is the original TMA from which the contribution of the basal

reversely-polarized unit, obtained at point (i), is subtracted.

The two-step approach is presented in detail in the next sub-sections 5.4.1 and 5.4.2.

5.4.1 Modeling of long-wavelength signal components

The methodology used to define the main volcanic unitscharacterizing the MVF is based

on Parker-Oldenburg’s algorithm (Oldenburg, 1974; Parker, 1973) as implemented in the

software package GMSYS-3D (Geosoft 8.5 Standard Edition), whose Parker’s forward

algorithm has been already described at sub-section 5.3.3. The model geometry is, again,

36.5 x 53.1 km wide in the East and North direction respectively, being designed to not

include northward the smaller volcanic centers of RH, possibly characterized by different

geological settings. In fact, these scattered volcanics are inferred resting directly on the

Ross Orogen Wilson Terrane (Figure 5.1b). The top of the model is represented by the

subglacial topographic surface defined by BedMachine v.2 data (Morlighem et al., 2020),

whereas the bottom surface is placed at the constant elevation of −2500m for the same

reason explained in sub-section 5.3.3 about the 3D forward calculation test. According to the

hypothesis proposed above about the inner structure of the MVF, the geophysical setup of

the model consists of two overlapping layers characterized by opposite magnetic polarity, the

deeper reverse and the shallower normal. Since the target of the Parker-Oldenburg’s inversion

method is represented by the geometry of the surface separating the two magnetic layers,

their magnetization properties are maintained constant during the inversion. The starting
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elevation of this surface was placed at −1000m, below the most depressed topographical

point of the MVF. For physical consistency, an underneath layer representing the crystalline

basement of the Ross Orogen Wilson Terrane is not entered. The reason of this choice is

due to (i) the lack of knowledge about the geometry of the basement and (ii) its negligible

magnetic response compared to the overlying strong-remanence volcanic flows, as suggested

by susceptibility data available in the literature about the Ross Orogen Wilson Terrane (Bozzo

et al., 1991; Talarico et al., 2003, see Figure 5.4a). As a constraint for the inversion results, we

have used the magnetic remanences data from Manzoni and Miletto (1988) and Lanza et al.

(1991) to define averaged magnetic properties for the two modeled layers (see Table 5.A.1).

Magnetic susceptibility has not been considered owing to the high Koenigsberger ratio shown

by rock samples from the MVF (Table 5.A.1), suggesting dominant remanence as already

explained (see Manzoni and Miletto, 1988). The samples MB4, MB11, MB16, MB21, MB27,

MB29 have not been considered for the calculation of the averaged magnetic properties due

to their low-angle inclination values, explainable likely by limited gravitational or tectonic

displacements (Lanza et al., 1991). Sample MB29 has been discarded as a precaution, because

it could also document a magnetic polarity transition. In summary, the deeper layer is set

with average values of magnetic remanence module, inclination and declination of 5.63A/m,

78.02◦ and 161◦, whereas the shallower 8.08A/m, −75.35◦ and 143.3◦ respectively. The

Earth’s Magnetic Field module, inclination and declination values were 64413.5nT, −83.1◦

and 133.2◦ when the survey was flown.

The results from the inversion are shown in Figure 5.6a-b, in the form of (i) geometry of

the inverted contrast surface and (ii) thickness of the shallower volcanic unit with inferred

normal polarity. A misfit grid among our TMA dataset and the calculated response of the

model from inversion is shown in Figure 5.C.1 in Appendix 5.C. The inverted surface (point

i), whose shape has been achieved after 21 iterations, shows pronounced corrugation and

seems to image vertical features cutting the underneath reversely-polarized magnetic lava
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flows (Figure 5.6a). Similar features, geologically explainable as vertical swarms of feeder

dikes, are quite evident in MM area likely as a consequence of the volcanic activity that

occurred in the current Brunhes epoch, significantly eroding the basal reversely-polarized

unit. For what concerns point (ii), it has been achieved as a difference among the subglacial

topography grid with the inverted magnetic contrast surface (Figure 5.6b). Results suggest

that the areas in MVF characterized by non-zero thickness of normal polarity volcanic rocks

can be found at MM, BR, WR, SN, OR, and in part at EP, namely in the main volcanic

centers of the MVF. Elsewhere, reversely-polarized volcanics are expected to outcrop on the

subglacial topography, in good agreement with the locations of reversely-polarized magnetic

samples (Figure 5.6b).

However, looking at the calculated TMA grid from Parker-Oldenburg’s model, it can be

noticed that the positive anomalies are not addressed in shape and values, since they lack

the radial pattern described in the observed TMA data particularly in the MM and WR areas.

On the contrary, the background negative anomaly in the observed and calculated TMA

data (see Figure 5.C.1) appears very similar, particularly in shape. Hence, the hypothesis

of a basal reversely-polarized volcanic unit with homogenous magnetic properties explains

well the long-wavelength components of the TMA signal. The non-fitted short-wavelength

components of the TMA data, representing the positive anomalies, point to an upper unit

not as homogenous as the basal one, in which the magnetization is expected to vary laterally

also in polarity. The reason for this could be found in a more thick reversely-polarized basal

volcanic unit intruded by swarms of normally-polarized feeder dikes and surmounted by

related lava flows particularly on the MM edifice and WR.

As discussed in the introduction of section 5.4, this lateral variation in magnetization,

expected for the shallower parts of the main volcanic centers, is the target of an ad hoc

developed approach. The detailed settings and results of this methodology are presented in

the next sub-section.
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5.4.2 Modeling of short-wavelength signal components

Our purpose here is to assess the variability in magnetization expected in the upper volcanic

unit of the main sub-suites of the MVF to address the sources of the positive anomalies in

the TMA dataset, including the characteristic radial pattern. To accomplish this, we consider

the same model geometry used for the Parker-Oldenburg’s model and a discretization of the

study area involving vertical prisms, whose top is defined by the BedMachine v.2 subglacial

topography and the bottom confined by the contrast surface achieved through the previous

Parker-Oldenburg’s inversion. Vertical prisms, each with horizontal dimensions of 250x250

m, are defined where the subglacial topography does not match the contrast surface (i.e.,

no zero-thickness of the upper volcanic unit in Parker-Oldenburg’s model in the previous

sub-section). Hence, the total number of prisms considered is 11219 out of a total of

31311 possible locations. The model parameters are only the intensity of magnetization

of each prism, with inclination and declination fixed and equal to that of the inducing

Earth’s Magnetic Field when the survey was flown (−83.1◦ and 133.2◦ respectively). This

simplification is possible because at the time of the survey the inducing Earth’s magnetic

field was almost parallel and anti-parallel to the magnetization vectors obtained from the

average magnetic properties of the inferred normally- and reversely-polarized volcanic units

presented in sub-section 5.4.1 (the main difference lies in the declination values; however,

their effect in the magnetic response decreases approaching the Earth’s poles). Hence,

positive values in the magnetization module will refer to prisms with magnetization vectors

having the same direction as that of the current Earth’s magnetic field, whereas negative ones

will indicate magnetization vectors aligned to the current Earth’s magnetic field but pointing

in the opposite direction. The advantages of reducing the model parameters in such a way are

(i) the decrease of the number of degrees of freedom of the inverse problem and (ii) the linear

relationship between model parameters and calculated data, considering as forward formulae

those from Bhattacharyya (1964). As a result, this approach is easy to handle and setup. Such
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method shows some similarities with the apparent susceptibility mapping approach (e.g.,

Grant, 1973; Silva and Hohmann, 1984; Zunino et al., 2009), however, it is characterized by

a different setup (i.e., apparent susceptibility mapping assumes prisms infinitely-elongated in

depth) and used in a different geological context.

The dataset to invert was re-sampled at a resolution of 250m for consistency with the

model setup, with a total amount of 31311 observation points. This kind of discretization was

chosen as a balance between keeping the model resolution high and being able to manage

the amount of required computer memory for the matrix representing the forward model.

The dataset to invert was obtained by subtracting the total-field magnetic response of the

reversely-polarized volcanic unit, whose geometry was figured out through the previous

inversion approach, from our TMA dataset. Consequently, the signal obtained should be

almost exclusively the response of magnetic sources placed in the upper volcanic unit. The

variance associated with each TMA measure is 100nT2.

The final model setup is shown in Figure 5.6c. In order to constrain the solution, we

have set prior information about the model parameters in the form of a Gaussian probability

density function with mean equal to 1A/m and variance 0.5A2/m2 (i.e., same mean and

variance for each model parameter). This choice reflects our wish to obtain a smooth

and geologically plausible map of the lateral variation of magnetization. Following the

probabilistic formulation of a linear inverse problem as described in Tarantola (2005), the

solution m (i.e., the intensity of the vectors of magnetization of prisms) is then given by (see

equation (2.17))

m =
(
GT C−1

D G+C−1
M
)−1 (GT C−1

D d+C−1
M mprior

)
, (5.1)

where G is the forward matrix, d and CD the observed data and the relative covariance matrix,

mprior and CM the prior model and its covariance matrix (diagonal in our setting). The related

posterior covariance matrix C̃M is then (see equation (2.18))
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Figure 5.6 - (a) Map showing the elevation of the contrast surface between the basal reversely-
polarized unit and the upper volcanic one characterized by highly variable magnetization
modules and polarities, resulting from Parker-Oldenburg’s inversion. This surface appears
very rough, being the reversely-polarized volcanic bottom likely intruded by swarms of
normally-polarized feeder dikes. (b) Map of the thickness of the upper volcanic unit obtained
as a difference between the subglacial topography and the contrast surface shown in (a).
The location of the magnetic remanence polarity samples discussed in sub-section 5.3.2
are superimposed on the map (references in Figure 5.4b). (c) Map showing the location
and height of the prisms involved in the ad hoc approach used for characterizing the upper
volcanic unit inferred on the MVF. Contour lines every 250 meters of height. (d) Map
showing the magnetization intensity expected for the upper volcanic unit . For abbreviations
in panels (a)-(d), see caption of Figure 5.1.
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C̃M =
(
GT C−1

D G+C−1
M
)−1

. (5.2)

The results of the inversion are shown in Figures 5.6d - 5.C.2 in the form of maps of intensity

of magnetization and magnetization variance, respectively. For the sake of interpretation,

being the magnetic dipole associated with each prism nearly aligned to the vertical, this

inversion approach is mostly sensitive to anomalous bodies directly below the respective

magnetic anomalies. The calculated TMA data, figured out as the sum of the total-field

anomaly due to the basal reversely-polarized volcanic unit from the 3D Parker-Oldenburg’s

model and the response from the solution using this inversion approach, is shown in Fig-

ure 5.C.3 in Appendix 5.C. The calculated data fit very well our short-wavelength TMA

dataset. In the areas excluded by this modeling approach, positive peaks visible are likely

due to swarms of normally-polarized dikes intruding the reversely-polarized basal unit or

directly the low-susceptibility Ross Orogen Wilson Terranes. Overall, our results confirm

a high variability in magnetization in the shallower volcanic unit in all areas involved in

this inversion, particularly in MM and WR (Figure 5.6d), as supported by field evidence of

strong petrographic variability of rocks (Wörner and Viereck, 1989). In MM, low negative

values in magnetization affect almost the whole edifice, interrupted by weakly negative

to weakly positive ones characterized by a radial pattern retracing that seen in the TMA

data. This suggests the reversely-polarized volcanics could reach even the sub-ice topo-

graphic surface, interrupted locally by swarm of normally-polarized dikes and lava flows

characterized generally by low magnetic susceptibilities / remanences (see Figure 5.C.4 in

Appendix 5.C). This hypothesis is corroborated by lower values in the magnetization module

and susceptibility shown by normally-polarized rock samples collected in the upper MM

(see Table 5.A.1 and references therein). However, such low values could be also due to the

influence of the reversely-polarized volcanics below, softening the actual magnetization of

normally-polarized dikes and lava flows. Several strong magnetization contrasts are imaged
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along the entire western flank of MM toward both the northern part and the southern tip,

whose values are likely enhanced by the higher slope of that side of MM causing a greater

lateral transition between normally- and reversely-polarized volcanics. Moreover, they could

be also associated with local intrusion of swarms of normally-polarized dikes. A similar

argument applies for WR, where sharp magnetization contrasts are imaged. Regarding

the sub-suites OR and SN, they are too small compared to the model resolution to make

any consideration. However, as already pointed out, both geochronological and magnetic

remanence data corroborate the co-presence of normally- and reversely-polarized volcanic

products.

A schematic view of the internal structure of the MVF is given by a 2D forward model (Tal-

wani and Heirtzler, 1962) performed along a E-W profile shown in Figure 5.4b, discussed in

Appendix 5.D (Figure 5.D.1).

As a concluding remark, our models and field magnetic and geochronological data

indicate the MVF is constituted by predominant reversely-polarized volcanics forming the

main volcanic centers, that are intruded and topped by normally-polarized swarm of dikes

and lava flows. The positive anomalies in the TMA dataset, often having radial patterns,

would be caused by the magnetization contrast between these oppositely polarized volcanics.

Consequently, our results backdate significantly in time the setting in place of the MM

stratovolcano, considered formed only during the normal-polarity Brunhes epoch so far.

5.5 Insights into the temporal evolution of the MVF com-

plex

Analysis and modeling of our HRAM data, coupled with available magnetic and geochrono-

logical field data, have shown the importance of combining geophysical and geological

investigations in remote and ice-covered areas. As a result, we have shed light into the
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inner geophysical and geological structure of the main volcanic centers of the MVF. In

addition, here we supply new hints to draw an updated reconstruction of the main volcanic

phases that built-up the MVF, proposing an evolutionary model that is more in agreement

with those proposed by Wörner and Viereck (1989) and Lanza et al. (1991) rather than that

by Giordano et al. (2012). All the discussion is based particularly on the results presented in

sub-section 5.3.3.

Volcanic activity in MVF is likely to have started at least around the end of the normal

polarity Gauss epoch, possibly at WR area (southern MVF) and at other scattered volcanic

centers along the eastern coastal area between WR and BR (Figure 5.7a). The long history

of WR is recorded by frequent changes in volcanic products (i.e., pillows, lava flows,

hyaloclastites, cinder cones, etc), reflecting variable deposition conditions (Wörner and

Viereck, 1989). At present, the structures and relics of this volcanic phase could be partially

hidden either by the ice cover or by further subsequent volcanic deposits and lavas, so we

cannot exclude that the actual MM edifice could be characterized in the deeper part by the

presence of older volcanic centers (see Figure 5.7a).

Subsequently to the polarity reversal occurred at the Gauss – Matuyama transition

(Figure 5.7b), at first magmatic activity occurred possibly by means of scattered volcanism,

generating for example the RH volcanic centers. Afterwards, spread magmatism focused

along NW-SE to N-S trending fissures on the crystalline basement of the Ross Orogen

Wilson Terrane, from which ENE-WSW trending lava flows established the current reversely-

polarized foundation of the entire MVF, developing the bases of the SN, OR, Markham

Island, WR and MM volcanic centers.

The normally-polarized volcanics intruding and overlying WR likely started to form

during the Olduvai chron, whereas at MM and SN during the subsequent Jaramillo chron

(Figure 5.7b). This phase of volcanic activity might have been driven possibly by the already
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Figure 5.7 - Temporal sequence of the main volcanic phases occurred in MVF. For abbre-
viations, see caption of Figure 5.1. (a) Volcanics formed at the end of the Gauss epoch.
Hypothetical ancestral volcanic activity below the MM is based on our inferences, whereas
elsewhere is based on age estimates from Kreuzer (1988) (unpubl. Report quoted in Wörner
and Viereck (1989)) and Armienti et al. (1991). (b) Volcanic activity occurred in the
Matuyama and Brunhes Epochs. For the sake of coherence, the RH sub-suite is not consid-
ered since it has been excluded by our modeling. Dashed lines delimit the main sub-suites
interested by normal-polarity volcanic activity, particularly MM and WR, as resulted from
modeling results. The shape of dikes and lava flows derives from contouring of magneti-
zations results discussed in sub-section 5.4.2 and shown in Figure 5.C.4 (Appendix 5.C).
The most recent volcanic activity focused on the BR (inland sector), EP and MM sub-suites,
in the last assuming a radial shape. The volcanic activity in this period is steered by the
activation of the tectonic trend NNE-SSW.

existent NW-SE to N-S trending fissures, facilitating the intrusion of normally-polarized

feeder dikes.

After the last polarity reversal (i.e., Matuyama – Brunhes transition, 0.78 Ma) the volcanic

activity, at the beginning still active at the satellite centers of OR and SN, progressively
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focused on the central and eastern part of the MVF, namely MM, EP and BR inland sector

(Figure 5.7b). In this phase, a new set of NNE-SSW trending faults developed on the eastern

side of the field, enhancing volcano-tectonic fracturing between the MM edifice and EP and

facilitating the intrusion of swarm of dikes and the deposition of lava flows up to recent times,

assuming radial shapes at MM owing to its high topographic gradient.

5.6 Concluding remarks

In this chapter we have presented the first detailed aero-magnetic study of the MVF, accom-

plished combining a novel automatic lineament detection method with a two-step magnetic

inversion approach, able to shed light into the sub-ice MVF structure and its temporal

evolution.

Automatic lineament detection, performed applying the Hough Transform technique on

the TDR of TMA data, has revealed three main structural trends affecting the MVF, oriented

N-S, NW-SE and NNE-SSW, that are in good agreement with data from field observations on

tectonic structures. TMA data analysis allowed to isolate in the signal two main contributions,

that are a large negative long-wavelength and a positive short-wavelength anomaly with

radial distribution.

Our two-step magnetic inversion approach, constrained by magnetic property measure-

ments, enabled us to figure out for the MVF a geophysical structure constituted by a main

reversely-polarized unit superimposed and intruded by normally-polarized lava flows and

dikes. Field evidence for reversely-polarized volcanics comes from some rock samples col-

lected at the basal slope of MM and in the southern peripheral centers. Normally-polarized

volcanic flows would locally overlie the reversely-polarized basal unit on the main volcanic

centers WR, SN, OR, EP, MM and BR, that on the MM edifice appears eroded by swarm of

feeder dikes as a consequence of the longer magmatic activity occurring in this part of the

MVF.
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Combining our results with available geochronological information from rocks samples

collected in the field, we suggest for the MVF a geological history more complex with respect

to what was thought so far. In our reconstruction, the starting of a spread magmatic activity

would be significantly backdated in time at least at the reverse polarity Matuyama epoch also

at MM, driven by NW-SE to N-S fractures on the crystalline basement of the Ross Orogen

Wilson Terrane. However, scattered volcanic activity in the north-eastern peripheral center of

BR and in the southern tip of WR could have begun even at the end of the normal polarity

Gauss epoch. After the last magnetic polarity reversal, volcanic activity progressively moved

toward the central portion of the MVF, focusing on the last hundreds/tens of thousands

of years on MM and EP. The most recent phase of volcanic activity was driven by a new

NNE-SSW trending fault set, reflecting likely an activation of major extensional fault zones

along the current coastline (Vignaroli et al., 2015).
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Introduction

In the Appendices below are shown further data and results completing the discussion about

the geophysical characterization of the MVF. In detail:

• in Appendix 5.A, a table listing new magnetic susceptibility data about rocks samples

collected in MVF during the 2002/2003 Italian expeditions to Victoria Land is pre-

sented, together with already available magnetic properties data collected during both

the 2002/2003 and the 1985/1986 Italian Expeditions (Bozzo et al., 1987; Lanza et al.,

1991; Manzoni and Miletto, 1988; Pasquale et al., 2009);

• in Appendix 5.B, a table of all age estimates available for the MVF is shown, coupled

for each sub-suite with magnetic remanence inclinations data;

• in Appendix 5.C, additional results about the inversion approaches used to reconstruct

the inner framework of the volcanic complex are displayed;

• in Appendix 5.D, a 2D forward model along a E-W profile on the MM edifice is

provided, in order to give a schematic view of the internal architecture of the MVF

imaged through the results from our two-step inversion approach.



5.A Magnetic property data 144

Appendix 5.A Magnetic property data

Sample Source Locality Latitude Longitude Elevation χ χstd |Mr| Mr incl. Mr decl. Q
MB1 * Mario Zucchelli Station -74.70 164.12 NA 1027 NA 1.2 79.1 48.6 2.4
MB2 * Cape Washington -74.64 165.42 NA 4592 NA 2.6 -72.6 10.6 1.1
MB3 * Cape Washington -74.64 165.42 NA 3763 NA 7.9 -74.4 232.5 4.2
MB4 * SE of Random Hills -74.10 164.41 NA 2769 NA 0.5 -34.2 31.2 0.3
MB6 * N of Edmonson Point -74.26 165.04 NA 3514 NA 13.5 -75.3 25.3 7.4
MB7 * NE of Baker Rocks -74.22 164.84 NA 243 NA 0.05 -85.3 31.6 0.5

MB11 * S of Random Hills -74.18 164.33 NA 619 NA 2.9 -56.8 238.6 9.8
MB14 * W of Tinker Glacier -73.90 164.39 NA 2076 NA 9.1 75.1 285.3 8.2
MB15 * Tinker-Burns Glaciers -73.94 164.41 NA 2195 NA 8.4 73.3 318.0 7.6
MB16 * S of Miller Nunatak -74.45 164.07 NA 4210 NA 2.0 -48.9 210.9 0.9
MB17 * Willows Nunatak -74.49 165.31 NA 1680 NA 9.4 76.2 42.9 10.4
MB18 * N of Willows Nunatak -74.46 165.15 NA 572 NA 1.1 82.1 243.4 3.8
MB19 * S of Edmonson Point -74.39 165.06 NA 2274 NA 21.9 -68.5 234.9 18.2
MB21 * Markham Island -74.59 164.93 NA 3275 NA 1.8 42.2 275.8 1.0
MB22 * S of Harrows Peaks -74.09 164.80 NA 3480 NA 10.4 -80.6 149.9 5.7
MB23 * S of Harrows Peaks -74.09 164.80 NA 343 NA 6.8 -68.1 173.9 33.7
MB24 * S of Harrows Peaks -74.09 164.80 NA 2785 NA 23.4 -78.6 26.7 16.7
MB25 * Baker Rocks -74.23 164.75 NA 2295 NA 12.0 -80.2 141.9 10.0
MB26 * N of Edmonson Point -74.31 165.07 NA 251 NA 3.1 -62.3 214.9 31.4
MB27 * N of Edmonson Point -74.32 165.06 NA 186 NA 5.0 -54.0 100.7 55.5
MB28 * Oscar Point -74.58 164.88 NA 6214 NA 4.6 82.3 27.8 1.4
MB29 * Shield Nunatak -74.56 164.53 NA 130 NA 2.5 -39.1 198.8 41.3
MB30 * Upper Mt. Melbourne -74.32 164.64 NA 129 NA 0.3 -86.0 269.7 5.6
MB31 * Upper Mt. Melbourne -74.35 164.69 NA 961 NA 0.8 -77.4 23.5 1.5
MB32 * Shield Nunatak -74.55 164.51 NA 136 NA 2.3 -70.3 327.3 32.2
WR1 ** Washngton Ridge -74.61 165.44 NA 4486 11 NA NA NA NA
WR2 ** Washngton Ridge -74.59 165.43 NA 231 1 NA NA NA NA
WR3 ** Washngton Ridge -74.58 165.39 NA 3622 5 NA NA NA NA
WR4 ** N of Washington Ridge -74.49 165.28 NA 898 18 NA NA NA NA
WR5 ** N of Washington Ridge -74.48 165.35 NA 4057 3 NA NA NA NA
WR6 ** N of Washington Ridge -74.47 165.26 NA 2096 2 NA NA NA NA
WR7 ** N of Washington Ridge -74.48 165.40 NA 494 4 NA NA NA NA
EP1 ** N of Edmonson Point -74.31 164.99 NA 1904 4 NA NA NA NA
EP2 ** Edmonson Point -74.33 165.12 NA 338 5 NA NA NA NA
EP3 ** Edmonson Point -74.33 165.14 NA 822 1 NA NA NA NA
EP4 ** Edmonson Point -74.36 165.09 NA 879 17 NA NA NA NA
EP5 ** S of Edmonson Point -74.37 165.11 NA 1764 6 NA NA NA NA
EP6 ** Willows Nunatak -74.46 165.13 NA 1805 3 NA NA NA NA
SN1 ** Shield Nunatak -74.54 164.50 NA 298 1 NA NA NA NA
BR1 ** Baker Rocks -74.23 164.74 NA 791 3 NA NA NA NA
BR2 ** Baker Rocks -74.20 164.65 NA 813 1 NA NA NA NA
BR3 ** Baker Rocks -74.21 164.80 NA 4617 2 NA NA NA NA
BR4 ** S of Baker Rocks -74.29 164.70 NA 2243 9 NA NA NA NA
MM1 ** Medium Mt. Melbourne -74.31 164.66 NA 119 1 NA NA NA NA
MM2 ** Upper Mt. Melbourne -74.35 164.62 NA 648 1 NA NA NA NA

TIMM1 *** Shield Nunatak -74.55 164.51 195 1650 NA NA NA NA NA
TIMM2 *** Teall Nunatak -74.84 162.54 264 220 NA NA NA NA NA
TIMM3 *** Gondwana Station -74.64 164.22 NA 28 NA NA NA NA NA
TIMM4 *** Willows Nunatak -74.50 165.28 381 2390 20 NA NA NA NA
TIMM5 *** Willows Nunatak -74.49 165.29 397 785 41 NA NA NA NA
TIMM6 *** Willows Nunatak -74.48 165.34 145 1905 57 NA NA NA NA
TIMM7 *** Willows Nunatak -74.47 165.26 195 1338 48 NA NA NA NA
TIMM8 *** Willows Nunatak -74.46 165.13 275 149 7 NA NA NA NA
TIMM9 *** Willows Nunatak -74.48 165.36 104 1750 67 NA NA NA NA

TIMM10 *** Edmonson Point -74.32 164.99 545 1887 68 NA NA NA NA
TIMM11 *** Edmonson Point -74.33 165.11 28 3175 65 NA NA NA NA
TIMM12 *** Edmonson Point -74.33 165.11 165 744 23 NA NA NA NA
TIMM13 *** Edmonson Point -74.34 165.14 150 1460 NA NA NA NA NA
TIMM14 *** Edmonson Point -74.35 165.08 271 2380 91 NA NA NA NA
TIMM15 *** Edmonson Point -74.36 165.13 13 2553 74 NA NA NA NA
TIMM16 *** Cape Washington -74.63 165.44 300 2468 93 NA NA NA NA

Table 5.A.1 - New and already available magnetic susceptibility and remanence data achieved
from rock samples collected in MVF. χ and χstd columns list magnetic susceptibility values
and their standard deviations respectively, expressed in terms of 10−5 SI units. Remanence
modules |Mr| refer to Natural Remanent Magnetization (NRM), whereas inclinations Mr
incl. and declinations Mr decl. to a more precise Thermo-Remanent Magnetization (TRM),
albeit the rocks samples of the MVF show secondary magnetization components absent or
negligible (Lanza et al., 1991). Q is the Koenigsberger ratio. Data source: *Lanza et al.
(1991); Manzoni and Miletto (1988). **Pasquale et al. (2009). ***This study.
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Appendix 5.B Age estimates vs magnetic remanence data

Volcanic sub-suite Geochronology (Ma) Age source Mr incl. (◦)
Washington Ridge (WR) 1.250 ± 0.090 ### -74.4

1.310 ± 0.090 ### -72.6
1.320 ± 0.070 ### 76.2
1.340 ± 0.070 ###
1.670 ÷ 2.700 **
1.680 ± 0.190 #
2.720 ± 0.170 #

Willows Nunatak 2.400 ± 0.100 * 82.1
Oscar Ridge (OR) 0.415 ± 0.024 ## 42.2

0.710 ± 0.180 *** 82.3
Shield Nunatak (SN) 0.070 ± 0.050 ** -70.3

0.431 ± 0.082 ## -39.1
0.480 ± 0.240 ***
1.560 ÷ 1.770 **
1.610 ± 0.050 #
1.650 ± 0.040 #
1.740 ± 0.030 #

Mt. Melbourne edifice (MM) 0.010 ± 0.020 * -86.0
0.015 ± 0.035 ** -77.4
0.070 ± 0.010 ###
0.080 ± 0.015 *
0.120 ± 0.020 ###
0.250 ± 0.060 *
0.250 ± 0.350 #

Edmonson Point (EP) 0.047 ± 0.021 # -75.3
0.050 ± 0.020 ** -68.5
0.074 ± 0.110 ** -62.3
0.112 ± 0.084 ## -54.0
0.119 ± 0.012 ##
0.298 ± 0.055 ##
0.900 ± 1.150 #

Baker Rocks (BR) 0.190 ± 0.040 * -85.3
0.200 ± 0.010 ### -80.2
0.200 ± 0.010 ###
0.280 ± 0.030 ###
0.330 ± 0.030 ###
0.720 ± 0.100 *
2.590 ± 0.110 ***
2.960 ± 0.200 ***

Random Hills (RH) 0.745 ± 0.066 ## -80.6
1.368 ± 0.090 ## -78.6

12.430 ± 0.160 *** -68.1
12.630 ± 0.170 *** -56.8

-34.2

Table 5.B.1 - Age estimates and remanence inclination data available for each sub-suite
composing the MVF (sorted from south to north). Mr incl. data refer to Thermo-Remanent
Magnetization (TRM) inclinations (Lanza et al., 1991). Data source: *Armstrong (1978);
**Kreuzer (1988) - unpubl. report; ***Armienti et al. (1991); #Müller et al. (1991);
##Giordano et al. (2012); ###Lee et al. (2015).
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Appendix 5.C Further modeling results

Figure 5.C.1 - (a) TMA calculated data, representing the response of the model obtained by
the inversion approach described in sub-section 5.4.1, whose results are shown in Figures 5.6a-
b (main text) in terms of geometry of the inverted contrast surface and thickness of the
shallower volcanic stratum with inferred normal polarity. (b) Grid difference between our
TMA dataset and the calculated response of the model from inversion displayed in (a). For
abbreviations on both the panels, see Figure 5.1 in the main text.
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Figure 5.C.2 - Map showing the magnetization intensity variance expected for the upper
volcanic unit, obtained extracting the diagonal elements from the posterior covariance matrix
C̃M calculated using the equation (5.2). It should be noticed that C̃M together with the
model m, achieved solving equation (5.1), fully characterize the posterior PDF of the model
parameters σ(m), representing the actual solution using the deterministic inversion approach
described in sub-section 5.4.2 (see paragraph “Linear case - Deterministic approach”). For
abbreviations, see Figure 5.1 in the main text.
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Figure 5.C.3 - (a) TMA calculated data, representing the response of the model obtained by
the inversion approach described in sub-section 5.4.2, whose results are shown in Figure 5.6d
(main text) in terms of 2D map of apparent magnetization. (b) Grid difference between our
TMA and the response obtained summing the contribution shown in (a) with that calculated
from the contrast surface achieved through the 3D Parker-Oldenburg’s method shown in
Figure 5.6a (main text). For abbreviations on both the panels, see Figure 5.1 in the main text.
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Figure 5.C.4 - Maps of the lateral magnetization variability in MVF obtained through the
inversion approach described in sub-section 5.4.2. The differences between the Figures (a),
(b), (c) and (d) are related to the contour values of apparent magnetization chosen, that are
−5,−3,−1and0A/m respectively. The reader can notice the contours at −5and −3A/m
clearly draw radial shapes similar to that shown by TMA data, suggesting the positive
anomalies in the TMA data are due to the magnetization contrast among normal-polarized
lava flows deposited on underlying reverse-polarized volcanics. Regarding the contours of
higher magnetizations, radial shapes become circular spots, well imaging dikes intruding the
reverse-polarized volcanic edifice of MM and WR. For abbreviations, see Figure 5.1 in the
main text.
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Appendix 5.D 2D section of the MVF

Figure 5.D.1 - 2D forward model showing the inner structure below MM along the E-W
profile displayed in Figure 5.4b in the main text (vertical exaggeration equal to 1.03). A
total number of 69 observation points are indicated as inverted blue triangles in the second
panel, whereas the respective measured data and the calculated response of the model are
shown in the first panel. In pink are modeled normally-polarized lava flows and fault-
related dikes, whereas in purple reversely-polarized volcanics. The magnetic properties
associated to them are only magnetic remanence, with module, inclination and declination
of 8.08A/m, −75.35◦, 143.3◦ and 5.63A/m, 78.02◦, 161◦ respectively (same values used
for the 3D Parker-Oldenburg’s inversion). Below is the Ross Orogen Wilson Terrane, to
which is associated only magnetic susceptibility equal to 0.28 ·10−3SI (see Figure 5.4a in
the main text). In orange is qualitatively indicated a magma chamber, whose actual existence,
position and extension are unknown. For a comparison, the trace of the contrast layer
among inferred normally- and reversely-polarized volcanics obtained through the Parker-
Oldenburg’s inversion method is placed on the model. It can be noticed that this contrast
surface matches the respective in the 2D forward model particularly toward the external part
of MM, where the approximation of two overlapping strata with opposite magnetic properties
works well. Conversely, this approximation does not work anymore for the central part of
the MM affected by the intrusion of normally-polarized feeder dikes, rather causing a lateral
variability in magnetization properties and polarities.





Part IV

Final considerations



Conclusions

Final remarks

Despite the great efforts made by geophysicists to manage the non-uniqueness affecting

potential fields inverse problems, gravity and magnetic modeling still suffers from a lack of

methodologies capable of characterizing in an informative way the density and magnetization

distribution inferred for a target geological scenario. Moreover, the strong non-linearity

characterizing the forward problem of some parameterization approaches makes the re-

lated inverse problem very hard to be managed and setup. For such reason, the popular

polygon-based parameterization approach, potentially suitable to parameterize a wide range

of geological scenarios, has been confined on a trivial trial-and-error modeling strategy,

strongly subjective and then unable to take into account the non-uniqueness issue. Con-

versely, linear inversion problems based on the prism-based parameterization are comfortably

tackled from a deterministic viewpoint, which provides as solution just an optimal model

preventing a more informative uncertainty estimation distinctive of probabilistic approaches.

This thesis aimed to bridge these gaps, proposing (i) a non-linear polygon-based inversion

method of gravity and magnetic data following the probabilistic approach to inverse problems,

and (ii) a linear probabilistic inversion method exploiting an unedited version of the prism-

based parameterization strategy.

As far as the contribute (i), a preparatory complete study on the polygon-based parameter-

ization approach has been performed, starting from a validation of its theoretical framework.
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In detail, in chapter 3 we have analyzed all the forward formulations available for the 2D

magnetic case, restoring the mathematical correctness of the popular derivation of Talwani

and Heirtzler (1962, 1964), whose validity has been recently questioned by Kravchinsky et al.

(2019). In fact, we have demonstrated that the two derivations actually are just two algebraic

variants of a unique mathematical derivation, and a numerical test comparing them with

another formulation from Won and Bevis (1987) confirmed complete agreement. The impact

of actual mathematical weaknesses on the Talwani’s derivation would have been significant,

since the majority of forward engines are based on it. Such mathematical checks have been

extended in chapter 4 to the 2.5D to 2.75D gravity and magnetic cases (Campbell, 1983; Ras-

mussen and Pedersen, 1979), completing the puzzle about polygon-based parameterization

approaches. An error sign has been revealed for the 2.75D magnetic case, supported by a

numerical comparison with a forward engine exploiting the prism-based parameterization

approach (Bhattacharyya, 1964).

All formulae, rectified when necessary, have been employed as forward problems to

develop, still in chapter 4, a methodology to invert gravity and magnetic data, independently

or jointly, based on the Hamiltonian Monte Carlo (HMC) scheme (Duane et al., 1987;

Fichtner et al., 2019; Neal, 2012). HMC is an efficient probabilistic inversion approach

which proved to be capable of fully characterizing the geometries of synthetic- and real-

case geological bodies by means of collections of models, upon which statistical analysis

and uncertainty estimation on the model parameters have revealed helpful information to

characterize a geological scenarios under study. Using this inversion method, the geological

plausibility of a model explored is automatically checked or, if required, fixed, in order to

avoid unrealistic cross-intersection between polygons. In addition, all the code required for

the 2D to 2.75D gravity and magnetic forward problems, together with the HMC inversion

method exploiting them, has been released as open-source packages in order to make
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accessible to the geophysical community this progress in potential fields modeling (see

section “Open-source software” for more details).

As regards the contribution (ii), the inversion method has been developed following the

probabilistic viewpoint, which provide both the posterior model and the related covariance

matrix, fully characterizing the posterior PDF of the model parameters. Using this methodol-

ogy, a geological scenario is parameterized by prismatic bodies extended in the z direction

neither infinitely, as in the case of the Apparent Susceptibility Mapping method (e.g., Grant,

1973; Silva and Hohmann, 1984; Zunino et al., 2009), nor finitely with a 3D arrangement.

Here, differently from the Apparent Susceptibility Mapping method, prisms are infinitely

extended in the z direction but arranged in order to horizontally cover the geophysical body

we would like to parameterize, making this method particularly suited to characterize the

density and magnetization variability on geological strata. In this thesis, this approach has

been employed to fully characterize the magnetization variability of the shallower volcanic

unit of the Mt. Melbourne Volcanic Field (Antarctica), contributing to reveal for the first

time its inner geophysical architecture. However, this method can be easily exploited for the

gravity case substituting the magnetic forward equation from Bhattacharyya (1964) with the

gravity forward formulae from either Nagy (1966) or Banerjee and Das Gupta (1977).

As a final consideration, the 2D/2.75D polygon-based HMC inversion method presented

in this thesis would also serve as a basis for developing, in the next future, a sophisticated 3D

inversion methodology of gravity and magnetic data, as briefly discussed in the next section.

Future perspectives

Following my professional aim to move toward 3D inverse modeling methodologies, a future

outlook of this thesis work would be to develop a 3D joint gravity and magnetic inversion

method, combining an elegant parameterization of geological bodies through polyhedra

with a fully nonlinear inversion strategy based on the probabilistic approach. In detail,
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polyhedra with uniform to high-order polynomial density and magnetization contrasts would

allow to characterize geological bodies in the subsurface in a sharp, flexible and faithful

fashion, whose gravity and magnetic contributes can be calculated through recently derived

mathematical formulations (Ren et al. (2020) and Ren et al. (2022) for the gravity and the

magnetic case, respectively). The polyhedron-based parameterization can be considered as

the 3D expansion of the 2D/2.75D polygon-based approach discussed in chapters 2 - 3 - 4,

since for both model parameters can be either the density/magnetization or node positions of

bodies. Such possibility makes the proposed method suitable for most of the cases where

gravity and magnetic modeling is required.

As inversion approach, the choice would rely again on the promising HMC strategy,

since it allows the model space to be explored more efficiently thanks to trajectories that are

steered toward its high-probability areas by the gradient calculation of the posterior PDF of

the model parameters (Neal, 2012). A reduced amount of prior information and number of

iterations would be thus required to better characterize the model null space with respect

to other sampling strategies, making the inversion easier to setup and less time-consuming.

Moreover, using HMC makes it possible to perform a statistical analysis and uncertainty

estimation of the model parameters from the collection of posterior models, enabling to

appraise different probable geological scenarios (e.g., see section 4.4).

The only issue about the polyhedral parameterization, in common with the 2.75D polygo-

nal one, would be the hazard to achieve during the inversion process bodies self-crossing

each other. Hence, an automatic geometry checks system controlling the evolution of bod-

ies shape would be required to make the method feasible. The set of routines performing

these checks would represent the 3D evolution of those already implemented in the Ju-

lia package GeoPolygons in the context of the 2D/2.75D polygonal parameterization (see

Appendix 4.C).

https://gitlab.com/JuliaGeoph/GeoPolygons.jl/
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